

Kibana	Essentials

Table	of	Contents

Kibana	Essentials

Credits

About	the	Author

Acknowledgments

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	An	Introduction	to	Kibana

Understanding	Elasticsearch

The	basic	concepts	of	Elasticsearch

Prerequisites	for	installing	Kibana	4.1.1

Installation	of	Java

Installation	of	Java	on	Ubuntu	14.04

Installation	of	Java	on	Windows

Installation	of	Elasticsearch

Installation	of	Elasticsearch	on	Ubuntu	14.04

Installation	of	Elasticsearch	on	Windows

Installation	of	GIT

Installation	of	Kibana

Installation	of	Kibana	on	Ubuntu	14.04

Installation	of	Kibana	on	Windows

Additional	information

Changing	the	Elasticsearch	configuration

Changing	the	Kibana	configuration

Importing	a	JSON	file	into	Elasticsearch

Installation	of	npm

Installation	of	npm	on	Ubuntu	14.04

Installation	of	npm	on	Windows

Installing	elasticdump

Installing	elasticdump	on	Ubuntu	14.04

Installing	elasticdump	on	Windows

Summary

2.	Exploring	the	Discover	Page

Understanding	the	time	filter

Setting	the	time	filter

The	Auto-refresh	page

Understanding	the	toolbar

Using	the	search	bar

New	Search

Save	Search

Load	Saved	Search

Understanding	the	Fields	list

View	field	data	information

Filtering	by	field

Functionalities	of	filters

The	Enable	filter

The	Disable	filter

The	Pin	filter

The	Unpin	filter

The	Invert	filter

The	Toggle	filter

The	Remove	filter

Understanding	document	data

Add	a	field	to	document	data

Remove	a	field	from	document	data

View	data

Sorting	documents

Moving	fields	in	document	data

Summary

3.	Exploring	the	Visualize	Page

Understanding	aggregations

Bucket	aggregations

Date	histogram

Histogram

Range

Date	range

IPv4	range

Terms

Filters

Significant	terms

GeoHash

Metric	aggregations

Count

Sum

Average

Min

Max

Unique	count

Percentile

Percentile	ranks

Steps	for	designing	visualization

Step	1	–	selecting	a	visualization	type

Step	2	–	selecting	search	data	source

Step	3	–	the	visualization	canvas

Toolbar

New	Visualization

Save	Visualization

Load	Saved	Visualization

Share	Visualization

Refresh

Aggregation	designer

Preview	canvas

An	explanation	of	visualization	types

Area	Chart

Overlap

Percentage

Wiggle

Silhouette

Data	Table

Line	Chart

Log

Square	root

Markdown	widget

Metric

Pie	Chart

Tile	Map

Shaded	Circle	Markers

Shaded	GeoHash	Grid

Heatmap

Desaturate	map	tiles

Vertical	Bar	Chart

Percentage

Grouped

Summary

4.	Exploring	the	Dashboard	Page

Understanding	the	toolbar

The	New	Dashboard	option

Adding	visualizations

Using	the	search	bar

The	Save	Dashboard	option

The	Load	Saved	Dashboard	option

Sharing	the	saved	dashboard

Understanding	the	dashboard	canvas

Moving	visualizations

Resizing	visualizations

Editing	visualizations

Removing	visualizations

Embedding	a	dashboard	in	a	web	page

Understanding	the	debug	panel

Table

Request

Response

Statistics

Summary

5.	Exploring	the	Settings	Page

Indices

Configuring	an	index	pattern

Setting	the	default	index	pattern

Reloading	the	index	fields	list

Removing	an	index	pattern

Managing	the	field	properties

The	field	type	format

Advanced

Objects

Managing	saved	searches,	visualizations,	and	dashboards

Viewing	a	saved	object

Editing	a	saved	object

Deleting	a	saved	object

Exporting	saved	objects

Importing	saved	objects

About

Summary

6.	Real-Time	Twitter	Data	Analysis

The	installation	of	Logstash

The	installation	of	Logstash	on	Ubuntu	14.04

The	installation	of	Logstash	on	Windows

The	workflow	for	real-time	Twitter	data	analysis

Creating	a	Twitter	developer	account

Creating	a	Logstash	configuration	file

Creating	visualizations	for	scenarios

Number	of	tweets	over	a	period	of	time

Number	of	tweets	in	different	languages

Number	of	tweets	from	different	geographical	locations

Number	of	tweets	from	Android,	iPhone,	iPad,	and	Web	devices

Number	of	tweets	in	various	languages	using	different	devices

Number	of	tweets	from	various	countries	using	different	devices

The	most	retweeted	user	screen	name	tweeting	using	different	devices

The	most	tweeted	user’s	screen	name

Popular	hashtags

Twitter	metrics

Summary

A.	References

Chapter	1,	An	Introduction	to	Kibana

Chapter	2,	Exploring	the	Discover	Page

Chapter	3,	Exploring	the	Visualize	Page

Chapter	4,	Exploring	the	Dashboard	Page

Chapter	5,	Exploring	the	Settings	Page

Chapter	6,	Real-Time	Twitter	Data	Analysis

Index

Kibana	Essentials

Kibana	Essentials
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	October	2015

Production	reference:	1261015

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-493-6

www.packtpub.com

http://www.packtpub.com

Credits
Author

Yuvraj	Gupta

Reviewers

Jacob	Alves

Brent	Ashley

David	Laing

Commissioning	Editor

Sarah	Crofton

Acquisition	Editor

Manish	Nainani

Content	Development	Editor

Merwyn	D’souza

Technical	Editor

Shiny	Poojary

Copy	Editor

Vikrant	Phadke

Project	Coordinator

Neha	Bhatnagar

Proofreader

Safis	Editing

Indexer

Tejal	Soni

Graphics

Disha	Haria

Production	Coordinator

Manu	Joseph

Cover	Work

Manu	Joseph

About	the	Author
Yuvraj	Gupta	holds	an	undergraduate	degree	in	computer	science	with	a	specialization	in
cloud	computing	and	virtualization	technology	from	UPES,	Dehradun,	India.	He	is
currently	working	as	a	big	data	QA	engineer.	He	has	a	keen	interest	in	big	data,	data
analytics,	and	visualization,	and	loves	to	try	out	new	technologies.

Yuvraj	is	an	avid	gadget	lover	and	makes	it	a	point	to	stay	up	to	date	with	the	latest
happenings	in	the	technology	domain.	When	he	is	not	working,	he	spends	his	time	on
Facebook,	Quora,	and	Stack	Overflow,	and	also	watches	and	plays	sports.	He	can	be
reached	at	<gupta.yuvraj@gmail.com>	or	on	LinkedIn	at
https://www.linkedin.com/in/guptayuvraj.

mailto:gupta.yuvraj@gmail.com
https://www.linkedin.com/in/guptayuvraj

Acknowledgments
I	had	never	thought	of	writing	a	technical	book	so	soon	in	my	life.	It	reminds	me	that
opportunity	knocks	the	door	only	once,	and	I	am	very	lucky	to	have	the	opportunity	of
writing	this	book	on	the	essentials	of	Kibana.	However,	ability	is	nothing	without
opportunity,	and	I	would	like	to	thank	my	acquisition	editor,	Manish	Nainani,	for	scouting
me	and	believing	in	a	first-time	author	to	write	this	book.	I	was	lucky	to	have	such	an
awesome	content	development	editor,	Merwyn	D’Souza,	who	was	very	helpful	and	patient
throughout	the	course	of	writing	this	book.	In	addition,	I	would	like	to	thank	the	reviewers
and	the	entire	team	of	Packt	Publishing,	who	were	involved	in	producing	this	book.
Without	their	support,	it	would	never	have	been	possible.

Special	thanks	to	my	dad,	Sanjay,	mom,	Nisha,	and	brother,	Adhiraj,	for	encouraging	me
and	believing	in	me.	I	would	also	like	to	thank	all	my	family	members—Mamu,	Massi,
Massad,	Taujis,	Taijis,	and	my	amazing	cousins—for	their	blessings	and	guidance.	A
special	shout	out	to	all	my	friends,	especially	the	cloud	computing	batch	of	2015	and	those
who	have	helped	me	directly	or	indirectly	in	writing	this	book.	Without	everyone’s
support,	I	would	have	never	been	able	to	write	this	book.

I	would	also	like	to	thank	my	teachers,	professors,	gurus,	schools,	and	university	for
playing	an	important	role	in	providing	me	with	the	education	that	has	helped	me	gain
knowledge.

Last	but	not	least,	I	would	like	to	extend	my	gratitude	towards	Elastic	Inc.	and	Rashid	for
developing	this	awesome	software	with	amazing	features.	This	is	a	small	contribution
from	my	side	to	the	ever-growing	community	of	Kibana,	and	I	hope	this	book	helps
Kibana	reach	greater	heights.

About	the	Reviewers
Brent	Ashley	has	been	involved	in	computer	technology	and	its	surrounding	communities
since	1979,	contributing	via	online	forums,	local	and	international	events,	papers,	articles,
and	speeches.

As	a	leader	and	mentor	in	the	development	community,	he	became	recognized	in	the	early
2000s	as	an	early	pioneer	in	the	web	technologies	that	are	now	known	as	Ajax.

For	more	than	20	years,	he	worked	as	an	Internet	infrastructure	architect	and	consultant,
gaining	extensive	experience	with	networked	asset	configuration,	management,
monitoring,	and	log	analysis.

Brent	is	the	associate	vice	president	of	infrastructure	architecture	at	ControlCase,	LLC
(http://www.controlcase.com/),	a	global	innovator	and	leader	in	the	provision	and
development	of	services,	software	products,	hardware	appliances,	and	managed	solutions.
The	company	focuses	on	compliance	regulations	and	standards,	including	PCI	DSS,	ISO,
SOX,	HIPAA	and	many	other	regulatory	environments	and	frameworks.	Brent	takes	a	lead
role	in	the	management	and	expansion	of	their	international	technology	infrastructure	as
they	continue	to	grow.

He	was	also	a	technical	reviewer	on	the	following	books:

Foundations	of	Ajax,	Asleson	and	Schutta,	APress,	2005
Enterprise	Ajax,	Johnson,	White,	Charland,	Prentice	Hall,	2007

David	Laing	is	a	long-time	member	of	the	Cloud	Foundry	community.	He	is	a	core
contributor	to	BOSH	and	the	leader	of	the	open	source	Logsearch	(ELK	+	BOSH:
http://www.logsearch.io/)	project,	which	brings	log	analysis	to	the	Cloud	Foundry
platform	using	ELK.	David’s	company,	stayUp.io	(http://www.stayup.io/),	provides
commercial	support	for	Logsearch.

http://www.controlcase.com/
http://www.logsearch.io/
http://www.stayup.io/

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

This	book	is	dedicated	to	my	Nanu	and	Nani	for	motivating	me	and	for	being	an
inspiration	to	me.

http://www.PacktPub.com

Preface
As	big	data	has	been	trending	in	the	industry	for	a	while,	huge	amounts	of	data	present	a
bigger	challenge	in	gaining	meaningful	information	from	raw	data.	In	today’s	industry,
getting	insights	from	data	and	making	real-time	decisions	based	on	this	huge	data	has
become	even	more	important.

Kibana	provides	an	easy-to-use	UI	to	perform	real-time	data	analysis	and	visualizations	on
streaming	data.	It	enables	you	to	get	hidden	information	by	exploring	data	in	different
dimensions.

Making	beautiful	visualizations	with	ease	without	requiring	any	code	and	empowering
people	without	technical	knowledge	to	gather	insights	have	never	been	easier.

What	this	book	covers
Chapter	1,	An	Introduction	to	Kibana,	takes	you	through	the	basic	concepts	of
Elasticsearch,	followed	by	the	installation	of	Kibana	and	its	prerequisite	software.

Chapter	2,	Exploring	the	Discover	Page,	covers	the	functionality	of	various	components,
along	with	detailed	explanations	of	the	usage	of	each	component	and	its	options.

Chapter	3,	Exploring	the	Visualize	Page,	teaches	you	to	create	different	types	of
visualizations	using	aggregations	to	visualize	data.

Chapter	4,	Exploring	the	Dashboard	Page,	covers	the	functionality	of	the	various
components	present	on	the	Dashboard	page,	followed	by	creating	and	embedding
dashboards.

Chapter	5,	Exploring	the	Settings	Page,	demonstrates	the	usage	and	tweaking	of	basic	and
advanced	settings	provided	in	Kibana.

Chapter	6,	Real-Time	Twitter	Data	Analysis,	shows	you	how	to	analyze	Twitter	data	and
create	visualizations	based	on	different	scenarios.	This	chapter	also	covers	the	workflow
for	analyzing	Twitter	data.

Appendix,	References,	contains	a	chapterwise	segregation	of	the	links	and	references	used
in	the	chapters.

What	you	need	for	this	book
The	following	pieces	of	software	are	required:

Oracle	Java	1.8u20+
Elasticsearch	v1.4.4+
A	modern	web	browser—IE	10+,	Firefox,	Chrome,	Safari,	and	so	on
Kibana	v	4.1.1
Git	for	Windows
npm,	Node.js,	and	elasticsearchdump	for	importing	data	in	Elasticsearch
Logstash	v1.5.4

All	of	the	software	mentioned	in	this	book	is	free	of	charge	and	can	be	downloaded	from
the	Internet.

Who	this	book	is	for
Whether	you	are	new	to	the	world	of	data	analytics	and	data	visualization,	or	an	expert,
this	book	will	provide	you	with	the	skills	required	to	use	Kibana	for	real-time
visualization	of	streaming	data	with	ease	and	simplicity.	This	book	is	intended	for	those
professionals	who	are	interested	in	learning	about	Kibana,	about	its	installations,	and	how
to	use	it.	As	Kibana	provides	a	user-friendly	web	page,	no	prior	experience	is	required.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:
“Windows	user	can	open	the	elasticsearch.yml	file	from	the	config	folder.”

A	block	of	code	is	set	as	follows:

{

		"name":	"Yuvraj",

		"age":	22,

		"birthdate":	"2015-07-27",

		"bank_balance":	10500.50,

		"interests":	["playing	games","movies","travelling"],

		"movie":	{"name":"Titanic","genre":"Romance","year"	:	1997}

}

Any	command-line	input	or	output	is	written	as	follows:

elasticdump	\

--bulk=true	\

--input="C:\Users\ygupta\Desktop\tweet.json"	\

--output=http://localhost:9200/

Any	hyperlink	is	written	as	follows:

https://github.com/guptayuvraj/Kibana_Essentials

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Finally,	click	on
Create	to	create	the	index	in	Kibana.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

https://github.com/guptayuvraj/Kibana_Essentials

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/4936OS_ColoredImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/4936OS_ColoredImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	An	Introduction	to	Kibana
Kibana	is	a	tool	that	is	part	of	the	ELK	stack,	which	consists	of	Elasticsearch,	Logstash,
and	Kibana.	It	is	built	and	developed	by	Elastic.	Kibana	is	a	visualization	platform	that	is
built	on	top	of	Elasticsearch	and	leverages	the	functionalities	of	Elasticsearch.

To	understand	Kibana	better,	let’s	check	out	the	following	diagram:

This	diagram	shows	that	Logstash	is	used	to	push	data	directly	into	Elasticsearch.	This
data	is	not	limited	to	log	data,	but	can	include	any	type	of	data.	Elasticsearch	stores	data
that	comes	as	input	from	Logstash,	and	Kibana	uses	the	data	stored	in	Elasticsearch	to
provide	visualizations.	So,	Logstash	provides	an	input	stream	of	data	to	Elasticsearch,
from	which	Kibana	accesses	the	data	and	uses	it	to	create	visualizations.

Kibana	acts	as	an	over-the-top	layer	of	Elasticsearch,	providing	beautiful	visualizations	for
data	(structured	or	nonstructured)	stored	in	it.	Kibana	is	an	open	source	analytics	product
used	to	search,	view,	and	analyze	data.	It	provides	various	types	of	visualizations	to
visualize	data	in	the	form	of	tables,	charts,	maps,	histograms,	and	so	on.	It	also	provides	a
web-based	interface	that	can	easily	handle	a	large	amount	of	data.	It	helps	create
dashboards	that	are	easy	to	create	and	helps	query	data	in	real	time.	Dashboards	are
nothing	but	an	interface	for	underlying	JSON	documents.	They	are	used	for	saving,
templating,	and	exporting.	They	are	simple	to	set	up	and	use,	which	helps	us	play	with
data	stored	in	Elasticsearch	in	minutes	without	requiring	any	coding.

Kibana	is	an	Apache-licensed	product	that	aims	to	provide	a	flexible	interface	combined
with	the	powerful	searching	capabilities	of	Elasticsearch.	It	requires	a	web	server
(included	in	the	Kibana	4	package)	and	any	modern	web	browser,	that	is,	a	browser	that
supports	industry	standards	and	renders	the	web	page	in	the	same	way	across	all	browsers,
to	work.	It	connects	to	Elasticsearch	using	the	REST	API.	It	helps	to	visualize	data	in	real
time	with	the	use	of	dashboards	to	provide	real-time	insights.

Note
In	this	book,	we	will	use	Kibana	4.1.1,	which	is	the	latest	version	of	Kibana.	It	provides	a
lot	of	features	compared	to	Kibana	3.

As	Kibana	uses	the	functionalities	of	Elasticsearch,	it	is	easier	to	learn	Kibana	by
understanding	the	core	functionalities	of	Elasticsearch.	In	this	chapter,	we	are	going	to
take	a	look	at	the	following	topics:

The	basic	concepts	of	Elasticsearch
Installation	of	Java
Installation	of	Elasticsearch
Installation	of	Kibana
Importing	a	JSON	file	into	Elasticsearch

Understanding	Elasticsearch
Elasticsearch	is	a	search	server	built	on	top	of	Lucene	(licensed	under	Apache),	which	is
completely	written	in	Java.	It	supports	distributed	searches	in	a	multitenant	environment.
It	is	a	scalable	search	engine	allowing	high	flexibility	of	adding	machines	easily.	It
provides	a	full-text	search	engine	combined	with	a	RESTful	web	interface	and	JSON
documents.	Elasticsearch	harnesses	the	functionalities	of	Lucene	Java	Libraries,	adding	up
by	providing	proper	APIs,	scalability,	and	flexibility	on	top	of	the	Lucene	full-text	search
library.	All	querying	done	using	Elasticsearch,	that	is,	searching	text,	matching	text,
creating	indexes,	and	so	on,	is	implemented	by	Apache	Lucene.

Note
Without	a	setup	of	an	Elastic	shield	or	any	other	proxy	mechanism,	any	user	with	access
to	Elasticsearch	API	can	view	all	the	data	stored	in	the	cluster.

The	basic	concepts	of	Elasticsearch
Let’s	explore	some	of	the	basic	concepts	of	Elasticsearch:

Field:	This	is	the	smallest	single	unit	of	data	stored	in	Elasticsearch.	It	is	similar	to	a
column	in	a	traditional	relational	database.	Every	document	contains	key-value	pairs,
which	are	referred	to	as	fields.	Values	in	a	field	can	contain	a	single	value,	such	as
integer	[27],	string	["Kibana"],	or	multiple	values,	such	as	array	[1,	2,	3,
4,	5].	The	field	type	is	responsible	for	specifying	which	type	of	data	can	be	stored	in
a	particular	field,	for	example,	integer,	string,	date,	and	so	on.
Document:	This	is	the	simplest	unit	of	information	stored	in	Elasticsearch.	It	is	a
collection	of	fields.	It	is	considered	similar	to	a	row	of	a	table	in	a	traditional
relational	database.	A	document	can	contain	any	type	of	entry,	such	as	a	document
for	a	single	restaurant,	another	document	for	a	single	cuisine,	and	yet	another	for	a
single	order.	Documents	are	in	JavaScript	Object	Notation	(JSON),	which	is	a
language-independent	data	interchange	format.	JSON	contains	key-value	pairs.	Every
document	that	is	stored	in	Elasticsearch	is	indexed.	Every	document	contains	a	type
and	an	ID.	An	example	of	a	document	that	has	JSON	values	is	as	follows:

{

		"name":	"Yuvraj",

		"age":	22,

		"birthdate":	"2015-07-27",

		"bank_balance":	10500.50,

		"interests":	["playing	games","movies","travelling"],

		"movie":	{"name":"Titanic","genre":"Romance","year"	:	1997}

}

In	the	preceding	example,	we	can	see	that	the	document	supports	JSON,	having	key-
value	pairs,	which	are	explained	as	follows:

The	name	field	is	of	the	string	type
The	age	field	is	of	the	numeric	type
The	birthdate	field	is	of	the	date	type
The	bank_balance	field	is	of	the	float	type
The	interests	field	contains	an	array
The	movie	field	contains	an	object	(dictionary)

Type:	This	is	similar	to	a	table	in	a	traditional	relational	database.	It	contains	a	list	of
fields,	which	is	defined	for	every	document.	A	type	is	a	logical	segregation	of
indexes,	whose	interpretation/semantics	entirely	depends	on	you.	For	example,	you
have	data	about	the	world	and	you	put	all	your	data	into	an	index.	In	this	index,	you
can	define	a	type	for	continent-wise	data,	another	type	for	country-wise	data,	and	a
third	type	for	region-wise	data.	Types	are	used	with	a	mapping	API;	it	specifies	the
type	of	its	field.	An	example	of	type	mapping	is	as	follows:

{

		"user":	{

				"properties":	{

						"name":	{

								"type":	"string"

						},

						"age":	{

								"type":	"integer"

						},

						"birthdate":	{

								"type":	"date"

						},

						"bank_balance":	{

								"type":	"float"

						},

						"interests":	{

								"type":	"string"

						},

						"movie":	{

								"properties":	{

										"name":	{

												"type":	"string"

										},

										"genre":	{

												"type":	"string"

										},

										"year":	{

												"type":	"integer"

										}

								}

						}

				}

		}

}

Now,	let’s	take	a	look	at	the	core	data	types	specified	in	Elasticsearch,	as	follows:

Type Definition

string This	contains	text,	for	example,	"Kibana"

integer This	contains	a	32-bit	integer,	for	example,	7

long This	contains	a	64-bit	integer

float IEEE	float,	for	example,	2.7

double This	is	a	double-precision	float

boolean This	can	be	true	or	false

date This	is	the	UTC	date/time,	for	example,	"2015-06-30T13:10:10"

geo_point This	is	the	latitude	or	longitude

Index:	This	is	a	collection	of	documents	(one	or	more	than	one).	It	is	similar	to	a
database	in	the	analogy	with	traditional	relational	databases.	For	example,	you	can
have	an	index	for	user	information,	transaction	information,	and	product	type.	An

index	has	a	mapping;	this	mapping	is	used	to	define	multiple	types.	In	other	words,
an	index	can	contain	single	or	multiple	types.	An	index	is	defined	by	a	name,	which
is	always	used	whenever	referring	to	an	index	to	perform	search,	update,	and	delete
operations	for	documents.	You	can	define	any	number	of	indexes	you	require.
Indexes	also	act	as	logical	namespaces	that	map	documents	to	primary	shards,	which
contain	zero	or	more	replica	shards	for	replicating	data.	With	respect	to	traditional
databases,	the	basic	analogy	is	similar	to	the	following:

MySQL	=>	Databases	=>	Tables	=>	Columns/Rows

Elasticsearch	=>	Indexes	=>	Types	=>	Documents	with	Fields

Note
You	can	store	a	single	document	or	multiple	documents	within	a	type	or	index.	As	a
document	is	within	an	index,	it	must	also	be	assigned	to	a	type	within	an	index.
Moreover,	the	maximum	number	of	documents	that	you	can	store	in	a	single	index	is
2,147,483,519	(2	billion	147	million),	which	is	equivalent	to	Integer.Max_Value.

ID:	This	is	an	identifier	for	a	document.	It	is	used	to	identify	each	document.	If	it	is
not	defined,	it	is	autogenerated	for	every	document.

Note
The	combination	of	index,	type,	and	ID	must	be	unique	for	each	document.

