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PREFACIO

La primera edicién rusa de Elementos de la teoria de funcio-
nes y del andlisis funcional apareci6 en dos fasciculos en 1954
y 1960. La publicacién de estos dos fasciculos se debié a que, -
a finales de la década del 40, fue incluido en el programa de
la Facultad de Mecanica y Matematicas de la Universidad de
Moscii el curso de Andlisis 111 que comprendia elementos de la -
teoria de medida y de la teoria de funciones, ecuaciones inte-
grales, nociones del anilisis funcional y, méas tarde, cileulo de
variaciones. Este curso, dictado en la Universidad de Moscii
primero por Andréi Kolmogérov y luego por otros profesores,
entre ellos Serguéi Fomin, integré posteriormente también los
programas de otras Universidades. Debido a su reducida tirada,
la edicién de nuestro libro se agoté rapidamente y hace tiempo
que surgié la necesidad de reeditarlo.
~ La sustitucion de los cursos de la teorfa de funciones de
variable real, de ecuaciones integrales y de calculo de varia-
ciones por el curso unificado de Andlisis I1] en la Universidad
de Mosctl, dio lugar a grandes discusiones en su tiempo. El
curso tenia por objeto ;ha%ritua‘r a los estudiantes a una visién
doble: por una parte, seguir la l6gica interna del desarrollo de
la teoria de conjuntos, de la teoria general de aplicaciones con-
tinuas en espacios métricos y topolégicos, de la teorfa general

- de espacios lineales y de funcionales y operadores en ellos y de
la teoria pura de medida e integracién en «espacios generales
provistos de medida», y por otra parte, no perder de vista los
problemas ‘del anilisis clasico y del aplicado, a los que prestan
servicio estas ramas mas abstractas de las Matematicas.
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Para resolver esta tarea, en .la planificacién del libro damos
preferencia a la linea abstracta de estructuracién del curso. De
la teoria general de conjuntos (capitulo I) se puede pasar o bien
a los espacios métricos y topolégicos y sus aplicaciones continuas
(capitulo II), o bien, directamente, a los espacios provistos de
medida (sin topologia) y a la integracién en ellos (capitulo VI).
En los capftulos III y IV se estudian los espacios lineales y los
funcionales y operadores lineales en ellos. De estos capitulos se
puede pasar directamente al capitulo V (operadores y funcionales
diferenciables no lineales). En el capitulo VIII se estudian los
“espacios lineales de funciones sumables. Solamente en los capi-
tulos VII y IX se concentra, de hecho, la atencién en las
funciones de variable real. La exposicién de la teoria de ecua-
ciones integrales en el capitulo X estd formalmente vinculada
con el segmento [a, b]; pero, se le puede dar, sin modificaciones
esenciales, una forma més general. ‘

Aunque en nuestro libro se exponen, en primer lugar, los
conceptos generales de la teoria de funciones y del andlisis fun-
cional, el lector podra advertir, en casi todos los capitulos, la
atencién que se presta a los problemas clésicos contiguos. El
haber incluido en nuestro libro los capitulos VII (teoria de di-
ferenciacién), 1X (series trigonométricas e integral de Fourier)
y X (ecuaciones integrales lineales) hace que abarque ahora todo
el programa del curso de Andlisis 1] adoptado en la Univer-
sidad de Moscli, menos el célculo de variaciones. No hemos
incluido este altimo en nuestro libro, limitindonos a exponer
en el capitulo V los rudimentos del analisis funcional no lineal.

En la nueva edicién, lo mismo que en la primera, ocupa un
lugar considerable la teoria general de medida. En los dltimos
tiempos han aparecido varias exposiciones de la teoria de inte-
gracién a base del esquema de Daniell, que no utiliza el aparato
de l1a teoria de medida. Consideramos, sin embargo, que la
teoria de medida tiene por si sola suficiente importancia,
independientemente de si se introduce o no el concepto de
integral, y merece ser incluida en el curso universitario.

Al revisar el libro e incluir en é nuevas secciones hemos
procurado, sin embargo, conservar el estilo relativamente ele-
mental de exposicién que, segiin nos parece, tenia la primera
edicién. Esperamos que éste hallard su lugar natural en la ense-
fianza universitaria a la par de otros textos.

A. Kolmogdrov
S. Fomin



CAPITULO
I

ELEMENTOS DE LA TEORIA
DE CONJUNTOS

§ 1. CONCEPTO DE CONJUNTO.
OPERACIONES SOBRE CONJUNTOS

1°. Definiciones principales. En las Matematicas tropezamos
constantemente con distintos conjuntos. Podemos hablar del
conjunto de facetas de un poliedro, de puntos de una recta, del
conjunto de niimeros naturales, etc. E1 concepto de conjunto es
tan amplio que resulta dificil darle una definicién que no se
reduzca a sustituir simplemente la palabra «conjunto» por expre-
siones sinénimas: ctimulo, coleccién de elementos, etc.

El concepto de e¢onjunto desempefia en las Matematicas mo-

dernas un papel de extraordinaria importancia no sélo porque la
propia teorid de conjuntos ha pasado a ser en la actualidad una
disciplina sumamente vasta y enjundiosa, sino, principalmente,
en virtud de la influencia que la teoria de conjuntos, nacida a
fines del siglo pasado, ha ejercido y ejerce sobre todas las Ma-
tematicas. Vamos a enunciar aqui las notaciones fundamentales
y a exponer brevemente los conceptos primarios de la teoria de
conjuntos que serdn utilizados en los capitulos sucesivos.
- Designaremos los conjuntos con letras maytisculas 4, B, ...
y sus elementos con minisculas a, b, ... La afirmacién de que
«el elemento a pertenece al conjunto A» se denota simbdlica-
mente asi: a€ A o bién Ada; a€ A (o bien A3 a) significa que
el elemento a no pertenece a A. Si todos los elementos que com-
ponen el conjunto A pertenecen también al conjunto B (con la
particularidad de que el caso A=B no estd excluido), decimos
que A es subconjunto del conjuntc B y escribimos AcB. Por
ejemplo, los niimeros enteros forman un subconjunto del conjunto
de todos los nimeros reales.

-A veces no sabemos de antemano si un conjunto (por ejemplo,
el conjunto de las rajces de una ecuacién) contiene o no por lo
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menos un elemento. De ahi, la conveniencia de introducir e1
llamado conjunto vacio, es decir, el conjunto que no contiene n:
un elemento. Lo designaremos con el simbolo &. Cualquier con.
junto contiene & como subconjunto. , o

2°, Operaciones sobre conjuntos. Sean A y B conjuntos arbi-
trarios; se 1lama suma o unién AUB de estos conjuntos al con-
junto compuesto de todos.los elementos pertenecientes por lo
menos a uno de los conjuntos A 6 B (fig. 1).

De manera analoga se define la suma de cualquier nimero
(finito o infinito) de conjuntos: si A, son conjuntos arbitrarios,

su suma UA, es la colecciéon de elementos, cada uno de los

«
cuales pertenece por lo menos a uno de los conjuntos 4,.

C=Ang

FIG. 1 - FIG. 2

Llamaremos interseccion ANB de los conjuntos A y B al
conjunto compuesto por todos los elementos pertenecientes tanto
al conjunto A como al conjunto B (fig. 2). Por ejemplo, la
interseccién del conjunto de todos los niimeros pares y del
conjunto de todos los numeros divisibles por tres estd compuesta
por todos los niimeros enteros divisibles por seis. La interseccion.
de un ntimero cualquiera (finito o infinito) de conjuntos A,
es la coleccién [JA, de elementos pertenecientes a cada uno de

) o M .
los conjuntos A,. _ o o ;

Por su propia definicién las operaciones de suma e intersec-
cién son conmutativas y asociativas, es decir, AUuB=BUA,
(AUB)UC=AU(BUC), AnB=Bn4A, (AnB)nC=An(BnC).
Ademas, verifican las siguientes relaciones distributivas:

(AuB)nC=(AnC)u(BAC), (1)
(AnB)UC=(AuC)n(BUC). @)

En efecto, c’&mprobe‘mOs, por ejemplo, la primera de estas
igualdades V. Supongamos que el elemento x pertenece al con-
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junto que figura en la parte izquierda de la igualdad (1):
x€(AUB)NC. Esto significa que x pertenece a C vy, ademas,
por lo menos a uno de los conjuntos A 6 B. Pero entonces x
pertenece siquiera a uno de los conjuntos ANC o BNC, es
decir, figura en la parte derecha de la igualdad considerada.
Viceversa, supongamos que x € (A N C) U (B N C). Entonces, x€ ANC
o bien x€ BNC. Por consigriente, x€C y, ademas, x figura en
A o en B, es decir, x€ AUB. De manera que x€(AUB)NC,
y la igualdad (1) queda demostrada. Analogamente se verifica
la igualdad (2). .

A 8

CA\B
FIG. 3

Definamos la operacién de resta de conjuntos. Llamaremos -
diferencia AN\ B de los conjuntos A y B a la coleccién de aquellos
elementos de A que no pertenecen a B (fig. 3). Sefialemos que
aqui no se supone que A>B. A veces en lugar de AN\B se
escribe A—B. En -algunos casos (por ejemplo, en la teoria de
la medida) conviene introducir la llamada diferencia simétrica de
dos conjuntos A y B que se define como la suma de las diferen-
cias ANB y B\ A (fig. 4). Denotaremos la diferencia simétrica
de los conjuntos A y B con el simbolo AAB. De manera que
segiin la - definicién, : :

AAB=(ANB)U (B\A).

EJERCICIO. Demostrar que : .
' : AAB=(AUB)\ (AN B).

En lo sucesivo deberemos considerar con frecuencia distintos
conjuntos, que todos son subconjuntos de un conjunto principal S,
por ejemplo, diferentes conjuntos de puntos sobre la recta nu-

LW

. 1 La jgualdad de dos conjuntos A=B se entiende como una igualdad
fdéntica, es decir, significa que tada elemento de A perteneéce a B y vice-
versa. En- otras palabras, la igualdad A'=B equivale a:que se verifican
‘ambas inclusiones: A B y B33 A. S o
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mérica. En este caso, para todo conjunto A la diferencia S\ A
se llama complemento del conjunto A y se denota frecuentemente
mediante CA o bien A’. \ ~ =

En la teoria de los conjuntos y sus aplicaciones desempefa
un papel muy importante el llamado principio de duali-
dad, que se basa en las dos siguientes relaciones:

1. El complemento de la suma es igual a la interseccion de
los complementos

s\U4.=NE\4). 3)

2. El complemento de la interseccion es igual a la suma de
los complementos

s\N4.=U $\4). @)

El principio de dualidad consiste en que de cualquier teorema
referente a un sistema de subconjuntos de un conjunto fijo S se
puede deducir de manera automiatica otro teorema, el
teorema dual, sustituyendo los conjuntos considerados por sus
complementos, la suma de conjuntos, por su interseccion y la
interseccién, por la suma. Un ejemplo de la aplicacion de este
principio nos lo da el teorema 3’ del § 2 del capitulo II.

Demostremos la relacién (3).

Supongamos que x€S\A.. Esto significa que x no perte-
: ‘ L ® L
nece a la unién;UA,, es decir, no figura en ninguno de los

conjuntos A,. Po;‘ consiguiente, x aparece en cada uno de los
complementos S\ A, y por eso x€f)(S\\4,). Viceversa, supon-
.

gamos que x € n (S\\A.,), es decir, que x pertenece a cada S\ A4,;
A ;

entonces, x no figura en ninguno de los conjuntos A, es decir,
no pertenece a la suma |JA,, y por eso x€S\UA.. La igual-

dad (3) queda demostrad;. De manera aniloga s: demuestra la
relacién (4). (Realicese 1a’demostracion).

La expresién «diferencia simétrica» que se emplea para la operacién
AAB no es del todo acertada; esta acién es, en muchos aspectos, ani-
loga a la suma de conjuntos AUB. En efecto, AUB significa que unimos
dos afirmaciones con el «o» alternativg: «el elemento pertenece al conjunto A»
o «el elemento pertenece al conjunto B», mientras que ANAB significa que
unimos las mismas afirmaciones con el «o» no alternativo: el elemento x
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pertenece a AAB si, y s6lo si, figura o bien solamente en el conjunto A
o bien solamente en el conjunto B. El conjunto AAB podria llamarse ¢suma
médulo dos» de los conjuntos A y B (se toma la unién de estos dos con-
juntos pero los elementos que figuran en ambos se excluyen).

§ 2. EQUIVALENCIA DE CONJUNTOS.
CONCEPTO DE POTENCIA DE UN CONJUNTO

1°. Conjuntos finitos e infinitos. Al considerar diferentes
conjuntos observamos que para algunos de ellos es posible sefia-
lar—aunque sea de una manera general y no de hecho—Ila can-
tidad de elementos que los componen. De este tipo es, por
ejemplo, el conjunto de todos los vértices de un poliedro, el
conjunto de todos los nimeros primos inferiores a un namero
dado, el conjunto de todas las moléculas de agua en la Tierra,
etc. Cada uno de estos conjuntos contiene un nimero finito, que
posiblemente desconocemos, de elementos. Por otra parte, existen
conjuntos compuestos por un nimero infinito de elementos. De
este tipo son, por ejemplo, el conjunto de todos los nimeros
naturales, el conjunto de todos los puntos de una recta, el con-
junto de todos los circulos del plano, el conjunto de todos los
polinomios de coeficientes racionales, etc. Vale subrayar que al
decir que uno u otro conjunto es infinito entendemos que se
puede escoger de él un elemento, dos elementos, etc., y después
de cada una de estas operaciones en el conjunto quedarin ain
otros elementos.

Dos conjuntos finitos los podemos comparar por el nimero
de elementos que los componen y decidir si este nfimero es el
mismo o si uno de los conjuntos posee mas elementos que otro.
¢Es posible comparar de manera analoga los conjuntos infinitos?
En otras palabras, ¢tiene sentido preguntar qué hay mas: circulos
sobre el plano o puntos racionales sobre la recta, funciones defi-
nidas sobre el segmento [0, 1] o rectas en el espacio, etc.?

Veamos cémo comparamos entre si dos conjuntos finitos.
Podemos proceder de dos maneras: en primer lugar, podemos
contar el niimero de elementos de cada uno de estos 'conjuntos
y comparar asi ambos conjuntos. Pero podemos actuar de modo
distinto, tratando de establecer una correspondencia biunivoca
entre los elementos de estos conjuntos, es decir, una corres-
pondencia que asigne a cada elemento de un conjunto un
elemento, y s6lo uno, del otro y viceversa. Estid claro que una
correspondencia biunivoca entre dos conjuntos finitos se puede
establecer si, y sdlo si, el nimero de elementos en ambos
conjuntos es el mismo. Por ejemplo, para ver si coinciden el
nimero de alumnos en el grupo y la cantidad de sillas en el
aula, podemos, sin contar el niimero de alumnos y de sillas,

2—3427
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sentar a cada alumno en una silla determinada. Si hay lugar
para todos y no queda ningin asiento sobrante, es decir, si se
establece una correspondencia biunivoca entre estos dos conjuntos,
ello significara que tienen el mismo nimero de elementos.

Sefialemes ahora que el primer camino (calculando el niimero
de elementos) es valido solo si se comparan conjuntos finitos,
mientras que el segundo (estableciendo una correspondencia biu-
nivoca) se puede aplicar también a conjuntos infinitos.

2°, Conjuntos numerables. El conjunto infinito mas elemental
es el conjunto de los nimeros naturales. Llamaremos conjunto
numerable a todo conjunto cuyos elementos se puedan poner en
correspondencia biunivoca con todos los niimeros naturales. En
otras palabras, un conjunto numerable es un conjunto cuyos
elementos se pueden colocar en una sucesion infinita: a,, a,, .

., @, ... Veamos algunos ejemplos de conjuntos numerables.

1. El conjunto de todos los nimeros enteros. Establezcamos
. 1a correspondencia entre todos niimeros enteros y todos los ni-
meros naturales segin el esquema siguiente:

0 —1 1 —2 2 ...
1 23 4 5 ...

En general, pongamos en correspondencia a cada namero no ne-
gativo n >0 el niimero impar 2n+1 y a cada ufimero negativo
n < 0 el ntimero par 2|nl:

ne2n-+1, cuando n >0,
ne2|n|, cuando n<O0.

2. El conjunto de todos los nimeros pares positivos. La co-
rrespondencia es evidenté: n > 2n. ‘

3. El conjunto 2, 4, 8, ..., 2%, ... de potencias de dos.
Aqui la correspondencia es también evidente. A cada niimero
2" se pone en correspondencia el niimero n. ,

4. Consideremos un ejemplo mas complejo demostrando que
el conjunto de todos los miumeros racionales es numerable. Cada
namero racional se puede escribir, de manera tnica, en forma

de una fraccién irreducible o= _;’_,, g > 0. Llamemos altura del

namero racional & a la suma |p|+g¢. Esta claro que el nimero
de fracciones de altura dada n es finito. Por ejemplo, la altura 1

la tiene s6lo el niimero —(ll=0, la altura 2 la tienen solo los

. —1 . , ,
nameros 1 y 1> la altura 3, la tienen sélo los ntimeros —:f- ,

e

1
1 =2 —1 , .
T Y 3 etc. Coloquemos ahora todos los niimeros raciona-
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les segin su altura, es decir, primero los nimeros de altura 1,
después los de altura 2, etc. Cada namero racional tendré entonces
su niimero, es decir, quedard establecida una correspondencia
biunivoca entre todos los nimeros naturales y todos los niimeros
racionales.

Un conjunto infinito que no sea numerable se llama conjunto
no numerable. Demostremos algunas propiedades generales de con-
juntos numerables. ' -

1. Todo subconjunto de un conjunto numerable es finito o nu-
merable. :

DEMOSTRACION. Sea A un conjunto numerable y B un subcon-
junto suyo. Numeremos todos los elementos del conjunto A: a,,
a, ..., 4, ... Sean a,, a,, ... aquellos elementos que figuran
en B. Si entre los nimeros n,, n,, ... existe el maximo, B es
finito; en el caso contrario B es numerable.

2. La suma de cualquier conjunto finito o numerable de conjun-
tos numerables es también un conjunto numerable.

DEMOSTRACION. Sean A,, A,, ... conjuntos numerables. Podemos
suponer que son disjuntos (sin elementos comunes) dos a dos, ya
que, de lo contrario, considerariamos en su lugar los conjuntos
A, ANA,, AN(A,UA4,), ... que son a lo sumo numerables
y que tienen la misma suma que los conjuntos A4,, 4,, ... Todos
los elementos de los conjuntos A,, A,, ... pueden-escribirse en
forma de la siguiente tabla infinita:

Q- Gy Qg Gy -

Ay Qyy Qg Qyy -

Ay, Qg Qg Gy -

Ay Gy Qg Gy -

« e e ¥ o . . .

en cuya primera fila aparecen los elementos del conjunto A,,
en la segunda fila, los elementos del conjunto A,, etc. Numere-
mos ahora todos estos elementos desplazdndonos «en diagonales»,
es decir, tomando por primero el elemento a,,; por segundo, el
elemento a,,; por tercero, el elemento a,,, etc., siguiendo el sen-
tido que indican las flechas del siguiente cuadro:

Ay 0y Q30 ..

Gy Gy Gy Qg - -
Qg Qg Qg gy - -

ag, Qg Q3 Gy - -

. PR . o e s s e

2%
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Esta claro que cada elemento de cada conjunto recibira en-
tonces un nimero determinado, es decir, quedara establecida una
correspondencia biunivoca entre todos los elementos de todos los
conjunitos A,, A,, ... y todos los nimeros naturales. Nuestra
afirmacién resulta demostrada.

EJERCICIOS. 1. Demostrar que el conjurito de todos les polinomios con
coeficientes racionales es numerable.

2. El nfimero § se denomina algebraico si es raiz de un polinomio con
coeficientes racionales. Demostrar que el conjunto de todos los niimeros
algebraicos es numerable.

3. Demostrar que el conjunto de todos los intervalos racionales (es decir,
intervalos con extremos racionales) sobre la recta es numerable

4. Demostrar que el conjunto de todos los puntos del plano que tienen
coordenadas reales es numerable. ,

Sugerencia. Empléese la propiedad 2.

3. Todo conjunto infinito contiene un subconjunto numerable.

DEMOSTRACION. Sea M un conjunto infinitio. Tomemos en €l un
elemento cualquiera a,. Por ser M un conjunto infinito encontrare-
mos en €l un elemento a, distinto. de a,, después el elemento a,
distinto de a, y a,, etc. Continuando este proceso (que no podra
interrumpirse por «falta» de elementos ya que M es infinito)
obtendremos un subconjunto numerable

A={a, a,, ..., a, ...}

del conjunto M. Hemos demostrado la afirmacion.

Este resultado sefiala que los conjuntos numerables son los
«mas pequefios» de los conjuntos infinitos. El problema sobre la
existencia de conjuntos infinitos no numerables seréd considerado
mas adelante.

3°. Equivalencia de conjuntos. Buscando una correspondencia
biunivoca entre unos u otros conjuntos infinitos y los nfimeros
naturales, hemos llegado al concepto de conjunto numerable,

Estd claro que de manera aniloga pueden compararse los
conjuntos no sélo con el conjunto de nimeros naturales: este
procedimiento permite comparar entre si dos conjuntos cuales-
quiera. Introduzcamos la siguiente definicidn.

DEFINICION. Dos conjuntos M y N se llaman equivalentes (lo que
se denota mediante M ~ N) si entre sus elementos se puede
establecer una correspondencia biunivoca.

El concepto de equivalencia puede aplicarse a cualesquiera con-
juntos tanto finitos como infinitos. Dos conjuntos finitos son equi-
valentes entre si si (y s6lo si) tienen el mismo niimero de elementos.
El conjunto numerable se puede ahora definir del siguiente modo:
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un conjunto se llama numerable si es equivalente al conjunto de
los niumeros naturales.

Esta claro que dos conjuntos, equivalentes cada uno a un
tercer conjunto, son equivalentes entre si; en particular, todos
los conjuntos numerables son equivalentes entre si.

Ejemplos. 1. Los conjuntos de puntos de dos cualesquiera
segmentos [a, b] y [c, d] son equivalentes entre si. En la fig. 5
se sefiala como se puede establecer una correspondencia biunivoca
entre ellos: los puntes p v g corresponden uno al otro si se
hallan sobre un mismo radio que parte del punto O donde se
cruzan las rectas ac y bd.

- 2. El conjunto de todos los puntos del plano complejo es
equivalente al conjunto de todos los puntos sobre una esfera.

/
J4

FIG. b FIG. 6

&3

N

La correspondencia biunivoca & ¢z puede establecerse, por ejem-
plo, mediante la proyeccién estereografica (fig. 6).

3. El conjunto de todos los numeros del intervalo (0, 1) es
equivalante al conjunto de todos los puntos de la recta. La
;’:6rrespondencia se puede establecer, por ejemplo, mediante la
uncion

y=;l‘—atctgx+%.

Al considerar los ejemplos de este punto y del punto 2° po-
demos observar que, a veces, un conjunto infinito puede resultar
~equivalente a una parte propia. Por ejemplo, resulta haber «tan-
tos» niimeros naturales como niimeros enteros o incluso racionales;
el intervalo (0, 1) tiene «tantos» puntos como los tiene la recta,
etc. Esta situacién es caracteristica para todos los conjuntos
infinitos. En efecto, en el punto 2° (propiedad 3) hemos 0s-
trado que de todo conjunto infinito M se puede elegir un
subconjunto numerable; supongamos que éste sea el conjunto

A={a,, Gy ..oy Gy oo}
Dividamos A en dos subconjuntos numerables
Ai=1{a, a5 a5 ...} Y Ay={ay, a4 a5 ...}
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Entre los conjuntos numerables A y A, se puede establecer una:
correspondencia biunivoca que se puede extender luego hasta una
correspondencia biunivoca entre los conjuntos AU(M\ A4)=M
y A UM\ A)=M\ A, refiriendo a cada elemento de M\ A
ese mismo elemento. El conjunto M\ A4, es un subconjunto propio
del conjunto M. Llegamos de esta forma a la siguiente propo-
sicion: : :

Todo conjunto infinito es equivalente a un subconjunto propio.

Esta propiedad se puede tomar como la definicién de un
conjunito infinito.. T

EJERCICIO. Demostrar gue siendo M un conjunto infinito arbitrario y A
numerable, resulta M~AA. . ' -

4°. Innumerabilidad del conjunto de los niimeros reales. En
el punto 2° hemos visto varios ejemplos de conjuntos numerables.
La cantidad de estos ejemplos se puede ampliar considerable-
mente. Ademds, hemos demostrado que tomando la suma finita
o numerable de conjuntos numerables obtendremos -de nuevo
conjuntos numerables. Surge naturalmente la pregunta ¢existen
conjuntos infinitos no numerables? La respuesta afirmativa la da
el siguiente teorema. ‘

TEOREMA 1. El conjunto de niimeros reales comprendidos entre el
| cero y la unidad es innumerable.

DEMOSTRACION. Supongamas que existe una lista (de todos o una
parte) de los nimeros reales , pertenecientes al segmento [0, 1]:

\
a, =0,a,8,,0,5 ... @y, ...,
o, =0,0,0,,0, ... ay, ...,
oy =0, 4,845,045 ... A, ...,

(1)

Aqui a; es la k-ésima cifra decimal del ntimero ;. Considere-
mos la fraccién ' '

p=0, bb,...b,...

construida del siguiente modo: b, es una cifra arbitraria distinta
de a,,; b, es una cifra arbitraria distinta de a,,, etc., en general,
b, es una cifra arbitraria distinta de a,,. Esta fraccién decimal
no puede- coincidir con ninguna de las que figuran en la lista (1).
En efecto, la fraccion P se distingue de la fraccién e, al menos



§ 2. EQUIVALENCIA DE CONJUNTOS 23

por su primera cifra; de la segunda fraccién, por su segunda
cifra, etc.; en general, puesto que b,s~a,, para todo n, la frac-
cién p se distingue de cualquiera de las fracciones a; que figuran
en la lista (1). Luego, ninguna lista de nimeros reales pertene-
cientes al segmento [0, 1] puede consumirlo.

La demostracion expuesta -necesita una pequefia precisién

puesto que algunos nimeros (concretamente los ntimeros de la

forma %,) ‘pueden tener dos represenitaciones decimales: bien con

un namero infinito de ceros o bien con un ndmero infinito de
nueves; por ejemplo:

1 _ 5 '
?=ﬁ=0,5000 ...=0,4999 . ..

Por consiguiente, el hecho de que dos fracciones decimales
no coincidan no significa todavia que representan nfimeros dis-
tintos. : : ‘

Sin embargo, si la fracciéon P se construye de manera que no
contenga ni- ceros ni nueves, (tomando, por ejemplo, b,=2, si
a,,=1, yb,=1, si a,,51) esta objecién quedara superada.

EJERCICIO. Demostrar que los niimeros que tienen dos distintas represen-
taciones decimales forman un conjunto numerable.

De manera que el segmento [0, 1] ofrece un ejemplo de un
conjunto infinito no numerable. Veamos algunos ejemplos de
-conjuntos equivalentes al conjunto formado por los puntos del
segmento [0, 1].

1. El conjunto de todos los puntos pertenecientes a un seg-
mento [a, b] o intervalo {a, b) cualquiera.

2. El conjunto de todos los puntos de la recta.

3. Los conjuntos de todos los puntos del plano, del espacio,
de la superficie de una esfera, de los puntos que se encuentran
dentro de una esfera, etc. :

4. El conjunto de todas las rectas del plano.

5. El conjunto de todas las funciones continuas de una o varias
variables. ~ ~

En los casos 1 y 2 la demostraciéon no ofrece dificultades
(véanse los ejemplos 1 y 3 del punto 3°. En los demas casos
la demostracion directa no es tan sencilla.

EJERCICIO. Demostrar, aprovechando los resultados de este punto y del
ejercicio 2 del punto 2°, la existencia de niimeros trascendentes, es decir,
de nimeros no algebraicos.
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5°. Concepto de potencia de un conjunto. Si dos conjuntos
finitos son equivalentes, tienen el mismo niimero de elementos.
Cuando dos conjuntos equivalentes entre si M y N son arbi-
trarios se diceque My N tienen la misma potencia. Asi pues,
la potencia es aquello comin que tienen todos los conjuntos
equivalentes entre si. En el caso de conjuntos finitos el concepto
de potencia coincide con el concepto habitual del niimero de
elementos del conjunto. La potencia del conjunto de los niimeros
naturales (es decir, de cualquier conjunto numerable) se denota
mediante el simbolo &, (se lee “alef cero”). Los con juntos equivalentes
al conjunto de todos los niimeros naturales comprendidos entre 0 y
1 se dice que tienen potencia de continuo. Esta potencia se denota
mediante el simbolo ¢ (o el simbolo #).

En las observaciones que concluyen este capitulo tocamos el
problema, muy profundo, de la existencia de potencias interme-
dias entre 8, y c¢. Como regla general, los conjuntos infinitos
que se emplean en el anélisis son numerables o tienen potencia
de continuo. En el caso de las potencias de conjuntos finitos, es
decir, en el caso de los niimeros naturales, tenemos, ademés del
concepto de igualdad, los conceptos de «mas» y «menoss. Veamos
como pueden extenderse estos tltimos al caso de potencias in-
finitas. '

Sean A y B dos conjuntos arbitrarios y m(A) y m(B) sus
potencias. Si A es equivalente a B, m(A)=m(B) por definicién.
Si A es equivalente a una parte del conjunto B'y A no contiene
ninguna parte equivalente a B, se acepta, naturalmente, que
m(A) es menor que m(B), es decir, m(B) es mayor que m(A).
Sin embargo, existen, légicamente, otras dos posibilidades, ade-
mas de las mencionadas: ‘

a) B contiene una parte equivalente a A y A contiene una
parte equivalente a B.

b) Ay B no son equivalentes y ninguno posee una parte
equivalente al otro. '

Del teorema de Cantor — Bernstein, que se expone en el
siguiente punto, se desprende que en el caso a) los conjuntos A
y B son equivalentes, es decir tienen potencias iguales. En cuan-
to al caso b), que equivaldria a la existencia de potencias
incomparables, resulta que no puede realizarse. Esto se deduce
del teorema de Zermelo que enunciamos en el § 4.

De lo anterior resulta (si aceptamos sin demostracién los
teoremas de Cantor — Bernstein y de Zermelo) que dos conjuntos
arbitrarios A y B o bien tienen la misma potencia o bien veri-
fican una de las relaciones '

m(A) <m(B) o m(A)> m(B).
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Hemos sefialado mas arriba que los conjuntos numerables son
los «més pequefios» entre los conjuntos infinitos 'y hemos demos-
trado luego que existen conjuntos infinitos de potencia superior:
los conjuntos de potencia de continuo. ¢Existen potencias infi-
nitas superiores a la potencia de continuo? En generat, ¢existe
0 no una potencia emaxima»? Resulta que tiene lugar el siguiente
teorema:

TEOREMA 2. Sea M un conjunto cualquiera y WM el conjunto for-
mado por todos los subconjuntos del conjunto M. Entonces, la
potencia de M es- superior a la potencia del conjunto inicial M.

DEMOSTRACION. Es fécil ver que la potencia m del conjunto 9t no
puede ser inferior a la potencia m del conjunto inicial M; en
efecto, los subconjuntos de M formados por un solo elemento
representan en MM un subconjunto equivalente al conjunto M.
Basta demostrar que las potencias m y m no coinciden. Supon-
gamos que entre los elementos a, b, ... del conjunto M y algu-
nos elementos A, B, ... del conjunto M (es decir, algunos
subconjuntos de M) se ha logrado establecer una correspondencia
biunivoca: : '

aco A, be B, ..

Demostremos que esta correspondencia no puede consumir todos
los subconjuntos del conjunto M, es decir, todos los elementos
del conjunto M. Sea X la coleccién de elementos de M que no
pertenecen a los subconjuntos que les corresponden. Mas detalla-
damente: si a¢> A y a€ A, el elemento a no se incluye en X,

pero si ae> A y a€ A, el elemento a se incluye en X. Es evi-
dente que X representa un subconjunto de M, es decir, un ele-
mento de M. Demostremos que al subconjunto X no le puede
corresponder ningin elemento de M. Supongamos que tal elemento
x> X existe y veamos si pertenece o no al subconjunto X.

Aceptemos que x € X; por definicién, en X figura todo elemento
que no pertenece al subconjunto que le corresponde y, por lo
tanto, x debe ser incluido en X. Viceversa, si se acepta que el
elemento x pertenece a X, deduciremos que x no puede figurar
en X, ya que éste contiene sélo los elementos que no aparecen
en los subconjuntos que les corresponden. De manera que el ele-
mento x correspondiente al subconjunto X debe simultaneamente
pertenecer y no pertenecer a X. De aqui se' desprende que tal
elemento no existe, es decir, que no se puede establecer una
correspondencia biunivoca entre los elementos del conjunto M y
todos sus subconjuntos. El teorema queda demostrado..
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De este modo, para cualquier potencia podemos construir
efectivamente un conjunto de potencia superior, después otro de
potencia ain mayor, etc., obteniendo asi una escala de poten-
cias no acotada superiormente.

EJERCICIO. Demostrar que la totalldad de las funciones numéricas (o, en
general de funciones que toman valores én un conjunto compuesto por lo
menos de dos elementos) definidas sobre un conjunto M tiene una potencia
superlor a la de M.

Sugerencia. %)rovechese que el conjunto de todas las funciones carac-
teristicas sobre (es decir, de funciones que sélo toman valores 0 y 1) es
equivalente al conjunto formado por todos los subconjuntos de M.

6°. Teorema de Cantor-Bernstein. Demostraremos ahora el
siguiente teorema importante al que nos hemos referido ya en
el punto anterior. v

TEOREMA (CANTOR — BERNSTEIN). Sean A 'y B dos conjuntos arbi-
trarios. Si en A existe un subconjunto A, equivalente a B y en
B un subconjunto B, equivalente a A, los conjuntos A y B son
equivalentes.

DEMOSTRACION. Sea f la aplicacién biyectiva? de A en B, y sea
g la aplicacion biyectiva de B en A,, es decir,

f(A)=B,cB, g(B)=A,cA.

Entorces, gf (4)= g(f(A))=g(B,) es un conjunto, que denota-
remos con A,, contenido en A, y equivalente al conjunto A.
De manera analoga fg(B)={(g(B)y=f(A,) =B, es un conjunto
contenido en B, y equivalente a B. Sea ahora A aquel subcon-
junto de ‘A en el que se transforma el conjunto A mediante la
aplicacion gf y sea A, aquel conjunto en el que se transforma A,
mediante la misma aplncacnon gf. En general, sea A, aquel
conjunto en el que se transforma el conjunto A, medmnte la
aplicacién gf (k=1, 2, ...). Est4 claro que

A:A1:A23...:Ak:Ak+1:.
Si ponemos '
p=U 4,
k=1

podremos representar A mediante la siguiente suma de conjuntos
disjuntos dos a dos:

A=(ANA)UANA)UANA)U - UANA DU ... UD.

1 A veces se emplea el término «aplicacién biunivocas. (N. del T.)
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De un modo anilogo el conjunto A, se piiede representar en la
forma: -

Al =D U (A1\As) U (As\As) u...u (Ak\Ak+1) u...
Evidentemente, estas dos férmulas pueden escribirse asi:

A=DU[ANA)UMANAYU...JU
o , U(ANA)U(ANA)U...], ()

A,=DU[(ANA)UANAY ... ]U
U [(A:\4y) U (ANA)U...]. 3 -

Observemos ahora que el conjunto AN\ A, es equivalente al con-
junto A,\ A, (ya que el primero se transforma en el segundo

mediante la aplicacién gf); del mismo modo A,\ A, es equivalente
a A\ A4,, etc. Por eso, los conjuntos que figuran en las segundas
lineas de las férmulas (2) y (3) son equivalentes. En cuanto
a las primeras lineas de estas férmulas, son sencillamente idén- -
ticas. De aqui se desprende que entre los elementos de los con-
juntos A y A, se puede establecer una correspondencia biunivoca.
"Pero A, es equivalente a B por hipétesis. De manera que A es
equivalente a B, El teorema queda demostrado.

‘Podemos incluso « permitirnos el lujo» (aunque no hay nece-
sidad de ello) de escribir explicitamente la correspondencia biu-
nivoca @ que transforma A en B. Es la siguiente:

@ €7@ 5 o€ DUANAIU(ANADU ...
q>‘ fla), si ag(4 '\Ax)U(Ag\Aa)U .

(fig. 7)
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§ 3. APLICACIONES. PARTICION EN CLASES

1°. Aplicaciones de conjuntos. Concepto general de funcién.
En el Analisis el concepto de funcién se introduce del siguiente

modo. Sea X un conjunto sobre la recta numérica. Se dice que
sobre este conjunto esta definida una funcién f siacada

elemento x € X se le ha puesto en correspondencia un ndamero
determinado y=/{(x). El conjunto X se denomina en este caso
campo de deficinién de esta funcién y el conjunto Y formado por
todos los valores que toma esta funcién, campo de valores de 1a misma.

Si en vez de conjuntos numeéricos consideramos conjuntos de

_naturaleza arbitraria, llegaremos al concepto més general de
funcién: sean M y N dos conjuntos arbitrarios. Se dice que estd
definida sobre' M una funcién f con valores en N'si a cada
elemento x€M se le pone en correspondencia un elemento,
y s6lo uno, y de N. En el caso de conjuntos de naturaleza
arbitraria (y a veces también en el caso de conjuntos numeéricos)
en lugar del término “funcién” se usa «aplicacién» y se habla
de la aplicacién de un conjunto en otro .

Si a es un elemento de M, el elemento b={f(a) de N que le
corresponde se denomina imagen del elemento a (para la aplica-
cién f). La coleccién de todos los elementos de M que tienen
por imagen el elemento bEN se denomina imagen reciproca®
(én términos méas precisos, imagen reciproca completa) del elemento
b y se denota mediante f~!(b). :

Sea A un conjunto de M; la totalidad {f(a): a€ A} de
todos los elementos del tipo f(a), donde a€ A, se denomina
imagen de A y se designa f(A). Para todo conjunto B de N se
puede, a su vez, definir la imagen reciproca f-(B); a saber:
[~1(B) es la totalidad de todos aquellos elementos de M cuyas
imagenes pertenecen a B. Puede ocurrir que ningn elemento b
de B tiene imagen reciproca y en este caso la imagen reciproca
completa f-(B) serd el conjunto vacio.

Aqui nos limitaremos a exponer las propiedades més generales
de las aplicaciones.

- Convendremos en emplear la siguiente terminologia. Diremos
que f es una aplicacién del conjunto M «sobre» el conjunto N,
si f(M)=N; en el caso general, es decir, cuando f(M)cN, se
dice que f es una aplicacion de M «en» N.

Serialemos las propiedades principales de las aplicaciones.

1 De hecho hemos tropezado ya anteriormente con el concepto de alpli-
- caciones de conjuntos (por ejemplo, al introducir el concepto de equivalen-
cia de conjuntos, al demostrar el teorema de Cantor—Bernstein, etc.).

3) En “algunos libros de texto se emplea el término «preimagen ».
(Nota del T.) : :
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TEOREMA 1. La imagen reciproca de la unién de dos conjuntos
es igual ala unibn de sus imdgenes reciprocas :

f~*(AuB)=f-*(A)uf-* (B).

DEMOSTRACION . Supongamos que el elemento x pertenece al conjunto
f~*(AuUB). Ello significa que f(x)€AUB, o sea, f(x)€A o
bien f(x) € B. En este caso x debe pertenecer al menos a uno
de los dos conjuntos f=!(A) y f~* (B), es decir, x € f~* (A)U f~1(B).
Viceversa, si x€f~!(A)Uf-*(B), entonces x pertenece al menos
a uno de los conjuntos f~*(A4) y f-*(B), es decir, f(x) figura
al menos en uno de los conjuntos A y B; en otras palabras,
f(x)€ AuB y, por lo tanto, x€f-1(AUB).

TEOREMA 2. La imagen reciproca de la interseccion de dos con-
juntos es igual a la interseccion de sus imdgenes reciprocas:

FH(AnB)=F-* (A)n - (B).

DEMOSTRACION. Si x€f-*(ANB), debe ser f(x)€ANB, o sea,
f(x)€A y f(x)€B, y, por lo tanto, x€f~1(A) y x€f-1(B), es
decir, x€f-*(A)nf-1(B). :

Viceversa, si x€f-1(A)nf-1(B), es decir, x€f~r(A)y
x€f~*(B), entonces, f(x)€A y f(x)€éB, en otras palabras, -
f(x)€ An B). Por lo tanto, x€f-!(An B).

Los teoremas 1 y 2 se verifican también en el caso de la
unién o interseccién de un niimero arbitrario (finito o infinito) de
conjuntos. :

TEOREMA 3. La imagen de la unién de dos conjuntos es igual
a la union de sus imdgenes :

f(AuB)=[(A)Uf (B).

DEMOSTRACION. i yGf(A UB), esto signiﬁca que y=f(x), donde
x pertenece al menos a uno de los conjuntos A y B. Por con-
siguiente. y=f(x)€f(A)Uf (B). Viceversa, si yef(A)Uf(B),
entonces, y={f(x), donde x pertenece al menos a uno de los
conjuntos A y B, es decir,x € A U B y,por lo tanto, y = f(x) € f(A U B).

Vale subrayar que la imagen de la interseccion de dos con-
juntos no coincide, en general, con la interseccion de sus imdgenes.
Supongamos, por ejemplo, que la aplicacién considerada representa
la proyeccién del plano sobre el eje x. En este caso los segmentos

0 < X < l, Y= 0’
0y, y=1
no se intersecan y, sin embargo, sus imagenes coinciden.
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2°. Particién en clases. Relacion de equivalencia. En diferentes
cuestiones tropezamos con la particién de unos u otros conjuntos
en subconjuntos disjuntos dos a dos. Por ejemplo, se puede par-
tir el plano (considerado como umn conjunto de puntos) en rectas
paralelas al eje x; podemos imaginarnos el espacio de tres di-
mensiones como un conjunto de esferas concéntricas de distintos
radios; se puede dividir a los habitantes de una ciudad determi-
nada en grupos segtn el afio de nacimiento, ete.
. Cada vez que un conjunto M se representa, de uno u otro
modo, como la unién de subconjuntos disjuntos dos a-dos, ha-
blamos de la particién del conjunto M en clases. -

Cominmente nos encontramos con particiones realizadas de
acuerdo con uno u otro criterio, segiin el cual se unen en clases
los elementos del conjunto M. Por ejemplo, la totalidad de los
triangulos del plano se puede partir en clases de triangulos iguales o
‘en clases de tridngulos de la misma érea; todas las funciones de
x pueden partirse en clases agrupando en una misma clase todas
las funciones que tienen el mismo valor en el punto dado x, etc.

Los criterios, segin los cuales se realiza la particion en clases
de los elementos de uno u otro conjunto, pueden ser muy di-
versos. Sin embargo, no son del todo arbitrarios. Supongamos,
por ejemplo, que queremos partir en clases todos los nimeros
reales, incluyendo el niimero b en la misma clase que el niimero
a si, y solo si, b>a. Esta claro que de esta- forma no podre-
mos obtener ninguna particién de los niimeros reales en clases,
ya que si b>>a, es decir, si el elemento b debe ser incluido en
ia misma clase que @, entonces, a<b, es decir, el nimero. a
no se puede incluir en la misma clase que el niimero b. Ademas,
como a no es mayor de si mismo, ja no debe figurar en la clase
con si mismo! Otro ejemplo. Veamos si se puede partir en clases
los puntos del plano incluyendo dos puntos en una misma clase
si, y sélo si, la distancia entre ellos es menor de 1. Esta claro
que es imposible realizar esta particién, puesto que sila distan-
cia entre a y by entre b y c es inferior a 1, ello no significa,
de ningiin modo, que la distancia de a a ¢ es menor de 1. Por
eso, al incluir a en la misma clase con b y b en la misma clase
con ¢, resultard que en una misma clase pueden aparecer dos
~ puntos, la distancia entre los cuales es mayor a | O

Los ejemplos dados sugieren las condiciones que- aseguran
que uno u otro criterio permite verdaderamente realizar la par-
ticién de los elementos de un conjunto en clases. :

Sea M un conjunto y sean «marcados» algunos de los pares
(@, b) de elementos de este conjunto®. Si (a, b) es un par

1 Con la particularidad de que los elementos a y b se toman en un
orden determinado, es decir, (a, b) y (b, a) son, en general, pares distintos
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«marcado », diremos que el elemento a esta ligado al elemento
b por la relacién @, lo que denotaremos con el simbolo agb. Por
ejemplo, si se trata de la particion de los- triangulos en clases
de triangulos de la misma area, agb significa que «el triangulo
a tiene la misma éarea que. el trlangulo b». Una relacién ¢
se llama relacion de equivalencia si, por sus propiedades, es:

1) reflexiva: aza para todo elemento a € M;

2) simétrica: si agb, entonces b;a;

3) transitiva: si agb y bgc, entonces agc.

Estas condiciones. son necesarias y suficientes para que la
relacion ¢ (jel criterio!) permita partir en clases el conjunto M.
En efecto, foda particion de un conjunto en clases determina
una relacién de equivalencia entre sus elementos: si agb signi-
fica que «a se ‘encuentra en la misma clase que b», es facil
probar que la relacién ¢ sera. reflexiva, simétrica y transitiva.
Viceversa, si ¢ es una relacién de equivalencia entre los elemen-
tos del conjunto M, siempre obtendremos una particiéon de este
conjunto en clases incluyendo en una misma clase aquellos
elementos de M, y sélo aquellos, que son equivalentes. ‘

Efectivamente, sea K, la clase de elementos de' M equivalentes
a un elemento fijado a. De 1a propiedad reflexiva se desprende
que el propio elemento a pertenece a la clase K,. Probemos -
ahora que dos clases K, y K, o bien coinciden o bien no tienen
elementos comunes. Supongamos que existe un elemento ¢ que
pertenece simultaneamente a K, y K, es decir, cga y czb.

Entonces agc, debido a la propiedad simétrica, y

agb v : (I

debido a la propiedad transitiva.

Si x es ahora un elemento arbitrario de K,, es decir, x;a,
de %) y de la propiedad transitiva se sigue que xg b, es -decir,
XEK,
De la misma forma se demuestra que todo elemento y€K,
figura en K,. Por consiguiente, dos clases K, y K, que tienen
al menos un elemento comin coinciden. De manera que a partir
de la relacion de equivalencia dada hemos obtenido efectiva-
mente una particién del conjunto M en clases. :

El concepto de particion de un conjunto en clases esta
estrechamente vinculado al concepto de aplicacién considerado
en el punto anterior.

Sea f una aplicacién del conjunto A en el conjunto B. Si
unimos en una misma clase todos aquellos elementos de A cuyas
imagenes en B coinciden, obtendremos evidentemente una parti-
ciéon del conjunto A. Viceversa, consideremos un conjunto arbi-
trario A y alguna particion de este conjunto- en clases. Sea B
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la totalidad de clases en las que se ha partido el conjunto A.
Si a cada elemento a€ A ponemos en- correspondencia ‘aquella
clase (es decir, aquel elemento de B) a la ‘que a pertenece,
obtendremos una aplicacién del conjunto A sobre el conjunto B.

Ejemplos. 1. Consideremos la proyeccién del plano xy sobre
el eje x. Las imagenes reciprocas de los puntos del eje x son
las rectas verticales. Por consiguiente, a esta aplicacion le co-
rresponde la particion del plano en rectas paralelas.

2. Dividamos todos los puntos del espacio de tres dimensio-
nes en clases incluyendo en una misma clase los puntos equidis-
tantes del origen -de coordenadas. De este modo, cada clase
representa una esfera de un radio determinado. La totalidad de
estas clases puede identificarse con el conjunto de todos los
puntos pertenecientes al rayo [0, oo). Por lo tanto, a la parti-
cion del espacio tridimensional en esferas concéntricas le corres-
ponde la aplicaciéon de este espacio sobre una semirrecta.

3. Agrupemos en una misma clase todos los niimeros reales
que tienen la misma parte fraccionaria. La aplicacién que
corresponde a esta particion representa la aplicacién de la recta
sobre la circunferencia de longitud unidad.

El concepto de equivalencia es un caso particular del con-
cepto mas general de relacién binaria que se define del siguiente
modo. Sea M un conjunto arbitrario. Designemos mediante M?
el conjunto de todos los pares ordenados (a, b), donde a, b€ M.
Se dice que en M se tiene una relacién binaria ¢, si en M? se
escoge un subconjunto R, arbitrario. Mas exactamente, dlremos
que el elemento a estid en relacién ¢ con el elemento b, y es-
cribiremos agb, si, y sélo si, (a, b) pertenece a R,. Un ejemplo
de relacién binaria es la relacién de identidad E consistente en
que aEb si, y sélo si, a=b; en otras palabras, ésta es la rela-
cion determinada por el subcon]unto de pares de tipo (a, a).
Esta claro que toda relaciéon de equivalencia ¢ en un conjunto M
es una relacién binaria; pero no es arbitraria sino que verifica
las siguientes condiciones:

1) Todo par de tipo (a, a), donde aeM pertenece a R,
(condicién reflexiva).

2) Si (a, b)eR, y (b, c)€ER,, entonces también (a, c)ER,
(condicion transntnva)

3) Si (a, b)€R,, entonces también (b, a)€ R, (condicion
simétrica).

De manera que la relacién de equivalencia es una relacion

inaria que cumple las condiciones reflexiva, transitiva y simé-
trica. En el péarrafo siguiente estudiaremos otro caso particular
importante de relacién binaria, la ordenacién parcial.
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§ 4. CONJUNTOS ORDENADOS. NUMEROS TRANSFINITOS

En este parrafo exponemos varios conceptos relacionados con
la idea de ordenaci6n de los elementos de los conjuntos, limi-
tandonos a dar las nociones elementales; una exposicién mas
detallada se puede encontrar en la bibliografia que sefialamos
al final del libro. _

1°. Conjuntos - parcialmente ordenados. Sea M un conjunto
arbitrario y ¢ una relacién binaria en él. Se dice que ella es
una relacién de orden parcial si verifica la propiedad reflexiva
[(a, @) €R,), la propiedad transitiva [si (a, bER, y (b, €)ER,
entonces (a, ¢)€R,] y la siguiente condicién conocida como
propiedad antisimétrica: si agb y bga, entonces a=b. El orden
parcial se denota generalmente por medio del simbolo <C. De
manera que a<Cb significa que el par (g, b) pertenece al con-
junto R, correspondiente. Entonces se dice que el elemento a
no supera a b o bien que esté contenido en 5. Un conjunto
en el que estd dado un orden parcial se dice parcialmente
ordenado. ' :

Veamos ejemplo de conjuntos parcialmente ordenados.

1. Todo conjunto puede considerarse, de un modo trivial,
como un conjunto parcialmente ordenado aceptando que a<Cb
si, y sélo si, a=b. En otras palabras, el orden parcial puede
determinarse en cualquier conjunto mediante la relacién binaria -
de identidad E. Este ejemplo no es, por supuesto, de gran
interés. : :

2. Sea M el conjunto de todas las funciones continuas sobre
el segmento [a, B]. Obtendremos evidentemente un orden par-
cial aceptando que f<Cg si, y sélo si, f () <<g(f) para todo ¢,
a<<I<B. ' ‘

3. El conjunto de todos los subconjuntos de un conjunto
ggdo n;;ul‘ta parcialmente ordenado si M, <M, significa que

S M,

4. El conjunto de todos los nimeros naturales resulta par-
cialinente ordenado si a<Cb significa «b es divisible por a». -

'Sea M un conjunto arbitrario parcialmente ordenado. En el
caso de que a<{b y a=~b emplearemos el simbolo <, es decir,
escribiremos @ < b, y diremos que a'es menor gue b o bien a
estd contenido- estricfamente en b. A veces en lugar de a<Cb
emplearemos la denotacién equivalente b>a y diremos en este
caso que b es no menor que @ (0 mayor que a, si bs~a) o bien
que b sigue a a. El elemento a de un conjunto parcialmente
-ordenado se denomina maximal si de a<Cb se deduce que b=a.
El elemento a se llama minimal si de c<<a se sigue que
c=a. , : :

3—3427
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Un conjunto parcialmente ordenado se llama dirigido si para cuales-
quiera dos de sus puntos a y b existe un tercer punto ¢ que los sigue
(a<<c, b<o). :

2°. Aplicaciones que conservan el orden. Sean M y M’ dos
conjuntos parcialmente ordenados y f una aplicacién biunivoca
de M sobre M’. Diremos que esta aplicacién conserva el orden,
si de a<Cb, donde a, b€ M, se deduce que f(a)<<f(b) (en M’).
La aplicacién f se llama isomorfismo de los conjuntos parcial-
mente ordenados M y M’ si f(a) <f(b) se cumple cuando, y sélo
cuando, a<Cb. Los propios conjuntos M y M’ se denominan en
este caso isomorfos. ‘ :

Sea, por ejemplo, M el conjunto de los niimeros naturales
con el orden parcial sefialado en el ejemplo 4 del punto 1 y sea
M’ el mismo conjunto, pero ordenado del modo natural, es
decir, de manera que b>a si b—a es un niimero positivo.
Entonces, la aplicacién de M sobre M’, que a cada nimero n
le pone en correspondencia ese mismo nfimero, conserva el orden
(pero no representa un isomorfismo).

La propia relacién de isomorfismo entre conjuntos parcial-
mente ordenados es, evidentemente, una relacién de equivalen-
cia (ya que es simétrica, transitiva y reflexiva). Por lo tanto,
si tenemos una coleccién de conjuntos parcialmente ordenados,
todos los conjuntos de esta coleccién ' pueden dividirse en clases
de conjuntes isomorfos. Cuando lo que nos interesa no ‘es la
naturaleza de los elementos de los conjuntos, sino s6lo el orden
parcial que en ellos existe, se puede, claro esta, considerar como
idénticos dos conjuntos parcialmente ordenados isomorfos.

3°. Conjuntos ordenados. Tipos ordinales. Puede suceder que
siendo a y b elementos de un conjunto parcialmente ordenado
no se cumpla ninguna de las relaciones a<Cb y b<<a. En este
caso se dice que los elementos a y b son incomparables. De ma-
nera que la relacién de orden resulta definida sélo para algunos
pares de ‘elementos y por eso hablamos del orden parcial. En
cambio, si el conjunto parcialmente ordenado M no posee ele-
mentos incomparables, decimos que M es un conjunto ordenado
(linealmente ordenado, totalmente ordenado). Es decir, M es un
conjunto ordenado, si estd parcialmente ordenado y si para
cualesquiers uos elementos distintos a, b€ M se tiene obligato-
riamer’ . que 0 bien a < b o bien b < a. .

Los conjuntos considerados en los ejemplos 1, 2, 3 y 4 del

1 Nos abstenemos de emplear conceptos como «todos los conjuntos
parcialmente ordenadoss porque son, al igual que el concepto del «conjunto
de todos los conjuntoss, internamente contradictorios por su esencia y no
pueden incluirse en concepciones mateméticas rigurosas.
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primer punto son conjuntos parcialmente ordenados pero no or- -
denados. Ejemplos elementales de conjuntos ordenados son los
ntimeros naturales, el conjunto de todos los niimeros racionales,
el conjunto de todos los nimeros reales del segmento [0, 1],
‘etc. (con las relaciones naturales de «mayor» y «menor» que exis-
ten en estos conjuntos). ~

Esta claro que cualquier subconjunto de un conjunto ordenado
también estd ordenado.

El orden es un caso particular del orden parcial y por eso
a los conjuntos ordenados se puede aplicar el concepto de apli-
cacién que conserva el orden y, en particular, el concepto de
isomorfismo. : .

Se dice que unos conjuntos tienen el mismo tipo ordinal si
son ordenados e isomorgos. De manera que el tipo ordinal es
lo comiin que tienen todos los cenjuntos ordenados isomorfos,
de la misma forma que la potencia es lo comin que tienen to-
dos los conjuntos equivalentes (considerados independientemente
de cualquier relacién de orden que pueda existir en ellos).

La serie de nameros naturales 1, 2, 3, ... con la relacién
natural de orden entre sus elementos es el ejemplo més elemen-
tal de conjunto ordenado. Su tipo ordinal se acostumbra a de-
notar con el simbolo . '

Dos conjuntos ordenados isomorfos tienen, por supuesto, la
misma potencia (ya que el isomorfismo es una correspondencia
biunivoca) y por eso se puede hablar de la potencia que responde
al tipo ordinal dado (por ejemplo, al tipo @ le corresponde la
potencia &,). La afirmacion reciproca, sin embargo, no es cierta:
un conjunto de una potencia dada puede ser ordenado, en gene-
ral, de diferentes modos. Sélo en el caso de conjuntos finitos
el tipo ordinal queda determinado univocamente por el nimero
n de sus elementos (y se denota también mediante n). Pero ya
en el conjunto numerable de los nimeros naturales es posible,
adeimés de su tipo «natural» w, considerar, por ejemplo, el siguien-
te tipo: :

1,35 ...,2,4,6, ...,
cuando cualquier nimero par sigue a cualquier impar y los ni-
meros pares e impares se ordenan entre si por su magnitud. Se
puede probar que a la potencia &8, le corresponde una cantidad
infinita, e incluso innumerable, de diferentes tipos ordinales.

4°, Suma ordenada de conjuntos ordenados. Sean M, y M,
dos conjuntos ordenados y 6, y 0, sus tipos ordinales, respecti-
vamente. En la unién M, U M, de los conjuntos M, y M, se
puede introducir un orden aceptando que cada par de elementos
de M, estd ordenado igual que en M,, que cada par de elemen-

C 3%
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tos de M, tiene el mismo orden que en M,y que cualquier
elemento de M, precede a cualquier elemento de M,. (;Comprué-
bese que asi queda efectivamente establecido un orden!) El con-
junto ordenado obtenido ‘de esta forma lo llamaremos suma or-
denada de los sonjuntos M, y M, y lo designaremos M, M,.
Subrayemos que es importante el orden de los sumandos: la
suma M,+ M, no es isomorfa, en general, a 1a suma M,+M,.
Se dice que el tipo ordinal de la suma M,+ M, es la suma
ordenada de los tipos ordinales 6, y 6, y se denota mediante
0, +6,. - , e ,
" 'Esta definicién se puede ficilmente extender al caso de un
nimero finito arbitrario de sumandos 0,, 6,, ..., 6,.
Ejemplo. Consideremos los tipos ordinales o y n. Es ficil
ver que n4+o=w; en efecto, si a la serie de los nimeros natu-
rales 1, 2, 3, ..., k, ... agregamos a su izquierda un ntimero
finito de elementos, obtendremos el mismo tipo ordinal w. Sin
emtargo, el tipo ordinal @+n, es decir, el tipo ordinal del
conjunto :

1,2,8, ...,k ..., 0, a, ... a,
no es, evidentemente, igual a w.

' 5° Conjuntos. bien ordenados. Niimeros transfinitos. Hemos
introducido anteriormente los conceptos de orden parcial y de
orden. Ahora introduciremos un concepto mas restringido, pero
muy importante, el concepto de buen orden. _

DIFINICION. Se dice que un conjunto ordenado estd bien ordenado
si cualquiera de sus subconjuntos no vacios tiene un elemento
‘minimo (es decir, un elemento que precede a todos los del sub-
conjunto). :

Si un conjunto ordenado es finjto, obviamente, estd bien
ordenado. Un 0e;jemp]o de un conjunto ordenado, pero no bien
ordenado, nos ofrece la totalidad de los niimeros racionales del
segmento [0, 1]. Este conjunto, en si, tiene un elemento minimo,
el nimero 0, pero el subconjunto suyo formado por los nimeros
racionales positivos no tiene elemento minimo. ,

Esta claro que todo subconjunto (no vacio) de un conjunto
bien ordenado estd bien ordenado. '

El tipo ordinal de un conjunto bien ordenado se llama ni-
mero ordinal (nidmero ordinal transfinito o méas brevemente
transfinito ordinal, particularmente si se quiere subrayar que se
trata de un conjunto infinito). , ‘

La serie de los nGmeros naturales (con la relacién de orden
corriente) representa no sélo un conjunto ordenado sino bien
ordenado. De manera que su tipo ordinal @ es niimero ordinal
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(itransfinitol). También lo es w+ &, es decir, el tipo del conjunto
L2 ...,n ...,a,a, ..., a.
- Al contrario, el conjunto o

ey =Ry .., —3, —2, —1 (1)

estd ordenado, pero no estd bien ordenado. Aqui todo subcon-
junto no vacio tiene un elemento maximo (es decir, un elemento
que sigue a todos) pero no tiene, en general, un elemento mi-
nimo (por ejemplo, el conjunto (1), en si, no lo tiene). El tipo
ordinal (jque no es un niimero ordinall) del conjunto (1) suele
denotarse mediante el simbolo w*.

Demostremos la siguiente propoesiicén, simple pero importante.

LEMA 1. La suma ordenada de un ndmero finito de conjuntos
| bien ordenados es un conjunto bien ordenado.

En efecto, sea M un subconjunto arbitrario de la suma or-
denada M,+M,+ ...+ M, de conjuntos bien ordenados; con-
sideremos el primero de los conjuntos M, que contiente
elementos de M. La parte del conjunto M que figura en M,
representa un subconjunto del conjunto bien ordenado M, vy,
por lo tanto, tiene el primer elemento. Este serd también el
primer elemento de M.

COROLARIO. La suma ordenada de nidmeros ordinales es un ni-
mero ordinal.

Podemos, entonces, a partir de ciertos niimeros ordinales cons-
truir ndmeros ordinales nuevos. Por ejemplo, partiendo de los
nimeros naturales (es decir, de los nimeros ordinales finitos)
y del niimero ordinal o, se pueden obtener los niimeros ordinales

©+n, 040, 0+o+n, 0+o+o, etc.

El lector podrd construir sin  dificultad los conjuntos bien
ordenados correspondientes a estos transfinitos ordinaies. ‘

. Ademis de la suma ordenada de tipos ordinales se puede introducir el
producto ordenado. Sean My y M, dos conjuntos ordenados segiin los tipos
8, y 0;. Tomemos varios ‘ejempfares del conjunto M;, uno por cada ele-
mento de M,, y sustituyamos los elementos de M; por estos ejemplares
de M,. El conjunto obtenido de este modo se llama producto ordenado de
My y My y se denota mediante M;-M,. Desde el punto de vista formal el
conjunto My-M, se compone de los pares (a, b), donde a E M, y b € M,,
aceptdndose que (a,, by) < (a5, b;) siempre que b; < b, (cualesquiera que
sean ay, Gy) y (a5, b) < (ay, b) si a; < a;. : )

De un modo an leo‘se define el producto ordenado de un nfimero finito
arbitrario de factores M;-M,-... M. El tipo ordinal 8 del producto M, M,
de conjuntos ordenados se llama producto de los tipos ordinales 0, y 0y

S ; : e-_-y‘e,_-e,. o
El producto ordenado, al igual ‘que la suma ordenada, no es conmutativo.
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LEMA dezn adEol producto de conjuntos bien ordenados es un conjunto bien
| or .

Sea M un subconjunto cualquiera del producto M,-M,; el conjunto M
estd compuesto por pares (a, b). Consideremos los segundos elementos b de
todos los pares que figuran en M. Ellos forman un subconjunto de M,.
Puesto «E;Je M, estd bien ordenado, este subconjunto tiene el primer ele-
mento. Denotémoslo mediante b, y consideremos todos los pares de M del
tipo (a, by). Los primeros elementos a de estos pares forman un subconjunto
en M,. lguesto que M, estd bien ordenado, entre ellos existe el primer
elemento. Sea éste a,. Es fécil ver que el par (a;, b;) serd entonces el pri-
mer elemento de M, .

codlgoaliARlo. El producto ordenado de nimeros ordinales es un nimers
ordinal. ' : ; .

Ejemplos. Se ve ficilmente que 0+0 =02, 0+ 0+ o=0-3. Es ficil
también construir los conjuntos ordenados segin los tipos ©:n, ©?, @?.n,
©3, ..., @P, ... Todos estos conjuntos tiemen potencia numerable.

Se puede introducir, asi mismo, otras operaciones con los.tipos ordina-
les como, por ejemplo, la potencia y considerar entonces nimeros ordinales

como, por ejemplo, ¥, a®®, etc.

6°. Comparacion de nidmeros ordinales. Si n, y n, son dos
nameros ordinales finitos, o bien coinciden o bien uno es mayor
que otro. Veamos c6mo se puede extender esta relacién de orden
a los nimeros ordinales transfinitos.

Con este fin introduciremos los siguientes conceptos. Todo
elemento a de un conjunto bien ordenado M determina el seg-
mento inicial P = (la totalidad de elementos < a) y el resto Q =
=(la totalidad de elementos = a).

Sean o y p dos nameros ordinales y M y N dos conjuntos
de tipo a y B, respectivamente. Diremos que a=p si los con-
juntos M y N son isomorfos, que o« <P si M es isomorfo a
algin segmento inicial de N y que & > B si, al contrario, N es
isomorfo a un segmento inicial de M.

TEOREMA. Dos nidmeros ordinales o y P arbitrarios wverifican
una, y sélo una, de las relaciones:

a=p, a <P o bien a > p.

Para demostras esta proposicién estableceremos, ante todo, el
siguiente lema.

LEMA. Si f es una aplicacion isomorfa de un conjunto bien
I ordenado A sobre algin subconjunto suyo B, entonces f(a)>=>a
para todo a€ A. .

En efecto, si existen elementos a € A tales que f(a) < a, entre
ellos podremos encontrar el primero (jtenemos buen orden!). Sea
éste a, y sea by=f(a,). Entonces, b,<a, y, por ser f un iso-
morfismo, f(b,) < f(a,)=0>b, es decir, a, no seria el primero de
los elementos con esta propiedad.
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De este lema se deduce inmediatamente que un conjunto bien
ordenado no puede ser isomorfo a un segmento suyo, ya que si A
fuese isomorfo al segmento determinado por el elemento a, ten-
driamos que f(a) <a. En otras palabras, las relaciones

a=fya<pP

no pueden tener lugar simultineamente. Del mismo modo no
puede ser a la vez a=f y a > . Por otro lado, tampoco pue-
den verificarse simultineamente las relaciones

a<Ppya>§,

ya que si esto fuese asi, tendriamos (jpor la propiedad transi-
tival) que @ < o lo que, como hemos visto, es imposible. Hemos
demostrado de esta forma que si se verifica una de las relaciones

a%ﬁ las otras dos no se cumplen. Probemos ahora que una de

estas relaciones siempre tiene lugar, es decir, que cualesquiera
dos nimeros ordinales son comparables.

Consideremos para cada nimero ordinal a el conjunto W ()
de los nimeros ordinales < . Los niimeros que figuran en W ()
son comparables y el propio conjunto W («) (ordenado segiin la
magnitud de los niimeros ordinales) es de tipo . En efecto, si
el conjunto

A={...,a ..., b ...

~es de tipo @, los nimeros ordinales inferiores a a corresponden
biunivocamente, por definicién, a los segmentos iniciales del con-
junto A y, por consiguiente, a los elementos de este conjunto.
En otras palabras, los elementos de un conjunto de tipo o pueden
ser numerados mediante los niimeros ordinales inferiores a a:

A= (a, Qpy vy py o).

, Sean ahora o y f§ dos niimeros ordinales; entonces, A=W ()

y B=W (B) son conjuntos de tipo a y B, respectivamente. Sea,
ademas, C=AnB la interseccién de los conjuntos A y B, es
decir, la totalidad de nimeros ordinales inferiores simultineamente
a a 'y B. El conjunto C estd bien ordenado; sea y su tipo.
Demostremos que y<Ca. En efecto, si C= A, entonces y=a;
si Cs= A tendremos que C es un segmento del conjunto A y por
eso :

<o

Efectivamente, para todos los £€C, n€ A\C los niimeros & y n
son comparables, es decir, §=n. Pero es imposible que sea
n1<§<a, ya que en este caso tendriamos n€C. Por lo tanto,
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E < 1, lo cual significa que C es un segmento del conjunto A y
que y < o. Ademds, y es el primer elemento del conjunto AN\C.
De manera que e .

y<<x Y, anélogamente, Y<B.

Ahora bien, no puede ocurrir que y<a y vy <IB, ya que en
este caso tendriamos que

YEANC, YEB\C,

es decir, por una parte, y€C y, por otra, y€ AnB=C. Por
consiguiente, sélo pueden darse los siguientes casos

V=a, '\’=ﬂ’ a=p,

y=a, y<B, a<$p,

v<ea, y=B, a>f,
es decir, @ y P son comparables. El leorema queda demostrado.

Puesto que a cada niimero ordinal le corresponde una potencia
determinada y puesto que la comparabilidad de los niimeros or-
dinales implica, obviamente, la comparabilidad de las potencias
correspondientes, llegamos al siguiente resultado:

Si A y B son dos conjuntos bien ordenados, entonces, o bien
son equivalentes (tienen la misma potencia) o bien la potencia de
uno es mayor que la potencia del otro (en otras palabras, los con-
juntos bien ordenados no pueden tener potencias incomparables).

Consideremos la totalidad de todos los niimeros ordinales
correspondientes a la potencia finita o numerable. Ellos forman
un conjunto bien ordenado. Es ficil ver que este conjunto es,
en si, no numerable. En efecto denotemos, segiin se acostumbra
cominmente, mediante o, el tipo ordinal del conjunto de todos
los transfinitos numerables. Si la potencia correspondiente a este
tipo fuese numerable, también seria numerable el conjunto de
tipo ordinal @,+ 1. Pero es obvio que el namero , sigue a fodos
los transfinitos correspondientes a la potencia finita o numerable.

Designemos mediante &, la potencia correspondiente al trans-
finito ordinal w,. Es fécil ver que no puede existir ni una po-
tencia m que verifique la designaldad :

N <M< K,

Verdaderamente, si hubiese tal m, en el conjunto W (v,) de todos
los transfinitos ordinales precedentes a w, tendria que existir un
subconjunto de potencia m. Este subconjunto estaria bien orde-
nado y seria no numerable. Pero entonces su tipo ordinal o
tendria que preceder a ®, y, al mismo tiempo, seguir a todos

los transfinitos numerables. Esto contradeceria a la definicién
de o,.



§ 4. CONJUNTOS ORDENADOS. NUMEROS TRANSFINITOS 41

7°. Axioma de eleccion, teorema de Zermelo y otras proposi-
ciones eqtrivalentes a ellos. El hecho de que las potencias de dos
cualesquiera conjuntos bien ordenados son obligatoriamente com-
parables sugiere el siguiente planteamiento: ¢es posible establecer
de alguna manera un buen orden en un conjunto cualquiera? Esto
permitiria afirmar que no existen potencias incomparables. Una
respuesta positiva a este problema fue dada por Zermelo quien
demostr6 que fodo conjunto puede ser bien ordenado. Con este
teorema estd vinculada una serie de problemas profundos y de
principio. Esto se debe a que su demostracién (que no la daremos
aqui) se basa, de un modo esencial, en el llamado axioma de
eleccion que consiste en lo siguiente: ‘

Si tenemos un conjunto cualquiera M, existe una funcién ¢
que pone en correspondencia a todo subconjunto no vacio AcM
un elemento determinado ¢ (A) de este subconjunto.

Uno de los problemas mas complejos y discutidos que surgen
al fundamentar la teoria de los conjuntos es la legalidad de
aplicar este axioma a conjuntos arbitrarios en los razonamientos
que se hacen. No tenemos posibilidad de entrar aqui en su dis-
cusién. Observaremos, sin embargo, que la renuncia al axioma
de eleccién restringe, de manera muy esencial, la posibilidad de
diferentes construcciones en la teoria de los conjuntos.

Enunciemos algunas. proposiciones, cada una de ellas equiva-
lente al axioma de eleccién (es decir, cualquiera de ellas puede
ser demostrada si se acepta el axioma de eleccién y, viceversa,
el axioma de eleccién puede ser demostrado si se toma por ver-
dadera alguna de estas proposiciones). Es obvio, ante todo, que
una de estas proposiciones es el propio teorema de Zermelo. En
efecto, si suponemos que el conjunto M estd bien ordenado, es
suficiente para construir la funcién ¢ (A), cuya-existencia se afir-
ma en el axioma de eleccién, tomar el primer elemento en cada
subconjunto AcM.

Antes de enunciar las demas proposiciones equivalentes al
axioma de eleccién introduciremos los siguientes conceptos. Sea
M un conjunto parcialmente ordenado. Todo subconjunto suyo A
cuyos dos elementos cualesquiera son comparables (en el sentido
del orden parcial existente en M) se llama cadena. Una cadena
se llama maximal si no forma parte propia de ninguna otra ca-
dena perteneciente a M. Finalmente, diremos que el elemento a
del conjunto parcialmente ordenado M es una cota superior del
subconjunto M’ M si cualquier elemento a’ € M’ es menor que a.

TEOREMA DE HAUSDORFF. Toda cadena de un conjunto parcial-
mente ~ordenado estd contenida en alguna de las cadenas maxi-
males de este conjunto.
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El siguiente teorema es, posiblemente, la forma mas conve-
niente de las proposiciones equivalentes al axioma de eleccién.

TEOREMA DE ZORN. Si foda cadena de un conjunto parcialmente
ordenado M admite una cota superior, todo elemento de M pre-
cede a un elemento maximal. : v

No reproduciremos aqui la demostracién de la equivalencia
de todas estas proposiciones (el axioma de eleccién, el ‘teorema
de Zermelo, el teorema de Hausdorff y el teorema de Zorn).

Si el conjunto de las cotas superiores del subconjunto A tiene elemento
minimo a, se dice que a es la cofa superior minima del subconjunto A; de
un modo andlogo se define la cota inferior mdxima. Un conjunto parcial-
mente ordenado se llama reticulo o estructura si todo subconjunto finifo no
vacio de él admite cota superior minima y cota inferior méxima.

8°. Induccion transfinita. Un método ampliamente extendido
de -demostracion de unas u otras proposiciones es el método de
induccién matematica. Como se sabe, consiste en lo siguiente.
Supongamos que se tiene una proposicion P (n) que se enuncia
para cada ntimero natural n y supongamos que:

1) La proposiciéon P (1) es cierta. <

2) Bajo la hipétesis de la validez de P (k) para todo k<n,
se deduce que P(n+1) es cierta.

Entonces, la proposicién P (n) es vélida para todos losn=1,
2,...,n, .... Enefecto, en el caso contrario podriamos encontrar
entre aquellos n para los cuales P(n) no es cierta el nimero
minimo, digamos, n,. Es obvio que n, > 1, es decir, n,—1 es
también un nimero natural, y esto contradice a la condicién 2).

Se puede emplear un método anélogo sustituyendo la serie
de los nimeros naturales por un conjunto bien ordenado cual-
quiera. En este caso de habla de la induccion transfinita. De
manera que el método de induccién transfinita consiste en lo
siguiente. Sea A un conjunto bien ordenado (se puede considerar,
si se quiere, que es el conjunto de todos los transfinitos ordinales
inferiores a uno dado) y sea P(a) una proposicién que se enuncia
para todo a€ A y tal que P(a) es cierta para el primer elemento
de A y es cierta para a si es vilida para todos los elementos
precedentes al elemento a. Entonces, P (a) es cierta para todo
a€ A. Efectivamente, si en A existiesen elementos para los cuales
P (a) no se cumple, podriamos encontrar en el conjunto formado
por ellos el primer elemento, digamos a*, y obtendrfamos una
contradiccién ya que para todos los elementos a < a* la propo-
sicién P (a) seria cierta.

La induccién transfinita puede, en principio, aplicarse a un
conjunto cualquiera, ya que éste puede ser bien ordenado de
acuerdo con el teorema de Zermelo. Sin embargo, en la practica
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conviene mas, casi siempre, sustituirlo por el teorema de Zorn,
donde sélo se necesita la existencia de un orden parcial en el
conjunto considerado.

§ 5. SISTEMAS DE CONJUNTOS v

1°. Anillo de conjuntos. Se llama sistema de conjuntos a todo
conjunto cuyos elementos son, en si, ciertos conjuntos. Si no se
especifica lo contrario, estudiaremos sistemas cuyos elementos
son cada uno un subconjunto de cierto conjunto fijado X. Deno-
taremos los sistemas de conjuntos con letras géticas mayftsculas.
Seran de interés principal para nosotros aquellos sistemas de
conjuntos que resultan cerrados respecto a las operaciones intro-
ducidas en el § 1.

perINICION 1. Un sistema no vacio de conjuntos R se llama anillo
side A€R y BER se deduce AABER Yy AnNBER.
Puesto que para cualesquiera dos conjuntos A y B

AUB=(AAB)A(ANB)

ANB=AA(ANB),

resulta zue si A€R y B€®R, también pertenecen a R los con-
juntos AYB y A\ B. Consecuentemente, un anillo de conjuntos
es un sistema de conjuntos invariante respecto a las operaciones
de unién e interseccién y de resta-y diferencia simétrica. Es obvio
que todo anillo es, ademéds, invariante respecto a la operacién
de toda unién o interseccién finitas, es decir, respecto a las ope-
raciones del tipo

n n
c=U A4, D= 4.
k=1 ) k=1

Todo anillo contiene el conjunto vacio & ya que siempre
ANA=g. El sistema que consia s6lo del conjunto vacio repre-
senta el menor anillo de conjuntos posible.

Un conjunto E se llama unidad del sistema de conjuntos &
si. pertenece a & y si, ademas, para todo A€EQ se verifica la
igualdad :

1) Los conceptos que se introducen en este pérrafo serdn empleados en
el capitulo VI al exponer la teoria general de la-medida. Por eso este pérrafo
puede ser estudiado més tarde. Aquellos lectores que piensan, al estudiar la
teoria de la medida, limitarse s6lo a la medida sobre el plano (§ ! del ca-
pitulo VI) pueden omitirlo completamente.
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AnE=A.

De manera que la unidad de un sistema de conjuntos & no
es otra cosa que el conjunto maximal de este sistema que con-
tiene todos los demds conjuntos que figuran en &. ;

Un anillo de conjuntos provisto de la unidad se denomina
dlgebra de conjuntos. ‘ :

Ejemplos. 1. Cualquiera que sea el conjunto A4, el sistema
Pt (A) de todos subconjuntos suyos representa un 4lgebra de
conjuntos siendo la unidad el conjunto E=A. .

2. Cualquiera que sea el conjunto no vacio A, el sistema
{9, A} formado por el conjunto A y el conjunto vacio & re-
presenta un algebra de conjuntos siendo la unidad el conjunto E = A.

3. El sistema de todos los subconjuntos finitos de un conjunto
arbitrario A es un anillo de conjuntos. Este anillo representara
un élgebra si, y sélo si, el propio conjunto A es finito.

4. El sistema de todos los subconjuntos acotados de la recta
niumerica es un anillo de conjuntos sin unidad.

Directamente de la definicién de un anillo de conjuntos se
desprende el teorema siguiente:

TEOREMA 1. La interseccion R = UER,, de un conjunto cualquiera
<]
‘ de anillos es también un anillo.

Demostremos un resultado simple pero de importancia para
lo sucesivo. ‘

TEOREMA 2. Cualquiera que sea el sistema no vacio de conjuntos ©
I existe un anillo y solo uno, R (&) que contiene © y estd con-
. tenido en cualquier anillo R que contiene &.

DEMOSTRACION, Es facil ver que el anillo R (&) se determina
univocamente por el sistema &. Para demostrar la existencia
‘de este anillo, consideremos la unién X=UA de todos los

AE®
conjuntos A que figuran en € y el anillo M EX) de todos los
subconjuntos del conjunto X. Sea )) la totalidad de los anillos
de conjuntos que estan contenidos en M (X) y contienen &. La

interseccién
=M%
Rel

de todos estos anillos serd precisamente el anillo R (&).
En efecto, cualquiera que sea el anillo R* conteniendo €,
la interseccion R=R*NM(X) serd un anillo de X}y, por

consiguiente,
ScRch*,
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es decir, P verifica realmente la condicién de ser el anillo mi-
nimal. Este anillo se llama anillo minimal sobre el sistema &
y se denota R (©).

2°, Semianillo de conjuntos. En varios problemas, por ejemplo,
en la teoria de medida, desempefia un papel importante, ademas
del concepto de anillo, el concepto mas general de semianillo
de conjuntos.

pEFINICION 2. Un sistema de conjuntos & se llama semianillo si

contiene el conjunto vacio &, esta cerrado respecto a la operaccién de

interseccién y cumple la siguiente propiedad:si Ay A, A pertene- -
n

cen a &, se puede representar el conjunto A en la forma A = UA.

‘ k=1
donde A, son conjuntos de € disjuntos dos a dos y el primero
de ellos es el conjunto dado A4,.

Todo sistema de conjuntos disjuntos dos a dos 4,, 4,, ..., 4,
cuya unién es el conjunto dado A se llamar4, en lo sucesivo,
descomposicién finita del conjunto A. : ;

Todo anillo de conjuntos R es un semianillo ya que si A y
A,c A figuran en R, tiene lugar la descomposicion ‘

A=A,UA,, donde A,=A\ A, €R.

Un ejemplo de un semianillo que no es anillo de conjuntos
obtendremos al tomar la totalidad de los intervalos (@, b), los
segmentos [a, b] y los semisegmentos [a, b) y (a, b] de larecta
numérica?). ,

Veamos algunas propiedades de los semianillos de conjuntos.

LEMA 1. Supongamos que los conjuntos A,, A, ..., A, A per-
tenecen al semianillo © y que, ademds, los conjuntos A, son sub-
conjuntos de A disjuntos dos. a dos. Entonces, los conjuntos
A;(i=1,2, ..., n) sepueden tomar como ios n primeros miembros
en la descomposicion finita .

8
A= UA,,, s=n,

: o k=1
del conjunto A siendo todos los A, €. |
DEMOSTRACION . Emplearemos el método de induccién matematica..

Para n=1 la afirmacién del lema es véilida de acuerdo con la
definicién de semianillo. Supongamos que esta proposicién es

1) En los interyalos se incluye, por supuesto, el intervalo «vacio »
(a, @) y en los segmentos, el segmento compuesto por un solo punto [a, 4].
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cierta para n=m y consideremos m+-1 conjuntes 4,, ..., 4,,
A, .. que verifican las condiciones del lema. Por hipétesis:

A=A UAU...UA4,UB,UB,U... UB,,
donde todos los con]untos B,(9=12, ..., p) pertenecen a ©.
Tomemos ‘ L
' ql‘—Au-HnB

De acuerdo con la def1mc1on de sexmamllo tiene lugar la descom-k

posicién
B,,.—.Bq,qu,U oo UB,,q,

donde todos los B,; pertenecen a &. Es facil ver que

p r
A=AU...UAUA,,, U U'qu.

=1 j=2

De modo que hemos demostrado la afirmacién del lema para
n=m+1y, por consiguiente, para todo n.

LEMA 2. Cua{zuzera que sea el sistema finito de conjuntos

A, .. pertenecientes al semianillo &, existe en © un
sistema fmzto de conjuntos By, ..., By, disjuntos dos a dos,
tal que todo A, se puede representar ‘mediante la union

A= U B

-8€ My,
de algunos de los conjuntos B,.

DEMOSTRACION. Para n=1 el lema resulta trivial, ya que es
suficiente tomar, en este caso, t=1 y B,=A,. Supongamos que
el lema es cierto para n=m y consnderemos en & un sistema

de conjuntos A,; ..., A,, A,., cualquiera. Sean B,,B,, ..., B,
los conjuntos de & que verifican las condlcxones det lema res-
pecto a A4,, A,, ..., A,. Tomemos

By, = A, NB;.

En virtud del lema 1 tiene lugar la deséomposicién

A= Us,u UB',,, B,€Q, (1)

s=1

y de acuerdo con la definicién propia de semianillo, la descom-
posicién

B,=B,UB,U...UB,, B,€C.
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facil ver que

fa
A4=U Us,, t=1,2, ....m

se Mg j=1
y que los conjuntos
By, B,

son disjuntos dos a dos. Es decir, los conjuntos B,;, B, verifican
las condiciones del lema respecto a A4,, ..., A,,,,,Aj,,,+1. El lema
queda demostrado.

3°. Anillo engendrado por un semianillo. Hemos visto ya en
el primer punto que para todo sistema de conjuntos & existe un
anillo minimal, y sélo uno, que contiene a &. Sin embargo, no
es facil construir de hecho a partir de & el anillo R (&) en el
caso de un sistema & arbitrario. Esto resulta posible en el im-
portante caso cuando & representa un semianillo, como se ve
del siguiente teorema. "

TEOREMA 3. Si € es un semianillo, R(S) coincide con el siste-
ma B de conjuntos A que admiten descomposiciones finitas

n
A=l 4,
: k=1
I en conjuntos A, € €. :

DEMOSTRACION. Comprobemos que el sistema 3 forma un anillo.
Si A y B son conjuntos cualesquiera de 3, tienen las descompo-
siciones S

n m

A=l 4., B=UB,, 4,€6,B,c¢.

k=1 k=1

Puesto que © es un semianillo, los conjuntos
Ciyy=AUB,

también pertenecen a &€. En virtud del lema 1 existen las des-
composiciones

r LX)
A= L,,C;,U y‘Dik; B;= “J Cyu ‘l_Jl Ey, (2)

donde Dy, E; €. De (2) se desprende qixe los conjuntos A n B
y AAB admiten las descomposiciones siguientes:

A’nB=HCU. AAB=H Dyu ilJl Ey,
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es decir, pertenecen a 3. Por lo tanto, 8 es realmente un anilo;
es obviri) que entre los anillos que contienen &, éste es el anillo
minimal. N :

4°, Algebras de Borel. En varios problemas, en la teoria de
la medida, en particular, es preciso considerar la unién e inter-
seccién de una cantidad numerable, y no sélo finita, de conjuntos.
Por eso conviene introducir los siguientes conceptos, ademas -
del de anillo de conjuntos. ‘

peFINICION 3. Un anillo de conjuntos se llama o-anillo si junto
con toda sucesién de conjuntos A,, 4,, ..., A, ... contiene

la unién ,
s=U A4,
n

DEFINICION 4. Un anillo de conjuntos se llama §-anillo si junto
con toda sucesién de conjuntos A,, A,, .... A, ... contiene
la interseccién :
D= A,
n

Es natural llamar o-digebra a todo o-anillo. con unidad y
8-digebra a todo 8-anillo con unidad. Es facil ver, sin embargo,
que estos dos conceptos coinciden: toda o-élgebra es al mismo
tiempo una &-algebra y toda 8-algebra, una o-dlgebra. Esto se
deduce de las relaciones de dualidad : .

U4.=E\UEA4),.
NA.=EN\UENAL)

(véase el § 1). Las 8-algebras o, que es lo mismo, las o-dlgebras
~suelen llamarse digebras de Borel o, simplemente, B-dlgebras.

El ejemplo mas sencillo de una B-algebra es la totalidad de
los subconjuntos de un conjunto A. ‘

Si se fiene un sistema de conjuntos &, siempre existe al
menos una B-dlgebra que contiene este sistema. En efecto, pon-

gamos
x=U4
A6

y consideremos el sistema B de todos los subconjuntos del
conjunto  X. Estd claro que B es una B-élgebra que

contiene €. Si B es una B-dlgebra arbitraria que contiene &
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y X es su unidad, todo A€ esta contenido en X y, por con-
siguiente, X= UACX . Una B-dlgebra B se llama irreducible

A€® :
(respecto al sistema &) cuando X={J A. En otras palabras,

Yy
una B-élgebra irreducible es una B-algebra que no contiene
puntos no pertenecientes a ninguno de los conjuntos A €. Es
natural limitarse siempre a considerar sélo estas B-ilgebras.
Para las B-dlgebras irreducibles tiene lugar un teorema ana-
logo al teorema 2 demostrado anteriormente para los anillos.

TEOREMA 4. Cualquiera que sea el sistema de conjuntos no vacio
€ existe una B-dlgebra B (€) irreducible (respecto a este sistema)
que contiene © y estd contenida en cualquier B-digebra que
contiene &.

LA DEMOSTRACION se realiza exactamente del mismo modo que
la demostracién del teorema 2. La B-dlgebra B(S) se llama
B-dlgebra minimal sobre el sistema © o clausura boreliana dei
sistema ©.

En el Analisis desempefian un papel impertante los 1lamados
conjuntos de Borel o B-conjuntos, es decir, los conjuntos de la
recta numérica pertenecientes al B-algebra minimal sobre la to-
talidad de los segmentos [a, b].

5°. Sistemas de conjuntos y aplicaciones. Sefialemos algunos
resultados que nos haran falta al estudiar las funciones medibles.

Sea y={(x) una funcién definida sobre el conjunto M y que
toma valores en el conjunto N y sea M algin sistema de sub-
conjuntos del conjunto M. Designemos mediante f(I) el sistema
de todas las imagenes f(A) de los conjuntos pertenecientes a M.
Sea, ademds, M algin sistema de conjuntos contenidos en N
y [~ () el sistema de todas las imagenes reciprocas f~!(A4) de
los conjuntos que figuran en M. Tienen lugar las siguientes pro-
posiciones (dejamos a cargo del lector las demostraciones):

1) Si N es un anillo, también lo es f-*(N).

2) Si N es un algebra, también lo es f~1 (N).

3) Si N es una B-algebra, también lo es f~* N).

4) R(f-2, M=F-* R @)

5) B (F-19) = ~* (BEV). -
¢ Continuaran siendo ciertas estas proposiciones si sustituimos f-*
por fy N por M? o :

-Observaciones finaies. La teoria de conjuntos surge como una rania de

las Matemaéticas en los trabajos del matemético aleman Georg Cantor. Las
ideas de Cantor, recibidas primero con desconfianza, obtienen méas tarde

4—3427
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una amplia divulgacién y en el siglo veinte el punto de vista de la teoria
de conjuntos se convierte en base de las més diferentes ramas de las Mate-
maticas : conceptos tan fundamentales como grupo, anillo, cuerpo, espacio
lineal, etc., se definen generalmente como conjuntos compuestos por elemen- -
tos de una naturaleza arbitraria que verifican unos u otros axiomas comple-
mentarios. En el desarrollo sucesivo de la teorfa de conjuntos surgieron
varias dificultades 16gicas y esto condujo, naturalmente, a tratar de susti-
tuir la teoria de conjuntos «ingenua>» por construcciones axiométicas rigu-
rosas. Aquf resulté que algunos problemas de la teoria de conjuntos que,
al parecer, admiten una solucién determinada de tipo ¥si» o ¢no», tienen,
en realidad, otra naturaleza. Uno de ellos es el famoso problema de -con-
tinuo : ¢ existen potencias no numerables inferiores al continuo ? Baséndose
en cierta axiomética (en la discusién de la cual no podemos aqui entrar),
Godel demostré que la solucién negativa de ‘este problema no contradice
a la teoria axiomética mencionada y, més tarde, Cohen demosiré que su
solucién positiva no es contradictoria en el mismo sentido. ,

La teorfa de conjuntos se expone, con mayor o menor detalle y gene-
ralidad, en varios libros de texto. ‘



CAPITULO
!

ESPACIOS METRICOS
Y TOPOLOGICOS

§ 1. CONCEPTO DE ESPACIO METRICO

1°, Definicion y ejemplos principales. Una de las operaciones
principales del Analisis es el paso al limite. Esta operacién des-
cansa sobre el hecho de que en la recta niimerica esta definida
la distancia entre dos puntos. Muchos resultados princi ales del
Anélisis no tienen nada que ver con la naturaleza algebraica
del conjunto de los nimeros reales (es decir con el hecho de que
forman un cuerpo) y sélo se apoyan en aquellas propiedades de
los nimeros reales que estdn relacionadas con el concepto de
distancia. Generalizando la interpretacién de los nimeros reales
como un conjunto en el que se ha definido la distancia entre
sus elementos, llegamos al concepto de espacio métrico, uno de
los conceptos mais importantes de la matemética moderna.
A continuacién exponemos los resultados fundamentales de la
feorfa de los espacios métricos y de sus generalizaciones, los
espacios topolégicos. Los resultados de este capitulo son esencia-
les para toda la exposicién ulterior.

pEFINICION. Un espacio métrico es un par (X, p), compuesto de
un conjunto (espacio) X de elementos (puntos) y de una distancia,
es decir, una funcién univoca real y no negativa p(x, y) defi-
nida para dos cualesquiera elementos x e y de X y que verifica
las tres condiciones siguientes: :

1) p(x, ¥)=0 si, y sblo si, x=y,

2) (axioma de simetria): p (x, y)=p (¥, x),

3) (axioma triangular): p(x, 2)<p(x, )40, 2).

El propio espacio métrico, es decir, el par (x, ), lo deno-
taremos, como regla general, mediante una letra:

R=(X, p).
4%
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En los casos en que la equivocacién esté excluida denotaremos
frecuentemente el espacio métrico con el mismo simbolo X que
describe la «reserva de puntos».

Sefialemos ejemplos de espacios métricos. Algunos de estos
espacios desempefian un papel muy importante en el Analisis.

1. Tomando para los elementos de un conjunto arbitrario

0, si x=y,

P (x, 'y>={ 1, si xsty,

obtendremos, evidentemente, un espacio métrico que puede ser
denominado espacio de puntos aislados.
2. El conjunto de los numeros reales con la distancia

p(x, y)=|x—y|

forma el espacio métrico R*.
3.. El conjunto de grupos ordenados de n numeros reales

. X={%y, x,, cees x,,)
con [a distancia

-p@w= )

se denomina espacio aritmético eachdea de n dimensiones R*. Es
evidente que em R" se verifican los ax;onias 1 y 2. Demostremos
que en R® también se cumple el axioma triangular.

Sean x=(%,, ..., %)y Y=W1 .2 Ya) ¥ 2=(2y, ..., z,); en-
‘tonces el axioma trlangular se puede escribir en la forma:

: ]/kz E@B—x) < l/;;l (!h"'ﬁ)' + l/ 2 (Zk“yay- P)]

Si tomamos y,,—-x,,-a y — Y =b,, tendremos z,,-—x,,—
=a,+b, y la de51gualdad 2) obtxene la forma

]/;Zii;(a;+b»)’-<\_]/é§az+~ kg‘{bz (?)

Pero esta desigualdad se deduce inmediatamente de la conocida
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~ desigualdad de Cauchy— Buniakovski ¥:
n | I n n
) s, a
(Zon)<Za B @
En efecto, de acuerdo con esta desigualdad tenemos

2 (@t by = 24 ai+2 Z aby+ 2 < ZQH-
Sa. Zb:+ Zb’—(]/ 2 at+ kzﬁlb’z)';

_con esto queda demostrada la des:gualdad (3) y, por consiguiente,
la desigualdad (2).

4. Consideremos el mismo conjunto de grupos ordenados
de n nfimeros reales x=(x,, ..., x,), pero defmlendo la dis-
tancia en él mediante la férmula

01 (tr )= ,E - 6

Se ve inmediatamente que se cumplen los axiomas 1, 2 y 3.
Denotaremos este espacio métrico con el simbolo R%.

5. Tomemos de nuevo el conjunto de los e}emplos 3y+4
definiendo la distancia entre sus elementos mediante la férmula

Po (%, y) =  max. |ge—2l | (6)

Es evidente que se cumplen los axiomas 1, 2 y 3. Para
-muchas cuestiones del Anélisis este espacio, que denotaremos R?,
es no menos cémodo que el espacio euclideo R*.

Los tres tltimos ejemplos muestran que a veces es importante
tener, en efecto, diferentes denotaciones para el espacio métrico
y para el conjunto de sus puntos, ya que una misma reserva de
puntos puede ser metrizada de diferentes maneras.

6. El conjunto Cp,, s de todas las funciones reales continuas
definidas en el segmento [a, b] con la distancia

o (f, &)= max |g(t)—/(t)| @
a<t<b

1 La desigualdad de Cauchy—Buniakovski se sigue de la identidad

n. L o n n n n
(Za,b,.) =Ya Yo -5 3 3 (aty—biapp,
\k=1 /. k=1 k=1 " im1 [=1
que se puede comprobar directamente.
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también forma un espacio métrico. Los axiomas 1, 2.y 3 se
comprueban directamente. Este espacio desempefia un papel muy im-
portante en el Analisis. Lo denotaremos con el mismo simbolo Cg, 5}
que empleamos para el conjunto de los puntos de este espacio.
En lugar de Cyo, ;) escribiremos simplemente C.

7. Designemos mediante I, el espacio métrico cuyos puntos
son todas las sucesiones

X=(Xyy X3y o0y Xpy .. )
de niimeros reales que verifican la condicién

D < oo
k=1 .
y en el que la distancia viene dada por
p(x, y)= l/kgl (Ur—xx)* ®

La funcién p (x, y) asi definida tiene sentido para todos x, y €l,,
ya que la serie ?‘_‘ (yp—x,)* converge siempre que Z x} < o0

y 2, yt < oco; esto se desprende de la sngmente de31gualdad

elemental , (
' (o == ) <2 (R -+ 9h)-

Al mismo tiempo vemos que si (X;, Xg5 ooy Xpyov.) € (Yys Yo - - -»
Yn -..) pertenecen a I,, también (x,+y,, .. ,x +y,,,;..)el,.
Comprobemos. ahora que la funcién (8) verifica "los “axiomas de
espacio métrico. Los axiomas 1 'y 2 son ev1dentes y el axioma 3
adquiere en este caso la forma

V_ZH< l/ ) (z,—y,.) +l/ 2 (y;.——xu)’ R ",_

De acuerdo con lo dicho antenormente converge eada una de Ias
tres series que aqui flguran Por otro lado para todo n se"verifica ,
la desngualdad ‘

% E(z,,—x,)' V 2(2,—y,,)= ]/ Z(y.—x.)'

(véase el e;emplo 4). Pasando al’ I’imrte para’ 11— oo obtene- !
‘mos (9), es decir, la desigualdad triangular en-I;. - A
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8. Consideremos, al igual que en el €jemplo 6, el conjunto de
todas las funciones continuas en el segmento [a, b], pero definien-
do la distancia de otro -modo, a saber

b 1/2
p(x,y)= (S(x —y@) dt) . (10)

Este espacio métrico lo denotaremos C, , y lo 1lamaremos

espacio de funciones continuas con métrica cuadrdtica. Los- axio-
mas 1 y 2 del espacio métrico son otra vez evidentes, mientras
que el axioma triangular se deduce directamente de la desigual-
dad de Cauchy—Buniakovski en su forma integral ¥

b 2 b b
<Sx(t)y(t)dt> <(no@ar-§ @

9. Oonsidéremos el conjunto de todas las sucesiones acotadas
X=(X;y X4 -+ -y Xp» - . .) de niimeros- reales. Admitiendo
’ p(x, 9)="¢" 1 yp—xi ], 11)

obtenemos un espacio métrico que denotaremos m. Los axio-
mas 1, 2 y 3 se verifican evidentemente.

10. El conjunto de todos los grupos ordenados de n nimeros.
reales con la distancia ‘

n 1/p '
p (%, 9) =(k§1 |y,.—x,,lr) , (12)

donde p es un némero fijo arbitrario > 1, representa un espacio
métrico que denotaremos RY’. También en este caso es obvio
que se verifican los axiomas 1 y 2. Comprobemos el axioma 3.
Sean x=(Xy, Xy . s %)y Y=Ups Yur - - > Yn) ¥ 2=(2) 23 - - -» 21)
tres puntos de R§”. Pongamos

A _ h—%=0 Z—Y=br
La desigualdad } , | o
- Py (%, 2) <y (%, )+ 0, ¥, 2)

1) Esta desigualdad puede obtenerse, por ejemplo, de la siguiente iden-
tidad que se eomprueba ficilmente '

b s b b - bb :
(S % (g () dt >‘=Sx*(t)dt§y*(t)dt——§-§ (e@y0—s@ropdsa.
a a a |
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que debemos demostrar puede representarse entonces en la forma

(Z1atnr) <(Z1ar) +(Si0r)” o
k=1 1 1

Esta es la desigualdad de Minkowski. Para p=1 la desigualdad
de Minkowski es obvia (el valor absoluto de la suma no sobre- -
pasa la suma de los valores absolutos) y, por consiguiente, pode-
mos limitarnos a considerar el caso p>1v. -

La demostracién de la desigualdad (13) para p>1 se basa
en la desigualdad de Hélder:

n n t/p/ n 1/q :
Zlakka(ElahI’) (2“’;]") ’ (14)
k=1 k=1 k=1

donde los nimeros p> 1y g > 1 cumplen la condicién
o L .
i +7 =1. (15)

Observemos que la desigualdad (14) es homogénea. Ello sig-
nifica que si se cumple para dos vectores cualesquiera

a=(a,, ay, ..., a,) ¥ b-—-—-(bl,‘b,, coes by)

también se verifica para los vectores Aa y pb, donde A y W son
nitmeros arbitrarios. Por eso es suficiente demostrar la desigual-
dad (14) para el caso de que

Zlalr = Zlel=1. (16)

v Supongamos, pues, que se cumple la condicién (16); demos-
tremos que - ' e
n

2 labl<1. (17)

Consideremos en el plano (§, n) la curva dada por la ecuacién
n=§-*(£>0), o, que es lo mismo, por la ecuacién E=ne1
(fig. 8). Del dibujo se ve claramente que para cualesquiera valo-
res positivosa y bserd S,+ S, >ab. Calculemos las 4reas S, y S,:

a b
s=feag. s-fua-t
0 ]

B Para p <1 la desigualdad de Minkowski no tiene lugar. En otras
palabras, si pretendiéramos considerar el espacio Rg” para. p <1, en este

espacio no se cumpliria el axioma triangular.
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Por lo tanto, se verifica la siguiente desigualdad numérica
: a? | b
ab<< ;.+—q' .

Poniendo a=|a,|, b=|b,| y sumando respecto a k desde
1 hasta n, obtendremos tomando en cuenta (15) y (16)

n

k=21 labe | <1
Hemos demostrado la desigualdad (17) y, por consiguiente,
la desigualdad general (14). Para p=2 la desigualdad de Hol-

dﬁr (14) se convierte en la desigualdad de Cauchy— Buniakov-
ski (4). :

y
&
5
P’\
"5
T F
FIG. 8

Pasemos a demostrar ahora la desigualdad de Minkowski.
Para ello consideremos la identidad :

(a]+|6)P=(al+|6D?-*|a|+(al+[b)*-2|b].

Tomando en la identidad escrita a=a,, b=25, y sumando res-
pecto a k desde 1 hasta n, obtenemos

3 Ga+ibbr=
= 3 (el 1807 al+ 3 (a0 bl

Aplicando ahora a cada una de las sumas que figuran a la-
derecha la desigualdad de Hdlder y tomando en consideracién que
(p—1lyg=p, enccmtramos ' ' ’

Sartinpr< o
< Z1ai+isr ¥ gnlaul'fw+ ?lbsl’w)-
o= ‘ Kot k=1
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Dividiendo ambas partes de esta desigualdad por

n 1/q
(kgl (Ian|+|bn|)”> ’

obtenemos

n yp [ B .. 1/p n 1/p
(S aaitisn) '<(Zrar) +(Z1ar)

y de aqui se deduce inmediatamente la desigualdad (13). Con
esto queda comprobado el axioma triangular para el espasio RY.

La métrica p, considerada en este ejemplo coincide para p=2
con la métrica euclidea (ejemplo 3) y para p=1 con la métrica
del ejemplo 4. Se puede demostrar que la métrica

Po (%, y)= max |y,—x;],
1<kgn -
introducida en el ejemplo 5, es el caso limite de la métrica
P, (%, y), es decir, '
1/p
[Yp—xi|? > .
De la desigualdad
A2 T
ab < 7+7('p—+?— 1) ,

establecida anteriormente, es facil deducir la desigualdad integral
de Hilder

JE]

Po (¥, )= lim (
p-~® \k

1

b . vy V2 1/q
Jxopoa<(§ixopa) (Jyoa)

que se verifica para cualesquiera funciones x(f) e y(f) siempre
que las integrales que figuran a la derecha tengan sentido. A su
vez, de aqui se obtiene la desigualdad integral de Minkowski

1/p lp

<(fieova) +(§lvora)”.

<S [x@®+y () |edt>
" 11. Veamos otro ejemplo interesante de espacio métrico. Sus .
¢lementos son todas las sucesiones de nfimeros reales

X=Xy Xgp vuvy Xpy ...)
tales que

| kglxk|’< oo,
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donde p>1 es un namero fijo, y la distancia viene dada por

la férmula 1
/p
e (x, y)=<k§l I~yn—~xk|"> . (18)

Denotaremos este espacio métrico mediante /,.
De acuerdo con la desigualdad de Minkowski (13) tenemos
para n cualquiera

. n 1/p n \1/p n \l/p
<2|yk"xk|p> <<k§1|xk|”> +<k§l|~yklp/ .

Por hlpotesls, las series

Z‘I"kl’ y ;lynl”

convergen; por eso, pasando al limite para n — oo, obtenemos
i/p

< 1/p L3 I/p. ©
(EJ%-—&I") <(k§llxglf> + ElL%[P) < oo, ’(19)

Esto demuestra que la férmula (18) mediante la. cual se defme
la distancia en [, tiene sentido para cualesquiera x, y€1l,
mismo tiempo, 12 desigualdad (19) muestra que en [, se verlflca
el axioma triangular. Los demas axiomas son evidentes.

Un nidmero ilimitado de nuevos ejemplos proporciona. la si-
guiente idea. Sea R=(X, p) un espacio métrico y M cualquier
subconjunto de X. En este caso el conjunto M con la misma
funcién p(x, y) pero definida ya para x e y de M también re-
presenItQa un espacio metrlco, que se denomina subespacio del es-
paCIO _

Aplicaclones continuas de espacios métricos. Isometria.
Sean ‘X eV dos espacios métricos y f una aplicacién del espa-
cio X en Y. Por lo tanto, a cada elemento x€ X se pone en
correspondencia un elemento y=f(x) de Y. Esta aplicacién se
dice continua en el punto x,€ X, si para cada e >0 existe un
,,6 >0 tal que para todos X€X que cumplen la desxgualdad

) : p (xo xo) < 6
se venilca la desigualdad -

P (fF(x) f (X)) <e

(aqui P es la distancia en X y p, la distancia en Y) Si la
aphcacxén f es continua en todos los puntos del ‘espacio X, se
dice que f es continua sobre X. Si X e Y son dos coruuntos
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numéricos, es decir, f es una funcién numérica definida sobre un
subconjunto X de la recta numérica, esta definicién de la ‘con-
tinuidad de una aplicacion coincide con definicién, conocida del
Andlisis elemental, de la continuidad de una funcién.

Siendo la aplicacién f del espacio X sobre el espacio Y biu-.
nivoca, existe la aplicacién inversa x=f-1(y) del espacio Y
sobre el espacio X. Si la aplicacién f es biunivoca y bicontinua
(es decir, tanto f como f-* son aplicaciones continuas), se la
denomina aplicacién homeomorfa o homeomorfismo y los espa-
cios X e Y, entre los cuales se puede establecer una aplicacién
homeomorfa, se denominan espacios homeomorfos. Como ejemplo
de espacios homeomorfos pueden servir toda la recta numérica
(—o0, o) y un intervalo, por ejemplo, el intervalo (—I, 1).
En este caso el homeomorfismo se establece mediante la férmula

2
y=- arctg x.

Un caso importante particular de homeomorfismo en la asi lla-

mada aplicacién isométrica de espacios métricos.- Co
Una aplicacién biunivoca f del espacio métrico R=(X, p)

sobre el espacio métrico R'=(Y, p’) se denomina aplicacién

isométrica, si
P (xy X5) =p" (F(xy)s f(x4))

para cualesquiera x,, x,€R. Dos espacios R y R’, entre los
cuales se puede establecer una correspondencia de isometria, se
~denominan isométricos. ‘ '

La isometria de dos espacios R y R’ significa que las rela-
ciones métricas entre sus elementos son las mismas; puede ser
distinta sélo la naturaleza de los propios elementos, lo que,
desde el punto de vista de la teoria de espacios métricos, no
tiene importancia. En lo sucesivo los espacios isométricos seran
considerados como idénticos. oL

Al final del § 5 de cste capitulo volveremos a tratar, desde
un punto de vista mds general, los conceptos aqui introducidos
(continuidad, hom&morfismo). ‘

§ 2. CONVERGENCIA. CONJUNTOS ABIERTOS Y CERRADOS

1°. Puntos de acumulacién. Adherencia. En este paragrafo
expondremos algunos conceptos principales de la teoria de espa-
cios meétricos que emplearemos frecuentemente en lo sucesivo.
- Una bola abierta B (x,, r} en el espacio métrico R es el
conjunto de los puntos x € R que verifican la condicién

p(x, x) <r.
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El punto fijo x, se 1lama centro y el ntimero r, radio de esta bola. -
Una bola cerrada B [x,, r] es el conjunto de los puntos x€ R
que cumplen la condicién _ ; :
px, x)<r.

Una bola abierta de radio & y centro en x, se denominara
también e-vecindad? del punto x, y se denotard O,(x,).

EJERCICIO. Dése un ejemplo de espacio métrico y dos bolas B(x, p;)
y B(y, ps) en él, tales que p; > pg, B (x, p1) C B (¥, pa)-

Un.punto x € R se denomina punto de adherencia del conjunto
McR, si cualquier vecindad suya contiene al menos un punto
de M. La totalidad de los puntos de adherencia del conjunto M
se denota mediante {M] y se llama la adherencia (tambien clau-
sura) de este conjunto. De esta manera hemos definido para los
conjuntos de un espacio métrico la operacién de adherencia que
consiste en el .paso.del conjunto M a su adherencia [M]. .

TEOREMA 1. La operacion de adherencia tiene las siguientes pro-
i);Mc{M]’ o
2y [[M])=[M], ,
3) si M,cM,, entonces [M,]<iM,],"
_“4) VIM!.UMB]:IMIZ]U[MJ‘ ‘ 8

DEMOSTRACION. La primera afirmaci6n es evidente, ya que todo punto
perteneciente a. M es un punto de adherencia del conjunto M.
Demostremos .la segunda propiedad. Sea x € [[M]]. En este caso,
en cualquier vecindad O,(r) de este punto existird un punto
x, €[M]. Pongamos e—p(x, x,)=e, y consideremos la bola
0, (r,). Esta bola se encuentra integramente dentro’ de la bola
0,(x). En efecto, si z€0, (x,), tendremos p(z, x,) <e.y puesto
que p(x, x,)=e—e,, encontraremos, de acuerdo con el axioma

triangular, que o , ,
plz, D <et(e—e)=¢,

es decir, z€0,(x). Como x, € [M], existira en O, (x) un punto
%, € M. Pero en ‘este caso x,€0,(x) y, puesto'que O,(x) es una
vecindad -arbitraria de x, tendremos x € [M]. Hemos demostrado
la segunda afirmacién. L P

La tercera propiedad es evidente. Demostremos, finalmente,
la.cuarta.

O 1) A!guriés autores piefierenemplear‘ en este caso el término «s-entorno».
(N. del T.) :
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Si xe&MluM ], x pertenece por lo menos a uno de los
conjuntos [M,] o IM,], es decir : o ,
M, UM,]c[M,]U[M,)].

Puesto que M,cM, UM, y M,cM,UM,, la inclusién inversa
se desprende de la propiedad 3). :

Hemos demostrado completamente el teorema. V

Un punto x€R se llama punfo de acumulacién del conjunto
McR, cuando en toda vecindad suya existe un ‘nﬁmero'inf'inito
de puntos de M.. - - - ,

El punto de acumulacién puede pertenecer y puede no per-
tenecer a M. Por ejemplo, si M es el conjunto de los niimeros
racionales del segmento [0, 1], todo punto de este conjunto es
un punto de acumulacién de M. -

Un punto x, perfeneciente a M, se llama punto aislado de
este conjunto, cuando una vecindad suya O,(x) suficientemente
pequefia no contiene otros puntos de M distintos de x. Propo-
nemos al lector demostrar, a titulo de ejercicio, la siguiente
afirmacion: - o o

Todo punto de adherencia del conjunto M o bien es un punto
de acumulacién o bien un punto aislado de este conjunto.

De aqui se puede deducir que la adherencia [M] se compone,
en general, de tres tipos de puntos: L

1) los puntos aislados del conjunto M;

2) los puntos de acumulacion del conjunto M, pertenecien-
tes a M; o : : o

3) los puntos de acumulacién del conjunto M que no perte-
necen a M; de esta forma la adherencia [M] se obtiene agregando
a M todos sus puntos de acumulacién. :

2°. Convergencia. Sea x,, x,, ... una sucesién de puntos en
el espacio métrico R. Se dice que esta sucesion converge al
punto x, cuando toda vecindad O,(x) del punto x contiene todos
los puntos x,, empezando desde alguno, es decir, cuando a cada
nimero & >5 le corresponde un numero N, tal que O, (x) con-
tiene todos los puntos x, para n> N,: El punto x se llama
limite de la sucesién m »

Es obvio que se puede enunciar esta definiciébn también de
la siguiente manera: la sucesién {x,} converge a x, cuando

lim p (x, x,)=0. g
n-»o .

De esta definicion se desprende directamente que 1) ninguna
sucesiéon puede tener dos limites distintos y que 2) si la sucesién
{x,} converge al punto x, toda sucesién parcial contenida en ella
converge al mismo punto.
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El siguiente teorema explica la relacion estrecha existente
entre los conceptos de punto de adherencia y de limite.

TEOREMA 2. Para que el punto x sea un punto de adherencia del
conjunto M, es necesario Y suficiente que exista una sucesion
{x,} de puntos de M que converja a x.

DEMOSTRACION. La condicién es necesaria, puesto que siendo x
un punto de adherencia del conjunto M, en cada vecindad O1/n (%)
existe por lo menos un punto x, € M. Estos puntos forman una
sucesién que converge a x. La suficiencia es evidente.

Siendo x un punto de acumulacién del conjunto M, los pun-
tos x, €O01/n ()N M, correspondientes a diferenges n, pueden esco-
gerse de manera que no coincidan entre si. Es decir, para que
el punto x sea un punio de acumulacion de M, es necesario y
suficiente que en M -exista una sucesién de puntos distintos dos a
dos que converga a x. :

El concepto de continuidad de una aplicacion del espacio
métrico X en el espacio métrico Y, que hemos introducido en
el § 1, puede enunciarse ahora en términos de convergencia de
sucesiones: la aplicacion y=f(x) es continua en el punto x,,
cuando cualquiera que sea la sucesion {x,} convergente a x,, la
sucesién {y,==f (x,)} converge a go= (x,). La demostracién de
la equivalencia de esta definicion a la dada en el § 1 no difiere
en nada de la demostracion de la equivalencia de las dos defi-
niciones de la continuidad (een el lenguaje de e, 8 y «en el
lenguage de sucesioness) de las funciones de argumento numérico
y el lector podré realizarla. -

°. Subconjuntos densos. Sean A y B dos conjuntos de un
e?acio, métrico R. El conjunto A se dice denso en B, cuando
[A]>B. En particular, el conjunto A es siempre denso (en el
espacio R), cuando su adherencia [A] coincide con todo el espa-
cio R. Por ejemplo, el conjunto de los nimeros racionales es
siempre denso en la recta numérica. Se dice que un conjunto A
es nunca denso, cuando no es denso en ninguna bola.

Ejemplos de_espacios provistos de un conjunto numerable
siempre denso. Un espacio, que tiene un conjunto numerable
siempre denso, se llama separable. Consideremos desde este punto
de vista los ejemplos expuestos en el § 1. '

1. El espacio «discreto» del ejemplo 1 del §1 contiene un
conjunto numerable siempre denso, si, y solo si, estd compuesto
por un némero numerable de puntos. Ello se debe a que la
adherencia [M] de cualquier conjunto M de este espacio coincide

con M.
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Todos los espacios dados en los ejemplos 2—8 del § 1 tienen
conjuntos numerables siempre densos. Sefialemos en cada uno de
ellos un conjunto de este tipo, recomendando con insistencia al
lector realizar la demostracién detallada. ‘ '

2. Sobre el eje real R!, los puntos racionales.

- 3—5. En el espacio euclideo de n dimensiones R” y en los
esplac.ios R} y R3, el conjunto de vectores con coordenadas racio-
nales. L o

6. En el espacio Cig,4), €l conjunto de todos los polinomios
de coeficientes racionales. - B

7. En el espacio I,, el conjunto de sucesiones ‘en cada una
de las cuales todos los miembros son racionales y solamente un
numero finito (para cada sucesién el suyo) de esfos miembros es
distinto de cero. - o « o

8. En el espacio Cfg, s, el conjunto de todos los polinomios
de coeficientes racionales. - S

El espacio m de sucesiones acotadas (ejempio 9 del § 1) no
tiene ningiin conjunto numerable siempre denso. En efecto, con-
sideremos todas las sucesiones posibles compuestas de ceros y
unidades. Ellas forman un conjunto de potencia de continuo (ya-
que se puede establecer una correspondencia biunivoca entre estas
sucesiones y subconjuntos de la serie natural). La distancia entre
dos de estos puntos, definida mediante la férmula (11) del § 1,
es igual a 1. Envolvamos cada uno de estos puntos en una bola
abierta de radio !/,. Estas bolas no se intersecan. Si tenemos un
conjunto siempre denso en este espacio, cada una de las bolas
construidas debera contener por lo menos un punto de este
conjunto y, por consiguiente, él no puede ser numerable.

4°. Conjuntos abiertos y cerrados. Consideremos los tipos mas
importantes de conjuntos en espacios métricos, es decir los
conjuntos abiertos y cerrados. El conjunto M, perteneciente a un
espacio métrico R, se llama cerrado, cuando coincide con su
adherencia: [M]= M. En otras palabras, el conjunto se llama
cerrado, si contiene todos sus puntos de acumulacién. :
En virtud del teorema 1, la adherencia de cualquier conjunto
M es un conjunto cerrado. Del mismo teorema se desprende que
[M] es el menor conjunto cerrado que contiene a M.
Ejemplos. 1. Todo segmento [a, b] de la recta mimérica es
un conjunto cerrado. ' o :
2. Una bola cerrada representa un conjunto_cerrado.” En par-
ticular, el conjunto de funciones f del espacio Cig,s;, que verifi-
can la condicion | f(t)}gl(, es cerrado. S
3. El conjunto de funciones de Cia, b}, que verifican la con-
dicién |f(¢)] < K (bola abierta), no es cerrado; su adherencia es
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el conjunto de funciones que cumplen la condicién
IF@)I<K. o

4. Cualquiera que sea el espacio métrico R, el conjunto va-
cio & y todo el espacio R son cerrados.

5. Todo conjunto, compuesto por un niimero finito de puntos,
es cerrado.

Las propiedades principales de los conjuntos cerrados pueden
enunciarse por medio del siguiente teorema.

TEOREMA 3. La inlerseccién de cualquier nimero y la unién de
| un nimero finito de conjuntos cerrados son conjuntos cerrados.

pEMOSTRACION. Sea F=[)F, la interseccion de los conjuntos

cerrados F, y sea x un punto de acumulacién del conjunto F.
Ello significa que cualquier vecindad O,(x) contiene un nimero
infinito de puntos de F. Pero entonces O, (x) contiene asi mismo
un ntmero infinito de puntos de cada conjunto F, y, puesto que
todos los F, son cerrados, el punto x pertenece a cada F,; por
consiguiente, xeF=n F,, es decir, F es cerrado.

Sea ahora F la unién de un ntimero finito de conjuntos cerra-

n
dos:  F U-F . supongamos que el punto x no pertenece a F.
i=1
Demostremos que x no puede ser un punto de acumulacién de F.
En efecto, x no pertenece a ninguno de los conjuntos cerrados
F; y, por consiguiente, no es punto de acumulacién de ninguno
de ellos. Esto quiere decir que para todo i se puede encontrar
una vecindad O, (x) del punto x que contiene, a lo sumo, un
ntimero finito de puntos de F; Tomando la menor de las vecin-
dades O, (x), ..., O, (x), obtendremos una vecindad O,(x) del
punto x que contiene a lo sumo un niimero finito de puntos de F.

Resumiendo, si el punto x no pertenece a F, no puede ser
punto de acumulacién de F, es decir, F es cerrado.

El teorema queda demostrado.

Un punto x se llama punto interior del conjunto M, cuando
hay una vecindad O,(x) de este punto que pertenece integra-
mente a M. : S ,

Un conjunto, todos los puntos del cual son interiores, se
llama conjunto abierto. ‘

Ejemplos. 6. Un intervalo (a, b) de la recta numérica R* es
un conjunto abierto; en efecto, si a <a < b, la vecindad O, (@),
donde e=min(a—a, b—a), estd contenida integramente en el
intervalo (a, b). :

.7. Una bola abierta B(a, r) de c-uﬁquier*espacio métrico R
es un conjunto abierto. En efecto, si x€B(a, r), tenemos

5—3427
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p(a, x) <r. Tomemos e=r—p(a, x). Entonces B (x, e)<B (a, r).

8. El conjunto de funciones continuas sobre [a, b] que veri-
fican la condicién f(f) < g(¢), donde g(f) -es una funcién conti-
nua determinada, representa un subconjunto abierto del espacio
qa- by ‘

TEOREMA 4. Para que el conjunto M sea | abierto es necesario y.
| . suficiente que su complemento R\ M al espacio R sea’ cerrado..

DEMOSTRACION. Si M es abierto, cada punto x de M posee una
vecindad que pertenece integramente a M, es decir, que no tiene
ningan punto comin con R\ M. Por consiguiente,- ninguno de
los puntos que no pertenecen a R\ M puede ser un punto de.
adherencia de R\ M, es decir, R\ M es cerrado. Viceversa, si
R\M es cerrado, cualquier punto de M posee una vecindad que
pertenece integramente a M, es decir, M es abierto.

- Puesto que el conjunto vacio y todo el espacio R son cerra-
dos y al mismo tiempo son complementos uno del otro, del -
teorema demostrado se desprende el siguiente corolario.

coroLar1o. El conjunto vacio y todo el espacio R son abiertos.

~ Del teorema 3 y del principio de dualidad (la interseccién
de complementos es igual .al complemento de la unién y la
unién de complementos es igual al complemento de las intersec--
ciones; véase pag. 16) se sigue el siguiente teorema importante,
dual al teorema 3. o ~

TEOREMA 3. La union de un ndmero cualquiera (finito o infinito)
y la interseccion de un ndmero finito de conjuntos abiertos son
conjuntos abiertos. :

5° Conjuntos abiertos y cerrados sobre la recta. La estructura
de los conjuntos abiertos y cerradosen uno u otro espacio métrico
puede ser muy compleja. Esto se refiere incluso a los conjuntos
abiertos y cerrados de un espacio euclideo de dos o méas dimen-
siones. -Sin embargo, en el caso unidimensional, es decir, en el
caso de la recta, no es dificil dar una descripcién de todos los
conjuntos abiertos (y, por consiguiente, de todos los cerrados).

