
www.it-ebooks.info

http://www.it-ebooks.info/

Creating E-Learning Games
with Unity

Develop your own 3D e-learning game using
gamification, systems design, and gameplay
programming techniques

David Horachek

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Creating E-Learning Games with Unity

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2014

Production Reference: 1180314

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-342-4

www.packtpub.com

Cover Image by Parag Kadam (paragvkadam@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
David Horachek

Reviewers
Neeraj Jadhav

Alankar Pradhan

K. Aava Rani

Ranpariya Ankur J. [PAHeartBeat]

Acquisition Editor
Joanne Fitzpatrick

Content Development Editor
Chalini Snega Victor

Technical Editors
Arwa Manasawala

Manal Pednekar

Anand Singh

Ankita Thakur

Copy Editors
Sarang Chari

Brandt D'Mello

Mradula Hegde

Project Coordinator
Binny K. Babu

Proofreader
Simran Bhogal

Indexer
Hemangini Bari

Graphics
Ronak Dhruv

Yuvraj Mannari

Abhinash Sahu

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

David Horachek is a video game software developer with over 13 years of
experience in programming arcade, home console, and portable games. He has
programmed game projects published by Midway Games, EA, Ubisoft, SEGA,
and others. He develops games under the Arbelos Interactive label.

I would like to thank my wife Allison and my family for their
encouragement and support, the team at Packt Publishing for their
patience and advice, and aspiring e-learning game programmers for
their work to come.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Neeraj Jadhav did his Bachelors in Computer Engineering from Mumbai University
and Masters in Computer Science from University of Houston-Clear Lake. He has been
working as a software developer for three years. His interests primarily lie in software
development with Java and C# as well as web development with HTML 5, CSS 3,
jQuery, and JavaScript. During his graduate years, he worked on developing games
using Unity's 3D game engine with JavaScript and C#.

Alankar Pradhan is from Mumbai, Maharashtra, and went to Indian Education
Society's CPV High School. He is an ambitious person who loves interacting with new
people, travelling, spending leisure time with friends, or playing games on both his
PC and mobile. Games have been always a passion in his life. More than just playing
the game, his main curiosity is how things work. Hence, he decided to pursue his
career in the same field. He graduated with BSc Honors in Software Development
from Sheffield Hallam University, UK. He is currently pursuing an advanced course
in game programming (BAC+5 Equivalent) from DSK Supinfogame, where he is
undertaking industry-oriented projects to enhance his skill set and giving his best in
doing so. He worked as a game programming intern at The Walt Disney Company
India Pvt Ltd. During his internship, he worked on a live project, called Hitout Heroes,
where he was responsible for integration of small gameplay modules and then social
integration of Facebook into the game, but later on, the whole UI implementation,
working, flow, and mechanism was managed solely by him. At the end, he was
responsible for bug solving and memory management. His name was added in
the credits due to his accomplishments.

He has worked in many small projects in team as well as individually, thus
sharpening his own skills in various languages, such as C#, C++, Java, Unreal
Script, Python, Lua, Groovy/Grails, and HTML5/CSS. He is familiar with engines
such as Unity3D, Unreal Development Kit, and Visual Studio and also SDKs such as
NetBeans, Eclipse, and Wintermute. Recently, in 2013, his dissertation on Comparison
between Python and Lua in Gaming Industry got published as a book.

www.it-ebooks.info

http://www.it-ebooks.info/

More to this, he even likes to read, listen to music, and write poems and rap songs
at times. He has his own website at http://alan.poetrycraze.com where he posts
his poems and has also published a book called The Art Of Lost Words, which is
available on Amazon.com.

We are so often caught up with our goals that we forget to appreciate
the journey, especially the people we meet on the way. Appreciation
is a wonderful feeling; it's way better if we don't overlook it. I hereby
take this opportunity to acknowledge the people who directed me
and inspired me in this initiative. I would like to express hearty
thanks to my parents, who instilled and believed in me always.
I am also thankful to my friends for their constant support and
encouraging words that helped me to reach this level. Last but
not least, I would like to thank all the people who are directly or
indirectly involved in this and helped me in one or the other way.

K. Aava Rani is a co-founder of CulpzLab Pvt Ltd., a software company having
10 years of experience in game technologies. A successful blogger and technologist,
she switched her focus to game development in 2004. Since then, she has produced
a number of game titles and has provided art and programming solutions to Unity
developers across the globe. She is based in New Delhi, India. She has been a
recipient of several prestigious awards including Adobe for game technology expert
2012 and SmartFoxServer for her articles. She has experience in various technologies.

Aava is the co-founder of CulpzLab, a software development company of highly
skilled professionals in web, game development, and interactive media. Founded
in 2010, CulpzLab has proven itself to be a reliable technology partner for its clients.
Currently, CulpzLab employs over 50 people and is based in New Delhi, India.

CulpzLab is a leading, custom (bespoke) process-driven software solutions provider
that has helped and partnered with many reputable brands, start-up ventures, and
offshore IT companies, helping them realize their digital solutions and delivering
effectively, efficiently, and on time.

www.it-ebooks.info

http://www.it-ebooks.info/

CulpzLab has worked with a plethora of clients globally. With a diverse technology
background, industry expertise, and a client footprint that extends to more than 14
countries, CulpzLab is well positioned to help organizations derive maximum value
from their IT investments and fully support their business aims.

CulpzLab's core business purpose is to invent, engineer, and deliver technology
solutions that drive business value, create social value, and improve the lives
of customers.

I would like to acknowledge the creators of Unity3D program, the
amazing tool that allows the ultimate digital experience in creative
expression. I'd also like to thank my clients for being part of the fun!
Many of you have become good friends over my creative successes.
And finally, I'd like to thank R.K.Rajanjan, who taught me how to
love and appreciate technologies.

Ranpariya Ankur J. [PAHeartBeat] represents himself in the gaming world
as PAHeartBeat. He has vast experience in the computer programming field from
FoxPro to Microsoft .NET technologies. In game programming, he works with one
of India's successful game studios, GameAnax Inc., by IndiaNIC InfoTech Ltd.,
as a Unity3D game programmer, and also works on racing titles for mobile
device-based games and studio's internal reusable code "GameAnax Engine",
which works in Unity3D for the iOS and Android platforms. He has worked on the
two most successful in-house games, Crazy Monster Truck – Escape and Go Karts, and
has also worked on client projects.

Before this, he hasn't worked for any other books either as a reviewer or as a
co-author; it's his first experience in book reviewing.

I would to like to thank my family and my roommates who give me
space to work for games at night and adjust their routines and time
according to my schedule, thus providing their help.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library
of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: Introduction to E-Learning and the
Three Cs of 3D Games	 7

Understanding e-learning	 8
Introducing our game – Geography Quest	 10
Comprehending the three Cs	 11
Creating our first scene	 12
Developing the character system	 13
Building character representation	 14
Developing the camera code	 15

Implementing GameCam.cs	 16
Developing the player controls code	 21

Implementing PlayerControls.cs	 21
Try it out!	 26
Summary	 26

Chapter 2: Interactive Objects and MissionMgr	 27
Understanding the base scripts	 28
Building an interactive object	 29

Implementing the CustomGameObj script	 30
Implementing the InteractiveObj script	 31
Implementing the ObjectInteraction script	 33
Implementing the InventoryItem script	 34
Implementing the InventoryMgr script	 36

Implementing the DisplayInventory method	 40
Implementing the MissionMgr script	 44
Implementing the Mission script	 46
Implementing the MissionToken script	 48
Implementing the SimpleLifespanScript	 48

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Putting it all together	 49
Testing the mission system	 52

Try it out!	 54
Summary	 54

Chapter 3: Mission One – Find the Facts 	 55
Finding the facts	 55
Designing games to maximize fun	 57
The teaching loop in game design	 58
Implementing the core classes for mission one	 58

Creating a terrain	 58
Creating the FlagLocators GameObject	 61
Creating the FlagMonument GameObject	 61

Creating the MonumentMgr Script	 61
Creating the InventoryPlaceOnMonument class	 63
Creating the MissionMgrHelper script	 63
Creating the TriviaCardScript script	 64
Creating the SetupMissionOne script	 65
Creating the flag Prefabs	 67
Creating the pop-up card Prefabs	 70
Creating the mission pop-up Prefab	 71
Creating the mission reward Prefabs	 72
Creating the FoundAllTheFlags Prefab	 72
Creating the ReturnedTheFlagsResult Prefab	 73
Configuring the mission manager	 74
Playing the level!	 75

Summary	 75
Chapter 4: Mission One – Future Proofing the Code	 77

Reorganizing our GameObjects in the Scene view	 78
Creating a global scene	 79
Creating a first level scene	 80
Adding new scenes to the project	 81
Creating the PopupMainMenu GameObject	 82

An introduction to Finite State Machines	 84
Implementing an FSM in a game	 85
The switch case FSM	 85
Classes implementation of FSM	 86

Implementing the GameMgr script	 86
Reflecting on our code changes	 89
Analyzing code functionality	 90
Updating some systems	 91

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Making the ScorePlate active	 92
Updating the player motion algorithm	 94
Playing the level!	 95
Summary	 95

Chapter 5: User Interfaces in Unity	 97
Getting familiar with Unity UI classes	 98
Developing the pop-up system	 98
Exploring the GUIText component	 99

Interpreting the members on GUIText	 99
Exploring the GUITexture component	 100
Exploring the TextMesh component	 101

Ideal use of TextMesh	 102
Creating clickable text elements	 102

Detecting mouse clicks	 102
Detecting mouse over	 102
Detecting leaving mouse over	 102

Exploring UnityScript and the GUIButton object	 103
Using UnityGUI	 103
Creating a clickable button	 103
Detecting a mouse click	 104

Building the main menu pop up	 104
Testing our work	 113
Future extensions	 114
Summary	 114

Chapter 6: NPCs and Associated Technology	 115
Creating the NPC GameObject	 116

Implementing the npcScript class	 116
Implementing the SplineMgr class	 119
Connecting SplineMgr to NPCScript	 124
Implementing the NPC decision system	 127

Implementing the npcCondition script	 128
Implementing the npcResponse script	 129
Implementing the npcInteraction script	 129
Implementing the npcDecisionMgr script	 131

Building a collection of NPC conditions and responses	 132
Implementing the condition_closerThanThresh script	 132
Implementing the condition_fartherThanThresh script	 133
Implementing the response_changeState script	 134

Putting it all together	 135
Summary	 137

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Chapter 7: Mission Two – Testing a Player's Learning	 139
Exploring the structure of mission two	 140
Defining the framework for mission two	 140
Adding a mission to the missionMgr script	 142
Extending the GameCam script	 142
Modifying the terrain	 143
Adding NpcRacers to the mission	 143
Creating the start and finish line flags	 145
Creating the LevelStart and LevelFinished pop ups	 147
Creating the setupLevel2 Prefab	 149
Creating the raceStartup Prefab	 150
Implementing the LevelLogicObj GameObject	 152
Summary	 159

Chapter 8: Adding Animations	 161
Exploring 3D hierarchies	 161
Skinned meshes in Unity3D	 162

Acquiring and importing models	 162
Exploring the Mechanim animation system	 165

Choosing appropriate animations	 166
Building a simple character animation FSM	 166
Exploring in-place versus root motion animation	 170
Adding the character script	 171
Building a zombie racer animation FSM	 172
Building a quiz racer animation FSM	 174

Exploring the Unity animation editor	 177
Summary	 179

Chapter 9: Synthesis of Knowledge	 181
Understanding the mission three GameObjects	 182
Applying learning theory to mission three	 183
Creating the structure for mission three	 184

Modifying the terrain	 184
Adding visitors to the park	 185

Modifying the pop-up system	 185
Creating the NpcLocators Prefab	 186
Creating the CorrectResponse Prefabs	 187
Modifying the quiz cards	 187
Adding another data condition	 189
Using the setupLevel3 Prefab	 189
Creating the AddScore condition	 191
Creating the ShowLevel3Results response	 192

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Creating the Time object	 193
Modifying the LevelLogicObj object	 196
Rewarding the player	 197
Summary	 199

Chapter 10: An Extensible Game Framework Pattern in Unity	 201
Load additively	 202
Using delete/load patterns	 203
Refactoring our work	 204

The pop-up system	 204
Updating level 3 pop ups	 205
Updating level 2 pop ups	 207
Updating level 1 pop ups	 208

Refactoring level 2	 210
Implementing a system to connect object references	 211

Updating the SetupMission2 script	 214
Refactoring level 3	 216
Playing and distributing your game	 219
Reflecting on e-learning and game design	 220
Summary	 221

Index	 223

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
E-learning can be described as the use of computers and digital technology to
facilitate teaching and learning. One popular method of accomplishing this, and
which is also the approach we will take in this book, is through gamification of
learning, that is, the application of cognitive psychology and game-based rules to
learning systems.

At the time of writing this book, it is projected that by the year 2020, 85 percent of
all daily human tasks will be gamified to some extent (Everyone is a Gamer, a HTML
document by Corcione, Andrew, and Fran Tardo, available at www.prnewswire.
com, February 25, 2014. This document was accessed on February 28, 2014, http://
www.prnewswire.com/news-releases/everyones-a-gamer---ieee-experts-
predict-gaming-will-be-integrated-into-more-than-85-percent-of-daily-
tasks-by-2020-247100431.html). This book was written in parts to address
the need of young programmers to have a robust and substantial example of an
e-learning game to learn from.

The reader will participate in the development of an e-learning game that teaches
American geography, Geography Quest. The code and the book were written in
tandem so that the text could serve as an accompanying guide to the software.

What this book covers
Chapter 1, Introduction to E-Learning and the Three Cs of 3D Games, introduces
e-learning and how games are effective at targeting learning outcomes. It also
introduces us to Unity3D and guides us through the development of the character,
camera, and control systems for the game.

Chapter 2, Interactive Objects and MissionMgr, helps us to develop some of the core
technology for our game foundation. We will implement a system that tracks the
user's progress in the game through the concept of a mission. We also develop an
interactive object class the player can interact with.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Chapter 3, Mission One – Find the Facts, helps us to code the first level of our game by
applying the learning theory we know and the technology we have developed to
create an exploration level.

Chapter 4, Mission One – Future Proofing the Code, helps us finish developing the
first level of our game after taking a look back at our design needs and refactoring
our code so that it is maintainable and extendible. This level presents the learning
outcomes to the player for the first time.

Chapter 5, User Interfaces in Unity, takes a sojourn into user interface technology in
Unity. We then apply our knowledge and develop a pop-up windows system that
will be used in our game.

Chapter 6, NPCs and Associated Technology, helps us apply the technology we have
already built in the creation of simple computer-controlled characters for our game.

Chapter 7, Mission Two – Testing a Player's Learning, guides us to develop the second
level of our game, applying all of the systems and technology we have developed
thus far. This level of the game gives the player an opportunity to manipulate and
practice the learning outcomes.

Chapter 8, Adding Animations, takes another sojourn into the various animation
systems in Unity3D. We then apply this knowledge by replacing our existing
characters with 3D animated models.

Chapter 9, Synthesis of Knowledge, helps us to develop the last level of our game in this
chapter by using all of the technology and theory we have learned. This level of the
game challenges the user to master the desired learning outcomes.

Chapter 10, An Extensible Game Framework Pattern in Unity, integrates our game levels
into one extensible framework. We will polish it more and then package the game up
for your user to run on their PC.

What you need for this book
You will need Unity Version 4.2.2f1, which at the time of writing this book may be
downloaded from http://unity3d.com/unity/download/archive.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

Who this book is for
This book is intended for beginners in Unity3D programming who wish to develop
games in Unity3D that teach and inform the user of specific learning outcomes.
Common target applications could be for training games that teach procedures at
the workplace, for teaching policies or best practices, or for factual learning in the
classroom. While some familiarity with C# and some programming concepts would
be beneficial, it is not mandatory.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The Hat object will serve as a visual cue for us in this chapter as we refine the
controls and camera code."

A block of code is set as follows:

Public float height;
Public float desiredDistance;
Public float heightDamp;
Public float rotDamp;

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Under
Edit | Render Settings, go to the Skybox Material panel of the Inspector pane,
and add one of the skybox materials from the skybox package."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: http://www.packtpub.com/sites/
default/files/downloads/3424OS_Images.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to E-Learning and
the Three Cs of 3D Games

In this chapter, we will start developing a 3D e-learning game. To illustrate the
concept of e-learning in games, our game will teach players American state flags and
trivia over the course of three levels. After beginning with a definition of e-learning
games and how they relate to "traditional" video games, we will carry on with
implementing the core systems that control the main character of the game and
define its abilities and ways to control the camera that follows the player in our
3D world.

In this chapter, we will cover the following topics:

•	 Understanding e-learning
•	 Introducing our game—Geography Quest
•	 Comprehending the three Cs
•	 Creating our first scene
•	 Developing the character system
•	 Building character representation
•	 Developing code for the camera
•	 Developing code for the player controls

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to E-Learning and the Three Cs of 3D Games

[8]

Understanding e-learning
Broadly speaking, e-learning is the use of digital technology to facilitate learning.
This could include Internet servers and web browsers to deliver course material
online in an asynchronous way. It could include the use of embedded videos in an
application that a user can review at his or her leisure in bite-sized chunks. For our
purposes in this book, we will focus on the gamification of learning and the use of
multimedia and game software to deliver our specific learning outcomes.

The reasons that gamification works in e-learning are varied and are supported by
both traditional pedagogy and neurobiology. We list, in no particular order, some
of the most compelling reasons as follows:

•	 Immersion: Games that are immersive to the player naturally activate more
meaningful learning pathways in the brain. This is because the brain stores
and consolidates different types of information in different regions of the
brain, based on their relevance. By tying in a strong cinematic experience to
the delivery of learning outcomes, you can recruit these systems in the user's
brain to learn and retain the material you want to deliver.

°° But how do we make our games immersive? From the body of
knowledge in movie, TV, and consumer game development, there
are many design features we could borrow. However, to pick two
important ones, we know that good character development and
camera work are large contributors to the immersion level of a story.

°° Character development occurs when the view or opinion of the main
character changes in the eye of the player. This happens naturally in a
story when the main character participates in a journey that changes
or evolves his or her world view, stature, or status. This evolution
almost always happens as a result of a problem that occurs in the
story. We will borrow from this principle as we plan the obstacles
for our player to overcome.

°° Cinematic camera work helps encourage immersion because the
more interesting and dramatic the view of the world that the player
experiences, the more actively does the player engage with the story,
and hence the learning outcomes by association.

°° Along with cinematic camera work, we must be sure to balance the
playability of the game. Ironically, it is often the case that the more
playable the game camera is, the less cinematic it is!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

•	 Spatial learning: It is worth giving spatial learning a special mention despite
its close association to immersion as a modality of learning. It is known that
a specific area of the brain stores the mental map of where things are in your
surroundings. Games that have a spatial navigation component to them
naturally will recruit this part of the brain to facilitate learning.

•	 Active learning: Instruction is passive and learning is active! Playing games
that require levels of thought beyond passive observation are naturally more
conducive to learning and retention. By using games that have challenges
and puzzles, we force the player to participate in higher order thinking
while manipulating the subject matter of the learning outcomes.

•	 Reinforcement and conditioning: Psychologists and learning professionals
know that, for a given scenario, positive reinforcement of good behavior
increases the likelihood of eliciting the same good behavior the next time that
scenario presents itself. Traditional game designers know this lesson very
well, as they reward the player both quantitatively (with points and items
and power-ups and in-game related collectibles). They also reward the player
qualitatively by inducing visceral reactions that feel good. These include
being rewarded with on-screen particle effects, visually appealing cut scenes,
explosions, sound effects, on screen animation, and so on. Slot machine
developers know this lesson well as they play sounds and animations that
elicit a feel-good response and reward payouts that condition the player to
engage in the positive behavior of playing the game.

•	 Emotional attachment: Games that build an emotional attachment in their
players are more likely to garner active play and attention from their users.
This results in higher retention of the learning objectives. But how do you
engineer attachment into a design? One way is the use of avatars. It turns out
that, as the player controls a character in the game, guides his or her actions,
customizes his or her appearance, and otherwise invests time and energy
in it, he or she may build an attachment to the avatar as it can become an
extension of the player's self.

•	 Cognitive flow: Have you ever participated in a task and lost track of
time? Psychologists call this the state of flow, and it is known that in this
heightened state of engagement, the brain is working at its best and learning
potential is increased. We try and encourage the player to enter a state of
flow in e-learning games by providing an immersive experience as well by
asking the player to complete tasks that are challenging, interesting, and
in scenarios with just enough emotional pressure or excitation to keep
it interesting.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to E-Learning and the Three Cs of 3D Games

[10]

•	 Safe practice environment: Video games and real-time simulations are good
training vehicles because they are inherently safe. The player can practice
a skill inside a game without any risk of bodily harm by repeating it in a
virtual environment; this enables the player to experience freedom from
physical repercussions and encourages exploration and active learning.

An astute reader may ask "What is the difference between e-learning games and
consumer games?". This is a good question, which we would answer with "the
learning outcomes themselves". A consumer game aims to teach the player how to
play the game, how to master the mechanics, how to navigate the levels, and so on.
An e-learning game uses the same design principles as consumer games, with the
primary goal of achieving retention of the learning outcomes.

Introducing our game – Geography Quest
In our e-learning game, Geography Quest, we will follow the adventures of the
player as park ranger, as you clean up the park to find the missing flags, participate
in a trivia challenge/race, and then ultimately patrol your park helping the visitors
with their questions. Through each chapter we not only build and extend our
technology built inside Unity3D to achieve the design needs of this game, but we
also apply the design considerations discussed earlier to develop compelling and
effective e-learning content.

Our game will implement the following design features of an effective
e-learning game:

•	 Immersion
•	 Spatial learning
•	 Active learning
•	 Reinforcement and conditioning
•	 Emotional attachment
•	 Cognitive flow
•	 A safe practice environment

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

Comprehending the three Cs
To design the software for the user experience in a 3D game, we can break the
problem down into three systems: the camera, the character, and the controls. In
this chapter, we will build the foundation of our e-learning game by developing the
framework for these components:

•	 Camera: This system is responsible for the virtual cinematography in the
game. It ensures that the avatar is always on screen, that the relevant aspects
of the 3D world are shown, and that this experience is achieved in a dynamic,
interesting, and responsive way.

•	 Character. This is the avatar itself. It is a 3D model of the personification
of the player that is under direct user control. The character must represent
the hero as well as possess the functional attributes necessary for the
learning objectives.

•	 Controls. This system refers to the control layer that the user interacts within
the game. The genre and context of the game can and should affect how this
system behaves. This system is impacted by the hardware that is available to
the user to interact with. There are potentially many different input hardware
devices we could choose to program for; while we may encounter gamepads,
touch pads and touchscreens, and motion tracking cameras on potential
target PCs, we will focus our attention on the traditional keyboard and
mouse for input in our example.

These three systems are tightly coupled and are the trinity of the core 3D gameplay
experience. Throughout a normal video game development cycle, we as game
programmers may find ourselves making multiple iterations on these three systems
until they "feel right". This is normal and is to be expected; however, the impact of
changes in one system on the other two cannot be underestimated.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to E-Learning and the Three Cs of 3D Games

[12]

Creating our first scene
With these requirements in mind, let's build the framework:

1.	 Create a plane, positioned at (0,0,0), and name it ground.
2.	 Under Edit | Render Settings, go to the Skybox Material panel of

the Inspector pane, and add one of the skybox materials from the
skybox package.

3.	 The GameObject drop-down menu is where you can select different types
of basic Unity3D objects to populate your world. Create a directional light
to the scene from GameObject | Create Other, and place it at (0,10,0) for
readability. Set its orientation to something like (50, 330, 0) to achieve a
neat shading effect on the player capsule. In our world, the y axis will mean
"in the air" and the x and z axes will correspond to the horizontal plane of
the world.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Congratulations! You have created the testbed for this chapter. Now let's add the
character system.

Developing the character system
The character system is responsible for making the avatar of the game look and
respond appropriately. It is crucial to get this right in an e-learning game because
studies show that player attachment and engagement correlate to how well the
player relates or personalizes with the hero. In later chapters, we will learn about
how to do this with animation and player customization.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to E-Learning and the Three Cs of 3D Games

[14]

For now, our character system needs to allow coarse interactions with the
environment (ground plane). To do this, we shall now create the following
avatar capsule:

Building character representation
With these requirements in mind, let's build the framework:

1.	 From GameObject | CreateOther, select Capsule, and place it at (0, 2.5, 0),
as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

2.	 Name the capsule Player in the Inspector pane.
3.	 Create a cube in a similar fashion, and parent it to the capsule by dragging it

onto the hero. Scale it to (0.5,0.5,2), and set its local position to (0,1.5, 0.5).
4.	 Name the cube object Hat.

Congratulations! You now have a representation of our hero in the game. The Hat
object will serve as a visual cue for us in this chapter as we refine the controls and
camera code.

Developing the camera code
In our 3D game, the main camera mode will follow a third-person algorithm. This
means that it will follow the player from behind, trying to keep the player on screen
and centered in view at all times. Before we start developing the camera, we need to
think about the basic requirements of our game in order to be able to program the
camera to achieve good cinematographic results. This list of requirements will grow
over time; however, by considering the requirements early on, we build an extensible
system throughout the course of this book by applying good system design in our
software. In no particular order, we list the requirements of a good camera system
as follows:

•	 It needs to be able to track the hero at a pleasing distance and speed and in
an organic way

•	 It needs to be able to transition in an appealing way, from tracking
various objects

•	 It needs to be able to frame objects in the field of view, in a cinematic and
pleasing way

Starting with an initial camera and motion system based on the Unity3D examples,
we will extend these over time. We do this not only because it is instructive but also
with the aim of extending them and making them our own over time. With these
requirements in mind, let's build the camera code. Before we do, let's consider some
pseudocode for the algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to E-Learning and the Three Cs of 3D Games

[16]

Implementing GameCam.cs
The GameCam script is the class that we will attach our MainCamera object to; it will
be responsible for the motion of our in-game camera and for tracking the player on
screen. The following five steps describe our GameCam camera algorithm:

1.	 For every frame that our camera updates, if we have a valid trackObj
GameObject reference, do the following:

1.	 Cache the facing angle and the height of the object we are tracking.
2.	 Cache the current facing angle and height of the camera

(the GameObject that this script is attached to).

2.	 Linearly interpolate from current facing to desired facing according to a
dampening factor.

3.	 Linearly interpolate from current height to desired height according to
another dampening factor.

4.	 Place the camera behind the track object, at the interpolated angle, facing the
track object so that the object of interest can be seen in view, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

Now let's implement this algorithm in C# code by performing the following steps:

1.	 Right click on the Chapter1 assets folder and select Create New C# Script.
Name it GameCam and add it to the Main Camera object.

2.	 Create a public GameObject reference called TrackObj with the following
code. This will point to the GameObject that this camera is tracking at any
given time, as shown in the following code:
public GameObject trackObj;

3.	 Create the following four public float variables that will allow adjustment of
the camera behavior in the object inspector. We will leave these uninitialized
and then find working default values with the inspector, as shown in the
following code:
Public float height;
Public float desiredDistance;
Public float heightDamp;
Public float rotDamp;

4.	 Recall that the Update() loop of any GameObject gets called repeatedly
while the game simulation is running, which makes this method a great
candidate in which we can put our main camera logic. Hence, inside the
Update() loop of this script, we will call a UpdateRotAndTrans() custom
method, which will contain the actual camera logic. We will place this logic
inside the UpdateRotAndTrans() method. This method will update the
rotation (facing angle) and translation (position) of the camera in the world;
this is how GameCam will accomplish the stated goal of moving in the world
and tracking the player:
void Update() {
 UpdateRotAndTrans();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to E-Learning and the Three Cs of 3D Games

[18]

5.	 Above the update loop, let's implement the UpdateRotAndTrans() method
as follows:
void UpdateRotAndTrans () {
 // to be filled in
}

6.	 Inside this method, step 1 of our algorithm is accomplished with a sanity
check on trackObj. By checking for null and reporting an error to debugLog,
we can make catching bugs much easier by looking at the console. This is
shown in the following code:
if (trackObj) {
}
else {
 Debug.Log("GameCamera:Error,trackObj invalid");
}

7.	 Step 2 of our algorithm is to store the desired rotation and height in two local
float variables. In the case of the height, we offset the height of trackObj
by an exposed global variable height so that we can adjust the specifics of
the object as shown in the following code (sometimes an object may have its
transform 0 at the ground plane, which would not look pleasing, we need
numbers to tweak):
DesiredRotationAngle = trackObj.transform.eulerAngles.y;
DesiredHeight = trackObj.transform.position.y + height;

8.	 We also need to store the local variants of the preceding code for processing
in our algorithm. Note the simplified but similar code compared to the code
in the previous step. Remember that the this pointer is implied if we don't
explicitly place it in front of a component (such as transform):
float RotAngle = transform.eulerAngles.y;
float Height = transform.position.y;

9.	 Step 3 of our algorithm is where we do the actual LERP (linear
interpolation) of the current and destination values for y-axis rotation and
height. Remember that making use of the LERP method between two values
means having to calculate a series of new values between the start and end
that differs between one another by a constant amount.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

Remember that Euler angles are the rotation about the cardinal axes, and
Euler y indicates the horizontal angle of the object. Since these values
change, we smooth out the current rotation and height more with a smaller
dampening value, and we tighten the interpolation with a larger value.
Also note that we multiply heightDamp by Time.deltaTime in order
to make the height interpolation frame rate independent, and instead
dependent on elapsed time, as follows:
RotAngle = Mathf.LerpAngle
(RotAngle, DesiredRotationAngle, rotDamp);
Height = Mathf.Lerp
(Height, DesiredHeight, heightDamp * Time.deltaTime);

10.	 The fourth and last step in our GameCam algorithm is to compute the position
of the camera.
Now that we have an interpolated rotation and height, we will place the
camera behind trackObject at the interpolated height and angle. To do
this, we will take the facing vector of trackObject and scale it by the
negative value of desiredDistance to find a vector pointing in the opposite
direction to trackObject; doing this requires us to convert eulerAngles to
Quaternion to simplify the math (we can do it with one API function!).
Adding this to the trackObject position and setting the height gives the
desired offset behind the object, as shown in the following code:
Quaternion CurrentRotation = Quaternion.Euler
(0.0f, RotAngle, 0.0f);
Vector3 pos = trackObj.transform.position;
pos -=
CurrentRotation * Vector3.forward * desiredDistance;
pos.y = Height;
transform.position = pos;

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to E-Learning and the Three Cs of 3D Games

[20]

11.	 As a final step, we point the LookAt GameObject reference of the camera to
the center of trackObject so that it is always precisely in the middle of the
field of view. It is most important to never lose the object you are tracking in
a 3D game. This is critical!
transform.LookAt (trackObj.transform.position);

Congratulations! We have now written our first camera class that can smoothly
track a rotating and translating object. To test this class, let's set the following
default values in the Inspector pane as seen in the previous screenshot:

•	 TrackObj: Set this to the Player1 object by dragging-and-dropping the
object reference from the Hierarchy tab to the trackObj reference in the
object inspector.

•	 Height: Set this to 0.25. In general, the lower the camera, the more dramatic
the effect but the less playable the game will be (because the user can see less
of the world on screen).

•	 Desired Distance: Set this to 4. At this setting, we can see the character
framed nicely on screen when it is both moving and standing still.

•	 Rot Damp: Set this to 0.01. The smaller this value, the looser and more
interesting the rotation effect. The larger this value, the more tense the
spring in the interpolation.

•	 Height Damp: Set this to 0.5. The smaller this value, the looser and more
interesting the height blending effect.

Once the player controls are developed (refer to the next section), try experimenting
with these values and see what happens.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

Downloading the example code
You can download the example code files for all Packt books you have
purchased via your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Developing the player controls code
The third system we need to implement is the controls or how the character will
respond to the user input. As a first pass, we need to be able to move our player in
the world, so we will implement walk forward, walk backwards, walk left, and walk
right. Luckily for us, Unity gives us an input system with axes so that we can write
our control code once, and it will work with any devices that have an axis (such
as keyboard or joypad). Of course, the devil is in the detail and keyboard controls
behave differently from joypads, so we will write our code for keyboard input as it
is the most responsive and most ubiquitous device. Once this script is finished, its
behavior in combination with the GameCam script will control how the player motion
feels in the game.

Implementing PlayerControls.cs
For every frame our player updates, perform the following steps that describe our
PlayeControls algorithm:

1.	 Store the forward and right vectors of the current camera.
2.	 Store the raw axis input from the controller (keyboard or joystick). These

values will range from -1.0 to 1.0, corresponding to full left or right, or full
forward or backwards. Note that if you use a joystick, the rate of change of
these values will generally be much slower than if a keyboard is used, so the
code that processes it must be adjusted accordingly.

3.	 Apply the raw input to transform the current camera basis vectors and
compute a camera relative target direction vector.

4.	 Interpolate the current movement vector towards the target vector and damp
the rate of change of the movement vector, storing the result away.

5.	 Compute the displacement of the camera with movement * movespeed and
apply this to the camera.

6.	 Rotate the camera to the current move direction vector.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to E-Learning and the Three Cs of 3D Games

[22]

Now let's implement this algorithm in C# code:

1.	 Right click on the Chapter1 assets folder and select Create New C# Script.
Name it PlayerControls.cs. Add this script to GameObject of Player1 by
dragging-and-dropping it onto the object.

2.	 Add a CharacterController component to the player's GameObject
component as well. If Unity asks you whether you want to replace the
box collider, agree to the change.

3.	 Create public Vector3 moveDirection that will be used to store the
current actual direction vector of the player. We initialize it to the zero
vector by default as follows:
public Vector3 moveDirection = Vector3.zero;

4.	 Create three public float variables: rotateSpeed, moveSpeed, and
speedSmoothing. The first two are coefficients of motion for rotation
and translation, and the third is a factor that influences the smoothing
of moveSpeed. Note that moveSpeed is private because this will only
be computed as the result of the smoothing calculation between
moveDirection and targetDirection as shown in the following code:
public Float rotateSpeed;
private float moveSpeed = 0.0f;
public float speedSmoothing = 10.0f;

5.	 Inside the update loop of this script, we will call a custom method called
UpdateMovement(). This method will contain the code that actually reads
input from the user and moves the player in the game as shown in the
following code:
void Update() {
 UpdateMovement()
}

6.	 Above the update loop, let's implement the UpdateMovement() method
as follows:
void UpdateMovement () {
 // to be filled in
}

7.	 Inside this method, step 1 is accomplished by storing the horizontal
projection of the forward and right vectors of the current camera
as follows:
Vector3 cameraForward = Camera.mainCamera.transform.
TransformDirection
(Vector3.forward);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

8.	 We project onto the horizontal plane because we want the character's motion
to be parallel to the horizontal plane rather than vary with the camera's
angle. We also use Normalize to ensure that the vector is well formed,
as shown in the following code:
cameraForward.y = 0.0f;
cameraForward.Normalize();

Also, note the trick whereby we find the right vector by flipping the x and z
components and negating the last component. This is faster than extracting
and transforming the right vector, but returns the same result shown in the
following code:

Vector3 cameraRight = new Vector3
(cameraForward.z, 0.0f, -cameraForward.x);

9.	 We store the raw axis values from Unity's Input class. Recall that this is
the class that handles input for us, from which we can poll button and axes
values. For h (which has a range from -1 to 1), the value between this range
corresponds to an amount of horizontal displacement on the analog stick,
joystick, or a keypress, as shown in the following code:
float v = Input.GetAxisRaw("Vertical");

For v (which ranges from -1 to 1), the value between this range corresponds
to an amount of vertical displacement of the analog stick, joystick, or a
different keypress.
float h = Input.GetAxisRaw("Horizontal");

To see the keybindings, please check the input class settings under Edit |
ProjectSettings | Input. There, under the Axes field in the object inspector,
we can see all of the defined axes in the input manager class, their bindings,
their names, and their parameters.

1.	 We compute the target direction vector for the character as proportional to
the user input (v, h). By transforming (v, h) into camera space, the result is a
world space vector that holds a camera relative motion vector that we store
in targetDirection as shown in the following code:
Vector3 targetDirection =
 h * cameraRight + v * cameraForward;

2.	 If this target vector is non-zero (when the user is moving, and hence v, h
are non-zero), we update moveDirection by rotating it smoothly (and by
a small magnitude), towards moveTarget. By doing this in every frame,
the actual direction eventually approximates the target direction, even as
targetDirection itself changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to E-Learning and the Three Cs of 3D Games

[24]

We keep moveDirection normalized because our move speed calculation
assumes a unit direction vector as shown in the following code:
moveDirection = Vector3.RotateTowards
(moveDirection, targetDirection, rotateSpeed * Mathf.Deg2Rad *
Time.deltaTime, 1000);
moveDirection = moveDirection.normalized;

3.	 We smoothly LERP the speed of our character up and down, trailing the
actual magnitude of the targetDirection vector. This is to create an
appealing effect that reduces jitter in the player and is crucial when we are
using keyboard controls, where the variance in v and h raw data is at its
highest, as shown in the following code:
float curSmooth =
speedSmoothing * Time.deltaTime;
float targetSpeed = Mathf.Min
(targetDirection.magnitude, 1.0f);
moveSpeed = Mathf.Lerp
(moveSpeed, targetSpeed, curSmooth);

4.	 We compute the displacement vector for the player in this frame
with movementDirection * movespeed (remember that movespeed is
smoothly interpolated and moveDirection is smoothly rotated toward
targetDirecton).
We scale displacement by Time.delta time (the amount of real time that
has elapsed since the last frame). We do this so that our calculation is time
dependent rather than frame rate dependent as shown in the following code:
Vector3 displacement =
moveDirection * moveSpeed * Time.deltaTime;

5.	 Then, we move the character by invoking the move method on the
CharacterController component of the player, passing the displacement
vector as a parameter as follows:
this.GetComponent<CharacterController>()
.Move(displacement);

6.	 Finally, we assign the rotation of MoveDirection to the rotation of the
transform as follows:
transform.rotation = Quaternion.LookRotation (moveDirection);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

Congratulations! You have now written your first player controls class that can
read user input from multiple axes and use that to drive a rotating and translating
character capsule. To test this class, let's set the following default values in the
Inspector pane as seen in the previous screenshot:

•	 Track Obj: Set this to the Player1 object by dragging-and-dropping the
object reference from the Hierarchy tab to the trackObj reference in the
object inspector.