Mapping:	Mappings	are	similar	to	schemas	in	a	traditional	relational	database.	Every
document	in	an	index	has	a	type.	A	mapping	defines	the	fields,	the	data	type	for	each
field,	and	how	the	field	should	be	handled	by	Elasticsearch.	By	default,	a	mapping	is
automatically	generated	whenever	a	document	is	indexed.	If	the	default	settings	are
overridden,	then	the	mapping’s	definition	has	to	be	provided	explicitly.
Node:	This	is	a	running	instance	of	Elasticsearch.	Each	node	is	part	of	a	cluster.	On	a
standalone	machine,	each	Elasticsearch	server	instance	corresponds	to	a	node.
Multiple	nodes	can	be	started	on	a	single	standalone	machine	or	a	single	cluster.	The
node	is	responsible	for	storing	data	and	helps	in	the	indexing/searching	capabilities	of
a	cluster.	By	default,	whenever	a	node	is	started,	it	is	identified	and	assigned	a
random	Marvel	Comics	character	name.	You	can	change	the	configuration	file	to
name	nodes	as	per	your	requirement.	A	node	also	needs	to	be	configured	in	order	to
join	a	cluster,	which	is	identifiable	by	the	cluster	name.	By	default,	all	nodes	join	the
Elasticsearch	cluster;	that	is,	if	any	number	of	nodes	are	started	up	on	a
network/machine,	they	will	automatically	join	the	Elasticsearch	cluster.
Cluster:	This	is	a	collection	of	nodes	and	has	one	or	multiple	nodes;	they	share	a
single	cluster	name.	Each	cluster	automatically	chooses	a	master	node,	which	is
replaced	if	it	fails;	that	is,	if	the	master	node	fails,	another	random	node	will	be
chosen	as	the	new	master	node,	thus	providing	high	availability.	The	cluster	is
responsible	for	holding	all	of	the	data	stored	and	provides	a	unified	view	for	search
capabilities	across	all	nodes.	By	default,	the	cluster	name	is	Elasticsearch,	and	it	is
the	identifiable	parameter	for	all	nodes	in	a	cluster.	All	nodes,	by	default,	join	the
Elasticsearch	cluster.	While	using	a	cluster	in	the	production	phase,	it	is	advisable	to

change	the	cluster	name	for	ease	of	identification,	but	the	default	name	can	be	used
for	any	other	purpose,	such	as	development	or	testing.

Note
The	Elasticsearch	cluster	contains	single	or	multiple	indexes,	which	contain	single	or
multiple	types.	All	types	contain	single	or	multiple	documents,	and	every	document
contains	single	or	multiple	fields.

Sharding:	This	is	an	important	concept	of	Elasticsearch	while	understanding	how
Elasticsearch	allows	scaling	of	nodes,	when	having	a	large	amount	of	data	termed	as
big	data.	An	index	can	store	any	amount	of	data,	but	if	it	exceeds	its	disk	limit,	then
searching	would	become	slow	and	be	affected.	For	example,	the	disk	limit	is	1	TB,
and	an	index	contains	a	large	number	of	documents,	which	may	not	fit	completely
within	1	TB	in	a	single	node.	To	counter	such	problems,	Elasticsearch	provides
shards.	These	break	the	index	into	multiple	pieces.	Each	shard	acts	as	an	independent
index	that	is	hosted	on	a	node	within	a	cluster.	Elasticsearch	is	responsible	for
distributing	shards	among	nodes.	There	are	two	purposes	of	sharding:	allowing
horizontal	scaling	of	the	content	volume,	and	improving	performance	by	providing
parallel	operations	across	various	shards	that	are	distributed	on	nodes	(single	or
multiple,	depending	on	the	number	of	nodes	running).

Note
Elasticsearch	helps	move	shards	among	multiple	nodes	in	the	event	of	an	addition	of
new	nodes	or	a	node	failure.

There	are	two	types	of	shards,	as	follows:

Primary	shard:	Every	document	is	stored	within	a	primary	index.	By	default,
every	index	has	five	primary	shards.	This	parameter	is	configurable	and	can	be
changed	to	define	more	or	fewer	shards	as	per	the	requirement.	A	primary	shard
has	to	be	defined	before	the	creation	of	an	index.	If	no	parameters	are	defined,
then	five	primary	shards	will	automatically	be	created.

Note
Whenever	a	document	is	indexed,	it	is	usually	done	on	a	primary	shard	initially,
followed	by	replicas.	The	number	of	primary	shards	defined	in	an	index	cannot
be	altered	once	the	index	is	created.

Replica	shard:	Replica	shards	are	an	important	feature	of	Elasticsearch.	They
help	provide	high	availability	across	nodes	in	the	cluster.	By	default,	every
primary	shard	has	one	replica	shard.	However,	every	primary	shard	can	have
zero	or	more	replica	shards	as	required.	In	an	environment	where	failure	directly
affects	the	enterprise,	it	is	highly	recommended	to	use	a	system	that	provides	a
failover	mechanism	to	achieve	high	availability.	To	counter	this	problem,
Elasticsearch	provides	a	mechanism	in	which	it	creates	single	or	multiple	copies
of	indexes,	and	these	are	termed	as	replica	shards	or	replicas.	A	replica	shard	is	a
full	copy	of	the	primary	shard.	Replica	shards	can	be	dynamically	altered.	Now,

let’s	see	the	purposes	of	creating	a	replica.	It	provides	high	availability	in	the
event	of	failure	of	a	node	or	a	primary	shard.	If	there	is	a	failure	of	a	primary
shard,	replica	shards	are	automatically	promoted	to	primary	shards.	Increase
performance	by	providing	parallel	operations	on	replica	shards	to	handle	search
requests.

Note
A	replica	shard	is	never	kept	on	the	same	node	as	that	of	the	primary	shard	from
which	it	was	copied.

Inverted	index:	This	is	also	a	very	important	concept	in	Elasticsearch.	It	is	used	to
provide	fast	full-text	search.	Instead	of	searching	text,	it	searches	for	an	index.	It
creates	an	index	that	lists	unique	words	occurring	in	a	document,	along	with	the
document	list	in	which	each	word	occurs.	For	example,	suppose	we	have	three
documents.	They	have	a	text	field,	and	it	contains	the	following:

I	am	learning	Kibana
Kibana	is	an	amazing	product
Kibana	is	easy	to	use

To	create	an	inverted	index,	the	text	field	is	broken	into	words	(also	known	as	terms),
a	list	of	unique	words	is	created,	and	also	a	listing	is	done	of	the	document	in	which
the	term	occurs,	as	shown	in	this	table:

Term Doc	1 Doc	2 Doc	3

I X 	 	

Am X 	 	

Learning X 	 	

Kibana X X X

Is 	 X X

An 	 X 	

Amazing 	 X 	

Product 	 X 	

Easy 	 	 X

To 	 	 X

Use 	 	 X

Now,	if	we	search	for	is	Kibana,	Elasticsearch	will	use	an	inverted	index	to	display
the	results:

Term Doc	1 Doc	2 Doc	3

Is 	 X X

Kibana X X X

With	inverted	indexes,	Elasticsearch	uses	the	functionality	of	Lucene	to	provide	fast
full-text	search	results.

Note
An	inverted	index	uses	an	index	based	on	keywords	(terms)	instead	of	a	document-
based	index.

REST	API:	This	stands	for	Representational	State	Transfer.	It	is	a	stateless	client-
server	protocol	that	uses	HTTP	requests	to	store,	view,	and	delete	data.	It	supports
CRUD	operations	(short	for	Create,	Read,	Update,	and	Delete)	using	HTTP.	It	is
used	to	communicate	with	Elasticsearch	and	is	implemented	by	all	languages.	It
communicates	with	Elasticsearch	over	port	9200	(by	default),	which	is	accessible
from	any	web	browser.	Also,	Elasticsearch	can	be	directly	communicated	with	via
the	command	line	using	the	curl	command.	cURL	is	a	command-line	tool	used	to
send,	view,	or	delete	data	using	URL	syntax,	as	followed	by	the	HTTP	structure.	A
cURL	request	is	similar	to	an	HTTP	request,	which	is	as	follows:

curl	-X	<VERB>	'<PROTOCOL>://<HOSTNAME>:<PORT>/<PATH>?<QUERY_STRING>'	-

d	'<BODY>'

The	terms	marked	within	the	<>	tags	are	variables,	which	are	defined	as	follows:

VERB:	This	is	used	to	provide	an	appropriate	HTTP	method,	such	as	GET	(to
get	data),	POST,	PUT	(to	store	data),	or	DELETE	(to	delete	data).
PROTOCOL:	This	is	used	to	define	whether	the	HTTP	or	HTTPS	protocol	is
used	to	send	requests.
HOSTNAME:	This	is	used	to	define	the	hostname	of	a	node	present	in	the
Elasticsearch	cluster.	By	default,	the	hostname	of	Elasticsearch	is	localhost.
PORT:	This	is	used	to	define	the	port	on	which	Elasticsearch	is	running.	By
default,	Elasticsearch	runs	on	port	9200.
PATH:	This	is	used	to	define	the	index,	type,	and	ID	where	the	documents	will
be	stored,	searched,	or	deleted.	It	is	specified	as	index/type/ID.
QUERY_STRING:	This	is	used	to	define	any	additional	query	parameter	for
searching	data.
BODY:	This	is	used	to	define	a	JSON-encoded	request	within	the	body.

In	order	to	put	data	into	Elasticsearch,	the	following	curl	command	is	used:

curl	-XPUT	'http://localhost:9200/testing/test/1'	-d	'{"name":	"Kibana"	

}'

Here,	testing	is	the	name	of	the	index,	test	is	the	name	of	the	type	within	the
index,	and	1	indicates	the	ID	number.

To	search	for	the	preceding	stored	data,	the	following	curl	command	is	used:

curl	-XGET	'http://localhost:9200/testing/_search?

Note
The	preceding	commands	are	provided	just	to	give	you	an	overview	of	the	format	of
the	curl	command.

Prerequisites	for	installing	Kibana	4.1.1
The	following	pieces	of	software	need	to	be	installed	before	installing	Kibana	4.1.1:

Java	1.8u20+
Elasticsearch	v1.4.4+
A	modern	web	browser—IE	10+,	Firefox,	Chrome,	Safari,	and	so	on

The	installation	process	will	be	covered	separately	for	Windows	and	Ubuntu	so	that	both
types	of	users	are	able	to	understand	the	process	of	installation	easily.

Installation	of	Java
In	this	section,	JDK	needs	to	be	installed	so	as	to	access	Elasticsearch.	Oracle	Java	8
(update	20	onwards)	will	be	installed	as	it	is	the	recommended	version	for	Elasticsearch
from	version	1.4.4	onwards.

Installation	of	Java	on	Ubuntu	14.04
Install	Java	8	using	the	terminal	and	the	apt	package	in	the	following	manner:

1.	 Add	the	Oracle	Java	Personal	Package	Archive	(PPA)	to	the	apt	repository	list:

sudo	add-apt-repository	-y	ppa:webupd8team/java

Note
In	this	case,	we	use	a	third-party	repository;	however,	the	WebUpd8	team	is	trusted	to
install	Java.	It	does	not	include	any	Java	binaries.	Instead,	the	PPA	directly
downloads	from	Oracle	and	installs	it.

As	shown	in	the	preceding	screenshot,	you	will	initially	be	prompted	for	the
password	for	running	the	sudo	command	(only	when	you	have	not	logged	in	as	root),
and	on	successful	addition	to	the	repository,	you	will	receive	an	OK	message,	which
means	that	the	repository	has	been	imported.

2.	 Update	the	apt	package	database	to	include	all	the	latest	files	under	the	packages:

sudo	apt-get	update

3.	 Install	the	latest	version	of	Oracle	Java	8:

sudo	apt-get	-y	install	oracle-java8-installer

Also,	during	the	installation,	you	will	be	prompted	to	accept	the	license	agreement,
which	pops	up	as	follows:

4.	 To	check	whether	Java	has	been	successfully	installed,	type	the	following	command
in	the	terminal:

java	–version

This	signifies	that	Java	has	been	installed	successfully.

Installation	of	Java	on	Windows
We	can	install	Java	on	windows	by	going	through	the	following	steps:

1.	 Download	the	latest	version	of	the	Java	JDK	from	the	Sun	Microsystems	site	at
http://www.oracle.com/technetwork/java/javase/downloads/index.html:

2.	 As	shown	in	the	preceding	screenshot,	click	on	the	DOWNLOAD	button	of	JDK	to
download.	You	will	be	redirected	to	the	download	page.	There,	you	have	to	first	click
on	the	Accept	License	Agreement	radio	button,	followed	by	the	Windows	version	to
download	the	.exe	file,	as	shown	here:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

3.	 Double-click	on	the	file	to	be	installed	and	it	will	open	as	an	installer.
4.	 Click	on	Next,	accept	the	license	by	reading	it,	and	keep	clicking	on	Next	until	it

shows	that	JDK	has	been	installed	successfully.
5.	 Now,	to	run	Java	on	Windows,	you	need	to	set	the	path	of	JAVA	in	the	environment

variable	settings	of	Windows.	Firstly,	open	the	properties	of	My	Computer.	Select
the	Advanced	system	settings	and	then	click	on	the	Advanced	tab,	wherein	you	have
to	click	on	the	environment	variables	option,	as	shown	in	this	screenshot:

After	opening	Environment	Variables,	click	on	New	(under	the	System	variables)
and	give	the	variable	name	as	JAVA_HOME	and	variable	value	as	C:\Program
Files\Java\jdk1.8.0_45	(do	check	in	your	system	where	jdk	has	been	installed	and
provide	the	path	corresponding	to	the	version	installed	as	mentioned	in	system
directory),	as	shown	in	the	following	screenshot:

Then,	double-click	on	the	Path	variable	(under	the	System	variables)	and	move
towards	the	end	of	textbox.	Insert	a	semicolon	if	it	is	not	already	inserted,	and	add	the
location	of	the	bin	folder	of	JDK,	like	this:	%JAVA_HOME%\bin.	Next,	click	on	OK	in
all	the	windows	opened.

Note
Do	not	delete	anything	within	the	path	variable	textbox.

6.	 To	check	whether	Java	is	installed	or	not,	type	the	following	command	in	Command
Prompt:

java	–version

This	signifies	that	Java	has	been	installed	successfully.

Installation	of	Elasticsearch
In	this	section,	Elasticsearch,	which	is	required	to	access	Kibana,	will	be	installed.
Elasticsearch	v1.5.2	will	be	installed,	and	this	section	covers	the	installation	on	Ubuntu
and	Windows	separately.

Installation	of	Elasticsearch	on	Ubuntu	14.04
To	install	Elasticsearch	on	Ubuntu,	perform	the	following	steps:

1.	 Download	Elasticsearch	v	1.5.2	as	a	.tar	file	using	the	following	command	on	the
terminal:

curl	-L	-O	

https://download.elastic.co/elasticsearch/elasticsearch/elasticsearch-

1.5.2.tar.gz

Note
Curl	is	a	package	that	may	not	be	installed	on	Ubuntu	by	the	user.	To	use	curl,	you
need	to	install	the	curl	package,	which	can	be	done	using	the	following	command:

sudo	apt-get	-y	install	curl

2.	 Extract	the	downloaded	.tar	file	using	this	command:

tar	-xvzf	elasticsearch-1.5.2.tar.gz

This	will	extract	the	files	and	folder	into	the	current	working	directory.

3.	 Navigate	to	the	bin	directory	within	the	elasticsearch-1.5.2	directory:

cd	elasticsearch-1.5.2/bin

4.	 Now	run	Elasticsearch	to	start	the	node	and	cluster,	using	the	following	command:

./elasticsearch

The	preceding	screenshot	shows	that	the	Elasticsearch	node	has	been	started,	and	it

has	been	given	a	random	Marvel	Comics	character	name.

Note
If	this	terminal	is	closed,	Elasticsearch	will	stop	running	as	this	node	will	shut	down.
However,	if	you	have	multiple	Elasticsearch	nodes	running,	then	shutting	down	a
node	will	not	result	in	shutting	down	Elasticsearch.

5.	 To	verify	the	Elasticsearch	installation,	open	http://localhost:9200	in	your
browser.

Installation	of	Elasticsearch	on	Windows
The	installation	on	Windows	can	be	done	by	following	similar	steps	as	in	the	case	of
Ubuntu.	To	use	curl	commands	on	Windows,	we	will	be	installing	GIT.	GIT	will	also	be
used	to	import	a	sample	JSON	file	into	Elasticsearch	using	elasticdump,	as	described	in
the	Importing	a	JSON	file	into	Elasticsearch	section.

Installation	of	GIT

To	run	curl	commands	on	Windows,	first	download	and	install	GIT,	then	perform	the
following	steps:

1.	 Download	the	GIT	ZIP	package	from	https://git-scm.com/download/win.
2.	 Double-click	on	the	downloaded	file,	which	will	walk	you	through	the	installation

process.
3.	 Keep	clicking	on	Next	by	not	changing	the	default	options	until	the	Finish	button	is

clicked	on.
4.	 To	validate	the	GIT	installation,	right-click	on	any	folder	in	which	you	should	be	able

to	see	the	options	of	GIT,	such	as	GIT	Bash,	as	shown	in	the	following	screenshot:

https://git-scm.com/download/win

The	following	are	the	steps	required	to	install	Elasticsearch	on	Windows:

1.	 Open	GIT	Bash	and	enter	the	following	command	in	the	terminal:

curl	–L	–O	

https://download.elastic.co/elasticsearch/elasticsearch/elasticsearch-

1.5.2.zip

2.	 Extract	the	downloaded	ZIP	package	by	either	unzipping	it	using	WinRar,	7Zip,	and
so	on	(if	you	don’t	have	any	of	these,	download	one	of	them)	or	using	the	following
command	in	GIT	Bash:

unzip	elasticsearch-1.5.2.zip

This	will	extract	the	files	and	folder	into	the	directory.

3.	 Then	click	on	the	extracted	folder	and	navigate	through	it	to	reach	the	bin	folder.
4.	 Click	on	the	elasticsearch.bat	file	to	run	Elasticsearch.

The	preceding	screenshot	shows	that	the	Elasticsearch	node	has	been	started,	and	it	is
given	a	random	Marvel	Comics	character’s	name.

Note
Again,	if	this	window	is	closed,	Elasticsearch	will	stop	running	as	this	node	will	shut
down.	However,	if	you	have	multiple	Elasticsearch	nodes	running,	then	shutting
down	a	node	will	not	result	in	shutting	down	Elasticsearch.

5.	 To	verify	the	Elasticsearch	installation,	open	http://localhost:9200	in	your
browser.

Installation	of	Kibana
In	this	section,	Kibana	will	be	installed.	We	will	install	Kibana	v4.1.1,	and	this	section
covers	installations	on	Ubuntu	and	Windows	separately.

Installation	of	Kibana	on	Ubuntu	14.04
To	install	Kibana	on	Ubuntu,	follow	these	steps:

1.	 Download	Kibana	version	4.1.1	as	a	.tar	file	using	the	following	command	in	the
terminal:

curl	-L	-O	https://download.elasticsearch.org/kibana/kibana/kibana-

4.1.1-linux-x64.tar.gz

2.	 Extract	the	downloaded	.tar	file	using	this	command:

tar	-xvzf	kibana-4.1.1-linux-x64.tar.gz

The	preceding	command	will	extract	the	files	and	folder	into	the	current	working
directory.

3.	 Navigate	to	the	bin	directory	within	the	kibana-4.1.1-linux-x64	directory:

cd	kibana-4.1.1-linux-x64/bin

4.	 Now	run	Kibana	to	start	the	node	and	cluster	using	the	following	command:

./kibana

Note
Make	sure	that	Elasticsearch	is	running.	If	it	is	not	running	and	you	try	to	start
Kibana,	the	following	error	will	be	displayed	after	you	run	the	preceding	command:

5.	 To	verify	the	Kibana	installation,	open	http://localhost:5601	in	your	browser.

Installation	of	Kibana	on	Windows
To	install	Kibana	on	Windows,	perform	the	following	steps:

1.	 Open	GIT	Bash	and	enter	the	following	command	in	the	terminal:

curl	-L	-O	https://download.elasticsearch.org/kibana/kibana/kibana-

4.1.1-windows.zip

2.	 Extract	the	downloaded	ZIP	package	by	either	unzipping	it	using	WinRar	or	7Zip
(download	it	if	you	don’t	have	it),	or	using	the	following	command	in	GIT	Bash:

unzip	kibana-4.1.1-windows.zip

This	will	extract	the	files	and	folder	into	the	directory.

3.	 Then	click	on	the	extracted	folder	and	navigate	through	it	to	get	to	the	bin	folder.
4.	 Click	on	the	kibana.bat	file	to	run	Kibana.

Note
Make	sure	that	Elasticsearch	is	running.	If	it	is	not	running	and	you	try	to	start
Kibana,	the	following	error	will	be	displayed	after	you	click	on	the	kibana.bat	file:

5.	 Again,	to	verify	the	Kibana	installation,	open	http://localhost:5601	in	your
browser.

Additional	information
You	can	change	the	Elasticsearch	configuration	for	your	production	environment,	wherein
you	have	to	change	parameters	such	as	the	cluster	name,	node	name,	network	address,	and
so	on.	This	can	be	done	using	the	information	mentioned	in	the	upcoming	sections.

Changing	the	Elasticsearch	configuration
To	change	the	Elasticsearch	configuration,	perform	the	following	steps:

1.	 Run	the	following	command	in	the	terminal	to	open	the	configuration	file:

sudo	vi	~/elasticsearch-1.5.2/config/elasticsearch.yml

Windows	users	can	open	the	elasticsearch.yml	file	from	the	config	folder.	This
will	open	the	configuration	file	as	follows:

2.	 The	cluster	name	can	be	changed,	as	follows:

#cluster.name:	elasticsearch	to	cluster.name:	"your_cluster_name".

In	the	preceding	figure,	the	cluster	name	has	been	changed	to	test.	Then,	we	save
the	file.

3.	 To	verify	that	the	cluster	name	has	been	changed,	run	Elasticsearch	as	mentioned	in
the	earlier	section.

Then	open	http://localhost:9200	in	the	browser	to	verify,	as	shown	here:

In	the	preceding	screenshot,	you	can	notice	that	cluster_name	has	been	changed	to	test,
as	specified	earlier.

Changing	the	Kibana	configuration
To	change	the	Kibana	configuration,	follow	these	steps:

1.	 Run	the	following	command	in	the	terminal	to	open	the	configuration	file:

sudo	vi	~/kibana-4.1.1-linux-x64/config/kibana.yml

Windows	users	can	open	the	kibana.yml	file	from	the	config	folder.

In	this	file,	you	can	change	various	parameters	such	as	the	port	on	which	Kibana
works,	the	host	address	on	which	Kibana	works,	the	URL	of	Elasticsearch	that	you
wish	to	connect	to,	and	so	on.

2.	 For	example,	the	port	on	which	Kibana	works	can	be	changed	by	changing	the	port
address.	As	shown	in	the	following	screenshot,	port:	5601	can	be	changed	to	any
other	port,	such	as	port:	5604.	Then	we	save	the	file.

3.	 To	check	whether	Kibana	is	running	on	port	5604,	run	Kibana	as	mentioned	earlier.
Then	open	http://localhost:5604	in	the	browser	to	verify,	as	follows:

In	the	preceding	screenshot,	notice	that	Kibana	is	working	on	port	5604,	as	per	our
change.

Importing	a	JSON	file	into	Elasticsearch
To	import	a	JSON	file	into	Elasticsearch,	we	will	use	the	elasticdump	package.	It	is	a	set
of	import	and	export	tools	used	for	Elasticsearch.	It	makes	it	easier	to	copy,	move,	and
save	indexes.	To	install	elasticdump,	we	will	require	npm	and	Node.js	as	prerequisites.

Installation	of	npm
In	this	section,	npm	along	with	Node.js	will	be	installed.	This	section	covers	the
installation	of	npm	and	Node.js	on	Ubuntu	and	Windows	separately.

Installation	of	npm	on	Ubuntu	14.04
To	install	npm	on	Ubuntu,	perform	the	following	steps:

1.	 Add	the	official	Node.js	PPA:

sudo	curl	--silent	--location		https://deb.nodesource.com/setup_0.12	|	

sudo	bash	-

As	shown	in	the	preceding	screenshot,	the	command	will	add	the	official	Node.js
repository	to	the	system	and	update	the	apt	package	database	to	include	all	the	latest
files	under	the	packages.	At	the	end	of	the	execution	of	this	command,	we	will	be
prompted	to	install	Node.js	and	npm,	as	shown	in	the	following	screenshot:

2.	 Install	Node.js	by	entering	this	command	in	the	terminal:

sudo	apt-get	install	--yes	nodejs

Note
This	will	automatically	install	Node.js	and	npm	as	npm	is	bundled	within	Node.js.

3.	 To	check	whether	Node.js	has	been	installed	successfully,	type	the	following
command	in	the	terminal:

node	–v

Upon	successful	installation,	it	will	display	the	version	of	Node.js.

4.	 Now,	to	check	whether	npm	has	been	installed	successfully,	type	the	following
command	in	the	terminal:

npm	–v

Upon	successful	installation,	it	will	show	the	version	of	npm.

Installation	of	npm	on	Windows
To	install	npm	on	Windows,	follow	these	steps:

1.	 Download	the	Windows	Installer	(.msi)	file	by	going	to
https://nodejs.org/en/download/.

2.	 Double-click	on	the	downloaded	file	and	keep	clicking	on	Next	to	install	the
software.

3.	 To	validate	the	successful	installation	of	Node.js,	right-click	and	select	GIT	Bash.

In	GIT	Bash,	enter	this:

https://nodejs.org/en/download/

node	–v

Upon	successful	installation,	you	will	be	shown	the	version	of	Node.js.