Ella viene dada por el siguiente teorema. -

TEOREMA 8. Todo conjunto abierfo de una recta numérica repre-
senta la suma de un nimero finito o numerable de intervaios
disjuntos dos a dosY. :

D Los conjuntos de tipo (—e, o), (@, ) y (—o, B) también los
onsideramos como intervalos. ,
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DEMOSTRACION. Sea G un conjunto abierto sobre la recta y x un
punto suyo cualquiera. De acuerdo con la definicién de conjunto
abierto, existe por lo menos un intervalo que contiene a x y
estd contenido en G. Denotemos mediante I, la- suma de todos
estos intervalos y demostremos que /, es también un intervalo.
Tomemos para ello ;

: ‘ a=infl,, b=supl,

(puede ocurrir que a= —oo y b= +o0) y comprobemos que
I,=(a, b). Esta claro, ante todo, que /.c(a, b). Viceversa, sea
y un -punto arbitrario de (a, b), distinto de x; probemos que
y€1,. Aceptemos, para concretar, que a < y < x. En este caso,
en [, existird un punto y’ tal que a <y’ < y. Esto significa que
en G hay un intervalo que contiene los puntos y’ y x. Pero
entonces también contiene y, es decir, y € /,. Del mismo modo
se puede considerar el caso y>>x. El punto x pertenece a /I
por hipétesis. Por consiguiente, /.=(a. b). El intervalo (a, b)
ha sido definido de manera que &l pertenece a G y no esta con-
tenido en ninglin intervalo mayor que pertenezca a G. Es evi-
dente que los intervalos /, e [,,, correspondientes a dos distin-
tos puntos, o bien coinciden o bien no tienen puntos comunes
(de lo contrario, I, e I,, estarian contenidos en el intervalo
I, Ul,, mayor que cada uno de ellos y perteneciente a G). Un
sistema tal de intervalos disjuntos es a lo sumo numerable: en
efecto, escogiendo en cada uno de estos intervalos y de una
manera arbitraria un punto racional, estableceremos una corres-
-pondencia biunivoca entre estos intervalos y. ciertos subconjuntos
del conjunto de numeros racionales. Esta claro, finalmente, que
_la suma de estos intervalos coincide con G. El teorema queda
demostrado, _ SR

. Puesto que los conjuntos cerrados son complementos de los
abjertos, de aqui. se sigue que todo conjunto cerrado sobre la -
recta se obtiene.omitiendo de la recta un ntimero finito o nume-
rable de intervalos. _ ' ) :

Los ejemplos mas simples de conjuntos cerrados son los seg-

~mentos, los puntos aislados y la suma de un ntmero finito de
conjuntos de estos tipos. Consideremos un ejemplo mas complejo
- de conjunto cerrado sobre la recta, el asi llamado conjunto de
Cantor. v ‘ o

~Sea F, el segmento [0, 1]. De él' excluyamos el intervalo

(13—. %-) y designgrnos' mediante F, el conjunto cerrado - que
queda. Despuss, omitamos de F; los intervalos (—;—,%—) y
(%, %) y designemos mediante F, el conjunto cerrado que

5%
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queda (conipuesto por cuatro segmentos). En cada uno de estos
cuatro segmentos excluyamos el intervalo abierto central de lon-

gitud %. ete. (fig. 9). Continuando este proceso, obtendremos
una sucesién decreciente de conjuntos cerrados F,. Tomemos

F=[)F,

n=0

F es un conjunto cerrado (como interseccion de cerrados). Se
obtiene omitiendo del segmento [0, 1] un nimero numerable de

1

a

| ;
0 % % 1
0B Kty
Hu hF
———— ——— —— -..-/-"4

FIG. 8

intervalos. Examinemos la estructura del conjunto "F.» Pertene-
cen a él, evidentemente, los puntos

1 2 1 2

8
0) I) 3” 3"1 "'g‘a '§9

7
L N ()

que representan los extremos de los intervalos omitidos. El
conjunto F no se compone, sir embargo, solamente de estos
puntos. En efecto, se puede describir los puntos del segmento
[0, 1], que pertenecen al conjunto F, de la siguiente forma.
 Representemos cada uno de los nimeros x, 0<x<C1, en el
sistema ternario: '

x=%l-+%:—+ e s +g‘s+.-.,
donde los niimeros a,,v pueden tomax los valores 0, 1 y 2. Al
igual que en el caso de fracciones decimales, algunos ntimeros

pueden tener dos representaciones. Por ejemplo,

1 1,0 . 0 0, 2,2 ' 2
?=-3-+F+'"+§+=T+_§i+-3?+"+§'—'+°'
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Es facil comprobar que al conjunto F pertenecen aquellos
numeros, y solamente aquellos, x, 0 <x <1, que pueden repre-
sentarse al menos de una forma mediante una fraccién ternaria
tal que en la sucesién a,, a,, ..., 4, ... no figura la unidad.
Por consiguiente, a cada punto x€F se le puede poner en co-
rrespondencia la sucesién . .

al. a', veey Qpy AR (2)

donde a, es igual a 0 6 a 2. La totalidad de estas sucesiones
forma un conjunto de potencia de continuo. Es facil comprobar
esto, si se pone en correspondencia a cada sucesién (2) la sucesién

N U W @)

donde b,=0, cuando a,=0, y b,=1, cuando a,=2. La suce-
sién (2') puede ser considerada como la representacién de un
nimero real y, 0 <<y <1 mediante una fraccién binaria. De este
modo obtenemos una aplicacién del conjunto F sobre todo el
segmento [0, 1]. De aqui se desprende que F tiene potencia de
continuo®. Puesto que el conjunto de los puntos (1) es nume-
rable, el conjunto F no puede limitarse a ellos.

EJERCICIOS. 1., Demuéstreae'directamente que el punto -i- pertenece al

conjunto F sin ser extremo de ninguno de los intervalos omitidos.
Sugerencia. El punto %- divide el segmento [0, 1] en dos partes segiin

1

la razén -5 . También divide en dos partes segin la razén

el segmento

0, —;— que queda después de la primera exclusién, etc.

Los puntos (1) se 1laman puntos de primer género del conjunto F y los
dem4s %tintos suyos se denominan puntos de segundo género. .
2. Demuéstrese que los puntos de primer género forman un conjunto
siempre denso en F.
. Demuéstrese que los nameros #,--¢,, donde ¢,, {,€F llenan todo el
segmento [0, 2]. ' :

Hemos demostrado que el conjunto F es de potencia de con-
tinuo, es decir, tiene tantos puntos como todo el segmento [0, 1].
Es interesante comparar esto con el siguiente resultado: ia
suma de longitudes de todos los intervalos omitidos es igual a

—;—-l-—g--l—%-{-‘.. ., es decir, jexactamente a la unidad!

1 La correspondencia establecida entre F y el segmento [0, 1] es univoca,
pero no es biunivoca ggorque un mismo. namero puede ser representado,
a veces, por diferentes fracciones). De z;gui se deduce que la potencia de F
es no menos que la de continuo. Pero F es parte del segmento [0, 1] y. por

consiguiente, su potencia no puede ser mayor que ia potencia de continuo.
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Observaciones complementarias. Sl S .

(1) Sea M un conguntode un espacio métrico R y sea x un punto-de’
este espacio. La distancia del punto x al conjunto M se define por el naimero

’ ‘ p (M, x)=inf p(a, X).

. o . aeM N .

Si x €M, tenemos p‘M, x)=0; en cambio, p (M, x)=0 no implica que
x€M. De acuerdo con.la definicién de punto de a herencia, obtenemos
inmediatamente que p (M, x)=0 si, y sélo si, x es un punto de adherencia
del conjunto M. , : . .

Por eso se puede decir que la operacién de adherencia consiste en que
al conjunto se afiaden todos aquellos puntos cuyas distancias al conjunto
sean igual a cero. - o o

(2) De una manera ansloga se define la distancia entre dos conjuntos.
Si A y B son dos conjuntos del espacio métrico R, tenemos

p (A, B)y=inf p(a, b).
a€A
beB

Si AN B# g, entcricés p (A, B)=0; la afirmacién contraria no tiene, en
general, - lugar. . - : _ o
(3) Sea Mg el conjunto de todas las funciones f de Cy, 57 que verifican

la condicién de Lipschitz: para todos los ¢, {3€la, b]

| ft)—Ff () | <K|t;—1] :
donde K es un nfimero fijo. El conjunto Mg es cerrado. Coincide con la
adherencia del conjunto de funciones diferenciables en {a, 4] y tales que
[Fol<kK. : B '
(4) E1 conjunto M=U Mg de todas las funciones que verifican la

o K
condicién - de Lipschitz, cada una con su nimero K, no es cerrado. Su

adherencia coincide con todo el espacio Cpy -

(5) Un conjunto abierto G de un espacio euclideo de n dimensiones se
llama. conexo, cuando dos cualesquiera puntos x, y €G pueden unirse median-
te una quebrada que pertenece integramente a G. Por ejemplo, el conjunto
formado por los puntos interiores del circulo x3+y® < 1 es conexo. Al con-
trario, la suma de dos circulos - : -

A4p<ly =242 <1

es un conjunto desconexo (jaun cuando estos circulos tienen un punto- comun
de adherencial). Un subconjunto abierto H dé un conjunto abierto G se llama
_componente del conjunto G, cuando es conexo sin ser parte de ningin otro
subconjunto abierto conexo mayor del conjunto G. Valiéndose del teorema
de Zorn, es ficil ver que tiene lugar la siguiente afirmacién: todo conjunto
abierto G de un espacio euclideo de n dimensiones es la suma de un niimero
a lo sumo numerable de comdponentes disjuntos dos a dos.

~ En el caso de n=1, es decir, en la recta, todo conjunto abierto conexo
es un intervalo (incluyéndose en los intervalos los intervalos infinitos
(—o0, a), (b, ®) y (—eo, ®). Por consiguiente, el teorema 5 sobre la estructura
de los conjuntos abiertos de la recta contiene dos afirmaciones: a) todo
conjunto abierto de la recta es 1a suma de un namero finito o numerable de
componentes y b) un conjunto abierto conexo -de la recta es un intervalo.
La primera de estas afirmaciones se cumple también para los conjuntos de -
los espacios euclideos de n dimensiones (y admite otras generalizaciones),
mientras que la segunda afirmacién se refiere solamente a la recta.
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§ 3. ESPACIOS METRICOS COMPLETOS

1°. Definicion y ejemplos de espacios métricos completos.
Desde los pasos iniciales en el estudio del Andlisis Matematico,
podemos -persuadirnos del papel tan importante que desempefia
en el Analisis la propiedad de complitud de la recta numérica,
es decir, el hecho de que toda sucesién fundamental de nimeros
reales converge a un limite determinado. La recta numeérica -
representa el ejemplo mas sencillo de los asi llamados espacios
métricos completos, cuyas propiedades principales consideraremos
en este punto. S

Una sucesién {x,} de puntos de un espacio métrico R se
llamara fundamental, cuando verifique el criterio de Cauchy, es
decir, cuando para cualquier e>0 exista un namero N, tal, que
P (Xn, %nv) < e para cualesquiera n’ > N,, n" > N,.

Del axioma triangular se sigue inmediatamente que toda
sucesién .convergente es fundamental. En efecto, si {x,} converge
a x, cualquiera que sea e >0 se puede encontrar un nimero N,

tal que p (x,, x) <—;- para todq n> N,. Por eso p (X, Xn) <<
<P (*n» X)+0(xn x) <e para cualesquiera n’ > N, y n" > N,.

perINICION 1. Un espacio R se llama completo, cuando toda
sucesién fundamental de &l converge.

Ejemplos. Todos los espacios considerados enel § 1, a excep-
¢cién del sefialado en el ejemplo 8, son completos. En efecto:

1. En el espacio de puntos aislados (ejemplo 1 del § 1) son
fundamentales sélo las sucesiones estacionarias, es decir, en las
.que se repite constantemente, comenzando desde cierto namero,
un mismo punto. Toda sucesién de este tipo converge evidente-
mente y, por consiguiente, este espacio es completo. :

* 2. La complitud del espacio R!, compuesto por los nameros
-reales, es conocida del Analisis.

3. La complitud del espacio euclideo R* se sigue inmediata-
mente de la complitud de R. En efecto, sea {x'”} una sucesién
fundamental de puntos de R"; esto significa que para todo ¢ >0
existe un N=N, tal que

S —xor <o
para todos p, ¢ mayores que N. Aqui x‘P’={x{P5; ..o xP} En

este caso para todo k=1, 2, ..., n obtendremos la desigualdad
correspondiente a la coordenada xi{”:

|59 — x| <e
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siempre que p, ¢ > N; por consiguiente, {x{”} es una sucesién
numeérica fundamental. Tomemos

=lmxfP? y x=(%,, X4 o0.y X,).
Pr® .

Es obvio entonces que

limxP =x,
P+ ® -
4—>5. La complitud de los espacios R? y R? se demuestra de
una manera fotalmente anéloga. ‘
6. Demostremos la complitud del espacio Cpa, 5. Sea {x, ()}
una sucesién fundamental de Cy,, 5;. Ello significa que para todo
e >0 existe un N tal que

N2 ) —xa(t)| <e

siempre que n, m>N y para todo {, a<<¢<Cb. De aqui se
deduce que la sucesién {x,(f)} converge uniformemente. En este
caso, como se sabe, su limite x(f) serd una funcién continua.
é—laciendo tender m al infinito en la desigualdad anterior, obten-
remos

% () —x (@) | <e

para todo ¢ y para todo n> N y esto significa precisamente que
{*s (6)} converge a x(f) en el sentido de la métrica del espacio
a, ]
“1. El espacio /,. Sea {x™} una sucesién fundamental en I,.
Esto significa que para todo &> 0 existe un N tal que
P (x™, x™) =" (xi® — xf™)* < &, para n, m > N. (ly.
Aqui
X = (2™, 2™, ..., X0, L0
De (1) se desprende que cualquiera que sea &,
(" — xf") <ee,

es decir, la sucesién de niimeros reales {x{} es fundamental
cualquiera que sea % y, por consiguiente, converge. Tomemos
Xp= lim x{®. Sea x la sucesién (x,, X3 ..., X ...). Debemos

n-ow

~demostrar que
(]
a) Y x} < oo, es decir, x€1,,
k=1

b) lim p (x™, x)=0.

n—-»w
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Demostrémoslo. De la desigualdad (1) se deduce que para todo
numero fijo M

M
kg (x},"’—x},”")’ <e.

Fijando n, pasemos al limite para m — oco. Tendremos

M
g‘ P —x)y<e.

Esta relacién se verifica para cualquier M. Pasando en ella al
limite para M — oo, obtendremos

3 —nr<e. @
De la convergencia de las series ;‘,l (x? y Sl( P —xp)? se

deduce la convergencia de la serie 2"; x} (véase el ejemplo 7 del

k=
§ 1) y con esto queda demostrada la afirmacién a). Ahora bien,
puesto que e es arbitrariamente pequefio, la desigualdad (2) sig-
nifica que

1i (n) =i S (x— 5.} =
timp (<0, 9=tim 1/ 3, s =0,

es decir, que x® — x en la métrica de I,. Queda también demos-
trada la afirmacién b).

8. Es f4cil ver que el espacio C%, ,, no es completo. Consi-
deremos, por ejemplo, la siguiente sucesién de funciones conti-
nuas

A —1 para —l<t<—%,

q’n(t)-—— nt para — gtg%o
KiK.

1 para

Es una sucesién fundamental de C?(-y, 13, puesto que
. :
2
S (@n () —Pa () dt < o5 «
- 1 ’

Sin embarge, no converge a ninguna funcién de Ci-1, 13- En

efecto, sea f una funcién de Ci_,, ;3 y sea ¥ la funcién discon-
tinua, idéntica a—1 para <0 y +1 para £ >0.
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De la desigualdad de Cauchy— Buniakovski (que, evidente-
mente, se verifica también, para las funciones continuas a trozos)
se deduce que _ o
- o S L
1 . X 2 / l. . \ Pl
(§ co—vora) <({vo—eora) +
-1 . -1

1

+(§ @o—vora)’

Puesto que f es una funcién continua, la integral del miembro
de la izquierda es distinta- de cero. Ademas, es obvio que

lim § (g, ()—(O)dt=0.

1 .
Por eso, S (f (t)— @, (1))*dt no puede tender a cero para n— oo.

EJERCICIO. Demuéstrese "que el espacio de todas las sucesiones acotadas
(ejemplo 9 del § 1) es completo. :

2°. Principio de bolas encajadas. En el Andlisis se emplea
con frecuencia el asi llamado lema de intervalos encajados. En
la teoria de espacios métricos desempefia un papel semejante el
siguiente teorema, llamado principio de bolas encajadas.

TEOREMAL1. Para que un espacio métrico R sea completo es necesario

.y suficiente que cualquier sucesion de bolas cerradas de este
‘espacio, encajadas unas en otras y cuyos radios tienden a cero,
tenga una interseccién no vacia.

DEMOSTRACION. NECESIDAD. Supongamos que el espacio R es com-
_pletoy sea B,, B,, B;, ... una sucesién de bolas cerradas,
encajadas unas en otras. Sea r, el radio y x,, el centro de la
bola B,. La sucesion de centros {x,} es fundamental, ya que
P (%, Xp,)<r, para m>n yr,—0 para n— oo. Puesto que R
es completo, existe limx,. Tomemos .
n->o
x=lim x,;
n-+ oo

- entonces, xe'n B,. En efecto, la bola B, contiene todos los

puntbs de la nsucesién {x_,,},'excépto, posiblemente.,'los puntos
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Xy, Xgy -..s X,_,. Por consiguiente, x es un punto de acumula-
cién de toda bola B,. Pero B, es un conjunto cerrado y por eso
x€B, para todo n. _

SUFICIENCIA. Sea {x,} una sucesion fundamental. Demostremos

que tiene un limite. Puesto que es fundamental, podemos encontrar
un punto xn, de ella tal que p(x,, Xn,) <—;— para todo n=>n,.

Consideremos la bola cerrada de radio 1 con centro en xa,
denotémosla mediante B,. Escojamos luego un punto x,, de {x,j

tal que sea n,> 1, ¥ P (¥ %n)) < 37 para todo n>n,. Consi-
deremos la bola' B, de radio  y centro en Xa, En general, si

10 puntos Xn,, X, - - . Xn, ya se han escogido (n, <n,<... <ng),
escogeremos el punto x,,,, de manera que sea Ry, >y ¥ P (X5

Xnpe) < EITI para todo n>n,,, y lo envolveremos en una bola
cerrada B,,, de radio §l7=’ Continuando este proceso, obtendremos

una sucesién de bolas cerradas 'B,,,-encajadas unas en otras; la
" bola: B, es de radio -551_—1 Esta sucesién de bolas tiene,- por

hipétesis, un punto comiin; denotémoslo x. Es obvio que este .
punto x es el limite de la sucesién {x,,}. Pero una sucesi6n fun-
damental, que contiene una sucesion parcial convergente a x,
converge al mismo limite. Por consiguiente, x =lim x,,. El teorema
queda demostrado. . R n-®

EJERCICIOS. 1. Dado un conjuqtoM de un espacio métrico el némero
d(M)= sup p'(x, Yy )
X YeEM

se 1lama diametro del conjunto M. Demuéstrese que en un espacio métrico
completo toda sucesién de conjuntos cerrados no vacios, encajados unos en
_otros y cuyos didmetros tienden a cero, tiene una interseccién no vacia.

2.  Dese un ejemplo de un espacio métrico completo y de una sucesién
_de bolas cerradas de este espacio, encajadas unas en otras, que tiene una

interseccién vacia. ) ’

3. Demuéstrese que un subespacio de un espacio métrico completo R es

completo. si, y sélo si, es cerrado en R. , :

3°. Teorema de Baire. El siguiente teorema desempefia- un
papel fundamental en la teoria de los espacios métricos completos.
TEOREMA DE BAIRE. Un espacio métrico completo R no. puede

representarse como la union de un nimero numerable de conjun-
tos nunca densos®. ' S

L Se dice qué el conjunto M es nunca denso en R, cuando cada bola
B R contiene otra bola B’, que no tiene con M ningin punto comin.
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DEMOSTRACION. -Supongémos lo contrario, Sea R= {J M,, donde

. . =1
cada uno de los conjuntos M, es nunca denso. Se;‘ S, una bola
cerrada de radio 1. Puesto que M, no es denso en S,, ya

que es nunca denso, existe una bola cerrada S, de radio menor

\que % y tal que S, S, y S, N M,=g. El conjunto M, no

es denso en 8, y por eso la bola S, contiene una bola cerrada
S, de radio menor que -;— tal que S, N M,= g, etc. De esta

forma obtenemos una sucesién de bolas cerradas {S.}, encajadas
unas en otras, cuyos radios tienden a cero, siendo, ademss,
S,.NM,=¢g. En virtud del teorema 1 del punto anterior, la

®

interseccién ) S, contiene un punto x. De acuerdo con el pro-

=1
cedimiento sgguido, este punto no puede pertenecer a ninguno
de los conjuntos M, y, por consiguiente, x—é—U M,, es decir,
n

R+ U M,, lo que esta en contradiccién con la suposicién hecha.
n

En particular, fodo espacio métrico completo sin puntos aisla-
dos es innumerable. En efecto, en este espacio todo punto es
nunca denso.

4°. Completacion de un espacio. Si el esp.acio' R no es com-
pleto, siempre puede ser incluido de cierta manera (y de hecho
de una manera tinica) en un espacio completo.

DEFINICION 2. Sea R un espacio métrico. Un espacio métrico
completo R* se llama completacién del espacio R, si:
- 1) R es un subespacio del espacio R* T
2) R es siempre denso en R*, es decir, [R]=R*. (Aqui [Rl
significa, claro est4, la adherencia del espacio R en R*).
Por ejemplo, el espacio de todos los niimeros reales es com-
pletacién del espacio de los niimeros racionales.

TEOREMA 2. Todo espacio métrico R posee una completacién y
esta completacion es dnica, a menos de una aplicacién isomé-
trica que transforma los puntos de R en si mismos.

DEMosTRACION. Comencemos por la unicidad. Debemos comprobar

que si R* y R* son dos completaciones del espacio R, existe

una aplicacion biunivoca ¢ del espacio R* sobre R* tal que:
1) @(x)=x para todo x€R;
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2) si *ex* e yroy*, entonces p,(x*, ¥)=p,(*" ¥*),
donde p, es la distancia en R* y p,, la distancia en R*™.

La aplicacién ¢ se construye del siguiente modo. Sea x* un
punto arbitrario de R*. En este caso, de acuerdo con la defini-
cién de completacién, existe una sucesién {x,} de puntos de R
que converge a x*. Los puntos {x,} pertenecen también a R*™.
Puesto que R* es completo, {x,} converge en R** a un punto
x*. Estd claro que x* no depende de cémo se escoge la suce-
sién {x,}, convergente al punto x*. Tomemos ¢(x*)=x*. La
aplicacién ¢ es la aplicacién isométrica que necesitamos. .

En efecto, estd claro que @ (x)=x para todo x€ R. Ademais,
supongamos que _

{x,} —x*en R* y {x,} — x* en R*%,
{tut —y*en R*y {y,} — 4™ en R
entonces, :
P (¢ )= lim p, (x,, y)= lim o (x,, 4)

y al mismo tiempo
Ps (™, y*)= lim py (%, yo)= lim p (Xnr 4a)-
Por consiguiente,

Py (2% ¥*)=py (x*, ¥™).

~ Demostremos ahora la existencia de la completacién. La idea
de esta demostracién es la misma que en la teoria de Cantor
de los ntimeros reales. La situacién ahora es incluso més simple
que en la teoria de los nimeros reales, ya que alli era necesa-
rio, ademas, definir todas las operaciones aritméticas para los
antes nuevos introducidos, es decir, para los nimeros irracionales.
Sea R un espacio meétrico arbitrario. Dos sucesiones funda-
mentales {x,,} y {xn} de R se llamarin equivalentes (denotacién

{%a} ~ {xa}), cuando lim p(x,, x;)=0. Esta relacién de equiva-

n-®
lencia es reflexiva, simétrica y transitiva. De aqui se desprende
que todas las sucesiones fundamentales, que pueden formarse por
medio de los puntos del espacio R, se dividen en clases de
sucesiones equivalentes entre si. Definamos ahora el espacio R*
del siguiente modo. Tomemos como puntos de este espacio todas
las clases de. sucesiones equivalentes entre si y determinemos la
distancia entre ellos como sigue. Sean x* e y* dos de estas
clases. Escojamos en cada una de estas clases un representante,
es decir, una ‘sucesién fundamental {x,} e {g,}. Pongamos

P, )= lim (p(x 42)- &)
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Demostremos que es correcto definir asi la distancia, es decir,
que el limite (3) existe y no depende de cémo se escogen los
representantes {x,} €x* e {y,} €Y*. o -

Puesto que las sucesiones {x,} e {y,} son fundamentales,
obtenemos, por medio del axioma triangular, que para todos n
y m suficientemente grandes . e o -

'P (x);' yn)_P (x,,,, ym) l = ’ o '
=|p (Xns Ya)—P (%nYm) + P’(JF,,. ym)—p m Yn) <<
<10 (Fwr Ya)—P (s Y) | H1P Enr Y)—P (K Y1) | < |

<O W Ya)+0 (o Xa) <55 =2-(4)
Por consiguiente, la sucesién de niimeros reales s,=p (X,, ¥,)
_verifica el criterio de Cauchy y, por lo tanto, tiene un limite.
Este limite no depende de la seleccién de {x,} €x* e {y,} €¥".
En efecto, sea S o :
{xa}, {xs} €x* € {y.}, {yn} €Y

Obtenemos por un razonamiento, analogo a (4),
10 %as Yn)— 0 (X Y| <P (%nr %)+ P (Yo Yi)-
Puesto que {x,} ~ {xn} e {y.} ~ {ya}, de aqui se sigue que
lim P (Xn Yn)= lim p(x;l"y;)'
n-»eo . . n-—-w

~ Demostremos ahora que R* se cumplen los axiomas de espa-
cio métrico. ’ e :
El axioma 1 se desprende inmediatamente de la definicién
. de equivalencia de sucesiones fundamentales. - :
El axioma -2 es obvio. = - ' _ _
Comprobemos  ahora el axioma triangular. En el espacio
inicial R .este axioma se cumple y por eso ' :

P (s 2) P (Xar Ya) + P Yo 20
Pasando al limite para n— oo, obtenemos - .
lim p (£, 2,) < lim p (% 9a) + lim p (s 20
n—-+wo n-»®w n -v @, !

es decir,

px <Pl D+, 2)-

Demostremos ahora que R* es una complefacién dél espacio R.
A cada punto x€R le corresponde una clase de sucesiones
fundamentales equivalentes entre si, a saber, la totalidad de las
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sucesiones convergentes al punto x. Ademas, si

x= limx, e y= limy,, tenemos p (¥, y)= lim p (x,, ¥.)-
n-» @ : ne>® newo
Por consiguiente, obtendremos una aplicacién isométrica de
R en el espacio R*, si a todo punto x € R le ponemos en corres-
pondencias la clase de sucesiones fundamentales convergentes a x.
En adelante podemos identificar el espacio R con su imagen
en R* y considerar R como un subconjunto de R*.
Demostremos ahora que R es siempre denso en R*. En efecto,
sean x* un punto de R* y &> 0 un namero. arbitrario. Tomemos
en x* un representante, esto es, una sucesién fundamental {x,}.
Sea N tal que p(x,, x,)<e para todo n, m > N. En este caso

p (x,,, x’) = lim Y (xm xm) g&

para n> N, es decir, una vecindad arbitraria del punto x* con-
tiene un punto de R. Por consiguiente, la adherencia de R en R*
_es todo el espacio R*. - ' '
Resta demostrar que el espacio R* es completo. Observemos,
ante todo, que R* ha sido construido de manera que toda suce-
~sién fundamental :

e e (6)

compuesta de puntos pertenecientes a R, converge en R* a un
‘punto determinado, a saber, al punto x*€ R* determinado por
la sucesién (5). Ademis, puesto que R es denso en R*, para -
toda sucesién fundamental xj, x5, ..., x3, ... de puntos de R*
se puede construir una sucesién equivalente x,, x,, ..., X4 - ..,
compuesta de puntos, pertenecientes'a R. Para ello es suficiente

escoger a titulo de x, cualquier punto de R tal que p (x,; x%) <~-,il- .

La sucesién {x,} asi obtenida es fundamental y, de acuerdo con
lo demostrado, converge. a un punto x*€ R*. Pero esto significa

que la sucesién ix;} también . converge a x*. El teorema queda
‘demostrado completamente. ' '

© §. 4 PRINCIPIO DE APLIGACIONES CONTRAIDAS
Y SUS APLIGACIONES

‘1° Principio de. aplicaciones contraidas. A titulo de aplicacién
del concepto de complitud consideremos el asi 1lamado principio
de aplicaciones contraidns. Representa un instrumento atil para
a demostracién de diferentes teoremas de existencia y unicidad
(por ejemplo, en la teoria de ecuaciones diferenciales).
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Sea R un espacio métrico. La aplicacién A del espacio R
en si mismo se llama contraida, cuando existe un nimero a <1
tal que para cvalesquiera dos puntos x, y€R se verifica la de-

sigualdad |

p(Ax, Ay)<<ap (%, Y). (I
Toda aplicacién contraida es continua. En efecto, si x,—x,
tenemos, de acuerdo con (1), Ax,— Ax. ,

TEOREMA 1 (principio de  aplicaciones contraidas). Toda apli-
cacion contraida, definida en un espacio métrico completo R,
tiene un punto fijo, y solo uno, (es decir, la ecuacibn Ax=x
tiene una solucién, y solamente una). -

DEMOSTRACION. Sea x, un punto arbitrario de R. Pongamos
X, = Ax,, x,=Axi=J&’xo. etc.; en general, x,=Ax,_,=A"x,.

Demostremos que la sucesién {x,} es fundamental. En efecto,
suponiendo, para concretar, que m >n, tenemos

P (X Xz)=p (A" A™X) <P (Xos Xm-n) <

<o {p(Xor %)+ Ens X+ oo + 0 Knmnm1r Xu-n)} |
<Lamp (%, X){l+atad+...Fam "1} <L (X X)) T—5 -
Puesto que 2 < 1, esta magnitud resulta tan pequefia como se quie-
ra, siempre que n sea suficientemente grande.

Debido a la complitud de R, la sucesién {x,}, que es funda-
mental, tiene limite. Pongamos ’

x= lim x,.

n—->wo
Pero la aplicacién A es continua; por eso
Ax=A4Alim x,= lim Ax,= lim x,4,=x.
n->ow

n-»e n-+>w

" Por consiguiente, queda demostrada la existencia del punto
fijo. Probemos que es dnico. Si :

, Ax=x, Ay=y,
la desigualdad (1) nos da
px, y) <ap(x y);
puesto que a < 1, de aqui se deduce que
p(x, y)=0, es decir, que x=4y.

EJERCICIO. Demuéstrese que para la existencia de un punto fijo no es
suficiente que se cumpla la condicién p (Ax, Ay) < p (¥, ) para todo x # .
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2°. Aplicaciones elementales del principio de aplicaciones con-
traidas. El principio de aplicaciones contraidas puede emplearse
para demostrar teoremas de existencia y unicidad de soluciones
de diferentes ecuaciones. Junto con la demostracion de la exis-
tencia y de la unicidad de la solucién de la ecuacién Ax=1x,
el principio de aplicaciones contraidas ofrece un método aproxi-
mado para buscar esta solucién (el método de aproximaciones
sucesivas). Veamos los siguientes ejemplos elementales.

1. Sea f una funcién, definida en el segmento [a, b], que
verifica la condicién de Lipschitz

|F ) —F () | < K| xg—x,]
con una constante K < 1-y que transforma el segmento [a, 6]

en si mismo. En este caso, f es una aplicacién contraida y, de
acuerdo con el teorema demostrado, la sucesién x,, x,=/{(x,),

x,=[(x,)), ... converge a la unica raiz de la ecuacién x = f(x).
+
v 4
] b ;
fta)
)
fla) fie) e : E“ | &)
4 |
- i
axxXs X Xo ax, %XXXsX; X b
FIG. 10 FIG. 11

En particular, la aplicacién sera contraida, si la funcién
tiene en el segmento [a, b] una derivada /' (x) tal que

IF@I<K<I

En las figuras 10 y 11 estdn representadas las aproximacio-
nes sucesivas parael caso 0 < f’ (x) < 1 y para el caso —1<f'(x)<0,
respectivamente.

Supongamos ahora que tenemos una ecuacién de tipo F %x) =0,
que F(a)<0, FO)>0 y 0<K,<F (x)<K, sobre [a, 0].
Para encontrar la raiz, introduzcamos la funcién f (x) =x—AF (x)
y busquemos la solucién de la ecuacién x={(x), equivalente
a la ecuacién F(x)=0. Puesto que f’(x)=1-—AF'(x), tenemos

6—3427
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1 —MK, <f' () << 1—AK, y no costara .ningl'm esfuerzo escoger

el nimero A de manera que se pueda emplear el método de
aproximaciones sucesivas. La idea aqui expuesta es un método
extendido que se emplea para buscar la raiz. g

2. Consideremos la aplicacién A del espacio de n dimensio-
nes en si mismo_ definida por el sistema de ecuaciones lineales

n .
y’=]z| aiJXj—I'bl (i= 1, 2, coey n).
Si A es una aplicacién contraida, podemos aplicar el método
de aproximaciones sucesivas para resolver la ecuacién x= Ax.
¢Bajo qué condiciones la aplicacién A serd contraida? La
respuesta depende de cémo se escoja la métrica en el espacio.
Consideremos tres variantes. : , '
a) El espacio R}, es decir, p(x, y)'==l max | %;—y:ls
<i<n

P, o) =maxly;—yi|=max|Zay (xj—x)|<
< max | ay| | xj—j| <max X|a;| max| xj—zj|=
= (m‘ax;[a,ﬂ) p(x'y vx").
De aqui la condicién de contraccién
. ‘
,§‘|aui<a<l, i=1, ceey M. (2)
) n
b) El espacio R%, es decir, p(x, y)=‘2‘ |x—y;ls
P, i)=Zl4i—sil=3|Fay¢i—x)|<
<3 Dlayllxi—xj| < (max Flayl) (<> #)-
De aqui la condicién de contraccién ’

c) El espacio R”, és' decir (x,'y)=l/-é(xi—y‘)’. En vir-
i=1
tud de la desigualdad de Cauchy— Buniakovski, tenemos -

0, =3 (Jayki—5) ) <(ZZay) ot (¢, 2. -
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De aqui la condicién de contraccion : -

| ZZap<a<l @

‘Por consiguiente, si se verifica al menos una de las condicio-

nes (2), (3) 6 (4), existe un punto y sélo uno, x=(x,, x,, ..., %,)
n . ..

tal que x;,= X, a;x;+b; " ademas las aproximaciones sucesivas
_l‘ e )

de esta solucién tienen la forma

C X0 — (x{°’, x;o), s ;lo), ‘
X = (xiu' X(sl), ey x},"-, ‘
= (gt ' '
xR = (x<1 ), ‘x(’k)’ e x:'k)’

donde ,
n o
x;"” — ;laux}k—n +b;

y X0 =(x®, ..., x) puede ser un punto cualquiera de R".
" Cada una de las condiciones (2), (3) y (4) es suficiente para
que la aplicacién y= Ax sea contraida. Respecto a la condicién (2)
se puede demostrar que es también necesaria para que la apli-
cacién y= Ax sea contraida (en el sentido de la métrica a)).

‘Ninguna de las condiciones (2), (3) y (4) es necesaria para
que se pueda aplicar el método de aproximaciones sucesivas. Se
pueden dar ejemplos, cuando una de estas condiciones se ve-
rifica, pero las otras dos no se cumplen.

Si |ay|< % (en este caso se cumplen las tres condiciones), -
es aplicable el método de aproximaciones sucesivas.

Si Iai,']=-:-l- (en este caso las tres sumas son iguales a 1), es
facil ver que el método de aproximaciones sucesivas no puede

aplicarse. ; _ ,
- 8° Teoremas de 'existenciab y unicidad de ecuaciones diferen-
ciales. En el punto anterior hemos sefialado algunos ejemplos

D En pérficular,' de cualquiera de las condiciones (2), (3) 6 (4) se de-
duce que : . ’

an_—l Qs vee Q1p
agy Qoo — 1 ... Qopn # 0.
any 27 ces Qpp— 1

.. 6*
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- elementales de aplicacién del principio de aplicaciones contraidas
en los espacios de una y n dimensiones. Sin embargo, las apli-
caciones més importantes para el Analisis del principio de apli-
caciones contraidas se refieren a los espacios funcionales de
infinitas dimensiones. Ahora veremos cémo mediante este prin-
cipio se puede obtener teoremas de existencia y unicidad de la
solucién de ciertos tipos de ecuaciones diferenciales e integrales.
1. Supongamos que se tiene una ecuacién diferencial

d : . '

2=y - ®)
con la condicién inicial

Y (Xo) =Y, 6)

y que la funcién f, definida y continua en un recinto plano G
que contiene el punto (x,, y,) Vverifica la condicién de Lipschitz
respecto a y: ’

[, y)—F(x 9) IS M|y,—y,].

Demostremos que entonces existe en un segmento |x—x,| < d
una solucién, y sélo una, y=¢ (x) de la ecuacién (1), que veri-
fica 1a condicién inicial (6) (teorema de Picard).

La ecuacién (5) junto con la condicién inicial (6) es equiva-
lente a la ecuacién integral

P =g+t 9t dt. (7

Debido a la continuidad de la funcién f, tenemos |f(x, )| <K
para un recinto G’ = G que contiene el punto (x,, y,). Escogemos
ahora el ntimero d > 0 de manera que se cumplan las condiciones:

1) (x, y) €G', siempre que |x—x,|<d, |y—y,| < Kd;

2) Md< 1.

Designemos mediante C* el espacio de funciones continuas g,
definidas sobre el segmento |x—x,|<<d y tales que |¢(x)—
— 4| <Kd, con la métrica p(9,, @,)=max|@(x,)—@,(x)].

x

El espacio C* es completo, ya que representa un subespacio
cerrado del espacio completo de todas las funciones continuas
sobre [x,—d, x,+d]. Consideremos la aplicacién P = A¢ definida
mediante la férmula

v =y, +  F(t, o () at,

donde |x—ux,|<<d. Esta aplicacién transforma el espacio com-
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pleto C* en si mismo y es contraida en él. En efecto, sea p €C*
y |x—x,|<<d. En este caso,

[ ()—zol=|§ £, q»(t»dt|<1<d

y, por consiguiente, A(C*)<C*. Ademais,

% =0 < § T 0 —F (6, )<

e

< Mdmax| ¢, (x) — 9, (%) |-

Puesto que Md < 1, la aplicacién A es contraida.

De aqui se deduce que la ecuacién ¢= A¢ (es decir, la ecua-
cién (7)) tiene una solucién, y sélo una, en el espacio C*.

2. lSupongamos que se tiene un sistema de ecuaciones dife-
renciales :

‘ ‘Pl'(x)=fi(xa ‘Pl(x): e ,({J,,(JC)), i=1, 20 T () (8)
con las condiciones iniciales
(Pz(xo)'—“!/o:. i=1, 2: ceey N (9)

y que las funciones f; definidas y continuasen un recinto G del

espacio R"*! que contiene el punto (x,, Yo ..., Yon), Verifican

la condicién de Lipschitz ‘
[fi (e 9% ooy g —F (8 95® «ons IS

<M max |gP—y|.
1i<n .

Demostremos que entonces existe en un segmento | x—x,|<d

- una solucién, y sélo una, del problema inicial (8) y (9), es decir,
un sistema, y sélo uno, de funciones ¢, que verifican las ecua-
ciones (8) v las condiciones iniciales (9).

' El sistema (8) junto con las condiciones iniciales (9) es

equivalente al sistema de ecuaciones integrales

0O =tu+ Rl 9B, ee s @A i=1, ..., n (10)
[ Xo

Debido a la continuidad, las funciones f, son acotadas en un
recinto G'cG que contiene el punto (x,, Yg -.-, %), €s decir,
- existe una constante K tal que |f;(x, ¥y ..., ¥2) | <K.
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Escojamos ahora el nimero d > 0 de manera que se cumplan
las condiciones: , , B
) (x, 4, -.., Y)€GC', siempre que |x—x,}<d, [y;—
—yoi|< Kd, o ' : o
' 2) Md < 1.
Consideremos ahora el espacio Cj;, cuyos elementos son los

sistemas ordenados cp—((pl, ..., 9,) de n funciones, definidas
-y continuas para todo x, siempre que |x—x,|<d, y tales que
[ @;(x)—yo;]| < Kd, y cuya métrica estd definida por

(P $)= max lp; () —b: (¥) |

Este espacio es completo. La aphcac:on = Ao, dada mediante
el 31stema de ecuac:ones integrales

wdm=yw+3ha,%ux.u,wﬂowl

es una aplicacién contralda del espac1o completo Cr en si mismo.
En efecto,

WEH—E= |
Mn0¢m0»~u¢wu» i, @@ (D), -, O(D))] dt

y, por conagu;ente, _
max]xpl’ (x)—- # (x) | << Md max | pf¥ (x) — @f® (‘x)]._.

' La apllcaclon A es contraida, ya que Md<l

‘De aqui se deduce que la ecuacioén ¢ = Aq> tiene una solucxon,
y sélo una, en el espacio C‘

' Aplicacion del principlo de aplicaciénes contraidas a ecua-
~ ciones integrales. Empleamos ahora el método de aplicaciones
contraidas para demostrar la existencia y unicidad de la solucién
de la ecuacién  integral lineal no homogénea de Fredholm de
segunda espeme es decir de la ecuacién
b
fU%-S(nwf@M+¢m, (11)
a
donde K (llamada nicleo) y ¢ son funciones dadas, f, la funcxon
incégnita y A, un parametro arbitrario.
Como veremos, nuestro método es aplicable solamente para
valores suficientemente pequefios del parametro A. . .
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Supongamos que K (x, y) 'y cp(x) son continuas cuando
a<<x<<b, a<y<h, y, por consiguiente, |K(x, y)|<< M. Con-
s1deremos la aplicacion g= Af del espacxo completo Cia. 5 en si
mismo, definida por la formula : . '

: g(x)‘=‘x_ S,K(x, 9 F@)dy+o o).
Tenemos ’ ’

Y (gu gz) = max| & (x)—g: (x)l
<|7~1M(b a)maxlf,(x)—f,(x)l

Por consiguiente, la aphcacnon Aes contralda, si |[A] < Tdﬁ '

Del principio de aplicaciones contraldas deducxmos que para
todo A, tal que |A|< = (bl ok la ecuacion de Fredholm tiene

una soluc1on continua tnica. Las aproximaciones sucesivas
fos fis cvvs f,,, . de esta solucxon tienen la forma
b o

fs =2 SK(x, 9) Faer (9) dy+ @ (3),

donde fo(x) es una funcién continua cualquiera.
El principio de aplicaciones contraidas puede ser tamblen
.empleado en el caso de una ecuacxon integral no lineal de tipo

f(x)-2» S K(x y; f(y))dy+cp(x), | (12)

donde K y @ son contmuas y, ademas, K verifica la condicién
de Llpschltz respecto a su argumento «funcional»:

[K (%, 43 2)—K (¥, 45 2) | < M|2,—2,].

En este caso, para la aplicacién g= Af del espacio completo
Cia,b) en si mismo, defmlda por

'_ g(x)-—xSK(x v; f(y))dy+q>(x). (13)

"‘obtenemos la desigualdad

max| g, (x) —& (%) | < IMM(b——a)maXIfl(x fa(X)l
donde g,=Af,, g,= Af,. Por consiguiente, la aplicacién A sera
contraida, siempre que |A| < _AT(bl—a)'
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Consideremos finalmente la ecuacién integral del tipo Volterra

Fo=2{Kwx ) fo)dy+ox. (14

En diferencia de las ecuaciones de Fredholm, el extremo superior
de la integral es aqui la variable x. Formalmente esta ecuacién
puede considerarse como caso particular de la ecuacién de Fred-
holm21 gompletando la definicién de la funcién K mediante la
igualda ;

K(x, y)=0 para y > x.

Sin embargo, en el caso de la ecuacién integral de Fredholm
hemos tenido que limitarnos a pequefios valores del parametro A,
mientras que en el caso de la ecuacién de Volterra el principio
de aplicaciones contraidas (y el método de aproximaciones suce-
sivas) puede emplearse para todos los valores de A. Hablando
con mas precision, se trata de la siguiente generalizacién del
principio de aplicaciones contraidas:

Sea A una aplicacion continua del espacio métrico completo R
en si mismo tal que la aplicacion A" es contraida para algin n;
en este caso, la ecuacion

Ax=x

tiene una. solucién, y sélo una.

En efecto, tomemos un punto arbitrario x, € R y consideremos
la sucesion A*»x,(k=0, 1, 2, ...). Repitiendo la parte corres-
pondientemente de la demostracién del principio de aplicaciones
contraidas, podemos probar que esta stcesién converge. Pongamos

x=lim Aknx,,

k-.w_

Afirmamos que
' Ax=x.
Efectivamente, debido a la continuidad de A, tenemqs

Ax= klim ArnAx,.

Puesto que la aplicacién A es contraida,
- p(ARAx,, Atnx)<ap (A%-1mAx, < ... akp (AX,, X,)-
Por consiguiente, ,
lim p (A*" Ax,, A*"xy)=0,

R+»

es decir, Ax=x.
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Demostremos la unicidad del punto fijo. Como todo punte
fijo respecto a A también sera fijo respecto a la aplicacion Ar
y ésta es, a su vez, contraida, este punto fijo puede ser sola-
mente tnico.

Probemos ahora que cierta potencia de la aplicacién

Af()=2 S K(x, 9)f 0)dy+o ()

es una aplicacién contraida. Sean f, y f, dos funciones continuas
sobre el segmento [a, b]. Entonces

| A, () —Af0) =\ K (x, y)(fx('y)—fz(y))dy‘<

<|M| M (x—a)max|f, () —F, (9 |
Aqui
: M=max|K (x, 5)l.
De aqui

. —q)2
| A3, () — A%, ()| < | M ESE max |y (9—F ()]
y, en general, ' :
| Aty (9 — A7, ()| < A e E < [ fr Mo C2

nl
donde m= max |f,(*)—f,(*)]- :
Cualquiera que sea el valor A, podemos escoger n tan grande

que '

[Al2M= (b—a)”

<
‘es decir, la aplicacién A” serd contraida para n suficientemente gran-
des. Por consiguiente, la ecuacién de Volterra (14) tiene solucién,
y ademas finica, cualquiera que sea A. '

§ 5. ESPACIOS TOPOLGGICOS

1°. Definicion y ejemplos de espacios - topolégicos. Hemos
introducido los conceptos principales de la teoria de espacios
métricos (punto de acumulacién, punto de adherencia, adherencia
de un conjunto, etc.) baséndonos en el concepto de vecindad o,
que de hecho es lo mismo, en el concepto de conjunto abierto.
Estos filtimos conceptos (vecindad y conjunto abierto) se definian, a
. su vez, mediante la métrica existente en el espacia considerado.
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Podemos, sin embargo, escoger otro camino y, sin introducir
métrica ninguna en el conjunto dado R, definir directamente
en R, mediante axiomas, el sistema de conjuntos abiertos. Este
camino conduce a los espacios topoldgicos; respecto a. ellos los
espacios meétricos representan un caso, aunque muy importante,
pero especial. '

DEFINICION. Sea X un conjunto. cualquiera. Se llama fopologia
en X a todo sistema v de subconjuntos G de X que verifica dos
condiciones: C '

1°. El propio conjunto X y el conjunto vacio @& pertenecen
anT.

2°, La unién U G, de un niimero cualquiera (finito.o infinito)
_ - .

n .
'y la interseccién n G, de un nimero finito de conjuntos de <
. k=1 .
pertenecen a 7. , '

El conjunto X junto con la topologia t, definida en él, es decir, el
par (X, 1) se llama espacio topoldgico. :

Los conjuntos, pertenecientes al sistema v, se llaman
abiertos. :

: Un espacio métrico estd constituido por un conjunto de puntos
y una metrica introducida en este conjunto; de la misma forma,
un espacio topoldgico estd constituido por un conjunto de puntos
y una topologia introducida en él. Por consiguiente, definir un-
espacio topoldgico significa definir un conjunto X y una topo-
logia 7 en él, es decir, indicar aquellos subconjuntos que se
consideran abiertos en X. - :

Esta claro, que en un mismo conjunto X se puede introducir
diferentes topologias, convirtiéndolo de esta forma en diferentes
espacios topolégicos. Sin embargo, denotaremos el espacio topo-
légico, es decir, el par (X, t), mediante una letra, digamos 7.
Llamaremos puntos a los elementos del espacio topolégico.

Los conjuntos T\ G, complementarios a los abiertos, se llaman
conjuntos cerrados del espacio topolégico T. En virtud de las
‘relaciones de dualidad (§ 1, capitulo I), de los axiomas 1° y 2°
se deduce que: o . o

~ 1", El conjunto vacio & y todo el espacio T son cerrados.

2'. La interseccién de un niimero cualquiera (finito o infinito)
y la unién de un némero finito de conjuntos cerrados son
cerrados. : - , T ‘
- En todo espacio topoldgico se introducen, a partir de estas
definiciones 'y de un modo natural, los conceptos de vecindad,
puntos de adherencia, adherencia de conjuntos, etc.: :
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Se llama vecindad del punto x&€T a todo conjunto. abierto
Gc T que contiene el punto x; un punto x€T se llama punto
de adherencia del conjunto M < T, cuando toda vecindad del
punto x contiene al menos un punto de M; un punto x se llama
punto de acumulacién del conjunto M, cuando toda vecindad del
punto x contiene un namero infinito de puntos de M. La tota-
lidad de los puntos de adherencia. del conjunto M se llama
adherencia del conjunto M y se denota mediante el simbolo [M].
Es facil ver (realicese la demostracién) que los conjuntos cerra-
dos, definidos mas arriba como complementos de abiertos, y sola-
mente ellos, verifican la condicion [M]= M. Al igual queen el caso de
espacios métricos, [ M] esel menor conjunto cerrado quecontiene a M.

Ejemplos. 1. En virtud del teorema 3 del § 2, los conjuntos
abiertos de cualquier espacio métrico verifican los axiomas 1° y 2°
de la definicién de un espacio topoldgico. Por consiguiente, todo
espacio métrico es un espacio topoldgico. :

2. Sea T un conjunto arbitrario. Consideremos comoabiertos
todos sus subconjuntos. Es obvio, entonces, que se cumplen los
axiomas 1° y 2° es decir, obtenemos efectivamente un espacio
topolégico.  En él todos los conjuntos son a la vez abiertos y
cerrados y, por eso, cada uno de ellos coincide con su adherencia.
Esta topologfa trivial se observa, por ejemplo, en el espacio
métrico, sefialado en el ejemplo 1 del § 1. :

3. Otro caso extremo se obtiene -al considerar en un conjunto
arbitrario X la topologia compuesta sélo de dos conjuntos: el con-
junto X y el conjunto vacio &. Aqui la adherencia de todo con-
junto no vacio coincide con todo X. Este espacio topolégico
(que no representa, claro estd, gran interés) puede ser llamado
«espacio de puntos pegados». - '

4. Supongamos que T consta solamente de dos puntos a y b
y que. los conjuntos abiertos son todo el T, el conjunto vacio
y el conjunto compuesto solamente del punto b. Los axiomas
1° y 2° se cumplen. En este espacio (que frecuentemente se llama
espacio de dos puntos conexos) los conjuntos cerrados-son: todo
el T, el conjunto vacio y el punto a. La adherencia del conjunto
puntual {b} coincide con todo el T. =~ . SR .

- 2°, Comparacién de topologias. Supongamos que en un mismo
conjunto X se tienen dos topologias T, y T, (con ello quedan
definidos dos espacios topotégicos: T, =(X;, Ty) ¥ Ta=(X;, To).
Se dice que la topologia <, es mds fuerte que la topologia T,,
cuando el sistema de conjuntos T, estd contenido en 7,. De la
topologia T, se dice en este caso que es mds débil que T,. .

" En el conjunto: de todas las topologias posibles del conjunto
X se introduce, de manéra natural, el orden parcial (la topolo-
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gia v, precede a la t,, cuando es mas débil que t,). Esta tota-
lidad de topologias tiene el elemento maximal—Ila topologia en
la que son abiertos todes los subconjuntos (ejemplo 2)—y el
elemento minimal —1a topologia en la que son abiertos solamente
todo el X y @& (ejemplo 3). =

TEOREMA 1. La interseccién 1:‘=n-|:¢ de un conjunto cualquiera

de topologias de X es una tQ;alogia de X. Esta topologia < es
mds débil que cualquiera de las fopologias ..

DEMOSTRACION. Esta claro que N+, contiene a X y &. Ademas,
cada sistema T, es cerrado respecto a cualesquiera sumas e inter-

secciones finitas; de aqui se deduce que ‘C=n‘t¢ también posee
[
esta propiedad.

COROLARIO. Sea B un sistema arbitrario de subconjuntos del conjunte
- X; entonces existe una topologia minimal de X que contiene a B.
En efecto, existen topologias que contienen a B (por ejemplo,
aquelia en la que todo A < X es abierto). La interseccién de
todas las topologias que contienen a B es la deseada. Esta topo-
logia minimal se llama topologia generada por el sistema B y se
denota con t(B). -
- Sea X un conjunto arbitrario y A un subconjunto suyo.
Llamaremos fraza del sistema de conjuntos B sobre el subconjunto
A al sistema B, compuesto de subconjuntos de tipo AnB,
B€B. Es facil ver que la traza (sobre A) de la fopologia <
(definida en X) representa una topologia v, de A. Por consiguien-
te, todo subconjunto A de cualquier espacio topolégico resulta
ser un espacio topolégico. El espacio topolégico (4, t,) se llama
subespacio del espacio topolégico inicial (X, 7). Esta claro que
dos distintas topologias v, y 7, de X pueden producir una misma
topologia en A4 < X.

3°. Sistemas determinantes de vecindades. Base. Axiomas de
numerabilidad. Como hemos visto, para.definir una topologia en .
un espacio T hay que sefialar en &l el sistema de conjuntos
abjertos. Sin embargo, en muchos casos concretos es mas cémodo
sefialar no la totalidad de subconjuntos abiertos del espacio
‘dado, sino un sistema determinante de subconjuntos que permite
definir univocamente la totalidad de los subconjuntos - abiertos.
Por ejemplo, en el espacio métrico hemos introducido primero
el concepto de bola abierta (=e-vecindad) y después hemos de-
finido los conjuntos abiertos como aquellos que junto con cada
punto contienen una vecindad suya en forma de bola. En otras
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palabras, en el espacio métrico son abiertos aquellos conjuntos

solamente aquellos que se pueden representar como la suma
de bolas abiertas (en namero finito o infinito). En particular
son abiertos en la recta los conjuntos que se puede representar
como la suma de un namero de intervalos y solamente estos
conjuntos. Estas consideraciones nos conducen al importante
concepto de base de un espacio topolégico.

periNicioN. Una coleccién ¢ de subconjuntos abiertos se llama
base del espacio topolégico T, cuando todo conjunto abierto de
z' sed puéede representar como suma de cierto nimero de conjun-
os de 9.
Por ejemplo, la coleccién de todas las bolas abiertas (de
todos los radios y centros posibles) constituye una base en un
“espacio métrico. En particular, el sistema de todos los intervalos
es una base en la recta. Si se toman solamente los intervalos
con extremos racionales, también constituyen una base en la
recta, ya que mediante la suma de estos intervalos se puede
representar cualquier intervalo y, por consiguiente, cualquier
conjunto abierto sobre la recta.
De lo expuesto se desprende que la topologia © del espacio
T queda definida, si se indica en este espacio una base ¥. Esta
topologia © coincide con la coleccién de conjuntos que pueden
representarse como suma de conjuntos de ¥. Para que esta forma
de introducir la topologia tenga un valor préctico es necesario
sefialar aquellas condiciones que debe cumplir un sistema § de
subconjuntos del conjunto dado 7' para que la coleccién de todas
las sumas posibles de conjuntos de ¥ pueda ser considerada como
la coleccién de conjuntos abiertos en T (es decir, para que estas
sumas verifiquen los axiomas 1°y 2° de espacio topoldgico).

Estas condiciones vienen dadas por el siguiente teorema.

TEOREMA 2. Supongamos que en un conjunto T se ha escogido
un sistema ¢ de sutconjuntos G, que verifica las siguientes
condiciones: .

' a) Todo punto x€T estd contenido al menos en un subcon-
junto G, €9. : L

b) Si x€G, y x€G,, existe un G,€Y tal que
x€G, c G.n GB'

Si declaramos abiertos en T al conjunto vacio y a todos los
~conjuntos que se pueden representarse como la suma de deter-
-minados G, €9, el conjunto T resultard un espacio topologico
(es decir, estas sumas verificardn los axiomas 1° y 2°) y el

sistema $ serd una base de él.
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DEMOSTRACION. De las condiciones del teorema se deduce inme-
diatamente que todo el T y el conjunto vacio son conjuntos
abiertos y que la unién de cualquier niimero de conjuntos abiertos
sera abierta. Demostremos que la interseccién de cualquier niimero
finito - de conjuntos abiertos sera abierta. Es suficiente realizar
la demostracién para el caso de dos conjuntos. - Sea A=‘U G,
S p

yB= G, entonces, ANB= U G.n G,). Por hipétesis, para

: a, B .
todo ptfnto xEG,ln‘(z{a existe un G, €9 tal que x€G, =G, n G,.
Por consiguiente, el conjunto G,NG, es abierto, ya que puede
ser representado como la suma de todos los G, contenidos en él.
Pero en este caso es-también abiertoel conjunto A 1 B= U (G, N G,).
El hecho de que ¥ constituye una base del espacio topolégico
construido se desprende de la forma misma en que se han defi-
nido los conjuntos abiertos en 7. T o o
Para probar si una coleccion dada de conjuntos abiertos es

base o no suele ser atil el siguiente criterio.

TEOREMA 3. Para que un’ sistema {G,} de conjuntos abiertos
sea una base del espacio topolégico T es necesario y suficiente
que para todo conjunto abierto G y todo punto x € G exista un
donjunto G, de este sistema tal que x€G, < G.

DEMOSTRACION. Si {G,} es base, todo abierto G =T es suma de .
determinados G,. : ‘ S
6= Gy

y, por consiguiente, todo punto x€ G pertenece a algin G, con-
tenido en G. Viceversa, si se cumple la condicién del teorema,
{G,} es base. En efecto, sea G un conjunto abierto arbitrario.
Para todo punto x€G podemos encontrar un G, (x) tal que
x€G,(x) =G. La suma de estos G,(x), construidos para cada
x € G, coincide con G. e

Es facil ver, mediante este criterio, que la coleccién de todas
las bolas abiertas de un espacio métrico constituye una base.
La coleccién de todas las bolas de radio racional también cons-
tituye una base. En la recta es una base, por ejemplo, la
coleccién de todos los intervalos racionales (es decir, de todos
los intervalos de-extremos racionales). S

Una clase importante de espacios topolégicos la constituyen
-los espacios de base numerable, es decir, los espacios en los que
existe por lo menos una base, compuesta por un nfimero, a lo
sumo numerable, de conjuntos. Los espacios de base numerable.
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suelen también llamarse espacios con el segundo axioma de nu-
merabilidad. - o ' S

Si un espacio topolégico tiene una base numerable, en él
existe obligatoriamente un conjunto numerable siempre denso,
es decir, un conjunto numerable, cuya adherencia es todo el 7.
En efecto, sea {G,} una tal base. Tomemos en cada elemento
de esta base un punto arbitrario x,. El conjunto numerable
X =/{x,} es siempre denso en T, ya que, de lo contrario, el
conjunto abierto no vacio G=T \rX] no contendria ningin
punto de X y esto no puede ocurrir puesto que G es la suma
de determinados conjuntos del sistema {G,} y X €G,. :

Para los espacios métricos se cumple también la afirmacién
recipreca: - : A .

Si en el espacio métrico R existe un conjunto gx,,} numerable
siempre denso, también existe en R una base numerable.

En efecto, una tal base es, por ejemplo, la constituida por
las bolas abiertas B (x,‘, -i—- , donde n y m recorren todos los
valores naturales. Por lo tanto, tiene lugar el siguiente teorema:
TEOREMA 4. Un espacio métrico R tiene una base numerable
| si, y solo si, existe en él un conjunto siempre denso.

En virtud de este teorema, todos los ejemplos de espacios
métricos, provistos de subconjuntos numerables siempre densos,
ofrecen, al mismo tiempo, ejemplos de espacios métricos con el
segundo axioma de numerabilidad. El espacio de las sucesiones
acotadas (véase el ejemplo 9 del § 1) que no tiene ningin sub-
conjunto numerable siempre denso, tampoco tiene base numerable.

Observacién. El teorema 4 no se cumple, en general, para
los espacios topolégicos arbitrarios (no métricos): se puede dar
ejemplos de espacios, provistos de un conjunto numerable siempre .
denso, que no tienen base numerable. Expliquemos la razén de
este fenémeno. Para todo punto x de un espacio métrico R existe

un sistema numerable U de vecindades (por ejemplo, el sistema

“de bolas abiertas B (x, 'rlT , que cumple la siguieﬁte condicion:

-cualquiera que sea el conjunto abierto. G que contiene al - punto
x, existe una vecindad der sistema 9 que pertenece integramen-
te a G. Un sistema tal de vecindades se llama sistema determi-
nante de vecindades del punto x. Si para un punto x de un
_espacio topolégico T existe un sistema determinante de vecin-
dades, se dice que en este punto se cumple el primer axioma de
numerabilidad. Si esto tiene lugar para cada punto del espa-
cio T, el espacio T se llama espacio con el primer axioma de
numerabilidad. : _ : o
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Sin embargo, en un espacio topolégico arbitrario (aun cuando
esté compuesto por un ndmero numerable de puntos) puede no
tener lugar el primer axioma de numerabilidad. Por eso no se
puede extender al caso de un epsacio topolégico arbitrario aque-
llos razonamientos que en el caso de espacio métrico nos permi-
tieron deducir de la existencia de un conjunto numerable siempre
denso la existencia en este espacio de una base numerable.

Un sistema {M,} de conjuntos se llama cubrimiento del espa-

cio topolégico T, cuando UMa’-——T. Un cubrimiento, compuesf

a
to por conjuntos abiertos o cerrados, se llama cubrimiento abier-
to o cerrado, respectivamente. Si una parte {Mo,} del cubrimiento
M, también constituye un cubrimiento del espacio T, se dice que
{Mqa} es un subcubrimiento del cubrimiento {Ms}.

TEOREMA 5. Si T es un espacio topoldgico de base numerable,
de todo cubrimiento suyo abierto se puede extraer un subcubri-
miento finito o numerable. :

DEMOSTRACION. Sea {Oq} un cubrimiento abierto del espacio T.
Entonces, todo punto x€7T estd contenido en un O,. Sea {G,}
la base numerable de 7. Para todo x€7T existe un elemento
G, (x) de esta base tal que x€G,(x)c0,. La totalidad de con-
juntos G, (x), obtenidos de esta forma, es finita o numerable y
cubre todo T. Escogiendo para cada G,(x) uno de los conjuntos
0., que lo contienen, obtendremos un subcubrimiento finito o
numerable del cubrimiento {0,}. El teorema queda demostrado.

De acuerdo con la definicién de espario topolégico el con-
junto vacio y todo el espacio T son a la vez abiertos y cerra-
dos. Todo espacio, que no tiene ningiin otro conjunto a la vez
abierto y cerrado, se llama conexo. La linea recta R! representa
uno de los ejemplos mis simples de espacios conexos. Pero si
extraemos de R! aunque sea un sélo punto, el espacio que queda
ya no sera conexo. v '

4°. Sucesiones convergentes en 7. El concepto de sucesién
convergente, conocido de los espacios métricos, se extiende facil-
mente al caso de los espacios topoldgicos. A saber, la sucesion
X1y Xgp <.y X, ... de puntos de T se llama convergente al
punto x, cuando toda vecindad del punto x contiene todos los
puntos de esta sucesién, comenzando de alguno. Sin embargo,
en los espacios topoldgicos este concepto de convergencia no
desempefia ese papel fundamental que le corresponde en los espa-
cios métricos. Esto se debe a que en un espacio métrico R un
punto x es un punto de adherencia del conjunto McR si, y
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solo si, en M existe una sucesién convergente a x, mientras que
en un espacio topoldgico esto, como regla general, no se cumple.
Si x es un punto de adherencia para M (es decir, pertenece a
[M]) en un espacio topoldgico T, ello no implica la existencia
en M de una sucesién convergente a x. Consideremos, a titulo.
de ejemplo, el segmento [0, 1}, llamando abiertos aquellos -sub-
conjuntos suyos (ademais- del conjunto vacio) que se obtienen
omitiendo de él ‘un namero finito o numerable de puntos. Es.
facil ver que los axiomas 1° y 2° (pég. 90) se cumplen, es: de-
cir, que tenemos un espacio topologico. En este espacio seran
convergentes sélo las sucesiones estacionarias, es decir, tales -
“que . sus elementos, empezando de ‘cierto namero, coinciden:
X,=Xp4,=-.. (jdemuéstrese estol). Por. otro lado, si coge-
mos, -por ejemplo, a titulo de M el semisegmento (0, 1], el
punto O serd para él un punto de adherencia (jconipruébese!),
pero ninguna sucesién de puntos’ de M converge a 0 en nuestro
espacio. . : ' ' s
"Las sucesiones convergentes erecobran su importancia», si en
vez de considerar espacios topoldgicos arbitrarios nos limitamos
a aquellos espacios, en los que se verifica el primer axioma de
numerabilidad, es decir, cuando para todo ‘punto x del espacio
T existe un sistema numerable determinante de vecindades. En
este caso, todo ‘punto de adherencia x de un conjunto arbitrarie
McT puede ser representado como limite de cierta sucesin
de puntos de M. En efecto, sea {0,} un sistema numerable
determinante de vecindades del punto x. Podemos admitir que
: A -

0,,,=0, (de lo contrario, sustituirfamos O, por [} O). Sea
k=1 .

x, un punto arbitrario de M perteneciente a 0, (k=1,2, ...).
Esta claro que un punto x, asi debe existir, ya que de locon-
trario x no seria punto de adherencia para M. Es obvio que
la sucesién {x,} converge a x. S e ‘
~ Como hemos sefialado, todos los espacios métricos verifican
el primer axioma de numerabilidad. Es por eso que en el caso
de espacios métricos hemos podido enunciar, en términos de con-
vergencia de sucesiones, conceptos como adherencia, punto de
adherencia, etc. _ '

 5°. Axiomas de separabilidad. Aunque muchos conceptos prin-
cipales de la teorfa de espacios métricos se extienden ficilmente
a cualesquiera espacios topoldgicos, sin embargo, un espacio
~ topoldgico arbitrario representa un ente demasiado general desde
el punto de vista de los problemas del Analisis. En estos espa-
cios se producen, a veces, situaciones que difieren de modo sus-

73427
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tancial de lo que puede ocurrir en los espacios métricos. Asi,
hemos visto (ejemplo 4, pag. 91) que en un espacio topolégico
un conjunto finito de puntos puede no ser cerrado, etc.

Entre los espacios topolégicos se pueden destacar espacios
que por sus propiedades se aproximan a los espacios métricos.
Para ello hay que agregar a los axiomas 1° y 2° de espacio
topolégico unas u otras condiciones adicionales. Condiciones de
este tipo son, por ejemplo, los axiomas de numerabilidad que
permiten estudiar la topologia del espacio a partir del con-
cepto de convergencia. Otro tipo importante de condiciones
adicionales y de naturaleza distinta son los asi llamados axiomas
de separabilidad. Enunciaremos esta serie de axiomas en orden
de generalizacién.

T,. Primer axioma de separabilidad: para dos cualesquiera
diferentes puntos x e y del espacio T existe una vecindad O,
del punto x, que no contiene al punto y, y una vecindad 0, del
punto y, que no contiene al punto x.

Los espacios que verifican este axioma se llaman T,-espacios.
Un ejemplo de un espacio topolégico, que no es T,-espacio, lo
ofrece el espacio de dos puntes conexos.

En un T,-espacio todo punto es un conjunto cerrado. En
efecto, si x4y, existe una vecindad O, del punto y que no
contiene a x, es decir, y € [x]. De manera que [x]=x. Por con-
siguiente, en un T,-espacio resulta también cerrado todo conjunto
compuesto de un ndmero finito- de puntos. Es més, se puede
demostrar ficilmente que el axioma T, equivale a exigir que
todos estos conjuntos sean cerrados.

El axioma T.es una acentuacién del primer axioma de sepa-
rabilidad.

T,. Segundo axioma de separabilidad o axioma de Hausdorff:
para dos cualesquiera puntos x e y del espacio topolégico T
existen vecindades O, y O, de interseccién vacia.

Los espacios que verifican este axioma se llaman T,-espacios
0 espacios de Hausdorff. Todo espacio de Hausdorff es un T,-
espacio, pero no viceversa. A titulo de ejemplo de un T',-espacio
ue no es espacio de Hausdorff podemos sefialar el segmento
?0, 1], en el que se consideran abiertos el conjunto vacio y todos
los conjuntos que se obtienen omitiendo del segmento a lo sumo
un niimero numerable de puntos. :

Generalmente, en el Anilisis no se emplean espacios més
generales que los de Hausdorff. Es mds, como regla general,
los espacios, que representan interés para el Analisis, verifican
ademis la siguiente condicién, mas fuerte afin, llamada condi-
cién de normalidad del espacio. '
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Se llama espacio normal a un T,-espacio en el que cuales-
quiera dos conjuntos cerrados tienen vecindades' de interseccién
vacia. : : L

Todo espacio normal es de Hausdorif. Un ejemplo de un
espacio de Hausdorff que no es normal lo ofrece el segmento
[0, 1], en el que las vecindades de todos los puntos, excepto
el punto O, se definen de la manera corriente, mientras que para
las vecindades del cero se toman todos los semisegmentos [0, a)

de los que se han excluido los puntos de tipo —:— (n=12,..).
Esto es un espacio de Hausdorff: el punto O y la sucesién
{%} representan dos 'conjuhtos cerrados de interseccién vacia

de este espacio que no pueden ser separados mediante dos vecin-
dades de interseccién vacia. '

Son espacios normales, por ejemplo, todos los espacios mé-
tricos. En efecto, sean X e Y dos conjuntos cerrados de intersec-
cién vacia de un espacio métrico R. Todo punto x€ X tiene
una vecindad O, que no se interseca con Y y, por consiguiente,
estd a una distancia positiva p, de Y. De la misma forma todo

punto y€Y estd a una -distancia positiva p, de X. Considere-
mos los conjuntos abiertos? ‘

U=xg{3(x’ %x) y ,.V=yleJyB(y, %y_) )

que contienen a X e Y respectivamente, y demostremos que
la interseccién de estos conjuntos es vacia. Supongamos . que
zeUnNV. En este caso, existe en X un punto x, tal que

P (% 2) < -92"—", y en Y un punto y, tal que p(z, y,) <‘%"l.
Supongamos, para concretar, que. py, <<py,. Entonces

. ’ . Pxy o p, '
P (xor Yo) P (%o, 240 (2, o) < 52+ 52 < Pyes

es decir, x,€ B (Y, Py,); Fero esto contradice a la definicién de
py,- Hemos demostrado nuestra afirmacién. . h '
Todo subespacio de un espacio métrico es por si mismo un
espacio métrico y por eso también posee la propiedad de nor-
malidad. Esto, como regla general, no tiene lugar para los espa-

1 Se llama vecindad de un eonjunto M de un espacio topolégico T a
todo conjunto abierto .U que contiene a M. : R : :
Liw 3 Aqui B(x, r) representa, como siempre, una bola abierta de radio
y centro en x. :

7*
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cios normales arbitrarios: un subespacio de un espacio normal
no es necesariamente normal. De manera que la normalidad de
‘un espacio no es una propiedad heredera ¥, Sk
Una propiedad heredera es la asi llamada regularidad total
de los espacios  topoldgicos. Un T,-espacio topoldgico se llama
totalmente regular, cuando para todo conjunto cerrado FcT y
todo punto x, € T \( F existe una funcién continua real f, definida
sobre T, que es igual a cero en x,, a la unidad sobre F y que veri-
fica la condicién 0<f(x)<<1. Todo espacio normal es total-
mente regular®, pero no viceversa. Todo subespacio de un espa-
cio totalmente regular (de.un espacio normal, en particular) es
totalmente regular. A. N. Tijonov, a quien se debe el propio
concepto de espacio totalmente regular, ha demostrado que la
clase .de espacios totalmente regulares coincide con la clase de
todos los subespacios normales. Desde el punto de vista del Anali-
sis, la importancia de los espacios totalmente regulares radica
en que sobre cualquier espacio de esta indole se puede definir
un ntmero «suficientemente grandes de funciones continuas, ya
que para cualesquiera dos puntos distintos x e y de un espacio
totalmente regular T existe una funcién real continua, definida
sobre T, que toma en estos puntos diferentes valores. o

6°. Aplicaciones continuas. Homeomorfismo. El concepto de
aplicacién continua, que hemos introducido en el § 1 para los
espacios métricos, es extensible, naturalmente, a espacios topo-
légicos arbitrarios. o

pEFINICION. Sean X e Y dos espacios topolégicos. Una - aplica-

cion f del espacio X en el espacio Y ‘se llama continua. en el

punto’ x,, cuando para toda vecindad U,, del punto y,=f(x,)
existe una vecindad V,, del punto x, tal que f(V,)cU,. Una

aplicacion f: X —Y se llama continua, cuando es continua para

todo punto x€ X. En particular, una aplicacion continua del -
espacio topolégico X en la recta numeérica se llama funcion con- -
tinua sobre este espacio topolégico. Es facil ver, que en el caso

de éspacios métricos esta definicion coincide, en efecto, con la -
definicién de una aplicacién continua de un espacio métrico en
otro, que ha sido dada en el § 1 de este capitulo.

1 Una propiedad. P se llama heredera, si _siendo justa para todo el es-
pacio topolégico T también se verifica para cualquiera de sus subespacios.

2 Este resultado (lejos de ser evidente) se desprende del signiente
teorema de P. S. Urisén: si T ‘és un espacio normal y F, y Fy dos-con-
juntos suyos cerrados y de interseccién vacia, existe una funcian f 0g
< f(x) =<1, continua, definida sobre T, que es igual a cero sobre F, e igual
a la unidad sobre F,. : : _—
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Enunciemos ahora el concepto de contmuldad de una apli-
cacién de un espacio topoldgico en otro en términos de conjun-
tos abiertos, es decir, en términos de las fopologias de los dos
espacios considerados. Notemos que la aplicacién f: X —Y puede
ser considerada aplicacion sobre, ya que siempre podemos consi-
derar el subespacio f(X)cY en vez de Y. .

TEOREMA 6. Para que una aplicacion | de un espacio topologwo
X en un espacio topologico Y sea continua, es necesario y sufi-
ciente que la imagen reciproca T =f-1(G) de todo conjunto
abierto GcY sea abierta (en X).

DEMOSTRACION. NECESIDAD. Sea f una aplicacién continua y G
un conjunto abierto en Y. Demostremos que I' =f-1(G) es-abier-
to. Sea x un punto cualquiera de I e y=f(x). Entonces, G
representa una vecindad del punto y. De acuerdo con la defi-
nicién de continuidad, existe una vecindad V, del punto x, tal
que f(V,)<=G, es decir, V,cI'. En otras palabras, si x€T,
existe una vecindad V, de ‘este punto contenida en I'. Pero esto
significa precisamente que I' es abierto.

SUFICIENCIA.  Sea I'=f-1(G) abierto, cuando Gc:V' es. abierto.
Consideremos un punto arbitrario x€ X y una vecindad arbi-
traria U, del punto y= f (x). Puesto que y€U,, el punto x per-
tenece al conjunto f-*(U,). Este es un con]unto abierto y puede
ser considerado como aquella vecindad del punto x, cuya imagen
estd contenida en U,. Hemos demostrado el teorema. .

Observacion. Sean X e Y conjuntos arbitrarios y f una apli-
cacibn de X en Y. Supongamos que Y esta provisto de una
topologia © (es decir, de un sistema de conjuntos que contiene
aYyad y queresulta cerrado respecto a las operaciones de su-
mas cualesqulera e intersecciones finitas). Debido a que la ima-
gen reciproca de la suma (interseccion) de conjuntos es igual a
la suma (interseccion) de las iméagenes reciprocas (teoremas 1 y 2
del § 3, cap. I), obtenemos que la imagen reciproca de la topo-
logia v (es decir, la coleccion de todos los conjuntos f-! (G),
donde Gg€r) es una topologia en X, que denotaremos f-* ().
Si ahora X e Y son espacios topologlcos, con topologias T, y
T, respectivamente, el teorema 6, que da la condicion necesaria
y suficiente de la continuidad de la aplicacién f: X —Y, puede
ser enunciado asi: la aplicacién f: X —Y es continua si, y sélo
si, la topologia T, es mds fuerte que la topologla f=* (z,).

Teniendo en cuenta que. la imagen reciproca del complemento
-es igual al complemento de la 1magen reciproca, obtenemos el
teorema dual al teorema 6. ,
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TEOREMA 6. Para que la aplicacién f de un espacio topols-
gico X en un espacio topolégico Y sea continua, es necesario
y suficiente que la imagen reciproca de fodo conjunto cerrado
de Y sea cerrada. -

Es fécil ver que la imagen de un conjunto abierto (cerrado)
ofrecida por una aplicacién continua no es necesariamente abier-
ta (cerrada). Consideremos, por ejemplo, la aplicacién del semi-

segmento X=[0, 1) en una circunferencia de la misma longi

tud. El conjunto -l-, 1), cerrado en [0, 1), se transforma en
2 ;

este caso en un conjunto no cerrado de la circunferencia (fig. 12).

f(o)

r2)

FIG. 12

Para las aplicaciones continuas se cumple el siguiente teo-
rema, anélogo al teorema, bien conocido del Analisis, sobre
la continuidad de la funcién compuesta.

TEOREMA 7. Sean X, Y, y Z espacios topoligicos y sean f y o
aplicaciones continuas d2 X en'Y y de Y en Z, respectivamente.
Entonces la aplicacion x-—q (f (x)) del espacio X en Z es con-
tinua.

La demostracién de este teorema se obtiene del teorema 6.

Una aplicacién f del espacio topolégico X sobre el espacio
topolégico Y biunivoca y bicontinua a la vez se llama homeo-
morfismo y los espacios X e Y se llaman homeomorfos. Los
espacios homeomorfos entre si tienen las mismas propiedades
topolégicas y desde el punto. de vista topolégico pueden conside-
rarse como dos ejemplares de un mismo espacio. Las topologias
de dos espacios homeomorfos son imégenes e iméagenes reciprocas
una de la otra. La relacién homeomorfa es reflexiva, simétrica
y transitiva; por consiguiente, la totalidad de los espacios topo-
légicos se divide en clases disjuntas de espacios homeomorfos
entre si. .

Observacién. El concepto de homeomorfismo ya fue introducido
en el §1 para los espacios métricos. Debe fenerse en cuenta,
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sin embargo, que las 'propiedades métricas de dos espacios métricos
homeomorfos pueden ser distintas?. Asf, uno de ellos puede ser
completo y el otro no serlo. Por ejemplo, el intervalo (—12‘- R g-)
es homeomorfo a la recta numérica (el homeomorfismo corres-
pondiente viene dado por la funcién x-—tgx) y, sin embargo,
la recta es un espacio completo y el intervalo no lo es.

7°. Distintos métodos de definicién de topologias en un espacio.
Metrizabilidad. La forma mas directa y, por su esencia, més
elemental de introducir una topologia en un espacio consiste en
sefialar directamente aquellos conjuntos que se consideran abiertos.
La totalidad de estos conjuntos debe verificar las condiciones
1° y 2° (véase la pag. 90). Equivalente a ella es la forma dual
que consiste en indicar la coleccién de conjuntos cerrados. Es
obvio que esta coleccién debe verificar las condiciones 1’ y 2’
(pas. 90). Sin embargo, este método se puede aplicar, de hecho,
en educidos casos. Por ejemplo, ya en el caso del plano no se
puede dar, por lo visto, una descripciéon directa de los subcon-
juntos abiertos (de la forma como se logra hacer esto para la
recta (teorema 5 del § 2)). ' ‘

Un método que se emplea frecuentemente para introducir una
topologia en un espacio consiste en indicar en &l una base; de
hecho, precisamente de este modo, se introduce la topologia en
los espacios métricos, donde, a partir de la métrica, se define
la base, es decir, la coleccion de bolas abiertas.

Otra forma posible de definir una topologia en un espacio
consiste en introducir en él el concepto de convergencia. Sin
embargo, hemos sefialado ya en el punto 3 que este procedimiento
no es universal: por medio de &l sélo se pueden introducir. to-
pologias en espacios, en los que se cumple el primer axioma de
numerabilidad. No obstante, desde el punto de vista del Anélisis
este método resulta frecuentemente dtil *.

En un espacio se puede introducir la topologia definiendo en
&l axiomaticamente la operacién de adherencia. Se dice que en.
el conjunto X se ha introducio la operacién de adherencia, cuando
a todo AcX se le ha puesto en correspondencia un conjunto
[A]= X, llamado adherencia de A, de manera que la operacién

1 La métrica del espacio R determina univocamente su togologia, pero
no viceversa: una misma topologia en R=(X, p) se puede o tener intro-
duciendo en X diferentes métricas. ,
) M4s aun si tenemos en cuenta que generalizando el concepto de
convergencia (convergencia respecto a los asi llamados filtros) este método
resulta aplicable también en el caso general. ,
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consistente en pasar del conjunto A al conjunto [A] verifica las
propiedades 1), 2), 3) y 4) indicadas en el teorema 1 del § 2.

Uno de los métodos més importantes, aunque lejos de ser
universal, de introducir una topologia consiste en definir en el
espacio una meétrica. Como hemos visto, todo espacio métrico es
normal y verifica el primer axioma de numerabilidad. Por eso si
en algiin espacio no se cumple una de estas dos condiciones, no
se puede introducir la topologia en él mediante ninguna métrica.

DEFINICION, Un espacio topolégico se 1lama metrizable, cuardo su
topologia puede ser introducida mediante alguna métrica.

De acuerdo con lo que acabamos de sefialar, la normaidad
del espacio y el primer axioma de numerabilidad son condici ‘nes
necesarias para que el espacio sea metrizable. Sin embargo, nin-
guna de estas dos condiciones por separado ni, incluso, ambas
juntas son suficientes para que el espacio sea metrizable. No
obstante, tieme lugar el siguiente teorema, que pertenece a
P. S. Urisén: '

para que en espacio fopolégico provisto de base numerable sca
metrizable, es necesario y suficiente que sea normal.

La necesidad de esta condicién es evidente.

§ 6. COMPACIDAD

1°. Concepto de compacidad. En el Anilisis desempefia un
papel fundamental el siguiente hecho, conocido como lema de
Heine—Borel: ; ; o
, de cualquier cubrimiento del segmento [a, b] de la recta
numérica por medio de intervalos se puede extraer un subcubri-
miento finito. : : , : .
Esta afirmacién continia siendo vélida, cuando en vez de
intervalos se consideran cualesquiera conjuntos abiertos: de todo
cubrimiento abierto del segmento [a, b] se puede extraer un
subcubrimiento finito. ' :
Partiendo de esta propiedad del segmento de la recta numérica,

introducimos el siguiente concepto importante.

DEFINICION. Un espacio topoldgico T se llama compacto, cuando
cualquier cubrimiento abierto suyo contiene un subcubrimiento
finito. Un espacio topoldgico -ompacto que verifica el axioma
de separabilidad de Hausdorff se 1lama un compacto.

Como veremos més adelante, la propiedad de compacidad la
tienen, ademés de los segmentos, todos los subconjuntos cerrados
acotados de un espacio euclideo de cualquier dimensién finita.
Al contrario, la recta, el plano y el espacio de tres dimensiones
son ejemplos elementales de espacios no compactos.
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Un sistema de subconjuntos {A} del conjunto T se llama
. ' . ’ - n

sistema centrado, cuando cualquier interseccién finita n A; de

. . . i=
elementos de este sistema es no vacia. De la=definicién ’d;dﬂ' de
compacidad y de las relaciones de dualidad se deduce el siguiente
teorema. ‘ o ’

TEOREMA 1. Para que un espacio topologico T sea compacto, es
necesario y suficiente que verifique la condicion (R):

; todo sistema centrado de subconjuntos cerrados de este espacio
tiene interseccién no vacia. , '

En efecto, sea {F,} un sistema centrado ‘de subconjuntos
cerrados de T y sea T un espacio compacto. Los conjuntos G, =
=T \ F, son abiertos; ademas, como cualquier interseccién finita

n .

ﬂ F; es no vaciva, ningﬁ_n sistema finito de conjuntos G;= T \F;

i=1 - , :
puede cubrir todo T. Pero en este caso todos los G, tampoco -
forman cubrimiento (compacidad); esto significa que NF,7#= Q.
Por consiguiente, si T es un espacio compacto, en él se verifica
la condicién (R). Viceversa, supongamos que T verifica la con-
- dicién (R) y que {G,} es un cubrimiento abierto del espacio T'.
Tomando F,=T\ G, obtenemos que NF,=& y de aqui se
desprende (condicién (R)) que el sistema {F.} no puede ser cen-

trado, es decir, existen F,, ..., F, tales que [} F;= g Pero en

. . . i=1 . . o
este caso los conjuntos correspondientes G;=T \ F; constituyen
~un subcubrimiento finito del cubrimiento jG,j,}LPor consiguiente,
de la condicién (R) se deduce la compacidad. o

Veamos algunas propiedades principales de los espacios com-
pactos. . : _ : :

TEOREMA 2. Todo subconjunto cerrado de un espacio compacto es -
| “compacto. ' ‘ :

DEMOSTRACION. Sea F.un subconjunto cerrado de un espacio com-
pacto T y sea {F,} un sistema centrado cualquiera de subcon-
juntos cerrados del subespacio F<T. En tal caso, todo F, es
cerrado también en T, es decir, {F,} es un sistema centrado de
conjuntos cerrados de T. Por consiguiente, N F,s= &. De aqui,
de acuerdo con el teorema 1, se desprende la compacidad de F.
Puesto que todo subespacio de un espacio de Hausdorff es
también de Hausdorff, obtenemos de aqui el siguiente corolario.
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" coroLArIo. Todo subconjunto cerrado de un compacto es un com-
pacto.

TEOREMA 3. Un compacto resulta cerrado en cualquier espacio de
Hausdorff que lo contiene.

DEMOSTRACION. Sea K un conjunto compacto en un espacio de Haus-
dorif T y sea y€ K. Entonces, para todo punto x € K existe una
vecindad U, del punto x y una vecindad V, del punto y tales que

U.nV,=2 .

Las vecindades U, forman un cubrimiento abierto del conjunto K.
Debido a la compacidad de K, se puede extraer de €l un subcu-
brimiento finito Ug,, Usx,, ..., Ux, Pongamos

V=Vx‘an.n ese an..

Entonces, V es una vecindad del punto y que tiene interseccién
vacia con Uy, U. .. U U, DK. Por consiguiente, y€ [K], es decir,
K es cerrado. El teorema queda demostrado.

Los teoremas 2 y 3 indican que en los espacios de Hausdorff
la compacidad es una propiedad interna del espacio, es decir,
que todo compacto continiia siendo un compacto, aunque sea
sumergido en espacios de Hausdorff cada vez mas amplios.

TEOREMA 4. Todo compacto representa un espacio normal.

DEMOSTRACION. Sean X e Y dos subconjuntos cerrados disjuntos
de un compacto K. Es facil ver, repitiendo los razonamientos
realizados en la demostracién del teorema anterior, que para
todo punto y€Y existe una vecindad suya U, y un conjunto
abierto 0,0 X tales que U, N 0,= &. Extraigamos del cubrimien-
to {U,} del conjunto Y un subcubrimiento finito Uy,, ..., Uy,
Entonces, los conjuntos abiertos

0w=0,n...N0y,

y
O(’)=Uy‘UUy,U e e UUy"

verificaran las condiciones necesarias:
oW o X’ 0@ 5 Y
owno® =g.
2°, Aplicaciones continuas de espacios compactos. Las aplica-

ciones continuas de espacios compactos, en particular, de com-
pactos, tienen varias propiedades interesantes e importantes.
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TEOREMA 5. La imagen continua de un espacio compacto es un
| espacio compacto. ; .

DEMOSTRACION. Sea X un espacio compacto y f una aplicacién
continua de él sobre el espacio topolégico Y. Consideremos algiin
clibrimiento {V,; del espacio Y mediante conjuntos abiertos y
tomemos U,=f"*(V,). Los conjuntos U, son abiertos (como
imégenes reciprocas de conjuntos abiertos en caso de una aplica-
cién continua) y forman un cubrimiento del espacio X. De este
cubrimiento se puede extraer, debido a la compacidad de X, un
subcubrimiento finito U,, U,, ..., U,. En este caso, los con-
juntos V,, V,, ..., V,, donde V;=f(U,), cubririn a todo el
espacio Y. ' :

TEOREMA 6. Toda aplicacion biunivoea y continua de un com-
pacto X sobre otro compacto Y es un homeomorfismo.

DEMOSTRACION. Debemos probar que de las condiciones del teo-
rema se deduce la continuidad de la aplicacién inversa ¢7%.
Sea F un conjunto cerrado de X y sea P=¢(F) su imagenen Y.
De acuerdo con el teorema anterior, P es un compacto y, por
consiguiente, P es cerrado en Y. De manera que la imagen
reciproca por la aplicacién ¢~* de todo conjunto cerrado Fc X
es cerrada. Esto significa precisamente que la aplicacién ¢~* es
continua. -

3°, Compacidad numerable.

TEOREMA 7. Si T es un espacio compacto, todo subconjunto suyo
infinito tiene al menos un punto de acumulacion.

DEMOSTRACION. Si T contiene un conjunto infinito X sin puntos
de acumulacién, se puede escoger en €1 un conjunto numerable

X, =(xg Xg ...)
que tampoca tiene puntos de acumulacién. Pero los conjintos
'Xn= Xny ¥ni1 °")

forman entonces un sistema centrado de conjuntos cerrados de T,
que tiene interseccién vacia, es decir, T no es un espacio com-
pacto. Introduzcamos la siguiente definicién.

peFINICION. Un espacio T se llama espacio compacto numerable,
cuando todo subconjunto infinito suyo tiene al menos un punto
de acumulacién.

El teorema 7 significa, por lo tanto, que todo espacio com-
pacto es compacto numerable. La reciproca, en general, no se
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cumple. He aqui un ejemplo «tradicional» de un espacio com-
pacto numerable, pero no compacto. Consideremos el conjunto X
de todos los nimeros ordinales a menores que el primer nimero
ordinal innumerable. Q. Llamemos intervalo (a, f) de X a la
totalidad de ntimeros ordinales y, que verifican las desigualdades
a < y < B. Llamemos conjunto abierto en X a toda unién de
un namero arbitrario de intervalos. Es facil comprobar que el
espacio construido es compacto numerable, pero no compacto.

El siguiente teorema deja clara la relacion existente entre
los conceptos de compacidad y ecompacidad numerable.

TEOREMA 8. Para que. un espacio topoldgico sea compacto nume-
rqble, es necesaria -y suficiente cada una de estas dos condi-
ciones: o -

1) Todo cubrimiento abierto numerable del espasio T contiene
un subcubrimiento finito. - -

2) Todo sistema centrado numerable de conjuntos cerrados
de T tiene una interseccién no vacia. '

DEMOSTRACION. La equivalencia de las condiciones 1) y 2) se des-
prende inmediatamente de las relaciones de dualidad. Ahora
- bien, si T no es compacto numerable, podemos demostrar, repi-
‘tiendo los razonamientos empleados al demostrar el teorema 7,
que en T existe un sistema centrado numerable de conjuntos
cerrados, cuya interseccién es vacia. Con esto queda establecido
- que la condicién 2) (y, por consiguiente, la condicién 1)) es
suficiente. Demostremos la necesidad de la condicién 2). Sea T
un espacio compacto- numerable y sea {F,} un sistema numerable
centrado de conjuntos cerrados de 7. Probemos que NF,=~= &. Sea’

n .
®"=n F B
. k=1 .
Esté claro que todos los ®, son no vacios (debido a que {F,}
es un sistema centrado), que forman un sistema no creciente
‘ ' 0,00,>... h |

y que , :
o no®,=nF,

Pueden darse dos casos:
1) Comenzando de un nimero n,,

@, =Qpsr=- .-

Es evidente, entonces, que N®,=, #J.
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2) Entre los @, hay un nfimero infinito de conjuntos dis-
tintos dos a dos. Basta entonces, evidentemente, considerar el
caso en que todos los @, son distintos entre si. Sea

an®n\®n+l'
La sucesién {x,} representa un conjunto infinito de puntos dife-
rentes de T; debido a la compacidad numerable de T, esta
sucesién debe tener al menos un punto de acumulacion, digamos, x,.
Puesto que @, contiene todos los puntos x,, X,41, ..., €l punto x,
es un punto de acumulacién para @, y, como ®, es cerrado,

x, €®,. Por consiguiente, n @, 3 x,, €s decir, n®”¢ .

n . .

De manera que los espacios compactos numerables son aquellos
espacios topolégicos, en los que de cada cubrimiento abierto
numerable se puede extraer un subcubrimiento- finito, mientras
que en un espacio compacto fodo cubrimiento abierto contiene
un -subcubrimiento finito.

Aunque en el caso general la compacidad numerable no implica
la compacidad, tiene lugar el siguiente resultado importante.

TEOREMA 9. Para los espacios de base numerable los conceptos.
| -de compacidad y compacidad numerable coinciden. : :

En efecto, del teorema 6 del § 5 se deduce que de cualquier
cubrimiento abierto del espacio T, provisto de una base nume-
rable, se puede extraer un subcubrimiento numerable. Si T es,
ademas, compacto numerable, de este filtimo se puede extraer,
de acuerdo con el teorema anterior, un subcubrimiento finito.
Con_esto queda establecido que T es un espacio compacto.. _

- Observaciéon. De hecho, el concepto de compacidad nume-
rable de un espacio topoldgico resulta (a diferencia del concepto
de compacidad) poco acertado y poco natural. Surgié en las
Matematicas debido a una especie de «inercias. Como quedara
demostrado en el punto siguiente, en el caso de espacios métricos
- estos dos conceptos coinciden (al igual que en el caso de espacios
de base numerable). El concepto de compacidad en los espacios
métricos significaba inicialmente la existencia de un punto de
acumulacién en todo subconjunto infinito, o - sea, coincidia con
la definicién de compacidad numerable. La extensién «automa-
tica» de esta definicion de los espacios métricos a los topolégicos
condujo precisamente al concepto de espacio topolégico compacto
numerable. En la literatura, especialmente anticuada, el término
«compacidad» se entiende a veces como «compacidad numerable»,
mientras que un espacio topolégico compacto en el sentido de
la definicion que ‘hemos introducido (es decir, espacio en que
todo cubrimiento abierto suyo contiene un subcubrimiento finito)
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se llama bicompacto. Ademés, un espacio de Hausdorff compacto
se llama un bicompacto, reservandose el término de «un com-
pacto» para los espacios meétricos compactos. Nos atendremos a
la terminologia (compacidad, compacidad numerable) que hemos
introducido més arriba; ademas, los espacios métricos compactos
los llamaremos simplemente compactos y en los casos, cuando
resulte deseable subrayar la presencia de la meétrica, diremos
«compactos métricos». ‘ ‘

4°. Conjuntos relativamente compactos. Un conjunto M, per-
teneciente a un espacio de Hausdorff 7, que no sea cerrado
en T, no puede ser compacto. Por ejemplo, ningtin subconjunto
no cerrado de la recta numérica es un compacto. Puede, sin
embargo, ocurrir que la adherencia {M] de un tal conjunto M
de T ‘tenga ya.la propiedad de compacidad. Por ejemplo, esto
~sucede para fodo subconjunto acotado de la recta numérica o de
un espacio de n dimensiones. Introduzcamos la siguiente defi-
nicion.
DEFINICION, Un conjunto M, perteneciente a un espacio fopold-
gico T, se llama' relativamente compacto (en T), cuando su adhe-
rencia en 7 es compacta. De la misma forma se dice que M es
relativamente compacto numerable en T. cuando todo subconjunto
infinito AcM tiene al menos un punto de acumulacién (que
puede perteneeer, pero puede y no pertenecer a Mj. ( v
El ¢oncepto de compacidad relativa (a diferencia del coti-
cepto de compacidad) estd relacionado, evidentemente, con aqtiel
espacio T, e el que se considera el conjunto dado. Por ejempls,
el conjunto de los puntos racionales del intervalo (0, 1) es refa-
tivamente compacto, si se considera como un subconjunto dela
recta numeérica, pero no sera relativamente compacto si se con-
sidera como un subconjunto del espacio de todos los niimeros
racionales. ' , '
El concepto de compacidad relativa adquiere su mayor im-
~portancia en el caso de los espacios métricos que trataremos en
el paragrafo siguiente. : ;

§ 7. COMPACIDAD EN ESPASIONS METRICO3

1% Acotacién total. Puesto que los espacios métricos repre-
sentan un caso, particular de los espacios topoldgicos, a ellos se
extienden los resultados y definiciones, expuestos en el paragrafo
anterior. En el caso de ‘los espacios métricos la compacidad esta
estrechamente ligada al concepto de acotacion ' total ‘que ahora
introduciremos.

Sea M un conjunto de un espacio métrico R y e un ntmero
positivo. Se dice que el conjunto A de R es una ered de M,
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cuando para todo punto X €M existe al menos un punto a€ A
tal que

p(x, a)<e.

Por ejemplo, los punfos de coordenadas enteras forman una
V_ ——-red del plano Un conjunto M se llama fotalmente acotado,

cuando cualquiera que sea &> 0 existe una e-red finita suya.
Esta claro, que un conjunto totalmente acotado es necesariamente
acotado, como la suma de un ntimero finito de conjuntos aco-
tados; la afirmacion reciproca no es, en general, justa, como lo
demuestra el ejemplo 2 que citamos mas abajo.

Frecuentemente resulta atil la siguiente observacién obvia:
si el conjunto M es totalmente acotado, su adherencna [M] es
también totalmente acotada.

De la definiciéon de acotacién total se desprende inmediata-
mente que todo espacio meétrico R totalmente acotado es sepa-

rable. En efecto, construyamos para todo n una %-red finita

de R. La suma, respesto a n, de todas estas redes representa
un conjurito numerable siempre denso en R.

Ejemplos. 1. En el espacio euclideo de n dimensiones la aco-
taciéon total coincide con la acotacién corriente, es decir, cor
la posibilidad de sumergir el conjunto dado dentro de un cubo
suficientemente grande. En efecto, si dividimos este cubo en
cubos de dimensién e, los vértices de estos tltimos formaran

una V” e-red finita en el cubo inicial y, por consiguiente, en

cualquxer conjunto, contenido en este cubo.

2. La esfera unitaria S del espacio /, ofrece un ejemplo de
un conjunto acotado, pero no totalmente. En efecto, conside-
remos los siguientes puntos de S

---------

La distancia entre dos cualesquiera de estos puntos e, y e,
(n=m) es igual a ¥ 2. De aqui se desprende que en S no puede

existir una e-red finita para ningin e <5
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3. Consideremos en [, el conjunto TI de puntos
' X=(Xyy Xgr vnvr Xps +22)

que verifican las siguientes condiciones

1
lei 1, lxz|< .. Ixnl Sogreir v -

Este conjunto se llama pamlelepipedo fundamental (o «ladrille
de Hilbert») del espacio /,. Representa un ejemplo de un conjunto
totalmente acotado de infinitas dimensiones. Para demostrar que
es totalmente acotado podemos proceder del 51gu1ente modo.

Sea dado & > 0. Escogemos n de manera que 2,,_ g < . A todo

punto
x=(x,, Xgy wovy Xpgy o0t) 1)

de IT pongamos en correspondencia el punto '
X*¥=(Xy Xgp -uvs %, 0,0, ..0) ' 2)

de este mismo conjunto En este caso

p(x, x*)=/ > x3< 2-4u<2n <3

=n+4

“El ‘conjunto II* de puntos de I de. tlpo (2) es totalmente aco-
-tado (por ser un conjunto acotado de un espacio de n dimensio-

nes). Tomemos en II* una —;—-red finita. Esta claro que sera al

mismo tiempo una e-red de IL
2°, Compacidad y acotacién total.

TEOREMA 1. Todo espacio métrico R compacto numerable es to-
| talmente acotado. ,

DEMOSTRACION. Supongamos que R no es totalmente acotado.
Esto significa que para algin &, > 0 no existe en R una e,red
-finita. Tomemos en R un punto arbitrario a,. Existe en R al
menos un punto, digamos a,, tal que p(a,, a,) >¢, (de lo con-
trario, el punto a, resultaria ser una g,-red de R). De la- misma
forma, en R existe un punto a, tal que

P(ay, a) > y pla, a,)> e,

Yya que, de lo contrario, el par de puntos a,, a, representaria
una e,red. Determinados ya los puntos a,, ..., @, escojamos
el punto a,,; € R de manera que -

p(an ak+1)>8m i-—l 2 ceny k.
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Mediante este proceso obtenemos una sucesién infinita a,, a,, ...
que no tiene ningan punto de acumulacién, ya que p(a;, a;) > ¢,
para i~ j. Pero en tal caso R no es un esgacio compacto nu-
merable, que es lo que queriamos demostrar.

COROLARIO 1. Un espacio métrico R compacto numerable tiene
un conjunto numerable siempre denso y una base numerable.

En efecto, construyamos en R una —:T-red finita para todo

n=1, 2, ... y tomemos la unién de estas redes. Esta sera pre-
cisamente el conjunto numerable siempre denso en R.- La exis-
tencia de una base numerable en un espacio métrico, provisto
de un conjunto numerable siempre denso, fue demostrada ya
anteriormente (teorema 5 del § 5). '

Recordando el teorema 9 del § 6, obtenemos el siguiente
corolario importante. ‘ ' :

coroLARIO 2. Todo espacio métrico compacto numerable es com-
pacto. , :

Hemos demostrado que la acotacién total es una condicidn
necesaria de la compacidad de un espacio métrico. Esta condi-
cién no es suficiente; por ejemplo, la totalidad de los puntos
racionales del segmento [0, 1] con.la definicion corriente de la
distancia entre ellos es un espacio totalmente acotado, pero no
compacto: la sucesién de puntos de este espacio .

0; 0,4; 0,41; 0,414; 0,4142; ...,

es decir, la sucesién de aproximaciones decimales del niimero

¥ 2—1 no tiene en este espacio punto de acumulacién. Sin em-
bargo, tiene lugar el siguiente teorema. , .

TEOREMA 2. Para que un espacio métrico R sea un compacto,
es necesario y suficiente que sel
1) totalmente acotado,
2) completo. '

DEMOSTRACION. La necesidad de la acotacién total ya la hemos
demostrado. La necesidad de la complitud.es evidente: en efecto,
si {x,} es una sucesién fundamental sin limite de R, esta suce-
sibn no tiene en R ningin punto de acumulacién. Probemos -
ahora que siendo R iotalmente acotado y completo, es compacto.
Para ello es suficiente demostrar que toda sucesién {x,} de puntos
de R tiene al menos un punto de acumulacién.

Construyamos una bola cerrada de radio 1 en torno a cada
"uno de los puntos que forman‘una l-red en R. Puesto que estas
bolas cubren todo el R y el nimero de elias es finito, al menos

8—3427
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una de estas bolas, llamémosla B,, contiene una subsucesion
(sucesién parcial) infinita x{¥, ..., x§, ... de la sucesién {x,}.
Escojamos ahora en B, una 1/2-red y construyamos alrededor de
todo punto de esta red una bola cerrada de radio 1/2. Al menos
una de estas bolas, llamémosla B,, contiene una subsucesién
infinita x{®, ..., x%, ... de la sucesién {x{}. Busquemos
luego una bola cerrada B, de radio 1/4 y centro en B, que con-
tiene una subsucesion infinita x{®, .... x¥, ... de la sucesién
{x’}, etc. Consideremos con toda bola B, una bola cerrada A,
con centro en el mismo punto, pero de un radio dos veces
mayor. Es facil ver que las bolas A, estin encajadas unas en
otras. Debido a la complitud del espacio R, la interseccién

o

M) A, es no vacia y consta de un sélo punto x,. Este punto es
n=)

un punto de acumulacién de la sucesién inicial {x,}, ya que
toda vecindad suya contiene una bola B, y, por consiguiente,
una subsucesién infinita {x{®} de la sucesion {x,}.

3°. Compacidad relativa de subconjuntos en un espacio mé-
trico. El1 concepto de compacidad relativa, introducido en el
pardgrafo anterior para subconjuntos de un espacio topoldgico
arbitrario, es aplicable, en particular, a los subconjuntos de un
espacio métrico. Es evidente, ademas, que el concepto de com-
pacidad relativa coincide en este caso con el concepto de com-
pacidad numerable relativa. Destaquemos el siguiente resultado
simple, pero importante.

TEOREMA 3. Para que un conjunto M de un espacio métrico
completo R sea relativamente compacto, es necesario y suficiente
que sea totalmente acotado.

La demostracion se obtiene inmediatamente del teorema 2 y
del hecho evidente de que todo subconjunto cerrado de un espacio
métrico completo es también completo.

La importancia de este teorema estriba en que, como regla
general, resulta mas facil establecer la acotacién total de uno
u otfro conjunto, que demostrar directamente su compacidad
relativa. Al mismo tiempo, para las aplicaciones del Anilisis
tiene importancia precisamente la compacidad.

Observacion. Al demostrar la acotacion total de uno u otro
conjunto M (es decir, al construir en él una e-red finita para
todo & > 0) de un espacio métrico R, no es necesario que esta
e-red pertenezca a M. Es suficiente que esta e-red finita pueda
ser construida mediante puntos, pertenecientes a R. En efecto,
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si los puntos
al' azy v ooy anER

son tales que para todo punto x
plx, a)<e

para cierto k, obtendremos una 2e-red en el conjunto M, com-
puesta por puntos de este conjunto, al sustituir todo Ipunto a,
mediante un punto b, que verifique las condiciones

pap by <e, bEM.

4°. Teorema de Arzeld. La demostracién de la compacidad
de un conjunto de un espacio métrico, es un problema que
encontramos con bastante frecuencia en el Analisis. Al mismo

tiempo, la aplicacion directa del teorema 2 del punto 2 no
siempre resulta simple. Para los conjuntos, situados en un espa-
cio concreto, se puede dar critetios especiales de compacidad,
que resultan mas. cémodo§ para la apliéacién préctica.

En un espacio euclideo de n dimensiones la compacidad de
un conjunto es equivalente, como hemos visto, a su acotacion.
Sin embargo, esto ya no es cietto para espacios métricos mas
generales. , ‘

En el Analisis, uno de los espacios métricos mas importantes
es el espacio Cpa, 5. Para los subconjuntos de este espacio, un
criterio importante y frecuentemente empleado de compacidad
relativa lo ofrece ef asi llamado teorema de Arzeld.

Para poder enunciarlo, necesitamos los siguientes conceptos.

Una familia ® de funciones ¢, definidas sobre un segmento,
~ se llama equiacotada, cuando existe un nimero K tal que

le()| <K

para todo x€[a, b] y toda ¢ €D.
Una familia ® = {p} se llama equicontinua, cuando para cada
g >0 hay un 6 >0 tal que : ’

|-q)(x1)""q’(xa)l <e
para todas las funciones ¢ €@ y para todo par x,, x, de [a, b]
tal que p (xy, x5) < 9. '

TEOREMA 4 (ARZELA). Para que una familia ® de funciones
continuas, definidas sobre el segmento [a, b], sea relativamente
compacta en Ciq, b, €s necesario y suficiente que esta familia
sea equiacotada y equicontinua. :

DEMOSTRACION. NECESIDAD. Sea la familia @ relativamente com-
pacta en Ciq s Entonces, de acuerdo con el teorema 3 del

8*
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. ol . : £
punto anterior, para cada & positivo existe en @ una —-—-red

finita ¢, @, ..., @, Cada una de las funciones @;, siendo
continua sobre un segmento, es acotada:
[9:(0) <K,

Pongamos K =max K;—i-—;—. Por definicién de %—red, para
todo €@ tenemos, -al menos para un ;. '

P (P ) =max|g () —e; (1) |< 5.

Por consiguiente,
le® | <lo:®|+5 <K++<K.

Es decir, ® es una familia equiacotada. ‘
Luego, puesto que cada una de las funciones @; que forman

la —;--red es continua 'y, por consiguiente, uniformemente conti-

nua sobre ta, b], para un % dado existe un §; fal que

|91 () —0; (%) | < 5,
siempre que |x,—x,| < §,. | ' ' :
Sea 6 =min §,. Entonces, para |x,—x,| <6 y para cualquier
funcién ¢ € ®, tomando @; de manera que p(p, ) <'—§—, obte-
nemos ' ' ’
.93 (xl)_q)(xz)lg - ' ’
<19 () — @ (0) [+ 9; (x) —o; () [ +] 9 () —@ (%) | <
<gtztz=e
Hemos demo'strado‘ con ello la equicdntinuidad de la familia D,

SUFICIENCIA. Sea @ una familia equiacotada y equicontinua de
unciones. De acuerdo con el teorema 3, para demostrar su com-
pacidad -relativa en Cp,, 4;, es suficiente probar que existe en
Cla, ) una e-red finita de ella cualquiera que sea € > 0. Sea

|9 (¥)| <K para todos ¢ € ®
Yy sea 8 > 0 escogido de manera que

|@(*)—@ (x)| < = pafa |x,—x,| <&
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y para todos ¢ €®. Dividamos el segmento [a, b] del eje x
mediante los puntos x,=a, < x, <X, < ... < x,=b en interva-
los de longitud menor que § y construyamos rectas verticales
a través de estos puntos. Dividamos el segmento [—K, K] del
eje y mediante los puntos y,=—K<y, <4 <... <y=K
en intervalos de longitud <%— y construyamos rectas horizon-

tales a través de estos puntos. De esta forma el rectangulo
a<x<b, —K<y< K resultard dividido en células con lado
horizontal - de longitud <& y con lado vertical de longitud

< g - Asignemos ahora a cada funcién ¢ €® la quebrada $(x)
con vértices en los puntos (x, y;), es decir, en los nodos de la -
red construida, y que diverge de la funcién ¢(x) en los pun-
tos x, en menos que ¢ (la existencia de una quebrada de este
tipo es evidente). o
Puesto que, por la construccién,
e —veE I <g.

| |9 () = (Haa) | < &
et —o () <g,

tenemos o

196 — () | <

Puesto que la funcién ¥ (x) es lineal entre los puntos x, Y Xpp
tenemos E '

19 —e()| <F para todos x€ [y Kyl
Sea ahora x un punto arbitrario del segmento [a, b] y sea x,
el punto de la divisién escogida mas préximo a x por la izquier-
da. Entonces ' . '
le—v ) <|le@)—o)|+le®)—vl |+
‘ ' AT FP ) —b ()| <e.
Por consiguiente, las quebradas ¥ (x) representan una e-red res-

pecto a @. El nimero de ellas es finito; luego, @ es totalmente
acotada. Hemos demostrado completamente el teorema.
5°. Teorema de Peano. El teorema de Arzeld tiene maltiples aplicacio-

nes. A titulo de aplicacién suyo veamos el siguiente teorema de existencia
para ecuaciones diferenciales ordinarias con el miembro derecho continuo.
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TEOREMA 5 (Peano). Sea : '
: d,
Z=f 9 )

una. ecuacion diferencial dada. Si la funcidn f. es continua en un recinto
cérrado G, al menos una curva integral de la ecuacién dada pasa por cada
punto interior (xy, Y,) de este recinfo.

DEMOSTRACION. Puesto que la funcién f es confinua en un recinto cerrado,
es acotada: )
1f(x, )| < M =const.

Tracemos por el punto (xo, ys) las rectas con pend.ente M y —M. Tra-
cemos, ademds, las rectas verticales x=a y x=» de manera ‘que los dos
tridngulos con vértice comfn en (x5, ¥,) que ellas producen pertenezcan
integramente al interior de la regién G.

Construyamos ahora para la ecuacién dada las asi llamadas quebradas
de Euler del siguiente modo: tracemos por el punto (x,, y,) la recta de pen-
diente [ (xy, yo). Tomemos en esta recta un punto (x;, yy) y tracemos, a tra-
vés de él, una recta de pendiente f (x,, y;). En esta recta tomemos un punto
(X2, o) y tracemos, a través de él, una recta de pendiente f(x,, y,), etc.
Consideremos ahora la sucesién de quebradas de Euler L,, L,, ..., L,, ...,
que pasan por el punto l(‘xo, Yo) y tales que la longitué del mayor de los
eslabones de la ‘linea Lj tiende a cero para k— . Sea @ la funcién,
cuya grafica es la linea L. Las funciones ¢;, @a, ..., ¢, ... poseen las
siguientes propiedades: ‘

1) estan definidas en un mismo segmento [a, b],

2) son equiacotadas,

3) son equicontinuas. _

En virtud del teorema de Arzeld, se puede extraer de la sucesién {p.}
una. subsucesiéon uniformemente convergente. Sea @, @@, . . o®,
esta sucesion.

Pongamos @ (x)=1im p'®) () para £ — 0. Estd claro que @ (x,)=y,.
Resta probar que ¢ verifica sobre e] segmente [a, b] la ecuacién diferencial
- dada. Para ello es necesario demostrar que cualquiera que sea ¢ > 0

LIt 9| <

siempre que la magnitud | x"—x'| sea suficientemente pequeiia. A su vez,
para demostrar esto es preciso establecer para k suficientemente grande
(k) (") —qplk) (") , , ’
|EE=EE) f e, g e
siempre que la diferencia | x"—x'| sea suficientemente pequefia._
Puesto que f es continua en la. regidn G, para-cualquier & >0 se puede
encontrar un n > 0 tal que ,
P y)—e<f(x ) < (¥, ¥')+e
' =9&)),

lx—x'| <20 e |y—y'| < 4My.

El cbnjunto de puntos (x, y)EG, que verifican estas dos desigualdades,
constituye un rectingulo Q. Sea  ahora K tan grande que para todo £ > K

|9 (x)—o'® (x)] < 49

<e,

siempre que
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y todos los eslabones de la quebrada L tienen longitud menor que n.
Entonces, si |x—x’| < 2n, todas las quebradas de. Euler ¢'®, correspon-
dientes a k& > K, se encuentran integramente en el interior de Q.
Ademés, sean (dg, bg), (31, by)s --+» (@n+1» bns1) los vértices de la que-
brada ¢, donde
Gp<<x' <8, <8< ... <A < X" <<apyy
(suponemos, para concretar, que x” > x’; el caso x” < x’ se considera analo
gamente). Entonces, :
Q% (ay) — @™ (x') =/ (a0, bo) (@, —%'),
P (a;41) — QW (@) =f (@i b)) (Br41—ap); i=1, 2, ..., n—1,
o® (") —@'® (an) = (@n, bn) (x"—an)-
De aqui, para | x"—x'| < v, obtenemos
[F (x', y)—el (@1 —=) < ¥ (a1) —¢'® (x') < [[ (+', y') e (3, —%"),
F', y)—el(@41—a;) < 9% (34— ¢'® (a)) < .
o . <[f@&, y)+el (@e1—a)); i=1, ..., n—1,
If (', §')—el (*" —ap) < 9P () —@*) (ap) < [F (¥', ¥') 2] (¥ —an)-
Sumando estas desigualdades, encontramos .
[f (&', y')—e] (" —2) < @B (x")—@® (x') < [f (', §') +&] (&"— '),

que es lo que queriamos demostrar.

Diferentes subsucesiones de la sucesién de quebradas de Euler pueden’
converger a diferentes soluciones de la ecuacién (3). Por eso, la solucién @
que hemos obtenido no es, en general, la Ginica solucién de la ecuacién

y' =f(x, y) que pasa por el punto (%o, Yo).-

6. Teorema generalizado de Arzeld. Sean X e Y dos com-
pactos métricos y sea Cyxy el conjunto de todas las aplicaciones
continuas f del compacto X en Y. Definamos la distancia en
Cyy mediante la férmula

p(F, &)= sup p(f(x) g(¥))-
Es facil comprobar que Cyy, se convierte de esta forma en
un espacio métrico.

TEOREMA 6 (teorema generalizado de Arzeld). Para que un conjunto
DcCyy sea. relativamente compacto, es necesario y suficiente -
que las funciones f que integran D sean equicontinuas, es decir,
que para cualquier e >0 exista un & >0 tal que de

P ) <S (4)

- p(Fx) FX) <e ()
cualesquiera que sean [ de D y %y X' de X.

DEMOSTRACION. La necesidad se demuestra igual que en el teo-
rema 4. o S

se deduzca
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~ Demostremos 1la suficiencia. Para ello sumerjamos Cyy en el
espacio My, de todas las aplicaciones del compacto X en el com-
pacto Y con ‘la misma métrica

p(fs g=supp(f(x), g(x))

que ha sido introducida en Cyy, y demostremos la compacidad
relativa del conjunto D en Myy. Puesto que Cyy es cerrado en
‘Mxy?, la compacidad relativa del conjunto D en Myy implica
sy compacidad relativa en Cyy. _ '

_ Tomemos arbitrariamente & >0 y escojamos & de manera
que de (4) se siga (5) para todo f de D y todo x’, ¥ de X.
Es facil ver que X se puede representar como la unién de con-
juntos disjuntos E; tales que de x’, x"€E; se deduce que
p(*, x")<'b. En efecto, para ello es suficiente escoger los pun-

tos x;, x;, ..., x, de manera que formen una —g--red en X y to-
mar, por ejemplo,
E=S(r, )—U S(x, 9).

j<i

Consideremos ahora en el compacto Y una e-red finita Yas
Yss ---s Yny denotemos mediante L la coleccién. de funciones
g (x) que toman los valores y; sobre los conjuntos E;. El nfimero
de estas funciones es, evidentemente, finito. Probemos que forman -
una 2e-red respecto a D en My, En efecto, sea f€D. Para
todo punto x; de x,, ..., x, existe un punto yrde yy ooty Yn
tal que o ' ;

p(F(x) y) <e.

Sea la funcién g€ L escogida de manera que g(x;)= y,-;
Entonces, ' ‘

o @) NP (F (), F(xN+p (F () g (x))+
+p(g(x) g(x)) < 2e,

si i se ha escogido de manera que x€E;.

De aqui se desprende que p(f, g) < 2 'y, por consiguiente,
la compacidad de D en My, vy, por lo tanto, en Cyy queda
demostrada. :

D Esto se debe a que el limite de una sucesién ‘uniformemente conver-
gente de aplicaciones continuas es también una aplicacién continua. La
proposicién enunciada representa una generalizacién directa del teorema
conocido del Analisis y se demuestra igyal que este teorema.
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§ 8. Funciones reales sobre espacios métricos y topolégicos

1°. Funciones y funcionales continuas y uniformemente con-
tinuas. Una funcion real sobre un espacio topolégico (en parti-
cular, métrico) T es una aplicacién del espacio T en el espa-
cio R* (la recta numeérica). Asi, por ejemplo, una funcién real
sobre el espacio R* de n dimensiones es la funcién ordinaria
- de n variables. o : ‘

Cuando el propio espacio T se compone de funciones, las
funciones definidas sobre é1 se llaman funcionales. Veamos algu-
nos ejemplos de funcionales de funciones x, definidas sobre el
segmento [0, 1}: - ‘ '

F (x)=supx(t);
Fy(x)=infx(¢); :
Fy(x)=x(t,), donde £,€[0, 1]; :
_ Fiy=9[x{), x(t), ..., x(t,)], donde £,€[0, 1]
y la funcién @ (s,, s,, RRRS: s,) esta definida para todo s; real;

Fy(%) =§q>-[t, x(t)] dt, doiide @ (t, s)ests definida y

es continua para todo 0<C¢<<1y todo s réal;
’ Fy(x)=x(t,), donde ¢€[0, 1];
. Lo ,

Fo=\VITomd
. 0
Fy(%) =§ | x° (¢)|dt.

. Las funcionales F,, F,, F,, F, y Fy estin definidas sobre. el
espacio C de todas las funciones continuas sobre el segmento [0, 1];
F g esta definida s6lo para las funciones diferenciables en el punto Z,;
F, para aquellas funciones para las cuales la expresién V' 1+ x3 (f)
es integrable y F, para funciones para las cuales| x"(f) | es integrable.
La funcional F, (x) es continua sobre C, ya que

p(x yy=sup|x—y| y |supx—supy|<sup|x—y].

Las funcionales F,, F, y F; son también continuas sobre C; la -
funcional F, es continua sobre C, cuando la funcién ¢ que lo
determina es continua respecto a todos sus argumentos. La fun-
cional F, es discontinua en todo punto de C donde esti definida.
En efecto, sea x(f) una funcién tal que x'(f,)=1 1y |x(f)|<e
y sea y=x,+x. Entonces, ¥y’ (¢)=x,(f,)+ 1, mientras que
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p (¥, x,) < e. Esta funcional F, resultard continua, si se considera
sobre e] espacio C ', compuesto de funciones que tienen derivada
continua y provisto de la métrica

p(x, §)=sup [Hx@—y@) |+ ) —y ()]

La funcional F, es también discontinua sobre el espacio C. En
efecto, sea x,({)=0 y x, (t)=% sen 2nnt. Entonces, p (x,, x,) =

=7ll-—>0; sin embargo, F,(x,)>4 para todo n, mientras que

F,(x)=1. Por consiguiente, F,(x,) no tiende a F,(x,), cuando
X,— %,. El mismo ejemplo sirve para demostrar que la funcio-
nal F; es también discontinua sobre el espacio C. Ambas fun-
cionales F, y Fy son continuas en el espacio C.

Para las funciones, definidas sobre un espacio métrico, sub-
siste el concepto habitual de continuidad uniforme: la funcién f (x)
es uniformemente continua sobre un espacio métrico R, cuando
para todo € >0 existe un 6 >0 tal que

| (x)—F(x,) | <e, siempre que p(x,, x,) <8.

Por ejemplo, la funcional F, es uniformemente continua sobre
el espacio C (jcompruébese estol).

Para las funciones reales sobre compactos métricos tiene lugar
el siguiente teorema, que generaliza el teorema bien conocido
del curso elemental de Analisis acerca de las funciones continuas
sobre un segmento.

TEOREMA 1. Una funcion real continua sobre un compacto mé-
| trico es uniformemente continua.

DEMOSTRACION. Supongamos que f(x) es continua, pero no uni-
formemente continua, sobre un compacto métrico K. Entonces,
para cierto e positivo y cualquier n natural existirdn x, y x;, de K
tales que

P (X X7) < ;’,— mientras que |f(x,)—F (x3)| >e.
De la sucesién {x,} se puede extraer, debido a la compacidad
de K, una subsucesidn {x,} convergente a un punto x€K. En

este caso {r,} también converge a x; pero para cada k debe
cumplirse al menos una de las desigualdades

NF@—FE) =50 1F ) —F(xm) | >2

y esto contradice a la continuidad de la funcién f en el punto x,
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2°. Funciones continuas y semicontinuas sobre espacios com-
pactos. Més arriba hemos visto que el teorema sobre la continuidad
uniforme de una funcién continua sobre un segmento subsiste
para las funciones definidas sobre cualesquiera compactos métricos.
En cuanto a las demas propiedades de funciones continuas sobre
un segmento, conocidas del Analisis, algunas de ellas se extien-
den, como veremos ahora, a espacios compactos cualesquiera (no
necesariamente métricos).

TEOREMA 2. Sea T un espacio compacto y f una fuiicién continua
sobre él. Entonces, | es acotada sobre T y alcanza sobre T sus
extremos superior e inferior. )

pemosTrACION. Una funcién continua es una aplicacién continua
de T en la recta numérica R'. La imagen de T en R! es, de
acuerdo con el teorema general 3 del § 6, compacta. Pero un
subconjunto compacto deé la recta numérica es cerrado y acotado y,
por consiguiente, no sélo tjene extremos superior e inferior finitos,
sino que contiene incluso estos extremos. El teorema queda de-
mostrado. .

EJERCICIO. Sea K un compacto métrico y A una aplicacién de K en si
mismo tal que p (Ax, Ay) < p(x, y) para x # y. Demuéstrese que la aplica-
cién A tiene en K un punto fijo anico. ‘

Las afirmaciones del iiltimo teorema admiten una generaliza-
cién al caso de funciones de una clase mas amplia, a saber, al
caso de las asi llamadas funciones semicontinuas.

Una funcién f(x) se llama semicontinua inferiormente (supe-
riormente) en el punto x,, cuando para todo e >0 existe una
vecindad “del punto x, tal que f(x) > f (xo)—e (f(x) < [ (%) +€).

Por ejemplo, la funcién «parte entera de x», f(x)=E(x) es
semicontinua superiormente. Si aumentamos (disminuimos) el
valor f(x,) de una funcién continua en un punto x,, obtendremos
una funcién semicontinua superiormente (inferiormente). Si f(x)
es semicontinua superiormente, la funcién —f(x) es semicontinua
inferiormente. Estas dos observaciones permiten obtener inmedia-
tamente un gran namero de ejemplos de funciones seuiicontinuas.

Para el estudio de las propiedades de semicontinuidad de
funciones reales conviene permitirles que tomen valores infinitos.
Si f(x,)=— oo, consideraremos que la funci6n f es semicontinua
inferiormente en x,; en cambio, si para todo s >0 existe una
vecindad del punto X, tal que f(x) <—h, admitiremos que la
funcién f es semicontinua también superiormente en el punto x,.