•	 Height: Set this to 0.25. In general, the lower the camera, the more dramatic
the effect, but the less playable the game will be (because the user can see less
of the world on screen).

•	 Desired Distance: Set this to 4. At this setting, we can see the character
framed nicely on screen when it is both moving and standing still.

•	 Rot Damp: Set this to 0.01. The smaller this value, the looser and more
interesting the rotation effect. The larger this value, the more tense the
spring in the interpolation.

•	 Height Damp: Set this to 0.5. The smaller this value, the looser and more
interesting the height blending effect.

Try experimenting with the following values and see what happens:

•	 Rotate Speed : Set the default to 100. The higher the value, the faster the
player will rotate when the horizontal axis is set to full left or right.

•	 Speed Smoothing: Set the default to 10. The higher this value, the smoother
the character's acceleration and deceleration.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to E-Learning and the Three Cs of 3D Games

[26]

Try experimenting with these values to understand their effect on the player's
motion behavior.

Try it out!
Test your "Three C" framework by debugging the game in the editor. Press play and
then adjust the parameters on the PlayerControls and GameCam script to tighten or
loosen the controls to your liking. Once you have a set of parameters that works for
you, make sure to save your scene and project.

Summary
We learned about the three Cs in core gameplay experience programming.
We developed base systems for the character, controls, and camera that have
parameters so that designers and programmers can adjust the look and feel
of the game quickly and easily.

Going forward, we will build the code necessary to make our game interactive!
We will learn how to program interactive objects in our game, and we will
develop the technology for a mission system, which will allow the game designer
to build missions and objectives, track their status, and give them to the user in a
systemic way.

www.it-ebooks.info

http://www.it-ebooks.info/

Interactive Objects and
MissionMgr

A well-designed and engaging e-learning game will challenge the user, track his or
her progress, and reward his or her performance appropriately. To do this, a series
of classes will be required that will separate what we are tracking with the way in
which we interact with it.

We will develop a system to implement a generic object that the user can interact
with and collect. We will also develop another system that lets us build an abstract
learning objective for the user to accomplish. We will then develop a system to
collect objects into an inventory that can be used by the player. Lastly, we will
develop software that tracks the user's progress towards these objectives and
rewards him or her appropriately for success.

In this chapter, we will cover the following topics:

•	 Understanding the base scripts
•	 Building an interactive object
•	 Putting it all together
•	 Try it out!
•	 Summary

www.it-ebooks.info

http://www.it-ebooks.info/

Interactive Objects and MissionMgr

[28]

Understanding the base scripts
The interactive Object class is the base script that enables a player in our game to
have meaningful gameplay interactions. To meet the design needs of our game, this
script provides an interface with which the game designer can specify how the player
will interact with an object as it is picked up. In addition to this, it also permits subtle
rotation on the object for a nice effect. The CustomGameObj and ObjectInteraction
helper classes are used by the object class to define the specific nature of the
interactions and how the object behaves in the inventory when collected.

The MissionMgr class is the system that tracks the user's progress through the
game and rewards him or her on achieving success. When a user interacts with an
interactive object, MissionToken attached to it (if any) is collected and tracked by
MissionMgr. The MissionMgr class has a template of all missions, the tokens that
each mission is composed of, and the reward that should be given when a mission is
satisfied. When the MissionMgr class determines that a mission is complete and that
all of the tokens from that mission have been collected, it gives a reward to the user.

Lastly, InventoryMgr is the system that handles the display of the interactive objects
that have been collected. If an object is permitted to be collected, it will be added to
the inventory according to its CustomGameObj and then displayed in the inventory
at the bottom of the screen.

The following list outlines the classes that we will develop in this chapter:

•	 CustomGameObj: This class contains the basic data about an object in our
game. It holds the object's name and type. This information will be used
when we interact with this object.

•	 InteractiveObj: This class controls the behavior of an object that the user
will physically interact with in the game world. It makes the object rotate and
also detects when the player gets close enough to it to start an interaction.

•	 InventoryMgr: This class tracks which interactive objects the user has
collected. It will also display them in the inventory at the bottom of the
screen. Objects can be either unique or can accumulate based on their type.

•	 ObjectInteraction: This class describes how an interactive object should
behave and what will be the nature of interaction when the user interacts
with it. To start, we will use the OnCloseEnough event to dispatch a collect
and put into inventory interaction.

•	 SimpleLifespanScript: This class is used by the reward objects that are
spawned when a mission is complete. This makes them disappear after a
predetermined amount of time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

•	 MissionToken: This class represents an abstract logical component
of a mission or an objective. These will be collected in ways similar
to inventory objects.

•	 Mission: This class represents a collection of mission tokens.
When the player obtains all of the tokens, the learning objective
will be deemed satisfied.

•	 MissionMgr: This class stores all of the missions currently accessible to the
user. It will validate each mission to determine if the player has acquired all
of the tokens. If so, it will handle the task of giving the user an appropriate
reward for their performance.

The CustomGameObj and InteractiveObj systems will interact with one another
because our game's collecting mechanism is based on how the user primarily
acquires and interacts with mission objectives. Once we have this core mechanism
coded, with a couple of simple collection missions, we will illustrate how it works:

CustomGameObject

GameObject Player

MissionToken MissionData MissionToken MissionToken MissionToken

ObjectInteraction

InteractiveObj

InventoryMgr

InventoryObj

InventoryObj

Mission

Mission

Mission MissionTokenMissionToken

MissionToken

MissionToken MissionToken

MissionMgr

Building an interactive object
With these requirements in mind, let's build the framework for an interactive object
that can be collected by the player.

www.it-ebooks.info

http://www.it-ebooks.info/

Interactive Objects and MissionMgr

[30]

Implementing the CustomGameObj script
We will begin with the CustomGameObj class. This class allows us to specify how an
interactive object will behave when placed in the inventory, by giving it a unique type
that is relevant for our game. Create the script by performing the following steps:

1.	 Start from the codebase built in Chapter 1, Introduction to E-Learning and
the Three Cs of 3D Games, to create a new subfolder in the assets folder
named Chapter 2.

2.	 Using the new script wizard, right-click on it and create a new C# script
named CustomGameObject.

3.	 We will also add a public enumerated type to this class called
CustomObjectType. If you recall, an enumeration is just a list of identifiers of
the integer type that share a common logical relationship with one another,
such as the types of an object! Not only will this make discerning the type
of this object easy to read in the code, but it also serves as an interface to
describe the classification of this object. We will use this information to
determine some custom rules while adding GameObjects to the inventory.
To begin, we will start with a few different types of objects, where an object
of the Coin type will accumulate in the same slot in the inventory. This holds
true for objects of the type Ruby, Diamond, and so on as well. Unique objects
will be added in their own slot in InventoryMgr as follows:
Public enum CustomObjectType
{
 Invalid = -1,
 Unique = 0,
 Coin = 1,
 Ruby = 2,
 Emerald = 3,
 Diamond = 4

}

4.	 A variable of the CustomObject type is added to this class to store the
current type from the set discussed in the previous step. We use the public
keyword so that a user can directly set the value of this variable inside the
Unity Editor on an instance of the object:
public CustomObjectTypeobjectType CustomObjectType objectType;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

5.	 A public variable of the string type is added so that Unity users can add
some descriptive text to the object while designing them, as shown in the
following code; this can be very helpful while debugging or trying to
identify the objects inside the editor:
public string displayName;

6.	 Declare a method named validate(), which will be used to assign the
unnamed_object string to the displayName field if one has not been
assigned in the editor, as shown in the following code:
public void validate()
{
 if (displayName == "")
 displayName = "unnamed_object";
}

Congratulations! We now have a container for the CustomGameObject
information that our inventory system will use. To continue, let's create
the InteractiveObj script.

Implementing the InteractiveObj script
The InteractiveObj script declares a class that enables simple animation and
permits player interactions. Perform the following steps to create the script:

1.	 To use the new script wizard, right-click inside the Chapter2 folder of the
Project tab and add a C# script named InteractiveObj.

2.	 To enable our interactive object to rotate about its own axis at a user specified
rate, we need to add two parameters: a rotation axis and a rotation speed,
as shown in the following code:
public Vector3 rotAxis;
public float rotSpeed;

3.	 We will add a private reference to the customGameObject component for this
GameObject so that we don't have to look it up at runtime. This can be done
with the following line of code:
private customGameObject gameObjectInfo;

www.it-ebooks.info

http://www.it-ebooks.info/

Interactive Objects and MissionMgr

[32]

4.	 We will also add an ObjectInteraction member variable. This will be
the code that specifies what will happen to our gameObject when the player
interacts with it. There may be many interactions that an interactive object can
implement; we will start our example with OnCloseEnough and will complete
this in the OnTriggerEnter method, as shown in the following code:
public objectInteraction OnCloseEnough;

5.	 In the Start() method, we will search for the CustomGameObject
component attached to gameObject. If it is found, we will store the reference
in the gameObjectInfo private variable. Remember to always check that
gameObjectInfo is not null so that debugging the code is a straightforward
process, as shown in the following code:
gameObjectInfo = this.gameObject.GetComponent<customGameObject>();
 if (gameObjectInfo)
 gameObjectInfo.validate();

6.	 In the Update() method, we will apply a simple rotation to the object around
the specified rotAxis parameter. We will rotate the object with the speed
given in rotSpeed multiplied by Time.deltaTime so that the number of
rotations is a function of the elapsed time rather than the frame time, as
shown in the following code:
transform.Rotate(rotAxis, rotSpeed * Time.deltaTime);

7.	 The OnTriggerEnter() method will be invoked whenever the collider of
this object collides with another collider in the world; incidentally, if we set
IsTrigger=false on our gameObject, the OnCollisionEnter() method
will be dispatched instead of OnTriggerEnter(). Note, for Unity to dispatch
either of these callbacks, we must remember to add a Rigidbody component
to the GameObject of InteractiveObj at the design time in the editor.

8.	 Note, when Unity dispatches this callback, it passes in another parameter of
the collider type. This collider is the collider of the object that entered the
trigger volume. Convenient! The signature looks as follows:
OnTriggerEnter(other collider)
{
}

9.	 In this method, we check that the other object (the gameObject that has just
entered this collider) has a tag equal to Player, as shown in the next line of
code. This is how we ensure that our trigger only responds to entities that
we specify (we must remember to set the tag on the player gameObject
to Player):
if (other.gameObject.tag == "Player")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

10.	 If the OnCloseEnough object interaction is not null, we dereference it and
invoke the handleInteraction() method. In our example, this method
does the work of inserting objects into the inventory as shown in the
following code:

if (OnCloseEnough != null)
{
 OnCloseEnough.handleInteraction();
}

Congratulations! We now have a class that implements an interactive object.
Let's continue further with an ObjectInteraction script that this class can utilize.

Implementing the ObjectInteraction script
The ObjectInteraction class defines how the interactive object will be manipulated
when an interaction occurs between the object and the player. Perform the following
steps to implement this:

1.	 Two enumerations are required to specify the action and the type of action.
The action will be what we do with the item (put in inventory and use)
initially, as shown in the following code:
public enum InteractionAction
{
 Invalid = -1,
 PutInInventory = 0,
 Use = 1,
}

2.	 The corresponding type specializes this behavior by determining if the object
is unique or can be accumulated with other interactive objects of the similar
type. A unique interaction specifies that ObjectIneraction will insert this
interactive object in a unique slot in InventoryMgr, while an accumulate
interaction specifies that ObjectInteraction will insert this item (and
increase the quantity) in the first available slot that matches the type set
in CustomGameObj, as shown in the following code:
public enum InteractionType
{
 Invalid = -1,
 Unique = 0,
 Accumulate = 1,
}

www.it-ebooks.info

http://www.it-ebooks.info/

Interactive Objects and MissionMgr

[34]

3.	 We keep the following two public variables to store the two enumerations
discussed in the previous step:
public InteractionAction interaction;
public InteractionType interactionType;

4.	 We also keep a Texture variable to store the icon that will be displayed in
the inventory for this GameObject as follows:
public Texture tex;

5.	 The HandleInteraction() method of this class works on the interactive
object that this script is attached to. To begin, we get the InventoryMgr
component off the player if it can be found. Don't worry that we haven't
created the InventoryMgr yet; we will!
if (player)
 iMgr = player.GetComponent<InventoryMgr>();

6.	 As we extend the number of interaction types that our game supports, this
method will grow. For now, if PutIninventory is the type, we will delegate
i=InventoryMgr to add this InteractiveObj to its collection as follows:
if (interaction == InteractionAction.PutInInventory)
{
 if (iMgr)
 iMgr.Add(this.gameObject.GetComponent<interactiveObj ();
}

Congratulations! You have implemented an ObjectInteraction class that
operates on the InteractiveObj class. Let's continue by implementing the
InventoryItem class.

Implementing the InventoryItem script
The InventoryItem class is the base item container that the InventoryMgr collection
is built from. It contains a reference to GameObject that has been inserted in the
inventory (via the ObjectInteraction class). It also has a copy of the texture
to display in the inventory as well as the number of objects that a particular
InventoryItem represents, as shown in the following code:

public Texture displayTexture;
public GameObject item;
public int quantity;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

Scripts that inherit from monobehavior can be fully manipulated by
the Unity3D Editor; they can be attached to GameObjects, have the
property values saved, among other things. This class does not inherit
from monobehavior; as it is an internal helper class for InventoryMgr.
It never has to be attached to GameObject (a programmer or designer
would not normally want to attach one of these to a 3D object because it
doesn't need a Transform component to do its work). This class only
acts as the glue between the interactive objects that have been collected
and the UI button that InventoryMgr displays for these objects' custom
type. Hence, this class does not derive from any base class. This allows us
to declare a list of these objects directly inside InventoryMgr.

To make the class show up in the inspector (in InventoryMgr), we need to add
back some of the functionality that would have been included, had we inherited
from monobehavior; namely, the serialization of its properties. Hence, we add the
following code decoration before the class declaration:

[System.Serializable]

www.it-ebooks.info

http://www.it-ebooks.info/

Interactive Objects and MissionMgr

[36]

Implementing the InventoryMgr script
The InventoryMgr class contains the system that manages the InteractiveObj
classes that the player collects. It displays inventory items in an inventory panel at
the bottom of the screen. It has a method for adding inventory items and displaying
inventory at the bottom of the screen. Perform the following steps to implement the
InventoryMgr script:

1.	 To begin, recall that the class declaration for this system follows the same
pattern as the others that were created with the new script wizard. Until this
point, however, we haven't included any other namespaces than the default
two: UnityEngine and System.Collections. For this class, note that we
add using System.Collections.Generic in the code. Doing this gives us
access to the List<> datatype in our scripts, which we will need to store the
collection of inventory objects, as shown in the following code:
using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class InventoryMgr : MonoBehaviour {

public List<InventoryItem> inventoryObjects = new
List<InventoryItem>();

2.	 The InventoryMgr class also has parameters that describe the way in which
the constraints on the UI will be displayed, along with a reference to the
MissionMgr script, as shown in the following code:
public int numCells;
public float height;
public float width;
public float yPosition;
private MissionMgr missionMgr;

3.	 In the Start() method, when this class is first created, we will find the object
in the scene named Game, and store a reference to the MissionMgr script that
is attached to it, as shown in the following code:
void Start () {
 GameObject go = GameObject.Find ("Game");
 if (go)
 missionMgr = go.GetComponent<MissionMgr>();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

4.	 The Add() method is used by ObjectInteraction.handleInteraction()
to insert an InteractiveObj in the inventory (when it is picked up). Recall
that the signature looks as follows:
public void Add(InteractiveObj iObj)
{
 ObjectInteraction oi = iObj.OnCloseEnough;

5.	 Based on the ObjectInteraction type specified in the interaction, the
Add() method will behave in specialized ways, and a switch statement is
used to select which specific behavior to use. If the ObjectInteraction
type is Unique, then InventoryMgr inserts this InteractiveObj in the first
available slot, as shown in the following code:
switch(oi.interactionType)
{
 case(ObjectInteraction.interactionType.Unique):
 {
 // slot into first available spot
 Insert(iObj);
 }
 break;

6.	 If the ObjectInteraction type is Accumulate, then InventoryMgr will
insert this in the first slot that matches the CustomGameObject type on the
interactive object. To determine this matching, we first store a reference to the
CustomGameObject script on the interactive object that is being inserted. If
this object does not have a CustomGameObject script, we assume the type is
Invalid, as shown in the following code:
case(ObjectInteraction.InteractionType.Accumulate):
{
 bool inserted = false;

 // find object of same type, and increase
 CustomGameObject cgo = iObj.gameObject.GetComponent
 <CustomGameObject>();

 CustomGameObject.CustomObjectType ot = CustomGameObject.
 CustomObjectType.Invalid;

 if (cgo != null)
 ot = cgo.objectType;

www.it-ebooks.info

http://www.it-ebooks.info/

Interactive Objects and MissionMgr

[38]

7.	 The InventoryMgr class then loops over all inventory objects in the list.
If it finds an object that has a matching CustomGameObject type to the
interactive object that is being inserted, it increases the quantity property
on that InventoryObj. If a match is not found, then InventoryObj is
permitted to be inserted in the list as if it were a unique item, as shown
in the following code:
for (int i = 0; i < inventoryObjects.Count; i++)
{
CustomGameObject cgoi = inventoryObjects[i].item.GetComponent
<CustomGameObject>();
CustomGameObject.CustomObjectType io = CustomGameObject.
CustomObjectType.Invalid;
 if (cgoi != null)
 io = cgoi.objectType;

 if (ot == io)
 {
 inventoryObjects[i].quantity++;
 // add token from this object to missionMgr
 // to track, if this obj as a token
 MissionToken mt = iObj.gameObject.GetComponent<MissionToken>();

 if (mt != null)
 missionMgr.Add(mt);

 iObj.gameObject.SetActive(false);
 inserted = true;
 break;
 }
 }

8.	 Note, if the types of the object match any existing object on the list, we do
some book keeping. We increase its number as well as copy the texture
reference that we will display in the inventory. We will also disable the object
(to stop it from rendering and interacting with the world) by setting its active
flag to false and then we leave the loop, as shown in the following code. We
will declare the MissionToken script later in this chapter:
 if (ot == io)
 {
 inventoryObjects[i].quantity++;
missionTokenmt = iObj.gameObject.GetComponent<MissionToken>();
iObj.gameObject.SetActive (false);
 inserted = true;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

9.	 An important aspect to note here is that we need to check if there is a
MissionToken script attached to this InteractiveObj. If there is one,
then we will add it to MissionMgr. In this way, we will complete the
communication between the two management systems in this chapter.
Later, we will see how MissionMgr searches for complete missions and
rewards the player using mechanics similar to those discussed earlier:
 if (mt != null)
 missionMgr.Add(mt);

10.	 The Insert() method of InventoryMgr is used to perform the actual
insertion work in the list of inventory objects. It is declared with the
following signature:
void Insert(InteractiveObj iObj){
}

11.	 This method first allocates a new InventoryItem with the new operator.
We have to use new instead of Object.Instantiate to create a new instance
of this class because this class does not inherit from Object. With a new
instance of InventoryItem available for use, we will populate its properties
with the data from InteractiveObj, as shown in the following code:
InventoryItem ii = new InventoryItem();
 ii.item = iObj.gameObject;
 ii.quantity = 1;

12.	 Then, we will disable GameObject of InteractiveObj (just in case it is still
enabled), and finally add the InventoryItem to the list with a direct call to
inventoryObjects.add, as shown in the following code:
 ii.item.SetActive (false);
 inventoryObjects.Add (ii);

13.	 Lastly, just in case there is MissionToken attached to this GameObject from
some other code path, we will extract the token and add it to MissionMgr for
tracking, as shown in the following code:

 MissionToken mt = ii.item.GetComponent<MissionToken>();
 if (mt != null)
 missionMgr.Add(mt);

And this completes the work on the Insert() method.

www.it-ebooks.info

http://www.it-ebooks.info/

Interactive Objects and MissionMgr

[40]

Implementing the DisplayInventory method
Let's continue our work by developing InventoryMgr as we program the
method that will display all of the inventory objects on screen by performing
the following steps:

1.	 The DisplayInventory() method is declared with the following signature:
void DisplayInventory() {
}

2.	 This method also walks through the collection, but instead of checking the
type of object, it will display a series of GUI buttons on the screen. It will
also show displayTexture for the item in each inventory. As the position
of the inventory cells are relative to the screen, we need to calculate the
button positions based on the screen width and height, as shown in the
following code:
float sw = Screen.width;
float sh = Screen.height;

3.	 We will also store a reference to the texture we will display in each cell,
as shown in the following code:
Texture buttonTexture = null;

4.	 Then, for clarity, we will store the number of cells in a local integer to
display as shown in the following code:
int totalCellsToDisplay = inventoryObjects.Count;

5.	 We will loop over all the cells and extract the texture and quantity in each
InventoryItem in the collection, as shown in the following code:
for (int i = 0; i<totalCellsToDisplay; i++)
{
 InventoryItem ii = InventoryObjects[i];
 t = ii.displayTexture;
 int quantity = ii.quantity;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

The result of this code is shown as follows:

width

SW

widthwidth

6.	 We will compute the total length of all the cells that we want to display.
This is used in the code to render the cells centered in the middle of the
screen horizontally. Recall that the width and height hold the individual
cell width and height:
float totalCellLength = sw – (numcells * width);

As InventoryMgr loops over all InventoryObjects, we draw a new
rectangle for each item to be displayed on the screen. To do this, we need to
know the x, y coordinates of the upper-left corner of the rectangle, the height
and width of an individual rectangle, and the texture. The y height doesn't
vary since the inventory is a horizontal row on screen, and the cell height
and width don't vary since the cells are uniform by design. The texture will
change, but we can use the cached value. So, we need to focus our attention
on the x coordinate for a centered array of varying length.

7.	 It turns out that we can use this formula. The totalCellLength parameter
is the amount of white space horizontally when all the cells are aligned on
one side. If we subtract half of this, we get the starting coordinate that will
be positioned half on the right and half on the left equally. Considering that
width and height are the dimensions of the individual buttons for display
and that i is the loop index for the loop we are discussing, then adding
(width*i) ensures that the subsequent x coordinates vary horizontally
across the array, as shown in the following code:
float xcoord = totalCellLength – 0.5f*(totalCellLength)
+(width*i);

www.it-ebooks.info

http://www.it-ebooks.info/

Interactive Objects and MissionMgr

[42]

8.	 The rectangle that corresponds to the shape of the button we want to display
is then calculated with the following formula. Note that its position on the
screen is a function of i, the loop index, as well as y, the screen width and
height, and the button width and height:
Rect r = new Rect(totalCellLength - 0.5f*(totalCellLength) +
(width*i), yPosition*sh, width, height);

With all of these quantities now calculated, we will display the button with
the GUI.button(r, buttonTexture) method, as shown in the following
code. We will check for a true return value from this function because this
is how we track when the user clicks on a button:

if (GUI.Button(r, buttonTexture))
{
 // to do – handle clicks there
}

9.	 Recall that we need to display the number of items with each button. We do
this with the GUI.Label method in a way analogous to the previous code.
We will compute a second rectangle for the quantity that mirrors the cell
for the button, but we will use half the cell width and height to position
the rectangle in the upper-left corner for a nice effect!

10.	 We will convert the quantity field of the current InventoryItem class
to a string with the built-in function called ToString() that the integer
implements, and we will pass this to the GUI.Label method, as shown
in the following code:
Istring s = quantity.ToString()
GUI.Label(r2, s);

11.	 To display UI textures and elements on the screen, Unity provides
a special callback method to place our UI code whenever the UI is
refreshed. This method is called OnGui() and has the following signature:
void OnGUI(){
}

12.	 We invoke our DisplayInventory() method inside the void OnGUI()
method that Unity provides because this method draws the InventoryItems
list of InventoryMgr to the screen in the form of UI buttons. This callback
is where all drawing and GUI-related processing occurs, as shown in the
following code:
void OnGUI()
{
 DisplayInventory();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

We could modify this code slightly to draw the maximum number of cells in
the inventory rather than the total number of filled InventoryMgr cells. We
must be careful to not dereference past the end of the collection if we have
been doing so!

Congratulations! We now have a working InventoryMgr system that can interface
with interactive objects and collect them based on their custom type! While we
touched briefly on the MissionToken class in this explanation, we need to develop
a system for tracking the abstract mission objectives and rewarding the player on
achieving success. This requires multiple classes. The result of performing these
steps is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Interactive Objects and MissionMgr

[44]

Implementing the MissionMgr script
The MissionMgr class tracks the user's progress through abstract objectives. These
objectives will be learning objectives that satisfy the game design. The pattern we
use to manage missions will be similar to InventoryMgr; however, this system
will be in charge of comparing the player's objectives with a master list of missions
and with what is required to complete each one. To develop it, let's perform the
following steps:

1.	 To accomplish this work, MissionMgr will need two lists. One list to hold all
of the missions that the player could try and solve and another for the current
tokens that the player has acquired (through interacting with interactive
objects, for instance). The MissionTokens collection is allocated at runtime
and set to empty so that the player always starts having accomplished
nothing; we could develop a way later to load and save the mission progress
via this system. The missions' list will be populated at runtime in the editor
and saved, so we don't want to initialize this at runtime:
Public List<mission> missions;
Public List<missionToken> missionTokens = new
List<missionTokens>();

2.	 The MissionMgr implements three methods that allow it to perform its role
and interface with other game systems:

°° Add(missionToken): This method adds a newly acquired
MissionToken to the collection. This collection will be queried while
trying to determine if a mission has been completed. In Add(), we use
a similar methodology as the Add() method for InventoryMgr. In
this case, assume that the token is unique and search for a duplicate
by iterating over all of the tokens for the current mission m, as shown
in the following code:

	 bool uniqueToken = true;
	 for (int i = 0; i<missionTokens.Count; i++)
	 {
	 //…
	 }

If a duplicate is found, namely, a token is found in the collection with
the same id field as the add candidate, we abort the operation as
shown in the following code:

	 if (missionTokens[i].id == mt.id)
	 {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

	 // duplicate token found, so abort the insert
	 uniqueToken = false;
	 break;
	 }

If a duplicate is not found, we add this token to the list as shown in
the following code:

	 if (uniqueToken)
	 {
	 missionTokens.add(mt);
	 }

°° Validate(mission): This method will compare currentToken set
to a specific mission. If it has been found to have been satisfied, the
system is notified. To do this, we will use a search pattern similar to
the one used in the Add() method and start by assuming the mission
is complete; only this time we will use a double-nested loop! This is
because to validate a mission means to search, individually, for each
token in the current mission against all of the tokens the user has
collected so far. This is done as shown in the following code:

	 bool missionComplete = true;
	 for (intinti = 0; I < m.tokens.Count; i++)
	 {
	 bool tokenFound = false;
	 for (int j = 0; j < missionTokens.count ; j++)
	 {
	 // if tokens match, tokenFound = true
	 }
	 }

By assuming the token will not be found initially, we are required to
search for a matching token ID. If we don't find it, it automatically
means that the mission cannot be complete, and we don't have to
process any more comparisons, as shown in the following code:

	 if (tokenFound == true))
	 {
	 missionComplete = false;
	 break;
	 }

www.it-ebooks.info

http://www.it-ebooks.info/

Interactive Objects and MissionMgr

[46]

°° ValidateAll(): This methods invokes Validate() on all
user-defined missions if they are not already complete. If any
mission is found to be completed, a reward is instantiated for
the player through the InvokeReward() method, as shown in
the following code:

	 void ValidateAll() {
	
	 for (int i = 0; i < missions.Count; i++)
	 {
	 Mission m = missions[i];
	
	 // validate missions…
	 }
	 }

We will sequentially search through all user-defined missions that
have not already been completed (no need to do this once a mission
is done). This enumeration will be defined in the Mission script,
as shown in the following code:

	 if (m.status != mission.missionStatus.MS_Completed)
	 {
	 bool missionSuccess = Validate(m);

If the mission has been validated as being complete, the mission
implements an InvokeReward() method to reward the user,
as shown in the following code:

	 if (missionSuccess == true)
	 {
	 m.InvokeReward();
	 }

Implementing the Mission script
The Mission class is the container for MissionTokens. It implements a state that
helps us specialize how a mission should be treated by the game (for instance, we
may want to have the player acquire a mission but not start it). This class has a
number of state variables for future extension such as activated, visible,
and points.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

1.	 As with the InventoryItem class, the Mission class is a helper class
that only the MissionMgr class uses. Hence, it does not inherit from
monobehavior. Therefore, the class signature must include the
[System.Serializable] tag as before:
using UnityEngine;
using System.Collections;
using System.Collections.Generic;

[System.Serializable]
public class Mission {

2.	 This class also implements an enumeration to describe the state of a
particular mission. This is used to encode whether a state is invalid,
acquired, in progress, or solved so that MissionMgr can handle the
mission appropriately, as shown in the following code:
public enum missionStatus
{
 MS_Invalid = -1,
 MS_Acquired = 0,
 MS_InProgress = 1,
 MS_Completed = 2
};

3.	 The public variable status is an instance variable of the status enumerated
type in this class. We will use this initially to make sure that once a mission is
complete, MissionMgr no longer tries to validate it. This can be done with the
following code:
Public missionStatus status;

4.	 The specific elements that comprise a mission are the mission tokens that
the user puts in the tokens' collection. This is a collection of logical pieces
that comprises a complete objective in the game. This list will be compared
against the players' acquired tokens in MissionMgr, as shown in the
following code:
Public List<missionTokens> tokens;

5.	 The points and reward public variables are used to store the numerical
score and the in-game rewards that are given to the user when a mission
is completed. Note, GameObject reward could be used as a completion
callback, in addition to a reference to a Prefab item for the user to pick up,
as shown in the following code:
public int points;
public GameObject reward;

www.it-ebooks.info

http://www.it-ebooks.info/

Interactive Objects and MissionMgr

[48]

6.	 The displayName public variable is used by the user in the Unity3D Editor as
a place for a helpful string to describe the mission's nature, as shown in the
following code:
public string displayName;

This class implements one method: the InvokeReward() method. This
function will spawn a new gameObject into the world that has been set in
the editor. Through this mechanism, the player can be rewarded with points,
a new object or objective can appear in the world, or any other outcome can
be encapsulated in a Unity Prefab object.

7.	 Once a mission has been validated and InvokeReward has been called, the
mission itself is disabled and its status is set to Completed, as shown in the
following code:
this.status = missionStatus.MS_Completed;

Implementing the MissionToken script
The MissionToken class stores the information for an individual mission
component. This class acts as a container for this abstract data. We give it an ID,
a title that is human readable, and a description. By giving each MissionToken
a unique ID, we give the Mission class a powerful way of tracking the mission
progress. This class is used in a way by which the user adds instances of this
component to various interactive objects that can be manipulated by the player,
as shown in the following code:

Public int id;
Public string title;
Public string description;

Implementing the SimpleLifespanScript
The SimpleLifespanScript class is a simple helper class that can be used in
conjunction with the Instantiate() method to instantiate a GameObject in the
world that will have a specified but finite lifespan. We use it to enable an instance
of a Prefab that is live for a set period of time and then destroys itself as a reward
for completing a mission. By attaching this to the reward that is displayed when a
mission is completed, the prompt is given a set duration on the screen after which
it disappears.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

Specifically, the seconds parameter is the time for which the object will survive
before self destruction, as shown in the following code:

Public float seconds

In the update method, we count this value by the actual time elapsed in each
frame (from Timer.deltaTime). Once this reaches zero, we destroy the object and
all the scripts attached to it (including the simpleLifespanScript), as shown in the
following code:

seconds -= Time.deltaTime;
if (seconds <= 0.0f)
 GameObject.Destroy(this.gameObject);

Congratulations! We now have a robust set of scripts for MissionMgr, missions,
tokens, and rewards. Let's apply what we have built in an example that exercises
the mission system, the inventory system, and interactive objects.

Putting it all together
Now that we have developed the classes necessary for the InventoryMgr,
MissionMgr, and InteractiveObj systems, let's build a scene that illustrates
their functionality.

1.	 To get started, let's continue from Chapter 1, Introduction to E-Learning and
the Three Cs of 3D Games, where we left off. Load the scene and save a copy
named chapter2.

2.	 Add an instance of InventoryMgr to the Player GameObject by
dragging-and-dropping it from the Project tab to the player object.
Alternatively, click on Player and select Add component from the
Inspector pane. Type in the name InventoryMgr and then click on
it to add an instance.

www.it-ebooks.info

http://www.it-ebooks.info/

Interactive Objects and MissionMgr

[50]

3.	 Click on Player and ensure that the Tag is set to Player. The InteractiveObj
class will use this to make sure they can only be picked up by the player.

4.	 Set Height and Width to 40 pixels to make the individual cells square
shaped. Set the Yposition to 0.85 to indicate a y coordinate of 85 percent
from the top of the screen.

5.	 Create a new empty GameObject and name it MissionMgr. Attach the
MissionMgr script to this object. We purposely detach this script from the
player because the lifespan of MissionMgr may differ from the player object.
The results of all the discussed settings are shown in the following screenshot:

Now that we have added our new tracking systems to the game, let's create some
objects to interact with:

1.	 Create a sphere and place it on the ground plane. Name it A_Coin and
disable the mesh renderer component. On the sphere collider, click the
IsTrigger checkbox so that we can detect when the player enters the object.

2.	 Add a Rigidbody component to the object. This is necessary for the
OnTriggerEnter callback to be dispatched by the engine. Remember, the
way Unity detects when the player (or any other object) enters a trigger is
by checking its Rigidbody component; so, if there is no such component
attached, the the callback will not be dispatched.

3.	 Add a CustomGameObject script to this object. Set the display name to money
and the object type to coin.

4.	 Add a MissionToken script to this object. Set id to 1, Title to token, and the
Description to mission 1 token.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[51]

5.	 Add an InteractiveObj script to this object. Set Rot Axis to (0, 1, 0) to
make the object rotate horizontally about the y axis. Set Rot Speed to 40
for a gentle rotation.

6.	 Add an ObjectInteraction script to this object. Set the interaction to
putInInventory. Set the interaction type to accumulate. Point Tex to
the Coin-icon coin texture.

7.	 Drag-and-drop this gameObject into the OnCloseEnough variable of the
InteractiveObject component. This will connect this reference to the
ObjectInteraction component on gameObject itself.

8.	 Now that the script is wired up, let's add a yellow coin model to the coin
base. Create a cylinder gameObject, parent it to the A_Coin base, and set its
local position to (0, 0, 0). Create a material, colored yellow, and attach it to
the mesh renderer of the cylinder.

9.	 Set its rotation to (90, 0, 0) in the inspector. Set its scale to (0, 0.16, 0) in the
inspector as well.
The result of all these steps can be seen in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Interactive Objects and MissionMgr

[52]

Congratulations! We now have one interactive object in the world. To test this, let's
click on play and observe a slowly rotating coin. If we then walk the player up to it
so that he or she can collect it, we will then see the inventory displaying the item.

Testing the mission system
Let's add another type of interactive object and then build a couple of missions to
finish validating our work.

1.	 Drag-and-drop this A_Coin object from the Hierarchy tab into the Project
tab, thereby creating a Prefab. Name this Prefab coin, as shown in the
following screenshot:

2.	 Create a second interactive object, following the steps 1 to 9 from the Building
an interactive object section. Instead of making a yellow coin, create a red ruby
and point the inventory texture to the ruby icon texture provided.

3.	 Name this object A_Ruby and set the mission token ID to 4.
4.	 Drag-and-drop A_Ruby to the Project tab, forming a Prefab named Ruby.
5.	 Drag-and-drop the coin and ruby Prefabs back into the Hierarchy tab. At this

point, there should be two coins and two rubies. Set the mission token ID of
the second coin to 2 and the second ruby to 4.

Now that we have two coins and two rubies, let's create two missions!

1.	 Click on MissionMgr and increase the size of the missions' array to 2. Note
that the array populates with an empty version of the Mission class. Set the
first mission to activated and visible.

2.	 Set the first mission state to MS_ACQUIRED and name it Coin Craze.
3.	 Set the description to collect all of the coins.
4.	 Set the points to 500.
5.	 Under tokens, drag-and-drop the two coin game objects. This will set the

references to MissionTokens attached to the coin Prefabs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[53]

6.	 Create a reward Prefab out of GuiText with SimpleLifeSpanScript
attached. Set the string to You have completed the coin challenge with a
lifespan of 2 seconds. Drag-and-drop this Prefab into the reward field of
mission 1 in the mission manager. Make sure to delete any instances of
this reward Prefab from the hierarchy; we want MissionMgr to spawn this!

7.	 Follow steps 7 to 12 from the Building an interactive object section again, only
this time name the mission Ruby Run and point the mission tokens to the
two ruby instances in the world (with unique mission token IDs). Create a
new reward for this mission and drag-and-drop its Prefab onto the reward
for mission 2.

8.	 Position the coins and rubies in the world at random locations in the game
world. Play the level to observe MissionMgr in action, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Interactive Objects and MissionMgr

[54]

Try it out!
Congratulations! We now have two missions with which we can test interactive
objects and player mission objectives. Note that when you play the game, you can
collect the items in any order and that the inventory will update the quantity of
objects from one to two as you collect them. The reward displays for two seconds
and then the mission disables itself.