4.	 To	validate	the	successful	installation	of	npm,	right-click	and	select	GIT	Bash.

In	GIT	Bash,	enter	the	following	line:

npm	–v

Upon	successful	installation,	it	will	show	the	version	of	npm.

Installing	elasticdump
In	this	section,	elasticdump	will	be	installed.	It	will	be	used	to	import	a	JSON	file	into
Elasticsearch.	It	requires	npm	and	Node.js	installed.	This	section	covers	the	installation	on
Ubuntu	and	Windows	separately.

Installing	elasticdump	on	Ubuntu	14.04
Perform	these	steps	to	install	elasticdump	on	Ubuntu:

1.	 Install	elasticdump	by	typing	the	following	command	in	the	terminal:

sudo	npm	install	elasticdump	-g

2.	 Then	run	elasticdump	by	typing	this	command	in	the	terminal:

elasticdump

3.	 Import	a	sample	data	(JSON)	file	into	Elasticsearch,	which	can	be	downloaded	from
https://github.com/guptayuvraj/Kibana_Essentials	and	is	named	tweet.json.	It	will
be	imported	into	Elasticsearch	using	the	following	command	in	the	terminal:

elasticdump	\

--bulk=true	\

--input="/home/yuvraj/Desktop/tweet.json"	\

--output=http://localhost:9200/

Here,	input	provides	the	location	of	the	file,	as	shown	in	the	following	screenshot:

https://github.com/guptayuvraj/Kibana_Essentials

As	you	can	see,	data	is	being	imported	to	Elasticsearch	from	the	tweet.json	file,	and
the	dump	complete	message	is	displayed	when	all	the	records	are	imported	to
Elasticsearch	successfully.

Note
Elasticsearch	should	be	running	while	importing	the	sample	file.

Installing	elasticdump	on	Windows
To	install	elasticdump	on	Windows,	perform	the	following	steps:

1.	 Install	elasticdump	by	typing	the	following	command	in	GIT	Bash:

npm	install	elasticdump	-g

2.	 Then	run	elasticdump	by	typing	this	command	in	GIT	Bash:

elasticdump

3.	 Import	the	sample	data	(JSON)	file	into	Elasticsearch,	which	can	be	downloaded

from	https://github.com/guptayuvraj/Kibana_Essentials	and	is	named	tweet.json.	It
will	be	imported	to	Elasticsearch	using	the	following	command	in	GIT	Bash:

elasticdump	\

--bulk=true	\

--input="C:\Users\ygupta\Desktop\tweet.json"	\

--output=http://localhost:9200/

Here,	input	provides	the	location	of	the	file.

The	preceding	screenshot	shows	data	being	imported	to	Elasticsearch	from	the
tweet.json	file,	and	the	dump	complete	message	is	displayed	when	all	the	records
are	imported	to	Elasticsearch	successfully.

Note
Elasticsearch	should	be	running	while	importing	the	sample	file.

To	verify	that	the	data	has	been	imported	to	Elasticsearch,	open
http://localhost:5601	in	your	browser,	and	this	is	what	you	should	see:

https://github.com/guptayuvraj/Kibana_Essentials

When	Kibana	is	opened,	you	have	to	configure	an	index	pattern.	So,	if	data	has	been
imported,	you	can	enter	the	index	name,	which	is	mentioned	in	the	tweet.json	file	as
index:	tweet.	After	the	page	loads,	you	can	see	to	the	left	under	Index	Patterns	the
name	of	the	index	that	has	been	imported	(tweet).

Now	mention	the	index	name	as	tweet.	It	will	then	automatically	detect	the	timestamped
field	and	will	provide	you	with	an	option	to	select	the	field.	If	there	are	multiple	fields,
then	you	can	select	them	by	clicking	on	Time-field	name,	which	will	provide	a	drop-
down	list	of	all	fields	available,	as	shown	here:

Finally,	click	on	Create	to	create	the	index	in	Kibana.	After	you	have	clicked	on	Create,
it	will	display	the	various	fields	present	in	this	index.

Note
If	you	do	not	get	the	options	of	Time-field	name	and	Create	after	entering	the	index
name	as	tweet,	it	means	that	the	data	has	not	been	imported	into	Elasticsearch.

Summary
In	this	chapter,	you	learned	about	Kibana,	along	with	the	basic	concepts	of	Elasticsearch.
These	help	in	the	easy	understanding	of	Kibana.	We	also	looked	at	the	prerequisites	for
installing	Kibana,	followed	by	a	detailed	explanation	of	how	to	install	each	component
individually	in	Ubuntu	and	Windows.	By	the	end,	you	learned	how	to	import	a	sample
JSON	data	file	into	Elasticsearch,	which	will	be	beneficial	in	the	upcoming	chapters.

In	the	next	chapter,	you	will	understand	the	Discover	tab	in	Kibana,	along	with	the
working	of	each	of	its	components.	You	will	also	learn	how	Kibana	uses	it	for	better
understanding	of	data.

Chapter	2.	Exploring	the	Discover	Page
Discover	is	one	of	the	pages	present	in	Kibana	4	that	helps	you	to	play	around	with	your
data.	The	Discover	page	is	very	crucial	and	plays	an	important	role	in	understanding	what
your	data	is,	what	your	data	means,	and	how	you	can	use	this	data	for	different	kinds	of
visualization.	This	page	gives	you	a	full	overview	of	your	data	including	listings	of
indexes,	listings	of	fields,	and	showing	text	contained	in	fields.	In	this	page,	you	can	view
all	the	data	stored	in	different	indexes	by	changing	the	index	pattern.	You	can	search	for
data,	query	data,	filter	data,	and	view	search	results.	Every	search	query	result	shows	the
matching	documents.	You	can	also	view	field-specific	data	on	this	page.	Histogram	is
displayed	on	this	page,	which	helps	you	to	view	your	data	on	a	time	basis	for	which	a	time
field	has	to	be	specified	for	every	index.

The	Discover	page	contains	the	following	notable	components:

Time	filter
Toolbar
Index	name
Fields	list
Document	data
Histogram	(on	basis	of	time)
Hits

In	this	chapter,	we	will	go	through	all	these	components	in	brief.

The	previous	figure	contains	the	following:

Time	filter:	This	contains	data	of	a	particular	time	interval
Toolbar:	This	consists	of	a	search	bar	along	with	the	option	of	new	search,	save
search,	load	saved	search,	and	settings
Index	name:	This	shows	the	name	of	the	selected	index

Fields	list:	This	contains	all	the	fields	within	the	selected	index
Hits:	This	contains	the	matching	documents	in	the	selected	time	interval
Histogram:	This	shows	the	distribution	of	all	the	documents	matching	the	time	filter
in	the	selected	index
Document	data:	This	contains	all	the	documents	along	with	the	data	in	the	entire
field	as	selected

Understanding	the	time	filter
The	time	filter	is	a	very	powerful	component	that	helps	to	drill	down	on	data	on	a	per	time
basis.	It	helps	to	see	data	of	a	specified	time	range.	The	time	filter	can	be	enabled/set	only
if	the	index	contains	a	time	field	or	time-based	events.	It	eases	the	process	of	viewing
large	amounts	of	data	but	needing	only	to	view	data	of	a	particular	time,	day,	month,	or
year.

For	example,	if	a	news	company	is	collecting	Twitter	tweets	for	its	company	hashtag	but
wants	to	analyze	tweets	tweeted	between	8	p.m.	and	9	p.m.,	then	the	time	filter	will	be	set
to	show	data	only	between	8	p.m.	and	9	p.m.,	which	helps	in	easy	analysis	of	data.

Time	filter	shows	data	of	the	last	15	minutes,	as	per	the	default	settings.	You	can	change
the	time	range	or	select	a	specific	time	range	by	using	Time	Picker.

Before	setting	the	time	filter,	let’s	examine	the	date	and	time	interval	for	the	tweets	stored
in	the	sample	data	of	the	tweet.json	file.	The	tweets	are	stored	in	the	UTC	time	zone	and
tweets	are	fetched	between	the	time	interval	of	07:15:23	(UTC	time)	and	08:02:22	(UTC
time)	for	June	2,	2015.	Kibana	recognizes	the	time	interval	as	per	the	system	time	zone,
therefore	Kibana	automatically	converts	the	data	timestamp	from	the	UTC	time	zone	to
the	system	time	zone	for	the	sample	data.

Let’s	learn	more	about	various	options	for	setting	time	filter	using	Time	Picker.

Setting	the	time	filter
Click	on	the	time	filter	shown	in	the	previous	figure,	which	is	in	the	top-right	corner,	to
open	the	Time	Picker.

Now	we	have	three	options	for	selecting	a	time	filter:	Quick,	Relative,	and	Absolute:

In	the	Quick	time	filter,	select	any	one	of	the	given	fields	(such	as	Today,	This	year,
Previous	month,	Last	15	minutes,	Last	30	days,	and	so	on)	to	set	the	time	filter:

In	the	previous	figure,	the	various	fields	are	provided	within	the	Quick	time	filter	to
select	and	set	a	time	range.	It	is	a	very	quick	way	to	automatically	set	a	time	filter	as
per	the	user’s	needs	and	requirements,	just	by	clicking	on	a	shortcut	field.

Click	on	Relative	to	define	a	relative	time	filter.	In	this	time	filter	option,	you	can
enter	the	relative	starting	time	span	you	are	looking	for.	You	have	the	option	of
setting	relative	start	times	in	terms	of	seconds,	minutes,	hours,	days,	weeks,	months,
and	years:

In	the	previous	figure,	there	is	a	textbox	in	which	you	can	enter	a	numeric	number
and	group	it	with	the	different	options	of	seconds,	minutes,	hours,	days,	weeks,
months	or	years,	to	set	a	relative	time	filter.

Also,	there	is	a	small	checkbox	that	helps	to	round	the	time	to	the	nearest
seconds/minutes/hours/days/weeks/months	or	years	as	selected.	If	you	tick	the
checkbox	then	it	will	automatically	round	the	time	as	per	your	selected	option.

For	example,	if	you	are	viewing	data	of	relative	time	24	hours	ago,	and	suppose	that
time	is	11:45:56	(hours:	minutes:	seconds),	if	you	tick	the	checkbox	then	your	time
will	be	rounded	to	the	previous	hour,	namely	11:00:00	(hours:	minutes:	seconds).

If	you	are	viewing	data	of	relative	time	400	minutes	ago,	and	suppose	that	time	is
06:25:34	(hours:	minutes:	seconds),	if	you	tick	the	checkbox	then	your	time	will	be

rounded	to	the	previous	minute,	namely	06:25:00	(hours:	minutes:	seconds):

We	can	also	tick	the	checkbox	beside	the	round	to	the	minute	box	to	round	the	time
to	the	nearest	unit	as	shown	in	the	following	figure:

Click	on	Absolute	to	define	an	absolute	time	filter.	In	this	time	filter	option,	you	can
enter	the	starting	date/time	using	the	From	field	and	enter	the	end	date	in	the	To
field,	specifying	date/time	in	the	format	of	YYYY-MM-DD	HH:mm:ss.SSS:

In	the	previous	figure,	the	From	field	in	which	the	date/time	is	specified,	and	the	To
field	in	which	the	date/time	is	specified,	are	shown.	Whatever	time	is	chosen,	it	will
also	be	reflected	in	the	time	filter,	which	is	in	the	top-right	corner.

Note
The	time	filter	has	to	be	specified	for	June	2	(as	per	the	UTC	time	zone),	which	can
be	specified	easily	by	using	either	the	Quick	time	filter	option	or	the	Absolute	time
filter	option.

You	can	also	set	the	time	filter	from	the	histogram	in	the	following	ways:

Click	on	any	of	the	bars	shown	in	the	histogram	to	view	data	as	per	the	time	interval
mentioned.

For	example,	if	the	histogram	is	created	in	which	each	bar	shows	data	of	a	minute,
then	by	clicking	on	any	of	the	bars	you	can	get	all	the	data	of	that	particular	minute,
and	the	histogram	will	be	redrawn	to	show	distribution	of	data	on	a	per	second	basis.

In	the	previous	figure,	the	histogram	is	clicked	at	a	particular	minute,	namely
13:04:00.000,	following	the	time	format:

In	the	previous	figure,	we	are	getting	data	of	only	the	minute	that	was	selected,	for
example,	13:04:00.000,	which	allows	you	to	easily	analyze	data	of	a	particular
minute.	Here,	the	histogram	has	been	redrawn	to	show	data	distribution	on	a	per
second	basis.	You	can	also	see	in	the	time	filter	in	the	top-right	corner,	the	time	filter
has	changed	for	the	particular	minute	that	was	selected.

Note
In	this	book,	we	are	using	the	system	time	zone	as	IST.	IST	is	5	hr	30	min	ahead	of
UTC,	therefore	the	time	for	data	stored	is	from	12:45:23.000	(hr,	min,	sec,	ms)	to

13:32:22.000	(hr,	min,	sec,	ms).

Click	and	drag	the	cursor	to	view	a	specific	time	range.	This	can	be	done	easily	by
hovering	the	cursor	anywhere	over	the	bar	chart,	upon	which	the	cursor	reshapes	to	a
plus	(+)	sign,	which	indicates	the	start	point.	After	the	cursor	changes	to	a	plus	sign,
click	and	drag	the	cursor	to	select	a	time	range:

In	the	previous	figure,	the	cursor	was	dragged	to	select	a	specific	time	interval:

In	the	previous	figure,	the	data	in	the	document	table	is	changed	as	per	the	time	range
interval	specified.	Here,	the	histogram	has	been	redrawn	to	show	data	distribution	on
the	basis	of	30	seconds.	Also,	the	time	interval	specified	has	been	changed	in	the	time
filter,	which	is	in	the	top-right	corner.

Note
In	Kibana	4,	you	can	undo	any	changes	made	by	either	clicking	on	the	backspace
button	on	the	keyboard	or	back	button	of	the	browser.	Also	you	can	close/hide	Time
Picker	by	clicking	on	the	caret	(^),	which	is	at	the	bottom	of	Time	Picker	or	by
clicking	on	the	time	filter	component.

The	Auto-refresh	page
The	refresh	interval	option	is	used	to	automatically	refresh	the	Discover	page	with	the
streaming	data	flown	in	the	index.	It	reloads	the	page	with	the	latest	data	by	resubmitting
the	query	of	loading	data.	It	provides	different	options	for	specifying	refresh	intervals	such
as	5	seconds,	15	minutes,	2	hours,	1	day,	and	so	on.

The	various	options	provided	in	the	refresh	interval	are	shown	in	the	previous	figure.

To	set	a	refresh	interval,	perform	the	following	steps:

1.	 Click	on	the	time	filter,	which	is	at	the	top-right	corner	of	the	page.
2.	 Click	on	the	Auto-refresh	option,	which	is	in	the	main	menu	to	the	left-hand	corner

of	the	time	filter.
3.	 Choose	any	of	the	options	provided	by	the	refresh	interval	tab.

Whenever	the	refresh	interval	is	chosen,	the	refresh	interval	option	appears	to	the	left-
hand	side	of	the	time	filter	in	the	main	menu	bar,	which	is	shown	in	the	following	figure:

The	refresh	interval	option	is	very	useful	when	you	have	continuous	streaming	of	data	into
Elasticsearch	and	want	to	analyze	the	data	on	the	fly.

Understanding	the	toolbar
The	toolbar	is	one	of	the	most	crucial	components	of	the	Discover	page,	which	helps	with
powerful	analysis	of	data	based	on	search	queries	and	filters	as	applied.	It	is	used	for
specifying	the	search	query	that	is	used	for	analyzing	the	data.	Whenever	a	search	query	is
specified,	it	checks	in	all	documents	and	returns	results	of	the	matching	search	query.	The
toolbar	consists	of	a	search	bar	along	with	option	buttons	such	as	new	search,	save	search,
and	load	saved	search.

Let’s	understand	the	usage	of	different	options	of	the	toolbar	in	detail.

Using	the	search	bar
The	search	bar	is	used	to	search	for	a	particular	word,	for	example,	a	term	either	contained
in	all	the	documents	or	for	searching	for	a	particular	term	in	a	specific	field	in	all	the
documents.	Whenever	a	search	query	is	submitted,	it	matches	the	documents	of	the
selected	index	and	returns	the	results.	For	searching	a	query,	you	can	specify	basic	simple
strings	or	use	Apache	Lucene	query	syntax.	As	Kibana	leverages	the	functionality	of
Elasticsearch,	Lucene	query	provides	a	way	to	use	simple	and	complex	queries,	providing
powerful	search	capabilities	for	playing	with	data.

Whenever	a	search	query	is	submitted,	corresponding	hits,	histogram,	document	data,	and
fields	get	updated	as	per	the	search	results	obtained.	Hits	indicate	the	total	number	of
documents	matching	the	search	results.	It	is	displayed	in	the	top-right	corner,	just	above
the	histogram.	Document	data	displays	the	initial	500	documents	as	per	the	default
settings.	Also,	the	search	results	are	highlighted	in	Kibana	4,	which	provides	an	elegant
way	to	view	the	search	result.

The	different	ways	of	searching	data	are	as	follows:

To	search	data	(term)	that	is	contained	in	any	field	in	all	the	documents,	just	type	the
data	that	you	would	like	to	search.

For	example,	if	you	want	to	search	for	Windows,	enter	windows	to	search	within	all
fields	in	all	documents:

In	the	previous	figure,	Windows	was	searched	for	and	was	found	in	643	documents
as	specified	by	643	hits.	In	this	example,	it	will	search	within	all	the	fields	contained
in	the	document	and	give	corresponding	results.	As	per	the	search	results,	hits,
histogram,	document	data,	and	fields	get	updated.

To	search	for	data	(term)	in	a	specific	field,	you	have	to	specify	the	field	name
followed	by	a	colon,	followed	by	the	search	term.

For	example,	if	you	want	to	search	for	Windows	in	the	text	field,	enter
text:windows,	which	would	provide	you	with	all	the	documents	matching	the	term
windows	in	the	text	field:

In	the	previous	figure,	searching	for	windows	in	the	text	field	provided	51	matching
documents.	In	this	example	it	searched	only	within	the	text	field	of	all	the	documents.
As	per	the	search	results,	hits,	histogram,	document	data	and	fields	get	updated.

To	search	for	an	exact	data	phrase	(a	string	containing	multiple	words),	enclose	the
data	within	double	quotes	("").	It	will	search	for	exactly	that	data	phrase	within	all
the	documents.

For	example,	if	you	want	to	search	for	Windows	10,	enter	"windows	10",	which
would	provide	you	with	all	the	documents	matching	the	term	windows	10	in	the
documents:

In	the	previous	figure,	searching	for	"windows	10"	provided	25	hits	(matching
documents).	In	this	example,	it	searched	for	documents	containing	the	exact	phrase
windows	10,	which	were	displayed	in	the	search	results.

Note
Searching	for	phrases	using	double	quotes	can	be	done	similarly	for	searching	in	a
specific	field.

To	search	data	for	a	particular	range,	you	can	specify	it	using	the	brackets	([])
containing	a	starting	value	to	ending	value	as	[starting	value	TO	ending	value].	In	the
range,	the	data	can	be	specified	as	multiple	data	types	such	as	date,	integer,	or	string.

For	example,	if	you	want	to	search	data	within	a	specified	date	range,	just	enter	the
date	field	name	followed	by	the	date	range.	Enter	created_at:[2015-06-02	TO
2015-06-03]	in	the	search	bar,	which	would	provide	you	with	all	the	documents
occurring	in	the	specified	date	range.	The	date	format	is	being	followed	as	per	the
Elasticsearch	format,	which	was	mentioned	earlier	in	this	chapter	while	explaining
the	Absolute	time	filter:

In	the	previous	figure,	searching	for	a	date	range	provided	all	the	documents
occurring	in	the	specified	date	range.

To	search	data	for	a	particular	range	containing	string	values,	it	will	follow	the	same
syntax	of	range	as	specified	previously.

For	example,	if	you	want	to	search	data	for	a	range	of	string,	enter	text:[ubuntu	TO
windows]	and	it	will	provide	search	results	containing	words	lying	between	Ubuntu
and	Windows	in	the	text	field:

In	the	previous	figure,	the	search	results	highlighted	all	the	matching	documents
containing	words	between	Ubuntu	and	Windows	following	alphabetical	order.	Vente,
vendre,	and	voyager	all	lie	between	the	words	Ubuntu	and	Windows.

Note
The	TO	keyword	has	to	be	specified	in	capital	letters	otherwise	the	search	will	not
give	any	results	and	show	it	as	an	error	in	query	syntax.	Warning:	the	TO	keyword	is
very	inefficient	to	use.

To	search	for	more	complex	queries,	make	use	of	Boolean	operators	that	consist	of
OR,	AND,	NOT,	+,	or	-.	All	the	Boolean	operators	have	to	be	specified	in	capital	letters
otherwise	it	will	treat	it	as	a	simple	word:

The	OR	operator	is	used	to	combine	multiple	words	and	if	either	of	the	words	is
found	in	any	of	the	documents,	it	will	show	the	matching	documents.	Its	analogy
is	similar	to	union	in	sets.	To	use	this	operator	we	can	specify	OR	or	||	(double
pipe)	symbol.

For	example,	if	you	want	to	search	for	Windows	or	Mac	within	all	documents,
enter	windows	OR	mac,	which	would	provide	all	the	matching	documents
containing	either	the	terms	Windows	or	Mac:

In	the	previous	figure,	the	search	results	highlighted	all	the	documents
containing	either	the	terms	Windows	or	Mac.

Note
The	OR	operator	is	the	default	operator	when	searching	between	two	or	more
terms	if	no	operator	is	specified.	So,	if	you	specify	windows	10	(without	double
quotes)	it	will	give	you	matching	documents	containing	either	the	windows
word	or	10	as	an	integer	value.

The	AND	operator	is	used	to	combine	multiple	words	and	if	both	of	the	words
exist	in	any	document,	it	will	show	the	matching	documents.	Its	analogy	is
similar	to	intersections	in	sets.	To	use	this	operator	we	can	specify	AND	or	&&
(double	ampersand)	symbol.

For	example,	if	you	want	to	search	for	Windows	and	Mac	within	all	documents,
enter	windows	AND	mac,	which	would	provide	all	the	matching	documents
containing	the	terms	Windows	and	Mac:

In	the	previous	figure,	the	search	results	highlighted	all	the	documents
containing	both	the	terms	Windows	and	Mac.

The	NOT	operator	is	used	for	excluding	searching	in	documents	containing	any
term	occurring	after	the	NOT	operator.	Its	analogy	is	similar	to	difference	in	sets.
To	use	this	operator	we	can	specify	the	NOT	(exclamation)	symbol.

For	example,	if	you	want	to	search	for	Windows	but	not	for	Mac	within	all
documents,	enter	windows	NOT	mac,	which	would	provide	all	the	matching
documents	containing	the	term	Windows	but	not	the	term	Mac:

In	the	previous	figure,	the	search	results	highlighted	all	the	documents
containing	the	word	Windows	but	not	the	word	Mac.

The	+	operator	is	also	known	as	a	required	operator.	It	is	used	to	include	words
that	must	exist	in	any	document	occurring	after	the	+	operator.	This	operator	is
similar	to	combining	NOT	along	with	the	AND	operator.

For	example,	if	you	want	to	search	for	Windows	and	maybe	Mac	within	all
documents,	enter	+windows	mac,	which	would	provide	all	the	matching
documents	containing	the	word	Windows	and	may	contain	the	word	Mac.

In	the	previous	figure,	the	matching	document	is	equal	to	643	hits,	meaning	an
equivalent	of	642	hits	(windows	NOT	mac)	and	1	hit	(windows	AND	mac).

In	the	previous	figure,	the	search	results	highlighted	all	the	documents	that	must
have	the	word	Windows	and	may	or	may	not	contain	the	word	Mac.

The	-	operator	is	also	known	as	the	prohibit	operator.	It	is	used	for	excluding
searching	in	documents	containing	any	word	occurring	after	the	-	operator.	This
operator	is	similar	to	the	NOT	operator.

For	example,	if	you	want	to	search	for	Windows	but	not	for	Mac	within	all
documents,	enter	"windows"-"mac",	which	would	provide	all	the	matching
documents	containing	the	term	Windows	and	not	the	term	Mac:

In	the	previous	figure,	the	search	results	highlighted	all	the	documents
containing	the	word	Windows	but	not	the	word	Mac.

Grouping	is	used	for	performing	more	complex	queries	by	combining	multiple
Boolean	operators.	It	uses	parenthesis	()	for	grouping	Boolean	operators.

For	example,	if	you	want	to	search	for	either	Mac	or	Linux	and	Windows,	enter
(mac	OR	linux)	AND	windows.	To	simplify,	all	the	documents	must	have	the	term
Windows	and	contain	either	the	terms	Mac	or	Linux.	It	is	similar	to	combining	(mac
AND	windows)	along	with	(linux	AND	windows):

In	the	previous	figure,	the	search	results	highlighted	all	the	documents	containing	the
term	Windows	with	a	combination	of	either	Linux	or	Mac.