Si f(x,)= -+ oo, consideraremos que la funcién f es semicon-
tinua superiormente en x,; en cambio, si para todo & > 0 existe
una vecindad -del punto x, tal que f(x)>h, admitiremos que
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la funci6n f es semicontinua también inferiormente en el punto Xqs
Sea f(x) una funcién real sobre un espacio métrico R. Se llama
limite superior f(x,) de la funcién f(x) en el punto x, a la mag-

nitud (finita o infinita) lim [ sup f(x)]. Se Hama limite infe-
e-+0 LxeS(x, €

. 08
rior f(x,) a la magnitud (finita o infinita) lim[ inf f_(x)].
e — e+ 0 Lx€S (x, &)

La diferencia of (x,)=7F(x,)—f(x,) (si es que tiene sentido, es
decir, si al menos uno de los nfimeros f (x0) f(x,) es finito) se
llama oscilacién de la funcién f(x) en el punto x,. Es facil ver
que para la continuidad de f(¢) en el punto x, es necesario y
suficiente que of (x,) =0, es decir, que — oo < [ (x,) = F(x,)< + oo.

Para cualquier funcién f(x), la funcién f(x) es semicontinua
superiormente y la funcién f(x), semicontinua inferiormente.
Esto se obtiene facilmente de Ia definicién de los limites superior
e inferior. ‘

Veamos un ejemplo importante de una funcional semicontinua.

Definamos la longitud de la curva y=f(x) (a<<x<b) me-
diante la funcional : :

L= sup3, V=P T F TG

donde el extremo superior (que puede ser igual a -+ o0) se toma
respecto a todas las divisiones posibles del segmento [a, b]. Esta
funcional esta definida sobre todo el espacio M de las funciones
-reales acotadas. Para las funciones continuas coincide con el
valor del limite ' ' ‘

_ -

lim 3 Ve PTG —T G

max | xi—xi_, |»0 i=1

Finalmente, en caso de funciones con derivada continua puede
ser representada en la forma ; : ’

b v T
(VTH 0o dx.

La funcional L(f) es semicontinua inferiormente en M, como
se deduce facilmente de su definicién. :

El teorema, establecido anteriormente, se generaliza al caso
- de funciones semicontinuas. ' '

TEOREMA 2a. Una funcién finita semicontinua inferiormente (su-
periormente) sobre un espacio compacto T estd acotada inferior-
mente (superiormente).
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. En efecto, supongamos que inf f(x)=—oco. Entonces, existe
una -sucesién {x,} tal que f(x,) <— n. Puesto que el espacio T
es compacto, el subconjunto infinito {x,} suyo tiene al menos
un punto de acumulacién x,. Por hipétesis la funcién f es finita
y semicontinua inferiormente; por eso, existirA una vecindad U
del punto x, tal que f(x) > f(x,)—1 para x€U. Pero en este
caso la vecindad U puede contener solamente un namero finito
de puntos del conjunto {x,} y esto contradice a que x, es un punto
de acumulacién de este conjunto.” '

De manera analoga se demuestra el teorema en el caso de una
funcion semicontinua superiormente. :

TEOREMA 2b. Una funcién finita semicontinua inferiormente
(superiormente) sobre un espacio compacto T alcanza su extremo
. inferior (superior).

. Supongamos que la funcién f (x) es semicontinua inferiormente.
Entonces, de acuerdo con el teorema 2a, tiene un extremo infe-
rior finito 'y, ademas, existe una sucesién {x,} tal que f(x,) <
<inf f(x)++. o

Debido a la compacidad de T, el conjunto {x,} tiene un punto
de acumulacién x,. Si fuese f(x,)> inf f, existirian, en virtud
de la semicontinuidad inferior de la funcién f, una vecindad U
del punto x, y un 8 > 0 tales que f(x) > inf f--6 para x € U. Pero .
en este caso la vecindad U no podria contener ninglin subcon-
junto infinito del conjunto {x,}. Por consiguiente, f(x,)=inf f,
que es lo que se queria demostrar. .

§ 9. CURVAS CONTINUAS EN ESPACIOS METRICOS}

Sea dada una épl_icacién continua
o - P=f(
del segmento
a<<t<b

en un espacio métrico R. Cuando ¢ «recorre» el segmento desde a hasta b,
el punto correspondiente P «recorre» una «curva continua» en el espacido R.
Nos proponemos -dar unas definiciones rigurosas, relacionadas con la idea
tosca que acabamos de exponer. Consideraremos que el orden en el que se
recorren los puntos de la curva es una propiedad esencial de la propia curva.
Un mismo conjunto, indicado-en la fig. 13, recorrido en las direcciones se-
fialadas en las figs. 14 y 15, serd considerado como diferentes curvas. A titulo
de un ejemplo mas consideremos la funcién real, definida sobre el segmento
[0, 1], que viene representada en la fig. 16. Representa una «curvas, situada

1) Este paragrafo no estd relacionado con la exposici6n sucesiva. El
lector puede, si lo desea, omitirlo. .
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en el segmento [0, 1] del eje y y distinta de este segmento recorrido una vez
desde el punto 0 hasta el punto I, ya que el segmento [A, B] se pasa tres
veces (dos hacia arriba y una hacia abajo). o

Sin embargo, si los puntos del espacio se recorren en el mismo orden,
consideraremos que la seleccién del «pardmetro» ¢ no es esencial. Por ejemplo,
las funciones representadas en las figs. 16 y 17, determinan una misma
ccurva», situada sobre el eje y, aun cuando los valores del parametro ¢,
correspondientes a algiin punto de la curva, resulten distintos en los casos
de la fig. 16 y la fig. 17. Por ejemplo, en el caso de la fig. 16, al punto A
le corresponden sobre el eje ¢ dos puntos aislados, mientras que en el caso
de la fig. 17, corresponden sobre el eje ¢ un punto aislado y un segmento,
situado a su derecha (cuando ¢ recorre este segmento, el punto de la curva

se mantiene fijo)1).

S

FIG. 13 FIG. 14
y )
fpmm—m———— ff——— -
: I
B . Br==- !
|
1 |
Ar-f——- I AF—f—-— |
| t [
| I
| |
0 17 Tt
FIG. 16 FIG. 17

Pasemos a las definiciones formales. Dos funciones continuas
P=f'(t) y P=f(")]
definidas, respectivamente, sobre los segmentos
asr<h y a"<t'<lt

v con valores en un espacio métrico R, se llaman equivalentes, cuando existen
dos funciones continuas no decrecientes :

U=e'(t) vy t"=9"(1),
definidas sobre un segmento

a<<i<b,

1) En vista del estudio ulterior de la compacidad de sistemas de curvas
conviene consentir estos segmentos de constancia del punto P= f@).
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que poseen las propiedades
9’ (a)=a', ¢’ (b)=b',
9" (@)=a", ¢ (b)="",
Pl @Ol=F19" ()
para todo ¢€[a, b].

Es fécil ver que la relacién de equivalencia asi introducida es reflexiva
(f es equivalente a f), simétrica (si f’ es equivalente a f*, también ' es
equivalente a [’) y transitiva (de la equivalencia de f’ y f* y de la equiva-
lencia de f* y f” se deduce la equivalencia de f' y f). Por eso, todas las
funciones continuas del tipo considerado se dividen en clases de funciones
equivalentes entre si. Cada una de estas clases define una curva continua
en el espacio R. ‘

Es fécil ver que para toda funcién P=f’ ('), definida sobre un segmento
[¢/, b'], existe una funcién equivalente a ella, definida sobre el segmento
[a*, 8"]=[0, 1]. En efecto, es suficiente tomar

V=@ (y=(0"—a')t+a', '=0" ()=t.
Por consiguiente, podemos suponer que toda curva viene dada en forma pa-
ramétrica mediante una funcién definida sobre el segmento [0, 1].

Por eso resulta oportuno introducir el espacio C (/, R) de aplicaciones
continuas f del segmento /=[0, 1] en el espacio R con la métrica

p(t g)=sgp p(f (@), g ().

Admitiremos gue la sucesién de curvas L,, Ly, ..., Ly, ... converge a la
curva L, cuando las curvas L, pueden ser representadas paramétricamente
en la forma

P=f,(t), 0<t<1
y la curva L, en la forma
' P=f(), 0<t<]

dre manera que p (f, f,) — 0 para n— .
Aplicando el teorema generalizado de Arzela (teorema 6 del § 7), es facil
demostrar el siguiente teorema.

TEOREMA 1. Si la sucesidn de curvas Ly, Ly, ..., Ly, ..., situadas en un
compacto K, se puede representar paramétricamente mediante funciones
equicontinuas sobre el segmento [0, 1], se puede extraer de ella una subsu-
cesién convergente.

Definamos ahora la longitud de una curva, que en forma paramétrica
viene dada por la funcién
P=f(t), a<<t<lb,
como el extremo superior de las sumas de tipo

n

P (F(t=1), F(2)),
i=1

1) Admitimos siempre que a < b. Sin embargo, no excluimos las «curvas»
que constan de un solo punto y que se obtienen cuando la funcién f(t) es
constante sobre [a, b]. Este acuerdo también resulta oportuno para lo sucesivo.
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donde los puntos #; estdn sujetos solamente a las condiciones
a=t <t <...<<H<...<Ip=b.

Es fécil ver que la longitud de una curva no depende de su represen-
tacién paramétrica. Si nos limitamos a las representaciones paramétricas
por medio de funciones, definidas sobre el segmento [0, 1], es ficil demos-
trar que la longitud de una curva es una funcional semicontinua inferior-
mente de f (en el espacio C (/, R)). En el lenguaje geométrico este resultado -
puede ser enunciado en forma del siguiente teorema sobre semicontinuidad.

- TEOREMA 2, Si la sucesién de ‘curvas L, ,conberge a la curva L, la lon-
gitud de la curva L no es mayor que el limite inferior de las longitudes de
las curvas L. _ , ; o

Consideremos ahora especialmente las curvas de longitud finita. Supon-
gamos que la curva esta definida por la funcién paramétrica

P=f(t), a<t<b.

La funcién f, cdnsiderada_ solamente en el segmento [a, T}, donde a<<T<Cb,
define el «segmento inicial» de la curva desde el punto v

Ps=f(a)
hasta el punto ‘
Pr=f(T).
s r=/( )‘
s=¢(t)

su longitud. Es facil probar que
P=g(s)=F[9=1(s)]

es una nueva representacién paramétrica de la misma curva. Aqui. s recorre
el segmento . ' ‘
0<<s<S,

donde S es la longitud de toda la curva considerada. Esta representacién
verifica ‘1a exigencia ; .
P (g(s1), g(s)) < |sys—si|

(1a longitud del arco es no menos que la longitud de la cuerda).
Pasando al segmento [0, 1], obtenemos la representacién . paramétrica

P=F()=g), =%,
~ que verifica la condicién de Lipschitz
p(F (%), F(v))<<S|71—1,)
Vemos, por consiguiente, que para todas las curvas de longitud
S< M, »

donde M es una constante, es posible una representacién paramétrica median-
- te funciones equicontinuas, definidas sobre ei segmento {0, 1]. Por lo tanto,

a ellas es aplicable el teorema 1.

Mostremos el alcance de los resultados generales obtenidos aplicdndolos
a la demostracién de la siguiente proposicion importante. o
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TEOREMA 3. Si dos puntos Ay B de un compacto K pueden unirse por
“medio de una curva continua de longitud finita, entre estas curvas existe la
de longitud minima. - :

En efecto, sea Y el extremo inferior de las longitudes de las curvas,
que unen los puntos A y B del compacto K. Supongamos que las longitudes
de las curvas L,, Ly, ..., L,, ..., que unen los puntos A y B, tienden a Y.
De acuerdo con el teorema 1, de la sucesién L, se puede extraer una sub-
sucesién convergente. De acuerdo con el teorema 2, la curva limite de esta
subsucesién no puede tener longitud mayor que Y. : o

Observemos, que incluso-en.el caso, en que K es una superficie cerrada
suave (diferenciable suficiente nfimero de veces) del espacio euclideo de tres,
dimensiones, este teorema no se desprende directamente de los resultados
que se establecen en el curso de Geometria Diferencial, donde se considera,
generalmente, s6lo el caso de puntos A y B suficientemente préximos.

Todo lo expuesto adquiriria mayor claridad, si hubiesemos provisto de
una estructura de espacio métrico el conjunto de todas las curvas del espacio
métrico dado R. Esto se puede hacer definiendo la distancia entre las curvas
Ly v L, mediante la férmula

P (L1, Ly)=inip (f1, fa),

donde el extremo inferior se toma respecto a todos los pares de represen-
taciones paramétricas de la curva L, por medio de la funcién

) P=fi(t), O0<i<],
y de la curva L, por medio de la funcién
P=f,(f), O0<t<l.

La demostracién de que esta distancia verifica los axiomas corrientes es
sencidl]a,' a excepci6én de un momento: ofrece ciertas dificultades demostra
que de _ _

P (L1, Ly)=0

se deduce la identidad de las curvas L, y L,. Este resultado es consecuencia
directa del hecho de que el extremo inferior en la f6rmula, mediante 1a cual
hemos definido la distancia p(Ly, L,) se alcanza, si se escogen adecuada-
mente las representaciones paramétricas f; y f,. Pero la demostraciéon de
esta ailtima proposicién tampoco es sencilla. - ' '

93427



CAPITULO
Il

ESPACIOS LINEALES
NORMADOS Y TOPOLOGICOS

§ 1. ESPACIOS LINEALES

El concepto de espacio lineal es uno de los mas 1mportantes
en las Matematicas. Desempefiara un papel primordial no sélo
en este capitulo, sino también en toda la exposxcxon sucesiva.

Deflmclon e;emplos de espaclos lineales.

DEFINICION 1. Un conjunto no vacio L de elementos x, y, z
~ se llama- espacio lineal, o vectorial, cuando satisface las sxgmen-
tes condiciones: '

I. Para cualesquiera dos elementos x, y€L estd definido
univocamente un tercer elemento zé€ L, llamado suma de ellos
y denotado x+y, tal que

1) x+y=y-+x (conmutatividad),

2) x4+ (y+2)=(x+y) + 2 (asociatividad), :

- 3) en L existe un elemento O tal que x+0=x para todoxeL
(existencia del cero),

4) para todo x € L existe un elemento —x tal que x -+ (—x) =
(existencia del elemento _opuesto).

I1. Para cualquier niimero ¢ y cualquier elemento x € L esta
definido el elemento ax € L (producto del elemento x por el ni-
mero o) de manera que

1) Ot(l3x) (af)x,

X =X.

III Las: operaciones de adicién y mult1p11cac1on estan rela-
cionadas entre si mediante las leyes dlstrlbutlvas
D) (e+P)r=ax+Pa,

' 2) a(x+y)=ax+ay.

En dependencia del conjunto de los nimeros que se admite
(todos los complejos o solamente los reales), se distinguen los
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espacios lineales complejos y reales?. A menos que no se diga
lo contrario, nuestros razonamientos seran validos tanto para
los espacios complejos, como para los reales. . 4

Observemos que todo espacio lineal complejo puede ser con-
siderado como real, si nos limitamos a la multiplicacién de los
vectores por numeros reales. ; -

Veamos algunos ejemplos de espacios lineales, dejando a cargo
del lector la comprobacién, en cada uno de ellos, de los axiomas
enunciados anteriormente. o
, 1. La recta numérica, es decir, el conjunto de los niimeros

reales con las operaciones habituales de adicién y multiplicacién,
representa un espacio lineal. o -

2. El espacio vectorial de n dimensiones, es decir, el conjunto
de todos los sistemas posibles de n nameros (reales o complejos)
x=(%,, X5 -:., %,), en el que la adicién y la multiplicacién
se definen mediante las féormulas

(X3 Xo5 - -vxn)"}‘(yv_ Yo .'.-.,y,,_)'=(x1+y1, Xy Yur -2 Xnt Yn)s
0Ky Xy o vvs Xp)=(0Xy, Oy, ...y O )

es también un espacio lineal. Se denomina espacio aritmético -

de n dimensiones? y se denota mediante R" en el caso real y
C” en el caso complejo. . ; ( :

" 3. Las funciones continuas (reales o complejas) sobre un seg-
‘mento [a, b] con las operaciones habituales de adicién de fun-
ciones y multiplicacién de funciones por nimeros constituyen el
~espacio lineal Cpa, 5, uno de los mas importantes para el Analisis..

4. El espacio [,, cuyos elementos son las sucesiones de nu-
‘meros (reales o complejos)

A X=(Xyy Xgp s Xps L)

que verifican la condicién
21 < oo, | 1)
n=

con las operaciones

s Xy ceer K o) F W Yaroees Yo L=
=X+ Y X3+ Yo oo 0» Xt Yns -
& (Xyy Xps +ons X Lo )= (0, aXgy ..y OXpy .l) y
es un éspacio‘ lineal. EI hecho de que la suma de dos sucesio-
nes, que satisfacen la condicién (1), también verifica esta condi-

D Podrian considerarse también espacios lineales sobre un cuerpo cual-
quiera. , L
2) Este término se explicard més en adelante.

g*
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cién, se desprende de la desigualdad elemental
(@+a)<2i+2a

5. Las sucesiones convergentes x=(x,, x,, ...), con la adi-
cién y multiplicacién por nfimeros realizadas respecto a las coor-
denadas, forman un espacio lineal. Denotémoslo c.

6. Las sucesiones convergentes a 0, con las mismas operacio-
nes de adicién y multiplicacién, forman también un espacio lineal.
Denotémoslo c,. . S '

7. El conjunto m de todas las sucesiones numéricas acotadas,
con las operaciones de adicién y multiplicacién por niimeros
definidas igual que en los ejemplos 4, 5y 6, también representa
un espacio lineal. o :

8. Finalmente, el conjunto R* de todas las sucesiones numé-
ricas, con las mismas operaciones de adicién y multiplicacién
por nimeros que en los ejemplos 4, 5, 6 y 7, es también un
espacio lineal. ' ’

Puesto que las propiedades de un espacio lineal son las pro-
piedades de adicién y multiplicacién por niimeros de sus elemen-
~ tos, resulta natural introducir la siguiente definicién.

DEFINICION 2. Dos espacios lineales L y L* se llaman isomorfos,
cuando se puede establecer entre sus elementos una correspondencia
biunivoca compatible con las operaciones en L y L* Esto signi- -
fica que de . '

€

xex
: yeoru
(x, y€L, x*, y*€L*, se sigue
Aty +y
y _
ax ¢ ax®

(¢ es un namero arbitrario). o

Conviene a veces considerar los espacios isomorfos como dife-
‘rentes realizaciones de un mismo espacio. A titulo deejemplo
de espacios lineales isomorfos pueden servir el espacio aritmético
de n dimensiones (real o complejo) y el espacio de todos los
polinomios de potencia <{n—1 (con coeficientes reales o com-
plejos, respectivamente) (jdemuéstrese el isomorfismo de estos

espacios!) _
2°. Dependencia lineal. Los elementos x, y, ..., w de un

espacio lineal L se llaman linealmente dependientes, cuando existen
unos numeros @, B, ..., A, no todos iguales a 0, tales que
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ax+By+ ... +aw=0. @)

En el caso contrario, estos elementos se llaman _linealmente
independientes. En -otras palabras, los elementos x, y, ..., @
son linealmente independientes, cuando de la igualdad (2) se
sigue que o : . :

a=f=...=A=0.

Un sistema. infinito de elementos x, y, ... del espacio L se llama
linealmente independiente, cuando todo subsistema finito suyo
es linealmente independiente. _

Si en un espacio L se pueden encontrar n elementos lineal- .
mente independientes y cualesquiera n-+1 elementos de este
espacio son linealmente dependientes, se dice que el espacio L
tiene dimensién n. En cambio, si en L se puede indicar un
sistema, compuesto por.un niamero finito cualquiera de elementos
linealmente independientes, se dice que el espacio L es de dimen-
sién infinita. Se llama base de un espacio L de n dimensiones
a todo sistema de n elementos linealmente independientes. Es
facil comprobar que los espacios R” en el caso real y C” en el
caso complejo son de dimensién n, justificando de esta forma
'su denominacion. o

En el curso del Algebra Lineal se consideran espacios lineales
de dimensiéon finita. Nosotros, al contrario, nos dedicaremos,
como regla general, a los espacios de dimensién infinita que,
desde el punto de vista del Analisis, representan el mayor inte-
rés. Proponemos al lector comprobar que.cada uno de los espa-
cios, sefialados en los ejemplos 3, 4, 5, 6, 7 y 8, es de dimen-
sién infinita. : :

3°. Subespacios. Un subconjunto no vacio L’ de un espacio
lineal L se llama subespacio, cuando representa un espacio lineal
respecto de las operaciones de adicién y multiplicacién por ni-
meros definidas en L.

En otras palabras, L'cL es un subespacio, cuando de
x€L, yeL’ se deduce que ax-+Py€L’ cualesquiera que sean
o . . : ’

yEEl todo espacio lineal L existe el subespacio formado sola-
‘mente del elemento cero, el subespacio nulo. Por otro lado,
todo el L puede ser considerado como un subespacio suyo. Un sub-
espacio, diferente de L, que contiene al menos un elemento no
nulo, se llama propio. :

Veamos ejemplos de subespacios propios. :

1. Sea L un espacio lineal y x un elemento suyo no nulo.
El conjunto de elementos {Ax}, donde A toma todos los valores
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numeéricos (reales o complejos), forma, evidentemente, un sub-
espacio unidimensional. Este subespacio es propio, si la dimensién
de L es mayor que 1. : _ v

2. Consideremos el espacio de funciones continuas Cp,, 5]
(ejemplo 3) y en él el conjunto de todos los polinomios Py, 5.
Esta claro que los polinomios forman en Cpa, 5 un subespacio
(de dimensién infinita al igual que todo el Ciq, ¢y). Al mismo tiempo,
el propio espacio Ciq, 5; puede ser considerado como un subespa-
cio de un espacio mas amplio de todas las funciones, tanto con-
tinuas, como discontinuas, sobre [a, b].

3. Consideremos, finalmente, los espacios I,, ¢,, ¢, m y R=
(ejemplos 4, 5, 6, 7 y 8 del punto 1). Cada uno de ellos es un.
subespacio propio del siguiente. ‘ A

Sea {x,} un conjunto no vacio cualquiera de elementos de
un espacio lineal L. Entonces, existe en L un subespacio minimo
(posiblemente coincidente con L) que contiene {x.}. En efecto,
existe en L al menos un subespacio que contiene {x.}: es todo
el L. Adema3s, esta claro que la inferseccion de cualquier conjunto
{L,} de subespacios es de nuevo un subespacio. Efectivamente, si

L*=NL, y x, y€L* también ax -+ By € L* para todos los « y B.

v
Tomemos ahora todos los subespacios, que contienen el sistema
de vectores {x,}, y consideremos su interseccién. Esta sera pre-
cisamente el menor subespacio, que contiene el sistema dado de
vectores {x,}. Este subespacio minimal se Ilamara subespacio
generado por el conjunto {x,} o cipsula lineal del ‘conjunto {x,}.
Denotaremos este subespacio mediante L ({x,}). S

EJERCICIO. Un sistema linealmente independiente {_xa} de elementos de
un espacio lineal L se 1lama base de Hamel, cuando su cépsula lineal coin-
cide con L. Demuéstrense las siguientes proposiciones:

1) en todo espacio lineal existe una base de Hamel;

2) si {xd} es una base de Hamel en L, todo vector xE L se representa
de manera unica mediante una combinacién lineal finita de algunos vectores
del sistema {x,}; v ‘

3) dos bases cualesquiera de Hamel de un espacio lineal L tienen la
misma potencia; la potencia de una base de Hamel de un espacio lineal L
suele llamarse dimensién algebraica de este espacio; :

4) dos espacios lineales son isomorfos si, y sélo si, tienen la misma
dimensién algebraica.

4°. Espacios cocientes. Sea L un espacio lineal y L’ algiin
subespacio suyo. Diremos que dos elementos x e y de L perte-
necen a una misma clase de equivalencia (segin L’), cuando la
diferencia de ellos x — y pertenece a L’. El conjunto de todas
estas clases se llamara espacio cociente de L segin L’ y se deno-
tara con L/L’. En todo espacio cociente se introducen, de una manera
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natural, las operaciones de adicién y multiplicacién por nimeros.
A saber, sean Ey m dos clases, representando elementos de L/L'.
Tomemos en cada una de estas clases un elemento, digamos,
x e y respectivamente, y llamemos suma de las clases £ y n a
“aquella clase §, que contiene el elemento x--y, y producto de
la clase & por el niimero o aquella clase que contiene el elemento ax.
Es facil probar que el resultado no cambiar4, si los representan-
tes x e y se sustituyen por cualesquiera otros representantes x' e y’
de las mismas clases & y 1. De esta forma quedan, efectivamente,
definidas las operaciones lineales para los elementos del espacio
cociente L/L’. Una comprobaciéon directa demuestra que estas
operaciones verifican todas las condiciones, contenidas en la defi-
nicién de un espacio lineal. En otras palabras, fodo espacio cocien-
te L/L' (con las operaciones de adicién y multiplicacion por
?ﬁm_elaros que acabamos de definir en &l) representa un espacio

ineal. . ;

Si L es un espacio de n dimensiones y el subespacio suyo L’
tie e dimensién k, el espacio cociente es de dimensiéon n—k
(jdemuéstrese esto!). : ‘

Sea L un espacio lineal arbitrario y L’ algin subespacio suyo.
La dimensién del espacio cociente L/L’ se llama codimensién del
subespacio L’ del espacio L. . ‘ :

Si el subespacio L'<=L tiene codimension finita n, se pueden
escoger en.L los elementos x,, X,, ..., X, de manera que todo
elemento x € L quedara representado (univocamente) en la forma

X=X+ ... +ax,+ Y,

donde a,, ..., @, son nimeros e y€L'. En efecto, sea n la
dimensién del espacio cociente L/L’. Tomemos en este espacio
cociente una base :

gl’ EQ’ LI | gn

-y escojamos en cada clase arbitrariamente un elemento que
~ designaremos con ;. Sea ahora x un elemento cualquiera de L'y §
aquella clase en L/L’ que contiene a x. Entonces :

§=a1§1/+ ot ag,

Esto. significa, . por definicién, que todo elemento de &, en par-
ticular, el elemento x, difiere solo en un elemento de L’ de la
combinacién lineal construida: con elementos, tomados por uno
en cada clase &, ..., &, es decir,

Xx=0X+ ...+ X, +Y.

Dejamos al lector la demostracién de que esta representacion
es tnica. .



136 CAP. IIl. ESPACIOS LINEALES NORMADOS Y TOPOLOGICOS

5°. Funcionales lineales. Una funcién numérica f, definida
sobre un espacio lineal L, se llamara funcional V. Una funcional
f se llama aditiva, cuando

fx+y)=F(x)+f(y) para todos los x, y€ L;
se llama homogénea, cuando
f(ox)=af (x) (¢ es un namero).

Una funcional f, definida en un espacio lineal complgjo, se
llama conjugada homogénea, cuando f(ox)=af (x), donde c es el
nimero complejo conjugado de a. ' :

Una funcional aditiva homogénea se llama funcional li:zal.
Una funcional aditiva conjugada homogénea se llama conjugada
lineal (o antilineal). ‘

Sefialemos ejemplos de funcionales lineales.

1. Sea R” el espacio aritmético de n dimensiones, compuesto
por los elementos x=(x,, ..., x,) y sea a=(a,, ..., a,) un
elemento determinado de R". Entonces, :

F) =3 xa,

es una funcional lineal en R*. La expresi6n

yx)= gl ax;

representa una funcional conjugéda lineal en C".
2. Las integrales

b b
I[x] ={xt)dt e ITx]={ x@Bat

representan, respectivamente, funcionales lineal y conjugada li-
neal en el espacio Cig, 5.

3. Consideremos un ejemplo mas general. Sea y, una funcién
determinada continua sobre [a, b]. Tomemos para toda funcién
x€Cia 5 '

. b
F)={x(t)y, (t)dt.

I Aqui la palabra sfuncional» se entiende en un sentido algo distinto
que en el § 8 del capitulo II, donde hemos llamado funcional a una fun-
cién numérica definida sobre un espacio métrico, cuyos elementos son fun-
ciones. En adelante, tendremos que tratar con espacios lineales, que al
mismo’ tiempo son métricos y cuyos elementos son funciones. Por eso, no
restulgaré esencial cierta discordancia en los términos de este capitulo y el
anterior.
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La linealidad de esta funcional se deduce de las propiedades
principales de la operacién de integracién. La funcional

b
F={x0Oy @at

sera conjugada lineal. )
4. Consideremos en este mismo espacio Cyq, 5 una funcional
lineal de otro tipo, tomando o '

6‘0 (JC) =X (to)’

es decir, haciendo igual el valor de la funcional §;, para la fun-
cién x al valor de esta funcién en un punto fijo £,.

Frecuentemente, resulta necesario considerar esta funcional,
por ejemplo, en la Mecanica Cuéantica, donde suele escribirse en
la forma

b
8, ()= x ()8 (t—t)dt,

entendiéndose por & la «funcién» que es igual a cero en todo
punto, excepto el punto /=0, y cuya integral es igual a la
unidad (8-funcién de Dirac). Como veremos en el capitulo siguien-
te, la O6-funcién se puede representar como limite, en cierto
sentido, de una sucesién de funciones «auténticas» ¢, cada una
de las cuales se anula fuera de una e,-vecindad b(s,,-——»O para

n—oco) del punto =0 y verifica la condicién § g,(t)dt=1.

a
5. Veamos un ejemplo de una funcional lineal en el espacio /,.
Sea k un niimero_entero positivo determinado. Para todo

X=®y covy Xy ...)
de /, tomemos
v fe(¥) = x4
Esta funcional es evidentemente lineal. Funcionales de este tipo

pueden considerarse también en otros espacios de sucesiones, por
ejemplo, en c,, ¢, my R® (ejemplos 5, 6, 7 y 8 del primer punto).

6°. Interpretacién geométrica de una funcional lineal. Sea f
una funcional lineal, distinta del cero idéntico, en un espacio

lineal L. El conjunto L, de elementos x de L que satisfacen la
- eondicién

fx)=0

- representa un subespacio del espacio L, que se llama subespacio
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de ceros de la funcional f. En efecto, si X, y€L, tenemos
f (ex+By) = af (x) +Bf (y)=0.

El subespacio L, tiene codimensién 1. En efecto, tomemos
un elemento x, que no pertenece a L, es decir, un elemento tal
que f(x,) 0. Tal elemento existe, ya que f(x) 0. Podemos
admitir, sin perder generalidad, que f(x,)=1, ya que en el caso

. . el s g Xo —
contrario podriamos dividir x, por f(xo) (f ( 7 _(xo))—l)v' Para
un elemento x cualquiera tenemos x= f (x)-x,+y, de manera que
F@)=Fx—F(x)x)=0, es decir, y€ L, ,

: Siendo x, un elemento fijo, el elemento x se representa de
una manera tnica en la forma :

x=oax,+y, donde y€L,.
. En efecto, sea _
k X =0Xy+ Y, yeLy,
, x=a'%+y, yEL,
Entonces,

 e—a)gh=y—y
Si a=ga’, serd evidentemente y’'=y. En cambio, si as=a’,
tendremos x,=2=Y% €L, y esto contradice a la seleccién de x,.

De aqui se deduce que dos elementos x, y x, pertenecen a una

misma clase de equivalencia segtin el subespacio L, si, y sélo si,
f(x)=F(x,). En efecto, de ;
. Xy =f (%)) X%+ 45
x2=f(xz)'xo + Y.

se sigue que
Xy — %y = (f (%) —F (%) - %o+ (41— ¥)-

De aqui se ve que x,—x, €L, si, y s6lo si, el coeficiente de x,,
es decir, f(x))—f(x;), es igual a 0. . '

Toda clase § segiin el subespacio L, se determina por cual-
quiera de sus representantes. A titulo de este representante pode- -
mos tomar el elemento de tipo a-x,. De aqui se ve que el
subespacio L/L, es efectivamente unidimensional y que L, tiene
codimensién 1.

El subespacio L, determina, salvo un factor constante, la
funcional lineal que se anula en é&l. -

En efecto, sean f y g dos funcionales que tienen el mismo
espacio de ceros L,=L,. Tomemos, a partir de f, un elemento



§ 1. ESPACIOS LINEALES 139

%, de manera que f(x,)=1. Afirmamos que g (x,) #* 0. En efecto,
x=fx)x%+y, Y€ Ly=L,

g0 =F () g(x)+2(6) =F (9 g (xo).

Si fuese el valor g(x,) igual a 0, la funcional g resultaria igual
- idénticamente a cero. De la igualdad g(x)=g(x,)f (x) se deduce
precisamente que las funciones g y f son proporcionales.

Sea L' un subespacio de codimensién 1 en el espacio lineal L;
entonces, toda clase de equivalencia del espacio L segin el sub-
espacio L’ se llama hiperplano paralelo al subespacio L’ (en
particular, el propio subespacio L’ es un-hiperplano que contiene
el 0, es decir, que «pasa por el origen de coordenadas»). En otras
palabras, el hiperplano M’ paralelo al subespacio L’ es el con-
junto que se obtiene a partir de L’ mediante una traslacion.
_paraiela a un vector x,€L: :

M'=L'+'x;,.= {y:y=x+x, x€L’}.

Esta claro que, si x, €L’, tenemos M'=L’; en cambio, si x,€L’,
tendremos M’=s~L’. Si f es una funcional lineal no trivial sobre
el espacio L, el conjunto M,={x:f(x)=1} es un hiperplano
paralelo al subespacio L, de ceros de la funcional f (en efecto,
fijando un elemento x,, para el cual f(x,)=1, podemos repre-
sentar todo vector x€ M, en la forma x=x,+y, donde yELy).
Por otro lado, si M’ es un hiperplano paralelo al subespacio L’
(de codimension 1) que no pasa por el origen de coordenadas,
existe una funcional lineal f Gnica tal que M’'= {x:f(x)=1}.
En efecto, sea M'=L’'+x,, x,E€EL; en este caso, todo elemento
x € L se puede representar de manera tinica en la forma x = ax, +y,
-donde y€L'. Tomando f(x)=c, obtenemos la funcional lineal
deseada; la unicidad se deduce de que, siendo g(x)=1 para
xeM’, tenemos g(y)=0 para y€L’, de manera que

g (ax,+y)=a=f(ax,+y).

Por consiguiente, hemos establecido una correspondencia bi-
univoca entre todas las funciones lineales no triviales, definidas
sobre L, y todos los hiperplanos de L que no pasan por el erigen
de coordenadas. - ' _ ,

y

EJERCICIO. Sean f, fy, ..., f, funcionales lineales sobre un espacio lineal
L tales que de f,(x)=...=f,(x)=0 se deduce que f(x)=0. Entonces,
E n

existen unas constantes a;, ..., a, tales que f(x)="Y) axfs(r) para todo
k=1

x€EL.
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§ 2. CONJUNTOS CONVEXOS Y FUNCIONALES CONVEXAS.
TEOREMA DE HAHN — BANACH

1°. Conjuntos convexos y cuerpos convexos. Varios capitulos
importantes de la teoria de espacios lineales tienen como base
el concepto de convexidad que, apoyandose en ideas geométricas
evidentes, admite, al mismo tiempo, un enunciado puramente
analitico. _
- Sea L un espacio lineal real y x, y dos puntos suyos. Se
llama segmento (cerrado) en L, que une los puntos x e y, al
conjunto de todos los elementos de tipo .

ax-+ Py, donde a, p >0, a+p=1.

" El segmento sin los puntos extremos x e y se llama segmento -
ierto. ~ ‘
- Un conjunto McL se llama convexo, cuando junto con dos
cualesquiera puntos suyos x e y contiene también al segmento
“que los une. , . -

Llamaremos ndcleo de un conjunto arbitrario EcL al con-
junto de puntos suyos x tales que para todo y €L existe un ni-
mero e=¢(y) >0 tal que x+ty€L para |[t|<e.

Un conjunto convexo, cuyo nicleo no es vacio se llama cuerpo
convexo. ,

Ejemplos. 1. En el espacio euclideo de tres dimensiones, el
cubo, la bola, el tetraedro y el semiespacio representan cuerpos
convexos. Un segmento, un plano o un tridngulo del mismo
espacio son conjuntos convexos, pero no cuerpos COnvexos.

2. Consideremos en el espacio de funciones continuas sobre
el segmento [a, b] el conjunto de funciones que verifican la

condicion
Ifol<t.
Este conjunto es convexo; en efecto, si
FI<1yle@®I<l,
entonces, para a+f=1, a, f >0
Naf (@) +pe) | <o+p=1.

3. La bola unitaria de /,, es decir, el conjunto de puntos
X=Xy, ..., X, ...) tales que J}x2<(1, es un cuerpo convexo.
Su niicleo se compone de los elementos x que verifican la con-
dicién ¥ a2 < 1.

4. paralelepipedo fundamental II en [, es un conjun -
convexo, pero no un cuerpo convexo. En efecto, sea x€II; esto
significa que lxn|<§n—1:1— para todo n=1, 2, ... Tomemos
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71 1

yo-__'_.(], N L ) . Sea x -+ ty, €II, es decir, x,,+-,t,—|<

1 t | t 1 L 1
St entonces, | -n_\ gl"‘n"",‘,'l'*'lxnl_ggn—l +omiT o
de donde se sigue que =0y, por consiguiente, el niiclec del
conjunto II es vacio. .

n

EJERCICIO. Sea @ el conjunto de puntbs x=(X3, «.., Xp, ...) de I,

que verifican la condicién Zn’xf. < 1. |Demuéstrese que @ es un conjunto
convexo, pero no un Cuerpo convexo. :

Si M es un conjunto convexo, su nicleo /(M) es también
convexo. En efecto, sean x, y€I (M) y z=ax+ Py, a, >0,
a4+ p=1. Entonces, para un elemento dado a€ L existen &, >0
y g, > 0 tales que, siendo |, <&, |Z,| <€, los puntos x+f,a
e y- 1,0 pertenecen al conjunto M; por consiguiente, a €l per-
tenece también el punto a(x-+ta)+P(y+ta)=2-+1ta, si |[{]|<<
<L e=min (g, &), es decir, 2€(M). '

Demostremos la siguiente propiedad sencilla, pero importante,
de los conjuntos convexos.

TEOREMA 1. La interseccion de cualquier nimero de conjuntos con-
| vexos es un conjunto convexo. '

DEMOSTRACION. Sea M = nM«: donde todos los M, son conjuntos

[+ . .
convexos. Sean, ademas, x e y dos puntos arbitrarios de M. En
este caso, el segmento que une los puntos x e y pertenece a cada
M, y, por consiguiente, a M. Por lo tanto, M es efectivamente
convexo. Observemos que la interseccién de cuerpos convexos
{que, de acuerdo con lo establecido, serd un conjunto convexo)
no es necesariamente un cuerpo convexo (dese un ejemplo).

Para todo conjunto A de un espacio lineal L existe el menor
conjunto convexo que contiene A: éste serd la interseccién de
todos los conjuntos convexos que contienen A (existe al menos
un conjunto convexo que contiene A, éste es todo L). Este con-
junto convexo minimal que contiene A se llama cdpsula convexa
del conjunto A. ‘ ' : .

Veamos un ejemplo importante de cdpsula convexa. Sean
Xis Xy +..» Xn4y puntos de un espacio lineal. Diremos que estos
puntos est4n en posicién general, cuando no pertenecen a ningin
subespacio de (n—1) dimensiones. La cépsula convexa de los
puntos x,, X, ..., X,s; que se encuentran en posicién general
se denomina simplice de n dimensiones y los propios puntos x,,
Xg» ..., Xn4, Se llaman vértices de este simplice. Un simplice
de dimensién cero es un punto. Un simplice unidimensional es
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un segmento; un bidimensional, un triangulo y un tridimensio-
nal, un tetraedro. . ‘ : ‘

Si los puntos x;, X, ..., X,4, se encuentran en posicién
general, cualesquiera k41 de ellos (k < n) se encuentran también
en posicion general y, por consiguiente, generan un simplice-
k-dimensional que se denomina facefa k-dimensional del simplice
n-dimensional dado. Por ejemplo, el tetraedro con vértices e,,
e, €5 Y e, tiene cuatro facetas bidimensionales, determinadas:por
las ternas de vértices (e,, e,, €,), (€,, €5, €0), (€5, €5, €,) ¥ (€1, €, €5)
respectivamente, seis facetas unidimensionales y cuatro de di-
mensioén cero. .

TEOREMA 2. Un simplice con vértices x,, X5 ... X,,, es el conjunto
| de todos los puntos que pueden representarse en la forma
: n+l1 n+1

X = kglakxk, ak 2 0, kglak = l-

DEMOSTRACION. Es fécil probar que la totalidad de puntos de
tipo (1) representa un conjunto convexo que contiene los puntos
Xy Xg ..., Xn4y. Por otro lado, todo conjunto convexo que
contenga los puntos x,, x;, ..., X,,, debe contener también los
puntos de tipo (1); consecuentemente, estos puntos forman el me-
nor conjunto convexo que contiene los puntos x,, %, ..., X,

2°. Funcionales convexas. Al concepto de conjunto convexo
estd ligado estrechamente el concepto de funcional convexa,

DEFINICION. Una funcional no negativa p, definida sobre un espacio
lineal real L, se llama convexa, si ,

) p(x+y)<<p(x)+p(y) para todos los x, y€L;

2) p(ax)=ap (x) para todos los o >0.

No admitimos que el valor p(x) es finito para todo x€L,
es decir, se admite el caso en que p(x)= oo para algunos
X€L. : . .
Sefialemos ejemplos de funcionales convexas. - S

1. La longitud de un vector en el espacio euclideo R* de n
dimensiones. La primera condicién significa en este caso que la
longitud de la suma de dos vectores no sobrepasa la suma de
sus longitudes (desigualdad triangular), mientras que la segunda

~se deduce directamente de la definicién de la longitud de un
vector en R”". ' .

2. Sea M el espacio de funciones x acotadas sobre un con-

junto S y sea s, un punto fijo de S. Entonces, ‘ '

Ps, (X)=1x(so) |
es una funcional convexa.
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3.Sea m el espacno de sucesiones numencas acotadas
x={(%;, Xg..-» Xm...). La funcional.

px)= sup | %, |
es convexa.

3°. . Funcional de Minkowski. Consideremos la relacién exis-
tente entre las funcionales convexas y los conjuntos convexos.

TEOREMA 3. Si p es una funcional convexa sobre un espacio lineal
L y k un nimero positivo, el conjunto
E={x p()<k

es convexo. Si la funcional p es finita, el conjunto E
" representa un cuerpo convexo, cuyo nicleo es el conjunto

Hx p(¥) <k}
(de manera que de antemano contiene el punto 0).

DEMOSTRACION, Si x, y€EE y a+4p=1, a, p >0, tenemos
p(ax+PBy) <ap (x)+Bp(y) <k,

es decir, E es convexo. Supongamos ahora que la funcional p
‘es finita, p(x) <k, que £ >0 e y€L; entonces, ‘

p(xity)<p(x)+tp(iy)

Si p(—y)=p(y)=0, tenemos x+ty€E para todo ¢; en cam-
bio, si al menos uno de los nimeros p(y), p{(—y) es distinto
de cero, tendremos X+ ty € E cuando

k—p (x)
< max(p @), p—9) °

Tomemos para k un valor determinado, digamos, k= 1..' En
este caso, toda funcional finita convexa p determina univoca-
mente en L un cuerpo convexo E tal que 0€/(E). Viceversa,

sea E un cuerpo convexo, cuyo ntcleo cont1ene el punto 0.
~ Entonces,

pE(x)=mf{r--eE r>o}- @) |

es una funcional convexa fmlta Se llama funcional de Minkowski -
del cuerpo convexo E.

Probemos la convexidad de la funcional de Minkowski 2).
“Para todo x€L, el elemento i pertenece a E, cuando r es su-

ficientemente grande, ‘por eso, la magnitud pg(x), definida por
" la igualdad (2), es no negativa y finita. Si >0 e y=tx,
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tenemos )
pe)=int {r>0: LeE}=ini{r>0: LeE}=
—_-inf{tr’ >0: %eE}=tinf {r’>0: —f,—EE}:
=1pg(x). 3)
Sean ahora x,, x,€L y sea ¢ >0 arbitrario. Escojamos los na-
meros r; (i=1, 2) de manera que pg(x) <r;<pp(x;)+e;
entonces, i:‘— € E. Pongamos r=r,-}r,; entonces, xl'l'x‘lz';_lrxf_
i 3 .
+'72;°3 pertenece al segmento con extremos ’:—: y % Como E es
2
‘convexo, este segmento y, por consiguiente, el punto X172 ":x’ per-
tenecen a E y por eso

Pe(y+x,) S<r=r+r, < ppxy) + pgx,) + 2e.
Puesto que e es aqui arbitrario, tenemos"
Pe(%y+ %) < Pp(%) +pe(x,). @)

Las .relaciones (3) y (4) significan precisamente que la funcional
_pE(x) es convexa. o

4°, Teorema de Hahn—Banach. Sea L un espacio lineal real
y sea L, un subespacio suyo. Supongamos, ademas, que sobre el
subespacio L, se ha definido una funcional lineal f,. Una fun-
cional lineal f, definida sobre todo el espacio L, se llama
prolongacién de la funcional f,, cuando

fx)=F,(x) para todo x€L,.
El problema sobre la extensién de una funcional lineal, dada
inicialmente sobre un subespacio, a un espacio mayor surge con

frecuencia en el Analisis. El papel principal en estas cuestiones
- lo desempefia el siguiente teorema.

TEOREMA 4(HAHN—BANACH). Sea p una funcioﬂal convexa finita,
| definida sobre un espacio lineal real L, y sea L, un subespacio
lineal de L. Si f, es una funcional lineal sobre L,, que wveri-

fica sobre L, la condicion
folx) <p(x), ®)

la funcional f, puede ser prolongada a una funcional | sobre
L, que verifica en todo L la condicién (5).

' DEMOSTRACION. Probemos que, siendo L,s~L, la funcional f, se
puede prolongar de L, a un subespacio mayor L’, conservando
la condicién (5). En efecto, sea z un elemento arbitrario de L
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que no pertenece a L, y sea L’ el subespacio generado por L, y
el elemento z. Todo elemento de L’ tiene la forma

tz+x, donde x€L,.

Si f' es la prolongacion deseada de la funcional fo sobre L',

tenemos
- P tz+x)=1tf' (2)+ [, (x),
o, tomando ' (2)=c,
' (tz+xy=tc+fo (x).
Escojamos ahora ¢ de manera que en todo L’ se cumpla la con-

dicion de subordinacién (5), es decir, que para todo xeLo y
cualesquiera ¢ reales se verifique la desigualdad

fo(x)+tc<p (x+12).

Para ¢ >0 esta condicién es equivalente a
h(F)+e<p(F+2).0 c<p(F+2)—F (2). )
y para ¢t <0 es equivalente a '

1 (2) emp (2] 0 e2p(~5 1)1 (2) 0

Demostremos que sxempre existe un ¢ que cumple las condiciones
(6) y (7). Sean y’ e y" elementos arbitrarios de L,.  Entonces,

—fh @) +P Y +2) =~ (') —p(—y —2). 8)
En efecto, este resultado se obtiene de la desigualdad

Fo)—Fo (<P — y) Py +2)—(y +2) <
<p(y”+2)+p( —y —2).
Tomemos

-‘mf(—-fo(y")+P(y”+2)), C—Sup( fo()—p(—y —2)).

Debido a que y e y son arbitrarios, de (8) se deduce que
¢ >c’. Escogiendo ¢ de manera que

d=c>=d,
veremos que la funcional [, definida sobre L’ por
F(tz+x)=tc+fo (x),
verifica la condicién de subordinacién (5). Por con51gu1ente,
hemos demostrado que, si la funcional f, esta definida sobre un
-subespacio L,cL y verifica en L, la condicién (5), se puede

extender f,, conservando esta. condncxon, a un subespacio mayor
L’. En el caso en que se pueda escoger en L un sistema nume-

10—3427
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rable de elementos x,, %,,..., %,... que genera todo L, la
funcional sobre L se construye por induccién, considerando la
cadena creciente de subespacios -

CLW={L,, %}, LO={L®, x},...

(aqui {L'®, x..,} representa el subespacio lineal minimal de L
que contiene L**' y x,..). Entonces, todo elemento x € L entrara
en algin L' vy, por consiguiente, la funcional resultara prolon-
gada a todo L. » A
En el caso general (es decir, cuando no existe un conjumto
numerable generador de L), la demostracién concluye aplican-
dose el lema de Zorn. El conjunto & de todas las prolonga-
ciones posibles de la funcional f,, que verifican la condicién de
subordinacién (5), es un-conjunto parcialmente ordenado y todo
subconjunto suyo &, linealmente ordenado tiene extremo™ supe-
rior; este extremo superior es la funcional, definida sobre la
~unién de los campos de definicién de las funcionales /' €&, y
coincidente con cada una de estas /' en su campo de defini-
cién. De acuerdo con el lema de Zorn, existe en & un elemento
maximal f. Este elemento maximal f representa precisamente la
funcional deseada. En efecto, es una prolongacién de la funcional
inicial f,, verifica la condicién (5) en su campo de definicién y
cstd  definida sobre todo el espacio L, ya que de lo contrario
seria posible prolongaria, empleando el método descrito anterior-
mente, del subespacio propio, en que esté definida, a un subes-
pacio mayor, y, por consiguiente, f no seria un elemento maxi-
mal. El teorema queda demostrado. ‘
Sefialemos también la variante compleja del teorema de
Hahn—Banach. . ' :
Una funcional no negativa p, definida sobre un espacio lineal
complejo L, se llama convexa, cuando para todo x, y€L y
cualesquiera nimeros complejos A

PEHY<PpE)+p (),
P O=[Alp(). |
TEOREMA 4a. Sea p una funcional convexa finita sobre un espacio
lineal complejo L y sea f, una funcional lineal, definida sobre
un subespacio lineal L,cL, donde verifica la condicién
[Fo)I<p(x), x€T,.

Entonces, existe una funcional lineal f, definida en todo L, que
verifica las condiciones

CFmI<p@®), x€L,
f(x)=fo(x)v X € L,.
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DEMOSTRACION. Denotemos mediante Lp y Lyp los espacios L
y L, considerados como espacios lineales reales. Estd claro
que p es una funcional convexa finita sobre L y que for(x) =
= Re f,(x) es una funcional lineal real sobre L,, que verifica
la condicién

|For (%) | << P (%)
y, es mas, la condicién o
for () < p (%)
En virtud del teorema 4, existe una funcional lineal real fz.
definida en todo Lg, que satisface las condiciones ‘
R p(x), x€lg (=L),
fr(®)=For (X), X€ Lo (= L)
Fs tevidente que —fr(X)=Fr(—x)<p(—x)=p() y, por lo
anto, -
C R@I<p @), x€Lg (=1 ©)
Definamos en L la funcional f, tomando '
F)=Fr(x)—ifr (ix)

(aqui nos valemos de que L es un espacio lineal complejo,

de manera que en él estd definida la multiplicacién por niime- -
ros complejos). Una comprobacién directa muestra que f es una
funcional lineal compleja sobre L y que, ademas,

f(x)=Fo(x) para x€L,
Re f(x)=fgr(x) para x€L.

Resta demostrar que |f(x)|<{p(x) para todo x€ L. Suponga-
mos lo contrario; entonces, para algin x,€L tendremos
|f(x5)| > P (x). Representemos el ntimero complejo f(x,) en la
forma f (x,)=pe’®, donde p >0, y pongamos y,=e~‘¢x,. Enton-
ces, [g(y)=Ref(yo)=Re[e=¥(1)]=p > p(t)=p(4) y esto
contradice a la condicién (9). El teorema queda demostrado.

EJERCICIO. Demuéstrese que en el teorema de Hahn—Banach se puede
- omitir 1a condicién de que la funcional p sea finita.

" 5° Separabilidad de conjuntos :convexos en espacios lineales.

Sea L un espacio real y M y N dos subconjuntos en él. Se dice
que la funcional lineal f definida sobre L separa estos conjuntos,
cuando existe un nimero C tal que o

 f(*)>=C para x(€)M y f(x)<C para x€EN.
10*
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Las dos siguientes proposiciones se desprenden directamente de .
la definicién dada.

1) Una funcional lineal f separa los conjuntos M y N si, y
s6lo si, separa los conjuntos M—N y {0} (es decir, el conjunto,
compuesto por todos los elementos de tipo x—y, donde xeM
. e yeN, y el punto 0). ‘

2) Una funcional lineal f separa los conjuntos M y N si, y
~ s6lo_si, separa los conjuntos M—x y N—x para todo x€L.

Del teorema de Hahn—Banach se obtiene sin dificultad el
siguiente teorema sobre la separabilidad de conjuntos convexos
en un espacio lineal, que encuentra multiples aplicaciones.

TEOREMA 5. Sean My N dos conjuntos convexos disjuntos en un
espacio lineal real L, con la particularidad que al menos uno
de ellos, digamos M, tiene un niicleo no vacio (esto es, repre-
senta un cuerpo convexo). Entonces, existe sobre L una funcio-
nal f.lineal no nula que separa M y N. .

DEMOSTRACION. Sin perder. generalidad, podemos admitir que el
punto O pertenece al nicleo del conjunto M. (De lo contrario,
considerariamos los conjuntos M—x, y N—x, donde x, es
algiin punto del niicleo de M). Sea y, un punto del conjunto N;
entonces, el punto —y, pertenece al niicleo del conjunto M— N,
mientras que el punto 0 pertenece al niicleo del conjunto
K=M—N+y,. Como los conjuntos M.y N no se intersecan,

tenemos 0EM—N e y,€K. Sea p la funcional de Minkowski

del conjunto K. Entonces, p(y,)=>1 (puesto que Yo € K). Consi-
deremos la funcional lineal :

fo (ayo) = op (y,).

Estd definida sobre un subespacio unidimensional, compuesto
por elementos de tipo ay,, y cumple la condicién

fo (@) < p(ay,),

ya que p(ay)=oap(y,) para a=0y f,(ay)=oaf,(y) <0<
< p(ay,) para @ < 0. De acuerdo con el téorema de Hahn—Ba-
nach, la funcional f, puede extenderse hasta una funcional
lineal. f, definida en todo L, que verifica en L la condicién
f@<p(). De aqui se deduce que f(y)<<1 para y€K y que,
al mismo tiempo, f(y,) >1. Es decir, [ separa los conjuntos K
e {y,}y, por consiguiente, f separa M—N y {0}; pero, enton-
gesa‘ [ separa los conjuntos M y N. El teorema queda demos-
rado. . . '
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§ 3. ESPACIOS NORMADOS '

En el capitulo II hemos.considerado los espacios topolégicos,
en particular, ‘métricos, es decir, conjuntos en los que se ha
introducido, de una u otra manera, el concepto de proximidad
de elementos, mientras que en los paragrafos anteriores de este .
capitulo hemos tratado espacios lineales. Hasta -ahora  hemos -
considerado estos dos entes, los espacios topolégicos y los espacios
lineales, independientemente uno del otro. No obstante, en el
Anélisis tropezamos, casi siempre, con espacios provistos tanto
de una topologia como de operaciones de adicién de elementos
y multiplicacién de éstos por niimeros, es decir, tropezamos con
los asi 1lamados espacios topoldgicos lineales. Entre
- los espacios topoldgicos lineales constituyen una clase importante
los espacios normados. La teoria de estos espacios fue
desarrollada en los trabajos de S. Banach y de otros autores.

1°. Definicion y ejemplos de espacios normados.

DEFINICION'1. Sea L un espacio lineal. Una funcional convexa
finita p, definida sobre L, se llama norma, cuando verifica las
siguientes condiciones adicionales (ademas de la de convexidad):

1) p(x)=0 sélo si x=0, o

2) p(ax)=|a|p(x) para todo @. ~ - .

Por consiguiente, podemos decir, recordando la -definicion
de convexidad, que se llama norma en L a una funcional finita
que cumple las tres condiciones siguientes: . ‘

IO)_p(x)>O, con la particularidad de que p(x)=0 sélo si
X=V,

2 px+y)<px)+p@) xyel, -
3) p(ax)=|a|p(x) cualquiera que sea el nimero a.

periNicioN 2. Un espacio lineal L en el que se ha introducido
_una norma se llama espacio normado. La norma del elemento
x€ L se denotard mediante el simbolo | x||. o
Todo espacio normado se convierte en un espacio meétrico,
si para dos cualesquiera elementos x, y €L se toma

p(x’ y)=||x——y||.

La validez de los axiomas de espacio métrico se desprende di-
‘rectamente de las propiedades 1), 2) y 3) de la norma. En los
~ espacios normados subsisten, por consiguiente, todos los conceptos
.y resultados expuestos en el capitulo II para los . espacios
métricos. :

Un espacio normado completo se llama espacio de Banach o,
brevemente, B-espacio. - : :
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'Ejemplos de espacios normados. Muchos de los espacios, con-
siderados en el capitulo I como ejemplos de espacios métricos
(v en el § 1 de este capitulo, como ejemplos de espacios linea-
les), pueden proveerse de hecho de una estructura natural de
espacio normado. : - o

1. La recta numérica R' se convierte en un espacio normado,

si se toma || x||=|x| para todo niimero x € R'. _

2. Si en el espacio real R” de n dimensiones con -elementos
, X=(Xy, Xop «v.y X,) :
tomamos

' lell-%‘l/kﬁ‘n‘_,l Xk (D)

se comprobaran todos los axiomas de la norma. La férmula
Pl =llx—yll= 2 ti—s*

determina en R” la misma métrica que hemos considerado ya
en este espacio. ‘ o , :
En este mismo espacio lineal se puede introducir la norma

. n

B A K
y la norma a ,
’ ll%llo=max |x,|. ®3)
. I<kg<n

Estas normas determinan en R” las métricas que hemos consi-
derado "ya en los ejemplos 3'y 4 del § 1 del capitulo II. No
ofrece dificultad comprobar que en cada uno de estos casos se’

cumplen efectivamente los axiomas de la norma. - ;
 En el espacio complejo C* de n dimensiones se puede intro-

x| ;/kglxk|=. |

ducir la norma
o cualquiera de las normas 2 o (3).‘

- 3. Definamos la norma en el espacio Ciq, »; de funciones con-
tinuas sobre el segmento [a, b] mediante {a formula

fll= max |f()]. 4)
o agigb

La distancia, correspondiente a esta norma, fue considerada ya
en el ejemplo 6 del § 1 del capitulo II.
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4. Sea m el espécio de sucesiones numeéricas acotadas
' X=(Xgs Xgo von s X ooo)
Pongamos , ;
l\,xllv=sgplxn [ - )]

Es obvio que las condiciones 1), 2), y 3) de la definicién de la
norma se cumplen. La métrica que induce en m esta norma
coincide con aquella que hemos considerado anteriormente (cap. II,
§ 1, ejemplo 9). ) - '

2°. Subespacios de un_espacio normado. Hemos definido un
subespacio de un espacio lineal L (desprovisto de topologia cual-
quiera) como un conjunto no vacio L, tal que, si x, yEL,, se
tiene ax+Py € L, En un espacio normado, son de interés prin-
cipal los subespacios lineales cerrados, es decir, aquellos subes-
pacios que contienen todos sus puntos de acumulacién. En un
espacio normado de dimensién finita todo subespacio es automa-
ticamente cerrado (jdemuéstrese esto!). En el caso de un espacio
de dimensién infinita esio no es asi. Por ejemplo, en el espacio
Cia, vy de las funciones continuas con la norma (4), los polino-
mios forman un subespacio, pero no cerrado™®. ‘

Otro ejemplo: en el espacio m de las sucesiones acotadas,
las sucesiones, que contienen solamente un nimero finito de
elementos diferentes de cero, constituyen un subespacio. Sin

embargo, no es cerrado: su adherencia contiene, por ejemplo, la
sucesion (1, —;—, iy -;Il-, ‘

Puesto que en lo sucesivo consideraremos, como regla general,
solamente subespacios cerrados, resulta l6gico ‘modificar algo la
terminologia establecida en el § 1. En este orden, entenderemos
por subespacio de un espacio normado un subespacio cerrado; en
particular, el subespacio generado por un sistema dado de ele-
mentos {x,} serd el menor subespacio cerrado que contiene {x.t.
Llamaremos este subespacio adherencia lineal del sistema {x,}.
El conjunto (no cerrado) de elementos que contiene junto con
x e y cualquier combinacién lineal ax-By de ellos, se llamara
variedad lineal. , R '

Un sistema arbitrario de elementos, pertenecientes a un espa-
cio normado E, se llamara completo, cuando el subespacio (jce-
rrado!) generado por él es todo el E. Por ejemplo, en virtud del
teorema de Weierstrass, el conjunto de todas las funciones 1, ¢,

D De acuerdo con el teorema de Weierstrass, segiin el cual foda funcién
continua sobre un segmento es limite de una sucesién uniformemente con-
vergente de polinomios, la adherencia del subespacio de polinomios en
Cta, vy €s todo Cig, o). : ' '
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£, ..., 1" ... es completo en el espacio de funciones conti-
nuas C[a, ) - :

EJERCICI0S. 1. Sea R un espacio de Barlach{ sea §; 58, D ... S, D...
una sucesién de bolas cerradas encajadas en él Demuéstrese que tiene una
interseccién no vacia (aqui no se supone que los radios de estas bolas
tienden a 0; compérese con el ejercicio de la pag. 75). Dése un ejemplo
de una sucesién de conjuntos encajados no vacios, acotados, cerrados y
convexos de un B-espacio, con interseccién vacia.

2. Sea R un. B-espacio de dimensién infinita; entonces, su dimensién
algebraica (véase el ejercicio de la pag. 134) es innumerable.
. 3. Sea R un espacio de Banach y M un subespacio suyo cerrado. Con-

sideremos el espacio cociente, P=R/M vy definimos en él la norma, tomando.
para toda clase de equivalencia - :

&= inf [|x].
xet

Demuéstrese que la funcional asf definida representa efectivamente una

norma en P y que, ademds, el espacio P con esta norma es un espacio de
Banach.

4. Sea R un espacio lineal normado; demuéstrese la validez-de las
siguientes proposiciones: :

1) todo subespacio lineal de dimensién finita de R es cerrado;

2) si M es cerrado y N es un subespacio de R de dimensién finita,
la- suma o :

M+N={x:x=y+2, y€EM, 2€ N}
-es un subespacio lineal cerrado; dése un ejemplo de dos subespacios lineales

cerrados del espacio /,, cuya suma no es cerrada;

3) sea Q un conjunto abierto convexo de R y sea x, € Q; entonces,

“existe un hiperplano "cerrado que pasa por el punto x, y no se intersecta
con Q. : :

5. Dos normas || - ||y, || - |l; de un espacio lineal R se llaman equiva-
lentes, cuando existen unas constantes a, b > 0 tales que allxil; <<|Ixll, <<
<b||x||; para todos x € R. Demuéstrese que, siendo el espacio- R de
dimension finita, cualesquiera dos normas én &1 son equivalentes.

- § 4. ESPACIOS EUCLIDEOS

1°. Definicion de espacios euclideos. Un método bien conocido
de .introducir una norma en un espacio lineal es el de definir
en éste el producto escalar. Recordemos que se llama producto
escalar en un espacio lineal real R a una funcién real x, )
definida para’ cada par de elementos x, Yy € R, que verifica

las siguientes condiciones: - : '

D=, x),

2) (x, Y +4,)=(x, 41) + (x, Ys)

3) (Ax, y)=2r (*, ),

4) (x, x)>0 y (x, x)=0 sélo si x=0.

Un espacio lineal con un producto escalar ‘definido en &l se
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llama espacio euclideo. En un espacio euclideo R se introduce la
norma mediante la férmula

lxl=V& 0. (1)

De las propiedades 1), 2), 3) y 4) del producto escalar se deduce
que se cumplen todos los axiomas de la norma.

En efecto, el cumplimiento de los axiomas 1) y 3) de la
norma (punto 1 del § 3) es evidente y la validez del axioma 2)

(desigualdad triangular) se deduce de la deszgualdad de Cauchy—
Buniakouski

[ )<l Ilyll

que demostraremos ahora.
Consideremos el siguiente trinomio de segundo grado respecto
a la variable real A, no negativo para cualesquiera valores de A:

PN =Ax+y, Ax+g)=M(x x)+2A (% Y+ y)=
=l %A%+ 2 (x, y)7~+llylla>0

La desngualdad de Cauchy— Buniakovski afirma simplemente
que el dlscnmmante de este trmomlo de segundo grado es no
positivo.

Observemos que en un espac;o euclideo todas las operaciones
(adicién, multlphcacron por nimero, producto escalar) son con-
tinuas, es decir, si x,—x, y,—y (en el sentido de convergencia
respecto a la norma) y A,—\A (como una sucesién numérica),

entonces,
' XptYp—x+Y,
ApX, — Ax,
(%5 Yp) — (x5 &)
La demostracién de este resultado se basa en la desigualdad

de Cauchy—Bumakovskn y queda, a titulo de ejercicio, a cargo
del lector.

La existencia del -producto escalar en R permite definir en
este espacio no sélo la norma de un vector (es decir, su longi-
tud), sino también el adngulo entre vectores; a saber, el angulo
@ entre dos vectores x e y se define medxante la féormula

=y
RS FIR Y @)

De la desxgualdad de Cauchy———Bumakovskl
e pl<lixll-llgl

se deduce que ‘el valor absoluto de la expresmn que f;gura en
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el miembro derecho de (2) no sobrepasa 1, es vdecxr, determina,
efectivamente, un 4ngulo ¢, 0o <=, cualesqulera que sean
xey.

Si (x, y)=0, tenemos de (2) ¢=; en este caso los vectores

x e y se llaman ortogonales.
Un sistema {x,} de vectores de R dnferentes de cero se llama

ortogonal cuando _
(xm x3)=0 para a#ﬁ
Si los vectores x, forman un sistema ortogonal son lmealmente-
independientes. En efecto, sea
ax,1+a,x,,+ . +a,x0,=0;
si {x,} es un sistema ortogonal,
(xat’ AXo,+ ... +a xan)=ai (xccv xai)=0

es decir, puesto que (Xq, Xo) =0, tenemos a;=0 para todos
los i=1, 2, ..., n.

Un sistema ortogonal {x,} completo (es decir, tal que el menor
subespacio cerrado que lo contiene es todo el R) se llama base -
ortogonal. Si, ademas, la norma de cada elemento es igual a 1,
el sistema {x,} se llama base orfonormal. En general, un 51stema
{x.} (completo o no) tal que

‘ 0 para as=p,
e %=1 para o=,
se llama sistema ortonormal. Esta claro que siendo {x,} un sis-
tema ortogonal, el sistema {” T }resulta ortonormal

2°. Ejemplos. Consideremos algunos ejemplos de espacios eucli-
deos y bases ortogonales en ellos.

1. El espacio de coordenadas R” de r dimensjones, cuyos
elementos son los sistemas de ntimeros reales

X=Xy Xgp ..., x,,)

con las operaciones habituales de adicién y multnphcacmn en él
y con el producto escalar

-(x-, y)= 2 xiyl 3)

representa un ejemplo bien conocido de espacio euclideo. Una
base ortonormal en él (una del namero infinito de bases orto-
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normales posiblés.que tiene) viene dada por los vectores

e,=(1,0,0, ..., 0),
e,..~_—(0,>_1,> 0, ceey O), :

2. El espacio l, con los elementos
X=(Xys Xgs «er s Xps ..‘.7,), donde iil x} < oo,
y con el producto escélar |
(x Y= é }Ciyi ‘ (4)

es un espacno euclideo. En efecto, la convergenc:1a de la serie
que figura en el miembro derecho de (4) fue demostrada ya
en el cap. II, § 1. Las propiedades 1), 2), 3) y 4) del producto
escalar se comprueban directamente. La base ortonormal maés
sencilla de I, es la formada por los vectores

e,=(1, 0,0, ...),
e,=(0, 1,0, ...),
e,=0, 0, 1, ...), ®)

----------

Son obvias la ortogonalidad y normalidad de este sistema; al mismo
tiempo, el sistema (5). es completo: sea x=(x;, X3 ..., Xpy -..)
un vector cualquiera de I, y sea x™ = (x;, X5, ..., X,, 0,0, ...).
Entonces, x'® es una combinacién lineal de los vectores e;, ...,
e,y || — x||—+0 para n—»oo.
- 3. El espacio C}2 4), compuesto por funciones contmuas reales
sobre [a, b], con el producto escalar

(. &= Sf(t)g(t) dt - (6)

representa también un espacno euclideo. Entre dlferentes bases
ortogonales que se pueden sefialar en él, es de importancia prin-
cipal el sistema trlgonometrxco, compuesto por las funciones

1 2nt 2mt
7,cosn “a,senn-b-_—- (n=1, 2, Dol (7).

b—
La ortogonalidad de este sistema se comprueba directamente.
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Si consideramos las funciones continuas sobre un segmento
de longitud 2n, digamos sobre [—mn, =], el sistema trigonomé-
trico correspondiente serd 1/2, cosnt, sennt (n=1, 2,...).

-El sistema (7) es completo. En efecto, de acuerdo con el -
teorema de Weierstrass, toda funcién ¢ continua sobre el seg-
mento [a, b], que toma valores iguales en los puntos a y b,
puede ser representada como limite de una sucesién uniforme-
mente convergente de polinomios trigonomeétricos, es decir, de
combinaciones lineales de elementos del sistema (7). Con mas
razén esta sucesion convergerd a ¢ segiin la norma del espa-

cio C{z) »1. Si f es una funcién arbitraria de C{ sy se puede
representarla como limite (segin la norma del espacio C{2 ;)

FIG. 18

de una sucesién de funciones ¢, cada una de las cuales coincide
1 . :
con f en el segmento [a, b—;], es lineal en el segmento

[b—;;, b] y toma en b el mismo valor que tiene en el punto

a (fig. 18). Por consiguiente, todo elemento de c 5] se puede
aproximar tanto como se quiera (en la métrica de este espacio)
mediante combinaciones lineales de elementos del sistema Ny
esto demuestra precisamente su complitud. »

3°. Existencia de bases ortogonales, ortogonalizacién: En la
parte que queda de este paragrafo, nos limitaremos a espacios
euclideos separables. (esto es, a los provistos de un conjunto
numerable siempre denso). Cada uno de los espacios, sefialados
en el punto anterior, es separable (jdemuéstrese esto!). Un ejemplo
de un espacio euclideo, en el que no existe un conjunto nume-
rable siempre denso, se puede: construir de la siguiente manera.
Consideremos sobre el segmento [0, 1] todas las funciones
posibles x, para cada una de las cuales el conjunto de puntos
iy 4y, ..., donde ella _es diferente de cero, es 'a lo sumo
numerable y la suma Y x*(¢), tomada respecto a estos puntos,
es finita. Definamos en este espacio las operaciones de adicion y
multiplicacién por ntimeros como las habituales adicién y multi-
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plicaciéon de funciones y el producto escalar de x por y, de la
siguiente manera:

@ y)=2x )y (),

donde la suma se toma segln el conjunto de puntos ¢; tales que
x(t;)y(t;)=~=0. Proponemos al lector demostrar que en este espacio
no existe ningin subconjunto numerable siempre denso.
Sea, pues, R un espacio euclideo separable. Demostremos que
todo sistema ortogonal de un tal espacio es a lo sumo numerable.
En efecto, sin perder generalidad podemos admitir que el sistema

{9.} no sélo es ortogonal, sino también normal (de lo contra-

rio, podriamos sustituirlo por el sistema {W?P?LH}) . En este caso,
lpa—@gll=V"2 para o= p.

Consideremos el conjunto de bolas B (q%, —;—) . Estas boias no

se intersecan. Si el conjunto numerable {y,} es siempre denso
en R, en cada una de estas bolas hay al menos un elemento
de {¢,}. Entonces, el nimero de estas bolas (y, por consiguiente,
de los elementos ¢, también) es a lo sumo numerable.

Hemos sefialado una base ortogonal en cada uno de los
ejemplos expuestos de espacios euclideos. Demostremos ahora el
siguiente teorema general, analogo al teorema de existencia de
una base ortogonal en el espacio euclideo de n dimensiones.

TEOREMA 1 (sobre la ortogonalizacién). Sea
fpfe’--'vfm-,” (8)

un sistema linealmente ' independiente de elementos de un espacio
euclideo R. Existe en R un sistema de elementos

q’1?(p2’°"9(pn"" (9)
que satisface las siguientes condiciones:

1) el sistema (9) es ortogonal y normal;
2) todo elemento @, es una combinacién lineal de los elementos

Forfaoeor i |
(Pn=an1f-1+ e +annfn’

con a,,#0;
3) todo elemento f, se representa en la forma [,=0b,¢,+ ...
«er+b,,9, donde b,,+0. '

‘Todo elemento del sistema (9) queda determinado por las con-
diciones 1), 2) y 3) univocamente, salvo un factor + 1.
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DEMOSTRACION. Representemos el elemento @, en la forma
: oy=ayf,; -
entonces, a,, se determina por la condicién

(90, 1) =a}, (f,, f)=1,

1 +1
de donde Qo= — =
b T VR |
Esta claro que @, se determina univocamente (salvo el signo).
Supongamos que han sido construidos ya los elementos @, (k < )
que verifican las condiciones 1), 2) y 3). En este caso, se puede
representar f, en la forma E

fn=bn1q)1+ v +bn, n"l(pn—l_"'hn;
donde - (hy 9,)=0 para k<n,

En efecto, los coeficientes correspondientes b,, y, por consiguiente,
el elemento A, quedan determinados univocamente por las condi-
ciones ' :

(hm (Pk) = (fn—bnl"pl—' DR _bn, n=1Pn-1 (ph) = »
. § =(fm q)k)_b,nk ((pk’ (pk)=0
Es evidente que (h,, 4,) > 0 (la suposicién (k,, h,)=0 estaria
en contradicciéon con la independencia lineal del sistema (8)).
Pongamos
, hn
Y o i

De esta construccion inductiva se desprende que 4, y, por consi-
guiente, también ¢, se expresan mediante f,, ..., f,, es decir,

1 -
P, =a,f+ ... +a,f, donde a,,= m 0. Ademés

(Pny Pn)= 17 (@n 9)=0 (k< n).

fa=bu®i+t .. +0uPn =V (b, h) = 0),

es decir, @, verifica las condiciones del teorema.

El paso del sistema (8) al sistema (9) que satisface las con-
diciones 1), 2) y 3) se llama proceso de ortogonalizacién.

Esta claro, que los. subespacios generados por los sistemas
(8) y (9) coinciden. De suerte que estos sistemas son completos
o no lo son simultaneamente.

COROLARIO. En todo espacio euclideo separable R existe una
base ortonormal.

y
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En efecto, sea ¥,, ¥, ..., P, ... un conjunto numerable
siempre denso en R. Escojamos de €l un sistema completo de
elementos linealmente independientes {f,}. Para ello bastara con
omitir de la sucesién {,} todos aquellos elementos v, que pueden
representarse como una combinaciéon lineal de ; con i <k.
Aplicando el proceso de ortogonalizacion al sistema completo de
‘elementos linealmente independientes obtenido de esta forma,
encontraremos la base ortonormal. ‘ -

EJERCICIOS. 1. Dése un ejemplo de un espacio euclideo (no separable)
en el que no existe ninguna base ortogonal. Demuéstrese que en un espacio
euclideo completo (no necesariamente separable) existe una base ortonormal.

2. Demuéstrese que en un espacio euclideo completo (no necesariamente
separable) toda sucesién de conjuntos encajados no vacios, convexos, ce-
rrados y acotados, tiene una intersecciéon no vacia (compérese con los ejer-
cicios de las pégs. 75 y 152). . o

- 4°, Desigualdad de Bessel. Sistemas ortogonales cerrados.
Introduciendo en el espacio euclideo R* de n. dimensiones una
- base ortonormal e,, e, ..., e, todo vector x€ R* puede repre-
sentarse en la forma -

Q

X == Cilhs (10)
k=1

donde }
Cr=(%, &) (11

Veamos de qué forma puede generalizarse elidesarrollo (10) al
caso de un espacio euclideo de dimensién infinita. Sea

Pus Pos covs Py - oo o (12)

un sistema ortonormal en un espacio euclideo R y sea f un ele-
mento arbitrario de R. Pongamos en correspondencia a todo
elemento f€ R la sucesion de ntimeros :

= o, k=1, 2, ..., 13)

que llamaremos coordenadas o coeficientes de Fourier del elemento f
seglin el sistema {¢,}, y la serie (por ahora formal) '

: ; CrPr ' - (14)

que llamaremos serie de Fourier del elemento f segin el sistema
ortogonal {g,}. , : :

Surgen logicamente las siguientes preguntas: ¢converge la se-
rie (14), es decir, tiende a algin limite (en el sentido de la
métrica del espacio R) la sucesion de sus sumas parciales? y si
converge ¢coincide su suma con el elemento inicial f?
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Para responder a estas preguntas, consideremos primero el
siguiente problema: para un n dado hay que escoger los coefi-

cientes a, (k=1, 2, ..., n) de manera que la distancia entre f
y la suma . "
Sn'—_‘.’;;l %P ' (15)

sea minimal. Calculemos esta distancia. Como <l sistema (12) es
ortonormal, tenemos

“ f"_'Sn ”2 = (_f—iakfpk, f— Zjockcpk> = ’
= D—2( Zak¢k)+<k§1 %P 2 ,afcp,)——-

— P —2 Sawes+ Sat =171 — e+ 3 ey

-Estd claro que esta expresi6n alcanza su minimo cuando el
tltimo sumando es igual a 0, es decir, para ‘

. a,=c¢, k=1,2,...,n ' (16)
- En este caso,

1F=S, =17 lr— 3 a7

Hemos demostrado que para un n prescrito entre todas las
sumas de tipo (15) la de menor desviacién de f es la suma par-
cial de la serie de Fourier del elemento f. Geométricamente este
resultado se puede interpretar del siguiente modo. El elemento

n
f—-»E 0P
k=1

es ortogonal a todas las combinaciones lineales de tipo

2 Br®e
k=1 .

. es decir, es ortogonal al subespacio generado por los elementos
@1 Py ..., §, cuando, y sélo cuando, se cumple la condicién
(16) (jcompruébese esto!). Por consiguiente, el resultado obtenido
‘representa una generalizacion del conocido teorema de la Geo-
metria Elemental: la longitud de la perpendicular bajada de un
punto dado a una recta o a un plano es menor que la longitud
de cualquier oblicua trazada por el mismo punto.
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Puesto que siempre ||f—S, || >0, de la igualdad (17) fluye que
% A< |
k=1

Aqui n es arbitrario y ¢l miembro derecho no depende de n; por

consiguiente, la serie 3\ ¢} converge y
k=1 :

Sa<ie a9

Esta desigualdad se 1lama desigualdad de Bessel. Geométricamente
significa lo siguiente; la suma de los cuadrados de las proyec-
ciones de un vector f sobre direcciones mutuamente ortogonales
no sobrepasa el cuadrado de la longitud del propio vector f.
Introduzcamos el siguiente concepto importante.

peFInicioN. Un sistema ortonormal (12) se 1lama cerrado, cuando
para cualquier f€R se cumple la igualdad :

B a=ii )

llamada igualdad de Parseval.

De la identidad (17) se deduce que el sistema (12) es cerrado
si, y solo si, para todo f€R las sumas parciales de la serie de
Fourier Y ¢,p, convergen a f.

El concepto de un sistema ortonormal cerrado est intimamente
ligado al concepto de un sistema completo introducido anterior-
mente.

TEOREMA 2. En un espacio euclideo separable R todo sistema orto-
| normal completo es cerrado y viceversa.

DEMOSTRACION. Sea el sistema {g,} cerrado; entonces, cualquiera
que sea el elemento f€ R, la sucesion de las sumas parciales de
su serie de Fourier converge a f. Esto significa que las combi-
naciones lineales de los elementos del sistema {g,} son siempre
densas en R, es decir, que el sistema {g,} es completo. Viceversa,
supongamos que el sistema {g,} es completo, esto es, todo ele-
mento f€ R se puede aproximar con precision arbitraria mediante
combinaciones lineales

n
D, P
k=1

- 113427
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de elementos del sistema {9,}; 1a suma parcial
> CrPe
k=1

de la serie de Fourier de f da una aproximacién no menos exacta.
Por consiguiente, la serie :

> Py
k=1

converge a f y tiene lugar la igualdad de Parseval.

En el punto anterior hemos demostrado la existencia de sis-
temas ortonormales completos en un espacio euclideo separable.
Como para los sistemas ortonormales los conceptos de sistema
cerrado y completo coinciden, la existencia en R de sistemas
ortonormales cerrados no necesita una nueva demostracién y los
ejemplos de sistemas ortonormales completos, sefialados en el
punto anterior, son. al ‘mismo tiempo, ejemplos de sistemas ce-
rrados. : '

En la exposicién anterior los sistemas ortogonales se suponian
normales. Se puede enunciar los conceptos de coeficientes de
Fourier, de serie de Fourier, etc., para cualesquiera sistemas orto-
gonales. Sea {@,} un sistema ortogonal arbitrario. A partir de él
podemos construir un sistema normal, compuesto por los ele-

mentos t|>,,=ﬁ"ﬂ. Para todo f€R tenemos

cn=(f’ ‘pn)=m0cv q’n) y chlpn=2r£'n—'¢n=2dnq)m

l(Pn“
donde
_ (e
&= o = Toal (20)

Los coeficientes a,, definidos mediante la férmula (20), se 1laman
coeficientes de Fourier del elemento f segiin el sistema ortogonal
(no normal) {¢,}. Tomando en la desigualdad (18) en lugar de
C, Sus expresiones c,=a,| ¢,||, deducidas de (20), obtenemos

Slealraa<ifip | (@1)
que representa la desigualdad de Bessel para un sistema orto-
gonal arbitrario. ‘

5°. Espacios euclideos completos. Teorema de Riesz— Fisher.
Comenzando desde el punto 3, hemos considerado espacios eucli-
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deos separables; desde este momento vamos a suponer, ademas,
que los espacios considerados son completos.
Sea, pues, R un espacio euclideo separable completo y sea
¢,} un sistema ortonormal en él (no necesariamente completo).
e la desigualdad de Bessel se deduce que para que los nimeros
Cy» Cg5 - -y Cy ... Tepresenten los coeficientes de Fourier.de un
elemento x € R es necesario que la serie

e
- n

converja. Resulta que en un espacio completo esta condicién no
s6lo es necesaria, sino también suficiente. Tiene lugar el siguien-
te teorema. ‘

TEOREMA 3 (Riesz—Fisher). Sea {@,} un sistema ortonormal arbi-
trario en un espacio euclideo completo R y sean los nimeros

_ Ci» Cap vv o9 Cpp ovone
tales que la serie
Elc;. (22)
converge. Entonces, existe un elemento f€R tal que '
ce=(, @)

y

n .

2 ct=(f, H=Iflp
k=1

DEMOSTRACION. Pongamos

n
fn = 2 CrPp:
k=1

Entonces,
n+p

Il fs +p—fn [*= lers1Prsrt--- +cn+pq)n+p"’ = k=§-1c”';

como la serie (22) converge, de aqui se deduce, en vir‘t‘ud de la
complitud de R, la convergencia de la sucesién {f,} a un ele-
mento f€R. Ademds, .

¢ @) =(Fw 9)+F—Fur 9, @)

donde el primer sumardo del miembro derecho es igual a c; para
n>i, mientras que el segundo sumando tiende a cero para

n oo, ya que
i I(f_fm cpi)l<”f—fn"'”(pi“‘
12* ' S
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El miembro izquierdo de la igualdad (23) no depende de n; por
eso, pasando al limite para n —oo, obtenemos
. (s P)=c;.
De acuerdo con la definicién de f,

lf—Fall -0 para n —oo
y por eso

8

o 1c£=(f' .

k

[}

En efecto,
(f—kzcm, f—-*Z qu)k>=(f' H— et -0
=1 =1 k=1

para n—oo. El teorema queda demostrado.
Demostremos, para concluir, el siguiente teorema fitil.

TEOREMA ¢.  Para que un sistema ortonormal {g,} de un espa-
cio euclideo separable completo sea completo es necesario y su-
ficiente que en R no exista ningin elemento diferente de cero
que sea ortogonal a todos los elementos del sistema {gp,}.

DEMOSTRACION. Sea {¢,} un sistema completo y por consiguiente,
cerrado. Si f es ortogonal a todos los elementos del sistema {g,},
todos sus coeficientes de Fourier se anulan. Entonces, de la
igualdad de Parseval obtenemos

¢ H=3 a=o,
k=1

- es decir, f=0.
Viceversa, supongamos que el sistema {p,} no es completo,
esto es, existe en R un elemento g+40 tal que

& &> gl ct (donde ¢, = (g, o).

Entonces, de acuerdo con el teorema de Riesz—Fisher, existe
un elemento f€R tal que

. o) =cu G, N=3 et

El elemento f—g es ortogonal a todos los ¢, De la desi-
gualdad

(=S d<@ o
=1

se desprende qué f—g+0. El feorema queda demostrado.
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EJERCICIOS. 1. Sea H un espacio euclideo completo (no necesariamente
separable); entonces existe en él un sistema ortonormal completo {Pa} (vé-
ase el ejercicio de la pag. 159). Demuéstrese que para todo vector f € H
tienen lugar los desarrollos

F=3 9 9a I IF=X1C\ ¢)I%
[-3 [

donde las sumas que figuran a la derecha tienen a lo sumo un numero
numerable de sumandos diferentes de 0.

2. Un sistema {cp,} de vectores de un espacio euclideo R se llama fo-
tal, cuando en R no existen elementos diferentes de 0 ortogonales a todos
los {cp,}. El teorema 4 significa 1ue en un espacio euclideo completo la tota-
lidad es equivalente a la complitud. Demuéstrese que en los espacios no
completos pueden existir sistemas totales, pero no completos.

6°. Espacio de Hilbert. Teorema sobre el isomorfismo. Con-
tinuemos la consideracién de espacios euclideos completos. Nos
interesaran, al igual que antes, los espacios de dimensi6n infinita
y no de dimensién finita que se describen completamente en los
cursos del Algebra lineal. Al igual que antes, admitiremos la
existencia de un conjunto numerable siempre denso en los espa-
cios considerados. Introduzcamos la siguiente definicion.

periNicioN. Un espacio euclideo separable completo de dimensién
infinita se llama espacio de Hilbert V. Es decir, un espacio de
Hilbert es un conjunto H de elementos f, g, ... de natura-
leza arbitraria que verifica las siguientes condiciones:

I. H es un espacio euclideo (es decir, un espacio lineal con
un producto escalar definido en él).

II. El espacio H es completo en el sentido de la métrica
p(f, &=||f—ell. L

II1. El espacio H es de dimensién infinita, esto es, cual-
quiera que sea n se puede encontrar en él n elementos lineal-
mente independientes.

IV. H es separable, esto es, existe en €l un conjunto nume-
rable siempre denso.

Como ejemplo de un espacio de Hilbert podemos indicar el
espacio real [,.

Recordemos que dos espacios euclideos R y R* se llaman
isomorfos, cuando se puede establecer entre sus elementos una
correspondencia biunivoca de manera que si

xext, yey,
(x, yER; x*, y*ER®), se tiene

D Por el apellido del famoso matematico aleman David Hilbert (1862—
1943) que introdujo este concepto.
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" x+y""’x‘+y"
ox > ox*

x, 9)=(* g*).

En ofras palabras, un isomorfismo de espacios euclideos es
una correspondencia biunivoca que conserva tanto las opera-
ciones lineales, definidas en estos espacios, como el producto
escalar. ' '

Como se sabe, dos espacios euclideos arbitrarios de n dimen-
siones son isomorfos y, por consiguiente, cualquier espacio de
este tipo es isomorfo al espacio de coordenadas R" (ejemplo 1).
Los espacios euclideos de infinita dimensién mo son necesaria-
mente isomorfos entre si. Por ejemplo, los espacios [, y C?, .
no son isomorfos. Esto se ve, por ejemplo, de que el primero

de ellos es completo y el segundo no lo es.
- Sin embargo, tiene lugar el siguiente teorema.

y

TEOREMA 5. Dos espacios de Hilbert cualesquiera son isomor fos.

DEMOSTRACION. Probemos que todo espacio de Hilbert H es iso-
morfo a I,. Con esto quedars demostrada la afirmacién del teo-
rema. Escojamos en H un sistema ortonormal completo arbi-
trario {@,} y pongamos en correspondencia a todo elemento feH
el conjunto ¢, ¢,, ..., ¢, ... de sus coeficientes de Fourier
segun este sistema. Puesto que %cﬁ <o, la sucesién (¢, c,, . ..,
vy Cp ...) €s un elemento de /,. Viceversa, en virtud del
teorema de Riesz— Fisher, a todo elemento (¢, ¢,, ..., ¢, ...)
de I, le corresponde un elemento fg&H para el cual los nameros
€1 € ...y €4 ... son sus coeficientes de Fourier. La corres-
pondencia establecida entre los elementos de H y ;. es biuni-
voca. Ademas, si

fPee®, ep, ..., P, )
y .
) PPoE®, ¢, ..., c2, .. D
tenemos
f(l) +f(2) PN (cil) +C§’), C;l) +C§”, cens C,‘,” + C;l!)’ . .)
y

RFD 6 (ko®, ke®, ..., ke®, ..,

es decir, la suma se transforma en suma y el producto por un
niumero, en el producto del elemento correspondiente por el
mismo niimero. Finalmente, de la igualdad de Parseval se sigue
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que

(fu)" f(z)) — 2 cg) c}.”. (24)

| En efecto, de n_.lk : '

(70, f9)=Z @ (0, [) =B er

(f(l) + f(z), f(l) + f(i)) o (f(l)’ f(l)) _l_ 2 (f(l)’ f(s))-+~ (f;z)" f(z)) —
=@ 4P =P + 2R P + T )

se deduce (24). De esta forma, la correspondencia que hemos
‘establecido entre los elementos de los espacios H y [, es efec-
tivamente un isomorfismo; el teorema queda demostrado.

El teorema demostrado significa que, salvo un isomorfismo,
existe s6lo un espacio de Hilbert (es decir, que el sistema de
axiomas I, II, III y IV es completo) y que el espacio I, puede
con ,iderarse como su «realizacién en coordenadas», de la misma
forma que el espacio de coordenadas de n dimensiones con el

n

~ producto escalar Y, x;y; representa la realizacién en coordenadas
- :

del espacio euéli&Zo de n dimensiones definido axiométicamente..
Otra realizacién del espacio de Hilbert la podemos obtener to-

mando el espacio funcional Cf,, s y considerando su completa-
cién. En efecto, es ficil ver que la completacién R* de todo
espacio euclideo R (en el sentido en el que hemos definido la
completacién de un espacio métrico en el § 3 del capitulo I7)
se convierte en un espacio euclideo lineal, si las operaciones
lineales y el producto escalar se definen en €l prolongandolas
por continuidad del espacio R=R*, es decir, tomando :

x+y= lim (x,+y,), ox= limnax,
: n

n—-w -+ ®
Y= ,l.i"l (X Yn)

donde x,—»X € y,—Y, X5 Y,€R. (Es facil ver que estos li-
mites existen y no dependen de cémo se escojan - las sucesiones
{x.} e {y.}). Entonces, la completacién del espacio Cts, b sera
un espacio euclideo completo y, evidentemente, separable y de
dimensién infinita, es decir, serd un espacio de Hilbert. En el
capitulo VII volveremos a tratar este tema y demostraremos

que los elementos que se deben agregar a Cis, s para obtener un
espacio completo, también se pueden representar como furiciones,
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pero ya discontinuas (mas precisamente, como funciones de cua-
drado integrable en el sentido de Lebesgue).

7°. Subespacios, complementos ortogonales, suma directa.
De acuerdo con las definiciones generales del § 3, llamaremos
variedad lineal en un -espacio de Hilbert H a todo _conjunto L
de elementos de H tal que, si f, g€H, también af--pgelL
cualesquiera que sean los nameros o y B. Una variedad lineal
cerrada se llamard subespacio. ’

b Veamos algunos ejemplos de subespacios del espacio de Hil-
ert. \

1. Sea h un elemento arbitrario de H. El conjunto de .ados
los elementos f € H ortogonales a & constituye un subespacio ¢z H.

2. Supongamos que H esta realizado mediante ly, es decir,
que sus elementos son las sucesiones (%50 %55 ..., X, ...) tales
que X xf <oo. Los elementos que verifican la condicién x,==x,
forman un subespacio.

3. Supongamos de nuevo qué H estd realizado mediante L,
Los elementos x = (x,, x,, ..., ...) para los cuales x,=0 cuando
n=2, 4, 6, ... (mientras que x, son arbitrarios para n=1, 3,
5, ...) forman un subespacio.

Recomendamos al lector comprobar que los conjuntos de vec-
tores de los ejemplos 1, 2 y 3 son efectivamente subespacios.

Todo subespacio de un espacio de Hilbert o bien es un es-
pacio euclideo de dimensién finita o bien representa un espacio
de Hilbert. En efecto, la validez de los axiomas I, IT y III
para cualquiera de estos subespacios es evidente, y la validez
del axioma IV se deduce del siguiente lema.

LEMA. De la existencia de un conjunto numerable siempre denso
en un espacio métrico R se deduce la existencia de un conjunto
numerable siempre denso en cualquier subconjunto suyo R'.

DEMOSTRACION. Sea
| SR SR S
un conjunto numerable siempre denso en R y sea
a,= inf P(Em 7‘)'
ner

Para cualesquiera n y m naturales existe un punto n, ,€R’
tal que

1
p(gm nn,m) <an+z'
Seae>0y—rln<%; para todo n€R’ existe un n tal que
PEw W<+
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y, por consiguiente,

P(E,,, Na, ln) < an+‘,_ln < %"f‘%:%’

pero, entonces, p(n, M, ) <e, es decir, el conjunto {n, .}
(n, m=1, 2 ...), a lo sumo numerable, es siempre denso en R’.

Los subespacios del espacio de Hilbert poseen propiedades
especificas (que no tienen lugar para los subespacios de un es-
pacio normado arbitrario). Estas propiedades estin relacionadas
con la existencia en el espacio de Hilbert del producto escalar
y del concepto de ortogonalidad, correspondiente a éste.

Aplicando el proceso de ortogonalizacién a una sucesién nu-
merable siempre densa de elementos de un subespacio cualquiera
del espacio de Hilbert, obtenemos el siguiente teorema.

TEOREMA 6. En fodo subespacio M del espacio H existe un sistema
| ortonormal {@,} tal que su adherencia lineal coincide con M.

Sea M un subespacio del espacio de Hilbert H. Denotemos

mediante
M =HOM

el conjunto de elementos g € H ortogonales a todos los elementos
f€M y demostremos que M’ es también un subespacio del es-
pacio H. La linealidad de M’ es obvia, ya que de (g,, )=
= (g, )=0 fluye (a,8,+ 2,8, f)=0. Para demostrar que es
cerrado, admitamos que los elementos g, pertenecen a M’ y con-
vergen a g. Entonces, para todo f€ M tenemos

(@ f)= lim (g, N=0

y por eso g también pertenece a M'. :

El subespacio M’ se llama complemento ortogonal del subes-
pacio M. ' : :

Del teorema 6 se deduce ficilmente que:

TEOREMA 7. Si M es un subespacio lineal cerrado del espacio H,
todo elemento f € H se puede representar de manera tnica en
la forma f=h-+F, donde heM y W eM’.

DEMOSTRACION. Demostremos primero que existe esta descompo-
sicion. Para ello escojamos en M un sistema ortonormal com-
pleto {g,} y pongamos

h= 2 CiPn» Cn=(fa (Pn)'
h=1

s

Puesto que (debido a la desigualdad de Bessel) la serie ca

n=1
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_converge, el elemento 4 existe y pei'tenece a M. Tomemos

hK=f—h.
- Es evidente que para todo n
*, 9)=0
, como cualquier elemento de M se puede representar en la
orma
' §=Za,, Pns
tenemos para {€M .

#, D= S a,(t, e)=0,

es decir, ¥ €M'.
Supongamos ahora que ademas de la descomposicién obtenida
f=h-+h’ existe otra descomposicion ’

f=h+hi, €M, hheM.
Entonces, tenemos para cualquier n
(b1 @u)=(f) Pa)=Cs
y de aqui se deduce que
' h,=h, hi=H'.

Del teorema 7 fluye el siguiente corolario. .

coroLARIO 1. El complemento ortogonal del complemento ortogonal
| de un subespacio lineal cerrado M coincide con M.

De esta forma resulta posible hablar de subespacios recipro-
camente complementarios del espacio H. Si M y M’ son dos
subespacios reciprocamente complementarios y si {¢,} y {gs} son
dos sistemas ortogonales completos (de M y de M’, respectiva-
mente), la unién de estos sistemas {g,} y {¢n} ofrece un sistema
ortogonal completo de todo el espacio H. Por eso, tiene lugar
el siguiente corolario.

cOROLARIO 2. Todo sistema ortonormal puede ser extendido a un
sistema completo de H. ’

Siendo el sistema {¢,} finito, el niimero de elementos que lo
componen coincide con la dimensién del subespacio M generado
por {¢,} y con la codimensién del subespacio M’. Obtenemos, de
esta forma, el siguiente corolario. .

COROLARIO 3. El complemento ortogonal a un subespacio de dimen- -
| sion finita n tiene codimension n y viceversa.
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Si todo vector f € H es representado en la forma f=h-#’,
heM, €M’ (donde M’ es el complemento ortogonal de M),
se dice que H es la suma directa de los espacios reciprocamente
ortogonales My M’ y se escribe .

- H=M®M.

Esta claro que el concepto de suma directa se puede generalizar
inmediatamente a un nimero finito cualquiera o, incluso, a un
nimero numerable de subespacios; a saber, se dice que H esla
suma directa de sus subespacios M,, M,, ..., M,, ...

‘H=M,OM,D ... DM, D ...,
cuando '
1) los subespacios M; son ortogonales dos a dos, es decir,
todo vector de M; es ortogonal a cualquier vector de M, para

iEk; :
2) todo elemento f€ H se puede representar en la forma

f=hy+hyt...+hy+..., B €M,

con la ‘particularidad de que, si el niimero de subespacios M,
es infinito, la serie 2” h,|[* converge. Es féacil probar, que si
existe esta representacion del elemento f, ella es tinica y que

711 = 2l 2

Junto a la suma directa de subespacios, se puede considerar
la suma directa de un niimero finito o numerable de espacios
arbitrarios de Hilbert. Si H, y H, son dos espacios de Hilbert,
~ la suma directa de ellos se define del siguiente modo: los
elementos de H son todos los pares (h,, h,), donde &, € H,,
h,€ H,, y el producto escalar de dos de estos pares es igual a

((hl’ hz_)’ (h;.’ h;))=(hv h;)+(hz» h;)'

El espacio H contiene, evidentemente, los subespacios recipro-
.camente ortogonales, compuestos por pares de tipo (h,, 0) y (0, A,)
respectivamente; el primero de ellos puede ser identificado de
un modo natural con el espacio H,, y el segundo, con el espa-

cio H,. : :
Anilogamente se define la suma de un namero finito cual-

quiera de espacios. La suma H = Y| H, de un nimero nume-

rable de espacios H,, H,, ..., H,, ... se define asi: los ele-

mentos del espacio H son todas las sucesiones de tipo
h=(hy, hy ..., b,y ...), (h,€H,),
tales que
2 Aa* < oo
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El producto escalar (h, g) de los elementos h y g de H es igual a

X (ks 82)-

8°. Propiedad caracteristica de los espacios euclideos. Analice-
mos el siguiente problema. Sea R un espacio normado. ¢Cuéles
son las condiciones adicionales que debe verificar la norma,
definida en R, para que el espacio R sea euclideo, esto es, para
que la norma en él se determine por un producto escalar? En
otras palabras, ¢qué es lo que caracteriza los espacios euclideos
dentro de la clase de espacios normados? Esta caracteristica
viene dada por el siguiente teorema.

TEOREMA 8. Para que un espacio normado R sea euclideo es ne-
cesario y suficiente que para cualesquiera dos elementos [ y g
de él se cumpla la igualdad : :

NF-+gll*+IF—gli*=2(FlI*+llgll?- (25)

Puesto que f+g y f—g son las diagonales del paralelogramo
construido sohre los lados f y g, la igualdad (25) expresa la
conocida propiedad de paralelogramo en un espacio euclideo:
la suma de los cuadrados de las diagonales de un paralelogramo
es igual a la suma de los cuadrados de sus lados. Por consiguien-
te, la necesidad de esta condicién es obvia. Demostremos que

es suficiente. Tomemos (

¢ &= (If+glr—li—gl® (26)

y probemos que, si se cumple la igualdad (25), la funcién (26)
satisface todos los axiomas del producto escalar. Puesto que para
f=g tenemos

G, D=L 2= F—Fm =1F1P, @7)

ésta sera precisamente aquel producto escalar que induce en el
espacio R la norma definida en él. ,
Ante todo, se ve inmediatamente de (26) que

(fl g)=(g’ f)a

es decir, se cumple la condicién 1) de la definicion del producto
escalar. Ademaés, se cumple también, en virtud de (27), la con-
diciéon 4) de esta definicion. Para demostrar la condicion 2) con-
sideremos la siguiente funcién de tres vectores

©(f, & MW=4[(f+g bH—(f, b—(g hl
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es decir,

Q(f, g h)—Hf+g+hh’—-llf+g—hl!’—llf+hll' ~
+If—a|? -llg+hll’+llg—-hil’ - (28)

y demostremos que es igual idénticamente a cero. De acuerdo
con (25), tenemos

Wf+egxhlP=2|f£h|*+2]glt—If£h—gl"

Sustituyendo las correspondxentes expresiones en @ (f, g, &), en-
contramos

o & h)——llf-l-h— I+ “f h—g ;
Hf+hip—If—h —ng+hn=+ug——hn= 29)

Tomando la suma medxa de (28) y (29), tenemos
O, & =5l g+hr-+FlP+lg+n—F"—
— 5 (lge—h+Flp+llg—h—FID—llg+h]+] g—h

El primer paréntesis, en virtud de (25), es igual a

lg+nrlF+IFIP
y el segundo, a
, —llg+AP—Ifie
Es decir,
O, g, h)’EO.

Consideremos ahora, para cualesquiera f y g fijos, la funcién
@ ©)=(cf, &—c(f, 8-
_ De (26) se deduce inmediatamente que

o= (lglt—l gl =0;

ademas, ¢(—1)=0, ya que (—f, @ =—(f, g). Por eso para
cualquier n entero
(nf, @)= (signn(f+.. +f)t )—sugnn[(f,

f, &=| nlSlgn n(f, &)= n(f, &)

es decir, ¢(n)=0. Para p y ¢ enteros y ¢§#0,

(5 &)=p(3t &)=4a(51 &)=5 0.0,

es decir, @{c)=0 para todo c racional; como la funcion ¢ es
- continua, ,
¢ (c)==0.
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Hemos demostrado con esto que la funcién (f, g) posee todas
las propiedades del producto escalar.

Ejemplos. 1. Consideremos el espacio n-dimensional R% en el
que la norma se define por la férmula

Hel=( 1 p) g

Para p>1 se cumplen todos los axiomas de la norma; sin
embargo, R} serd un espacio euclideo sélo cuando p=2. En
efecto, consideremos en R% dos vectores

f=(1,1,0,0,...,0),

, g=(1, —1,0,0, ..., 0)
tenemos
f+g=(2’ 0, o, ..., O)o
f—e=(,2,0,...,0),
de donde

1
Wl=legl,=2 7%, f+el,=If—ell,=2

es decir, la identidad del paralelogramo (25) no se cumple para
p+#2. '

2. Consideremos el espacio de funciones continuas sobre el
segmento [O, —’;—] Pongamos
f(t)y=cost, g(f)=sent.

Tenemos
hil=1, |lgll=1
y ‘ )
|f+gli= max |cost+sent|=}2;
‘ 0o<t<T
|f—g|l= méx |cos¢{—sent|=1.
0<t<%

De aqui se ve que
If+glr+If—glt =2 1"+ gl

Por consiguiente, 1a norma del espacio C[o ,1] no puede ser
7
definida mediante ningin producto escalar. Es facil ver que el
espacio Cpq, 5y de funciones continuas sobre cualquier segmento
[a, b] tampoco es un espacio euclideo.
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9°. Espacios euclideos complejos. Junto al espacio real se
puede introducir también el espacio euclideo complejo (esto es,
el espacio lineal complejo con producto escalar). Pero en el caso
complejo resulta preciso modificar los axiomas mediante los
cuales se define el producto escalar en el caso real, ya que los
axiomas 1), 2), 3) y 4), enunciados al principio de este paragrafo,
no pueden cumplirse simultdneamente en un espacio complejo.
En efecto, de 1) y 3) se deduce

. (hx, M) =1 (x, %),
de donde obtenemos para A=i
(ix, ix)=—(x, x),

es decir, los cuadrados escalares de los vectores x e ix no pueden
ser positivos al mismo tiempo. En otras palabras, los axiomas
1) y 3) son incompatibles con el axioma 4). Por eso, definire-
mos el producto escalar en un espacio complejo como unafun-
cion (x, y) numérica (de valores complejos) de dos vectores que
verifica las siguientes condiciones: '

1) (5 9)=@ 9,
2)‘ (}"x’ y)=}'(xv y)t
3) (%1 +x5, )= (%1, y)+ (%, )8

4) (x, x) >0 y, ademds, (x, x) >0 cuarido x=40.
(Por consiguiente, modificamos el primer axioma conservando
los tres restantes). De 1) y 2) se deduce que (x, Ay)= A (x, y).
En efecto, - o ’ ,

(x, l'y)':(}‘yr x)"—‘?"(y' x) =% (%, y)-
Un ejemplo bien conocido de un espacio euclideo complejo de n
dimensiones es el espacio lineal C* (§ 1, ejemplo 2), en el que
el producto escalar de los elementos
X=Xy Xas oovs %) € Y=(Ys» Ya» ..y Yy)

se define por

x, y)=k§ EAT

Como se sabe, todo espacio euclideo complejo de dimensién n
es isomorfo a este espacio. \ ‘

Como ejemplos de espacios etclideos complejos de dimension
_ Infinita pueden servir: L ; :
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1) el espacio complejo I,, cuyos elementos son sucesiones de
nimeros complejos o :
X=(Xyy Xgy v0es Xps ooohs

que verifican la condicién

y en el que el producto escalar se define mediante la férmula

o 0= 5 5

2) el espacio C?j, 5 de funciones de valores complejos conti-
nuas sobre el segmento [a, 6] con el producto escalar

b
¢ 9= F g a.

En un espacioeuclideo complejo la longitud (norma) de un vector
~ se define, al igual que en el caso real, mediante la férmula

2=V 9.
El concepto de angulo entre vectores en el caso complejo no se
(x, ¥)

introduce, ya que la vmagmtud‘ T o € 0 general, compleja

y puede no ser el coseno de ningiin angulo real; no obstante,
se conserva el concepto de ortogonalidad: los elementos x e y se
llaman reciprocamente ortogonales cuando {x, y)=0.

Si {9,} es un sistema ortogonal de un es;iacio euclideo com-
plejo R y f es un elemento arbitrario de R, los niimeros

_ 1
an"" ‘Pn‘i(f’ q’n)

se llaman, al igual que en el caso real, coeficientes de Fourier

y la serie
2% Pus
n

serie de Fourier del elemento f segiin el sistema ortogonal [g,].
Tiene lugar la desigualdad de Bessel

Shellal <, P

En particular, si el sistema [¢,] es ortonormal, los coeficientes
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de Fourier segiin este sistema se definen mediante las férmulas
V c,,=(f: Pn)s
y la desigualdad de Bessel toma la forma
;l%l’é(f; -

“Un espacio euclideo complejo separable y completo de dimensién

infinita se llama espacio complejo de Hilbert. En el caso
complejo subsiste el teorema sobre el isomorfismo de los espacios
de Hilbert: :

TEOREMA. 9. Todos los espacios complejos de Hilbert son isomorfos
| entre si. : ,

La realizacién mas sencilla de un espacio complejo de Hil-
bert es el espacio complejo /. En el capitulo VII veremos otra
realizacion, de caracter funcional, del espacio complejo de Hil-
bert.

Proponemos al lector comprobar que todos los teoremas
demostrados anteriormente para los espacios reales euclideos
y de Hilbert, son validos (con modificaciones insignificantes,
debidas a la complejidad del producto escalar) también para
los espacios complejos euclideosy de Hilbert.

§ 5. ESPACIOS TOPOLOGICOS LINEALES

1°. Definicién y ejemplos. La definicién de la norma es sélo
una de las formas posibles de introducir una topologia en un
espacio lineal. El desarrollo de ramas del Analisis Funcional
como la teoria de funciones generalizadas (irataremos de ellas
en el capitulo siguiente) ha demostrado que en muchos casos
conviene considerar espacios lineales con una topologia definida
no mediante la norma, sino de alguna otra manera.

perFINICION. Un conjunto E se llama espacio topoldgico lineal,
cuando '

I. E representa un espacio lineal (con la multiplicacion de
elementos por niimeros reales o complejos);

" II. E es un espacio topolégico; ‘

I11. las operaciones de adicién y multiplicaciéon por nimeros
en E son continuas respecto a la topologia existente en E. Mas
detalladamente la tltima condicién significa lo siguiente:

1) si zy=x,+Y, para toda vecindad U del punto 2z, se
pueden indicar vecindades V. y W de los puntos x, e y, tales
que x4+y€U para x€V, yeWw,

12—3427
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2) si_ogxy=y,, para toda vecindad U del punto y, existe una
vecindad V del punto x, y un niimero &> 0 tales que axe€U
para [a,—a]<ey x€V.

De Ia relacién, existente en un espacio topolégico lineal entre
las operaciones - algebraicas y la topologia, se deduce que la to-
pologia en este espacio queda totalmente determinada al dar el
sistema de vecindades ‘del cero. En efecto, sea. x un punto
de un espacio topoldgico E y sea U una vecindad del cero en E.
Entonces, U+x, esto "es, la «traslacién» de. esta vecindad
paralelamente a x, es una vecindad del punto x; es evidente, que toda-
vecindad de cualguier punto x € E puede obtenerse de esta forma.

De la continuidad, en un espacio ‘topolégico - lineal E, de
las operaciones de adicién y multiplicacién por niimeros, resultan
-inmediatamente las siguientes afirmaciones. ‘

1).8i U y V son conjuntos abiertos de E, el conjunto U +V
(es decir, la totalidad de elementos de tipo x4y, x€U, yeV)
es abierto. , ' :

2) Si U es abierto, el conjunto AU (es decir, la totalidad de
~elementos de tipo Ax, x € U) es también abierto para todo A=40.

3) Si FcE es cerrado, el conjunto AF es también cerrado
para todo A. S

Ejemplos. 1. Ante todo, son espacios topoldgicos lineales
todos los espacios normados. En efecto, de las propiedades de
la norma se deduce inmediatamente que las operaciones de adicion de
vectores y multiplicacién de éstos por ntimerosson, en un espacio
normado, continuas respecto a aquella ‘topologia que induce en
él la norma. , '

2. En el espacio R* de todas las sucesiones numeéricas
X=(%y, X4 .., X, ...) definamos el sistema de vecindades del
cero como sigue: cada una de estas vecindades U (., ..., k.; e)
se define por los numeros enteros k,, ..., k. y el nimero £>0
y consta de todos los x€ R® que verifican las condiciones:

el <e, i=1,2, .., 1

(EI espacio R* puede ser tanto real como complejo).

3. Sea K4, 1 el espacio de funciones indefinidamente diferen-
ciables?) sobre el segmento [a, b]. Definamos la topologia en
Kiq, 5y por medio del siguiente sistema de vecindades del cero.
Cada una de estas vecindades U, . se determina por el nimero
m 'y por el niamero € >0 y consta de ‘todas las funciones )
que verifican las desigualdades

le® (x) | <e, k=0,1,2, ..., m,
donde ¢® es la derivada de orden % de la funcién 9.

1) Es decir, de funciones que tiéneri derivadas de todos -los 6rdenes.
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El hecho de que en un espacio lineal topolégico la topolo-
gia esté relacionada con las operaciones lineales definidas en
él, impone limitaciones bastante rigidas a su topologia. Resulta
que fodo espacio topolégico lineal verifica el asi llamado axioma
de separabilidad T,, esto es, que cualquier vecindad U de un
punto arbitrario x contiene una vecindad menor W del mismo
punto que junto con su adherencia pertenece a U.

Para demostrar esta proposicion -basta considerar las vecin-
dades del cero. Sea U una vecindad cualquiera del cero. Debido
a la continuidad en E de la operacién de sustraccién, existird
una vecindad W del cero tal qu¢e W —WcU. Probemos que la
adherencia de la vecindad W estd contenida en U. Sea y€[W].
En este caso toda vecindad del punto y, en particular y+ W,
contiene un punto de W. Por consiguiente, existe un punto z€ W
tal que y+z€W, es decir, yeW—WcU, que es lo que se
afirmaba. _

Un espacio topolégico lineal se llama separable, cuando veri-
fica el axioma de separabilidad T, esto es, cuando todo sub-
conjunto suyo compuesto de un punto resulta cerrado; es evidente
que un espacio es separable cuando, y sélo cuando, la intersec-
cion de todas las vecindades del cero no contiene elementos
diferentes de cero. Los espacios topoldgicos que verifican los
axiomas de separabilidad T, y T, suelen llamarse regulares; de
lo demostrado en el parrafo anterior se deduce que un espacio
topolégico lineal separable es regular.

En los espacios normados desempefia un papel importante
el concepto de conjunto acotado. Aunque este concepto se intro-
duce alli mediante la norma, puede ser, claro esta, enunciado
también para los espacios topoldgicos lineales arbitrarios.

Un conjunto M, situado en un espacio topoldgico lineal E,
se llama acotado, cuando para toda vecindad U del cero existe
un n>0 tal que nUDM.

Est4 claro que en el caso de los espacios normados este con-
cepto de acotacién coincide con la acotacién segin la norma (es
decir, con la posibilidad de situar el conjunto dado dentro de
una bola ||x||<CR). Un espacip E se llama localmente acotado,
cuando existe en &l al menos un conjunto acotado abierto no
vacio. Todo espacio normado es localmente acotado. Como
ejemplo de un espacio que no es localmente acotado, puede
servir el espacio R®, sefialado en el ejemplo 2 (jdemuéstrese estol).

EJERCICIO. Sea E un.espacio topolégico lineal; demuéstrese la validez de
las afirmaciones siguientes: - '

(a) un conjunto McE es acotado si, y sélo si, cualesquiera que sean
la sucesién {x,}=M y la sucesién {e,,} de nimeros positivos, convergente
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a 0, la sucesién {e,x,} también converge a cero;
(b) si {x,,}:=1c[-.‘ Y X, — x, el conjunto {x,,} es acotado;

(c) si E es localmente acotado, en &l se cumple el primer axioma de
numerabilidad. . .

2°. Convexidad local. Los espacios topolégicos lineales arbi-
trarios pueden tener propiedades muy diferentes de las propieda-
des habituales de los espacios euclideos o normados. Una clase
importante de espacios, mas generales que los normados, pero
en los que subsisten muchas propiedades de los wltimos, la for-
man los asi llamados espacios localmente convexos.

DEFINICION. Un espacio topoldgico lineal E se llama localmente
convexo, cuando todo conjunto abierto no vacio de é contiene
un subconjunto abierto convexo no vacio.

Observemos que, si el espacio E es localmente convexo, para
todo punto x€E y toda vecindad suya U existird una vecindad
convexa del cero V tal que x€V<cU. En efecto, basta compro-
bar la validez de esta afirmacién para el punto x=0. Sea U
cualquier vecindad del cero. Existe una vecindad del cero V tal
que V—VcU. Como E es localmente convexo, existe un con-
junto abierto convexo no vacio V'cV; sea yeV’; entonces,
V'—y es una vecindad convexa del cero contenida en U.

Todo espacio normado es localmente convexo. En efecto,
todo conjunto abierto no vacio de él contiene una bola abierta.
De esta forma, todo espacio normado es localmente acotado
y localmente convexo. Se puede demostrar que la clase formada
por espacios con estas dos propiedades se reduce, de hecho,
a los espacios normados. Con més precisién: un espacio lineal
topolégico E se llamara normable, cuando la topologia exis-
tente en E puede definirse mediante una norma;. tiene lugar
el siguiente teorema: fodo espacio topolégico lineal separable,
localmente convexo y localmente acotado, es normable.

EJERCICIOS. 1. Demuéstrese que un conjunto abierto U de un espacio topo-
légico lineal es convexo si, y sblo si, U4+U=2U.

2. Sea E un espacio lineal; un conjunto UcE se llama simétrico,
cuando x€U implica —x€U. Sea B la familia de todos los subconjuntos
simétricos convexos del espacio E coincidentes con su ntcleo (véase el § 2).
Demuéstrese 1a validez de las afirmaciones siguientes.

(a) La familia 53 es un sistema determinante de vecindades del cero
respecto a una topologia separable y localmente convexa del espacio E (esta
topologia se 1lama convexa nuclear).

(b) La topologia convexa nuclear es la mas fuerte de las topologias
localmente convexas compatibles con las operaciones lineales en E.

(c) Toda funcional lineal sobre E es continua respecto a una topologia
convexa nuclear.
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3°. Espacios normados numerables. Una clase de espacios
topoldgicos lineales muy importante para el Analisis resulta ser
la clase de los asi llamados espacios normados numerables. Para
poder dar la definicién correspondiente necesitamos de un con-
cepto auxiliar.

Supongamos que en un espacio lineal E se han introducido
dos normas ||-|l, y ||l Se llaman compatibles, cuando toda
sucesién {x,} de E, fundamental respecto a cada una de estas
normas y convergente a un limite x € E respecto a una de ellas,
converge al mismo limite x respecto a la segunda norma.

Se dice que la norma |||, es no mds débil que ||-||;, cuando existe una
constante ¢ > 0 tal que || x|l;=c|jx||, para todo x€E.

Si la primera norma es no mas débil que la segunda .y ésta, no mas
débil que la primera, estas dos normas se llaman equivalentes. Dos normas
se llaman comparables, cuando una de ellas es no mas débil que la otra.

peFiNicIoN. Un espacio normado numerable es un espacio lineal E
provisto de un sistema numerable de normas |||, compatibles
entre si. Todo espacio normado numerable se convierte en un
espacio topolégico lineal, si se toma por sistema determinante
de vecindades del cero la totalidad de conjuntos U, ¢, cada uno
de los cuales estd definido por un nfimero r y un niimero posi-
tivo ¢ y consta de todos los etementos x€ E que verifican las
condiciones

‘“x“1<8’ ey “x”r<8 ‘

Proponemos al lector comprobar que este sistema de vecin-
‘dades del cero induce, efectivamente, en E una topologia res-
pecto a la cual resultan continuas las operaciones de adicién de
elementos y de multiplicacién de éstos por niimeros. . ,

Observemos que todo espacio normado numerable verifica el
primer axioma de numerabilidad, ya que el sistema de vecinda-
des del cero U, . puede ser sustituido (sin que varie la topolo-
gia) por un subsistema numerable, en el que & toma solamente
los valores 1, +, +, ..., &~ Por eso la topologia d

Vg g crer a eee o P pologia de
este espacio se puede describir en términos de convergencia de
sucesiones. Es ‘mas, la topologia de un espacio normado nume-
rable sée puede definir por medio de una métrica, por ejemplo,
por ésta: 2 ‘

p(x’-y)=n2;12_n$|%%- %, y€E.

Proponemos al lector comprobar que la funcién p(x, y) verifica
todos los axiomas de distancia y es invariante respecto a las
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traslaciones (esto es, p (x+2, y+2)=p(x, y); x, y, 2€E) y que
la topologia inducida .por ella coincide con la inicial. De esta
forma podemos hablar de la complitud de un espacio normado
numerable, entendiéndose por ello la complitud respecto a la
métrica introducida mas arriba. Observemos, ademais, que la
sucesién [x,] resulta fundamental respecto a la meétrica p si,
y s6lo si, es fundamental respecto a cada una de las normas
ll-ll., ¥ que converge (en la métrica p) al elemento x€E si,
y solo si, converge a x respecto a cada una de las normas ||-||,.
En otras palabras, la complitud de un espacio normado nume-
rable significa que toda sucesién de él, fundamental respecto
a cada una de las normas ||-||,, converge.

Ejemplos. 1. Un ejemplo importante de un espacio normado
numerable es el considerado - anteriormente espacio Ki,, 5 de
funciones indefinidamente . diferenciables sobre un segmento, si
admitimos que la norma ||-||, de este espacio se define mediante

la férmula ,
lflla=sup |f® ()|

Es evidente que todas estas normas son compatibles entre si
Yy que definen en K|q4, 5| la misma topologia que hemos descrito
anteriormente. v

2. Sea S el espacio de todas las funciones indefinidamente
diferenciables sobre la recta, que tienden, junto con todas sus

derivadas, en el infinito a cero més rdpido que cualquier poten-
cia de T (esto es, que verifican la condicién #4f'9 (f) —0
para |¢|— oo cualesquiera que sean los nfimeros fijos k y ¢).
Definamos en este espacio un sistema numerable de normas

tomando
I Flla=-sup |#f2 ()], m=0, 1,2, ..
kog<m

Es facil comprobar que estas normas son compatibles entre si. -
Por consiguiente, S es un espacio normado numerable.

3. Un caso particular importante de los espacios normados
numerables son los asi llamados espacios numerables de Hilbert.
Sea H un espacio lineal en el que se ha introducido un sistema
numerable de productos escalares (@, ¥), y supongamos que las
normas || ¢|l,=V(g, 9),, correspondientes a estos productos
escalares, son compatibles entre si. Si un espacio de esta indole
es completo, se llama espacio numerable de Hilbert.

4. Como ejemplo concreto de un espacio numerable de Hil-
bert, puede servir el siguiente espacio. Sea @ el conjunto de
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sucestones numeéricas [x,] ‘tales que para todo entero k>0 la
serie ‘ : :

w
- Xonta
n=1

converge. Introduzcamos en este espacio un sistema numerable
de normas, tomando e

=y Ea

n=1

Es facil ver que estas normas son compatibles entre si y que @
es completo en- el sentido sefialado anteriormente. Esta claro
que cada una de las normas ||, puede ser definida mediante el
producto escalar o : :
(x, y)k= '§1 nkxnym : ‘

‘es decir, que @ es un espacio n_ufnerable de Hilbert. Se llama
espacio de sucesiones rdpidamente. decrecientes. o

Si E es un espacio normado numerable, se puede aceptar
que las normas ||-||, definidas en él, verifican la condicién

xle<|*ll, para k<t . )

ya que, de lo contrario, podriamos sustituir las normas || x|} -
por- las normas : ' ‘ : o '

Pelimsup (el el -oor 2l

que definen en E la misma topologia que define el sisterna - ini-
cial de normas. Completando el espacio E segiin cada una de
" estas normas ||-||,, obtendremos un sistema de espacios norma-
dos completos E,. Ademés, de la relacién (1) y de la compati-
‘bilidad de las normas, se deduce que tienen lugar las inclusiones
naturales . L '
' ‘ E,oE, para k<. o ,
De esta forma, a todo espacio normado numerable E se puede

poner en correspondencia una cadena decreciente de espacios
normados completos f

E,DE,> ...:DE,;D..-.; nE,,:"E.» o
S k=1 S
Se puede demostrar que el espacio E es completo cuando, y sélo

: :cuando, E=n E, (jdemuéstrese esto!).‘ Por éjemplo cuando el
. k=1
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espacio kis, p) de funciones indefinidamente diferenciables sobre
el segmento [a, b] es la interseccién de los espacios normados
completos D*(n=0, 1, 2, ...), donde el espacio D" estd com-
puesto por funciones, que tienen derivadas continuas de orden n
inclusive, y la norma en él se define mediante la férmula

Iflla=sup [f® ()]
agI<b
Ik

En la década de los afios 30, cuando fue construida, principalmente en
los trabajos de Banach, la teoria de los espacios lineales normados, existia
la opinién de que esta clase de espacios es lo suficientemente amplia para
abastecer todas las necesidades concretas del Anilisis. Més tarde se vio, sin
embargo, queestonoes asi. Resulté que en una serie de cuestiones desempefian
un papel importante espacios como el espacio de funciones indefinidamente

diferenciables, el espacio R® de todas las sucesiones numéricas, asi como
otros espacios, donde la topologia natural no se puede definir mediante
ninguna norma De esta forma, los espacios lineales topolégicos, pero no
normados, no son necesariamente «exotiquez» o «patalogia». Al contrario,
algunos de estos espacios representan una generalizacién del espacio eucli-
deo de dimensién finita no menos natural e importante que, digamos, el
espacio de Hilbert.