Summary
We have learned how to develop interactive objects, an inventory system, and a
mission tracking system. We have shown examples of how components attached to
GameObject can communicate with one another. We have extensively used the list
container and the search pattern to implement tracking and inventory maintenance
methods. Going forward, we will use these systems in conjunction with a little
applied psychology and gamification theory to develop the first mission in
our game.

www.it-ebooks.info

http://www.it-ebooks.info/

Mission One – Find the Facts
Recall that in the first two chapters, we developed the core technology for a camera,
player controls, interactive objects, and a mission-tracking system. Now it's time to
apply our technology and make our first learning objective. Our e-learning game will
educate the user on the 50 American states, the state flags, and some state trivia. In
this chapter, we will assemble the systems we have created thus far and develop our
first playable game level—the first of three in our final game.

In this chapter, we will cover the following topics:

•	 Introducing mission one: find the facts
•	 Designing games to maximize fun
•	 Implementing the core classes for mission one
•	 Playing the level

Finding the facts
In this game, the hero (player) plays the park ranger in charge of cleaning up
Confederation National Park. In mission one, the park ranger has to find the missing
flags for the flag monument and return them to their holders. The user will have
to find five of 50 US flags. They will be placed at random locations in the world.
The user will have to collect them, read about the associated states' trivia, and then
bring the flags back once all the five flags have been found. The game comprises the
following components:

•	 FlagLocators: This GameObject hierarchy contains a set of potential flag
locations. From these 10 potential locations, five will be randomly chosen.

www.it-ebooks.info

http://www.it-ebooks.info/

Mission One – Find the Facts

[56]

•	 Terrain: We introduce the terrain editor in this chapter and create a terrain
mesh to replace the ground plane from Chapter 2, Interactive Objects and
MissionMgr. As our design requires us to have a park-like setting for our
game, the terrain editor is the best candidate for building this in the editor
quickly and easily; the alternative is modelling the park in a 3D modelling
program such as Maya and then exporting and importing into Unity. By
adding grass, mountains, and trees we create a picturesque park that will
serve as the backdrop and scene for our first game environment.

•	 Monument: This GameObject hierarchy contains a set of five flagmount
locations. These are the places where the flags will be attached once the
user finds the missing flags and returns them.

•	 MissionMgrHelper: This helper class allows a GameObject to manipulate
the state of an already-existing mission. This is done by associating the
script with a Prefab and then instantiating after a user interaction.

•	 SetupMissionOne: To accomplish the objectives of the level, this class installs
two missions in the MissionMgr class that we developed in the previous
chapter and also picks the random flags and flag locations for those missions.

•	 TriviaCardScript: This class displays a full screen texture on screen that
represents a trivia card for a state. The script adjusts the size and layout of
the texture and displays it centered on screen. These cards will appear when
the flags are first picked up and when they are selected in the inventory.

•	 MonumentMgr: The gameplay objective of this level is to locate flags and
return them to a monument with a number of empty mounting points. This
class provides an interface for the monument hierarchy to attach an object
(a returned flag) to one of the monument's flagmount points.

•	 SimpleDetachScript: This class detaches the GameObject that it is
attached to, from any parent transforms, thereby making its parent the
global coordinates. This is necessary for packaging GUITextures in a
Prefab for instancing and then previewing.

The first two collections will be referenced by SetupMissionOne, which picks the
flag locations, picks five Prefabs, and instances them. A number of Prefabs will
need to be created as well to facilitate the flow logic across missions. Finally, some
systems from Chapter 1, Introduction to E-Learning and the Three Cs of 3D Games,
and Chapter 2, Interactive Objects and MissionMgr, will be updated to improve
the gameplay.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

Designing games to maximize fun
Prior to designing the first playable level in the game, an understanding of how to
model fun in games is required. Have you ever been involved in an activity and lost
track of time, such as playing a game or otherwise? Cognitive psychologists call this
mental state flow, and it is thought to be one way of maximizing fun. This is desirable
because when the user is most engaged and having fun, learning and retention of
information is maximized.

Game designers are interested in how we can design games that maximize the
likelihood of the user entering this mental state.

It turns out that we have a model for how to entice the user to achieve flow.
Consider the previous diagram that illustrates the relationship between the
difficulty and the skill required for a given task. This is when the activity is
moderately challenging and under moderate pressure. If the activity is too
hard or too easy, or if the situation is too boring or too stressful, it reduces
the likelihood of maximizing fun via the flow model.

www.it-ebooks.info

http://www.it-ebooks.info/

Mission One – Find the Facts

[58]

The teaching loop in game design
There are three stages of teaching in games described as follows:

•	 Presentation: In this stage, factual information is presented to the user.
In a gaming situation, the user participates in engaging game mechanics
to discover or interact with the objective material to be learned. The game
mechanics provide incentives and challenges to encourage the player to
enter flow.

•	 Application: In this stage, the user participates in game mechanics while
employing the facts from stage one. The game mechanics reinforce good
behavior as well as recall and mastery of the material from stage one. The
game also reduces negative behavior—failure to recall and master the
material from stage one.

•	 Synthesis: In this stage, through interactions with novel game scenarios,
the user has to apply the mastered knowledge to new situations. By doing
this, mastery and consolidation is further heightened, and a higher level
understanding and insight is achieved in the subject matter.

Implementing the core classes for
mission one
In this chapter, we will start creating mission one, which presents US geography
to the player (state name, flag, and trivia). Let's begin by creating the classes and
GameObject instances for this level. To begin, create a new scene file and name
it TESTBED.

Creating a terrain
Let's create a nice terrain mesh to replace the ground plane from the previous two
levels. With this, we can create a nice-looking mesh for the ground that resembles
a park with grass, mountains, and trees by performing the following steps:

1.	 In the Assets menu, navigate to Import Package | Terrain Assets. Click on
the Import button on the pop-up window that appears next to bring a library
of models and textures into Unity for use with the terrain editor.

2.	 To create a terrain mesh, let's navigate to CreateOther | Terrain, from the
GameObject drop-down list.

3.	 On the Set Heightmap resolution pop up that appears, configure the
parameters to the following values:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

°° Terrain Width, Terrain Length: The horizontal dimensions of the
terrain mesh. Set both to 500 units.

°° Terrain Height: The maximum height of the terrain (for mountains
and so on). Set this to 500 units.

°° The remaining parameters control the resolution of the textures that
are painted onto the terrain. Keep these at their defaults.

4.	 Click on the new terrain GameObject in the Hierarchy view, set its position
to -250, 0, -250. This will place the terrain in the 3D world at a convenient
location that results in the middle of the terrain at the world origin, which is
convenient for development.

5.	 Clicking on the new terrain, observe the seven unique radio buttons on the
terrain component in the inspector tab as shown in the following screenshot:

6.	 The first one from left-hand side will raise or lower terrain depending on if
Shift or Ctrl are held down while clicking and moving the mouse. Zoom out
in the scene view; select one of the many interesting brushes; and try creating
some mountains. Note the effect that brush size and opacity has on the
deformations to the terrain.

www.it-ebooks.info

http://www.it-ebooks.info/

Mission One – Find the Facts

[60]

7.	 The second button allows you to paint to a certain height. This is good for
fine control of elevation in a terrain mesh if you want to build very specific
configurations of plateaus.

8.	 The third button is the smooth height button. Use this if you have previously
painted some elevations with a brush that has lots of bumps and jagged
edges. This brush will average and round out the selected peaks.

9.	 The fourth button is the paint textures button. If you navigate to Edit
Textures | Add Texture, you can select a texture from any of the imported
textures in the project thus far. Click on the texture viewer panel (rather
than the normal map panel) to see a dialog box of all available options. After
selecting and confirming, you will see your selection as an option back in the
terrain previewer. Now, with your favorite brush selected, you can paint the
texture onto your terrain. Add a variety of textures to paint grass, roads, and
mountain details into your terrain.

10.	 The next button lets you paint tree models into your scene. Select a tree
model from the edit trees button, and once you have confirmed a selection,
choose a brush and density to paint the models with. A low-density circle
can be used to add foliage to the tops of your mountain ranges. If you find
that your game suddenly runs slowly after painting trees, it likely means you
have too many tree models on screen. The fix for this is to reduce the density
of the trees.

11.	 The second from the right-hand side button lets you paint the details into
your scene. The workflow is similar to painting trees, and they behave
similarly as well although this is intended for small details such as grass.

12.	 The right-most button lets you control the parameters of your terrain
component. Things such as wind-speed, draw distances, and grass color
let you fine-tune the look of your park.

Once you have finished making your park, it should look somewhat like the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

Creating the FlagLocators GameObject
Let's create the hierarchy for FlagLocators in the scene as follows:

1.	 Create 10 Cube GameObjects. Place them in a variety of interesting places,
well spaced out in the level. Put some of them on the ground, some in the
hills, some on the mountains, and so on. Name these FlagLocator1 to
FlagLocator10.

2.	 Disable all of the mesh renderers to make these objects invisible in the
rendered scene. We will leave these components attached for debugging,
but we don't want to draw them normally. Should we want to see where
these locators are later on, we just need to enable the renderers to show
the geometry.

3.	 Create another empty GameObject, and name it FlagLocators.
Drag-and-drop all of the locators from step one underneath this object.

Congratulations! We now have a data collection of potential places for flags to spawn
in mission one. We will select five of these in the SetupMissionOne script discussed
in the following section.

Creating the FlagMonument GameObject
Let's build the geometric structure that will be the focal point of the first mission—
the monument that needs the flags returned by performing the following steps:

1.	 Create a new Cube GameObject. Scale it so that it is a long and narrow
rectangle on the ground in a central place. Name this monument.

2.	 Create five short Cylinder GameObjects. Name them FlagMount1 to
FlagMount5, and parent them to the monument so that they are on top
of the monument.

3.	 This should look very similar to the FlagLocators in the Hierarchy pane
seen previously, but we will also create a MonumentMgr class and extend
its functionality.

Creating the MonumentMgr Script
This script provides the API for the inventory to attach items to the flag mounts at
the conclusion of the level.

www.it-ebooks.info

http://www.it-ebooks.info/

Mission One – Find the Facts

[62]

The InventoryMgr script that we will write in this chapter, will use the methods
provided in the MonumentMgr script to do this work by performing the following steps:

1.	 Create a new script, and name it MonumentMgr.cs. Attach an instance of it to
the monument GameObject.

2.	 Inside the script, add public List<GameObject> to store the mount
points as shown in the following code. Don't forget to add using System.
Collections.Generic to the top of the file so that we can declare list
properties. Failure to add this line of code will result in compile time
errors in your script:
public List<GameObject> mountPoints;

3.	 Drag-and-drop the individual flag mount points from the monument to
this list.

4.	 We add an attachObjToMountPoint(GameObject obj, int index) public
method as shown in the following code. We first create an instance or clone
of the object passed in, attach the object to the given mountpoint, and then
zero its local translation and rotation. Doing this forces the object to have the
same position and angle as mountpoint it is attached to, specifically a zero
position and rotation offset relative to mountpoint. But remember, order is
the key here!
public void attachObjToMountPoint(GameObject go, int index)
{
 GameObject newGo = (GameObject)Instantiate (go,
 mountPoints[index].transform.position,
 mountPoints[index].transform.rotation);
 newGo.SetActive(true);
 newGo.transform.parent = mountPoints[index].transform;
 newGo.transform.localPosition = Vector3.zero;
 newGo.transform.localEulerAngles =
 Vector3.zero;//mount.transform.eulerAngles;
}

Congratulations! The monument system is now complete. We will interface with this
script in a later mission logic.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[63]

Creating the InventoryPlaceOnMonument
class
This class loops over all the flags in the inventory and places them on the monument.
It loops over all the items and then attaches each one to each successive mount point.
This can be created by performing the following steps:

1.	 Create a new InventoryPlaceOnMonument.cs script. This will be attached to
a new Prefab for instancing later.

2.	 This script will cache a copy of the inventory manager by finding the
GameObject named Player and then by getting and storing a reference
to the inventoryMgr component.

3.	 This script also caches a copy of monument so that it can interface with the
monumentMgr class defined previously.

4.	 In the update loop, this script will take an object from the inventory of index
objectIndex, remove it from the inventory, and set it to active so that it will
render again as shown in the following code:
GameObject go =
 inventoryMgr.inventoryObjects[objectIndex].item;
go.SetActive (true);

5.	 If there is a cached monument object in the scene, it will then call
attachObjToMountPoint and attach this inventoryObject to the
flag mount using the following code:
_monument.GetComponent<MonumentMgr>().attachObjToMountPoint
 (go, objectIndex);

Congratulations! You now have written the system that will be used to move the
flags from the inventory to the monument at the end of the mission. This script will
be attached to a Prefab that we will instance once the second mission is complete.

Creating the MissionMgrHelper script
This script searches through the mission manager and finds a mission by name.
Once it finds it, it updates the visible and enabled flags on the mission. This is used
to activate the second half of level one's objectives once the first half of the objectives
are completed. This script can be created as shown in the following code:

 using UnityEngine;
 using System.Collections;

 public class missionMgrHelper : MonoBehaviour {

www.it-ebooks.info

http://www.it-ebooks.info/

Mission One – Find the Facts

[64]

public string MissionName;
public bool setActivated;
public bool setVisible;
private MissionMgr _missionMgr;

// Use this for initialization
void Start () {

 _missionMgr = GameObject.Find("Game").GetComponent<MissionMgr>();
}

// Update is called once per frame
void Update () {

 for (int i = 0 ; i < _missionMgr.missions.Count; i++)
 {
 Mission m = _missionMgr.missions[i];
 if (m.displayName == MissionName)
 {
 m.activated = setActivated;
 m.visible = setVisible;
 }
 }
}

}

Creating the TriviaCardScript script
This helper script will be attached to all GUITexture pop ups used in this level, the
flaginfo cards, and the user pop ups that happen when the mission's complete.
It centers a texture on screen and scales it to the given dimensions.

1.	 To draw the texture centered on the screen, we start by calculating the center
of the screen, and then we offset by half the size of the texture. The reason we
do that is because we draw the texture relative to the upper-left corner.

2.	 The middle of the screen is assigned using the following code:
(ScreenWidth/2.0f, ScreenHeight/2.0f)

3.	 The upper-left corner of the texture, relative to the center of the screen,
is assigned using the following code:
(((ScreenWidth/2.0f) – (textureWidth/2)),
 ((ScreenHeight/2.0f) – (textureHeight/2.0f)))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[65]

a-[screenWidth/2,screenHeight/2]
b-[sw/2-tw/2],[sh/2-th/2]

a

b

Creating the SetupMissionOne script
This class is used on level startup to configure the world with a random selection
of flags for gameplay. This class picks five flags at random and five locations at
random. It instances those five flags at those random locations. It also configures
the two missions that this level will use to achieve the first learning objective. It is
created by performing the following steps:

1.	 This script will require six individual lists to accomplish its task. Three of
them for picking five flags from 50 potential options and three for picking
five locations from a set of 10 options.

2.	 flagPrefabs holds all 50 flag Prefabs. This is populated once at design time
in the editor as shown in the following code:
public List<GameObject> flagPrefabs;

3.	 flagPrefabsBackup is a copy of the previous list. This occurs once when the
game is run. The backup will be used to restore the flagPrefabs list if the
mission is restarted as shown in the following code:
private List<GameObject> flagPrefabsBackup;

4.	 FlagInstances is the list of five unique, selected flagPrefabs. This list
is populated from the flagPrefab list by choosing an index at random,
removing the GameObject in the list flagPrefabs at that slot, and adding
it to the flagInstances list as shown in the following code:
public List<GameObject> flagInstances;

5.	 spawnPoints is a list that holds the 10 potential spawn locations for flags in
this level as shown in the following code:
public List<GameObject> spawnPoints;

www.it-ebooks.info

http://www.it-ebooks.info/

Mission One – Find the Facts

[66]

6.	 spawnPointsBackup is a copy of the previous list. This occurs once when the
game is run. The backup will be used to restore the spawnPoints list if the
mission is restarted as shown in the following code:
public List<GameObject> spawnPointsBackup;

7.	 activeSpawnPoints is the list of five unique, selected SpawnPoints. This
list is populated from the spawnpoints list by choosing an index at random,
removing the GameObject in the SpawnPoints list, slow, and adding it to the
activeSpawnPoints list as shown in the following code:
public List<GameObject> activeSpawnPoints;

8.	 Once the lists of selected spawnpoints and flagprefabs are filled, the script
initializes two missions.

9.	 The first one to be acquired is set to visible and active as shown in the
following code:
Mission m = missionManager.missions[0];
m.activated = true;
m.visible = true;
m.status = mission.missionStatus.MS_Acquired;

10.	 It is also given a displayName and description as shown in the
following code:
m.displayName = "MissionOne";
m.description = "collect the 5 randomly placed flags";

11.	 For this mission, we instance the five selected flags, place them at the
selected spawnpoint, and add them to the MissionMgr. Then we add the
five MissionToken script instances (one from each flag Prefab instance) to the
mission. This associates picking up each flag instance with the objectives of
the first mission as shown in the following code:
Vector3 flagPos = activeSpawnPoints[k].transform.position;
GameObject flagInstance = (GameObject)Instantiate
 (flagPrefab, flagPos, new Quaternion(0.0f, 0.0f, 0.0f,
 1.0f));
m.tokens.Add (flagInstance.GetComponent<missionToken>());

12.	 The second mission is set acquired, visible, and active as shown in the
following code:
m.activated = false;
m.visible = false;
m.status = mission.missionStatus.MS_Acquired;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

13.	 It is also given a displayName and description as shown in the
following code:
m.displayName = "MissionTwo";
m.description = "return the flags to the flagstand";

14.	 All of the MissionTokens from mission one are added to mission two as
well. Since mission two starts with one MissionToken (id=10) in the
inspector, the total number of tokens for mission two is equal to six. This last
token corresponds to the user taking the five flags back to the monument
(the monument gives the user this final flag to complete the mission) as
shown in the following code:
m.tokens.AddRange (missionManager.missions[0].tokens);

Creating the flag Prefabs
As this mission revolves around finding state flags, let's build a generic Prefab
that we can texture with different flag imagery, creating a database of objects to
choose from.

1.	 To get started, let's create a cylinder and set it's scale to (0.5, 3.2, 0.5).
Create a dark-grey material, and apply it to the cylinder and name it Pole.

2.	 Create a sphere, scale it to (1.5, 0.2, 1.5). Place it on top of the pole and
parent it to the cylinder object. Create a yellow material and apply it to the
texture as seen in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Mission One – Find the Facts

[68]

3.	 Create an interactive cloth object, and orient it by 270 degrees on the x axis.
Scale it to (1, 0.3, 0.08). Parent it to the pole, and set its local position to
(5.8, 0.4, 0). This is a GameObject with script attached that simulates the
natural motion of cloth under the influence of external forces. We will use
this to build nice-looking flags for the states that respond to gravity, wind,
and the player's interactions.

4.	 Create two more spheres, scaled down to (0.4, 0.07, 0.4). Position these
on the pole to act as mount points for the interactive cloth. The cloth will
attach at these points to the pole. Disable their mesh renderer so that you
cannot see them once they are placed correctly (overlapping the interactive
cloth). Make sure that these two spheres have a rigid body component so
that they can anchor the interactive cloth properly.

5.	 Create a new, empty GameObject, and name it MissionMgr. Attach the
MissionMgr script to this object. We purposely detach this script from the
player because the lifespan of MissionMgr may differ from the player object.

Now that we have added our flag geometry, let's create some interactive objects to
collect and interact with. As there are 50 states, let's start with Alabama and repeat
the following steps for every other state, modifying the textures and state names
as appropriate:

1.	 Create a sphere and place it on the ground plane. Name it Flagpole_
Alabama, and disable the mesh renderer component. On the sphere
collider, check the IsTrigger checkbox so that we can detect when the
player enters the object.

2.	 Add a CustomGameObject script to this object. Set the display name to
Alabama and the object type to flag.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

3.	 Add a mission token script to this object. Set id=501, title to token, and the
description to mission 1 token.

4.	 Add an InteractiveObj script to this object. Set the rotAxis to (0,1,0) to
make the object rotate horizontally about the y axis. Set the rot Speed to 40
for a gentle rotation.

5.	 Add an object interaction script to this object. Set the interaction to
putInInventory. Set the interaction type to Unique. Point the text
to the Alabama state flag texture.

6.	 Drag-and-drop this GameObject into the OnCloseEnough variable of the
InteractiveObject component. This will connect this reference to the
ObjectInteraction component on the GameObject itself.

7.	 Add an external force of (1.7, 0, 0) and a random force of (2, 2, 2)
to the interactive cloth to make the flag flap in the breeze. Consider
experimenting with the external force and random force properties of the
InteractiveCloth script to explore the various different flag behaviors
that can be achieved.

We now have a Prefab that we can customize for each state flag. Note the nice
animation on the flag when the player walks by it. Let's create 50 Prefabs by
applying the correct texture to the interactive cloth component and then dragging
the hierarchy into the project tab. Let's also add the following script instances to
each Prefab.

1.	 CustomGameObject: Set the object type to flag, name it according to the
state, and add a reference to the info card for this flag; the info card will show
up when the inventory is clicked on, telling the user about the flag, the state
name, and some trivia.

2.	 Add an InteractiveObj script, leaving everything as zero except for the
reference to ObjectInteraction (also an instance on the flag Prefab).

3.	 Add an ObjectInteraction script to this object, and connect the reference
to the InteractiveObj script. Set its parameters to PutInInventory and
Unique, and set the texture to the state flag texture; the text will be the icon
that shows up in the inventory when this item is collected.

4.	 Add a MissionToken script. Name the token the same as the state, and give
each flag a unique ID ranging from 0 to 50.

Congratulations! Once you have done this 50 times (it may take a while), you will
have 50 state flag Prefabs. These should then be added to the flagPrefabs list in
the SetupMissionOne script.

www.it-ebooks.info

http://www.it-ebooks.info/

Mission One – Find the Facts

[70]

Creating the pop-up card Prefabs
This game level communicates the learning objectives to the player through the
information cards. This information will be baked onto a single texture in your
favorite external pixel art program. When the player picks up a flag, or presses on
the flag button in the inventory, a pop-up card for the relevant state is displayed as
shown in the following screenshot:

The pop-up card Prefabs can be created by performing the following steps:

1.	 Create a new GUITexture object, and name it popup_<statename>.
2.	 Drag-and-drop an instance of the TriviaCardScript to the GameObject.

Set the card width and height to 320,320.
3.	 Drag-and-drop an instance of SimpleLifespanScript to the GameObject.

Set the seconds parameter to 4. This will make sure that if the information
card disappears, it does not matter if you toggle it off from the inventory
or if the user just lets it time out naturally.

4.	 Repeat steps 1 to 3 for each of the 50 states.
5.	 Drag-and-drop a reference to each of these Prefabs to the appropriate

flagObject Prefab. Note that the reference for the game information
pop up is in the CustomGameInfo component of the flag object.

Congratulations! You have now created the learning content for the first level of the
game. If you need to update these, simply edit the textures in your pixel art program,
and Unity3D will naturally update the code and Prefabs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[71]

Creating the mission pop-up Prefab
These game missions communicate their state to the user through pop ups. We need
to create two more special purposes dialog boxes that the game will use to reward
the user and to inform the user of what the next objective is in the game. The first
one, named returnFlagsToMonument, communicates to the user that they have all
five flags and should walk back to the monument to finish. The second one, named
Level1Done, communicates that the level is done and that the next level will load.

We can create a mission pop-up Prefab by performing the following steps:

1.	 Create a new GUITexture object, and name it returnFlagsToMonument.
2.	 Drag-and-drop an instance of the TriviaCardScript to the GameObject.

Set the card width and height to 320,320.
3.	 Drag-and-drop an instance of the TriviaCardScript to the GameObject.

Set the card width and height to 320,320.
4.	 Drag-and-drop an instance of SimpleLifespanScript to the GameObject.

Set the seconds parameter to 4. This will make sure the pop up disappears
after it times out.

www.it-ebooks.info

http://www.it-ebooks.info/

Mission One – Find the Facts

[72]

5.	 Repeat steps 1 to 3 for another texture named Level1Done.

Congratulations! These two Prefabs will be used to communicate the user's
progress through the learning objectives in level one. Create Prefabs by
dragging-and-dropping these GameObjects to the project tab. We will place
these Prefabs into the missionMgr script to finish configuring the level.

Creating the mission reward Prefabs
By exploiting the fact that a GameObject Prefab can contain any number of
sub-objects in the hierarchy, we can create Prefabs with any number of results
to be achieved in the world when a mission is complete. We will use this fact to
aggregate and pack together all of the results we want to achieve when the user
accomplishes their goals. We will use this fact to construct a reward for when
the flags are all found and a separate reward for when the flags are returned
to the monument.

Creating the FoundAllTheFlags Prefab
The FoundAllTheFlags Prefab can be created by performing the following steps:

1.	 Create a new GUITexture object, and name it returnFlagsToMonument.
2.	 Drag-and-drop an instance of the returnFlagsToMonument Prefab to

this object.
3.	 Create a new Cube GameObject, and name it FlagReturnTriggerObj. This

object will be an invisible InteractiveObj class that will (on being picked
up by the user), add the final token to the inventory, which will satisfy the
second mission in the level.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

4.	 Scale and position it so that it rests on top of the monument. Give it a large
height, and make it about 15 percent wider and deeper than the monument
itself. Add this object to the FoundAllTheFlags object.

5.	 Disable the mesh renderer on this object so that we no longer see it.
6.	 Add MissionToken to this object, give it an ID of 10. Give it a title

ReturnToBase and an appropriate description, such as Returns Flags
To Base.

7.	 Add an object interaction script. Set the interaction to AddMissionToken,
and set the interactionType to Unique.

8.	 Add an InteractiveObj class, and set the OnCloseEnough script reference
to the ObjectInteractionScipt from this object!

9.	 Drag this object to the project tab to create a Prefab from it.

Congratulations! Now, when this parent object (FoundAllTheFlags Prefab) is
instantiated, the following will occur:

•	 The returnFlagsToMonument Prefab will be instantiated. This object will
detach itself from the parent and display the pop-up GUITexture for a few
seconds before destroying itself.

•	 The FlagReturnTriggerObj Prefab will be instantiated. This invisible
object will sit at the top of the monument. When the user walks back to the
monument, this will result in a new mission token being collected, which
will activate the second mission and complete the level!

Creating the ReturnedTheFlagsResult Prefab
One other Prefab is needed to finish the logic for level one. This Prefab will be
instantiated once the user has gotten all the five objects and returned them to
the monument.

1.	 Create a new, empty GameOobject, place it at (0,0,0), and name it
ReturnedTheFlagsResult.

2.	 Add an instance of the Level1Done Prefab (that displays the pop-up dialog
box for level completed) as a child of ReturnedTheFlagsResult.

3.	 Create a new, empty GameObject, name it InventoryPlaceAllFlags,
and add it as a child of ReturnedTheFlagsResult.

www.it-ebooks.info

http://www.it-ebooks.info/

Mission One – Find the Facts

[74]

4.	 Add five instances of the InventoryPlaceOnMonument script to this object.
Set each one to a unique ObjectIndex from 0 to 4. This will remove a single
object from the inventory and attach it to the monument at the flag mount of
the same index.

5.	 Drag this Prefab back into the project tab to make a Prefab from this
compound object.

Congratulations! Now when this parent object (ReturnedTheFlagsResult) is
instantiated, the following will occur:

•	 The pop-up Prefab will be instantiated. This object will detach itself from
the parent, and display the pop-up GUITexture for a few seconds before
destroying itself.

•	 The FlagReturnTriggerObj Prefab will be instantiated. This invisible
object will sit at the top of the monument. When the user walks back to the
monument, it will result in a new mission token being collected, which will
activate the second mission and complete the level!

Configuring the mission manager
Before we can test our game level, we need to configure the MissionMgr class.
This class acts as the dispatcher and gate for the dynamic behavior of the game
logic. It can be configured by performing the following steps:

1.	 Ensure that there are two missions in MissionMgr; the size of the missions
list in the mission manager is equal to 2.

2.	 Generally, the default values inside a mission don't really matter (since we
set them up in custom scripts such as SetupMissionOne.cs; however, some
values need to be preconfigured).

3.	 In the second mission (mission one), make sure that the token array is of size
1, and has a reference to the FlagReturnTriggerObj mission token on the
InteractiveObject class that is sitting on top of the MissionMgr script.

4.	 In the first mission, set the reward reference variable to the
foundtheflagresult Prefab in the project tab.

5.	 In the second mission, set the reward reference variable to the
returnedtheflagsresult Prefab in the project tab.

And that's it! Now when these two missions are finished, those Prefabs will be
instanced, causing pop ups to appear and time out, and causing other interactions
with the inventory and missions systems as discussed previously.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[75]

Playing the level!
We can test our work now by playing the level! Drive the player around the level to
find the five missing flags. Once found, press their icon in the inventory to read the
information about each state. Once all five flags are found, the system will tell you
to return them to the monument, at which time the flags will return and the mission
will be done.

Summary
We have shown how to apply the Player, InteractiveObj, ObjectInteraction,
InventoryMgr, and MissionMgr classes that we developed in the first two chapters
to create a fun "collect-and-interact" mechanic system for our e-learning game. We
also reviewed a model of fun and "gamification" and how this model can be used in
e-learning games to design content that will present and encourage consolidation of
learning objectives in the user.

Going forward, we will review our code thus far, and make some maintenance
changes to future proof the code, ensuring we can extend it and that it will
remain suitable for subsequent e-learning games with a different content.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Mission One – Future
Proofing the Code

We have designed and implemented a working first pass on the first mission of
our game. Take a moment to step back and celebrate! To make sure we can finish
creating the last two levels and finish polishing this level, we will need to revisit
some of the code we have already written to ensure it is extensible to meet the
needs of the other two missions in our game.

We will restructure the existing game into a number of subscenes. Then we will
reintegrate the code so that the game can support multiple scene files; hence, it
will support multiple levels. We will extend our interactive object system so that
it supports more general purpose operations with transforms, which are necessary
for future mission requirements. Finally, we will finish the trivia cards with an eye
towards testing and application for the last levels.

In this chapter, we will cover the following topics:

•	 Reorganizing our GameObjects in the Scene view
•	 Adding new scenes to the project
•	 Creating the PopupMainMenu GameObject
•	 An introduction to Finite State Machines
•	 Implementing the GameMgr script
•	 Reflecting on our code changes
•	 Analyzing of code functionality
•	 Updating some systems

www.it-ebooks.info

http://www.it-ebooks.info/

Mission One – Future Proofing the Code

[78]

Reorganizing our GameObjects in the
Scene view
The following GameObjects will be the focus of our design activities in this chapter:

•	 GameMgr: This script will handle the choreography between the game and
its particular states. It will hold the logic that moves the game from the main
screen and between the individual levels.

•	 PlayerData: This script will hold the game instance-specific attributes of the
player. This will include variables such as score and current level.

•	 Game: This is the GameObject that holds the scripts necessary for game
control. It will hold the GameMgr script as well as the MissionMgr script.

•	 _level1: This class will hold all of the objects that are specific to the
first level.

•	 _global: This class will hold all of the objects that are global or persistent
across all game levels as shown in the following screenshot:

_global

Player1

Game

MainCamera

Taking an already working system of code and reworking it so that it is more
extendible is called Refactoring. By refactoring our game into a number of scene
files, we will find that the game becomes easier to extend and maintain. This is
important for us to be able to add new lessons and levels to the game.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[79]

Previously, our approach to game programming in Unity was to place all
GameObject instances inside one scene file. This worked because the lifespan
of all GameObjects was the same—the duration of the whole program.

In a multilevel game, we will want to keep some objects persistent for the
entire lifespan of the program. Other objects, we will want to only use during a
particular level, and perhaps we may want some objects only fleetingly during a
particular level.

Let's separate our work thus far into two scene files: one for persistent objects and
one for level-one-specific objects.

Creating a global scene
The global scene file will contain all persistent GameObjects and scripts that have a
lifespan of the entire game. To create this file, perform the following steps:

1.	 Create a new empty GameObject, and name it _global.
2.	 Set its position to (0, 0, 0). Doing this before we drag-and-drop objects

beneath it will ensure that the world space positions of the child objects
will stay the same as they were previously.

3.	 Drag-and-drop the following GameObjects beneath the _global
GameObject. These will eventually be moved to a new scene file
named MAIN as shown in the following screenshot.

°° MainCamera

°° MissionMgr

°° Player

4.	 Rename MissionMgr to Game. We rename it because we are expanding the
responsibilities of this object beyond just MissionMgr; we will be adding
another script to this object to increase its responsibilities in the game, so a
more generic name is appropriate.

5.	 Create a new script, and name it GameMgr. Attach it to the object named Game.
We will implement this script later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Mission One – Future Proofing the Code

[80]

6.	 Create a new script, and name it PlayerData. Attach it to the object named
Game. We will implement this script later in this chapter.

7.	 Create a new scene by selecting New Scene from the File drop-down
menu. This will be the new starting scene for our game going forward.
Name it MAIN.

8.	 Switch back to the CHAPTER3_SCENE1 scene file. Copy the _global
GameObject from the Hierarchy tab by either right-clicking on it and
selecting Copy or by clicking on the object and pressing Ctrl + C.

9.	 Switch to the MAIN scene again, and paste the _global object into this scene
by pressing Ctrl + V.

Congratulations! We have created a scene file that will act as the launcher for our
new game framework. Let's repeat the process for the first level.

Creating a first level scene
The LEVEL1 scene file will contain all transient GameObjects and scripts that have
a lifespan for just the first level of the game. The level one scene will look like the
following screenshot:

To create the first-level scene, perform the following steps:

1.	 Create a new, empty GameObject, and name it _level1.
2.	 Set its position to (0, 0, 0). Doing this before we drag-and-drop objects

beneath it will ensure that the world space positions of the child objects
will stay the same as they were previously.

3.	 Switch back to scene Chapter3_Scene1. Drag-and-drop the following game
objects beneath the _level1 GameObject:

°° Directional light

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[81]

°° FlagLocators

°° Monument

°° Terrain

4.	 Create a new scene by navigating to File | New Scene from the
drop-down menu. This will be the scene for our first level going
forward. Name it LEVEL1.

5.	 Switch back to the CHAPTER3_SCENE1 level. Copy the _level1 GameObject
from the Hierarchy tab by either right clicking on it and selecting Copy or by
selecting the object and pressing Ctrl + C.

6.	 Switch to the LEVEL1 scene again, and paste the _level1 object into this
scene by pressing Ctrl + V.

Congratulations! We now have a second scene file that will correspond to the
game content for level one. Now we need to make sure that these levels are
added the project.

Adding new scenes to the project
In order to ensure these scenes are available to the game project, we need to add
them to the build as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Mission One – Future Proofing the Code

[82]

To add the scenes to the build, perform the following steps:

1.	 Double-click on the MAIN scene in the project tab. Once it is loaded, select
Build Settings from the File drop-down menu, and notice that the previous
pop-up window appears. Once there, click on the Add Current button;
observe now that a new scene file name has been added to the scenes in
build window.

2.	 Repeat this process for LEVEL1 as well as for CHAPTER3_SCENE1, CHAPTER2_
SCENE1, and CHAPTER1_SCENE1. While we don't need the last three in our
final build, let's add them so that they are available for convenience.

Congratulations! Now these new scenes will be accessible to the game. Let's connect
the new level one scene to the main scene file with a simple pop up.

Creating the PopupMainMenu GameObject
A great game requires an interesting and usable user interface system. Our game
will require a number of pop-up windows that will be used to communicate to
the user. The user will also be able to interact with the game by selecting buttons
on pop ups. The first pop up we need to create is the one that starts the game on
the main menu.

A number of middleware technologies exist to help the Unity developer create active
UI systems quickly and with high quality; at the time of writing this book, NGUI and
EGUI are pop-up systems available on the Unity asset store for this very purpose.
While it is possible to use any one of these or other extensions to build your UI, we
will develop our own from scratch. Let's create a start screen from which we will
launch level one by performing the following steps:

1.	 Switch to the MAIN scene file.
2.	 Create a plane, and parent it to MainCamera. This will serve as the

background to our pop-up window panel.
3.	 Set its position to (0, 0, 0), and orient it towards the camera. Translate it along

its z axis so that it is forward from the camera by 9 units.
4.	 Scale the plane by 1.5 on the x axis, and rotate it to 270 degrees around the

x axis. At this point, the plane should move with the camera and occlude its
line of sight to the rest of the scene. Now, by enabling this GameObject, we
have a fullscreen backdrop for menus. Name this plane PopupMainMenu.

5.	 Create a new, colored material, and apply it to the plane. In our example,
I selected the green color.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[83]

6.	 Create a 3D text object. Notice that the component is named TextMesh. This
will be used to communicate with the user in our simple menu page. Parent
it to PopupMainMenu. Set its relative position to (-3.3, 0.8, 2.9) so that it is
near the top and centered. Set its scale to (0.6, 1, 1), and apply a 90 degree
rotation to the x axis so that it is nicely centered at the top of the screen.

7.	 Note that the TextMesh component in the inspector is a container for
the 3DText specific parameters. Set the text to the name of our game
Geography Quest.

8.	 Set the CharacterSize to 0.5 and the FontSize to 21 to make the title
appear with an appealing size and shape. Just as one might do with a
word processor, set the font style to bold for extra visual impact.

9.	 Name this 3DText object textGeographyQuest to keep the hierarchy easy to
read and maintain.

10.	 Now, we need a prompt for the user to click to start. Let's duplicate the
previous GameObject by clicking on it and pressing Ctr + D.

11.	 Rename this object textClickToContinue. Set the text field of the TextMesh
on this object to New.

12.	 Move the GameObject to (-1.8, 0.9, 1.2), and scale the font size down to 15
to place and scale the text appropriately.

13.	 Our menu is almost complete! Let's write a script to handle the mouse-click
event. Create a new script, and name it MainMenuScript. Attach this script to
the PopupMainMenu object.