Wildcard	searches	are	supported	by	Apache	Lucene,	which	is	the	underlying	layer	of

Kibana	that	is	abstracted	by	Elasticsearch.	It	provides	single	character	and	multiple
character	searches.	The	single	character	searches	are	done	using	the	?	(question
mark)	symbol	whereas	multiple	character	searches	are	done	using	the	*	(asterisk)
symbol.	For	a	single	character	wildcard	search,	it	looks	for	terms	that	match	with	the
single	character	that	has	to	be	replaced.

For	example,	if	you	want	to	search	for	terms,	such	as	mac	or	sac	or	pac,	enter	the
search	as	?ac.	It	will	match	all	the	documents	to	give	results	matching	this	wildcard
expression.	It	would	be	any	initial	letter	followed	by	ac	and	would	consist	of	three
characters	only:

In	the	previous	figure,	the	search	results	highlighted	all	the	documents	matching	the
wildcard	expression	?ac,	matching	with	words	such	as	sac,	mac,	and	tac.

For	a	multiple	characters	wildcard	search,	it	looks	for	terms	that	match	0	or	more
than	0	characters.

For	example,	if	you	want	to	search	for	terms	such	as	Mac,	Macintosh,	machine,	and
so	on,	enter	the	search	as	mac*.	It	will	match	all	documents	to	give	results	matching
this	wildcard	expression.	It	would	contain	results	following	a	pattern	starting	with
mac	and	followed	by	0	or	more	characters:

In	the	previous	figure,	the	search	results	highlighted	all	the	documents	matching	the
wildcard	expression	mac*,	matching	with	words	such	as	macht,	mac,	macam,	and	so
on.

Note
Wildcard	searches	are	not	applicable	for	multiple	words/phrases	and	are	only
applicable	on	a	single	word/term.	Wildcard	searches	work	even	in	the	middle	of	the
terms	such	as	m?c,	matching	words	like	mac,	mic,	mgc,	and	so	on,	and	m*c	matching
words	like	mac,	music,	mufc,	and	so	on.

Proximity	searches	are	used	to	find	terms	that	are	within	a	definite	distance	apart
from	each	other,	for	example	to	match	documents	containing	two	terms	that	are	at	a
definite	distance	apart	from	each	other.	It	uses	the	~	(tilde)	symbol	for	performing	a
proximity	search,	which	appears	at	the	end	of	a	phrase/multiple	words.

For	example,	if	you	want	to	search	for	documents	containing	the	terms	Linux	and
Mac	within	seven	words	of	each	other,	enter	"linux	mac"~7.	It	will	match	all
documents	to	show	results	of	documents	containing	both	terms	within	a	distance	of
seven	words:

In	the	previous	figure,	the	search	results	highlighted	all	the	documents	matching	a
proximity	search	of	having	both	terms	linux	and	mac	appear	within	seven	words	of
each	other.

Note
In	a	proximity	search,	changing	the	position	of	terms	doesn’t	make	any	difference.
Therefore	searching	"linux	mac"~7	or	"mac	linux"~7	will	show	the	same	results.

Regular	expressions	are	used	to	find	terms	that	follow	a	specified	pattern.	It	can	be
used	on	words,	phrases,	or	specific	fields.	It	helps	to	form	complex	queries	allowing
it	to	be	used	with	multiple	words	as	well.	It	overcomes	the	limitation	of	a	wildcard
search	and	allows	it	to	be	used	even	with	phrases.	It	uses	/	(slash)	along	with	[]
(square	brackets)	in	which	different	characters	are	specified	to	search	for	a	given
pattern.

For	example,	if	you	want	to	search	for	phrases	containing	words	such	as	mac,	mat,
mag,	combined	with	words	such	as	it,	in,	enter	/ma[ctg]/	AND	/i[tn]/.	It	will
match	all	documents	containing	both	sets	of	words:

In	the	previous	figure,	the	search	results	highlighted	all	the	documents	containing
words	like	mac,	mat	combined	with	it	and	in.

Note
Regular	expressions	are	very	inefficient	for	searching.

New	Search
New	Search	provides	the	option	to	start	a	new	search.	It	erases	the	present	search	query
and	creates	a	new	search	to	play	around	with	data.	It	is	done	by	clicking	on	the	New
Search	button	 ,	which	is	situated	in	the	toolbar	beside	the	search	bar:

In	the	previous	figure,	notice	the	New	Search	option,	which	is	accessible	from	the	toolbar.

Save	Search
Save	Search	provides	the	option	of	saving	a	search	query.	It	is	used	to	save	the	current
entered	search	query	along	with	the	selected	index	information.	This	option	is	situated
beside	the	New	Search	button	in	the	toolbar.

To	save	a	search,	perform	the	following	steps:

1.	 Enter	the	search	query	string	in	the	search	bar.
2.	 Click	on	the	Save	Search	button	 	present	in	the	toolbar	next	to	the	New	Search

button:

3.	 Give	this	search	a	name	to	save.	We	will	give	Search_Twitter	as	the	search	name	to
save	containing	a	search	query	of	windows:

4.	 Click	on	Save	to	save	the	search.

Note
You	can	close/hide	the	Save	Search	option	by	clicking	on	the	caret	(^),	which	is	at
the	bottom	of	the	Save	Search	area	or	by	clicking	on	the	Save	Search	button.

Load	Saved	Search
Load	Saved	Search	provides	the	option	of	loading	the	saved	search	query.	It	is	used	to
load	a	saved	search	with	a	specified	index.	If	loading	a	saved	search	included	a	different
index,	then	on	loading	it	the	selected	index	also	gets	updated.	This	option	is	situated
beside	the	Save	Search	button	in	the	toolbar.

To	load	a	saved	search,	perform	the	following	steps:

1.	 Click	on	the	Load	Saved	Search	button	 	present	in	the	toolbar	next	to	the	Save
Search	button:

2.	 Specify	the	saved	search	name	to	load	it.	All	the	saved	search	queries	are	displayed
below	the	search	bar:

3.	 Click	on	it	to	load	the	saved	search.

Note
You	can	close/hide	the	Load	Saved	Search	option	by	clicking	on	the	caret	(^),	which
is	at	the	bottom	of	the	Load	Saved	Search	area	or	by	clicking	on	the	Load	Saved
Search	button.

Understanding	the	Fields	list
The	Fields	list	contains	a	listing	of	all	the	fields	contained	in	the	documents	that	appear
within	a	selected	index.	The	Fields	list	appears	just	beneath	the	index	name	on	the	left-
hand	side	of	the	Discover	page.	It	is	used	for	knowing	which	fields	appear	in	the	data	on
the	basis	of	which	analysis	can	be	done.	It	contains	popular	fields,	selected	fields,	and	all
the	other	types	of	fields.	Fields	are	displayed	under	each	category	in	alphabetical	order.

View	field	data	information
This	serves	as	an	important	metric	that	displays	how	many	documents	in	the	selected
index	will	contain	a	specific	field,	what	will	be	the	top	five	values	for	the	field,	and	the
percentage	breakdown	of	total	documents	containing	the	value.

Note
By	default,	document	data	contains	500	documents	matching	the	search	query	as	listed,
although	it	can	be	modified	by	changing	the	discover:sampleSize	option	in	advanced
settings,	which	will	be	covered	in	Chapter	5,	Exploring	the	Settings	Page.

To	see	field	data	information,	click	on	the	name	of	the	field	in	the	Fields	list.	The	field
could	be	under	any	category,	for	example	selected	fields,	popular	fields,	or	other	fields:

In	the	previous	figure,	by	clicking	on	the	created_at	field,	it	is	showing	the	top	five	values
of	the	field,	how	many	values	of	each	specific	field	record	exist	in	the	current	index,	and
the	percentage	breakdown	of	the	fields	in	terms	of	total	documents.

Note
The	Visualize	option	provided	is	used	to	create	a	visualization	based	on	a	specific	field	by
clicking	the	Visualize	button	beneath	the	field	data	information	as	shown	in	the	previous
figure.

Filtering	by	field
Filtering	by	field	provides	the	flexibility	of	filtering	the	search	results	based	on	fields.
Filter	the	search	results	in	order	to	display	documents	matching	the	filter	criterion.	Filters
can	be	added	from	the	Fields	list	or	document	data.

There	are	two	types	of	filters:

Positive	filter:	This	is	denoted	by	a	+	(plus)	symbol	magnifier	 .	It	is	used	to
display	only	those	documents	that	contain	the	specific	value	for	which	it	is	being
filtered.
Negative	filter:	This	is	denoted	by	a	-	(minus)	symbol	magnifier	 .	It	is	used	to
exclude	all	the	documents	containing	that	value	in	the	specified	field.

To	add	a	filter	using	the	Fields	list,	click	on	the	field	on	the	basis	of	which	you	want	to
Filter.	Upon	clicking	the	field	it	will	show	the	top	five	field	values,	which	were	described
previously	in	viewing	field	data	information.	To	the	right	of	the	field	values,	there	are	two
buttons	corresponding	to	the	positive	filter	and	the	negative	filter:

For	adding	a	positive	filter,	click	on	the	+	(plus)	symbol	magnifier	 .	For	example,
you	need	to	find	only	those	documents	that	contain	India	within	the	place.country
field,	then	you	would	click	on	the	place.country	field	and	click	on	the	positive	filter
symbol	beside	India.	It	will	filter	results	based	on	matching	the	word	India	in	the
place.country	field	within	all	documents:

In	the	previous	figure,	the	filter	results	show	all	the	documents	containing	India
within	the	place.country	field.	It	also	denotes	26	hits,	meaning	26	matching
documents	containing	India	within	the	place.country	field.
To	add	a	negative	filter,	click	on	the	-	(minus)	symbol	magnifier	 .	For	example,
you	need	to	find	only	those	documents	that	do	not	contain	India	within	the
place.country	field,	then	you	would	click	on	the	place.country	field	and	click	on	the

negative	filter	symbol	beside	India.	It	will	exclude	all	the	documents	matching	India
in	the	place.country	field	and	show	the	remaining	documents	as	a	filtered	result:

In	the	previous	figure,	the	filter	results	show	all	the	documents	that	do	not	contain
India	within	the	place.country	field.	It	also	denotes	91,978	hits,	namely	(92,004-26),
which	show	all	the	matching	documents	that	do	not	contain	India	within	the
place.country	field.

Note
Whenever	a	filter	is	added,	it	shows	below	the	search	bar	in	the	filter	bar	as	shown	in
the	previous	figure.

To	add	a	filter	using	document	data,	initially	expand	a	document	within	the	document	data
table	by	clicking	on	the	expand	button	characterized	by	the	 symbol,	which	is	found	in
the	extreme	left	at	the	start	of	a	document,	beside	the	document’s	first	column	(generally	it
is	Time).	After	clicking	the	expand	button	beside	every	field	value	on	the	left	and	beside
every	field	name	on	the	right,	there	are	two	buttons	corresponding	to	the	positive	filter	and
the	negative	filter	as	per	their	convention:

To	add	a	positive	filter,	click	on	the	+	(plus)	symbol	magnifier	
To	add	a	Negative	Filter,	click	on	the	-	(minus)	symbol	magnifier	

In	the	previous	figure,	you	can	see	the	filter	options	available	in	document	data	through
which	you	can	apply	a	positive	filter	or	a	negative	filter	to	a	specified	field.

Note
There	will	not	be	any	filtering	options	provided	in	the	fields	that	are	not	indexed	in	all	the
documents.	To	find	the	fields	that	are	not	indexes,	using	indices	we	can	see	information	in
advanced	settings,	which	will	be	covered	in	Chapter	5,	Exploring	the	Settings	Page.

Functionalities	of	filters
After	adding	a	filter,	there	are	additional	functionalities	of	filters	that	can	be	used	to	play
around	with	filters	easily.	To	view	additional	functionalities,	click	on	the	Actions	link
beside	the	added	filter	beneath	the	search	bar,	or	hover	over	the	filter	added:

The	Enable	filter
This	is	used	to	enable	the	filter.	After	enabling	the	filter	it	will	show	the	result	that
matches	the	filter	only.	Enabled	filters	are	displayed	in	green.	It	is	similar	to	a	positive
filter.

The	Disable	filter
This	is	used	to	disable	the	filter.	Disabled	filters	are	displayed	in	a	striped	shaded	color:

The	Pin	filter
This	is	a	newly	added	functionality	in	Kibana.	It	is	used	to	pin	a	filter.	After	pinning	a
filter,	it	will	persist	across	various	Kibana	pages.	If	you	pin	the	filter	in	the	Discover	page
then	even	if	you	move	to	the	Visualize	page	or	Dashboard	page,	the	filter	would	be	there.
It	is	very	useful	as	it	reduces	the	effort	of	adding	filters	in	different	pages.

The	Unpin	filter
This	is	used	to	unpin	the	pinned	filters.

The	Invert	filter
This	is	used	to	invert	the	filter.	After	inverting	the	filter,	it	will	show	the	results	that	do	not
match	the	filter.	After	enabling	the	filter,	it	shows	91,978	results	(92004-26).	Inverted
Filters	are	displayed	in	red.	It	is	similar	to	a	negative	filter:

The	Toggle	filter
This	is	used	to	toggle	the	filter.	Upon	clicking	the	Toggle	filter,	it	changes	from	enabled
filter	to	disabled	filter	and	vice	versa.	If	the	filter	is	enabled,	it	will	change	it	to	disabled.	If

the	filter	is	disabled,	it	will	change	it	to	enabled.

The	Remove	filter
This	is	used	to	remove	the	added	filters.

Note
For	multiple	filters	added,	you	can	change	the	functionalities	of	every	individual	filter
added,	providing	you	with	some	more	customization	options.

Understanding	document	data
Document	data	displays	all	the	documents	in	the	selected	index.	By	default,	document
data	shows	500	documents	listed,	with	the	most	recent	documents	shown	first.	By	default,
document	data	displays	the	localized	version	of	the	specified	time	field	in	the	selected
index	and	document	of	field	_source.	In	document	data	you	can	add	field	columns,
remove	field	columns,	view	document	data,	and	sort	documents.

Add	a	field	to	document	data
It	is	very	simple	to	add	a	field	to	document	data.	Fields	can	be	added	from	the	Fields	list,
which	is	at	the	left	side	of	the	Discover	page	and	below	the	index	name.

To	add	a	field	to	document	data:

1.	 Hover	your	mouse	over	any	field	from	the	Fields	list	and	click	on	the	Add	button	as
shown:

2.	 Repeat	the	previous	step	until	all	fields	that	you	want	to	be	displayed	have	been
added	to	the	document	data.

For	example,	you	want	to	add	fields	such	as	_index,	user.name,	user.screen_name,
language,	then	by	adding	such	fields	document	data	would	display	all	the	documents
on	the	basis	of	these	fields	only.

In	the	previous	figure,	you	can	see	all	the	document	data	containing	the	selected
fields.

Note
After	adding	fields	to	document	data,	the	_source	field	is	replaced	in	the	Fields	list
and	all	the	added	fields	appear	within	the	selected	fields	category,	which	is	displayed
beneath	the	index	name.

Remove	a	field	from	document	data
It	is	very	simple	to	remove	a	field	from	document	data.	Fields	can	be	removed	from	the
selected	Fields	list,	which	is	at	the	left-hand	side	of	the	Discover	page	and	below	the
index	name.

To	remove	a	field	from	document	data,	perform	the	following	steps:

1.	 Hover	your	mouse	over	any	field	that	you	want	to	remove	from	the	selected	Fields
list	and	click	on	the	Remove	button	as	shown:

2.	 Repeat	the	previous	step	until	all	fields	have	been	removed	that	you	want	to	drop
from	document	data.

View	data
To	view	the	data	in	document	data,	perform	the	following	steps:

1.	 Click	on	the	expand	button	option	characterized	by	the	 	symbol,	which	is	found	in
the	extreme	left	at	the	start	of	a	document,	beside	the	document’s	first	column
(generally,	this	is	Time).	Kibana	reads	the	document	stored	in	Elasticsearch	and
displays	it	in	tabular	format	showing	all	the	document’s	fields.	In	the	table,	each	row
contains	the	field	name	followed	by	two	filter	buttons	(the	positive	filter	and	the
negative	filter)	and	the	field	value:

2.	 Kibana	can	also	display	the	document	with	all	the	field	names	and	values	in	JSON
format	(pretty-printed),	which	was	the	original	input	format	to	Elasticsearch.	To	view
documents	in	JSON	format,	click	on	the	JSON	tab:

3.	 Kibana	can	also	display	document	data	in	a	separate	page,	which	can	be	accessed	by
clicking	on	the	hyperlink	provided,	mentioned	as	Link,	followed	by	index	name,	type

name,	and	_id	name.	The	link	is	provided	on	the	right-hand	side	of	the	Table	tab	and
JSON	tab:

4.	 After	clicking	on	the	link,	you	will	be	redirected	to	a	new	tab	in	which	the	document
is	displayed	in	both	the	Table	format	and	the	JSON	format.	Also	you	can	then	share
the	link	(URL)	or	bookmark	the	link	(URL)	for	directly	accessing	the	particular
document:

In	the	previous	figure,	you	will	notice	the	URL	follows	a	format	that	is	defined	by
specifying	the	host	name	on	which	Kibana	is	running,	followed	by	doc	(indicating
document),	index	name,	type	name,	and	the	_id	name	for	the	particular	document.

To	collapse	document	data,	click	on	the	collapse	button	characterized	by	the	 	symbol,
which	is	found	in	the	extreme	left	at	the	start	of	a	document,	beside	the	document’s	first
column	(generally,	this	is	Time).

Sorting	documents
The	sorting	of	document	data	can	be	done	using	the	values	in	the	indexed	field.	If	there	is
any	time	field	configured	for	a	particular	index	name	then,	by	default,	documents	are
listed	in	reverse	chronological	order,	with	the	newest	documents	on	the	basis	of	time
shown	first.	For	sorting	documents,	fields	have	to	be	added	first	to	document	data,	which
has	been	explained	earlier	in	this	chapter.

To	change	the	sorting	order	within	document	data	after	adding	a	field,	choose	the	field	on
the	basis	of	which	you	want	to	sort	your	data.	Then	click	on	that	specific	field.	The	fields
on	the	basis	of	which	you	can	sort	have	a	small	Sort	button,	which	is	to	the	immediate
right	of	the	field	name.	You	can	also	reverse	the	sort	order	by	clicking	on	the	field	name
the	second	time:

Note
Sorting	is	not	done	on	those	fields	that	contain	the	same	value	for	all	documents,	such	as
_index,	and	_type	field,	as	they	contain	only	a	single	value	in	index	and	type	name.

Moving	fields	in	document	data
You	can	rearrange	the	fields	displayed	in	document	data	after	adding	the	fields.

To	rearrange	the	fields	in	the	table,	hover	your	mouse	over	the	field	name	that	you	want	to
move.	Just	to	the	right-hand	side	of	the	field	name	(beside	the	Sort	button),	there	is	the
option	to	move	a	column	either	to	the	right-hand	side	(>>)	or	left-hand	side	(<<)	wherever
applicable.	If	there	is	a	time	field	specified	in	the	index,	the	time	value	does	not	have	an
option	of	moving	as	the	field	is,	by	default,	added	and	is	not	the	added	field.	The	left-most
field	name	(after	the	time	field)	can	only	be	moved	towards	the	right-hand	side:

The	right-most	field	name	can	only	be	moved	towards	the	left-hand	side:

All	the	fields	between	them	can	be	moved	either	to	the	left	side:

Alternatively,	they	can	be	moved	to	the	right-hand	side:

Summary
In	this	chapter,	we	covered	the	various	components	of	the	Discover	page.	It	provided	an
insight	into	the	importance	of	using	the	Discover	page,	along	with	a	proper	understanding
of	the	different	components	present	in	the	Discover	page.	Also,	each	component	was
explained	with	the	usage	of	various	options	present	in	the	components.

In	the	next	chapter,	we	will	understand	the	Visualize	page	in	Kibana,	along	with	usage	of
various	visualizations	provided	by	Kibana.	We	will	explore	how	Kibana	provides	easy-to-
create	visualizations.

Chapter	3.	Exploring	the	Visualize	Page
The	Visualize	page	is	the	most	important	page	in	Kibana	4,	which	helps	in	visualizing	the
data	that	has	been	analyzed	using	the	Discover	page.	This	page	helps	in	creating	the
different	types	of	visualization	required	for	the	data	present	in	Elasticsearch.	It	is	a
separate	page	in	Kibana	that	helps	with	easy	understanding	and	creating	data
visualizations.	This	page	is	most	crucial	from	a	business	perspective,	because	by
analyzing	the	data	stored,	visualizations	provide	a	simple	and	easy	way	to	understand	data.
Using	it,	you	can	create	different	types	of	data	visualization,	save	the	visualizations,	or	use
them	individually/combine	different	visualizations	to	form	a	dashboard.	This	page	gives
you	a	full	overview	of	the	different	types	of	visualization	provided,	how	to	create	a	new
visualization	from	a	new	search	or	saved	search,	and	how	to	design	visualizations	as	per
requirements.

The	Kibana	Visualize	page	is	where	you	can	create,	modify,	and	view	your	own	custom
visualizations.	There	are	several	different	types	of	visualization,	including	Vertical	Bar
Chart,	Area	Chart,	Line	Chart,	Pie	Chart,	Tile	Map	(for	displaying	data	on	a	map),
and	Data	Table.	Visualizations	can	also	be	shared	with	other	users	who	have	access	to
your	Kibana	instance.

Visualizations	are	the	core	component	that	makes	Kibana	functionality	rich	and	useful
software.	Visualizations	utilize	the	underlying	component	of	Elasticsearch	for	aggregating
and	visualizing	data.	For	a	better	understanding,	let’s	explore	the	basic	usage	of
aggregations	used	in	Elasticsearch.

In	this	chapter,	we	are	going	to	have	a	look	at	the	following	topics:

Basic	concepts	of	bucket	aggregations
Basic	concepts	of	metric	aggregations
Steps	for	designing	visualization
Creating	various	visualizations

Understanding	aggregations
Aggregations	are	collections	of	data	that	is	stored	in	buckets.	Aggregations	have	grown
from	the	facets	module	of	Elasticsearch,	which	allows	fast	querying	and	easy	aggregation
of	data.	Aggregations	are	used	for	building	analytical	information	over	the	documents
stored.	They	are	used	for	real-time	data	analysis	purposes.	There	are	different	types	of
aggregation	which	have	a	specified	purpose	with	specific	output,	which	can	be	classified
into	the	following	categories.

Bucket	aggregations
In	this	type	of	aggregation,	buckets	are	created	to	store	various	documents	and	are	used
for	grouping	the	documents	stored;	every	bucket	is	associated	with	a	key	and	document
criterion.	The	decision-making	that	decides	which	bucket	will	contain	a	document
matching	its	criterion	can	be	based	either	on	the	value	of	a	specific	field	or	any	other
parameter.	Whenever	aggregation	is	done,	all	bucket	criterion	are	evaluated	to	decide
which	documents	match	the	criterion	of	each	bucket	and	fit	into	a	particular	bucket.	This
process	goes	on	and	on	until	all	documents	are	segregated	into	different	buckets	as	per	the
matching	criterion.	At	the	end	of	this	process,	all	documents	completely	fit	into	any	of	the
buckets	created.

Every	bucket	has	a	criterion	that	helps	to	decide	whether	a	document	fits	into	that	bucket
or	not.	Also,	bucket	aggregations	always	compute	and	return	the	total	number	of
documents	that	fit	into	each	bucket.	There	are	different	bucket	aggregators	in	Kibana	4
that	have	a	different	bucket	strategy,	such	as	some	may	define	a	single	bucket,	some	may
define	multiple	buckets,	or	dynamically	create	buckets	during	the	aggregation	process.
Bucket	aggregations	are	very	powerful	as	they	can	combine	with	other	types	of
aggregation,	creating	sub-aggregations.	In	sub-aggregations,	the	aggregations	will	be
computed	for	each	bucket	generated	by	the	parent	aggregation.	The	different	types	of
bucket	aggregation	are	as	follows.

Date	histogram
This	aggregation	is	done	on	date/time	values	that	are	automatically	extracted	by	Kibana
from	the	documents.	Kibana	automatically	fetches	the	date	type	field	in	which	different
types	of	intervals	are	specified,	such	as	5	min,	30	min,	and	so	on.	This	type	of	bucket	puts
in	all	the	documents	matching	the	criterion	of	the	bucket	whose	value	of	the	date	field	lies
within	the	same	interval	as	defined.

The	available	expressions	for	intervals	specified	in	Kibana	are	year,	quarter,	month,	week,
day,	hour,	minute,	second,	auto,	out	of	which	only	days,	hours,	minutes	and	seconds	are
allowed	to	contain	fractional	values.	The	auto	interval	automatically	decides	the	time
interval	to	be	chosen	by	Kibana,	on	the	basis	of	which	graphs	are	designed,	so	that	a	good
amount	of	buckets	are	created.