CAPITULO
IV

FUNCIONALES LINEALES.
Y OPERADORES LINEALES

§ 1. FUNCIONALES LINEALES CONTINUAS

1°. Funcionales lineales continuas sobre espacios topolégicos
lineales. En el § 1 del cap. III hemos considerado ya funciona-
les lineales definidas sobre un espacio lineal. En el caso de fun-
cionales definidas sobre un espacio topolégico lineal, representan
interés principal las funcionales lineales continuas; como de
costumbre, una funcional f, definida sobre un espacio E, se
llama continua, cuando para todo e >0 y todo x,€ E existe una
vecindad U del elemento x, tal que '

| f(x)—F(x,)| <e para x€U. (1)

Si E es un espacio topolégico lineal de dimensién finita,
toda funcional lineal sobre E es automaticamente continua. En
el caso general, la linealidad de una funcional no implica su
continuidad. ‘ ‘

La siguiente proposicién, aun siendo casi evidente, resulta
esencial para lo sucesivo. o

Si una funcional lineal | es continua en algin punto x€E,
es continua en todo E.

_ En efecto, sea y un punto arbitrario de E y sea & > 0. Esco-
jamos la vecindad U del punto x de manera que se cumpla la
condicién (1). Entonces el conjunto :

V=U+(@y—x)

sera la vecindad deseada del bunt'o Y, ya que para z€V, tene-
mos z+4+x —y€U vy, por consiguiente,

F@—f@)|=|fe—y+0—F()|<e.
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De esta forma es suficiente comprobar la continuidad de una
funcional solamente en un punto, por ejemplo, en el punto 0.
Si E es un espacio con el primer axioma de numerabilidad, la
continuidad de una funcional lineal sobre E se puede enunciar
en términos de sucesiones, es decir, de la siguiente forma: una
funcional f se llama continua en el punto x€E, cuando de
x,—x se deduce que f[(x,)— f(x). Dejamos a cargo del
lector la demostracién de la equivalencia (en caso de que se verifi-
que el primer axioma de numerabilidad) de esta definicién con
la dada anteriormente. 4 : »

TEOREMA 1. Para que una funcional lineal f sea continua sobre E,
es necesario y suficiente que exista en E una vecindad del cero
donde la funcional | sea acotada. '

DEMOSTRACION. Si la funcional f es continua en el punto 0, para
todo &€ > 0 existe una vecindad del cero donde

fwl<e.
Viceversa, sea U una vecindad del cero tal que
| |F(x)|<C para xeU
y sea &> 0. Entonces, %U es aquella vecindad del cero, donde

|f(x)| <e. Con esto queda demostrada la continuidad de f en
el punto 0 y, por consiguiente, en todo el espacio. ~

EJERCICIO. Sea E un' espacio topolégico lineal; demuéstrese la validez de
las siguientes proposiciones. _

(a) Una funcional lineal f sobre E es continua cuando, y sélo cuando,
existen un conjunto abierto U < E y un nimero £ tales que ¢ € f (U) (aqui f (U)
es el conjunto de los valores que toma f sobre U). '

b) Una funcional lineal f sobre E es continua cuando, y sélo cuando,
su subespacio nulo {x:f(x):O} es cerrado en E. ]

c) Si toda funcional lineal sobre E es continua, la topologia de E coin-
cide con la topologia convexa nuclear (véase el ejercicio en la pag.. 180).

d) Si E es de dimensién infinita y normable, existe en él una funcional
lineal discontinua (empléese la existencia en E de una base de Hamel; véase
el ejercicio en la pag. 134). - ‘ . .

(e) Supongamos que en E existe un sistema determinante de.vecindades .
del cero ¥ que. la potencia de este sistema no sobrepasa la dimensién alge-
braica del espacio E (esto es, la potencia de una base de Hamel en E; véase
el ejercicio en la pag. 134). Entonces, existe sobre E una funcional lineal
no continua. -

2°. Relacién entre la continuidad de una funcional lineal y su
acotacion sobre conjuntos acotados. Recordemos qué un conjunto M,
-situado en un espacio topoldgico lineal, ha sido llamado acotado,
cuando para cualquier vecindad U del cero existe un nimero n
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tal que McaU. Demostremos el siguiente teorema que establece
la relacién existente entre la continuidad de una funcional lineal
y su comportamiento sobre conjuntos acotados.

TEOREMA 2. Para que una funcional lineal f sea continua sobre E,
es necesario y, en caso de que E verifique el primer axioma de
numerabilidad, también suficiente que sea acotada sobre todo
conjunto acotado.

DEMOSTRACION. NECEsSIDAD. Una funcional continua es acotada sobre
cierta vecindad U del cero, de manera que

|F(0)|<C para x €U.

Si Mes un .conjunto acotado, tenemos que M = nU para un n de-
terminado y, por censiguiente,

[f(x)|<<Cn sobre M.

SUFICIENCIA. Sea U,oU,>...oU,>... un sistema numerable
~determinante de vecindades del cero en E. Si la funcional f no
es continua, no estd acotada en cada una de estas vecindades.
Por eso, en cada una de las vecindades U, se puede indicar un
punto x, en el cual |f(x)|>k. La sucesién {x,} tiende a cero
y representa, por consiguiente, un conjunto acotado; la funcional f
" no’estd acotada .sobre este conjunto. Es decir, si la funcional f
no es continua en un espacio E que verifica el primer axioma
de numerabilidad, existe en E un conjunto acotado sobre el cual
la funcional no estd acotada. El teorema queda demostrado.
Una funcional lineal acotada sobre todo conjunto acotado se
llamara funcional lineal acofada. La acotacién de una funcional
lineal no implica, en general, su continuidad.

3°. Funcionales lineales continuas sobre espacios normados. Vea-
mos mas detalladamente el caso particular importante cuando E
es un espacio normado. Como todo espacio normado verifica el
primer axioma de numerabilidad, la continuidad de una funcional
lineal en €l equivale a su acotacién. Pero-en un espacio normado
- un conjunto es acotado si, y sélo si, esta contenido en una bola
con centro en el origen de coordenadas. Por eso la acotacién
de una funcional en un espacio normado significa que la funcional
estd acotada en cada bola. Debido a la linealidad, esta ultima
condicién equivale a que la funcional estd acotada sobre la bola
unitaria e : i .
xj<t
del espacio E. ‘



188 CAP. 1V. FUNCIONALES LINEALES Y OPERADORES LINEALES

Sea f una funcional lineal acotada (= continua) en un espacio
normado E. El nimero _
= su x) |,
1=, s tFl
esto es, la cota superior minima de los valores que toma |f(x)|
sobre la bola unitaria del espacio E, se llamara norma de la fun-
cional lineal f. Sefialemos las siguientes propiedades evidentes’

de |[f]: : ~
1) IFll=sup LL&BL @)
x%=0 ”X" !

esto sigue directamente de que para todo x==0
& _|s(_x
rer=1f () |-
2) Para cualquier x€ E
[FI<HFN- |l : 3)

En efecto, si x40, el elemento -“—i—”- pertenece a la bola unita-

ria, es decir, por definiciéon de la norma de una funcional

lf(ﬁn)l:lﬁ%l <l

de donde se deduce (3). En cambio, si x=0, en los miembros
de derecha y de izquierda de (3) figura 0.
En lo sucesivo s6lo consideraremos funcionales lineales conti-
nuas; omitiremos, para abreviar, la palabra «continua. '
Veamos algunos ejemplos de funcionales lineales en espacios
normados.
- 1. Sea R* el espacio euclideo de n dimensiones y sea a un
vector fijo de él. Entonces, el producto escalar

f(x) = ()C, a)'

donde x recorre todo R”, representa, evidentemente, una funcional -
lineal sobre R*. Debido a la desigualdad de Cauchy —Buniakovski,
tenemos

F@ =16 a|<lx|-lalls ©)

por consiguiente, esta funcional es acotada y, por lo tanto, conti-
nua sobre R”. De la desigualdad (4) tenemos que

A1 <l
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Puesto que el miembro derecho de esta desigualdad no depende

de x, tendremos

sup LA < )

es decir, ||f]|<C]la]]. Pero tomando x=a, obtenemos

1f(a)]
el

|f@)|=(a, a)=]la]|? es decir, =lal|.

Por eso

IFl=llall

b

1=\ x@a,

2. La integral

donde x (f) es una funcién continua sobre [a, b], representa una
funcional lineal en el espacio C,, ,. Esta funcional es acotada
y su norma es igual a b—a. En efecto,

[ (x)]= <max|x ()| (b—a)=||x[|(b—a)

b
§x(at

y para x==const se alcanza la igualdad.
3. Consideremos un ejemplo mas general. Sea y,(f) una fun-
cién fija continua sobre [a, b]. Pongamos para toda funcién

X (t) E C[a. bl
b
Fo={xtypa. 5)

Esta funcional es lineal. Ademas, es acotada, ya que
b

{x )y, t)at

a

)
|F (x)|= <=l 1z 010t (6)

De manera que la funcional (5) es lineal y acotada; luego, es
~continua. De (6) se deduce que '

b
IFI< § 1900 dt.

(Deniuéstrese que de hecho tiene lugar la igualdad exacta).
4. Consideremos en el espacio Cy, ; la funcional lineal

8;, (x)=x(,)
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ya mencionada en el punto 5 del § 1 del cap. III. Su valor en
la funcién x (f) se define como el valor de x (¢) en el punto dado ¢,.
Esta claro que

x| <=

y que para x==const tiene lugar la igualdad. De aqui se deduce
inmediatamente que la norma de la funcional §, es igual a 1.

5. En todo espacio euclideo X, al igual que en R”, se puede
definir una funcional lineal, escoglendo un elemento fijo a€ X
y tomando para cualquier'xEX

F (x)=(x, a).
Al igual que en el caso de R*, es ficil comprobar que
IEN=llall.

Al concepto de la norma de una funcional lineal en un es-
pacio normado se puede dar la siguiente interpretacién geométrica
clara. Hemos visto anteriormente (cap. III, § 1) que a toda fun-
cional lineal se puede poner en correspondencia un hiperplano L
dado por la ecuacién

f=1.

Busquemos la distancia d de este hiperplano al punto 0. Por de-

finicién d= inf || x|. Puesto que siempre
f(n)=1

MGIEY IR ERE
de f(x)—-l se deduce que llxl]}—”;—” para todo x€ L, es decir,

que d= T f|| Por otro lado, de acuerdo con la definicién de la

norma de f, para cualquier & >0 existe un elemento x, que
verifica la condicién f(x,)=1 y tal que

1> (I Fl—e)llxlls

1
d= mf ||x||< W;f

f(x)=1
Como € >0 es arbltrarlo, obtenemos
1
d= ——
TV

es decir, la norma de la funcional lineal f(x) es el valor inverso
de la distancia desde el hiperplano f(x)=1 hasta el punto 0.

por eso

- 4° Teorema de Hahn — Banach en un espacio normado. En el
§ 2 del cap. III hemos demostrado el teorema de Hahn— Banach,
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segiin el cual toda funcional lineal f(x;), que estd definida sobre
un subespacio L de un espacio lineal E y que verifica la condicién

[fo ()< p (), ()

donde p es una funcional convexa fija sobre E, se puede prolongar
a -todo el E conservando la condicién. En el caso de funcionales li-
neales acotadas en espacios normados, este teorema se puede
enunciar de la siguiente manera:

~Sean E un espacio normado real; L, un subespacio suyo y f,,
una funcional lineal acotada sobre L. Esta funcional lineal se
puede prolongar a una funcional lineal f, definida sobre todo el
espacio E, sin aumentar la norma, esto es, de manera que

” fo ”sobrel. = ”f ”sobre E*
En efecto, sea .
“ fo “sobre L= k.

Esta claro que k| x|| es una funcional convexa. Tomandola igual
a p y aplicando el teorema de Hahn— Banach, demostrado en el
§ 2 del cap. III, obtendremos el resultado necesario.

En laforma que acabamos de dar, el teorema de Hahn — Banach
admite la siguiente interpretacién geométrica. La ecuacién

fo(x)=1 : 8)
define en el subespacio L un hiperplano que se encuentra a la

distancia "Tlo”_ del cero. La posibilidad de prolongar la funcio-

nal f,, sin incrementar su norma, hasta una funcional definida
‘en todo E, significa que este hiperplano puede completarse hasta
un hiperplano en todo E y de manera que la distancia hasta el
cero de este hiperplano mayor sea la misma que la del hiperplano (8).

Aplicando la variante compleja del teorema de Hahn —Banach
teorema 4a del § 2 del cap. III), es ficil demostrar la validez
de la siguiente proposicién:

Sean E un espacio normado complejo y f, una funtional lineal
" acotada, definida sobre un subespacio L= E. Entonces existe una
funcional lineal acotada f, definida en todo E, que verifica las con-
diciones: ' )
f)=F(x), x€L,
” i_”sobn:f:"= “ fo “sobre L

5°. Funcionales lineales en espacios normados numerables.
Sea E un .espacio normado numerable con las normas ||-|,
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(k=1, 2, ...); sin perder generalidad, se puede considerar que
para todo x€E : S
Ixh<lzh<<...<lzl.<... 9)
Sea f una funcional lineal continua sobre E; entonces, existe en E
una vecindad U del cero en la cual la funcional f estd acotada.
De acuerdo con las desigualdades (9) y la definicién de la topo-
logia en un espacio normado numerable, existen un nimero
natural £ y un &> 0 tales que la bola S, ,={x:|| x|, <e} esta
contenida en la vecindad U; entonces, la funcional f estd acotada
sobre esta bola y, por consiguiente, es acotada y continua respecto
a la norma ||-]|s, esto es, existe un C >0 tal que

fFI<Cllxl x€E.

Por otro lado, es evidente que una funcional lineal acotada res-
pecto a una de las normas ||-||, es continua sobre E. Por consi-
guiente, si E; es el conjunto de todas las funcionales lineales
sobre E, continuas respecto a la norma ||-||,, y si E* es el con-
junto de todas las funcionales lineales continuas sobre E, tenemos

E=E:. (10)
n=1

Ademas, de la condicién (9) se deduce que
EicE;c...cE,c...

Siendo f una . funcional lineal continua sobre E, esto es, f€ E®,
su orden se define como el menor de los nimeros n tales que
f€ E}; en virtud de la igualdad (10), toda funcional lineal con-
tinua sobre E tiene un orden finito.

6°. Existencia de un nimero suficiente de funcionales lineales
continuas. Si el espacio topolégico lineal E no se sujeta a limi-
taciones adicionales, puede ocurrir que no exista sobre él ninguna
funcional lineal continua diferente del cero idéntico. No obstante,
puede sefialarse una clase amplia de espacios para los cuales
existe un namero suficientemente grande de funcionales lineales
continuas. Aceptemos la siguiente terminologia. Diremos que
sobre el espacio E existe un ndmero suficientemente grande de
funcionales lineales continuas, cuando para cualesquiera x, + x,
de E existe una funcional lineal continua f, definida sobre E,
tal que f(x,)==f(x,). Esta condicién equivale, evidentemente, a
que para todo x,==0 exista una funcional f tal que f(x,)=0.

Para cada espacio normado E existe un numero suficientemente
grande de funcionales lineales continuas.

En efecto, sea x, un elemento no nulo de E. Definamos
para los elementos de tipo Ax, la funcional f,, tomando
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fo (Axo) =\, y prolonguemos después esta funcional (valiéndonos,
del teorema de Hahn—Banach) hasta una funcional continua,
definida sobre todo el espacio E. Obtendremos una funcional f
tal que f(x,)=1=£0.

Si E es un espacio normado numerable con las normas
Ill.(n=1,2, ...) ysi x,€E y x,5%0, podemos construir, re-
pitiendo el razonamiento anterior, una funcional lineal f, definida
sobre E y continua respecto a la norma |.||,, tal que f (x,)5=0;
puesto que esta funcional sera, evidentemente, continua sobre E,
para todo espacio normado numerable existe también un ndmero
suficientemente grande de funcionales lineales continuas.

Finalmente, si E es un espacio real localmente convexo y se-
parable, para cualquier elemento no nulo x, € E existe una ve-
cindad U del cero convexa y simétrica (U= — U) tal que x,€U;
sea p, la funcional de Minkowski para la vecindad U, esto es,

pu(x)=inf{t: t>0, tieu}.

De lo demostrado en el § 2 del cap. III se deduce que p, es
una funcional convexa sobre E finita y simétrica (es decir, tal
que py(—x)=py(x)) y que, ademss,

py(x) <1, xeU,

Py (%) = 1.

Consideremos en E el subespacio lineal unidimensional L, =
= {Ax,} y definamos en él una funcional lineal f,, tomando
fo(Ax))=A. Estd claro que |f,(x)|<<py,(x) para x€L, y que
fo(xo)=1. De acuerdo con el teorema de Hahn — Banach, existe
una prolongacién f de la funcional f,, definida en todo el E, que
verifica la condicién |f(x)|<Cpy,(x) para todos los x€ E. En
particular, para x€ U, tenemos |f(x)|<<py(x) <1, de manera
que la funcional f es acotada sobre U y, por consiguiente, con-
tinua sobre E.

Como f(x,) =1, hemos demostrado que para todo espacio real
localmente convexo y separable existe un nimero suficientemente
grande de funcionales lineales continuas (una proposicién aniloga
es valida también para un espacio complejo). En realidad, este
hecho es el que determina en lo fundamental la importancia para
el Analisis de la clase de espacios localmente convexos.

§ 2. ESPACIO DUAL

1° Defihicién de espacib dual. Para funcionales lineales se
puede definir las operaciones de adicién y multiplicacién por
nimeros. Sean f, y f, dos funcionales lineales definidas sobre un

13—3427
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espacio topolégico lineal E. La suma de ellas f, 4 fy es la fun-
cional lineal

F)=F,(0)+1, (1), x€E.

El producto of, de la funcional lineal f, por el niimero o es
la funcional

fx)=af, (x), x€E.

Estd claro que la suma f,+f, y el producto af, representan
funcionales lineales. Ademas, de 1a continuidad de las funciona-

les f, y f, se deduce que f,+f, y af, son también funcionales
continuas sobre E. ;

Es féacil ver que las operaciones de adicién y multiplicacién
de funcionales por niimeros asi definidas satisfacen todos los axio-
mas de un espacio lineal. En otras palabras, el conjunto de to-
das las funcionales lineales continuas, definidas sobre un espacio
topolégico lineal E, forma un espacio lineal. Se llama espacio
dual a E y se denota mediante E*. :

Ademaés de las operaciones lineales, en el espacio dual E* se
pueden introducir diferentes topologias. Consideremos primero el
caso mas sencillo cuando el espacio inicial £ es normado.

2°. Espacio dual a un espacio normado. Para las funcionales
lineales continuas, definidas sobre un espacio normado, hemos
introducido el concepto de norma tomando

Y
I7ll= sup, “rer

Esta norma verifica todas las condiciones contenidas en la de-
finicién de un espacio normado. En efecto,

1) If]l >0 para cualquier funcional lineal no nula f;

2 Nlafll=lelIf1
3) ”f1+f2”=x5i%|fl(x)+f2(x)|<sup [F1(x)] + sup 1f2(%)] _

%]l 0 2l 7 5% llxl —

=lfli+I7adl.

De esta forma, el espacio E*, dual a un espacio normado, puede
ser provisto de una estructura natural de espacio normado. La
topologia en E*, correspondiente a la norma introducida, se llama
topologia fuerte en E*. Si es deseable subrayar que E* se consi-
dera lccimo un espacio normado, en lugar de E* escribiremos
(E*, |-

Establezcamos la siguiente propiedad importante del espacio
dual a un espacio normado.
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TEOREMA 1. El espacio dual (E*, ||-||) es completo.

DEMOSTRACION. Sea {f,} una sucesioén fundamental de funcionales li-
neales. Entonces, para cadae > Oexiste un N tal que || f,—f, || <e
para todo n, m>N. De aqui obtenemos para cualquier x € E

| o @) —Fa < Fa—Faull- 2]l < el %]l

es decir, para cualquier x€ E la sucesién numérica {f,(x)} con-
verge. Pongamos :

F0 = lim £, (3.

Comprobemos que f representa una funcional lineal continua.
Comprobemos primero la linealidad:

[lex+py)= lim f, (@x+Py)= V
=n1£f2 [“fn (%) + B (9)] = of (x) + Bf (9).
- Escojamos ahora N de manera que l!f,.—f,.+p”<.l para todo

n=Ny todo p>0. Entonces, ||f,.,||<|/f,]|+1 para todo
p=0. Por consiguiente, '

| Faep DU Fall+ 1) 1 2.
Pasando al limite para p-—» oo, obtenemos
‘;iinwlf,.+,,(x)l=.lf(x)l<(llfnll+1)llxll'
es decir, la funcional f(x) es acotada. Demostremos ahora que la
funcional f es el limite de la sucesién f, f, ..., f., ... Sea
&> 0. Escojamos n tan grande que ||f,—f,.,Il < % para todo

p=0. Por definicion de la norma existe un elemento x,,, tal
que

Nfn n, ) —F (5, )| | &

| fa—Fll < — o +g=
= (75) =1 (7 +-
Entonces, W Fasp—FI<| Fasp (IT:-::—:'W)—f (W:_::T)| +2§ .

Pero el primer sumando del miembro derecho tiende a cero
para p— oo. Por consiguiente, para todo p suficientemente grande
~se cumplird la desigualdad

S Nine—Fli<e.
El teorema queda demostrado.

13*
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Subrayemos una vez mas que este teorema es valido indepen-
dientemente de si es completo o no el espacio inicial.
Observacién. Si el espacio normado E no es completo y E es su
completacién, los espacios E* y (E)* son isomorfos. En efecto, po-
demos aceptar que E estd sumergido en E como un subcon-
junto siempre denso; por eso, toda funcional f € E* lineal continua
sobre E tiene la tinica prolongacién por continuidad f de E a
todo el E. Esta claro que f€(E)*, que ||fll=I||f]l y que toda
funcional de (E)* es una prolongacién de alguna funcional de E*
(a saber, de su restriccién sobre E). Por consiguiente, la aplica-

cién f—F repres_enta una aplicacién isomoérfica del espacio E* a
todo el espacio (E)*.

3°. Ejemplos de espacios duales. 1. Sea E el espacio lineal de
n dimensiones (real o complejo). Escojamos en E una base
e, ..., €, entonces, todo vector x€ E se representa de manera

n
anica en la forma x=;“ xe;.Si f es unafuncional lineal sobre E,

estd claro que
P = 2 Fledxi M

por consiguiente, una funcional lineal se determina univocamente
por los valores que toma en los vectores de la base ¢, ..., e,
con la particularidad de que estos valores pueden escogerse arbi-
trariamente. Definamos las funcionales lineales f,, ..., f, to-
mando
f 1, cuando i=j,

e;) == . .
7€) 0, cuando i=j.

Es evidente que estas funcionales son linealmentesindependientes.
Esta claro que :
fi(x)=x;

por eso, la férmula (1) se puede escribir en la forma

Fo)= 3 fedfi ().

Por consiguiente, las funcionales f,, ..., f, forman una base en
el espacio E*, es decir, E* es un espacio lineal de n dimensio-
nes. La base f,, ..., f, de E* se llama dual respecto a la base
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&, ..., ¢, de E. Diferentes normas en el espacio E inducen
distintas normas en E*. Sefialemos algunos ejemplos de pares de
normas correspondientes en E y en E*; en las férmulas (a), (b),
() y (d) x4, ..., x, son las coordenadas del vector x€ E en la
base e,, ..., e, mientras que f!, ..., f* son las coordenadas de
la funcional f€ E* en la base dual f,, ..., f,

(@ Jlxll= (‘z; 1% |’>%- Ifll= (21 1 l*)%;

q9

s n p n
o 1al=(Zsr) - wi=(Siee) s Leten
© Isl= sup txl WFlI= 317

n
d = , = 7).
@ Ixl=Z 1=l UFll= sup_ |F]
2. Consideremos el espacio ¢, de las sucesiones x = (x, ..., X, -..)
convergentes a cero con la norma || x||=sup|x,| y demostremos

que el espacio (c3, ||-|)) dual a él es isomoﬁfo al espacio 1, de to-
das las sucesiones absolutamente sumables f={f,, ..., [, ...} con

la norma ||f|| = i | fz|- Cualquier sucesién f€!, define en el es-
pacio ¢, una funcional lineal acotada f mediante la férmula

Fw =3 fon o

estd claro que |f (x)| <[ x| ngll fs], de manera que ||F|| <<||IF1-
Consideremos en ¢, los vectores
e,=01,0, ...,0, ...),

...........

oooooooooooo

I
M=
i
o

y pongamos XN (si f.=0, aceptamos que —I-;—"-I-=0)'
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Entonces, xM €¢,, [|xM[<1 y
N N
F (N — fn — ,
Fem) = X g Flen =21
de manera queNlim Fley= Sllf,,|=||fu. Por consiguiente, ||f[| >

>||f||; comparando esto con la desigualdad de sentido opuesto,
obtenida anteriormente, llegamos a la conclusion de que

IF I=|1fll. Hemos construido, de esta forma, una aplicacion

lineal isométrica f— f del espacio I, en el espacio cj; queda
por comprobar que la imagen del espac1o I, mediante esta
aplxcacxon coincide con todo el ¢;, es decir, que toda funcional

f€cs se puede representar en la forma (2), donde f={f,}€1,.

Para todo x={x,} €c,, tenemos x=n21 X.e, la serie que figura

en el miembro derecho converge en ¢, al elemento x, ya que

x— ﬁ] Xy “= sup | x,]— 0 para N — oco. Como la funcional
n=1l n>N )

f€cy es continua, tenemos f(x)= 2 X, [ (e,); por eso, es sufici-

f(en)
“[Flen)]

ente comprobar que Z IF (e,)| < o0. Tomando x®) = 2

y observando que x("’)Eco [xM | <1, tenemos

Z IF (e 1= ,,2_:, L 7 o) = F e <l

de dondé, debido a la arbitrariedad de N, sacamos la conclusion

de que Z‘, IF ()] < 0.

3. No es dificil demostrar que el espacio Ij dual al espacio [,
es isomorfo al espacio m compuesto por todas las sucesiones aco-
tadas x={x,} con la norma ]lx”—sup]x L.

4. Sean p>.1 y [, el espacio de todas las sucesiones x = {x,}

tales que
1

“"”"’(,.2,"‘""? "< oo
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se puede demostrar que el espacio I; dual a €l es isomorfo al
espacio [, %—l—%:l. La forma general de una funcional lineal
continua sobre lp es:

F0) = % fri x=(nd €l f=if)el,

La demostracién se basa en la desigualdad de Hélder.
Pongamos en claro la estructura del espacio dual al de Hilbert.

TEOREMA 2. Sea H un espacio real de Hilbert. Para toda funcional
lineal | continua sobre H existe el dnico elemento x, € H tal que

fx)=(x %), x€H,; (3)

ademds, resulta que ||f||=| x,|. Viceversa, si x,€H, la fér-
mula (3) define una funcional lineal continua f tal que [|fl}=
=||x,||. Por consiguiente, los espacios H* y H son isomorfos.

DEMOSTRACION. Es evidente que la férmula (3) define para todo
X, € H una funcional lineal sobre H. Como |f(x)|=](x, %) | <<
<|| x|l %o ||, esta funcional es continua y como f(x,)=/|x, %,
tenemos ademas Hfﬂ:[l %o|l- Comprobemos que toda funcional
lineal continua f sobre H se puede representar en la forma (3).
Si f=0, tomamos x,=0. Sea ahora f =0 y sea H,= {x:f (x) =0}
el subespacio nulo de la funcional f; como f es continua, H, es
un subespacio lineal cerrado de H. Enel punto 6 del § 1 del
cap. III ha sido demostrado que la codimensién del subespacio
de ceros de cualquier funcional lineal es igual a 1. Por eso y
tomando ‘en consideracién el corolario 3 del teorema 7 del § 4
del cap. III, llegamos a la conclusién de que el complemento
ortogonal Hi del espacio H, es unidimensional, esto es, existe
un elemento y, (no nulo) ortogonal a H, y tal que todo vector
X € H se puede representar de manera tinicaen la forma x=y--
+Ay,, donde y € H,. Podemos aceptar, evidentemente, que || , [|=1;
pongamos x,=f (¥,) ¥o. Entonces, para cualquier x€ H tenemos

x=y+Ay,, Yy€EH,
f () =M (%),
(* X)=A (Yo  Xo)=M o) Uos Yo)=M (Yo)-

De manera que f(x)=(x, x,) para todo x€H. Si f(x)=(x, x;),
x€H, tenemos (x, x,—x;)=0, de donde, tomando x=x,—x;,
encontramos que x,—x;. El teorema queda demostrado.
Observaciones. 1. Sea E un espacio euclideo no completo
y sea H el espacio de Hilbert que representa su completacion.
Como los espacios E* y H* son isomorfos (véase la observacion
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de la pig. 196) y H* es isomorfo a H, es vilida la siguiente
proposicién: el espacio E* dual a un espacio euclideo no completo
E es isomorfo a la completacion H del espacio E.

2. El teorema 2 es valido también para un espacio de
Hilbert complejo (la demostracién es la misma, solamente hay
que sustituir x,=7f (¥,) ¥o por x,=1F (y,) ¥,)- La tinica diferencia
entre el caso complejo y real consiste en que, en el caso com-
plejo, la aplicacion del espacio H en el espacio H*, que pone
en correspondencia al elemento x, € A la funcional f (x) = (x, x,),
es un isomorfismo lineal conjugado, esto es, pone en corres-

pondencia al elemento Ax, la funcional Af.

4°, Estructura del espacio dual a un espacio normado nu-
merable. Sea E un espacio normado numerable con las normas

It <Ml <.. . <lxh.<..., x€E.

De lo demostrado en el punto 5 del § 1 se deduce que el es-
pacio E*, dual a E, se representa en forma de la unién

E*=U E;
n=1

de una cadena creciente E;cE;c...cE,c... de espacios nor-
mados E, (en otras palabras, E, es el conjunto de todas las
funcionales lineales sobre E continuas respecto a la norma ||-||,).
De esta forma, si se conocen los espacios E;, se conoce tambien
el espacio E* (en el sentido de que se conocen los elementos
que lo componen y las operaciones lineales en él). En cuanto a
la topologia de E*, ésta se puede introducir de diferentes modos;
algunos de ellos serdn examinados en lo sucesivo. Sefialemos
ademés que con frecuencia resulta cémodo considerar el espacio
E; como el dual a la completacion del espacio E respecto a la
norma |-||,; esto es posible en virtud de la observaciéon que
hemos hecho después de la demostracién del teorema 1.

Ejemplo. Sea @ un espacio real de Hilbert numerable com-
puesto por todas las sucesiones x = {x,} tales que

1

@® 2
lellk=(2 n“x,'.> <oo, k=1,2, ...
n=1
los productos escalares en @ vienen dados por
% Yh=2Dn*xy, k=1,2, ...
n=1

El espacio @ con el producto escalar (-, -), es un espacio eu-
clideo; sea @, su completacién. Es ficil ver que @, se puede
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identificar con el espacio de Hilbert de todas las sucesiones
x={x,} tales que |ix|l <oo. De acuerdo con el teorema 2, el
espacio ®;, dual al espacio @,, es isomorfo al espacio @,; este
isomorfismo consiste en que a cada funcional lineal continua € ®}
se pone en correspondencia una sucesién f= {f,} tal que

1

nfn=(i w* | f] *)T< o,

n=1

F = D=3 whafu 1= {n} € D4

y, viceversa, cada sucesién de este tipo determina un elemento
de ®;. Definamos ahora la funcional f€®; no mediante la
sucesion {f,} sino a partir de la sucesién {g,}, donde g,=n*f,.
Entonces,

1

f(x) =§1 X8, ¥ Ifll = (é n"’g,{) "

Por consiguiente, ®; se puede identificar con el espacio de
Hilbert de las sucesiones {g,}, que verifican la condicién

2 nkgh <oo,
n=1

y con el producto escalar

@®

@, g")= 3 ntgd .

n=1
@®

Como CD"‘=U ®;, ®* es el espacio de todas las sucesiones
k=1

{g.} que satisfacen la condicién: existe un namero entero posi-

tivo k& tal que

> n-tgt <oo.
n=1

Ademiés, cada una de estas furicionales toma en el elemento
L]

x={x,} €® un valor determinado igual a X x,g, Es decir, si

el espacio @ es la interseccién de una c';l:ena decreciente de
espacios de Hilbert

O=nNo, ©,50,>...00,D...,
el espacio ®* es la unién de una cadena creciente de espacios
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de Hilbert
O*= yQ;, O;cP;c...cDic...

Conviene introducir la denotacién ®j=®_,. Si ademas denota-
mos [, mediante @,, obtenemos la siguiente cadena infinita en
ambos sentidos de espacios de Hilbert

...r:.(D,,c...cd)lcd)ocfb_lc...cd)f,,c...,
donde ®;=®_, para cada k=0, 41, +2, ... '

5°. Topologia en el espacio dual. Siendo E un espacio nor-
mado, hemos definido una vecindad del cero en E* como el
conjunto de funcionales que verifican la condicién

Ifll <e.

En otras palabras, se toma por sistema de vecindades del cero
en el espacio E* dual a un espacio normado, el conjunto de
funcionales tales que |f(x)| < e, cuando x recorre la bola unita-
ria ||lx[|<<1 del espacio E. En el caso en que E no es un espa-
cio normado, sino un espacio topolégico lineal, es natural, para
definir la topologia en E*, considerar en E en lugar de una
bola unitaria un conjunto arbitrario acotado A y definir una
vecindad del cero en E* como el conjunto de funcionales linea-
les que verifican la condicién

|f(x)] <e para todos los x € A.

De esta forma en E* queda determinado el conjunto de vecin-
dades del cero, cada una de las cuales se define mediante un
ndimero positivo & y un conjunto acotado AcE. No vamos a
comprobar aqui, aunque no es dificil de hacerlo, que el sis-
tema de vecindades, definido de esta manera, satisface efectiva-
mente las condiciones que debe verificar un sistema de conjuntos
para que pueda ser tomado por un sistema determinante de
vecindades del cero en un espacio topolégico lineal.

Estd claro que si el espacio E es normado, la topologia de
E*, que acabamos de describir, coincide con la que se define
en E* mediante la norma. La topologia descrita del espacio,
dual a un espacio topolégico lineal (a un espacio normado, en
particular), se llamara topologia fuerte en E* (a diferencia de la
topologia débil de E* de la cual hablaremos en el § 3).

Subrayemos que la topologia fuerte del espacio E* es necesaria-
mente separable y localmente convexa (independientemente de la
topologia que tiene E). En efecto, si f,€ E* y f,5£0, existe un

elemento x,€E tal que f,(x,)5~0, pongamos e=%|fo x| y
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A= {x,}; entonces, esta claro que fo€ Ue,a, €S decir, que E* es
separable. Para demostrar la convexidad local de la topologia
fuerte de E*, es suficiente observar que para cualquier & >0y
cualquier conjunto acotado AcE la vecindad Ug, 4 es un con-
junto convexo en E*. Denotaremos la topologia fuerte de E*
mediante el simbolo b; si es preciso sefialar que E* se consi-
dera con la topologia fuerte, escribiremos a veces (E*, b) (en
lugar de E¥). ’

6°. Segundo espacio dual. Puesto que las funcionales lineales
continuas sobre un espacio topolégico lineal E forman por si.
mismas un espacio topoldgico lineal (el espacio (E*, b) dual
a E), se puede hablar del espacio E** de funcionales lineales
continuas sobre E*, es decir, del segundo espacio dual a E, etc.

Sefialemos que todo elemento x, de E define en E* una
funcional lineal. En efecto, tomemos

"pxo (f) =f(xo)’ (4)
donde x, es un elemento fijo de E, mientras que f recorre
todo el E*. La igualdad (4) pone en correspondencia a cada f un
ngmero Py, (f), esto es, define una funcional sobre E*. Como
ademas

P g (@ fo B ) = f1 (%) + B fo (¥o) = 2y, (F) + B, (F),

esta funcional es lineal.

Es mas, toda funcional de este tipo es continua sobre E*.
En efecto, sea e>0 y sea A un conjunto acotado de E que
contiene x,. Consideremos en E* la vecindad U (e, A) del cero.
De acuerdo con la definicién de U (e, A), tenemos

|, ()| =1F(x0)| <& para fEU(e, A)

Pero esto significa que la funcional Yy, es continua en el punto 0
y, por consiguiente, en todo el espacio E*.

Hemos obtenido de esta forma una aplicacién de todo el
espacio E en un subconjunto del espacio E**. Esta aplicacién
‘es, evidentemente, lineal. Si sobre E existe un namero suficien-
temente grande de funcionales lineales (por ejemplo, si E es
normado o localmente convexo y separable), esta aplicacién
resulta biunivoca, ya que para cualesquiera dos diferentes x',
%" €E existe una funcional f€ E* tal que f(x') =~ (x"), es decir,
Y ¥ e son diferentes funcionales sobre E*. Esta aplicacién
de E en E* se llama aplicacion natural del espacio E en el
segundo espacio dual. Denotémosla con . Si 7 (E)= E**, el espacio E
(separable y localmente convexo) se llama semirreflexivo En el
espacio E** (considerado como dual a (E*, b)) se puede intro-
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ducir la topologia fuerte que denotaremos con *; esta topologia in-
duce en el espacio E la topologia m-*(b*) (tal que un conjunto
QcE se considera abierto si su imagen n(Q) es la interseccién
de n(E) con un subconjunto abierto del espacio (E**, b*)). Se
puede demostrar que la topologia n-(b*) es no mas débil que
la topologia inicial del espacio E (es decir, que todo conjunto
abierto en esta topologia inicial es también abierto en la topo-
logia == (b*)); esto significa que la aplicacién n-?, que trans-
forma n(E) en E, es continua. Siendo el espacio E semirreflexivo
y la aplicacién n: E— E** continua, se dice que E es un espacio
reflexivo. De lo expuesto se deduce: si E es reflexivo, la aplica-
cién natural n:E-— E** representa un isomorfismo entre los
espacios topolégicos lineales E y E**=(E**, b*) (es decir, es
biunivoca y bicontinua).

Puesto que podemos ahora considerar todo elemento de E
también como un elemento del espacio E**, conviene para los
valores de la funcional lineal f€E* emplear, en lugar de la
denotacién f(x), una denotacién mas simétrica

fx)=(f, x). ©)

Siendo fijo f€ E*, podemos considerar (f, x) como una funcio-
nal sobre E, y siendo fijo x, como una funcional sobre E* (y
en este caso x aparece ya como un elemento de E**).

Si E es un espacio normado (y, por consiguiente, son también
normados los espacios E*, E**, etc.), la aplicacion natural del
espacio E en E** es una isometria.

En efecto, sea x un elemento de E. Designemos mediante
llxll su norma en E y mediante ||x||, la norma de su imagen
en E**. Demostremos que ||| =|x|l,. Sea f un elemento arbi-
trario de E*. Entonces,

[G2 DIl es decir, ) > 1021,

Yy, puesto que el miembro izquierdo de la Gltima desigualdad
no depende de f,

I(F, x)|

[T

Por otro lado, segiin el teorema de Hahn—Banach, para todo
X, € E existe una funcional lineal f, tal que

'(fot xo)l= “fo"'”xo" (6)

(para construir esta funcional es suficiente tomar f,(x)=a para
los elementos de tipo x=ax, y extender después esta funcional,

lixli = sup = [|xlf.

T T T e Iy T
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conservando su norma, a todo el E). De (6) se desprende que

elly = sup AL > 2,
rege Ml
es decir, [x]l=Ilxll,, que es lo que queriamos demostrar. Por
consiguiente, el espacio normado E es isométrico a la variedad
lineal (en general, no cerrada) x(E) de E**; identificando E con
n(E), podemos aceptar que EcE™**.

Puesto que para los espacios normados la aplicacién natural
n: E — E** es isométrica, resulta que los conceptos de semirre-
flexividad y reflexividad coinciden en el caso de espacios nor-
mados.

Como el espacio, dual a un espacio normado, es completo,
todo espacio normado reflexivo E es completo. \
 Los espacios euclideos de dimensién finita y el espacio de
Hilbert representan los ejemplos mas sencillos de espacios refle-
xivos (para ellos se tiene incluso que E=E®*).

El espacio ¢, de sucesiones convergentes a_cero ofrece un
ejemplo de un espacio rio reflexivo completo. En efecto, como
hemos demostrado anteriormente (ejemplo 2 del § 2), el espacio
dual a ¢, es el espacio /, de todas las series numéricas absoluta-
mente convergentes y el dual de este altimo coincide con el
espacio m de todas las sucesiones acotadas.

El espacio Cp4, 5 de funciones continuas sobre un segmento
[a, b] es también no reflexivo. Sin embargo, no daremos aqui
la_demostracién de esta proposicién*.

Como ejemplo de un espacio reflexivo, que no coincide con
su dual, puede servir el espacio /, para 1 < p 2 (puesto que =1,

donde -:7+%=l, tenemos [;* =13=1)).

EJERCICIO. Demuéstrese que un subespacio cerrado de un espacio reflexivo
es también reflexivo. ‘

§ 3. TOPOLOGIA DEBIL Y CONVERGENCIA DEBIL

1°. Topologia débil en un espacio topoldgico lineal. Conside-
remos un espacio topolégico lineal E y el conjunto de todas las
funcionales continuas sobre él. Si f,, ..., f, es un sistema finito
arbitrario de estas funcionales y & es un namero positivo, el

conjunto ‘
x| <e i=1,2, ..., n} (1)

; 1) Se puede deinostrar incluso una proposicién mds fuerte: no existe
ningin espacio normado para el cual Cp, 4 sea el espacio dual. '
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es abierto en E y contiene el punto 0, esto es, representa una
vecindad del cero. La interseccion de dos vecindad®s de este
tipo siempre contiene un conjunto de tipo (1) y, por consiguiente,
- en E se puede introducir una topologia para la cual la totalidad
de los conjuntos de tipo (1) constituira el sistema determinante
de vecindades del cero. Ella se denomina topologia débil del
espacio E. En otras palabras, la topologia débil en E es la
topologia mas débil de este espacio lineal respecto a la cual son
continuas todas las funcionales lineales que son continuas res-
pecto a la topologia inicial de este espacio.

Esta claro que to @5 conjunto de E abierto en el sentido de
la topologia débil es ta mbién abierto en la topologia inicial del
espacio E, pero la reciproca no es, en general, valida (los con-
juntos de tipo (1) no forman necesariamente un sistema deter-
minante de vecindades del cero en la topologia inicial). De
acuerdo. con la terminologia, aceptada en el § 5 del cap. II,
esto significa que la topologia débil del espacio E es mas débil
que la topologia inicial. Esto justifica su denominacién.

Si_en E existe un niimero suficientemente grande de funcio-
nales lineales continuas (por ejemplo, si E es normado), la topo-
logia débil de E verifica el axioma de separabilidad de Haus-
dorff. Es ficil comprobar asimismo que las operaciones de
adicién y multiplicacién por niimeros, definidas en E, son con-
tinuas respecto a la topologia débil de este espacio.

2°. Convergencia débil. Incluso en el caso de espacios norma-
dos, la topologia débil de E puede no satisfacer el primer
axioma de numerabilidad. Por consiguiente, esta topologia no
puede describirse, en general, en términos de sucesiones conver-
gentes. No obstante, la convergencia en E determinada por esta
topologia representa un concepto importante. Se llama convergen-
cia débil. A diferencia de ésta, la convergencia definida por la
topologia inicial del espacio E (por la norma, si E es normado)
se llama convergencia fuerte.

Es obvio que el concepto de convergencia débil se puede
enunciar de la siguiente manera: la sucesién {x,} de elementos
de E se llama débilmente convergente a X, € E, cuando para
cualquier funcional ¢(x) lineal continua sobre E la sucesién
numerica {¢ (x,)} converge a ¢ (x,). En efecto, admitiendo, para
simplificar, que x,=0, supongamos que @(x,)—0 para toda
@ € E*. Entonces, cualquiera que sea la vecindad débil

U={x]o;(0)<e, i=1,2, ..., &

del punto 0, existe un N tal que %,€U para todo n >N (para
-~ ello es suficiente escoger N; de manera que |9; (x,)| <e, cuando
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n>N;, y tomar después N =max N;). Viceversa, si para cada
vecindad U del cero existe un N tal que x,€U para todo
n>N, la condicién ¢ (x,) —0 para n— oo se cumple, eviden-
temente, para cada funcional fija ¢ € E*.

Consideremos méas detalladamente el concepto de convergencia
débil en el caso de espacios normados.

TEOREMA 1. Si {x,} es una sucesion débilmente convergente en un
espacio normado, existe una constante C tal que

IIx. [ <C.

En otras palabras, foda sucesion débilmente convergente de un
espacio normado es acotada. : .

DEMOSTRACION. Siendo la sucesién ix,,} no acotada, cualquiera que

sea la bola cerrada S [f,, e]={f:||f—f, || <e} de E*, el conjunto
numérico :
; ‘ {(f’ xn)}'

donde n==1, 2, ... y f recorre esta bola, no es acotado. En
efecto, si la sucesién {x,} es acotada sobre la bola S [f,, €] es
también acotada sobre la bola S|[O, s]=}g:l|g||<s}, ya que
siendo g€S|[0, e], tenemos f,+g€S[fe €] y (g X)) =
= (fo+8& x,)— (fo» X,) y los nimeros (f,, x,) son acotados de-
bido a la convergencia débil de la sucesién ﬁc,,}. Pero  si
|(@ x,) |<C para todo g€S [0, €], tenemos, debido a que la
aplicacién natural de E en E* es isométrica, ‘

C
“xn"< _8—’

esto es, las normas || x, || estédn acotadas en su conjunto. Por con-
siguiente; si la sucesion {x,} es no acotada, tampoco sera acotada
sobre cualquier bola de E*. Tomemos una bola B,cE*. Existen
un ntmero n, y un elemento f€B, tales que |(f, x,)| > 1.
Puesto que (f, x) depende continuamente de f, la desigualdad
[ (f, x,)] > 1 se verificara para todos los f pertenecientes a una bola
cerrada B, B,. Razonando de la misma manera, encontraremos
en B, una bola cerrada B, y un niimero n, tales que para todo
f € B, se cumple la desigualdad |(f, x,)|>2, etc.; en general,

para cada k encontraremos un nimero n, y una bola B,cB,_,
tales que =

| (s %n)| >k para f€B,.

Se puede admitir, ademas, que los radios de las bolas B, tienden
a cero cuando k—oo. Puesto que el espacio E* es completo,

existe un elemento f perteneciente a todas las bolas B, (jprincipio
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de bolas encajadas!). Pero en tal caso
|Gy %) | >k

para todo k y esto contradice a la convergencia débil de la
sucesién {x,}.

Observacion. Al demostrar que la sucesién {x,} es acotada res-
pecto a la norma nos hemos valido solamente de que la sucesién
numérica (f, x,) es acotada para todo f€ E*. Por eso, si la suce-
sién {tx,,} de E es tal que la sucesion numérica (f, x,) es acotada
para toda f€ E*, existe una constante C tal que | %, ]| <<C. Este
resultado admite la siguiente generalizacion: fodo subconjunto
débilmente acotado (esto es, acotado en la topologia débil) Q de
un espacio normado E es fuertemente acotado (es decir, estd con-
tenido en una bola). En efecto, supongamos que existe una suce-
sion {x,}<Q tal que || x, || — oo (n — o). Como Q es débilmente
acotado, el conjunto {x,} también es débilmente acotado, es decir,
es absorbido por cualquier vecindad débil del cero; en particular,
para cualquier f € E* existe un N tal que {x,} =N {x:|(f, x)| < 1},
de donde se sigue que |(f, x,)| < N para todo n. Pero esto, de
acuerdo con la observacién hecha anteriormente, contradice a que
| %, || — 0. Si tenemos en cuenta que la acotacién débil de un
conjunto Q significa que cualquier funcional lineal continua sobre
€l es acotada, llegamos al siguiente resultado importante: para
que un subconjunto Q de un espacio normado sea acotado es nece-
sario y suficiente que cualquier funcional f € E* sea acotada sobre Q.

El teorema que sigue permite frecuentemente determinar la
convergencia débil de una u otra sucesién.

TEOREMA 2. La sucesidn a}x,,} de elementos de un espacio normado E
converge débilmente al elemento x € E, si
1) }J X, || estdn acotadas en su conjunto por una constante M ;
2) f(x,)—f(x) para toda f€EA, donde A es un conjunto
cuya cdpsula lineal es siempre densa en E*.

DEMOSTRACION. Se desprende de las condiciones del teorema y de
la definicién de una funcional lineal que si ¢ es una combinacién
lineal de elementos de A, entonces,

P (%) — @ (x).

Sea ahora ¢ un elemento arbitrario de E y sea {¢,} una sucesién de
combinaciones lineales de elementos de A convergente a ¢. Demos-
tremos que ¢ (x,)— @ (x). Sea M tal que

lal<M (=12 ..)y|x|<M
Estimemos la diferencia |9 (x,)| — @ (x). Como 9,— @, para
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cualquier & >0 existe un K tal que ||p—¢@,]| <e para todos
los k= K. Por eso,

|9 (x) — 0 ()| <9 (x,) — @ (x,) |+
10 () — P () |+ e () — @ () | < eM+
+eM+| @ (%) —@, (%) |-

Pero, @, (x,) — @, (x) para n— oo, por hipétesis. Luego, ¢ (x,)—
—@(x) —0, cuando n— oo, para cualquier ¢ € E*.

Ejemplos. Veamos el sentido que tiene el concepto de con-
vergencia débil en algunos espacios concretos.

1. En el espacio euclideo de dimension finita R* la convergencia
débil coincide con la fuerte. En efecto, sea e,, ..., e, una base
-ortonormal de R" y sea {x,} una sucesién de R" convergente
débilmente al elemento x. Entonces,

e €)=xt—(x, €), i=1,2, ..., n,

es decir, las primeras coordenadas de los vectores x, tienden a la
primera coordenada del vector limite x, sus segundas coordenadas
convergen a la segunda coordenada del vector x, etc. Pero
entonces, '
. 1

. 1

\2
P (X x) = ({2 (xt — x‘)’) —0,

=1

s decir, {x,} converge fuertemente a x. Puesto que la conver-
gencia fuerte implica la débil, queda demostrada la equivalencia
en R" de estas convergencias.

2. Convergencia débil en l,. Para que la sucesibn acotada
{x®} comverja débilmente a x, es suficiente que se cumplan las
condiciones

@®, e)=xh—x=(x,¢), i=1,2, ...,
donde
e=(,00, ...), =010 ...),...

En efecto, las combinaciones lineales de los elementos e; son
siempre densas en el espacio [, (que coincide, como hemos visto,
con su dual). Por eso nuestra proposicion se desprende del teo-
rema 2.

Por consiguiente, la convergencia débil de una sucesién aco-
tada {x®} de !/, significa que la sucesién numérica de las coor-
denadas x4 de estos vectores converge para cada k=1, 2, ...
No es dificil ver que la convergencia débil de I, no coincide
con la fuerte. En efecto, demostremos que la sucesién e, e,, ...,
€, ... converge débilmente al 0 en [,, Toda funcional lineal

143427
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f en 1, puede ser representada como el producto escalar f (x) = (x, a)
del vector x€l, por un vector fijo a=(a,, a,, ...). Por eso,

f (e)=ay, i

y como a,— 0 para n-— oo cualquiera que sea aél,, obtenemos
limf(e,)=0

para cada funcional lineal en /,.

Al mismo tiempo, la sucesién {e,} no converge, en el sentido
fuerte, a ningin limite.

EJERCICIOS. 1. Supongamos que la sucesién {x,,} de elementos de un
espacio de Hilbert H converge débilmente al elemento xE€H de manera que
I %7 || —> |l x || para n — 0. Demuéstrese que en este caso la sucesién {x,,}
converge fuertemente a x, es decir || 2p—x ]| —0.

1. Demuéstrese que la proposicion del ejercicio 1 sigue siendo vilida
si se sustituye la condicién |jx,||— ||x]| por la condicién ||x, || <|| *||

para todo n o por la condicién lim || x,||<|lx||.
)

n

3. Sea H un espacio (separable) de Hilbert y sea Q un subconjunto
suro acotado. Entonces, la topologia en Q inducida por la-topologia débil
del espacio H se puede definir mediante una métrica.

4. Demuéstrese que todo subconjunto cerrado convexo de un espacio de
Hilbert es cerrado respecto a la topologia débil (en particular, todo subes-
pacio lineal cerrado de un espacio de Hilbert es débilmente cerrado). Dése
un ejemplo de un conjunto cerrado de un espacio de Hilbert que no sea dé-
bilmente cerrado. B

3. Convergencia débil en el espacio Cyq, 5} de funciones continuas.
Sea {x, (#)} una sucesi6n acotada de funciones de Ci,, 5] conver-
gente débilmente a la funcién x (¢). Entre las funcionales definidas
sobre Cpq, ») se encuentran, en particular, las funcionales 5, cada
una de las cuales representa el valor de la funcién en un punto
fijo ¢, (véase el ejemplo 4 del punto 3 del § 1). Para cada una
de estas funcionales &, la condicién

8% (1) — 5t°x( f)
significa que
xn (to) —X (to)'

Por consiguiente, si la sucesién {x, (f)} converge débilmente, ella

1) es equiacotada, esto es, |x,(?)|<C para todon=1,2, ...
y cualquier a <{t <b;

2) converge en cada punto.

Se puede demostrar que el conjunto de estas dos condiciones
no es sélo necesario sino también suficiente para la convergencia
débil de la sucesion {x,(¢)} en Cg, o).

‘ Esta claro que esta convergencia no coincide con la conver-
gencia respecto a la norma de Cig, ), €s decir, con la convergen-
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cia uniforme de las funciones continuas. (Dése un ejemplo co-
rrespondiente.) ;

3°. Topologia débil y convergencia débil en el espacio dual.
En el punto 4 del paragrafo anterior hemocs introducido en el
espacio dual E* la topologia que hemos llamado fuerte'y que se
define de la siguiente manera: como sistema de vecindades del
cero se toma la totalidad de los conjuntos de tipo

{f:1f ()l <e, xeA},

donde A es un conjunto acotado cualquiera de E y & es un ni-
mero positivo arbitrario. Si ahora consideramos en lugar de
conjuntos acotados todos los subconjuntos finitos AcE, ob-
tendremos la asi llamada fopologia débil en el espacio dual E*.
Como todo conjunto finito AcE es acotado (pero no viceversa,
en general), estd claro que la topologia débil del espacio E* es
més débil que la topologia fuerte de este espacio. En general,
estas dos topologias no coinciden.

La topologia débil, introducida en E*, define en este espacio
una convergencia que se llama convergencia débil de funcionales.
La convergencia débil de funcionales lineales representa un con-
cepto importante que desempefia un papel esencial en diversas
cuestiones del Analisis Funcional, en particular en la teoria de
las asi llamadas funciones generalizadas, de las cuales hablaremos
en el pardgrafo siguiente.

La convergencia débil de la sucesién {g,} de funcionales linea-
les significa, evidentemente, la convergencia de esta sucesion en
todo elemento fijo de E. En otras palabras, la sucesién {@.} se
llama débilmente convergente a ¢ € E*, cuando para cada x€ E
se cumple la relacién

Pn (x) — @ (%)

Sea E (y, por consiguiente, E*) un espacio de Banach. Tiene
lugar el siguiente teorema anélogo al teorema 1.

TEOREMA 1+ Si {f,} es una sucesion débilmente convergente de fun-
cionales lineales sobre un espacio de Banach, existe un niimero
constante C tal que :

Nf.1<C, n=1,2, ...

En otras palabras, toda sucesion débilmente convergente de ele-
mentos del espacio, dual a un espacio de Banach, es acotada

respecto a la norma.
La demostracién de este teorema no difiere en nada de la

demostracion del teorema 1.
El siguiente teorema es completamente anélogo al teorema 2.

14*
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TEOREMA 2+. Una sucesién de funcionales lineales {¢,} de E* con-
verge débilmente a ¢ € E*, cuando
1) esta sucesion es acotada, esto es

“(Pn”<cv n=l, 2, e
2) la relacion (@,, x) — (@, x) se cumple para todos los x, per-

tenecientes a un conjunto tal que las combinaciones lineales de
sus elementos son siempre densas en E

La demostracién es la misma que para el teorema 2.
Veamos un ejemplo. Sea E el espacio Ci,, 5 de funciones
continuas y sea? ‘

@ (%) =x(0),

es decir, sea ¢ la 8-funcién (véase el § 1, ejemplo 4). Sea, ade-
més, {9,(¢)} una sucesién de funciones continuas que verifican
las siguientes condiciones:

1) @u(t)=0 para |¢| >, ¢,()=0 para |¢|<~;
b
2) (o, (tydt=1.

Entonces, para cualquier funcién x(f) continua sobre [a, 5], te-
nemos, empleando el teorema del valor medio,

1

b n
(ont)xt)ydt=§ o, (t)x(t)dt— x(0) para n— oo.
1

a

n
La expresion

b
§onlt) x (1)t

representa una funcional lineal sobre Ciq, 5. De esta forma la
8-funcién se puede representar como limite, en el sentido de
convergencia débil de funcionales lineales sobre Ci,, 5}, de una
sucesién de funciones «corrientes».

Observacion. El espacio E* de las funcionales lineales sobre
un espacio E se puede considerar desde dos puntos de vista:
como espacio dual al espacio inicial E o como espacio princi-
pal E*, relacionando con él su espacio dual E*. De acuerdo

1 Consideramos que 0€[a, b]. Se podria, claro estd, tomar en lugar del
punto ¢=0 otro punto cualquiera.
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con esto, la topologia débil puede introducirse en E* de dos
modos: o bien como en el espacio de funcionales, definiendo las
vecindades en E* mediante todos los sistemas finitos de elemen-
tos de E, o bien como en el espacio principal mediante el espa-
cio E*. En el caso de un espacio reflexivo esto, por supuesto,
es lo mismo. En cambio, si E no es reflexivo, éstas seran dos
topologias diferentes en E*. Para evitar la confusién que puede
surgir aqui, la topologia débil definida en el espacio principal
(esto es, la topologia en E®*, definida mediante E*) se llamara
topologia débil, mientras que la topologia débil del espacio de
las funcionales (esto es, la topologia en E*, definida mediante E)
se llamaré fopologia -débil. Es evidente que la topologia %-débil
en E* es mas débil que la topologia débil del espacio E* (es
decir, la topologia débil tiene no menos conjuntos abiertos que
la topologia #-débil). ,

4°. Topologia #-débil en conjuntos acotados. En diferentes
aplicaciones del concepto de convergencia débil de funcionales
lineales desempefia un papel importante el siguiente teorema.

TEOREMA 3. Si E es un espacio normado lineal separable, cualquier
sucesion acotada de funcionales lineales continuas sobre E contiene
‘ una subsucesion débilmente convergente.

DEMOSTRACION. Escojamos en E un conjunto numerable siempre
denso (xy, X, ..., X,, ...). Si {9,} es una sucesién acotada
(respecto a la norma) de -funcionales lineales sobre E, la sucesién
numeérica o

P (1) @3 (X1)s « ey Pul(y)y - -
es acotada. Por eso, se puede extraer de {p,} una subsucesién -
@{1,’ (p;’)i AR | Qf(ll)’ LS

de manera que la sucesiéon numeérica
i (%), 9V (x1)s +onr P (%), ...
converja. Asimismo se puede extraer de la subsucesién {@{} una
subsucesioén .
P, o, e FIN
de manera que converja la sucesién
P (x)y PP (%3)s - O (%) ..
Continuando este proceso, obtendremos un sistema de sucesiones

(1 (1) 1) :
(p(lz))' ‘P(g’), T q):('!)’ T
q)l ’ 3y vy ‘Pu y ey

------------
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(donde cada una es subsucesion de la_anterior), tal que {@} con-
verge en los puntos x,, X, ..., X, Entonces, tomando la subsuce-

sién «diagonal»

L5 0P, ..y O, Ly
obtendremos una sucesién de funcionales lineales tal que
P (%), 5¥ (Xn)s -

converge para todos los n. Pero esto significa (en virtud del teo-
rema 2% que la sucesién @’ (x), @5¥(x), ... converge también
para todo x€ E. El teorema queda demostrado. '
Este teorema, junto con el teorema 1°, indica que en el espa-
cio E*, dual a un’ espacio separable de Banach, los subconjuntos
acotados, y sélo ellos, son relativamente numerables compactos
en la topologia #-débil. Probemos que, de hecho, tiene lugar
aqui la compacidad y no sélo la compacidad numerable.
Demostremos, ante. todo, el siguiente teorema.

TEOREMA 4. La topologia inducida en la bola cerrada unitaria S

del espacio E*, dual a un espacio normado separable E, por la

topologia +-débil de este espacio se puede definir mediante la

métrica .
p(f’ g)=22-”|(f—g, xn)l’

donde {x,} es un conjunto fijo numerable y siempre denso en la
bola unitaria del espacio E.

pEMOSTRACION. Estd claro, que la funcién p (f, g) tiene todas las
propiedades de la distancia; ademas, es invariante respecto a las

traslaciones:
p(f+h g+m=0o( 2
Por eso, basta comprobar que a) cualquier «bola»
| Qe = {f:p(f, 0) <e}

contiene una interseccién de S con alguna vecindad débil del
cero en E* y que b) toda vecindad débil del cero en E* contiene

una interseccién de S con alguna Q..
. ' e .
Escojamos N de manera que 2-V < 5 Y consideremos la ve-

cindad débil del cero

V=VX|----XN;8/2={f:|(f’xk)|<'—;'s‘k=1’ 2,---, N}'
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Entonces, si feSNV, tenemos

N K
e(h 0= 22" |(h x|+ 3 27"|(f, %)<

=N+1
N : ®
<iont Y orce,

n=1 n=N+1

es decir, SNV <= Q. . Con esto queda demostrada 1a proposicién a).
Demostremos la proposicién b). Sea

U=Uy, .mmo={:|(F, 9| <8, k=1,2....,m}

una vecindad =x-débil del cero en E*. Podemos admitir que
o<1, k=1,2,..., m; puesto que el conjunto {x,} es siempre
denso en S, existen unos nimeros n,, . .., n, tales que || y,—xa,|[ <

<%, k=1,2,...,m.SeaN=max(n,, ...,n,)yseae=2-W+n§,
Entonces, para f€SN Q. de la desigualdad

®

2 27| (f, x,) | <e

n=1

obtenemos que |(f, x,)| < 27; en particular,
|(F, ) | < 2We <2Ve= ;.
Por consiguiente, para todo k=1,2,..., m tenemos
C 9l <IExm) 11 G te—2xa) | < %+II FI-Nge—%ncll < 8.

Es decir, ScQ,cU. El teorema queda demostrado. Esta claro,
que este resultado se extiende automaticamente a cualquier bola y,
por consiguiente, a cualquier subconjunto acotado M cE*.

Hemos demostrado (teorema 3) que de toda sucesién acotada
de E* se puede extraer una subsucesion *-débilmente convergente.
En otras palabras, en el espacio E*, dual a un espacio normado
lineal separable y provisto de la topologia «-débil, todo subcon-
junto acotado M es relativamente numerable compacto. Pero, de
acuerdo con el dltimo teorema, cada conjunto de este tipo es un
espacio topolégico metrizable y en el caso de espacios métricos
la compacidad y la compacidad numerable coinciden. Por consi-
guiente, obtenemos el siguiente resultado. :

TEOREMA 3*. Todo conjunto acotado M del espacio E*, dual a un
espacio de Banach separable, es relativamente compacto en el
sentido de la topologia »-débil del espacio E*.
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Si E es un espacio normado lineal :separable, toda bola ce-
rrada del espacio (E* b) es cerrada en la topologia #-débil del
espacio E*. :

Como una traslacién en el espacio E* transforma toda colec-
cién de conjuntos cerrados (en la topologia x-débil) en si misma,
basta demostrar que en la topologia %-débil es cerrada toda bola
de tipo S.={f:||f]|<c}. Sea f,€S,. Segin la definicién de la
norma de una funcional, existe un vector x€E tal que ||x||=1,

fo(x)=0a > c. Entonces, el conjunto U= {f:f x) > 9—'2-':—5} es una

vecindad #-débil de la funcional f, que no contiene ningin ele-
mento de la bola S,; por consiguiente, la bola S, es cerrada en
la topologia #-débil. '

De la proposicién demostrada y del teorema 3* se deduce el
siguiente teorema.

TEOREMA 5. Toda bo.la cerrada del espacio, dual a un espacio nor-
| mado separable, es compacta en la topologia «-débil.

El teorema 3* representa un caso particular del siguiente resul-
tado general: si E es un espacio topolégico lineal localmente con-
vexo, todo subconfunto acotado de E* es relativamente compacto
en el sentido de la topologia «%-débil. ‘

No daremos aqui la demostracién de esta proposicién general.

§ 4. FUNCIONES GENERALIZADAS

1°. Ampliacion del concepto de funcién. En diferentes cuestio-
nes del Anélisis resulta necesario interpretar el término «funcién»
con diferente grado de generalidad. A veces se consideran funcio-
nes continuas, en otros casos es preciso suponer que se trata de
funciones diferenciables una o varias veces, etc. Sin embargo, en
muchos casos el concepto clasico de funcién resulta insuficiente,
aun cuando sea interpretado en el sentido mas general, esto es,
como una regla cualquiera que a todo valor de x del campo de
definicién de esta funcién pone en correspondencia un namero
y={(x). He aqui dos ejemplos importantes.

1) Es cémodo determinar la distribucién de masas a lo largo
de una recta mediante la densidad de esta distribucién. Sin em-
bargo, si la recta tiene puntos que llevan masas positivas, esta
claro que la densidad de esta distribucién no se puede describir
de antemano con ninguna funcién «corriente».

2) Aplicando el aparato del Analisis Matematico a unos u otros
problemas, tropezamos con situaciones, cuando no se pueden
efectuar unas u otras operaciones del Anilisis; por ejemplo, una
funcién que no tenga derivada (en varios o incluso en todos los pun-
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tos) no se puede derivar, si por derivada se entiende una funcién
«corrientes. Claro estd que las dificultades de este orden se podrian
evitar limitandose a considerar solamente funciones, digamos,
analiticas. Sin embargo, tal restriccién del conjunto de funciones
admisibles no es, en muchos casos, deseable.

Por suerte, resulta, sin embargo, que estas dificultades y otras
semejantes pueden ser superadas con no menos éxito no restrin-
giendo sino ampliando sustancialmente el concepto de funciém,
introduciendo las asi llamadas funciones generalizadas. Como
base para introducir las definiciones correspondientes, nos ser-
vird el concepto de espacio dual, considerado anteriormente.

Subrayamos una vez mds, que la introduccién de funciones
generalizadas se debi6 no al deseo de ampliar lo més posible
los conceptos del Analisis sino a problemas absolutamente con-
cretos. De hecho, en la Fisica estos conceptos se empleaban ya
desde hace mucho tiempo, en todo caso antes de que atrajeron
la atencién seria de los matematicos. Antes de pasar a las
definiciones exactas, expongamos la idea principal.

Sea f una funcién fija definida sobre la recta e integrable en
cada intervalo finito y sea @ una funcién continua que se anula
fuera de un intervalo finito (tales funciones se llamaran en lo
sucesivo ferminales). A cada funcién ¢ de este tipo se puede
poner en correspondencia mediante la funcién fija f el nimero

¢o)=§ Fowdr (1)

_ (debido a la terminalidad de ¢ (x), la integral se toma, de hecho,

respecto a un intervalo finito). En otras palabras, la funcién f
se puede considerar como una funcional (lineal, debido a las
propiedades principales de la integral) definida sobre un espacio
de funciones terminales. Sin embargo, las funcionales de tipo (1)
no son las tinicas que se pueden definir en este espacio; por
ejemplo, haciendo corresponder a cada funcién ¢ su valor en el
punto x=0, obtendremos una funcional lineal que no se puede
representar en la forma (1). De manera que las funciones f(x) se
incluyen de un modo natural en un conjunto mas amplio, el
corlljunto de todas las funcionales lineales sobre funciones termi-
nales.

El conjunto de funciones ¢ se puede escoger de diversas mane-
ras; podrian tomarse, por ejemplo, todas las funciones terminales
conjuntas. Sin embargo, como veremos mas adelante, conviene
sujetar las funciones admisibles ¢ no sélo a las condiciones de

. continuidad terminalidad sino también a unas condiciones sufi-

cientemente rigidas de diferenciabilidad.
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2°. Espacio de funciones bdsicas. Pasemos ahora a las defini-
ciones precisas. Consideremos sobre la recta el conjunto K de
todas las funciones terminales ¢ que tienen derivadas continuas
de todos los 6rdenes. Las funciones, pertenecientes a K, consti-
tuyen un espacio lineal (con las operaciones habituales de adicién
de funciones y multiplicacién de éstas por niimeros). En este
espacio no se puede introducir una norma que sea conveniente
desde el punto de vista de la teoria que se expone a continua-
cién; sin embargo, resulta natural definir en él del siguiente modo
el concepto de convergencia.

La sucesién {p,} de elementos de K se llama convergente a la
funcién ¢ € K, cuando: 1) existe un intervalo fuera del cual se
anulan todas las ¢,; 2) la sucesién {9} de derivadas de orden® k
(k=1,2,...) converge uniformemente en este intervalo a o,

El espacio lineal K con la convergencia que hemos definido
en €l se llamara espacio bésico y sus elementos, funciones basicas.

No es dificil describir la topologia de K que induce la convergencia
definida en K. Esta topologia es generada por un sistema de vecindades del
cero tal que cada vecindad se determina por un sistema finito Vor s Vm
de funciones continuas positivas y consta de todas aquellas funciones de K
que verifican para todo x las desigualdades

1P < V@), ..o |9 (2)] < Y (v).

Dejamos a cargo del lector la demostracién de que esta topologia genera
efectivamente la convergencia en K descrita anteriormente. Sefialemos, que
en K existen también otras topologias que generan esta convergencia,

EJERCICIO. Sea K, el subespacio del espacio K compuesto por todas las
funciones €K que son iguales a 0 fuera del segmento [— m, m]. En el
esptacio K, se puede definir una estructura de espacio normado numerable,
si tomamos

= su ®) (x)], n=0,1,2,...
ez olup 9B (0]
lxi<m
Compruébese que la topologia (convergencia de sucesiones, respectivamente)

del espacio K,, generada por este sistema de normas coincide con la topolo-
gia (convergencia, respectivamente) inducida en K, ﬂmr la topologia (conver-
c

gencia) del espacio K descrita anteriormente. Esti claro que K;cK;c...
@

...CKpc...y que K= U K,. Demuéstrese que un conjunto Q=K es
m=1

acotado respecto a la topologia definida en K, cuando, y sélo cuando, existe

un m tal que Q es un subconjunto acotado - del espacio normado nume-
rable K. Sea T una funcional lineal sobre el espacio K; demuéstrese que

b El intervalo, fuera del cual la funci6n @ es igual a 0, puede ser
diferente para distintas ¢ €K. :

2) Por derivada de orden cero  se comprende, como de costumbre, la
propia funcién.
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las cuatro siguientes condiciones son equivalentes: (a) la funcional T es
continua respecto a la topologia del espacio K; (b) la funcional T es aco-
tada en todo conjunto acotado Q = K; (c) si €K y ¢z —>0 (en el caso
de 1a convergencia de sucesiones definida en K), T (@,) —0; (d) para todo m
la restriccién T, de la funcional T al subespacio K, < K es una funcional
continua sobre K.

3°. Funciones generalizadas.

DEFINICION 1. Se llama funcién generalizada (definida en la recta
— 00 < x< o0) a toda funcional lineal continua T (g) sobre el
espacio basico K. La continuidad de la funcional se entiende aqui
en el sentido de que T (¢,)— T (¢) cuando la sucesién ¢, con-
verge a ¢ en el espacio basico K.

Observemos, ante todo, que toda funcién f(x) integrable en un
intervalo finito cualquiera genera una funcion generalizada. En
efecto, la» expresion
T @)= § fe®ds @)
es una funcional lineal continua en K. Estas funciones generali-
zadas se llamaran en lo sucesivo regulares, mientras que todas
las demas, esto es, las que no pueden representarse en la forma (2),
se llamarén singulares. :
| Indiquemos algunos ejemplos de funciones generalizadas singu-
ares. ' ’

1. «5-funciény: ’

T (¢) =9 (0).

P .

_Ella es una funcional lineal en K, es decir, de acuerdo a la ter-
minologia convenida més arriba, una funcién generalizada. Esta
funcional se representa generalmente en la forma

@®

{809, @)

-®

donde por & (x) se entiende una «funcién» que es igual a cero para
todo x7=0 y se convierte en el infinito en el punto x=0 de
manera que o

@

{8(ax=1.

-

En el § 1 hemos considerado ya la §-funcion como una fun-
cional en el espacio de todas las funciones continuas definidas en
un segmento. Veremos, sin embargo, que la consideracion de la
8-funcién como una funcional sobre K tiene determinadas ventajas.
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2. «8-funcién desplazada». Sea
T(@)=9/a)

De acuerdo con la denotacién (3), es natural representar esta funs
cional en la forma Cn

S d(x—a)p(x)dx. “4):

3. «Derivada de la 8-funcién». A cada 9€EK se pone en co-
rrespondencia el niimero — ¢’ (0). M4s adelante explicaremos por
qué es natural considerar esta funcional como derivada de la fun:
cional sefialada en el ejemplo 1. ‘ : :

4. Consideremos la funcién 3}:— Ella no es integrable en ningin

intervalo que contenga el punto cero. Sin embargo, para cada
9 €K la integral

et L

existe y es finita en el sentido del valor principal. En ekfécfo,;
§ ‘P(x);M_=S¢(x)?@=5ﬂiumﬂ)&+swi)w‘

Aqui (a, b) es el intervalo fuera del cual ¢ se anula. En la
primera de estas integrales bajo el signo de la integral aparece
una funcién acotada, mientras que la segunda integral, compren-
dida en el sentido del valor principal, es finita. De esta forma,

1 . . .z .
+ © una funcional sobre K, es decir, una funcién generalizada.

Se puede demostrar que ninguna de las funciones generalizadas
sefialadas en los ejemplos I, 2, 3 y 4 es regular (es decir, no
puede representarse en la forma (2) cualquiera que sea la funcion
f localmente integrable). :

4°. Operaciones con funciones generalizadas. El conjunto de
funciones generalizadas es el espacio lineal dual a K. Por consi-
guiente, en este conjunto estan definidas las operaciones de adi-
cion y multiplicacibn por niimeros. Es evidente, ademas, que
para las funciones generalizadas regulares, es decir, para las
funciones «corrientes» sobre la recta, su adicién como funciones
generalizadas (esto es, como funcionales lineales) coincide con la
operacion habitual de adicién de funciones. Lo mismo se refiere
a la multiplicacién por nimeros.
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‘Introduzcamos en el espacio de funciones generalizadas la
operacién de paso al limite. Diremos que la sucesién de funcio-
nes generalizadas {f,} converge a f, cuando para cada 9€K se
cumple la relacién

(fr @ — (> @)

En otras palabras, definimos la convergencia de funciones gene-
ralizadas como la convergencia #-débil de funcionales lineales
sobre K. El espacio de funciones generalizadas provisto de esta
convergencia se denotard mediante K*.

Si o es una funcién indefinidamente diferenciable, es natural
definir el producto de « por la funcién generalizada f mediante
la férmula '

(a'f’ P) = (f’ op)

(la expresién del miembro derecho tiene sentido, ya que ag € K).
Todas estas operaciones, adicién y multiplicacion por nimeros y
funciones indefinidamente diferenciables, son continuas.

No introducimos el concepto de producto de dos funciones
generalizadas. Se puede demostrar que es imposible definir este
producto si se quiere que esta operaciéon sea continua y que,
ademas, coincida para las funciones generalizadas regulares con
la multiplicacién corriente de funciones.

Definamos ahora la operacién de diferenciacion de funciones
generalizadas y examinemos sus propiedades.

Sea primero T una funcional de K definida mediante una

_funcién f diferenciable (en el sentido corriente):

-

T(@)= § f o dr.

-0

Es natural definir su derivada como la funcional % dada
mediante la formula

E@={ rxewadr

Empleando la férmula de integracion por partes y teniendo en
cuenta que toda funcién basica ¢ se anula fuera de un intervalo
finito, obtenemos

L= (Fmoewd=— e @xds
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de esta forma, hemos obtenido para -‘% una expresién en la que
no figura la derivada de f. Estas consideraciones sugieren la
siguiente definici6n. : e
DEFINICION 2. Se llama derivada % de la funcién generalizada T
a la funcional definida mediante la férmula '

L @=—T @

Esta claro que la funcional definida mediante esta féormula es
lineal y continua, es decir, representa una funcién generalizada. .
Analogamente se definen la segunda, la tercera, etc. derivadas.
Denotando la funcién generalizada mediante el simbolo f,
denotaremos su derivada (comprendida en el sentido que acaba-
mos de definir) mediante el simbolo corriente f’. :
Directamente de la definicién de la derivada de una funcién-
generalizada se deduce la validez de las proposiciones siguientes:
1. Toda funcion generalizada tiene derivadas de todos los érdenes.
2. Si una sucesion {f,} de funciones generalizadas converge a
una funcion generalizada f (en el sentido de la definicién de
convergencia de funciones generalizadas), la sucesion {f,} de deri-
vadas converge a la derivada |’ de la funcién limite. Esto equivale
a que toda serie convergente compuesta por funciones generalizadas
se puede derivar término a término cualquier namero de veces.
Veamos algunos ejemplos.
1. De lo expuesto anteriormente se ve que siendo f una funcién
regular (es decir, «verdadera») cuya derivada existe y es continua
(o continua a trozos), la derivada de ella, como de funcién
generag:ada, coincide con su derivada en el sentido corriente.
2. Sea ’

1 para x>0,
f(x)={ 0 para x < 0. ()
Esta funcién define la funcional lineal

(¢ o= o () d.

De acuerdo con la definiciébn de la derivada de una funcién
generalizada, tenemos

'\ O=—( ¢')= —S¢' (x)dx = (0)
) 0
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(puesto que ¢ es igual a 0 en el infinito). Por consiguiente, la
derivada de la funcién (5) (de la «funcion salto unidad») es la
6-funcion.

3. De los ejemplos 1 y 2 se ve claramente que si f es una
funcién que en los puntos x,, x,, ... tiene saltos iguales a &,,
h,, ... respectivamente y es diferenciable en los demas puntos
(en el sentido corriente), su derivada (como de una funcién gene-
ralizada) representa la suma de la derivada corriente f° (en los
puntos donde ésta existe) mas la suma de tipo

Xh‘ﬁ (x.—x,.).

4. Aplicando la definicién de derivada de una funcién gene-
ralizada a la 8-funcién, obtendremos que esta derivada representa
la funcional que en cada funciéon ¢ € K toma el valor —o’ (0).
Es precisamente la funcional que hemos denominado ya «derivada
de la &-funciény. .

~ 5. Consideremos la serie

senhx
Z, L (6)

Su suma representa una funcién de periodo 27 que en el intervalo
(—m, n) se define mediante las férmulas

n4-x
2

n;x para 0 < x < n
fx)=
— para —a<{x<0.

La derivada generalizada de esta funcién es igual a

gt Y, 8 (x—2kn). )

k=-w»

Representa una funcién generalizada (al aplicarla a cualquier
funcién terminal ¢ (x) siempre obtendremos solamente un nimero
finito de sumandos diferentes de cero). Por otro lado, derivando

@
z . 7 . . sennx . .
término a término la serie Z —,— obtenemos una serie diver-
n=1

gexite

xR
> cos nx.
n=1
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Sin embargo, en el sentido de convergencia de funciones genera-
lizadas, esta serie converge (y precisamente a la expresion (7)).
Por consiguiente, el concepto de funcién generalizada permite dar
un sentido completamente  determinado a la suma de una serie
que en el sentido corriente diverge. Lo mismo se refiere a- muchas
integrales divergentes. Con situaciones de este tipo se tropieza
frecuentemente en la teoria cuéntica del campo y en otras varias
ramas de la Fisica Tedrica.

5°. Suficiencia del conjunto de funciones basicas. Hemos
definido las funciones generalizadas como funcionales lineales sobre
un espacio, el espacio K de funciones terminales indefinidamente
diferenciables. En general, podiamos escoger el espacio basico de
alguna otra manera. Veamos las consideraciones que pueden deter-
minar la seleccién de uno u otro espacio para el espacio de funciones
basicas. Sujetando los elementos de K a las exigencias rigidas de
terminalidad y diferenciabilidad indefinida, hemos obtenido con
ello, en primer lugar, un conjunto suficientemente amplio de
funciones generalizadas (toda restriccién del espacio basico lleva,
evidentemente, a la ampliacién del espacio dual) y, en segundo
lugar, una gran libertad para aplicar a las funciones generalizadas
las operaciones principales del Analisis (paso al limite, diferen-
ciacion). Pero al mismo tiempo el espacio de funciones basicas
no puede ser muy restringido. Debe tener un niimero suficiente
de elementos para que mediante ellos se puedan distinguir dos
funciones diferentes. Hablando con mas rigor, si f1y [, son dos
funciones integrables (es decir, dos funciones generalizadas regu-
lares), debe existir un elemento ¢ del espacio basico tal que

Shwoewdr= § f,mowdr. )

Comprobemos que el espacio K satisface esta condicién. Con mas
precision, sean f, y f, dos distintas funciones continuas (y, por
consiguiente, localmente integrables) sobre la recta. Entonces,
existe una funcion ¢ € K tal que se cumple la condicién (8).

En efecto, pongamos f(x)=/f, (x)—f,(x). Si f(x) 20, existe
un punto x, tal que f(x,)s~0. Entonces, f(x)5%0 y conserva su
signo en un intervalo (a, ) que contiene el punto x,. Conside-
remos la funcién

1 1
®(x)= e G=al.¢  =TBF para o< x < B,
0 para los demas x.,

Esta funcién se anula fuera de (@, B) y es positiva dentro de
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este intervalo; ademas, tiene derivadas de todos los ordenes, de
manera que ¢ € K. Es evidente que

® B

§ Femdr={Fewde=0.

/s e
Luego, hemos demostrado que el espacio K contiene un ndmero
suficientemente grande de funciones para que sea posible distin-
guir dos funciones continuas cualesquiera . ‘

6°. Reconstruccion de una funcién por su derivada. Ecuaciones
diferenciales en la clase de funciones generalizadas. Las ecuacio-
nes diferenciales son una de las regiones principales de aplicacion
de la teoria de funciones generalizadas. Fueron precisamente las
ecuaciones diferenciales que estimularon, en gran medida, el
desarrollo de la teoria de funciones. generalizadas. Estas aplica-
ciones estan relacionadas, en general, con ecuaciones en derivadas
parciales y su estudio detallado sale de los margenes de este
libro. Sin embargo, consideraremos aqui algunas cuestiones mas
sencillas, relacionadas con la solucién de ecuaciones diferenciales
(ordinarias) con - funciones generalizadas. Comencemos por la
-ecuacion elemental de tipo :

Y =Fx)

(f (x) es una funcién o bien generalizada o bien «corriente»), es

decir, por el problema de reconstruccién de una funcién a partir
de su derivada. : : :

TEOREMA 1. Sélo las constantes son soluciones (en la clase de fun-
ciones generalizadas) de la ecuacién - '

| y=0. (9)
© DEMOSTRACION. La ecuacién (9) significa que
C v 9= —¢)=0 (10)

para toda funcién basica ¢ € K. La igualdad (10) define la fun-
cional y sobre el conjunto K de funciones bésicas, cada una de
las cuales puede representarse como derivada de cierta funcion
basica. 8 E ' : '
Una funcién bésica ¢, puede representarse como derivada de
otra funcién basica si, y. solo si, '

{ 9, (x)dx=0. Can

1 Esta proposicién se puede extender también a funciones. subsiancial-
mente més generales que las continuas, pero para ello habria que recurrir al
coxlmcestlo de-integrabilidad segtin Lebesgue, del cual hablaremos en el capi-
tulo VI. oo o o

15—3427
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En efecto, si @, (¥)=¢;.(x), tenemos

{ @0 () de =y ()| 20 =0, (12)

Viceversa, si se cumple la igualdad (11), la expresion

o ()= | @ (t)dt (13)

es una funcién indefinidamente diferenciable y, ademas, terminal
debido a (12). Su derivada es @, (x). Observemos ahora que toda
funcién basica ¢ se puede representar en la forma

¢=q)o+cq’v
donde @, es uma funcién basica fija que. verifica la condicién

_Swmw=h

¢ es una constante Y @,(x) es tal que S(p,, (x)dx=0. En efecto,

basta tomar

c=fomdr y g0 =00—9, (v | o(mdr.

Por consiguiente, al definir el valor de la funcional (==funcidn
generalizada) y para ‘la funcién basica g, (x), la funcional resulta
univocamente determinada en todo el K. Poniendo v, 9,)=a,
obtenemos ‘

@ o=a (| owdi={ ap(rdr,

es decir, -la funcién generalizada y-es la constante «, que es lo
que necesitidbamos demostrar. De aqui se deduce que si para dos
funciones "generalizadas f y g se cumple - la jgualdad f'=g’, se
tiene f—g = const. ‘

Consideremos ahora la ecuacién

¥ =f@®) (e

donde f(x) es una funcién generalizada. Probemos que para todo
[€K* la ecuacién (14) tiene una solucién perfeneciente a K*.
Es natural llamar esta solucién primitiva de la funcién genera-
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lizada f. La ecuacién (14) significa que .

»(y, ——q)’)=(y"., o) =(f, w)——-(f, _S ¢ (E)d§> (15)

para cualquier funcién bisica @€ K. Esta igualdad define el
valor de la funcional y para todas las funciones basicas que
pueden ser representadas como ¢’, donde ¢ € K. Como hemos
visto al demostrar el teorema 1, cualquier elemento ¢ € K puede
representarse en la forma

=0+ (%) | 9L)dx,
donde 'cp,, es la derivada de una funcién ¢*€EK y ¢,(x) es un
evlevmentovfijo de K que verifica la condicion S @, (x)dx=1. Si

tomamos, ademas, (y, 9,)=0, la funcional y-:;uedaré definida
en todo el K: o .

@ 9=, ‘Po)=<f9 § % (£) d&)-

Es facil comprobar que esta funcional es lineal y continua. Ade-
mas, satisface la condicién (14). En efecto, para todo ¢ €K

X

@' 9)=(y _‘P")z(f’ S ‘P'(g)‘ﬁ)""‘(f' P)-
Luego, para cada funcién generalizada f(x) existe una solucion
Ee la ecuacion ' '

y' =f(x),

es decir, cada funcién generalizada tiene primitiva. Segin el
teorema 1, esta primitiva se define univocamente, a menos de
una constante aditiva arbitraria, por la funcién f(x).

Los resultados obtenidos se pueden extender facilmente a sis-
temas de ecuaciones lineales. Nos limitaremos aqui -a dar los
- enunciados correspondientes, omitiendo las demostraciones.

Consideremos un sistéma homogéneo de n ecuaciones lineales
con n funciones incégnitas ‘

n ‘ :
vi=Z @ =L 2 om (16)

15%
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donde a;, son funciones indefinidamente diferenciables. Este sis<.
tema tiene una determinada cantidad de soluciones «clasicas» (es
decir, soluciones que representan funciones «corrientes» y, ademas,
indefinidamente diferenciables). Se puede demostrar que, en la
clase de funciones generalizadas, el sistema (16) no tiene ninguna
otra solucion. L T : '

Para un sistema no homogéneo de tipo

= gi Qinlx +‘f:§ : ‘ an

donde f; son funciones generalizadas y a;, funciones corrientes
indefinidamente diferenciables, existe en la clase de funciones
generalizadas una solucién que, salvo una solucién arbitraria del
sistema homogéneo (16), es tinica. , ' ,

Si en el sistema (17) no.sélo a;, sino también f; son funcio-
nes «corrientess, todas las soluciones que este sistema tiene en K’ -
también resultan ser funciones corrientes. :

7°. Algunas generalizaciones. Hemos considerado mas arriba
funciones generalizadas «de una variable real», esto es, funciones
~generalizadas sobre la recta. Es posible, basandose en las mismas
ideas, introducir funciones generalizadas sobre un conjunto aco-
tado, digamos, sobre un segmento o una circunferencia, asi como
funciones generalizadas de varias variables, funciones generali-
zadas de argumento complejo, etc. Ademas, incluso para las fun-
ciones generalizadas sobre la recta, la definicién dada anterior-
mente no es la fnica posible. Veamos brevemente algunas de
estas generalizaciones y modificaciones del concepto de funcién
generalizada. . ' :

a) Funciones de varias variables. Consideremos en el espacio
n-dimensional el conjunto K» de funciones @ (x;, X,, ..., ,)
que tienen derivadas parciales de todos los érdenes respecto a
todos sus argumentos y tales que cada una de estas funciones se
anula fuera de un paralelepipedo :

a;<x<b, i=1,2, ..., n.
El conjunto K" representa un espacio lineal (con las habituales
operaciones de adici6n de funciones y multiplicacién de las mismas
por niimeros), en el cual se puede definir una convergencia del
siguiente modo: ¢, — @, cuando existe un paralelepipedo ‘

‘a,-<x,<b,-, i=l, 2, ...., n,

fuera del cual se anula cada una de las funciones ¢, y cuando
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en este paralelepipedo se tiene uniformemente

g . I L
oxTr ... 0% X ... 6x‘,’,"<‘§a"'—r)’

cualesquiera que sean r, @,, ..., @, Una funcién generalizada
de n variables es cualquier funcional lineal continua sobre K”.
Toda funcién f(x) «corrientes de n variables, integrable en cual-
quier recinto acotado del espacio n-dimensional, es, al mismo
tiempo, una funcién generalizada. Los valores de la funcional
que le corresponde vienen dados por la férmula

¢ =(fwewds (x=(x, ..., x), de=dx, ... dx,).

Al igual que en el caso de n=1, diferentes funciones continuas
determinan diferentes funcionales (es decir, representan diferentes
funciones generalizadas). ' :

Para las funciones generalizadas de n variables los conceptos
de paso al limite, de derivada, etc. se introducen con los mismos
métodos que en el caso de una variable. Por ejemplo, las deri-
vadas parciales de una funcién generalizada se introducen median-
te las formulas ' '

) ' (1Y e
(6):"1‘: axg»’ q>_(x)) = l~); (f () ox% ... tlt%n)'k
De aqui se desprende que cada funcién generalizada de n varia-
bles tiene derivadas parciales de todos los 6rdenes.

'b) Funciones generalizadas complejas. Escojamos ahora para
las funciones basicas el conjunto de funciones terminales, indefi-
nidamente diferenciables sobre la recta, que toman valores com-
plejos.. Las funcionales lineales sobre el espacio K de estas fun-
_ciones es natural llamarlas funciones generalizadas complejas.
R@cordemos que en un espacijo lineal complejo existen funcionales
lineales de primera y segunda especie. Las primeras satisfacen la
condicién (o es un nimero) ,

k : (f’ d(p)=a.(f,. P)
y las segundas, la condicién :

(f, ap)=a(f, 9).
Si f(x) es una funcién corriente de valores complejos sobre la
recta, se le puede asignar una funcional lineal de primera especie

sobre K de dos modos

(o D= § F)o () dx a8y
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y "
¢ 9= § 700 @ (x)dx. (18,)

A esta misma funcién f(x) se le | pueden asignar dos funcionales
lineales de segunda especie, a saber:

o= Foemadr (18)

-

{(F 9=\ F) o (®dx (18,)

-
La seleccion de una de estas cuatro posibilidades significa una
manera determinada de inmersion del espacio de funciones «co-
rrientes» en el espacio de funciones generalizadas. Las operaciones
con las funciones generalizadas complejas se definen analogamente
al caso de funciones reales. : ,
¢) Funciones generalizadas sobre una circunferencia. A veces
conviene considerar funciones generalizadas definidas sobre un
conjunto acotado. A titulo de ejemplo mas sencillo, consideremos
las funciones sobre una circunferencia. Por espacio de funciones
bésicas tomaremos el conjunto de todas las funciones indefinida-
mente diferenciables sobre una cincunferencia definiendo para
ellas las operaciones de adicibn y multiplicacién por niimeros
del modo habitual. La sucesién {g,(x)} de funciones de este
espacio se llama convergente, cuando para cada k=0, 1, 2, ...
converge uniformemente sobre toda la circunferencia la Sucesién
de derivadas {p% (x)}. Puesto que el conjunto de argumentos (la
cincunferencia) es, en este caso, acotado, la condicion de termi-
nalidad de las funciones bésicas desaparece automaticamente.
Las funcionales lineales sobre este espacio se llamaran funciones
generalizadas sobre la circunferencia. Toda funcién corriente sobre
la circunferencia se puede considerar como una funcién periédica
definida sobre la recta. Extendiendo esta idea a las funciones
generalizadas, se puede identificar las funciones generalizadas
sobre la circunferencia con las funciones generalizadas periddicas.
Es natural entender por funciéon generalizada periédica (de pe-
riodo a) una funcional f que verifica la condicién

(Fx), @ (x—a)=(f(x), @(x)

para toda funcién basica ¢. Como ejemplo de funcién generali

°§____
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zada periédica puede servir la funcién

3, cos no=—gtn ¥, §(x—2ks),
n= R=~-®
que ha sido mencionada anteriormente.

b) Otros espacios bdsicos. Hemos definido mas arriba las fun
ciones generalizadas sobre la recta como las funcionales lineales
sobre el espacio K de funciones terminales indefinidamente dife-
renciables. Sin embargo, esta seleccién del espacio bésico no es
la tnica posible. Por ejemplo, en lugar del espacio K de fun-
ciones terminales, se ria haber tomado el espacio, algo mas
amplio, de todas las funciones ¢ (x) indefinidamente diferenciables
sobre la recta que decrecen, junto con sus derivadas, més rapido

que cualquier potencia de Ti—l Hablando con maés precisién, ad-
mitiremos que @ (x) pertenece al espacio basico, que denotaremos S,

cuando para cualesquiera fijos p, ¢=0, 1, 2, ... existe una
constante C,, , (que depende de p, ¢ ¥ ¢) tal que
| %P @@ ()| <'Cpgy —o00 <X < 00, (19)

La convergencia en S se define del siguiente modo: la sucesién

{@.(x)} se llama convergente hacia ¢(x), cuando para cada
=0, 1, 2, ... la sucesién {p{” (x)} converge uniformemente en

cualquier intervalo finito y cuando en las desigualdades

| x? @ (x)| < Cpq

las constantes C,, se pueden escoger de manera que no dependan
de n. ’

De esta forma se obtiene un conjunto de funciones generali-
zadas algo més reducido que en el caso del espacio K. Por
ejemplo, la funcién \

f(x)=¢

es una funcional lineal continua sobre K, pero no sobre S. Es
cémodo tomar S por espacio basico al considerar, por ejemplo,
la transformacion de Fourier de funciones generalizadas. En ge-
neral, como ha demostrado el desarrollo de la teoria de funciones
generalizadas, no es necesario sujetarse a una eleccién determinada
del espacio basico, sino que conviene variarla segfin los problemas
que se consideran. Sin embargo, es necesario requerir de manera
esencial que, por un lado, haya «un niimero suficientemente
grande» de funciones basicas (para que se pueda mediante ellas
distinguir las funciones «corrientess, més rigurosamente, las fun-
cionales regulares) y que, por otro lado, estas funciones basicas
sean diferenciables suficiente niimero de veces.
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EJERCICIO. Compruébese que en el ‘espacio S se puede introducir una es- -
tructura de espacio normado numerable, tomando, por ejemplo,

Neall X sup - =|0+|x|DeP (¥
pAg=n ~0L X ® .
0<i<p '
I</<q

y que la convergencia de sucesiones en este espacio normado numerable
equivale a la convergencia definida mas arriba. =

§ 5. OPERADORES LINEALES

~1° Definicién y ejemplos de operadores lineales. Sean E y E,
dos espacios topoldgicos lineales. Se llama operador lineal que
actita de E en E; a toda aplicacién

y=Ax (x€E, y€E,),
que verifica la condiqién' - .
' A (ox, +Bx,) = aAx, + pAx,.

El conjunto D, de todos los x€ E para los cuales esti definida la
aplicacién A se llama campo de definicion del operador A; en
general, no se supone que D,=E; sin embargo, siempre admiti-
remos que D, es una variedad lineal, esto es, que si x, y€D,,
también ax+-By€ D, para todos los o, B.

Un operador A se llama continuo en el punto x, €D ,, cuando
para cualquier vecindad V del punto y, = Ax, existe una vecindad U
del punto x, tal que Ax€V siempre que x€UND,. El opera-
dor A se llama continuo, cuando es continuo en cada punto x€D,.

No es dificil probar que, cuando E y E, son espacios. not-
mados, esta definicién equivale a la siguiente: un operador A se
llama continuo, cuando para cualquier € > 0 existe un § > 0 tal
que de la desigualdad - o

o | —x"|| <8 (', €D,y
se deduce S
| Ax'— Ax"|| < .

Esta claro que el concepto de funcional lineal, introducido al
principio de este capitulo, es un caso particular de operador
lineal. Es decir, una funcional lineal es un operador lineal que
transforma el espacio dado E en la recta numérica E,. En esta
suposicién, las definiciones de linealidad y continuidad, que hemos
enunciado para un operador lineal, se transforman en las corres-
pondientes definiciones que hemos introducido con anterioridad
para las funcionales.
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Del mismo modo, una serie de conceptos y resultados que se
exponen a continuacién para los operadores lineales, representan
una generalizacion suficiente automatica de los resultados expues-
tos ya en el § 1 de este capitulo para el caso de funcionales
lineales.

Ejemplos de operadores lineales.

1. Sea E un espacio lineal topolégico. Pongamos

Ax=2x para todo x€E.

Este operador, que transforma cada elemento del espacio en
si mismo, se llama operador unidad.
2. Si E y E, son dos espacios topolégicos lineales arbitrarios y

- Ox=0 para todo x€E

(aqui O es el elemento cero del espacio E,), se dice que O es el
operador nulo. - o ,

‘3. (Forma general de un operador lineal que transforma un
espacio de dimension finita en otro de dimension finita). Sea A
un operador lineal que transforma el éspacio R* de n dimensiones
con la base e,, ..., e, en el espacio R™ de m dimensiones con
la base f,, ..., f.. Si x es un vector arbitrario de R», tenemos

n
x=’z Xi€;

Yy, debido a la linealidad del operador A.
Ax=‘; x;Ae;.

De manera que el operador A queda"definido si- se conoce en
qué transforma los vectores e,, ..., e, de la base. Consideremos
el desarrollo del vector Ae; segin la base f,, ..., f, Tenemos

Ae; =;ig a;f;.

- De aqui se ve que el operador A se define por la matriz de los
coeficientes a;;. La imagen en R™ del espacio R* representa un
subespacio lineal cuya dimension es igual, evidentemente, al
- rango de la matriz |[a;;||, esto es, no es mayor, en todo caso,
que n. Sefialemos que ‘en un espacio de dimensién finita todo
operador lineal es autométicamente continuo. '
4. Consideremos el espacio de Hilbert H y un subespacio H,
suyo. Desarrollando H en la suma directa del subespacio H, y
su complemento ortogonal, es decir, representando cada elemento
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h€H en la forma :
h=h1+h1 (hl.EHI’ h!-J—Hl)

podemos tomar .
Ph=h,.

Es natural llamar .este operador P " operador proyectivo, que
proyecta todo el H sobre H,. La linealidad y -continuidad se
comprueban sin dificultad.

5. Consideremos en el espacio de funciones continuas sobre
el segmento [a, b] el operador dado mediante la férmula

v)={K(s o ds, 1y

donde K(s, ) es una funcién fija continua de dos variables.
La funcién + (f) es continua cualquiera que sea la funcién con*
tinua @ (s), de manera que el operador (1) transforma el espacio
de funciones continuas en si mismo. Su linealidad es obvia.
Para poder hablar de su continuidad, es necesario sefialar pre-
viamente la topologia que se ha tomado en nuestro espacio de
funciones continuas. Proponemos al lector demostrar la continui-
- dad de este operador en los casos en que a) se considera el es-
pacio Cia, b}, esto es, el espacio de funciones continuas con la
norma | ¢||=max|@(f)|; b) se considera el espacio Cf,, s}, es
1

b 2
decir, ||q>||=<S(p’(t)dt> .

a
6. Consideremos en el mismo espacio de funciones continuas el

operador
V() =9, () ¢ (¥),

donde @, (f) es una funcién continua fija. La linealidad de este
operador es evidente. Demuéstrese su continuidad en el caso de
las normas sefialadas en el ejemplo anterior.

7. Uno de los ejemplos de operador lineal mas importantes
para el Andlisis, es el operador.de diferenciacién. Puede ser con-
siderado en diferentes espacios. :

a) Consideremos el espacio de funciones continuas Ciq, 53 y el

operador :
Df@t)y=f ()

que actia en él. Este operador (que consideramos que actiia de
Cia, 5y en Ciq, 5 Ofra vez) esta definido, evidentemente, no en
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todo el espacio de funciones continuas, sino en la variedad
lineal de funciones que tienen derivada continua. El operador
D es lineal, pero no es continuo. Esto se ve, por ejemplo, de
que la sucesion

sen nt
Qs ()= n

converge a 0 (en la métrica de Cyq, »)), mientras que la sucesién

D, () = cos nt
no converge.
b) El operador de diferenciacién puede ser considerado como
un operador que actia del espacio D, de funciones con derivada
continua sobre [a, b] con la norma '

ll@|l,=max | (f)|+max|¢’ (#)]

en el espacio C4, 5. En este caso el operador D es lineal y con-
tinuo y transforma todo el D, en todo el Cpq, ).

c) No resulta muy conveniente considerar el operador de
diferenciacién como un operador que actiia de D, en Ciq, 53, Ya
que, a pesar de obtener en este caso un operador continuo defi-
nido sobre todo el espacio, este operador no se puede aplicar
dos veces a cualquier funcién de D,. Es mas comodo considerar
el operador de diferenciacién en un espacio ain mas reducido
que D,, en el espacio D, de funciones indefinidamente diferen-
ciables sobre [a, b], cuya topologia se define mediante un sistema
numerable de normas '

lolla=sup (¢, 19" @ 1 «ees 92O

El operador de diferenciacion transforma este espacio en si
mismo y, como es facil de comprobar, es continuo sobre este
espacio.

d) Las funciones indefinidamente diferenciables constituyen
una clase muy reducida. Las funciones generalizadas ofrecen la
posibilidad de considerar el operador de diferenciacion como un
operador definido en un espacio substancialmente mas amplio y,
al mismo tiempo, como un operador continuo. En el parégrafo
anterior hemos hablado ya de cémo se define la operacién de
diferenciacién para las funciones generalizadas. De lo alli ex-
puesto se desprende que la diferenciacién es un operador lineal
en el espacio de funciones generalizadas y que, ademés, es con-
tinuo en el sentido de que de la convergencia de la sucesién
{f.(®)} de funciones generalizadas hacia f(f) se deduce la con-
vergencia de la sucesion de sus derivadas hacia la derivada de
la funcién generalizada f (¢).
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- 2° Continuidad y acotacion. Un operador lineal que actia
de E en E, se llama acofado, cuando estd definido sobre todo
el E y transforma cada conjunto acotado en un conjunto tam-
- bién' acotado. Entre la acotacién y la continuidad de un opera-
_dor lineal existe una relacién estrecha y tienen lugar las siguientes
proposiciones. o o '

1. Todo operador continuo es acotado. -
En efecto, sea M < E un conjunto acotado y sea AM < E;

un conjunto no acotado. Entonces, existe en E, una vecindad V

del cero tal que ninguno de los conjuntos % AM esta contenido .
en V., Pero en este caso, existe una sucesién {x,} = M tal que
ninguno de los elementos —;—Axn pertenece a V y obtenemos?

que —,l‘-;c,,—>0 en E, mientras que la sucesién {-'17 Ax,,} no con-

verge hacia el 0 en E,;; esto contradice a la continuidad del
operador A. ‘ e
I1. Si A es un operador acotado que actia de E en E, y si
en el espacio E se cumple el primer axioma de numerabilidad, el
operador A es continuo. o e

En efecto, si A no es continuo, existen una vecindad V del

cero en E, y un sistema determinante {U,} de vecindades del
cero en E, tales que para cada n existe un elemento x,,G;ll-U,,

tal que Ax,€V. La sucesién {nx,} es acotada en E (e incluso
. converge hacia 0), mientras que la sucesién {nAx,} no es acotada
en E, (ya que no estd contenida en ninguno de los conjuntos V).
De manera que si el operador A no es continuo y en E se cumple
el primer axioma de numerabilidad, el operador A tampoco es
acotado. Nuestra proposicién queda demostrada.

Por consiguiente, en los espacios con el primer axioma de

~numerabilidad (a los que pertenecen, en particular, todos los
espacios normados y normados numerables) la acotacién de un
operador lineal equivale a su continuidad. .

Todos los operadores mencionados en los ejemplos 1, 2, 3, 4, 5
y 6 del punto anterior, son continuos. Como en todos los espa-
cios alli considerados se cumple el primer axioma de numera-
bilidad, todos los operadores mencionados son acotados.

Si E y E, son espacios normados, la condicién de acotacién
de un operador que actia de E en E,, se puede enunciar asi:
un operador A se llama acotado si transforma toda bola en un
conjunto acotado. Debido a la linealidad de A, esta condicién

1) Véase el ejercicio del punto 3 del § 5.
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se puede enunciar asi: A es acotado, cuando existe una constante
C tal que para todo fEE ,

IAFI<CIFI-

El menor de los nimeros C que satisfacen esta desigualdad se
llama norma del operador A y se denota mediante || A]|.

TEOREMA 1. Para cualquier operador acotado A que actida de un
espacio normado en otro espacio normado, se tiene

U A=y |
" A ” """ sﬂp ” Ax ” - sipo TET] . (2)

DEMOSTRACION. Denotemos ¥

= - IIAxII

=, s Ax= sup L
Probemos primero que || 4| >
lAx|

Puesto que @=sup —a

para cualquiér e >0 existe un ele-
mento x, tal que -

=i’

A
[EA}

| Ax, [ > (@—e) || %],
- de donde se deduce que

. >a—
es decir,

a—e || A]l;
como & es un nimero positivo arbitrario, obtenemos o< |A Il
- Probemos ahora que la desigualdad @ < || A || es imposible. Sea

|All—a=2>0.
EutOnces, :

a<|A l~—~
Pero de aqui- se deduce que cualqmera que sea el punto x se
_ cumplen las desigualdades

| Ax |
el =

1 Axll< (n All—) L=,

, <a <IIAH——‘
o bien -

Il Axll

1 La 1gua1dad sup Il Ax]| —sug es evidente debido a la linea-

lidad de A.
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es decir, || A|| no es la cota inferior de aquellos M para los cualeg
|Ax]|< M|l x]. '

Por consiguiente,
|A]l=c.

3°. Suma y producto de operadores.

DEFINICION 1. Sean A y B dos operadores lineales que actian del
espacio topolégico lineal E en el espacio E,. La suma A+ B de
ellos es el operador C que pone en correspondencia al elemento
x€E el elemento :

y=Ax+Bx€E,.

Es facil comprobar que C=A+4B es un operador lineal,
continuo, si son continuos A y B. El campo de definicién D,
del operador C es la interseccion D, N Cp de los campos de
difinicién de los operadores A y B. B

Si E y E, son espacios normados y si los operadores A y B
son acotados, el operador C es también acotado y, ademas,

< Al+IBl- 6]
En efecto, para todo x '
ICxll=|Ax+ Bx || <|| Ax ||+ Bx | < (U AN+ B |21l
de donde se deduce (3).

DEFINICION 2. Sean A y B dos operadores lineales, A actuando
del espacio E en E, y B actuando de E, en E,. Se llama pro-
ducto BA de los operadores A y B al operador C que pone en
correspondencia al elemento x € E el elemento

2= B (Ax)

de E,. El campo de definicion D, del operador C=BA se com-
pone de todos los x € D , tales que Ax € Dp. Esta claro que el ope-
rador C es lineal. Es continuo, si son continuos A y B.

Si A y B son operadores acotados que actiian en espacios
normados, el operador C=BA también es acotado y, ademais,

| NICI<IBI-IAL- )
En efecto,
ICxl|=IBANI<IBI- |Ax|<|IBI-IAll-I*ll, )
de donde se sigue (4). ‘ '

La suma y el producto de tres y mas operadores se definen
sucesivamente. Ambas operaciones son asociativas.
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El producto de un operador A por un nimero k (se denota con
kA) se define como el operador que pone en correspondencia al ele-
mento x el elemento kAx. ‘

El conjunto Z(E, E,) de todos los operadores lineales con-
tinuos, definidos en todo el espacio E, que transforman E en E,
(donde E y E, son dos espacios topolégicos lineales fijos), forma
un espacio lineal respecte a las operaciones de adicién y multi-
plicacién por nimeros, definidas mas arriba. Si E y E; son es-
pacios normados, % (E, E,) es también un espacio normado (con
la norma de operador que se ha definido anteriormente).

EJERCICIO. Sean E un espacio normado y E; un espacio normado completo.
Entonces, el espacio normado % (E, E,) es completo. Si A € Z (E, E,)
® o

Y X Il Agll < o, la serie ) Ap converge a un operador A € P (E, Ey) y
1=k k=1 N

2 A

=1

raj=

< X llAel. _ (6)
k=1

4°. Operador inverso, inversibilidad. Sea A un operador que
actia de E en E, y sean D, el campo de definicion y R, el
campo de valores de este operador.

DEFINICION. Un operador A se llama inversible, cuando para cual-
quier y € R, la ecuacién
Ax=y
tiene solucién unica. :
Si A es inversible, acada y€ R, se puede poner en corres-
pondencia un elemento {inico x€D, que es la solucién de la

ecuacién Ax=y. El operador que realiza esta correspondencia se
llama inverso de A y se denota mediante A-!.

TEOREMA 2. Un operador A-?, inverso de un operador lineal A,
| es también lineal. .

DEMOSTRACION. Basta comprobar que se cumple la igualdad
AT (alyl+asys)'~= o, A=y, +a,A"y,. )

Pongamos Ax, =y, y Ax,-—-%y,._ Debido a la linealidad de A,
tenemos , :

Al o) =gy oy, ®)
De acuerdo con la definicién de operador inverso,
A—lyz=x1’ A-lyz“xv
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de donde, muitiplicando estas igualdades por a, y a,, respecti-
vamente, y sumando, encontramos B ’

0, A7y, + @Ay, = aux, + ax,.

Por otro lado, de (8) y de la definicién de operador inverso se
deduce que = » - ‘

R RN =AY (a4, + ay,)
que junto con la igualdad anterior da ' '
A-l(alyat'i‘a'zyz)=a1A-?y1+“sAflyzy' )
TEOREMA. 3 (teorema de Banach sobre el operador inverso). Sea A
un operador lineal acotado, que efectia una transformacion

- biunivoca del espacio de Banach E sobre el espacio de Banach
E,. Entonces, el operador inverso A=* es acotado. R

Para demostrar este teorema es necesario el siguiente lema.

LEMAL Sea M un conjuntb siempre denso de un. espacio de Bandch
E. Entonces, todo elemento no nulo y€E se puede desarrollar
en una serie : S A

y=y1+ys+f-‘ +yn+“jv,
3

donde y,€M e ||y, | < 2Ll
DEMOSTI‘\;ACION. Construimos la sucesién de elementos Y, del siguien-
te modo: escogemos y, de manera que sea '

Es = <l : ©)
lo cual es posible, ya- que la desigualdad (9) define una esfera
de radioug—,Il y centro en el punto y, dentro de la cual debe exis-
tir un elemento de M (M es sigmpre denso en.E). Escojamos
Y, €M de manera que ||y—y1;yz-|| <f"—z-"—, Y, de manera que

I y—.yl_;y,_.ys‘||,<'1g_l_. y, en ggneral,.’es_coja‘mos Yy, de manera

que |ly—y,—...—y, || < “2!;" . Tal seleccién es siempre posible,

ya.que M es siempre denso en E. De acuerdo con la eleccidn
de los elementos y,: :

' W—Zm

~—0 para n— oo,
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esto es, la serie Z Y, converge hacla y. Esttmemos las normas
de los elementos y,,.

Nnl=ls—y+ul<lu—yl+Igi=2UEL,

, : .3 .
19 0= 192+ =0+ v—p: I <lly—v2—0, u+ny—y,u<—“—{—‘
Finalmente,

uynH_”qn"l-yu 1+ +y1-——y+y y:l _y" 1“ \
<lly—h—...—l+lly—y,— yn-1"< "!I“

El lema queda Vdemostrado

DEMOSTRACION DEL TEOREMA 3. Consideremos en el espacio E, los
conjuntos M,, donde M, es la totalidad de los y y que satisfa-
cen la desigualdad || A~ ly |<k|lyll. Todo elemento del espacio

E, se encuentra en cierto M,, es decir, E,= UM,, De acuerdo

al teorema de Baire sobre las categorias (cap. II § 3, punto 3°),
al menos uno de los conjuntos M,, digamos M,,, es denso en
una bola B,. Consideremos dentro de la bola B, una capa esfé-
rica P, esto es, el conjunto de puntos 2, para los cuales se cumple
la deslgualdad

B< lz—y, |<a,

0<ﬂ<“a yoEM

Trasladando Jaaralelamente la capa esférica P de manera que

su centro coincida con el origen de coordenadas, obtendremos la
capa esférica P,.

Probemos que en P, es denso un conjunto Mpy. Sea z E POM,;
entonces, z—y,€EP, y

147 e—w) I<I| A~z ||+ ]| A gl < n (]l 2]l + Ilyoll)<

<n(llz—gll+205l) = n]|z—y°|[(1+_ﬂ?é'|_L;”Tl.)<

<nllz—g, || (142l . o)

donde

La magnitud n[l—kﬂ%'ﬂ—ll-‘] no depende de z. Tomemos
N=l+[lw+&é’¢] . Entonces, debido a (10), Z—Y,EMy y

16—3427
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como M, es denso en P, M, serd denso en P,. Consideremos un
elemento y arbitrario no nulo de E,. Siempre se puede escoger A
de manera que sea B < |Ay| <, es decir, que Ay€P,. Puesto
que My es denso en P,, se puede construir una sucesion Y €My

convergente hacia Ay. Entonces, la sucesién %y,, converge hacia y.

Es evidente que si Y € My, tarﬁbién % Y €My para cualquier

nimero real A=~0; por consiguiente, M ~ €es denso en E,\ {0} y,
por esto, también en E,.

Consideremos un elemento no nulo Y€E,; dé acuerdo con el
lema, puede ser desarrollado en una serie de elementos de M.

b=4t vttt

siendo g | < 2oL,

Consideremos en el espacio E la serie formada por las imége-
nes reciprocas de los elementos Yp» s decir, por elementos
xk=A91yk. '

Esta serie converge a un elemento x, ya que tiene lugar la

desigualdad | 5, || = || A=y, | < N || gull < N 2L, agemas,

® ® 1
1 I< Y Ial <3Nl Y L=y,
k=1 k=1

‘ Como la serie élx,, converge y el operador A es continuo, se
puede aplicar A a esta serie término por término. Obtendremos
Ax=Ax,+Ax,+ ... =y, 4y, -+ ... =y,

de donde x = A-1y. Ademas,
1A=yl =l x| <3Ny

y como esta estimacién es valida para cualquier y=« 0, el opera-
dor A-! es acotado. El teorema queda demostrado.

EJERCICIOS. |. Sean E, E, dos espacios normados. Un operador lineal 4,
que actia de E en Ey, con el campo de. definicién D4€E, se llama cerrado,
cuando de las condiciones x,EDy, x, — x, Ax, —y se deduce que x€D, y
Ax=y. Compruébese que todo operador acotado es cerrado. Consideremos el
producto dirécto EXE, de los espacios E y E,, esto es, el espacio lineal
normado, compuesto- de todos los pares posibles [x, y], donde xEE, yEE,,
con la norma l] x, ylll=lix|l4|l¥]l; (mediante JI-|l designamos 1a norma
en E y mediante||-||;, lanormaen E,). Se puede poner en correspondencia al
operador A el conjunto GA=«£[':;, YI:x€EDy, y=Ax} c EXE,, que se deno-
mina gréfico del operador. Compruébese que G4 es un conjunto lineal de
EXE, que es cerrado cuando, y sélo cuando, el operador A es cerrado.
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Demuéstrese que si E y E, son espacios de Banach y si el operador A estd
;i_efim‘do a?o )todo E y es cerrado, es acotado (teorema de Banach sobre el grd-
ico cerrado).

Sugerencia. Apliquese el teorema 3 al operador P:{x, Ax} - x que actiia
de Gy en E

2

9. Demuéstrese que siendo A un operador lineal continuo que transforma
biunivocamente un espacio completo normado numerable E sobre un espacio
completo normado numerable E,, el operador- -inverso A-! es continuo.
Entinciese y demuéstrese el teorema sobre el grfico cerrado para el caso de
espacios normados numerables.

TEOREMA 4. Sea A, un operador lineal acotado que transforma un
espacio de Banach E sobre otro espacio de Banach E, y que tiene
el inverso acotado A;* ysea AA un operador lineal acotado que

fransforma E en E, y tal que || AA]| .<’||—,;':' Entonces, el ope-
]

rador A=A,+AA transforma E sobre E, y tiene inverso acotado.

pemosTRACION. Fijemos un elemento cualquiera y€ E, y conside-
remos la aplicacién B del espacio E en si mismo, definida me-
diante la férmula -

Bx=A;y—A;'AAx.

De la condicién ||AA] < ||A7s]|~ se deduce que la aplicacion B
es contraida. Puesto que E es completo, existe un unico punto
fijo x de la aplicacion B

x=Bx=A;' y—A;'A Ax,
de donde
' Ax=Ax+AAx=y.

Si Ax’ =y, también x’ sera un punto fijo de la aplicacién B,
de manera que x'=x. Por consiguiente, para todo y€E, la
ecuacion Ax =y tiene en E una solucién dnica, esto es, el ope-
rador A tiene inverso A-!. En vista del teorema 3, el operador
A-1 es acotado, que es lo que se queria demostrar.

TEOREMA 5. Sean E un espacio de Banach, I el operador unidad
de E y A un operador lineal acotado que aplica E en si mismo
y tal que || A||<1. Entonces, el operador (I— A)~! existe, es
acotado y represéntase en la forma

(U—A) =3 A an

DEMOSTRACION. La existencia y acotacién del operador (I—A)!
se desprende del teorema 4 (ademés, esto se desprende también

del razonamiento que sigue). Como || A]| <1, tenemos kz&“ A<

16*
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gzll A|* < oo. El espacio E es cétnpl’eto y poreso de 'Ia con-
e , B )
vergencia de la serie kzolfA" | se deduce que la suma de la serie

zw;A" representa un operador lineal acotado. Para un n cual-
ES : :
quiera tenemos
n n :
— k= k f — =f — Ant1.

~ pasando al limite para n— oo y tomando en consideracién que
JfA** ||| A||***— 0, encontramos V '

. S & 2 Ak —A) =
(7 A)kng AgoA (1 A)=1,
de donde :
— D1 = 3
(I—A) tgoA ,

que es lo que queriamos demostrar.

EJERCICIO. Sea A un operador lineal acotado que aplica un espacio de
Banach E sobre un espacio de Banach E,. Demuéstrese que existe una cons-
tante @ > 0 tal que si Bbg,? (E, E,) y||A—B|| < , el operador B aplica
E sobre todo el espacio E, (Banach). . ‘ '

5°. Operadores conjugados. Consideremos un operador lineal
continuo y= Ax que aplica un espacio lineal topolégico E en otro
espacio E, del mismo tipo. Sea g una funcional lineal continua
definida sobre E,, esto es, g€ E}. Apliquemos la funcional g al
elemento y= Ax; es ficil comprobar que g(Ax) es una funcional
lineal continua definida en E; denotémosla con f. La funcional f es,
de esta forma, un elemento del espacio E*. Hemos asignado a
cada funcional g€ E? una funcional f EE®, es decir, hemos obte-
nido un operador que aplica E; en E* Este operador se l1lama
conjugado del operador A y se designa mediante A*.

Denotando 1la funcional [ mediante (f, x), tendremos

(gv Ax)=(f, x) Y . .
| (& A=(d*g, x)

Esta relacién se puede tomar por definicién del operador
conjugado.

Ejemplo. E! operador conjugado en un espacio de dimension
finita. Supongamos que un operador A aplica un espacio E”
(n-dimensional) en un espacio Em (m-dimensional) y sea (a;y) la
matriz de este operador.



§ 5. OPERADORES LINEALES 245

La -aplicacién y= Ax se puede representar mediante el sistema
de igualdades S '

: n
yi=;ailxj’ i=l) 29 ey m

y la funcional f, (x) en la forma

=2
 De la igualdad *

f (x)=g(Ax) =glgiyi = 2‘1 glétaijxj = g"/ 2 gip

tendremos f,=§“g,ai,. Como f=A*g, de aqui se deduce que el

operador A* se define mediante la matriz traspuesta de la matriz
del operador A. ‘ - :
Las siguientes propiedades de operadores conjugados siguen
directamente de la definicién. . S S
1. El operador A* es lineal.
2, .(SA + B)* = A* 4 B*. .
3. Si & es un ntmero complejo, (RA)* =kA*.
Menos evidente es el siguiente resultado. ,
TEOREMA 6. El operador A*, conjugado a un_operador lineal aco-
tado A que aplica un B-espacio E en un B-espacio E,, es tam-
‘bién acotado y i : :
I A*||=1| A].

pEMOSTRACION. En virtud de las propiedades de la norma de un
operador, tenemos ‘ ‘
(A% »l=|@ Anl<lel-NIAl-Ixl
“de donde || A*¢||<||All-llgll; por consiguiente,
| A<l Al (12

Sea x€ E y Ax=£0; tomemos yo=——4"—6El; es obvio que

ij Axl
l[#o||=1. De acuerdo con el corolario clel teorema de Hahn—

anach, existe una funcional g, tal que lgll=1y (8 ¥)=1,
es decir, tal que (g, Ax)=| Ax|. De las relaciones :

lAxl =l Anl=|(4% »I<IA%l|xI< |
: <A klgl- =1 AT
obtenemos || A || < || A* ||, lo que, vjunto con la desigualdad (12), da
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IA*[=11A]. .
El teorema queda demostrado.

6°. Operador conjugado en un espacio euclideo. Operadores
autoconjugados. Consideremos el caso, cuando A es un operador
acotado que actiia en un espacio de Hilbert H (real o complejo).
De acuerdo con el teorema sobre la expresién general de una
funcional lineal continua en un espacio de Hilbert, la aplicacién
T que a cada y€ H asigna la funcional lineal

() (x) = (x, v)
es un isomorfismo (0 un isomorfismo conjugado, cuando H es
complejo) del espacio H sobre todo el espacio dual H*. Sea A*
el operador conjugado dél operador A. Esti claro que la aplica-
cién A*=1"!A*v representa un operador lineal acotado que actiia
en H; es facil ver que para cualesquiera y€ H -

(Ax, y)=(x, A*y).

Como || A*||=]A] y las apliéaciones T y T71 son isométricas,
tenemos llA* I=nAaj.
Todo lo expuesto anteriormente para un espacio de Hilbert,

es valido también, por supuesto, para un espacio euclideo (real
o compléjo) de dimensién finita. ;

Tomemos el siguiente acuerdo. Siendo R un espacio euclideo
(de dimensién finita o infinita), lamaremos operador conjugado
del operador A, que actia en R, al operador A*, definido mas
arriba, que actia en el mismo espacio R. }

Es preciso subrayar que esta definicién difiere de la defi-
nicion de operador conjugado en un espacio arbitrario de Banach E,
de acuerdo con la cual el operador conjugado A* actfia en el
espacio dual E*. A veces, el operador A*, en diferencia del ope-
rador A*, se denomina conjugado de Hermite. Para no complicar
la terminologia ni las denotaciones, en lo que sigue escribiremos’
A* en lugar de A* y llamaremos este operador conjugado, teniendo
en cuenta, sin embargo, que en el caso de un espacio euclideo el
concepto de operador conjugado se comprendera siempre tal como
ha sido enunciado en esta seccién.