14.	 This script will have two private member variables. One to store the main
Game GameObject (the one that holds the GameMgr and MissionMgr classes)
and one to hold the GameMgr script instance itself (attached to Game). We
make these private because the object being referred to doesn't need to
change during the lifespan of the game, so finding it automatically on startup
is more robust. They can be configured as shown in the following code:
private GameMgr gm;
Private GameObject GameObj;

15.	 Inside the Start() method, we will search for the object named Game. If it
is found, we store a reference to the GameMgr script instance attached to this
object as shown in the following code. Recall that the Start() method gets
invoked by the Unity engine for any class that inherits from MonoBehavior
the first time it runs after instantiation:
GameObj = GameObject.Find("Game");
if (GameObj)
{
 gm = GameObj.GetComponent<GmeMgr>();
};

www.it-ebooks.info

http://www.it-ebooks.info/

Mission One – Future Proofing the Code

[84]

16.	 We now implement a method to handle the mouse click as shown in
the following code. Unity will automatically invoke a method called
OnMouseDown() when the user clicks the mouse, so we will use that for
detecting the click. This is one of many methods that the MonoBehavior
base class provides for new C# scripts that you create in Unity3D with
the new script wizard:
void OnMouseDown() { };

17.	 Inside this method, if we have a GameMgr script reference, then we will do
two things. We call gm.SetState(), and change the state to eGameState.
eGS_Level1 as shown in the following code. This enumeration is defined
inside of the GameMgr class and corresponds to the game being in level one.
We will investigate how GameMgr handles this next. Of course, gm will only
be defined if we remember to rename the MissionMgr to Game as requested
earlier in this chapter:
gm.SetState(gameMgr.eGameState.eGS_Level1);

18.	 We also then set the GameObject active flag to false. This causes the object
to cease to update. No scripts or components attached to PopupMainMenu will
run until active is set to true again. This has the effect of disabling the pop
up (which is what we will want).

Congratulations! This pop up will be created when the MAIN scene is loaded,
and when clicked, it will tell the GameMgr to change levels to level one.

An introduction to Finite State Machines
A common strategy in game play programming (and computer science in general) is
to model a system in terms of discrete objects and their interactions with one another.
To do this requires us to understand what the participants are in a system, how they
operate in different scenarios, and how they change states.

The Finite State Machine (FSM) is one such technique. With this, the idea is to
model the behavior of the object in a number of code blocks. Inside each one, you
put the specific code for that block that makes it unique. You also determine what
scenarios cause an object to switch from one block (state) to another. Because each
state is an encapsulation, it makes your code extensible and maintainable (which is
a great thing!).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[85]

Implementing an FSM in a game
While there are many ways of programming an FSM, we will commonly encounter
two strategies as game programmers on our e-learning example. Each one has its
own unique structural components, benefits, and drawbacks.

The switch case FSM
In this form, we require three components:

•	 An enumeration to list the states: Each individual element in the enumerated
type corresponds to a single state in the FSM model. For example, an FSM
with three states could be implemented in the enumeration eMyState as
shown in the following code:
public enum eMyState {
 STATE_INVALD = -1, // an error state which can be used to
 encode the logic for processing an error condition
 STATE_A = 0, // an arbitrary state in an FSM
 STATE_B = 1, // a second arbitrary state
 STATE_C = 2 // a third arbitrary state, et cetera
};

Note that we make the enumeration public so that other client classes can
have access (to set the state). Also note that we have four distinct states for
an FSM with three logical states as it is useful to encode an error state in our
type for -1. A variable of type eMyState is declared in the class to store the
current value of the state.

•	 A switch case block: This structure allows the program to jump to the current
state/block (as indicated from the enumeration) to invoke the code for that
state as shown in the following code:
Switch (state) {
 case(eMyState.STATE_A):
 {
 // code for STATE A here
 break;
 }

 case(eMyState.STATE_B):
 {
 // code for STATE B here
 break;
 }

 case(eMyState.STATE_C):
 {

www.it-ebooks.info

http://www.it-ebooks.info/

Mission One – Future Proofing the Code

[86]

 // code for STATE C here
 break;
 }

 Default:
 {
 // handle fatal error
 break;
 }
}

•	 A system for encoding and switching state: Two variables of type eMyState
are used. One to encode current state and one to encode previous tick state.
The previous tick state updates itself to current state on every frame of the
update loop. When the current state is not the same as the previous tick state,
it means that we have changed state and need to update the current state var:
if (gameState != _prevGameState)
{
 ChangeState(gameState);
}
_prevGameState = gameState;

Classes implementation of FSM
In this second form of FSM, an individual C# class is used for each state. This class's
update loop then holds the body of the code for that state's specialization. Changing
states is performed the same way as in the previous example. An enumeration is also
used to give other systems in the codebase a means of setting states.

Implementing the GameMgr script
Let's implement the GameMgr script so that it can manage the loading (and future
unloading) of scene files and assets. Implementing this in a flexible way now
will make our game more extensible when we have future levels to add. It can
be implemented by performing the following steps:

1.	 Recall that we have already created an empty script named GameMgr and
attached it to the Game GameObject. If you have not already done this,
no worries; just create a new script now, and attach it.

2.	 In order for GameMgr to do its job, it will act as a mediator between
popupMenu and the scene files of the game. When GameMgr receives a
message to change its state, it will load and unload the appropriate
scene files.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[87]

3.	 It is important that at this point we have added the LEVEL1 scene file to
the build settings; if you have not yet done this, make sure it has been
added now.

4.	 We will use a custom enumeration in this class to build a state machine.
This is a data structure that will let us build a model of how all scene files
in the game interact with one another (which loads first, which stays
persistent, which loads next, and so on). For complex systems later in
the game, we will use this concept repeatedly.

5.	 We add an entry for both scene files we have created as well as a special
error value that we can use to trap potential data problems. Extending
this enumeration is as simple as adding more entries to this structure and
assigning new entries a new unique integer as shown in the following code:
public enum eGameState
{
 eGS_Invalid = -1, //used to encode error condition when
 setting gamestate
 eGS_MainMenu = 0,//a state to encode being in the mainmenu
 eGS_Level1 = 1//a state to encode being in level1
}

6.	 For GameMgr to be able to detect when a state change occurs, we will
require two variables: one for the GameState and one for the GameState
on the previous time the Update() loop ran. By checking each frame if the
GameState has changed, we can detect when to load a new level as shown
in the following code:
public eGameState gameState;
private eGameState _prevGameState;

While we don't want the user to be able to set prevGameState ever from
the inspector, we allow the GameState to be adjusted by the user for
debugging purposes.

7.	 In the Start() method of this class, we initialize GameState and
prevGameState to the same value as shown in the following code. With
an initial value of eGS_MainMenu, this corresponds to the main menu scene
(which is the one we will default to when we load the MAIN scene). How
convenient! Note that since both the previous and current GameStates
are the same, GameMgr will not try and load a new scene file right away:
GameState = eGameState.eGS_MainMenu
prevGameState = eGameState.eGS_MainMenu;

www.it-ebooks.info

http://www.it-ebooks.info/

Mission One – Future Proofing the Code

[88]

8.	 We create a public method to allow other systems to set the state as shown in
the following code. By ensuring that we always use this function rather than
assigning to state directly, it will allow us to change state to private later on
(once the game is done) without having to change the code elsewhere:
public void SetState(eGameState gs)
{
 GameState = gs;
}

9.	 In the Update() loop, the code will check if GameState is not equal to
prevGameState. When this happens, it means that in this frame, the
GameState was changed by another system and that GameMgr should
change levels. To perform the state change, the code will invoke a
custom private method ChangeState() as shown in the following code:
void Update() {
 if (GameState != prevGameState)
 {
 ChangeState(gameState);
 }
 prevGameState = GameState;
}

10.	 The ChangeState() method checks the current game state (guaranteed
to have just changed this frame) as shown in the following code. We use a
switch statement to handle selection of conditional logic based on the value
of the new, current game state. Switch is a variation on the compound if/else
structure you may have seen before; when there are multiple options to select
from, switch is regarded by many as being easier to read and maintain:
GameState = gs;
switch(gameState)

11.	 We don't need to do anything at this point for the case where we switch
states to MainMenu (since we only allow this state on start by default). Recall
that PopupMainMenu switches to LEVEL1 GameState on click. We handle
this by calling Application.LoadLevelAdditive("LEVEL1"). This line of
code loads the scene file by name (so long as it has been added to the build)
and adds all of the game objects from that scene to the current scene. The
net result of this will be a scene file with two game objects at the top level;
_global (and all of its children) and _level1 (and all of its children). Since
we never duplicate objects between scene files, we now have a complete
playable scene as shown in the following code:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[89]

 case(eGameState.eGS_Level1):
 {
 Application.LoadLevelAdditive("LEVEL1");
 break;
 };

If you have Unity3D Pro, you can replace Application.
LoadLevelAdditive() with Application.
LoadLevelAdditiveAsync(), which will make the level transition
appear smoother for large levels (since it doesn't block the renderer). If
you accidentally use LoadLevelAsync() or LoadLevel(), you will
find that the objects that were previously loaded will be deleted when the
new level loads up (possibly _global and its children in our case).

Congratulations! We now have written a game state manager class GameMgr, which
uses the mediator pattern to selective load scene files that correspond to different
levels in our game.

Reflecting on our code changes
Before we can test our code properly, let's reflect on what we have done. While
we have made our game framework more flexible and extensible, we have also
broken some assumptions from before that need repairing as discussed in the
following points:

•	 The MissionManager class has been renamed to Game. This means that all
scripts that used to do a GameObject.Find("MissionManager") need to
be updated to Find("Game").

•	 We have separated some objects into the MAIN scene and some into the
LEVEL1 scene. This means that objects that have a reference to an object
that is now in another scene will be broken. To repair these, we need to
modify the code for the object in the scene. See SetupSceneOne for an
example of this.

www.it-ebooks.info

http://www.it-ebooks.info/

Mission One – Future Proofing the Code

[90]

Analyzing code functionality
We can test our work now by switching to the MAIN scene file and clicking on
Play. Notice right off the bat that there is one GameObject in the Hierarchy view,
the _global object that holds the main camera, the Game, and the Player. We should
also see the main menu pop up right away as shown in the following screenshot:

Clicking anywhere on the pop up sends a message to GameMgr to switch the level to
Level1. Upon doing so, we should notice two GameObjects in the hierarchy view:
the _global object and the level1 object (which has the terrain, monument, flag
holders, and directional light) as shown in the following screenshot. By using this
structure of relating the scene name to the name of a game object at the root of the
project view, we will make unloading of levels really easy.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[91]

Updating some systems
We introduce a new class, PlayerData, to track the current level and points accrued
of the player. To make use of this new functionality, we need to update some
systems by performing the following steps:

1.	 Switch to the LEVEL1 scene. Double-click on the PlayerData script to begin
editing it.

2.	 Add a public int score and a public GameState level; note that in order
to create an instance of the enumeration defined inside the GameMgr class,
we need to prefix with GameMgr as shown in the following code:
public class playerData : MonoBehaviour {
public int score;
public GameMgr eGameState;

3.	 Add a public method called addScore(int dScore). This method will be
used by the different systems (primarily MissionMgr), to add score to the
player's record. Note that since we use an integer for score, we could use this
same method to add score or penalize the player (by adding negative scores)
as shown in the following code:
public void AddScore(int dScore)
{
 score += dScore;
}

4.	 Add a public method called StoreProgress(gameMgr.eGameState lvl).
This method will be used to track which level the user is currently trying
to complete. We declare the method public rather than private so that
other classes will be allowed to invoke this method on an instance of the
PlayerData component. If it were private, then the code would not compile
as shown in the following code:
public void StoreProgres{gameMgr.eGameState lvl)
{
 level = lvl;
} ;

Now, let's connect the score tracking to the points in the game. Recall that
MissionMgr stores a points field for each mission once it is completed. Let's
go to MissionMgr and modify it to add the completed mission points to the
PlayerData component.

www.it-ebooks.info

http://www.it-ebooks.info/

Mission One – Future Proofing the Code

[92]

5.	 In MissionMgr, in the Validate() method, let's add a code block that
searches for the PlayerData component on the Player GameObject. If it is
found, then the points from the mission are added to the PlayerData score
as shown in the following code:
GameObject go = GameObject.Find("Player1");
if (go)
{
 PlayerData pd = go.GetComponent<PlayerData>();
 if (pd)
 pd.AddScore(m.points);
}

6.	 In order to visualize the player's score, let's add a guiText script to the
bottom-right corner of the screen to show the score. To begin, create a
new guiText script.

7.	 Name this object score. Parent it to the _global GameObject (because it
should have persistency in the game). Set its position to (1, 1, 0) to offset the
coordinates of the pixel-offset to the upper-right corner of the screen. This
way, the negative x and y components of the pixel-offset will offset the score
from the corner by the specified amount. Set x to -60 and y to -20.

Making the ScorePlate active
Let's create a simple script to update the text field of this score as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[93]

The following script will update the text field in the upper-right corner of the screen
so that it reflects the score stored in PlayerData:

1.	 Switch to the MAIN scene. Create a new script, and name it scoreScript.cs.
2.	 Attach an instance of this script to the score GameObject.
3.	 In the start method of this script, find the GameObject named Player,

and then store a reference to the PlayerData component on this script.
4.	 The score script needs to update a member of the GUIText GameObject

score, so the update loop that this script should be called from is OnGUI().
Inside this loop, we check for a PlayerData component as shown in the
following code:
void OnGUI() { }
GameObject go = GameObject.Find("Player")

5.	 If there is one, we take the score value from PlayerData and assign it to
the text field of the textbox. Note that we have to use the C# helper function
.ToString() to convert the integer score value to a string that the GUIText
can use as shown in the following code:
if (pd)
{
 int score = pd.GetScore();
 this.gameObject.GetComponent<GUIText>().text =
 score.ToString();
}

Congratulations! Now, if we switch back to the MAIN scene and playtest, note that
once you have collected five flags, the score updates to 500. Return the flags to the
monument for another 500 points!

www.it-ebooks.info

http://www.it-ebooks.info/

Mission One – Future Proofing the Code

[94]

Updating the player motion algorithm
To make our game character move through the level more smoothly, we will modify
the motion algorithm. Instead of relying on gravity on the rigid body to keep the
player anchored to the ground, we will cast a ray downward and glue the player to
the polygon directly below. In this way, the curvature of the terrain will play less of a
role in restricting the player. This can be achieved by performing the following steps:

1.	 Switch to the MAIN scene, and double click on the PlayerControls
script on the player. In the UpdateMovement() method, directly after the
CharacterController.Move() method is called, declare a RayCastHit
class named hitInfo as shown in the following code. This class will be used
to return the position of the polygon from a raycast that is directly below
the player. By invoking a raycast downward, we can check what other
GameObject is intersected and use this information to glue the player
to the ground directly at the point of contact:
RayCastHit hitInfo;

2.	 We create a new ray that points straight down from the player. We use the
player's transform to determine the downward direction rather than the
world transform so that even if the player is rotated, the raycast will always
look down relative to the character as shown in the following code:
Ray r = new Ray(this.transform.position, -Vector3.up);

3.	 We query the physics system by casting the previous ray and allowing the
PhysX integration to return the polygon that this raycast has hit, through
the hitinfo variable, as shown in the following code:
Physics.Raycast(r, out hitinfo);

4.	 Finally, we set the y position of the character to the y position of the poly that
was hit in the raycast, plus an offset. We do this by creating a new Vector3
variable to assign to the transform.position variable as we cannot assign
to just a single component of this value type. The offset that we use to raise
the character in the y direction is the height of the player's collision capsule
as shown in the following code:
this.transform.position = new
 Vector3(this.transform.position.x, hitinfo.point.y +
 (this.collider as CapsuleCollider).height,
 this.transform.position.z);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[95]

Playing the level!
We can test our work now by playing the level. Start the level by running the MAIN
scene. Notice the main menu pop-up window that presents the game and waits for
the player to click to begin. Once level one loads, drive the player around the level
to find the five missing flags. Once found, press their icon in the inventory to read
the information about each state as these information card Prefabs have now been
updated with interesting trivia about each region. Once all five are found, the system
will tell you to return them to the monument, at which time the flags will return, and
the mission will be done. Note the score updating when each mission is updated and
the smooth character motion across the terrain.

Summary
We have engaged in an iteration on our game program and refactored the working
level from the last chapter into multiple scenes. We have created a GameMgr class to
handle the new game states for our game, and we have associated individual level
scenes with unique states; a good practice for flexible and extensible programming.
We updated the camera, score, and PlayerData systems to add further polish and
functionality to our game. Next, we will learn about the various user interface
options that Unity provides. We will use these to develop a HUD system for
our game that will meet the final needs of our e-learning game.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

User Interfaces in Unity
To provide the level of polish necessary for commercial applications, Unity offers a
variety of user interface systems to the game programmer. Understanding what each
of these systems is designed to do, what each is good at, and how to combine them,
will enable the programmer to build retail class menus, navigation buttons,
and more.

In this chapter, we will investigate, analyze, and understand these systems. We will
then apply this knowledge and build an extensible pop-up system using Prefabs
for commonly used scenarios in our game. We will finish by integrating these into
mission one with an eye on future missions and future extensibility. In this chapter,
we will cover the following topics:

•	 Getting familiar with the Unity UI classes
•	 Developing the pop-up system
•	 Exploring the GUIText component
•	 Exploring the GUITexture component
•	 Exploring the TextMesh component
•	 Creating clickable text elements
•	 UnityScript and the GUI Button object
•	 Building the main menu pop up
•	 Testing our work
•	 Future extensions

www.it-ebooks.info

http://www.it-ebooks.info/

User Interfaces in Unity

[98]

Getting familiar with Unity UI classes
We will cover the following Unity UI systems:

•	 GUIText: This component displays a 2D font in screen space. It is well suited
for the in-game HUD text that stays relatively stationary on the screen. It is
displayed in screen-relative coordinates.

•	 GUITexture: This component displays a 2D image in screen space. It is well
suited for the background and border graphics for in-game HUD elements.
Just as the preceding component, this component is also displayed in screen-
relative coordinates.

•	 TextMesh: This component generates a 3D mesh for a given string
and displays it in the game world in 3D coordinates. This mesh can be
positioned and oriented for in-game-specific purposes. This makes it
suitable for displaying the text on the screen at a size that is invariant
to the screen resolution.

•	 GUIButton: The Unity Engine offers a script-only API for generating user
interface buttons. These are suitable for 2D elements that need to be animated
in screen space and for the dynamic menu UI in the game. These elements
cannot be placed in the editor like the other classes discussed earlier in this
list; they are controlled entirely from within C#.

Developing the pop-up system
As a case study, we will apply our knowledge of the systems described earlier as we
build the following Prefabs. The pop-up system will consist of a window that can
display text and graphics. An instance of a pop up can have a number of buttons,
each of which will interact with the game in an easy-to-program way. We will
integrate them into our existing mission one to achieve a higher level of polish, and
these will form the new active user interface, which the user will use to communicate
with the game, and with which the game will communicate with the user.

•	 popupMenu: This pop-up Prefab will provide the usability for an in-game
menu system. It will have clickable buttons for the user to interact with.

•	 popupInfo: This class will present information about the game to the user,
with a single button to interact with.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[99]

Exploring the GUIText component
The easiest way to display text on screen in a camera-relative way is through the
GUIText component. To use this component, you need to add an instance of this
component to an existing game object in your scene, and set the text field to the
string you want to display.

Please keep in mind that the way in which the transform component of the GUIText
GameObject is processed for GUIText is different for other GameObjects with the
same component, which we will discuss later.

Interpreting the members on GUIText
A (0.5, 0.5, 0.0f) position corresponds to the center of the screen. For this
component to work as designed, the object needs to be placed here in the world.
The x and y components of the (x, y, z) vector on the transform range from 0.0f to
1.0f each.

Do not place GUIText on a moving object. If the transform moves, the
meaning of the text position will change, and the text will likely go some
place you don't want it to! If you want to track a moving object with
GUIText, then you need to adjust the x and y values in the Pixel Inset
vector instead of parenting it.

www.it-ebooks.info

http://www.it-ebooks.info/

User Interfaces in Unity

[100]

The Pixel Inset vector is a special 2D vector that specifies where on the screen
(relative to the transform's x, y components) the text should be displayed. The units
of this are in pixels and not screen percentages. This means that if you resize your
window, these numbers may not remain correct. The fix for this is to set your pixel
offsets via a script.

The Anchor and Alignment fields on the GUIText component correspond to the
location where the position should be tracked on the string itself. With options in the
center or at the corners, the API allows the programmer to easily align the text field
at the center or the margin.

The Font Size and Font Style fields allow the programmer to specify the size of the
text and whether it should be rendered normal, bold, or italic. Use these liberally to
give your text some added visual pop and personality.

The Font field is where the actual font file reference for this text is established.
By importing various fonts into Unity, you can render your 2D text in a variety
of typesets.

Exploring the GUITexture component
As we can now display 2D text, let's discuss how we can add visually appealing
graphics to our interfaces; the GUITexture component does precisely this. You can
see the GUITexture component as follows:

The Texture field is a reference to a 2D graphic element. This could be a .png, .jpg,
or .bmp file that you created in the Paint program on your computer. Each file type
has its benefits and drawbacks depending on how much compression you need in
your file. Dragging-and-dropping it into the Project tab will import the image, after
which you can set the reference.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[101]

The Color field lets the user select a specific tint for the GUITexture. This is a
convenient way to fine-tune the appearance of the texture without having to
edit it in your external Paint program.

The Pixel Inset field works in a way similar to the Pixel Offset field. The X and
Y fields correspond to the screen space coordinates of the upper-left corner of the
texture. The Width and Height fields provide a way to stretch and scale the graphics
vertically and horizontally; combining these two lets the programmer place and
resize the visuals precisely.

The Left Border, Right Border, Top Border, and Bottom Border fields provide a way
to tile the texture to the left, right, top, or bottom of the original. These measurements
are in pixels as well and not in screen percentages.

To make sure that the GUITexture component you create displays
behind the GUIText that you instantiate, you can adjust their relative
priorities with the Z component of the transform position. Larger z
components will draw closer to the camera and smaller ones (even
negative ones) will draw farther away. Keeping this in mind, we can sort
our textures and text elements as required by our design.

Exploring the TextMesh component
The TextMesh user interface component operates differently than the previous
two components. It actually generates a polygonal mesh based on the text rather
than display a 2D font or 2D texture. It then places the mesh at the location and
orientation specified in the GameObject's transform. This means that we can place
this mesh directly in the game world!

www.it-ebooks.info

http://www.it-ebooks.info/

User Interfaces in Unity

[102]

Ideal use of TextMesh
One of the useful applications of TextMesh is that it can be placed in the world at
its transform position. This makes it adept at labeling objects that move around the
world. This can be done by parenting the TextMesh component to the GameObject,
with a slight vertical offset in the TextMesh transform.

Creating clickable text elements
To process whether any of the preceding elements have been clicked or not by the
mouse pointer, we have to manually program the handling of this event. Luckily
for us, since these components are attached to a GameObject (which inherits from
MonoBehavior), we can use mouse events that MonoBehavior provides.

Detecting mouse clicks
Whenever the mouse pointer is clicked while the pointer is over the top of
a GameObject, the OnMouseDown callback is invoked. With this, we can trap
these button clicks and respond accordingly:

void OnMouseDown() { // insert code here }

Detecting mouse over
A second callback method is called whenever the mouse pointer moves onto a
GameObject. This function is a convenient way to handle the highlighting of
the GUI elements when they are selected or browsed:

void OnMouseOver() { // insert code here }

Detecting leaving mouse over
A final callback method is called whenever the mouse leaves from over the top of a
GameObject. This is the complement of the preceding mouseOver handler and can be
used in conjunction with the preceding method of turning highlighting on and off:

void OnMouseExit() { // insert code here }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[103]

Exploring UnityScript and the GUIButton
object
The Unity Editor is laid out with an internal GUI-specification language called
UnityGUI. This API is only accessible to Unity game programmers from within
C# (and JavaScript) code, unlike the previous GUI elements that can be placed
and adjusted within the editor itself at design time. We can use this to place buttons,
textures, pop-up windows, tooltips, and many other UI primitives. The difference
in use from the previous examples is that the elements are instanced and placed
entirely from the script rather than at design time in the editor. For our dialog
pop-up Prefabs, we will explore the GUI.Button class.

Using UnityGUI
To use the UnityGUI functionality, we must invoke the commands from within a
special callback, OnGUI(). As this function is not created by default when you create
a new C# script in Unity, you need to add it yourself. The Unity Engine will invoke
this method automatically when GUI elements are to be redrawn; so, we put our
GUIButton code and GUITexture and GUIText update code in here:

void OnGUI() { // insert code here }

Creating a clickable button
To create a button, use the GUI namespace and instantiate a button with
parameters into the constructor. There are six different function signatures
one can use to instantiate a GUI button, depending on which visuals or string
you want to display on it. Each type, however, requires the rect class as the
first parameter:

GUI.Button(new rect(x,y,width,height), string);

Note that the new rect class instance takes the x, y (position of the rect's upper-left
corner) as well as the width and height dimensions of the button as the input.

Congratulations! By adding this line of code to the OnGUI() method, you will display
a button at the x and y position with the text "string" on the button.

www.it-ebooks.info

http://www.it-ebooks.info/

User Interfaces in Unity

[104]

Detecting a mouse click
To detect a mouse click on this button, we need to check that the GUI.Button()
function returns a Boolean; namely, true when the button is clicked and false
otherwise. This means that every time the OnGUI() method is called, we have the
opportunity to respond to a mouse click, each time a button is potentially drawn
to the screen:

if (GUI.Button(new rect(x,y,width,height), string))
{
 // handle button click here
}

Building the main menu pop up
Let's put all of this together and build a functional and extensible pop up for the
main menu.

This pop up will display the name of the game on the title screen and present
the user with three working buttons. From this, we will be able to make a pop-up
Prefab that can be used for other UI. Perform the following steps to create a main
menu pop up:

1.	 To start, let's create the base of the panel. Create a plane that will be the base
of the pop up. Set its position to 0, 0, 8.6 and its X rotation to -90.

2.	 Scale the panel to 1.54, 1, 1 so that it is a bit wider than it is tall.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[105]

3.	 On the MeshRenderer, we associate a new material called popupMaterial.
This material has a white-colored component and a texture that is opaque
gray with round edges with full alpha. Applying this material makes the
plane appear rounded at the corners.

4.	 Let's rename the plane to popup_MainMenu to reflect its actual role.
5.	 The main menu pop up will have four child objects: a text field for

the pop-up title and three child objects for the buttons.
6.	 Create a 3DText object, parent it to the MainMenu panel, and set its local

position to 0, 0.1, 3. This will place the text in front of the panel, that is,
front and center. Set the anchor to middleCenter and the font size to 21.
Set the font style to Bold.

7.	 Move the game object to -1.8,0.9,1.2 and scale down the font size to 15
to place and scale the text appropriately.

8.	 Let's create a button object to use the three interactive elements on the
menu. To start, create a plane, rotate it by -90 in the x plane, parent it
to the MainMenu plane, and set its local position to 0, 0.1, 0.2.

9.	 Set the scale of this new object to 0.3, 0.1, 0.2. Rename it to Button1 to
make the object hierarchy more clear.

10.	 Create a 3DText object, attach it to the button, and set the font size to 68.
Set the text field to New.

11.	 The first button will be for the new action. To handle this, we will need to
write a script. Create a new script called popupButtonScript.cs. Attach
an instance of this script to Button1 (the new button).

www.it-ebooks.info

http://www.it-ebooks.info/

User Interfaces in Unity

[106]

12.	 Inside this script, we will create a public enumeration that specifies all of
the actions that can occur when the button is pressed. Loading levels one
through three, showing and hiding GameObjects, instantiating a Prefab,
self-destructing, and quitting the application will be the first actions our
button supports:
public enum popUpAction {
 Invalid = -1, //used to encode error action
 LoadLevel1 = 0, //used to load level 0
 LoadLevel2 = 1, //used to load level1
 LoadLevel3 = 2, // used to load level2
 ShowGameObject =3, //used to show a GameObject
 HideGameObject = 4, //used to hide a GameObject
 QuitApplication = 5, //used to quit application
 DestroyGameObject = 6, //used to destroy a GameObject instance
 Instantiate = 7 //used to instantiate an object from a prefab
}

13.	 We want to be able to set in script, when we click on a button, which action
will be invoked on the click. This will require setting the enumeration as
well as some side data that will be processed with the click. This class will be
called popupResponse. In order to populate the array of actions on the button
with this custom class, we need to make it serializable. Recall that if this
class had inherited from MonoBehavior, then this would have included the
serializable functionality; since we don't inherit from any base class, we need
to add this back explicitly. This will allow the class properties to be saved
inside the editor:
[System.Serializable]
public class popupResponse
{
 public popupAction action;
 public popupData data;
}

14.	 We will also need a class to describe the side data that the button needs to
operate on when clicked. This will be contained in the serializable popupData
class. This class contains a set of variables of different datatypes that a button
may or may not use as side data while processing its action:
[System.Serializable]
public class popupData
{
 public GameObject obj; // a potential GameObject to operate on
 public int id; //an integer id to use when processing a popup
 public string name;//a string to use when processing a popup
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[107]

15.	 We keep a list of actions (pop-up response classes) that will be invoked on a
click on each button. This is kept as an array and not as a single response so
that a button can perform an arbitrary number of tasks on a click.
public list<popupResponse> actions;

16.	 We create an enumeration for the current state of the button. This will be
used to codify whether or not the mouse pointer is over the button and
whether we should display the highlighted or non-highlighted texture:
public enum eButtonState
{
 Invalid = -1,
 Off = 0,
 On = 1 // a tri state enum used to encode if a button is clicked
 or not
};

17.	 We keep two variables of the eButtonState type. The ButtonState variable
represents the current eButtonState of the button; namely, if it is On or Off.
The PrevTickButtonState variable stores the ButtonState for every frame
that the button itself updates. We use two state variables to search for the
frame where the state changes so that we can dispatch the button actions
on that frame:
Public eButtonState ButtonState;
Public eButtonSTate prevTickButtonState;

18.	 We add two public Texture references in this script. This allows the
programmer to associate an On and Off texture for the button. When the
mouse is over the button, the On texture will be displayed. When the mouse
is not over the button, the Off texture will be shown:
Public Texture On;
Public Texture Off;

19.	 We keep references to the object named Game in the scene. We also keep a
reference to the gameManager script attached to this. These are cached in
the start method.

20.	 In the Update() loop of the button GameObject, we compare
prevTickButtonState with ButtonState:
PrevTickButtonState = ButtonState;

21.	 In the OnMouseDown() method of this GameObject (mouse down on the
button), we call the Dispatch() method, which iterates through all of the
buttonResponses in the action list.

www.it-ebooks.info

http://www.it-ebooks.info/

User Interfaces in Unity

[108]

22.	 The Dispatch() method is where the brunt of the work for the button
occurs. It loops over all of the actions in the action array (from 0 to Count):
for (int i= 0; I < actions.Count; i++)
{
 popupResponse r = actions[i];

}

23.	 A switch statement is used to selectively update the logic of the button
based on the type of action in the actions array in each slot. Each potential
popupAction has its own implementation in this block:
switch(r.action)
{
 // each case() implements a different behavior
}

24.	 The case for LoadLevel 1, LoadLevel 2, or LoadLevel 3 will use the
GameMgr component reference, and set the GameState in the GameMgr
component to levelLoad, which then performs the Application.
LoadLevelAdditive call.

25.	 The case for Instantiate will dereference the GameObj object in the
popupData sideData member, and perform a GameObject.Instantiate
call on it to duplicate that Prefab. It will then set the parent to the
GameObject that has the name 'name' from the sideData field. Lastly, it will
set the position and orientation to post and rotation of the Prefab after it is
initialized (the pos and rot values of the Prefab at the time it is created).

26.	 The HideObject and ShowObject actions will set the object referenced by
the sideData to either active =true or active=false. This has the effect
of disabling or enabling the renderer as well as the rest of the game logic/
components on this object.

27.	 The self-destruct method will call Destroy() on the parent object of the
button. This has the effect of destroying the pop up and all the children
buttons and such. Of course, this assumes that buttons are a 1-layer child of
the main pop-up root! Whether you decide to destroy or hide an object, it
will depend on the specific needs of your game. Destroying an object will of
course free up more memory; however, this should be done for every frame.
If a lightweight way to hide and unhide an object is required, consider just
disabling and enabling the renderer with HideObject and ShowObject.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[109]

Congratulations! We have an implemented popupButtonScript attached to our
NEW button. Let's configure it:

1.	 On the NEW button, open up the popupButtonScript and set the number
of actions to 2 (by manually setting size = 2). This will correspond to two
actions that will be invoked, one at a time, on mouse click.

2.	 Set the action of Element 0 to be LoadLevel1. Open up the Data field
associated with this action and set the name to LEVEL1 (to match the
scene file name).

3.	 For Element 1, set the action to SelfDestruct. By putting this second, we
guarantee the button will load the new level and then destroy the pop up
(which is what we want!).

4.	 Set the On texture to a light blue-colored texture and the Off texture to a dark
blue variation. Set the ButtonState to Off by default.

Congratulations! We now have a working NEW button that starts a new game by
loading a new level and destroying the menu pop up. At this point, we can delete
the previous main menu page.

Let's continue building out the MainMenu Prefab:

1.	 Duplicate the NEW button twice, and translate the two copies below the first
one to (0,0.1,-1.5) and (0,0.1,-3).

2.	 Rename the second button to Button2 and set the name of the text field to
Info. Rename the third button to Button3 and set the name of the text field
to QUIT.

www.it-ebooks.info

http://www.it-ebooks.info/

User Interfaces in Unity

[110]

3.	 Open the popupButtonScript on the third button, and change the On and
Off textures to light and dark red textures, respectively. Change the number
of actions in the script to 1 and set the action to QuitApplication.

4.	 Open the popupButtonScript on the second button and change two actions.
The first one should be Instantiate, where obj is the popup_Info Prefab,
and the parent object's name is codified under the name field MainCamera.

5.	 Set the second element of this array to SelfDestruct. With this, the Info
button will create a new instance of a popup_info panel and destroy itself.
The pattern we will use to return to the main menu will be such that the
popup_info button allocates a new instance of the pop up when instructed to
do so, after which it will destroy itself. In this way, the content of the UI pop
up for both pages is completely contained inside the pop-up Prefabs we have
created in the editor.

6.	 Let's create a new script that manages the pop up at its top level; call
it popupPanel. Associate an instance of this script with the root of
the MainMenu.

SideData (Obj,

id, String)

SideData (Obj,

id, String)

Action Action Action

PopupButton

Script

Popup button

GameObject

7.	 In this script, create a single public string named nametxt and a reference to
TextMesh. In the start method, copy the public string variable's contents
over the top of the string member of the TextMesh. This gives a simpler
interface to name the pop up; we will use this script as a central place to
interface with the pop up.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[111]

Great! Now, we have three functional buttons on our pop up. When we move over
them, the PopupButton script swaps the highlighted and non-highlighted textures
for an additional visual cue.

1.	 Drag-and-drop this pop up into the Project tab to make a Prefab out of it.
Name the Prefab popup_MainMenu. We will need to reinstance our main
menu from the Prefab at a later time.

2.	 Let's create a new Prefab based on this one. It will be used for the
Information tab. To begin, copy and paste the popup_MainMenu Prefab.
Rename it popup_Info.

3.	 Keeping the dimensions the same, rename the panel to Info by changing
the pop-up name parameter in the popupPanel script.

4.	 Delete button 2 and button 3 from the popup_Info object; we only
need one button on this panel to return to the main menu. Open the
popupButtonScript on the single button and ensure that there are
two valid actions.

5.	 Set the first action to Instantiate. In the data member for that action, set the
Obj to instantiate to a reference to the popup_MainMenu Prefab. This will tell
the button to create a copy of the popup_MainMenu Prefab when the button
is clicked. To tell the script which GameObject to parent this new instance to,
add the name of the object to the Name field and change the name field to
MainCamera.

6.	 Set the second action to SelfDestruct so that this button will delete itself on
a click.

www.it-ebooks.info

http://www.it-ebooks.info/

User Interfaces in Unity

[112]

7.	 In the popup_Info object, add five more TextMesh GameObject instances.
Put them on successive lines at a distance of 0.8 units in z from one another.
These will be used to store the lines of text in your information pop up.
Set the first three lines of text to the following:
Geography Quest © 2014
PACKT Publishing
all rights reserved

8.	 Save this Prefab to the project folder by dragging-and-dropping it into your
assets folder. Name the new Prefab popup_Info.

9.	 Go back to your popup_MainMenu and open up the button 2
popupButtonScript component. Find the Instantiate command in the
actions array for this button. Now, go to the Data field for this action, and
change the obj reference to the Prefab popup_Info by dragging-and-dropping
it from the Project tab back to this field. Also, make sure the name of the parent
object is also set at this time to MainCamera.

Congratulations! We now have a working information screen pop-up that has been
connected to the Info button of our working main menu pop up. If you have not
already done so, please delete the previous main menu panel from the last chapter;
we will not need this anymore as our pop-up system can do the job of starting our
game. Please make sure there is only one instance of popup_MainMenu attached to
the camera by default, and that there is no popup_info object instance on the main
camera by default.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[113]

Testing our work
Let's trace through how the pop-up system works. When the main scene first loads,
the popup_MainMenu Prefab renders in front of the camera. It does this because it is
parented to the main camera's transform as a child object. This means that no matter
what position and orientation the camera has, the pop up will move relative to this
and always be on the screen, effectively in screen coordinates. This is a common trick
in game programming used to achieve quasi-2D screen space results with 3D objects.