For	example,	date	histogram	can	be	used	for	a	field	that	contains	date/time	with	an
interval	of	an	hour.	In	this,	there	will	be	a	bucket	created	for	every	hour,	and	each	bucket
stores	documents	that	fall	under	the	hour,	meaning	that	if	a	document	is	created	in	the	5th
hour,	then	the	document	fits	into	the	bucket	that	contains	documents	created	in	the	5th
hour	only.

Histogram
This	aggregation	is	done	on	a	numeric	field,	which	is	automatically	read/analyzed	by
Kibana	and	extracted	from	the	documents.	It	creates	a	dynamic	bucket	based	on	the
interval	specified.	In	this,	you	can	define	any	interval	with	a	numeric	value.	This	type	of
bucket	puts	in	all	the	documents	matching	the	criterion	of	the	bucket	whose	value	of	the

numeric	field	lies	within	the	same	interval	as	defined.

Note
Histogram	is	similar	to	date	histogram	aggregation	except	that	date	histogram	is	used	for	a
date/time	field,	whereas	histogram	is	used	for	a	numeric	value	field.

For	example,	if	the	documents	contain	a	numeric	field	(quantity)	holding	values	from	1-
100,	we	create	a	dynamic	bucket	by	specifying	intervals	of	10.	When	aggregation	takes
place,	the	quantity	field	of	each	document	is	computed	and	rounded	off	to	the	nearest
bucket,	meaning	if	the	quantity	is	52	and	the	bucket	interval	is	10,	then	it	will	be	rounded
off	to	50	and	thus	the	document	will	fit	into	the	bucket	associated	with	the	key	50.

Range
This	aggregation	is	used	to	specify	a	range	size	or	interval	of	range	in	which	each	range
size	represents	a	bucket.	It	is	used	for	aggregation	on	numeric	or	date/time	fields.	It	is
similar	to	a	manual	Histogram	or	Date	Histogram	aggregation.	Range	size	has	to	be
specified	manually,	which	helps	to	analyze	a	subset	of	complete	data.	The	range	consists
of	from	and	to	values.

For	example,	the	document	contains	a	numeric	field	(user.statuses_count)	with	ranges
such	as	1,000-3,000,	3,000-5,000,	5,000-10,000,	and	so	on.	When	aggregation	takes	place,
the	values	extracted	from	every	document	will	be	checked	against	every	bucket	range
specified	and	the	document	will	fit	into	the	matching	bucket,	meaning	there	will	be	three
buckets	containing	documents	of	users	who	have	posted	statuses	in	the	afore-mentioned
range	of	1,000-3,000,	3,000-5,000,	and	5,000-10,000.	It	is	very	useful	for	analyzing	data
to	create	clusters,	such	as	cluster	users	who	frequently	tweet	or	cluster	users	who	are
popular.

Note
This	aggregation	includes	the	from	value	in	the	bucket,	but	excludes	the	to	value	for
range.

Also,	an	upper	or	lower	boundary	can	be	used	for	creating	an	open	range,	such	as	10000-*
in	which	this	bucket	will	contain	all	documents	of	users	who	have	posted	statuses	more
than	10,000	times.

Date	range
This	aggregation	is	used	to	specify	a	range	size	or	interval	of	range	in	date	format	in
which	each	range	size	represents	a	bucket.	It	is	used	for	aggregation	on	date/time	fields.
Range	size	has	to	be	specified	manually,	which	helps	to	analyze	a	subset	of	complete	data.
The	range	consists	of	from	and	to	values.

For	example,	the	document	contains	a	date	field	(created_at)	with	ranges	such	as	from
now-2M/M	to	now-1M/M	and	from	now-1M/M	to	now.	When	aggregation	takes	place,	the
values	extracted	from	every	document	will	be	checked	against	every	bucket	range
specified	and	the	document	will	fit	into	the	matching	bucket,	meaning	there	will	be	two
buckets	containing	documents	of	a	user	in	which	bucket	1	will	contain	documents

matching	date	range	of	current	date—two	months	to	current	date—one	month,	and	bucket
2	will	contain	documents	matching	date	range	of	current	date—one	month	to	current	date.

IPv4	range
This	aggregation	is	used	to	specify	a	range	size	or	interval	of	range	in	IP	format	in	which
each	range	size	represents	a	bucket.	The	range	consists	of	from	and	to	values.

For	example,	the	document	contains	an	IP	field	(host_address)	with	ranges	such	as	from
192.168.1.1	to	192.168.1.100,	from	192.168.1.100	to	192.168.1.150.	When
aggregation	takes	place,	the	values	extracted	from	every	document	will	be	checked	against
every	bucket	range	specified	and	the	document	will	fit	into	the	matching	bucket.

Terms
This	aggregation	is	used	to	create	buckets	based	on	the	values	of	a	field.	The	buckets	are
created	dynamically.	It	is	similar	to	working	with	the	GROUP	BY	statement	used	in	SQL.	In
this,	a	field	is	specified	that	creates	a	bucket	for	all	the	values	that	exist	in	the	field	and
puts	in	every	document	that	has	a	value	in	that	field.

For	example,	use	terms	aggregation	on	a	user.languages	field,	which	consists	of
languages	in	which	a	user	tweets.	It	creates	buckets	for	each	language	(en,	jp,	ru,	and	so
on)	and	each	bucket	contains	all	the	documents	of	a	specific	language	in	which	a	user	has
tweeted.	So	en	language	bucket	will	contain	all	documents	that	have	been	tweeted	in
English	language	and	so	on.

Filters
Filters	are	described	exactly	as	a	query,	which	was	covered	in	the	Using	Search	Bar
section,	in	Chapter	2,	Exploring	the	Discover	Page.	It	is	a	very	flexible	yet	powerful
aggregation	that	helps	to	create	visualizations	based	on	search	queries.	In	this	aggregation,
a	filter	is	specified	for	each	bucket	on	the	basis	of	which	of	the	documents	match	the	filter
that	fits	into	that	bucket.

For	example,	use	filters	aggregation	on	a	field	with	the	user.languages	:(en	or	jp)
query,	which	will	create	a	bucket	in	which	all	documents	containing	tweets	in	English	or
Japanese	fit	in.	If	we	add	another	filter	query	user.statuses_count:[5000-*],	it	will
create	two	buckets	in	which	one	bucket	will	contain	documents	of	tweets	in	English	or
Japanese,	and	another	bucket	will	contain	documents	of	users	who	have	posted	statuses
more	than	5000	times.

Note
Filters	aggregation	is	slower	in	execution	than	other	aggregations.

Significant	terms
This	aggregation	is	used	to	find	uncommonly	common	terms	in	the	data	present.	It	uses	a
foreground	set	and	background	set,	which	help	to	find	uncommonly	common	words.	It	is
useful	for	creating	subsets	of	the	data	to	analyze	uncommon	behaviors/scenarios.	The
foreground	set	contains	the	search	results	matched	by	a	query	(filter),	and	the	background

set	contains	data	in	the	index	or	indices.	Significant	terms	are	used	to	give	results	that
have	undergone	a	significant	change	as	measured	between	the	foreground	set	and
background	set.

If	a	term	exists	in	10	documents	out	of	10,000	indexed	documents,	but	appears	in	8
documents	from	50	documents	returned	from	the	search	query,	then	such	a	term	is
significant.

The	foreground	set	can	be	constructed	by	either	using	a	query	(filter)	or	using	any	other
bucket	aggregation,	first	on	all	documents	and	then	choosing	significant	terms	as	sub-
aggregation.	The	size	property	is	used	to	specify	how	many	buckets	are	to	be	constructed,
meaning	how	many	significant	terms	should	be	calculated.

For	example,	use	filter	aggregation	on	a	field	with	the	user.location:	India	query	and
select	significant	terms	on	a	language	field	as	bucket	aggregation	specifying	size	as	5.	It
will	give	the	top	five	significant	terms	for	the	search	queries	that	are:	en,	hi,	and	so	on.

Let’s	understand	how	these	results	were	obtained	when	we	used	significant	terms.	When
using	the	search	query	user.location:India,	it	gave	a	result	of	270	documents,	meaning
270	documents	contained	the	search	query.	When	using	significant	terms,	it	gave	a	result
of	hi	having	a	count	of	22	out	of	those	270	documents.	When	searching	for	the	language
hi	in	all	the	documents,	it	gave	a	count	of	160	out	of	the	total	document	count	of	92,004.
Therefore	22/270	(8.15%)	in	comparison	of	160/92004	(0.17%)	is	a	significant	number,
which	tells	us	how	much	more	common	hi	is	within	the	search	query	of	user.location:
India	but	uncommon	in	all	the	documents.

Note
It	is	used	to	detect	outliers	and	find	anomalies.	Some	of	the	use	cases	are:	finding	trending
topics	on	Twitter	(country	wise),	detecting	credit	card	fraud,	and	recommendation	engines.

GeoHash
This	aggregation	is	used	to	create	buckets	based	on	the	geo_point	fields	and	groups	those
points	into	buckets.	The	buckets	are	created	dynamically.	For	this	aggregation,	the
geo_point	field	has	to	be	specified,	which	is	automatically	read	by	Kibana	along	with
specifying	precision.	The	smaller	the	precision,	the	larger	the	area	covered	by	the	buckets.

Use	GeoHash	aggregation	on	location	fields	to	create	a	bucket	containing	tweets	from
users	who	are	close	to	each	other.

Note
GeoHash	is	used	with	the	Tile	Map	visualizations,	which	help	to	easily	visualize	the	data
on	a	map.

Metric	aggregations
Metric	aggregations	are	used	for	computing	metrics	over	a	set	of	documents.	This
aggregation	is	used	after	creating	a	bucket	aggregation	which	has	buckets	with	documents
stored	in	it.	Metric	aggregation	is	then	specified	to	calculate	the	value	of	each	bucket,	so
this	aggregation	runs	on	each	bucket	and	provides	a	single	value	result	per	bucket.

In	the	visualizations,	bucket	aggregation	would	determine	the	first	dimension	of	the	chart
followed	by	the	value	calculated	by	metric	aggregation,	which	would	be	termed	“second
dimension”.

Note
Metric	aggregations	will	always	run	on	buckets,	and	thus	would	always	contain	bucket
aggregation.

The	different	types	of	metric	aggregations	are	as	follows.

Count
This	aggregation	is	used	to	return	the	number	of	documents	contained	within	every	bucket
as	a	value.	The	value	can	be	extracted	from	any	fields	present	in	the	documents.

For	example,	to	find	out	how	many	tweets	are	in	each	language,	use	a	term	aggregation	on
the	user.languages	field,	which	will	create	one	bucket	per	language.	Then	use	a	count
metric	aggregation,	which	will	display	the	number	of	tweets	for	each	language	bucket.

Sum
This	aggregation	is	used	to	calculate	the	sum	of	a	numeric	field	stored	in	every	bucket.
The	result	for	every	bucket	will	be	the	sum	of	all	the	values	in	that	field.

Average
This	aggregation	is	used	to	calculate	the	average	value	of	a	numeric	field	stored	in	every
bucket.	The	result	for	every	bucket	will	be	the	average	of	all	the	values	in	that	field.

For	example,	to	find	out	the	average	number	of	statuses	of	Twitter	users,	use	a	term
aggregation	on	the	user.languages	field.	Then	use	average	metric	aggregation,	which
will	display	the	average	number	of	statuses	tweeted	for	each	language	bucket.

Min
This	aggregation	is	used	to	calculate	the	minimum	value	of	a	numeric	field	stored	in	every
bucket.	The	result	for	every	bucket	will	be	the	minimum	value	for	that	field	found	in
documents	stored.

Max
This	aggregation	is	used	to	calculate	the	maximum	value	of	a	numeric	field	stored	in	every
bucket.	The	result	for	every	bucket	will	be	the	maximum	value	for	that	field	found	in
documents	stored.

For	example,	to	find	out	the	maximum	number	of	retweets	in	each	language,	use	a	term
aggregation	on	the	user.languages	field,	which	will	create	one	bucket	per	language.
Then	use	a	maximum	metric	aggregation	on	the	retweet.retweet_count	field,	which	will
display	the	maximum	number	of	retweets	for	each	language	bucket.

Unique	count
This	aggregation	is	used	to	count	the	number	of	unique	values	that	exist	for	a	field	stored
in	every	bucket.	The	result	for	every	bucket	will	be	the	total	number	of	unique	values	for
that	field	found	in	documents	stored.

For	example,	the	documents	contain	a	numeric	field	(user.statuses_count)	with	ranges
such	as	1,000-3,000,	3,000-5,000,	5,000-10,000	for	which	buckets	will	be	created.	Then,
unique	count	metric	aggregation	is	used	on	the	user.languages	field,	which	will	display
for	each	user	the	status	range	the	number	of	different	languages	used	for	posting	statuses.

Percentile
This	aggregation	is	used	to	calculate	percentiles	over	numeric	fields	stored	in	buckets.	It	is
different	from	other	metric	aggregations	as	it	stores	multiple	values	per	bucket.	It	comes
under	the	category	of	multivalue	metrics	aggregation.	When	specifying	this	aggregation,	a
numeric	value	field	has	to	be	specified	along	with	multiple	percentage	values.	The	result
of	this	aggregation	will	be	the	value	for	which	a	specified	percentage	of	documents	will	be
inside	the	value.

For	example,	use	percentiles	aggregation	on	the	user.statuses_count	field	and	specify
the	percentile	values	as	5,	50,	75,	and	95.	It	will	result	in	four	aggregated	values	for	every
bucket.	So	if	we	only	had	one	single	index,	then	the	5	percentile	result	will	have	the	value
of	24.	This	means	that	5%	of	all	the	tweets	in	this	bucket	have	a	user	status	count	with	24
or	below.	The	50	percentile	result	is	175,	meaning	that	50%	of	all	the	tweets	in	this	bucket
have	a	user	status	count	of	175	or	below.	The	75	percentile	result	is	845,	meaning	that
75%	of	all	the	tweets	in	this	bucket	have	a	user	status	count	of	845	or	below.	The	95
percentile	result	is	18500,	meaning	that	50%	of	all	the	tweets	in	this	bucket	have	a	user
status	count	of	18500	or	below.

Note
Both	unique	count	and	percentile	are	approximate	calculations.	They	sacrifice	accuracy
for	speed.

Percentile	ranks
This	aggregation	is	used	to	calculate	single	or	multiple	percentile	ranks	over	a	numeric
field,	which	has	been	extracted	from	the	documents	(data)	and	stored	in	buckets.	It	comes
under	the	category	of	multi-value	metrics	aggregation.	It	is	used	to	display	the	percentage
of	values	occurring	that	are	below	a	certain	specific	value.	If	a	value	is	greater	than	or
equal	to	75%	of	values	occurring,	it	is	said	to	be	at	the	75th	percentile	rank.

Now	as	we	have	understood	all	the	aggregations	provided	in	Kibana,	let’s	understand	how
to	use	these	aggregations	with	visualizations.

Steps	for	designing	visualization
To	create	a	new	visualization,	we	follow	a	step-by-step	process	that	can	be	initiated	by
clicking	on	the	Visualize	tab,	which	is	the	second	tab	at	the	top	of	the	page.

Note
If	you	are	already	creating	a	visualization,	you	can	create	a	new	visualization	by	clicking

on	the	New	Visualization	button	 ,	which	is	present	in	the	toolbar	just	to	the	right	of
the	search	bar.

Step	1	–	selecting	a	visualization	type
It	lists	the	different	visualization	types	with	an	option	to	select	any	one	of	the	following:

Area	Chart Use	Area	Charts	to	visualize	the	total	contribution	of	several	different	series.	The	areas	can	be	displayed
as	stacked,	overlap,	percentage,	wiggle,	or	silhouette.

Data	Table Use	Data	Tables	to	display	tables	of	aggregated	data	stored	in	Elasticsearch.

Line	Chart Use	Line	Charts	to	display	the	aggregated	data	in	the	form	of	lines.	The	lines	can	be	displayed	on	a
scale	of	linear,	log,	or	square	root.

Markdown
widget Use	Markdown	widget	to	display	any	type	of	information	or	instructions	related	to	dashboard.

Metric Use	the	Metric	visualization	to	display	a	single	number	on	your	dashboard	for	various	metric
aggregations.

Pie	Chart Use	Pie	Charts	to	display	each	source’s	contribution	to	a	total.	It	can	be	displayed	as	a	pie	or	as	a	donut.

Tile	Map Use	Tile	Maps	to	display	a	map	for	results	based	on	GeoHash	aggregation,	which	requires	a	geo_point
field.

Vertical	Bar
Chart

Use	Vertical	Bar	Charts	as	a	general-purpose	chart.	The	bar	chart	can	be	displayed	as	stacked,
percentage	or	grouped.

When	clicking	on	the	Visualization	tab	to	create	a	new	visualization,	you	will	see	the
following	options	as	shown	in	the	following	image:

In	this	figure,	you	have	various	selection	options	to	create	a	new	visualization,	or	you	can
also	load	a	saved	visualization	(if	created	earlier).	We	will	discuss	the	saved	visualizations
in	the	Save	Visualization	section	in	this	chapter.

If	the	new	visualization	is	of	the	Markdown	widget	type,	then	selecting	it	will	take	you	to
a	text	entry	field	where	you	can	enter	the	information	or	any	text	that	you	require.	If	you
select	any	other	visualization	type,	you	will	be	taken	to	step	2.

Step	2	–	selecting	search	data	source
This	step	is	used	to	select	the	search	source	on	the	basis	of	which	you	would	visualize.
You	can	either	select	a	new	search	or	a	saved	search	as	the	data	source	for	creating
visualizations.	All	the	searches	are	associated	with	an	index	or	bunch	of	indices.

You	have	two	options	to	select	a	search	source:

From	a	new	search
From	a	saved	search

When	you	select	from	a	new	search	and	have	multiple	indices	defined,	then	you	would	be
given	a	drop-down	menu	to	select	the	index	on	which	you	want	to	visualize.	It	is	used	to
create	visualizations	based	on	stored	data.

When	you	select	from	a	saved	search,	it	will	link	the	visualization	with	the	search	query
saved	on	the	Discover	page.	As	the	search	is	linked	with	visualization,	any	changes	made
to	the	search,	the	visualization	will	be	automatically	updated.

You	will	see	the	following	options	to	select	a	search	source	as	shown	in	the	following
figure:

In	this	figure,	you	can	see	the	option	of	choosing	a	search	source	from	either	a	new	search
or	a	saved	search.	Upon	selecting	either	of	them,	you	will	be	taken	to	step	3.

Step	3	–	the	visualization	canvas
This	step	is	very	important	as	it	enables	you	to	create,	edit,	and	configure	visualizations.
The	main	elements	of	the	visualization	canvas	are:

1.	 Toolbar
2.	 Aggregation	designer
3.	 Previewing	visualization

Toolbar
The	toolbar	is	used	for	powerful	analysis	of	data	based	on	search	queries	and	filters.	It	is
used	for	specifying	the	search	query	on	the	basis	of	which	visualization	changes	and
updates	automatically.	It	has	a	search	field	that	is	used	for	interactive	searching	of	data
along	with	controls	to	create,	save,	or	load	visualizations.	The	toolbar	consists	of	a	search
bar	along	with	option	buttons	such	as	New	Visualization,	Save	Visualization,	Load	Saved
Visualization,	Share	Visualization,	and	Refresh.

Note
For	visualizations	created	using	saved	search	(described	in	step	2),	the	search	bar	is	grayed
out	and	displays,	This	visualization	is	linked	to	a	saved	search.	Double-click	on	it	to
unlink	the	visualization	from	saved	search	providing	you	with	an	option	to	edit	the	search.

New	Visualization

New	Visualization	provides	the	option	to	create	a	new	visualization.	It	erases	the	present
visualization	and	creates	a	new	one	to	play	with.	It	is	done	by	clicking	on	the	New

Visualization	button	 ,	which	is	situated	on	the	toolbar	beside	the	search	bar:

Save	Visualization

Save	Visualization	provides	the	option	of	saving	a	created	visualization.	It	is	used	to	save
the	current	created	visualization	along	with	the	selected	index	information.	This	option	is
situated	beside	the	New	Visualization	button	on	the	toolbar.

To	save	a	visualization,	perform	the	following	steps:

1.	 Create	a	visualization.
2.	 Click	on	the	Save	Visualization	button	 	present	on	the	toolbar	next	to	the	New

Search	button:

3.	 Give	it	a	title	to	save.

4.	 Click	on	Save	to	save	the	visualization.

Load	Saved	Visualization

Load	Saved	Visualization	provides	the	option	of	loading	any	previously	created	and	saved
visualization.	It	is	used	to	load	visualization	with	a	specified	index.	If	loading	a	saved
visualization	included	a	different	index,	then	on	loading	it,	the	selected	index	also	gets
updated.	This	option	is	situated	beside	the	Save	Visualization	button	on	the	toolbar.

To	load	a	saved	visualization:

1.	 Click	on	the	Load	Saved	Visualization	button	 	present	in	the	toolbar	next	to	the
Save	Visualization	button:

2.	 Specify	the	saved	name	to	load	it.	All	the	saved	visualization	filters	are	displayed
below	the	search	bar.

3.	 Click	on	it	to	load	the	saved	visualization.

Share	Visualization

Share	Visualization	provides	the	option	of	sharing	your	visualization,	which	is	either
created	or	saved	and	can	be	shared	among	the	people	to	view.	It	also	provides	the	option
of	either	sharing	the	link	to	your	visualization	or	embedding	the	visualization	within	any
HTML	page	(which	would	still	require	access	to	Kibana	for	viewing).	This	option	is
situated	beside	the	Save	Visualization	button	in	the	toolbar.

To	share	visualization,	perform	the	following	steps:

1.	 Click	on	the	Share	Visualization	button	 	present	in	the	toolbar	next	to	the	Save
Visualization	button:

2.	 Upon	clicking	on	it,	you	will	find	a	link	for	embedding	this	visualization	and	sharing
the	visualization:

3.	 Click	on	the	copy	to	clipboard	button	 	beside	Share	a	link	to	copy	the	link	and
share	it.	Otherwise,	you	can	copy	to	clipboard	button	beside	Embed	this
visualization,	and	paste	the	iframe	source	into	an	HTML	page	to	display
visualizations	in	a	webpage/application.

Refresh

The	refresh	button	is	used	to	refresh	the	page.

Aggregation	designer
This	is	the	heart	of	creating	visualizations.	It	is	displayed	on	the	left-hand	side	of	the
Visualize	page.	It	is	used	for	configuring	the	metric	and	bucket	aggregations	as	discussed
previously,	which	is	used	for	visualizations.	Buckets	are	similar	to	SQL	Group	By
statements.	The	aggregation	builder	consists	of	two	tabs:

Data:	this	is	used	for	specifying	the	metric	and	bucket	aggregations.	Metric
aggregations	include	count,	average,	sum,	min,	max,	standard	deviation,	unique
count,	percentile,	and	percentile	ranks.	Bucket	aggregations	include	date	histogram,
histogram,	range,	date	range,	IPv4	range,	terms,	filters,	and	significant	terms.

For	each	different	type	of	visualization	we	have	different	types	of	metrics	and	bucket
options,	which	are	described	briefly	in	the	following	table:

Type	of	visualization Metrics Bucket

Area	Chart Y-axis X-axis,	split	area,	split	chart

Data	Table Metric Split	rows,	split	table

Line	Chart Y-axis X-axis,	split	lines,	split	chart

Metrics Metric -

Pie	Chart Slice	size Split	slices,	split	chart

Tile	Map Value Geo	coordinates,	split	chart

Vertical	Bar	Chart Y-axis X-axis,	split	bars,	split	chart

You	can	set	the	order	of	execution	for	each	bucket.	The	re-ordering	of	buckets
changes	the	order	of	execution.

Note
In	Kibana,	the	first	aggregation	becomes	the	base	data	set	for	subsequent
aggregations.

Options:	this	is	used	to	display	the	various	types	of	view	options	associated	with
each	type	of	visualization.	Each	visualization	created	has	its	own	view	options	to
change	a	few	aspects.	These	are	optional	and	have	options	that	can	be	selected	or	de-
selected	as	per	requirements.	It	provides	flexibility	in	creating	different	types	of
visualizations.	Some	of	the	options	associated	with	visualizations	are	briefly	stated	in
the	following	table:

Type	of
visualization View	options

Area	Chart Chart	mode	(stacked,	overlap,	percentage,	wiggle,	silhouette),	smooth	lines,	set	Y-axis	extents,
scale	Y-axis	to	data	bounds,	show	tooltip,	show	legend

Data	Table Per	page,	show	metrics	for	every	bucket/level,	show	partial	rows

Line	Chart Y-axis	scale	(linear,	log,	square	root),	smooth	lines,	show	connecting	lines,	show	circles,	set	Y-
axis	extents,	scale	Y-axis	to	data	bounds,	show	tooltip,	show	legend

Metric Font	size

Pie	Chart Donut,	show	tooltip,	show	legend

Tile	Map Map	type	(scaled	circle	markers,	shaded	circle	markers,	shaded	GeoHash	grid,	Heatmap),
desaturate	map	tiles

Vertical	Bar
Chart

Bar	mode	(stacked,	percentage,	grouped)	set	Y-axis	extents,	scale	Y-axis	to	data	bounds,	show
tooltip,	show	legend

To	see	the	visualization	on	a	preview	canvas,	click	on	the	green	Apply	Changes

button	 	at	the	top	right	of	the	aggregation	builder,	beside	the	two	tabs	of	Data	and
Options.