Esta claro, que en un espacio euclideo R el operador conju-
gado de A se puede definir como un operador que para todos
X, Y€ R verifica la igualdad

(Ax, y)=(x, A*y).

Puesto que en el caso de un espacio euclideo los operadores A y
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A* acthan en un mismo espacio, puede tener lugar la igualdad
A = A*. Hagamos la siguiente definicién que destaca una clase
importante de operadores en -un espacio euclideo (en particular,
de Hilbert). . :

periNIcioN. Un oFe:ador lineal acotado que actGia. en un espacio
euclidleo R se llama autoconjugado, cuando A= A*, es decir,

cuando
(Ax, y)=(x, Ay)

para todos los x, yER.

Sefialemos la siguiente propiedad importante del operador A*
‘conjugado a un operador A que actia en un espacio euclideo R.
Un subespacio R, del espacio R se llama invariante respecto al
operador A, cuando de x€ R, se deduce que Ax€R,. Si el sub-
espacio R, es invariante respecto de A, su complemento ortogo-
nal Ri es invariante respecto de A*. En efecto, si y€ Ry, tene-
mos para todo xE€R, :

(x, A*y)=(A4x, y) =0,
ya que Ax€R,. En particular, si 4 es un operador autoconjugado,

el complemento ortogonal de cualquier subespacio invariante suyo
es invariante respecto de A. '

EJERCICIO. Demuéstrese que siendo 4 y B dos operadores lineales acota-
dos en un espacio euclideo, se verifican las igualdades

(@A+BB)*=aA*-BB*,
" (AB)*=(B*A"),
(A%)*=A4,
I*=1 (I es el operador unidad).

7°. Espectro de un operador. Resolvente®. En la teoria de
los operadores y en sus aplicaciones desempefia un papel primor-
dial el concepto de espectro de un operador. Recordemos primero
este concepto para el caso de operadores en un espacio de dimen- -
sion finita.

Sea A un operador lineal en el espacio n-dimensional E®». El
namero A se 1lama valor propio del operador A, cuando la ecuacién

Ax=ix

tiene soluciones no nulas. El conjunto de todos los valores pro-
pios se denomina espectro del operador A y todos los demas va-
lores de A se llaman regulares. En otras palabras, A es un punto

1) Siempre que se hable del espectro de un operador, consideramos que
el operador actia en un espacio complejo. . )



‘248 CAP. 1V. FUNCIONALES LINEALES Y OPERADORES LINEALES

regular, cuando el operador (A—AJ) es invertible. Ademis, el
operador (A—AJ)~*, como todo operador en un espacio de dimen-
sion finita, es acotado. Por consiguiente, en un-espacio de dimen-
sién finita existen dos posibilidades: : ‘

1) la ecuacién Ax=»Ax tiene solucién no nula, es decir, A es
un.valor propio de A; en este caso el operador (A—AD" no
existe;

* 2) existe el operador acotado (4—AJ)~1, esto es, A es un punto
regular. : - '

En el caso de dimension infinita puede darse una tercera
posibilidad, a saber; : s

3) el operador (A— AJ)~* existe, es decir, la ecuacién Ax=Ax
tiene solamente solucién nula, pero este operador no es acotado.

- Introduzcamos ‘la terminologia siguiente. El nimero A se
llama regular para el operador A, que actiia en un espacio E
(complejo) topolégico lineal, cuando el operador (A—AD™, lla-
mado resolvente del operador A, estd definido en todoel E yes
continuo. El conjunto de todos los demas valores de A se llama
espectro del operador A. Al espectro pertenecen todos los valores
propios del operador A4, ya que, si (A—AJ)x=0 para un x =<0,
no existe (A—AJ)-*. El conjunto de ellos se 1lama espectro pun-
tual. La parte restante del espectro, es decir, el conjunto de
valores de A para los cuales (A—AJ)~? existe, pero no-es conti-
nuo, se llama espectro continuo. De manera que cada valor de A
es para el operador A o bien regular, o bien valor propio, o bien
punto del espectro continuo. La posibilidad de que un operador
tenga espectro continuo es lo que distingue de un modo substan-
cial la teoria de operadores en un espacio de dimensién infinita
del caso de dimensién finita. : _

Sea A un operador que actiia en un B-espacio. Si el punto A
es regular, es decir, el operador (A—AJ)-1 existe y es acotado,
para un § suficientemente pequefio el operador (A—@A+8) -
también existe y es acotado (teorema 4), es decir, el punto A 48
es también regular. Por consiguiente, los puritos regulares consti-
tuyen un conjunto. abierto. Es decir, el espectro, estoes, el com-
plemento de este conjunto, es un conjunto cerrado. -

TEOREMA 7. Si A es un operador lineal acotado en un espacio de
| Banach y si |M|>||A|l, A es un punto regular. '

DEMOSTRACION. Como, evidentemente,

tenemos (A—2)=—2 (1——71: A) |

- - 1 A\-1 1« A%
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Para || A|| < |A|, esta serie converge (véase el teorema 5), es de-
cir, €l operador A—AlJ tiene inverso acotado. En otras palabras,
el espectro del operador A esti contenido en el circulo de radio
[|A]] con centro en el cero. :

Ejemplo. Consideremos en el espacio Cyo, 1; €l operador A de-
finido mediante la formula

. Ax@®)=p@®)x(@),
donde p(#) es una funcién continua fija. Tenemos

(A=A x ()= @O)—M) x(8),
de donde v :

A —kl)'lx(t)#'—RT;:Ix(t).

El espectro del operador considerado A se compone de todos
los A tales que p(f)—A se anula para cierto ¢, comprendido
-entre 0 y 1, es decir, el espectro coincide con el conjunto de
todos los ‘'valores de la funcién p(f) sobre el segmento [0, 1]. Por
ejemplo, si p(f)=1, el espectro representa el segmento [0, 1]
y no hay valores propios, es decir, el operador de multiplicacién
por # representa un ejemplo de operador con espectro puramente
continuo. : o ,
' Observaciones. (1) Todo operador lineal acotado, definido en un espacio
de Banach completo, que tiene al menos un elemento diferente de cero, tiene
espectro no vacio. Existen operadores, cuyo espectro se compone ‘de un solo
punto (por ejemplo, €] operador de multiplicacién {or un numero).
~ (2). Se puede precisar el teorema 7 del siguiente modo. Sea

r=1lim V14"

n~>®

(se puede demostrar que este limite existe cualquiera que sea el operador
acotado »A'); entonces, el espectro del operador A se encuentra integramente
dentro del circulo de radio r y centro en el cero. El niimero r se llama
radio espectral del operador A.

(3). Los operadores resolventes R, y R,, correspondientes a los puntos
p y A, conmutan y satisfacen la relacién : :

- Ry—Ry=(p—2) R,R,

que se guede comprobar facilmente multiplicando ambos miembros de esta

igualdad por ‘ : .
(A—Al) (A—pl).

De aqui se deduce ckue, siendo Ay un punto regular de A, la derivada de

R, tespecto a A en A=A, es decir, el limite ‘ '
R ran—Ry,

v smo T AR ,
existe (en el sentido de convergencia segin la norma de operador) y es
igual a Ry . :
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EJERCICIO. Sea A un operador autoconjugado Yacotado en un espac@
complejo de Hilbert H. Demuéstrese que sit espectro es un subconjunto- é&
rrado y acotado del eje real.

§ 6. OPERADORES TOTALMENTE CONTINUOS

" 1°. Definicién y ejemplos de operador& totalmente continuos,
Una clase de operadores, que se aproxima por sus propiedades @
~la clase de operadores que actilan en espacios de dimension finita
y que, al mismo tiempo, es muy importante desde el punto de
- vista de las aplicaciones, es la clase formada por los asi Ilam&
dos operadores totalmente continuos. Estudiaremos ahora las
propiedades principales de estos operadores, limitandonos al caso,"
de espacio de Banach. .

perINICION. Un operador A que aplica el espacio de Banach @
en si mismo se llama tofalmente continuo, cuando transforma:
cada conjunto acotado en uno relativamente compacto. :
En un espacio normado de dimensién finita, todo’ operad
lineal es totalmente continuo, ya que transforma cualquier con:
junto acotado en otro, acotado también, y én un espacio de di L
mensién finita todo conjunto acotado es relativamente compacto::
En un espacio de dimensién infinita la continuidad tot 1
de un operador es un requerimiento mas fuerte que su cOntuui%
dad simple (es decir, que la acotacién). Por ejemplo, el operad
unidad en el espacio de Hilbert es continuo, pero no totalmente
continuo. (Demuéstrese esto independientemente del ejemplo 1 que;
se considera a continuacién). ‘ :

Veamos algunos ejemplos.

1. Sea I el operador unidad en un espacio de Banach Ef
Probemos que siendo E de dimensién infinita, el operador / np
es totalmente continuo. Para ello bastara, evidentemente, demos-
trar que la bola unitaria de E (que, por supuesto,. se transforma
mediante el operador / en si misma) no es compacta. Esto, a su
vez, se desprende del siguiente lema que nos hara falta tamblen
en lo sucesivo.

LEMA. Sean x,, X,, ... vectores lmealmente independientes de un

espacio normado E y sea E, el subespacio generado por los vec-
tores x,, ..., X, Entonces, existe una sucesion de vectores
Yis -+ Yy que sattsface las siguientes condiciones:

1
Dlyall=1 2) y.€E.; 3) 0(Yn En-)) >3
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(aqui p (y,E,-,) es la distahcia del vector y, hasta E,_,, es decir,
dnf [ g—x]). |
X n—1 .

DEMOSTRACION. En efecto, como los vectores x,, x,, ... son lineal-
mente independientes, tenemos x,€E,_, y p(x,, E,_,)=a > 0.
Sea x* un vector de E,_, tal que ||x,—x*||< 2. Entonces,
p(x,—x* E,_))=a y el vector -
' o Xp—x*
Un = =T

satisface todas las condiciones 1), 2) y 3). Por y, se puede tomar
1. El lema queda demostrado.

If xlg '
mpleando este lema, se puede construir en la bola unitaria
de cualquier espacio normado de dimensién infinita una sucesion

de vectores {y,} para la cual p(y,-,, ¥,) > —é— Esta claro que

esta sucesion no puede contener ninguna subsucesién convergente.
Esto significa precisamente que no hay compacidad.

2. Sea A un operador lineal continuo que transforma un espacio
de Banach E en un subespacio suyo de dimensién finita. Este
operador es totalmente continuo, ya que transforma todo subcon-
junto acotado Mc E en un subconjunto acotado de un espacio
de dimensién finita, es decir, en un conjunto relativamente
compacto. -

n particular, en un espacio de Hilbert el operador de proyec-
cién ortogonal sobre un subespacio es totalmerite continuo cuando,
y s6lo cuando, este subespacio tiene dimensi6én finita.

Un operador que transforma un espacio de Banach E en un
subespacio de dimensién finita se llama degenerado. ‘

3. Consideremos en el espacio /, el operador A definido del

siguiente modo: si X=(Xy, X3 ..., X, ...), entonces,
1 1 :
Ax=(x1, —2-4\’,'2, ey ;x,,, ...). (l)

Este operador es totalmente continuo. En efecto, como todo con-
junto acotado de /, estd contenido en alguna bola de este espa-
cio, basta demostrar que las imégenes de las bolas son relativa-
mente compactas; debido a la linealidad del operador, basta
comprobar esto para la bola unitaria. Pero el operador (1) trans-
forma la bola unitaria del espacio !, en el conjunto de puntos
que satisfacen la condicién

R

y la compacidad de este conjunto ha sido demostrada ya en el
cap. II, § 7. ‘
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EJERCICIO. Sea Ax=(a,xl, QgXy, e d.x,.. s ), gqué condiciones debe
cumplir la sucesién de nimeros a;, @,, ... para que este operador sea to-
talmente continuo en 1,?

4. En el espacio de funciones continuas Cia, b3 forman una
clase importante de operadores totalmente continuos los opera-
dores que pueden representarse en la iorma

Ax=y()= SK(s, nx(e)dt. | (25,

' Probemos la validez de la siguiente proposicién: si la funaén .
K (s, t) es acotada sobre el cuadrado a<s <¥b, a<t<b y tfodos
sus puntos de dzsoontinuzdad se encuentran en un ndmero finito
de curvas
t-—-cp,,(s), k—-l 2 » 1y

donde @4 Son funciones contmuas, la férmula @) defme en: ai
espacio Cyq, 5y un operador totalmente continuo. :
En efecto, observemos, ante todo, que en las condiciones se-
fialadas la integral (2) existe para cualquier s del segmento [a, b},
es decir, la funcién y(s) esté definida. Sea :ahora

M= _sp_[K@ 0]

y sea G el oonjunto de puntos (s, t) en los cuales se cumple, al
menos para un k=1,2, ..., n,la des;gualdad ) ‘

If—-—-(p,,(S)I( o Mn Mn

Sea F el complemento del con]unto G respecto al cuadrado a<s,
t<b. Como F es compacio y la funcion K(s, f) es continua
sobre F, existe un § >0 tal que '

K6, 0—KE 0]< 752

para cualesquiera dos puntos (s', ), (5", ) de F que satisfacen la
A condnclén

J¢—s|<s. &)

Estimemos la dxferencna y(s )—y(s") admxtlendo que s’ y s" sa-.
hsiacen la condicién (3). Tenemos

96—y )| < Su«s H—K (", Hl1x @) |dt;
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para evaluar la integral que figura en el miembro derecho, divi-
damos el segmento de integracion [a, b] en dos partes: la unién
de intervalos ’

n , A v .
U[{t 1t—a |v<—,2—sm}u{t: 1t —, (") | < ﬁ,—;}]
k=1 .

que denotaremos mediante. P, y la parte restante del segmento
[a, b] que denotaremos mediante Q. Observando que P es la unién

de intervalos tales que la suma de sus longitudes no pasa de ﬁ ,
obtenemos '

(1K@, n—K (s, 1 120)dt <F ]l
P .

La integral sobre Q admite, obviamente; la estimacion
(1K@, =K Dl 1x@)|dt < Flix]l.
Q k -

Por consiguienfe, : : /
ly)—y ) <eflxll. )

La desigualdad (4) muestra que la funcién y(s) es continua,
es decir, la férmula (2) define, en efecto, un operador que trans-
forma el espacio Cig, 5; en si mismo. Ademas, se ve de la misma
desigualdad que, siendo {x(f)} un conjunto acotado de Cis, 5, €l
conjunto correspondiente {y(s)} es equicontinuo. Finalmente, si
[l x]] << C, tenemos : '

: b
Nyli=sup |y | <sup §|KGs, 0] |x®)|dt < ME—a)|x].

De manera que el operador (2) transforma todo conjunto aco-
tado de Ciq, 5y en un conjunto de funciones equiacotado y equi-
continuo, es decir, relativamente compacto. o , ,

4a. La exigencia de que los puntos de discontinuidad de la
funcién K (s, ¢) se encuentren sobre un nimero finito de curvas
que intersectan las rectas s=const en un solo punto, -es substan-

~cial. Sea, por ejemplo, -

’ 1 para s
K(S, t)= '

0 para s>

»

)=
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el operador (2) con este nicleo, que esta definido sobre el cuadrado
0<s, £<<1 y que tiene por puntos de discontinuidad todo el-

segmento s=, 0<<t< 1, transforma la funcién x({)=0 en

una funcién discontinua.

4b. Si se toma K (s, )=0 para t > s, el operador (2) obtxene ,
la forma

y@=&M&0NmM 6

Admitiremos que la funcién K (s, ¢) es continua para f<s; en-
tonces, de lo dicho en el ejemplo 4 se deduce que el operador (5)
es totalmente continuo en Cyg, 5).

Este operador se llama operador de Volterra®.

Observacion. Con la definicion que hemos adoptado de opera-
dor totalmente continuo puede resultar que la imagen de la bola
unitaria cerrada no sea compacta (aunque es relativamente com-
pacta). En efecto, consideremos en el espacio C(_i, 1) el operador
de integracién

U@ == d

segiin hemos demostrado més arriba, J es un operador totalmente
continuo en C;_y, 1;. Tomemos :

0 para —1<t<0,
X, (ty=4 M para 0<t<t,
. 1 para %<t<l.
En este caso, x,€Gi-1, 13, || x.]|=1 para todos los n e
0  para —l<t<0
Y (O)=(x,) ()= %nt2 para 0<t\
| f—--l— para — <t<l.

Esta claro que la sucesién {y,} converge en Ci-;, 1; a la funcxon
/ { 0 para —1 <0,
0= t para  0<<i<],

1) Vitto Volterra, matematico italiano, autor de ‘varias obras sobre
Anilisis Funcional y Ecuaciones Integrales.
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que no es imagen (en la aplicacién J) de ninguna funcién de
Ci-1, 13, ya que la funcién y’ (f) es discontinua.

Sin embargo, se puede demostrar que si el espacio es reflexivo
(por ejemplo, de Hilbert) la imagen de la bola unitaria cerrada
por una aplicaciéon lineal totalmente continua es un compacto
(para la demostracion hay que valerse del resultado del ejercicio
del punto 6 del § 2). ' ' :

2°. Propiedades principales de operadores totalmente continuos.

TEQREMA 1. Si {A,} es una sucesion de operadores totalmente con-
tinuos en un espacio de Banach E que converge, segiin la norma,
" a un operador A, el operador A es también totalmente continuo.

DEMOSTRACION. Para probar la continuidad total del operador A
bastard probar que cualquiera que sea la sucesién acotada X1y
Xsy - ..y Xp ... de elementos de E (|| x,|| <<C), se puede extraer
de la sucesién {Ax,} una subsucesién convergente.

Como el operador A, es totalmente continuo, de la sucesién
{A.x,} se puede extraer una subsucesion convergente. Sea

X0, X D, (6)

una sucesién tal que iAlxi,lif} converge. Consideremos ahora la
sucesién {A,x’}. De ella podemos también extraer una subsuce-
sién convergente. Sea ;

. X, @, L, X, L
tal subsucesién de la sucesién (6) que {A4,x®} converge. Es evi-

dente, entonces, que {A,x{} también -converge. Razonando de
un modo analogo, escojamos de la sucesién {x®} una subsucesién

x®, x®, oL, 22, ..
‘tal que {A,x>} converge, etc. Tomemos después la sucesién diagonal
R 7 R 7

Cada uno de los operadores A,, A,, ..., A,, ... transforma
esta sucesién en una convergente. Probemos que la sucesién {Axz}
también converge. Con ello quedard demostrada la continuidad
total de A. Como el espacio E es completo, bastardA demostrar
que {Ax{"} es una sucesién fundamental. Tenemos
| Axi — A | < || Axp — A | +

1 A — At |+ 1| Ay — Axs || (7)

Escojamos primero k de manera que || A— A, || <35 ¥ después
busquemos un N tal que para todos losn > N y m > N se cumpla
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la relacién o
| A — AP <5

(esto es posible, ya que la sucesién {A,x"} ‘converge)-.VEn e._stas,
condiciones, obt“enemos de (7) que

Ax® — Axim || <
| ,

- para todos los n y m suficientemente grandes: El teorema queda
demostrado. o : A ,

Es facil comprobar que una combinacién lineal de operadores

totalmente continuos es de nuevo un operador totalmente con-
“ tinuo. Por consiguiente, los operadores totalmente continuos for-
man, en el espacio .2 (E, E) de todos los operadores lineales- aco-
tados, definides en E, un subespacio lineal cerrade.

Veamos ahora si el conjunto de operadores totalmente conti-
nuos estd cerrado respecto a la operacién de multiplicacién de
operadores. Resulta que en este orden es valida una afirmacion -
substancialmente més profunda. '

TEOREMA 2. Si A es un operador totalmente continuo y B un ope-
| rador acotado, los operadores. AB y BA son totalmente continuos.

DEMOSTRACION. Si el conjunto McE es acotado, BM también
es acotado. Por consiguiente, ABM es relativamente compacto y
esto significa precisamente que el operador AB es totalmente
continuo. Ademas, si. M es acotado, tenemos que AM es relati-
vamente compacto y, debido a la continuidad de B, el conjunto
BAM resulta también relativamente compacto, es decir, el ope-
rador BA es totalmente continuo. El teorema queda demostrado.

COROLARIO. En un espacio E de dimensién infinita un operador
totalmente continuo no puede tener un inverso acotado.
"~ En efecto, en el caso contrario, el operador unidad /= A-'A

seria totalmente continuo en E, lo cual es imposible (véase el
ejemplo 1).

Observacién. - El teorema 2 indica que los operadores totalmente conti-

nuos forman en el anillo. de todos los operadores acotados £ (E, E) un
ideal bilateral, - ‘ S '

TEOREMA 3. El operador aohjugado a un operador totalmente con-
| tinuo es totalmente continuo. :

DEMOSTRACION. Sea A un operador totalmente continuo en un
espacio de Banach E. Probemos que el operador conjugado A*,

D Un_ideal (bilateral) de un anillo R es un subanillo % tal que, si
a€¥ y rER, se tiene ar€W y rac¥. )
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que actia en E*, transforma cada subconjunto acotado de E* en
uno relativamente compacto. Como todo subconjunto acotado de un
espacio normado se encuentra en una bola, bastard demostrar
que A* transforma cada bola en un conjunto relativamente com-
pacto. Debido a la linealidad del operador A*, es suficiente de-
mostrar que la imagen A*S* de la bola unitaria cerrada S*cE*
es relativamente compacta. '

Consideremos los elementos de E* como funciones definidas
no sobre todo el espacio E, sino solamente sobre el compacto AS,
que es la adherencia de la imagen de la bola unitaria por la apli-
cacion A. Entonces, el conjunto @ de funciones, correspondientes
a las funcionales que pertenecen a S*, serd equiacotado y equi-
continuo. En efecto, si ||@|[<C1; tenemos
sup | ()= sup o) <[l el sup | Ax || <[| Al

x€AS

lo (@) —e (<ol | —*" | < || x"—2"].

Por consiguiente, el conjunto @ es relativamente compacto en
el espacio C(AS) (en virtud del teorema de Arzeld). Pero el
conjunto ®, considerado con la métrica inducida por la métrica
habitual del espacio de funciones continuas C(AS), es isométrico
al conjunto. A*S* (con la métrica inducida por la norma del
espacio E*). En efecto, si g;, g, €S*, se tiene
| A*g,—A%g, || = sup (A*g,— A%g, )| =

=sup (g —gw Ax)|= sup [(&—g.2)l=
X€S ‘ zZ€AS o
= Sup (g1 —&s Z)i =p (81 &)

2€ AS
Como @ es relativamente compacto, es totalmente acotado; luego
_es también totalmente .acotado el conjunto A*S* isométrico a él.
Por esto A*S* es relativamente compacto en E*. El teorema
queda demostrado. '

Observacion. No es dificil comprobar que el conjunto D es
cerrado en C (AS), de manera que es compacto; por eso también
es compacto el conjunto ‘A*S*, aunque (como se deduce de la
observaciéon hecha en la pag. 254) la imagen por una aplicacién
totalmente continua arbitraria de la bola cerrada unitaria puede
no ser un compacto. La situacién en el teorema que acabamos
de demostrar difiere de la general en que la bola cerrada unita-
ria S* de E* es compacta en la topologia »-débil del espacio E*
(véase el teorema 3 del § 3). De aqui se deduce precisamente la
compacidad. (segin la métrica del espacio E*) de la imagen del
conjunto S* para cualquier operador totalmente continuo.

17—3427
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EJERCICIOS. |, Sea A un operador lineal acotado en un espacio de Banach.
_Demuéstrese que siendo el operador A* totalmente continuo, el operador A
es también totalmente continuo. -

2. Para que un operador lineal A en un espacio de Hilbert H sea to-
talmente continuo es necesario y suficiente que su operador conjugado (de
Hermite) A* sea totalmente continuo. ,

3°. Valorés_propios de un operador totalmente continuo.

TEOREMA 4. Todo operador totalmente continuo A en un espacio
de Banach E tiene para cualquier p >0 sélo un ndmero finito
de vectores propios linealmente independientes, correspondientes
a valores propios, cuyos valores absolutos no son mayores que p.

DEMOSTRACION. Observemos, ante todo, que el subespacio inva-—
riante E,, compuesto por todos los vectores propios del operador A
que corresponden a un valor propio A.no nulo, es de dimension
finita. En efecto, si fuese E, de dimensién infinita, el operador A
no- seria totalmente continuo. en el subespacio E, y, por consi-
guiente, en todo el E también. Por eso, para terminar la demos-
fracién del teorema bastard probar que, si {A,} es una sucesion
arbitraria de valores propios, diferentes dos a dos, de un operador
totalmente continuo A, se tiene A, —0 para n —oo. A su vez,
para ello es suficiente probar que no existe una sucesién infinita
de valores propios {\,}, diferentes dos a dos, tal que la sucesion
{;—" sea acotada. Supongamos que existe tal sucesion y sea x,
el vector propio correspondiente al valor pro io A,. Los vectores
Xy» X5, - - son linealmente independientes ™. Sea E,(n=1,2,...)
el subespacio generado por los vectores x,,..., X, €8 decir, sea
E, el conjunto de todos los elementos de tipo
n

y= 2 ok
k=1
Para cada y€ E, tenemos
| 1 _ < S axhg _n-l A
y—r A= Z o — 25 "*‘k‘::‘,“"(‘ )%

" de donde se ve que
y—,%n AYy€E,,

1 La independencia lineal de los vectores correspondientes a diferentes
valores rropios de un operador, que acttia en un espacio normado, se demues-
tra igual que para los operadores en un esgacio de dimensién_finita (véase,
por ejemplo, Kurosch A. G., Curso de Algebra Superior. Editorial MIR,
Moscii, 1968, pag. 213.) .
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Escojamos una sucesién {y,} de manera que.
1) 42 €Exi D) |9l =1; 3) p (s Ep) = ink [lg—x]| > 5

Re1

(la existencia de una sucesién de este tipo ha sido demostrada
en el lema de la pag. 250). Si la sucesién { %} es acotada, enton-

ces, {%"—} es una sucesién acotada en E. Pero, al mismo tiempo,
: n

la sucesién { A({—")} no contiene ninguna subsucesién conver-
gente, ya que para cualesquiera p > ¢

[4G2) -Gl or— =7 20+ 2 GE)| > 3

puesto que yp—% Ay,+ A (%q—) €E,.,. La contradiccién obte-
nida demuestra el teorema.

4°. Operadores totalmente continuos en un espacio de Hilbert.
En lo que precede hemos tratado de operadores totalmente con-
tinuos en un espacio de Banach arbitrario. Ahora completaremos
nuestra exposicién con algunos resultados referentes a operadores
totalmente continuos en un espacio de Hilbert.

Hemos llamado un operador A totalmente continuo, cuando
transforma todo conjunto acotado en uno relativamente compacto.
Como H=H*, es decir, H es el espacio dual a uno separable,
todos los conjuntos acotados de él (y solamente ellos) son débil-
mente compactos. Por consiguiente, un operador totalmente con-
tinuo en un espacio de Hilbert puede definirse como un operador
que transforma un conjunto débilmente compacto en un conjunto
relativamente compacto segiin la topologia fuerte. Finalmente, restilta
cémoda, a veces, la siguiente definicién de un operador totalmente
continuo en un espacio de Hilbert: un operador A se llama total-
mente continuo en H, cuando transforma toda sucesién débil-
mente convergente en una convergente fuertemente.

- En efecto, supongamos que esta condicién se cumple y
sea M un conjunto acotado de H. Cada subconjunto infinito del
conjunto M contiene una sucesién débilmente convergente. Si
ésta se transforma en una sucesién fuertemente convergente, AM
es compacto. Viceversa, sean A un operador totalmente continuo,
x,} una sucesién de convergencia débil y x su limite débil.

ntonces, tAx,,} contiene una subsucesién que converge fuerte.
Al mismo tiempo, debido a la continuidad de A, {Ax,} converge
débilmente hacia Ax, de donde se sigue que {Ax,,’i no puede
tener més de un punto de acumulacién. Por consiguiente, {Ax,}

"es una sucesién convergente. ' :

17*
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5°% Operadores autoconjugados y totalmente continuos en H,
Para el caso de operadores . lineales autoconjugados, que actiian
en un espacio euclideo de dimensién finita, se conoce el teorema
sobre la reduccién de la matriz de una transformacién lineal de
este tipo a la forma diagonal respecto a una base ortonormal.
En ‘este punto demostraremos un teorema que representa la gene-
ralizacién de este resultado al caso de operadores autoconjugados
y totalmente continuos en un espacio de Hilbert. Los resultados
de este punto son vélidos tanto para el espacio de Hilbert real,
como complejo. Para concretar, admitiremos que H es complejo.

'Demostremos, ante todo, algunas propiedades de los vectores
y valores propios de operadores autoconjugados en H, que son
ademds,  totalmente anélogas a las propiedades correspondientes
de operadores autoconjugados de dimensién finita.

1. Todos los valores propios de un operador A, autoconjugado
y acotado en H, son reales. g ‘

En efecto, sea Ax=Ax, ||x||5=0; entonces,

M 9= (A%, )=, A9 = (5, A=A (5, 2),

de donde A=17. | o
II. Los vectores propios de un operador autoconjugado y aco-
taglio,‘ corresponidientes a. diferentes valores propios, son ortogo-
naes- P EEREE A . . LT : v :
Efectivamente, si Ax=hx, Ay=py y As=p, tenemos
M =A% 9= A=W ) =p(x 1),
de donde (x, y)=0. ' R N
Demostremos ahora el siguiente teorema fundamental.
TEOREMA 5 (Hilhert-—‘Schmidt); Para cualquier ‘operador lineal A
autoconjugado y totalmente continuo en un espacio de Hilbert H
existe un sistema ortonormal {g,} de vectores propivs, corres-
pondientes a los valores propios {\,} tal que cada elemento &€ H
se puede escribtr de manera dnica en la forma
, E=Zan+t, S
~donde el vector ¥ verifica la condicion At =0; ademds,

Ab= 2'7&0’1%

Y ,
: limA,=0 (n — oo).

Para demostrar este teorema principal necesitaremos de las
siguientes proposiciones auxiliares. . :
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LEMA 1. Si'{E,} converge débilmente hacia & y el operador A es to-
talmente continuo, se tiene

QEn) = (AL &) — (48, B)=Q ()
DEMOSTRACION.  Para cualquier n

Pero

I(A8,, §)—(4E, B)l=IE AE,—N<IE[-]IAE—B

y, como los nimeros ||§,| son acotados y || A (§,—E)]| —0, te- '

nemos

| (A, &)— (A8, B — 0,
que es lo que se queria demostrar.
LEMA 2. Si una funcional

y

1Q &) =148, B,

donde A es un operador lineal autoconjugado y acotado, alcanza
un mdximo en el punto &, de la bola unitaria, entonces

(o M=0
implica que '

(A%, M)=(&, An)=0.

DEMOSTRACION. Es obvio que |[§,]|=1. Tomemos

?§= ’ Eo+an
Vi+laP(n]?

donde a es un nitmero complejo arbitrario. De ||§,||=1 se sigue
que ,

IEll=1.

Como
Q&) =1y [Q @)+ 2a(4k m)+aQ (],
para valores pequefios de a tenemos ‘
Q (§)=0Q (&) +2a (4§, M)+ 0 (a®).

De la dltima igualdad se ve claramente que si (A&, n)+0, se

puede escoger a de manera que |Q (§))>|Q(8,) y esto contra-
dice a la condicién del lema.
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Del lema 2 se deduce inmediatamente que si |Q ()| alcanza
un méximo para §=E§, entonces, §, es un vector propio del
operador. - ‘
DEMOSTRACION DEL TEOREMA. Construiremos los vectores ¢, por
induccién en el orden de decrecimiento de los valores absolutos
de sus correspondientes valores propios :

EES TN PR
Para construir el elemento ¢, consideremos la expresion
lQ (8)]=1(A%, t)| y demostremos que alcanza un maximo sobre
a bola unitaria. Sea 5 'A

= su ,
u;ung &0l
y sea §,, &,... una sucesién tal que [|&,[|=1y
. KAE,,, En)l-"s para n-—— oo.

Como la bola unitaria es débilmente compacta en H, se puede
escoger de {t,} una subsucesién que converge débilmente hacia
un elemento 1. En este caso || nf|<<1 y, en virtud del lema 1

I(Aﬂv ; *l)]=3

Tomaremos por @; el elemento v. Estd claro que | 1]f es exacta-
mente igual a 1. (En efecto, sea n=m, y [|n,]| <1. Tomemos

=—M_ . entonces, Inll=1y |(An, n)| > S, lo que contradice a

1 :
la definicién de S.) Ademds,
de donde | L
14, @) _ -
[A]= @1 91 =|(Aq, @) |=S.

Supongamos ahora que se han construido ya los vectores propios

, Prr Pas ooy Pps '
correspondientes a los valores propios

Ay Mgy ooy Ay

Consideremos la funcional

[(AE, B)]
sobre el conjunto de elementos pertenecientes a
M,=HOM (@1 @5 ---» Pa)

(es decir, ortogonales a ¢, ¢, ..., ¢,), tales que ||E] < 1.
M, representa un subespacio invariante respecto de A (ya que
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M(@g Pzs -+ +» Pa) € invariante y A es autoconjugado). Aplicando
a M,, los razonamientos anteriores, encontraremos en M;, un vector
propio del operador A; denotémoslo mediante @,4,.

Se puede dar dos casos: 1) después de un nimero finito de
pasos obtendremos un subespacio M, en el cual (4%, §)=0;
2) (At, ) # 0 sobre M, para todo n.

En el primer caso, el lema 2 implica que el operador A trans-
forma M, en cero, esto es, que M;, consta solamente de los
vectores propios correspondientes a A=0. El sistema construido
de vectores {p,} consta de un nimero finito de elementos.

En el segundo caso, obtendremos una sucesion {@,} de vectores
propios para cada uno de los cuales A, == 0. Probemos que A,—0.
La sucesién {g,} (como cualquier sucesién ortonormal) converge
dabilmente hacia el cero y por esto los elementos A@,=A,9,
deben converger, segin la norma, hacia el cero, de donde

A=l A, || — 0.
Sea
M=HSM {cp,,}=n M; 0.

Si teM’ y £#0, tenemos
(A%, B)<<A,||&|® para todo n,

(Agv g) =0,

de donde, en virtud del lema 2 (para max | (A%, &)|=0) aplicado
a M’, obtenemos AE=0, es decir, el operador A transforma el
subespacio M’ en cero.

De la construccién del conjunto {@,}, esta claro que todo
vector se puede representar en la forma

=@+, donde AE' = 0,

de donde se desprende que

El teorema queda demostrado: Este teorema desempeiia un papel
fundamental en la teoria de Ecuaciones Integrales, de las cuales
hablaremos en el capitulo X.

Observacién. El teorema demostrado significa que para todo
operador autoconjugado 'y totalmente continuo A de H existe
una base ortogonal del espacio H compuesta por los vectores
propios de este operador. En efecto, para obtener una base de este
tipo bastara completarel sistema de vectores propios {@,} construido
en la demostracién del teorema con una base ortogonal arbitraria
del subespacio M’ que es transformado por el operador A en el

es decir,
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cero. En otras palabras, obtenemos aqui un resultado completa-
mente andlogo al teorema sobre la reduccién de la matriz de
un operador autoconjugado de dimensién finita a la forma dia-
gonal en una base ortogonal. ST L
Para los operadores no .autoconjugados de un espacio n-di-
mensional esta reduccién es, en general, imposible, sin embargo,
es vélido el siguiente teorema: foda transformacién lineal en un
espacio n-dimensional tiene al menos un vector propio. Es fécil
ver que esta proposicién no es extensible a operadores totalmente -
continuos en H. He aqui un ejemplo correspondiente. Considere-
mos en [, el siguiente operador A: ' ‘

. ) . x &-f‘ .
Ax=A (%, %, ..., x,,,,...):-_(O‘, X1y G eees ;’-':l‘, )

Este operador no tiene ningfin vector propio. En efecto, si
Ax=Ax, ’
se tiene _
Ay =0, My=1x,, ..., Ax,="21=1

n—1 y o’so,

de donde x,=x,=...=x,=. =0.



CAPITULO
Vv

ELEMENTOS
DEL CALCULO DIFERENCIAL
EN ESPACIOS LINEALES

En las cuestiones del Analisis Funcional que hemos tocado
en los capitulos anteriores el papel principal correspondié a los
conceptos de funcional lineal y operador lineal. Sin embargo,
algunos problemas que surgen en el Andlisis Funcional tienen
un caricter sustancialmente no lineal e imponen la necesidad de
desarrollar, junto al Anélisis Funcional «lineal», el Anélisis
Funcional «no lineal», es decir, estudiar funcionales no lineales
y operadores no lineales en espacios de dimensién infinita. Al
Analisis Funcional no lineal pertenece, de hecho, una rama cla-
sica de las Mateméticas que es el Calculo de Variaciones, cuyos
fundamentos fueron dados ya en los siglos XVII y XVIII en
las obras de Bernoulli, Euler, Legendre y Jacobi. No obstante,
el Anélisis Funcional no lineal representa, en su conjunto, una
rama relativamente moderna de las Matemaéticas, atin muy lejos
de su culminacién. En este capitulo expondremos algunos con-
ceptos primarios referentes al Anélisis Funcional no lineal, prin-
cipalmente, a la teoria de diferenciacion, asi como algunas aplica-
ciones de estos conceptos.

§ 1. DIFERENCIACION EN ESPACIOS LINEALES

1°. Diferencial fuerte (diferencial de Fréchet). Sean X e Y dos
espacios normados y F una aplicacién que acta de X en Y y
estd definida sobre un subconjunto abierto O del espacio X.
Diremos que esta aplicacién es diferenciable en un punto dado
x€0, cuando existe un operador lineal acotado L,€.Z (X, Y)

tal que ,
F(x+h)—F () =L, (k) +a(x, h), (1)
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donde ﬂf—ﬁ;’%—“——w para ||A || —0. 2)
La expresion L, (h) (que para cada h€ X representa, evidente-
mente, un elemento del espacio Y) se llama diferencial fuerte
(o diferencial de Fréchet) de la aplicacién F en el punto x. El
propio operador lineal L, se llama derivada, mas precisamente,
derivada fuerte de la aplicacién F en el punto-x. Denotaremos

esta derivada mediante el simbolo F’(x).
Si la aplicacién F es: diferenciable en el punto x, la derivada
correspondiente se determina de manera finica. En efecto sea

F (x+h)—F (x)=LP (h) -+, (x,” i) =L (h) + 0, (x, h);

entonces,
LY (h)=LP (W)=, (x, h)—a,(x, h)

y, en virtud de (2),
W 2)
Il L$ (h)-h-Lx Wl _ o para ||h||—0. ©)

Pero, si para algin h se tiene
1) (3
112 t—L? Wl _y 0,

tendremos para cualquier e:;eO
L& @ —LP el _,
h —

y la relacién (3) no se cumple. '
Sefialemos ahora algunos resultados elementales que se dedu-
cen directamente de la definicién de la derivada. Rt
1. Si F (x)=y,=const, se tiene F'(x)==0 (es decir, F'(x) ez
en este caso, el operador nulo). 2
9. La derivada de una aplicacién lineal continua L es esté
misma aplicacion. '
En efecto, tenemos, por definicion,
L(x+h)—L(x)=L ).

Menos obvio es el siguiente resultado importante.

3. (Derivada de una funcion compuesta). Sean X, Y y Z tres
espacios normados, U (x,) una vecindad del punio x,€ X, F ung
aplicacién continua de esta vecindad en Y, y,=F (x,), V (y,) uns
vecindad del punto y,€Y y G una aplicacién continua de estq
vecindad en Z. Entonces, si la aplicacién F es diferenciable en
punto x, y G es diferenciable en el punto.y,, la aplicacion H=GF
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(que estd definida y es continua en una vecindad del punto x,)
es diferenciable en el punto x,y

H' (x0) =G’ (o) F' (%,)- “4)
Efectivamente, de acuerdo con las suposiciones hechas
F (x,4-8)=F (xo) 1 F' (xo) 40, (B)

G (9o +n)=G (4,) + G’ (y5) n+ 0, ().
Pero, F’(x,) y G'(y,) son operadores lineales acotados. Por eso
H(x,+8)=G(yo+ F (x0)E+0,(§)) =
=G (yo) + G’ (¥o) (F' (%) §+ 0, (B) + 04 (F” (x0) E+0, (B) =
=G (Yo) + G (¢0) F' (x,) E+ 04 (B)-

Siendo F, G y H funciones numeéricas, la formula (4) se convierte
~ en la conocida regla de diferenciacion de una funcién compuesta.

4. Sean F y G dos aplicaciones continuas que actian de X en Y.
Si F y G son diferenciables en el punto x,, las aplicaciones F + G
y aF (a es un nlimero) son también diferenciables en este punto y

(F+G) (x) =F' (%) + G’ (x0) ©)
(@F)’ (xo) = aF" (x,)- (6)

En efecto, de las definiciones de suma de operadores y de
producto de un operador por un nimero, obtenemos inmedia-
tamente que
(F+G) (xo-+h)=F (xy+ 1)+ G (x,+h) =

’  =Fx)+G )+ F (%) A+ G () h+0,(h)

aF (x,+ h)=aF (x))+aF’ (x,) h+ 0, (h)
de donde se deducen las igualdades (5) y (6).

2°. Diferencial débil (diferencial de Gato). Sea de nuevo F
una aplicacién que actiia de X en Y. Se llama diferencial débil,
o diferencial de Gato, de la aplicaciéon F en el punto x al limite

DF (x, h)= ,%F(x+th) :=o=li_f%F—(x+m)_F(x)v

y

y

y

donde la convergencia se entiende como la convergencia segiin
la norma del espacio Y.

La diferencial débil DF (x, h) puede ne ser lineal respecto a A.
Si esta linealidad tiene lugar, es decir, si

DF (x, h)=F,(x)h,
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donde F;(x) es un operador lineal, este operador se llama deri~
vada débil (o derivada de Gato). et e, e

Sefialemos que para las derivadas débiles no se cumple, como
regla general, el teorema sobre la diferenciacion de una funcién
compuesta. (Dése un ejemplo). O = :

3°. Férmula de incremento finito. Supongamos que O es un
conjunto abjerto de X y que el segmento [x,, x] estd contenide
integramente en O. Sea, ademés, F una aplicacién de X en Y,
definida sobre O, que tiene derivada débil F, en cada punto
del segmento [x,, x]. Poniendo Ax=x—x, y tomando una fun
cional arbitraria ¢ €Y*, consideremos la funcién numérica %

f@)=9(F, (x,+1tAx),

definida para 0<C ¢ <C 1. Esta funcién es diferenciable respecto a £.
Efectivamente, en la expresién :

fQEA)—f () F (g4t Ax+Af Ax)—F (r,+1 Ax)
—ar ¥ A ‘

se puede P,ésar ‘al limite bajo el . signo de la furi(:ional, lineal
continua ¢. Tendremos, entonces, , )
' @) =@ (F¢(x,+t Ax) (Ax).

Aplicando en el segmento [0, 1] a la funcion f la férmula
de incremento finito, encontraremos

-~ f)—f©)=F (6), donde 0O < ‘l‘,
P (F () —F (x) = 9 (Fi (%, + 0A%) (Ax). @)

Esta relacién tiene lugar para Cualquier funcional ¢ €Y* (el va-
lor 6 depende, claro esta, de ¢). De (7) obtenemos

|0 (F@—F () <llol sup [ Fitra+080) |- Ax]. @)
Escojamos ahora una funcional no nula ¢ de manera que
¢ FW—F ) =llol-I|Fx)—F (x)

(tal funciorial ¢ existe en virtud del teorema de Hahn— Banach).
Entonces, obtenemos de (8)

IF—F ()| < sup || Fole+0An) | Ax]| (Ax=x—x,). O)
061 . B

es decir,

Esta desigual dad puede ser considerada como un analogo del teow '
rema del valor medio para las funciones numéricas
Aplicando la desigualdad (9) a la aplicacién

x — F (x)—F (x,) (Ax),
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obtendremos la desigualdad siguiente:

IF () —F (xa)— Fi (xa) (A9} | <
<, sup 11 Fi (ro+0AD)—Fi(xo) |- Ax[l. (10)

4°, Relacion entre las diferenciabilidades débil y fuerte. Las
diferenciabilidades débil y fuerte constituyen conceptos diferentes
incluso en el caso de espacios de dimensién finita. Efectivamente,
es bien conocido del Analisis que para una funcién numérica

Fx)=Ff(xy, -ty x?,)

la existencia de la derivada
L+t

para cualquier h=(h,, ..., h,) fijo no implica afin, en el caso
de n>2, la diferenciabilidad de esta funcién, es decir, la posi-
bilidad de representar su incremento f(x -+ h)—f (x) como la suma
de una parte lineal (respecto a k) y un miembro infinitésimo de
orden superior al primero respecto a |A]. o ;
~ Como ejemplo elemental, puede servir aqui la funcién de dos
variables

_Aix, 2 s .0
x“+x’+”—'x{+x§ , cuando x2-+x240, an
0, cuando x,=x,=0.

| f (%4, x:)={

Esta funciéon es continua en todo el plano, incluido el punto
(0, 0). Tiene diferencial débil en el punto (0, 0), ya que

OO _ i [ by \ _,
:h.'.no ¢ th-?:) (h‘+h“+-ﬂh{+tﬂh;)- bty

Sin embargo, esta diferencial no constituye la parte lineal prin-
:fipal del incremento de la funcién (11) en el punto (0, 0). En
ecto, sea :

0 (0, B)=FO-+h)—F(O)—(h, +hy) =1l
, o o g . hiths
Entonces, tomando h,=h$, tendremos SREE
lim 2@ A8 _ jin L ‘z-é-#o- '

nap-o NEI a0 208) RE A2

Al mismo tiempo,si una aplicacién F es diferenciable en el senti-
do fuerte, es diferenciable también débilmente y, ademas, las dife-
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renciales fuerte y débil coinciden. Efectivamente, para una
aplicacién fuertemente diferenciable, tenemos

F (x+thy—F (x)=F' (x) (th)+ 0 (th) = IF’ (x) (h) +o (¢h)

F (x4 th)—F (x)
¢ _

y , ,

=F )0+ P F (9 4.
Busquemos las condiciones en las cuales la diferenciabilidad

débil de una aplicacién F implica su diferenciabilidad fuerte.

TEOREMA 1. Si la derivada débil F,(x) de la aplicacién F existe
en una vecindad U (x,) del punto x, y representa en esta vecindad
una funcién continua (operadora) de x, la derivada fuerte
F' (x,) existe en el punto x, y coincide con la débil. b

DEMOSTRACION. Por hipétesis, la aplicacién F tiene derivada
débil, esto es, DF (x,, h)=F,(x,)h. Escojamos % de manera que
%o+h €U (x,) y consideremos la expresién
0 (%0 B)=F (o +h)—F (xo)—Fi(x;) h. (12)
Si e es ahora un elemento arbitrario del espacio y* dual a Y{,
obtenemos de (12) o o
(@ (xo, h), €)=(F (xy+h)—F (x,), e)—(Fe(xo) by e). (13)
Consideremos la funcién f(f)=(F (x,+th), €) de argumento nu--
mérico ¢. Esta funcién es diferenciable respecto a ¢ y para ella
df __ 1 (F(xe-+th+ Ath)—F (xo+th)
-‘;‘._All?o( * At * ’ e)

=(F.(xo+th)h, ¢).

Por eso, aplicando a f la férmula de incremento finito, podeméé
escribir la igualdad (13) en la forma
(@ (%o, h), €)= ([F; (xo+Tth)—F(x,)] 4, ¢), (13)

donde 0<<t<Cl. Para un A fijo, el elemento e€Y* se puede
escoger de manera que |lefl=1 y que se cumpla la desigualdad

| @0, B)e] = 5 110 (%0y B)I-llell =4 1o (£0y A
De aqui y de la igualdad (13’) encontramos que
llo (koy AN << 211 F (x4 + th)— F (x,)1] - 1]

Pero Fi(x) es, por hipétesis, una funcién operadora continua
de x; por eso,

}liT J Fe(xo+th)—F; (x,)|| =0,
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de manera que ||o(x,, A)|| es una infinitésima de orden superior
al primero respecto a |||, es decir, F.(x,)h constituye la parte
principal de la diferencia F(x,+h)—F (x,). Con esto queda
demostrado tanto la existencia de la derivada fuerte F’ (x,) como
su coincidencia con la derivada débil. En lo sucesivo conside-
raremos, siempre que no se diga lo contrario, aplicaciones dife-
r(len:i:i‘at\)t?}es en el sentido fuerte y, por consiguiente, también en
el débil.

5° Funcionales diferenciables. Hemos introducido el concepto
de diferencial de una aplicacion F que actiia de un espacio normado X
"en otro espacio normado Y. La derivada F’ (x) de esta aplicacién
representa para cada x un operador lineal de X en Y, esto es,
un elemento del espacio .Z (X, Y). En particular, si Y es la
recta numérica, F es una funcion sobre X que toma valores
numéricos, es decir, una funcional. En este caso, la derivada de
la funcional F en el punto x, es una funcional lineal (que de-
pende de x,), es decir, un elemento del espacio X*.

Ejemplo. Consideremos en el espacio de Hilbert real H la
funcional F(x)=||x||*. Entonces,

llx -+ Al —lIxlI* =2 (x, h)+ |IAl*%;

la expresién 2 (x, y) constituye la parte lineal principal de esta
expresion y, por consiguiente ¥,

F' (x)=F;(x)=2x.

EJERCICIO. Calctilese la derivada de la funcional || x||. (Respuesta: ﬁ

para x # 0; para x=0 no existe .

6°. Funciones abstractas. Supongamos ahora que el espacio de
argumentos X coincide con la recta numérica. La aplicacion F(x)
que pone en correspondencia al nimero x un elemento de un
espacio de Banach Y se llama funcion abstracta. La derivada de
una funcién abstracta F’(x) (si es que existe) representa (para
cada x) un elemento del espacio Y. Para una funcién abstracta
(que representa una funcién de un argumento numeérico) la dife-
renciabilidad débil coincide con la fuerte. -

7°. Integral. Sea F una funcién abstracta de argumento real
t con valores en un espacio de Banach Y. Si F estd definida
sobre un segmento [a, b], se puede definir la integral de la

-~ 1. Baséndonos en el teorema sobre la expresién general de una funcio-
nal lineal continua en un espacio de Hilbert, identificamos aquf las funcio-
nales de H* con los elementos correspondientes de H.
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funcibn F en el segmento [a, b]. Esta integral se comprende
como el limite de las sumas integrales : : :

“ ne1 ; I
o ’ (k;oF (Be) Crsr—120)
correspondientes a las particiones A |
a=t°<t1 <. .‘.'<ta=b, Eke[tk' tk‘l-l]

cuando max|#,,;—%,|—0. Esta integral (que repr&senté;_ ,;ewii;
dentemente, un elemento de Y) se denota mediante el simbolo

T
| SF'(t)V’dt.

Razonamientos, analogos a los empleados para funciones que
toman valores numéricos, demuestran que la integral de una
funcién continua sobre un segmento existe; ademas, ella: tiene
propiedades anélogas a las propiedades de la integral corriente
de Riemann. Sefialemos entre estas propiedades las siguientes.

1. Si U es una aplicacién lineal continua fija del espacio ¥
en un espacio Z, se tiene

Suryat=uSrma.
- a a '
2. Si F(t) es de la forma f(t)y, donde f es una funcién
numérica e y, un elemento fijo de Y, se tiene ~ :
‘ b b
SFeyat=y, S Fyar.
‘a a :
3. ‘ " § Ff(t)dt“'gs I F @) “dt;
_ a : o o'a E
Sean X e Y de nuevo espacios normados y sea BC (X, Y) el

espacio lineal de todas. las aplicaciones continuas acotadas?® de
X en Y. En el espacio BC (X, Y) se puede introducir una topo-

logia tomando por vecindades del cero los conjuntos
Un, e={F: sup |[F(x)ll<e}.
A , : Nxli<n :
Esta topologia coincide en el subespacio Z(X, Y)< BC(X, Y)

. .V Una aplicacién F: X —s Y se llama acotada, cuando para todo con-
Junto acotado Q < X el conjunto F(Q) es -acotado en- Y. ‘Una aplicacién
continua no lineal no es necesariamente acotada. :
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de todas las aplicaciones lineales continuas de X en Y con la
topologia corriente de .Z (X, Y) definida por la norma de opera-
dor. Sea J = [x,, x,+ Ax] un segmento rectilineo de X. Supon-
gamos dada una aplicacion continua de este segmento en el
espacio BC (X, Y), es decir, supongamos que a cada punto x€j
se ha asignado una aplicacion F(x)€BC(X, Y) que depende
continuamente del parametro vectorial x € J. Entonces, se puede
definir la integral de F(x) en el segmento J, tomando
Xo+A
{ F(x)dx:-—-gF'(x,,-{-tAx)Axdt 19

Xo

(aqui F(x,+tAx)Ax es para cada f€[0, 1] un elemento del
espacio Y, precisamente la imagen del elemento Ax€ X mediante
la aphcacxon F (xy+tAx). Estd claro que la integral que figura
en el miembro derecho de la forrnula (14) existe y representa un
elemento del espacio Y.
Apliquemos estas ideas al problema de reconstruccién de una
aphcaclon a partir de su derivada.
Consideremos una aplicacion F que actia de XenY y que
hene en el segmento [x, x,+ Ax] derivada Af‘uerte aontmua
Xo+
F’ (x) € Z (X, Y). Entonces, existe la integral S F’ (x)dx. De-
"mostremos que tiene lugar la igualdad *
Xot+Ax .
{ Frax= F(xo-i-Ax)——F(xo) | (15)
Xo
que generaliza la férmula de Newton-Leibniz. En efecto, por
definicion,
Xo+Ax ‘ -1

§ Flyde=lim Z F' (ot 1 BA)AD) (brra— )=

X A~ 0 z=0
= lim " "3 F () (Axy),
donde X,, Xo + t,,Ax, Ax,,-— (tki-l—tk) Ax y A= max (tk’i'l—tk)

Pero, al mismo tlempo, para cualquler particxén del segmento
0<<i<<] tenemos ‘

Flsut A)—F (r)= "3 [F (ot bV —F (1, 9] =
=% (Fe—F el

18—3427
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De la férmula (10) de incrementos finitos, encontramos

| B ) —F = G am | <
<1 8215, (s —Tsup I F (5a-+ 083)—F' G, (16)

Como la derivada F’ es continua y, por consiguiente, también
uniformemente continua sobre el segmento [x,, x,+ Ax], el
-miembro derecho de la desigualdad (16) tiende a cero, cuando
disminuyen indefinidamente las longitudes de los elementos de la
particion del segmento [x,, x,+ Ax], y de aqui se sigue la
igualdad (15). .

8°. Derivadas de o6rdenes superiores. Sea F una aplicacién
diferenciable que actia de X en Y. Su derivada F’(x) es, para
cada x€ X, un elemento de .Z (X, Y), es decir, F’ es una apli-
cacion del espacio X en el espacio de operadores lineales .2 (X, Y).
Si esta aplicacién es diferenciable, la derivada correspondiente
a ella se llama segunda derivada de la aplicacién F y se denota
medijante el simbolo F’. De manera que F”(x) es un elemento
del espacio (X, Z (X, Y)) de operadores lineales que actiian
de X en Z (X, Y). Probemos que los elementos de este espacio
admiten una interpretacién mis cémoda y mis clara a partir de
las asi llamadas aplicaciones bilineales.

Decimos que se tiene una aplicacion bilineal B del espacio X
en el espacio Y, cuando a cada par ordenado de elementos x, x*
de X corresponde un elemento y=B(x, x’)€Y de manera que
se cumplen las siguientes condiciones:

1) para cualesquiera x,, x,, x;, x; de X y cualesquiera niime-
ros a, P se verifican las iguafdades: : '

B (0x, +Px,, x')=aB(x,, x')+ BB (x,, %),
B(x, ax;+pxy)=aB(x, x;)+PpB(x, x3);
2) existe un nfimero positivo M tal que
WB(x, XYMl xll-11 2|} a7

para todos los x, x' € X.

En otras palabras, la primera de estas condiciones significa
que la aplicacion B es lineal respecto a cada uno de sus dos
argumentos; no es dificil comprobar que la segunda condicién
equivale a la continuidad de B respecto al conjunto de argumentos.
El menor de los niimeros M que satisface la condicién (17) se
llama norma de la aplicacién bilineal B y se denota con || B||.
De una manera evidente se definen las operaciones lineales para

aplicaciones bilineales que tienen las propiedades habituales.
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De esta forma, las aplicaciones bilineales del espacio X en el

espacio Y constituyen un espacio lineal normado que denotaremos
“con B(X%,Y). -

A cada elemento A del espacio Z(X, Z(X, Y)) se puede

poner en correspondencia un elemento de B(X?, Y), tomando

B(x, x)=(Ax)x'. (18)

Es obvio que esta correspondencia es lineal. Probemos que es,
ademds, isométrica y transforma el espacio Z (X, Z(X, Y)) en
:odo el espacio B(X? Y). En efecto, si y=B(x, x')=(Ax)x’,
enemos

Iyl <N Ax|-Na T <NAT-Hxl-1 21,

NBI<IA. (19)

Por otro lado, dada una aplicacién bilineal B, la aplicacion
x'— (Ax)x’ =B(x, x') es, para un x€ X fijo, una aplicacién
lineal del espacio X en Y.

Por consiguiente, a cada x€ X se pone en correspondencia
un elemento Ax del espacio .Z (X, Y); es obvio que Ax depende
linealmente de x, es decir, que la aplicacion bilineal B define
un elemento A del espacio .Z (X, .Z (X, Y)). Ademas, esté claro

ue la aplicacién B se reconstruye a partir de A mediante la
férmula (18) y que

[l Ax||= sup [[(Ax)x"||= sup || B(x, x)I<UBI-lixl,
iR I< 1 N1
de donde

de donde

HAl<IBI. (20)

Comparando (19) y (20), obtenemos || A||=|| B|l. De modo que
la correspondencia entre B(X?, Y) y. 2 (X, Z (X, Y)) definida
gor la igualdad (18) es lineal e isométrica vy, g(or consiguiente,

junivoca. Ademds, la imagen del espacio .Z (X, Z (X, Y)) es
todo el espacio B (X3, Y).

Hemos visto que la segunda derivada F”(x) es un elemento
del espacio .Z (X, Z (X, Y)). De acuerdo con lo expuesto podemos
considerar que F”(x) es un elemento del espacio B (X3, Y).
~ Veamos algunos ejemplos. Sean X e Y espacios euclideos de
dimensién finita, m y n respectivamente. Entonces, toda aplica-
cién lineal de X en Y se puede definir mediante una (mXxn)=
= matriz. De manera que la derivada F’(x) de la aplicacion F,
que actiia de X en Y, es una matriz (dependiente de x€ X). Si
en X e Y se escogen unas bases, digamos,

ey .rgen Xyf, ...,f,en?,
18*
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X=X18 - Xglyt oot KBy
- y=yfi+ bl . S
y en este caso e ~

T VAN
] ;axl Oxl v .( Bxl |
F’ (x) == e s e s 2 e o e o .
W% s
0%, 08y * " OXp S :
La segunda derivada F”(x) se determina por un conjunto de

mxmxn valores afj= ‘%gi;. Este conjunto de valores af; puede
ser considerado o bien como una aplicacién lineal del espacio X
en el espacio 7 (X, Y) definida por

b= 3 aiyv,

o bien como una aplicacién bilineal del espacio X en Y definida
mediante la férmula : '

. N . m ; )
; C?F(?_,afixixf'

~ De una manera aniloga se puede introducir €l concepto de
tercera, cuarta y, en general, n-ésima derivada de la aplicacion F,
que actla de X en Y, definiendo la n-ésima derivada como la
derivada de la derivada de orden (n—1). Es obvio que la n-ésima
derivada constituye un elemento del espacio .Z(X, X, ...,
Z (X, Y))). Repitiendo los razonamientos, empleados para Ia
segunda derivada, se puede asignar de un modo natural a cada
elemento de este espacio un elemento del espacio N (X*, Y) de
las aplicaciones n-lineales de X en Y. Por una aplicacién n-lineal
se entiende aqui una correspondencia y =N (x’, 1", ..., x*) entre
los sistemas ordenados (x’, x”, ..., ) de elementos de X y los
elementos del espacio Y que es lineal respecto a cada x/, cuando
son fijos los elementos X/, ..., x¥~0, xt+n, - ym vy que
verifica para un M > 0 determinado la condicién ‘
ING, 20 ooy )| S MU 2] e o)

Por consiguiente, la n-ésima derivada de la aplicacién F se puede
considerar como un elemento del espacio N(X*, ¥).

9°. Diferenciales de orden superior. Hemos definido la diferen-
cial (fuerte) de una aplicacién F como el resultado de aplicar al
elemento A€ X el operador lineal F’(x): dF =F’ (x)(h). La dife-
rencial de segundo orden se define como d*F=F"(x)(h, h), es
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decir, como una expresién cuadrética correspondiente a la aplica-
cién F"(x)€B(X?, Y). De un modo anélogo, la diferencial de
orden n se define mediante d*F=F"(x)(h, h, ..., h), esto es,
como aquel elemento del espacio Y en el cual se transforma por
la ap)l(icac;?n F" (x) el elemento (B, A, ..., HEXXXX...
oo XX = X",

10°. Formula de Taylor. La diferenciabilidad fuerte de la
aplicacion F significa que la diferencia F(x+4-h)—F (x) se puede
representar como la suma de un miembro lineal y un sumando
de orden -superior al primero respecto a || k|. Este resultado se
generaliza en una férmula analoga a la formula de Taylor para
las funciones numéricas, conocida del Anélisis.

TEOREMA 2. Sea F una aplicacion que actia de X en Y, que estd
definida en una region Oc X y tal que F'™ (x) existe y representa
una funcién uniformemente continua de x en O. Entonces, tiene
lugar la igualdad '

F(x+h)—F (x)=F (x) (%) y+§‘l-p"f(x)y(h, M+
it FO @, . o B @D

donde ||o (x, B)||=0(|A]").

~ La DEMosTRACION se realiza por induccién. Para n=1 la
igualdad (21) es trivial Supongamos que ella es vélida para
n—1 cualquiera que sea la aplicacion que satisface las condiciones
del teorema. Entonces, para la aplicacién F’ tenemos

F (x+h)=F )+ F () W)+ F () (b W)+
+o G PO @ b Do B, (22)

donde || o, (x, k) || =0 (| k||*"*). Integrando en el segmento [x, x+A]
ambos miembros de la igualdad (22) y empleando la férmula
(15) de Newton— Leibniz, encontraremos

1 1

Fx+h)—F@="{ F(x+thyhdt= {F’ (0)+ tF" (1) (W) +
(1] . 0 :

4o BF () W)+

ot G TFO W B .y WY RAER,, (23)

1
donde R,={w,(x, thyhdt.
3o
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De (23) obtenemos ‘
Ft4+h)—F @) =F () )+ F* () (b, W)+ ...

oot FO (), ..., B)+R,
siendo

| R S oy (x, th) |- K|t =0 () B 1").

Con esto nuestra proposicién queda demostrada. o
La férmula (21) se llama férmula de Taylor para aplicaciones.

§ 2. PROBLEMAS EXTREMALES

Una de las secciones mas antiguas y més elaboradas del Ani-
lisis Funcional no lineal es la biisqueda de extremos de funcionales,
El estudio de estos problemas constituye el contenido del asi
llamado Célculo de variaciones. Los métodos que se utilizan en
el Céleulo de variaciones estin sujetos, en su mayor parte a la
forma especial de aquellas funcionales cuyos valores extremales se
buscan. Sin embargo, se puede enunciar algunos resultados y
métodos generales para funcionales més o menos arbitrarios. Sin'
plantearnos la tarea de dar una exposicién un tanto detallada de
los métodos variacionales, nos limitaremos a dar un examen breve
de aquellos elementos de la teoria general de problemas para

funcionales que constituyen el fundamento del Calculo de varia-
ciones. ; ' ;

1°. Condicién necesaria de extremo. Sea F una funcic?nal que
toma valores reales, definida en un espacio de Banach X.' Se dice
.que la funcional F alcanza un minimo en el punto x,, cuando
para todos losx, suficientemente préximos a x, y tales que F(x)
estd definido, se cumple la desigualdad F (x)—F (x,)=0. De
. manera analoga se define un maximo de una funcional. Si en un
punto dado x, la funcional F alcanza minimo o maximo, diremos
‘que la funcional tiene en este punto extremo.
Diferentes problemas mecénicos y fisicos pueden ser reducidos
a la bisqueda del extremo de unas u otras funcionales.
Para las funciones de n variables es bien conocida 1a siguiente
condicién necesaria de extremo: si la funcién [ es diferenciable

en el punto x,=(x?, %3, ..., x9) y tiene extremo en este punto,
en este punto df =0 6, lo que es equivalente,
| o o _ o,
Oxy — Oxg T Ox, — °

- Esta condicién se extiende ficilmente a las funcionales.
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TEOREMA 1. Para que una funcional diferenciable F alcance extremo
en el punto x, es necesario que su diferencial en este punto sea
igual a cero para todo h:

F'’ (x,) (h)==0.
Dsmosrnacxo&. Por definicion de la diferenciabilidad, tenemos
F(x,+h)—F (x) =F' (x) () +o(| & )- 1)

Si F’(x,)(h) 70 para algin h, entonces, para valores reales sufi-
cientemente pequefios de A, el signo de toda la expresion F "(x)(MR)+
+o(||h]) coincidecon el signo de su término principal F’ (x,) (Ah).
Pero F'(x,) es una funcional lineal y por eso F’(x,)(M)=
=AF’(x,) (;l). De manera que siendo F’ (x,) (h) 5= 0, la expresion (1)
puede tomar, para h arbitrariamente pequefios, tanto valores
positivos, como negativos, es decir, no puede haber extremo en el
punto x,.

Veamos algunos ejemplos.

1. Sea

b

F={f¢ x@at, @)

a

donde f es una funcién continuamente diferenciable. Esta funcional,
considerada en el espacio Cyq, 5 de funciones continuas, es diferen-

ciable. En efecto,
F(x4+h)—F((x)=
b b

= 1Ft, x+m—fu, )di= fo=(t, DR E+o(lRI),

de donde .
dF = fo(t, x@)h(t)dt.

La igualdad a cero de esta funcional lineal para todos los A € Ca, o}
significa que f;(f, x)=0. Efectivamente, para todo x(¢) €Cra, 1)
la derivada f,(f, x) es una funcién continua de ¢. Si ella es
diferente de cero en algin punto f, digamos, fi(¢, x(¢,))>0,
esta igualdad tendra lugar también en una vecindad (a, B) del
punto £,. Entonces, tomando

B (t—a) (B—1) para a <<t <P,
=10 para los demaés ¢,
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obtendremos que

§re ma@at>o.

a
La contradiccién obtenida demuestra nuestra proposiciéon. La
ecuacién fi(¢, x)=0 determina, en general, una curva en la cual

la funcional (2) puede alcanzar un extremo.
2. Consideremos en el mismo espacio ‘Cpq, 53 ta funcional

By .
Fw={ K@, WxE) xG)dE @

donde K (§;, &,) es una funcién continua que satisface la condicién:

K &y 8)=K(E, &). Es facil calcular que la diferencial de esta’
funcional es igual a ,

dF =2

‘ N

§K G B2 B A G 2, dE,.

Si esta expresién es igual a cero para todo h€Ca, s, tenemos,
por los mismos razonamientos que en el ejemplo I,

SK(&;, gz)x(gl)dg1=0 para todo gv a<§z<b

Una de las soluciones de esta ecuacién es la funcién x=0. La

respuesta a la pregunta de si existe extremo en este punto y si

existen otros puntos en los que es posible un extremo, depende de

la forma de la funcién K (&, &,) y exige un estudio complemen~

tario. h
3. Consideremos la funcional

b ) !
Fy= [, x@t), » tndt, @

definida en el espacio Cls, 5y de funciones continuamente dxferen-
ciables sobre el segmento [a, b]. Aqui x’ (t)"-‘_=%(7‘;’, y (¢, x, ).
es una funcién dos veces diferenciable de sus argumentos. La
funcional (4) desempefia un papel principal en varias cuestiones
del Céleulo de variaciones. Busquemos su diferencial. Utilizando
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la formula de Taylor, encontramos

b
Fx+h—F@="{ [f(t, x+h, ¥ +H)—F(, x, &)]di=
b

= (Fh + foh')dt +o (A1),

donde |[A]| es la norma de la funcién k como elemento del espacio

Cla, 5. Por consiguiente, la condicién necesaria de extremo de la
funcional (4) es : ‘ :

b e ‘
dF =\ (ih+Fukydt=0. (5)
En su forma integral esta condicién es poco datil para buscar la

funcién x en la que se alcanza el extremo. Démosle una forma mas
cémoda, integrando por partes en (5) el término f,.A'. Tendremos

b b b
§fokdt=foh| — (12 frat.
De manera que ’ e
e, | L |
dF = (o= =5 12 ) hdt + [k | =0. ©)

Esta igualdad debe verificarse para todo’ h, en particular, tam-
bién cuando h(a)=h(b)=0. Por consiguiente,

b

g(f;—g;fi')thdmo

para todos los A tales que h(:a)=h(b)y=0, de donde, con razona-
mientos anélogos a los empleados en el ejemplo 1, encontramos

=S =0 Y
Por eso, la igualdad (6) se reduce a
fehla=0. ®

Si la funcional (4) se considera para todas las funciones x conti-
nuamente diferenciables definidas sobre [a, 8], podemos escoger
de modo que A(a)=0, h(b)540 y entonces obtenemos de la
igualdad (8) A -
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o le=p=0; 9)
por otro lado, tomando A (b)=0, h(a)=* 0, obtenemos ,
fr |t=a=0. (10)

Por consiguiente, de la condicién (6) de igualdad a cero de la
diferencial de la funcional (4) hemos obtenido que la funcién «x,
que ofrece extremo a la funcional (4) debe verificar la ecuacién
diferencial (7) y las condiciones de contorno (9) y (10) en los
extremos del segmento [a, b]. Como la solucién general de una
ecuacién diferencial de segundo orden contiene dos constantes
arbitrarias, tenemos a nuestra disposicién un niimero de condicio-
nestde contorno necesario. precisamente para encontrar estas cons-
tantes.

2°. Segunda diferencial. Condiciones suficientes de extremo de
una funcional. Volvamos de nuevo al problema sobre la biisqueda
del extremo de una funcién de n variables. Supongamos que para
la funcién f(x,, ..., x,) se cumple en el punto (x?, ..., x2) la
condicién df =0. Entonces, como se sabe, para resolver el proble-
ma de si hay o no hay efectivamente en este punto un extremo,
debe considerarse la segunda diferencial. Tienen lugar las siguien-
tes proposiciones. -

1. Si una funcioén f (x,, .. ..x,,() tiene en un punto (x3, ..., x3)
minimo, en ese punto d*f >0. (Analogamente, si en un punto
(x3, ..., x3) hay maximo, en ese punto d*f <<0).

2. Si en un punto (x4, ..., x3) se cumplen las condiciones

df=0 y d2f=lk2 ax"axkdx‘idxk>0
» k=1

(cuando no todo dx;=0), la funcibn f(x) tiene en ese punto mi-
nimo (analoganiente, maximo, si d*f < 0).

Veamos en qué medida subsisten estos resultades para funcio-
nales definidas en un espacio de Banach. '

TEOREMA 2. Sea F una funcional real, definida en un espacio de
Banach X, con segunda derivada continua en una vecindad del
punto x,. Si esta funcional alcanza un minimo en el punto x,,
entonces, d*F (x,) >0V,

DEMOSTRACION. Empleando la férmula de Taylor, tenemos
F(x,+h)—F (x)=F' (x,) (h)_+%F" (xo) (B, B) o (I8 ]1%).

b Esta desigualdad significa que F* (x,) (k, ) =0 para todo k.
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Si la funcional F tiene minimo en el punto x,, entonces, F’ (x,)=0
y queda la igualdad

F(to+h)—F (t) =5 F"(x) (0, B)+o([R]D). (1)

Si para ‘élgﬁn h admisible tiene lugar la desigualdad
Fre) (b B)<O (12)

veremos, teniendo en cuenta que F”(x,)(eh, eh)=e?F" (x,)(h, h),
que ‘existen elementos # de norma tan pequefia como se quiera
para los cuales también se cumple (12). Pero, el signo de toda
la expresién (11) depende, para ||&|| suficientemente pequefio, del

signo de su término principal —;F (xo)(h, h) y obtenemos que

F (o +0)—F (t) =+ F" (x) (b, B)+o(|A]|% <O,

es decir, que no hay minimo en el punto x,. Analogamente se
considera el caso de maximo.

El teorema demostrado es una generalizacién directa del teo-
rema correspondiente para las funciones de un nimero finito de
variables. La situacién es distinta en el caso de la condicién
suficiente. La condicién mencionada mas arriba d F”" (x,) (h, h) > 0,
que es suficiente para el minimo en el caso de funciones de n
variables, no resulta suficiente para funcionales definidas en un
espacio de Banach de dimension infinita. Veamos un ejemplo
sencillo. Consideremos en el espacio de Hilbert la funcional

- ] 2 o
F=X w— 2 5
n=1 n=]1

En el punto 0, la primera diferencial de esta funcional es igual
@® h”l

a 0 y la segunda es igual a 2 75, es decir, representa una
n=1

funcional definida positiva. Sin embargo, en el punto 0 no hay

minimo, ya que .

F(0)=0y F(o,‘ 0 0,10, ..'.)=-,:T—L.<o.
Por consiguiente, en cualquier vecindad del punto O existen pun-
tos en los cuales F (x) < F(0). - : .
Introduzcamos el siguiente concepto. Una funcional cuadra-
tica B se llama fuertemente positiva, cuando existe un nimero
c¢>0 tal que B(x, x) >c| x]|? para todo x.
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TEOREMA 3. Si una funcional F, definida en un espacio de Banach
X, verifica las condiciones Ce :
1) F (x)=0, o - '
2) F"(x,) es una funcional cuadrdtica fuertemente positiva, F

tiene minimo en el punto x,.

DEMOSTRACION. Escojamos & >0 ‘tan pequefio que para Bl <e
la_magnitud o(||4||?) en la igualdad (11) verifique -la condicién

lo(lallM] < k] Entoncesf" f

F(xa+h)—F (x) =5 F" (x) (b, B)+0 ([ R][*) > <-[|A][* >0

para ||kl <e.

En un espacio de dimensién finita la positividad fuerte de
una forma cuadratica equivale a que sea definida positiva y por
eso (siendo igual a cero la primera diferencial) es una condicién
suficiente de minimo de una funcién de un nimero finito de
variables el que la segunda diferencial sea definida positiva. - En
el caso de dimension infinita (como muestra el ‘ejemplo dado.
mas arriba), la positividad fuerte es una condicién mis fuerte
que la de definida positiva. =~ SR :

La condicién de positividad fuerte de la segurida diferencial
que garantiza la existencia de minimo es cémoda rque se' puede
aplicar a cualquier funcional (independientemente de su forma
concreta) dos veces diferenciable en cualquier espacio de Banach:
Al mismo tiempo, esta condicién resulta demasiado tosca y difi-
cilmente comprobable en casos practicos importantes. En el Cal-
culo de variaciones se establecen unas condiciones suficientes de
extremo mas finas (que emplean la forma concreta de las funcio-
nales que se consideran en los problemas variacionales); sin em-
bargo, la exposicién de estos temas no entra en la tarea de
nuestro libro. R S

§ 3. METODO DE NEWTON

Uno de los métodos bien conocidos de resolucién de ecuacio-
nes de tipo '

=0 ()

(f es una funcién numeérica de argumento numérico, definida en
un segmento [a, b]) es el asi llamado método de Newton o mé-
todo de tangentes. Consiste en que para resolver la ecuacién (1)
se buscan las aproximaciones sucesivas de acuerdo con la férmula.
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recurrente

Xny1 =Xp— ff'((’;’:‘)) (2)
(por aproximacién nula x, se toma aqui un punto arbitrario del
segmento donde estd definida f). La interpretacion geométrica de
este método viene dada en la fig. 19. Se puede demostrar que
si x* es la Unica raiz de la ecuacién (1) en el segmento [a, b]
y si la funcion f tiene en este segmento la primera derivada di-
ferente de cero y la segunda derivada acotada, existe una vecin-

FIG. 19

dad de la raiz x* tal que si el punto x, se toma en esta vecin-
dad, la sucesién (2) converge hacia x*.

El método de Newton se puede extender a las ecuaciones en
operadores. Expondremos aqui este método para el caso de ecua-
ciones en operadores en espacios de Banach.

Consideremos la ecuacion

F ()= 0, 3)

donde F es una aplicacién de un espacio de Banach X en otro
espacio de Banach Y. Supongamos que la aplicacién F es fuer-
temente diferenciable en una bola B(x,, r) de radio r (cuyo
centro x, tomaremos como la aproximacion nula de la solucion
que buscamos) y que su derivada F’ satisface en esta bola la
condicién de Lipschitz, es decir,

|F* () —F (x) | < Ll xy—x,]| (L= const). @

Sustituyendo, al igual que en el caso unidimensional, la expre-
sibn F(x,)—F (x) por su parte lineal principal, esto es, por el
elemento F’(x,)(x,—x), obtendremos de (3) una ecuacién lineal
F' (x,) (xo—x)=F (x,), cuya solucién x,-——-x,—{F' (x)]"2F (x,) es
natural tomar por la siguiente aproximacién de la solucién x de la
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ecuacién F(x)=0 (aqui se presupone, claro esta, la existencia
del operador [F’(x,)]~*). Repitiendo estos razonamientos, obten-
dremos una sucesién o : o,
: xn+1=xu—"[F’ (xn)]-l (F (xn)) 5 (5)
de soluciones aproximadas de la ecuacién (3). En el caso de
dimensién infinita, la biisqueda del operador inverso [F’ (x,)]*
puede resultar una tarea suficientemente compleja. Por eso, con-
viene, a veces, emplear aqui el asi llamado método modificado.
de Newton. La modificacion consiste en que, en lugar de la
sucesién (5), se considera la sucesion definida por la férmula

Xprr=Xp—[F' (£o)]"* (F (%) ©)
es decir, en cada paso el operador inverso [F’(x,)]~! se toma
para un mismo valor del argumento x=x,. Aunque esta modifi-
cacion reduce la velocidad de convergencia, resulta con frecuen-
cia conveniente desde el punto de vista de cilculo. Pasemos
ahora al enunciado y a la demostracion de la proposicion exacta.
TEOREMA 1. Sean M=||[F' (x)]~*Il, k=I[F’ (x,)] *F (x,)| y sea

L la constante que figura en la desigualdad (4). Entonces, si
h= MEKL < % y ¢, es la menor de las raices de la ecuacion

ht*—t - 1=0, la ecuacién F (x)=0 tiene en la bola || x—x,|| <
<tk una solucién tnica x* y la sucesion {x,} definida por la
formula recurrente (6), converge a esta solucion.

DEMOSTRACION. Consideremos en el espacio X la apl@cién Ax-—:
=x—[F'(x,)]"*F(x). Esta aplicacién transforma la bola
|l x—x,|| <tk en si misma. En efecto,
Ax—xy=x—%xg—[F' (x)]"* F () =
= [F (] HF (x0) (e —x)—F () + F (s} —[F' (1] * F (x0)-
Por; €so, . , oL
| Ax—x, <l [F' (]2l “ F' (%) (x—x) —F (x) + .
oL +F (x) [[+ | [F* (xo)] 71 F (%0) “’
es deeir, :

| Ax—x, | < M| F’ (x0) (=% —F (0 +F () I+ (D)
Consideremos la aplicacién auxiliar
@ (x)=F (x)—F (xo) — F" (%) (x—X,)-

Es diferenciable y su derivada es igual a
@' (x)=F' (x)—F" (x,).
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Si ||x—x, |l <ok, tiene lugar la estimacion
10 () | =11 F’ () —F () | S LIl x—% || < Ltok.
De aqui, segiin el teorema del valor medio, obtenemos
1@ () || =11 D@ (x) — @ (xo) || < Lok || x— X, || < LEK*. ®)
De manera que siendo || x—x, || <f.k, tenemos de (7) y (8)
| Ax—xo || < MLER? + k= k (MLt3k+ 1) =k (ht3 + 1)=kt,,

y esto significa que la aplicacién A transforma labola || x—x, || < ki,
en si misma. Probemos ahora que A es una aplicacién contraida
de esta bola. Para ||x—x,| < k¢, tenemos

A’ (x)y=1—[F' (x)]"* F" (x) = [F’" (xo)]* (F’ (xo) —F" (x)),
de donde ,

A WIS M| F (x)—F ()| < ML|| x—x, || < MLEkt,.

. Pero #, es la menor de las raices de la ecuacion

ht2—t+1=0, es decir,

f 1—V 1—4h
o= 9
Por esto,
A’ (x) || < MLkt =ht,=
: 1—YVT—4r 1—Y1i—4 1 «
=h—g—=—73—=9<%3, O

de donde
1
| Ax,—Ax, || < 5 l| X2 — % |l

es decir, A es una aplicacién contraida. ‘
Por consiguiente, la aplicacién A tiene en la bola || x—x, <<
< kt, un punto fijo x*, y sélo uno. Para este punto

x*=x*—[F' (x,)]-*F (x*), es decir, F(x*)=0.

Al mismo tiempo, Ax,=x,—|[F’ (xo)]-iF (%) = Xp+, ¥, en virtud
del teorema sobre las aplicaciones contraidas, la sucesion {x.}

converge hacia x*.
De la desigualdad (9) se desprende inmediatamente la siguien-

te estimacién para la velocidad de convergencia del método
modificado de Newton:

ot — 2 < p 2 N F ]2 F ()
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es decir, el error del método modificado de Newton disminuye
como los términos de una serie geométrica. Para comparar, indi-
quemos que el método corriente de Newton (en el que las apro-
ximaciones se definen mediante la férmula (5) en lugar de la

formula (6)) converge mas rapidamente que una serie geométrica:
para este método o ‘ T '

=211 < s (2B
Ejemplb. Consideremos la ecuacién integral no lineal
x@={K(@s t, x@ydt, (10)

donde K (.é, t, u) es una funcién continua y continuamente dife-
renciable de sus argumentos. Introduciendo ia aplicacién y= F (»),
definida por la igualdad =~ - PRI '

YO =x(6)—JK(s b x @),

podemos escribir la ecuacién (10) en la forma
F (x)=0.

Sea x, la aproximacién nula para la solucién de esta ecuacién.
Entonces, la primera rectificacién Ax(s)=x,—x, se encuentra de
la ecuacién S o

F’ (x,) Ax=—F (x,). (11

Si la funcién K(s, ¢, u) y el espacio funcional, en el que se
considera la ecuacion (10), son tales que la derivada F’(x) de la
aplicacion F se puede calcular «diferenciando bajo el simbolo de

la integraly, es decir, si .
z2=F'(x,) (x)
significa que '

b
2()=x(6)— § Ki(s, ¢, %, () x () dt,

la ecuacién (11) se representa en la forma

b . .
Ax (5) = [ Ki(s. £, %, () Ax (1) dt + 0, (5), (12)
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donde
b

0o ()= K (s, t, %, (1)) dt—x,(s).

a

Analogamente se buscan las rectificaciones siguientes.

De manera que para buscar cada aproximaci6n siguiente de la
solucién de la ecuacién (10) hay que resolver una ecuaci6n inte-
gral lineal. Cuando se emplea el método modificado de Newton,
resulta que en cada uno de estos pasos hay que resolver una ecua-
cién lineal con el mismo nicleo.

19—3427



- CAPITULO
Vi
MEDIDA,
FUNCIONES MEDIBLES,
- INTEGRAL

El concepto de medida pu(A) de un conjunto A constituye

una generalizacién natural de los siguientes conceptos:
1) de 1a longitud /(A) de un segmento A,

2) del area g(F) de una figura plana F,

3) del volumen V (G) de una figura G del espacio,

4) del incremento @ (b)— (a) de una funcién no decreciente o (f)
en el semisegmento [a, b),

5) de la integral de una funcién no negativa en una region
lineal, plana o del espacio, etc.

Este concepto, surgido inicialmente en la Teoria de funciones
de variable real, encontré6 mas tarde miltiples aplicaciones en la
Teoria de Probabilidades, la Teoria de Sistemas Dinamicos, el
Analisis Funcional y en otras ramas de las Matematicas. '

En el § 1 de este capitulo exponemos la teoria de medida
para el caso de conjuntos planos, partiendo del concepto del 4rea
de un rectingulo. La teoria general de medida es explicada en
los §§ 2 y 3. El lector podra notar que todos los razonamientos
que se realizan en el § 1 tienen un caricter general y se repiten,
sin modificaciones sustanciales, en la teoria abstracta.

§ 1. MEDIDA DE CONJUNTOS PLANOS

1°. Medida de conjuntos elementales. Consideremos el sistema &
de conjuntos del plano (x, y), cada uno de los cuales se determina
por una desigualdad de tipo

a<x<b,
a<lx<),
a x<b,
alx<b
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y por una desigualdad de tipo

ey <d,
c<y<d,
ey <d,
c<y<d,

‘donde a, b, ¢, y d son nimeros arbitrarios. Los conjuntos per-
tenecientes a este sistema se llamaran rectangulos. Un rectangulo
cerrado definido por las desigualdades

a<x<<h ey<d

es un rectangulo en el sentido corriente (con su frontera) cuando
a<byc<d; es un segmento (cuando a=by c<dbéa<by
c=d); es un punto (para a="b y c=d) o, finalmente, el conjunto
‘vacio (cuando a > b 6 ¢ >d). Un recténgulo abierto

a<x<b c<y<d

representa en funcién de la relacién entre a, b, ¢ y d, o bien un
rectangulo sin frontera, o bien el conjunto vacio. Cada rectangulo
de los tipos restantes (que llamaremos rectingulos semiabiertos)
constituye o bien un rectangulo sin uno, dos o tres lados, o bien
un intervalo, o bien un semisegmento o bien, finalmente, un con-
_junto vacio. ' ' ‘

Partiendo del concepto de area, conocido de la Geometria
Elemental, definiremos la medida de cada rectingulo de la
siguiente forma: s - Ch

a) la medida del conjunto vacio es igual a O; e

b) la medida de un rectangulo no vacio (cerrado, abierto o se-
miabierto) determinado por los niimeros a, b, ¢ y d es igual a

(b—a) (d—o). - ,
Luego, hemos asignado a todo rectingulo P un nimero m (P),
la medida de este rectingulo, de manera que se cumplen, eviden-

temente, las siguientes condiciones: -
1) la medida m(P) toma valores reales no negativos;

2) la medida m(P) es aditiva, esto es, si P={JP, Y
P,NP,=@ para i<k, entonces, . b

m(P)= 3 m(Py).

Nuestra tarea es extender la medida m(P), 'definida por ahora
para rectangulos, a una clase méas general de conjuntos, conser-
vando las condiciones 1) y 2). '

19*
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El primer paso en esta direccién consiste en.extender el con-
cepto de medida a los asi llamados conjuntos elementales. Un
conjunto plano se llamara elemental cuando puede ser representado,
al menos de una forma, como la unién de un ntimero finito de
rectangulos disjuntos dos a dos. = -

En lo que sigue necesitaremos el siguiente teorema.

TEOREMA 1. La unién, la_interseccién, la diferencia y la diférencia
[ simétrica de dos conjuntos elementales son también conjuntos

elementales. ‘ o R
DEMOSTRACION. Estd claro que la interseccién de dos recténgulos
~es de nuevo un rectangulo. Por eso, si . - o

A’Upu iy"BavU'le’ X
. ; J
son dos conjuntos elementales, también
AnB=J(Pin Q)
R U A

es un conjunto elemental. . - .. . SR

Es fécil ver que la diferencia de dos recténgulos es un conjunto
elemental. Consecuentemente, - sustrayendo de un rectangulo un
conjunto. elemental, obtenemos de nuevo un ‘conjunto elemental
(como interseccién de conjuntos elementales). Sean ahora 4.y B .
dos conjuntos elementales. Es obvio ‘que existe .un rectingulo P

que contiene a ambos. Entonces, ~ -~ =
AUB=PN\[P\ Hn (P \ B)]
es, de acuerdo con lo sefialado anteriormente, un conjunto ele-
mental. De las igualdades e S

- ‘ ANB=An(P\ B)

y ; : .
| ANB=(AUB)\(4nB) |
se deduce entonces que la diferencia y la diferencia simétrica de
conjuntos elementales son conjuntosielemeritales. El teorema queda

demostrado. wm .
Definamos ahora la medida m’(4) de conjuntos elementales

del siguiente modo: si
- A= U P,,
k
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donde P, son rectingulos disjuntos dos a dos, tomamos

m' (A)= ?m (Py)-

Probemos que m’ (A) no depende de la forma de representar al
conjunto’ A como unién de rectangulos. Sea

A=Ur=U ¢,
* i

donde P, y Q, son tect‘éngulbs y P,NP,=3, Q;N Q= para
i=k. Como la interseccion P,NQ; é‘e dos rectingulos es un
rectingulo, tenemos, en virtud de la aditividad de la medida de

rectangulos; , _. .
;}m(l’k)= kZlm(Puﬂ Q)= ;m(Q;)-

Es facil ver que la medida de conjuntos elementales definida de

esta forma es no negativa y aditiva. ; ,
i1 Establezcamos la siguiente propiedad de la medida de conjun-
tos elementales importante para lo sucesivo. S ‘

TEOREMA 2. Si A es un conjunto elemental y [A,] es un sistema
- finito o numerable de conjuntos elementales tal que
'ACU A,
. n

_enfonces, ‘ ) . ,
- m’ (A) gzm' (A,)- 1)

DEMOSTRACION. Para’ cualqtiier‘ e>0 yun coﬁjuntd A dado es
posible, evidentemente, encontrar un conjunto elemental cerrado A
contenido en A que verifique la condicién

S m@zm A g
, Paré ello es suficiente sustituir cada uno de lds k rectangulos P;-
que componen A’por un rectangulo cerrado contenido en &l de

drea mayor que m(P,)—%), ,
Ademas, para cada A, se puede encontrar un conjunto elemen-
tal abierto A que contiene A y verifica la condicién

m(A)<m' (A)+ g
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Esta claro que R
AclA..
n

De acuerdo con el lema de I'!einr.—BOtel, se puede extraer de {4}
un sistema finito As,, ..., As, que cubre Z. Es obvio que

m@<LIm (A

(de lo contrario A resultarfa cubierto por un namero finito de
rectangulos de un érea total menor que m’(A), lo ¢ual es impo-
sible). Por eso, S ' o

mA<m @+g<Em A +y<Km A)+g<
<Em@A)+ T gt s=2m (A)+e,

dekdonde,, debido a la arbitrariedaid dg &> 0'; se: desprepde (l).t‘l'

2°. Medida de Lebesgue de conjuntos planos. La clase de con-.
juntos elementales no agota todos los conjuntos que se consideran
en la Geometria elemental y en el Analisis clasico. Resulta natu-
ral, por eso, plantear el problema de: la extensién del concepto
de medida, conservando sus propiedades principales, a una clase
de conjuntos més amplia que la compuesta por uniones finitas de
rectingulos de lados paralelos a los ejes de coordenadas. :

Este problema fue resuelto, en cierto sentido de un modo
definitivo, por H. Lebesgue a principos del siglo XX.

Al presentar la teoria de medida de Lebesgue -tendremos que
considerar no sélo uniones finitas sino también uniones infinitas
de recténgulos. - : o i ' o

Para evitar que aparezcan en este caso conjuntos de «nedida -
infinitas, nos limitaremos a considerar en lo sucesivo conjuntos
contenidos integramente enel cuadrado E= {0 <x < 1; 0<<y <1}

_ En la clase de estos conjuntos definiremos como sigue dos
funciones p*(4) y p.(4). : ‘

DEFINICION 1. Se llama medida superior .p.’(A)‘ del conjunto A al

ntimero :
inf P,),
adnf 2m (P

donde la cota inferior se toma respecto a todos los Cubrimientos
del conjunto A por medio de sistemas finitos o numerables de

rectangulos.
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DEFINICION 2. Se llama medida inferior p,(A) del conjunto A al

nitmero
1—p*(E\\ A).
Es fécil ver que siempre
B (A< (A).
En efecto, supongamos que para un conjunto AcE se tiene
. C B(A) >p(4),
es decir, _ :
A+ (ENALL

De acuerdo con la definicién de la cota inferior méaxima, existi-
ran entonces dos sistemas de rectingulos {P;} y {Q;}, que cu-
bren A y E\ A. respectivamente, tales que

| izm(Pi)+§m(Qk)< 1.
Sea {R;} la unién de los sistemas {P;} y {Q,}; tenemos
l .

lo que contradice al teorema 2.

pEFINICION 3. Un conjunto A se llama medible (en el sentido de
Lebesgue) cuandc ;

B (4)=p* (A).

El valor comtn p(A) de las medidas superior e inferior de un
conjunto medible A es su medida de Lebesgue.

3°. Propiedades principitlas de la medida de Lebesgue y de los
conjuntos  medibles. Demostremos primero la siguiente propiedad
de la medida superior.

TEOREMA 3. Si

AcJ 4.

donde {A,} es un sistema finito o numerable de conjuntos, se tiene
p* (A< Y (A,)

pEMOSTRACION. De acuerdo con la definicion de medida superior,
para cada A, existe un sistema de rectangulos {P,}, finito o nu,
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merable, tal que A,c{JPu'y |
k : L

2mP) <P (A) oy
k SRTRNE T S
donde &> 0 es escogido atbitrai'iamente; En este caso
- AcUyUPa
n k
WASIImPHK< T (4,) +e.

Como &>0 es arbitrario, de aqui se deduce la afirmacién del
teorema. R o - : B
Més arriba hemos introducido <ya el concepto de medida para
conjuntos que hemos llamado elementales. El teorema que sigue
muestra que en el caso de conjuntos elementales la_definicién
3 lleva al mismo resultado. o . B

TEOREMA 4. Los conjuntos elementales son medibles y para ellos la
medida ‘de Lebesgue coincide con la medida m’ (A) construida
anteriormente. S N T L

DEMOSTRACION. Si A es un conjunto elemental y P,, P,, cons P

son los rectingulos disjuntos dos a dos que lo componen, tenemaos

por definicién :

m' (A)= '#21 m(Py).
- Como los recténgulos Pl. cubren todq‘_e'l}A‘, tenemos
CWASZmE)=m'(4).

Pero si {Q;} es un sistema arbitrario finito o numerable de rectan-
gulos que cubre A, entonces, de acuerdo con el teorema 2,

m’ (A)<< 2m(Q)); de manera que m’(A)=p*(A).
Como lE\A es también un conjunto elemental, tenemos
m’ (E\ A)=p*(E\ A). Pero
m (ENA)=1—m'(4) y p*(E\A)=1—p(A),
- de donde
m' (A)=p,(A).
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Por consiguiente,
B (A)=p, (D) =m' (A).

Del resultado obtenido se desprende que el teorema 2 es un
caso particular del teorema 3.

TEOREMA 5. Para que un conjunto A sea medible es necesario y su-
ficiente que se cumpla la siguiente condicién: cualquiera que
sea &> 0 existe un conjunto elemental B, tal que

w (AAB) <.

De esta forma, son medibles aquellos conjuntos, y sélo aquéllos,
que pueden ser «aproximadoss con cualquier grado de presicién
por conjuntos elementales. Para demostrar el teorema 5 necesita-
remos el siguiente lema.

LEMA. FPara dos cualesquiera conjuntos A y B se tiene

| w* (A)—w* (B) | < pn* (AAB).
DEMOSTRACION DEL LEMA. Como ,

AcBU(AAB),

tendremos, en virtud del teorema 3,

r(A) < p*(B)+p* (AAB).
De aqui se desprende la proposicién del lema para el caso en que
p*(4) = p*(B). En cambio, si p*(A4)<<p*(B), la afirmacién del
lema se desprende de la desigualdad : '

u* (B) < p* (A)+p* (AAB),
que se demuestra de una manera aniloga.

DEMOSTRACION DEL TEOREMA 5. SUFICIENCIA. Supongamos que para
cualquier & >0 existe un conjunto elemental B tal que

r*(AAB) < e.
Entonces, de acuerdo al lema,
|u*(A)—m' (B)[=|p*(A)—p*(B)|< e (2)‘

y como
(EN\A) A (EN\B)=AAB,
de la misma forma obtenemos que ;
|8 (ENA)—m' (E\B)| < e. &)
Teniendo en cuenta que B
m’ (B)+m’ (E\B)=m’(E)=1,
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encontramos de las desigualdades (2) y (3)
[B* (A +p(ENA)—1|< 2
y como &> 0 es arbitrario, tenemos.
| p(A)+p* (ENA)=1,
es decir, el conjunto A es medible.
NECESIDAD. Sea A medible, esto es,
w*(A)+p(ENA) =1
Para un e > 0 arbitrario busquemos unos cubrimientos “de los

conjuntos 4 y E\A medlante sistemas de rectangulos {B,} y {Ci}
tales que

LmB)<w (A)+3 yZm(c,,)<p'(E\A)+3

Como Em(B,) < oo, existird un N fal que
Y. mB)<+3;

na>N
N
B=U B,

Demostremos que el con]unto elemental B satisface la condi-
cion p*(AAB) <e. Esta claro que el conjunto -

P U B,
n>N
contiene AN\ B, que el conjunto

Q==U(BﬂCn)

tomemos

contiene B\ A y que, por consngulente, AABcPUQ.
Ademas,

PP Y mB)<7-

n>N
Estimemos p*(Q). Para ello observemos que

(Un)u(yena)-
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de manera que

Y mB)+2m C\B) =1 @
Pero, por hipoétesis,
| Z.‘.m(B,.HEm(c..)<p°<A>+w(E\A)+%’=1+%- )
Sustrayendo (4) de (5), obtenemos
3 m(C)— Som (€ \B)=X,m (C.nB) < 3 &,
es decir, :

@< e
Por eso,

p*(AAB)<p* (P)+1p(Q) <e.

Luego, si A es medible, cualquiera que sea & >0 existe un con-
junto elemental B tal que p*(AAB)<e. El teorema queda de-
mostrado. ”

TEOREMA 6. La unién y la interseccion de un nimero finito de con-
| juntos medibles son conjuntos medibles.

pEMOSTRACION. Es obvio que basta realizar la demostracion para
el caso de dos conjuntos. Sean A, y A, conjuntos medibles. En-
tonces, para cualquier & > 0 existen conjuntos elementales B, y B,

tales que : , .
L B (A,AB) < 5, 1 (4,AB)< 5.
Como )

: (Al u As) A (Bl U Bs)C(Al A B:l)'U (A: A Bs)a
tenemos

p*[(A,U 4,) A (B, U Bl <p* (4, A By)+p (A, A B,) <e.
Pero, B,UB, es un conjunto elemental; luego, en virtud del
teorema 4, el conjunto A,U A, es medible.

Por definicién de conjunto medible, siendo A medible, tam-

bién EN\ A es medible; por esto, la interseccion de dos conjuntos
medibles es medible en vista de la relacién

A,nA,=EN[(E\A)U(EN\A,)]
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COROLARlé.La diferencia y la diferencia simétrica de dos conjuntos:

medibles son medibles, . . . - o

- Esto se deduce del teorema 6 y de'las igualdades _
ANA,=A,n (E\As)v AIAA,I =(4,\4,) UV:(Ag\Ax)"

TEOREMA 7. Si A,, ..., A, son conjuntos medibles'disjuntbs dos
| a dos, entonces, . . . .. . .

H(Ua)=2n.. - ©
k=1 Ch=T e AR

DEMOSTRACION. Al igual que en e] teorema 6 es suficiente consi-
derar el caso n=2. Escojamos arbitrariamente un >0 y sean
B, y B, conjuntos elementales tales que , -

(A, A B,) <e, (M

W4, A B) <e. ®
Pongamos A=A,UA,yB= B, U B,. De acuerdo con el teorema 6,-
el conjunto A es medible, Como los conjuntos A,y A, no se
intersecan, : g w1 ARUTI ;
g Bl n BzC(A;rA"Bl) 5) (A‘z‘ A Bz)":‘
Y, por consiguiente,

m BNB)<%. ©)

De (7) y (8) resulta, en virtud del lema del teorema 5, que
N o |m’ (By)—p*(A) | <e, (10)
|m’ (By)—p*(4,)| <e. (1)’

Puesto que la medida es aditiva en la clase de conjuntos elemen-
tales, obtenemos de (9), (10) ¥y (11)

m (B)=m' (B)-+m’ (B)—m' (B,1 B) > (A)) 41 (4,)—de.

Observando, ademas, que A A B<(4, AB)U (A; A B,), encon-
tramos finalmente :

p*(A)=m' (B)—p* (A A B)=>m' (B)—2e>p* (A,) +p* (4,)—6e.
Como &> 0 se puede escoger tan pequefio como se quiera, tenemos
B (A) = (A)+p* (4). |

Por ser siempre vélida (en virtud del teorema (3)) la desigualdad
opuesta

P A <p*(A)+p0(4,)
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para A=A, UA,, obtenemos en conclusién

Bt (A)=p2(4,)+p* (4,);
como A,, A, y A son medibles, se puede sustituir aqui p* por p.
El teorema queda demostrado.

'TEOREMA 8. La unidn e interseccion de un nimero numerable de
| conjuntos medibles son conjuntos medibles.

DEMOSTRACION. Sea
A, A, ..., A, ...

un sistema numerable de conjuntos medlbles y sea A=) 4.
. n=1
n-1

‘Tomemos A,.-A,,\U A, Esta claro que A= U Ay que los

conjuntos A, son d1s;untos dos a dos. En virtud del teorema 6
y de su corolano, todos los conjuntos A, son medibles. En virtud
del teorema 7 y de la defm1c1on de “la medida superior, para
cualquier n finito

| ?_:. I‘(Ak) u(U Ak><l" (A),

k=1

por lo que la serie

2 p(40)
converge; de manera que ‘péra todo &> 0 existe un N tal que
2 u(A,.)< :. (12)
n>N -
: N

Por ser med:ble el con;unto C-—U A’ (como unién de un ni-

mero finito de con]untos med;bl%) exxste un conjunto elemental
B tal que:

WCAB <% (13)
Como -
AAB:(CAB,)U(U A;>,

a>N
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de (12) y (13) se deduce que - -
- p*AAB) <. :
En virtud del teorema 5, esto significa que el conjunto A es me-
dible. S R R N
Puesto que los complementos de conjuntos medibles son me-
dibles, la parte del teorema correspondiente a las intersecciones

se desprende de la igualdad
n n

_ El teorema 8 es una generalizacién del teorema 6. El teorema
que sigue constituye una generalizacién correspondiente del
teorema 7. : '

TEOREMA 9. Si"{A,,} es una sucesion de conjuntos medibles disjuntos
dos a dos y si A=\J A,, se tiene:
. n

DEMOSTRACION. Segiin el teorema 7, para cualquier N
N N '
u(U A;.>=Zl B(4) <p(d).
n=1 n= . :

Pasando al limite para N — oo, obtenemos

BA)> 3 (4D a9
Por otro lado, segiin el teorema 3,
FA< 3 B A). (15)

De (14) y (15) se desprende ta afirmacién del teorema.

La propiedad de la medida establecida en el teorema 9 es
llamada aditividad numerable o o-aditividad. De 1la c-aditividad
se ctlg‘iiuce la siguiente propiedad de la medida 1lamada conti-
nuidad. S

TEOREMA 10. Si A,DA,>... es una sucesién de conjuntos me-
dibles sumergidos unos en otros y si A=nA,, se tiene

w(A)= "}l;fg B (4,).
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Obviamente bastard considerar el caso A=, ya que el caso
general se reduce a éste sustituyendo A, por A,\A. Entonces,

Ax = (Al\As) u (A,\A,) u...

An = (An\An+l) u (An+l\An+l) u...
Por consiguiente,

y

b= 3 b ANAL) (16)
y ; .
B (4,) =k§n B (Ak\Aku); a7

como la serie (16) converge, su resto (17) tiende a cero para
n—»oo. De manera que

, #(4,)—0 para n— oo,
que es lo que necesitibamos demostrar.

~COROLARIO. Si A,cA,c... esuna sucesion creciente de conjun-
tos medibles y si , ‘

, A=J4,
n

se tiene
B (A)= lim p.(4,)

Para demostrarlo es suficiente pasar de los conjuntos A, a sus
complementos y recurrir al teorema 10.

- De esta forma hemos extendido la medida de conjuntos ele-
mentales a una clase més amplia de conjuntos, llamados medi-
bles, cerrada respecto a las operaciones de unién e interseccién
numerables. La medida construida es o-aditiva en esta clase de
conjuntos. Los teoremas demostrados permiten hacerse una idea
de la clase de todos los conjuntos medibles seglin Lebesgue.

Como todo conjunto cerrado, contenido en E, se puede re-
presentar como la unién de un ntimero finito o numerable de
rectngulos abiertos, esto es, de conjuntos medibles, todos los
conjuntos abiertos son, en virtud del "teorema 8, medibles. Los
conjuntos cerrados son complementos de los abiertos y, conse-
cuentemente, son también medibles. Segiin el teorema 8, seran
también medibles todos aquellos conjuntos que se puedan obte-
ner a partir de conjuntos abiertos y cerrados mediante un ntimero
finito o numerable de operaciones consistentes en considerar
uniones o intersecciones' numerables. Se puede demostrar, sin
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embargo, que con estos conjuntos no se agota la clase de todos
los -conjuntos medibles segin. Lebesgue. - o e

4°, Algunos suplementos y generalizaciones. Hemos considerado
anteriormente sélo aquellos conjuntos del plano que son subcon-
juntos del cuadrado unidad E={0<x, y<1}. No es dificil
librarse de esta restriccién, por ejemplo, del siguiente modo.
Considerando todo el plano como la unién de los cuadrados
E,,~,,={n<x<n+,l, m<y<<m+1} (n, m son nimeros ente-
ros), diremos que un conjunto plano A es medible cuando es
medible su interseccion A,,=A,NE,, con cada uno de estos
cuadrados y cuando la serie X} p(A4,,) converge, tomando por

Clmem Conn

definicion : Lomem
B (A) = ’znp‘ (Amu)‘

Todas las propiedades de la medida que' hemos: establecido an-
teriormente se extienden de manera obvia a este caso.

En este paragrafo hemos expuesto la construccion de la me-
dida de Lebesgue para los conjuntos planos. De manera analoga
se puede construir la medida de Lebesgue en la recta, en el
espacio de tres dimensiones y, en general, en un espacio euclideo
de cualquier dimensién n. En todos estos casos la medida es
construida siguiendo las mismas ideas: a partir de la medida de-
finida de antemano para un sistema de conjuntos elementales
rectdngulos en el caso del plano; intervalos (a, b), segmentos
}a, b] y semisegmentos (a, b] y [a, b) en el caso de la recta;
etc.) definimos primero la medida para uniones finitas de estos
conjuntos, extendiéndola después a una clase mucho mas amplia
de conjuntos, a la clase de conjuntos medibles segiin Lebesgue.
Para conjuntos de un espacio de cualquier. dimension la propia
definicién de conjunto medible se conserva textualmente.
Al introducir el concepto de medida de Lebesgue hemos par-
- tido de la definicién habitual del 4rea. En el.caso unidimensio-
nal la construccién andloga se basa en el concepto de la longitud
de un intervalo (de un segmento, de un semisegmento). No obs-
tante, es posible introducir en este caso el concepto de la me-
dida de otra forma, algo mas general (que frecuentemente aparece
en la practica). . .

. Sea F(t) una funcién no decreciente y continua a la izquierda
definida en la recta. Pongamos - . . :

' ' m(a, b)=F (b)—F (a+0),

~mla, b]=F (b+0)—F (a),
m(a, b]=F (6+0)—F (a+0),
m[a, )=F () —F (a).
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Es facil ver que la funcién de intervalo m, definida de esta forma,
es no negativa y aditiva. Aplicando a ella razonamientos analo-
gos a los realizados en este parigrafo, podemos construir una
«medida» pr(A). La clase de conjuntos medibles segiin esta me-
dida serd cerrada respecto a las uniones e intersecciones nume-
rables, mientras que la medida p, serd o-aditiva. La clase de
conjuntos medibles segiin p, dependera, en general, de la selec-
cién de la funcién F. Sin embargo, cualquiera que sea F, los
conjuntos abiertos y cerrados y, por consiguiente, todas las unio-
nes e intersecciones numerables de los mismos seran medibles.
Las medidas que se obtienen a partir de una u otra funcién F se
llaman medidas de Lebesgue — Stieltjes. En particular, a la funcién
F ()= corresponde la medida corriente de Lebesgue en la recta.

Una medida pp que se anula en cualquier conjunto, cuya
medida corriente de Lebesgue es igual a 0, se llama absoluta-
mente continua. Una medida pp concentrada totalmente en un
conjunto finifo o numerable de puntos (esto ocurrird cada vez
que el con{'unto de valores de la funcién F (f) sea finito o nume-
rable) se llama discreta. Una medida pr se llama singular cuan-
do es igual a cero para cualquier conjunto compuesto de un punto
y cuando existe un conjunto M de medida de Lebesgue igual a
0 tal que la medida p, de su complemento es igual a 0.

Se puede demostrar que toda medida pr es suma de una me-
dida absolutamente continua, una medida discreta y una medida
singular. A las medidas de Lebesgue—Stieltjes volveremos en el
capitulo siguiente. o ,

Existencia de conjuntos no medibles. Como se ha demostrado,
la clase de conjuntos medibles segin Lebesgue es muy amplia.
Surge la pregunta natural de si existen, en general, conjuntos no
medibles. Vamos a demostrar que este problema se resuelve po-
sitivamente. Lo mas sencillo es construir conjuntos no medibles
en la circunferencia.

Sea C una circunferencia de longitud 1 y sea o un niimero
irracional. Asignemos a una misma clase aquellos puntos de la
circunferencia C que se transforman unos en otros mediante una
rotacién de la circunferencia C de valor angular nam (n es un
nimero entero). Cada una de estas clases quedard compuesta,
obviamente, por un conjunto numerable de puntos. Escojamos
ahora un punto en cada una de estas clases. Probemos que el
conljunto obtenido de esta forma (denotémoslo con @,) no es me-
dible. Sea @, el conjunto que se obtiene de @, por una rotacién
de valor angular nas. Es facil ver que los conjuntos @, son dis-
juntos dos a dos y que la unién de ellos es la circunferencia C.
Si el conjunto @, fuese medible, también serian medibles los
conjuntos @, congruentes a él. Como ‘

20—3427.
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C= U D,, O,AD, = para nsm,
n=-» ’ ) )
podriamos concluir de agui, debido a la o-aditividad de la me-
dida, que ‘

1= 3 poy). )

n=-w

Pero los coné'untos' congruentes tienen la misma medida; luego,
si @, es medible, tenemos ‘

B (D) =p (D).

Esto demuestra que la igualdad (18) es imposible, ya que la
suma de la serie, que figura en el miembro derecho de la igual-
dad (18), es igual a 0 cuando w(D)=0 y es infinita cuando
B (®,) > 0. De manera que el conjunto @, (y, consecuentemente,
cualquier conjunto ®,) no es medible.

o § 2. CONCEPTO GENERAL DE MEDIDA. ~
PROLONGACION DE UNA MEDIDA DE UN SEMIANILLO A UN ANILLO.
ADITIVIDAD Y 0-ADITIVIDAD b .

1°. Definicién de medida. Al construir la medida de conjun-
tos planos hemos partido de la medida (el area) de un rectan-
gulo, extendiendo después el concepto de medida a una clase
mas amplia de conjuntos. Lo esencial en la construccién, expuesta
en el pardgrafo anterior, no es de ninguna manera la expresién
concreta del 4rea de un rectangulo; son esenciales para esta cons-
truccién dos hechos generales: 1) el 4rea de un rectingulo es
una funcién de conjunto no negativa que satisface la condicién de
aditividad, esto es,

m (P,UPy)=m(P,)+m(P,) cuando P, P,= &

Yy 2) el conjunto de rectangulos constituye un semianillo de
conjuntos. Por esto, a la construccién expuesta en el § 1 para
el caso de conjuntos planos se le puede dar una forma total-
mente abstracta y general. Con ello se ampliara sustancial-
mente la posibilidad de aplicar nuestras construcciones. A esto
estan dedicados los dos paragrafos que siguen. \

Introduzcamos, ante todo, la siguiente definicién fundamental.

DEFINICION 1. Una funcién p(A) de conjunto se llama medida
cuando

1 En este pardgrafo en lo que sigue emplearemos sistematicamente los -
conceptos y resultados expuestos en el § 5 del cap. I.
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1) el campo de definicién &, de la funcion p(A) es un semi-
anillo de conjuntos;

2) los valores de la funcién p(A) son reales y no negativos;
3) p(A) es aditiva, esto es, para cualquier descomposicién

finita
A=AU...UA,

de un conjunto A €&, en conjuntos A4, € S, se verifica la igualdad

p(A)= 3 p(4y.
k=1

Observacion. De la descomposicion F=J U se deduce que
p (S =2p (D), es decir, u(3)=0.

Los dos teoremas que vienen a continuacién sobre medidas
en semianillos se emplearan frecuentemente en lo sucesivo.

TEOREMA 1. Sea p una medida definida en un semianillo &,. Si

los conjuntos Al, ..., A,, A pertenecen a &, y A, son " sub-
conjuntos disjuntos dos a"dos de A, se tiene
El p(A)<pu(A).

DEMOSTRACION. Por ser &, un semianillo existe, en virtud del
lema 1 del § 5 del capitulo I, la descomposicién

A= UAk’ s=>n, A,€S,,

donde los n primeros con]untos coinciden con los conjuntos da-
dos A,, ..., A,. Como la medida de cualquier conjunto es no
negativa, tenemos

ZrAI< T p(A)=p(A).
=1 k=1

n
TEOREMA 2. Si A,. ..., A,, A pertenecen a S, y Ac UAk, se
: k=1
tiene

p(A)< 2 B (4.

DEMOSTRACION, En virtud del lema 2 del § 5 del capitulo I,
existe un sistema de conjuntos disjuntos dos a dos B,, ..., B;

20*
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de &, tal que cualquier conjunto A, A4,, ..., A, A ' se puede
representar como la unién de determinados conjuntos B,

- A=UB, 4= B, k=1,2 ...,n,

seM, seM; '

donde cada indice s€ M, pertenece también a un M,. Luego,
cada término de la suma ’ '
e > B (B,)=p (4)
s€M,

figura una o varias veces en la suma doble
g ,

k=1 seM;

De aqui se desprende precisamente que |
M.,A)@é; B (4,).
"En particu]afr”para« n=1 tenemos el res&ttado(siguiente.“

COROLARIO. Si AcA’, se tiene p(A)<<p(4').

2°. Prolongacién de una medida en un semianillo al anillo
generado. El primer paso en construir la medida de conjuntos
planos consisti6 en extender el concepto de medida de un rectan-
gulo a los conjuntos elementales, es decir, a las uniones finitas de
rectangulos disjuntos dos a dos. Veamos ahora el anélogo abstracto
de este problema. Enunciemos, ante todo, la siguiente definicién.

DEFINICION 2. Una medida p se llama prolongacién de una me-
dida m cuando €,c@, y cuando para todo A€, se cumple
la igualdad '
1 (A) = m(A).
El objeto de este punto es demostrar la proposicién que
sigue.

TEOREMA 3, Para cada m(A), definida en un semianillo &, existe
_una prolongacién p (A), y sélo una, que tiene como campo de
definicion el anillo R (&,) (esto es, el anillo minimal sobre €,).

DEMOSTRACION. Para todo econjunto A €R(S,) existe la descom-

posicién

k=1
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(teorema 3, § 5, capitulo I). Tomemos por definicién

p(A)= 2 m (By). @

Es facil ver que la magmtud w(4), deﬁmda por la igualdad (2),
no depende de cémo se escoja la descomposicién (1). .
En efecto, consideremos dos descomposmlones

A= UB Uc,, B,€6,, C;€Q,.

i=1

Como todas las intersecciones B; ﬂCj pertenecen a &,, tenemos,
en vista de la aditividad de la medida m,

Sin@i=5 Zmeinc)=Fnc)

que es lo que queriamos demostrar. Es evidente, que la funcién

p(4), definida por la igualdad (2), es no negativa y aditiva.

Luego, hemos demostrado la existencia de la prolongacién p de

la medida m al anillo R (S,). Para demostrar su unicidad obser-

vemos que, de acuerdo a la definicion de prolongacion, si
n

A=) B,, donde B, son conjuntos disjuntos de &,, tenemos
k=1 ) -
para cualquier prolongacién p de la medida m al anillo R (&,)

B(A) =Zi(B)=Zm(B)=p(A),

es decir, la medida g coincide con la medida p definida por la
igualdad (2). El teorema queda demostrado.

Este teorema constituye, de hecho, la repiticién, en términos
. abstractos, de la construccién realizada en el § 1 al prolongar la
medida de rectdngulos a la clase de conjuntos elementales que
representa precisamente el anillo mmlmal sobre el semianillo de
rectangulos

. Aditividad numerable. En diferentes cuestiones del Analisis
€s precxso considerar, ademas de uniones finitas, uniones de un
namero numerable de conjuntos. En este orden la condicion de
aditividad, a la que hemos sometido las medidas (definicién 1)
resulta insuficiente y es natural sustituirla por una condicién mas
fuerte de la asi llamada aditividad numerable.

DEFINICION 3. Una medida p se llama aditiva numerable (0 c-adi-
tiva) cuando para cualesquiera conjuntos 4, 4,, A,,, e Ay ol
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>

que pertenecen a su campo de déflmclén S, y que verifican las.
condiciones’

A= U'A,,, A,nA,=Q para i==],

n=1

tiene lugar la igualdad .
B(A)= 3 B(A,).

La medida plana de Lebesgue, cOn;tmida en el '§ 1, es o-adi-
tiva (teorema 9). Un ejemplo de una medida o-aditiva de una
naturaleza totalmente dnstmta se puede obtener del siguiente
modo. Sea

| X={x, 2 ...}
un conjunto nurne:able -arbitrario y sean los ndmeros p,>0

tales que
2 p,.—l

El campo €, se compone de todos los subcon]untos del con-
junto X. Tomemos para cada AcX ,

»(A)= 2 Pn- .

Es facil ver que m(A) serd una medida o-aditiva y que
B (X)=1. Este ejemplo surge de un modo natural en diferentes
cuestiones de la Teoria de probabilidades. ;

Sefialemos un ejemplo de una medida aditiva que no es o-adi-
tiva. Sea X el conjunto de todos los puntos racionales del seg-
mento [0, 1] y sea &, el conjunto formado por las intersecciones
del conjunto X con intervalos (a, b), segmentos [a, b] o semi-
segmentos ﬁa, bl y la, b) arbitrarios. Es facil ver que &, forma
un semlam lo Tomemos para cada conjunto de este tlpo

w (Aab) =b—a.

- Esta medida es aditiva, pero no es o-admva, ya que y,(X)—-l
y al mismo tiempo X-es la unién de un nimero numerable de
puntos cada uno de los cuales tiene medida 0.

Las medidas que consideraremos ahora y en el paragrafo
siguiente se suponen o-aditivas.

TEOREMA 4. Si una medida m defmida en un semianillo &, es
o-aditiva, también es c-aditiva la medida p.—r(m) que se ob-
tiene prolongandola al anillo R(S,,).
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DEMOSTRACION. Sea

AER(S,), B,eR(©,), n=1,2, ...,

y sea .
A=\ B.,
n=1

donde B,n B, =& para s~ r. Entonces, existen conjuntos A,y B,;
de ©, tales que

A=UAj, B”=U Blll'
i i

donde los- conjuntos que figuran en los miembros derechos de cada
una de estas igualdades son disjuntos dos a dos y las uniones
respecto a i y j son finitas (teorema 3, § 5, capitulo I). '

Sea C,;=B,;NA;. Es facil ver que los conjuntos C,; son
disjuntos dos a dos y que ‘ ;

4,=UUC.
n i

By = U Cm‘]'
i

Luego, debido a la g-aditividad de la medida m sobre &,, tenemos
m(A)=3 2 m Cu)» e
m (Bm') = ? m (Cm'j) : (4)
y de acuerdo a la definicién de la medida p=r (m) sobre R (&),

tenemos ,
BA)=Fm(4), ®)
B (B =3 m (B,)- ©)

De (3), (4), (6) y (6) se desprende que p(A)=2p(B,,). (Las

sumas respecto a i y j son finitas y las series respecto a n con-
vergen.)

Demostremos ahora las siguientes propiedades fundamentales
de medidas o-aditivas que constituyen una generalizacién de los
teoremas 1 y 2 al caso de uniones numerables de conjuntos.

TEOREMA 5. Sea m una medida o-aditiva y sean A, A,, ..., A, ...
| conjuntos pertenecientes a ©,. Entonces,
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lIosi {JAicA y AinA,=% parai+£j, se tiene

k=1
; m (A< m(A;

Mo si |JA,>4, se tiene
k=1 :

3 may=ma).

DEMOSTRACION. Si todos los 4, son di‘sjﬁntos y estan contenidos

en A, tenemos para cualquier n

S may<ma,

en virtud del teorema 1. Pasando aqui al limite para n— oo,
obtenemos la primera afirmacién del teorema.

En cuanto a la segunda afirmacién, es suficiente demostrarla,
de acuerdo con el teorema 4, para medidas definidas sobre un
anillo, ya que de la validez de la proposicién 1lg para p=r(m)
se deduce directamente su validez para la medida m. Siendo Gp
un anillo, los conjuntos

o oy G
k=1 '
pertenecen a &,. Como

A=|JB,, B,cA

n=1

y los conjuntos B, son disjuntos dos a dos, tenemos
m(A) = X mB)< 3 m(a,).
n= a=1

- Observacion. La afirmacién lo del teorema demostrado no
emplea, obviamente, la ¢-aditividad de la medida considerada y
sigue siendo valida para cualesquiera medidas aditivas. La afir-
macién llo, al contrario, se basa de un modo sustancial, en la
o-aditividad de la medida. Efectivamente, en el ejemplo dado
anleriormente de una medida aditiva, pero no o¢-aditiva, fodo el
espacio X, de medida I, es cubierto por una unién numerable
de conjuntos, compuestos de un solo punto, que tienen medida 0.
Es mas, no es dificil demostrar que la condicién 11 es, en rea-
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lidad, equivalente a la ¢-aditividad. En efecto, sea p una medida y
sean 4, A,, ..., A,, ... conjuntos de &, tales que todos los
A, son disjuntos dos a dos y A= U A,. Entonces, en virtud de
la condicién Io (que es valida, como hemos visto, para cualquier
medida), se tiene

Srar<p@.

Si p verifica ademés la condicién 1le, tendremos (ya que los
conjuntos A, cubren: A) —

2 b (A)=n(4)
de manera que

Se@y=p@.

En la practica resulta con frecuencia mas facil comprobar que
una medida verifica 1a condicién llo que demostrar su o-aditi-
vidad. ' R

§ 3. PROLONGACION DE LEBESGUE DE UNA MEDIDA

1°. Prolongacién de Lebesgue de una medida definida en un
semianillo con unidad. Si la medida m definida en un semia-
nillo &€, verifica s6lo la condicién de aditividad (pero no es
o-aditiva), su prolongacién a ;i (€,), obtenida por el procedimien-
to descrito en el paréagrafo anterior, agota en gran medida, las
posibilidades de extender la medida del semianillo inicial ‘a' una
clase mas amplia de conjuntos. En cambio, si la medida consi-
derada es o-aditiva, puede ser extendida de &, a un sistema de
conjuntos mucho mas amplio que el anillo R(&,). La prolonga-
ci6n de una medida o-aditiva, definida en un semianillo, a una
clase de conjuntos, en cierto sentido maximal, se puede realizar
mediante la asi llamada prolongacién de Lebesgue. Consideremos
primero la prolongacién de Lebesgue de una medida, definida
en un semjanillo con unidad. El caso general sera estudiado en
el punto siguiente. ' ‘ ‘

Supongamos que en un semianillo de conjuntes &, con
unidad E estd definida una medida m o-aditiva. Definamos en
el sistema U de todos los subconjuntos del conjunto E las fun-
ciones p* (A) y p, (A) del siguiente modo.