When the New button is clicked, the popupButtonScript iterates over the
action array, and based on the enumeration for the action, it dispatches an
appropriate command. For now, we set the GameState to loading level1 and
let the gameManager script handle the loading of the new scene file. We then call
SelfDestruct to delete the MainMenu object from the world (we won't need it
anymore as we are in-game).

When the Info button is clicked, the popupButtonScript iterates over the action
array, dispatching commands based on the value of the action enumeration. The first
thing that happens is that popup_Info is instantiated and parented to the camera.
Since this pop up has the same position and orientation as popup_MainMenu, the
transition appears seamless! Then, popup_MainMenu is destroyed that leaves only
the Information dialog displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

User Interfaces in Unity

[114]

If the Return button on the popup_Info dialog is pressed, it iterates over its actions
and invokes two commands. It instantiates popup_MainMenu again (from the Prefab
in the Project window so that it is a new instance of the menu and not the original),
then it calls selfDestructs and deletes the popup_Info window, leaving only the
main menu. Since they share the same transform, the transition appears seamless.

If the Quit button is pressed, the application terminates. This is not readily apparent
in the editor, but once we build to execute, this will terminate the program.

Future extensions
Now that we have a nice generic menu system, we could apply this to a number
of situations:

•	 We can redesign our flag info pop up using a model similar to the
popup_Info panel from the main menu. This would give each of them
a Return button and a polished and consistent visual presentation.

•	 We can create a pause menu for the game. From this, the user can check
statistics, restart the level, or quit to the main menu.

•	 We can use this system for NPC dialogs and interactions with the user.
NPC dialogs are the conversation pop-up windows that will appear when
the player interacts with NPCs. The user will interact with the NPC by
selecting options from these pop-up windows.

Summary
We overviewed a wide variety of 2D and 3D user interface components that Unity
provides. After some analysis, we determined the best scenarios to use each one
of them. Finally, we applied our knowledge and built a pop-up system using
programming techniques from previous chapters to build a generic, interactive,
and responsive menu system. We built a couple of Prefabs and redesigned the
frontend of the game using this new system to prove the efficiency of the
technology. This adds a level of polish to our game.

In the next chapter, we will continue to add polish and interactivity as we program
non-player characters for our game. By populating the game world with other
characters and objects, it will add more depth to the game world that makes the
experience more engaging, which will promote further learning by the user.

www.it-ebooks.info

http://www.it-ebooks.info/

NPCs and Associated
Technology

To increase the level of immersion in our e-learning game, we will want to increase
the amount of user interaction scenarios. To do this, we will populate the game
world with some non-player characters (otherwise known as NPCs) for the user to
interact with. These are characters or actors in your game scene that the player can
interact with during gameplay, but not control directly. You may find these referred
to as AI Characters in other texts; however, these terms are synonymous.

In this chapter, we will build an NPC class to handle the choreography of
these actors and their actions. To support the NPC system, we will develop a
framework to define a smooth curve for the actors to travel on. We will also apply
the FSM concepts from Chapter 4, Mission One – Future Proofing the Code, as we
implement a data-driven behavior system; this will enable fast design and tweaking
of NPC behavior inside the Unity Editor. Lastly, we will integrate these classes and
construct Prefab objects to make the task of populating the world quick and simple.

The following topics will covered in this chapter:

•	 Creating the NPC GameObject
•	 Implementing the SplineMgr class
•	 Connecting SplineMgr to npcScript
•	 Implementing the NPC decision system
•	 Building a collection of NPC conditions and responses
•	 Putting it all together

www.it-ebooks.info

http://www.it-ebooks.info/

NPCs and Associated Technology

[116]

Creating the NPC GameObject
To develop and test our NPC systems, we need a simple Prefab to represent our NPC
character. Once this is working, we will be able to add polish to the game by replacing
it with a more visually appealing model and by adding animation. To begin with,
create a capsule with a scaled hat similar to the player Prefab placeholder.

Implementing the npcScript class
The npcScript class will encode the base state machine for NPCs. To develop a
robust non-player character system requires a model of the behavior we want to
present to the player. Once we have a model, we can build an FSM that meets our
functional needs. We shall list these requirements in the following part.

In our e-learning game, the non-player characters will need to do the following:

•	 Travel about the world in a smooth, realistic way
•	 When approached by the player, the NPC should stop and face the player

to interact
•	 When the player leaves the NPC or finishes the interaction, it should

continue moving about the world

Based on these requirements, it is clear that we will need a number of states that we
can encode in a public enumeration. To prove that the NPC framework works and
meets our design needs, we will implement the patrol and turnToPlayer states
as a minimum viable product for the NPC system. Once these are working, it will
be clear that the system works and that the reader can then extend the system with
more behaviors:

public enum npcState
{
 invalid = -1, //enum to encode error npc state
 none = 0,// enum to encode npc having no state
 idle = 1,// enum encoding npc waiting idly
 patrol = 2,// enum for npc patrolling about
 turnToPlayer = 3,// enum for npc to face player
 InteractWithPlayer = 4,// enum for npc interacting with player
 Celebrate = 5,// enum for npc celebrating
 Disappointed = 6 //enum for npc acting disappointed
};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[117]

Perform the following steps to implement the npcScript class:

1.	 A private variable of the type npcState, named state, will track the value of
this enum for each NPC instance:
private npcState state;

2.	 In order for our NPC to be able to follow a parametric curve when patrolling,
we give the npcScript class a SplineMgr class to interpolate a user-defined
path. A public showPath Boolean is also provided for debugging:
public bool showPath;
public SplineMgr path;

3.	 An instance of a data-driven system for detecting scenarios and dispatching
responses at runtime is also added to the npcScript class. This class will act
as the brain of the NPC, deciding when to change states based on the state of
the game world:
public npcDecisionMgr decisionMgr;

4.	 Each time an in-game NPC is activated, the start() script will first compute
the debug path visualization for the spline and then set the NPC into the
patrol mode so that it will start walking. The computeDebugPath method
will walk through the spline from the start to the end and store a series of
line segments that the debug line renderer can use to draw the spline when
we need to visualize it. The second line of code sets the NPC into the patrol
state, which tells the NPC to follow the spline path. We will discuss splines
later in this chapter:
path.computeDebugPath();
SetState(npcState.patrol);

5.	 The npcScript class implements a SetState(newstate s) method to
allow the client code to change the state of the NPC. A switch statement
implementation provides a means of specializing one-off code that executes
once when the state actually switches. This is how we implement the
OnEnter event for each state in the enumeration.

6.	 When entering the patrol state, we set the head of the SplineMgr class to
the NPC GameObject. This permits the SplineMgr class to attach the NPC to
the curve and update its position each frame. We also set the playback mode
on the SplineMgr class to loop so that when the NPC reaches the end of the
curve, it will loop back to the start; other modes exhibit different playback
behavior along the curve:
path.HeadObj = this.gameObject;
path.SetPlaybackMode(splineMgr.ePlaybackMode.loop);

www.it-ebooks.info

http://www.it-ebooks.info/

NPCs and Associated Technology

[118]

7.	 When entering the turnToPlayer state, we set the playback mode of the
SplineMgr class to none. This has the effect of stopping the velocity of the
NPC model:
path.SetPlaybackMode (SplineMgr.ePlaybackMode.none);

8.	 The npcScript class implements an Update() method, (which all classes
that inherit from MonoBehavior need to implement), which has four logical
segments that are computed for each frame.

9.	 First, the distance from the player and the NPC is calculated. This quantity
is stored for later processing:
if (player)
{
 Vector3 v = h.transform.position -
 this.transform.position;
 distanceToHero = v.magnitude;
}

10.	 A switch statement permits specialization of the code that the NPC needs
to perform for each frame. In the patrol state, the NPC looks at the point in
front of itself; this is a quantity that the SplineMgr class conveniently returns
for us by evaluating the spline at a point slightly further ahead on the curve
than the HeadObj itself:
this.transform.LookAt(path.TargetObj.transform.position);

11.	 While in the turnToPlayer state, the NPC looks at the player position:
this.transform.LookAt (player.transform.position);

12.	 If there is a decisionMgr class instance attached to the NPC, the npcScript
allows it to evaluate all of its conditions for potential dispatch:
if (decisionMgr != null)
 decisionMgr.eval ();

13.	 Lastly, depending on the state of the showPath Boolean, we either enable or
disable the lineRenderer component for the spline curve:
this.GetComponent<LineRenderer>().enabled = showPath;

Congratulations! You have just written the npcScript base framework for a
non-player character class. As you can see, the power of this choreography class
is derived from the FSM, and the work is delegated to the DecisionMgr and
SplineMgr classes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[119]

Implementing the SplineMgr class
Recall from our requirements that our NPC needs to be able to walk about the world
along an arbitrary path. A convenient way to author the curve information would
be by placing waypoints in the scene in the Unity3D Editor. Then, by interpolating
between these points, we can apply smooth motion to the NPC object. It turns out
that our SplineMgr is able to generate a curve that interpolates through all of the
waypoints (or ControlPoints) in a set. Great news!

There are numerous types of splines in the mathematical world; each one has its own
unique properties. Some of them don't interpolate any but get really close. Others
will interpolate the first and the last, and approximate the middle two. By using a
specific type of spline in our calculations (Catmull-Rom to be precise—named after
the scientists who invented the formulation), we can guarantee that our curve will
always interpolate all waypoints; the math inside our GetPointOnCurve() function
returns a point on the Catmull-Rom spline curve.

We can implement the SplineMgr class using the following steps:

1.	 Our SplineMgr keeps a list of control points / waypoints for processing.
These can be added to this list individually or in a batch via splineNodeRoot
(this is simply an empty GameObject with a collection of control points in its
hierarchy—a convenient way to encapsulate control point data).

2.	 The SplineMgr class has two types of playback. One of them evaluates the
curve at a constant frame rate, and the other at a constant (more or less) arc
length. The first way is good for curves that need to start and stop at a precise
time. The tradeoff is that the curve may accelerate and decelerate as the
control points move closer and farther away from one another.

3.	 The second playback mode is useful when the nature of the motion needs to
be of constant velocity. However, the tradeoff with this playback type is that
the total time to evaluate the curve is stretched:
public enum ePlaybackType
{
 invalid = -1,
 none = 0,
 const_dt = 1, //interpolate spline at constant speed
 const_dist = 2 //interpolate spline at constant distance steps
};

4.	 A single variable of the type ePlayback encodes the type of interpolation
that the spline will use to generate points on the curve:
public ePlaybackType type = ePlaybackType.const_dt;

www.it-ebooks.info

http://www.it-ebooks.info/

NPCs and Associated Technology

[120]

5.	 A second enumeration encodes the playback mode that the SplineMgr class
will use to generate points on the curve. The loop will continue the playback
in an infinite cycle. The oneShot mode will play the spline once and then
finish. The ComputingDebugPath and ComputingDebugPath_Finished
modes are used while evaluating the spline to generate points on the
lineRenderer component:
public enum ePlaybackMode
{
 invalid = -1, //error spline interpolation
 none = 0, //not spline interpolation
 oneshot = 1, //play once and finish
 loop = 2, //loop continuously
 oneshot_finished = 4,//when oneshot is done
 computingDebugPath = 5, //internal
 computingDebugPath_finished = 6 //internal
};

6.	 The start() method in the SplineMgr class performs two primary tasks:
°° It allocates a new GameObject to move along the curve in front of the

HeadObj object. This is to facilitate looking ahead of the curve when
the NPC is in the patrol mode and walking along the spline.

°° It also checks if a splineNodeRoot has been assigned to the spline.
If it has, this triggers an automatic waypoint / control point
installation into the SplineMgr class:

	 TargetObj = new GameObject();
	 nHead = 0;
	 if (splineNodeRoot)
	 InstallSplineNodes();

7.	 The InstallSplineNodes() method is an internal private method that
takes a GameObject, extracts all child game objects, and then populates the
ControlPoints list with these GameObjects as waypoints. The algorithm has
three steps.

1.	 First, the ControlPoints list is cleared:
	 ControlPoints.Clear ();

2.	 Using an internal function in Unity, we return an array of all the child
objects of the splineRootNode:
Transform[] allChildren = splineNodeRoot.GetComponentsInChil
dren<Transform>();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[121]

3.	 We iterate over this list of child nodes (as they are the waypoints in
our spline) and add them to the ControlPoints list. Note that this
list will include the splineNodeRoot, so we need to check that we
don't add this to the waypoints:

	 foreach (Transform child in allChildren)
	 {
	 // do what you want with the transform
	 if (child != splineNodeRoot.transform)
	 ControlPoints.Add(child.gameObject);
	 }

8.	 The ComputeDebugPath() method iterates over the waypoints array before
the game starts and fills in the lineRenderer component on the NPC. The
lineRenderer component is then used to display the path if the showPath
flag is set.

1.	 Before the method starts, it caches the playback mode and playback
type that the user sets in the editor. We do this so that the system can
set playbackMode to ComputePath while the debugPath is calculated:

	 // store settings
	 ePlaybackMode pbm = this.playbackMode;
	 ePlaybackType pbt = this.type;

2.	 We then loop over a preset number of samples in the lineRenderer
component, sampling the splinePath and storing these samples in
the debugPath:

	 SetPlaybackMode(splineMgr.ePlaybackMode.computingDebugPath);
	 for (int i = 0 ; i < 1024; i++)
	 {
	 Vector3 p = getPointOnCurve();
	 debugPath.SetPosition(i, p);
	 if (IsFinished() == true)
	 {
	 debugPath.SetVertexCount(i-1);
	 break;
	 }
	 }

www.it-ebooks.info

http://www.it-ebooks.info/

NPCs and Associated Technology

[122]

3.	 Once the path is calculated and the lineRenderer component
is filled with values of line segments (from the debugPath.
SetPosition() call earlier), we restore playbackMode and
playbacktype from the user:

	 // restore values
	 playbackMode = pbm;
	 Playbacktype = pbt;
	 vOut = 0.5f * ((2.0f*p1) + (-p0+p2)*t + (2.0f*p0 - 5.0f*p1 +
	 4.0f*p2 - p3)*t2 + (-p0 + 3.0f*p1 - 3.0f*p2 + p3)*t3);

The PointOnCurve() method is the workhorse of the
SplineMgr class. It takes four control points as input
(p0, p1, p2, p3), and given a value of t from (0, 1), it
returns a point on the curve. The polynomial equation in
this function is derived from the Catmull-Rom spline basis
matrix (other splines would have a different formula for
computing a point on the curve; the important point is that
our formula derived from that matrix).

9.	 In the FixedUpdate() method, we call a custom eval() method, which
evaluates the spline. We call this during FixedUpdate() to simplify the t
calculations in PointOnCurve(), eliminating the need to multiply by
elapsed time. Had we decided to evaluate the spline during Update(),
we would need to evaluate the curve on a point that was also a factor
of the elapsed time:
// Update is called once per frame
void FixedUpdate ()
{
 if ((playbackMode != ePlaybackMode.computingDebugPath) &&
 (playbackMode != ePlaybackMode.none))
 eval ();
}

10.	 The eval() method is where the SplineMgr system evaluates the curve from
being called every FixedUpdate(). Depending on the playback mode, it will
either evaluate every frame or pause.

11.	 Recall that SplineMgr supports two playback types, const_dt and
const_distance. In the const_dt mode, the spline is evaluated at
t+dt every time FixedUpdate() is called:
if (type == ePlaybackType.const_dt)
 t += dt;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[123]

12.	 If the playback type is const_dist, the SplineMgr class will dynamically
adjust the dt value for each frame so that the distance from the previous
point on the curve to the next point on the curve is approximately equal
to target_arclength. We use sequential search instead of binary search
because it is less prone to getting stuck in high curvature segments.

13.	 Recall that a spline curve is defined over four control points. To build a
longer curve composed of more points, we use a sliding window technique
and construct tangent curves.
Every frame, we update t by dt (or dynamic dt) and find a point on the
curve for the relevant four control points. The four points that we pass into
the spline evaluation method are the four points around the current moving
windows view of the ControlPoints list:
// extract interpolated point from spline
//Vector3 vOut = new Vector3(0.0f, 0.0f, 0.0f);
vOut = Vector3.zero;
Vector3 p0 = ControlPoints[nHead].transform.position;
Vector3 p1 = ControlPoints[nHead+1].transform.position;
Vector3 p2 = ControlPoints[nHead+2].transform.position;
Vector3 p3 = ControlPoints[nHead+3].transform.position;

14.	 Once t exceeds 1.0, this signals to slide nHead (the start of the window)
up by 1. Then, based on the playback mode, we either loop, stop, or handle
the end of curve scenario in another appropriate way. Rather than setting t
back to zero on a rollover, we subtract 1.0 instead. This way, we can capture
the difference if t ever ends up slightly greater than 1.0 but less than dt; it
happens more than you'd think, and doing this results in a smoother and
more accurate curve:
if (t > 1.0f)
{
 t -= 1.0f;
 nHead++;
}

15.	 The SplineMgr class then translates the GameObject reference in headObj to
the new position on the curve:
// update headObj
vOut = PointOnCurve(t, p0, p1, p2, p3);
if (HeadObj)
 HeadObj.transform.position = vOut;

www.it-ebooks.info

http://www.it-ebooks.info/

NPCs and Associated Technology

[124]

16.	 The SplineMgr class also translates a second GameObject along the curve.
The TargetObj object gets updated slightly in front of headObj and is used
by the NPC to face forward when walking along the curve:
// update lookObj
if (TargetObj)
{
 Vector3 tgtPos = Vector3.zero;
 tgtPos = PointOnCurve (t+dt, p0, p1, p2, p3);
 TargetObj.transform.position = tgtPos;
}

Congratulations, we have now written a robust spline system for our NPCs and
other moving objects! But how do we use it?

Connecting SplineMgr to NPCScript
To prepare a spline curve to be used by the splineMgr class, we can perform the
following steps:

1.	 Create an empty GameObject, and set its position to (0,0,0). This will be the
parent node to the collection of waypoints. Name it something appropriate,
such as curve1.

2.	 Create a series of spheres named waypoint1, waypoint2, and so on. Note,
we use GameObjects instead of empty objects so that we can enable the mesh
renderer on the nodes if debugging or visualization is necessary. Our system
will require a minimum of five points and two segments.

3.	 Arrange these points in the editor so that they form an appealing curve that
meets your needs. Note that we interpolate the position of the waypoints
only, so rotating them will not impact the trajectory of the interpolation.

4.	 Create a GameObject that will be used to interpolate the curve. Name it
SplineObj and assign it to the headObj reference of the SplineMgr class.

5.	 Create a lineRenderer component, and attach it to the headObj object. Give
the lineRenderer component 1024 position fields to start with so that it has
enough pre-allocated segments to draw our curves.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[125]

6.	 Your curve should look something like the one in the following screenshot:

7.	 To playback the spline, create an instance of the SplineMgr class, and attach
it to a GameObject. Set the dt variable and playback type to 0.1 and loop.

8.	 Assign curve1 to the SplineNodeRoot field of the splineMgr class.
9.	 Create an instance of npcScript, and attach it to the headObj object as well.

Assign the SplineMgr component on the headObj object to the path reference
in the npcScript class.

10.	 The DecisionMgr reference will remain empty for the time being. Not
to worry! This just means that the NPC will have no way to change its
internal state or react to the player. We will develop this system in the
subsequent segment.

www.it-ebooks.info

http://www.it-ebooks.info/

NPCs and Associated Technology

[126]

11.	 Once you have this system working, feel free to create another curve and
another NPC to follow it. By following the same pattern, you can populate
your game right away with simple moving objects.

12.	 Note that by switching from the const_dt playback to the const_dist
playback, you can get a curve that either moves at a constant speed or
finishes in a predictable amount of time. The first is useful for character
motion, while the latter is for projectiles, animated objects, and other
gameplay elements.

Congratulations! Your NPC can now walk along the path. Make sure you have
selected the NPC in the editor to show the translation gizmo on the character
while it moves; having a large frame of reference can help to debug the motion.

By ensuring that showPath is enabled on the NPC Script, your path should look
as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[127]

Implementing the NPC decision system
The NPCs in our e-learning game will need to be able to interact with the player
and the world in addition to following a user-defined path. While the path-following
code was easily encapsulated in one file, we will see that a general purpose solution
to the first problem requires a more intricate design.

Our solution will be modeled around and function similarly to a question-and-answer
system. A number of classes will be required for implementation:

•	 npcCondition: This is the base class for a question that the NPCs logic will
ask about the player or the world.

•	 npcResponse: This is the base class for a response that the NPCs logic will
invoke if a condition is found to be true.

•	 npcInteraction: This container class will house the association of a
condition with a response. It will be responsible for testing if the condition
is true (whatever the condition may be) and for invoking the appropriate
response when that happens.

•	 npcDecisionMgr: This class is the brain of the NPC. It will house a collection
of interactions and will ask these interactions to evaluate themselves. Since
each interaction responds to the state of the world individually, the brain
only needs to delegate this responsibility to each interaction! Simple, right?

NPCCondition

If TRUE

NPCResponse NOTHING

To prove that our DecisionMgr system works, we will need a few more specialization
helper classes. These will help us see the system in action and validate its behavior.

•	 condition_closerThanThresh: This is a condition script that checks if
the distance from object A to object B is less than a parameter. If it is, it
returns true.

www.it-ebooks.info

http://www.it-ebooks.info/

NPCs and Associated Technology

[128]

•	 condition_fartherThanThresh: This is a condition script that checks if
the distance from object A to object B is greater than a parameter. If it is,
it returns true.

•	 response_changeState: This is a response script that changes the state of an
NPC to the state parameter.

Implementing the npcCondition script
The npcCondition class is the base class for all questions that an NPC might ask
about the player or the state of the world.

1.	 Create a new class in the editor using the new class wizard. Name it
npcCondition.

2.	 Open the script in MonoDevelop, and change the class declaration. Add the
word abstract in front of public so that it reads the following. We use the
keyword abstract because this class will be used to just declare an interface.
We will use this class as a common base for all of the condition classes our
game will have for NPCs:
abstract public class npcCondition : MonoBehaviour{

3.	 Using the abstract keyword, declare an interface method named eval()
with the following syntax:
abstract public bool eval();

4.	 By designing npcCondition as an interface class, we are telling Unity that
there will be a base class named npcCondition. Other conditions will be
added to the game, and they will have different behaviors for sure, but
one common element is that they all have a method named eval(), which
they all implement in a unique way. In this way, each condition class
can specialize its behavior through the eval() method, and no matter
what is being evaluated, by returning true, we can pass a message to the
DecisionMgr class that a condition has become true and that we need to
invoke a response script.

In this way, we will need only to call eval() on npcCondition in the code, without
the need to know specifically the type of condition being evaluated. This simplifies
our code complexity immensely, allowing our condition code to be polymorphic,
which is a good thing!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[129]

Implementing the npcResponse script
The npcResponse class is the base class for all responses that an NPC might invoke
when a condition is found to be true.

1.	 Create a new class in the editor using the new class wizard. Name
it npcResponse.

2.	 As seen previously, open the script in MonoDevelop, and change the class
declaration; add the world abstract in front of the public so that it reads
the following:
abstract public class npcResponse : MonoBehaviour{

3.	 Using the abstract keyword, declare an interface method named
dispatch() with the following syntax:
abstract public bool dispatch();

4.	 As seen previously, by designing npcResponse as an interface class, we
are telling Unity that there will be a base class named npcResponse. Other
responses will be added to the game, and they will have different behaviors
for sure, but one common element is that they all have a method named
dispatch(), which they all implement in a unique way.

In this way, we will need only to call dispatch() on npcResponse in the code,
without the need to know specifically the implementation of response that is being
dispatched. This simplifies our code complexity immensely and allows our response
code to be polymorphic as with the conditions.

Implementing the npcInteraction script
The npcInteraction class forms an association between a condition and a response;
it is in fact a container for both a condition to test and a response to invoke if the
condition is true. Remember, it could be any specific condition or response since
those two classes are interfaces.

NPCCondition NPCResponse+

NPCInteraction

www.it-ebooks.info

http://www.it-ebooks.info/

NPCs and Associated Technology

[130]

Perform the following steps to implement the npcInteraction script:

1.	 Create a new class in the editor. Name it npcInteraction.
2.	 Unlike the npcCondition, npcReponse classes, and most other classes

to date, we will not derive this class from MonoBehaviour. Inheriting
from MonoBehaviour is useful when you want to place your script onto
a GameObject, and in most cases this is desired. For this script, we will
not want to do that (you will see why in a moment). So remove the
MonoBehavior line from the class declaration, and add the [System.
Serializable] tag so that it resembles the following:
[System.Serializable]
public class npcInteraction {

Adding the Serializable attribute is necessary when we don't inherit
from MonoBehaviour because serialization is one of many features that
MonoBehaviour provides to the child classes. We explicitly tag this class as
serializable because we want to be able to save the instances of our class data
in the editor. The difference here is that this script will not be attachable as a
component on a GameObject but rather will appear in place in other classes
as a member variable.

3.	 Add a public reference to npcCondition and npcResponse. Whenever this
condition evaluates to true, the interaction class will dispatch the response:
public npcCondition condition;
public npcResponse response;

4.	 We also add an activated Boolean to allow us to selectively enable and
disable interactions based on the state of the game:
public bool active;

5.	 The method eval() is where the brunt of the work in the interaction class is
performed. It first checks if the interaction is active. If it is, and if there is a
condition, it will evaluate the condition and check if that condition is true
or not:
if (active == true)
{
 if (condition != null)
 {
 if (condition.eval() == true)
 { ...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[131]

6.	 Recall that the npcCondition reference could be any specialization of
npcCondition so that the implementation of the eval() function could
appear in any child class as long as it has been assigned in the inspector.

7.	 If the condition returns true, we check if a response class has been associated
in the inspector. If it has been dispatched, we dispatch the response!
if (response != null)
 rval = response.dispatch();

Congratulations! We have implemented a container class that associates a generic
condition with a generic response. We use the abstract keyword in the base class
so that child classes that derive from npcCondition and npcResponse can all
freely be connected to npcInteraction. Now let's look at how to connect our
interactions together.

Implementing the npcDecisionMgr script
This class is the brain of the NPC. It contains a collection of the interactions that
are constantly evaluated. If any condition is determined to be true, the appropriate
response is dispatched. To construct it, we need to perform the following steps:

1.	 Create a new script named npcDecisionMgr.
2.	 As with npcInteraction, edit the class declaration to remove the inheritance

from MonoBehaviour, and add explicit serialization so that the class data can
be saved in the editor:
[System.Serializable]
public class npcDecisionMgr{

3.	 A public list of npcInteraction is exposed to the inspector. In here, a
collection of condition/response pairs can be added for later evaluation. In
this way, a whole set of logical interactions can be added to a character—all
from within the editor!
public List<NpcInteraction> interactions;

4.	 The eval() method is used to visit each NPC interaction in the list, where
each one is evaluated in turn; recall this checks the condition.eval()
method for the condition member of the interaction:
foreach (npcInteraction e in interactions)
{
 e.eval();
}

www.it-ebooks.info

http://www.it-ebooks.info/

NPCs and Associated Technology

[132]

Congratulations! You have completed writing the DecisionMgr class for the NPC.
This is the class that will contain all of the logic for the NPC—what it will query in
the world, and how it will respond to those queries.

Building a collection of NPC conditions
and responses
To specialize how the NPC will respond, we need to write specific conditions and
response classes and then populate the DecisionMgr for the NPC by placing these
components in the editor. To prove this, let's develop a test case for an NPC that will
perform the following logic:

1.	 Patrol on a curve, facing forward.
2.	 When the NPC gets close enough to the player, stop and face the player.
3.	 When the NPC is far enough away from the player, follow the path and

face forward.

To implement this logic, we will need two conditions and one response.

Implementing the condition_
closerThanThresh script
Let's create a condition to check if the NPC is close enough to the player. This
will be used by the npcDecisionMgr to determine when to stop patrolling and
face the player.

1.	 Create a new script called condition_closerThanthresh.
2.	 In MonoDevelop, edit the signature of the class declaration so that it inherits

from npcCondition rather than MonoBehaviour. Also, add the explicit
serialization tag to this class so the editor can save it:
[System.Serializable]
public class condition_closerThanThresh : npcCondition {

3.	 This class will need three parameters to perform its tasks. A float to represent
the target threshold, and two GameObject references for the two objects
whose distance we will check:
public float thresh;
public GameObject trackObj;
public GameObject baseObj;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[133]

4.	 We want to provide an implementation for the eval() method that was
declared in the NPC base. To do this, note the syntax public override
bool, which is as follows:
public override bool eval()

5.	 The eval() method will check the distance between the two GameObjects
trackObj and baseObj for each frame. Don't forget these need to be set in
the inspector; they can be the NPCs and the player or any two GameObjects
for that matter (objects that have a transform):
bool rval = false;
Vector3 vDisp = (this.baseObj.transform.position -trackObj.
transform.position);
float dist = vDisp.magnitude;
if (dist < thresh)
 rval = true;
return rval;

Congratulations, you have written a condition script that tests whether two
GameObjects are closer than a set threshold.

Implementing the condition_fartherThanThresh
script
Let's create a condition to check if the NPC is far enough from the player.

1.	 Create a new script called condition_fartherThanthresh.
2.	 In MonoDevelop, edit the signature of the class declaration so that it

inherits from npcCondition rather than MonoBehaviour. Also add the
explicit serialization tag to this class so the editor can save it:
[System.Serializable]
public class condition_fartherThanThresh : npcCondition {

3.	 The eval() method will have the same signature and implementation as the
closer condition script explained previously, except that instead of checking
if the distance is less than the threshold, you will check if the distance is
greater than the threshold:
bool rval = false;
Vector3 vDisp = (this.baseObj.transform.position - trackObj.
transform.position);
float dist = vDisp.magnitude;
if (dist > thresh)
 rval = true;
return rval;

www.it-ebooks.info

http://www.it-ebooks.info/

NPCs and Associated Technology

[134]

Congratulations! You have combined the complement-condition script with the
closer-than script. With both of these combined, we will be able to make the NPC
start and stop a behavior based on proximity.

We need one more script to make the NPC respond to these proximity changes. Since
the NPC knows how to behave in the patrol and turnToPlayer states, we want to
make the NPC change the internal state as a response.

Implementing the response_changeState
script
Let's create a response script that will change the internal state on the associated
npcScript class to a specified value. This helper script will prove very useful as it
will allow our NPC to react to conditions in the world by changing the npcScript
state to response.

1.	 Create a new script in the editor, and name it response_changeState.
2.	 As with the previous two cases, modify the class signature to make it inherit

from npcResponse (not npcCondition), and be sure to add the explicit
serialization tag as well:
[System.Serializable]
public class response_changeState : npcResponse {

3.	 This class will have two members, an npcState enumeration and a reference
to the npcScript class. When fired, the script will set the state on the
npcScript reference to the value set in the local enumeration:
public npcScript.npcState newstate;
public npcScript npc;

4.	 As with classes that derive from npcCondition, we need to override the
abstract method provided in the base class. Instead of eval(), we will
override dispatch():
public override bool dispatch()

5.	 If this response class has an NPC reference, it will set the value of newState on
to NPC through the SetState() setter method that npcScript implements:
if (npc != null)
{
 npc.SetState (newstate);
 rval = true;
}
return rval;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[135]

Congratulations! We now have all the pieces to finally develop an npcDecisionMgr
class that can tell the NPC to patrol or face the play when close enough. While it's
true that we invest resources into developing a generic decision handling system,
let's see how this pays dividends when implementing the logic in the editor.

Putting it all together
Let's test our DecisionMgr class by integrating these custom conditions and
responses into an NPC instance.

1.	 Find the NPC instance from earlier, and select the npcScript class.
2.	 Note that the DecisonMgr reference is embedded in the class (instead of

waiting for a reference to the GameObject). Click on the triangle, and notice
that you can see the public interactions list that this class contains. By setting
the size member variable, we can design and tailor the interactions for this
NPC's DecisionMgr to perfectly match our gameplay needs.

3.	 Click on the size field of the interactions list, and set it to 2. We will have two
interactions on this NPC.

4.	 Click on the Element 0 field. Make sure its active checkbox is set to true;
this ensures that this interaction is always evaluated. Note that the Condition
and Response fields are waiting for a reference to be set.

5.	 Drag-and-drop an instance of condition_closerthanThresh, and add it to
the NPC.

6.	 Set the thresh to 15 units, the trackObj to the npc, and the baseObj
to Player.

www.it-ebooks.info

http://www.it-ebooks.info/

NPCs and Associated Technology

[136]

7.	 Drag-and-drop this component from the NPC into the condition field of
interaction of Element 0. This associates this condition with the required
interaction code. Note that if we forget to add the component to the
DecisionMgr as we have done, the condition component will never
get evaluated.

8.	 Drag-and-drop an instance of response_changeState, and add it to
the NPC.

9.	 Set the NPC reference to the NPC that owns the component, and set the new
state to turnToPlayer.

10.	 Drag-and-drop this component from the NPC into the response field of the
interaction of Element 0. This associates the response with the required
interaction code.

11.	 Drag-and-drop an instance of condition_fartherThanThresh, and add it to
the NPC.

12.	 Set the thresh to 20 units, trackObj to the npc, and baseObj to Player.

13.	 Drag-and-drop this component from the NPC into the condition field of the
Interaction tab of Element 1. This associates this condition with the second
interactions code.

14.	 Drag-and drop-another instance of response_setState onto the NPC. Set
the NPC to the parent NPC and the state to patrol.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[137]

Congratulations, we have configured the NPC DecisionMgr component to stop
when it is close enough and turn to face the player. When the player leaves, the
NPC will continue on its way. Adding further interactions to the NPC is as simple
as increasing the size of the interactions array and creating the references.

Programming new interactions is a cinch, too! So long as we inherit from the correct
base class, we see that gameplay code programming is now reduced to developing a
library of query and interface classes. We no longer need to deal with the interactions
and sequencing of logic, just the concrete behaviors themselves. This is a big win!

Summary
We developed a data-driven dispatch system of condition and response classes.
We extended these bases to build a library of behaviors from which we can construct
NPC behaviors. We then developed a decision-manage class that can evaluate these
conditions and dispatch responses. This extendible pipeline can be specialized and
quickly iterated upon in the Unity3D Editor. In the next chapter, we will put this to
good use as we write the second level of our e-learning game. This level will take the
knowledge learned from Chapter 1, Introduction to E-Learning and the Three Cs of 3D
Games, and will test the player's recall in a fun and engaging way.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Mission Two – Testing a
Player's Learning

In this chapter, we will program the second mission for our e-learning game.
The objective of this level will be to test the learning that occurred in the first
flag-collecting level. The theme of the level will be a race against two other NPCs
through a park, where the player will have to answer trivia questions from NPCs
placed randomly along the path. The player will have to achieve 100 percent
accuracy and be placed first in the race in order to advance to level three.

In this chapter, we will cover the following topics:

•	 Exploring the structure of mission two
•	 Defining the framework for mission two
•	 Adding a mission to the missionMgr script
•	 Extending the GameCam script
•	 Modifying the terrain
•	 Adding NpcRacers to the mission
•	 Creating the start and finish line flags
•	 Creating the LevelStart and LevelFinished pop ups
•	 Creating the setupLevel2 Prefab
•	 Creating the raceStartup Prefab
•	 Implementing the LevelLogicObj GameObject

www.it-ebooks.info

http://www.it-ebooks.info/

Mission Two – Testing a Player's Learning

[140]

Exploring the structure of mission two
The choice of a quiz race for mission two's gameplay was made to fill a number of
e-learning game design requirements.

Recall that learning does not occur in a vacuum. Without testing for player
comprehension, we cannot assess quantitatively how much learning has occurred,
so a form of player interaction is necessary; the NPCs presenting the quiz cards fills
this role. This is the source of challenge in the game.

The other racers chasing the player through the course add a level of pressure on the
player. This is the source of intensity or pressure in the game.

Recall that testing and pressure are the two parameters necessary to create a learning
environment that encourages cognitive flow. Having constructed our level according
to this model, we can adjust the difficulty of the quiz questions and the speed of the
other players to influence the fun and learning effectiveness of the game.

Defining the framework for mission two
As with mission one, we will organize our game objects into hierarchies as shown in
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[141]

The _global GameObject hierarchy will contain objects that persist for the entire
lifespan of the game, and we will develop other hierarchies for objects that persist
during a specific level.

To begin, let's create a new scene file for the level. Name the scene TESTBED2. Inside
this scene, let's add two empty game objects at the root level, placed at (0,0,0) as with
the first level. Name them _global and _level2.

1.	 Under _global, add the layer, camera, and GameObject. Recall that these
objects and their scripts persist across all levels.

2.	 Under _level2, we will add level 2's specific GameObjects. As we create them
throughout this chapter, we will add them to the hierarchy formed with the
object named _level2 as the root.

The following objects will be placed in this hierarchy:

°° _splineDataA and _splineDataB: These are two collections of control
points for the spline systems that racerA and racerB will use to follow
smooth paths during the race.

°° GiantFlagFinish: This is the large two-poled flag object representing
the finish line.

°° LevelLogicObj: This is the GameObject that contains the logic that
will track the player's progress in the mission and dispatch either
a success or failure condition based on this. This GameObject will
also have a GiantFlagStart GameObject as a child, representing the
starting line in the scene.

°° NpcLocators: This is a collection of positions where NPCs will be
randomly placed at the start of the mission. This operates similarly
to the flag locators in mission one.

°° racerA: This is an NPC GameObject that will race against the player.
°° racerB: This is an NPC GameObject that will race against the player.
°° Terrain: This is the terrain mesh that represents the park grounds in

this level (mission two).
°° setupLevel2: This is the GameObject instance that configures the

level for play on start and starts the race.
°° raceStarter: This is the GameObject instance that controls the start

time of the race.
°° TriviaCards: A number of trivia cards (one for each state) will be

made that show the four flags to the player and ask him or her to
pick the correct one for the given state name.

www.it-ebooks.info

http://www.it-ebooks.info/

Mission Two – Testing a Player's Learning

[142]

Adding a mission to the missionMgr
script
Recall the missionMgr script attached to the GameObject (a child of _global). This
is the class that manages tracking objectives in the game. In order to create a new
mission for level two, let's perform the following steps:

1.	 Select the missionMgr script, and set the size of the mission's component to 1,
telling the system we will have one mission in this level.