Preview	canvas
Preview	canvas	is	used	to	display	a	preview	of	the	visualization	created	using	the
aggregation	designer.	Whenever	the	aggregation	designers	apply	changes	with	different
sets	of	metrics,	options	are	automatically	displayed	on	the	preview	canvas.

An	explanation	of	visualization	types
Now,	after	understanding	the	aggregations	and	the	various	steps	of	designing	a
visualization,	let’s	explore	each	visualization	type	in	detail,	with	working	examples	to
make	things	easier	to	understand.	In	the	following	explanation,	only	step	3	would	be	used
as	defined	previously,	namely	visualization	canvas.

Area	Chart
This	is	used	to	display	areas	below	the	lines	and	is	similar	to	Line	Charts.	It	is	also	used	to
display	data	over	a	period	of	time.

The	chart	that	we	would	like	to	create	would	show	a	comparison	of	top	languages	in
which	users	tweeted,	along	with	the	retweet	count	for	those	languages	over	a	period	of
time.	In	this	we	will	split	the	chart	on	the	basis	of	top	languages,	split	the	area	on	the	basis
of	retweet.retweet_count,	and	the	X-axis	will	contain	the	period	of	time:

1.	 Firstly,	specify	the	metrics	on	the	Y-axis	as	count	(though	it’s	not	limited;	it	can	use
any	other	metric	as	per	requirements).

2.	 Then	we	add	a	new	split	chart	bucket	type	and	add	aggregation	of	terms	specifying
the	field	language	with	top	2	size.	After	adding	this,	we	have	split	the	chart,	showing
the	amount	of	tweets	in	the	top	2	languages	tweeted	by	users.

3.	 Then	we	will	add	a	Split	Area	sub-bucket	and	add	sub-aggregation	of	terms
specifying	the	field	retweet.retweet_count	with	top	3	size.	After	adding	this	we
have	split	the	area	showing	the	top	3	retweet	counts	in	the	top	2	languages	tweeted	by
users.

4.	 As	Area	Charts	are	used	to	display	data	over	a	period	of	time	we	will	add	an	X-axis
sub-bucket,	having	the	sub-aggregation	as	Date	Histogram	using	the	created_at
field	with	the	interval	of	minute.

5.	 Finally,	we	have	a	visualization	that	shows	the	top	3	retweet	counts	for	the	top	2
languages	in	which	users	have	tweeted.

Note
While	using	Area	Charts	you	may	encounter	the	following	error	message:	Area
charts	require	more	than	one	data	point.	Try	adding	an	X-Axis	aggregation.	It
shows	an	error	as	an	X-axis	is	required	as	input	for	providing	visualizations	in	the
Area	Chart.	Also,	an	error	can	occur	if	the	Time	Filter	selected	does	not	fit	into	the
visualization.

To	preview	the	visualization,	click	the	green	Apply	Changes	button	 	to	update	your

visualization	or	click	the	grey	Discard	Changes	button	 	to	discard	changes	to	the
visualization.

Note
Whenever	you	are	adding/modifying	buckets,	aggregations,	sub-aggregations	or	options,
click	the	aforementioned	buttons	to	update/discard	visualizations.

You	can	see	the	output	in	the	form	of	a	screenshot,	shown	as	follows:

In	the	previous	screenshot,	Chart	Mode	is	stacked	(by	default),	which	shows	all	the
documents	across	the	buckets	from	the	height	of	the	stacked	elements.

Let’s	save	this	visualization	as	Area	Chart,	which	will	be	used	in	Chapter	4,	Exploring
the	Dashboard	Page.

Note
Split	Chart	by	default	splits	in	rows,	but	it	can	also	be	split	into	columns	by	selecting
columns	just	underneath	the	Split	Chart	bucket.

In	the	Options	tab,	by	default	Chart	Mode	is	set	as	stacked	but	can	be	changed	to	other
chart	modes	by	selecting	the	following	chart	modes.

Overlap
In	this	view,	areas	would	not	be	stacked	upon	each	other;	instead	every	area	will	begin	at
the	X-axis	and	would	be	displayed	in	a	semi-transparent	way	so	that	all	areas	are	seen
properly.	It	makes	it	easier	to	see	the	values	of	different	buckets	but	difficult	to	get	a	total
value	of	all	the	buckets:

Percentage
In	this	Chart	Mode,	the	height	of	the	chart	will	always	be	shown	as	100%	and	the	count
for	each	bucket	will	be	displayed	in	terms	of	the	percentage	of	the	whole	chart.

For	example,	at	a	particular	time	(June	2,	12:46)	we	have	64	as	the	retweet	count	of	1,	16
as	the	retweet	count	of	2,	and	15	as	the	retweet	count	of	3,	so	in	percentage	mode	we	will
show	a	64	retweet	count	along	with	67.4%,	meaning	[(64	/	95)	*	100]	where	95	=	64	+	16
+	15:

Wiggle
This	Chart	Mode	displays	the	aggregation	as	a	stream	graph,	which	is	a	stacked	area
graph	displaced	around	a	central	axis	resulting	in	a	flowing	shape:

Silhouette
This	Chart	Mode	displays	the	aggregation	as	a	variance	from	the	central	line	from	which
chart	evolves	in	both	directions:

Every	string	field	specified	in	buckets,	aggregation,	or	sub-aggregations	have
customization	options,	which	can	be	edited/used	by	clicking	on	the	Advanced	button	

	shown	beneath	Order	By,	and	include	the	following	options:

Exclude	Patterns:	This	specifies	a	pattern	to	exclude	from	the	results
Exclude	Pattern	Flags:	These	are	a	set	of	java	flags	for	exclusion	pattern
Include	Patterns:	This	specifies	a	pattern	to	include	in	the	results
Include	Pattern	Flags:	These	are	a	set	of	java	flags	for	inclusion	pattern
JSON	Input:	This	adds	specific	JSON	properties	to	merge	with	aggregation

Note
Advanced	options	as	described	would	be	available	to	edit/use	for	every	string	field
used	in	either	of	the	buckets,	aggregation,	or	sub-aggregations	across	all
visualizations.

Also,	other	view	options	alter	the	following	behavior	of	Area	Charts:

Smooth	Lines:	Check	this	box	to	curve	the	top	boundary	from	point	to	point:

Current	Time	Marker:	Check	this	box	to	draw	a	red	line	on	current	time	data
Set	Y-Axis	Extents:	Check	this	box	to	specify	y-max	and	y-min	fields	to	set	specific
values	for	the	Y-axis
Scale	Y-Axis	to	Data	Bounds:	Check	this	box	to	change	upper	and	lower	bounds	to
match	values	returned	in	data
Show	Tooltip:	Check	this	box	to	enable	information	when	hovering	over
visualization
Show	Legend:	Check	this	box	to	view	the	legend	that	is	shown	next	to	the	chart

Data	Table
Data	Table	is	used	to	display	a	table	of	aggregated	data	stored	in	Elasticsearch.	It
provides	raw	data	results	in	tabular	format.

The	Data	Table	that	we	would	like	to	create	would	show	the	top	languages	along	with	a
count	of	each	language’s	retweets	in	the	ranges	of	0	to	10	and	10	to	20.	In	this,	we	will
split	the	rows	on	the	basis	of	top	languages	and	split	the	rows	on	the	basis	of	the
retweet_count	ranges:

1.	 Firstly,	specify	the	metrics	as	count	(though	not	limited	to	it,	can	use	any	other	metric
as	per	requirement).

2.	 Then	we	add	a	new	Split	Rows	bucket	and	add	aggregation	of	terms	specifying	the
field	language	with	top	5	size.	After	adding	this,	we	created	a	Data	Table	showing	a
count	of	tweets	in	the	top	5	languages	tweeted	by	users.

3.	 Then	we	will	add	a	Split	Rows	sub-bucket	and	add	Range	sub-aggregation,
specifying	the	field	retweet.retweet_count	with	ranges	from	0	to	10	and	10	to	20.

4.	 Finally,	click	on	the	Apply	Changes	button	to	view	the	visualization,	which	shows
retweet_count	ranges	for	the	top	5	languages	in	which	users	have	tweeted.

You	can	see	the	output	in	the	form	of	a	screenshot,	as	follows:

Let’s	save	this	visualization	as	a	Data	Table,	which	will	be	used	in	Chapter	4,	Exploring
the	Dashboard	Page.

In	the	Options	tab,	there	are	view	options	that	alter	the	following	behavior	of	Data	Table:

Per	Page:	This	is	used	for	pagination	of	the	table.	By	default,	10	rows	are	displayed
per	page.	This	option	can	be	changed	as	per	requirements.
Show	metrics	for	every	bucket/level:	Check	this	box	to	display	the	intermediate
metrics	result	corresponding	to	each	bucket	aggregation.
Show	partial	rows:	Check	this	box	to	display	rows	even	if	there	is	no	result.

Line	Chart
This	is	used	to	display	the	aggregated	data	in	the	form	of	lines.	The	lines	can	be	displayed
on	a	linear,	log,	or	square	root	scale.	It	is	also	used	to	display	data	over	a	period	of	time.

The	chart	that	we	would	like	to	create	would	show	the	comparison	of	top	languages	in
which	users	tweeted,	along	with	the	retweet	count	for	those	languages	over	a	period	of
time.	In	this,	we	will	split	the	chart	on	the	basis	of	top	languages,	split	the	area	on	the
basis	of	retweet.retweet_count,	and	the	X-axis	will	contain	the	period	of	time:

1.	 Firstly,	specify	metrics	on	the	Y-axis	as	count	(though	it’s	not	limited,	it	can	use	any
other	metric	as	per	requirement).

2.	 Then	we	add	a	new	Split	Chart	bucket	and	add	aggregation	of	terms	specifying	the
field	language	with	top	2	size.	After	adding	this,	we	have	split	the	chart	showing	the
count	of	tweets	in	the	top	2	languages	tweeted	by	users.

3.	 Then	we	will	add	a	Split	Lines	sub-bucket	and	add	sub-aggregation	of	terms
specifying	the	retweet.retweet_count	tweet	with	top	3	size.	After	adding	this,	we
have	split	the	area	showing	the	top	3	retweet	counts	in	the	top	2	languages	tweeted	by
users.

4.	 As	Line	Charts	are	used	to	display	data	over	a	period	of	time,	we	will	add	an	X-axis
sub-bucket,	having	sub-aggregation	as	date	histogram,	using	the	field	created_at,
with	minute	intervals.

5.	 Finally,	click	on	the	Apply	Changes	button	to	view	the	visualization,	which	shows
the	top	3	retweet	counts	for	the	top	2	languages	in	which	users	have	tweeted.

You	can	see	the	output	in	the	form	of	a	screenshot,	as	follows:

In	the	previous	screenshot,	the	Y-axis	scale	is	linear	(by	default),	which	displays	the	Y-

axis	scale	as	the	count	of	matching	documents.

Let’s	save	this	visualization	as	LineChart,	which	will	be	used	in	Chapter	4,	Exploring	the
Dashboard	Page.

In	the	Options	tab,	by	default,	the	Y-axis	scale	is	set	as	linear	but	can	be	changed	to	other
scales	by	selecting	the	following	scale	options.

Log
In	this	option,	the	Y-axis	scale	calculates	its	values	based	on	the	logarithm	of	the	count
value.	It	is	used	to	display	data	exponentially:

Square	root
In	this	option,	the	Y-axis	scale	calculates	its	values	based	on	the	square	root	of	the	count
value:

Also,	other	view	options	alter	the	following	behavior	of	Line	Charts:

Smooth	Lines:	Check	this	box	to	curve	the	top	boundary	from	point	to	point:

Show	Connecting	Lines:	Check	this	box	to	draw	lines	between	points
Show	Circles:	Check	this	box	to	draw	each	data	point	as	a	circle:

Current	Time	Marker:	Check	this	box	to	draw	a	red	line	on	current	time	data
Set	Y-Axis	Extents:	Check	this	box	to	specify	y-max	and	y-min	fields	to	set	specific
values	for	the	Y-Axis
Scale	Y-Axis	to	Data	Bounds:	Check	this	box	to	change	upper	and	lower	bounds	to
match	values	returned	in	data
Show	Tooltip:	Check	this	box	to	enable	information	when	hovering	over	the

visualization
Show	Legend:	Check	this	box	to	view	the	legend	that	is	shown	next	to	the	chart

There	is	a	new	variation	to	Line	Charts	known	as	Bubble	Charts.	Bubble	Charts	are
used	to	display	data	points	as	bubbles.

You	can	convert	a	Line	Chart	visualization	to	a	Bubble	Chart	visualization	by	using	the
following	steps:

1.	 Create	a	Line	Chart	visualization	or	load	a	created	LineChart	visualization.
2.	 In	Data	tab,	under	Metrics,	click	on	Add	Metrics	and	select	metrics	type	as	Dot

Size,	and	specify	Dot	Size	Ratio	and	Aggregation	as	Count	(or	choose	any	other).
3.	 In	the	Options	tab,	uncheck	the	Show	Connecting	Lines	box	and	click	on	the	Apply

Changes	button.

Let’s	save	this	visualization	as	Line_Bubble,	which	will	be	used	in	Chapter	4,	Exploring
the	Dashboard	Page.

Markdown	widget
This	is	a	text	entry	field	used	to	input	any	type	of	information	or	instructions.	It	is	useful
in	displaying	the	text,	links,	code,	tables,	and	so	on,	entered	on	the	dashboard,	which	acts
as	additional	information	and	can	be	used	easily.	Kibana	renders	the	text	entered	and
displays	the	result	on	the	dashboard.	It	does	not	have	any	relation	to	visualization	using
your	data.

The	markdown	is	a	GitHub-flavored	markdown.	There	is	a	help	link	that,	upon	clicking,
takes	you	to	the	help	page	for	a	GitHub-flavored	markdown.

Metric
Metric	visualization	is	used	to	display	a	single	number	for	various	metric	aggregations.	In
this,	no	bucketing	is	done,	the	metrics	aggregations	are	applied	to	the	complete	data	set,
meaning	the	index	on	which	visualizations	are	being	created.	The	data	set	can	be	changed
either	by	choosing	another	index	or	querying	in	the	search	bar.

It	is	easy	to	create	by	just	clicking	on	the	Add	Metrics	and	select	Metrics.	Then	select	the
aggregation	followed	by	the	field	name	(if	aggregation	is	chosen	as	count	specifying	field,
a	name	is	not	required).

Let’s	create	a	very	interesting	Metric	visualization	to	calculate	the	unique	hashtags	in	the
data	set	and	determine	the	preferred	length	of	hashtag	for	Twitter.	For	this	we	would
require	the	following	inputs:

Total	data	set	count
Unique	count	of	hashtags	(unique	count	of	the	hashtag.text	field)
Minimum	hashtag	start	position	(minimum	of	the	hashtag.start	field)
Minimum	hashtag	end	position	(minimum	of	the	hashtag.end	field)
Maximum	hashtag	start	position	(maximum	of	the	hashtag.start	field)
Maximum	hashtag	end	position	(maximum	of	the	hashtag.end	field)
Average	hashtag	start	position	(average	of	the	hashtag.start	field)
Average	hashtag	end	position	(average	of	the	hashtag.end	field)

Let’s	save	this	visualization	as	Metrics,	which	will	be	used	in	Chapter	4,	Exploring	the
Dashboard	Page.

Finally,	click	on	the	Apply	Changes	button	to	view	visualization	as	shown	in	the
following	screenshot:

From	the	previous	screenshot,	we	have	analyzed	the	average	hashtag	length	based	on
13,695	unique	hashtags	received.	It	states	an	average	of	approximately	11	characters	for
hashtags	used	by	users.

This	type	of	analysis	can	easily	be	done	by	companies	in	order	to	determine	the	length	of
hashtag	for	trending	on	Twitter.

Pie	Chart
This	is	used	to	display	each	source’s	contribution	to	the	total.	It	can	be	displayed	either	as
a	pie	or	as	a	donut.	It	is	most	useful	for	displaying	the	parts	of	some	whole.	Pie	charts	use
slices;	fewer	slices	is	easier	to	visualize.

The	chart	that	we	would	like	to	create	would	show	comparison	of	top	languages	in	which
users	tweeted,	along	with	top	country	code	for	those	languages	over	a	period	of	time.	In
this	we	will	split	the	chart	on	the	basis	of	created_at,	split	slices	on	the	basis	of	top
languages,	and	split	slices	on	the	basis	of	top	country	code.	In	Pie	Charts,	Split	Charts
are	generally	used	before	Split	Slices:

1.	 Firstly,	specify	metrics	on	Slice	Size	as	Count	(though	it’s	not	limited,	it	can	use	any
other	metric	as	per	requirement).

2.	 Then	we	add	a	new	Split	Chart	bucket	and	add	aggregation	of	date	histogram	on
field	created_at	with	the	interval	of	hourly.	After	adding	this,	we	have	split	the	chart
on	the	basis	of	hours.

3.	 Then	we	will	add	a	Split	Slices	sub-bucket	and	add	a	sub-aggregation	of	terms
specifying	the	field	language	with	top	5	size.	After	adding	this,	we	have	split	the
slices	in	Pie	Chart	showing	the	top	5	languages	on	an	hourly	basis.

4.	 To	display	the	top	country	code	for	those	languages,	we	will	add	a	Split	Slices	sub-
bucket	with	sub-aggregation	as	terms	specifying	the	field	place.country_code	with
top	2	size.

5.	 Finally,	click	on	the	Apply	Changes	button	to	view	the	visualization,	which	shows
the	top	5	languages	along	with	the	top	2	country	codes	for	those	languages	by	hourly
intervals.

You	can	see	the	output	in	the	form	of	a	screenshot,	as	follows:

In	the	previous	screenshot,	pie	charts	are	split	by	hourly	intervals	(as	we	have	data	of	the
12th	hour	and	13th	hour).	Each	pie	chart	is	split	by	the	top	5	languages	(shown	as	the
inner	pie)	and	each	language	is	split	by	the	top	2	country	codes	from	which	users	have
tweeted	(shown	as	the	outer	pie).	The	size	of	each	pie	is	determined	by	the	count	of
matching	documents	in	every	bucket.

The	size	in	percentage	is	computed	as	follows:

For	the	12th	hour,	English	language	contains	United	States	(US)	and	Great	Britain	(GB)	as
the	top	2	countries	that	have	tweeted	in	the	English	language.	If	the	total	count	of	tweets
by	US	and	GB	for	English	language	is	156,	out	of	which	the	US	has	126	tweets,	then	their
slice	percentage	is	equal	to	(126	/	156)	*	100	=	80.77%,	and	GB	has	30	tweets,	then	their
slice	percentage	is	equal	to	(30	/	156)	*	100	=	19.23%.	It	is	shown	in	the	following
screenshot:

Note
Splitting	charts	without	splitting	slices	is	not	supported.

Let’s	save	this	visualization	as	PieChart,	which	will	be	used	in	Chapter	4,	Exploring	the
Dashboard	Page.

In	the	Options	tab	there	are	view	options	that	alter	the	following	behavior	of	pie	charts:

Donut:	Check	this	box	to	view	pie	charts	in	the	shape	of	a	donut

Show	Tooltip:	Check	this	box	to	enable	information	when	hovering	over
visualization
Show	Legend:	Check	this	box	to	view	the	legend	that	is	shown	next	to	chart

Tile	Map
This	is	used	to	display	GeoHash	type	aggregation	results	over	the	map.	It	requires	a
geo_point	type	field	with	inputs	of	latitude	and	longitude.	It	uses	Geo	Coordinates
bucketing.	The	visualization	would	display	the	data	points	captured	in	the	form	of	circles
(by	default)	where	size	will	depend	upon	the	precision	chosen,	and	color	is	signified	by
the	actual	value	calculated	by	whichever	metric	aggregation	was	used.

We	would	like	to	map	the	locations	of	the	countries	from	which	users	have	tweeted.	In	this
we	will	use	Geo	Coordinates	in	a	bucket.

1.	 Firstly,	specify	metrics	on	Value	as	Count	(though	it’s	not	limited,	it	can	use	any
other	metric	as	per	requirement).

2.	 Then	we	add	a	new	Geo	Coordinates	bucket	and	add	aggregation	of	GeoHash
specifying	the	field	location.	After	adding	this,	we	will	see	a	map	that	has	circles	as
data	points	captured	by	the	location	field.

3.	 Finally,	click	on	the	Apply	Changes	button	to	view	the	visualization,	which	shows
the	location	on	a	map	from	which	users	have	tweeted.

You	can	see	the	output	in	the	form	of	a	screenshot,	as	follows:

In	the	previous	screenshot,	the	Map	type	is	Scaled	Circle	Markers,	which	scales	the	size
of	the	markers	(data	points)	based	on	the	metric	aggregation’s	value.	The	size	of	each
circle	varies	based	on	the	range	of	metric	value.

Let’s	save	this	visualization	as	Map,	which	will	be	used	in	Chapter	4,	Exploring	the
Dashboard	Page.

Note
Upon	importing	sample	Twitter	data,	you	will	not	be	able	to	create	the	Tile	Map
visualization	as	it	will	return	an	error	stating	that	no	field	found	matching	the	geo_point
type.	In	the	GitHub	repository,	within	the	Readme	file,	there	are	steps	to	fetch	twitter	data

using	elasticsearch	Twitter	river	using	which	sample	twitter	data	was	generated	and	further
exported	to	a	sample	file	using	elasticdump	utility.

In	the	Options	tab,	by	default,	Map	type	is	set	as	Scaled	Circle	Markers	but	can	be
changed	to	other	map	types	by	selecting	the	following	options:

Shaded	Circle	Markers
In	this	option,	the	size	of	each	circle	varies	with	the	location	of	latitude	and	longitude.	The
closer	to	the	equator,	the	smaller	the	circle	size,	and	the	further	from	the	equator,	the	larger
the	circle	size.	It	is	used	to	display	the	markers	(data	points)	with	different	shades	based
on	the	metric	aggregations’	value:

Shaded	GeoHash	Grid
In	this	option,	markers	(data	points)	are	displayed	using	rectangular	cells	of	GeoHash	grid
instead	of	the	circles	as	shown	in	the	previous	images.	It	is	used	to	display	the	markers
(data	points)	with	different	shades	based	on	the	metric	aggregations’	value.

Heatmap

This	is	a	special	kind	of	tile	map,	which	is	a	two-dimensional	graphical	representation	of
data	having	values	displayed	using	colors	instead	of	numbers,	text,	or	markers	(data
points).	It	provides	an	easy	way	to	understand	and	analyze	complex/huge	data	sets.	It
applies	blurring	of	markers	and	shading	(dark	or	light)	on	the	basis	of	the	total	amount	of
overlap.

Heatmap	contains	the	following	properties:

Radius:	This	is	used	to	set	the	size	of	all	Heatmap	dots	occurring	on	the	map.	The
larger	the	radius,	the	bigger	the	size	of	overlap	of	dots;	the	smaller	the	radius,	the
smaller	the	size	of	overlap	of	dots.	By	default	it	is	25.
Blur:	This	is	used	to	set	the	blurring	amount	for	all	Heatmap	dots	occurring	on	the
map.	The	higher	the	blur,	the	fewer	individual	Heatmap	dots	are	shown;	the	lower	the
blur,	the	more	individual	Heatmap	dots	are	shown.	By	default	it	is	specified	as	15.
Maximum	Zoom:	This	is	used	to	define	the	zoom	level	of	the	map	at	which	all
Heatmap	dots	are	displayed	at	full	intensity.	The	higher	the	zoom,	the	more	the
intensity	of	dots;	the	lower	the	zoom,	the	less	the	intensity	of	dots.	In	Kibana	tile
maps,	maximum	zoom	is	supported	up	to	18	zoom	levels.	By	default	it	is	specified	as
16.
Minimum	Opacity:	this	is	used	to	set	the	opacity	for	all	Heatmap	dots.	By	default	it
is	specified	as	0.1.
Show	Tooltip:	check	this	box	to	enable	information	when	hovering	over
visualization.

Desaturate	map	tiles
It	is	used	to	desaturate	the	map	color	so	that	the	colors	appear	more	clearly.	It	does	not
work	on	any	version	of	Internet	Explorer	(IE).