DEFINICION 1. Se llama medida superior del conjunto AcE al

nfimero
A=, o, ZmE).
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donde la cota inferior se toma respecto a todos los cubrimientos
~del conjunto A mediante sistemas finitos o numerables de con-

juntos B,€&,. : , SR
DEFINICION 2. Se llama medida inferior de un conjunto AcE al
niimero

By (A)=m(E)—p* (E\A).
El teorema 5 del § 2 implica que siempre p, (4) <<p* (A).

DEFINICION 3. Un conjunto AcE se llama medible (segiin Lebes-
gue) cuando ' :
Ba (A)=p* (A). -
Siendo A medible, el valor comiin p, (A)=p*(4) es denotado
mediante p (A) y llamado medida (de Lebesgue) del conjunto A.
_ Si A es medible, también serd, evidentemente, medible su
complemento. , : _
_ En vista del teorema 5 del § 2, para cualquier prolongacién
- o-aditiva p de una medida m, definida en un semianillo, tiene
lugar la desigualdad
B A<pA<p*(A)

Consecuentemente, para un conjunto medible A toda prolonga-
cién o-aditiva p de una medida m (si esta prolongacién estd
definida en A) toma necesariamente el valor p, (A)=p*(4). La
medida de Lebesgue no es otra cosa que la prolongacion o-aditiva
de la medida m a la clase de todos los conjuntos medibles en el

sentido de la definicién 3. Es obvio que la definicién de conjunto
medible se puede enunciar también asi:

DEFINICION 3. Un conjunto AcE se llama medible cuando
B (A)+p* (E\A)=m(E).
Conviene emplear, ademéds de la medida inicial m, su prolonga-
cién m’'=r(m) al anillo R(S,) considerada anteriormente (§ 2).
Esta claro que la definicion 1 es equivalente a la siguiente.
DEFINICION 1~. Se llama medida superior de un conjunto A al
niimero
p*(A)= inf X m'(Bp), B,cR(S,).

AcuB, n
n n

En efecto, como la medida m’ es o-aditiva (teorema 4 del § 2),
cualquier suma Y,m’(B;), donde B,€R (S,), puede ser sustituida
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por la suma equivalente
\ "Ehm(Bu). B,€®,,

donde Bj=|) Bu Y BuNBy=9 para i#].

R
Los resultados que siguen son fundamentales para la exposi-
cién ulterior. '

TEOREMA 1. Sf

Ac UA,,,

donde {A,} es un sistema finito o numerable de conjuntos, se tiene
p*(A) < 2 p* (4,).

TEOREMA 2. Si AER(S,), se tiene p, (A)=m’ (A)='p; (A), es
decir, todos los conjuntos de R (S,) son _medibles y las medidas
superior e inferior de los mismos coinciden con m'.

TEOREMA 3. Para qug un conjunto A sea medible es necesaria y
suficiente la siguiente condicion:
para cualquier &> 0 existe un BER (S,) tal que*
p*(AAB) <e.

En el § 1 estas proposiciones han sido demostradas para la
medida plana de Lebesgue (teoremas 3, 4y & del § 1). Las
demostraciones dadas alli siguen siendo vélidas en el caso general
que estamos considerando y por eso no las repetimos.

TEOREMA 4. El sistema MM de todos los conjuntos medibles es un
| anillo. ,

DEMOSTRACION. Como

A; n As = A1\(A1\Aa)
y .
A,UA,=ENIENA) N (ENA
basta demostrar que i A eMy A, €M, también

A=AN\A,eM.

Supongamos que A A, son medibles; en este caso existen
B,ER(S,) y B,€N(S,) lales que

B (A,AB) < 5 ¥ B (AAB)< 3
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Tomando B=B,\ B,€R(S,) y empleando 1a relacién
(A1 A, A (B \By)c(A, AB)U(A, A B,)
encontramos
W(AAB)<e.

Como &> 0 es arbitrario, de aqui se desprende que A es medible.

Observacién. Es evidente que E constituye la unidad del,
anillo M que de esta forma resulta ser un lgebra de conjuntos.
TEOREMA 5. La funcibn p(A) es aditiva en el sistema N de los
| conjuntos medibles. o :

La demostracion, de este teorema es una repeticién verbal de]
la demostracién del teorema 7 del §1. = ‘ ;
TEOREMA 6. La funcién p(A) es o-aditiva en el sistema Tt de
| los conjuntos medibles. = ;

DEMOSTRACION. Sea

n=1 ) ) :
En virtud del teorema 1, 5
B A< 2k (4, o

Y, de acuerdo al teorema 5,

,; B
F@=r (Uad) =3 r )
Ta=1 n=1 .

~para cualquier N, de donde
P A=2pA,). @

De (1) y (2) se deduce la afirmacién del teorema. i
Hemos demostrado de esta forma que la funcién p (4), defi-

nida en el sistema 9, posee todas las propiedades de una me-

dida o-aditiva. ‘ ] ' o
Ello justifica la siguiente definicién.

DEFINICION «. Se llama prolongacion de Lebesgue p=L{m) de
una medida m a la funcién p (A4), definida en el sistema &, =M"
de los conjuntos medibles y coincidente en este sistema con la
medida superior p*(A). ~
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En el § 1 hemos demostrado, al considerar la medida plana
de Lebesgue, que son medibles no sélo las uniones e interseccio-
nes finitas de conjuntos medibles, sino también las uniones e
intersecciones numerables de conjuntos medibles. Esto sigue siendo
vilido también en el caso general, es decir, tiene lugar el si-
guiente teorema. C o ‘

TEOREMA 7. El sistema M de conjuntos medibles segin Lebesgue
| constituye un digebra de Borel con unidad E.

DEMOSTRACION. Como

NA=E\UE4)

y puesto que el complemento de un conjunto medible es medible;
basta demostrar lo siguiente: si A,, 4,, ..., 4,, ... pertenecen

a M, también A={J A, pertenece a M. La demostracién de

, : n o
esta proposicién dada en el teorema 8 del § 1 para los conjuntos
planos se conserva textualmente en el caso general.

Al igual que en el caso de medida plana de Lebesgue, la o-
aditividad de la medida implica su continuidad, esto es, siendo
p una medida o-aditiva definida en una B-ilgebra y siendo
A,DA,>...2A,>... una cadena decreciente de conjuntos me-
dibles tal que

A=() 4w
n

se tiene L
b ()= limp (4,)

y siendo A,cA,c...cA,c... una cadena creciente de conjun-
tos medibles tal que
A= U A,

n

se tiene ‘ ;
B (A)='}£qi B (A,)-

La demostracién, dada para la medida plana en el § I (teore-
ma 10), se extiende textualmente al caso general.

2, Prolongaciéh de una medida definida en un semianillo
sin unidad. Si el semianillo &,, en el cual estd definida la me-
dida inicial m, no tiene unidad, la construccién de la prolongacién
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de Lebesgue, expuesta en el punto’anterior, debe ser‘modificada.
La definicién 1 de la medida superior se conserva, pero la medida
superior p* estard definida s6lo en el sistema Sy. de aquellos
conjuntos A para cada uno de los cuales existe un cubrimiento

U B. mediante conjuntos de ©, de suma finita
‘ ;mzz,y.

La definicion 2 pierde su sentido. La medida inferior puede
ser definida (de una manera algo distinta) también en el
caso general; pero no lo haremos. Conviene definir ahora el con-
cepto de conjunto medible a partir de la propiedad de conjuntos
medibles sefialada en el teorema 3.

DEFINICION 5. Un conjunto A se llama medible cuando para cual-
quier & > 0 existe un conjunto B €N (&,) tal que p*(AAB) <e.
Los teoremas 4, 5 y 6 y la definicion 4 subsisten. La exis-
tencia de la unidad ha sido empleada sélo durante la demostra-
cién del teorema 4. Para demostrar el teorema 4 en el caso
general, debemos probar de una manera independiente que A, € M
]y A, €M implican que A,UA,EM. Pero esto se desprende de
a inclusién : e . S
A UA, A (B,UB)<(A, A B)U(4, A B,).
En el caso en que © no tiene unidad, el teorema 7 es sustituido
. por el teorema siguiente.

TEOREMA 8. Cualquiera que sea la medida inicial m, el sistema
| M=&Lm de conjuntos medibles segin Lebesgue es un o-anillo;
siendo A, medibles el aonjun;“? A= UA, es medible cuando, y

- sblo cuando, las medidas p (U A,,), estdn acotadas por una

=1
constante que no depende de '}V

Dejamos la demostracién de este teorema a cargo del lector.

Observacién. En nuestra exposicién la medida es siempre
finita, de manera que la necesidad de la dltima condicién es
obvia.

Del teorema 8 resulta:

COROLARIO. El- sistema M, de todos los conjuntos B € M, que
son subconjuntos de un conjunto fijado A€M, constituye un
dlgebra boreliana. ‘
Por ejemplo, el sistema de los subconjuntos de cualquier -
segmento [a, b] medibles segiin Lebesgue (en el sentido de la
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medida lebesguiana habitual p® en la recta) es un ilgebra bore-
liana de conjuntos.
Para concluir sefialemos otra propiedad de las medidas

de Lebesgue.

DEFINICION 6. Una medida p se llama completa cuando de p (4)=0
y A'cA se desprende A'€@,.

Evidentemente, en este caso p(A’)=0. No es dificil demos-
trar que la prolongacién lebesguiana de cualquier medida es com-
pleta. Esto se debe a que para A’'cA y p(A)=0 es necesaria-
mente p*(A’)=0 y a que es medible cualquier conjunto C para
el cual p*(C)=0, ya que gER y

p*(CA @)=p*(C)=0.

Indiquemos la relacién existente entre el proceso de prolongacién
de una medida segin Lebesgue y el proceso de completacién de un espa-
cio métrico. Observemos en este orden que m’ ﬁA A B) puede ser consi-
derado como la distancia entre los elementos A y B del anillo R (S,).
Entonces, R (&,) se convierte en un espacio métrico (na completo, como
regla general) y su completacién, de acuerdo con el teorema 3 del § 2, se
compone precisamente de todos los conjuntos medibles (aunque, sin em-
bargo, los conjuntos A y B no se pueden distinguir desde el punto de
vista métrico cuando p(4 A B)=0)

3. ProlonFacién de una medida segin Jordan. Al estudiar en el § 2
de este capitulolas medidas que verifican solamente la condicién de aditi-
vidad, hemos demostrado que cada una de estas medidas m puede ser exten-
dida del semianillo &, al anillo minimal R (&,) generado por este semia-
nillo. No obstante, existe también la posibilidad de extender la medida a
un anillo mis amplio que R (&,). La construccién correspondiente se llama
prolongacién de una medida segin JordanV. La idea de esta. construccién,
empleada en varios casos particulares ya por los matematicos de la Grecia
antigua, consiste en aproximar el conjunto ea medirs» A por conjuntos A’
y A" de medida prescrita, por dentro y por fuera, esto es, de manera que

A'cAcA”.
Sea m una medida definida en un anillo R (Sy).

DEFINICION 7. Diremos que un conjunto A es medible segiin Jordan cuando
para cualquier & > 0 existen en el anillo R conjuntos A" y A” que satisfa-
cen las condiciones

A'CACA”, m(ANA) < e.

Es vélida la siguiente proposicién.

inzomzl);u 9. El sistema R* de los conjuntos medibles segin Jordan es un
anillo. :

1) Camille Jordan, matemético francés (1838—1922).
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- Sea. R un sistema de conjuntos A para los cuales existe un conjunto
BOA de R. Para cualquier 4 de & tomemos por definicion = ‘
P (A)=inf m(B),
- BDA
B (4)= sup m(B).
5 ' BCTA
Las funciones p (A4) y p(A) se llaman inedid@_f;éx’té:‘ioryr e {infc.eri’or »,

respectivamente, del conjunfo 4.

Es evidente que siempre ;

_ RA<B@). ,
TEOREMA 10. El anillo R* cogtade con el sistema de aqueéiios conjuntos
l AER para los cuales p (A)=p(4). y '

Para los conjuntos de R tienen lugar los siguientes teoremas:

[ ; ‘ £ .
TEOREMA 11. St ACUAy se tiene L(A)< DB (Ap).
' s k=1

TEOREMA 12. Si A;,CA (k=1,2, ..., n) y AiNA;=¢F, se tiene
s R s n ; b a
BA)= X pdp).
E=17 :
Definamos ahora la funcién p con campo de definicién
| | € =R
‘como el valor comiin de las medidas exterior e interior: -
, ; , p(A)=pAd=pA). ,
~ De los teoremas I y 12 y del hecho evidente de que para A€ se tiene
‘ B A)=p (A)=m(A), :
se desprende la siguiente afirmacién.

TEOREMA 13. La funcién p(A) es una medida y es una prolongacién de
| la medida m. ‘ .

La construccién expuesta es aplicable a cualquier medida m definida
en un anillo. En particular, se rue e aplicarla a los conjurttos del plano.
En este caso, se toma como anillo inicial el sistema de coniuntos elemen-
tales (es decir, las uniones finitas de recténgulos). El anillo de conjuntos
elementales depende, obviamente, de la seleccién del sistema de coordenadas
en el plano (se toman rectédngulos de lados paralelos a los ejes de coorde-
nadas). Al pasar a la medida plana de Jordan

B =] (my),

esta dependencia de la seleccién del sistema de coordenadas desaparece: par-
tiendo de cualquier sistema de coordenadas {xl, x;}, relacionado con el
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sistema inicial {x,, x,} mediante una transformacién ortogonal
x; =cos a-x1+§en a%-%31-ay,
Xy=—Sen G- X, -+ o8 Q- Xy} ay,

obtendremos una misma medida de Jordan
JB =] (mg) = (m3)

(aqui m, es la medida construida a partir de los rectdngulos de lados para-

lelos a los ejes ¥;; ¥,). Este resultado se desprende del siguiente teorema
general.

TEOREMA 14. Para que las prolongaciones de Jordan py=](m,) y wg=/j (my)
de las medidas my y my, definidas en los anillos gm y 9%,, coincidan es
necesario 'y suficiente que se cumplan las condiciones:

R.c€uy my(A)=p,(A) en R,,
R.cC€p. my (4) =M (A) en R,.

Si la medida inicial m es definida en un semianillo en lugar de un
anillo, es natural llamar prolongacién de Jordan a la medida

J(m)=](r (m))

que se obtiene mediante la extensiébn de m al anillo R (S5,) y la prolonga-
cién ulterior segiin Jordan. '

4°, Unicidad de prolongacién de una medida. Si el conjunto A es mie-
dible segin Jordan respecto a la medida p, esto es, pertenece a R* (Sa),
entonces, para cualquier medida p, que es prolongacién de m y que esté defi-
nida en MN*(S,), el valor & éz:) coincide con el valor J (4) de la prolon-
gacién de' Jordan -J=j(m). puede demostrar que la prolongacién de
la medida m a un sistema més amplio que &, no serd Gnica. Con més
precisién esto significa lo siguiente. Un conjunto A se llamard conjunto
de unicidad de una medida m cuando

1) existe una medida que es prolongacién de la medida m y que estd
definida en el conjunto A4;

2) para cualesquiera dos medidas de este género p; y pg

B1 (A)=p, (4).

Tiene lugar el teorema: el sistema de conjuntos de unicidad de una medida
m coincide con el sistema de los conjuntos medibles segin Jordan respecto a
la medida m, es decir, coincide con el sistema Sjm).

Sin embargo, si son consideradas solamente medidas o-aditivas y sus
prolonigaciones (0-aditivas), el sisterna de los conjuntos de unicidad serd, en
general, més amplio. : ' ; : '

~Como el caso més importante es precisamente el de las medidas o-adi-
tivas, tomaremos la siguiente definicién. - :

DEFINICION 8. Un conjunto A se llama conjunto de o-unicidad de una me-
dida o-aditiva m cuando . @ - , g (
1) .existe una prolongacién ¢-aditiva A de la medida m definida en A
(es decir, tal que A ; ; L v
L 2}' para cualesquiera dos extensiones o-aditivas A, y A, de este género
es vélida la igualdad - S
Ay (A)=24 (4).

21—3427
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Si A es un conjunto de o-unicidad de una medida o-aditiva p, existe de
acuerdo con nuestra definicién, el finico valor posible A (A) para la prolon-
gacién c-aditiva de la medida p definida en A.

Es fécil ver que cada conjunto A medible segiin Jordan es medible
también segfin Lebesgue ﬁpero’ no viceversal; dése un ejemplo) y que sus
medidas de Jordan y de Lebesgue coinciden. De aqui se desprende inme-
dia(tigtn_lente que la prolongacién de Jordan de una medida o-aditiva es
o-aditiva. - :

Cada conéunto A medible segfin Lebesgue es un conjunto de o-unicidad
para la medida inicial m. En efecto, cualquiera que sea & > 0 existe para
A un BER tal qué p* (A A B) < e. Cualquiera que sea la prolongacién A,
definida en A, de la medida m, tenemos o '

; A (B)=m’(B), ;
ya que la proIo’ngac'iénv de la medida ma R=R(S,) es ﬁnica."AdeniéS,
AMAAB)<p*(AAB)< e o
y, consecuentemente, ) : R
|A(A)—m' (B)] < e. ’
Luego, kpara dos cualesquiera _prolongacioﬁés o-aditivas Ay (A) y Ay (A) de
la medida m, tenemos o . o
,_ |} (A)—2s (A)] < 2e,
de donde, debido a la arbitrariedad de & > 0,
M (A)=Aqs (4).

Se puede probar que los conjuntos medibles segfih Lebesgue agotan todo el
sistema de los” conjuntos de o-unicidad de la-medida inicial m..- =~

“+Sea m una medida o-aditiva con-campo de definicion & y sea M=L(S
el campo - de definici6n. de su prolongacién -de Lebesgue. Del teorema 3 de
este pardgrafo se desprende ficilmente que cualquiera que sea el semianillo
siempre

L(Sy)=L(S).

§ 4. FUNCIONES MEDIBLES

1°. Definicién y propiedades principales de funciones medibles,
Sean X' e Y dos conjuntos arbitrarios en los que se han escogido
dos sistemas de subconjuntos & y €', respectivamente. Una fun-
cion abstracta y=f(x) con campo de definicibn X y con valores
en Y se llama (&, &’)-medible cuando de A€ &’ se deduce que
f~*(A) €. ' co

Por ejemplo, si X e Y son la recta numérica R! (es decir, si.
se consideran funciones reales de variable real) y si © y € son
el sistema de todos los subconjuntos abiertos (o todos los sub-
conjuntos cerrados) de R!, la definicion dada de funcién medible
coincide con la de continuidad. Si tomamos para & y &' el
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sistema de todos los conjuntos borelianos, obtendremos las asi
llamadas funciones B-medibles (o medibles segiin Borel).

En lo sucesivo, el concepto de funcién medible nos interesara
fundamentalmente desde el punto de vista de la teoria de inte-
gracién. En este plano, el papel principal corresponde al concepto
de p-medibilidad de las funciones reales definidas en un conjunto X,
coincidiendo & con el sistema de todos los subconjuntos ps-medlbles
del conjunto X y &’ con la coleccion de todos los B-conjuntos
de la recta. Para simplificar, aceptaremos que X es la unidad
del campo de definicién &, de la medida p. Como toda medida
o-aditiva puede ser prolongada de acuerdo con los resultados del -
§ 3, a un algebra boreliano, es natural admitir desde el princi-
pio que &, es una B-dlgebra. Por lo tanto, para las funciones
reales daremos la siguiente definicién de medibilidad:

DEFINICION 1. Una funcién real f(r) definida en un conjunto X
se llama p-medible ¢uando

[~1(A)eq,
cualquiera que sea el conjunto boreliano A de la recta numérica.
TEOREMA 1. Para que una funcién f(x) sea p-medible es necesario

y suficiente que para cualquier c real el conjunto {x: f(x) < c}
sea Ww-medible (es decir, pertenezca a ©,).

- DEMOSTRACION. La necesidad de la condicién es obvia ya que la
semirrecta (—oo, ¢) es un conjunto boreliano. Para demostrar
la suficiencia, observemos, ante todo, que la adherencia boreliana
B(Z) del sistema X de todas las semirrectas (—oo, ¢) coin-
cide con el sistema B! de todos los conjuntos borelianos de la
recta numérica.  Por hipbtesis, [~*(®)=©,. Luego,
(B \‘(2)) B(f~*(Z))<B (&,).

Pero, B(8,)=©,, ya que &, es una B-ilgebra, por hipétesis.
El teorema queda demostrado

TEOREMA 2. El limite de una sucesion convergente para cada xe X
| de funczones p-medibles es B -medible.

DEMOSTRACION. Sea f,,(x) —+f(x), entonces,
tif9 <9 =Yy N {#:fu <c——-} 1)
am>n
En efecto, si f(x) <c, existe un % tal que f(x) < c*‘?; ademas,

para este k se puede escoger n tan grande que para m >n se cumpla
21*
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la' desigualdad R ,
fa0) <c—

y esto s:gmflcara preclsamente que x ﬁgura en el miembro de-

recho de (1).
Viceversa, si x- pertenece al miembro derecho de la 1gua1dad

1), ex1ste un k tal que para- todos los m sufncxentemente grands
nm<wT;

luego, f(x) <c, es declr, x f:gura en el m1embro 1zqu1erdo de la
igualdad (1). - :
Si las funmones f,, (x) son medlbles los conjuntos .

| {x f,,(x)<c—-——} )

pertenecen a &,. Como &, es un a]gebra borehana, los conjuntos
i f(x) <0}

pertenecen también, en v1rtud de (l), a &, y estodemuestra que
f(x) es medible. :

TEOREMA 3. Una funcion B medzble de una funczon p-medible es
] - -medible. -

DEMOSTRACION 2. Sea f(x) =9 (tp ()], donde ¢ es medible segin Bo-
rel y ¢ es p-medible. Si AcD’ es un conjunto p-medible arbi-
trario, su imagen reciproca A’=¢~*(4) es B-medible y la ima-
gen reciproca A"=1=1 (A') del conjunto ‘A" es B-medible. Como
[~1(A)=A", de aqun sigue la medibilidad de la funcién f.

El teorema demostrado es aplicable, en particular, al caso de
funciones continuas ¢ (que son snempre B-medibles).

2°. Funciones simples. En vista del estudio ultenor de fun-
ciones 'medibles conviene representar cada una de ellas como
limite de una sucesién de asi llamadas funciones simples.

DEFINICION 2. Una funcién f(x) se llama simple cuando es p-me-
dible y toma a lo sumo un niimero numerable de valores.

Esta claro que el concepto de funcién simple depende de la
seleccion de la medida p.

La estructura de las funcxones simples es caracterizada por el
siguiente teorema. .
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TEOREMA ¢. Una funcion f(x) 4ue toma a lo sumo un nuimero nu-
merable de valores distintos :

yl’ yﬁi ee sy yn, s
es p-medible cuando, y solo cuando, todos los conjuntos

A,={x:f(x)=Ya}
son p-medibles. ' o
DEMOSTRACION. La necesidad de la ‘condicién esta clara ya que
cada A, es la imagen reciproca del conjunto compuesto por un
solo punto {y,} y cualquier conjunto compuesto de un solo punto
es boreliano. La suficiencia se deduce de que la imagen reciproca
f-1(B) de cualquier conjunto BeD! es, por hipotesis, la

unién U A, de una cantidad a lo sumo numerable de conjuntos

_ Yn€B
medib!{es A,, es decir, es medible. \

El empleo ulterior de las funciones simples se basa en el si-
guiente teorema. ' o

TEOREMA 5. Para qué la funcion f(x) sea p-medible es necesario y
suficiente que pueda ser representada como limite de una sucesién
uniformemente convergente de funciones medibles simples.

DEMOSTRACION. La suficiencia se desprende del teorema 2. Para
demostrar la necesidad, consideremos una funcién medible arbi-

traria f(x) y tomemos f, (x)=—';':- cuando i"ﬂ-g f) < f—'in'—l (aqui

m son enteros y n son enteros positivos). Estd claro que fn(x)
son funciones simples; para n— oo ellas convergen uniforme-

mente hacia f(x) ya que |f(x)—/[, (x)|<—15 .

3°. Operaciones aritméticas con funciones medibles.

TEOREMA 6. La suma, la diferencia y el producto de dos funciones
medibles son funciones medibles. El cociente de dos funciones
medibles es también medible si el denominador no se anula.

Realicemos la demostracién de este teorema en varios pasos.

a) La suma de dos funciones medibles es medible.
Sean primero f(x) y g(x) dos funciones p-medibles simples
que toman los valores _ ,
\ fv fv -°-,fmk--'-

. 'g’v‘gv DR ) gm .
respectivamente. La suma h(x)=f(x)+ g(x) puede tomar sola-

y.
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mente los valores h=f;+ g;, con la particularidad ‘de :que: estos
valores se toman en los conjuntos -+ e

wrw=r= U (1@=iNrgw=gh @

fy+gy=h

El ntimero de los valores posibles 4 es finito o numerable y los
conjuntos {x:h(x)=~h} correspondientes a estos valores son medi-
bles, ya que el miembro derecho de la igualdad (2)es; obviamente,
un conjunto medible. Luego, h(x)=/f(x)+g(x) es una funcién
medible simple. R K TR
“Sean' ahora f(x) y g(x) dos funciones medibles arbitrarias;
consideremos las sucesiones {f,(x)} y {g.(x)} de funciones simples
convergentes hacia- f(x) y g(x) respectivamente. Entonces, las
funciones simples f, (x) -+ g,(x) convergen uniformemente hacia la
funcién f(x)4-g(x) que, en virtud del teorema 5, es medible.
b) El producto de una funcién p-medible por un niimero
constante es p-medible. Esta afirmacion es obvia. . S
De a) y b) resulta:
¢) La diferencia de dos funciones p-medibles es p-medible.
d) El producto de funciones p-medibles es p-medible. En

efecto, consideremos la identidad fg=—-[(f+g)—(F—g)]. La
expresién’ del ‘miembro derecho es una funcién p-medible. Esto
se desprende de a), b) y c) y de que el cuadrado de una funcién
medible es, en virtud del teorema 3, una funcién medible.

©) Si f(x) es medible y f(x) 0, también - es medible.
En efecto, tenemos Sty o
Fra<ef={zrw >4 Ukim <o
para ¢ >0,

{xf(l_xj < c}:{x:O > f(x) >%}
para c<0 y '
{rg<el=twto<a

para ¢=0.
En el miembro derecho figura cada una de las veces un
conjuntcf:(t;wdible. De d) y e) se deduce la medibilidad del co-
» :

ciente 7@ (con la condicién de que g(x)=40).
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En resumen, hemos probado que las operaciones aritmeéticas
con funciones medibles llevan de nuevo a funciones medibles.

4°. Equivalencia. En el estudio de funciones medibles pueden
ser despreciados frecuentemente los valores de una funcién en un
conjunto de medida nula. En este orden introduciremos la si-
guiente definicion. ’

pEFINICION 3. Dos funciones f y g definidas en un mismo conjunto
-medible E se llaman equivalentes (en simbolo f ~ g) cuando

B {x:f (x) # g (x)} =0

Diremos que una propiedad se verifica en casi todo el E cuando
se verifica en todos los puntos de E con la excepcién de puntos
gue forman un conjunto de medida nula. De esta forma, se puede

ecir que dos funciones se llaman equivalentes cuando coinciden
en casi todos los puntos. ’ '

TECREMA 7. Si dos funciones [ y g continuas en un segmento E
so‘rize equivalentes (respecto a la dida de Lebesgue), ellas coin-
ciden. : - o
DEMOSTRACION. Supongamos que en un punto x, se tiene f(xo) 7
+# g(x,), es decir, f (x,)—g (%) 7 0. Como f—g es una funcion
continua, existira una vecindad del punio x, tal que en todos
sus puntos la funcién f—g es diferente de cero. Esta vecindad
tiene medida positiva; de manera que

pix:fR)#g@} >0

es decir, las funciones continuas f y g no pueden ser equivalen-
tes, si toman diferentes valores aunque sea en un punto.
Evidentemente, para funciones medibles arbitrarias (esto es,
discontinuas, en general) la equivalencia de dos funciones de
ninguna manera implica su coincidencia; por ejemplo, la funcion
igual a la unidad en los puntos racionales y al cero en los pun-
tos irracionales es equivalente a la funcion igual idénticamente

a cero.

TEOREMA 8. Una funcion f(x), definida en un conjunto medible E
y equivalente en este conjunto a una funcion medible g (x), es
también medible. : '

En efecto, de 14 definicién de equivalencia se desprende que
los conjuntos

i) <a} y {x:g(x) <a}

pueden diferir uno de otro solamente en un conjunto de medida
nula; por consiguiente, 'si_es medible el segundo de ellos, es me-
dible también el primero. : :
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5° Convergencia en casi todos los puntos. Puesto que en
muchos casos el comportamiento de las funciones medibles en
uno u otro conjunto de medida nula no tendra importancia para
nosotros, resulta natural generalizar del siguiente modo el con-
cepto habitual de convergencia de una sucesién de funciones.

DEFINICION 4. Una sucesién de funciones f, (x) definidas en un
espacio X se llama convergente en casi todos los puntos hacia

F (x) cuando .
lim f, (x) = F (x) @)
n-—-o .
para casi todo x€ X (es decir, el conjunto de aquellos puntos x
en los que no se verifica (3) es de medida nula). e
Ejemplo. La sucesién de funciones f, (x) = (—x)", definidas en
el segmento ([0, 1], converge para n— oo hacia la funcién
F(x)==0 en casi todos los puntos (a saber, en todos puntos a
excepcion del punto x=1). ' ‘ o
El teorema 2 admite esta generalizaci6n.

TEOREMA 2. Si.una sucesion de funciones p-rriedibles [n(x) converge
hacia una funcién F (x) en casi todo el espacio X, F (x) es tam-
bién medible, ) :

DEMOSTRACION. Sea 4 el conjunto, donde
hlim fa(x)=F (*).

Por hipétesis, p(X\ A4)=0. La funcién F () es medible en A

y como cualquier funcién es medible, evidentemente, en un
conjunto de medida nula, F (x) es medible en. X\ A; luego, es
medible también en el conjunto X.

EJERCICIO. Supongamos que una sucesién de funciones medibles f, (x)
converge en cast todos los puntos hacia una funcién limite f (x). Demuéstrese
que la sucesién {fa (%)} converge en casi todo punto hacia g(x) cuando, y
s6lo cuando, g(x) es equivalente a f (x).

6°. Teorema de Egérov. D. F. Egorov - demostré en 1913 el
siguiente teorema importante que establece la relacién entre la
-convergencia en casi todos los puntos y la convergencia uniforme.

TEOREMA 9.  Supongamos que una sucesién de funciones medibles
{fn (%)} converge hacia f (x) en casi todo el conjunto E. Entonces,
para cualquier 8 > 0 existe un conjunto medible Ey — E tal que
1) u(Ep) > p(E)—8; R ;

2) la sucesion {f,(x)} converge hacia [ (x) uniformemente en el
conjunto E,.
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DEMOSTRACION. De acuerdo con el teorema 2’ la funciéon f(x) es
medible. Pongamos

B =N {1l 0—f 0] <5 ).
i>n

De esta forma, E7 representa, para m y n fijos, el conjunto de
todos los puntos x para los cuales

1

| —F <o
cualquiera que sea i >n. Sea
- -3
E»= U E®,
n=1

Estd claro, de la definicion de los ¢onjimtos E7, que para un
m fijo
EfcErlc...cErc...

Debido a que una medida o-aditiva es continua, para cual-
quier m y cualquier 8 > 0 existird un n,(m) tal que

n 'm 6
B(E™N\ET m) < B ¢
Tomemos

Ey= n E’:,(m)

m=1

y probemos que -el conjunto E, construido de esta forma verifica
las condiciones del teorema.

Demostremos primero que la sucesién {f, (x)} converge unifor-
memente en Ej hacia la funcién f(x). Esto se desprende inme-
diatamente de que para x€ E; y cualquier m

| fi (x)—F (%) | <% cuando i > n, (m).
Estimemos ahora la medida del conjunto EN E;. Observemos
para ello que p(EN\E™) =0 cualquiera que sea m. En efecto, si

X, € EN\E™, existen valores tan grandes como se quiera de i para
los cuales

1Fi () —F (50) | = =,

es decir, la sucesién {f,(x)} no converge hacia f(x) en el punto x,.
Como, por hipétesis, {f,(x)} converge hacia f(x) en casi todos los
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puntos, tenemos S L
' B (ENE™) =0.
De aqui se sigue que :

| B (ENE ) = B (E™\ By} < 7 -
Luego, ' : R

B (ENEy) =4 (E\ n E'zo;;,,)‘=
:  m=1 .

=p ( U (E\E";,mﬂ < D (ENEfm) < X - =8
m= : = m=
Hemos demostrado el te'orema.‘

7°. Convergencia en medida. ’ )

DEFINICION §. Se dice que una sucesion de funciones medibles f(x) con-
verge en medida hacia una funcién F (x) cuando para cualquier 0 >0

lim p {x:| fn () —F (2) >0} =0.

Los teoremas 10 y 11 que siguen establecen la relacién entre los con-
ceptos de convergencia en casi todos los puntos y convergencia en medida.

TEOREMA 10. Si una sucesién de funciones medibles f, (x) oonverge' en casi
todos los puntos hacia una  funcién F(x), converge en medida hacia

la misma funcién limite F (x).

DEMOSTRACION. Del teorema 2’ se desprende que la funcién limite F (x) es
medible. Sea A ‘el conjunto (de medida nula) en el que f,(x) no tiende
a F (x). Sean, ademés, - ,

Ey (0)={x:|fx ®)—F ()| >0},
Rn (6)= u Ek(o)f

k=n
- ;
M= n Rn (0).
) o a=l
Esta claro que todos estos conjuntos son medibles. Como
» Rl(o):R’(U)D....
tenemos, debido a la continuidad de la medida,
i (Rq (0)) — p (M) para n— oo,

Comprobemos ahora que
Mc A, 4)
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En efecto, si x € A, es decir, si
n‘f:““ fn (xo) =F (%),

para un ¢ > 0 dado existe un n, tal que
| Fn (%) —F (xo) | < 0,
es decir, %, € E,(0) y, con mas razén, xo € M.
Pero, p(A) 20 3; manera que (4) impl?ca p (M)=0y, por consiguiente,
p (R (6)) — 0 para n—» c0;

como E,(6) = R,(a), esto demuestra el teorema.

Es ficil ver en un ejemplo que la convergencia en medida de una
sucesién de funciones no implica, en general, su convergencia en casi todos
los puntos. Efectivamente, definamos para cada k natural en el semisegmento

(0, 1] & funciones
f(lk)’ f;k) D ka)

del siguiente modo

i—1 i
0 para los demés valores de x.

Enumerando una tras otra todas estas funciones obtendremos una
sucesién que, como es ficil de comprobar, converge en medida hacia cero
y al mismo tiempo no converge en ningin punto (jdemuéstrese estol).

EJERCICIO. Supongamos que una sucesién de funciones medibles fj, (x)
converge en medida hacia una funcién limite f(x). Demuéstrese que la
sucesién f, (x) converge en medida hacia una funcién g (x) cuando, y sélo
cuando, g(x) es equivalente a f(x).

Aunque ‘el ejemplo dado demuestra que el teorema 10 no puede invertirse
completamente, tiene lugar el siguiente resultado.

TEOREMA 11. Supongamos que una sucesién de funciones medibles fy(x) con-
verge en medida hacia fv). Entonces, de esta sucesion se puede extraer una

sucesion parcial {f ne (%)} que converge en casi todos los puntos hacia f (x).

DEMOSTRACION. Sea g,, €,, ... una sucesién de niimeros positivos tal que

lim e,=0
n->o

y sean 1y, Mg, ..., Nn, ... UNOS niimeros positivos tales que la serie
’ ’ "h\+'ls.+’-~
converge. Construyamos una sucesién de indices
ny < ng<...
del modo siguiente: n, es ntimero natural tal que
pielfn O —f@I=a)<m

(un ntimero n, de este tipo existe obligatoriamente); n, es un niimero
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tal que .
! B {51 () —F () =85} < s

En general, n, es un néimero tal que
ple: | a0 —F () | =} <mi”
(ng > ng—y).

Mostremos que la sucesién construida converge hacia f (x) en casi todos
los puntos. Efectivamente, sean - .

Ri;kuj {x | F () —F (%) ] =

«®
Q=N R:

i=1
Como - :
RiDR;DR3D ... DRsD...

tendremos, debido a la continuidad de la medida, p(R;)— p(Q).
B * g
Por otro lado, estd claro que p(R)) < 2 1, de donde se desprende
k=i
que p(R;) — 0 para i — oo, es decir, p (Q)=0. Resta probar que en todos
fos puntos del conjunto ENQ tiene lugar la relacién |

Foe () — F (%)

s los k=1,

| Sea 5 € ENQ. Entonces, existirs un iy tal que xo € Ry, Ello significa
que para todo a / S
- %€ (x| Fm)—F ()| =},

es decir,
| o h ) —F 0} | < o

Como, por hipétesis, e, —> 0, se tiene

élgnw F g (x0) = F (%o)-

El teorema queda demostrado.

8°. Teorema de Luzin, C-propiedad. La definicién de funcién medible,
dada al principio de este paragrafo, se refiere a funciones sobre conjuntos
arbitrarios y no esta relacionada, en el caso general, de manera alguna con
el concepto de continuidad de una funcién. Sin embargo, si se trata de
funciones definidas en un segmento, tiene lugar el siguiente teorema impor-
tante demostrado por N. N. Luzin en 1913: .

. TEOREMA 12. Para que una funcién f(x) definida en un segmento [a, b] sea
medible es necesario y suficiente que para cualquier & > O exista una fun-
cién @ (x) continua en [a, b] tal que :

plef () # 9 () < e
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En otras palabras, una funcién medible se puede convertir en una con-
tinua en [a, b] variando sus valores en un conjunto de medida tan pequefia
como se quiera. De una funcién en un segmento, que mediante una «defor-
macién pequefia» de este tipo puede ser hecha continua, se dice que verifica
la C-propiedad (término de N. N. Luzin). El teorema de Luzin muestra
que para funciones de argumento numérico la C-propiedad puede ser tomada
como base de la propia definicién de medibilidad. Es fdcil obtener la de-
mostracién del teorema de Luzin valiéndose del teorema de Egérov (jrealicese
esta demostraciént).

§ 5. INTEGRAL DE LEBESGUE

El concepto de la integral de Riemann, conocido del curso
elemental del Analisis, es aplicable s6lo a aquellas funciones que
o bien son continuas o bien no tienen. «demasiados» puntos de
discontinuidad. Para funciones medibles que pueden ser disconti-
nuas en todo punto donde estén definidas (o incluso pueden estar
definidas en un conjunto abstracto de manera que el concepto de
continuidad carece de sentido para ellas), la construccién de Rie-
mann de la integral no es valida. Al mismo tiempo, para estas
funciones existe un concepto perfecto y flexible de la integral
introducido por Lebesgue. - ' '

La idea principal de la integral de Lebesgue consiste en que,
a diferencia de la integral de Riemann, los puntos x se agrupan
no de acuerdo a su proximidad en el eje x sino de acuerdo a la
proximidad de los valores de la funcion en estos puntos. Esto
ofrece inmediatamente la posibilidad de extender el concepto de
integral a una clase muy amplia de funciones.

Ademés, la integral ‘de Lebesgue se define de un mismo modo
para funciones determinadas en cualesquiera espacios provistos
de medida, mientras que la integral de Riemann se introduce
primero para funciones de una variable y solamente después se
extiende, con las modificaciones correspondientes, al caso de varias
variables. Para funciones en espacios abstractos provistos de medida
la integral de Riemann simplemente no tiene sentido.

En lo que sigue se considerara, siempre que no se diga lo
contrario, una medida o-aditiva p(A4) definida en un algebra
boreliana de conjuntos con unidad X. Todos los conjuntos consi-
derados A « X se supondran p-medibles y las funciones f(x)
estardn definidas para x€ X y seran p-medibles.

1°. Integral de Lebesgue para funciones simples. Introduciremos
primero el concepto de la integral de Lebesgue para las funciones
que hemos llamado con anterioridad simples, es decir, para fun-
ciones medibles con un .niimero finito o numerable de valores.
Sea f una funcién simple que toma los valores

Yo Yas voes Yno oo Yy 5=Y; para i==j.
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- Es natural definir la integral de la funcién f en el conjunto
A mediante la igualdad ~ "

§Hndu=Z 44, donde 4,= (e, f=u) (1)

si la serie que figura en el miembro derecho converge‘.'Defestg‘if;
forma llegamos a la siguiente definicién (en la que, por razones”
obvias, se postula de antemano la convergencia absoluta de esta
serie).

DEFINICION 1. Una funcién simple f se llama integrable o sumable
(respecto a la medida p) en un conjunto A cuando la serie )
converge absolutamente. Si f es integrable, la suma de la serie 1y
se llama integral de f en el conjunto A. o o

. En esta definicién se supone que todos los g, son diferentes,
Sin embargo, el valor de la irtegral de una funcién simple se
puede representar como la suma de productos de tipo cyp (B) sin’
suponer que todos los ¢, son distintos. Esto es posible hacerlo

gracias al siguiente lema.
LEMA. Suﬁ(mgamos que A=} B,, BinB}=ﬁz k,para i=j, y que
kR . . oz

la funcién f tbfna en cada oonj'dﬁto B, un wvalor dnico cy; en-:
tonces, \ o : o '
{1 du =Xaw(8) @)
y la funcion f es integrable en A cuando, y s6lo cuando, la
serie (2) converge absolutamente. : ‘

DEMOSTRACION. Es facil ver que cada conjunto
) ;An= {x:xEA’ f(X)== yn}
es la unién de aquellos B, pafa los cuales.c;#yn. Luego,
- ZunrA)=Z4, T u(B=Tcn (By).
n n x=ln .
Como la medida es no negativa, tenemos

;lynlF(An)=§|yn|ck2=yl"‘(3h)=§,lcklI‘(Bk)v

es decir, las series 3y, (4. y ;c,,p (By) son ambas absoluta-

mente convergentes o ambas divergentes. El lema queda demostrado.
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Indiquemos algunas propiedades de la integral de Lebesgue
de funciones simples: :

A) [1@du+ ede={1F+e @] dn,

con la particularidad de que la existencia de las integrales del
miembro izquierdo implica la existencia de la integral del miem-
bro derecho.

Supongamos, para demostrar esta propiedad, que f toma los
valores f;, en los conjuntos F;cA y g toma los valores g; en los
conjuntos G;c A, de manera que

Ji={Hdu=Sfw E. @)
A
I,={ g dp=3gn(G). @
A
Entonces, de acuerdo con el lema,

1={1)+eWldn=FB(i+e)n FinG). 6

pero, - .
P(Fi)=§]:H(FinQ/): P'(Gj)=$l*(FinG/)»

de manera que la convergencia absoluta de las series (3) y (4)
implica la convergencia absoluta de la serie (5); ademas,

J=J,+1,

B) Para cualquier constante &
k1) do=§ (6 ) do

donde la existencia de la integral de miembro izquierdo implica
la existencia de la integral del miembro derecho. (La comproba-
ciéon es inmediata).
"~ C) Una funcién simple f acotada en un conjunto A es inte-
grable en A y, ademais, si |f(x)|<<M en A, se tiene

|§‘f(x)du|<,Mu(A).

(La comprobacién es inmediata).
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2°. Integral de Lebesgue en conjuntas de medida finita. -
DEFINICION 2. Una funcién f(x) se llamara integrable (sumable) en
un conjunto A cuando exista una sucesién de funciones simples f,
integrables-en A convergente uniformemente hacia f.

El limite
I= lim § fa () dp (8
s s ' BArx ) Sl R TR
sera denotado mediante '
§ f@dp

y llamado infegral de la funcién f en el conjunto A.
Esta definicién es correcta si se verifican las siguientes con-
diciones: SR ,
1. El limite (6) existe cualquiera que sea la sucesién unifor-
memente convergente de funciones simples. integrables en A.
- 2. Este limite no depende, para una funcion fijada f, de la
seleccion de la sucesién {f,}.
3. Para las funciones simples las definiciones de la integrabi-
lidad y de la integral coinciden con las dadas en el punto 1.
Todas estas condiciones quedan, realmente, satisfechas.
Para demostrar la primera, basta observar que, debido a las
propiedades A), B) y C) de la integral de funciones simples,

|S Fa () dp—1 o (9)ds ,< pA) suwp [fo()—fa®)]. ()
A A X€6A

Para demostrar la segunda condicién es preciso considerar dos
sucesiones {f,} y {f3} convergentes hacia f. Si el limite (6) to-
mara valores distintos para cada una de estas dos sucesiones, no
existiria el limite (6) para la sucesi6n obtenida como unién de
estas dos, lo que estaria en contradiccién con la primera condi-
cion. Finalmente, para probar la validez de la tercera condicién
es suficiente considerar la sucesién f,=". ‘

Establezcamos las propiedades fundamentales de la integral
de Lebesgue. Una consecuencia directa de la definicién es que -

L - §i-dn=u(A>- I @®)
I1. Para cualquier constante k '
§ {kf (1)) dp =k § f(x)dp, ©)

donde la existencia de la integral del miembro izquierdo implica
la existencia de la integral del miembro derecho.

Esta propiedad se deduce, mediante el paso al limite, de la
propiedad B) para las ‘integrales de funciones simples.
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L {reds+ {ean= SU@+e@ian. a0

donde la existencia de las integrales del miembro izquierdo im-
plica la existencia de la integral del miembro derecho.
La demostracion se obtiene, mediante el paso al limite, de
la propiedad A) de la integral para funciones simples. :
IV. Una funcién f acotada en un conjunto A es integrable en A.
La demostracién se obtiene, mediante el paso al limite, de
la propiedad B) de la integral de funciones simples.
V. Si f(x) >0, se tiene '

§f(x>dp>o (11)

(suponiendo que la integral existe).

Para las funciones simples esta propiedad se deduce directa-
mente de la definicion y en el caso general la demostracion se
basa en la posibilidad de aproximar una funcién no negativa
mediante funciones simples no negativas.

De la filtima propiedad se desprende inmediatamente que para
f(x)>g(x) se tiene

§rdp = g(xyap, (12)
A A

de manera que siendo m<f(x)<<M para todos (o casi todos)
los x€ A, tendremos

mp. (4) < § F(2) dp < Mp (A). ' (13)

VI. Si u(4)=0, se tiene § f (x)dp=0.

A

Esta afirmacién se deduce directamente de la definicién de
la integral de Lebesgue.

VII. Si una funcién ¢ es integrable en A y |f(x)|<<@(x)en
casi todo el A, entonces f es integrable en A.

En efecto, si f y ¢ son funciones simples, omitiendo del con-
junto A un conjunto de medida nula, podemos representar el
conjunto A’ que queda como la unién de una cantidad finita
o numerable de conjuntos;, en cada uno de los cuales f y ¢ son
constantes

f(x) =ay 9 (x) = bu Y, ademis, I an I <b,.

223427
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D;e‘ la integrabilidad de ¢ se desp‘;gndg que

 SIalk @) <Touid) - [oe)du= 0 ) dn
De manera que fes tambiénrintegtabler y | k
|§ F () dp §f () dp|=|Sap(4,)|<

<o ln(d)={ 7)1 dn< § o (o) d.

En el caso general esta afirmacién se demuestra pasando al
limite.
VIII. Las integrales

L={f@dn L={f@ia 9
A . A .

o bien existen ambas o bien ambas no existen. :
En efecto, la existencia de la integral /, implica la existencia

de la integral I,. ; - el el

" Lo reciproco se desprende, en el caso de una funcién simple,

de la definicién de la integral y en el caso general se demuestra

mediante el paso al limite y valiéndose de la desigualdad

llal—|6]|<|a—b]

3°. c-aditividad y continuidad absoluta de la integral de Le-
besgue. En el punto anterior hemos enunciado las propiedades
de la integral de Lebesgue en un conjunto fijado. Ahora estable-
ceremos algunas propiedades de la infegral de Lebesgue conside-
rando la expresién ‘ - :

F(A)=§f(x)du

como funcién de conjunto, definida en la clase de conjuntos me-
dibles. Probemos, ante todo, la propiedad siguiente.

TEOREMA 1. Si A=UA,,; A;NA;= para i j, entonces,

§ ) dp=3 j f (x) dy, (15)

donde la existencia de la integral del miemb}o izquierdo implica
la existencia de las integrales y la convergencia absoluta de la
serie del miembro derecho.
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DEMOSTRACION. Probemos primero la afirmacién del teorema para
el caso de una funcién simple f que toma los valores

yl’ y2’ "°’ym cre

By={x:x€A, [(x)=uys},
B,={x:x€A,, [x)=uy}

Sean

Entonces,

§f(x)du=§lyku (Bk)=§y,,2n‘,p(3nk)=
=§§kau(3nk)=.§‘,g F(x)du. (16)

Ap

Como la serie )y, (B,) converge absolutamente, suponiendo que f
es integrable en A, y como las medidas de todos los conjuntos
son no negativas, también convergen absolutamente todas las de-
mas series de la cadena de igualdades (16).

En el caso de una funcién f arbitraria, se desprende, de su
integrabilidad en A, que para cualquier & > 0 existe una funcién
simple g integrable en A que verifica la condicion

, |f(x)—g )] <e. (17)
Para g tenemos ‘
{emdn=31{ gndn, (18)

donde g es integrable en cada conjunto A, y la serie (18) con-
verge absolutamente. De este tiltimo hecho y de la estimacién (17)
se desprende que f es también integrable en cada A, y que

2§ redn—{ gdu|< Bew (A =en (),

|Sf(x)du—-§g(x)du|<sm),
A A s

esto y (18) demuestra la convergencia absoluta de la serie
ZS f(x)dp y lleva a la estimacion
n 2,

|3 rdn— {1 du| <2en ()

Como &> 0 es arbitrario, obtenemos
> f(x)du=§f(x)du-
n A"

22*
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COROLARIO. Si f es integrable en A, [ es integrable también en
cualquier conjunto medible A'=A. : =

emos demostrado que la integrabilidad en un conjunto A

de una funcion f(x) implica, en el caso en que A= UA, vy

AN A5, que f(x) sea integrable en cada ‘A, yque la integral

en A sea igual a la suma de las infegrales en los conjuntos A,.

Esta afirmacién puede ser invertida en el sentido siguiente.

TEOREMA 2. Si A=|J A, AiNA;=@ para i£] y la serie

2{ 111w
converge, la funcién, [ es integrable en A y
{ma=31 fmau.

Lo nuevo aqui, en comparacién con el teorema anterior, es
la afirmacién de que la convergencia de la serie (19) implica la
integrabilidad de‘? en A. : .

Realicemos la demostracién primero para el caso de una
funcién simple f que toma los valores f; en los conjuntos B;.
Tomando :

—

Au{: Au n B‘,
tenemos

§ |76 1dp =31 Felw (A,

- La convergencia de la serie (19) i.mplica la convergencia de

las series ’
gg'h“"(‘qni}:;lh’p':(BinA)'
La convergencia de la daltima serie significa la existencia- de
la integral B
{fwds=3 1w @ina)

En el caso general, aproximaremos la funcién f mediante
una funcién simple } de manera que

IF ) —F ()] <e. (20)
Entonces,

S < §17@1dn t-en(4)
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y como la serie

SrA)=p)

converge, la convergencia de la serie (19) implica la converéen-
cia de la serie

p) AS 1F () s,

es decir, implica, de acuerdo con lo demostrado, la integrabili-

dad en A de la funcién simple f. Pero, entonces, la funcién ini-
cial f serd también integrable en A, debido a (20). El teorema
queda demostrado. ,

Desigualdad de Chébishev. Si ¢ (x) =0 en A, entonces

pixix€4, o>l > %§¢(x)du- @1

En efecto, sea :
A'={x:x€ A, @(x)=>rt}.
Entonces, '

(owdn=(omdst+ § ewdn= {o@dn=cn(a).
A A a4 A _

COROLARIO. Si
§1F ) 1dp=0,
A

es f(x)=0 en casi todos los puntos.
Efectivamente, tenemos, en virtud de la desigualdad de
Chébishev,

plrxed, 171> 5} <n [1F(91dn=0
A
para todos los n. Por la tanto,
pixix€A4, f(=£01< Y, p){x:xeA, [f(x)[}%}=0.
n=1 :

En el punto anterior hemos indicado que la integral de
Lebesgue en un conjunto de medida nula es igual a cero cual-
quiera que sea la funcién f.-

Esta afirmacién puede ser considerada como el caso limite
del siguiente teorema importante.
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TEOREMA 3 (continuidad absoluta de la integral de Lebesgue). Si
f(x) es una funcion sumable en un conjunto A, para cada
e8>0 existe un 6 > 0 tal que

§ Fydu ’< e
. . e . .
para cualquier conjunto medible ec A tal que p(e) < 8.

DEMOSTRACION, Observemos, ante todo, que nuestra afirmacién
es evidente cuando f es acotada. Sea ahora f una funcién arbi-
traria sumable en A. Tomemos

A= {xx€4, a<|FH)I<n+1)
: e o
; BN,‘= UAm CN=A\BN°
' n=o °
Entonces, en virtud del teorema 1,

® "

S1F@ldp= 3 §1709)dp.
A n=0 A
Escojamos N de manera que

> 1 ldn=

n=N+1 N

[f(x)ldp < 5,
y sea ‘
0<6<2(T':L-1—).
Si ahora p (e) < 6, tendremos S
§f(x)du <{1f@lde= § 1fmidp+ § |7 () |dp.

‘e - enBy o chN

La primera de las integrales del miembro derecho no pasa de
% (propiedad V), mientras que la segunda no es mayor que la
integral referida a todo el conjunto C,, es decir, tampoco pasa
de %; luego, tenemos S

SlFoldp <e.

Las propiedades establecidas de la integral como funcién de
conjunto llevan al resultado siguiente. Sea f una funcién no



§ 5. INTEGRAL DE LEBESGUE ) 343

negativa, sumable en un espacio X respecto a una medida p.
Entonces, la funcién

F(d)={fx)dp

A

estd definida para todos los conjuntos medibles AcX y es no
negativa y o-aditiva, es decir, satisface la condicién: si A= U A,

y A;nA;=, se tiene F(4)= F(4,). En otras palabr;s la

integral de una funcién no negativa posee, considerdndola como
funcién de conjunto, todas las propiedades de una medida o-adi-
tiva. Esta medida estd definida en la misma o-algebra en la
que estd definida la medida inicial p y, ademas, esta relacionada
con p mediante la condicién: si p(A)=0, también F(A4)=0.

4°, Paso al limite bajo el signo de la integral de Lebesgue.
La cuestién sobre el paso al limite bajo el signo de la inte-
gral o, que es lo mismo, sobre la posibilidad de integrar tér-
mino por término una serie convergente, surge con frecuencia en
diferentes problemas. ‘

En el Analisis clisico se demuestra que una condicién sufi-
ciente para poder realizar este paso al limite es la convergencia
uniforme de la sucesién (serie) correspondiente.

Demostraremos ahora ciertos teoremas acerca del paso al
limite bajo el signo de la integral de Lebesgue que constituyen
unas generalizaciones de largo alcance de los teoremas correspon-
dientes del Analisis clasico.

TEOREMA 4 (Lebesgue). Si una sucesion {f,} converge en A hacia f

y para todo n

[F(0) | <@ (x)
donde @ es integrable en A, la funcion limite [ es también
integrable en A y

{ ra00dn— § oo .

A A

DEMOSTRACION. Se desprende ficilmente de las condiciones del
teorema que | f(x)| < ¢ (x). Por eso, como hemos sefialado en el
punto anterior (propiedad VII), f(x) es integrable. Sean

A= {x:h—1 <@ <K Ba= U A={x:0()>m).
k>2m
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Por el tecrema 1 S
lowdn=3 fowdn (22)
A s ; k Ay

y la serie (22) converge absolutamente. Ademis,

Jowan= 3 § o

k>m Ay

De la convergencia de la serie (22) se desprende la existencia
de un m tal que '

. scp(x)dp<§.
.~ Bm f

En AN\B, se cumple la desigualdad ¢ (x) <m. En virtud del
teorema de Egérov, se puede representar A\B,, en la forma

ANB,=CUD, dondep(D) < = y en el conjunto C la sucesién
{f»} converge uniformemente hacia f.
Escojamos N de manera que para n> N se tenga
, , ff,,(»)-—f(x)!<ﬁ
en el conjunto C. Entonces,

§ Fut—F o= § f,(0dn— § Foydp+
A Bﬁu Bﬂl

+ § fo(x)dp— § f (x)dpp + § [ (X)—F (x)] dps.
De aqui ‘

§ 1w —F ()| dn<5et=e.

P ;

COROLARIO. Si |f,(x)|<<M=const y f,— f, tenemos
§ fa ) dn— § fex)dp.

g ;

Observacion. Como quiera que los valores que asume una
funcién en un conjunto de medida 0 no influyen en el valor de
la integral, bastaria suponer en el teorema 4 que {f,} converge
hacia f en casi todos los puntos y que las esigualdades
|fa(x)| < @(x) se cumplen también en casi todos los puntos.
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TEOREMA 5 (Beppo Levi). Supongamos que

O<fF<..<f()<...
en un conjunto A, en el que las funciones f, son integrables,
Yy que sus integrales son acotadas en su conjunto

{f.dn<K.
A
Entonces, existe en casi todo el A el limite (finito)
Fl)= lim , (x), @
la funcién [ es integrable en A y
{fa@dp— {f(x)dp.
A A ’
Ademas, en el conjunto, en el que no existe el limite (23), la

funcién f puede estar definida arbitrariamente, toméndose, por
ejemplo, f(x)=0 en este conjunto.

DEMOSTRACION, Vamos a suponer que f,(x)=>0, ya que el caso
general se reduce a éste pasando a las funciones

7n=fn—f1'
Consideremos el conjunto
Q={x:x€A, f,(x)— oo}.

Es fécil ver que Q=) |J Q. donde

QP = {x:x€A, [(x)>rh
En virtud de la desigualdad de Chébishev (21),
pE@O<X.
Como QcQ’c...cQPc..., tenemos p (U Q},"’) <K/r, vy
como para cualquier r ‘ "

Qc |J ey,
n
encontramos de aqui que p(RQ)<CK/r. Por ser r arbitrario,
w(Q)=0.

Con esto queda demostrado que la sucesion monétona {f, (x)} tiene
en casi todo el A un limite finito f(x).
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~ Sea ahora ¢ (x)=r para ‘aquellos x en los cuales
r—1<'"f(x)<r.‘rf‘—l 2, ...

Si demostramos la mtegrabxlxdad de @(x) en A, la afirma-
cién de nuestro teorema se desprendera mmedxatamente del

teorema 4.
Denotemos por A el con]unto de aquellos puntos x€ A para

los cuales @ (x)=r y pongamos
Como las funciones. f,, y f son acotadas en B; y siempre

9 (¥)<f(x)+1, tenemos
BS(P(x)dP{<§f(x\)dp+p(4)”=‘ |
| ‘ = lim {f,(0dp+p(A)<K+p(A).
Pero, o 'f‘“”f’“ : |

BS @ (x)dp =,§1‘rp (4,).

La acotacion de estas"‘sumas implica la convergencia de la serie

3 4= Scp(x)du

Tr=l

Luego, ‘hemos demostrado que @ es 1ntegrable en A
‘COROLARIO. Si 1];,,y(x)>0 y
-2§MM@<%
n=1
entonces, la serie. Y}V, (x) converge en casi todo el Ay

S(E %(x)) ‘ g AS\p,,(zc)dp.

TEOREMA 6. (Fatou). Si una sucesion ! fa} de funciones medibles
no- negatwas converge en casi todo el A hacia f y

| JIACEES ¢
[ es integrable en A y

Stmdan<k.
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DEMOSTRACION, Tomemos
@, (x)= inf f, (x);
k>n
¢, es medible, ya que

{rig,(x) <cf= U {x:fr ) <<}

k>n

Ademés’ como O< Px (x)gfn (JC), ¢, son medibles y
Sodn< (r0du<ks
A

finalmente,
p)<eW<...<e, (<.
y )
lim , ()= ()

en casi todos los puntos. Por lo tanto, aplicando a {g,} el teo-
rema anterior, obtenemos el re§ultado necesario.

5°. Integral de Lebesgue en un conjunto de medida infinita.
Al hablar de la integral y de sus propiedades, hemos aceptado
hasta este momento que se consideran funciones definidas en uno
u otro conjunto medible de medida finita. Sin embargo, trope-
zamos frecuentemente con funciones definidas en un conjunto de
medida infinita, por ejemplo, con funciones definidas en la recta
con su medida lebesguiana. Por esto es importante extender el
concepto de la integral también a este caso. Nos limitaremos al
caso practicamente mas esencial en el que el conjunto X puede ser
representado como la unién de una cantidad a lo sumo nume-
rable de conjuntos de medida finita?:

X=UX. B(X)< oo (24)

Llamaremos sucesién exhaustiva a toda sucesién {X,} de subcon-

.

%untos medibles del conjunto X que verifica la condicién (24).
ntroduzcamos la definicién siguiente. .

1 Si un espacio X, en el que estd definida una medida p, puede ser
representado. como la unién de una cantidad numerable de conjuntos de
medida finita, la medida en X se llama o-finita. Como ejemplos de medi-
das o-finitas pueden servir las medidas de Lebesgue en la recta, el plano
y el espacio n-dimensional. Medidas que no son o-finitas se pueden obtener,
por ejemplo, asignando a cada punto de la recta el peso 1 y llamando -
meﬂib)]es a todos los subconjuntos finitos de la recta (que constituyen un
anillo). : ,
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DEFINICION 3. Una funcién medible f, definida en un conjunto X
de medida o-finita X, se llama sumable en X cuando es sumable
en cada subconjunto medible AcX de medida finita %( cuando
parla cada sucesién exhaustiva {X,} de conjuntos medibles existe
el limite ,

lim S F(x)dp (x). (25)
n-» o X‘ .
Este limite se llama integral de f en el conjunto X y se denota con

§F () dp ().
X

Estd claro que el limite (25) no depende de la seleccién de la
sucesién exhaustiva {X,}, ya que, de lo contrario, uniendo dos
sucesiones exhaustivas podriamos construir una sucesién exhaus-
tiva para la cual el limite (25) no existiria. Esta claro también
que si la funcién f se anula fuera de un conjunto de medida
finita, la definicion de la integral que acabamos de enunciar
coincide con la que ha sido dada en el punto 2. .

- Observacion. La definicion de la integral de una funcién
simple, dada en el punto 1, puede ser conservada textualmente
también en el caso de medida infinita. Estd claro que para que
una funcién simple sea sumable es necesario entonces que asuma
cada valor diferente del cero solamente en un conjunto de medida
finita. La definicién de integrabilidad, dada en el punto 2, esta
relacionada estrechamente con la suposicién de que la medida del
conjunto X sea finita. En efecto, si p(X)= oo, la convergencia
uniforme de una sucesién de funciones simples sumables {p,} no
implica, en el caso general, la convergencia de la sucesién de sus
integrales (jdése un ejemplot). ~

Los resultados expuestos en los puntos 2 y 3 para el caso de
medida finita subsisten, en lo fundamental, para las integrales en
conjuntos de medida infinita. ‘

La diferencia substancial consiste en que, en el caso de
B (X)=o0, una funcién medible acotada en X no es necesaria-
mente sumable. En particular, si p(X)= oo, ninguna constante
diferente del cero es integrable en X.

El lector comprobaré ficilmente que los teoremas de Lebesgue,
de Beppo Levi y de Fatou subsisten en el caso de medida o-finita.

' 6°. Comparacién de la integral de Lebesgue con la integral de
. Riemann. Veamos la relacion que existe entre la integral de
Lebesque y la integral de Riemann, limitindonos al caso mis
sencillo de la medida lineal de Lebesgue en la recta.
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TEOREMA 7. Si existe la integral de Riemann

b
=R f(x)dx,
f es integrable en [a, b] segun Lebesgue y

{ Feydp=1.
[a, 8]

DEMOSTRACION. Consideremos la particion del segmento [a, b] en
27 intervalos mediante los puntos .

Xp=a-+ 5 (b—0)

y consideremos las sumas de Darboux correspondientes a esta
particién

Q, _b—az Mnk’

_ b—a Z Mg

donde M,, es la cota superior de | en el segmento
Xp 1t ST Xy

y m,, la cota mfenor de f en el mismo segmento. Por deﬁmcwn
de la integral de Riemann,

I=1lim Q,=lim o,

n->w n-»>w

Tomemos ;
[ (%)= My paré X1 KX Ko
f(6)= 1y, para 53 <X Ko

En el punto x=» las funciones f, y f» pueden ser definidas arbi-
trariamente. Es facil probar que

{ =0,
[a, 8]

§ Ldn=o,
[a, 0]

Como la sucesién {f,} es no creciente y la sucesién {f»} no de-



350 CAP. VI. MEDIDA, FUNCIONES MEDIBLES, INTEGRAL

creciente, tenemos en casi todos los puntos
B0 = T@=21®, L0 — [ <.
En virtud del teorema 7,
{ Fwdu=1im @,=7/=1im o, = § foodp.
[a, 8] ne e o [a, 6]
De manera que

§ 1Fe)—feldp= § (Fo—feopdu=0
[a, b] [a, b1
¥» por consiguiente, en casi todos los puntos

fo—fw=0,

es decir,

FO=fE=F

§ feydu=r.
[ 8]
El teorema queda demostrado. ,

Es facil sefialar ejemplos de funciones acotadas integrables
segin Lebesgue, pero no integrables segiin Riemann (por ejemplo,
la funcién de Dirichlet, mencionada anteriormente, que es igual
a 1 para losx racionales y al 0 para losx irracionales).

Las funciones no acotadas no son integrables segiin Riemann,
pero muchas de ellas son integrables segtin Lebesgue. En parti-

cular, cualquier funcién f(x)=>0 para la cual la integral de
Riemann , '

| Feoa

a+ée

existe para cada e >0 y tiene un limite finito / para e —0, es
integrable en [a, b] segin Lebesgue y

b
§ twdp=tim § feoar.
[a, 8] e~+0

a+t+g
Sefialemos que las integrables impropias
b

b
§f(x)dx= lim { f(x)ar,

ate
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en el caso en que
b

sli-n‘(l) a.S;.el f(x)ldx=°0,

no existen en el sentido lebesguiano ya que, de acuerdo a la
propiedad VIII del punto 2, la sumabilidad de la funcién f(x)
implica que la funcién |f(x)| sea también sumable. Por ejemplo,
la integral

existe como integral impropia de Riemann (convencionalmente
convergente), pero no existe como integral de Lebesgue. ,

Si una funcién se considera en toda la recta (o en una semi-
rrecta), su integral de Riemann puede existir solamente en el
sentido impropio. Si esta integral converge absolutamente, tam-
bién existird en este caso la correspondiente integral de Lebesgue
teniendo el mismo valor. En cambio, si esta integral converge
convencionalmente, la funcién no sera integrable en el sentido de
Lebesgue. Por ejemplo, la funcién

- senx

X

no es integrable segiin Lebesgue en toda la recta ya que

-4

senx
S I ldx= 00.
-

X

Sin embargo, como se sabe, la integral impropia

©

S‘ senx dx

X

-

existe y es igual a .

§ 6. PRODUCTOS DIRECTOS DE SISTEMAS DE CONJUNTOS
Y-DE MEDIDAS. TEOREMA DE FUBINI

En el Anélisis desempefian un papel importante los teoremas
sobre la reduccién de una integral doble (o, en general, multiple)
a la integral reiterada. El resultado fundamental de la teoria de
las integrales multiples de Lebesgue es el teorema de Fubini que
demostraremos al final de este paragrafo. Previamente expondre-
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mos algunos conceptos y resultados auxiliares que tienen, ademis,
interés por si mismos. :

1°. Productos de sistemas de conjuntos. Un conjunto Z de
pares ordenados (x, y), donde x€X e y€Y, se llama producto
directo de los conjuntos X e ¥ y se denota con Z=XxY. Del
mismo modo, el conjunto Z de sucesiones finitas ordenadas
(%15 % ..., X%,), donde xy€ X,, se llama producto directo de los
conjuntos X,, X,, ..., X, y se denota con

Z=X XXX ... XX, =| X | X,
En particular, cuando
Xy =X,=...=X,=X,
el conjunto Z es la n-ésima potencia del conjunto X:
_ Z=X"
Por ejemplo, el espacio de coordenadas n-dimensional R es
la n-ésima potencia de la recta numérica R*. El cubo unidad 17,

esto es, el conjunto de elementos de R" con coordenadas que
verifican las desigualdades

<<, k=1,2, ..., n
constituye la n-ésima potencia del segmento unidad =[0, 1}.

Si &, &,, ..., ©, son sistemas de subconjuntos de los
conjuntos X,;, X,, ..., X,, entonces, -

R=6,x6;x...x6,

representa el sistema de subconjuntos del conjunto X =| X | X,
que se pueden escribir en la forma o ‘
: A=A, xXA,X... XA,
donde 4,€8,. ;
§i 6,=6;=...=6,=6, es R la n-ésima potencia de &:
: R=6"
Por ejemplo, el sistema de paralelepipedos de R” es la n-ésima
potencia del sistema de segmentos de R:.

TEOREMA 1. Si€,, 8,, ..., &, son semianillos, también R =[x | S,
es un semianillo. :

DEMOSTRACION. De acuerdo con la definicién de semianillo debemos
probar quesi 4, B € R, entonces A B € R y que, ademés, para Bc A
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se tiene A={JC,, donde C,=B, C;nNC;=J para i*| y

i=1
C,eR (i=1,2, ..., n).
Realicemos la demostracién para el caso en que n=2.
I. Sea A€®,xS,, BES,x&,; esto significa que
A=A,xA,, A €EG,, A.E@g,
B=B,xB, B,€€, B,€C,.

Entonces,

AnB=(A,nB,)X(4,nB,)
y como ,

A1 anE@n A»,nBQE@,,
tenemos

ANBEG, xG,.

I1. Supongameos ahora adicionalmente que BcA. Entonces,
B,cA,, B,cA,

y, como &, y ©, son semianillos, tienen lugar las descdmpo,-

siciones -
A,=B,UB®uy...UB¥,
A,=B,UB"U... U By,
A=A xA,=(B,XB)U(B,xBP)U ... U(B,xB{)U

U(BRXB)UBPXBP)U ... U (B X BP)U

---------------------------

En la dltima descomposicién el primer término es B, X B, =B
y todos los términos pertenecen - al sistema &, X&,. Esto demues-
tra el teorema. '

Sin embargo, si los sistemas &, son anillos o anillos borelianos,

ello no implica afin, en el caso general, que el producto |“>E| &,
sea un anillo o, respectivamente, un anillo boreliano.

2°, Productos de medidas. Supongamos que en los semianillos
- Sy &, ..., ©, se han definido las‘medi'das
A By(A), Ba(4y)s oo oy Ba(4) AEG,
Definamos en o ’ ’

R=6,x6,%...X6,
la medida ‘

B=P XPsXe. . Xy
233427
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de la siguiente forma: si
: A=A, XA;x... XA,

B(A) = (A) By (A) ... Bald,).

Es preciso demostrar que p (A) es una medida, esto es, que i (4)
es aditiva. Haremos esto para el caso en que n=2. Supongamos
que se tiene la descomposicién

A=A,xA,=JB®, BONBN=g para i],
k

entonces,

B — Bi’” X B;’”.

En el capitulo I (lema 2 del § 5) ha sido demostrada la exis-
tencia de descomposiciones '

a-Ucm, a-ycr
m [ ]

tales que los conjuntos B{ son uniones de ciertos C{™ y los
conjuntos B¥® son uniones de determinados C{», Es obvio que

BA=mAIBA)=TZLCMHCM,. )
B (B®) =, (BF) by (BP) =3 B, (CM) 1, C), @)

donde en el miembro derecho de la iguaidad (1) aparecen justa-
mente una vez todos los términos que figuran en los miembros
derechos de las igualdades (2). Por lo tanto,

B(A)= ; B (By),

que es lo que debiamos demostrar. ; ;

En particular, la aditividad de las medidas elementales en un
espacio euclideo n-dimensional se desprende de la aditividad de
la medida lineal en la recta. 3

TEOREMA 2. Si las medidas p,, p,, ey B, son o-aditivas, tam-
| bién es o-aditiva la medida p=p, Xp,X ... xR,

Daremos la demostracién para el caso en que n=2. Supon-
gamos que A, es la prolongacién lebesguiana de la medida p,.

Sea C=|JC,, donde los conjuntos C y C, pertenecen a €, x &,

n=1
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es decir,
C=AXB, AE@I’ Be@g’

C,=A,xB, A,€S, B,€,.

Tomemos para x € X ' _
o (B,) cuando x€ A,

f(0)= { 0 cuando x € 4,

Es facil ver que para x€ A :
| Sh=p®)

y 11501- esto, de acuerdo con el teorema de Beppo Levi (teorema 5
de ,

§ 5) |
B fa )by = § s (B) iy = (4)- 1 (B)= b1 (4) 4 (B).
Pero, o ‘ |
§ Fa (@) dhy=py (B,)- s (A) =1 (C,)

de modo que ,
. 2} r(C,)=p(C).

La prolongacién lebesguiana de la medida p, X py X ... X iy
se llamaré producto de las medidas p, y se denotara con

MO E® . @b =R p
En particular, para
. = Ry=. =Ry =)
obtenemos la n-ésima potencia de la medida p:

n .
P =R me=p-
Por ejemplo, la medida n-dimensional de Lebesgue p” es la
n-ésima potencia de la medida lineal de Lebesgue p.

3°. Representacién de la medida plana en términos de la inte-
gral de la medida lineal de secciones y definicion geométrica de
la integral de Lebesgue. Sea G una regién del plano (x, y) limi-
tada por las verticales x=a, x=0 er las curvas y= @ (x), y=10 (x).
Como es conocido, el 4rea de la regién G es igual a la integral

b

V(G = {9 ()— % ()} dr.

23*
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La diferencia ¢ (x,)—¥(x,) representa aqui la longitud de la
seccién de la region G mediante la vertical x=x,. Nuestro obje-
tivo es extender este modo de medir dreas al caso de medidas-

productos arbitrarios
“ =Py ®py‘ ;

Vamos a suponer en lo sucesivo que las medidas p, y p, estin
definidas en 4lgebras borelianas, son o-aditivas y verifican la
condicién de plenitud (si BcA y p{A)=0, entonces B es me
dible), condicién que, como hemos visto con anterioridad, verifi-
can todas las prolongaciones lebesguianas. :

Introduciremos las denotaciones siguientes

A.={y: (v, €A}  (x fijo),
A,={x: (x, Y)€A} (¥ fijo).

Si X e ¥ son rectas numéricas (de modo que XxY es el

plano), A, es la proyeccién sobre el eje Y de la seccién del con-

junto A mediante la recta vertical x=x,
‘TEOREMA 3. En las suposiciones senaladas se tiene
B (A}= § By (Ax) dpx = ‘S; B (Ay) dl‘“y
| para cmtqmercon]unfopnwdible A“ ,,

DEMOSTRACION. Es obvio que basta demostrar la igualdad
p(A) = @a(x)dp,, donde g4 (x)=p, (4,), 3)
X .

ya que la segunda parte del teorema es totalmente andloga a la
primera. Observemos que el teorema incluye autométicamente la
aseveracion de que para casi todos los x (én el sentido de la me-
dida p.) los conjuntos A, son medibles segiin la medida p, y de
que la funcién ¢, (x) es medible respecto de la medida p,. De lo
contrario, la férmula (3) no tendria sentido. a '

 Observemos que la integracién en X se reduce, de hecho, a 1a inte-
gracién en el conjunto U A,C X fuera del cual el integrando es igual a cero,
' : ¥ ) L A o

Anélogamente, S= S .
Y U As
L 3
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La medida p es la extensién lebesguiana de 1a medida
m=p, XP’
definida en el sistema &, de conjuntos de tipo
A=Ay.XA“. o
Para estos conjuntos la igualdad (3) es evidente, ya que en
este caso
‘ _J ny(A,) para x€A4,,
Pa (;)—{ 0 para x€4,.
_ La igualdad (3) se extiende sin dificultad también a los con-
juntos de R(S,) que se descomponen en uniones finitas de con-
juntos disjuntos dos a dos de &,. ‘
En el caso general, la demostracién de la igualdad (3) se basa

en el lema siguiente que tiene interés independiente en la teoria
de prolongaciones lebesguianas.

LEh;;i Para cualquier conjunto p-medible A existe un conjunio B
que

B={}B, B,oB,>...oB,>...

n
B"=U B“t, B,uCBn,C ’,‘ .CB,*C sse 9
&

donde los miqu B, son elementos de R(S,) y AcB y
p(A)=p(B).

La pemosTrAciOoN del lema se basa en el hecho de que, cual-
quiera que sea n, el conjunto A puede ser incluido, por definicién

de medibilidad, en la unién C,,,=UA,,r de conjuntos A,, de &,
' r

de manera que |
pC)<pA+.
. n .
Tomando B,,=nC,, veremos sin dificultad que los conjuntos
&=1
B, tienen la forma B,,=U6,,, donde §,, son elementos de &,.

]
k

Tomando, finalmente, B,,,,=U6,,,, obtendremos un sistema de
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;:onjuntos‘ B, con las propiedades requeridas. Esto demuestra el
ema, R

Empleando el teorema de Bep{:o Levi (teorema 5 del § 5), es
fécil extender la igualdad (3) de los conjuntos B,,€R(S,) a los
conjuntos B, y B, ya que - v

Pa, ()= k‘ﬂ P8, (%), @8, <95, < ...,
5 (x) =n1iﬂl L 7: (x), PB, > 95,2 ....

Si p(A)=0, entonces p(B)=0 y en casi todos los puntos
- L 7] (x)=p'y (Bx)=0' '
Como A,cB,, para casi todos los x el conjunto A, es medible y

Pa(X)=p,(4,)=0,
{os(x)dp,=0=p(4).

Por consiguiente, la féormula (3) es valida para conjuﬁtos A tales
que jp(A)=0. En el caso general, representaremos A en la forma
B\C(, donde, en virtud de (4), :

1 (C)=0.

Como la férmula (3) es vilida para los conjuntos By C, es facil
probar que se cumple también para el conjunto A. Hemos ter-
minado la demostracién del teorema (3).

Consideremos ahora el caso en que Y es la recta numérica,
By €s la medida lineal de Lebesgue y el conjunto A es el con-
junto formado por puntos (x, y) de tipo

xeM, 0<y<f@) 6)

donde M es un conjunto p.-medible y f(x) es una funcién inte-
grable no negativa. En este caso,

f (x) para xe M,
"’(A")={ 0 parax€M

p(d) =§ 7 (x)dp,.
M

Hemos demostrado con esto el teorema siguiente.

TEOREMA 4. La integral de Lebesgue de una funcién no negativa
| f) es igual a la medida B=R.Xp, del conjunto A definido
por las relaciones (5).
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En el caso en que X es también la recta numérica, el con-
junto M es un segmento y la funcién f(x) es integrable segin
Riemann, este teorema se reduce a la expresion conocida de la
integral como el drea comprendida debajo del gréfico de la funcién.

4°. Teorema de Fubini. Consideremos el praducto triple

U=XxYXxZ; si en X, Y yZ estan definidas las medidas p,,
B, Y K, la medida

g = Py ® By ® |
puede ser definida o bien como

pe= Q1) Q 1,
Py =Ry ® (p'y ® P‘z)'

| Es facil probar que, de hecho, estas definiciones son equiva-
en‘es.

El teorema siguiente constituye el resultado principal en la
teoria de integrales maltiples.

TEOREMA DE FUBINI. Supongamos que las medidas p, y p, estdn
definidas en anillos borelianos, son o-aditivas y complefvas; su-
pongamos, ademds, que

o bien como

p=p,Qn,

y que la funcién f(x, y) es integrable respecto a la medida p
. en un conjunto

AcXxY. (6)
Entonces V',

Cree pyan= ( { £, y)duy)dux=
A X \A,

=§ (}SJ *x, 9) dux) dp,. (1)

La afirmacién del teorema incluye la existencia de las inte-
grales en los paréntesis para casi todos los valores de la variable
respecto a la cual se toman estas integrales.

DEMOSTRACION. Realicemos primero la demostracién para el caso
en que f(x, y)>>0. Consideremos con este fin el producto triple

1) Véase la llamada al pie de la pigina 356.
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donde el tercer factor es la recta numérica, y el producto de

medidas sugd el
: o A'a By ®yy®!‘1= p@u,
donde p! es la medida lebesguiana lineal. -
Definamos en U un subconjunto W tomando
x 9, 2)EW
€A, y€A,
0<z<f(x, 9)
De acuerdo con el teorema 4, '

cuando

) ={76s g)dp. ®
Por ofra parte, en viSt'a"del téorvémaé,’
AW ={e W )du,, ®

donde E=p,xp! y W, es el conjunto de pares (g, 2) tales que
(x, y, 2)€ W; Ademés, de acuerdo con el teorema 3,

*a‘<v,)=§ fe, gyd,. (10
Comparando (8), (9) y (10), encontramos
$Fee pdp=T (S f(x, y)dn,)dpn
A X\ Ay /
que es los que queriamos demostrar.
El caso general se reduce al estudiado mediante las relaciones
f(xv y)=f+ (x'y)‘_f_,(x’ y)'

+ If(x.yﬂ-l-f(x.y) ety 1Y) —-f(x,y).
f (x1 y)= P] ’ f (x’ y): B M

|
2

Observacién. Como veremios en los ejemplos que indicamos mas
abajo, la existencia de las integrales reiteradas

| S(S fdu,)dﬂa y § (S fdux> dy, an
X\ 4, v \a,
~no implica, en el caso general, ni la igualdad (7) ni la integra-

bilidad de la funcién f(x, ) en A. Sin embargo, si existe al menos
una de las integrales '

{ (S 1F(x, y)ldu,)dn, 6 S,(S If(x.y)ldux)du,, (12)
X\ 4, Y \4,
f (%, y) es integrable en A y tiene lugar la igualdad (7).
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En efecto, supongamos, por ejemplo, que la primera de las
integrales (12) existe y es igual a M. La funcién f,(x, y)=minx
x{|f(x, 9)|, n} es medible, acotada y, consecuentemente, sumable
en A. Por el teorema de Fubini

(e y)dp=§(§ o (%, y’)dp,)dux<M. (13)
A X \Ap

Las funciones f, forman una sucesién monétona no decreciente
que converge en casi todos los puntos hacia |f(x, y)|. En virtud
del teorema de Beppo Levi, de aqui y de la desigualdad (13) se
desprende que la funcién | f (x, y)| es sumable en A. Pero, entonces,
también f(x, y) es sumable y para ella es valido el teorema de
Fubini. De aqui se deduce nuestra afirmacién.

Hemos demostrado el teorema de Fubini suponiendo que las
medidas p, y B, (y, por consiguiente, también p) son finitas. Sin
embargo, es ficil probar que este teorema subsiste también en el
caso de medidas o-finitas.

Veamos unos ejemplos de funciones, para las cuales existen las integrales
reite;adsaza (11), pero no tiene lugar la igualdad (7).

A=[—l, 12
y v
f(xv y)=zxg__:'yy—g)?;
entonces,
1
{ fe.pdz=0
-1
paray #0 y

1
§ fe pay=0
-1

para x # 0. Por lo tanto,

1 1 1 1
{ ( f(x.mx)ay=g (S i(x.y)dy>dx=0;
=1 \=1 - -1

_ pero la integral, en el sentido de integral doble de Lebesgue, en el cuadrado
no existe,” ya que

t

- ' ' 1 2% 1
If(x.y)ldxdy>§ dr 5 md¢=2§?=w-

 {

51 5
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2. A=[0, I}

LR g
2"para2—,,<x<2,,t_ ;‘2—,;<y<2—,,——_1.

= 1 1 1 1
f(xoy) 2In+1 parazn+l<x<2u’ 2n<y<2n T
0 en los demés casos.
Se puede calcular que
' 1,1

§ (S F (5 g) dx) dy=0
\§

1,1 ‘
S(Sf(x.y)dy>dx=%.
0 N0

mientras que



CAPITULO
Vil

INTEGRAL INDEFINIDA
DE LEBESGUE. TEORIA
DE DIFERENCIACION

En este capitulo continuaremos el estudio de la integral de
Lebesgue, limitindonos fundamentalmente al caso de funciones
en la recta y aceptando que la medida, respecto a la cual se toma
esta integral, es la medida habitual lineal de Lebesgue.

Si f es una funcién sumable definida en un conjunto medible
X de medida p, la integral . '

§f(x)du (1)

existe para cada AcX medible y, siendo f fija, representa una
funcién de conjunto definida para todos los subconjuntos medibles
Ac X. Si la funcién f estd definida en un segmento de la recta
numérica y el conjunto A, respecto al cual se toma la integral (1),
también es un segmento, esta integral es funcién de par de puntos,
esto es, de los extremos del segmento A. Fijando uno de los
extremos del segmento de integraciéon, digamos el izquierdo, po-
demos considerar la integral referida al segmento la, x] como

fu;lc,ic’ml de una variable x. Estudiaremos las propiedades de la -
integra

{roat,

tomada en el segmento [a, x] con la medida habitual lineal de
Lebesgue en este segmento, como funcién del extremo superior
~ de integracién x. Este problema nos llevara a considerar algunas
clases importantes de funciones en la recta. El estudio general
de la integral de Lebesgue de una funcién fija f como funcién
de conjunto se realiza en el § 5.
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Son conocidas del curso elemental del Analisis las siguientes
igualdades fundamentales que ‘establecen la relacién entre las
operaciones de diferenciacién e integracién:.si f es una funcién
continua y F una funcién de derivada continua, entonces, '

’ AVCEEON
b ’ a . L . A

Surgen las preguntas: a) ges vilida la igualdad 1) para funciones
sumables en el sentido de Lebesgue? y b) ¢cusl es la clase (la mas
amplia posible) de funciones para la que se verifica la igualdad 2)?
Estas cuestiones son estudiadas en los paragrafos préximos del
presente capitulo. o T :

§ 1. FUNCIONES MONOTONAS. DIFERENCIABILIDAD DE LA
INTEGRAL RESPECTO AL EXTREMO SUPERIOR - ~

e, Prop‘iedads( fundamentales de funciones monétonas. Comen-
zaremos el estudio de las propiedades de la integral de Lebesgue

@)= i@a ()

como funcién del extremo superior con la siguiente observacion
obvia, pero importante: si la funcién f es no negativa, @ (x) =
i ‘ . y

= Sf(t)dt-es una funcién monétona no decreciente; ademas, como

a .
toda funcién sumable es diferencia de dos funciones sumables no
negativas: ' ~

F&y=f*@&—F @, @

la integral (1) es la diferencia de dos funciones monétonas no
decrecientes. Consecuentemente, el estudio de la integral de Le-
besgue como funcién del extremo superior puede ser reducido al
estudio de funciones monétonas del mismo género. Las funciones
monoétonas (independientemente de su origen) poseen una serie
de propiedades simples e importantes que pasamos a exponer.

- Recordemos algunos conceptos necesarios para lo sucesivo.
Siempre que no se diga lo contrario, se consideraran funciones
definidas en un segmento.
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Una funcién f se llama mondtona no decreciente cuando % < X,
implica

Fe)<F(x); |
anélogamente, f se llama mondtona no creciente cuando n<x,
implica ‘ .

FOe) =1 (x,):

Sea f una funcién arbitraria en la recta. El limite
ki :

,,‘j‘},f (*o+1h)

>0

(si es que existe) se Hlama limife a la derecha de la funcién fen
el punto x, y se denota con f (x,+0). Analogamente, el limite a la
izquierda [ (x,—0) de la,func‘:ién f en el punto x, se define como

él_ﬂf (xo','d"h)?
k>e

La ijgualdad f(x,40)=f(x,—0) significa, obviamente, que la
funcion f es continua en el punto. x, o tiene en &l una discon-
tinuidad evitable. Un punto en el que f (x,+0) y f (x,—0) existen,
pero no coinciden, se llama punto de discontinuidad de primera
especie y la diferencia f(x,+0)—f (x,—0) se llama salto de la
funcién f en este punto.
' Una funcién f se llama continua a la izquierda en el punto
x, cuande f(x,)=f(x,—0) y continua a la derecha en este punto
cuando f(x,)=f(x,40). T

Demostremos las propiedades fundamentales de las funciones
monétonas. Para concretar, hablaremos de funciones monétonas
no decrecientes aunque todo lo que se dice a continuacién se
extiende autométicamente a las funciones monétonas no crecientes.

1. Toda funcién f monétona no decreciente en [a, b] es medible
Y acotada y, por consiguiente, sumable. :

En efecto, debido a 1a monotonia,

fx) <[ (0} en [a, B].
Ademéis, para cualquier constante ¢ el conjunto
A.={x:f (1) <c}]

es 0 bien un segmento o bien un semisegmento (o el conjunto
vacfo). Efectivamente, si existen puntos en los que f(x)<c,
designemos mediante d la cota superior minima de todos estos x.
[E'Intg)nces, A, es o bien el segmento [a, d] o bien el semisegmento
m . N . '
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2. Una funcién mondtona puede tener solamente discontinuidad
de primera especie. :

En efecto, supongamos que x es un punto arbitrario de [a, 8]
y que x,— x, siendo x, < x,. En este caso, {f(x,)} es una suce-
sién monédtona no decreciente acotada por arriba (por el valor f(x,),
por ejemplo). Luego, para cualquier sucesién de este tipo existe
lim f(x,), es decir, existe f(x,—0). De manera aniloga se de-

no>o
muestra la existencia de f(x,4+0). ., . .

Es evidente que una funcién monétona no es necesariamente
continua. No obstante, es valida la proposicién siguiente.

3. El conjunto de los puntos de discontinuidad de una funcion
mondétona es a lo sumo numerable. .

Efectivamente, la suma de los saltos-de una funcién f moné-
tona en [a, b] no pasa 'de f(b)—f(a).: Consecuentemente, para
cada n el ntimero de saltos de magnitud mayor que—:; es finito.
Sumando respecto a todos los n=1, 2, ..., obtenemos que el
niimero total de saltos es finito o numerable.

Entre las funciones mondétonas las mas sencillas son las asi
llamadas funciones de saltos. Son funciones que se obtienen del
siguiente modo. Supongamos que en un segmento [a, b] se ha
escogido una cantidad finita o numerable de puntos

Xiy Xgs ooy Xpy oo e
y supongamos que a cada uno de estos puntos se ha asignado un
nfimero positivo h, de manera que Xk, < co. Definamos en [a, b]
. n
una funcién f tomando

fo)= 2 b, (3)
S xe<s

Esta funcién es, obviamente, monétona no decreciente. Ademas,
es continua a la izquierda en cada punto, el conjunto de sus
puntos de discontinuidad coincide con el conjunto {x,} y el salto
en el punto x, es igual a h,. En efecto,

e-+0 xp<x-2
e>0 : &>0

Fe—0)=lim f(r—e)=lim 3 ,

y, como cada x, que verifica la condicién x,< x también verifica
la condicién x, < x—e para e suficientemente pequefio, el dltimo
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limite es igual a 3 hu=F(x). Luego®, |
Fx—0)=F(x).

Si el punto x coincide con uno de los puntos x,, digamos x =
se tiene

f (s +0)=lim f(x, +e)=lim 3 k= X h,
N e-»>0 e-+0 Xn <Xp,t+e x,.<x,.o

es decir, f(x,,.+0)—f(x,,o-—0)=h,,'.
n lo sucesivo entendremos por funcién de saltos cualquier
funcién que puede ser obtenida mediante la construccién descrita.
El tipo mas sencillo de funciones de saltos son las funciones esca-
lonadas, cuyos puntos de discontinuidad pueden ser representados -
mediante una sucesién monétona

(<5< .. <5<, ..

En el caso general, una funcién de saltos puede tener una estfuc-
tura mas compleja; por ejemplo, si {x,} es el conjunto de todos

los puntos racionales del segmento [a, b] y h,,=%, la f6rmula (3)

determina una funcién de saltos discontinua en los puntos raciona-
les y continua en los irracionales.

Ofra clase de funciones monétonas, en cierto sentido opuesta
a la de las funciones de saltos, es la formada por las funciones
monoétonas continuas. Tiene lugar la afirmacién siguiente.

4. Toda funcion mondtona puede representarse como suma de
una _funcién mondtona continua y de una funcién de saltos.

En efecto, sea f una funcién no decreciente cualquiera, sean

Xy, Xy, . .. sus puntos de distontinuidad y sean 4,, h,, ... sus saltos
en estos puntos. Tomemos

Xns

H@)= 3 h,.
Xp<X
La diferencia
¢=f—H

es una funcién no decreciente continua. Consideremos, para
demostrar esto, la diferencia

Q" )—@ (") =[f (") —F(x')] —[H (x")—H (x')].
1 Si hubiésemos definido f mediante la férmula

f(x)= z hm

<X
obtendriamos una funcién continua a la derecha.
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La expresién que figura en el miembro derecho es la diferencia
entre el incremento total de la funcién f en'el' segmento [x’, x"]
y la suma de sus saltos en este segmento, es decir, coincide con
la medida del conjunto de valores que toma esta funcién en sus
puntos- de continuidad ' pertenecientes a ‘[x’, x]. Evidentemente,
esta magnitud es no negativa y, por lo tanto, ¢ es una funcién no
decreciente. Ademés, para un punta x* arbitrario tenemos
Qr—0)=lim f(x)— lim H®)=f@—0— 3 h,
x .2 X+x*=0 T X lX®

PO =T HO—H (0= (40— T .
de donde | e
PEFO—P(—0)=] (O —F (—0)— I =0

(aqui A* es el salto de la funcién H en el punto .V:c')mu
En consecuencia, ¢ es efectivamente continua.

_2°.Diferenciabilidad de una funcion monétona. Después de
haber expuesto ' estas pro?iedada elementales de las funciones
mondlonas, pasemos a estudiar el problema sobre la existencia
de la derivada de una funcién monétona. ~ o

TEOREMA | (Lebesgue). Una funcuin mtmotona [ definida en un
| segmento [a, b] tiene derivada finita en casi todos los puntos de
este segmento. ‘

Introduciremos, ante todo, algurios conceptos que emplearemas
en la demostracion de este teorema. =~ = i
Como es conocido, la djeriva‘da de una funcién f en un punto x,

Fo)—Fe) @

X—2%,

es el limite del cociente

para x—x, Este limite puede, por supuesto, no existir, pero
siempre tienen sentido las cuatro magnitudes siguientes (que. pue-
den tomar también valores infinitos): \

A, que es el limite superior del cociente (4) cuando x tiende
a x, por la derecha (es decir, de manera que x—x,> 0). Esta
magnitud se llama nimero derivado superior derecho.

A4 (nimero derivado inferior derecho) que es el limite inferior
del cociente (4) cuando x— x, por la derecha. :

A; (niimero derivado superior izquierdo) que es el limite supe-
rior del cociente (4) cuando x—x, por la izquierda.

A; (ntmero derivado inferior izquierdo) que es el limite infe-
rior del cociente (4) cuando x — x, por la izquierda.
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La fig. 20 aclara el contenido geométrico de estas magnitu-
des. Esta claro que siempre
M<SAL Yy M<AL

Si Ay, y A4 son finitos y coinciden, su valor comiin es la
derivada de la funcién f(x) en el punto x, a la derecha. Analo-

FIG. 20

gamente, si A;=J,;, su valor comin es la derivada a la izquierda.
La existencia de la derivada finita de f en el punto x; equivale
a que en este punto son finitos y coinciden todos los nimeros
derivados de la funcién f. Por lo tanto, el teorema de Lebesgue
‘puede ser enunciado del siguiente modo: para una funcién moné-
tona en [a, b] las relaciones

L 00 <xi=}\,d=Ai=Ad < (o o]
se cumplen en casi todos los puntos de [a, b].

7
; /

~
-

N,

>
//
/
(
\
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La demostracién del teorema de Lebesgue se basa en el lema
que damos més abajo y que sera empleado también en lo suce-
sivo. :

Introduzcamos la siguiente definicién. Sea g(x) una funcién
continua definida en un segmento a << x<Cb. Un punto x, de este

24—3427
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segmento se llamard punto invisible por la derecha para la fun-
cién g cuando exista un punto §, x, <E<H, tal que g(x,) < g(&)
(véase la fig. 21).

LEMA (Riesz). Cualquiera que sea la funcion continua g el conjunto

de puntos invisibles por la derecha es abierto en el segmento {a, b]
Y, por consiguiente, puede ser representado como la unién de un
nimero finito o numerable de intervalos (a,, b,) disjuntos dos
a dos. En los puntos extremos de estos intervalos. se cumplen
las desigualdades

2@)<gy. | )

DEMOSTRACION DEL LEMA. Si x, es un punto invisible por la derecha
para g, la misma propiedad la tendri, debido a-la continuidad
de g, cualquier punto suficientemente préximo a x,., Luego, el
conjunto de estos puntos es abierto. Sea (a,, b,) uno de los inter-
valos que lo componen. Supongamos que

g(a) > g (be); (6)

entonces, existe en el intervalo (a,, 5,) un punto interior x, en el
cual g(x,) > g(b,). Sea x* el punto mas a la derecha de aquellos
puntos x de (a,, b,) en los que g(x)=g(x,) (véase la fig. 21).

Como x* € (a, by), existe un punto & > »* tal que g(€) > g(x*).
El punto § no puede pertenecer al intervalo (ay, b,), ya que x*es
el punto mds a la derecha de este intervalo en el que g(x)=g(x,),
mientras que g(b,) < g(x,). Por otro lado, la desigualdad & > b,
‘también es imposible, puesto que tendriamos g (b,) < g(x,) < g (8)
no siendo b, un punto invisible por la derecha. La contradiccién
obtenida prueba que la desigualdad (6) no tiene lugar, es decir,
que g(a,) << g(by) y esto demuestra el lema. El lector podra pro-
bar ficilmente que, de hecho, g(a,)=g(b,) siempre que a,a.

- Observacién. Un punto x, se llama invisible por la izquierda
para una funcién g(x) cuando existe un & <x, tal que g(§)>
> g(x,). Los mismos razonamientos permiten establecer que el
conjunto de estos puntoses la suma de un nimero finito o numerable
de intervalos (a,, b,) disjuntos dos a dos para cada uno de los
cuales se cumple la desigualdad ’

g(a) =g (by)-
Pasemos ahora " directamente a la demostracién del teorema

de Lebesgue. Demostrémoslo primero suponiendo que f es una
funcién monétona continua no decreciente.
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Para demostrar el teorema basta probar que en casi todos los
puntos

) Ag<oo ¥y 2) M=Ag
En efecto, si tomamos f*(¥)=—/f(—x), f* serd también una
funcién monétona continua no decreciente. Si A7 y A/ son los
niimeros derivados superior derecho e inferior izquierdo para f*,
es facil probar que '
. A; = A", 7»: = }ado
Por esto, aplicando a f*(x) la desigualdad (2), tendremos
A=Ay Q)
Uniendo en una cadena las desigualdades obtenidas y valiéndo-
nos de. la definicién de los niimeros derivados, tendremos
A< M<SA<M<SAy
y esto significa que )
;'l='}‘d=Ai=Ad'
Probemos primero que A< oo en casi todos los puntos. Si

A, =00 en un punto x,, cualquiera que sea C = const existira a
la derecha del punto x, un punto § tal que

F(E)—F (xo) > C,

E—x

f ®)—F (x0) > C (E—%,)

es decir,

0
fE)—CE> [ (x)) —Cxo

En otras palabras, el punto x, es un punto invisible por la
derecha para la funcién

g(x)=f(x)—Cx.

En vista del lema de Riesz, el conjunto formado por estos pun-
tos es abierto y en los extremos de los intervalos (ag, b;) que lo
componen se cumplen las desigualdades

f (a) —Cay, < f (by) —Cby
es decir,

f () —1 (a) = C (bp—ay)-
Dividiendo por C y sumando las desigualdades obtenidas en todos
24*
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los intervalos (a, b;), encontramos
bx)—f(ay, b)—

Aqui C se puede escoger tan grande como se quiera. De ma-
nera que el conjunto de aquellos puntos en los que A,= oo puede
ser cubierto por intervalos tales que la suma de sus longitudes
sea tan pequefia como se %uiera. Consecuentemente, la medida de
este conjunto es igual a 0. - : ' ' :

El mismo procedimiento, ligado al lema de Riesz, permite
demostrar que en casj todos los puntos A, > A4, stlo que este proce-
dimiento debe ser empleado ahora dos veces. Consideremos un
par de nimeros ¢ y C tales que 0 <c<C < oo y tomemos

p=-5. Sea E, el conjunto de aque‘liqé x para los cuales Ay >C

¥y & <c. Si logramos demostrar que pE,=0, ello implic;ré que
M =>A, en casi todos los puntos ya que el conjunto de puntos,
donde A; < A,, puede ser representado, evidentemente, como la
uniénEde una cantidad a lo sumo numerable de conjuntos de
tipo E..

Con?v:iene destacar el lema siguiente.

LEMA. Para cualquier intervalo (@, B)c]a, b] tenemos
p{x:x€EN(a B} <p(p—a)

DEMOSTRACION.  Consideremos primero el conjunto formado por
aquellos x € (@, B) para los cuales A, <c. Cualquiera que sea el

punto x, existe un § < x tal que f—%—fx—(x)<c, es decir, f(£) —

—¢§ > f (x)—cx. Por lo tanto, x es invisible por la izquierda para
la funcién f(x)—cx y, en vista del lema de Riesz (véase la ob-
servacién en la pag. 370), el conjunto de estos x puede ser re-
presentado como la unién, a lo sumo numerable, de intervalos
(@ Br)= (2, B) tales que f(a) —ca, = F (B) —cBy, es decir,

FBr)—F () e (Br—a). (8)

Consideremos en cada uno de los intervalos (o, By) €l conjunto G,
formado por aquellos x en los que A, > C. Aplicando una vez
mas el lema de Riesz (ahora para los puntos invisibles por la
derecha, lo mismo que al demostrar la desigualdad A, < o0),
veremos que Gy se puede representar como la unién, a lo sumo

numerable, de intervalos disjuntos dos a dos (kg Bry) ¥ que

Bry— e, < - [F (B —F (o)) )
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Esta claro que el sistema de intervalos (o, Be,) cubre el
conjunto E,N(a, f) y que, ademds, tenemos, de acuerdo con (8)
y con (9), ~ :

,?221 (Brj—ox) < 'bl" k}:i [F (Bry)) —F (2] <
<z Dl G —F <5 X B <p(B—o)

esto demuestra el lema.

Ahora es facil probar que efectivamente pE,=0.

Para ello es suficiente emplear sélo aquella propiedad del
conjunto E, que ha sido demostrada en el ualtimo lema. Sea
pE,=t. Cualquiera.que sea & > 0, existe un conjunto abierto G,
igual a la unién numerable de intervalos (a,, b,,), tal que E,cG

y Q(b,—a,) <t+e. Tomemos f,=p [E,N(an bn)]- Es opbvio

m
que {=t,. Por el lema, f,<<p(b,—a,). Luego, t<<p X X
m

m .
X(bp—a,) <p(t+e)ycomo &€ >0 es arbitrario, tenemos ¢ < pt.
Pero, 0 < p <'I; por lo tanto £=0.

De manera que hemos demostrado el teorema 1 para el caso
en que f es una funcién continua. Los mismos razonamientos
sirven para el caso de una funcién monétona discontinua, si se
recurre a la siguiente generalizacion del lema de Riesz al caso
de funciones con discontinuidades de primera especie solamente.

Sea g una funcién en un segmento [a, b] que tiene solamente
discontinuidades de primera especie. Diremos que un punto
%, € [a, b{ es invisible por la derecha para g(x) cuando exista un
£ >x, tal que : :

max [g (x,—0), g(x,), &(x,-+0)] < g ).

Entonces, lo mismo que en el caso en que g es continua, el
conjunto de puntos invisibles por la derecha para g es abierto y
en los extremos de los intervalos (a,, b,) que lo componen se
. cumplen las desigualdades , :

2(a) < g(by).

Aunque la demostracién del teorema 1 es extensa, tiene una
interpretacién simple y obvia. Expliquemos, por ejemplo, por qué
A4 (y A;) deben ser finitos en casi todos los puntos. El cociente

Z% es el «coeficiente de dilatacién» del segmento [a, b] en el
punto dado x bajo la aplicacién f. Como esta aplicacién trans-

forma el segmento finito [a, b} en un segmento finito [f (a), f (b)],
la «dilatacién» no puede ser infinita en un conjunto de medida
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positiva. Tampoco resulta dificil interpretar el dltimo razona-
miento que se basa en el lema demostrado en la pag. 372. Sig-
nifica simplemente que si un subconjunto medible A en cualquier
intervalo (a, B) es parte de este intervalo de medida no superior
a p(B—a), donde p <1 esta fijado, entonces A no ‘puede ser de
medida positiva. ' ;

3°. Derivada de la integral respecto al extremo éuperior.
Como la integral o '

Sx () dt

de cualquier funcién sumable puede ser representada como dife-
rencia de dos funciones monétonas, del teorema 1 se obtiene
inmediatamente el resultado siguiente. ‘

TEOREMA 2. Cualquiera que sea la funcién sumable ¢, la derivada
o g ;
d
zJema (10)
a -

existe para casi todos los puntos x.

Es preciso subrayat que, aunque hemos demostrado la ékisten-
cia de la derivada (10) en casi todos los puntos, el problema
sobre la igualdad :

zlemdt=ow

no se ha discutido an. Resulta (véase el § 3) que ésté: igualdad
es valida en casi todos los puntos cualquiera que sea la funcién
sumable ¢. :

§ 2. FUNCJONES DE VARIACION ACOTADA

El problema sobre la derivada de la integral de Lebesgue
respecto al extremo superior nos ha llevado a considerar la clase
de funciones que pueden ser representadas como diferencia de
funciones monétonas. En este parégrafo daremos una descripcién
distinta de estas funciones, que no se basa en el concepto de
monotonia, y estudiaremos sus propiedades principales. Comence-
mos por las definiciones necesarias. §

DEFINICION 1. Una funcién f definida en un segmento se llama
funcién de variacién acotada cuando existe una constante C tal
que, cualquiera que sea la particién del segmento [a, b] por



§ 2. FUNCIONES DE VARIACION ACOTADA 375

puntos ,
a=x< % <...< X, =D,

se cumple la desigualdad

B —fm-dl<c. (1)

Toda funcion monétona es de variacién acotada, ya que para
ella la suma que figura en el miembro izquierdo de (1) no de-
pende de la particion y es siempre igual a |f(b)—f(a)|. :

DEFINICION 2. Sea [ una funcién de variacién acotada. La cota
superior minima de las sumas (1) correspondientes a todas las
particiones finitas del segmento [a, b] se denomina wvariacién to-
tal de la funcién f en el segmento [a, b] y se designa mediante
V5[f]. De manera que

Vil =sup R1f 0 —F (5a-0) |

Observacién. Una funcién f definida en toda la recta se llama
funcién de variacién acotada cuando las magnitudes

Vilfl
estan acotadas en su conjunto. En este caso,
lim V2[f]
a-+-®
se llama variacién total de la funcién f en la recta —oo < x < o0
y se designa con V=, [f]. : '

Veamos las propiedades fundamentales de la variacién total
de una funcién.

1. Si o es un nimero cdnstante, se tiene
Valef]=|a|V2[f].
Esto se desprende inmediatamente de la definicion de V:[f].
2. Si [ y g son funciones de variacién acotada, también f-g
es de variacién acotada y ‘ :
' Velf+el <ViIfl+Vilg). @)

En efecto, cualquiera que sea la particién del segmento [a, b],
tenemos

;! f () + 8 () —F (Xp-1)— & (Kp=) | <<
< 2 | Fxe)—F (xp-1) | +;Ig(xk)—‘g (%= |
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y, como siempre : -
sup (A+B)<< sup‘A-;-i- sup B,
- obtenemos de aqui la desigualdad necesaria.

Las propiedades 1 y 2 significan que una combinacién lineal
de funciones de variacién acotada (definidas en un segmento dado
[a, b]) es de nuevo una funcién de variacién acotada. En otras
palabras, las funciones de variacién. acotada constituyen un’ espa-

- cio lineal (a diferencia del conjunto de funciones monétonas que
no forma un espacio lineal). '
3. Sia<b<c, se tiene
- VAIRA-VEIfI=VElf]. )

En efecto, consideremos primero una particién del segmento
[a, ¢] tal que b es uno de los puntos de la particién, digamos
x,=b. En este caso, '

ﬁgl FOa)—F (a1 | ’—g‘i | () —F (s} |+
+ 3 -+ @

Consideremos ahora una particién arbitraria del segmento [a, c].
Esta claro que, si agregamos a los puntos de particién uno mds,
a saber, el punto b, la suma

- Birea—fea-l

en todo caso no disminuiri. Consecuentemente, la desigualdad “4)
se cumple’para cualquier particion del segmento [a, c], es decir,

Vil <VEIA+VSIAL.

Por otro lado, cualquiera que sea & > 0, existen unas partici[ones
de los segmentos [a, b] y [b, c] tales que

S —F i) > VAl —3

e —F -0 1> VEIA—% -

Uniendo estas dos particiones, encontraremos una particion del
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segmento [a, c] tal que
S G —F (- | = F ) —F (i) |+
+ 3N e —F G| > Vel + Vil —e.

Como ¢ > 0 es arbitrario, de aqui se desprende que ;
Ve lf1= VeI +Vilf]- ()

De (4) y (5) se deduce (3).

Como la variacién de cualquier funcién en un segmento cual-
quiera es no negativa, obtenemos inmediatamente de la propie-
dad 3 que:

4. La funcion

v(x)=Vilf]

es mondtona no decreciente.

5. Si [ es continua a la izquierda en el punto x*, también v
es continua a la izquierda en este punto.

En efecto, sea dado & > 0. Escojamos 8 >0 de manera que

[F(x*)—F (x)| < 5 siempre que | x*—x| < 8. Escojamos, ademés,
una particién
A=Ky < X, < oo < Xy=x*
tal que
"
Ve i1 =3 1 ) —F e-n) | < 5 (6)
k=1

Podemos suponer que
lx* —xn-li < 8
(de lo contrario, podriamos agregar otro punto de particién ya
que con esto la diferencia que figura en el miembro izquierdo
de (6) sélo podria disminuir); entonces,
) —F (n) | <5
y, por consiguiente,

Ve [fl—3) F )~ ()| <.

Pero, entonces, con mayor razén
Ve [fl—Vin-1[f] < e, es decir, v(x*)—v(X,-,) <&
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Como v es una funcién monétona no decreciente, de aqui se de-
duce que v(x*)—v(x) <e para todo x tal que Xpoy XX,
Esto significa precisamente que la funcién v es continua a la
izquierda en el punto x*, s :

Razonamientos anilogos demiuestran que si f es continua a la
derecha en el punto x*, también v es continua a la derecha en
este punto. Por consiguiente, si f es continua en un punto (o en
todo el segmento [a, b]), también v lo es. '

Sea f una funcién arbitraria de variacién acotada en [a, b]
y sea v su variacién total en [a, x]. Consideremos la diferencia

p=v—f.

Esta diferencia es una funcién monétona no decreciente. En
efecto, sea x’<C«". Entonces,

W) —9 () =[o (N —v (] —[f () —f ). ()
Pero, siempre o
|F ) —F (@) <o (@) —o (x),

de manera que el miembro derecho 3{, consecuentemente, también
el r&i)embro izquierdo de la igualdad (7) son no negativos.
mo

 f=v—g
hemos obtenido de esta forma el resultado siguiente.

TEOREMA 1. Toda funcién de variacién acotada puede ser représ_en-
tada como la diferencia de dos funciones monétonas no decre-
cientes.

Es decir, el conjinto de funciones que pueden ser representa-
das como diferencia de funciones monétonas y que ha sido con-
siderado en el parégrafo anterior, es precisamente el conjunto de
funciones de variacién acotada. ; : :

Del teorema 1 y del teorema de Lebesgue sobre la existencia
de la derivada de una funcién mondtona, demostrado en el pa-
ragrafo anterior, se desprende inmediatamente que foda funcion
de variacion acotada posee derivada finita en casi todos los
puntos.

EJERCICIOS. |. §f f tiene derivada acotada en [a, b] (es decir, f (x) existe
en todo punto y | f* (x)| < C), la funcién f es de variacién acotada y

VEIl<C (b—a).
. 2. Sea f(x)=xsen —l— . Demuéstrese que f no es una funcién de variacién
acotada. ‘
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Las constantes, y sblo ellas, son las funciones cuya variacién total es
igual a 0. Tomemos

| Fll=VE 1A

La magnitud vE [fl posee las propiedades 2g y 3) de la norma (véase la
4g. 149), pero no verifica la 6propiedad 1). Si consideramos solamente las
unciones sujetas a la condicién adicional f (a)=0, ellas también formarin

un espacio lineal en el que la magnitud V4[f] tendrd ya todas las propieda-
des de la norma. El espacio V[, p; de funciones de variacién acotada en

[a, b] que verifican la condicién f(g)=0, con las habituales operaciones de
adici6n y multiplicacién por ntimeros y con la norma

NFt=vain

se 1lama espacio de funciones de variacién acotada.

§ 3. DERIVADA DE LA INTEGRAL INDEFINIDA DE LEBESGUE
En el § 1 hemos demostrado que la integral de Lebesgue

{ Feya

tiene, como funcién de x, derivada finita en casi todos los pun-
tos. Sin embargo, no hemos revelado ain cémo esta relacionada
esta derivada con el integrando. Ahora demostraremos el resultado
que hemos mencionado al final del § 1.

TEOREMA 1. Cualquiera que sea la funcién sumable f, en casi todos
los puntos se cumple la igualdad

Lira=fe.
DEMOSTRACION. Tomemos |
@ (x)={ () adt.

Probemos primero que en casi todos los puntos

f(x) =@ ().
Si f(x) <@’ (x), existiran: nfimeros racionales a y p tales que
f(r) <a<p <P (x). m

Sea E,, el conjunto formado por los puntos en los que se verifica
la d&i&ualdad (1). Demostremos que la medida de cada uno de
estos conjuntos E,; es igual a cero. Como el niimero de estos
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conjuntos es numerable, de aqui se desprendera que
p{x:f(x) <@ ()} =0.
Sea &> 0 arbitrario y sea § >0 tal que

, § F(tydt l< e

siempre que p(e) < 8 (un tal § existe cualquiera que\ sea e de-

bido a la continuidad absoluta de la integral). Escojamos ahora

un conjunto abierto Ge|a, b] de manera que ST

. G2E, y RO <R(E+S.

Si x€ E’B’ tenemos ‘ -
OR)—D '

para todos los & > x suficientemente préximos a x. Escribiendo

la desigualdad (2) en la forma o

' @ (£)—BE > @ (x)—Bx,

obtenemos que el punto x es un punto invisible por la derecha
para la funcién ®(x)—Bx en cualquiera de los intervalos que
componen el conjunto G. Valiéndones del lema de Riesz, pode-

mos por eso indicar un conjunto S={ J(a,, &,) tal que E,,cSc=G y
@ (b)—PBbr = © (a,)—Pa,,
@ (b)— @ (@) =B (b,—ay)

b

§Fyat=p (by—a).
) ;

es decir,

(o)

Sumando estas desigualdades correspondientes a todos los inter-
valos (a, b,) que componen S, obtenemos

§‘f(t)dt->an ). @)
Al mismo tiempo,

§rwat=§ foae+ § feyae<
S 5‘3

sz

<ap(E)te<an(S)+e+ |als, 4)
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Comparando (3) y (4), encontramos
, ap (S)+e+a|8>pBr(S),
es decir,
et|ald
rEO< P—a -

- De modo que el conjunto E,, se puede sumergir en un con-
junto abierto de medida tan pequefia como se quiera (podemos
admitir que [a |8 < e) y estosignifica precisamente que p (E°B) =0.
Hemos demostrado, pues, que '

fx) =0 (x)

en casi todos los puntos. Sustituyendo f(x) por—f(x), encontra-
remos de la misma forma que en casi todos los puntos

—f(x) Z—0' (x),
es decir,
f fO)<O' ()

'y, consecuentemente, en casi todos los puntos

, d [
F=0" (9= [ Fe)ar.
a
El teorema queda demostrado.

§ 4. RECONSTRUCCION DE UNA FUNCION A PARTIR DE SU
DERIVADA. FUNCIONES ABSOLUTAMENTE CONTINUAS

Hemos resuelto, pues, el primero de ‘los problemas plantea-
dos en la introduccion a este capitulo demostrando que para
una funcién { sumable en [a, b]

= Fwd=fe

en casi todos los puntos. Consideremos ahora el segundo def‘los
_problemas antes planteados, es decir, estudiemos cémo se gene-
alibm al caso de la integral de Lebesgue la férmula de Newton —
Leibniz : :

F(x)=F (a) +SF' (t) dt )
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que es bien conocida, en el caso de funciones de derivada conti-
nua, del Anélisis elemental.

Es natural limitarse desde el principio a considerar aquellas
funciones F que son de antemano diferenciables en casi todos los
puntos (de lo contrario, la igualdad (1) no tiene simplemente
sentido). Como sabemos ya, son de este tipo las funciones de
variacién  acotada. , , R

Por otro lado, la integral que figura en el miembro derecho
de (1) es una funcién de variacién acotada. Luego, la igualdad (1)
no puede ser vilida para una clase mis amplia de funciones.
Puesto que toda funcién de variacién acotada es diferencia de
dos monétonas no decrecientes, son precisamente las funciones
monoétonas las que deben ser consideradas en primer término.

Sin embargo, para funciones mené6tonas arbitrarias la igual-
dad (1) no tiene lugar, en general. Pero, es vélida la afirmacién
siguiente. '

TEOREMA 1. La derivada f de una funcion mondtona no decre-
ciente | es sumable y o

b
{Fwde<i®)—f (@)

DEMOSTRACION. Por definicién, la derivada de una funcién f en
un punto x es el limite del cociente®

Pu () =&":.’2:M )

para h —0. La sumabilidad de f iimplica que cada una de las
funciones ¢, sea también sumable y, por lo tanto, la iguaiG.* (2)
puede ser integrada. Esto nos da '

b b b
S Py (x) dx= %Sf (x+h) dx—-}‘-S f(x) dx=
d+h a+h

=1 5 f@de— { Fax.

La expresién que figura en el miembro derecho tiende para & — 0
hacia f(b)—f(a+0). Luego, aplicando el teorema de Fatou,

DPara que la expresién {Sx+ h) tenga sentido cualquiera que sea
x€ [a, b], podemos aceptar que f(x)=f(b)parax > by f (x)=?(a) para x < a.
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encontramos
b b )
(P @ae<lin { gu () de=F O)—F @+ 0)<FO—f @

(el teorema de Fatou garantiza asimismo la existencia de la
integral de f’). Hemos demostrado el teorema.

Es facil dar ejemplos de funciones monétonas para las cuales
tiene lugar la desigualdad estricta

b
(Fdx<fO)—F@.
q

Es suficiente, por ejemplo, tomar

1

0 para 0<<x < ,
fx)= 1 2
1 para—2—<x<l.

Es de mayor interés, sin embargo, el hecho de que existen fun-
ciones monétonas continuas para las cuales se cumple la desi-
X

gualdad estricta S f’ (¢)dt < f(x)—F (a) para todos los x > a. He
J ,

aqui uno de los ejemplos més sencillos. Consideremos en el seg-
mento [0, 1] el conjunto perfecto de Cantor y definamos primero f
en los intervalos contiguos tomando

f)=2, k=1,3,5,..., 2n—1

para el k-ésimo intervalo contiguo, contando de izquierda a la
derecha, de n-ésimo rango (incluyendo sus extremos). Es decir,

1 1 2 1 1 2
f)=—rpara =<i<3,f()=7para <<y,

3 7 8
f(t)=—4—para '9—<t<'9‘.

etc. (fig. 22). De esta forma f estad definida en todo el segmen-
to {0, lg, excepto los puntos de segunda especie del conjunto de
Cantor (es decir, los puntos que no pertenecen ni a los interva-
los contiguos ni al conjunto de sus extremos). Completemos la
definicién de f en los puntos restantes del siguiente modo. Sea £*
uno de estos puntos y sea {f,} una sucesién creciente, convergente
hacia este punto, de puntos de primera especie (esto es, de ex-
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tremos de los intervalos contiguos). Entonces, existe el :.iimite:

lim f(t,); 3

i As®m j

analogamente existe también el limite :
lim f(&) @

donde {t;} es una sucesién decreciente de puntos de primera
especie que converge hacia ¢*; ademéas, los limites (3) y (4)

—

FIG. 22

coinciden. Tomando este valor comin igual a f(¢*), obtendremos
una funcién monétona definida y continua en todo el segmento
[0, 1]. La derivada de esta funcién, 1lamada «escalera de Cantor»,
es igual, evidentemente, a cero en cada punto de cualquier inter-
valo contiguo, esto es, en casi todos los puntos. Consecuente-
mente, tenemos para esta funcién

0={f@d <f)—fO=1

Para poder describir la clase de funciones para las cuales
tiene lugar la igualdad

b ’ .
() de=F6)—F(a)

introduciremos la definicién siguiente. |
DEFINICION 1. Una funcién f definida en un segmento {[a, b] se
llama absolutamente continua en este segmento cuando para cual-
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quier & > 0 existe un § > 0 tal que, cualquiera que sea el sistema
finito de intervalos disjuntos dos a dos '

(ak, bk)’ k=1, 2,..., n

pertenecientes a [a, b] y tal que

Y (b—ay) <8,
k=1

se cumple la desigualdad

n

S by —fa)l<e.

k=1

Esta claro que toda funcién absolutamente continua es uniforme-
mente continua. Lo reciproco, en general, no tiene lugar: por
ejemplo, la «escalera de Cantor» descrita mds arriba es continua
(y, por consiguiente, uniformemente continua) en el segmento
[0, 1] y, sin embargo, no es absolutamente continua. En efecto,
el conjunto de Cantor puede ser cubierto por un sistema finito
de intervalos (a,, b,) cuya suma de longitudes es tan pequefa
como se quiera. Al mismo tiempo, para cada uno de estos siste-
mas de intervalos se cumple, evidentemente, la igualdad

k‘%lf(b.)—f(am —1.

Indiquemos las propiedades fundamentales de las funciones
absolutamente continuas.

1. Observemos ante todo que en la definicién se puede tomar,
en lugar de cualquier sistema finito de intervalos de longitud
total < 8, cualquier sistema finito o numerable de intervalos de
longitud total < 8. En efecto, supongamos que para un &¢>0
dado hemos escogido 6 >0 de manera que '

Y IFby—f@l<e

k=1
ara cualquier sistema finito de intervalos (a,, b,) que verifica
a condicion ' _
n
2 (br—an <8
‘ k=1
y sea (o, B;) un sistema numerable de intervalos de longitud

25—3427
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total no mayor que 8. Entonces; para cualquier n. tenemos

gll FBe—F ()| < &;

pasando aqui al limite para n — oo, 6btei1ém0s que

glf(so—f<&.)t<g.