2.	 Set the mission to activated, visible, and MS_ACQUIRED so that the level
starting with this mission is ready to be processed from the start.

3.	 Set the display name to win the race and the description to achieve 100%
accuracy and first place in the race.

4.	 Set the token component size to 0. Another script will fill these dynamically,
but eventually it will be filled with the randomly chosen flags from Chapter 1,
Introduction to E-Learning and the Three Cs of 3D Games.

5.	 Set the points to 2500 and the reward object to null.

This is a sufficient setup for the mission on initialization.

Extending the GameCam script
The GameCam script's logic needs to be extended for this mission to support the ability
to look up in the sky and back down at the player. To do this, a couple of simple
methods need to be added to adjust the lookat GameObject.

A public method named LookUp will find the object named lookUpTarget and swap
the lookObj in the script with the following code snippet:

public void LookUp()
{
 GameObject go = GameObject.Find("lookupTarget");
 if (go)
 lookObj = go;
}

lookUpTarget is an empty GameObject parented to the player, placed
100 units above him or her in Y—a simple and effective way of looking up
above the player.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[143]

A second method, named LookPlayer, will restore the lookObj back to the player
object. This resets the camera back to third person functionality as shown in the
following code snippet:

public void LookPlayer()
{
 if (trackObj)
 lookObj = trackObj;
}

Modifying the terrain
Since the theme of this level is a race, we need to create a nice winding path
through the level. Select the terrain editor and paint a path from start to finish
that loops around the mountains. At one end, we will place the racer, and at the
end we will create a trigger to detect the end of the race, as you can see in the
following screenshot:

Adding NpcRacers to the mission
To make the race compelling and interesting, we will create two NPC racers to
challenge the player. If it turns out well, we can build most of these with the
technology we have already developed.

www.it-ebooks.info

http://www.it-ebooks.info/

Mission Two – Testing a Player's Learning

[144]

Each racer will need a spline to follow. Recall from the previous chapter that we
developed a system for placing waypoints in the scene and using the SplineMgr
script to generate a smooth curve for an NPC to follow. This will define the smooth
path they traverse from start to finish. To implement the other racers in the level,
carry out the following steps:

1.	 Create an empty GameObject, and name it _splineDataA. Create a series of
sphere game objects, and place them in a path from start to finish. Disable the
mesh renderer of these objects, and then parent them all to _splineDataA.

2.	 Create a second _splineData object with different path nodes so that the
second racer will follow a similar but not identical route through the course.
Name it _splineDataB.

3.	 Parent these two _splineData objects to the _level2 root level object's
container to ensure our level loading strategy remains simple and elegant.

4.	 As with the player, create a placeholder model for the racers, which is
composed of a capsule with a rectangular hat parented to the top. Name
them RacerA and RacerB respectively.

5.	 To RacerA, add an instance of npcScript (created in Chapter 6, NPCs and
Associated Technology). Associate _splineDataA to the path reference on this
script. Make sure the DecisionMgr member is empty; we won't be using
it for the racers' logic. The structure of RacerA should then resemble the
following figure:

RacerA

NpcScript

SplineMgrA

6.	 To RacerA, add an instance of the SplineMgr script. Set the splineNodeRoot
to _splineDataA to install these control points into the manager class. Set
the playbackMode to paused and the playback type to const_dt so that the
splineObject starts stationary, but will move along the path with some
natural looking acceleration and deceleration.

7.	 Follow steps 6 and 7 for RacerB, but associate _splineDataB instead of
_splineDataA.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[145]

8.	 Set the speeds of racers (dt value) to 0.0015 and 0.001 respectively.
This will set the racers' speeds to sufficiently similar values to make
the race competitive.

9.	 Congratulations! You have implemented two racer NPCs that will compete
with the player for first place in the race. Note that they don't have to wait to
answer the quiz questions as the player does.

Creating the start and finish line flags
To mark the starting and ending location of the race, we will create a giant flag
Prefab and instance it in both places. The banner of the flag will have cloth physics
to give it an interesting motion. If you are targeting a lightweight device such as a
phone, feel free to simply replace the cloth object with a flat plane if performance is
an issue in your application. In order to create the start and finish line flags, we need
to perform the following steps:

1.	 Create two cylindrical game objects. Set them three units apart from one
another, and scale them up to a y value of 6. Name these as pole1 and pole2.
In the scene view, you should see something like the following figure:

2.	 Create a cloth GameObject. It will appear as a flat plane in its initial
position in the editor, but when you play the game, the cloth simulation
will apply the motion.

3.	 Scale and rotate the cloth object so that it faces the ground at right angles.
Scale the object so that it penetrates both poles. This will allow us to
attach the cloth to the poles so that the physics simulation results in a
draping banner.

4.	 Create an empty GameObject, and place it at ground level between the two
poles. Name it GiantFlag.

www.it-ebooks.info

http://www.it-ebooks.info/

Mission Two – Testing a Player's Learning

[146]

5.	 Select the cloth object, and make sure the Use Gravity checkbox is selected.

6.	 Select the AttachedColliders member of the cloth object. Set the size to
2. Drag-and-drop the first pole into the first collider reference and the
second pole into the second collider reference. This will bind the banner
to both poles.

7.	 Create a material with a nice checkerboard material, and attach it to the
cloth component.

8.	 Drag-and-drop this object to the project tab, and name the Prefab GiantFlag.
9.	 Create two instances of this GiantFlag Prefab—one at the starting line and

one at the finish line of the path. Your flag should look something like the
following screenshot:

Congratulations, you have created two banners for the game to mark the start and
finish lines of the race! Click on the cloth simulation component of the GiantFlag
Prefab, and experiment with the external acceleration, random acceleration, and
friction variables to achieve different levels of motion in the banners themselves.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[147]

Creating the LevelStart and
LevelFinished pop ups
Our level will use three pop-up windows to communicate with the start and finish
scenarios of the level. One of them will show the start details, and the other one will
explain whether you have passed or failed the objectives. We will use the Prefabs
from Chapter 5, User Interfaces in Unity, as a basis for these pop ups. In order to create
these pop ups, let's perform the following steps:

1.	 Create a new Prefab named popup_Level2Start from the popup_info Prefab,
which we created in Chapter 5, User Interfaces in Unity.

2.	 Change the five lines of text on the Prefab to detail the instructions for the
level: "You are in a trivia race against two other racers. Run from start
to finish and answer the trivia questions. You must achieve 100 percent
accuracy and place first in the race to move on to level 3. Good Luck.".

3.	 On Popup Button Script, add three actions in the editor as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Mission Two – Testing a Player's Learning

[148]

°° On the first element of the actions array, set the action to
EnableObject and the object reference to setupLevel2 (a new
GameObject parented to _level2). This object will set up the
mission once it is instantiated.

°° On the second element of the actions array, set the action to
EnableObject and the object reference to raceStarter (a new
GameObject parented to _level2). This object will commence the
start-up of the racers themselves, resulting in their starting to run.

°° On the third element of the actions array, add a SelfDestruct action
so that the last task the button does is to destroy the panel itself.

4.	 Create a new Prefab named popup_Level2Finish from the popup_info
Prefab, which we created in Chapter 5, User Interfaces in Unity.

5.	 Change the five lines of text on the Prefab to present a nice message to the
user for winning the game. This panel will be enabled when the user wins
the race with 100 percent accuracy.

6.	 Give the confirm button two actions: LoadLevel3 and SelfDestruct. This
will result in the button loading the next level and then destroying itself.
In Chapter 10, An Extensible Game Framework Pattern in Unity, we will
connect this pop-up window to the GameMgr class when we integrate
the level transitions together.

7.	 Create a new Prefab named popup_Level2Repeat from the popup_info
Prefab, which we created in Chapter 5, User Interfaces in Unity.

8.	 Change the five lines of text on the Prefab to present a message to the user for
not winning the game. This panel will be enabled when the user doesn't win.

9.	 Give the confirm button two actions: LoadLevel2 and SelfDestruct.
LoadLevel2 will have the effect of reloading the level once we integrate the
level transitions together.

10.	 Set the popup_Level2Repeat and popup_Level2Finish pop ups to disabled
in the editor, and keep the popup_Level2Start pop up enabled when the
level starts.

Congratulations! The pop-up communication system for this mission is complete.
Let's implement the Prefab that initializes the mission on start.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[149]

Creating the setupLevel2 Prefab
The setupLevel2 Prefab will be activated when the user presses the start button
on popup_Level2Start. It will finish the initialization of the mission for the level
in the missionMgr script. Let's perform the following steps to create the
setupLevel2 Prefab:

1.	 Create a new Prefab named setupLevel2. Duplicate the SetupMissionOne
script from mission one, and rename the duplicate SetupMissionTwo.
Add an instance to setupLevel2.

2.	 Inside MonoDevelop, change the class declaration to SetupMissionTwo as
shown in the following line of code:
public class SetupMissionTwo : MonoBehavior {

3.	 We will use the same pattern for choosing random QuizNpc locators as we
did for the flag locators in mission one. In addition to the QuizNpc Prefabs
and the spawnPoints lists, add a list of CorrectPopups to the class.

4.	 This class will hold the pop ups that are shown to the user when a correct
answer is given for a particular quiz question. This will be populated by
the user in the editor, and it will hold a number of unique pop ups, which
will give the user a mission token when clicked through. We will store these
unique pop ups in a list, as declared in the following line of code:
public List<GameObject> CorrectPopups

5.	 Add a public reference to QuizNpc Prefab. This is the model (and eventually
animations) for the QuizNpc class on the path giving the questions. Once the
locations are randomly chosen, instances of this model will be placed around
the track. This can be done with the following line of code:
public GameObject QuizNpc;

6.	 We will also keep a reference to the raceStarterObj so that we can enable it
when the setupLevel2 class is enabled. This will have the effect of starting
the racers' movement. This can be done with the following line of code:
public GameObject RaceStarterObj;

This script works largely in the same way as SetupMissionOne, with some
subtle changes due to the different design needs. As five random quiz cards
are selected (rather than flags), we instantiate QuizNpc to stand that location:

GameObject QuizNpcInstance =
 (GameObject)Instantiate(QuizNpc, QuizPos, new
 Quaternion(0,0,0,1));

www.it-ebooks.info

http://www.it-ebooks.info/

Mission Two – Testing a Player's Learning

[150]

7.	 As we loop over the selected questions, we hand off the correct answer pop
up for each NPC question to the QuizNpc class itself. The NPC will then hand
this off when the quiz question is actually activated (when player is close
enough to NPC). The NPC stores the reference to the correct answer pop
up through a QuizNpcHelper script attached to it as shown in the following
code snippet:
QuizNpcIstance.GetComponent<QuizNpcHelper>().SetPrefabRefer
 ence(CorrectPopups[k]);
QuizNpcInstance.SetActive(true);

8.	 We install the QuizCard itself into NPC's ObjectInteraction inside
the Prefab member variable of the setupLevel2 class. This allows
interactiveObject to display the QuizCard when the player is close
enough as shown in the following code snippet:
ObjectInteraction oo =
 QuizNpc.GetComponent<objectInteraction>();
if (oo)

 oo.prefab = quizPrefab;

9.	 Then we add MissionToken from the current chosen pop up and add it
to missionTokens of the mission for this level. This way, the mission can
track the randomly chosen quiz questions from this method as shown in the
following code snippet:
mm.missions[0].tokens.Add(CorrectPopups[k].
 GetComponent<MissionToken>();

10.	 Congratulations! SetupMissionTwo is finished. When the setupLevel2
Prefab is enabled (by clicking on Okay on popup_Level2Start), the
setupMissionTwo script will choose five random quiz locations from a
group of ten and five random quiz cards from a group of 50. It will then
place instances of quizNpc at each location for the player to interact with.

Creating the raceStartup Prefab
Recall that the second Prefab that is enabled when the popup_Level2Start windows
is clicked, is the raceStartup Prefab. This object will commence the start of the
other racers, leaving room for an eventual countdown clock. Let's start creating
the raceStartup Prefab by performing the following steps:

1.	 Create a new empty GameObject named RaceStartup.
2.	 Create a new script named RaceStarterScript, and add an instance of it to

the raceStartup class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[151]

3.	 This class should have a number of public variables to permit the tweaking
of the race start.

4.	 In the following line of code, stageTime is the amount of time each
stage lasts:
public float stageTime = 2.0f;

5.	 In the following line of code, numStates is the number of states (of duration
stageTime) that need to pass before the NPCs are activated:
public int numStages = 4;

6.	 In the following line of code, currentState tracks which actual state is
currently elapsing:
public int currentState = 0;

7.	 Add a float t to track elapsed time as shown in the following line of code:
public float t;

8.	 Add two GameObject references to NPCs to activate as shown in the
following lines of code:
public GameObject npcA;
public GameObject npcB;

9.	 The core logic for this class happens in the Update() method each time Unity
invokes this function and we track total elapsed time in t as shown in the
following line of code:
t += time.deltaTime;

10.	 Once the final state is completed, we tell each NPC to change state to patrol.
This has the effect of making them start to follow their spline paths via their
component SplineMgrs as shown in the following code snippet:
if (currentState == numStates + 1)
{
 ncpA.GetComponent<npcScript>().SetState(npcScript.npcState.
 patrol);

 npcB.GetComponent<npcScript>().SetState(npcScript.npcState.
 patrol);

www.it-ebooks.info

http://www.it-ebooks.info/

Mission Two – Testing a Player's Learning

[152]

11.	 If the elapsed time exceeds the state time, we reset the stageTime to zero
plus any fractional difference beyond the stageTime that has been incurred
and then increase the stage count by 1. This is slightly more accurate than
simply setting t to 0 for each stage and is prone to fewer errors over many
stages. This can be accomplished with the following code snippet:
if (t > stageTime)
{
 currentState++;
 t -= stageTime;
}

Congratulations! Now, the raceStartup Prefab will activate the NPCs after an
appropriate time has passed. Conveniently, this delay is adjustable inside the
Unity Editor. This is a good thing as it lets the player to get a small head start
on the other racers.

Implementing the LevelLogicObj
GameObject
When instantiated, the LevelLogicObj object will be detected as soon as the player
and racers enter the LevellogicObj's trigger volume. When three racers have crossed
the finish line, it will determine if the player has met the objectives of the race or
not, and it will enable either the pass or fail retry pop up. In order to implement
the LevelLogicObj object, we need to perform the following steps:

1.	 Create a cube game object named LevelLogicObj. Scale, orient, and
position it so that it surrounds the finish line in the level as shown in
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[153]

2.	 Make sure it has a Box Collider component and that the Is Trigger checkbox
is checked as shown in the following screenshot:

3.	 We want to use the DecisionMgr class to track the progress of the racers,
which means we need to add an instance of npcScript to this object.

4.	 Don't worry about the fact that the LevelLogicObj object is not specifically
an NPC; if an existing tool is appropriate, don't reinvent the wheel!

5.	 Create a new script called listData. Modify it so that it inherits from
npcCondition (just as the rest of the conditions we have developed so far).
Add a public list of GameObjects called _ListData as shown in the following
line of code:
public List<GameObject> _ListData;

6.	 By inheriting from npcCondition, we now have a designer tweakable array
that can be associated with DecisionMgr at runtime. Just don't forget to add
the additional using directive for the list as shown in the following line
of code:
using System.Collections.Generic;

7.	 Add an instance of listData to the LevelLogicObj object, and then
drag-and-drop the script component into the first interaction's condition
reference field.

8.	 The first logical operation that LevelLogicObj needs to do is, when a
character or the player enters the triggerVolume, a reference to that
GameObject should be stored in the data container. In our example, that
container is listData. We need to implement a way to detect and insert. So,
create a new script named condition_OnEnter, and add an instance of it to
the LevelLogicObj object.

9.	 Modify the condition_OnEnter condition script so that it inherits from
npcCondition rather than monobehavior as with the rest of our condition
classes as shown in the following line of code:
public class condition_onEnter : npcCondition;

www.it-ebooks.info

http://www.it-ebooks.info/

Mission Two – Testing a Player's Learning

[154]

10.	 Give the condition_OnEnter class a public reference to a GameObject called
trackObj. This will hold a reference to the most recent GameObject that
enters the trigger volume. This can be done with the following line of code:
public GameObject trackObj;

11.	 Add a private Boolean variable named hasEntered, and initialize it to false.
This will be used to track whether an object is actually inside the volume
(rather than only having entered this frame):
private bool hasEntered = false;

12.	 Now recall that the OnTriggerEnter/OnTriggerExit callbacks are returned
from the physics system rather than our DecisionMgr system. In order to
interface the two, we will implement OnTriggerEnter and OnTriggerExit
and then pass the relevant information outward.

13.	 The OnTriggerEnter method should simply set hasEntered to true, and
it should set trackObj to other.gameObject as shown in the following
code snippet:
void OnTriggerEnter(collider other)
{
 hasEntered = true;
 trackObj = other.gameObject;

}

14.	 The OnTriggerEnter method should conversely set hasEntered to false,
and it should nullify trackObj as shown in the following code snippet:
void OnTriggerExit(Collider other)
{
 hasEntered = false;
 trackObj = null;

}

15.	 Lastly, the eval() method for this condition should be implemented to
return the hasEntered variable. Recall from when we first developed the
npcCondition system that the keyword override is used when declaring this
eval() method to tell the Unity C# compiler that this implementation of
the method corresponds to the interface declared in the npcCondition base
class. In this way, we have now paired the PhysX trigger system with our
DecisionMgr. When the Is Trigger checkbox fires the OnTriggerEnter()
method even when the player or racer crosses the finish line, it will pass
the reference from the GameObject that entered the trigger to this condition
class. This can be accomplished with the following code snippet:
public override bool eval()
{
 return hasEntered;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[155]

16.	 Setting our attention on the response we need to write, let's create a new
script named response_insert and add an instance of it to LeveLLogicObj.

17.	 Modify the script so that it inherits from npcResponse rather than
Monobehavior. Don't forget to add the [System.Serializable] flag
to the script.

18.	 Add a public npcCondition variable named data, as shown in the following
line of code:
public npcCondition data

19.	 At this point, we recognize that in our base npcReponse and
npcCondition classes, we need to track the paired response or condition
from the interaction. As such, go into these classes now, and add a
public conditionAssociation to npcResponse and add a public
responseAssociation to npcCondition.

20.	 Switching back to response_Insert, we start to implement the dispatch()
method. We first get condition_OnEnter() associated with this response's
interaction and check if the GameObject that actually entered is an NPC
racer or the player. We determine this by checking the tag on the object
that entered as shown in the following code snippet:
condition_onEnter cOE = (conditionAssciation as
 condition_onEnter);
 bool bIsPlayer = (cOE).trackObj.CompareTag("Player");
 bool bIsRacer = (cOE).trackObj.CompareTag("Character");

21.	 If the object that entered is either a racer or player, insert the GameObject
reference into the listData condition wrapper. For safety, we only insert a
GameObject if it has not already been inserted into the list as shown in the
following code snippet:
listData rlist = (data as listData);
 if (!rlist._a.Contains(coe.trackObj))
 rlist._listData.Add(cOE.trackObj);

22.	 If a racer (not the player) entered the finish line, we set the racer to paused
so that it doesn't keep traversing its SplinePath as shown in the following
code snippet:
 (if bIsRacer)
 {
 (cOE).trackObj.GetComponent<npcScript>().SetState(npcScript
 .npcState.pause);

www.it-ebooks.info

http://www.it-ebooks.info/

Mission Two – Testing a Player's Learning

[156]

23.	 Now that reponse_insert has been implemented, drag-and-drop the
listData script from the LevelLogicObj object to the data field on this
script. Then, drag-and-drop the instance of this script from LevelLogicObj
to the second response field of LevelLogicObj's DecisionMgr.

24.	 For the third condition, we need to create a new condition script called
condition_listFull. Go ahead and make a new script; change its base
class to npcCondition and add an instance to LevelLogicObj as usual.

25.	 Add a public variable to this script to track the number of entries that will
represent full, and a public npcCondition called data, as shown in the
following code snippet:
public int numEntries;
public npcCondition data;

26.	 Drag-and-drop listData from the LevelLogicObj GameObject to the data
field on condition_listFull.

27.	 Inside the implementation of eval(), condition_isFull does its work.
If data is not null, it extracts the number of entries from the listData's list
through its count member as shown in the following code:
if (data != null)
{
 int count = (data as listData)._listData.Count;

28.	 If the count of the listData component's list array equals the numEntries
value on this script, the return value is set to true. Otherwise, it remains
false as shown in the following code snippet:
if (count == numEntries)
 rval = true;

29.	 Now that condition_listFull is complete, let's create the response that will
occur when the list is found to be true—response_ShowRaceResultsPopup.
This script will check the status of the mission, and enable the correct pop up
on the main camera to achieve the desired gameflow.

30.	 Create a new script named response_ShowRaceResultsPopup, change its
base class to npcResponse, and add an instance of it to LevelLogicObj.

31.	 Add the following five public member variables to this script:
°° An npcCondition named data
°° A GameObject named player
°° A gameMgr named gm
°° A GameObject named passPopup
°° A GameObject named retryPopup

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[157]

The response_ShowRaceResultsPopup class will use the GameManager
reference, and based on the data condition and result, it will enable either
passPopup or retryPopup.

32.	 Edit response_ShowRaceResultsPopup so that its base is npcResponse.
33.	 Drag-and-drop the listData component from LevelLogicObj to the data

field of this script.
34.	 Drag-and-drop the GameMgr script from the GameObject to the Gm field

of this script. Recall that this GameObject lives as a child of the _global
GameObject.

35.	 Drag-and-drop the player1 reference from beneath _global to the player
reference in this response script.

36.	 Drag-and-drop the popup_Level2Finish pop up from beneath MainCamera
(which is beneath _global) to the pass reference field of this script.

37.	 Drag-and-drop the popup_Level2Repeat pop up from beneath MainCamera
to the fail reference field of this script. At this point your component should
look somewhat like the following screenshot:

38.	 Inside this script, the dispatch() method does the brunt of the work. We
compute if the player is first by checking if the player reference is equal
to the first cell in the listData component's list array, as shown in the
following code snippet:
 bool playerIsFirst = (data as listData)._listData[0] ==
 player;

39.	 If the player is first, and we can locate the missionMgr script from the game,
we point the camera looking up (to make sure the pop up is shown with a
nice effect) as shown in the following code snippet:
 if (mm)
 Camera.main.Getcomponent<GameCam>().LookUp();

www.it-ebooks.info

http://www.it-ebooks.info/

Mission Two – Testing a Player's Learning

[158]

40.	 We then check the missionMgr script for the status of the first mission. At
this point, we know the game is done because the list is full, but the player
may or may not have got 100 percent. If the player achieved 100 percent on
the quiz, it means that the first mission is complete, and hence we should
activate the pass pop up as shown in the following code snippet:
 if (mm.isMissionComplete(0) == true)
 {
 passPopup.SetActive(true);
 }

41.	 Otherwise, we activate the fail pop up as shown in the following code snippet:
else
{
 fail.Popup.SetActive(true)
}

42.	 Excellent! At this point, DecisionMgr is fully populated and should look
somewhat like the following screenshot:

43.	 Congratulations! The LevelLogicObj evaluates the conditions of inserting
a character during the OnEnter() method and of displaying the correct pop
up when the list is full. We use DecisionMgr rather than the mission system
to show how a pipeline can be built that allows complex game logic to be
developed simply from parts that can be manipulated inside of Unity.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[159]

Summary
We have finished mission two in our e-learning game, which tests the user on the
learning that occurred in mission one by developing a race-based quiz game. The
elements of fun and pressure are deliberate design considerations as they allow the
designer a way to adjust the fun factor of the game to enhance learning.

In the next chapter, we will change focus and learn about how to add models and
animations to the placeholder characters and objects in our game in order to make
them more visually appealing.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Animations
Until this point, we have been successfully developing our game with the in-editor
primitives provided by Unity3D. To add a professional layer of polish, we will learn
how to add skinned models and various types of animations to our e-learning game.
We will download skinned mesh models and animations from a popular site and
learn how to integrate them into the game, as we develop a character motion system.
We will also learn about the in-editor animation editor and how it can be used to
animate static meshes (appropriate for in-game models such as buildings, cars,
and statues that are not weighted to a 3D skeletal hierarchy).

In this chapter, we will discuss the following topics:

•	 Exploring 3D hierarchies
•	 Skinned meshes in Unity3D
•	 Exploring the Mechanim animation system
•	 Exploring the Unity Animation editor

Exploring 3D hierarchies
The ability to parent objects among one another is a versatile feature in Unity3D. So
far, in this book, we have seen how hierarchies can be used as a means of associating
objects with one another and organizing them into hierarchies. One example of this
is the character Prefabs with their child hats we developed for the player Prefab
and the racers. In this example, by dragging-and-dropping the hat object onto
the player's body, we associated the hat with the object body by putting the child
into the parent's coordinate system. After doing this, we saw that the rotations,
translations, and scales of the body's transform component were propagated to the
hat. In practice, this is how we attach objects to one another in 3D games, that is, by
parenting them to different parents and thereby changing their coordinate systems
or frames of reference.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Animations

[162]

Another example of using hierarchies as a data structure was for collections.
Examples of this are the splineData collections we developed for the NPCs. These
objects had a single game object at the head and a collection of data as child objects.
We could then perform operations on the head, which lets us process all of the child
objects in the collection (in our case, installing the way points).

A third use of hierarchies was for animation. Since rotations, translations, and scales
that are applied to a parent transform are propagated to all of the children, we
have a way of developing fine-tuned motion for a hierarchy of objects. It turns out
that characters in games and animated objects alike use this hierarchy of transforms
technique to implement their motion.

Skinned meshes in Unity3D
A skinned mesh is a set of polygons whose positions and rotations are computed
based on the positions of the various transforms in a hierarchy. Instead of each
GameObject in the hierarchy have its own mesh, a single set of polygons is shared
across a number of transforms. This results in a single mesh that we call a skin
because it envelops the transforms in a skin-like structure. It turns out that this
type of mesh is great for in-game characters because it moves like skin.

We will now use www.mixamo.com to download some free models and
animations for our game.

Acquiring and importing models
Let's download a character model for the hero of our game.

1.	 Open your favorite Internet browser and go to www.mixamo.com.
2.	 Click on Characters and scroll through the list of skinned models. From

the models that are listed free, choose the one that you want to use. At the
time of writing this book, we chose Justin from the free models available,
as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[163]

3.	 Click on Justin and you will be presented with a preview window of the
character on the next page. Click on Download to prepare the model for
download. Note, you may have to sign up for an account on the website
to continue.

4.	 Once you have clicked on Download, the small downloads pop-up window
at the bottom-right corner of the screen will contain your model. Open the
tab and select the model. Make sure to set the download format to FBX for
Unity (.fbx) and then click on Download again. FBX (Filmbox)—originally
created by a company of the same name and now owned by AutoDesk—is an
industry standard format for models and animations. Congratulations! You
have downloaded the model we will use for the main player character.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Animations

[164]

5.	 While this model will be downloaded and saved to the Downloads folder
of your browser, go back to the character select page and choose two more
models to use for other NPCs in the game. At the time of writing this book,
we chose Alexis and Zombie from the selection of free models, as shown in
the following screenshot:

6.	 Go to Unity, create a folder in your Project tab named Chapter8, and inside
this folder, create a folder named models. Right-click on this folder and select
Open In Explorer. Once you have the folder opened, drag-and-drop the two
character models from your Download folder into the models folder. This will
trigger the process of importing a model into Unity, and you should then see
your models in your Project view as shown in the following screenshot:

7.	 Click on each model in the models folder, and note that the Preview tab
shows a t-pose of the model as well as some import options. In the Inspector
pane, under the Rig tab, ensure that Animation Type is set to Humanoid
instead of Generic. The various rig options tell Unity how to animate
the skinned mesh on the model. While Generic would work, choosing
Humanoid will give us more options when animating under Mechanim.
Let Unity create the avatar definition file for you and you can simply click
on Apply to change the Rig settings, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[165]

8.	 We can now drag-and-drop your characters to the game from the Project tab
into the Scene view of the level, as shown in the following screenshot:

Congratulations! You have successfully downloaded, imported, and instantiated
skinned mesh models. Now, let's learn how to animate them, and we will do this
starting with the main player's character.

Exploring the Mechanim animation
system
The Mechanim animation system allows the Unity3D user to integrate animations
into complex state machines in an intuitive and visual way! It also has advanced
features that allow the user to fine-tune the motion of their characters, right from the
use of blend trees to mix, combine, and switch between animations as well as Inverse
Kinematics (IK) to adjust the hands and feet of the character after animating. To
develop an FSM for our main player, we need to consider the gameplay, moves,
and features that the player represents in the game.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Animations

[166]

Choosing appropriate animations
In level one, our character needs to be able to walk around the world collecting flags
and returning them to the flag monument. Let's go back to www.mixamo.com, click
on Animations, and download the free Idle, Gangnam Style, and Zombie Running
animations, as shown in the following screenshot:

Building a simple character animation FSM
Let's build an FSM that the main character will use. To start, let's develop the
locomotion system.

1.	 Import the downloaded animations to a new folder named anims, in
Chapter8. If you downloaded the animations attached to a skin, don't worry.
We can remove it from the model, when it is imported, and apply it to the
animation FSM that you will build.

2.	 Open the scene file from the first gameplay level TESTBED1.
3.	 Drag-and-drop the Justin model from the Projects tab into the Scene view

and rename it Justin.
4.	 Click on Justin and add an Animator component. This is the component

that drives a character with the Mechanim system. Once you have added
this component, you will be able to animate the character with the
Mechanim system.

5.	 Create a new animator controller and call it JustinController.
6.	 Drag-and-drop JustinController into the controller reference on the

Animator component of the Justin instance. The animator controller is the
file that will store the specific Mechanim FSM that the Animator component
will use to drive the character. Think of it as a container for the FSM.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[167]

7.	 Click on the Justin@t-pose model from the Project tab, and drag-and-drop
the avatar definition file from Model to the Avatar reference on the Animator
component on the Justin instance.

8.	 Go to the Window drop-down menu and select Animator. You will see a
new tab open up beside the Scene view. With your Justin model selected,
you should see an empty Animator panel inside the tab, as shown in the
following screenshot:

9.	 Right now our Justin model has no animations in his FSM. Let's add the idle
animation (named Idle_1) from the Adam model we downloaded. You can
drag-and-drop it from the Project view to any location inside this panel.
That's all there is to it! Now, we have a single anim FSM attached to our
character. When you play the game now, it should show Justin playing
the Idle animation. You may notice that the loop doesn't repeat or cycle
repeatedly. To fix this, you need to duplicate the animation and then select
the Loop Pose checkbox.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Animations

[168]

10.	 Highlight the animation child object idle_1 and press the Ctrl + D shortcut
to duplicate it. The duplicate will appear outside of the hierarchy. You can
then rename it to a name of your choice. Let's choose Idle as shown in the
following screenshot:

11.	 Now, click on Idle, and in the Inspector window, make sure that Loop Pose
is selected.
Congratulations! Using this Idle animation now results in a character who
idles in a loop. Let's take a look at adding the walk animation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[169]

12.	 Click on the Zombie Running animation, which is a child asset of the
Zombie model, and duplicate it such that a new copy appears in the
Project window. Rename this copy Run.

13.	 Click on this animation and make sure to check the Loop Pose checkbox so
that the animation runs in cycles.

14.	 Drag-and-drop the Run animation into the Animator tab. You should now
have two animations in your FSM, with the default animation still as Idle;
if you run the game, Justin should still just be idle. To make him switch
animations, we need to do the following:

1.	 Add some transitions to the Run animation from the Idle animation
and vice versa.

2.	 Trigger the transitions from a script.
15.	 You will want to switch from the Idle to the Run animation when the

player's speed (as determined from the script) is greater than a small number
(let's say 0.1 f). Since the variable for speed only lives in the script, we will
need a way for the script to communicate with the animation, and we will
do this with parameters.

16.	 In your Animator tab, note that the FSM we are developing lives in the Base
Layer screen. While it is possible to add multiple animation layers by clicking
on the + sign under Base Layer, this would allow the programmer to design
multiple concurrent animation FSMs that could be used to develop varying
degrees/levels of complex animation.

17.	 Add a new parameter by clicking on the + sign beside the Parameters panel.
Select float from the list of datatypes. You should now see a new parameter.
Name this speed as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Animations

[170]

18.	 Right-click on the Idle Animation and select Make Transition. You will now
see that a white arrow is visible, which extends from Idle, that tracks the
position of your mouse pointer. If you now click on the Run animation,
the transition from Idle to Run will lock into place.

19.	 Left-click on the little white triangle of the transition and observe the
inspector for the transition itself. Scroll down in the Inspector window to
the very bottom and set the condition for the transition to speed greater
than 0.1, as shown in the following screenshot:

20.	 Make the transition from the Run animation cycle back to the Idle cycle by
following the same procedure. Right-click on the Run animation to start the
transition. Then, left-click on Idle. After this, left-click on the transition once
it is locked into place. Then, when the transition is activated in Conditions,
set its speed to less than 0.09.

Congratulations! Our character will now transition from Idle to Run when the speed
crosses the 0.1 threshold. The transition is a nice blend from the first animation to
the second over a brief period of time, and this is indicated in the transition graph.

Exploring in-place versus root motion
animation
There are two ways of moving a character in a 3D world: using the in-place
animation and the root animation. Each technique has some benefits and drawbacks
depending on the effect you want to achieve. In a complicated character system, you
may use both of these in different places.

•	 With the in-place animation, the character hierarchy is animated by the
animation, whereas the root note of the character is not. To move your
character about an axis, you need to move the root node in your script.
Rotations to the root node of the character model will result in rotations
to the character (and all the child objects of the character's hierarchy in
the skeleton).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[171]

•	 With the root motion animation, both the character's hierarchy and the root
node are animated by the animation. This means that you (as a programmer)
need not translate nor rotate the root node about an axis because your
animator will be responsible for doing that. Hence, this is a popular
choice for some games but not all.

•	 Since our Run animation does not have root motion in it, we will move our
character around in the script.

Adding the character script
Let's build the second half of our character system—the script that communicates the
speed value to the FSM. We need to do this so that our characters can respond to the
user's input.

1.	 Open the PlayerControl.cs script we wrote earlier for character motion.
2.	 We will use the movespeed variable as an approximation of the speed for the

speed parameter. Around line 65, after this is calculated, we will pass the
calculated speed to the animator component in the speed parameter. Don't
forget to drag-and-drop the animator component on the character to the
animator variable of the script as shown in the following code:
 if (_animator)
 _animator.SetFloat("speed",movespeed);

Create a new, empty GameObject named rotNode. Assign it as a child
to Player1 and give it a local position of (0, -1, 0) and a local rotation of
(0, 180, 0).

3.	 Attach the Justin model instance to the player class that we have already
developed so far. Set its relative position to (0, -2, 0). Also, disable the mesh
renderer component of Player1 and its hat; we won't be needing these
anymore since we will be using the Justin model.

4.	 Create a public animator reference inside PlayerControls.cs.
Drag-and-drop the Justin instance to this variable so that it finds
the animator component that has been attached there.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Animations

[172]

5.	 Make sure that the Idle animation has the XZ and Y rotation baked into the
animation. This way, when the character is idle, its feet will not slide when
the root motion is disabled.

6.	 Switch to Main Camera and set the desired distance from 4 to 10.

Congratulations! Our main character model now walks about or stays idle according
to the user input. Feel free to experiment with scaling the size of the Justin model
and the speed of the player's motion in PlayerControls.cs to fine tune the speed
and to reduce feet sliding.

Building a zombie racer animation FSM
Let's build an FSM that the racers in mission 2 will use. To start, let's develop the
locomotion system.

1.	 Load the TESTBED2 scene.
2.	 We will turn the racers into zombies for this level (this will motivate the

player to run fast!). Drag-and-drop the Zombie model into the scene and
scale it up to 3. Drag-and-drop the Zombie model on top of the RacerA
GameObject. Do the same for another instance of Zombie but parent it
to RacerB.

3.	 Create a new AnimationController object to drive the zombie's
Mechanim FSM. Name the controller ZombieControllerA. Drag-and-drop
the controller into the reference slot on the animator controller to associate
it with Mechanim.

4.	 Click on RacerA, then click on the Animator tab to view the Mechanim
preview panel.

5.	 Go back to www.mixamo.com to download and import the following two
zombie movement animations. We will use different animations because
each racer has a unique speed:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[173]

6.	 Create a single animation FSM by dragging-and-dropping the zombie walk
animation into the main window.

7.	 Create a second AnimatorController object named ZombineController2.
8.	 Drag-and-drop the injured_walk zombie animation into this window and

save the scene.
9.	 Make sure these two animator controllers are correctly bound to the animator

controllers of the two racers.

Congratulations! Now, when the race starts, the player will be chased by zombies!
Think about how you might extend the racer NPC class such that if a zombie ever
caught the player, it would switch to a grabbing animation to slow down the
player's progress.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Animations

[174]

Building a quiz racer animation FSM
Let's build an FSM that the QuizNpc Prefabs in mission 2 will use. Again,
let's develop the locomotion system to start.

1.	 Drag-and-drop an instance of the QuizNpc Prefab from the project library
window into the scene.

2.	 Drag-and-drop an instance of the Alexis model (already downloaded) and
place it beside QuizNpc. Disable the mesh renderer on QuizNpc so that it no
longer renders, and parent the Alexis model to the QuizNpc GameObject.