The	following	figure	shows	Heatmap	with	the	Desaturate	map	tiles	check	box	ticked:

The	following	figure	shows	Heatmap	with	the	Desaturate	map	tiles	not	ticked:

Also,	after	creating	the	Tile	Map	visualization,	we	can	explore	the	map	in	the	following
ways:

Click-and-drag	the	cursor	anywhere	on	the	map	to	move	the	map	center
Click	on	the	Zoom	In/Out	buttons	 	to	change	the	zoom	level
Click	on	the	Draw	a	Rectangle	button	 	to	create	a	filter	for	the	box	coordinates	by
drawing	a	rectangle	box
Click	on	the	Fit	Data	Bounds	button	 	to	automatically	adjust	the	map	and	display
the	map	boundaries	according	to	the	GeoHash	bucket	that	has	at	least	a	single	result

Vertical	Bar	Chart
This	acts	as	a	general-purpose	chart	suited	to	both	time-based	data	and	non-time-based
data.	The	bar	chart	can	be	displayed	either	as	stacked,	percentage,	or	grouped.	In	this	type
of	chart,	every	X-axis	value	will	have	its	own	corresponding	bar	where	the	size	of	every
bar	signifies	the	metric	aggregation.

The	chart	that	we	would	like	to	create	will	show	the	comparison	of	the	top	languages	in
which	users	tweeted,	along	with	the	retweet	count	for	those	languages	over	a	period	of
time.	In	this,	we	will	split	the	bars	on	the	basis	of	the	top	languages,	split	the	chart	on	the
basis	of	retweet.retweet_count,	and	the	X-axis	will	contain	the	period	of	time:

1.	 Firstly,	specify	the	metrics	on	the	Y-axis	as	count	(though	it’s	not	limited,	it	can	use
any	other	metric	as	per	requirement).

2.	 Then	we	add	a	new	X-axis	bucket,	having	aggregation	as	date	histogram	using	the
field	created_at	with	the	interval	of	minute.	After	adding	this,	we	will	get	a	count	of
tweets	on	a	per	minute	basis	in	terms	of	a	histogram.

3.	 Then	we	will	add	a	Split	Bars	sub-bucket	and	add	sub-aggregation	of	terms
specifying	the	field	language	with	top	2	size.	After	adding	this,	we	have	split	the	bar
showing	the	top	2	languages	which	have	been	tweeted	by	users	on	a	per	minute	basis.

4.	 To	display	the	range	of	retweet	count	for	the	top	2	languages	we	will	add	a	Split
Chart	sub-bucket	having	sub-aggregation	as	Range	specifying	the	field
retweet.retweet_count	with	the	ranges	defined	as	from	0	to	5	and	from	5	to	10.

5.	 Finally,	click	on	the	Apply	Changes	button	to	view	the	visualization,	which	shows
tweets	from	users	on	a	per	minute	basis,	specifying	the	top	2	languages	in	which
users	have	tweeted,	along	with	splitting	the	bar	chart	on	the	basis	of	the	retweet	count
range.

Note
While	using	bar	charts	you	may	encounter	the	following	error	message:	This
container	is	too	small	to	render	the	visualization.	It	shows	an	error	as	the
visualization	created	using	the	buckets	cannot	fit	into	the	preview	visualization
canvas.

You	can	see	the	output	in	the	form	of	the	screenshot,	as	follows:

In	the	previous	screenshot,	the	bar	mode	is	stacked	(by	default),	which	shows	all	the
documents	across	the	buckets	from	the	height	of	the	stacked	elements.

Let’s	save	this	visualization	as	BarChart,	which	will	be	used	in	Chapter	4,	Exploring	the
Dashboard	Page.

In	the	Options	tab,	by	default,	Bar	Mode	is	set	as	stacked	but	can	be	changed	to	other	bar
modes	by	selecting	the	following	bar	modes.

Percentage
In	this	bar	mode,	the	height	of	the	bar	will	always	be	shown	as	100%	and	the	count	for
each	bucket	will	be	displayed	in	terms	of	percentage	of	the	whole	bar.

For	example,	at	a	particular	time	(June	2,	12:45)	we	have	52	as	the	retweet	count	in	range
0	-	5	for	the	English	language,	and	12	as	the	retweet	count	in	range	0	-	5	for	Japanese,	so
in	percentage	mode	we	will	be	shown	52	retweet	counts	along	with	81.3%,	meaning	[(52	/
64)	*	100]	where	64	=	52	+	12:

Grouped
This	bar	mode	groups	the	results	of	each	bucket	and	displays	them	alongside	each	other:

Also,	other	view	options	alter	the	following	behavior	of	bar	charts:

Current	Time	Marker:	Check	this	box	to	draw	a	red	line	on	current	time	data
Set	Y-Axis	Extents:	Check	this	box	to	specify	the	y-max	and	y-min	fields	to	set
specific	values	for	the	Y-axis
Scale	Y-Axis	to	Data	Bounds:	Check	this	box	to	change	upper	and	lower	bounds	to
match	values	returned	in	data
Show	Tooltip:	Check	this	box	to	enable	information	when	hovering	over
visualization
Show	Legend:	Check	this	box	to	view	the	legend,	which	is	shown	next	to	the	chart

Summary
In	this	chapter,	we	learned	about	the	various	types	of	aggregation	provided	by
Elasticsearch	in	Kibana.	It	provided	an	insight	into	the	importance	of	using	aggregations
for	visualizing	data	in	Kibana.	It	was	followed	up	with	explanation	of	the	different	types
of	visualization	present	in	Kibana,	along	with	a	detailed	explanation	of	each	type	of
visualization	and	its	options.

In	the	next	chapter,	we	will	learn	about	the	usage	of	the	Dashboard	page	in	Kibana,	along
with	using	the	visualizations	created	to	easily	form	a	beautiful	dashboard.	We	will	explore
how	Kibana	provides	an	easy	way	to	form	dashboards,	along	with	instant	sharing	and
embedding	of	dashboards.

Chapter	4.	Exploring	the	Dashboard	Page
Dashboard	is	one	of	the	pages	present	in	Kibana	4	that	provides	you	with	a	single	page
for	you	to	use	your	saved	visualizations.	It	is	used	to	combine	the	different	types	of
visualizations	created	and	display	them	on	a	single	page.	The	visualizations	added	to	the
dashboard	can	be	arranged	in	any	way	as	per	the	user’s	requirements.	They	can	easily	be
moved,	resized,	edited,	and	removed.	This	page	is	very	useful	as	it	displays	all	types	of
visualizations	created,	which	makes	data	easier	to	understand	rather	than	going	through
the	data	itself.

The	advantages	of	the	Dashboard	page	in	Kibana	are	as	follows:

It	provides	a	single	view	page	for	visualizations,	that	caters	to	a	business’	need
It	is	easier	to	understand	data	visually	rather	than	having	to	interpret	raw	data
It	is	easy	to	use	visualizations	on	multiple	dashboards	without	coding
The	dashboard	and	visualizations	are	updated	automatically	as	more	data	flows	in
Editing	the	visualization	will	update	the	changes	in	all	dashboards	that	use	that
visualization
You	can	filter	the	dashboard	based	on	search	queries,	which	will	change	the
visualizations	in	a	dashboard	as	per	the	search	results
You	can	create	filters	by	clicking	on	any	visualization

Note
To	create	a	dashboard,	there	should	be	at	least	one	saved	visualization.

When	you	open	the	Dashboard	page,	you	will	be	greeted	with	the	following	empty
Kibana	dashboard:

As	shown	in	the	preceding	image:

The	time	filter	contains	data	about	a	particular	time	interval.

The	toolbar	consists	of	a	search	bar	along	with	these	options:	New	Dashboard,	Save
Dashboard,	Load	Saved	Dashboard,	and	Share	and	Add	Visualization.
The	dashboard	canvas	is	used	to	display	the	added	visualizations.	Also,	when	the

dashboard	is	empty,	it	states	Click	on	the	add	button	 	to	add	a	visualization	to
the	dashboard.

Note
Make	sure	that	the	time	filter	is	correct.	By	default,	it	is	set	to	the	last	15	minutes.

In	this	chapter,	we	are	going	to	take	a	look	at	the	following	topics:

Adding	visualizations	to	dashboard
Saving	a	dashboard
Customizing	visualizations	in	dashboard
Embedding	a	dashboard	into	a	web	page
Explanation	of	debug	panel

To	understand	these	topics	in	a	better	way,	let’s	explore	the	Dashboard	page.

Understanding	the	toolbar
The	toolbar	is	an	important	component	of	the	Dashboard	page	as	it	provides	various
options	to	deal	with	visualizations.	The	search	bar	is	used	to	specify	the	search	query	or
filters	that	are	used	to	analyze	a	visualization.	Whenever	a	search	query	is	specified,	it
checks	in	all	the	documents	and	return	the	results	of	the	search	query.	The	existing
visualizations	are	updated	as	per	the	search	query	results	obtained.	The	toolbar	consists	of
a	search	bar	along	with	option	buttons	such	as	New	Dashboard,	Save	Dashboard,	Load
Saved	Dashboard,	and	Share	and	Add	Visualization.

Let’s	understand	the	usage	of	the	different	options	of	the	toolbar	in	detail.

The	New	Dashboard	option
New	Dashboard	provides	the	option	to	start	adding	visualizations	to	an	empty	dashboard.
It	empties	the	visualizations	created	and	added	to	the	dashboard.	It	also	empties	the

current	dashboard.	This	is	done	by	clicking	on	the	New	Dashboard	button	 	which	is
situated	on	the	toolbar,	beside	the	search	bar,	as	shown	in	the	following	screenshot:

Note
If	you	have	added	visualizations	to	a	dashboard	and	without	saving	it	if	you	click	on	New
Visualization,	then	the	added	visualizations	will	be	gone.	You	will	need	to	add	those
visualizations	again.

Adding	visualizations
The	Add	Visualization	option	provides	the	option	of	adding	visualizations	to	the
dashboard.	You	can	add	as	many	saved	visualizations	as	you	want.	When	using	an	empty
dashboard,	you	can	click	on	the	add	button	from	the	dashboard	canvas	or	the	add	button	

	situated	at	the	end	of	the	toolbar	beside	the	share	button.

To	add	a	visualization,	perform	the	following	steps:

1.	 Click	on	the	Add	Visualization	button,	as	shown	here:

2.	 Specify	the	name	of	the	saved	visualization	that	you	want	to	add,	as	shown	in	the
following	screenshot:

Note
You	can	search	for	a	visualization	by	typing	the	name	in	the	Visualization	Filter
field,	which	will	filter	as	per	the	search.

3.	 The	visualization	that	you	select	will	appear	on	the	dashboard	canvas	within	a
container.

Let’s	create	a	dashboard	by	adding	saved	visualizations	(saved	in	Chapter	3,	Exploring	the
Visualize	Page).

We	will	add	the	following	saved	visualizations:

AreaChart
PieChart
LineChart

BarChart
Line_Bubble

The	dashboard	created	in	the	preceding	screenshot	does	not	look	visually	beautiful,	nor	is
it	interesting	to	view	at	a	glance.	To	make	this	dashboard	look	attractive,	we	will	explore
more	customization	options	in	the	Understanding	the	dashboard	canvas	section.

Note
You	can	also	add	saved	searches	into	dashboards.	They	can	be	added	by	clicking	on	the
add	button	and	selecting	a	saved	search	from	the	searches	tab,	which	is	present	beside	the
Visualizations	tab.	Saved	searches	are	represented	in	the	dashboard	by	the	document	data,
which	shows	filtered	results	as	per	the	search	query.

Using	the	search	bar
After	adding	visualizations,	we	can	query	the	dashboard	in	a	similar	way	to	how	we
queried	in	Chapter	2,	Exploring	the	Discover	Page.	As	per	the	search	query	entered,	all
the	relevant	visualizations	will	be	updated	with	the	result	of	the	search	query.	This	is	a
crucial	functionality	provided	in	Kibana,	which	makes	it	easier	to	analyze	data	and
monitor	the	data/trends	for	different	requirements.

The	Save	Dashboard	option
The	Save	Dashboard	option	provides	the	option	of	saving	a	dashboard.	It	is	used	to	save
the	visualizations	that	are	currently	added	to	the	dashboard.	This	option	is	situated	beside
the	New	Dashboard	button	in	the	toolbar.

To	save	a	dashboard,	follow	these	steps:

1.	 Click	on	the	Save	Dashboard	button	 	present	in	the	toolbar	next	to	the	New
Dashboard	button,	as	shown	here:

2.	 Give	this	dashboard	a	name	to	save	with.	We	will	use	Kibana_Dashboard	as	the	name
to	save	our	dashboard:

3.	 Click	on	Save	to	save	the	dashboard.	Whenever	any	changes	are	made	to	the
dashboard,	you	need	to	save	it.

Note
If	you	select	the	checkbox	for	Store	time	with	dashboard	then	it	will	save	the	time
filter	along	with	the	visualizations.	Whenever	you	load	this	saved	dashboard,	the	time
filter	will	automatically	be	changed.

The	Load	Saved	Dashboard	option
The	Load	Saved	Dashboard	option	provides	the	option	of	loading	a	saved	dashboard.	It	is
used	to	load	a	dashboard	that	contains	visualizations.	This	option	is	situated	beside	the
save	dashboard	button	on	the	toolbar.

To	load	a	saved	dashboard,	perform	the	following	steps:

1.	 Click	on	the	load	saved	dashboard	button	 	present	on	the	toolbar,	next	to	the	Save
Dashboard	button,	as	shown	in	this	screenshot:

2.	 Specify	the	saved	dashboard	name	to	load	it.	All	saved	dashboards	are	displayed
below	the	search	bar.

3.	 Click	on	the	name	of	the	saved	dashboard	to	load	it,	as	shown	in	the	following
screenshot:

Sharing	the	saved	dashboard
The	Share	option	provides	the	option	of	sharing	your	saved	dashboard	among	people	who
wish	to	view	it.	It	also	provides	the	option	of	either	sharing	the	link	of	your	dashboard	or
embedding	the	dashboard	within	any	HTML	page	(which	would	still	require	access	to
Kibana	for	viewing).	This	option	is	situated	beside	the	load	saved	dashboard	button	on	the
toolbar.

To	share	a	dashboard,	follow	these	steps:

1.	 Click	on	the	share	button	 	on	the	toolbar,	next	to	the	load	saved	dashboard
button,	as	shown	here:

2.	 Upon	clicking	on	it,	you	will	find	the	link	for	embedding	this	dashboard	and	sharing
it,	like	this:

3.	 Click	on	the	copy	to	clipboard	button	 	beside	Share	a	link	to	copy	the	link	and
share	it.	Alternatively,	you	can	copy	the	clipboard	button	beside	Embed	this
dashboard	and	paste	the	iframe	source	in	an	HTML	page	to	display	visualizations
in	a	web	page/application.

Later	in	this	chapter,	in	the	Embedding	Dashboard	in	a	web	page	section,	an	example	of
how	to	embed	a	dashboard	in	a	simple	web	page	will	be	shown.

Understanding	the	dashboard	canvas
The	dashboard	canvas	provides	a	preview	of	all	saved	visualizations	added	to	the
dashboard.	As	every	added	visualization	appears	on	the	dashboard	canvas	within	a
container,	we	will	explore	various	ways	of	customizing	these	containers.	By	customizing
these	containers,	we	can	easily	create	a	beautiful	visualization.

Moving	visualizations
In	a	dashboard,	you	can	rearrange	the	added	visualizations	as	per	your	liking.	We	can
move	the	container	that	has	visualizations	anywhere	in	the	dashboard.

To	move	containers,	perform	these	steps:

1.	 Click	and	drag	the	container	title	bar	(heading)	using	the	mouse.
2.	 Release	the	button	where	you	wish	to	confirm	the	new	location	for	the	visualization.

Note
While	you	are	moving	a	container,	other	containers	will	shift	as	per	the	size	of	the
moving	container.

Resizing	visualizations
In	a	dashboard,	you	can	also	resize	the	added	visualizations	as	per	your	liking.	You	can
resize	the	container	containing	visualizations	anywhere	in	the	dashboard.

To	resize	containers,	perform	the	following	steps:

1.	 Move	your	mouse	pointer	to	the	bottom-right	corner	of	the	container	until	your
pointer	changes	to	indicate	the	resize	option	at	the	corner.

2.	 Click	and	drag	to	resize	the	visualization.
3.	 Release	the	button	where	you	wish	to	confirm	the	new	size	of	the	visualization.

Editing	visualizations
Furthermore,	in	a	dashboard,	you	can	edit	existing	visualizations.

To	edit	a	visualization,	perform	these	steps:

1.	 Click	on	the	edit	visualization	button	 	on	the	title	bar	of	the	container.
2.	 You	will	be	taken	to	the	visualization	canvas	page,	where	you	can	edit	it.
3.	 After	editing,	click	on	the	save	visualization	button.	The	saved	visualization	will

automatically	be	updated	on	the	dashboard.

Removing	visualizations
You	can	remove	existing	visualizations	from	a	dashboard.	This	provides	you	with	the
flexibility	to	create	a	dashboard	as	per	your	required	visualizations	and	delete	unnecessary
visualizations.

Note
If	you	are	removing	visualizations,	please	remember	that	this	does	not	delete	the
underlying	visualization,	but	only	removes	the	link	to	the	visualization	from	the
dashboard.

To	remove	a	container,	click	on	the	remove	container	button	 	present	on	the	title	bar	of
the	container.

After	using	the	aforementioned	customizing	options,	we	have	transformed	the	dull-
looking	dashboard	into	a	visually	beautiful	dashboard,	as	shown	in	the	following
screenshot:

The	preceding	dashboard	provides	a	beautifully	crafted	visualization	that	can	easily	be
analyzed	instead	of	analyzing	a	huge	amount	of	raw	data.	Trends	can	easily	be	understood
using	various	types	of	charts,	as	you	can	see.

Note
By	default,	all	dashboards	in	Kibana	4	are	stored	in	the	.kibana	index.	If	you	delete	this
index	(manually	or	by	clearing	all	indexes	in	Elasticsearch)	then	all	your	saved	searches,
visualizations,	and	dashboards	will	be	lost.

Embedding	a	dashboard	in	a	web	page
We	will	use	the	saved	dashboard	and	click	on	the	copy	to	clipboard	button	beside	Embed
this	dashboard	option	to	copy	the	link	for	embedding.	We	will	create	a	simple	HTML	file
and	use	this	iframe	source	to	embed	it	in	a	web	page:

<html>

<head>

<title>	Kibana_Embed</title>

</head>

<body>

<center>Have	a	look	at	the	functionality	of	embed	in	Kibana	4.1	

</center>

<iframe	src="http://localhost:5601/#/dashboard/Kibana_Dashboard?embed&_a=

(filters:!(),panels:!

((col:1,id:AreaChart,row:1,size_x:6,size_y:3,type:visualization),

(col:7,id:BarChart,row:5,size_x:6,size_y:3,type:visualization),

(col:1,id:Line_Bubble,row:8,size_x:12,size_y:5,type:visualization),

(col:1,id:LineChart,row:5,size_x:6,size_y:3,type:visualization),

(col:7,id:PieChart,row:1,size_x:6,size_y:3,type:visualization)),query:

(query_string:(analyze_wildcard:!t,query:'*')),title:Kibana_Dashboard)&_g=

(refreshInterval:(display:Off,pause:!f,section:0,value:0),time:(from:'2015-

06-02T07:15:00.000Z',mode:absolute,to:'2015-06-02T08:03:00.000Z'))"	

height="600"	width="800"></iframe>

</body>

</html>

In	the	preceding	HTML	file,	we	added	an	iframe	source	that	contains	different
visualizations	added	to	the	dashboard	in	which	we	can	customize	properties	such	as
(though	not	limited	to)	rows,	x	axis,	y	axis,	height,	and	width	for	every	visualization.

The	HTML	page	that	we	just	described	looks	like	this:

Note
Elasticsearch	and	Kibana	should	be	running	in	order	to	access	embedded	visualizations.
Besides,	you	can	share	and	embed	individual	dashboards	and	visualizations.

Understanding	the	debug	panel
The	debug	panel	is	used	to	view	the	raw	data	of	Elasticsearch	behind	a	visualization.	It
will	give	us	detailed	information,	such	as	the	results	of	the	visualization	and	what	the
request	of	Elasticsearch	was,	along	with	the	response	from	Elasticsearch,	and	the	statistics
behind	it.

To	view	the	debug	panel,	click	on	the	caret	(^)	button.	It	is	at	the	bottom	of	each
visualization.

Let’s	take	a	look	at	the	debug	panel	with	Bar	Chart	created	in	Chapter	3,	Exploring	the
Visualize	Page,	which	shows	the	top	five	languages	that	have	retweet.retweet_count	in
the	ranges	of	0-10	and	10-20.

Table
Table	represents	the	data	behind	the	visualization	in	the	form	of	a	table.	This	table
contains	data	in	the	form	of	pages.	You	can	sort	this	data	by	clicking	on	any	of	the	headers
of	the	columns,	as	shown	here:

In	the	preceding	screenshot,	you	can	view	the	raw	data	underlying	the	visualization.	You
can	even	change	the	Page	Size	value	to	accommodate	the	results	in	one	page.	Also	you
can	export	the	tabular	form	data	in	either	raw	form	or	formatted	form,	which	is	exported
as	a	CSV	file.

Request
Request	represents	the	raw	request	sent	to	Elasticsearch	as	a	query,	which	is	in	a	JSON
format.	It	displays	the	Elasticsearch	request	body,	which	can	be	directly	queried	from
Elasticsearch	for	the	created	visualization:

Response
Response	represents	the	raw	response	received	from	Elasticsearch	as	the	result	of	the
request	query,	which	is	in	a	JSON	format.	It	displays	the	Elasticsearch	response	body,
which	is	the	result	of	the	query	for	the	created	visualization	obtained	from	Elasticsearch:

Statistics
Statistics	represents	the	statistics	used	for	the	query	in	a	tabular	format,	such	as	Query
Duration,	Request	Duration,	Hits	(the	total	number	of	records),	and	Index,	as	shown
here:

Note
The	debug	panel	can	also	be	accessed	from	the	Discover	page	(at	the	bottom	of	the
histogram)	and	the	Visualize	page	(at	the	bottom	of	the	visualization).

Summary
In	this	chapter,	we	covered	the	advantages	of	using	dashboards	in	Kibana.	This	was
followed	by	an	explanation	of	the	various	components	of	the	Dashboard	page.	This
chapter	then	provided	an	insight	into	the	importance	of	using	the	Dashboard	page	to
create	beautiful	dashboards,	by	combining	various	visualizations	and	customizing	each	of
them	to	fit	into	a	single	panel.	It	also	taught	you	how	to	embed	a	dashboard	within	a	web
page.

In	the	next	chapter,	you	will	understand	the	Settings	page	in	Kibana.	We	will	explore	how
to	customize	and	tweak	the	basic	and	advanced	settings	used	in	Kibana.

Chapter	5.	Exploring	the	Settings	Page
The	Settings	page	is	one	of	the	pages	present	in	Kibana	4	that	helps	you	customize	and
tweak	the	various	settings	provided	in	order	to	use	Kibana	efficiently.	This	page	gives	you
a	full	overview	of	the	different	types	of	indices	present	wherein	you	can	configure	as
many	index	patterns	as	you	want,	followed	by	the	advanced	settings	in	which,	settings	that
are	either	undocumented,	unsupported,	or	experimental	can	be	tweaked,	along	with
managing	and	editing	saved	objects	such	as	Dashboards,	Searches,	and	Visualizations.

Note
Use	advanced	settings	very	carefully,	changing	it	can	have	unintended	outcomes.

The	Settings	page	contains	the	following	tabs:

Indices
Advanced
Objects
About

In	this	chapter,	we	will	go	through	all	of	these	tabs	in	brief.	Let’s	explore	these	tabs	and
understand	the	settings	provided	for	each	of	them.

Indices
The	Indices	tab	is	used	to	edit	settings	related	to	the	index.	Within	this	tab,	you	can
configure/add	an	index	pattern,	set	any	index	as	default,	and	remove	the	index	pattern.
You	can	also	view	information	related	to	every	field	and	edit	the	field	properties.

Configuring	an	index	pattern
Indices	is	the	default	tab	that	opens	whenever	you	start	Kibana	or	click	on	the	Settings
page.	As	Elasticsearch	uses	an	index	to	process	data,	it	remains	the	most	important
component,	without	which	we	cannot	analyze	data,	create	visualizations,	or	build
dashboards.	Index	is	the	heart	of	Elasticsearch	and	Kibana.

It	displays	the	following	information	when	opened:

By	default,	an	index	contains	time-based	events	that	are	ticked.	If	your	data	does	not
contain	any	time-based	event,	then	you	can	uncheck	the	checkbox	in	order	to	configure	an
index.

Note
If	your	index	does	not	contain	the	time-stamped	field,	then	uncheck	the	Index	contains	the
time-based	events	option	to	add	index	to	Kibana.	When	viewing	the	Discover	page,	the
histogram	will	not	be	displayed,	though	all	the	document	data	will	be	shown.

While	configuring	indices,	you	can	use	patterns	such	as	*	(asterisk),	which	matches	zero
or	more	characters.

For	example,	suppose	you	have	indices	such	as	kibana-,	kibana-1,	kibana-2,	and
kibana-10,	each	containing	five	documents	in	every	index.