2. Toda funcién absolutamente continua es de variacion acotada,

En efecto, la continuidad absoluta de una funcién f en un
segmento [a, b] significa que para cualquier & > 0 se puede esco-
ger 6 >0 de manera que la variacién total de la funcién fen
un, segmento de longitud < 8 no serd mayor que e. Puesto que
el segmento [a, b] puede ser dividido en un namero finito de
segmentos de longitud < 8, la variacién total de la funcién f en
[a, b] también sera finita. i T -

3. La suma, la diferencia y el producto por un nimero de fun-
ciones absolutamente continuas son funciones absolutamente conti-
nuas. : _

. Esto se desprende inmediatamente de la definicién de conti-
nuidad absoluta y de las propiedades del valor absoluto de suma,
diferencia y producto. ) ‘ ‘ B

Las propiedades 2 y 3 muestran que las funciones absoluta-
mente continuas constituyen una variedad lineal en el espacio de
todas las funciones de variacién acotada. o

4. Toda funcion absolutamente continua puede ser representada
como diferencia de dos funciones absolutamente continuas no decre-
cienfes. = - : S S
En efecto, una funcién absolutamente continua, como toda
funcién de variacién acotada, puede ser representada en la forma

f=v—g,
v@)=Vilfl y g®)=v(x)—f(»)

son funciones no decrecientes. Probemos que cada una de estas
funciones es absolutamente continua. Demostremos esto para v.
Sea dado un &> 0; escojamos & >0 a partir de este e de acuerdo
con la continuidad abSo[{ita de la funcién f. Tomemos un sistéma
de intervalos (a, b,) de longitud total menor que § y conside-
remos la suma -

donde

- See—va ©)
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Esta suma es la cota superior minima de los niimeros .
n m )
33w —twma ®

correspondientes a todas las particiones finitas posibles
a, <Xy <Xy g < oo < Xym,=by,
A, < Xy <KXy < -0 < Xg,m,=bsy
a, < Xn,1 < Xn,e <...< xn,'"n=bn

de los intervalos (a;, by), - . -+ (@ b,). Como la suma de longitu-
des de todos los intervalos (x; ;» X 1.1) correspondientes a la
suma (6), no pasa de 6 >0, cada una de las sumas (6) es no
mayor que e. Consecuentemente, la suma (6), que es la cota su-
perior minima de estas sumas, tampoco pasa de e.

Los dos teoremas que vienen a continuacién muestran la re-
lacién estrecha que existe entre los conceptos de la continuidad
absoluta y de la integral indefinida de Lebesgue.

TEOREMA 2. La funcidén :
F={rwa,

que representa la integral indefinida de una funcién sumable,

es absolutamente continua. : :
DEMOSTRACION. Si {(ay by)} es un sistema de intervalos disjuntos
dos a dos, tenemos

n n |
SIFb)—F @)= 2‘ \ f(t)-dt|<
* n bk
<X Ifole=§ 1fojd

U (™ by)
k

debido a la continuidad absoluta de la integral de Lebesgue, la

filtima expresién tiende a 0 cuando la longitud total de los in-

tervalos (a,, b,) tiende a cero.

TEOREMA 3 (Lebesgue). La derivada f=F' de una funcién absolu-
tamente continua, definida en un segmento [a, b], es sumable
en este segmento y para todo x(a<<x<b)

. . x :
§ Feydt=F (—F @

25*
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Los teoremas 2 y 3 indican que las funciones absolutamente
continuas, y sélo ellas, pueden ser reconstruidas (salvo un sumando
constante) a partir de su derivada mediante la operacién de in-
tegracidn. o

Para demostrar el teorema 3 nos hara falta el lema siguiente,

LEMA. Si la derivada de una funcion absolutamente -continua mong-
tona no decreciente [ es igual a O en casi todos los puntos, esta
funcion es una constante. ‘

DEMOSTRACION DEL LEMA. Como f es una funcién monétona continua,
~su campo de valores es el segmento [f(a), f(b)]. Probemos que
la longitud de este segmento es igual a cero cuando f' (x)=0 en
casi todos los puntos. Con esto quedara demostrado el lema. Di-
vidamos el conjunto de puntos del segmento [a, b] en dos clases:
el conjunto E de aquellos guntos en los que f'(x)=0y el con-
junto Z, complemento de E. Por hipétesis, p(Z)=0. Tomando
un & >0, busquemos aquel 6 >0 que corresponde a este e en
virtud de la continuidad absoluta de la funcién fe incluyamos Z
en un conjunto abierto, cuya medida es inferior a § (esto es po-
sible ya que u(Z)=0). En ofras palabras, cubramos Z por un
sistema finito o numerable de intervalos (a,, b,) de longitud total
menor que §. De acuerdo con la seleccién de 6, tenemos

- Slfe)—f@l<e.

Luego, todo el sistema de intervalos (a,, b,) (y, con mayor razon,
el conjunto Z perteneciente a la unién de ellos) es transformado
po:t 1; fungién en un conjunto de medida inferior a e. Es decir,
1 (f(2))=0. e S

nsideremos ahora el conjunto E={[a, 5]\ Z. Sea x,€E.
Entonces, como f’ (x,)=0, para todos los x suficientemente pro-
ximos a x, se cumple la desigualdad

f () —1 (xo)

xX—Xp

<e,

es deciyf, -para concretar aceptamos qﬁe x> x,
F)—F(x) <e(x—x,)
o bien ’ o
' - exy—f (x,) < ex—F (x);

luego, x, es un punto invisible por la derecha para la funcién
&(x)=ex—f(x). Entonces, de acuerdo con el lema de Riesz, el
‘conjunto E estd contenido en un sistema finito o numerable de
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intervalos (a,, B,), en cuyos extremos se cumplen las condiciones
8By —7 (Br) = oy —F (o),

FBr)—F (o) <e(Br—ay),
z FBp)—TF () <e ; (Br—on) < &(b—a). |

En otras palabras, la funcién f transforma el conjunto E en un
conjunto que puede ser cubierto por un sistema de intervalos de
longitud sumaria menor que e(b—a). Debido a la arbitrariedad
de e, de aqui se desprende que p(f(E))=0.

Luego, tanto f(E) como f(Z) son de medida nula. Pero, la
unién de estos dos conjuntos es el segmento [f(a), f(b)]. Con esto
queda demostrado que la longitud de este segmento es cero, es
decir, que f(x)=const. :

Ahora es facil ya demostrar el teorema 3. Basta, evidente-
Iélente, limitarse al caso en que la funcién F (x) es no decreciente.

ntonces, :

es decir,

de donde

O@=F— @ (M

serd también una funcién monétona no decreciente. En efecto,
si x” > x’, tenemos, en virtud de (7),

x
O W)—® (x)=F )—F (') —§ f(tydt >0.

Ademas, @ es absolutamente continua (como diferencia de dos
funciones absolutamente continuas) y @’ (x)=0 en casi todos los
puntos (en vista del teorema 1). Por lo tanto, ® es una constante,
de acuerdo con el lema. Tomando en (7) x=a, encontramos que
esta constante es igual a F(a). El teorema queda demostrado.

~ Anteriormente, al considerar las funciones de variacién acotada,
hemos probado que toda funcién f de este tipo puede ser re-
presentada como suma de una funcién de saltos H y de una fun-
cién continua ¢ de variacién acotada

f=H+e.

Consideremos ahora una funcién continua ¢, pero no absoluta-
mente continua, de variacién acotada y tomemos

v ={ ¢ @ar.
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La diferencia
A=0—Y

es una funcién continua de variacién acotada. Ademis,

0 =0 W—% (o ®dt=0

(en casi todos los puntos). S
. Diremos que una funcién continua ‘de variacién acotada es
singular cuando su derivada es nula- en casi todos los puntos.
Podemos enunciar entonces el resultado siguiente:

toda funcion de variacion acotada puede ser representada como
suma de tres componentes: e .

f=Htvty ®)

es decir, de una funcion de saltos, de una funcién absolutamente
continua y de una funcién singular. o =

Es facil probar que cada uno de los tres sumandos de la
descomposicién (8) queda determinado univocamente, salvo una
constante, por la funcién f(x). Si normamos todas las funciones
que figuran en la igualdad (8), exigiendo, por ejemplo, que cada
una de ellas sea nula en el punto x=a, la descomposicién (8)
serd tnica. Derivando la igualdad (8), encontramos que en casi
todos los puntos IR

' ®)=14'(x).

Luego, al integrar la derivada de una funcién de variacién aco-
tada, se reconstruye no esta funcién sino solamente su compo-
nente absolutamente continua. Las otras dos componentes (la
funcién de saltos y la singular) «desaparecen sin dejar huellas.

'Es aleccionador comparar los resultados de este paragrafo con
lo que da la teorfa de funciones generalizadas. Al igual que en
el capitulo IV, entenderemos por funcién generalizada una fun-
cional lineal continua sobre el espacio Kde funciones terminales
indefinidamente diferenciables. A cada funcién localmente sumable f
se asigna una funcional que opera en los elementos ¢ € K de

L

acuerdo con la férmula (f, Q)= Sf(x)qa(x) dx. La derivada ge-
neralizada de esta funcional es la funcional que pone en corres-
pondencia al elemento ¢ €K el niimero F, 9)= gf(x) 9’ (x)dx.

Como en la clase de funciones generalizadas la ecuacién y’ =0
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tiene solamente soluciones corrientes (constantes), toda funcién
generalizada se reconstruye a partir de su derivada univocamente,
salvo una constante. En particular, toda funcién localmente su-
mable f puede ser reconstruida, salvo una constante, a partir
de su derivada generalizada f' en casi todos los puntos. Supon-
gamos ahora que la funcién f tiene derivada en casi todos los
puntos, por ejemplo, supongamos que f es una funcién monétona.

Sea %—x la derivada habitual de la funcién f. (Hemos visto ya

que j’,’; puede ser igual a O en casi todos los puntos; a pesar de

que f(x) s const! ) La funcién g—i es localmente sumable (supo-
nemos que f es monétona) y, consecuentemente, podemos asignar
a esta funcién una funcional (funcién generalizada) (f,, @) =

L]

= S Z—gq)(x) dx. El hecho sustancial consiste en que la funcidn

get;e;oalizada f, no coincide, en el caso general, con la funcion ge-
neralizada f'. Por ejemplo, si ,

_ 1 para x >0,
f= { 0 para x <0,

tenemos f,=0 y f' =98 (véase el ejemplo 2 de la pag. 222).

El teorema 3 significa precisamente que entre todas las fun-
ciones de variacién acotada la derivada, comprendida en el sen-
tido habitual, de las funciones absolutamente continuas (jy sélo

~de ellas!) coincide con la derivada generalizada de estas funciones.

Aqui tropezamos una vez mas con la situacién de la cual
hemos hablado ya en el § 4 del capitulo IV: para poder efectuar
las operaciones principales del Anilisis (en este caso se trata de
la reconstruccién de una funcién a partir de su derivada) resulta
necesario o bien, manteniéndose en los margenes de las defini-
ciones clasicas, limitarse a una clase suficientemente estrecha de
funciones (la de funciones absolutamente continuas) o bien, al
contrario, ampliar sustancialmente el concepto de funcién (gene-
ralizando al mismo tiempo la definicién de la derivada).

EJERCICIOS. 1.  Demuéstrese 1ue la definicién de continuidad absoluta,
enunciada anteriormente, equivale a la siguiente: f es absolutamente conti-
nua en [a, b] cuando transforma cada subconjunto de medida nula de este
segmento en un conjunto de medida nula también.

2. Calciilese la derivada generalizada de la <escalera de Cantor».

3. Sean f una funcién de variacién acotada, f’ su derivada generalizada
y.f: la funcional (funcién generalizada) determinada por la derivada «habi-

tuals e de la funcién f. Demuéstrese que:
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a) si f es absolutamente continua, entonces f'=f,;. ,

b) si f'=f,, entonces f(x) es €quivalente a una f‘uncnén absolutamente
continua, esto es, coincide con una funcién de este tipo en casi todos los
puntos. En particular, si f’=Ff; y f es continua, es f absolutamente continua,

§ 5. INTEGRAL DE LEBESGUE COMO FUNCION DE CONJUNTO.
TEOREMA DE RADON —NIKODYM

1°. Cargas. Descomposicion de Hahn y descomposicion de
Jordan. Los conceptos y. resultados, expuestos en los parégrafos
anteriores para funciones sobre la recta, son extensibles, en gran
medida, a las funciones definidas en un espacio arbitrario pro-
visto de medida. o '

Sea X un espacio provisto de medida p y sea f una funcién
en X sumable respecto a p. En este caso, f serd sumable en cada
subconjunto medible A del conjunto X y, consecuentemente, la
integral

OA={rwad M)

(donde f es una funcién fijada) representa una funcién de con-
junto definida en la coleccion ¥, de todos los subconjuntos me-
dibles del conjunto X; ademas, esta funcién es o-aditiva, esto
es, cualquiera que sea la descomposicién -

A=uAh
P

del conjunto medible A en una unién, finita o numerable, de
conjuntos medibles disjuntos dos a dos, se cumple la igualdad

0(A)=§(D(A,,).

En otras palabras, la funcién ®, definida por la igualdad (1),
posee todas las propiedades de una medida o-aditiva, excepto,
es posible, la de no negatividad (si f toma ~valores negativos).

DEFINICION, Una funcién arbitraria c-aditiva @ de conjuntos,
definida en un o-anillo de subconjuntos de un espacio X dado,
se llama medida de signo alterno o, simplemento, carga.

El concepto de carga es una generalizacién natural del con-
cepto de medida o-aditiva y, como veremos mas abajo, se
reduce, en cierto sentido, al concepto de medida (esto es, de
carga de signo determinado). ' ‘

EJERCICIOS. Demuéstrese que para cualquier carga " ®, definida en una
o-dlgebra de conjuntos &, existe una constante ¢ tal que |® (A)|<<c para
todos los A€S. .
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Si consideramos una carga eléctrica real distribuida, diga-
mos, en una superficie, esta superficie puede ser dividida en dos
partes: la que lleva carga positiva (es decir, tal que cualquier
parte suya lleva una carga positiva) y la que lleva carga nega-
tiva. El equivalente matematico de este resultado es el teo-
rema | que damos a continuacién.

Introduzcamos primero la terminologia siguiente. Sea ® una
carga definida en una o-dlgebra € de subconjuntos del espa-
cio X. Un conjunto E se llama negativo respecto a ® cuando
para cualquier FEE el conjunto ENF pertenece a & y
®(ENF)<0; de un modo anilogo, E se llama positivo cuando
ENFe&€ y ®(ENF)>=0 para todos los FEE.

TEOREMA 1. Si @ es una carga definida en X, existe un subcon-

junto medible A~ X tal que A~ es negativo y B* =X\ A-
es positivo (respecto a @).

DEMOSTRACION. Pongamos
a=inf ®(A),

donde la cota inferior se toma respecto a todos los conjuntos
negativos medibles A. Sea {A,} una sucesién de conjuntos medi-
bles negativos tal que

lim ®(A,)=a.

n-o

Entonces, A‘=UA,, es un conjunto medible negativo tal que
n

DA )=a.
Probemos que A~ es el conjunto deseado, esto es, demostre-

mos que

B* =X\ A-
es positivo. Supongamos lo contrario, es decir, admitamos que B*
contiene un subconjunto medible C, tal que ®(C,) < 0. El con-
junto C, no puede ser negativo, ya que entonces lo agregariamos
a A- obteniendo asi un conjunto negativo A tal que

- O(A)<a

y esto es imposible. Luego, existe un nimero entero minimo &
para el que se puede encontrar en C, un subconjunto C, que
verifique la condicién

1
‘D(C:)>7¢;o
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Esta claro que C, 5= C,. Podemos repetir ‘para-el conjunto C,\ C,
el razonamiento aphcado a C.,, obtendremos un. conyunto 'C, que
verifica la condicion '

(D(C,) .e>" ’,;; v (ks >k1)v
etc. Tomemos fmalmente ‘

Fy= Co\UCi
: ) i 31

El conjunto F, no es vacio ya que (D(Co) < 0 y @D(C) > 0 para
iz=1. De la construccnon se desprende que F, es negativo. Por
lo tanto, agregandolo a A-, llegaremos de nuevo a una con-
tradiccién con la definicién de a. Luego, para todos los Ec X\ A~
tenemos ,

@ (E)>0,

es decir, X\ A~ es positivo. El teorema queda demostrado.
La part1c1on del espacio X en la parte negativa A 'y enla
positiva B+ se llama descomposicion de Hahn.
En general, la descomposxclon de Hahn no es finica; sm em-
bargo, si
X=A;UBf y X=A;UB}

son dos descomposiciones de este tlpo, entonces, para cualquler
E€® se tiene

QENA)=D(ENA; ) y ®(ENB})= ‘D(EﬂB*) 2
En efecto,

ENn(A;\A;)cEn A; 3)
y al mismo tiempo
EN(A7\A;)<EnBj; @
de (3) se desprende que
P @ (EN(AT\4;) <0
y de (4) que
@ (EN(AT\47)) =>0.
Luego,

©(EN(ATN\A47)=0;
anilogamente encontramos que
' @ (EN(A7\ A7) =0.
De aqui se deduce que
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O (EnA7)=0(ENA]).

Del mismo modo se demuestra la segunda de las igualdades (2).
Consecuentemente, una carga ® en & determina univoca-
mente dos funciones no negativas de conjunto, a saber:

@+ (E)=®(EnB*) y ®-(E)=—®(ENA-),

que son llamadas variacion superior 'y variacion inferior, respec-
tivamente, de la carga ®@. Ademas, es obvio que

1) O=0+—0",

2) ®* y @~ representan funciones de conjunto no negativas
y o-aditivas, esto es, son medidas.

También sera medida, evidentemente, la funcién |®|=0* 4 ®-;
ella se llama variacion total de la carga @ y la representacién
de ® como diferencia de las variaciones superior e inferior se
llama descomposicién de Jordan de esta carga @.

Observacion. Hemos considerado aqui cargas finitas, esto es,
funciones @ cuyos valores estin acotados tanto superiormente,
como inferiormente. Ademas, ®+ y @~ son, en este caso, me-
didas finitas. Lo expuesto puede ser generalizado a cargas aco-
tadas solamente por un lado, esto es, a cargas, para las cuales
al menos una de las funciones ®* o ®- es una medida finita.

- 2°, Principales tipos de cargas. Sea p una medida o-aditiva
definida en un o-anillo de conjuntos & del espacio X que lla-
maremos medibles. Introduzcamos los conceptos siguientes.

Diremos que una carga @ definida en conjuntos E€& esfd
concentrada en un conjunto medible A, cuando ®(E)=0 para
cada Ec X\ 4,.

Una carga @ se llama continua cuando @ (E)=0 para cual-
quier conjunto E compuesto por un solo punto. Una carga @ se llama
discreta cuando esta concentrada en un conjunto finito o nume-
rable. En otras palabras, el hecho de que una carga sea discreta
significa que existe un conjunto finito o numerable de puntos
Cyy Cyr'sevy Cpy «.. tal que para todo Ec X se tiene

OE)= T, 0.

Una carga @ se llama absolutamente continua (respecto a la me-
didj dada p) cuando ®(A)=0 para todo A medible tal que
n(4)=0.

Una carga @ se llama singular (respecto a la medida p)
cuando esta concentrada en un conjunto de p-medida nula. Esta
claro lque una carga absolutamente continua y singular a la vez
es nula.
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3°. Cargas absolutamente continuas. Teorema de Radon—Ni-
kodym. Como ejemplo de carga absolutamente continua respecto
a la medida dada p puede servir la integral de Lebesgue

<D<A)=§f(x>.du |

de una funeidn sumable fija f considerada como funcién de con-
junto. Resulta que con esto se agotan todas las cargas absoluta-
- mente continuas. En otras palabras, tiene lugar el teorema si-
guiente. : ;

TEOREMA 2. (Radon—Nikodym). Sea p una medida o-aditiva de-
finida en una o-dlgebra de subconjuntos de X y sea ® una
carga definida en conjuntos p-medibles. Entonces, existe en X una
funcién f sumable respecto a p tal que .

D (A) =§'f:(x) dp

para cada A medible. Esta funcion, llamada derivada de la
carga @ respecto a la medida pn, se determina univocamente,
salvo una equivalencia. o

DEMOSTRACION. Toda carga puede ser representada como diferen-
cia de dos cargas no negativas (véase el punto 2), con la par-
ticularidad de que una carga absolutamente continua puede ser
representada como diferencia de cargas absolutamente continuas.
Por lo tanto, basta demostrar el teorema para el caso de car-
gas no negativas, esto es, para medidas. Sea, pues, ® una me-
dida absolutamente continua respecto a la medida dada . De-
mostremos el lema siguiente.

LEMA. Seq ® una medida absolutamente continua respecto a p y
distinta de cero idéntico. Entonces existen un n y un con junto medible

B itales que p.(B) > 0 y B es positivo respecto a la carga d)—--:‘- B-
DEMOSTRACION DEL LEMA. Sea X =A;UB} la descomposicién de

Hahn correspondiente a la carga (D———nlp, n=1,2,....,y sea

A,=nA4A;, B,=uyB:.
Entonces,

®(4,) <7 B (4,) para todo n,

es decir, ®(4,)=0 y, consecuentemente, @ (B,) >0, de manera
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que también p (B,) > 0 (debido a-la continuidad absoluta de ®
respecto a p). Luego, existe un n tal que p(B;)>0. Este n y
el conjunto B= B} verifican las condiciones del lema.

Pasemos ahora a la demostracién directa del teorema. Sea K
un conjunto de funciones f en X que verifican las condiciones
siguientes: f son no negativas, integrables respecto a p y

{ F(x)dp < ®(A) para todo A medible. Sea
A
M.—.sup{ § F(x)dp respecto a todos los fEK}. '
X

Tomemos en K una sucesién {f,} de funciones tal que
| tim § £, (0)dn =M.
n-x y

Pongamos ahora
g (x)=max (f, (x), fy(x), ..., fa(x)).

Probemos que para todo E medible es

g g,(x)dp < D(E).
E

¢ n )
En efecto, podemos representar E en la forma U E,,, donde E;
k=
no se intersecan y g, (x)=/f,(x) en E,; luego, '
n n
{emdn=3 {hdn < 3 0 (EY=0 ().
E o k=1 Ep k=1

Sea
f (x)=sup {f, (x)}.

Esta claro que f(x)= lim g, (x) y, consecuentemente, en virtud
n-»w

del teorema de Beppo Levi,
1 ) du=lim § g, () dp= M.
X ‘ n-eo

Probemos ahora que

(D(E)—ESf(x)dpEO.
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Por la forma de construirla, la funcién de conjunto
ME)=O(E)—{f@Wdp

es no negativa y posee todas las propiedades: de una medida.
Si A %0, existen, de acuerdo con el lema, un ¢ >0y un B,
p(B) >0, tales que ' :

| e (ENB)<MENB)
para cualquier E medible. Tomando entonces h (x) = f (x) + x5 (x),

donde yjp es la funcién caracteristica del conjunto E, tendriamos
para cualquier conjunto E medible '

(hedn={fdn+en(EnB)< | F(9du+@(ENB) <OE)
N\

Esto significaria que la funcién h pertenece al conjunto K definido
anteriormente. Pero, al mismo tiempo, R

§h(x)du=§f(x)du+eu<3)’> M,

lo que contradice a la definicién de M Luego, hemos demos-
trado la existencia de una funcién f tal que

o) =@ dp.

Probemos su unicidad. Si para todo 4 €S,

o )= {f(dp={ F, ) dp,

A A P
entonces cualquiera que sea n para los conjuntos

a={x hO—h@ >3}

tenemos : } :

B4y <n $ 1 ()—1 ) dp =0.
De la misma forma, para Bm_—_{x: Fr () —f, (x) > ;nl—} tenemos

p=(B,)=0.
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Como
{x: fi@)=~=F = 4.U |JBas

tenemos
poix: fi(x) = f, ()} =0,

es decir, f,(x)=/F,(x) en casi todos los puntos. Hemos terminado
la demostracion.

Observacion. El teorema de Radon—Nikodym constituye,
evidentemente, una generalizacién natural del teorema de Lebes-
gue de que toda funcién absolutamente continua es integral de
su derivada. Sin embargo, al considerar las funciones en la
recta, tenemos en nuestro poder un método efectivo para buscar

D
la derivada, como es el cilculo del limite del cociente %xf" mien-
tras que el teorema de Radon—Nikodym sélo afirma la existencia
de la derivada %;% de una carga absolutamente continua @ res-
pecto a la medida p; pero, no ofrece método alguno para cal-
cularla. Se puede indicar este método; pero, aqui no vamos a

detenernos en ello. En lineas generales, este método consiste en
calcular el limite del cociente :;(% segin un sistema de conjun-
tos que «se contraens, en cierto sentido, alrededor del punto
dado. Estas cuestiones son estudiadas detalladamente, por ejem-
plo, en el libro de G. E. Shilov y B. L. Gurévich «/ntegral,
medida, derivada» [13].

§ 6. INTEGRAL DE STIELTJES

1°. Medidas- de Stieltjes. Al hablar, en el § 1 del capitulo
precedente, de la construccién de la medida de Lebesgue, hemos
mencionado ya la construccién siguiente. Supongamos . definida
en un segmento [a, b] una funcién monétona no decreciente F;
aceptaremos, para concretar, que es continua a la izquierda.
Definiendo las medidas de todos los segmentos, los intervalos y
los semisegmentos, pertenecientes al segmento basico [a, b], me-
diante las igualdades

m(a, B)="F (B)—F (2+0),
~m[a, ]=F(p+0)—F (=),

m (e, p]=F.(p+0)—F (@+0),
- mfa, B)=F(P)—F (),

podemos extender después esta medida, empleando el procedimiento
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de Lesbesque de prolongacién de medida, a-un o-anillo que contiene
todos los subconjuntos abiertos y cerrados. (y, consecuentemente,
todos los subconjuntos boreliancs) del segrhento [a, b]. La me-
dida pr que se obtiene a partir de esta construccién se llama
medida de Lebesgue—Stielt jes correspondiente a la funcién’ F,
mientras que la propia funcién F:se ﬂama funciém mratrtz
de esta medida. :

Consideremos algunos casos partlculares de mediﬁ * Lebesi
gue—Stieltjes.. i

1. Sean F una funcién de saltos, Xy Xy ... sus puntos de
discontinuidad y h,, h,, ... sus saltos en estos puntos. Enton-

ces, la medida pp cormpondxente a esta funcién ratriz esta
construida  del siguiente modo: todds los. subconjunfog del seg-
mento [a, b] son mednblw yla medtda de un con;unto A es

» Pr(A)- > hi. o

x€A -

En efecto, de la definicién de la medida de . Lebesgue—StxelJes

se ve inmediatamente que la medida de cada punio x; es igual

a h; mientras que la medida del complemento del. conjunto

{x;}=, es igual a cero. De aqui, debido a la o-aditividad de la

medida pr, se deduce la igualdad (1) para cualquier Ac|a, b].

Una medida pr construida a partir de una funcion. de saltos se
llama medida discreta.

2. Sea F una funcién no decrecxente absolutamente cqntmua
en [a, b] y sea f=F' su derivada. En este caso, :la medida
correspondiente py estd definida en todos los subconjuntos de
[a, b] medibles segin Lebesgue y, ademds, para cada conjunto A
de este tipo ,

p,..(A) = Sf(x)dx b))

Efectivamente, en virtud del teorema de Lebague, tenemos para
cada intervalo (a, p) ‘

ur (@ B)=F (B)—F (@) = S fedxl

Como la extensién leb&sguiana\ de toda ‘medida o-aditiva se
determina univocamente por sus valores en el semianillo inicial,
de aqui se desprende la validez de.(2) para todo Ac[a, b] me-
dible segin Lebesgue. Una medida pu, correspondiente a una
funcién absolutarnente continua F se llama medida absolutamente
continua. :
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3. Si F es una funcién continua singular, su medida corres-
pondiente p. estd concentrada integramente en aquel conjunto de
medida lebesguiana nula en el que F’ es diferente de cero o no
exits;e. La propia medida pr se llama en este caso medida sin-
gular.

Esta claro que, si F=F,+F,, se tiene pr=pr,+pr, v,
puesto que toda funcién monodtona puede ser representada como
suma de una funcién de saltos y de los componentes absoluta-
mente continuo y singular, de aqui se desprende que foda medida
de Lebesgue—Stieltjes puede ser representada como suma de una
medida discreta, absolutamente continua y singular. Una funcién
monétona se descompone, salvo un sumando constante, en una
funcién de saltos, absolutamente continua y singular. Luego, la
descomposicion - de toda medida' de Lebesgue —Stieltjes en las
componentes discreta, absolutamente continua y singular es finica.

Lo expuesto se refiere a medidas de Lebesgue—Stieltjes en
un segmento. Si ahora F es una funcién monétona no decreciente
acotada (superior e inferiormente) en toda la recta, entonces,
definiendo la medida de cualquier segmento, intervalo y semiseg-
mento de la recta mediante férmulas anélogas a (1) y (2), obten-
dremos una medida finita en toda la recta que llamaremos
medida de Lebesgue—Stieltjes (en la recta). En particular, la
medida de toda la recta sera, en este casq, igual a

F (00)—F (— o0),
donde : :
F (00)= lim F(x), F(—oo)= lim F (x)

X+ ®

(la existencia de estos limites se debe a que F es mondtona y
acotada).

El concepto de medida de Lebesgue —Stieltjes abarca, de hecho,
todas las medidas (esto es, todas las funciones de conjunto fini-
tas no negativas y o-aditivas) en la recta. En efecto, sea p cual-
quier medida de este tipo. Tomando

F(x)=p(— oo, x),

obtendremos una funcién mondtona tal que su correspondiente
medida de Lebesgue—Stieltjes coincide con la medida inicial p.
Es decir, el término de «<medidas de Lebesgue — Stieltjes» no signi-
fica, de hecho, una clase especial de medidas en la recta, sino
que indica simplemente el método concreto de construir esta me-
dida a partir de, una funcién generatriz.

2°. Integral de Lebesgue — Stieltjes. Sea p, una medida en el
segmento [a, b] generada por una funcién monétona F. Para esta

26—3427
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medida se define de manera habitual la clase de funciones siima-
bles y se introduce el concepto:dela integral de-Lebesgue

b i :
{7 () dpr ().

Una integral de este tipo tomada respecto a una med\‘l‘daw Brs
correspondiente a una funcién generatriz £, se llama- mtegral de
Lebesgue— Stieltjes y se. des:gna medxante

hmwm

Consideremos algunos casos partlculares
1..Si F es una funcién de saltos (esto es, Bp € una medlda
dxscreta), la integral :

Sﬂwwu)

se reduce, evidentemente, a la suma-

‘;mMu

donde x; son los puntos de discontinuidad de la funcién F y h,,
" los saltos de F en los puntos x;.

2. Si F es una funcién absolutamente continua, su integral
correspondiente de Lebesgue—Stieltjes

b
§ 7 (x)dF (x)

es igual a
b

hmrwm

es decir, a la integral de f(x)F’(x) respecto a la medida lebes-
guiana habitual. En efecto, si f(x)=const, la igualdad

b

hmwm—hmpma @
se deduce de (2) Debido a la o¢-aditividad de las mtegrales, la
igualdad (3) es extensible también a las funciones  simples suma-
bles segiin la medida pp. Sea ahora {f,} una sucesion de funciones
simples convergente uniformemente hacia f. Sin perder generali-
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dad, podemos aceptar que {f,} es una sucesién no decreciente.
‘Entonces, {f,(x)F’ (x)} es una sucesién no decreciente convergente
en casi todos los puntos hacia f(x)F’(x)y, en virtud del teorema
de Beppo Levi, podemos pasar al limite en la igualdad

b b
(.00 dF 0= fa(0) F' (x)dx

para n— oo. . :

De lo expuesto de deduce que, siendo F una suma de una
funcién de saltos y otra absolutamente continua, la integral de
Lebesgue —Stieltjes respecto a la medida pr se reduce a una
serie (0 una suma finita) mas una integral respecto a la medida
habitual de Lebesgue. En cambio, si F contiene también una
componente singular, esta reduccion resulta imposible.

El concepto de la integral de Lebesgue —Stieltjes puede ser
ampliado de un modo natural, pasando de las funciones monéto-
nas a las funciones de variacién acotada. Sea ® una funcién de
este tipo. Representémosla como diferencia de dos funciones mo-
nétonas :

O=v—g,

donde v es la variacion total de la funcién ¢ en el segmento [a, x].
Introduzcamos ahora la integral de Lebesgue—Stieltjes respecto a @,
tomando, por definicién,

b b b
{ fydo ()= fdo—§ Fx) dg ().

Es facil probar que si se tiene otra representacion de ® como
diferencia de dos funciones monétonas, digamos

O=v"—g
entonces,

b b b b

{F (o) —§ 10 dg (= F () de (9— () de® (0,

a a a a
es decir, para calcular la integral de Lebesgue — Stieltjes respecto
a una funcién @ dada puede ser empleada cualquier representa-
cién de esta funcién por medio de la diferencia de dos funciones
monoétonas.

3°. Algunas aplicaciones de la integral de Lebesgue — Stieltjes
en la teoria de probabilidades. La integral de Lebesgue —Stielt-
jes encuentra aplicacién tanto en el Analisis, como en otras mu-
chas cuestiones aplicadas. En particular, este concepto se emplea

26%



404 CAP. VII. INTEGRAL INDEF. TEORIA DE DIFERENCIACION

ampliamente en la teoria de probabilidades. Recordemos que se
llama funcién de. distribycién de una variable aleatoria £ a una
funcién F (no decreciente, obviamente) definida para cada x por
la igualdad . 5o

F)=PE <),

es decir, F(x) es la probabilidad de que la variable aleatoria 13
tome un valor menor que x. Es evidente que cada funcién de
distribucién es monétona no decreciente, continua a la derecha
y verifica las condiciones - . - ) o
. F=)=0, F(+oa)=1.

Viceversa, toda funcién de este tipo puede ser considerada como
funcién de distribucién de una variable aleatoria. :

Son caracteristicas sustanciales ‘de una variable aleatoria su

valor medio (o esperanza matematica)

Me=§ xdF (x) @
y varianza _—m o
VE = S.(x;Mg)*dF(x). . (5)

Entre las variables aleatorias suelen destacarse las variables
aleatorias discretas y continuas. Una variable aleatoria se llama

discreta cuando puede tomar sélo un némero finito o numerable
de valores ‘

Xy Xgy oo oy Xy -

(por ejemplo, el nimero de llamadas telefénicas que se reciben
en una central durante un intervalo de tiempo es una variable
aleatoria discreta). ; o

Si Py P -y Puy ... son las probabilidades con que la varia-
ble £ toma los valores x,, Xgy ooy Xpy .., la funcién de distri-
bucién para £ es, evidentemente, una funcién de saltos. Para
ella las integrales (4) y (5) se reducen respectivamente a ‘las

sumas
ME= ‘;\‘_,x,p;

Vi=2(xi—ayp; (a=Mg).

Una variable aleatoria & se llama confinua cuando su funcién
de distribucion F es absolutamente continua. La derivada F’ de
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esta funcion de distribucion se llama densidad de distribucion de
probabilidades de la variable aleatoria §. De acuerdo con lo expues-
to en el punto anterior, las integrales de Stieltjes que expresan
el valor medio y la varianza de una variable aleatoria continua.
se reducen a integrales respecto a la. medida lebesguiana habi-
tual:

ME= § xp(x)dx,

ve={ g—ar (s,

donde p=F' es la densidad de distribucion de probabilidades
para § y a= ME. ‘ :

“Los cursos elementales de teoria de probabilidades se limitan
generalmente al estudio de variables aleatorias discretas o con-
tinuas que en lo fundamental son las tnicas que aparecen en
cuestiones aplicadas. Sin embargo, una funcién de distribucion
de una variable aleatoria puede tener, en el caso general, una
componente singular, de modo que no toda variable aleatoria
puede ser representada como una combinacién de variables alea-
torias discreta y continua.

Sean & una variable aleatoria, F su funcién de distribucién y n=¢(§)
otra variable ‘aleatoria que representa una funcién de §. El valor medio
My de 1a variable se puede representar, por definicién, como

HSD x dO (x),

- o

donde @ es la funcién de distribucién para 1. Es sustancial, sin embargo,
que si ¢ es sumable rezgecto a la medida generada en la recta por la fun-
cién F, el valor medio la variable ) se puede representar también a tra-
vés de la funcién de distribucién F de la variable §, a saber:

®

Ma=Mo@®)= { 9(xdF ().

——®

En efecto, la funcién y=1g (x) determina una aplicacién de la recta (—op <
< x < o) con la medida pr (generada por F) en la recta (— o < y < »)
con la medida pg, en la que se transforma por la aplicacién y=¢(x) la
medida pp. Pero, de los resultados del capitulo VI se desprende que si
X, py (v, v% son dos espacios provistos de medidas, ¢ es una. aplicacién
que conserva la medida y transforma (X, p) en (Y, ¥) y f es una funcién
sumable eén (Y, v), entonces : i )

{rwav =" 1o
Y X
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(sustitucién de variables en la integral de.Lebesgue). Tomando aqui f(y)=yp
Y W=MWp, V=g, obtendremos Ia igualdad necesaria. Luego, para.ca cular
el valor medio (y, claro estd, la varianza también) de una funcién de una
variable aleatoria § es suficiente conocer solamente 1a funcién de distribucién
de la propia variable §. ' K ‘ ‘ ,

4°. Integral de Riemann — Stieltjes. Ademas de la integral de
Lebesgue —Stieltjes, considerada en el punto anterior, que repre-
senta de hecho, la diferencia de las integrales lebesguianas de
una funcién dada f respecto a dos medidas, definidas en la recta,
se puede definir también la asi llamada integral de Riemann —
Stieltjes. Ella se introduce como limite de sumas integrales,
anilogas a las sumas integrales habituales de Riemann.

Sea de nuevo ® una funcién continua a la izquierda de va-
riacion acotada, definida en un segmento [a, 4], y sea f una
funcién arbitraria en este segmento. Consideremos una particién

A=A <Ky L Ky s < Xg=b

del segmento [a, b] y, escogiendo en cada elemento [%-10 x;] de
esta particion un punto arbitrario ;, formemos la suma ,

STENO ) —D (5] ©

Si para max (x;—x;_,)— 0, estas sumas tienden a un limite
determinado (que no depende de cdmo se ha dividido el segmento
[a, 6] ni de como se han escogide los puntos E; en cada elemento
de la particién), este limite se llama integral de Riemann—
Stieltjes de la funcién f respecto a la funcién @ y se designa con

b
(fwdox. )

TEOREMA 1. Si la funcién f es continua en [a, b), su integral de
Riemann— Stieltjes respecto a ® existe y coincide con la inte-
gral de Lebesgue —Stieltjes correspondiente.

DEMOSTRACION. La suma (6) puede ser considerada como la integral
de Lebesgue—Stieltjes de la funcién escalonada :

fn(x)=§l para xi-1<x<x[-

Al subdividir la particion del segmento [a, 4], la sucesién de
estas funciones converge uniformemente hacia f. Por lo tanto, el
limite de estas sumas existe y representa la integral de Lebes-
gue—Stieltjes de la funcién limite f (teorema sobre el paso al
limite bajo el signo de la integral). Al mismo tiempo, este limite
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es precisamente la integral de Riemann — Stieltjes (7). El teorema
queda demostrado. '
Demostremos algunas propiedades elementales de la integral
de [Riemann—Stieltjes. Siempre suponemos que f es continua
en [a, b].
1. Tiene lugar la estimacion (teorema del valor medio)

< max|f(x) |V [®] @)

b
{70 do ()

(V5 [D] es la variacion total de la funcién © en [a, b]).
En efecto, cualquiera que sea la particién del segmento [a, 6]
se cumple la desigualdad

30 @m—ve_n|< Birerem—om-)i<

<max|f (- 310 ()~ (x,-) | < max| (9| V& 0],

Pasando en esta desigualdad de las sumas integrales al limite
de las mismas, obtenemos la estimacién (8). Para @ (x)=x ella
se convierte en la estimacién conocida

<(b—a) max|f(x)|

b
§Foax

para la integral de Riemann.
2. Si 0=, 4 @,, se tiene

b b b
§Fryao ) = F (a0, (0= f (x)d0, ().

En efecto, para toda particién del segmento [a, b] se cumple
la desigualdad correspondiente para las sumas integrales; por
consiguiente, ella se conserva también cuando se pasa al limite;
es decir, para las integrales. '

3. Si ¢ es una funcion de variacién acotada distinta de cero
solamente en un conjunto finito o numerable de puntos,

b
(Fmavw =0 |

para cualquier funcién f continua en [a, b].
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- En efecto, esto es evidente para una funcién distinta de cero
en un unico punto x, (ya que al tomar particiones tan pequefias
como se quiera del segmento [a, b] sin que el punto ‘X sea umn
punto de divisién, obtendremos sumas integrales iguales a cero);
luego, debido a la aditividad, esto es valido también para cual-
quier funcién diférente de cero en un nimero finito de puntos.
Supongamos ahora que ¢ es distinta de cero en los puntos

: Tis Ty vney Ty owoni
y sean ‘
Yo Ysr - Yor - _ ‘ ,
sus valores en. estos puntos. Como 1 es de variacién acotada,
tenemos Y|y,| < oco. Escojamos ahora N de manera que
gvly,,l < & y representemos Y como suma

Y=1py+P

donde ¥y toma los valores y,, ..., yy en los puntos 7,,..., ry
y es igual a 0 en los demas, mientras que ¢ es distinta de 0O
solamente en los puntos 7., 7y+s ... . Las sumas integrales
correspondientes a-+ verifican la desigualdad - ‘

2 FE) @ (x)— (x;y) '|<2M- 2 1y < 2Me,
=1 . n>N

donde M=max |f(x)|. Por eso,
b

b
§Foap | <[ Fdvn

+

b n
{F0db(x)

< 2Me;

de aqui se deduce, debido a la arbitrariedad de e, nuestra afir-
macion. ' , '
4. Si { es una funcién continua, la integral de Riemann —

Stieltjes Sf(x)‘dfbk(x) no depende de los valores que ;tbma D en

sus pantoas de discontinuidad. , :

En efecto, sean @, y @, dos funciones de variacién acotada
coincidentes en todos sus puntos de continuidad. Entonces, la
diferencia ' ' ‘

$vy=0,—0,

representa una funcién distinta de cero solamente en un conjunto
a lo sumo numerable de puntos. Lo demas se desprende de las
propiedades 2 y 3. : o B
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Puesto que la integral de Riemann—Stieltjes de una funcién
continua coincide con la correspondiente integral de Lebesgue —
Stieltjes, para la integral de Riemann—Stieltjes son vélidas las
igualdades: : -

J1)d® ()= 2 (x) s

donde @ es una funcion de saltos, y

b

b . .
{fmdaomw={fwo wdr, 9)

a

donde ® es una funcion absolutamente continua. Ademas, si
@' es integrable segin Riemann, la integral que figura en
el miembro derecho de (9) puede ser comprendida en el sentido
de Riemann.

Todo lo expuesto para la integral de Riemann—Stieltjes en
el caso de un segmento finito se puede extender facilmente al
caso en que la integral se considera en toda la recta o en una
semirrecta. : :

Observacion. En el caso de la integral de Stieltjes, a diferencia
de la integral habitual de Riemann, los valores de la integral
en el intervalo (a, b), el segmento [a, b] y los semisegmentos
(a, b] y [a, b) no coinciden, en general (los puntos aislados tienen
medida de Stieltjes positiva, si la funcion que genera la medida
es en ellos discontinua). El simbolo

[}
{ Fondow)

se interpreta comtnmente, si no se dice lo contrario, como la
integral referida al semisegmento [a, b).

5°. Paso al limite bajo el signo de la integral de Stieltjes.
- En el capitulo VI hemos demostrado varios teoremas acerca del
paso al limite bajo el signo de la integral de Lebesgue. El pro-
blema se planteaba alli del modo siguiente: dadas una sucesion
{f,} de funciones y las integrales de estas funciones respecto a
una medida determinada, nos interesaba la posibilidad de pasar
al limite de esta sucesién bajo el signo de la integral. Sin em-
bargo, en el caso de la integral de Stieltjes tiene también interés
plantear el problema del modo siguiente: sea dada una sucesion
{®,} de funciones de variacién acotada; ¢bajo qué condiciones
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se puede pasar al limite bajo el signo de la integral:

b
{ f (v do, ()

para una funcién fija f? N T
En este orden tiene lugar el teorema siguiente.

TEOREMA 2 (primer teorema de Helly). Supongamos que las fun-
ciones ®, de variacién acotada en un segmento [a, b] convergen
en cada punto de este segmento hacia una funcién © y que las
variaciones totales de las funciones M, estdn acotadas en con-
junto :
: Vg[m,,]gc‘ (n=1,2, ...). ‘ v
Entonces la funcion limite @ es también de variacién acotada
y cualquiera que sea la. funcion continua f tiene lugar la
igualdad S

b b '
lim {f()d0,(0={fd0). 0

DEMOSTRACION. Probemos ante todo que la variacién tetal de la
funcién limite @ no es mayor que la constante C con la que
estdn' acotadas todas las V2 [(D,]l.r En efecto, para cualquier par-
ticién del segmento [a, b} por los puntos o

a=x‘,‘<kxl <... <x_-—$b
tenemos

m m
210 =P (5| = lim 3} | @, () —D, (x3,) | <C;

luego,
vi[@]<C.

Probemos ahora que la relacién (10) es vilida en el caso en
que f es una funcién escalonada. Supongamos que f toma los
valores h, en los intervalos (x,_,, x,). Entonces, =~

{1040, () =2ty [0, (50— @, (5e)] (1)

,, o o
§ 1040 (1) = 3 1 [0 (1) — O (3] (12)
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Esta claro que la primera de estas expresiones se convierte en
la segunda cuando n-— oo. ) .

Sea ahora f una funcién continua y sea e un nimero posi-
tivo arbitrario. Escojamos una funcién escalonada f, de ma-
nera que

1) —F ()| < m-

Entonces,
b

b
<|§ 0 do ) —( f. () d0 (1) |+
b
J

b b
§ 70 do () —§ F (1) a0, (x)

a

b
{r.mdo - 1. v a0, )

+ +

b ' b
{ . () d®, (0 — f (1) dO, (v).

+

En virtud del teorema del valor medio para la integral de
Stieltjes, el primero y tercer sumandos son menores que %, mien-

tras que el segundo sumando es menor que—;i para n suficientemen-

te grandes. Como & >0 es arbitrario, de aqui se deduce la
afirmacién del teorema. .

Observacion. Este teorema subsiste también en el caso en que
uno o ambos extremos de la integral

b
{ F)dm, (x)

son infinitos. Sin embargo, la funcién f en este caso debe tender
en el infinito a un limite finito (esto permite aproximarla uni-
formemente en el intervalo infinito mediante funciones escalona-
das que toman solamente un nimero finito de valores).

El primer teorema de Helly ofrece las condiciones en las que
se puede pasar al limite respecto a una sucesién {@,} de funcio-
nes de variacion acotada en la integral de Stieltjes. El teorema
que sigue explica cuindo puede ser garantizada la existencia
rnifn{a de la sucesién que satisface las condiciones del teorema
anterior.
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TEOREMA 3 (segundo teorema de  Helly). De: cualquier conjunto
infinito ® de funciones ¢ que estdn definidas en un- segmento
la, b] y que verifican las condiciones. = : V

max|@(x)|<C, Vi[g]<K, 13y
donde C y K son constantes (las mismas para toda ¢ € D),
se puede extraer una sucesion parcial convergente en cada punto
del segmento [a, b]. e

DEMOSTRACION. Basta demostrar este teorema para las funciones
no decrecientes. En efecto, sea ~

=g |
donde v(x) es la variacién total de la funcién ¢ en el segmento

[a, x]. Entonces, las funciones v correspondientes a todas las
@ € @ satisfacen las desigualdades

max |v(x)| <C, VZ{v]#Vz[_¢I<K,

esto es, verifican las condiciones del teorema, y son monétonas.
Suponiendo .que el teorema. es vélido para las funciones moné-
tonas, escojamos en’ @ una sucesién {p,} de manera que las v,
correspondientes converjan hacia un limite v. Las funciones

- En=Up—Q,

seran también monétonas y verificaran las condiciones del teo-
rema. Luego, se puede extraer de {p,} una sucesién parcial {Pn. }
tal que g,, convergen hacia un limite g. Pero, en este caso,

Py (£) — @ (1) =0 (1) —g (x).

Demostremos, pues, el teorema para una familia @ de fun-
ciones monétonas. Sean » T e

Tys Fay ooy Ty ..

todos los puntos racionales del segmento [a, b]. Debido a (13),
los nimeros ¢(r,) (p€®) forman un conjunto acotado y, por
eso, existe una sucesién {@g’} convergente en el punto r,. Esco-
jamos ahora en ella una sucesién parcial {@®} que converja en
r,{y, por supuesto, en r,). Escojamos después en {2} una suce-
sion parcial {pf”} convergente en el punto r,, etc. La sucesién
diagonal {g{”} convergerd evidentemente, en fodos los puntos
racionales del segmento [a, b]. El limite de esta sucesién sera
una funcién no decreciente ¢ definida, por ahora, solamente en
los puntos r,, r,, ..., r,, ... Defindmosla en los demis puntos
del segmento [a, b), tomando para las x irracionales

9(x)= lim @(r) (r son racionales).
r—»x-0
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Probemos que la funcién no decreciente @, obtenida de esta
forma, es, en todos los puntos de continuidad, el limite de la
sucesion {@g’}. Sea x* uno de estos puntos. Entonces, para un
e >0 dado se puede escoger un 8 >0 tal que

|q>(x")v—cp(x)|<% siempre que |x*— x| <é. (14)

Escojamos unos puntos racionales r’ y r" de manera que r’ < x* < r",
r'>x*—38y r"<x*48. Sea ahora n tan grande que para n > n,
se cumplen las desigualdades

@) =0 ()| <5 V0l —@() <5 (15
De (14) y (15) se desprende que
, ny o 2
'(Pn(r )l—q)n(f)]<—3~8-
Como la funcién ¢, es no decreciente, tenemos ¢, (r’) < ¢, ") <<
< 9,(r"). Luego,
| (") — @, ()< 9 ()= () |+ 9 (7)) —@a (r) |+
’ 4
F0ulr) = 0ul?) | <5 +5 + 5=t
y esto significa precisamente que lim @, (x*) = ¢ (x*).
n-»o
Hemos logrado construir una sucesién de funciones de @ que
converge hacia la funcién limite ¢ en todo punto, excepto, po-
siblemente, los puntos de discontinuidad de la funcién ¢. Como
el conjunto de estos puntos es a lo sumo numerable, aplicando
de nuevo el proceso diagonal, podemos extraer de la sucesién

{9} una sucesién parcial que converja hacia ¢ también en estos
puntos, es decir, que converja en todo [a, b].

6°. Representacion general de funcionales lineales continuas
en,el espacio de funciones continuas. Hemos sefialado ya algunas
aplicaciones de la integral de Stieltjes. Ahora estudiaremos otro
problema, relacionado con este concepto, determinando la forma
general de una funcional lineal en el espacio Cyq, o).

TEOREMA 4 (Riesz). Toda funcional lineal continua F en el espacio
Cla, 51 puede ser representada en la forma

b
F(h={Ffwdew (16)

donde ¢ es una fdncién de variacién acotada. Ademds,
| Fli=V5[e].
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pEMOSTRACION. El espacio Cya, sy puede ser considerado como
subespacio del espacio M, v de %Mas las funciones acotadas en
este ‘segmento con la misma norma " ' o T

Ifll=sup|f@)|

que existe en Cps 5. Sea F una funcional lineal continua en
Cis, b} En virtud cfel teorema de Hahn— Banach, puede ser
prolongada, conservando su norma, de Ci,, 5 a todo el Mg, ).
Esta funcional prolongada estard definida, en particular, para
todas las funciones de tipo o

o {1 para x<T,
felx)= 0 para x> T.

e@=F(Ff) (17)

y probemos que la funcién ¢ es de variacién acotada en el seg-
mento [a, b]. En efecto, tomemos una particién arbitraria

a=x, <%, < ... <X%,=b
de este segmenfo y pongamos
o =5gn [@ () — @ (x-1)], (k=1 2, ..., n).
Entonces,

Tomemos

Z o) —o@w-)|= 2 o (e0) —9-)]=

=3l —tad=F [ B Al —ha] <

- n

kgl ®p (ka - f"'k—l)

<I|IF|-

Pero, la funcién kzl & (Fz, — Ix,_,) toma sdlo los valores &1 y 0.
Por eso, su norma es igual a 1. Por lo tanto,

n
’§1|¢(xk—¢(xk-1)|<‘lFl|-
Como esto es valido para cualquier particion del segmento [a, b],

tenemos
Vilel <|IF]|-

Es decir, hemos construido a partir de la funcional F una fun-
cién ¢ de variacién acotada. Probemos que es precisamente esta
funcién mediante la cual la funcional F puede ser representada
a través de la integral de Stieltjes (16). ;



§ 6. INTEGRAL DE STIELTJES 415

Sea f una funcién continua cualquiera en [a, b]. Tomando
arbitrariamente un e positivo, escojamos 8 >0 de manera que
| F(*)—f(x')] < e siempre que |x"—x’| < 8. Dividamos ahora
el segmento [a, b] mediante los puntos ¢, en partes, de longitud
cada una menor que 8, y consideremos la funcién escalonada

fO(x)=F(x,) para x,_, <x¥<x, k=1,2, ..., n
Ella puede ser representada, evidentemente, en la forma

n
Fo 0= 3 1 [y () — Ty, @),
donde f. es la funcién definida por la igualdad (17). Esﬁé claro
que |f(x)—f®(x)| <e para todas las x, a<<x<Cb, es decir,
I|f () — o @) ]l <e. ’

Calculemos el valor de la funcional F en el elemento f*. De-
bido a la linealidad de esta funcional y de acuerdo con la defi-
nicién" de la funcién f,, este valor es igual a

F(f9) = kglf () [F (ka )—F (ka_ 1)] =k§l Fxe) [@ (x0) — @ (Xe-1)]

es decir, representa la suma integral para la integral
b

{ f(x)do ().

a

Luego, para una particién suficientemente pequefia de [a, 8],
tenemos

< &.

b
F () —{ f (1) do (x)

Pero, al mismo tiempo,
|F () —F (f) | <IFI-NF—=FN<IFl-e
Por lo tanto,

b
lF(f)—Sf(x)dfp’(x) <e(d+|IF]D

de donde, debido a la arbitrariedad de e, obtenemos la igualdad
’ b

F(h={fwde.

a
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Hemos visto que la variacién total de la funcién @, dada por (17),
satisface la desigualdad siguiente: L

VElel<IF|l. (18)
Por otro lado, del teorema del valor medio- para la integral de
Stieltjes, se desprende inmediatamente que

_ NFI<Vilel. (19)
Comparando (18) y (19), obtenemos la igualdad :

HFl=Vile].
El teorema queda demostrado completamente. _
‘Observacion. Estd claro que siendo ¢ una funcién arbitraria
de variacién acotada ¢ en el segmento! [a, b], la relaci6n

b
Fh={F(x)dow

determina una funcional lineal en el espacio Cps, 5. Ademis,
dos funciones @, y ¢,, coincidentes en todos los puntos excepto,
posiblemente, los de un conjunto a lo sumo numerable, deter-
minan una misma funcional lineal; viceversa, si ¢, Y @, deter-
minan una misma funcional en C,, ), esto es, si

b b
§ F oy do, (0= 7 () do, (x)

para toda funcién continua, entonces ¢, y ¢, coinciden en sus
puntos de continuidad, es decir, en todos los puntos exeepto,
posiblemente, los de un conjunto finito o numerable de ~puntos.
Luego, existe una aplicacién biunivoca entre las funcionales
lineales en Ci,, 5 y las clases de funciones de variacién acotada
en [a, b] que verifican la condicién ¢ (a)=0, perteneciendo dos
funciones a una misma clase cuando coinciden en sus puntos de
- continuidad. Para una funcién arbitraria ¢ de la clase ‘corres-
pondiente a la funcional dada F se cumple la desigualdad
IFI<VEok
la igualdad puede no tener lugar; pero, como se desprende de

la demostracién del teorema, en cada una de estas clases existe
al menos una funcién para la cual esta igualdad se alcanza.



CAPITULO
Vil

ESPACIOS
DE FUNCIONES SUMABLES

Entre las diferentes clases de espacios normados que se em-
plean en el Anélisis una de las mis importantes es la de los
espacios de funciones medibles de cierta potencia sumable y, en
primero término, el espacio L, de todas las funciones sumables
y el espacio L, de funciones de cuadrado sumable. Estudiaremos
ahora las propiedades fundamentales de estos espacios. El con-
tenido de este capitulo se basa, por un lado, en las propiedades
generales de los espacios métricos y los espacios normados lineales,
expuestas en los capitulos 11, IIT'y IV, y, por otro lado, en el
concepto de la integral de Lebesgue introducido en el capitulo VI.

§ 1. ESPACIO L,

1°. Definicién 'y propiedades fundamentales del espacio L,.
Sea X un espacio provisto de una medida p; la medida del
propio X puede ser finita o infinita. Consideremos el conjunto
de todas las funciones sumables en X. Como una combinacion
lineal de funciones sumables es de nuevo una funcién sumable,
este conjunto, con las operaciones habituales de adicién de fun-
ciones y multiplicacién de las mismas por ndmeros, constituye
un espacio lineal. Denotaremos este espacio mediante L, (X, )
o simplemente L,. Introduzcamos en L, una norma tomando"

IFll=§17 () dp. (1)

1) Aqui y en lo sucesivo el simbolo S representa la integracién en todo
el espacio X.

273427
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Esta claro que

lefli=lal-IF1
TRTATSTAESTA]

Sin embargo, para que se cumpla también la dltima condicién
de la norma, a saber ~
[Ifll >0 cuando f=0,

es preciso aceptar que las funciones equivalentes en X no se dis-
tinguéen y representan un mismo elemento del espacio L,. En
Particular, el elemento nulo de L, es el conjunto de todas las
unciones iguales a cero en casi todos los puntos. En este caso,
la expresién (1) poseera todas las propiedades de la norma. Lle-
gamos asi a la definicién siguiente.

- DEFINICION 1. Se llama espacio L, al espacio normado cuyos ele-
mentos son las clases de funciones sumables equivalentes; la adi-
cién de elementos de L, y la multiplicacién de los mismos por
nimeros se definen como las operaciones habituales de adicién y
‘multiplicacién de funciones® y la norma se' define mediante 1a

férmula ' 2 ‘
IFl= 17 () dp.

En L,, al igual que en cualquier espacio normado, la distancia
~se introduce mediante la formula

P, &=If—gl.

La convergencia de una sucesién de funciones sumables, com-
prendida en el sentido de esta distancia, se llama convergencia
media. El espacio L, puede ser considerado como compuesto de
- funciones complejas (espacio complejo L,) o solamente de fun-
ciones ; reales (espacio real L,). Los resuitados de este paragrafo
son vélidos en ambos casos. : . v

‘Para muchas cuestiones del Analisis tiene gran importancia
el resultado siguiente. ) c -

TEOREMA 1. El espacio L, es completo.

y

DEMOSTRACION. Sea {f,} una sucesién fundamenfal en L,, esto es,
‘”fu"—,n ""'"0 para n, m—- oo.

1) Con més rrecisién: uesto' que cada elemento de L, es una clase de
funciones sumables equivalentes, para sumar dos clases de este tipo tomamos
un representante en cada una de ellas y llamamos suma de estas clases a
la clase que contiene la suma de los representantes elegidos. Esté claro que
el resultado no depende de la seleccién de los representantes en las clases
dadas. i - :



§ 1. ESPACIO L, ~ 419

Entonces, se puede encontrar una sucesién {n,} de indices tal que
1
I M E NN OIS

De esta desigualdad y del teorema de Beppo Levi se desprende
que la serie

Ifn‘|.+|fn,—fn,|+ -
converge en casi todo X. Pero, entonces, también la serie
fn1+fn,_fn.+ s

converge en casi todo X hacia una funcién
f (x)=n1im“ fnk (x).

Luego, hemos probado que una sucesién fundamental de L,
contiene sucesién parcial convergente en casi todos los puntos.

Probemos ahora que la sucesién parcial {f,} converge en la
media hacia la misma funcién f. Como la sucesién {f,} es fun-
damental, para cualquier e > 0 fijo y k y I suficientemente gran-
des tenemos R '

§ 1 Fm () —Fa() | <.

De acuerdo con el teorema de Fatou, podemos pasar en esta
desigualdad al limite para ! — oo bajo el signo de la integral.
Tendremos ‘ :

(lim@—f () |dp<e,

de donde se deduce que f€EL, y f. —f Pero, una sucesion
fundamental que contiene una sucesién parcial convergente hacia
un limite converge hacia el mismo limite. El teorema queda
demostrado.

2°. Conjuntos siempre densos en L,. Por definicién de la
integral de Lebesgue, cualquiera que sea la funcién f sumable
en X y cualquiera que sea e>0 existe una funcién siempre
sumable ¢ (x) tal que

(lf—e@)dp <e.
Ademas, puesto que para una funcién sumable simple que toma

los valores y,, Y,, ... en los conjuntos E,, E,, ... la integral
se define como la suma de la serie

2, Yabt (En)

n=1

(si es que ella converge absolutamente), esta claro que foda fun-
cién sumable simple puede ser representada como limite (en

27*
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media) de una sucesién de funciones sumables simples que toman
solamente un namero finito de valores. Luego, en el espacio L,
son siempre densas las funciones cada una de las cuales toma sola-
mente un nimero finito de valores (es decir, representa una com-
binacién lineal de funciones caracteristicas). ,

Sea R un espacio métrico. provisto de una medida que verifica
la condicién siguiente (que se cumple para la medida de Lebesgue
en un espacio euclideo y en otros muchos casos de interés prac-
tico): to£s los conjuntos abiertos y todos los conjuntos cerrados
de R son medibles y para cualquier McR :

# ()= inf s (G) @

donde la cota inferior se toma respecto a todos los conjuntds
abiertos G que contienen M. Entonces tiene lugar el teorema
siguiente.

TEOREMA 2.” El cbnjunto de_todas las funciones continuas es siempre

DEMOSTRACION. En vista de lo explicado anteriormente, basta de-
mostrar que toda funcién simple que toma un n@imero finito de
valores es limite, en el sentido de la convergencia media, de
funciones continuas. Ademds, como toda funcién simple que toma
un namero finito de valores ‘es. una combinacion lineal de - las
funciones caracteristicas oy (x) de los conjuntos medibles, basta
realizar la demostracién para estas altimas. Sea M un conjunto
medible del espacio métrico R. De la condicién (2) se desprende
inmediatamente que para cualquier &> 0 existen un conjunto
cerrado Fu y un conjunto abierto G, tales que

FycMcGy y p(Gy)—p(Fu) <e.
Definamos ahora la funcién ¢, (x), tomando®

)= B0 RNGw)
P W= R o (e, Fa °

Esta funcién es igual a 0 cuando x€R\ Gy y es igual a 1
cuando x € Fy. Es continua, ya que cada una de las funciones
P(x, Fy) y p(x, R\Gy) es continua y la suma de ellas nunca
se anula. La funcién yy—o, no pasa de 1 en Gy\Fy y es
igual a O fuera de este conjunto. Luego,

flan@—e.@dn<e,
de donde se desprende la »afirmaéién'w'del teorema.

1 o (x, A) representa la distancia entre el punto x y el conjunto A.
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Esta claro que el espacio L, (X, p) depende tanto de la selec-
cién del espacio X como de la medida en éste. Por ejemplo, si
la medida p esta concentrada en un némero finito de puntos,
L,(X, p) serd un espacio de dimensién finita. En el Anlisis
desempefian un papel fundamental los espacios L, de dimension
infinita, pero provistos de un subconjunto numerable siempre
denso. Para poder describir estos espacios L,, introduciremos un
concepto mds correspondiente, en realidad, a la teoria general
de la medida.

DEFINICION 2. Se dice que una medida p fiene una base nume-
rable cuando existe un sistema numerable ,

A={4} (=12, ...)

de subconjuntos medibles del espacio X (la base numerable de
la medida p) tal que para cualquier medible Mc X y cualquier
e >0 existe un A,€ 4 tal que

p(MAA,) <e.

En particular, una medida p tiene, evidentemente, una base
numerable, si puede ser representada como prolongacién lebes-
guiana de una medida definida inicialmente en un semianillo
numerable &,. Efectivamente, el anillo R(&,) (obviamente
numerable) representa en este caso la base necesaria. De aqui
se ve, por ejemplo, que tiene base numerable la medida de
Lebesgue de un segmento, ya que para ella se puede tomar
como sistema inicial de conjuntos elementales la totalidad de
intervalos, segmentos y semisegmentos con extremos racionales.

El producto p=p,Xxp, de dos medidas de base numerable
tiene también base numerable, ya que las sumas finitas de pro-
ductos de dos en dos de elementos de la base de la medida p,
por los elementos de la base de medida p, forman, como se
comprueba ficilmente, una base de la medida p=p, X p,. Luego,
la medida de Lebesgue en el plano (y en un espacio n-dimen-
sion&ailila también) tiene base numerable.

a

A% AL L AL .. 3)

una base numerable de la medida p. Es facil ver que amplian-
do el sistema de conjuntos (3) se puede formar una base nume-
rable de la medida p

A],’ Az! L | An' (4)

cerrada respecto a la sustraccion y las uniones e intersecciones
finitas.
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TEOREMA 3. Si la medida p tiene base numerable, existeen L, (X, p)
un conjunto numerable de funciones siempre denso

fu f” ‘- X} fn'

DEMOSTRACION. Probemos que las sumas finitas
n _

21 chf & ‘(x)r (5)

donde ¢, son nimeros racionales y f, son las funciones caracte-
risticas de los elementos de la bhase numerable de la medida TR
forman un conjunto numerable siempre denso en L, (X, p). -

La numerabilidad de este conjunto es evidente; probemos que
es siempre denso en L, (X, p). (!omo “hemos visto, el conjunto
de funciones escalonadas, que toman sélo un nimero finito de
valores distintos, es siempre densoen L,. Esobvio que cualquier
funcién de este conjunto puede ser aproximada tanto como se
quiera por una funcién del mismo tipo, pero de valores racio-
nales; por lo tanto, basta demostrar que cualquier funcién esca-
lonada f, que toma los valores

Yir Yss «oer Yn “(todos los y; racionales)

en los conjuntos ; ;
E,E, ..., E, (UE,-:X, ENE=g parai;q), 5
. - i : ; .

puede ser aproximada tanto como se quiera, en el sentido de la
métrica de L,, por funciones de tipo (5). Teniendo en cuenta la
observacién hecha, podemos aceptar, sin perder generalidad, que
la base de la medida p estid cerrada respecto a las operaciones
de sustraccién y uniones e intersecciones finitas.
Por definicion de una base numerable de una medida p, para

4 cualquier e >0 existen en ella unos conjuntos AL A, LA,

tales que
B [(Ex\AR) U(A\Ep)] < e.
Tomemos

Ai=ANU A (k=1,2,...,n)

i<k

y definamos f* mediante
Y, para x€ A,

=y, para x € R\|J 4;.

i=1
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Es ficil ver que para & suficientemente pequefio la magnitud
piefE)AFE

es tan pequefia como se quiera y, consecuentemente, la .integral
§17 00 —F* (0] dp < 2 max | g, [y f: () = F* ()}

"es tan pequefia como se quiera para & suficientemente pequefio.

En vista de las suposiciones hechas respecto a la base de la
medida p, la funcién f* es una funcién de tipo (5). El teorema
queda demostrado. o , :

Para el caso particular en que X es un segmento de la recta
numérica y p es la medida de Lebesgue, la base numerable de
L, (X, p) puede ser obtenida también de un modo mas clésico:
puede ser considerado como base de este tipo, por ejemplo, el
conjunto de todos los polinomios de coeficientes racionales. Es
siempre denso (incluso en el sentido de convergencia uniforme)
en el conjunto de funciones continuas y estas dltimas forman un
conjunto siempre denso en L, (X, p). ‘

§ 2. ESPACIO L,

1°. Definicion y propiedades fundamentales. El espacio L, es,
como hemos visto, un espacio lineal normado completo (esto es,
un espacio de Banach). Sin embargo, no eseuclideo: la norma
definida en &l no se puede introducir mediante ningin producto
escalar. Esto se deduce del .«teorema del paralelogramo» demos-
trado al final del § 4 del cap. III. En efecto, tomando, por
ejemplo, en el segmento. [0, 2n] las funciones integrables f=1
y g=senx vemos que la relacion

Ii+elr+ I f—glr=2(IFl)*+1gl

no se cumple en L, para ellas.

Un espacio funcional que, ademas- de ser normado, es euclideo
se puede obtener considerando el conjunto de funciones de cua-
drado integrable. Introduzcamos las definiciones correspondientes.
Supongamos que se consideran funciones reales f definidas en un
espacio X provisto de una medida p tal que p (X) < oo.. Todas
las funciones se suponen medibles y definidas en casi todo X.
Las funciones equivalentes no se distinguen.

pEFINICION 1. Una funcién f se llama funcién de cuadrado inte-
grable en X cuando la integral

{pran
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existe (es finita). El conjunto de todas las funciones de cuadrado
integrable en X se designa con L,(X, p) o, brevemente, L,.
eamos las gropiedades fundamentales de las funciones de
cuadrado integrable. : o S e .
1. El producto de dos funciones de cuadrado integrable es una
funcién integrable. Lo ‘ -
Esto se desprende directamente de la desigualdad

el <7 [P+t ()
Y de las propiedades de la intégi-ai de Lebesgue.

CorRoLARIO. Toda funcién de cuadrado integrable f es integiable.
En efecto, basta tomar g(x)=1y emplear la progiedad 1.
2. La suma de dos funciones de L, es también de L,. En efecto,

[F)+e@IF<f(0)+21f (g @)+ (x)
Y, de acuerdo con la propiedad 1, cada una de las tres funciones
que figuran en el miembro derecho es integrable.

3. Si fEL, y o es un nimero arbitrario, entonces of €L,
En efecto, si f€L, tenemos,

§[of @) dn=a2 § 1 (1) dp < oo,

Las propiedades 2 y 3 muestran que las combinaciones lineales
de funciones de L, son de nuevo elementos de L,; ademds, es
evidente que la adicion de funciones de L, y la multiplicacién
de las mismas por niimeros verifican todas las condiciones de la
definicién de un espacio lineal (cap. III, § 1). Luego, el con-
l;‘m L, de funciones de cuadrado integrable constituye un espacio

Definamos ahora el pfoducto escalar en L, tomando

¢ &= fmewdp.

Estd claro que todas las condiciones de la definicién de un
producto escalar (véase el cap. III, § 4), a saber:

l) (f: g)=(gr f),

2) (f1+fv g)=(f11 g)+(fz: 8),
v3) (a'f' g)==a(f, g),

4) (f, f)> 0 cuando f=~0,

se cumplen en este caso. En particular, la condicién 4) se cumple
debido a que hemos convenido no (distinguir las funciones equi-
valentes (por elemento nulo se toma, de esta forma, el conjunto
de todas las funciones equivalentes a f=0 en X).
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De esta forma, después de definir para las funciones de cua-
drado integrable las operaciones de adicién y de multiplicacién
por niimeros y de introducir el producto escalar, llegamos, en
conclusién, a la definicién siguiente. ‘

DEFINICION 2. Se llama espacio L, al espacio euclideo, cuyos ele-
mentos son las clases de funciones equivalentes de cuadrado in-
~ tegrable, en el que las operaciones de adicién y multiplicacién

por niimeros se definen como las operaciones habituales de adi-

cién y multiplicacién -y el producto escalar se define mediante
la férmula

(. &= §f () g(x)dp.
En L,, al igual que en cualquier espacio euclideo, tiene

lugar la desigualdad de Cauchy —Buniakovski, que toma en este
caso la forma '

(0w dn)' < 19 dnf g2 yam,
y la desigualdad triangular, que toma la forma
Vitwre@ra< ) Troa+ Ve

En particular, péra g(*)=1 la desigualdad de Cauchy —Bunia-
kovski se reduce a la siguiente desigualdad dtil:

(§redn) <n(x)§ P dp. (1
La norma en L, se define por la férmula

II=VED=V Trede
y la distancia entre los elementos f y g, por la férmula

o, @=If—¢gl=V SIF®—g)]dp.
La magnitud

S If —g @ du=)7—glp

se llama también desviacion cuadrdtica entre las funciones fye.
La convergencia de una sucesién funcional en el sentido de
la métrica del espacio L, se llama convergencia cuadratica. En
el caso en que no haya peligro de confundir este concepto con
el de convergencia en L,, introducido en el paragrafo -anterior,
emplearemos el término mas breve «convergencia media».
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TEOREMA 1. El espacio L, es completo. -

DEMOSTRACION. Sea {f,} una sucesién fundamental de L,, es_
decir, : L , :
| fa—Ffmll =0 para n, m —oco.

De acuerdo con la desiguald‘ad (‘l),‘,tenemos‘entOnces

Sl —fa@ias<tp P S lho—
—fa @ dp} <e[p(X)]% @

esto es, la sucesién {f,} es fundamental también respecto a la
métrica del espacio L,. Repitiendo los razonamientos que hemos .
empleado al demostrar la complitud del espacio L,, podemos
escoger de {f,} una sucesién parcial {f,,} que converge en casi’
todos los puntos hacia una funcién f. En la desigualdad

§ e () —Fm ()]0 dp <&

que es vilida para elementos de esta sucesion parcial con ky [
suficientemente grandes, podemos pasar, en virtud del teorema
de Fatou, al limite para [— co. Tendremos -

 (fa@—foPdi<e

de donde se deduce que f€L, y que f,,—f. Para terminar la
demostracién basta, al igual que en el teorema 1 del § 1, sefialar
que toda sucesién fundamental que contiene una sucesién parcial
convergente converge hacia el mismo limite. i

EJERCICIO. Definamos L, (X, p) como. el conjunto de las clases de fun-
ciones equivalentes para las cuales S] flPdp < o, donde 1<<p < . De-
muéstrese que Lp(X, p) es un espacio de Banach respecto a la norma

nin=(§ 17w an)’ |

2°, Caso de medida infinita. En el punto anterior hemos con-
siderado funciones de cuadrado integrable definidas en un espa-
cio X de medida finita. La condicién p(X) < oo ha sido emplea-
da de un modo sustancial. La hemos empleado, primero, al
demostrar que toda funcién de cuadrado sumable es sumable en
primer grado y, después, al deducir la desigualdad (2) en la que
se basa la demostracién de la complitud del espacio L,. Si se
consideran funciones en un cohjunto de medida infinita (por
ejemplo, en toda la recta con 1a medida lebesguiana en ella),
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no toda funcién de L, serd elemento de L,. Por ejemplo, la
funcion no es integrable en toda la recta, pero su cua-

x2
drado es integrable. Ademaés, en el caso p(X) < oo tiene lugar
la desigualdad (1) segin la cual la convergencia de una sucesién
de funciones en L, implica su convergencia en L,. Cuando
p (X)= oo, esto ya no tiene lugar: por ejemplo, la sucesién de
funciones en la recta

1 N

- bara |x|<n,
Pulx)=1 "

0 para |x|>n

converge hacia el 0 en el espacio L,(—o0, oo) de funciones de
cuadrado integrable en la recta, pero no converge hacia ningiin
. limite en L,(— o0, o). Sin embargo, el teorema sobre la com-
plitud del espacio L, sigue siendo vdlido también para p (X)= oo V.

Demostremos esta afirmaciéon. Vamos a suponer, lo mismo
que en el § 5 del cap. VI, donde hemos introducido el concepto
de integral en un conjunto de medida infinita, que todo el es-
pacio X puede ser representado como la unién numerable de
conjuntos de medida finita. Sea

X= Xa n(X,) <oo, X.NX,= para n=m
n=1
una representacion. de este tipo y sea {f,} una sucesién funda-
mental en L,(X, p). Entonces, para cada & >0 existe un N tal
que o
S[f’,a (*)—f, (x)]*dpn < & para todos los k, IZ=N.

Tomemos BN
(P(n) (JC)= (p(X) para ’xexn )
0 para los demas x.
Entonces, debido a la o-aditividad de la integral de Lebesgue,
tenemos

[l —f@ldu= 3 T 0)—f® ] dw <e.

Consecuentemente, para cada M finito es, con mayor razén,
M
> (I @—fr 0Pde<e. @
n=1Xgn ) ’
1) La demostracién de la complitud del espacio L,, expuesta en el § 1,
no depende, evidentemente, de si es o no finita la meéida del espacio X.



428 . CAP. VII1. ESPACIOS DE FUNCIONES SUMABLES

El conjunto de funciones de cuadrado integrable en cada X, es
un espacio completo. Tomando . .

o )= lim ()

glonde la convergencia se entiende como convergencia en .el:;‘espacigi
+ (X, 1)), podemos pasar al limite para I — oo en la desigual-
dad (3). Tendremos ’

M . ’
3§ P @—f@Prda<e.

n=1 X,.

Puesto que esta desigualdad se cumple para todos los M, pode-
mos pasar en ella al limite para- M — co. De este modo, tene-
mos , .
> }§ [ () —F» (P dp <e.
n=1Xg ; N

Tomando

 Hx®)=F"(x) para x€X,,
podemos dar a esta dltima desigualdad la forma

S h—F@Pdp<e.

De aqui se deduce tanto que f es un elemento de L,(X, p),
como la convergencia de la sucesién {f,} hacia f. v

3°. Conjuntos siempre densos en L,. Teorema sobre el isomor-
fismo. Asi pues, el espacio L,(X, p) de funciones de cuadrado
integrable es un espacio euclideo completo. Excepto casos trivia-
les, la dimensién de este espacio es infinita. Desde el punto de
vista de diversas aplicaciones en el Anilisis, es importante co-
nocer cuindo el espacio L,(X, p) contiene un conjunto nume-
rable siempre denso. Hemos visto en el § 1 que en el caso del
espacio L, (X, p) la existencia de un conjunto numerable siem-
pre denso se desprende de la existencia de una base numerable
de la medida p. No es dificil comprobar que esta misma condi-
cién garantiza también la existencia de un conjunto numerable
siempre denso en L,(X, p). En efecto, toda funcién de L, (X, p)
puede ser aproximada con precision necesaria mediante funciones
cada una de las cuales es igual al 0 fuera de un conjunto de
medida finita®. Después, los mismos razonamientos que han
sido empleados al demostrar el teorema 3 del § 1 muestran que

D Sj es p(X) < w, este paso sobra.
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en el conjunto de funciones de este tipo se puede escoger un
conjunto numerable siempre denso. '

Luego, si la medida p tiene base numerable, el espacio -
L, (X, p) es un espacio euclideo completo provisto de un conjunto
numerable siempre denso. En otras palabras, dejando a un lado
el caso en que L,(X, p) es de medida finita, obtenemos el re-
sultado siguiente: si la medida p es de base numerable, el espacio
L,(X, p) es de Hilbert. :

En virtud del teorema sobre el isomorfismo de los espacios
de Hilbert, esto significa que todos los espacios L, (X, p) de este
tipo son isomorfos. En particular, todo espacio de este tipo
L, (X, p) es isomorfo al espacio I, de sucesiones numéricas con
la suma de cuadrados convergente (que puede ser considerado
como el espacio L, (X, p) correspondiente a la medida p definida
en una sucesién numerable de puntos). En lo que sigue sélo se
considerardn espacios L,(X, p) correspondientes a medidas de base
numerable. En los casos en que no puedan surgir confusiones cada
espacio de este tipo se designara simplemente mediante L,.

Como el espacio L, representa, segiin lo explicado, una rea-
lizacién del espacio de Hilbert, se pueden extender a L, todos
los conceptos y resultados dados en el § 4 del cap. III para un
espacio de Hilbert abstracto.

En particular, como, de acuerdo con el teorema de Riesz,
toda funcional lineal en el espacio de Hilbert H puede ser re-
presentada mediante el producto escalar

F(h)=(h, a),

donde a es un vector fijo de H, toda funcional lineal en L, es
de la forma :

F(f)= F(x) g (x) dp
donde g.es una funcién fijada de cuadrado integrable en X.

4°. Espacio complejo L,. Hemos considerado hasta aqui el
espacio real L,. Los resultados expuestos se extienden sin difi-
cultad al caso complejo. Una funcién compleja f definida en un
espacio X provisto de una medida p, se llama funcién de cua-

drado integrable cuando la integral

CIfepdn
X

es finita. Definiendo del modo habitual la adicién de estas fun-
ciones y la multiplicacién de las mismas por ntimeros e intro-
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duciendo el producto escalar mediante la férmula ~'
(. =} FgGdn,

obtenemos un espacio euclideo llamado espacio complejo L,.
(Aqui, lo mismo que en el caso real, consideramos las funciones
equivalentes como un mismo elemento del espacio). Este espacio
es completo y, ademds, si la medida p es de base numerable,
es también separable. Luego (omitiendo el caso en que este es-
pacio es de medida finita), obtenemos que el espacio complejo L,,
correspondiente a una medida de base numerable, es el espacio
complejo de Hilbert. Todos los espacios de este tipo son isomor-
fos y para ellos son vélidos los resultados expiestos en el § 4
del cap. III. ' ‘ o '

5°. Convergencia cuadrdtica y su- relacién con otros tipos de
convergencia de sucesiones funcionales. Al introducir en el es-

pacio L, la norma, hemos definido -con ello para las funciones
de cuadrado integrable el siguiente concepto de convergencia:

; _ .fti '_’vf:
tim § [f,)—F @] dp=0.

n-»w

cuando

Esta convergencia la hemos llamado convergencia 'cuadratica.

Veamos cémo estd relacionada con otros tipos de convergencia

de sucesiones funcionales. Supongamos primero que la medida

del espacio X en el que estin definidas las funciones es finita.
1. Si la sucesién {f,} de funciones de L,(X, ) converge en la

métrica de L, (X, p), también converge en la métrica de L, (X, ).
En efecto, debido a'la desigualdad (1), tenemos

§17 01— 091w <[00 [ o )7 G ¥

y de aqui se desprende nuestra afirmacién. ,
2. Si la sucesién {f,} converge uniformemente, también converge
cuadrdticamente. =~ S T
En efecto, cualquiera que sea &>0, tenemos para n sufi-
cientemente grandes - : R
1) —fx)]<e

y, consecuentemente, | D
: . S [fa()—F (x) Pdp < gip, (X),
de donde se deduce nuestra afirmagién. o
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3. Si una sucesion {f,} de funciones sumables converge en me-
dia, también converge en medida en X.

- Esta afirmacién se desprende directamente de la desigualdad
de Chébishev.

De aqui y del teorema 11 del § 4 del cap. VI, se sigue:

4. Si una sucesion {f,} converge en media, se puede extraer de
ella una sucesion parcial {f.,} convergente en casi todos los puntos.

Observemos que al demostrar el teorema sobre la complitud
del espacio L, hemos encontrado este resultado sin basarnos en
el teorema 11 del § 4 del cap. VI.

Es féacil ver que la convergencia media (e incluso cuadratica)
de una sucesién no implica, en general, la convergencia de esta
sucesion en casi todos los puntos. Efectivamente, la sucesién
{fns}, construida en el § 4 del cap. VI, converge en media y
cuadraticamente hacia f=0; pero, al mismo tiempo, como ha
sido alli demostrado, no tiende hacia 0 en nungin punto. Vi-
ceversa, una sucesién {f,} puede converger en casi todos los pun-
tos (e incluso en tado punto) y no converger en media. Consi-
deremos, por ejemplo, en el segmento [0, 1] la sucesién de fun-
ciones |

n para x€(0, —
=" <0 %)
0 para los demés x,
tal .que f,(x) —0 para todo x€[0, 1]. Al mismo tiempo,
1

{1f.(x)|dx=1 para todo n.
.0 .
Las relaciones que existen entre diferentes tipos de conver-

gencia de funciones, definidas en un espacio de medida finita,
pueden ser esquematizadas del modo siguiente:

Convergencia ‘uniforme

(Ly) Convergencia Convergencia en
: cuadratica | | casi todo punto
I 1

( L ) Convergencia , Convergencia
t en media en medida
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donde la flecha de puntos significa 1a - posibilidad de escoger de
una sucesién convergente en medida una sucesién parcial conver-
gente en casi todo punto. - ST Ce

En el caso p(X)=oc (por ejemplo, para funciones en toda
la recta numérica con la medida de Lebesgue en ella) las rela-
ciones encontradas no tienen ya lugar. Por ejemplo, la sucesién

i(x)—‘" 7= para 1l <,
", 0 para |x’|>n;

converge uniformemente en toda la recta hacia la funcién f=0
y, sin embargo, no converge ni en media ni cuadriticamente.
Ademds, para p(X)=o0 la convergencia cuadratica (esto es,
en L,) no implica, segin hemos' sefialado ya, la convergencia
media (esto es, en L,) de la misma sucesién. - - = - ‘

A su vez, la convergencia media no implica, en general, la
convergencia cuadratica (esta Gltima observacion es vilida tanto
cuando p(X)<< o0, como cuando p(X)=o0).

§ 3. SISTEMAS ORTOGONALES DE FUNCIONES EN L.
SERIES RESPECTO A SISTEMAS ORTOGONALES

De los teoremas generales, demostrados en el § 4 del cap. III
para los espacios euclideos, se desprende que en L, existen sis-
temas completos ortogonales (en particular, ortogonales y nor-
males) de funciones. Estos sistemas' pueden ser obtenidos, por
ejemplo, aplicando el proceso de ortogonalizacién, descrito en el
§ 4 del cap. III, a uno u otro sistema completo. Si en L, se ha
escogido un sistema {g,} completo ortogonal, todo elemento f € L,
puede ser representado, en vista también de los resultados dei
§ 4 del cap. III, como la suma de la serie

. ®
f= 2 CnPn
n=1

esto es, como la suma de la serie de Fourier de la funcién f
respecto al sistema ortogonal {g,}. Ademds, los coeficientes c,,
es decir, los coeficientes .de Fourier de la funcién f respecto al
sistema {g,}, se definen mediante las férmulas

A UCEACEE
(lealr= e ardn).
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En este paragrafo consideraremos algunos ejemplos de mayor
importancia de sistemas ortogonales en el espacio L, y los de-
sarrollos que les corresponden.

1°. Sistema trigonométrico. Serie trigonométrica de Fourier.
Consideremos el espacio L,(—=n, =) de funciones de cuadrado
integrable en el segmento [—=, n] con la medida de Lebesgue
habitual en este segmento. En este espacio las funciones

{cosnx, sennx} (n=0, 1, 2, ...) 1)
forman un sistema completo ortogonal, llamado sistema trigono-

métrico. La ortogonalidad de este sistema se comprueba facil-
mente mediante el calculo directo; por ejemplo, para n#=m

2 2 2

-7

i 4 i3
S cos nx cos mxdx =+ S [cos "+""x+ cos 2 —mx]dx =0,
- )

etc. La complitud del sistema (1) se desprende del teorema de
Weierstrass sobre la aproximacion de cualquier funcién periddica
continua mediante polinomios trigonométricos?. El sistema (1)
no es normal. El sistema normal eorrespondiente estd compuesto
por las funciones

1 €OoS nx sen nx

V' V' V=

Sea f una funcién de L,(—m, =m); sus coeficientes de Fourier,

correspondientes a las funciones 1, cos nx y sen nx, se acostumbra

“designar con -‘—'2%, a, y b,. Por lo tanto, de acuerdo con las
férmulas generales para los coeficientes de Fourier, tenemos

(n=1,2, ...)

%=§% Sf(x)dx, es decir, a°=;i-Sf(x)dx

f (x) sen nxdx.

Je—u

R
a,,=-:7 S f (x) cos nx dx, b,,=—i—
- -

1 En el § 2 del cap. IX demostraremos é! teorema de Fejér que consti-
tuye una generalizacién del teorema de Weierstrass. Con ello daremos una
demostracién de Ia complitud del sistema trigonométrico (demostracién que
no se basa, claro ests, en los resultados que aqui exponemos).

28—3427
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La serie correspondiente de Fourier es
' S gt ; -

52‘4-]—2 a,cos nx-+b,sennx

A=l
%/ cualquiera que sea f€L, converge cuadréticamente hacia esta
uncién. Si ' ‘
n .
: S,,=32-°-+ * a,coskx+b,senkx

k=1

es la suma parcial de. la serie de Fourier, la desviacién cuadra-
tica entre S, y f puede ser encontrada mediante la férmula

O=S@P=lfP—n(F+ Saa).
Entre todos los pblir;omios trigonométricos
Tn (x)=#‘;!+§.a,cos ke t-Bysenkx
conn fijo 15 suma barciai S, _dé la Serié ‘dre Fourier es la que

mejor aproxima (en la métrica de L,) la funcién f. Para el sis-
tema trigonométrico la desigualdad de Bessel da '

*® £
%—+}_‘.}a:+b;,<% § Peydx.
na=1 . -T

Como el sistema trigonométrico es completo, para cualquier fun-
cién de L, tiene lugar, de hecho, la igualdad de Parseval

® b :
1
P+ a+oi=1( P

n=1 - '
Para cualquier funcién f€L, los cuadrados de sus coeficientes de
Fourier forman una serie convergente. Viceversa, si los niimeros
;z.,, a, b, (n=1, 2, ...)son tales que la serie ¥,a3+ b3 converge,
a serie

®
%’-—l—z a, cos nx+b, sen nx
n=1 )

también converge (en L,) y su suma es una funcién para la
cual a,, a, y b, son sus coeficientes de Fourier.
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Todo lo que se acaba de exponer para funciones definidas en
el segmento [—mn, n], se extiende facilmente a funciones defini-
das en un segmento de longitud arbitraria, digamos en [——l, 1.

Si f es una funcién de cuadrado integrable en [—I, I], la susti-

tucion x=“——t, es decir, t=£’f-, convierte f(f) en la funcién
: l T

* (x)=fl7x en el segmento [—m, =n].
De acuerdo con esto

1 .
1 .
a,=+ Slf(t)cos"—’;t—-dt

!
1 1
b"=T S;f(t)sen nl—d/t.

La serie de Fourier para una funcién f definida en un segmento
de longitud 2! es

° ;

au nyt
% + X a,c0s ¥F +b,sen "
n=1

Observaciones 1. La teoria de series trigonomeétricas fue ela-
borada, en gran medida, en las obras de J. Fourier, matematico
francés, relacionadas con sus investigaciones en la Fisica Mate-
matica y, en primer término, en la teoria de propagacién del
calor. No obstante, las férmulas para los coeficientes a, y b,
aparecen ya en los trabajos de Euler. Inicialmente los términos
«serie de Fouriers, «coeficientes de Fourier», etc., se relacionaban
precisamente con el sistema trigonométrico ortogonal y solamente
mucho méas tarde empezaron a usarse en ese sentido general en
el que los hemos empleado en el § 4 del cap. III (esto es, para
un sistema ortogonal arbitrario en un espacio euclideo cualquiera).

2. De la complitud del sistema trigonométrico y de los teo-
remas generales demostrados en el § 4 del cap. III se desprende
que cualquiera que sea f€L, su serie de Fourier

®»
a,
—§°+2 a,cos nx-+b,sen nx

n=1

converge en media hacia la funcién dada f. Pero, desde el punto
de vista de los problemas concretos del Analisis es importante
encontrar las condiciones en que esta serie converge hacia f en
otros sentidos, digamos en cada punto o uniformemente. Estas
cuestiones seran consideradas en el capitulo siguiente.

28*
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2°, Sistemas trigonométricos en el segmento [0, x}. ras fun-
ciones SR ; « o

1, cosx, cos2x, ... 2)
: senx, sen2x, ... \ 3)
forman en su conjunto un sistema ortogonal completo en el seg-
mento [—=x, n]. Probemos que cada uno de los sistemas (2) y
(3) es ortogonal y completo en el segmento [0, x]. La ortogona-
lidad se comprueba mediante el célculo directo. Demostremos la
complitud del sistema (2). Sea f una funcién de cuadrado inte-
grable en [0, n]. Defindmosla en el segmento [—=, 0], tomando

f(—x)=F(x)
y desarrollémosla en serie de Fourier respecto al sistema
: 1, cosnx, sennx (a=1, 2, ...). '
Como la funcién f, definida ahora en [—=, n}, es par, todos sus
coeficientes en los senos son iguales a cero; esto se ve inmedia-

tamente de las formulas para los coeficientes: para una funcion
par f y n>1 tenemos

n 0 m
S f(x)sennxdx = S f(x)sennxdx-}—gf(x)sennxdx:
-% -5 0 :

—_--—§’f(x)sen-nxdxy+Sf(‘x)-sennxdx:ﬂ.
; ; F

En otras palabras, esta funcién puede ser aproximada en media
en [—m=, nt] (y con mayor razén en [0, x]), con precisién arbi-
traria, mediante combinaciones lineales de los elementos del sis-
tema (2). De aqui se deduce la complitud del sistema (2). La
complitud en [0, =] del sistema (3) se demuesira andlogamente,
prolongando al semisegmento [—n, 0] la funcién f(x), definida
en [0, n], mediante la férmula
f(—x)=—[(x).
La funcién obtenida de esta - forma es impar en [—a=, =}

y se desarrolla en este segmento en serie solamente respecto a
los senos. -

3°. Forma compleja de la serie de Fourier. La serie trigono-

métrica de Fourier de una funcién f en el segmento [—umx, m}

puede ser representada en una forma mas compacta, si se emplean

las férmulas de Euler ’

elnx | g—inx einx_e—i_ux
2

cos nx = , sennx= o
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Colocando estas expresiones en la serie de Fourier, tenemos
»
%‘l-+2a,,cosnx+b,,sennx=-;—°+
n=1

3 (et ety

n=1
=_a2_o_+22_i%_i_l_’_nelax+za_n_'g£’3e-inx= Z cnelnx’
n=ml n=1 n=-
donde c,=32-°- y para n>1
. cu:an;ibn,
ant-iby )
Cop=""g—"

La expresién

€8
2 ceins
n=-—-m
se llama serie trigonométrica de Fourier en forma compleja. Los
coeficientes ¢, de esta serie se expresan por las férmulas (4) a
través de a, y b,; sin embargo, es ficil obtener unas férmulas
gara %oder calcularlos directamente. En efecto, el célculo inme-
iato da

n
S e’“"-e"‘“"dx:{ 0 para ns#m,
n , 2n para n=m.
Luego, multiplicando la igualdad
fo= 3 et (5)

por e=»*(m=0, +1, £2, ...) e integrdndola, obtenemos
n o
{ F () e-tms dx=2nc,,
-n
es decir,
1 n
Ca=g | fet=rdx (m=0, £1, %2, ...). (6
2 ) T

El desarrollo (5) subsiste para las funciones complejas de
cuadrado integrable en el segmento [—=, n]. En otras palabras,
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las funciones ef* constituyen una base del espacio L,[-=, n}
de funciones complejas con el cuadrado integrable del valor abso-
luto en [—mn, n]. Ademads, las expresiones (6) representan los
productos escalares de f por &/®* en este espacio complejo. =

Esta claro que, sustituyendo e** por. eiT'f,-f todo lo expuesto
puede ser extendido al espacio L,(—/, /) de funciones complejas
en un segmento de longitud arbitraria 2. -~ - :

~ 4°. Polinomios de Legendre. Las combinaciones lineales de
_las funciones .
I, x, 28, ... 7)

constituyen el conjunto de polinomios. Luego, el sistema (7)
es completo en el espacio L, de funciones en un segmento?.
Ortogonalizando el sistema (7) en el segmento [—1, 1], es decir,
respecto al producto escalar :

.1 '
, &= {F(x) g(x)dx,
=1 )
obtenemos un sistema ortogonal completo
_ Qo (%), Qi(x)s Qy (), -. s _
donde 'Q, es un polinomio de grado n. Probemos que cada uno
de los polinomios que se obtienen al oftogonalizar el sistema (7)
coincide, salvo un factor constante, con el polinomio - ‘
| Pol) = (1)
Probemos que el sistema {P,} es ortogonal. Sea n>m. Como

d* n “_dk vl
a(x’—l) —-d?;(x’—-l) ; =0

X==1 x=1

para todos los k=0, 1, ..., h——l, obtenemos, integrando por
partes,
1

§PatdPutx——§

-1

dm+1 dn—-1 ‘
W‘(x’-—l)"‘dx,,_l (x'—l)"= e

= [ e, @

D La complitud del sistema de polinomios en el espacio L, [a, b] de
funciones de cuadrado integrable en un segmento cualquiera [a, b] se des-
prende del teorema de Weierstrass sobre la aproximacién uniforme de cual-
guier funcién continua en un' segmento mediante polinomios. Véase el final
“del § 2 del capitulo 1X. ’ e e



§ 3. SISTEMAS ORTOGONALES DE FUNCIONES EN Ls 439

Si m< n, bajo el signo de la altima integral figura el cero
idéntico y de aqui se desprende la ortogonalidad del sistema
{P,}. Ademas, esté claro que el polinomio P, es de grado n, es
decir, todo P, se encuentra en el subespacio generado por los
n+1 primeros elementos del sistema (7). Luego, tanto-el sistema
{P,}, como el sistema {Q,}, poseen las propiedades siguientes:

1) ortogonalidad,
2) el n-ésimo elemento del sistema pertenece al subespacio

generado por los elementos 1, X, ..., XL
Pero cada elemento del sistema queda determinado por estas
propiedades univocamente, salvo un factor constante (teorema 1
del § 4 del cap. III). :
En el caso m=n la igualdad (8) lleva al resultado siguiente

1

' 1
(Priar= (Gl (e — 1y de=
-1 . -1 :

1 .
, . 1)2.922n+1
= (2n)) S(x’el)"dx=%.
-1 v . o

En otras palabras, la norma del polinomio P, es igual a
n2ny2
Vontl '~
Por lo tanto, el sistema de polihomios
Van+1 p
nnye "

ademis de ser ortogonal, es también normal.
En lugar de estos polinomios normalizados: suelen conside-
rarse los polmomios definidos por la formula : '

, 1 dr .
Ly (0) =g g (O —1)"
llamados polinomiqs de Legendre. De los calculos realizados se

deduce que -
0 para nm,

1 ) :
L,(x)La(x)dx=3 2
§ 100 @ { i para n=m.

Sefialemos en forma explicita los cinco primeros polinomios
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de Legendre;
L=1 Li=x Lx=grs-_1,
e <15 ‘3.
L=gr—gx L@=Tu_Bu, 3
. El desarrollo de una funcién fen e!segmento[—-l,l] res-
pecto a los polinomios de Legendre es de la forma - :
fx)= ,Ef"[‘" (c7
donde ‘ ‘
7 (Fo Lo de.
-1

Cp=

5°. . Sistemas ortogonales en productos. Series miiltiples de
Fourier. Sean definidas en los conjuntos X’ y X” las medi-
das p’ y p”. Designemos mediante Ly y L los espacios corres-
pondientes de funciones de cuadrado integrable. Consideremos
en el producto =

X=X"xX""

p=pxp".
Designemos mediante L, el espacio correspondiente de funciones

de cuadrado integrable. Interpretaremos las funciones de L, como
funciones de dos variables.

TEOREMA 1. Si {g,} y {¢,} son sistemas ortonormales de L} y L,
‘respectivamente, el sistema de todos los productos :

a5 =0 ()bl

la medida

€s un sistema ortonormal completo de L,.
La demostracién de ortonormalidad es muy sencilla:

L [ Fantss s = [ on0) ([t = 1.
X X X _
2. Si m m,, tenemos

Sf""(x’ y)fn,n,(x, y)d’t:
x .

| =S¢,.i(y) ¥.,) (S«P;.. x) w..(x)d# ) dp” =0.
b o X’ '
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3. Si m=m,, pero n=n,, tenemos
’S( Fan (%0 9) Fmn, (%0 §)dia=

={ane ( (w00, "Y' =0.
PR

Probemos la complitud del sistema {fus}- Supongamos que
%n L, existe una funcién f ortogonal a todas las funciones f,,.
omemos

Fu(y)= S f (%, 4) Palx)dp’.
A
En este caso, cualquiera que sea n,
JFa) @)= § 165, 9) Fan (2, g dp =00
: X

Debido a la complitud del sistema {%,}, de aqui se desprende que
Fa(y)=0 "

gaaa casi todo y. Luego, para casi todo y tienen lugar las igual-
ades ' . ‘ .

if(x. 5) Pm () dp' =0

cualquiera que sea m. Debido a la complitud del sistema {g,},
obtenemos de aqui que para casi todo y el conjunto' de aquellos
x en los que ' '

f (xo y) 9&0

es de medida nula. En virtud del teorema de Fubini, esto sig-
nifica que la funcién f(x, y) es igual a 0 en casi todo el X. El
teorema queda demostrado.

Apliquemos este teorema a algunos sistemas ortogonales con-
cretosg‘ n el espacio de funciones de cuadrado integrable de dos
variables : :

o g) (—n<x<n, —a<y<n)

conistituyen un sistema ortogonal completo los productos de dos
en dos de los elementos de los sistemas: ‘

1, cos mx, senmx (m=‘l, 2, ...)

1, cosny, seriny' n=1,2,...)
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es decir, las funciones ST _
1, cosmx, senmx, COSny, senny, Cosmx senny,
COS mx COS ny, sen mx seén ny, sen mx cos ny.
-La expresién de la serie correspondiente de Fourier es, en cierto
grado, voluminosa y por eso conviene recurrir aqui a las fun-
ciones exponenciales de argumento imaginario, esto es, a las
funciones '

A esta base corresponde la serie de Fourier

f (x; y) — z Cﬁnei mw),
nm=-o

donde . s
X N

C.en=.;;lg S : S [, y)e-i=x+m dxdy.
- -
Empleando los  polinomios de. Legendre, podemos obtener en el
espacio de funciones, definidas en el cuadrado
—1<x<1, —1<y<l1,
un sistema ortonormal completo compuesto por los polinomios

2m 2n4-1) dm» : ds
Qun s, 4= YEEIEED L — 1) S — 1

Todo lo expuesto se extiende, de manera obvia, a las funciones
de varias variables. En particular, la serie trigonométrica de
Fourier para una funcién de k variables es

ol

[y oo X)= 2 o Cn,n, o€ (axyde.tmexe)

Ny ooy RRF =@

donde

Ca

a

1 » e B
g eee Mg (2“)* cee f(xl, ey xk)g ‘(‘?txf?*-~.+lf,k‘k) dxl .o dx,,.

L

|

T .

6°. Polindmios oriogdnal% respecto a ﬁn nucleo dado. Hemos
llegado a los polinomios de Legendre ortogonalizando las fun-

ciones
~ 1, x, x% ..., X% ... 9)

respecto al producto escalar

(fwewdr
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correspondiente a la medida habitual de Lebesgue en el seg-
mento [—1, 1]. Si se define en este segmento otra medida p,
satisfaciendo la condicion de que las funciones (9) sean lineal-
mente independientes en el espacio correspondiente, obtendre-
~mos, aplicando al sistema (9) el proceso de ortogonalizacion,
un sistema de polinomios {P,} que depende, en general, de la
seleccién de la medida p. Supongamos que la medida p (E) estd
definida para los subconjuntos medibles del segmento [—1, 1]
mediante la férmula

w(B)={ g adx, | (10)
E

donde g es una funcién sumable no negativa fija. En este caso,
la condicién de ortonormalidad

‘ 1 para m=n,
P, Py=|"!
(Pas Pr) { 0 para m=n,
es de la forma
; ‘ 1 para m=n,
T P

La funcién g, que define la medida (10), es llamada nicleo o
funciéon de peso. Por esto,. los polinomios que verifican la con-
dicién (11) se dicen ortogonales respecto al niicleo g. La selec-
cién de uno u otro niicleo lleva a diferentes sistemas de polino-
mios. En particular, tomando ' '

=

obtendremos unos polinomios que coinciden, sal\}o un - coeficiente
constante, con los asi llamados polinomios de Chébishev que se
definen mediante la férmula

T,(x)=cosnarccosx (n=1, 2, )

y desempefian un papel importante‘ en diferentes problemas de
interpolacion. . :
La ortogonalidad de estos polinomios respecto al nicleo

— se comprueba ficilmente. En efecto, tomando

Yi=xt

x=cos0, de= —sen0d0, V' 1T—x3=senb,
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encontramos

1 : n . . :
(Ta®)Talx) 4, _ . —8 — ‘1.para n=m
-—_—Vl—x{dx rbfcosmecos\nedﬁ_ Sn .{;9 para nwkm.

. 7°..Base ortogonal en el espacio L,(— oo, oo0). Funciones de
Hermite. En lo que precede hemos considerado diferentes sistemas
ortogonales completos en un segmento, esto es, en un conjunto
de medida finita. Consideremos ahora el caso de medida infinita
y concretamente el espacio L, (— o0, o) de funciones de cuadrado
_integrable en toda la recta numérica. Un sistema ortogonal de
funciones de este espacio no se puede construir ni a partir de
polinomios ni a partir de funciones trigonométricas, ya que todas
estas funciones no pertenecen al espacio L,(— oo, o0). Los «mate-
riales» para construir una base en L,(— oo, oo) hay que buscar-
los entre las funciones que decrecen suficientemente rapido en el
infinito. Probemos que se puede obtener un sistema ortogonal
completo en L,(— oo, o) ortogonalizando la sucesién

xne (n-.—io’f 1,2 ..)

En efecto, toda funcién de tipo P (x)e-*"2, donde P es un poli-
nomio, pertenece, evidentemente, a L,(— oo, co). Ademas, el
conjunto de estas funciones es siempre denso en L,(— oo, o)
(esto sera demostrado en el § 4 del capitulo 1X). : V

Aplicando a las funciones x"e~*'/2 el proceso de ortogonaliza- .
cién, obtenemos el sistema ‘de funciones de tipo

X)) =H,(x)e-"2 (n=0, 1, 2, ...),

donde H, es un polinomio de grado n. Estos polinomios se 1laman
polinomios de Hermite y las propias funciones ¢, se Haman
funciones de Hermite. Es facil mostrar que los polinomios de Her-
mite coinciden, salvo un coeficiente constante, con los polino-
mios '

Hi)=(—1per e

En efecto, el polinomio H; es, evidentemente, de grado n. La
relacién de ortogonalidad ‘ '

‘ S Hai(x)Hp (x)e~*'dx=0 (n5=m)
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puede ser comprobada directamente integrando por partes. Pero,
debido al corolario del teorema sobre la ortogonalizacién, existe,
salvo un coeficiente constante, solamente un sistema de funciones
ortogonales de tipo P,(x)e-*"2, donde P, es un polinomio de

grado n.
El resultado obtenido puede ser interpretado también de la

siguiente forma. Consideremos en la recta la medida p de densi-
dad e-*, _esto es, tal que ,
dp =e~* dx.

Esta es una medida finita en la recta. En el espacio de funcio-
nes de cuadrado integrable respecto a esta medida en la recta el
producto escalar tiene la forma

(h = § f)gue-dr

y los polinomios de Hermite forman en este espacio un sistema

ortogonal. :
Consideremos también el espacio L,(0, oo) de funciones de
cuadrado integrable en la semirrecta. Tomando en este espacio el

sistema de funciones
x"e~*
y aplicando a éste el proceso de ortogonalizacién, obtenemos el
sistema de funciones ,
L,(x)e >

lamadas funciones de Laguerre.

Los polinomios correspondientes L, se llaman polinomios de
Laguerre. Los polinomios de Laguerre pueden ser considerados

como una base ortogonal en el espacio de funciones de cuadrado
integrable en la semirrecta (0, oo0) con la medida

dp =e-*dx

en esta semirrecta. En el § 4 del cap. IX demostraremos que el
sistema de funciones de Laguerre es completo en L, (0, oo).

8°. Polinomios ortogonales respecto a un nicleo discreto. Supon-

gamos que a n+1 puntos diferentes x,, x,, ..., x, de la recta
real se les han prescrito, a titulo de nicleo, unos nimeros posi-
tivos p,, Py --.» P ¥ que la medida p estd definida por

r(E) =x',§EPIv
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es decir, la medida p (E) es igual a la suma de los niicleos de
los puntos x, pertenecientes a: E. En esta «medida degenerada»
todo conjunto E que no contiene puntos x,(k=0, 1, ..., n) es
de medida 0. Luego, la integral de una funcién. [ en toda la
recta real es igual a

§ 1ode= 3 nica).

Es obvio que las funciones f y g serén equlvalentes respecto ala
medlda p cuando

f ) =g(x)

en todos los puntos Xg» X1y ..., X, Y solamente -en este caso.
Para este caso degenerado el problema sobre la mejor aproxima-
cién en el sentido de la dlstanma de L ~se reduce a buscar las
sumas ‘ b

o(Po =+ 69 + CPst ... +CrPm

que ofrecen el minimo a 1a expresién
) " n ' m 3
g Py {f(x,,)-—— > Cz‘l’i(xu)} )

es decir, al problema de «mterpolaclon por eI método de cua-
drados minimos».

Chébishev fue el primero en desarrollar, partiendo del pro-
blema de interpolacién por el método de cuadrados minimos
mediante polinomios

co+c,x+c,x’+...+c,x"
de un grado dado m, la teoria de polinomios ortogonales.
Para exponer los resultados de Chébishev, relacionados a

este problema, observemos que respecto a nuestra medida p el
sistema ,

1, x, J’c’, ceey XB

es linealmente independiente ya que el producto escalar (x7, x°)
viene dado por la férmula

(x' x%)= 2‘, Pk’ (12)
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y el determinante de Gram del sistema (12) es (las sumas son
respecto a k desde 0 hasta n):

Do AP 2Ptk Zp,;xz
D Pixn X Puxk Epkxt oo DR

oooooooooooooooooooooo

Ve, Vb Vp,. :
B V?kaﬁkl-..Vﬁﬁn

..............

..............

1 1 P

X, X X,
=@py oo P L 0

Xy X xq

/

Al contrario, para r > n las potencias x” dependen linealmente
de las funciones del sistema (12) ya que L, es, en nuestro caso,
de dimensién n+1. Por lo tanto, el proceso de ortogonalizacién
llevara a un sistema finito de polinomios

P, P, ..., P,
ortonormales en el sentido de que

n
k§0 ka r (xk) Py (xk) = 6,3,

y cada funcién f se desarrollard en una serie finita

) n ‘

f ~ rg)crp r

. ,

Cr=k2° PPy (x2) [ (%)
En los puntos x, se cumplen las desigualdades

f(xk)=§c,P,(xk) (k=0, 1, ..., n),

_ don_de
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es decir, la suma de la serie es simplemente el: polinomio de
interpolacién de Lagrange Las sumashinccmpletas?: ‘

%cl’ (m<n)

son polmom:os de grado m que mejor aproxxman f en los puntos
x, en el sentido de que la expresién ¢

3 i e— Q,\(xk')'}’

es menor para @, que para cualquier otro polinomio del mismo
grado m.



CAPITULO

SERIES TRIGONOMETRICAS.
TRANSFORMACION DE FOURIER

§ 1. CONDICIONES DE CONVERGENCIA DE LA SERIE DE FOURIER

1°. Condiciones suficientes de convergencia de la serie de
Fourier en un punto. Consideremos de nuevo el espacio L, [ —mn, n]
de funciones de cuadrado sumable en el segmento [—=, n]. Como
se ha demostrado en el cap. VIII, es un espacio euclideo com-
pleto de dimensiones infinitas, esto es, un espacio de Hilbert.
Las funciones

, 1, cosnx, sennx (n=1,2, ...) 05

forman en él un sistema ortogonal completo, de manera que
para toda funcién f€L,[—m, x] la serie de Fourier

%-{- il a, cos nx - b, sen nx, 2
n=
donde .

1
Q, =—£

de—u-

f(x)cosnxdx, b,= -1-11- S f (x) sen nx dx, 3)

converge hacia f cuadriticamente, es decir, en la métrica del
espacio L,[-—=n, x]. Sin embargo, desde el punto de vista de
aplicacién de las series de Fourier a los problemas de la Fisica
Matematica y a otras cuestiones, es importante determinar las
condiciones en las que se puede garantizar no sélo la convergencia
media de la serie de Fourier hacia f, sino también la convergencia
en un punto dado, en todos los puntos o, incluso, uniforme.
Determinaremos ahora las condiciones suficientes para la conver-
gencia de la serie trigonométrica en un punto dado. Hagamos
unas observaciones preliminares. .

293427
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Ante todo, en vez de hablar de funciones definidas en el
segmento [—m, :ﬂ, podemos hablar de funciones periédicas de
perfodo 2n en “toda la recta, ya que cualquier funcién definida
en un segmento puede ser prolongada periédicamente. Observe-
mos, ademais, que, por ser acotadas las funciones ng constituyen
el sistema trigonométrico, las férmulas (3), que definen los coefi-

cientes de Fourier respecto a este sistema, tienen senfido para
cualquier funcién sumable® (y no sélo para las funciones de ciuadrado
sumable). Luego, a toda funcién f€L,[—mn, xn] corresponde el
conjunto de sus coeficientes de Fourier y su serie de Fourier

. [
f(x)~f2l+§la,,cosnx+b,,sennx.
Pasemos ahora a examinar el problema acerca de la conver-
gencia de esta serie en un punto dado x hacia el valor de la

funcién f en ese punto. Tomemos

S,(0) =32+ Y apcoskx+ by sen kx. )

‘ S k=1 ' e
Transformemos primeramente S;(x) sustituyendo en (4) los coe-
fictentes. @, y b, por sus expresiones integrales (3). Designando
la variable de integracién con ¢ obtendremos ’

S, (== S F) {-;-4-;' cos kx cos kt + sen kx sen kt} dt=

-+ S f(t){%-fz cOsk(t—-x)} dt

k=1

Empleando la férmula bien conocida®
sen nt+1 u

%+cosu+cos2u-|—...+cosnu=——%—-—, (5)
: 2sen

[~ RS

1 En este caso, claro estd, no hacemos ninguna afirmacién acerca de
la convergencia de la serie (2) para una funcién sumable cualquiera.
3 Para obtener esta férmula basta sumar las igualdades

téx'\u—-l--.?sen—'i
sngy=gresnye

3u u o
sen T-sen ?-—-COS u-2 sen -2- N

' u—sen =L oo nu-2 sen &
sen—?—. Sel ) = g -



§ 1. CONDICIONES DE CONVERGENCIA DE LA SERIE DE FOURIER 451

encontramos

r sen 2241 (1 —x)
S..(")=-;S f(t) ———=—dt. (6
J 2 sen —

Tomemos {—x=2. Teniendo en cuenta que bajo el signo de
la integral (6) figura una funcién periédica de periodo 2x, de
manera que su integral en cualquier segmento de lontitud 2=
tiene el mismo valor, podemos conservar, al realizar la integra-
cién respecto a 2z, los mismos extremos —=n y . Tendremos

b 2n+1
1 sen —5—2
Su) =5 | Flr+9) ——dz.

Yn 2 sen 7

La funcién ,
1 sen 2'1-21' J 2

Dn (2)= o z
sen —2-

es llamada niicleo de Dirichlet. De la igualdad (5) se desprende
inmediatamente que cualquiera que sea n

F19
{ D,(2)dz=1.
N 4

Empleando este resultado, podemos representar la diferencia
S, (x)—f(x) en la forma

2n+lé

; ' l c sen D)
S () —f(x) =57 S [f (x+2)—f(0)] —=—dz. (V)

sen -
2

De esta forma, hemos reducido el problema de la convergencia
de S,(x) hacia f(x) al problema de la convergencia de la in-
tegral (7) hacia el cero. El estudio de esta integral se basa en
el lema siguiente.

LEMA. Si @ es una funcién sumable en el segmento [a, b], entonces

b
im S ¢ (x)sen pxdx=0.

1
prw g

29*
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DEMOSTRACION, Si ¢ es una funcién continua :difereﬁci‘abh,’-s’ztene- ,
mos, integrando por partes, (para p—s o) ~

) SRR Y
‘S(p(x)senpxdx=%(p»(x) “%’-’-‘-‘E-}-SQ' (%) ci:&t-dx-‘-—»ﬂ. - ®

Sea ahora @ una funcién sumable arbitraria en [a, ‘b]. Como las
funciones continuamente -diferenciables (incluso solamente flos
polinomios) son siempre densas en L, [a, b}, cualquiera que sea
€ >0 existe una funcién continuamente diferenciable ¢, tal que

b ;
,Sil e —p (D ]dr <. )
Tenemos b ' '
b b
§ o @sen pr dx|< | § 1) —gu (9] sen px e |+
a , | |
+ Scp, (x)sen px’dx‘ .

Aqui el primer sumando del miembro derecho es menor que -;— ,en

virtud de (9), y el segundo sumando tiende a cero para p— oo,

debido a (8). El lema queda demostrado. :
: Es facil demostrar ahora el siguiente criterio suficiente de
convergencia de la serie de Fourier. :

TEOREMA 1. Si [ es una funcién sumable y para‘xfijo existe la
integral , ,

[}
Het)—Fx)
| Sﬁ——t— dt (10)

d
para algin valor de 8 >0, las sumas parciales S, de la serie
de Fourier de la funcién f convergen en este punto x hacia [ (x).

DEMOSTRACION. La integral (7) se puede escribir en la forma

1
n

sen
2sen 2

¥ 3
S i(x,+=:—f(x) z 2";;’ 2dz. (m
2
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Si la funcién
f(x+2)—f(x)
4

es integrable (respecto a z) entre—& y 8, también es integrable

en todo el segmento [—=x, =] (ya que f€L, [—mn, n]). Luego,

es integrable también la funcién
fxta)—f(x) _ 2

z

z *

2sen§-

por lo tanto, se puede aplicar a la integral (11) el lema demos-
trado, obteniendo asi que esta integral converge a cero para
n— oo. El teorema queda demostrado. _

Observacion 1. La condicién de la existencia de la integral
(10) es conocida como condicion de Dini. Ella se cumple, en
particular, cuando la funcién f tiene en el punto dado x derivada
finita o, por lo menos, derivada a la izquierda o a la derecha.

Los razonamientos realizados al demostrar el teorema 1 son
validos asimismo, si, en vez de la condicion de Dini, se exige
la existencia de las dos integrales siguientes:

o d
[lotate0y, | (leta-letly, gy
e o

donde f(x—0) y f(x+0) son los limites a la izquerda y a la
derecha, respectivamente, de la funcion f en el punto x (se
supone que x es un punto de discontinuidad de primera especie
para f). En efecto, considerando la diferencia

5, (9 —LEt0+Ic=0

que puede ser representada en la forma

sen

: 2n+1
1 sen —5— 2

;S [ e+ ) —F (x—0)| ————dz +
"7

4

sen2n+l F4
[ D) —F (2 + O] ———dz,

2:sen 3
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vemos que si existen las integrales (12), esta difergncia tiende a
cero paran — oo. De aqui se obtiene el teorema siguiente sobre las
condiciones suficientes de convergencia de la serie de Fourier,
que suele darse en los cursos de Anélisis.

‘Supongamos que f es una funcién acotada -de - periodo 2n que
tiene solamente discontinuidades de ‘primera especie y supongamos
que | posee en cada punto derivadas a la izquierda y a la derecha.
Entonces, su serie de Fourier converge en todo punto y su suma
es igual a f(x) en los puntos de continuidad y a fex +0)—;-f x—0)
en los puntos de discontinuidad. '

Observacién 2. El nicleo de Dirichlet D,(2), que ha desem-
pefiado un papel fundamental en, nuestros razgnan:ientos, es.una
funcién que toma en el punto z=0 el valor "; y que oscila

rapidamente para valoni'e‘s'&’gi'and'}esf de n (fig. 23). El sentido del
teorema demostrado mas arriba consiste en que para una funcién f,

't

i
ARVIIvATAS

FIG. 23

que satisface‘ en un punto dado x la condicién de Dini, el aporte
fundamental para grandes n en la integral

§fe+2D, (e

corresponde sélo a una pequefia vecindad del punto x, cuyas
dimensiones tienden a cero para n-— co. Se puede decir que los
nicleos de Dirichlet D, forman una sucesién de funcionales que
converge débilmente hacia la §-funcién en el conjunto de fun-
ciones f que pueden ser desarrolladas en serie de Fourier.
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Esta claro que la sucesiéon {D,} no converge hacia ningin limite
en el sentido habitual de convergencia de funciones y es por esto
que no hemos podido aplicar al estudio de la integral (7) los
teoremas tipicos sobre el paso al limite bajo el signo de la integral.

Observacion 3. La condicién de Dini que garantiza la conver-
gencia de la serie de Fourier puede ser sustituida por otras con-
diciones; pero, no puede ser simplemente omitida en el teorema 1. En
efecto, incluso entre las funciones continuas existen funciones tales
que su serie de Fourier diverge en algunos puntes. Entre las
funciones sumables existen tales que la serie correspondiente de
Fourier diverge en todo punto (A. N. Kolmogérov). Ya en 1915
N. N. Luzin plante6 el problema siguiente: ¢existen en L, fun-
ciones cuya serie de Foprier diverge en un conjunto de medida
positiva? Como lo ha demostrado Carleson (en 1966) tales fun-
ciones no existen.

La existencia de funciones continuas para las cuales la serie
correspondiente de Fourier no converge en todo punto se desprende
facilmente de los teoremas generales sobre la convergencia débil
de funcionales. Observemos, ante todo, que

S{D,,(z) | dz—» oo para n - co. (13)

-n
Efectivamente, el numerador de la fraccion
2n+-1
sen ———2-
2
| D, (z)|=L_____|

%Isen-;-

es igual a 1 en los puntos eﬁ los que
2n 41 -
nt z=(k+%)n, k=0, 1, ..., n. (14)

Construyamos alrededor de cada uno de los puntos 2z, defini-
dos por la condiciéon (14), el intervalo

2n1 2R 41
il Bl <3 (15)

La longitud de cada uno de estos intervalos es, evidentemente,

igual a -3—(2——3“;1—) . En cada uno de estos intervalos, lsen 2—'1—2't-l-z|

1 . .
es no menor que . Estimemos la magnitud de sen-,:— en estos
mismos intervalos. Tenemos :
‘ z z 1 [(2k--1 k14 2n+1\-1 _ k41
Se“?<7<?(":2r_“+-§)( T ) <2n_:1“'
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-Luego, la- integral de | D,(2)|, tomada sblo respecto a los in-
tervalqa :i,eﬁni‘dos por la condicién (_lﬁ);x»es:; mayor que la suma

g
kt+1°

Lyl 1 w1

Esta suma tiende a oo para n-5 oo, De aqui se deduce (13).
La relacién (13) significa que las normas de las funciones D, no
estin acotadas en su conjunto en el espacio de funciones' conti-
nuas. Pero, entonces, en virtud del teorema sobre la convergencia
débil de funcionales, esta sucesién no puede converger débilmente
en el espacio de funciones continuas, esto es, existe una funcién

‘continua f para la cual no existe
‘ . B
lim § D, (x)f(x)dx.
o e

2°. Condiciones de convergencia uniforme de la serie de Fou-
rier. Hemos encontrade las condiciones suficientes para que la
serie de Fourier de una funcién f converge en todo punto. La
clase de funciones que satisfacen estas condiciones es muy amplia:
incluso la condicién de continuidad de la funcién no es necesaria
para poderla representar como la suma de una serie trigonomé-
trica que converja en todo punto. La situacién resulta distinta,
si nos interesamos por las condiciones de la convergencia uniforme
de la serie de Fourier. Esta claro que si la funcién f(x) tiene al
menos una discontinuidad, su serie de: Fourier no puede conver-
ger uniformemente hacia ella ya que la suma de una serie uni-
formemente convergente de funciones continuas es siempre una
fyncién continua. Luego, la continuidad es una condicién necesaria
(pero, no suficiente, por supuesto) para la convergencia: uniforme
de la serie de Fourier. : T ‘ \ '

El teorema siguiente ofrece una condicién suficiente sencilla
para que la serie de Fourier converja uniformemente.

TEOREMA 2. Si una funcion [ de periodo I es absolutamente
~continua y la derivada de | pertenece a L,[—n, =], la serie de
fourier de la funcion | converge hacia | uniformemente en toda

- la recta.

DEMOSTRACION. Designemos mediante a;, y b, los coeficientes de
Fourier de la funcién f’. Como f es absolutamente continua, se
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puede aplicar a la integral
b 4
,,=% S ' (x) cos nxdx
-3

la férmula de integracién por partes. Obtenemos
. 1 2

a,,‘=% Sf(x)»cosnxdx=
-%

u ”
1 1 ) b
=[x ’iu—n—u Sf (x)sennxdx=_7:'.
~-=
y analogamente
Jt ) R
b{,=% ‘S f(x)sennxde=22.
-n
Luego,
Z,'a”'“b“'= ul. (16)

La serie numérica

[%|+§|an|+|b,,| (17)

es, evidentemente, una mayorante para la serie de Fourier de la
funcién f. De (16) se desprende que la serie (17) converge?.
Entonces, por el criterio de Weierstrass, la serie de Fourier de
la funcién f converge uniformemente. Queda por demostrar que
la suma de esta serie es f. Sea @ la suma de la serie de Fourier
para la funcién f. En tal caso ¢ tiene los mismos coeficientes
de Fourier que tiene f. Como ambas funciones son contmuas, de
aqui obtenemos que f=¢.