3.	 Set Alexis' local position to (0, -1, 0).
4.	 Create a new AnimatorController named QuizNpcController.

Drag-and-drop this controller from the Project pane directly into
the AnimatorController field on the QuizNpc instance.

5.	 Select QuizNpc and then open the Animator panel to preview the
empty FSM.

6.	 Drag-and-drop the Idle animation from the anims folder into the the panel.
7.	 The idle animation will play by default. When the player approaches

QuizNpc, a pop up will be displayed. If an incorrect answer is chosen, this
will have no bearing on the NPC's animation (although ideally, if we had
access to more free animations, we would look for the one that conveyed
disappointment).
If a correct animation is chosen, QuizNpc will dance! To begin,
drag-and-drop the Gangnam dance animation from the anims
folder into the Animator window.

8.	 Create a transition from the Idle state to the Gangnam dance state by
right-clicking on Idle, selecting Make Transition, and then left-clicking
on Gangnam to complete the transition.

9.	 Click on the small + sign beside Parameters and create a new parameter
named success of the type Boolean. We will use this to trigger the success
animation from the script.

10.	 Left-click on the small white triangle of the transition and change the
transition conditions to Success and True.

11.	 Drag-and-drop the QuizNpc GameObject back to the top of the QuizNpc
Prefab in the Project tab. This will overwrite the pre-existing one with our
new updates.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[175]

Make sure not to drag-and-drop the QuizNpc
GameObject to the top of a different Prefab or else
you will lose your other work!

12.	 We are going to need a new PopupButton action. Add another entry to the
popupAction enumeration in PopupButtonScript.cs:
MakeNpcDance = 13

13.	 Add the following implementation of this action in the dispatch method of
PopupButtonScript. If this action is dispatched, then find the NPC that has
an ID that matches the ID of this correct pop-up card (passed through the
side data of the pop-up response r), and set the doSuccess parameter on
that NPC to true.

14.	 We do this by searching for all QuizNpcHelpers and then comparing the ID
with the one requested from this pop up.

15.	 Then, when that NPC ticks through the Update() loop on its QuizNpcHelper
script, the true param will be passed into the animator as shown in the
following code:
case(popupAction.MakeNpcDance):
{
Object[] QuizNpcHelperObjects = Object.FindObjectsOfType(typeof(Qu
izNpcHelper));
foreach (Object item in QuizNpcHelperObjects)
{
 if ((item as QuizNpcHelper).GetQuizNpcId() == r.data. id)
 {
 (item as QuizNpcHelper).doSuccess = true;
 }
}

16.	 Inside QuizNpcHelper, declare the Animator component public. Then
drag-and-drop the Alexis child object on top of this method to set up
the reference association, as shown in the following line of code:
_animator = this.gameObject.GetComponent<Animator>();

17.	 Inside the Update() loop of the QuizNpcHelper script, pass the doSuccess
parameter into the Mechanim FSM (if there is an animator component):
if (_animator)
{
 _animator.SetBool("success",doSuccess);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Animations

[176]

18.	 Now, go through the questions 1 to 5 of popup_QuizNpcQuestion from the
Chapter7 folder and add a new action of the MakeNpcDance type. Make sure
to add the IDs 1 through 5 to the ID field of the data parameter for each of
these new actions.

19.	 In SetupMission2 present in the Start() method towards the end, add
a line of code to pass the ID of the question, which this NPC will give the
player, into the QuizNpcHelper. This way, when it's time to tell the NPC to
change its animation, the pop-up card can find its NPC by searching for the
one with the correct ID:
QuizNpcInstance.GetComponent<QuizNpcHelper>().SetQuizNpcId(k);

20.	 Inside InteractiveObject, we add a simple billboarding behavior to the
script so that QuizNpc can always face the player. If the billboard checkbox is
enabled, we use the Transform.lookat() built-in method to make sure the
NPC's transform always faces the player. We also fix up the local angles to
makes sure the NPC doesn't look up or down if the NPC itself is really close
to the player:
if (billboard == true)
{
 GameObject player = GameObject.Find("Player1");
 if (player != null)
 {
 this.transform.lookat(player.transform.position);
 this.transform.localEulerAngles = new Vector3(0.0f,
 this.transform.localEulerAngles.y, 0.0f);
 }
}

Congratulations! QuizNpc now animates nicely and celebrates when the player
responds correctly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[177]

Exploring the Unity animation editor
While Mechanim is the preferred tool for character animations, it is not well
suited to all of our animation needs. Unity provides a general-purpose animation
tool that lets us script the position, orientation, and even the state of public variables
on other scripts. This tool is well suited for simple animated objects and other
in-game choreography. It uses a simpler non-visual animation system to play the
animation but it still has many uses. Let's use this tool to add some animation to
the starting banner.

1.	 Left-click on pole2 of the GiantFlagStart Prefab instance.
2.	 Go to the Window menu and select Animation.
3.	 You will be presented with a timeline editor window, which will look similar

to the following screenshot:

4.	 The animation editor window presents the user with a tool to author
and preview custom animations inside of the Unity tool itself (rather than
inside of a 3D modeling package). These animations can be applied to any
GameObject that has public properties. All of the components, with the
public variables on the GameObject that you have selected, will appear
at the left-hand side of the screen. We can now apply the curve data to
them over the timeline to build custom animations.

5.	 Click on the red record button in the upper-left corner of the animation editor
to begin creating a custom animation.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Animations

[178]

6.	 The system will warn you that it needs to add the animation component
(not animator) and that this will break your Prefab reference. Go ahead and
allow the editor to add the component. We will update the Prefab once we
are done.

7.	 The animation editor uses curves to modify data over time. Click on the x
component of the transform and select Add Curve.

8.	 Now, by adding control points to these curves, we can animate the
parameters of the object. Let's create a simple symmetric oscillation
for the pole so that it shakes the banner in an interesting way.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[179]

9.	 Once you are happy with your animation, toggle the record button to stop
the recording. You will notice a new animation in your assets folder with
the name you provided when you first clicked on record.

10.	 Drag-and-drop this animation into the first Animation field of the animation
component on the pole object. Note that while this component supports
playing and blending between multiple animations, it must be driven
through scripting.

11.	 Make sure the Play Automatically checkbox is enabled to see your
animation, without having to tie it to any script.

Congratulations! You have now successfully created a custom animation with
the in-editor animation tool. To take this to the next level, feel free to explore the
different playback modes on the animation assets themselves as well as ways of
firing off methods from an animation curve with events. Remember, even slight
changes to the properties of GameObjects in the scene will be recorded as animations

Summary
In this chapter, we learned a lot about animation in Unity. We integrated skinned
models and animations from a third party. Using Mechanim, we created visually
designed animation FSMs as well as the scripting-side integration. We upgraded
our player, racer, and NPC game objects such that they now use these animated
characters rather than the placeholder Prefabs.

We also learned a bit about the legacy animation system and the in-editor animation
editor. We gained experience with this by creating a custom hand-tuned animation
for a banner's flag pole and applied it to the game object so that it would play
automatically. The game is looking much more polished now; a little visual
appeal goes a long way!

In the next chapter, we will develop the final mission of the game, where we present
the user with novel situations where they must use higher-order reasoning around
the subject matter. This approach of thinking about the material from a bottom-up
and top-down approach promotes consolidation of the material and is an effective
way to drive learning in the user.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Synthesis of Knowledge
In this chapter, we will develop the third level in our e-learning game. This will be
the final level in our game; the purpose of which is to help the user consolidate their
learning by synthesizing new knowledge. The objective of this level is for the player,
having now been promoted to ranger, to walk around the park tending to the needs
of the visitors. The visitors will ask various questions or give hints about what they
are thinking; the player needs to use higher-order reasoning to successfully interact
with the game NPCs in suggesting an answer that has to do with state trivia. If the
player answers correctly, we will reward the player in the game to promote learning.

We will reuse significant portions of technology from the first two missions to
develop this chapter. In this chapter, we will cover the following topics:

•	 Understanding the mission three GameObjects
•	 Applying learning theory to mission three
•	 Creating the structure for mission three
•	 Modifying the pop-up system
•	 Creating the NpcLocators Prefab
•	 Creating the CorrectResponse Prefabs
•	 Modifying the quiz cards
•	 Adding another data condition
•	 Using the setupLevel3 Prefab
•	 Creating the AddScore condition
•	 Creating the ShowLevel3Results response
•	 Creating the Time object
•	 Modifying the LevelLogicObj object
•	 Rewarding the player

www.it-ebooks.info

http://www.it-ebooks.info/

Synthesis of Knowledge

[182]

Understanding the mission three
GameObjects
In this level, we will implement a number of GameObjects and update others. Some
of the game objects are listed as follows:

•	 MissionMgr: This GameObject will be present in this level, but we will not
use a new mission to track the level progress. The missionMgr GameObject
should still stick around in case we want to add secondary missions or
side-quests to the game in the future.

•	 Player: The Player GameObject will need to have a working playerData
component script attached to it. Since this level is completed upon achieving
a certain score, and since scores (along with other statistics) are tracked in
this data structure, we are required to implement playerData.

•	 LevelLogicObj : The LevelLogicObj GameObject is the main logic object
that will track the players' score and the number of points that have been
earned in this level, and will dispatch the pass condition pop up at the end
of the level, assuming enough points have been acquired.

•	 QuizCard : The QuizCard GameObject creates a number of quiz cards
(one for each state) that show the user a unique question or hint that the
NPC will present to the player. The NPC will ask the player to choose
a state that addresses their statement. If the correct answer is given,
500 points will be awarded to the player.

•	 CorrectResponse: The CorrectResponse GameObject creates a number
of response cards that show your response (as the player) to the NPC when
you give a correct response. These form the second half of the player to NPC
interaction system in this level.

•	 SetupLevel3: The SetupLevel3 GameObject is the Prefab that does the
setup for Mission 3 and starts the level.

•	 Time : The Time GameObject is a clock object. In this mission the pressure
element will be provided by the race against the clock. If the clock reaches
zero before 2,500 points are acquired, this class activates the failure condition
pop-up dialog window.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[183]

Applying learning theory to mission three
The choice of a tourism-themed race against the clock was made to fill a number of
e-learning game design requirements shown in the following diagram:

Analyze Evaluate Create

Apply

Understand

Remember

Effective learning requires manipulation of the subject matter at various levels of
cognitive complexity. Hence, one powerful way to design mission content for our
e-learning game is to deliver content that requires the player to interact with the
subject matter in a variety of ways. Bloom's Taxonomy (aptly named after American
educational psychologist Benjamin Bloom) gives us a pyramid heuristic that
illustrates this concept. Relevant to this text; this taxonomy is a set of descriptive
words that may be used to classify the different levels of cognitive complexity at
which learning can occur.

Having used remembering as the underlying instructional mode in mission one
(find the flags) and applying as the underlying instructional mode in mission
two (quiz race), we increase the level of interaction with the subject matter in
mission three to analysis and evaluation of the NPC's statements. We do this in
order to encourage the player to synthesize an appropriate, subject-relevant reply.
Through working with the same material on multiple levels, the player is naturally
encouraged to remember, retain, and consolidate the learning that has taken place.

For more information on Bloom's Taxonomy, feel free to review
the information at http://www.bloomstaxonomy.org/
Blooms%20Taxonomy%20questions.pdf and http://www.
learningandteaching.info/learning/bloomtax.htm.

www.it-ebooks.info

http://www.it-ebooks.info/

Synthesis of Knowledge

[184]

Creating the structure for mission three
To begin, use LEVEL2 as a basis for developing LEVEL3 by performing the
following instructions:

1.	 Copy and paste TESTBED2, and rename the copy TESTBED3.
2.	 Make sure that the _global GameObject from the original stays in the copy

and that it is positioned at (0, 0, 0).
3.	 Rename the _level2 GameObject _level3.
4.	 Under _global, ensure that the player (named Player1), camera (named

MainCamera), and Game (named Game) child objects can be found. Also,
make sure that a GameObject of type GuiTexture named score is present.

5.	 Under _level3, we will add the following level three-specific objects:
°° Terrain

°° setupLevel3

°° Time

°° NpcLocators

°° LevelLogicObj

°° Directional Light

Modifying the terrain
It is not necessary to modify the terrain from LEVEL2 to LEVEL3, but feel free to do so
if you wish to add variety. The only constraint is that NpcLocators that you place
need to be above the ground as before. This is because the NPCs precisely follow the
path formed by the locators.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[185]

Adding visitors to the park
The primary interactions for this mission will come from the user talking with the
NPCs. We will use a modified copy of the QuizNpc prefab from LEVEL2 to populate
the final level. To implement this system, perform the following steps:

1.	 Copy the QuizNPC prefab from the Chapter7 folder into the Chapter 9
folder of the Project view.

2.	 Rename the new copy Npc.

Modifying the pop-up system
You will find three pop ups attached to the MainCamera object from the process of
copying LEVEL2. These will need to be renamed and updated.

1.	 Rename popup_Level2Start to popup_Level3Start.
2.	 Update the text to read You have been promoted to Park Ranger. Walk

through the park and help the patrons by answering their questions.
You must answer all questions correctly and earn 2500 points to win.
Good luck!

3.	 Ensure that this GameObject start behavior is enabled by default. The results
of the steps performed so far are shown in the following screenshot:

4.	 Rename popup_Level2Finish to popup_Level3Finish.
5.	 Update the text to read Congratulations! Your state trivia knowledge

is great! Your park is a success, and you WIN! Click okay to return to
main menu.

www.it-ebooks.info

http://www.it-ebooks.info/

Synthesis of Knowledge

[186]

6.	 Ensure that the GameObject start behavior is disabled by default by
unchecking it in the Inspector window.

7.	 Rename popup_Level3Repeat to popup_Level3Repeat in the
Inspector window.

8.	 Update the text to read Level 3. Your knowledge of state trivia is lacking.
Try again! Click okay to reload. We will connect the reload in Chapter 10,
An Extensible Game Framework Pattern in Unity.

9.	 As usual, ensure this GameObject starts disabled by default by unchecking it
in the Inspector window.

Congratulations! You have updated the pop ups that will appear at the start and
completion of the level (for both success and failure conditions).

Creating the NpcLocators Prefab
The NpcLocators Prefab will hold a collection of locator GameObjects that the
setupLevel3 prefab will use to pick locations for the NPCs. This should be a child
of the _level3 object and can be constructed from the FlagLocators GameObject
from LEVEL 2.

1.	 Locate the FlagLocators objects beneath the hierarchy of the _level3 object.
2.	 Rename the object to NpcLocators as shown in the following screenshot:

3.	 Feel free to mix up the locations of the objects to various places in the
scene; this way, the player will not memorize the locations from LEVEL2.
For variety, consider placing some on top of the mountains in the middle
or around the periphery of the level.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[187]

Creating the CorrectResponse Prefabs
The CorrectResponse Prefabs are the pop ups that will be instantiated from the
npcDialog (quiz cards) for LEVEL3. Create these according to the following steps:

1.	 Copy and paste the popup_QuizSuccessQuestion Prefab into a new folder
in the folder named Chapter 9.

2.	 Create 50 unique CorrectResponse cards—one for each state/NPC
dialog interaction.

3.	 We do not need to pass missionToken into missionMgr when this pop up
destructs itself, so ensure that there is no missionToken attached (it will do
no harm, but it is redundant).

4.	 Modify PopupButtonScript.cs and add an AwardPoints action. Make
sure that when the button is clicked on each of these Prefabs, 500 points are
awarded to the user. When the button is clicked, we simply find the player
class and the playerData component, and then add these values to the score
member variable as shown in the following code. Don't forget to add the
action to the enumeration at the top of the file:

// inside Dispatch()
case(popupAction.AwardPoints):
{
 GameObject p = GameObject.Find ("Player1");
 if (p)
 {
 PlayerData pd = p.GetComponent<PlayerData>();
 if (pd)
 {
 pd.AddScore (r.data.id);
 }
 }
 break;
}

Modifying the quiz cards
The QuizCard pop-up window Prefab is the class that permits user interaction
with an NPC; upon selecting the button corresponding to the correct response,
the CorrectResponse window pop up will be instantiated.

1.	 Copy and paste a QuizCard Prefab from Chapter7 into a new folder in
Chapter9. Name the new folder NpcQuestions.

www.it-ebooks.info

http://www.it-ebooks.info/

Synthesis of Knowledge

[188]

2.	 Implement 50 unique NPC Dialog cards based on this Prefab, which in turn
is based on the trivia content embedded in the Flag pop ups from LEVEL1;
they will form the basis for the dialog in this mission.

3.	 Keep the associations to the popup_QuizFailedQuestion Prefab for the
incorrect answers on these cards. For the correct selection, instantiate a
unique and appropriate CorrectResponse Prefab.

4.	 Each QuizCard should have a unique CorrectResponse card. In this way,
the player can see a contextually relevant response from you as you reply
to the player. This gives an excellent opportunity to reinforce the learning
material because it gives you a way to rephrase, restate, and reinforce
the facts.

5.	 Make sure that each CorrectResponse card has an action to add points for
every correct button click. Not only is this required for the mission to have
an end condition, but this is also another way in which we reward the player
for performing correctly. Remember, we can build a positive response in
the learner with simple positive reinforcement with points and a dialog that
furthers the story.

Congratulations! Associating each QuizNpc's Instantiate button action with the
corresponding CorrectResponse card forms the brunt of the labor in creating
mission three. Remember that Prefabs can only store associations with other
Prefabs; be prudent to not drag-and-drop associations with actual instances
of these classes themselves.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[189]

Adding another data condition
Just as we saw in Chapter 7, Mission Two – Testing a Player's Learning, when we
created listData npcCondition which wrapped a list of GameObjects used to track
racers in the race, we will need to create another type of wrapper in this mission; one
for the initial score of the player. We can create this list with the following steps:

1.	 Copy and paste listData.cs into the folder named Chapter9. Rename the
copy floatData as shown in the following screenshot:

2.	 Update the declaration in the script to match the new name of the file.
3.	 Replace the list<GameObject> _listData variable with the following

line of code:
public float _floatData;

Congratulations! You have now created a second npcCondition data wrapper.
An instance of this will be required by the logic of this level to compute the
points scored.

Using the setupLevel3 Prefab
The setupLevel3 Prefab will be activated when the user presses the popup_
Level3Start button. It will initialize the NPCs for the level, place them in random
locations in the world, and set up the state tracking logic that determines if the
player achieves success. Perform the following steps to use the setupLevel3 Prefab:

1.	 Locate the Prefab named setupLevel2 beneath _level2, and rename it
setupLevel3. Duplicate the SetupMissionTwo script from mission two,
and rename the duplicate to SetupMissionThree. Place the duplicate in
the folder named Chapter9 to keep your assets organized.

2.	 Add an instance of this script to the setupLevel3 object.
3.	 Inside MonoDevelop, change the class declaration to SetupMissionThree

so that it matches the name of the script as shown in the following code:
public class SetupMissionThree : MonoBehavior

www.it-ebooks.info

http://www.it-ebooks.info/

Synthesis of Knowledge

[190]

4.	 We will use the same pattern to choose random NPC locators as we did for
the QuizNpc locators in mission two. We will remove the CorrectPopups
list, because each pop up will have a unique, correct pop up already
associated with it in the editor.

5.	 At this point, open up PopupPanel.cs, and add the following line of code:
Public int id;

6.	 This ID will be used by the pop up to locate the NPC that dispatched it so
that its animation can be updated on success.

7.	 In LEVEL3, we note the successful pass condition is when 2,500 points have
been earned in addition to the points from levels one and two. In order to
determine this, we need to remember the score at the beginning of the level
so that we can calculate the delta.

8.	 At the top of SetupMissionThree, add an initialScore variable of type
npcCondition. Since the level's complete processing will be handled by
npcDecisionMgr, we need to store the score in a datatype that this system
can operate on:
public npcCondition initialScore;

9.	 If a Player class can be found, extract the score from the playerData
component, and store it in the initialScore component. Note that we need
to cast the npcComponent base reference to floatData in order to access the
_floatData member for storage.

10.	 The body of this method works in a manner similar to SetupMissionTwo,
where it creates backups of the QuizPrefab and SpawnPoint lists. It
diverges, however, when five random quiz cards are selected from the
QuizPrefab list. We directly associate the card Prefab with the NPC to
be instantiated as shown in the following code:
objectInteraction objInteraction = Npc.GetComponent<objectInteract
ion>();
 if (objInteraction)
 objInteraction.prefab = quizPrefab;

11.	 We also pass the ID value from the QuizPrefab card into the ID of
QuizNpcHelper. We use this later when the CorrectAnswer pop up looks up
the NPC that instantiated the card. At that time, we locate the NPC by ID and
then pass doSuccess into its animator to make it dance as done in level two.

Congratulations! The setupLevel3 Prefab is complete. We now have a class that will
randomly pick a state quiz card and randomly spawn NPCs in the world to interact
with the player.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[191]

Creating the AddScore condition
The AddScore condition will be used by levelLogicObj to track the points earned
in this mission. Once the requisite number of points have been earned, this script
will return true. This, in turn, will dispatch the response of showing the Success
pop up via the ShowLevel3Results response script. Writing this script requires the
following steps to be performed:

1.	 Create a new script named condition_scoreAdded. Change the base
class from MonoBehavior to npcCondition as done with the other
condition classes.

2.	 Add an instance of this script to LevelLogicObj.
3.	 Drag-and-drop this script instance into the second slot of decisionMgr on

LevelLogicObj as shown in the following code:

4.	 Inside the script, add an int datatype for scoreAdded; this is the number of
points necessary for the condition to return true:
public int scoreAdd;

5.	 Add an npcCondition called initialScore. Drag-and-drop the instance of
this script from setupLevel3 (remember the object that first stored the score
on level start) into this reference as shown in the following code:
public npcCondition initialScore {

www.it-ebooks.info

http://www.it-ebooks.info/

Synthesis of Knowledge

[192]

6.	 If there is a playerData component on the player, then compute the score
delta as the absolute value of the score minus the original score as shown in
the following code:
if (p != null)
{
 float playerScore = Mathf.Abs (p.GetComponent<playerData>().
 score - (initialScore as floatData)._floatData);
 if ((int)playerScore >= scoreAdded)
 rval = true;
}

Congratulations! You have now created the condition for npcDecisionMgr,
which will check for the number of points that have been earned in a given level.

Creating the ShowLevel3Results
response
The ShowLevel3Results class will be used to show the success pop up (and some
associated cleanup) if the user achieves enough points. It will be dispatched by
npcDecisionMgr of LevelLogicObj in this level. Perform the following steps to
create the ShowLevel3Results response:

1.	 Create a new npcResponse class named response_ShowLevel3Results.
Change the parent class from MonoBehavior to npcResponse.

2.	 Open the scene file from the last gameplay level TESTBED1.
3.	 Copy the popup_Level1Finished Prefab by pressing Ctrl + C.
4.	 Open the scene file from the last gameplay level TESTBED3.
5.	 Paste this GameObject beneath the hierarchy of MainCamera. Rename the

popup_Level3Finish object as shown in the following code:

6.	 Add an instance of the response_ShowLevel3Results script to
LevelLogicObj.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[193]

7.	 Drag-and-drop a reference to this script into the Response field beside
condition_addScore in decisionMgr for LevelLogicObj.

8.	 Drag-and-drop a reference from popup_Level3Finish (inside the
MainCamera hierarchy) into the passPopup field of the response_
ShowLevel3Results script instance. In the dispatch() method of this
script, enable the passPopup if it is valid, as shown in the following code:
if (passPopup != null)
passPopup.SetActive(true);

9.	 Then, on the MainCamera, invoke the lookup() method, to make sure the
pop up is presented in a visually pleasing way, as follows:
GameObject camObj = Camera.main.gameObject
if (camObj)
{
 camObj.GetComponent<GameCam>().LookUp();
}

10.	 Lastly, find the clock object named Time, and disable it with the following
code. This is done to make sure the game doesn't show the out-of-time pop
up while waiting for the success pop up:
GameObject clock = GameObject.Find("Time");
if (clock)
{
 clock.SetActive(false);
}

Creating the Time object
The Time object will implement the game's clock functionality in this level. If the
time ever reaches zero, this class will display the mission failed pop up. Recall that
the source of the added pressure this time around is the clock ticking down to zero.
We want this because a little pressure makes the game fun and encourages cognitive
flow. Perform the following steps to create the Time object:

1.	 Create a new script named TimeScript.cs. Add an instance of it to a new
GameObject of type GUIText. Place GUIText on the left-hand side of the
screen opposite the score. Note, this is done by adjusting the PixelOffset field
of the GUIText component, and not by moving the transform (this is one of
the few exceptions to the rule when placing objects in Unity).

www.it-ebooks.info

http://www.it-ebooks.info/

Synthesis of Knowledge

[194]

2.	 A pixel inset of -60, -20 looks good at a screen resolution of 1024 x 768.
Some of the settings for the GUIText component are shown in the
following screenshot:

3.	 Add the following four variables to the script:
°° public GameObject failPopup: This variable will hold the

reference to the pop up that is displayed if the user fails the mission
by letting time run out.

°° public float starting_time: This variable will store the time
when the timer should start before the level ends. Let's remember to
set this to 120 seconds.

°° private float t: This variable will be used to store the current
elapsed time.

°° public boolean timeElapsed = false: This Boolean variable will
store whether or not this timer has reached zero at this time through
the level.

These variables can be declared in the following manner:

public GameObject failPopup;
public float starting_time;
private float t;
public boolean timeElapsed = false;

4.	 Inside the update() loop, we subtract the actual amount of time elapsed
from t each time update() is called as shown in the following code:
t -= Time.deltaTime;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[195]

5.	 Once the time has elapsed, we tell the camera to look up and then show the
fail pop up by setting its enabled flag to true. We set the local timeElapsed
Boolean to true as well so that this response cannot show multiple times in a
row accidentally:
if (t < 0.0f)
{
 GameObject camObj = Camera.main.gameObject;
 if (camObj) {
 camObj.GetComponent<GameCam>().LookUp();
 failPopup.SetActive(true);
 timeElapsed = true; }
}

6.	 Each time update() is called, the Time script will set the text of the GUIText
component to be the string concatenation of Time and the elapsed time left
(cast as an integer). We cast it to an integer to remove the trailing decimal
points as shown in the following code:
this.gameObject.GetComponent<GUIText>().text = "Time : "+((int)
t).ToString ();

Congratulations! We now have a working game clock to add just enough game-play
pressure to the player in the level. Consider adjusting the amount of time you give to
the player based on a difficulty setting in your game, the age of the player, or perhaps
on how well the player is actually playing in the game. Remember, flow is achieved
not only when the task at hand is somewhat challenging, but also in a scenario of
moderate pressure.

www.it-ebooks.info

http://www.it-ebooks.info/

Synthesis of Knowledge

[196]

Modifying the LevelLogicObj object
The LevelLogicObj object will track the condition when the player has achieved
a high score that is enough to earn the level finished pop up and to win the game.
To implement this with the technology we already have, we will perform the
following steps:

1.	 In decisionMgr of npcScript on LevelLogicObj, set the number of
interactions to 2. This is required because the LevelLogicObj object
will process two interactions each frame.

2.	 Create an instance of a floatData condition on LevelLogicObj. Drag-and-
drop this into the first condition. Make sure there is only one instance of this
script on this object in the editor.

3.	 Create an instance of the condition_addScore condition on LevelLogicObj.
Drag-and-drop this into the second condition. Set the scoreAdded variable
on the condition to 2500, and drag-and-drop the setupLevel3 object into the
initalValue reference to associate the initialValue condition component
attached there into this component.

4.	 Create an instance of the response_ShowLevel3Results script on
LevelLogicObj. Set the passPopup reference to the popup_Level3Finished
pop up on the MainCamera.

5.	 Drag-and-drop this reference into the reference slot on the second interaction
in npcDecisionMgr of the NPC script of LevelLogicObj.
At this point, npcDecisionMgr on the LevelLogicObj object should look
something like the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[197]

Congratulations! You have created the GameObject that implements the level logic
of tracking the player's score and showing the finished Prefab if enough points are
achieved on time.

Rewarding the player
We know that the more the positive responses and positive reinforcement we give
to the player for performing well (showing that the material has been retained), the
better will he or she retain and be able to recall it on demand. In this mission, we use
a number of reinforcement techniques:

•	 The score is central to the player's success in this level. We give the player
500 points for each question that is answered correctly.

•	 The player is rewarded for further dialog from the player when he or she
gives the correct answer. This further immerses the player with positive
feedback and helps solidify a positive response.

•	 As with mission two, we make the NPC dance after the player gives a correct
response. This is another example of a feel-good moment that helps condition
a positive response in the player.

www.it-ebooks.info

http://www.it-ebooks.info/

Synthesis of Knowledge

[198]

•	 Much of this feedback happens inside the Action parameter of the
CorrectResponse pop up that is displayed for a particular trivia
question, so make sure that you have the following actions in each
of your Response Prefabs:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[199]

Summary
In this chapter, we applied learning theory and applied our existing technology from
previous chapters in the development of the final level in our game. We developed
the third mission of the three in our game, and by applying Bloom's Taxonomy to
our learning outcomes, we developed content that encouraged the user to interact
with the content at a high level, thus encouraging learning. This completes the
final stage in our e-learning game. In the final chapter, we will tie these three levels
together with the rest of the game framework while refactoring some systems during
the process.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

An Extensible Game
Framework Pattern in Unity

In the final chapter of the book, we will take all of the pieces we have developed so
far and assemble them into our final game! To do this, we will need to complete a
framework for loading and unloading individual scene files, connect that system into
level transition logic, and restructure a number of classes and Prefabs in our scene
files so that they work together using this pattern. We will also develop the code
necessary to ensure that the references that were created inside the editor can be
reconnected as necessary when scenes are streamed in. Having a consistent pattern
with which we can organize our scripts based on when they are needed gives us a
reusable and extendible pattern we can use to quickly add new levels to our game.
Not only this, but it can be used as a framework for future games that you develop!

In this chapter, we will cover the following topics:

•	 Load additively
•	 Using delete/load patterns
•	 Refactoring our work

www.it-ebooks.info

http://www.it-ebooks.info/

An Extensible Game Framework Pattern in Unity

[202]

Load additively
Recall from Chapter 4, Mission One – Future Proofing the Code, that Unity3D supports
the development of games that span multiple scene files. One benefit of splitting a
game up into multiple scene files is that we (as programmers) can assign different
lifespans to objects based on the scene file they belong to.

_global

Score

MainCamera

Player1

The MAIN scene file is designed to not only be the entry point of our game, but it
also contains the _global GameObject. This GameObject acts as the parent of a
hierarchy of objects that have persistent scope throughout the game. The following
GameObjects should have global scope:

•	 MainCamera: This is the camera to which the scene will be rendered
•	 Player1: This is the name of the GameObject that is the playable character

or the hero of the game
•	 Score: This is a GUIText element that displays the number of points the

player has acquired so far

Every other GameObject will exist in one of the three scene files for the game—
LEVEL1, LEVEL2, or LEVEL3. Using the Application.LoadLevelAdditive()
method, we can make sure each playable level has both the objects from the
persistent _global scene file and the level-specific objects from the scene. This is
because Application.LoadLevelAdditive() combines the GameObjects from
the loaded scene with the GameObjects that are already loaded. Contrast this with
Application.LoadLevel(), which will destroy the previously instantiated scene file
and all of its GameObjects before loading the new scene, and the reason for loading
additively is clear; we want both sets of GameObjects to be loaded so we use the
additive load!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[203]

Of course, we need to be absolutely sure that there are no duplicate objects in the
_global scene file and the level-specific scene, or else logical errors will ensue.
Let's ensure we can do this now by updating the GameMgr script as follows:

1.	 In GameMgr.cs, ensure that the eGameState enumeration has entries
for Invalid, MainMenu, Level1, Level2, and Level3. We will delegate
responsibility for switching levels to this class instance. Each of these
enumerated values will correspond to the scene file with the same name.
Through this enumeration, we will inform the GameMgr script which scene
file to load:
public enum eGameState
{
 eGS_Invalid = -1, //enum for error case
 eGS_MainMenu = 0,
 eGS_Level1 = 1,
 eGS_Level2 = 2,
 eGS_Level3 = 3
};

2.	 In the Update() loop, we ensure that there is no longer any auto
state-changing code. This method should be empty at this point. For the
most prompt level, change the signal rather than letting this system update
the level when it detects a change. We will call ChangeLevel() directly from
the level complete pop ups when a change is required.

Using delete/load patterns
Having planned how to organize our GameObjects into globally persistent and
level-specific lifespans, we must further update GameMgr.cs to ensure that only
the current level is loaded at any time. To do this, perform the following steps:

1.	 In GameMgr.cs, inside the ChangeState() method, the first thing we do is
tell the game to delete any potential level-specific GameObject hierarchies
that may be loaded:
if (GameObject.Find("_level1")
 Destroy (GameObject.Find ("_level1"));
if (GameObject.Find("_level2")
 Destroy (GameObject.Find ("_level2"));
if (GameObject.Find("_level3")
 Destroy (GameObject.Find ("_level3"));

www.it-ebooks.info

http://www.it-ebooks.info/

An Extensible Game Framework Pattern in Unity

[204]

2.	 Inside the switch statement that ChangeState() implements, we signal a
LoadLevelAdditive() call when changing to LEVEL1, LEVEL2, or LEVEL3.
However, when switching to MAIN, we simply need to destroy the _level1,
_level2, and _level3 GameObjects since _global remains persistent
throughout.

3.	 Recall that each level-specific scene file must be constructed according to the
pattern _leveln (where n is 1 for LEVEL1, 2 for LEVEL2, and 3 for LEVEL3).
This is because while Unity does provide a function for loading a scene file
additively, it does not provide a way to unload a scene file once the objects
have been loaded. To accomplish this, we perform the following steps:

1.	 Ensure that we construct our levels with a single parent GameObject
at the root.

2.	 Name the root GameObject so that it follows a consistent pattern.
We use _level1, _level2, and _level3 for our scene files.

4.	 This permits us to implement an unload scene file functionality by simply
destroying the root object. Doing this will destroy the object and all the
objects that are children of its hierarchy.

Congratulations! You have now finished updating the GameMgr system to handle
loading and unloading scene files. This system of loading additively and naming
the scene files consistently may be extended to other gameplay levels.

Refactoring our work
Now that we have a fully functional system for loading and unloading scene files,
we will dedicate our attention to the integration and refactoring of the remaining
GameObjects, hierarchies, and scripts.

The pop-up system
To refactor our pop-up system, perform the following steps to complete the moving
of our game content from the testbed scene file to the MAIN scene file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[205]

Updating level 3 pop ups
Let's begin by refactoring the pop-up panel system:

1.	 Under _global, ensure that the player (named Player1), camera (named
MainCamera), and game (named Game) child objects can be found. Also
make sure that a GameObject of type GUITexture named score is present
as shown in the following screenshot:

2.	 We will change the behavior of the pop ups that are shown at the start and
completion of each level. Rather than instantiating them from a Prefab,
we will add them at design time in the editor and selectively activate and
deactivate them as necessary. This will make the task of refactoring the
pop-up system more straightforward.

3.	 Load the TESTBED3 scene file. Find the MainCamera GameObject, and open
the Hierarchy tab to display the UI pop up's child objects.

4.	 Press the Shift key, select all of the pop ups, and copy them with Ctrl + C.

5.	 Load the MAIN scene file. Select the MainCamera GameObject, and paste
the level 3 pop ups with Ctrl + V. This will paste the pop ups that we
copied from step 4.

6.	 Now, we need to change the behavior of the buttons. Starting with
the pop up named popup_Level3Start, select this panel, and open
the Button1 hierarchy.

www.it-ebooks.info

http://www.it-ebooks.info/

An Extensible Game Framework Pattern in Unity

[206]

7.	 Change the actions of this button to CameraLookPlayer() so that the
camera looks down on the start of the level, and call DisableObject(popup_
Level3Start) so that this panel disappears but remains attached to the
MainCamera GameObject persistent in _global.

8.	 Next, select the popup_Level3Finish panel, and open the Button1 hierarchy.

9.	 Change the first action of this button to LoadLevelMainMenu (to tell GameMgr
to unload Level3, leaving just _global).

10.	 Change the next action to HideGameObject(popup_Level3Finish) to
disable update and rendering of this panel, while still leaving it attached
to the MainCamera GameObject persistent in _global.

11.	 Change the last action to EnableObject(popup_MainMenu) to make the main
menu show up again.

12.	 Lastly, click on the popup_Level3Repeat panel, and open the
Button1 hierarchy.

13.	 Change the first action to CameraLookUp() to point the camera towards the
sky (which makes the pop ups show up in a visually appealing way).

14.	 Change the next action to LoadLevel3. This will tell the GameMgr script to
destroy the _level3 GameObject (and all of its children), and then reload
the _level3 GameObject, thereby resetting its state.

15.	 Change the final action to DisableObject(popup_Level3Repeat) to hide
this panel while still leaving it attached to the MainCamera GameObject
persistent in _global.

Congratulations! You have finished updating the pop ups for Level3. Let's move on
to pop ups of Level2.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[207]

Updating level 2 pop ups
Now that pop ups of level 3 are updated, let's follow the same procedure to update
the pop ups for the second level.

1.	 Load the TESTBED2 scene file. Find the MainCamera GameObject, and open
hierarchy to display the UI pop up's child objects.

2.	 Press Shift, select all of the pop ups, and copy them with Ctrl + C.

3.	 Load the MAIN scene file. Select the MainCamera GameObject, and paste the
level 3 pop ups with Ctrl + V.

4.	 Now we need to change the behavior of the buttons. Starting with
popup_Level2Start, select this panel, and open the Button1 hierarchy.

5.	 Change the first action of this button to EnableObject(raceStarterPref
ab). Set the reference to raceStarterPrefab by dragging-and-dropping it
from the Project tab directly into the data field of the button's action. This
way, the button will instance a GameObject from this Prefab on click.