La condicién de convergencia uniforme de la serie de Founer
de una funcién f puede ser enunciada en una forma aniloga a
la condicion de Dini, a saber:

lh'l 1 1
Lol (6nf 5 ), donde Eb,, < @ debido a la

B En efecto,

3

la

desigualdad de Bessel. Anilogamente para P
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Si | es una funcién sumable acotada en un eonjunto Ec [—=, n}
y la condicion de Dini se cumple en E uniformemente, esto es, para
todo e > 0 existe un 6 >0 tal que

)
et —f® 1y, -
I I
-8
simultdneamente para todos los x € E, la serie de Fourier de la fun-
cion [ converge uniformemente en E hacia esta funcion.

La demostracién de este teorema se basa en el lema siguiente
que iogr;stituye una acentuacién del lema demostrado en la
-~ Si B es un conjunto de funciones sumables compacto en la
métrica de L, [— n, n], entonces, cualquiera que sea &> 0 existe -
un N =N (e) tal que '

b ‘
Sf(t) sen AMdt|<e

para A= N (e) y para todas las f€B a la vez.
- Para demostrar ¢l lema tomemos en B una %-red finita @,,
<+ Qg Y escojamos N de manera que '

b
Scp, (f)sen Mt dt
a

<+4,i=1,2 ..., k para A=N.

Si ahora f es una funcién cualquiera de B, tenemos para cierto i

o
| NF—o:ll <5
“y, consecuentemente, o

, |
(Faysenntar |<

<e.

b
{ 'tpi‘(t)senxtdt|+

, o
§ F—@)sennrar

Esto demuestra el lema. S
La aplicacién de este lema a la demostracion del teorema 2

se basa en que, como es ficil de demostrar, el conjunto de fun-
ciones

9, (t) — f (x+tt)—f (%)

es compacto.
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Hasta aqui hemos hablado de funciones definidas en el seg-
mento [— =, n]. Esta claro que todo lo expuesto puede ser ex-
tendido automaticamente a las funciones definidas en un seg-
mento de una longitud arbitraria 21.

Ademas, también en el caso de varias variables independientes
se pueden enunciar tanto las condiciones suficientes para la con-
vergencia de la serie de Fourier en todo punto cemo las condi-
ciones de la convergencia uniforme de la serie de Fourier. No
vamos a detenernos en estas condiciones.

§ 2. TEOREMA DE FEJER

1°. Teorema de Fejér. Sea f una funcién continua en la recta
de periodo 2. Esta funcién se determina univocamente por su
serie de Fourier

®

2+ ). a,cos nx-+-b,sen nx. (1)

n=1

En efecto, si f, y f, son dos funciones continuas que . tienen los
mismos coeficientes de Fourier, entonces f,—f, es una funcién
continua igual a cero en casi todo punto, es decir, idénticamente
igual a cero. Sin embargo, como la serie de Fourier de una fun-
cion continua no es necesariamente convergente, no podemos
obtener la funcién f sumando directamente su serie de Fourier.
Un método de reconstruccién de una funcién continua a partir
de su serie de Fourier ofrece el teorema que damos a continua-
ciérg demostrado por Fejér en 1905.
ea

&
Sy (x)="2+ X a;cos jx+b,sen jx @)
=1

la suma parcial de la serie de Fourier de la funcién f. Tomemos
a, (x)_____so(x)+31 (x)‘:-n""sn-l(x). ) (3)

Las medias aritméticas o, de las sumas S, se llaman sumas de
Fejér de la funcién f. ‘

TEOREMA 1 (Fejér). Si f es una funcion continua de periodo 2=,
la sucesion {c,} de sus sumas de Fejér converge hacia f uni-
formemente en toda la recta numérica.

DsmosrR‘A‘c'mN. Empleemos la representacién integral (6), obtenida
en el pardgrafo anterior para las sumas parciales de la serie de



460 CAP. 1X. SERIES TRIGONOMETRICAS. TRANSFORMACION: DE FOURIER

Fourier, S
| ‘ 2*-{-.\[\& SR
¢ sen —— ({—x)
: 1 ,_ {7
. % 2sen—-

Introduciéndo. estas expresiones en’ la igualdad (3), obten s la
siguiente expresién para o,(x): =~ = emos

-3

que mediante la férmula ®

n—1

Y sen(2k+1)u= senny
k=0 ; »

senu

puede ser reducida a la forma

' % f—x\ 3
: >{ senn: -

5

e
o, <z>=21,—n(—f) ®)
sen

7

La expresion

es el asi llamado nicleo de Fejér. Tomando { —x =2 y teniendo
en cuenta que el valor de la integral de una funcién periédica
en un segmento de longitud igual al periodo es siempre el mis-
mo, podemos escribir (4) en la forma

o, ()= {fx+2)®,(@)dz. (6)

Debemos demostrar que para n—»oco esta expresién converge
uniformemente hacia f (x). Sefialemos primeramente las propiedades

L Esta férmula se obtiene ficilmente sumando respecto a k las igual-
dades 2'sen (2k--1) &-senu=-cos 2ku—cos 2 (k- lyu' y realizando transforma-
ciones trigonométricas elementales. .
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siguientes del nucleo de Fejér:
1) ®,(2) =0,

2) (@,(2)dz=1,

3) para todo 6 >0 fijo y n— oo tenemos

-8 x
{®,(2)dz= (@, (2)dz =n,(8) —0.
-3 8

La primera de estas propiedades es evidente; la segunda se ob-
tiene directamente de la igualdad (6), si tomamos f(x)=1y ob-
servamos que para esta funcién o, (x) =1 para todo n; finalmente,

la tercera propiedad se desprende inmediatamente de que para

. 28
0 <z n se tiene sen = >=y, consecuentemente,

. N
senn =

2 n\2
(-———z><(2—a)-

sen -é—

Tomando en consideracion estas propiedades del niicleo de Fejér
no es dificil demostrar el teorema. Como f es una funcién con-
tinua y periédica, es acotada y uniformemente continua en toda
la recta. En otras palabras, existe una constante M tal que para
todo x

[Fl<M (7)

y, ademas, para todo e > 0 existe un 8 > 0 tal que

| —Fe) | < 5 ®)

siempre que
| X" —x'] < 8.

Para demostrar el teorema debemos estimar la diferencia

f)—o, ()= § [F()—Ff(x+2)] @, (2)dz,

que puede ser representada como suma de las tres integrales
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siguientes:

-8
Ji= S {f—fe+2)0,()dz,
' ) Jp
L= to—1G+a 0, @,

J,=§ () —F (+ 2} @, (2) dz.

Pe (7) y (8) se obtienen directamente las estimaciones siguien-

€es: o ’
14,1 <2Mn. @),

EARS JLACLES 2

Escojamos ahora n, tan grande que para n>n, y un 8 dado
se cumpla la desigualdad

2Mn, (8) < <.
Entonces, . »
o |f(x)"’“0,,(x)l<_28-+%+%=e

y de aqui, debido a la arbitrariedad de e, se desprende la afit-
macion del teorema.

Observemos que en la demostracién han sido empleadas sola-
mente las propiedades 1), 2) y 3) del niicleo de Fejér. Esto
permite obtener diferentes generalizaciones del teorema 1 (véase
el punto 3 de este paragrafo).

2°. Complitud del sistema trigonométrico. Teorema de Weiers-
trass. Del teorema de Fejér se desprende la complitud del sis-
tema de funciones trigonométricas en el espacio L,[—m, n}.
Efectivamente, de acuerdo con este teorema cualquier funcion
continua es el limite de una sucesién de polinomios trigonomé-
tricos o, convergente uniformemente (y, por lo tanto, también et
media). Como las funciones continuas son siempre densas en L,,
de aqui se deduce la complitud del sistema trigonométrico.

El teorema de Fejér puede ser considerado como un comple-
mento del teorema de Weierstrass sobre la aproximacién de fun-
ciones continuas mediante polinomios trigonométricos: este ultimo
afirma que toda funcién continua periédica es limite uniforme
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de cierta sucesién de polinomios trigonométricos, mientras que
el teorema de Fejér indica una sucesién concreta con esta pro-
piedad, la sucesién de sumas de Fejér (3). Del teorema de Weiers-
trass sobre la aproximacién uniforme de una funcién continua
periédica mediante polinomios trigonométricos se deduce facil-
mente el segundo teorema de Weierstrass, esto es, el teorema
sobre la aproximacién de cualquier funcién continua en un seg-
mento [a, b] mediante polinomios algebraicos. En efecto, si f(x)

.z A X — .
es una funcién de este tipo, tomando t=5_—:: n, es decir, x =

= t—Q—;;a)+ a, obtenemos una funcién ¢(¢f) de ¢ definida en el

segmento [0, x]. Prolonguémosla primero al semisegmento [— =, 0],
tomando @ (—¢)=¢(¢), v después, por periodicidad, a toda Ia
recta. Construyamos ahora un polinomio trigonométrico 7', que
verifique la condicién :

[T, ()—e ()| <% para todo ¢. -

Ahora bien, todo polinomio trigonométrico puede ser desarrollado
en una serie de Taylor que converge uniformemente en cualquier
intervalo finito. Sea P, la suma parcial de la serie de Taylor
para T, tal que i

|T2(V—Pyu(f)| < 5 para 0t m.

Entonces,
|@(O)—Pa(t)| <& para 0t <.

Efectuando en P, (f) la sustitucién t=;ﬁ-__:§n, obtenemos un po-
linomio Q, (x) que satisface, evidentemente, la condicién

[f(x)—Qa(x)| < e para a<<x<<b.

3°. Teorema de Fejér en el caso del espacio L,. En el teorema de Fejér
se ha logrado alcanzar cierta simetria entre 1a hipétesis y la tesis del teorema.
El hecho de (1ue una funcién f pertenezca al espacio Ci_, . de funciones
continuas implica que las sumas de Fejér, correspondientes a ella, converjan
hacia [ en la métrica de ese mismo espacio C;_,, ,;. Los teoremas analogos
se pueden obtener también para otros espacios funcionales, en particular,
para el espacio L, [—a, nt). Hablando con mas rigor, tiene lugar el siguiente
teorema que es natural llamarlo teorema de Fejér para funciones sumables:

Si f es una funcién sumable en el segmento [—n, n], sus sumas de Fejér
convergen hacia | respecto a la norma del espacio L, [—m, ).

La demostracién de este teorema se puede obtener mediante razonamientos
préximos a los expuestos en el punto 1. No los daremos aqui pero si indi-

caremos un resultado importante que se desprende del teorema de Fejér para
funciones sumables:
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Toda funcién sumable se determina -univecamente: {sa!vo ‘unasequivalencia)
por sus coeficientes de Fourier.

‘En -efecto, sean [ y g dos funciones ' sumal;les que henen coehcientesde
Fourier iguales. Entonces, ‘todos ‘los coeficientes de Fourier de’la funcién
f—g 'son iguales a ‘0. Luego, -son igualés idénticamente a cero también
todas las sumas -de Fejér-para f—g. Consecuentemente, el limnte de‘ellas,
L,, esto es, la funcién f—g, es 0 encasi todo .punto. -

§ 3. INTEGRAL DE FOURIER

1°. Teorema fundamental. En el § 1 se: han encontrado las
condiciones en que una funcion definida en un segmento finito
(o, que es lo mismo, ‘una funcién periédica en toda la recta)
puede ser desarrollada en la serie convergente de Fourier, es decir,
puede ser representada como superposicién de ondas arménicas.
Tratemos ahora de extender este resultado a funciones no peri6-
dicas. Como veremos, bajo unas condiciones adicionales bastante
generales, es posible obtener esta representacién sélo no mediante
una serie, sino mediante una integral, la asi llamada integral
de Fourier.

Comencemos por unas consideraciones sugestivas formales.
Sea f una funcién que en cada intervalo finito satisface las con-
diciones que garantizan su desarrollo en la serie de Fourier. En
otras palabras, supongamos que f es sumable en cualquier inter-
valo finito y que verifica en todo punto la condicién de Dini.
Considerando f, digamos, en el intervalo (—I, {), podemos escribir
el desarrollo de esta funcion en la serie de Fourier:

fx)= +Z aycos % x4 by sen ST x. 1)
Sustituyendo aqui @, y b, por sus expresiones
_. ; oo e ‘
= Sf(t)dt, 4= S F(t)cos®X 1 at,
. ~1 By .
4 :
1 kn
b= S Fet)ysen =t dt.

-1

-obtenemeos

f6=2 Sf(t)dz +25 7 f(t)cos Hedt

...le-‘.

1 ff(t)sen"?xsmk‘%tdt,
-1 .



¢ 3. INTEGRAL DE FOURIER i 465

es decir,

1
F=g §TOdt+
=1

-

+-;-k2 f(&) [cos k-lﬁxcos?-;-‘-t—(— senk-’llxsen’% t] dt =

=1

~

i ® 1 . S

‘ 1 . k

=g Sf(t)dt-i—?kz 2 Sf(t)cos%(t—x)dt. @
=1 =1

Completemos las suposiciones hechas respecto a la funcién f con

la siguiente: esta funcion es absolutamente integrable en toda la

recta, es decir,
«w

§1r1dt <oo. 3)

Pasemos en la igualdad (2) al limite para | — oo (por ahora de
una manera formal). Debido a (3), el primer sumando del miembro
derecho de_ la igualdad (2) tiende a cero para / —oo. El segundo
sumando puede ser considerado como la suma integral (referida
a todo el intervalo infinito) de la integral

{Foya
p
de la funcién

t
F(A)= Sf(i)cos?. r—xydt,
-1

si tomamos k,,z’f;i 'ysz-il. Luego, el paso formal al limite
para [ — oo en (2) lleva a la igualdad

fo=x§dr § @y cosh@—nat. 4)
: 0 -

Esta es precisamente la representacién deseada. Designando

1
a;\=;

I
st_——;s

F(fycos At dt, b= S F(f)sen A dt,

la igualdad (4) puede ser representada en la siguiente forma ana- .
30—3427 '
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loga a la serie de Fourier:

f(x)=§ (@ cos Ax+ b, sen Ax) da. (6)
0

Por ahora hemos obtenido la igualdad (4), llamada férmula
de Fourier, mediante el paso formal al limite. La validez de este
paso (con las suposiciones hechas respecto a la funcién f) puede
ser argumentada; sin embargo, es mis simple demostrar la igualdad
(4) directamente. Demostremos, pues, el teorema siguiente.

TEOREMA 1. Si una funcion [ es- absolutamente integrable en toda

la recta y verifica. la condiciéon de Dini en un punto . x, tiene
lugar la igualdad : ,

f(x)=%§d)» S f(t)cos A (t—x)dt.
DEMOSTRACION. Designemos
o A ® . \
J(A)=?Sd}~ S f (#) cos A (t—x) dt. (6)
. . 0" -~ . : e
Debemos demostrar queAlim J (A) existe y es igual a f(x). Como f
es absolutamente integrable, la integral interior en (6) converge y,
ademas, uniformemente, para todos los valores de A. Por lo tanto,

aplicando el teorema de Fubini, podemos cambiar el orden de
integracién en la integral reiterada (6). Esto nos da

10 - e
Poniendo {—x=2z, podemos representar esta integral en la forma

JA)y= | farn iy, (7

Valiéndonos ahora de la conocida igualdad

1 ¢ senA .
7 ) =1 (4>0),
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podemos escribir la diferencia J (A)—f (x) en la forma

~

J(A)—f@= § 2= Osen 2242 ®)

Consideremos la integral del miembro derecho de esta relacion
como suma de tres componentes

N
J(A)—f ()=~ S L= ) en Az dz 4
N

+1 § eFdenspa 10 [ =g,
1zi> N 12|>N

Como el segundo y el tercer términos del miembro derecho son
integrales convergentes, cada uno de ellos puede ser hecho menor

que —;— si se escoge suficientemente grande el niimero N. Final-

mente, el primer sumando del miembro derecho tiende (para N
fijo) a cero cuando A — oo (en virtud del lema del § 1 y de la
condiciéon de Dini). Consecuentemente, obtenemos

lim ( (A)—F (1) =0,

que es lo que se queria demostrar.

2°. Forma compleja de la integral de Fourier. Puesto que en
la formula integral de Fourier (4) la integral interior es una
funcién par respecto a A, podemos escribir esta férmula asi:

=5 S dh S f(f)cos A (t—x)dt. )

Ahora bien, la integrabilidad absoluta de la funcién f implica

que la integral S f(f)sen ) (t—x)dt exista y sea una funcion

.impar respecto ;”7&. Por lo tanto,

l @® o« \

o S dh S f(f)senh (¢ —x)dt =0, (10)
si v]a integral respecto a A se comprende aqui en el sentido del
30*



468 CAP. IX. SERIES TRIGONOMETRICAS. TRANSFORMACION DE FOURIR

valor prinéipal, esto es, comoNEim S . Sumando a (9) la igualdad
RN,

(10) multiplicada por —i, obtenerros.
f=g; [ § Feyesoe-nar
| A B
Esta igualdad serd llamada férmula compleja de Fourier.
§ 4. TRANSFORMACION DE FOURIER,
~SUS PROPIEDADES -Y:; SUS. APLICACIONES
1°. Transformacién” de Fourier y férmula de inversion. La
formula integral de Fourier puede ser transformada del modo
siguiente. Tomemos ; _ : _
. - R .
= | ftyemdt. (1)
Entonces -

=g [ e@eran. @

Notemos que la férmula (1) tiene sentido para cualquier funcién
[ absolutamente integrable. Es decir, mediante la férmula (1)
a toda f€L, (—oo, oo) ponemos en correspondencia una funcién
determinada g definida en toda la recta numérica. Esta dltima
se llama transformacion de ‘Fourier de la funcién inicial f. La
férmula (2) que expresa f a través de su transformacion de Fou-
rier se llama formula de inversion de la transformacién de Fou-
rier. Conviene prestar atencién a la semejanza que existe entre
las férmulas (1) y (2). La segunda difiere de la primera sélo en

el signo de la exponente y en el coeficiente ?;; _delante de la
integral. Podriamos alcanzar una simetria aﬁpf fm‘ayer,‘,si; hubié-

semos tomado ‘- -
&8\ =—=\ f(x)e-*dx. (')
vE Tt
La formula de inversién tendria entoncgs; la fprma
FO=y5 [ ewerar, @)

es decir, la diferencia consistiria sélo en el signo de la exponente.
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Sin embargo, a pesar de la semejanza exterior de las férmu-
las (1) y (2), son sustancialmente distintas: en la primera, la
integral existe en el sentido habitual (ya que f€L, (—oo, o),
mientras que en la segunda, s6lo en el sentido del valor princi-
pal. Ademas, la igualdad (1) es la definicion de la funcién g,
mientras que la igualdad (2), que constituye una forma de la
férmula integral de Fourier, contiene la afirmacion de que la
integral que figura en su miembro derecho es igual a la funcién
inicial f. Como hemos visto més arriba, para que esta igualdad
sea valida, la funcién f, ademas de ser integrable, debe verificar
unas condiciones adicionales, digamos la condicién de Dini.

Observacion. Hemos definido la transformacién de Fourier g
para toda funcién f de L, (—oo, o0) y hemos demostrado que
una funcién f, que en todo punto cumple la condicién de Dini,
puede ser expresada mediante g a través de la férmula de inver-
sibn. La situacion aqui es totalmente aniloga a la’ que tiene
lf;xgar para las series de Fourier. En efecto, los coeficientes de
Fourier

2
1 p
€= 35 S f(x)e=t"*xdx
-5

estan definidos para toda f€L,[—m, n]; sin embargo, la con-
vergencia de la serie de Fourier

®

S e
n=-®

(que desempefia aqui el papel de la férmula de inversién) puede
ser garantizada solamente bajo ciertas condiciones adicionales
(condicién de Dini). Al mismo tiempo, para la transformacion
de Fourier (lo mismo que para la serie; véase el final del § 2)
tiene lugar el resultado siguiente: si para una funcion
f€L,(—o0, o) se tiene ’

{Fxye-medr=0,

es f(x)=0 en casi todo punto. En efecto, observemos, en primer
lugar, que de la igualdad anterior se desprende que para todos
los t y A reales es

§f(x+t)e‘"~"dx=0.
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Pongamos ahora
' - £ ST I
o) ={Fx+nd,
0 S

donde £ es un nimero real fijado. Empleando el teorema de
Fubini y la condicién a la que se ha sometido la funcién f, es
facil ver que la funcién ¢ (que también pertenece a L, (— o0, )

satisface la misma condicién, esto es,
e T onm
 Somernear—0

para todo A real. Pero, la funcién ¢ es, como se comprueba
facilmente, una funcién -absolutamente continua en cada segmento
finito y, por lo tanto, tiene derivada finita en casi todo punto.
En particular, esta funcién satisface en casi todo punto la con-
dicion de Dini. De manera que, en virtud del teorema 1 del
§ 3, se anula en casi todo punto ya que su transformacién de
Fourier es el 0 idéntico. Pero, ¢ es continua; luego, ¢ (x)=0.
De aqui se desprende, en particular, que para todo £ real

3 .
Sirat=0

Yy, por consiguiente, f(x)=0 en casi todo punto.

Consideremos algunos ejemplos. .

l. Sea f(x)=e-7!xl, > 0. Busquemos la transformacién de
Fourier de esta funcién. Tenemos - :

® -
g(x)z Se"ylxle-“‘dx:.
= S e-?1*l(coshx—isenAx)dx=2 Se-w‘ cos Ax dx.
- . . 0
Integrando dos veces por partes, encon{ramos
2
e =prF-

2. Sea

| para |x|<a,

f(x)=.{ 0 para | x| > a.
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Entonces,

¢ ¢ o—emiia
g = Sf(x)e-"udx= Sae-tudx=e“;i_f =2se:l.a‘

(Conviene prestar atencién a que la funcién g no pertenece, en
este caso, a L,(—o0, 0)). '
3. Sea f(x)=m. Entonces,

g= (e 0. @)

Lo mas sencillo para calcular esta integral es emplear la teoria
de residuos. Supongamos primero que A > 0. Completando el eje
real, respecto al que se toma la integral (2), mediante una se-
micircunferencia de radio indefinidamente grande, situada en el
serniplano inferior (esto es, en el semiplano donde la exponente
e~ tiende a cero), obtenemos que la integral (3) es igual a la
suma de residuos del integrando en el plano inferior dividida

o e=hxT . . e
por 2ni. La funcién :T_ra—; tiene en el semiplano inferior un

polo de orden 1 en el punto x= —ai. El residuo en este punto
se calcula de acuerdo con la siguiente regla conocida: si
f(z)=ﬂ'—), @(a)=~=0 y V(2) tiene en el punto z=a un cero de

$(2) :
primer orden, el residuo de la funcion f en el punto a es igual a

:lf,((aa’). Luego, obtenemos en nuestro caso que

| e -\ ‘
g(k)-’-‘—ﬁ-_em:%}a para ;\'>O.

Para A < 0 obtenemos anélogamente (considerando solamente
el semiplano superior en vez del inferior)

QA
eM=r

Es decir, resumiendo,

: e~alhl ,
W= (—o <A< ).

. 4, Pongamos f (x)=e'“?’ . Tenemos

g(\)= Se-“"’ e~ dx. “)
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El integrando representa aqui una funcién analitica que no_tiene
singularidades en ninguna parte finita del plano. Por lo tanto,
en virtud del teorema “de Cauchy, la integral (4) no cambiara
de valor, si, en lugar de tomarla respecto al eje real, se toma
respecto a cualquier recta z=x-iy(y=-const) paralela a este
eje. Es decir, : -

g(k) = S e—-a(:c+lyr)’.e‘—i).(a:-i—l‘,vlldxF

-

= e+  gaxt-tainy s g —gay'sy gast-ixtaay+ gy,

Escojamos ahora la co’tistan‘te y de manera que se anule la parte
imaginaria en la exponente del integrando, esto es, tomemos

y;:% . -Er’ttonckesf‘ "

g(k)‘=e @ % S‘e'_ux'dxze- Ti i
e
® o PO
ya que S - iy = ‘/_;l ,
En particular, tenemos para a= -é-
Cfw)=e %, g(M=V3Zae ?,
2

es decir, la funcién e cor:esponde a si misma (salvo un coe-
ficiente constante) en la transformacién de Fourier.

2°. Propiedades fundamentales de la transformacién de Fourier.
De la férmula (1) que define la transformacién de Fourier se
desprenden varias propiedades de esta transformacién. Considere-
mos estas propiedades. Para abreviar, designaremos mediante el
simbolo FFf] la transformacién de Fourier de la funcién f. En
otras palabras, designamos mediante F el operador lineal, defi-
nido en el espacio L,(—oo, o), que pone en correspondencia a
toda funcién de este espacio su transformacién de Fourier .

1. Si una sucesion {f,} de funciones de L, (— oo, 0o) converge
en la métrica del espacio L,(—oo, o), la sucesion de las trans-
{ormaciones de Fourier g,=F [f,] converge uniformemente en toda
a recta,

1 No perteneciente, en general, a L,.
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Esta afirmacion se desprende inmediatamente de la estima-
cién evidente

18 —2a < §1Fu()—Falx)ldx.

2. La transformacién de Fourier g de una funcién absoluta-
mente integrable [ es una funcion contmua acoteda; ademds, g(A\)
tiende a cero para |A|— oo.

En efecto, de la estimacidén

PIOIES Slf(x)ldx

se ve inmediatamente que la funcion g=F [f] es acotada. Ahora
" bien, si f es la funcién caracteristica del intervalo (a, b), tene-
mos para ella ,
—ha__ o
g(k)=5e-‘“dx=ﬂfa—ﬁi .

a

Esta funcién es, evidentemente, continua y converge hacia cero
para |A|— oo. Como la operacién F consistente en pasar de f
a g es lineal, de aqui se deduce que la transformacién de Fou-
rier de cualquier funcién escalonada (esto es, de una combinacién
lineal de funciones caracteristicas de intervalos) es también una
funcién continua que tiende a cero para A — = oo. Finalmente,
las funciones escalonadas son siempre densas en L, (—oo, o)y,
por lo tanto, si f€L,, existe una sucesion {f,} de funciones esca-
lonadas convergente hacia f en L (—-oo o0). Entonces, en vir-
tud de la propiedad 1, la sucesion de funciones g,=F [f,]
converge uniformemente en la recta hacia la funcién g=F [f].
Pero, en tal caso, la funcién limite g es también continua y
tiende a cero para |A]— oo.

3. Si f es absolutamente continua en todo intervalo fmzto Y
[’ €L,(—oo0, o), tiene lugar la igualdad

Ff]=i\Ff]-

Es decir, a la diferenciacién de una funciéon le corresponde (en
las condiciones sefialadas) la multiphcacxon de su transformacion
de Fourier por iA. '

En efecto, una funcién absolutamente continua en todo inter-
valo finito puede ser representada en la forma

F)=F(0)+ S F (#ydt.
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La integrabilidad absoluta de f* implica que la expresién que
figura aqui en el miembro derecho tenga un limite para. x— oo
y x ——oo. Este limite puede ser solamente el cero ya que, de
lo contrario, la funcién f no seria integrable en toda la recta.
Teniendo esto en cuenta, obtenemos, integrando por partes,

FIFIM=§ P (etrdr=f(me-?=| 2 +in § floye-me de=

=irF [[] (A),

que es lo que se queria demostrar.

Si la funcién f es tal que f*-v es absolutamente continua
en todo intervalo y f, ..., f®€L,(—oo, oo0), obtenemos, por
los mismos razonamientos, que

F[f®]=@M*F[f]. ©®)

4. Relacion entre el grado de diferenciabilidad de una funcién
y la velocidad de decrecimiento en el infinito de su transformacion
de Fourier. Dividiendo la igualdad (5) por (iA)* y recordando
que la transformacion de Fourier es siempre una funcién que
tiende a cero en el infinito (propiedad 2), obtenemos que si f* es
absolutamente integrable, se tiene

- &
AR I=E —o,

es decir,” bajo estas co_ndicionés, F [f] decrece en el infinito més
rapido que “—;—[;. Luego, cuanto mas derivadas tenga f en L,

tanto mas rapido decrece en el infinito su transformacién de
Fourier. ‘ '

5. Si " existe y pertenece a L,(—o0, ), es absolutamente
integrable F (f].

En efecto, en estas condiciones, F [f] es acotada y decrece
en el infinito mas rapido que 47 - De aqui se desprende la

integrabilidad.

Hemos demostrado anteriormente (propiedad 4) que cuanto
-mas derivadas tenga una funcién f, tanto mas rapido decrece
en el infinito su transformacion de Fourier. Es vilida también
la afirmacion dual, es decir, cuanto mas rapido decrece f, tanto
mayor grado de diferenciabilidad tiene su transformacion de
Fourier. Hablando con maés precisién: v

6. Supongamos que tanto la funcion f(x) como xf(x) son ab-
solutamente integrables. Entonces, la funcion g=F [f] es diferen-
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" ciable y :
g M) =F[—ixf(x)]. (6)
En efecto, derivando respecto a A la integral -

it §f(x)e"'"‘dx

que define g, obtenemos la integral

—i S x f(x)e-P*dx

que (debido a la integrabilidad de la funcién xf(x)) converge
uniformemente respecto a A. Luego, la derivada de la funcién g
existe y tiene lugar (6).

Cuando [ es tal que son absolutamente integrables las funciones
f(x), xf(x), ..., xPf(x), se puede demostrar con razonamientos
anélogos que la funcién g tiene derivadas hasta el orden p in-
clusive y, ademas,

g M) =F[(—ix)f(0)] (=0, 1, ..., p).

7. Si exigimos que la funcién f decrezca en el infinito afin
mas répido, g tendrd un grado mayor de diferenciabilidad. Si
xP f(x) €L, (—o0, oo) para todo p, la funcién g es indefinida-
mente diferenciable. Supongamos ahora que 8! *! f (x) € L,(— o0, 00)
para cierto 6 > 0. En este caso, g(A) puede ser prolongada, como
una funcién analitica, del eje real A a una franja del plano de
la variable compleja {=A-+ip, con la particularidad de que
la anchura de esta franja es tanto mayor cuanto mas grande
sea 8. En todo caso, se puede afirmar que g sera una funcién
analitica para [p| < 6. En efecto, la integral

§ f(x)e~ix"dx

converge, evidentemente, para |u|< & definiendo una funcién
continua que coincide en el eje real con la transformacién de
Fourier de la funcién f. El hecho de que esta funci6n es diferen-
ciable para |[pu[< 8 en el sentido de la teoria de funciones
analiticas se demuestra igual que la propiedad 6.

3°. Complitud de las funciones de Hermite y de Laguerre.
Empleando las ideas expuestas en el parrafo anterior se puede
demostrar que si una funcion medible f es diferente de 0 en casi
todo punto de un intervalo (a, b), donde —oo<<a<b< oo
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y satisface la condicion |f(x)|<Ce=®'*\, donde & > 0, entouces
el sistema de funciones x°f{x), n=0, 1, 2, ..., es completo
en L,a, b). ‘ , A T,

De aqui ge desprenderd, en particular, que las funciones de
Hermite constituyen un sistema completo en L,(— oo, o) y las
funciones de Laguerre, en L (0, oo) (véase el punto 7 del § 3
del cap. VIII). ’

Demostremos la proposicion sobre la complitud enunciada
mas arriba. Supongamos que el sistema { x*f(x)} no es completo.
Entonces, de acuerdo con el teorema de Hahn—Banach, existe
una funcién no nula A€L,(—o0, o) tal que

(o fb@dr=0 (=0,1,2, ...).

(Hemos empleado aqui el teorema sobre la forma general de
una funcional lineal continua en el espacio de Hilbert; si se
considera el espacio complejo L,{a, b) habrd que escribir A(x)
en lugar de h(x).). Estd claro que fA€L,{(a, b); es mas, tenemos
e 1 x1fh€ L, (a, b) para cualquier §, < 8. En lo sucesivo conviene
aceptar que a=— o0 y b= oo tomando, si es necesario, iguales
a cero las funciones f y A fuera de (a, b). Sea g la transforma-
cion de Fourier de la funcién fh, es decir,

gW= {Fwheteds.

De lo explicado anteriormente se desprende que 1la funcién g
puede ser prolongada, como una funcion analitica, a la franja
|[Im{] < 8. Por otro lado, en virtud de la propiedad 6, todas
las derivadas de esta funcién son iguales a 0 para. A=0, de
manera que g{(A)=0. Por la propiedad de unicidad demostrada
en el punto 1, de aqui se deduce que f(x)h(x)=0 en casi todo
punto y, consecuentemente, A(x)=0 en casi todo punto ya que
f(x) es diferente de O en casi todo punto. Pero, esto contradice
a nuestra suposicién de que 4 es una funcion no nula. La con-
tradicion obtenida demuestra la complitud del sistema {x"f(x)}.

4°, Transformacién de Fourier de funciones indefinidamente
diferenciables y rdpidamente decrecientes. Teniendo en cuenta que
al pasar de la funcién f a su transformacion de Fourier g las
propiedades de diferenciabilidad y de decrecimiento en el infinito
corresponden una a otra, es facil indicar clases naturales de
fl;mciom que se .aplican en si mismas por la transformacioén de
ourier. :
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Sea S« el conjunto de funciones indefinidamente diferenciables
en la recta, para cadauna de las cuales existe una constante C,_
(que depende de la funcién f y de los nimeros p y g) tal que

|6 F9 ()| < Cpye (7

Probemos que, si f€S8,, también g=F[f]€S,. Observemos,
ante todo, que de acuerdo con (7) cada una de las funciones
#[D (x)

es absolutamente integrable. En efecto, como (7) se cumple para
todos los p y ¢, la funcién ;

xP-3 f(ﬂ) (X)
es acotada, esto es, x# f'V (x) decrece no mas lento que lx,; con-
secuentemente, la funcion F[f] tiene derivadas de todos los
ordenes. Finalmente, de acuerdo con el punto 2, la sumabilidad
de f9(x), g=1, 2, ... implica que g="F|[f] decrezca en el

infinito mas rapido que T)IlFl . Consideremos ahora las funciones
(E0Yg® (W)= (—i)7 F [( f (9)9)];

cada una de las cuales es acotada por una constante D,,, como

la transformacién de Fourier de una funcién integrable. De
modo que, si f € Se, también g= F [f] € Sw. Viceversa, sea g€ So;
entonces, de acuerdo con lo demostrado, la funcién :

= § g (e

pertenece a Se. Pongamos f(x):r—--z-lu—f* (—x). Esta claro que
[ €S«. Al mismo tiempo, por la férmula de inversién
®
gM =5 § f*(x)ePrds,
-
es decir, g es la transformacion de Fourier de la funcién fESH

Luego, la transformacion de Fourier aplica la clase S, en la
misma clase S,. Estd claro que esta aplicacién es biunivoca.

- . .
EJERCICIO, Sea f €S,y S xP f(x)dx=0 para todo p>=0. ¢Se desprende de
_ aquf que f(x)m=0? B
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5°. Transformacién de Fourier 'y convolucién: de fanciones.
Sean f, y fy funcnom integ'ables en tedn la recta. Lid v funieié

fl= \,S F® F =B

se llama convolucion. de estas - iunciona La funcién .f(x) esta
definida para casi todo x y es mtegrable En efecto, la integral
doble -

existe, ya que existe la integral

S Slfl(ﬁ)f.(n)ld\‘sdn

(vease la observaclon al teorema de Fubini en el cap. VI),
Consecuentemente, existe también la mtegral

Sf(x)dx«;: S dx S fL ®) f,<x—a)d§.

La funcién f se designa mediante el simbolo f,»f,. Calculemos
la transformacién de Fourier de la convolucién de dos funciones
de L,. Aplicando el teorema de Fubini y tomando x—E=n,
obtenemos

§roeta= {1 o) Fo— b} e =

~ (o] hle—yete drf =

o

={n (t){ $ho e_”""e““dn}

= § hetn. § 1@ e-a,
es decir, '
F [f\#f,]=F [f,]-F [fs}-

Luego, la transformaciéon de Fourier convierte la operacnon de
convolucién en una operacién mas simple: la mult:plxcacxon de
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funciones. Este hecho desempefia un papel importante en varias
aplicaciones de la transformacién de Fourier.

6°. Aplicacion de la transformacion de Fourier a la solucion
de la ecuacion de conduccion del calor. La aplicacion de la
transformacion de Fourier a ecuaciones diferenciales se basa en
que, segin hemos demostrado en el punto 3, esta transformacién
convierte la operaciéon de diferenciacion en la de multiplicacion
por la variable independiente. Luego, si tenemos una ecuacion
diferencial lineal de coeficientes constantes

y(n)_l_aly(n—n_i_ L +an_ly’+any=(p(x), 8)

ella es convertida por la transformacion de Fourier en una ecua
cion algebraica de tipo ’

(N2 +a,(iM)* 2+ . .. 4-a,_,ilz+a,z =1y ()\), donde = F[¢].(9)

Sin embargo, este método es poco fecundo en el caso de ecua-
ciones diferenciales ordinarias ya que la solucién de ecuaciones
lineales de coeficientes constantes, a las yue puede ser aplicado,
no ofrece, por si misma, grandes dificultades. Ademas, el paso
de (8) a (9) es posible, si la funcién incognita y=y(x) es inte-
grable en toda la recta, mientras que para las soluciones de
ecuaciones lineales de coeficientes constantes esto, como regla
general, no tiene lugar. '

Es de mayor importancia la aplicacion de la transformacion
de Fourier a ecuaciones en derivadas parciales, donde permite,
en ciertas condiciones, reducir la solucién de una ecuacién de
este tipo a la solucion de una ecuacién diferencial ordinaria.
Ilustremos esto resolviendo el problema de Cauchy para la ecua-
cién de conduccion del calor. Busquemos para —oo << x < o0 Yy
t >0 la solucionde la ecuaciéon ,

Ou(x, t) _ Pu(x, i)
o o (10)

que se convierte para £=0 en una funcién prefijada u,(x). El
contenido fisico de este problema consiste en determinar la
temperatura de una varilla termoconductiva infinita para cual-
quier momento £ > 0, si en el momento inicial #=0 su tempe-
ratura en cada punto es u,(x). o »

Suponiendo que i, (x), u, (x) y uq (x) pertenecen a L, (—oo, o),
buscaremos la solucién del problema planteado en la clase de
funciones u (x, f) que satisfacen las condiciones siguientes:

1) Las funciones u(x, £), u.(x, £) y u,.(x, t) son abso-
lutamente integrables en todo el eje x para cualquier £ >0 fijado.
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2) La funcién «,(x, f) tiene en todo:intervalo finito th< T
una mayorante integrable f(x) (que no depende de f): =

wx. t)éf(x}. S féx)dx<ou. |

~ Realicemos en la ecuacién (l&) la transformamm de Fourier
respecto a x. Entonces, en el miembro derecim tendremos

F [ (x, )] =—M% (4, t), donde v(h, fy= -F[u (x, 8y,

mientras que en el rmembro izquierdo, en vu'tud de 2). ten-
dremos ,

F[u,]_ S (. t)e“""dx—-— S u(x, t)e"""dxavt(k ).

De esta forma la transformacnén de Fourier conv:erte la ecua-
cién’ (10) en una ecuacién diferencial ordinaria

0 (A, =—At0 (A, )

y dgbgmos ahora buscar Ia soluc:6n deesta ecuacmn que para
t=0 da :

%, (x>‘=t-‘ [uo()] = S &;,(x):e-"j*f dr.
Esta solucién es, evxdentemente,
(), t)—e""*v.(k)
Ahora, para obtener la solucién del problema inicial, resta

encontrar aquella funcién u (x, ¢) cuya transformacion de Fourler‘
es la funcién encontrada v(A, ?).

Recurriendo al e;emplo 4 del punto 1, tenemos

. L ]
-t _Fl——e %,
. ¢ F L Vae f
Por lo tanto,

v(h, y=F [2 Vl':_z_te_%] -F [u, (x)}=F ?ﬁ“;,:e-%*,"o(x)].'
es decir, B ‘ o

u(e, =g ‘NS“e 'u.(x—a)da
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Hemos obtenido la asi llamada férmula de Poisson para la
solucion de la ecuacién de conduccién del calor.

7°. Transformacion de Fourier de funciones de varias variables.
El concepto de la transformacién de Fourier, considerado
anteriormente para funciones de una variable, puede ser extendido
facilmente al caso de funciones de varias variables.

Sea f(x,, %, ..., x,) una funcién integrable en todo el
espacio n-dimensional R”. Su transformacién de Fourier es la
funcién

g(Ay Ay ooty M) =

@® @® . )
=0 0 f m o, m)eihenh b gy dx
- -

Esta integral n-ple, existente de antemano ya que f(x,, x,, ...
... X,;) es integrable, puede ser representada, de acuerdo con
el teorema de Fubini, mediante la siguiente integral reiterada:

®

gy, Ay ..., k,,i:ks {_S { S flxy, x5 ...

ceey Xp)emiEbady ) é-i":"c dx, ... }e“"‘n*n dx,. (11)

En otras palabras, el paso de una funcién de n variables a su
transformacién de Fourier puede ser realizado aplicando suce-
sivamente esta transformacion a cada variable (en un orden
cualquiera). Invirtiendo cada una de las n operaciones sucesivas
que figuran en el miembro derecho de (11), obtenemos la férmula

1 f @® w®
Fl %o s )= § { { RS

-0 - -

cees Apeitnind), ) el ihnm dh, . } elttad,,

que puede ser representada mediante una integral n-ple
1
f(xn xza ceey ’szg
8O Ay L e dLy L dh, (12)

sin “embargo, puesto que la funcién g(A,, A,, ..., A,) puede
no ser, en general, sumable en todo el R”, es preciso indicar

313427
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en qué sentido debe comprenderse gsta mtegral 'y:1as condiciones
que deben imponerse a f(x,, X ..., X,) para. que sea posible
representar f(x,, x,, ..., X,) mediante la integral (12).

Una de las respuestas posibles .a estos: problemas la da el

teorema sugmente

TEOREMA 1. Supongamos que la funcion f(x,, %y .o, %) €
integrable en todo el espacio R" y sattsface las oondtcwnes
siguientes:

e+t Xa ooy X)—f(x X, ..., %) | CL]Y

[F(X Xatty ooy X)—F(X Xg ... xu)l<
. . <C(x1)|tt I‘:

If(xv x:::: ey x,,+t,,),—f(x,, Xgs oses n)lé } ;
<Clw % oy x|l (19

donde 0<<a<<l, § Cxydr, <o, ...,

S S C (%, x,, e x'_,’)dxldx, coo dx,_y < 00,

7

Entonoes, la férmula de inversion (12) es val;da si la zntegral
en ella se entiende como

1 N’ ; Nl- .
P iy ,;,{."'N,.‘f',‘l, R Jim_ }SJg(% My e )X
X elrim dh, ) ein-sbns b, . } eixih dh,.

En efecto, como f(x;, x,, ..., x,) es sumable en R" es
sumable tambnen, de acuerdo con el teorema de Fubini, respecto
a x, para casi todos los x,, ..., x, Luego, existe la funcién

@®

fi(hy x5 - -0, ,,)= S F(Xyy Xg ooy Xp)e—ixbdx,,

-0

De (13) se desprende que f(x,, X, ..., X,) como funcién de X,
verifica la condiciéon del teorema 1 del § 3; por lo tanto,
f(xy X4 ..., x,) puede ser expresada a-través de f, mediante
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la férmula de inversién
. .
. 1
f(xp Xgy -« ooy xn)= Nl‘“-Po-é?"- —§v 'fl (z:p Xgy <1 x,.)eix.m d’\-p

Ahora bien, si tomamos

L J

Faps Ay ooy %)= S Fa(hyy X5 -y X,) e~ %t dx,,

-

de la condicién (13) se deducira que para f, es valida la férmula
de inversion

N,
|
fola 2 o i) = Jim g § fOa B s e,
es decir,
flxy %o -0y Xp)=
P L
- nglTao 2 _‘S;v‘ { nglf]oo ﬁ_ -‘Sl:l, f' (kl, 7"2’ o x") 8

X ei*shad), } elxih d),.

Definiendo de un modo anilogo fy(Ay, Ay ..., X) etc.,

obtendremos la férmula (12).

La transformacién de Fourier de funciones de varias variables
encuentra amplia aplicacién en la teoria de ecuaciones en
derivadas parciales. Consideremos, por ejemplo, la ecuacién

ou 0w , 0%u
§=5}'§+W (14)

que describe la conduccién del calor en un plano. Sea dada la
temperatura en el momento ¢=0:

u(0, X, y)=1i,(x, y).

Sometiendo la solucién que buscamos de la ecuacién (14) a con-
diciones analogas a las indicadas en el punto 5, podemos efec-
tuar en la ecuacién (14) la transformacién de Fourier respecto
a las variables x e y. Obtendremos como resultado la ecuacion
ordinaria

av

W=-— (7\'2+0“) v,

31*
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donde «
ot b= | § utt x peiommdrdy.  (5)

Resolviendo la ecuacién (15), podemos: después encbhtra:s,ii“a
solucién de la ecuacion inicial (14) por medio de la férmula de
inversién. : ’ IR ‘

§ 5. TRANSFORMACION DE FOURIER EN EL ESPACIO L, (— o, %)

1°. Teorema de Plancherel. Volvamos primero a los resultados
obtenidos para las series de Fourier. Para una mayor analogia
con la  transformacién de. Fourier, consideraremos la forma
compleja de la serie de Fourier, esto ‘es, tomarermos en el 'segmento
{—m, =] el sistema completo ortogonal de funciones et n=0
+1, ..., y pondremos en correspondencia a toda funcién ;

sumable en el segmento [—=n, n] su sucesién de coeficientes de
Fourier '

13

C,,=-2—:-_‘-S (x)e“"" ' dx(n=0, d:l, =+2, .)

-3

-.Si la ;funcion f, ademés de ser sumable, es de cuadrado
sumable, sus coeficientes de Fourier verifican la condicién

® <R 5

nz lcn F<°°

En otras palabras, el paso de una funcién:de cuadrado sumable
al conjunto de sus coeficientes de Fourier constituye una apli-
cacién del espacio euclideo L, sobre el espacio euclideo ly;
ademas, esta aplicacién es lineal y verifica la igualdad de
Parseval: :

2 3 Je={ IFpdr (1

(es decir, este paso difiere sélo en un ‘coeficiente constante de
una aplicacién que conserva la norma). o B

Consideremos ahora 1a transformacién de Fourier para funciones
definidas en toda 1la recta y, veamos, si es posible interpretar
esta transformacién como un operador lineal en L, (— oo, o).
La dificultad principal consiste aqui en que una funcién de
cuadrado integrable no pertenece necesariamente a L, (—o0, o0),
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es decir, en que su transformacién de Fourier puede no existir
en el sentido definido en el § 4. Sin embargo, es posible definir,
en cierto sentido, la transformacién de Fourier para toda
f€L,(— o0, o). Entonces, se obtiene el siguiente teorema que
puede ser considerado como un analogo de la igualdad de
Parseval (1).

TEOREMA. (Plancherel, 1910). Para cualquier funcion f € L, (— oo, o)
la integral

N
gv()) = SN f (x)e=P+ dx

es, cualquiera que sea N, una funcion de A\ perteneciente a
"~ Ly(— o0, ). Para N — oo las funciones gy convergen en la
métrica del espacio L, hacia un limite g tal que

§ lempar=2n { |7 ra @

Esta funcion g es llamada transformacion de Fourier de la
funcion f€L,. Si f pertenece también a L,(— oo, o), la
funcion correspondiente g coincide con la transformacion habitual
de Fourier de la funcion f.

DEMOSTRACION. La idea principal de la demostracion consiste en
que la igualdad (2) es comprobada primero para todas las
funciones que pertenecen a la clase S, de funciones indefini-
damente diferenciables y rapidamente decrecientes, que son
siempre densas en L,(— oo, oo), después es extendida, por
continuidad, a todo el L,(— oo, o0). Realicemos ahora detalla-
damente esta idea.

1) Sean f,, f,€Ss. Designemos con g, y g, respecti-
vamente, sus transformaciones de Fourier. Tenemos

-

2 § e F T de=

F1(x) Fa () dx =

|
g —8

= { [81(7?) { f,(x)e-ixxdx]dh=—2—1;5 g: (Mg, (M) dh,

- N -0

donde el cambio del orden de integracién esta justificado ya
que la funcién

21 (M) fq (x) e
es absolutamente integrable en el plano (x, A). Tomando f,=f,=f
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y g, =g, =g en la igualdad obtenida, encontramos que la ‘for
mula’ (2) es vilida para cualquier funcién f€ Ses: e A

2) Sea ahora f una funcién arbitraria de L,(— oo, o0) que s
anula fuera de un intervalo (—a,a). Entonces,. f es integrablé
en el intervalo (—a, a) (es decir, pertenece a L, (—a, a)) y,caﬁ
secuentemente, en toda la recta. Luego, para ella esta definida
la transformacion de Fourier =~ =

gy = § Foe-nedx.

-

Sea ahora {f,} una sucesion de funciones de S,, nulas fuera dd
un intervale (— a, @), que conyerge hacia [ respecto a la- norma
del espacio L,(— oo, o0). Como f y toda. f, son diferentes d
cero s6lo en un intervalo finito, la sucesién- {f,} converge hacia ]
también respecto a la norma del espacio L,(— oo, o0). Por |
tanto, la sucesion {g,} converge hacia g uniformemente en todi
la recta (véase el punto 2 del § 3). Ademads, la sucesién {g,} ed
fundamental en L, (— o0, o0). En efecto, g, —g, € S=; luego, en
virtud de lo ya demostrado, .tenemos . . ~ : ‘*

§ 16,00 —gaMEdr=2n §|f.00—Fa(0dx,
de dondé se: des'prende;v.que {g,,} es una sucesion fundamental.
Ello significa que esta sucesion converge en L, y, ademads, hacia
la misma funcién g, hacia la cual converge uniformemente. Por
esto, podemos pasar al limite para n — oo en la igualdad

B TATERY PR

Luego, la iguéldad (2) es »vﬁlida para»t&d‘a [E€L, que se anula
fuera de un intervalo. :
3) Sea, finalmente, f una funcién arbitaria de L,. Tomemos
| foy— | T pama <N,
) N \ 0 opara |x|>N.
Esta claro que o
|f—fvx)|— 0 para N —oco.
La funcién fy pertenece .a L,(— oo, o) vy, consecuentemente,
para ella existe la transformacion de Fourier que es igual a
N

gvi)= SfN("V)'e—iM’dx= SNf(x)e{de.
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Pero, en virtud del punto 2) de nuestros razonamientos,

| Fv—inll* = % lgn—gmll,

es decir, las funciones g, convergen en L, hacia un limite que
designaremos con g. Por lo tanto, en la igualdad

1
Wiwl*= 3z llenll

se puede pasar al limite para N — oo, de donde se obtiene la
relacion (2) para cualquier f€L,(— oo, 00). Si ahora f pertenece
tanto a L,(— oo, o0) como a L,(— o0, o0), existe para ella la
transformacion de Fourier :

g = § Frye-dx,

- comprendida en el sentido corriente. Como las funciones f, con-
vergen en L, (— oo, oo) hacia f, sus transformaciones de Fourier gy
convergen uniformemente hacia g. Pero, hemos demostrado, ade-
mas, que las funciones g, convergen respecto a la métrica de
L,(— oo, o0) hacia un limite que hemos designado con g. De aqui
se desprende que g coincide con g. Hemos terminado la demos-
tracion.

De la relacién (2) se deduce inmediatamente que para cuales-
quiera f,, f,€L,(— o0, o0) se cumple la igualdad

[hoRmd=g [a®mama.

Para demostrarla basta escribir la igualdad (2) para la funcién
f1+f, y comparar después las expresiones en los miembros de-
recho e izquierdo.

2°. Funciones de Hermite.El teorema de Plancherel, expuesto
en el punto anterior, sefiala que la transformacién de Fourier
puede ser considerada como un operador lineal acotado F que
transforma el espacio L,(— oo, oo) en si mismo. Escogiendo en.
este espacio un sistema ortonormal completo, podemos definir
este operador F (al igual que cualquier otro operador lineal)
mediante la matriz infinita correspondiente. La forma de esta
matriz depende, claro esti, de cémo se escoge la base. Una
matriz, correspondiente a uno u otro operador, adquiere su forma
més sencilla si la base correspondiente estd compuesta por las
funciones propias del operador dado: en este caso, la matriz es
de la forma diagonal. Veamos si existe una base de este tipo
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para la transformacién de Fourier F. En ofras palabras.v s
qué funciones de L, (— oo, c0) son propias para la transforma-
cxon de Fourier F. Observemos, con este; fin, que la ecuacién

Bl xf= B @

se convierte medlante la trans§ormac10n de Fourier en una ecua-"

cion del mismo tipo (ya que la operacxon :x’ corresponde a la

multlplxcacmn por —A*y la mulhphcacwn por —x* corres-
d2 )

ponde ala operacwn ‘W)l, Por esto resulta natural buscar Ias

funciones propias del operador F como soluewnes de 1a ecua%’f
cion (3). Busquemos las solucuones de esta ecuacién que tienen
la forma
x!

f=we *,
donde w es. un polinomio. Introducnendo en (3) esta expresion,
obtenemos para w la ecuacién

o =2 =@+ Dw. -

Tomando ; - .
W=y -+ A+ ... a7, )
encontramos la igualdad - ‘
(2a,+3-2-a;x+ .. \—i—n(n——’l)‘a x"=%) —
_2x(a1+2a X+ ...+ naxt l)_(p+l)(ao+01x+ -+ a,x").

Comparando en ella los coeflcnentes de potencias iguales de xen
los miembros izquierdo y derecho, encontramos que '
—2na,=(n-+1)a, —2(n—1a,,=@+1)a,,,

etc ; en general, ’
R(k—1)a,—2 (k—2) Gy =+ 1)@, ®)
Como el coeficiente a, se supone distinto de cero, tenemos
(2n—Ll) y -1 =0,

es decir, p debe ser un nimero entero. ‘negativo impar. Todos
los coeficientes del polinomio w se determinan por las relacio-
nes (5) umvocamente, salva un. coeficnente constante.: Ademas,-

1 Suponwndo, claro estd, que la funci6n. .incégnita f verifica las con-
diciones . correspondientes. de dlferencxabllxdad 'y de - decrecimiento en el

mflmto
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son iguales a cero todos aquellos coeficientes cuyos subindices

tienen paridad opuesta a la del namero n, es decir, de la poten-

cia del polinomio w. Al contrario, los coeficientes cuyos subin-

dices tienen la misma paridad que n son distintos de cero y se
calculan por la férmula recurrente

_ k(=1

-2 =3k —2n—14

(para el valor dado de a,). De esta forma obtenemos para w la
expresion siguiente ’

ay n'(n—-l)(;l;?)("_s) S ) .

a

w, (x) = au (JC" —'-I:-%E——Ux"-

Hemos construido, pues, el sistema de funciones de tipo
x? ;
g, (x)=w,(x)e * (n=0,1,2,...).
Es obvio que cada una de estas funciones pertenece a L,(— o0, o0)
(ya que decrece en el infinito mas rapido que cualquier poten-

cia de —:‘— . Aden‘fés, estas funciones son dos a dos ortogonales.
En efecto, de acuerdo con (3), tenemos ‘

@n (¥) —x*q, (x) = — (2n + 1) @, (x),

P (X) — X, (X) = — (2m + 1) @ (¥)-

Multiplicando la primera de estas igualdades por ¢,, y la segunda
por @, y restindolas una de otra, obtenemos -

L QP PmPn =2 (R — M) PPy

Teniendo en cuenta esta igualdad, encontramos para n=m, in-
tegrando por partes, , , ;

Co L Cpor s
S Pn () P (¥) di = 50— S [@79n —Pna] dx =

. l . ’ ’ K ’ ’ ’ ’
=s=m) { [@nPn—Pm®n] 2, — S[wpm—-fvm%ldx=0-

Con esto queda demostrada la ortogonalidad.
De esta forma cada uno de los elementos ¢, del sistema orto-

gonal obtenido es un polinomio de grado n multiplicado por
x? f .

e * . Luego, los elementos de este sistema deben coincidir, salvo

unos factores numeéricos, con las funciones de Hermite que hemos
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construido en el § 3 del cap. VII:‘mediante la ortogonalizacién
de la sucwon

en el espacio L,(— o0, o0). . . ,
Probemos ahora que. las -funciories. g, son funciones proptas
de la transformaclon de Founer

qu = n&n (92

Esto se deduce de los siguientes hechos.

1) La ecuacién (3) es invariante respecto a la transforméﬂ
cion F.

2) Para todo n la -ecuacién (3)' tiene un&* ‘solucién tinica,

salvo un coeficiente constante, de tlpp P, (x)e , donde P, es
un polinomio de grado n.
xl
3) La transformaclon de Founer conv1erte x"e "7 en
. x*

gi dix) T =Q, (x)e “%, donde Q. es un polmomlo de grado n
(la tltima afirmacién se comprueba facllrnente por mduccnon)
De la igualdad (6) se deduce que para todo & entero

Frg,=cip,.

Pero, la .transformacién de Fourier, apllcada cuatro veces conse--
cutivas, convierte toda funcmn en si misma multxpllcada por 4n’
Por lo tanto,

cr=4n

es decir, ¢, puede tomar solamente los valores & V2% y =+ iV Zx.
Luego, en L,(—oo, oo) la transformacién de Fourier es un
operador lineal que en la base compuesta por las funciones de
Hermite se define mediante una matriz diagonal, en la que los

elementos dlagonales toman los valores =+ J/2n y +iV 2.

- D Sila transformacnﬁn de Fourier se ,d‘eig‘ge medlante la formula
Fi= j Fye-beds

(esto es, mediante la formula (1') del.§ 4 y no ‘mediante la férmula (1)), su

cuarta potencia serd el operador unidad y oblenemos para F, en la base

Sén?puesta por Ias funciones de Hermlte, la matrlz dlagonal con. elementos
y +i.
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§ 6. TRANSFORMACION DE LAPLACE

1°. Definicion y propiedades fundamentales de la transforma-
cion de Laplace. Las posibilidades de aplicar la transformacion
de Fourier a ecuaciones diferenciales y a otras varias cuestiones
estin considerablemente limitadas debido a que la transforma-
ci6n de Fourier estd definida sélo para funciones sumables en
toda la recta. En particular, la transformacién de Fourier no
existe para funciones que tienden al infinito para x — —oo o
x— o0o0. Al mismo tiempo, al resolver ecuaciones diferenciales
aparecen frecuentemente funciones de este tipo. Uno de los cami-
nos posibles que permiten superar esta dificultad es extender el
concepto de transformacién de Fourier a las funciones generali-
zadas y acerca de €l hablaremos brevemente en el § 8 de este
capitulo. Otro camino posible, que nos permite quedarnos en los
maérgenes del concepto clasico de funcién y de los métodos cla-
sicos del Analisis, consiste en sustituir la transformacién de
Fourier por la asi llamada transformacién de Laplace.

Supongamos que una funcién f (no integrable, en general, en
toda la recta) resulta ser integrable si se multiplica por e~7*,
donde y es un nimero real. Entonces, la integral

o @

g@)=§ Fmeissdv= { fryeemd

- -

converge para determinados valores complejos de s=A-+ip, en
particular, converge en la recta p= —v. En esta recta representa
la transformacién de Fourier de la funcién f(x)e*.

El caso mas importante para las aplicaciones, en el que se
cumplen nuestras suposiciones sobre la integrabilidad de la fun-
cién f(x)e"1%, es el caso en que f verifica las condiciones si-
guientes:

f(x) < Cew~ para x>0, |

, f(x)=0 para x<0 | ()
(vo ¥ C son constantes). Entonces, la integral
g = § fyet=de={flrei=d @
—-® 0
existe para todos los s=A-ip tales que p <7, €s decir, en el

semiplano limitado por la recta Im s=—v, ¥ representa la
transforn-acién de Fourier de la funcion ,

f(x)e'*.



492 CAP.IX. SERIES TRIGONOMETRICAS, TRANSPFORMACION DE FOURIER

Esta altima puede ser obtenida a partir de g por medio de la
férmula de inversién _
e =g [ gsyensdn,

-

de donde e

l int e e S :
=g [ g@erds (s=2 ). 3
Como la funcién F(x) o décrecef para-p < —y,-como una funcién
exponencial -(en virtud-de (1)), su transformacién de Fourier 'y,

consecuentemente, también. g(s)els*. son', funciones ‘analiticas en

el semiplano Im s<<—y . - R O P e
Por eso,. en'la férmula de inversién (3) la integral puede ser

tomada respecto a cualquier recta paralela al eje real y pertene-

ciente a este semiplano. - - . o 7 T
Efectuemos ahora en. las férmulas- (2)t'y (3) un cambio de

variable, tomando p=is y designando g(s) mediante @ (p).
Tendremos , :

m(p)=§f(£)e-rxdx

y,
. a ;u+iw‘ ; —ﬂ-{-lu},‘
fo=gz | @@erZ=L ' wpergp.
5 N e ) ’ E s -l

La funcién ® esti definida y es analitica en el semiplano
Re p> p,; se llama transformacion. de Laplace de la funcién f
(que verifica las condiciones (1)). ~

De lo expuesto se observa que la -transformacién de Laplace
difiere poco, en general, de la transformacién de Fourier. Sin
embargo, esta pequefia diferencia lleva a que la clase de funcio-
nes, para las cuales esta definida la transformacion de Laplace,
se distinga de un modo sustancial de la clase L,(—o0, co) de
funciones, para las cuales existe la transformacion de Fourier.

2°. Aplicacién de la transformacion de Laplace a fa solucién
de ecuaciones diferenciales (método operacional). La transforma-
cion. de Laplace puede ser empleada para resolver ecuaciones
cuando se buscan soluciones determinadas por ciertas condiciones
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iniciales. Supongamos que esti dada una ecuacion diferencial
lineal de coeficientes constantes

¥ +ay V... tay=>b(x) @
y que se busca su solucién que satisface las condiciones iniciales
yO0) =y ¥ O) =y, ..., y"" " (0)=g,_,. (5)

Apliquemos la transformacion de Laplace a la ecuacién (4), es
decir, multipliq‘uémosla’ por e~P* e integrémosla entre 0 y oo. Sea

Y (p)=§ y(x)ePxdx
0

la transformacion de Laplace de la funcién y. Integrando por
partes, encontramos la transformacién de Laplace de las derivadas
Y, ..., Yy

§ Y (x)e"P*dx =y (x)e P~ I: +p § y(x)e~P*dx=—y,+ pY(p);
S ¥ (x)ers dx =y () e"’"l +p S y (x)erdx=
0 ; ] 0
=—th+P(—Y4+ Y (P))= —y, — Py + p*Y (p);

S y(n) (x) e~Pxdx =y(”_ 1) (x)g"'Px

0:

® «®

+p Sy('l—l)(x) e,‘dex_.__
0 0 e

= —y,._4;'+p(—\~y,.-,-k-pyn-,— c PP (p) =
=Yn-1—PYn-o—- .. +P"Y (p)-

Sea, finalmente,

B(p)={ b(x)e-r=dx.
0

Obtenemos que la transformacién de Laplace convierte la ecua-
cion diferencial (4) (teniendo en cuenta las condiciones iniciales
(5)) en la ecuacion

Q(P)+R (MY (p)=B(p),

donde B es la transformacién de Laplace de la funcién b, Q es
un polinomio respecto a p de grado n—1 y R es un polinomio
en p de grado <<n. De esta ecuaciéon tenemos

Y (p)= B(P)R‘Z,g(P) .



494 CAP. 1X. SERIES TRIGONOMETRICAS: TRANSFORMAGION DE FOURIER

La solucién y de la ecuacién (4) se obtiene de aqui mediante la
férmula de inversion S : "
~p+iw . ; N
T T apete SR
‘Esta integral suele calcularse mediante los: residues. _
~ Para resolver, ecuaciones diferenciales lineales de coeficientes
constantes, se emplea ampliamente el . asi. llamado método ope-
racional. Consiste en que el miembro izquierdo de una ecuacién
de este tipo

- 5

Yy a VLt ay=b(x)
se considera como resultado de aplicar a la funcién - jnedgnita g
el operador N Ceee towl Lo
) dan dan-1 iy
(a‘n-l-alm—!- ...+a,,), (6)
y la soluciéon de la ecuacién se considera como- el resultado de
aplicar al miembro derecho de la ecuacion el operador inverso
del operador (6). Es fécil, mediante célculos directos, encontrar
el resultado que se obtiene al aplicar este operador a algunas
funciones elementales: trigonométricas, exponenciales, potenciales
y sus combinaciones. Esto permite escribir automaticamente la
solucién de una ecuacién lineal de coeficientes constantes, siempre
que su miembro derecho sea una combinacién de estas funciones -
elementales. Bsta claro que el método operacional constituye, de
hecho, la aplicacion, en forma indirecta, de la transformacién
de Laplace; esta tltima puede servir precisamente para argumen-
tar este método que frecuentemente figura en textos técnicos en
forma de una «receta». '

§ 7. TRANSFORMACION DE FOURIER — STIELTJES

1°. Definicién de la transformacién de Fourier — Stieltjes.
Volvamos de nuevo a la transformacién de Fourier en el espacio
L,(—o0, oo): o ~ o R
gM)=§ ef(x)d.
Esta féormula puede ser escrita en forma de la integral de Stielt-
o pu

gy=§ e-v=dF (x), (1)
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donde

X

F=§ fayat 2)

es una funcién absolutamente continua de variacion acotada

(igual a S
igualdad Zi’) tiene sentido no sélo para funciones de tipo (2)

sino para cualesquiera funciones de variacion acotada en toda
la recta. La integral

]f(x)|dx> en todo eje numérico. Sin embargo, la

gy={ edF(x),
donde F es una funcién arbitraria de variacién acotada en la
recta se llama transformacion de Fourier—Stieltjes. de la fun-
cién F. Para la transformacién de Fourier—Stieltjes se conservan
muchas de las propiedades que hemos demostrado anteriormente
para la transformacién habitual de Fourier como, por ejemplo,
la siguiente: la funcién g definida por la integral (1) es continua
y acotada en toda la recta.
En efecto,

-2

|g(7”1)'—g(7”g)|= J [e~ s —e~Me*] dF (x)+
+ § [t —emtex]dF (x).
IxI'>N
El segundo sumando del miembro derecho puede ser hecho tan
pequefio como se quiera para cualesquiera A, y A,, si se escoge
N suficiente grande, mientras que el primer sumando tiende a
cero para N fijo cuando A,—A,—O0.

Al mismo tiempo, no todas las propiedades de la transfor-
macién de Fourier subsisten para la transformacién de Fou-
rier— Stieltjes. Por ejemplo, la transformacién de Fourier —Stieltjes
no tiende, en general, a cero para |A|— oo. Sea, por ejemplo,

0 para x <0,

F(x)={ 1 para x >0.

Entonces

g)=§ d-"dF (n)=1.
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Anilogamente la transformacién de Fourier —Stieltjes de 1a: fun-
cion igual a 0 para x <x, y a1 para x>x, es ¥\ es decir,
una funcién periédica de A..

Si F es una funcién de saltos tal que los puntos

n= 0 el B i:2, whivre

son sus puntos de dxscontmundad .
sy oy, By, Gy, ol s ’(doxvldﬂe }_}la,](oo)
son los valores, de sus. saltos en estosfpuntos. tenemos que

S e"”dF (x) Eane-inx ;

es una funcién de perxodo 2. En cambxo, si F tiene saltos a,
en los puntos x,, que forman una sucesién -arbitraria en el eje
numeérico, . su transformacnon de Founer-vsnelt}es es de la forma

2 a ,‘e'”‘»"
Las funciones de este t:po perienecen a las asi. llamadas funclo-
nes casi periddicas.

2°. Aplicacién de la transformacién de Fourier — Stieltjes a la
teoria de probabilidades. Para funciones sumables en (—oo, o)
hemos introducido en el § 4 el concepto de convolucnon '

FW=h ()sf(0) = S F =B f @) . (3)

Pongamos ahora :
‘F‘(x) S f(t)dt Fy (v)- S fl(t)dt y F (x)= S f,(t)dt

Entonces, mtegrando la 1gua1dad (3), podemos escnbtrla en la
forma siguiente:

Flo={ fodi= S dt S =@ &=

= {S f(t—1) dt} f, ®)dE = S F,(x—E)dF, @)

(el cambio del orden de integracién estd justificado aqui en vir-
tud del teorema de Fubini y de la integrabilidad absoluta de la
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funcién f). La relaciéon que hemos obtenido

F= § F,(x—¥)dF,®

pone en correspondencia a las funciones F, y F, la funcién F.
Sin embargo, la integral que figura aqui en el miembro derecho
tiene sentido no sélo para funciones absolutamente continuas
de tipo (2) sino también para dos funciones cualesquiera de
variacién acotada en toda la recta. Llamaremos a la expresion

F)=§ F,(:—dF, @), @

donde F, y F, son funciones arbitrarias de variacién acotada
en la recta, convolucion de estas funciones. Probemos que la
expresién (4) representa una funcién definida para todos los
valores de x y de variacién acotada en toda la recta.

‘En efecto, F, es una funcién medible acotada y, consecuen-
temente, la integral (4) existe para todo x. Ademaés,

|F ()—F (5) | =| § (F, (=) —F, (o —2)dF, )| <

< { |Fy (=8 —F, (ts—B) | d (var F, (),
de donde -
VIFI<VIF.]V[F]

TEOREMA 1. Si F es la convolucion de dos funciones F, y F, de
variacién acotada y g, g, Y &, son sus transformaciones de
Fourier —Stieltjes, se tiene

g =g (1 g }).
DEMOSTRACION. Sea F=F xF, y sea
a=x°<xl < P <.7C,,=b
una particién del segmento [a, b]. Entonces, para todo A
b n
Se’“dF (¥)= _ lim Ze’ Mk (F (%) — F (x5-1)) =

_max Axg~0 =1

‘max Axg—>0

- dim{ 3 e (Fy (g —8)—F, (51— ) e85 dF, (),

-o k=1

32—3427
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es decir,

Ce-iedF ()= { | | e-AxdF, (1)) e-t aF, (B).
fen SS

- a-—&

Pasando aqui al limite para a——oo y b— oo, obtenemos

§ enedr )= §e-nadr, o) § oo,
esto es, |
g0 =808 ().

El teorema de que la transformacién de Fourier —Stieltjes
transforma la convolucién de. funciones en producto se emplea
ampliamente en la teoria de probabilidades (método de funcio-
nes caracteristicas). Si & y n son dos variables aleatorias inde-
pendientes y F, y F, son sus funciones de distribucién, a la
variable E+n le corresponde ‘la funcion de distribucion

F=F«F,.

Frecuentemente resulta necesario considerar en la teoria de
probabilidades la suma de variables aleatorias. El paso de las
funciones de distribucion a sus transformaciones de Fourier —
Stieltjes, a las asi llamadas funciones caracteristicas, permite
sustituir la operacion - de convoluciéon por la operacion de mul-
tiplicacién, mas simple y mas comoda. De esto hemos hablado
ya anteriormente en relacion con el concepto de convolucion
de dos funciones absolutamente integrables. Sin embargo, en
aquel momento no disponiamos aiin del concepto de la transfor-
macién de Fourier —Stieltjes y hemos tenido que limitarnos a
variables aleatorias continuas (a la suma de las cuales, siendo
ellas independientes, corresponde la convolucion de sus densida-
des de distribucién). El concepto de la transformacién de Fou-
rier —Stieltjes permite aplicar este mismp método a sumas de
variables aleatorias arbitrarias.

EJERCICIOS. |. Demuéstrese que la transformacién de Founer—-Stlelt)es
verifica la propiedad de unicidad: si la funcién f es continua a la izquierda
y su transfp ormacién de Fourier— Stieltjes es 1dent1camente nula, entonces
F (x) =const.

2. Demuéstrese que-la operacién de corivolucién de funcnones de varia-
cién acotada es conmutativa y asociativa.
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§ 8. TRANSFORMACION DE FOURIER DE FUNCIONES
GENERALIZADAS

Las posibilidades de aplicar el método de la transformacién
de Fourier, comprendida en el sentido habitual, a diferentes
problemas, digamos, a ecuaciones diferenciales, resultan conside-
rablemente restringidas debido a que esta transformacion esta
definida sélo para funciones absolutamente integrales en toda
la recta. Se puede obtener una ampliacién sustancial del campo
de aplicacién de la transformacién de Fourier introduciendo el
concepto de transformaciéon de Fourier para funciones generali-
zadas. Expongamos las ideas fundamentales de esta construccion.

Consideremos primero en la recta el espacio S, de funciones
indefinidamente diferenciables y decrecientes en el infinito junto

con sus derivadas mas rapido que cualquier potencia de L
(véase el § 4 del cap. IV). M

Tomando S, por el espacio de funciones basicas, conside-
remos el espacio correspondiente de funciones generalizadas S:.

Definamos ahora la transformacién de Fourier en el espacio
Sx. Para ello recordemos, ante todo, que la transformacion de
Fourier (comprendida en el sentido habitual) aplica el espacio
S en si mismo: si ¢ €Sy, también F[¢] €S, y, ademas F es
una aphicacién biunivoca de S, sobre todo el espacio S.. Apo-
yandonos en esto, daremos la definicién siguiente. Se llama trans-
formacién de Fourier de una funcién generalizada f€ S a la
funcional lineal g€ S., definida mediante la férmula

@ ¥ =(f, 9), donde y=F|q|. S )

Cuando ¢ recorre todo el S, también $=F[¢] recorre todo
el S.; luego, la igualdad (1) define efectivamente tina funcional
sobre S,. Es inmediato comprobar la linealidad y continuidad
de esta funcional. ' '
Para aquellos elementos de S. que representan funciones
absolutamente integrables, la definicién que acabamos de enun-
ciar de la transformacion de Fourier coincide con la habitual.
En efecto, si f€L,(—o0, ), 9€S. y g=F|[f], y=F|[g],
entonces del teorema de Plancherel se desprende la igualdad

(F, 9 =(g b)

ademas, para [ prefijada existe solamente una funcién g salvo
una equivalencia, que satisface esta igualdad para toda @ €S..
De manera que la definicién de la transformacién de Fourier
para funciones generalizadas, enunciada mas arriba, constituye
una extension -de la definicion clasica a una clase mas amplia
de objetos.

32*
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Elemplos. 1. Sea f(x)=c=const. Entonces,

¢, 9= S‘ cp(x)dx=cp (@) b=FlgD

es decir,: la transformaenén de Fourier® de-una:constante es igual
a -esta .constante multiplicada por la ' 3-funcion.:
2. Sea f (x)~—e"‘" : Entonces,

o= S,:Ef**tp;(x) dx=p (—a);

-0

es decir, la transformacién de qurler de la funcmn e‘“ es
§-funcion desplazada 8(x—a)..
3. Sea f(x) X2, Entonces, de la 1gualdad

v m =— S i (¥e-irdx,

~obtenemos tomando en-ella A= 0
(2, g(0)= ~—w (0)

es decir, la transformagnon de Fourier de la ﬁmclon x2 es la se-
gunda derivada de la &-funcién tomada con el signo menos. .
Hemos definido la transformaciéon de Fourier para las fun-
ciones generalnzadas en S,. Pero, podriamos ‘tomar cualquier
otro espacio basico, por ejemplo, el espacio. K de funciones ter-
minales indefinidamente dxferenclables Para toda funcién ¢ €K
la transformacién de Fourier (én_ el sentio habitual) existe y se
puede comprobar que es una funcién analitica entera. de orden
de crecimiento exponencial. Hablando con. mas precision, la
transformacxon ‘de Fourier es un OYQador lineal que aplica el
espacio K en el espacio Z, cuyos elementos son. funciones ana-
liticas  enteras 1, ‘para cada .una _de las cuales se cumplen las
de51gualdades ‘

1s]9] ()| KCefl™t (g=1,2, ...),

donde C, y a son constantes, que dependen de ¢y y t=Ims.
Puesto que en el espacio K:se ha intreducido: antenormente
un concepto de convergencia, la aplicacion F ‘que transforma’ K
en Z induce cierto -concepto ‘de convergencia‘en Z; una suce-
sion - {y,} .converge en-Z hacia ¢ cuando paralas mlégenes re-
ciprocas se cumple la relacién ¢,— ¢. Ademas, es fécil enun-
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ciar este concepto de convergencia sin recurrir el espacio K.
Sea ahora f un elemento arbitrario de K*. Asignémosle una
funcional lineal g sobre Z, tomando:

(@ ¥)={/, ¢), donde y=F[q].

Esta funcional g se llamara transformacién de Fourier de la fun-
cional f. De esta forma la transformacién de Fourier de una
funcién generalizada f sobre el espacio basico K es una funcién
generalizada sobre Z, es decir, sobre aquel espacio en el que
se aplica K por la transformacién de Fourier comprendida en
el sentido habitual.

Esta misma construccion puede ser repetida también para
funciones generalizadas definidas en otros espacios de funciones
basicas. Cada vez surgira un esquema que incluye cuatro espa-
cios: un espacio inicial de funciones basicas, el conjunto de
las transformaciones de Fourier de estas funciones basicas (es
decir, el segundo espacio de funciones basicas) y dos espacios
duales. Este esquema se reduce a dos espacios cuando por fun-
ciones basicas se toma el espacio S, ya que la transformacién
de Fourier lo aplica en si mismo. '

El concepto de la transformacién de Fourier para funciones
generalizadas ha encontrado amplia aplicacién en la teoria de
ecuaciones diferenciales en derivadas parciales. El lector podra
encontrar un tratamiento de estos problemas en el libro de
G. E. Shilov [12}

1 A saber: P, —0 en Z cuando se cumplen las desigualdades

|stpnls) | < cge! ™"
¥y ¥n — 0 uniformemente en todo intervalo finito del eje real,



'CAPITULO

ECUACIONES
INTEGRALES LINEALES

& 1. DEFINICIONES FUNDAMENTALES. | |
ALGUNOS PROBLEMAS. QUE LLEVAN A ECUACIONES INTEGRALES

1°. Tipos de ecuaciones integrales. Se llama ecuacién integral
a una ecuacién que contiene la funcién incégnita bajo el signo
de integral. Tal es, por ejemplo, la ecuacién

<p‘(s)‘=§1<(s, eyt +f(s), )

donde f y K ‘son funciones dadas y ¢ la funcién que debemos
encontrar. Las variables s y ¢ recorren aqui un segmento prefi-
jado [a, b]. . , !

La particularidad caracteristica de la ecuacion (1) es su li-
nealidad: la funcién incégnita ¢ entra en ella de un modo
lineal. Varios problemas conducen a la necesidad de considerar

también ecuaciones integrales no lineales, ‘por ejemplo, la ecua-
cién de tipo

b
e)={K(s (@), ta,

donde K y g son funciones dadas. Sin embargo, nos limitare-
mos en lo sucesivo a ecuaciones integrales lineales.

Algunas ecuaciones integrales fueron estudiadas ya al prin-
cipio del siglo pasado. Por ejemplo, Abel consideré en 1823
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la ecuacién que lleva ahora su nombre

Fo={dt 0<a<1, [©)=0)

donde f es una funcién dada y ¢ es la funcién incdgnita, y
demostré que la solucién de esta ecuacién es de la forma

t
__-sen na f' (s)
o =257 { L olds
1]

__s)l-—ﬁ *

Sin embargo, la teoria general de ecuaciones integrales lineales
fue elaborada sélo en el limite de los siglos XIX y XX en las
obras, fundamentalmente, de Volterra, de Fredholm y de Hilbert.

La ecuacién (1) se llama ecuacion de Fredholm de segunda
especie (véase el § 7 del capitulo IV) mientras que la ecuacion

b
(K@, yoydt+f(s)=0 @)

(donde la funcién incégnita figura sélo bajo el signo de inte-
gral) es llamada ecuacion de Fredholm de primera especie.

La ecuacién de Abel mencionada anteriormente pertenece
a las asi llamadas ecuaciones de Volterra; la forma general de

estas ecuaciones es: :
s

(K@ owdt=fe) 3)

a
(ecuacion de Volterra de primera especie) o

s

()= K Ho®di+F() )

a

(ecuacion de Volterra de segunda especie). Estd claro que la
ecuacién de Volterra puede ser considerada como una ecuacion
de Fredholm en la que la funcién K verifica la condicién

K (s, t)=0 para ¢ >s. _

Sin embargo, conviene ‘destacar las ecuaciones de tipo Volterr
en una clase especial ya que ellas poseen una serie de pro-
piedades que no tienen lugar para ecuaciones arbitrarias de
Fredholm.

Si en las ecuaciones (1), (2) o (3) la funcién [ es igual a
cero, esta ecuacion se llama homogénea. En el caso contrario
la ecuacion se llama no homogénea.
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2°. Ejemplos de problemas gue llevan a ecuaciones-.integrajes.
En los paragrafos posteriores de este capxtulo estudiaremos las
propiedades fundamentales de las ecuaciones integrales lineales.
Sin embargo, indicaremos prev:amente algunos problemas tipicos
que conducen a ellas.

1. Equilibrio de- una cuerda cargada. Gonsideremos una cuérda,
esto es, un hilo material de. longitud -, que flexiona: libremente,
pero ofrece una resistencia a la dllatacmn proporcional a la
magnitud de ésta. Supongamos. fijados los. extremos de la cuerda
en los puntos x=0 y x=1. Entonces en la posicién de equilibrio
la cuerda coincide con el segmento 0 <Cx<C! del eje x. Supon-
gamos ahora que en el punto x=§ se ha aphcado ‘una’ fuerza
vertical P= -P.. ‘Bajo el efecto de esta fuerza 1a ‘cuerda tomara,
ewdentemente. Ia forma de Quebrada mdlcada en lafig. 24,

FIG. 24

Busquemos la magnitud & de la flecha de la cuerda en el
punto & de su posicién de equilibrio bajo la accién de la fuerza P,
aplicada en este punto. Si la magnitud de la fuerza P, es
pequefia en comparacion con la tension T, de la cuerda * sin
carga, podemos aceptar que la tension de la cuerda cargada
sigue siendo T,. Entonces, de la condicién de equlllbno de la
cuerda encontramos la 1gualdad siguiente:. g

~ Tog+TarZg=Ps

de donde -
R Pe(l‘*ﬁ§)§
1’,!

Sea ahora u%x) la flecha de la cuerda en un punto x ba]o la
accnén de la fuerza P Tenemos

#=POE E);

donde B
"(;.’g)‘ para 0<x<§,
G(x, b)= °

L
(=1 P
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En particular, de estas férmulas se ve inmediatamente que
G(x, £)=G (&, x). Supongamos ahora que sobre la cuerda actiia
una fuerza distribuida continuamente a lo largo suyo con la
densidad p (). Si esta fuerza es pequefia, la deformacién otra
vez dependera linealmente de la fuerza y la forma de la cuerda
cargada de este modo serd descrita mediante la funcién

! |
u(x)= § G (x, &) p () . )

Luego, si estd dada la carga que actia sobre la cuerda, la
formula (5) permite encontrar la forma que toma la cuerda
bajo la accién de esta carga.

Consideremos ahora el problema reciproco: hallar la distribucion
de la carga p bajo la cual la cuerda toma la forma prefijada u.
Para encontrar la funcién p a partir de la funcién dada u
obtenemos una ecuacién que coincide, salvo las denotaciones,
con la ecuacién (2), es decir, una ecuacioén integral de Fredholm
de primera especie. ~

9. Oscilaciones libres y forzadas de una cuerda. Supongamos
ahora que la cuerda no se encuentra en reposo y realiza ciertas
oscilaciones. Sea u(x, f) la posicién en el momento ¢ de aquel
punto de la cuerda cuya abscisa es x y sea p la densidad lineal
de la cuerda?. Entonces, sobre un elemento de la cuerda de
longitud dx actGia una fuerza de inercia igual a

—aﬂ-‘%—ﬂ pdx, de donde

0%u (§,
p(§)=—_"%§_ﬁp.

Tomando en (5) esta expresién en lugar de p(E), obtenemos

1
ui, H=—{ G pe 25l )
0

Supongamos qué la cuerda realiza oscilaciones arménicas de una
frecuencia prefijada © y de una amplitud u(x) que depende
de x. En otras palabras sea

u(x, t)y=u(x)senwt.

Introduciendo esta expresién en (6) y dividiendo ambos
miembros de la igualdad por senwf, obtenemos .la siguiente

1 Aceptamos que p=const aunque esto no es sustancial para lo sucesivo.
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ecuacién integral para u:

)= {0 DB, 0

Si la cuerda.no omla librmnmg;, ‘sino, bajo la accnén de una
fuerza exterior, realiza oscilaciones forzadas, es ficil comprobar
ue la correspondiente ecuacién de las oscllacnona armonicas
ge la cuerda es de la forma

* -'I

u(x)= pm'§ G, §)t§(§)d§+f(x).

es decir, ‘representa una : ecuacién nn homogénea de Fredholm
de segunda especie. -

. 8. Reduccién de: ecuaciones diferqwlaiw a ecuaciones. mtegrales
La resolucién de una u otra écuacién diferencial conviene reducirla
en varios casos ala resolucién:de: una ecuacién integral. Por
ejemplo, en el cap. II hemos visto que para demostrar la
exxstencia y la' unicidad' de la- solucién de la ecuacién diferencial

Y --f(x, 9

con la condic;én inicial y(x.)=y,, convxene reducirla a' la
ecuacion integral (no lineal)

Y=Y+ S'f:(E;' Dk

Las ecuaciones de orden supenor al primero también pueden ser
reducidas a una ecuacién mtegral Consxderemos, por e]emplo,
la ecuacién de segundo orden

Y +f(x) y=0.
Tomando f(x)= p’—a(x) ‘donde pa—-—-consf podemos escribirla en
la forma
: ¥+py=o(r)y. ®)
Como se sabe, la’ ‘solucién de Ia’ ecuacién |
Y+eu=g(x)

puede ser representada en la fonqa

Y =cosp(x—a) + L Sseno(x—ag(aag
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Luego, la resolucién de la ecuacién (8) se reduce a la resolucién
de la ecuacién integral

X

¥ —= (o @ senp (r—By @ & =cosp(x—a).

§ 2. ECUACIONES INTEGRALES DE FREDHOLM

1°. Operador integral de Fredholm. En este pardgrafo es-
tudiaremos las ecuaciones de Fredholm de segunda especie,
esto es, las ecuaciones de tipo

b
)= K o dt+f ). (1)

Respecto a la funcién K, llamada ndcleo de esta ecuacion,
supondremos que es medible y verifica la condicion

b b
{§1K s, #)]dsdt < co. ©)

El término independiente f de esta ecuacién es una funcion dada

de L,[a, b] y ¢ es la funcién incognita perteneciente a L, [a, b].
Pongamos en correspondencia a la ecuacién (1) el operador

A definido del modo siguiente:

— Ap=1y

significa que ,

b
vO={ K Ne@dr. )

El estudio de la ecuacién (1) se reduce, por supuesto, al estudio
de las propiedades de este operador, llamado operador de
Fredholin de nicleo K.

TEOREMA 1. La igualdad (3), donde K (s, t) es una funcion de

cuadrado integrable, define en el espacio L, |[a, b) un operador
lineal totalmente continuo A cuya norma satisface la desigualdad

b b
14]< /SSW(s, £) | ds dt. )

DEMOSTRACION. Observemos, ante todo, que la integral

b
(1K (s, ty]at
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existe, debido al teorema de Fubini y a lacondicién (2),. para
casi todo s. En otras palabras, K (s, ¢) pertenece como funcion
de t a L,[a, b] para casi todo s. Como el producto de dos
funciones de cuadrado sumables es sumable, la integral que
figura en el miembro derecho de (3) existe para casi todo s, es
decir, la funcién ¢ estd definida en casi todos los puntos.
Probemos que. p€L,[a, b]. En virtud de la desigualdad de
Cauchy —Buniakovski, tenemos para casi todo s :

[$2(s) |= SK(‘s. t)rp(t)dz" <

b b ) - b
<{1e@ ola-§le@la=|ol§ o6 old.

Integrando respecto a s y sustituyendo la integral reiterada de
| K2 (s, t)| por una doble, obtenemos la desigualdad g

b b b
I4elr= 1w ©lds<liol§ §1K 6 0]dsat

que ademis de probar la integrabilidad de |¢?(s)| demuestra
la estimacién (4) para la norma del operador A. Resta probar
que el operador A es totalmente continuo. Sea {i,} un sistema
completo ortogonal de L,[a, b]. Entonces, todos ﬁOS' productos
pares de tipo v, (s)¥,(f) forman un sistema completo en el
espacio L, ([a, b] X [a, b]) y, consecuentemente,

K5, 8) =2 X ubn () ¥ (0)-

Pongamos ahora
N

Ky(s, t)= Z. @ ¥ (5) ¥ (£)
y sea Ay el operador correspondiente al niicleo Ky. Este opera-
dor es totalmente continuo ya que transforma todo el espacio
L,[a, b] en un subespacio de dimension finita (los operadores
de este tipo han sido 1lamados en el cap. IV degenerados). En
efecto, si p €L, [a, b], se tiene

b N b
Avo = K. 090dt= 2 anpa [0 ()0, (0)dt =

N N
= z Yn (S) Zl amnbm
m=1| n=
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donde
b .
b= o (0. () dt,

a

es decir, todo elemento ¢€L,[a, b] es transformado por el
operador Ay en un elemento del subespacio de dimensién finita
generado por los vectores ¥,, ...., Py Ahora bien, como Ky
es la suma parcial de la serie de Fourier de la funcién K,
tenemos

R o
Re o

(K (s, t)—Kn(s, t))* dsdt —0 para N — oo.

Aplicando la estimacién (4) al operador A—Ay, encontramos
de aqui

|A—Aylj—0 para N —oo.

Empleando ahora el teorema de que el limite de una sucesién
convergente de operadores totalmente continuos es un operador
totalmente continuo, obtenemos la continuidad total del ope-
rador A.
. El teorema queda demostrado , :

Observaciones. 1. Al demostrar el teorema 1 hemos probado
que todo operador de Fredholm puede ser representado como
limite (en el sentido de la convergencia segin la norma) de
una sucesién de operadores integrales degenerados. N

2. Sean A, y A, dos operadores de tipo (3) y sean K, y K,
sus nticleos correspondientes. Si los operadores A, y h, son
iguales, es decir, A,p=A,p para toda ¢€L,[a, b], entonces
K, (s, )=K,(s, t) casi en todos los puntos. En efecto, si

) ,
Aw—A0={ (Ki(s, H—K,(s Do ()dt=0

a

para toda @ €L, [a, b], entonces para casi todo s€ [a, b] se tiene
R b .
(1K h—KyGs, DIrdt=0,
es decir, | '

|Ky (s, )—K, (s, D)*dsdt =0,

Re o

j

de donde se desprende nuestra afirmacién. Luego, si conveni-
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mos, como siempre, en no distinguir las funciones sumables;
equivalentes, podemos decir que la correspondencia entre los
operadores integrales y los niicleos es biunivoca. :

TEOREMA 2. Sea A un operador de Fredholm correspondiente a un
nicleo K (s, t). Entonces, el operador conjugado A* se define
por el niicleo «conjugador' K (¢, s).

DEMOSTRACION. Empleando el teorema de Fubini, tenemos
b

b b b
@Afr o= {SK(s, t)f(t)dt)?(s‘) ds={ (K (s, )} ()g®)dt ds=

a

b(b b b
= {SK.(s, t)mds},f.(t)dt= Y10 { (kG t)g(s)d,s}dt

y de aqui se deduce la afirmacién del teorema. .
En particular, un operador A de tipo (3) es autoconjugado
en L,[a, b], es decir, A*= A, cuando, y sblo cuando, K(s, )=
= K (¢, s). En el caso en quese considera el espacio de Hilbert
real (y, por lo tanto, ndcleos reales K) la condicién de autocon-
jugacion es la igualdad K (s, ¢t)=K (¢, s). . .
- Observacién. Hemos considerado operadores integrales que
actian en el espacio L,[a, b] en un segmentd. No obstante,
todo lo expuesto se extiende sin modificaciones al caso en que
se considera, en lugar del segmento [a, 6], un espacio cualquiera
provisto de medida. . SRR o : LT

2°, Ecuéoions de hlicleo.};simétrico. Consideremos una ecua-
cion integral de Fredholm de segunda especie

4 B .
o= K New@dt+f(), (5)

cuyo niicleo verifica Ias condiciones
1) 2 -

§§1K s D1dsdt <oo,

aa -
2) K@ H=K(t, s). -

Estas ecuaciones seran llamadas ecuaciones de nicleo simétrico.

En virtud de los teoremas 1 y 2 del punto anterior, el operador
de Fredholm correspondiente

b -
Ap={K(s, nea | 6)



§ 2. ECUACIONES INTEGRALES DE FREDHOLM 511

es totalmente continuo y autoconjugado. Luego, es valido para
él el teorema de Hilbert—Schmidt (punto 5, § 6, cap. 1V). Apli-
quemos este teorema a la resolucién de la ecuacién (5). Como lo
que importa no es la forma integral del operador (6) sino el
hecho de que este operador es totalmente continuo y autoconju-
gado, es natural escribir la ecuacién (5) en forma simbélica

o=Agp-+/f. M

De acuerdo con el teorema de Hilbert—Schmidt, existe para A
un sistema ortonormal {vy,} de funciones propias, correspondien-
tes a los valores propios {A,}, tal que todo elemento § de L,
puede ser representado en la forma

t=Ya,p,+%, donde AE'=0.
Tomemos

f=Zbabu+1 (AF'=0) ®
y busquemos la solucién ¢ de la ecuacién (7) en la forma
e=2%put¢" (A¢"=0). 9

Introduciendo los desarrollos (8) y (9) en (7), obtenemos
;xn n (P' =2n:xnz'n n+2bn\pn+f" '

Esta igualdad se cumple cuando, y s6lo cuando,

- =9
y
£, (1—A)=0b, (n=1,2, ..... )s
es decir, cuando
=9,

bn
Xp=171_y_ Para A5=1,

b,=0 para A,=1.

La altima igualdad es una condicion necesaria y suficiente
para que la ecuacién (7) tenga solucién. Obtenemos de esta forma
el resultado siguiente: si 1 no es valor propio del operador A, la
ecuacion (7) tiene una solucion, y sélo una, cualquiera que sea f;
‘en cambio, si 1 es valor propio del operador A la ecuacion (7)
tiene solucién cuando, y sélo cuando, el término independiente f es
ortogonal a todas las funciones propias del operador A correspon-
dientes al valor propio 1; si esta dltima condicién se cumple, la
ecuacion (7) tiene un conjunto infinito de soluciones.
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- 8° Teoremas de Fredholm.: Caso-de miicleo "degen: ado. Pase-
mos ahora a estudiar las ecuaciones de Fredholnf de segunda
especie con niicleos que verifican la condiciéon

( (1K (s, 0\ dsatt <oo.

(que garantiza la continuidadj total del operador correspondiente),
pero que no son simétricos. - Fone
~Supongamos primero que se considera la ecuacién

b } - o
o@)=§K(s De@d+i(s), (10}

cuyo nficleo es degenerado, es decir, de la forma
K(s, f)= 3 Pi(s) Q: (o), (1

donde P, 'Q‘, son funéionés de L;. El o‘pyer‘ador con nﬁcleo‘dé
tipo (11) transforma toda funcién @€ L; en la suma

n b . C
PCICACLIGED

es decir, en un elemento del subespacio de dimensién finita ge-
nerado por las funciones P;, i=1, 2, ..., n. Notemos que en la
expresion (11) las funciones P,, ..., P, pueden ser consideradas
linealmente independientes. En efecto, si esto no fuese asi, po-
driamos, expresando cada una de las funciones P; como combi-
nacién lineal de las independientes, representar este mismo nii-
cleo K (s, t)_como suma de un niimero menor de sumandos de
tipo P,(s) Q;(f) de manera que las funciones P, sean lineal-
mente independientes.’ o

Busquemos, pues, la solucién de la ecuacién (10) con niicleo
degenerado (11) en el que las funciones P,, ..., P, son lineal-
mente independientes. Tomando en la ecuacién (10) en lugar de
K (s, £) la suma. correspondiente, obtenemos ' :

i . n b 3 s . . )
e O=XP@fQmetd +ie. 2
Designando BN

b
famewmd=q,
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podemos escribir 1a ecuacién (12) en la forma

q>(8)=i=2] q; P;(s)+ £ (s)-
Tomando en la ecuacién (10) esta expresion para ¢, obtenemos

‘:21 q:P: () +f ()=

i=1

n b n . e
=2 P;(s) SQ:(‘) [; q/P,(t)-l—f(t)]dt-H(s), (13)

Poniendo
b

. b
fQup,mdt=ay;,  §QOf0)dt=0,

a

la igualdad (13) resulta:

isZI qui (S)=‘§l P(s) [ig}l aquj+bi]'

Como las funciones P, son, por suposicién, linealmente indepen-
dientes, esta igualdad implica la igualdad de los respectivos
coeficientes de P;(s): :

q,=_i§ a g+, i=1,2, ..., n (14)

Hemos obtenido para los coeficientes ¢; un sistema de ecuacio-
nes lineales. Resolviéndolo obtenemos la funcién

6= 2 02,0 +16).

Esta funcién satisface la ecuacion integral (10) ya que todos los
razonamientos, mediante los cuales hemos pasado de la ecua-
;:i(’m. (10) al sistema (14), pueden ser realizados en orden con-
rario.

Luego, la resolucion de una ecuacién integral de nicleo degene-
rado se reduce a la resolucion del correspondiente sistema (14) de
ecudciones algebraicas lineales. :

Para sistemas de ecuaciones lineales son bien conocidas las
condiciones de existencia y de unicidad de la solucién.

1. Un sistema de ecuaciones algebraicas lineales

Tx:y(T=”aik”’ x=(xl' ces Xp)s Y= - o5 Yn))

33 3427#
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tiene solucién cuando, y sélo cuando, el vector g es‘ortogonal
toda solucién del sistema homogéneo conjugado

Tz=0 (T*=|ayl)-

II. Si el determinante de la matriz T es diferente de cero,
la ecuacién Tx=y tiene solucion tnica cualquiera que sea
En camblo, si el determinante de la matriz T ,es igual a ce
la ecuacién homogénea Tx =0 tiene soluciones no nulas.

III. Como la matriz T y la matriz conjugada T* son
mismo rango, los sistemas homogéneos Tx=0 y T*2=0 tienen
el mismo' niimero de soluciones linealmente independientes.

Debido a la relacién que, como hemos visto, existe entr
ecuaciones integrales de niicleo degenerado y'sistemas de ect}ag
ciones algebraicas lineales, estas proposiciones pueden ser consi«
deradas como teoremas referentes a las soluciones de ecuaciones
integrales degeneradas En el punto siguiente demostraremos que,
de hecho, estos mismos teoremas tienen lugar también parg
ecuaciones de nficleo arbitrario (no degenerado). Sin embargo,
puesto que para operadores integrales no degenerados no tienen
sentido conceptos como rango y determinante de una matriz,
los teoremas correspondientes deben ser enunciados de manera
que en ellos no figuran estos conceptos.

4, 'l‘eoremas de Fredholm para ecuaciones de nucleo no de-
generado. Volvamos a considerar la ecuacion
b

¢@=SK@nmwm+ua <w>

suponiendo ahora que su nucleo verifica sélo la condlcmn
SSIK’(S £)|dsdt < oo

(que garantiza la continuidad total del operador correspondnente),
es decir, no suponemos ahora el nicleo ni degenerado ni simé-
trico. Nos interesan las condiciones en las que la ecuacion (15)
tiene solucién y las propiedades de sus soluciones. Ademaés, para
nosotros serd esencial s6lo la propiedad de continuidad total del
eperador correspondiente a la ecuacién (15) y no su forma integral.
Por lo tanto, realizaremos todas las consideraciones sucesivas
para la ecuaclon en operadores

9=Ap+F, o (6)

donde A es un operador arbitrario totalmente continuo definido
en el espacio de Hilbert H.
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Tomando T=/—A (donde I es el operador unidad), escri-
biremos la ecuacién (16) en la forma

To=F. (17
Ademas de esta ecuacién, consideraremos la ecuacién homogénea
T,=0 (18)

y las ecuaciones conjugadas
T*p=g, (19)
T*p,=0 (20)

(T*=1—A*). La relacién existente entre las soluciones de estas
cuatro ecuaciones viene expresada en los siguientes teoremas de
Fredholm.

I. La ecuacion no homogénea To={ tiene solucién para aque-
llas f, y s6lo aquéllas, que son ortogonales a toda solucion de la
ecuacion homogénea conjugada T*P,=0.

I1. (Alternativa de Fredholm.) O bien la ecuacion To = f tiene
una solucion, y sélo una, cualquiera que sea f € H o bien la ecua-
cion homogénea Tg,=0 tiene solucion no nula.

II1. Las ecuaciones homogéneas (17) y (19) tienen el mismo
nimero, ademds finito, de soluciones linealmente independientes.

Antes de pasar a demostrar estos teoremas, observemos que
son vélidos (en virtud de lo dicho en el punto 2) para ecuacio-
nes de nucleo simétrico. Ademds, como A y A* coinciden en
este caso, el teorema III resulta trivial.

Por otro lado, si A es un operador integral degenerado, las
ecuaciones correspondientes se reducen, como hemos visto, a sis-
temas de ecuaciones algebraicas lineales; los teoremas de Fredholm
se convierten, evidentemente, en este caso en los teoremas sobre
sistemas lineales que hemos enunciado en el punto anterior.

Aprovechando que todo operador integral es limite de una
sucesién convergente de operadores degenerados, podriamos de-
mostrar los teoremas de Fredholm mediante el correspondiente
paso al limite (de nlicleos degenerados a niicleos no degenerados).
Sin embargo, escogemos otro camino y daremos una demostracion
de estos teoremas que no estd relacionada con la consideracion
~ de ecuaciones degeneradas. '

DEMOSTRACION DE LOS TEOREMAS DE FREDHOLM. Sea N (B) el con-
junto de los ceros de un operador lineal continuo B, es decir, el
conjunto de todos aquellos x € H para los que Bx=0. Esti claro
que N (B) es siempre un subespacio lineal cerrado. Sea R (B) el
campo de valores del operador B, es decir, el conjunto de vecto-
res de tipo y=Bx. El conjunto R (B) constituye también una
variedad lineal, pero, en general, no cerrada. Demostraremos

33%
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ahora que para el operador 7=/~ A esta variedad es cerrdda.
LEMA 1. La variedad R (T) es cerrada.

DEMOSTRACION. Sean y, € R (T) y sea y,—y. Por hipbtesis, exis ?
ten vectores x,€ H tales que’ ~ Xiss,

Yo=Txy=x%,— A%, el

Restando, si hace falta, de bx;,y‘ s proyeccién sobre N (T), podgs
mos aceptar que estos vectores son ortogonales a N (T). Ademas,
podemos aceptar que || x,|| estdn acotadas en conjunto. En efecto,

de In contrario, pasando a una sucesién, tendriamos | x, |— o
Y, dividiendo por ||x,|l, deduciriamos de (21) que ﬂz—:lT-'

—A T}fm—-‘»o. Pero, como el operador A es totalmente conti-
nuo, podemos aceptar, pasando de nuevo a una subsucesién, que

e A Xy « SR s A g ., Xyl
la sucesnofl {A TEA } converge. Por lo tanto, también W
convergera, digamos a un vector z€ H. Estad claro que ||z{|=1
Yy T (2)=0, es decir, z€ N (T). Suponemos, sin embargo, que los
vectores x, son ortogonales a N (T); luego, también el vector z
debe ser ortogonal a N (T). La contradiccién obtenida permite
suponer que || x, p estdn acotadas en conjunto. Al mismo tiempo,
la sucesién {Ax,} puede ser supuesta en este caso convergente;
entonces, como se desprende de (21), también serd convergente
la sucesién {x,}. Si x es el limite de esta sucesién, de (21) se
desprende que y=Tx. El lema queda demostrado. ki

LEMA 2. El espacib H es la suma directa ortogonal de los subespa~
cios cerrados N (T) y R(T), es decir, : o ‘

N(@RTH=H @
y andlogamente :
~ N(THOR(T)=H. (23)

DEMOSTRACION. Sabemos ya que los dos subespacios que figuran
en el miembro izquierdo de (22) son cerrados. Ademas, son orto-
gonales ya que, si €N (T), se tiene (h, T*x)=(Th, x) =0 para
todo x € H. Falta por demostrar que no existe ningtin vector no
nulo ortogonal simultineamente a R(T* y N (T). Pero, si el
vector z es ortogonal a R(T*), entonces para cualquier x€H
tenemos (T2, x) = (2, T*x) =0, es decir, 2€ N (T). El lema queda
demostrado. - ’ RO ‘ :
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Del lema 2 se desprende inmediatamente el primer teorema
de Fredholm. En efecto, f_| N (T*) cuando, y sdlo cuando,
FER(T), es decir, cuando existe un ¢ tal que To=/.

Pongamos ahora H*=R (T*) para cada k entero, de manera
que, en particular, H*=R (T'). Esta claro que los subespacios H*
forman una cadena de subespacios encajados :

HoH\oH*>. .. ' (24)

y que, en virtud del lema 1, todos estos subespacios son cerra-
dos. Ademas, T (H*) = H*+1,

LEMA 3. Existe un j tal que H*+*=H* para todo k> j.

DEMOSTRACION. Sj no existe un tal j, es evidente que todos los
H* son distintos. En este caso podemos construir una sucesion
ortonormal {x,} tal que x,€ H* y son ortogonales a H*+!. Sea
! > k. Entonces, ‘

Axl'— Axk= —x,,-l—‘(x,—l-Txh—'Tx;)
y, consecuentemente, || Ax,— Ax, || =1 ya que x, 4+ Tx,—Tx, € H**?,
Luego, de la sucesion {Ax,} no se puede extraer ninguna subsu-
cesién convergente, lo que contradice a la continuidad total del

operador A. Con esto queda demostrado el lema.
LEMA 4. Si N (T)={0}, se tiene R(T)=H.

DEMOSTRACION. Si N (T)={0}, el operader T es biunivoco; de
manera que, siendo R (T)s4H, la cadena (24) consta de diferen-
tes subespacios y esto contradice al lema 3. Luego, R(T)=H.
Anélogamente, R (T*)=H, si se tiene N (T*)={0}.

LeMA 5. Si R(T)=H, se tiene N (T)={0}.

DEMOSTRACION. Como R (T)= H, tenemos, en virtua del lema 2,
N (T*)={0}; pero, entonces, en virtud del lema 4, R(T)=H y,
consecuentemente, N (T)=i0} por el lema 2. '

Los lemas 4 y 5 constituyen en su conjunto el contenido del
segundo teorema (la alternativa) de Fredholm. Con esto queda
demostrado este teorema. ' .

Demostremos, finalmente, el tercer teorema  de Fredholm.

Supongamos que el subespacio N (T) es de dimension infinita.
Entonces, existe en este subespacio un sistema ortonormal infinito
{x,}. Ademas, Ax,=x, de manera que para kI tenemos
|| Ax,— Ax,]|=V'2. Pero, esto significa que de la sucesién {Ax,}
no se puede extraer ninguna subsucesién convergente, lo que
contradice a la continuidad total del operador A.
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~ "Seap la dimensién de N (T) y sea v la dimensién de N (T*),,

Supongamos que p < v. Sea {,, ..., ¢,} una“base ortonormal
en N(T) y sea ,, ..., P, una base ortonormal de N (T*:’
Tomemos ' ' ‘

Sx= Tx+l§“(x. ?) ¥y

Como el operador S se obtiene del operador T agregandole un’
operador- degenerado, - todos los resultados demostrados mas arriba,
‘para el operador T son validos también para el operador S

Probemos que la ecuacion Sx=0 tiene solamente solucién
trivial. En efecto, supongamos que - ' '

Tx+ lg(x, 9)9,=0. @55
Como los vectores ¥, son ortogonales, en virtud del lema 2, a'
todos los vectores de tipo T'x, de (25) se deduce que
Tx=0 )
y ' ‘ .
4 (¥, @)=0 para 1< j<p.

" Luego, el vector x debe ser, por un lado, una combinacién lineaF
de los vectores ¢; y, por otro lado, debe ser ortogonal a ellos:
Consecuentemente, x=0. De modo que la ecuacién Sx=0 tiene.
solamente solucién trivial. Existe entonces, de acuerdo con el
teorema 2, un vector y tal que o

Ty+ ,g ¥ 2)%;="VYp+1-

Esta claro que multiplicando esta igualdad escalarmente por
P, +1, Obtendremos 0 en el miembro izquierdo y 1 en el miembro.
derecho. Esta contradiccién ha surgido porque hemos supuesta;
que p<v. Luego, p>>v. Sustituyendo ahora el operador T Ppor,
T*, encontraremos que .p>>v y, consecuentemente, p=v. EI
teorema III queda demostrado completamente. : Sl

Observacién 1. Los teoremas de Fredholm tratan, de hecho,’
sobre la posibilidad de invertir el operador A—I7 y significan’
que A=1 es o bien un punto regular para A o bien un valor
propio de multiplicidad finita. Por supuesto, todo lo que se afirma.
en estos teoremas sigue siendo valido también para los operado-
res A—Al, donde A=£0. Luego, todo punto distinto de O del:
espectro de un operador totalmente continuo es un valor propio
suyo de multiplicidad finita. Ademas, como sabemos, el conjunts:
de estos valores propios es, a lo sumo, numerable. Recordemos,
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de paso, que el punto O siempre pertenece al espectro de un
operador totalmente continuo en un espacio de dimensién infi-
nita; pero, en general, no es necesariamente valor propio. Los
operadores totalmente continuos, para los cuales O es el dnico
punto del espectro, son llamados operadores (abstractos) de Vol-
terra.

Observacién 2. Hemos demostrado los teoremas de Fredholm
para la ecuacién de tipo ¢=Ag-+f, donde A es un operador
totalmente continuo en el espacio de Hilbert. Estos teoremas
pueden ser extendidos, sin modificaciones sustanciales, al caso
de un espacio de Banach arbitrario E. En este caso, claro esta,
la ecuacién conjugada ¢y = A*p -+ g sera una ecuacién en el espa-
cio E*, la condicién de ortogonalidad (f, ¢,)=0 debe compren-
derse en el sentido de que toda funcional del subespacio N*< E*
de soluciones de la ecuacién A*p,=0 se anula en el elemento
f€E, etc. Una exposicion de los teoremas de Fredholm para el
caso de ecuaciones en espacios de Banach se puede ver, por
ejemplo, en el libro de L. A. Lusternik y V. I. Sébolev <«Ele-
mentos del Anélisis Funcionaly.

5°. Ecuaciones de Volterra. Se llama ecuacién de Volterra (de
segunda especie) a la ecuacién integral

o= K@, Ho@ydt+f(s), (26)

a

donde K (s, t) es una funciéon medible acotada: |K(s, £)|<< M.
Puesto que esta ecuacién puede ser considerada como un caso
particular de la ecuacién de Fredholm (con nicleo igual a cero
para ¢>>s), los teoremas de Fredholm son vilidos también para
la ecuacién (26). No obstante, para las ecuaciones de Volterra
estos teoremas pueden ser precisados del modo siguiente. La ecua-
cién de Volterra (26) tiene una solucion, y sélo una, cualquiera
que sea la funcion f € L,.

En efecto, repitiendo textualmente los razonamientos del
punto 4 del § 4 del cap. II, veremos que cierta potencia del
operador ‘

Ap={K(s tyo(t)dt

es un operador contraido y, por lo tanto, la ecuacién homogénea
tiene solucién Gnica (trivial). De aqui se desprende en virtud de
los teoremas de Fredholm, nuestra afirmacién.
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EJERCICIO. Consideremos en un segmento una ecuacién. integral de Fr
holm de segunda especie con nficleo continuo. Demuéstrense para esta ecua~:
cién los teoremas de Fredholm en el’espacio de funciones:continuas. Enesx
caso, el papel de ¢ecuacién comjugadar lo: desempeiia la ecuacién integral de
nicleo transpuesto y la ortogonalidad se comprende en el sentido de Lg.

6°. Ecuaciones integrales de,pr'ime;"a e&pecie. Se llama ecuacién
abstracta de Fredholm de primera especie a la ecuacién de tipo

es decir, a una ecuacién que contiene la funcién incégnita sélo

bajo el signo de operador totalmente continuo. T

La resolucién de una ecuacién de este tipo constituye un
problema mas complejo, en general, que la resolucién de una
ecuaciéon de segunda especie y para una funcién arbitraria f€L,
la ecuacién (27) puede no tener solucién. )
Consideremos primero, a titulo de ejemplo elemental, la

ecuacion Y \
fo={ewma,

es decir, una ecunacién de nficleo -

1 p?ira t<s,
K, t)={ 0 para {>s.

Ella tiene solucién obvia ¢ (s)=F'(s) cuando f es absoluta-
mente continua y pertenece a L,; no tiene solucién en el caso
contrario. ‘ - , ,

Probemos que también en el caso general la ecuacién (27)
puede no tener solucién para una f€ H arbitraria. En efecto, si
la ecuacién Ap="F tiene solucién para cualquier f€ H, ello sig-
nifica que este operador transforma H en todo el H. Probemos que
esto es imposible. Todo el espacio H puede ser representado come
- la unién de una cantidad numerable de bolas S, (por ejemplo,
de las bolas de radio 1, 2, ..., n... y centro en el cero). El
‘operador totalmente continuo A transforma cada una de estas
bolas en un conjunto compacto. De manera que AH es la unién
de una cantidad numerable de compactos. Pero, cualquier com-
pacto es nunca denso en H; al mismo tiempo, H, al igual que
cualquier espacio métrico completo, no puede ser representado
como la unién de una cantidad numerable de conjuntos nunca
densos. Luego, AH == H; en otras palabras, cualquiera que sea
el operador A totalmente continuo en H la ecuacién Ap=f no
puede tener solucién para toda f€eH. i
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Otro momento sustancial en la solucién de ecuaciones de
primera especie consiste en que en H un operador, inverso de un
operador totalmente continuo, no es acotado. Por lo tanto, si f,
y f, son dos elementos préximos de H y ambas ecuaciones

Ag,=f, vy Ag, =,

tienen solucién, las soluciones correspondientes @,=A-f, y
¢, =A"1f, pueden distinguirse considerablemente una de otra. En
otras palabras, un error tan pequefio como se quiera en el término
independiente de la ecuacién puede conducir a un error tan grande
como se quiera en la solucién. Los problemas, en los que una
pequefa variacién en los datos iniciales lleva a una pequefia
variacion en la solucién (la palabra «pequefia» puede ser com-
prendida en diferentes problemas de modo distinto), se 1laman
correctos. La solucién de una ecuacién integral de primera especie
(a diferencia de una ecuacién de segunda especie) es un problema
no correcto. En los Gltimos tiempos se han difundido mucho los
problemas no correctos y han obtenido un gran desarrollo los
. métodos de su regularizacién (es decir, métodos que permiten
reducirlos a problemas correctos en uno u otro sentido). Sin
embargo, la exposicién de estas cuestiones sale de los margenes
de este libro.

§ 3. ECUACIONES INTEGRALES CON PARAMETRO.
METODO DE FREDHOLM

1°. Espectro de un operador totalmente continuo en H. Consi-
deremos la ecuacién

¢=AAg+f

(I—=M) o=/, (1)

donde A es un operador totalmente continuo en el espacio H de
Hilbert y A es un pardmetro numérico.

En virtud de la alternativa de Fredholm, pueden darse dos
y sé6lo dos casos: :

1) La ecuacién (1) tiene para A prefijado una solucién, y sélo
© una, cualquiera que sea f€ H.

2) La ecuacién homogénea ¢=2AA¢ tiene solucién no nula.

En el primer caso el operador ] —AA aplica, ademas biuni-
vocamente, H en todo el H. De aqui se desprende la existencia
del operador inverso acotado (/—AA)-!. Estid claro que esto

equivale a que el operador (A—%I )—1 existe y es acotado; en

0, que es lo mismo, -

34—3427
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otras  palabras, —;‘- no_pertenece, en este caso, al espectro
operador A. B L REU I L X FN R RE Rt ey )

Supongamos -ahora que tiene' lugar la ' segunda posibilidad;
esto es, que existe un elemento ¢, € H diferente de cero tal que

= kAq))« 6 A%f:},l_‘pb :
es decir, % es valor propio del operador A.. .

Obtenemos el resultado siguiente: todo ndmero p:% distin~
to de cero o bien es un valor propio del operador totalmente cons.
tinuo A o bien es un. valor regular. En otras palabras, el espectro.
continuo de un operador totalmente continuo o bien no existe o
o bien consta solamente del punto p=0. T o

Uniendo lo que acabamos de decir con el teorema 4 del § 6
del cap. IV, obtenemos que el espectro de un operador total=
mente continuo en H puede ser descrito del modo siguiente. Et
espectro de cualquier operador A totalmente continuo en H consta
de un nimero finito o numerable de valores propios distintos de
Cero Wy, Py, ..., Wy ..., cada uno de los cuales es de multipli=
cidad finita®, y del punto cero; éste es el anico punto posible
de acumulacién de la sucesién {p,}. El propio punto p =0 puede
ser o bien un valor propio de multiplicidad finita o infinita o
bien un punto de acumulacién del conjunito de valores propios.
Como hemos demostrado en el punto g, para la ecuacién

| 9=ABo+f,
donde B es un operador de Volterra, siempre tiene lugar el pri-
mer caso de la alternativa de Fredholm (existe la solucién para

cualquier f€L,). En otras palabras, el espectro de un operador
de tipo de Volterra consta sélo del punto p=0.

2° Representacién de la solucion en forma de una seriede
potencias de A. Determinantes de Fredholm.. La solucién de:la

ecuacién - VR

' (I—3A) g=F
puede ser escrita formalmente como o
o= (I—A) . @

Esta formula define, efectivamente, la solucién cuando || A4 || <1,
es decir, cuando |A] <I_I%Ti’ ya que en este caso el operador

D p=0 pertenece necesariamente al espectro del operador 4 ya que A-1
no puede ser acotada en H. :
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(1—AA)-* existe, esta definido en todo H y es acotado (véase
el punto 7 del § 5 del cap. 1V). Ademas, el operador (/— AA)-2
puede ser considerado, en este caso, como la suma de la serie
de potencias

(I— M)~1=1+AA+MA*+»:..+MA"+...,

cuya convergencia (respecto a la norma) estd garantizada por la
condicién |A| <ya- Luego, la solucién (2) de nuestra ecua-
cién (1) puede ser representada en la forma o

O=F+AAf+MA f+ .. WA [ 3)
Este mismo resultado se obtiene, si la ‘solucién de la ecuacxon
(1) se busca en forma de la serie de potencias

=0t AR AP,

(donde @, ya no dependen de A). Tomando esta serie en lugar
de @ en los miembros derecho e izquierdo de la ecuacién ¢ =
= Mo +f e igualando después los coeficientes de potencias igua-
les de A en ambos miembros de la igualdad, obtendremos

=f, e.=A4f, . =Ag,_,=A"f, ...

es decir, la serie 3).

Probemos que si A es un operador mtegral definido por un
niicleo K de cuadrado integrable, el operador (/—AA)-' puede
ser representado, para valores suficientemente pequefios de A,
como la suma /T, del operador unidad / y de un operador inte-
gral T, con niicleo de cuadrado integrable que depende de A. Veamos
primero la forma que tienen en este caso los operadores A2, A3,
etc. Consideremos, con este fin, un problema mas general: sean
dados dos operadores integrales

b - b
Ag={K(s o dt, Be={Q6, Hoat,
donde ‘ °

b b : : b b ‘
§ Sk (s, )| dsdt =tr <oo, §§1Q1(s, #)|dsdt =g <oo.

‘Busquemos la forma del operador AB. Tenemos

b

b ‘ \ brbd .
ABg= S{K s, u)aSQ () £) @ (£) dt}' du= S{ {Ks.w)Q (u.t)du} P(f)dt.

34%
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La posibilidad de cambiar aqui el orden de integracién se dest
" prende del teorema de Fubini ya que el integran o

K(s, w)Qu, )o(t)

es sumable respecto al conjunto de variables u y # por ser prd~
ducto de dos funciones

Kis w)o@®)y Q. f)

de cuadrado integrable cada una.
Tomemos

: b ‘
R(s, )=(K(s u)Qu, t)du; 4y

en virtud de la desigualdad dé Ca_uchy—Buriiakovski, tenemos

b b o
IR 6 0I< (1K 6, w)ldu §1Q @, 1)]du,
de doride (

b b

(SR s, 1) dsat <o,

Luego, el producto de los operadores integrales de tipo de Fred-
holm es un operador del mismo tipo cuyo nficleo viene dado
por la férmula (4). En particular, tomando A= B, encontramos
que A? es un operador integral de nificleo '

- b . TR f' )
Ki(s =K (s, wK (s, t)du
que verifica la condicion _
bb ‘ bb 3 _
§ {1k, t)ldsdt<[SSlK’(S. t)ldsdt] =,

de donde || A% || << k2.
Analogamente obtenemos que cada uno de los operadores A~
estad definido por el niicleo co e N o

R L
K, ) ={Kpor (5o ) K(u, ydu (n=2,3, ...)
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que satisface la condicién
b
§S1KaGs, o) dsat < tom, | (5)

_ . b b
donde, igual que antes, k*= S S | K® (s, t)|dsdt.
En virtud de la estimacic’;;la(5), la serie
AK (s, )+ MK, (s, 8)+ ... +A"K, (s, 1)+ ...

converge para |M<% en el espacio L,([a, b]X[a, b)) hacia

una funcién T (s, ¢, A), cuyo cuadrado es sumable respecto a s

y ¢t para todo |A]< %. El operador integral T,, para el que
la funcién T (s, ¢, A) sirve de niicleo, es la suma de la serie

A4 MA .. A4, (6)

Pero, agregando a esta suma el operador unidad 7, obtendre-

mos precisamente el operador (/—AA)-!. Luego, para |A|< %

el operador (/—AA)-* es, efectivamente, la .suma del operador
unidad / y del operador totalmente continuo I, de nficleo

T(s, £, A) =ixn1<,, s, ).

1

. er 1 es e .
La condicién | A| < + ©s suficiente para la convergencia de

la serie (6), pero no necesaria. En algunos casos puede ocurrir
que esta serie converja para todos los valores de A. Por ejemplo,
si A es un operador de tipo de Volterra con un niicleo que
satisface la condicién :

IK(s, )l<M

se puede probar mediante calculo directo que para los corres-
pondientes niicleos K, (s, £) es valida la estimacién

) Mn (b—a)n-1
|Ka s, <00,

de donde se deduce la convergencia de la serie (6) para cual-
quier A.

Sin embargo, la serie de potencias (6) tiene, en general, un
radio finito de convergencia. Al mismo tiempo, la ecuacién
¢=MA¢p+f tiene solucién para todos los A, excepto un niimero



526 . CAP. X. ECUAcionafs.lmmmi.'g’skmﬂnﬁzs '

finito o numerable de valores, a saber, excepto aqueﬂos valorés
para los cuales 1— es valor propio del ‘operador A. Fredholm

demostré que para un operador integral A definido por un niicles
acotado y continuo K (s, ¢) la solucién de la ecuacién o= ).Aq>-|—f
puede ser encontrada del modo siguiente Desxgnemos _

sy [K6ut) o Kot |
S or 8\
K (tl oA

X (sm 1) K Gur ) |
y dlefmamos las funclones D@M)y D(s, &, A) mechante las férb
mulas ; A

omifias ss Haar.

b,,.

+(“'1)"x%£ Sx(gff::*ﬁa‘)dgl ot ()

!
o a

b -, .
..,SK,sgl,r”g")ag,...dg,,Jr... ®)
B4 .“ee . . ;« ,:l ¥
Entonces, segiin Fredholm, la solucién de la ecuacién integral
s (
2O =K@ D@ ds+f )

viene dada por la formula ;
e B=FO)+ Dg}{,"’f( )ds ©

para todbsf los valores de A tales que 11— ho es valor propio del
operador integral A correspondiente al nficleo K (s, f). Ademés,
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las funciones D(A) y D(s, ¢, A) son funciones analiticas enteras
del parametro A y D(A)=0 cuando, y sélo cuando, % es un

valor propio del operador integral A. Como ha demostrado
T. Carleman en 1921, las férmulas (7), (8) y (9), obtenidas por
Fredholm para el caso de un nicleo continuo K(s, #), tienen
lugar también para cualquier niicleo de cuadrado integrable.
No daremos aqui la deduccién de la férmula (9) y de las for-
mulas (7) y (8). '
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