6.	 Change the second action of this button to EnableObject(setupLevel2Pre
fab). In a similar fashion as earlier, set the reference to setupLevel2Prefab
by dragging-and-dropping it from the Project tab directly in to the data field
of the button's action. This way, the button will instance a GameObject from
the Prefab on click.

7.	 Change the third action to CameraLookPlayer() so that the view will track
the hero as the character moves in the world.

8.	 Change the last action of this button to HideGameObject(popup_
Level2Start) to hide this panel while still leaving it attached to the
MainCamera GameObject persistent in _global.

9.	 Next, select the popup_Level2Finished button, and open up the
Button1 hierarchy.

10.	 Change the first action of this button to CameraLookUp(). This will orient
the camera to a point above the player so that the subsequent pop ups will
display in a visually appealing way.

www.it-ebooks.info

http://www.it-ebooks.info/

An Extensible Game Framework Pattern in Unity

[208]

11.	 Change the next action of this button to LoadLevel3 (to tell GameMgr to
unload Level2 by destroying the root GameObject instance, and then load
Level3). Throughout this process, _global and all of its child objects will
be preserved.

12.	 Change the last action of this button to HideGameObject(popup_
Level2Finish). This will disable the rendering of this panel while still
leaving it attached to the MainCamera GameObject persistent in _global.

13.	 Lastly, select the popup_Level2Repeat panel, and open the Button1 hierarchy.
14.	 Change the first action to CameraLookUp() to point the camera towards the

sky (which makes the pop ups show up in a visually appealing way).
15.	 Change the next action to LoadLevel2. This will tell the GameMgr script to

destroy the _level2 GameObject (and all of its children), and then reload
the _level2 GameObject, thereby resetting its state.

Congratulations! You have finished updating the pop ups for level 2. Let's move on
to the pop ups of level 1.

Updating level 1 pop ups
Now that pop ups of level 2 are finished, let's update and modify the pop ups
for level 1.

1.	 We need to create a start pop up for level 1 that matches the pattern of the
other two levels.

2.	 Copy popup_Level2Start from MainCamera, and paste it on MainCamera
as well.

3.	 Rename the copy as popup_Level1Start.
4.	 At this point in time, your MainCamera hierarchy should look similar to the

following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[209]

5.	 Set the first action on Button1 to CameraLookPlayer() so that when the
level starts, the camera will track the hero.

6.	 Set the second action on Button1 to DisableObject(popup_Level1Start).
This will hide this panel while still leaving it attached to the MainCamera
GameObject persistent in _global.

7.	 We will not need to allow the user to repeat level 1. Since there is no fail
condition, we will not need a repeat pop up for level 1. The level complete
pop up will be dynamically allocated as a reward for finishing the level 1
mission of returning flags to the monument as originally designed.

8.	 To support easy programmatic access to these pop ups, we will write a
PopupMgr script to store references to these pop-up objects. This class will
then be used to access these pop ups for easy enabling and disabling.

9.	 Create a new script with the C# script wizard named PopupMgr, and attach it
to the MainCamera instance in the _global hierarchy.

10.	 Give this script eight public references to the following GameObject pop ups:
°° public GameObject MainMenu;

°° public GameObject Level1Start;

°° public GameObject Level2Start;

°° public GameObject Level2Finish;

°° public GameObject Level2Repeat;

°° public GameObject Level3Start;

°° public GameObject Level3Finish;

°° public GameObject Level3Repeat;

These are references to the actual pop-up objects that the PopupMgr script
will enable and disable as the game moves from level to level.

11.	 Make sure to assign the actual instances of these GameObjects to these
variables in the PopupMgr script by either dragging-and-dropping them in or
selecting them from the selection panel.

Congratulations! The pop-up system has been fully refactored for our game. As level
1 is now fully functional, let's turn our attention to integrating the rest of TESTBED2
and TESTBED3 into our game.

www.it-ebooks.info

http://www.it-ebooks.info/

An Extensible Game Framework Pattern in Unity

[210]

Refactoring level 2
At this point, our project is composed of two scene files; a main scene file that
contains the persistent _global GameObject hierarchy, and the LEVEL1 scene file
that contains the _level1 hierarchy for all of the level 1 scripts and objects. While
TESTBED2 and TESTBED3 were designed to be played as standalone levels, our final
game framework is not. Hence, we now need to port and integrate the remaining
game content into this pattern.

1.	 Open the TESTBED2 scene file into the editor. Locate the _global and _level2
GameObjects in the Hierarchy tab.

2.	 Copy the _level2 GameObject with Ctrl + C.
3.	 Create a new scene file named LEVEL2.
4.	 Paste the _level2 object hierarchy into this scene with Ctrl + V.
5.	 You now have an appropriate scene file package for level 2. Let's repeat the

process for level 3.
6.	 Open the TESTBED3 scene file into the editor. Locate the _global and _level3

GameObject in the Hierarchy tab.

7.	 Copy the _level3 GameObject with Ctrl + C.
8.	 Create a new scene file named LEVEL3.
9.	 Paste the _level3 object hierarchy into this scene with Ctrl + V.

You now have an appropriate scene file package for level 3.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[211]

Implementing a system to connect object
references
Level 1 signals level 2 to load when the Level 1 completes pop up's Next button is
pressed; it signals for the _level1 GameObject to be destroyed and the _level2
GameObject to be loaded from the LEVEL2 scene file. We must refactor the
start-up logic of _level2 so that we can find and connect some object
references to GameObjects in the _global hierarchy.

1.	 Create a new script named Level2Extras, and attach an instance of it to
the _level2 GameObject. This script will be used to directly access certain
GameObjects inside _level2 for enabling and disabling.

2.	 Give the Level2Extras script the following three public GameObject
references; these are the assorted GameObjects that this script will be in
charge of activating:
public GameObject raceStartup;
public GameObject setupLevel2;
public GameObject LevelLogicObj;

3.	 Drag-and-drop the LevelLogicObj object from the _level2 GameObject
hierarchy into the LevelLogicObj reference of the Level2Extras script.

4.	 Drag-and-drop the setupLevel2 GameObject from the _level2 GameObject
hierarchy into the setupLevel2 reference of the Level2Extras script.

5.	 Drag-and-drop the raceStartup GameObject from the _level2 GameObject
hierarchy into the raceStartup reference of the Level2Extras script.

6.	 At this point your Level2Extras script should look something like
the following:

www.it-ebooks.info

http://www.it-ebooks.info/

An Extensible Game Framework Pattern in Unity

[212]

7.	 Observe that as you click on the populated references inside Level2Extras,
Unity highlights the GameObject instances with a unique yellow border so
that you can quickly find the actual object instances that are connected in
the hierarchy.

8.	 Now that Level2Extras has been properly configured, create another script
named Level2Init, and add an instance of it to the _level2 GameObject.

9.	 The level2Init script will use the Level2Extras script as an interface to
find specific GameObjects and connect them into the appropriate level 2 pop
ups. This needs to happen since the pop ups are global; they cannot preserve
references to objects that are dynamically loaded from later levels.

10.	 In the start() method of Level2Init, the script attempts to locate the
Player GameObject, named as either Player or Player1:
GameObject playerObj = GameObject.Find ("Player1");
if (playerObj == null)
 playerObj = GameObject.Find ("Player");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[213]

11.	 If a suitable player object is found, the code sets the initial position and the
orientation for the player. This is so that when level 2 starts, the player begins
at the starting line of the race:
if (playerObj != null)
{
 playerObj.transform.position =
 new Vector3(-110.0f, 3.0f, 166.0f);
 p.GetComponent<playerControls>().moveDirection =
 new Vector3(1.0f, 0.0f, 0.0f);
}

12.	 In the Update() method of Level2Init, the class attempts to find the
MainCamera GameObject. If it can be found, the PopupMgr script
component is stored:
GameObject camObj = GameObject.Find ("MainCamera");
if (camObj)
{
 PopupMgr ppm = camObj.GetComponent<PopupMgr>();

13.	 If an instance of the PopupMgr script can be found on this GameObject, we
activate popup_Level2Start and deactivate popup_Level2Finish and
popup_Level2Repeat. By setting these objects to active, we tell Unity that
these scripts should be allowed to call their internal Update() methods.
Conversely, when setting SetActive(false), we can tell Unity to suspend
scripts as needed:
// set up the level2 popups initial state
ppm.Level2Finish.SetActive(false);
ppm.Level2Repeat.SetActive (false);
ppm.Level2Start.SetActive(true);

14.	 Then we store a reference to the PopupMgrScript on the popup_Level2Start
GameObject for later use:
PopupButtonScript pbs =
 ppm.Level2Start.transform.FindChild
 ("Button1").gameObject.GetComponent<PopupButtonScript>();

15.	 We also store a reference to the Level2Extras script for easy access later in
the method:
Level2Extras l2x = GetComponent<Level2Extras>();

www.it-ebooks.info

http://www.it-ebooks.info/

An Extensible Game Framework Pattern in Unity

[214]

16.	 If the Level2Extras component can be found, we need to associate
setupLevel2 to the popup_Level2Start instance on its first button action.
Then, we associate raceStartup to the popup_Level2Start instance on its
second button action:
pbs.actions[0].data.obj = l2x.setupLevel2;
pbs.actions[1].data.obj = l2x.raceStartup;

17.	 Next, we try to cache a reference to the response_ShowRaceResultsPopup
component that is attached to LevelLogicObj inside Level2Extras:
response_ShowRaceResultsPopup rrp = l2x.LevelLogicObj.
GetComponent<response_ShowRaceResultsPopup>();

18.	 If the race results pop-up component can be found, we connect the player,
GameMgr, PassPopup, and FailPopup to this script. This will allow this
response script to operate correctly during the race:
rrp.player = GameObject.Find ("Player1");
rrp.gm = GameObject.Find ("Game").GetComponent<gameMgr>();
rrp.passPopup = ppm.Level2Finish;
rrp.retryPopup = ppm.Level2Repeat;

19.	 After this, the Level2Init script will destroy itself. This stops the init logic
from running more than once when _level2 is loaded. If _level2 is ever
reloaded (during a restart perhaps), this script will be re-instanced when
_level2 is loaded again.

Congratulations! The logic for configuring the missing references of level 2 on
startup has been completed. Let's move our attention to how the mission 2 logic
is actually set up.

Updating the SetupMission2 script
Prior to integrating the missions together, we developed our game so that mission
1, mission 2, and mission 3 individually selected five states from a bank of 50. While
this is fine for playing them in isolation, we need to add continuity of the state
selections across all three levels. We will do this by storing the selections when they
are made in level 1, and then by restoring them as level 2 and level 3 are loaded.

1.	 To begin, load the LEVEL1 scene file. Find the Monument GameObject,
and open the SetupMissionOne script.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[215]

2.	 In the SetupMission() method, on line 65, we find the player GameObject
named either Player or Player1:
GameObject playerObj = GameObject.Find ("Player1");
if (playerObj == null)
 p = GameObject.Find ("Player");

3.	 If a player can be found, we cache a reference to the PlayerData component
attached to it:
pd = p.GetComponent<playerData>();

4.	 If there are any flag choices in PlayerData at this point, we clear them. This
is a reasonable assumption to make in level 1 as it is the first gameplay level
that we encounter. The subsequent levels will access these values when
populating their scenes. Clearing the flagChoices array before use is a
good defensive practice so that we don't accidentally end up with more
flag instances in the level than intended:
if (pd.flagChoices.Count > 0)
 pd.flagChoices.Clear();

5.	 In the SetupMission() method, on line 92, as the initial set of flags
are chosen, we store the flag index in the playerData component.
Here, they will be carried with the player through level 2 and level 3:
if (pd != null)
 pd.flagChoices.Add (index);

6.	 Now that the first mission has been successfully updated to store flag choices
in PlayerData, we shall now move our attention towards refactoring level 2
and level 3 to use this data.

www.it-ebooks.info

http://www.it-ebooks.info/

An Extensible Game Framework Pattern in Unity

[216]

7.	 In the Start() method of the SetupMissionTwo script, while we are iterating
over the flags, we check if there is a PlayerData component on the player. If
one can be found, we assign the flag index from the list in PlayerData to the
variable index rather than a randomly assigned one:
if (pd != null)
 index = pd.flagChoices[k];

Congratulations! This completes the required updates for level 2. Now, when
starting the game and selecting NEW, level 1 will be shown initially, and upon
completion, the game will dynamically load level 2. Let's continue updating the
code in the same light as we integrate and refactor level 3.

Refactoring level 3
When level 2 signals level 3 to load (when the player pressed the level 3 pop up's
Continue button), it signals for the _level2 Gameobject to be destroyed and the
_level3 GameObject to be loaded from the LEVEL3 scene file. We must refactor the
start up logic of _level3 so that we can find and connect some object references
to GameObjects in the _global hierarchy. To accomplish this, perform the
following steps:

1.	 Create a new script named Level3Extras, and attach an instance of it to
the _level3 GameObject. This script will be used to directly access certain
GameObjects inside _level3 for enabling and disabling.

2.	 Give the Level3Extras script the following single public GameObject
reference. The Level3Extras script needs a reference to the setupLevel3
object so that it can connect this reference to the appropriate pop-up button
later on in the script:
public GameObject setupLevel3;

3.	 Drag-and-drop the SetupLevel3 GameObject from the _level3 GameObject
hierarchy into the SetupLevel3 reference of the Level3Extras script.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[217]

4.	 Now that Level3Extras has been properly configured, create another script
named Level3Init, and add an instance of it to the _level3 GameObject.

5.	 The level3Init script will use the Level3Extras as an interface to find
specific GameObjects and connect them into the appropriate level 3 pop ups.
This needs to happen since the pop ups are global; they cannot preserve
references to objects that are dynamically loaded from subsequent levels
in the game.

6.	 In Level3Init, we first try to find a reference to a GameObject named
MainCamera:
GameObject go = GameObject.Find ("MainCamera");

7.	 If the MainCamera GameObject can be found, we try to cache a reference to
the PopupMgr script component attached to it:
if (go)
{
 PopupMgr ppm = go.GetComponent<PopupMgr>();

8.	 If the PopupMgr script can be found, we set the initial state of the UI pop ups
for level 3. As before, we use SetActive(false) to suspend the Update()
loop of some scripts and SetActive(true) to enable others. Namely, we
deactivate popup_Level3Finish and popup_Level3Restart. We then
activate popup_Level3Start so that the level starts with the relevant
UI displayed. Note that at this point, the camera is looking up from
popup_Level2Finish:
if (ppm)
{
 ppm.Level3Finish.SetActive (false);
 ppm.Level3Repeat.SetActive(false);
 ppm.Level3Start.SetActive(true);

9.	 Next, we try to cache a reference to PopupButtonScript, which is attached
to button1 child of popup_Level3Start. We use transform.FindChild()
to search for an object in a hierarchy by name. Once we find it, we can get the
component for PopupButtonScript itself using GetComponent():
PopupButtonScript pbs =
 ppm.Level3Start.transform.FindChild
 ("Button1").gameObject.GetComponent<PopupButtonScript>();

www.it-ebooks.info

http://www.it-ebooks.info/

An Extensible Game Framework Pattern in Unity

[218]

10.	 Now that we have PopupButtonScript, we assign a reference to the
Level3Extras script (attached to this object) to the data field of the first
action of PopupButtonScript. This way, when the button is clicked, the
EnableObject action will operate on the SetupLevel3 GameObject
(accessed from Level3Extras):
Level3Extras l3x = GetComponent<Level3Extras>();
if (l3x)
{
 pbs.actions[0].data.obj = l3x.setupLevel3;
}

11.	 Next, we connect the popup_Level3Finish pop up to the
response_ShowLevel3Results component. This will allow
LevelLogicObj to display the level complete UI:
GameObject llo = GameObject.Find ("LevelLogicObj");
if (llo != null)
{
 llo.GetComponent<response_ShowLevel3Results>().passPopup =
 ppm.Level3Finish;
}

12.	 In _level3, the fail condition is triggered from the Timer GameObject,
when the time remaining reaches zero. To enable this component to
display the popup_Level3Repeat UI, we must connect them together
via the PopupMgr script:
GameObject TimeObj = GameObject.Find ("Time");
if (TimeObj != null)
{
 TimeObj.GetComponent<TimeScript>().failPopup =
 ppm.Level3Repeat;
}

13.	 Congratulations! The initial setup for _level3 is now complete. Let's turn
our attention to updating the SetupMissionThree() script. To begin, locate
this script instance attached to the setupLevel3 object. As with the previous
two examples, this script is responsible for connecting the missing references
between pop ups that have global persistence and the GameObjects that they
refer to inside of specific level scene files—inside _level3 in this instance.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[219]

14.	 At the beginning of Start(), we search for the Player GameObject
(named either Player or Player1). If it is found, we store a reference
to the PlayerData component for later use:
playerData pd = null;
GameObject go = GameObject.Find ("Player1");
if (go == null)
 go = GameObject.Find ("Player");
if (go != null)
{
 pd = go.GetComponent<playerData>();
}

15.	 Still in the start method, in the block where five random cards are chosen,
we check for the presence of the PlayerData component on the player. If
there is no data, it means we are playing this mission in standalone mode,
and so we should use five randomly chosen indices. If, however, PlayerData
has information contained therein, it means that we should use those indices
to populate our world to ensure the flag choices are consistent with the
previous level:
if (pd != null)
 index = pd.flagChoices[k];

Congratulations! Mission 3 has been updated now to use the flag choices that were
randomly chosen in LEVEL1 and reused in LEVEL2. With that, your e-learning game
is complete! Please take a moment to pause, look at how far we have come since
Chapter 1, Introduction to E-Learning and the Three Cs of 3D Games, and give yourself
a pat on the back for a job well done!

Playing and distributing your game
Now that your game is done, we need to package it so that others can play it
outside of the Unity development environment. Unity is a cross platform engine,
and while that does mean that you can design once and build a game that runs on
many types of hardware, let's build a version that works for Windows (the preferred
development hardware for this text).

1.	 Open up the MAIN scene from the completed project.
2.	 Select Build Settings from the File drop-down menu.

www.it-ebooks.info

http://www.it-ebooks.info/

An Extensible Game Framework Pattern in Unity

[220]

3.	 On the Build Settings screen, make sure that the four scene files for our
game have been added to the build. Namely, ensure that MAIN, LEVEL1,
LEVEL2, and LEVEL3 are present.

4.	 To add a scene file to the build, open each scene file in the main Unity
application, and then under this Build Settings screen, click on AddCurrent.

5.	 Simply select the platform you wish to build for from the options on the
bottom-left corner of the Build Settings panel, and then click the Build
button. A dialog box will pop up asking you where to save your .exe file
and with what name. Our game is called Geography Quest.

6.	 Once the build is complete, navigate to that folder, and you have a game
you can run with a double-click of the mouse! Don't forget to distribute the
GeographyQuest_Data folder along with the GeographyQuest.exe program.

Reflecting on e-learning and game
design
Let's review what we have implemented so far with this game in terms of e-learning
strategy and technique. Our game has four scene files (MAIN, LEVEL1, LEVEL2, and
LEVEL3). In the MAIN scene file lives the _global object hierarchy that holds the
singleton class instances in the game: systems such as the Player, Camera, Game, and
Light. Not only is this scene file the entry point to our game, but these objects persist
as other level-specific scenes are loaded and unloaded.

Level 1 is the Find the Flags mission, wherein the user is taught about state names,
state flags, and state trivia. As each flag is picked up, a trivia card is presented and
placed in the inventory. The user can then click on these cards and review the trivia
card throughout the game.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[221]

Level 2 is the Zombie Race level, wherein the user is quizzed on their retention of
the material from Level 1. Adding an element of pressure to the game is the fact that
zombies are chasing the player (they want to win the race before you do). Along the
race, the player must interact with NPCs who quiz them on state flags. We explore
the concept of cognitive flow and how to encourage the player to achieve this state
of total engagement. We determine that to maximize flow, we need to design testing
scenarios with tasks that are moderately challenging and that contain an element of
tension or pressure.

Level 3 is the Park Ranger level, where the player has to race against a clock, find
park visitors, and apply their knowledge to help each one with their question.
Manipulating learned material at a level higher than memorization is an activity
known to support long-term learning.

While this three-stage loop is used in the traditional classroom as well as in
e-learning games to teach facts, it is also a great structure to teach game
mechanics or other types of skills to the learner.

Summary
We have taken the components from mission1, testbed2, and testbed3, and
integrated them together into one seamless game. The final game is composed of
four scene files, each of which contains a single GameObject hierarchy. The top object
in the hierarchy is given a name consistent with the scene filename. Some refactoring
of existing systems was then required to fix up the classes at initialization time so
that no missing or dangling references would be incurred.

Congratulations! We have now finished our e-learning game framework. Not only
did we develop a game that exercises good teaching and learning pedagogy, we
also implemented a number of core gameplay systems for the interactive elements
in the game. While we proved the technology with a geography trivia game, the
framework could be adapted and re-skinned for other topics. Logical potential
directions for future work could include adding levels beyond the initial three. This
could be done by developing more interactive objects for your game by fleshing out
your library of condition-and-response classes for the decision manager, optimizing
your code so that it can run efficiently on resource constrained platforms such as
smartphones, or adding more polish to the game such as through audio or particles.
No matter what, make sure you have fun in the process!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
3D game

camera code 15
camera system 11
character system 11
controls system 11
mission system, testing 52, 53
player controls code, developing 21
player, rewarding 197
tracking systems, adding 49, 50

3D hierarchies 161, 162
_global class 78
_level1 class 78

A
AddScore condition

creating 191
Application.LoadLevelAdditive() method

202

B
base scripts

about 28
CustomGameObj helper class 28
ObjectInteraction helper class 28

C
camera code

developing 15
GameCam.cs, implementing 16

CameraLookPlayer() 207
camera system 11

ChangeState() method 88, 203
character representation

building 14, 15
character system

about 11
developing 13

clickable text elements
creating 102
leaving mouse over, detecting 102
mouse clicks, detecting 102
mouse over, detecting 102

code changes
reflecting 89

code functionality
analysis 90

condition_closerThanThresh script
about 127
implementing 132

condition_fartherThanThresh script
about 128
implementing 133

controls system 11
core classes, Finding the facts game

FlagLocators, creating 61
FlagMonument, creating 61
flag Prefabs, creating 67-69
FoundAllTheFlags Prefab, creating 72, 73
InventoryPlaceOnMonument class,

creating 63
mission manager, configuring 74
MissionMgrHelper script, creating 63
mission pop-up Prefab, creating 71, 72
mission reward Prefabs, creating 72
MonumentMgr, creating 61, 62
pop-up card Prefabs, creating 70

www.it-ebooks.info

http://www.it-ebooks.info/

[224]

ReturnedTheFlagsResult Prefab, creating
73, 74

SetupMissionOne script, creating 65, 66
terrain, creating 58-60
TriviaCardScript script, creating 64

CorrectResponse GameObject 182
CorrectResponse Prefabs

creating 187
CustomGameObj class 28
CustomGameObj script

implementing 30, 31

D
DecisionMgr class

testing 135, 136
DisplayInventory method

implementing 40-43

E
e-learning 8
e-learning game

character system, developing 13
distributing 219, 220
features 10
first scene, building 12
GameCam script, extending 142, 143
gamification 8
Geography Quest 10
mission, adding to missionMgr script 142
mission two framework, defining 140, 141
mission two structure, exploring 140
playing 219, 220
reviewing 220
terrain, modifying 143

e-learning game framework
additive load, using 202, 203
delete/load patterns, using 203, 204
level 2, refactoring 210
level 3, refactoring 216-219
pop-up system, refactoring 204
SetupMission2 script, updating 214, 215
system, implementing for connecting object

references 211-214
work, refactoring 204

F
Finding the facts game

about 55
components 55
core classes, implementing 58
designing 57
playing 75
teaching loop 58

Finding the facts game components
FlagLocators 55
MissionMgrHelper 56
Monument 56
MonumentMgr 56
SetupMissionOne 56
SimpleDetachScript 56
terrain 56
TriviaCardScript 56

finish line flag
creating 145, 146

Finite State Machine (FSM)
about 84
classes, implementing 86
implementing, in game 85
Switch Case FSM 85, 86

FlagLocators
creating 61

FlagMonument
creating 61

flag Prefabs
creating 67-69

FoundAllTheFlags Prefab
creating 72, 73

G
GameCam.cs

implementing 16-20
GameCam script

extending 142, 143
GameMgr script

about 78
implementing 86-88

GameObjects
about 78, 182
CorrectResponse 182

www.it-ebooks.info

http://www.it-ebooks.info/

[225]

LevelLogicObj 182
MissionMgr 182
Player 182
QuizCard 182
reorganizing, in Scene view 78
SetupLevel3 182
Time 182

gamification, e-learning
active learning 9
cognitive flow 9
emotional attachment 9
immersion 8
reinforcement and conditioning 9
safe practice environment 10
spatial learning 9

global scene
creating 79, 80

GUI.Button class
clickable button, creating 103
mouse click, detecting 104
UnityGUI, using 103

GUIButton component 98
GUIButton object

exploring 103
GUIText component

about 98
exploring 99
members, interpreting 99

GUITexture component
exploring 98-100

I
in-place animation

versus, root motion animation 170
InteractiveObj class

about 28
OnCollisionEnter() method 32
OnTriggerEnter() method 32
Start() method 32
Update() method 32

interactive object
about 28
building 29
CustomGameObj script, implementing

30, 31

DisplayInventory method, implementing
40-42

InteractiveObj script, implementing 31, 32
InventoryItem script, implementing 34, 35
InventoryMgr script, implementing 36-39
MissionMgr script, implementing 44, 45
Mission script, implementing 46-48
MissionToken script, implementing 48
ObjectInteraction script, implementing

33, 34
SimpleLifespanScript, implementing 48, 49

InteractiveObj script
creating 31
implementing 31-33

InventoryItem class 34
InventoryItem script

implementing 34, 35
InventoryMgr class

about 28, 36
Add() method 37
DisplayInventory method 40
Insert() method 39
Start() method 36

InventoryMgr script
implementing 36-39

InventoryPlaceOnMonument class
creating 63

Inverse Kinematics (IK) 165

L
LERP (linear interpolation) 18
LEVEL1 scene

creating 80, 81
Level2Extras script 211
level2Init script 212
LevelFinished pop up

creating 147, 148
LevelLogicObj GameObject

about 182
implementing 152-158

LevelLogicObj object
modifying 196, 197

LevelStart pop up
creating 147, 148

www.it-ebooks.info

http://www.it-ebooks.info/

[226]

M
MainCamera GameObject 205
main menu pop up

building 104-112
Mechanim animation system

about 165
appropriate animations, selecting 166
character script, adding 171, 172
in-place animation, versus root motion

animation 170
quizracer animation FSM, building 174-176
simple character animation FSM, building

166-170
zombie racer animation FSM, building

172, 173
Mission class 29, 46
MissionMgr class

about 28, 29, 44
Add(missionToken) method 44
ValidateAll() method 46
Validate(mission) method 45

missionMgr GameObject 182
MissionMgrHelper script

creating 63
MissionMgr script

implementing 44, 45
mission pop-up Prefab

creating 71, 72
mission reward Prefabs

creating 72
mission system

testing 52, 53
mission three

data condition, adding 189
GameObjects 182
learning theory, applying 183
setupLevel3 Prefab, using 189, 190
structure, creating 184
terrain, modifying 184
visitors, adding to park 185

MissionToken class 29, 48
mission two, eLearning game

adding, to missionMgr script 142
finish line flag, creating 145, 146
framework, defining 140, 141
GameCam script, extending 142, 143

LevelFinished pop up, creating 147, 148
LevelLogicObj GameObject, implementing

152-158
LevelStart pop up, creating 147, 148
NpcRacers, adding 143, 144
raceStartup Prefab, creating 150, 151
setupLevel2 Prefab, creating 149, 150
start line flag, creating 145, 146
structure, exploring 140
terrain, modifying 143

MonumentMgr
creating 61

N
NPC conditions

condition_closerThanThresh script,
implementing 132

condition_fartherThanThresh script,
implementing 133, 134

response_changeState script, implementing
134, 135

npcCondition script
implementing 128

npcDecisionMgr script
implementing 131

NPC decision system
implementing 127
npcCondition, implementing 127, 128
npcDecisionMgr, implementing

127, 131, 132
npcInteraction, implementing 127-130
npcResponse, implementing 127, 129
working 127

NPC GameObject
creating 116

npcInteraction script
implementing 129, 130

NpcLocators Prefab
creating 186

NpcRacers
adding, to mission 143, 144

npcResponse script
implementing 129

npcScript class
implementing 116-118

www.it-ebooks.info

http://www.it-ebooks.info/

[227]

O
ObjectInteraction class

about 28
HandleInteraction() method 34

ObjectInteraction script
implementing 33, 34

P
player controls code

developing 21
PlayerControls.cs, implementing 21-25

PlayerData script 78
Player GameObject 182
player motion algorithm

updating 94
pop-up card Prefabs

creating 70
PopupMainMenu GameObject

creating 82-84
PopupMgr script 213
pop-up system

developing 98
modifying 185, 186
testing 113

pop-up system, refactoring
level 1 pop ups, updating 208, 209
level 2 pop ups, updating 207
level 3 pop ups, updating 205, 206

Q
QuizCard GameObject 182
quiz cards

modifying 187, 188
quizracer animation FSM

building 174, 175

R
raceStartup Prefab

creating 150, 151
refactoring 78
response_changeState script 128

implementing 134
ReturnedTheFlagsResult Prefab

creating 73, 74

S
scenes

adding, to game project 81, 82
ScorePlate

making active 92, 93
setupLevel2 Prefab

creating 149, 150
SetupLevel3 GameObject 182
setupLevel3 Prefab

using 189
SetupMission2 script

updating 214, 215
SetupMission() method 215
SetupMissionOne script

creating 65
SetupMissionThree() script 218
ShowLevel3Results response

creating 192, 193
simple character animation FSM

building 166-170
SimpleLifespanScript class 28, 48
skinned mesh

about 162
character model, acquiring 162-164
character model, importing 163, 164

SplineMgr class
connecting, to NPCScript 124-126
implementing 119-123

start line flag
creating 145, 146

Switch Case FSM 85
systems

updating 91

T
teaching loop, Finding the facts game

application stage 58
presentation stage 58
synthesis stage 58

terrain
creating 58, 60

TextMesh component
about 98
exploring 101
using 102

www.it-ebooks.info

http://www.it-ebooks.info/

[228]

Time GameObject 182
Time object

creating 193-195
TriviaCardScript script

creating 64

U
Unity3D

skinned mesh 162
Unity animation editor

about 177
exploring 177-179

UnityGUI
using 103

UnityScript object
exploring 103

Unity UI systems
GUIButton 98
GUIText 98
GUITexture 98
TextMesh 98

Update() loop 17, 88
UpdateMovement() method 22
UpdateRotAndTrans() custom method 17
UpdateRotAndTrans() method 17, 18

V
Validate() method 92

Z
zombie racer animation FSM

building 172, 173

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Creating E-Learning Games with Unity

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Unity Android Game Development
by Example Beginner's Guide
ISBN: 978-1-84969-201-4 Paperback: 320 pages

Learn how to create exciting games using Unity 3D
for Android with the help of hands-on examples

1.	 Enter the increasingly popular mobile market
and create games using Unity 3D and Android.

2.	 Learn optimization techniques for efficient
mobile games.

3.	 Clear, step-by-step instructions for creating a
complete mobile game experience.

Unity Multiplayer Games
ISBN: 978-1-84969-232-8 Paperback: 242 pages

Build engaging, fully functional, multiplayer games
with Unity engine

1.	 Create a variety of multiplayer games and apps
in the Unity 4 game engine, still maintaining
compatibility with Unity 3.

2.	 Employ the most popular networking
middleware options for Unity games.

3.	 Packed with ideas, inspiration, and advice for
your own game design and development.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Unity 4.x Game Development by
Example Beginner's Guide
ISBN: 978-1-84969-526-8 Paperback: 572 pages

A seat-of-your-pants manual for building fun, groovy
little games quickly with Unity 4.x

1.	 Learn the basics of the Unity 3D game engine by
building five small, functional game projects.

2.	 Explore simplification and iteration techniques
that will make you more successful as a game
developer.

3.	 Take Unity for a spin with a refreshingly
humorous approach to technical manuals.

Practical Game Design with Unity
and Playmaker
ISBN: 978-1-84969-810-8 Paperback: 122 pages

Leverage the power of Unity 3D and Playmaker to
develop a game from scratch

1.	 Create artificial intelligence for a game using
Playmaker.

2.	 Learn how to integrate a game with external
APIs (Kongregate).

3.	 Learn how to quickly develop games in Unity
and Playmaker.

4.	 A step-by-step game development tutorial
using AI scripting, external APIs, and
Multiplayer implementation.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to E-Learning and the Three Cs of 3D Games
	Understanding e-learning
	Introducing our game – Geography Quest
	Comprehending the three Cs
	Creating our first scene
	Developing the character system
	Building character representation
	Developing the camera code
	Implementing GameCam.cs

	Developing the player controls code
	Implementing PlayerControls.cs

	Try it out
	Summary

	Chapter 2: Interactive Objects and MissionMgr
	Understanding the base scripts
	Building an interactive object
	Implementing the CustomGameObj script
	Implementing the InteractiveObj script
	Implementing the ObjectInteraction script
	Implementing the InventoryItem script
	Implementing the InventoryMgr script
	Implementing the DisplayInventory method

	Implementing the MissionMgr script
	Implementing the Mission script
	Implementing the MissionToken script
	Implementing the SimpleLifespanScript

	Putting it all together
	Testing the mission system

	Try it out!
	Summary

	Chapter 3: Mission One – Find the Facts
	Finding the facts
	Designing games to maximize fun
	The teaching loop in game design
	Implementing the core classes for mission one
	Creating a terrain
	Creating the FlagLocators
	Creating the FlagMonument
	Creating the MonumentMgr

	Creating the InventoryPlaceOnMonument class
	Creating the MissionMgrHelper script
	Creating the TriviaCardScript script
	Creating the SetupMissionOne script
	Creating the flag Prefabs
	Creating the pop-up card Prefabs
	Creating the mission pop-up Prefab
	Creating the mission reward Prefabs
	Creating the FoundAllTheFlags Prefab
	Creating the ReturnedTheFlagsResult Prefab
	Configuring the mission manager
	Playing the level!

	Summary

	Chapter 4: Mission One – Future
Proofing the Code
	Reorganizing our GameObjects in the Scene view
	Creating a global scene
	Creating a first level scene
	Adding new scenes to the project
	Creating the PopupMainMenu GameObject

	An introduction to Finite State Machines
	Implementing an FSM in a game
	Switch Case FSM
	Classes implementation of FSM

	Implementing the GameMgr script
	Reflecting on our code changes
	Analyzing code functionality
	Updating some systems
	Making the ScorePlate active
	Updating the player motion algorithm
	Playing the level!
	Summary

	Chapter 5: User Interfaces in Unity
	Getting familiar with Unity UI classes
	Developing the pop-up system
	Exploring the GUIText component
	Interpreting the members on GUIText

	Exploring the GUITexture component
	Exploring the TextMesh component
	Ideal use of TextMesh

	Creating clickable text elements
	Detecting mouse clicks
	Detecting mouse over
	Detecting leaving mouse over

	Exploring UnityScript and the GUIButton object
	Using UnityGUI
	Creating a clickable button
	Detecting a mouse click

	Building the main menu pop up
	Testing our work
	Future extensions
	Summary

	Chapter 6: NPCs and Associated Technology
	Creating the NPC GameObject
	Implementing the npcScript class

	Implementing the SplineMgr class
	Connecting SplineMgr to NPCScript
	Implementing the NPC decision system
	Implementing the npcCondition script
	Implementing the npcResponse script
	Implmenting the npcInteraction script
	Implementing the npcDecisionMgr script

	Building a collection of NPC conditions and responses
	Implementing the condition_closerThanThresh script
	Implementing the condition_fartherThanThresh script
	Implementing the response_changeState script

	Putting it all together
	Summary

	Chapter 7: Mission Two – Testing a Player's Learning
	Exploring the structure of mission two
	Defining the framework for mission two
	Adding a mission to the missionMgr script
	Extending the GameCam script
	Modifying the terrain
	Adding NpcRacers to the mission
	Creating the start and finish line flags
	Creating the LevelStart and LevelFinished pop ups
	Creating the setupLevel2 Prefab
	Creating the raceStartup Prefab
	Implementing the LevelLogicObj GameObject
	Summary

	Chapter 8: Adding Animations
	Exploring 3D hierarchies
	Skinned meshes in Unity3D
	Acquiring and importing models

	Exploring the Mechanim animation system
	Choosing appropriate animations
	Building a simple character animation FSM
	Exploring in-place versus root motion animation
	Adding the character script
	Building a zombie racer animation FSM
	Building a quizracer animation FSM

	Exploring the Unity animation editor
	Summary

	Chapter 9: Synthesis of Knowledge
	Understanding the mission three GameObjects
	Applying learning theory to mission three
	Creating the structure for mission three
	Modifying the terrain
	Adding visitors to the park

	Modifying the pop-up system
	Creating the NpcLocators Prefab
	Creating the CorrectResponse Prefabs
	Modifying the quiz cards
	Adding another data condition
	Using the setupLevel3 Prefab
	Creating the AddScore condition
	Creating the ShowLevel3Results response
	Creating the Time object
	Modifying the LevelLogicObj object
	Rewarding the player
	Summary

	Chapter 10: An Extensible Game Framework Pattern in Unity
	Load additively
	Using delete/load patterns
	Refactoring our work
	The pop-up system
	Updating level 3 pop ups
	Updating level 2 pop ups
	Updating level 1 pop ups

	Refactoring level 2
	Implementing a system to connect object references
	Updating the SetupMission2 script

	Refactoring level 3
	Playing and distributing your game
	Reflecting on e-learning and game design
	Summary

	Index