In	this,	you	can	use	the	*	pattern	and	define	the	index	pattern	as	kibana-*,	which	will	read
all	the	aforementioned	indices	and	add	them	for	use	in	Kibana.	In	Kibana,	Indices	tab	will
show	a	single	index	under	the	index	pattern	kibana-*,	and	under	this	index,	all	the
matching	indices	documents	will	be	shown;	that	is,	the	kibana-*	index	will	contain	20
documents:

Note
Searching	for	indices	using	wildcard	patterns	is	an	inefficient	way	of	searching.	For
example,	if	you	are	searching	only	for	the	last	15	minutes	of	data	but	are	using	the
kibana-*	index	pattern	in	your	query,	you	are	forcing	Elasticsearch	to	consult	all	the
indices	to	check	whether	they	contain	any	data.

You	can	also	use	the	date	format	pattern	to	add	indices	that	have	the	event
times/timestamp	attached	to	it.

For	example,	suppose	you	have	indices	such	as	kibana1-2015-08-12,	kibana1-2015-07-
27,	and	kibana1-2015-06-02.

To	define	the	event	times,	tick	the	Use	event	times	to	create	index	names	option.	Upon
clicking	on	it,	you	will	see	the	following	options	to	define:

In	this,	you	can	define	Index	pattern	interval,	which	defines	how	frequently	the	index	is
created	and	can	be	chosen	as	Hourly,	Daily,	Weekly,	Monthly,	or	Yearly.

Then,	define	the	index	pattern	as	[kibana1-]YYYY-MM-DD,	which	will	read	all	the
aforementioned	indices	and	add	them	for	use	in	Kibana:

It	displays	the	added	index	pattern	on	the	left,	under	Index	Patterns,	as	shown	in	this
screenshot:

Note
Searching	for	indices	using	this	pattern	is	much	more	efficient	than	searching	for	them
using	the	wildcard	pattern,	that	is,	the	kibana-*	index	pattern.

For	additional	properties	related	to	an	index,	click	on	the	index	to	view	the	following
options:

Setting	the	default	index	pattern
The	default	index	pattern	is	used	to	automatically	select	an	index	for	use	in	the	Discover
tab.	The	default	index	selected	is	used	to	view	data	in	the	Discover	tab.	Kibana	puts	a	star
just	before	the	name	of	the	index	as	listed	in	Index	Patterns.	The	first	index	created	is,	by
default,	selected	as	the	default	index.

To	change	the	default	index	pattern:

1.	 Click	on	the	index	name	that	you	want	to	set	as	default	under	Index	Patterns.

2.	 Click	on	the	favorite	button	 	to	set	it	as	the	default	index.

Reloading	the	index	fields	list
Kibana	automatically	retrieves	the	index	along	with	the	fields	associated	with	the	index
from	Elasticsearch.	Reloading	the	index	fields	list	provides	the	flexibility	to	include	newly
added	fields	in	the	index	by	reloading	the	index.	Reloading	the	index	resets	the	popularity
counter	for	fields,	which	shows	the	fields	that	are	most	often	used	by	the	user.

To	reload	the	index	fields	list:

1.	 Click	on	the	index	name	under	Index	Patterns	for	which	you	want	to	reload	the
field.

2.	 Click	on	the	reload	button	 	to	reload	the	field	list.

Removing	an	index	pattern
This	feature	is	used	to	remove	an	index	pattern	added	to	Kibana.

To	remove	an	index	pattern:

1.	 Click	on	the	index	name	that	you	want	to	delete	under	Index	Patterns.

2.	 Click	on	the	delete	button	 	to	remove	the	index	pattern.

Managing	the	field	properties
After	you	click	on	the	index	name	along	with	additional	properties	as	explained	earlier,
more	customizations	are	provided	for	editing	each	field	property.	Let’s	explore	the
information	provided	by	the	fields:

Name:	This	displays	the	name	of	the	field.
Type:	This	displays	the	type	of	the	field	and	whether	it	contains	a	date,	number,
string,	or	geo-point.
Format:	This	displays	the	format	of	the	type	of	field.	For	every	field	type,	we	can	set
the	format.	The	supported	formats	for	each	field	type	are	mentioned	here:

Field	type Supported	formats

String URL	and	string

Number URL,	bytes,	number,	percentage,	and	string

Date URL,	date,	and	string

Geo_point String

Boolean URL	and	string

Analyzed:	This	indicates	whether	the	field	is	analyzed	or	not.	The	analyzed	fields	are
tokenized	into	single	words;	that	is,	if	a	string	contains	multiple	words,	they	are
broken	into	single	words.	For	example,	if	a	string	contains	United	Kingdom	and	it	is
an	analyzed	field,	then	it	will	be	tokenized	as	United	and	Kingdom.	If	the	field	is	not
analyzed,	it	will	not	be	tokenized	and	will	remain	as	a	single	word.
Indexed:	This	indicates	whether	the	field	is	indexed	or	not.

The	field	type	format

To	change	the	format	of	the	field	type,	click	on	the	pencil	button	 	under	the	heading	of
controls.	Let’s	explore	the	various	supported	formats	in	detail:

String:	This	is	used	to	apply	the	following	transformations	to	the	field:

Lower	case:	This	converts	the	text	in	field	to	lowercase.
Upper	case:	This	converts	the	text	in	field	to	uppercase.
Short	dots:	This	replaces	the	content	before	the	.	(dot)	character	with	the	first
character.

For	example,	change	the	format	of	the	text	field	to	string	and	transform	into
upper	case.

After	you	have	selected	the	transformation,	click	on	the	Update	Fields	button	to
reflect	the	changes.	As	you	can	see	here,	the	result	to	the	left	was	obtained	using
the	default	options,	while	the	screenshot	to	the	right	was	obtained	after
transforming	to	uppercase:

URL:	This	is	used	to	apply	the	following	types	to	the	field:

Link:	This	is	used	to	convert	the	text	in	the	field	into	a	URL.
URL	Template:	This	is	used	to	add	text/values	to	the	link.	It	provides
{{value}},	which	gives	the	url-escaped	values,	and	{{rawValue}}	gives	the
values	in	raw	form	as	its	input.
Label	Template:	This	is	used	to	replace	the	URL	with	any	text	string.
Image:	This	is	used	to	specify	the	image	directory	in	which	the	images	are
located.

For	example,	let’s	change	the	format	of	the	text	field	to	URL	and	specify	the
type	as	Image.	Enter	URL	Template	as	{{rawValue}}	(by	default,	if	this	is
empty,	it	is	set	to	rawValue).	Enter	Label	Template	as	User	Image.

As	you	can	see	here,	the	screenshot	to	the	left	was	obtained	using	the	Default
options,	while	the	screenshot	to	the	right	was	obtained	using	the	link	options:

Note

If	you	add	this	field	by	clicking	on	Add	beside	the	column	name,	then	you	will	be
able	to	see	images	corresponding	to	the	user	profile	images.

Date:	This	is	used	to	display	the	timestamp	using	the	moment.js	format	pattern.	By
default,	the	pattern	is	MMMM	DD	YYYY,	HH:mm:ss.SSS.

Here	is	an	example,	change	the	format	of	the	text	field	to	Date	and	input	the	pattern
as	DD-MMM-YYYY	HH:mm:ss.SSS.

Again,	the	screenshot	to	the	left	was	obtained	using	the	Default	options,	while	the
screenshot	to	the	right	was	obtained	after	changing	the	Default	options:

Number:	This	is	used	to	display	numbers	using	the	numeral.js	format	pattern.	By
default,	the	pattern	is	0,0.[000].
Bytes:	This	is	also	used	to	display	numbers	using	the	numeral.js	format	pattern.	By
default,	the	pattern	is	0,0.[000]b.
Percentage:	This	too	is	used	to	display	numbers	using	the	numeral.js	format
pattern.	By	default,	the	pattern	is	0,0.[000]%.

Note
After	you’ve	clicked	on	an	index	in	the	Fields	tab,	beside	it,	you	will	see	a	number.
This	number	denotes	the	total	number	of	fields	in	an	index.

Advanced
This	tab	is	for	advanced	users.	It	provides	the	options	of	editing	the	settings	that	directly
control	the	Kibana	application.	The	settings	can	be	undocumented,	unsupported,	or
experimental.	Tweaking	the	settings	can	cause	unexpected	behavior.

To	set	Advanced	Settings,	perform	the	following	steps:

1.	 Go	to	Settings	|	Advanced.

2.	 Click	on	the	edit	button	 	for	the	option	that	you	want	to	edit.
3.	 Enter	a	new	value.

4.	 Click	on	the	save	button	 .

A	few	examples	are	given	here:

Changing	discover:	The	sampleSize	option	shows	the	number	of	rows	in	a	table.
The	default	is	500;	change	it	to	100.	Now	scroll	to	the	bottom	of	the	Discover	page.

Changing	the	histogram:	The	barTarget	option	is	used	to	try	to	generate	the
number	of	bars	when	there	is	a	specified	auto-interval	in	the	date	histogram.	By
default,	it	is	50;	change	it	to	10.	Now	go	to	the	Visualize	page	and	create	a	date
histogram.

As	shown	here,	the	screenshot	on	top	was	obtained	using	the	default	options	while
the	screenshot	below	it	was	obtained	after	changing	the	default	options:

Changing	the	csv:separator	option:	This	is	used	to	separate	exported	values.	By
default,	it	is	,	(comma);	change	it	to	:	(colon).
Changing	the	csv:quoteValues	option:	This	is	used	to	define	whether	the	value
should	be	quoted	when	CSV	is	exported.	The	default	is	true;	change	it	to	false.

Now	open	the	saved	Data	Table	visualization	and	export	the	data	in	the	Raw	format.

The	screenshot	to	the	left	was	obtained	using	the	default	options,	while	the
screenshot	to	the	right	was	obtained	after	changing	the	default	options:

Objects
This	tab	is	used	to	view,	edit,	delete,	export,	and	import	saved	objects,	such	as	saved
searches,	saved	visualizations,	and	saved	dashboards.

Managing	saved	searches,	visualizations,	and
dashboards
This	provides	an	advanced	setting	in	which	modification	of	an	existing	saved	object	can
be	done.	It	enhances	the	reusability	of	created	searches,	visualizations,	or	dashboards.	The
objects	can	be	viewed,	edited,	deleted,	exported,	or	imported	into	Kibana.	To	manage
saved	objects,	go	to	Settings	|	Objects.	The	following	page	will	be	displayed:

Viewing	a	saved	object
In	this	setting,	it	provides	a	single	page	to	view	all	the	saved	objects.	The	saved	objects
can	be	viewed	in	the	Objects	tab	which	is	under	the	Settings	page.	If	you	have	saved	a
search	in	the	Discover	page,	it	will	be	listed	inside	the	Searches	tab.	If	you	have	saved	a
visualization	in	the	Visualize	page,	it	will	be	listed	inside	the	Visualizations	tab.	If	you
have	saved	a	dashboard	in	the	Dashboard	page,	it	will	be	listed	inside	the	Dashboards
tab.

To	view	a	saved	object,	follow	these	steps:

1.	 Click	on	the	Settings	tab,	followed	by	the	Objects	tab.
2.	 All	the	saved	objects	will	be	displayed	within	the	respective	tabs.
3.	 Click	on	the	selection	box	to	select	the	object	that	you	want	to	view.

4.	 Click	on	the	view	button	 .

Editing	a	saved	object
With	the	setting	of	editing	a	saved	object,	Kibana	provides	the	flexibility	to	directly	alter
the	object	description,	the	object	metadata,	the	object	saved	name,	and	the	JSON	that
specifies	all	the	properties	of	the	object.

To	edit	a	saved	object,	perform	the	following	steps:

1.	 Click	on	the	Settings	tab,	followed	by	the	Objects	tab.
2.	 All	the	saved	objects	will	be	displayed	within	the	respective	tabs.
3.	 Click	on	the	selection	box	to	select	the	object	that	you	want	to	edit.

4.	 Then	click	on	the	edit	button	 .
5.	 Make	changes	to	the	object	name,	description,	metadata,	or	object	properties.

6.	 Click	on	the	save	object	button	 .

Note
Directly	clicking	on	the	name	of	the	saved	object	will	lead	you	to	edit	the	saved
object	page.

Deleting	a	saved	object
With	this	setting,	you	can	delete	any	created	or	saved	object.	It	provides	an	easy	way	to
directly	delete	saved	objects.

To	delete	a	saved	object,	follow	these	steps:

1.	 Click	on	the	Settings	tab	and	then	on	the	Objects	tab.
2.	 All	the	saved	objects	will	be	displayed	within	the	respective	tabs.
3.	 Click	on	the	selection	box	to	select	the	object	that	you	want	to	delete.

4.	 Then	click	on	the	delete	button	 .

Exporting	saved	objects
Once	you	do	this	setting,	you	can	easily	export	saved	objects	and	they	can	be	reused
whenever	needed.	By	exporting	saved	objects,	a	backup	can	easily	be	maintained,	which
can	be	used	if	the	object	gets	deleted	or	corrupted.

To	export	a	saved	object,	perform	the	following	steps:

1.	 Again,	click	on	the	Settings	tab	and	then	on	the	Objects	tab.
2.	 All	the	saved	objects	will	be	displayed	within	the	respective	tabs.
3.	 Click	on	the	selection	box	to	select	the	object	that	you	want	to	export.

4.	 Click	on	the	export	button	 	and	specify	the	location	to	save	the	object
exported	in	JSON	format	at.

Importing	saved	objects
With	this	setting	you	can	easily	import	saved	objects	providing	the	ability	to	reuse
whenever	needed.

To	import	saved	objects:

1.	 Click	on	the	Settings	tab,	followed	by	the	Objects	tab.
2.	 Click	on	the	import	button	to	import	the	saved	object.
3.	 Specify	the	filename	to	be	imported,	which	contains	the	saved	object	JSON	data.
4.	 Click	on	Open	after	choosing	the	file.

Note
If	you	import	an	object	that	already	exists,	you	will	be	asked	whether	you	want	to
overwrite	the	existing	object	or	not.

About
This	tab	provides	a	few	details	of	Kibana,	such	as	the	running	Version,	the	Build	number,
and	Commit	SHA.	This	page	can	be	viewed	by	going	to	Settings	|	About,	and	it	displays
the	following	information:

Summary
In	this	chapter,	we	covered	the	various	basic	and	advanced	settings	provided	in	Kibana.
Initially,	we	covered	how	to	configure	the	index	pattern,	followed	by	setting	the	default
index,	deleting	the	index	pattern,	and	customizing	the	various	properties	of	fields.	This
was	followed	by	tweaking	advanced	settings.	This	can	break	the	software	if	not	used
properly.	Finally,	we	covered	how	to	manage	saved	searches,	visualizations,	and
dashboards,	including	viewing,	editing,	deleting,	exporting,	and	importing	saved	objects.

In	the	next	chapter,	which	is	also	the	final	chapter	of	this	book,	we	will	see	how	to	use
Kibana	for	real-time	Twitter	data	analysis	and	create	beautiful	visualizations	for	different
scenarios.

Chapter	6.	Real-Time	Twitter	Data
Analysis
After	understanding	the	various	components	of	Kibana,	let’s	explore	in	detail	how	to	use
Kibana	to	analyze	and	visualize	data	for	real-world	scenarios.	In	this	chapter,	we	will	see
an	end-to-end	workflow	of	how	to	fetch	Twitter	data,	along	with	storing	data	in
Elasticsearch.	This	will	be	followed	by	building	beautiful	visualizations	in	Kibana	to
examine	various	scenarios.

The	two	possible	ways	of	fetching	Twitter	data	directly	into	Elasticsearch	are	by	using:

Elasticsearch	Twitter	river
Logstash	Twitter	input

Note
Note	that	Twitter	river	is	available	as	a	plugin.	It	can	be	used	to	fetch	tweets	using
Elasticsearch	and	Kibana	only.	To	use	Twitter	input,	Logstash	is	required	along	with
Elasticsearch	and	Kibana.	Both	ways	allow	you	to	fetch	Twitter	data	easily.

We	will	use	Logstash	Twitter	input	because	rivers	acting	as	plugins	in	Elasticsearch	have
become	deprecated;	that	is,	they	will	be	removed	in	future	versions	of	Elasticsearch.

Before	we	move	further,	let’s	understand	Logstash	in	brief.

Logstash	is	an	open	source	tool	created	by	Jordan	Sissel.	He	later	joined	Elasticsearch,
which	was	renamed	Elastic.	It	is	a	data	collection	tool	aimed	at	fetching	events	for
processing.	Events	are	nothing	but	data	containing	a	timestamp	field	in	it.	Logstash	is
responsible	for	processing	events	by	connecting	with	various	input	sources	and	storing
data	in	various	output	sources.	It	helps	combine	data	from	multiple	sources	and	parses	it
by	applying	filters	to	modify	the	incoming	data.

The	main	purposes	of	using	Logstash	are	to	read	event	data	from	different	kinds	of	input
sources	(these	can	be	a	file,	HTTP,	GitHub,	Elasticsearch,	and	so	on),	apply	filters	to
transform	and	process	the	incoming	events	(these	can	be	parsing,	encoding	JSON,
aggregation,	and	so	on),	and	send	processed	events	to	the	destination	source	(this	can	be
CSV,	a	file,	CloudWatch,	Elasticsearch.	and	so	on).

Logstash	can	be	described	in	brief	as:

Input	------->	Filter	---------à	Output

The	various	input	plugins	available	in	Logstash	are	shown	here:

The	various	filter	plugins	available	in	Logstash	are	as	follows:

Finally,	the	various	output	plugins	available	in	Logstash	are	shown	in	the	following
image:

In	this	chapter,	we	are	going	to	take	a	look	at	the	following	topics:

The	installation	of	Logstash
The	workflow	for	real-time	Twitter	data	analysis
Creating	a	Twitter	developer	account
Creating	a	Logstash	configuration	file
Creating	visualizations	for	scenarios

The	installation	of	Logstash
In	this	section,	Logstash	will	be	installed.	Logstash	1.5.4	will	be	installed,	and	the	section
covers	the	installation	on	Ubuntu	and	Windows	separately.

The	installation	of	Logstash	on	Ubuntu	14.04
To	install	Logstash	on	Ubuntu,	perform	the	following	steps:

1.	 Download	Logstash	1.5.4	as	a	tar	file	using	the	following	command	in	the	terminal:

curl-L	-O	http://download.elastic.co/logstash/logstash/logstash-

1.5.4.tar.gz

2.	 Extract	the	downloaded	.tar	file	using	the	following	command:

tar	-xvzf	logstash-1.5.4.tar.gz

This	will	extract	the	files	and	folder	into	the	current	working	directory.

3.	 Navigate	to	the	bin	directory	within	the	logstash-1.5.4	directory:

cd	logstash-1.5.4/bin

4.	 To	check	whether	Logstash	has	been	installed	successfully,	type	the	following
command	in	the	terminal	after	navigating	to	the	bin	folder:

logstash	--version

This	will	print	the	Logstash	version	installed.

The	installation	of	Logstash	on	Windows
We	can	install	Logstash	on	Windows	by	going	through	and	applying	the	following	steps:

1.	 Download	the	latest	version	of	Logstash	from	the	Elastic	site	using	the	following
link:

curl-L	-O	http://download.elastic.co/logstash/logstash/logstash-

1.5.4.zip

2.	 Extract	the	downloaded	.zip	package	by	either	unzipping	it	using	WinRAR,	7-Zip,
and	so	on	(if	you	don’t	have	any	of	these	software,	download	any	one	of	them),	or
using	the	following	command	in	GIT	Bash:

unzip	logstash-1.5.4.zip

This	will	extract	the	files	and	folder	into	the	directory.

3.	 Then,	click	on	the	extracted	folder	and	navigate	through	the	folder	to	get	to	the	bin
folder.

4.	 To	check	whether	Logstash	has	been	installed	successfully,	type	the	following
command	in	command	prompt	after	navigating	to	the	bin	folder:

logstash	--version

This	will	print	the	Logstash	version	installed.

The	workflow	for	real-time	Twitter	data
analysis
In	this	section,	we	will	cover	the	end-to-end	workflow	of	how	to	fetch	tweets	using
Logstash	and	visualize	tweets	with	Kibana.

The	workflow	for	real-time	Twitter	data	analysis	will	be	as	follows:

Creating	a	Twitter	developer	account	to	get	keys	to	fetch	tweets
Creating	a	Logstash	configuration	file	that	specifies	the	input	and	output
Fetching	tweets	using	the	Logstash	Twitter	input
Storing	tweets	in	Elasticsearch	using	the	Logstash	Elasticsearch	output
Analyzing	Twitter	data	and	creating	visualizations	in	Kibana	for	scenarios

This	analysis	can	be	performed	for	a	wide	range	of	activities,	such	as	marketing,	brand
building,	brand	management,	customer	focus,	and	so	on.	In	this	chapter,	we	will	focus	on
how	a	company	can	use	Twitter	to	build	their	brand	and	get	unique	statistics	related	to	it
using	Twitter.	Also,	this	would	be	useful	for	a	company	to	monitor	their	marketing
campaigns.

At	the	end	of	this	chapter,	you	will	be	able	to	answer	questions	such	as	these:

How	many	times	has	my	brand	been	tweeted	about	in	a	time	interval?
Which	are	the	top	languages	in	which	people	tweet	about	my	brand?
Which	are	the	different	geographical	locations	from	where	people	are	tweeting	about
my	brand?
From	which	devices	are	people	mostly	tweeting	about	my	brand?
In	which	languages,	from	different	devices,	are	people	tweeting	about	my	brand?
From	which	countries,	using	different	devices,	are	people	tweeting	about	my	brand?
What	are	the	top	retweeted	user	screen	names	related	to	my	brand	tweeting	from
different	devices?
What	are	the	top	user	screen	names	tweeting	about	my	brand?
What	are	the	most	popular	hashtags	related	to	my	brand?

After	getting	answers	to	the	preceding	questions,	it	will	become	easier	for	a	company	to
analyze	its	brand	and	get	crucial	information	such	as	the	devices	used	by	its	customers,	the
top	countries	where	its	customers	talk	about	its	product,	the	top	usernames,	the	top
retweeted	usernames,	and	the	most	popular	hashtags	used	for	its	brand.

Creating	a	Twitter	developer	account
In	this	section,	we	will	cover	the	process	of	creating	a	Twitter	developer	account.	It	is
required	for	fetching	tweets	to	authorize	and	authenticate	the	application	with	Twitter,
through	which	data	will	be	fetched.

To	create	a	Twitter	developer	account,	perform	the	following	steps:

1.	 Go	to	www.twitter.com	and	log	in	with	your	Twitter	username	and	password.	If	you
do	not	have	a	Twitter	account,	sign	up	by	entering	your	name,	e-mail	ID,	and	a
password.

2.	 After	creating	or	signing	in	to	your	account,	add	your	mobile	number	to	your	Twitter
profile	before	you	create	a	Twitter	application.	Your	mobile	number	can	be	added	by
clicking	on	your	profile	image	and	selecting	Settings.	Then,	select	the	Mobile	option
on	the	left-hand	side	and	provide	your	mobile	number.	Next,	click	on	Continue.	It
will	then	send	a	one-time	password	to	validate	your	account,	which	you	will	receive
on	your	provided	mobile	number.	You	will	see	the	following	page	for	adding	your
mobile	number:

3.	 Go	to	the	Twitter	application	web	page	by	entering	the	URL
www.dev.twitter.com/apps.	Here,	you	will	see	a	list	of	all	the	applications	created
using	your	Twitter	login	credentials.

4.	 To	create	a	new	application,	click	on	Create	New	App.	You	will	see	this	web	page:

http://www.twitter.com

It	will	ask	you	to	fill	in	the	following	details	to	create	an	application:

Name:	You	have	to	provide	a	unique	name	for	your	Twitter	application.	The	name
has	to	be	unique	or	else	you	will	get	an	error	that	this	particular	name	has	already
been	taken.

Description:	You	have	to	provide	a	description	of	your	Twitter	application.	This
provides	brief	information	about	your	Twitter	application.	It	has	to	be	a	minimum	of
10	characters.

Website:	You	have	to	provide	a	website	that	will	act	as	the	home	page	for	your
Twitter	application.	However,	we	are	using	it	for	personal	use—for	fetching	tweets.
So,	provide	any	website	address	or	put	a	placeholder.	The	website	has	to	be	specified
with	http	or	https	followed	by	the	domain	name,	for	example,
http://www.twitter.com.

Callback	URL:	This	is	used	when	you	are	allowing	the	user	to	sign	in	to	your
application	to	authenticate	themselves.	This	URL	is	where	they	will	be	returned	after
they’ve	offered	consent	to	Twitter	to	use	your	application.	It	is	optional.

After	filling	in	the	preceding	details,	read	the	Developer	Agreement	and	tick	the
Yes,	I	agree	checkbox.	Click	on	the	Create	your	Twitter	application	button	to
create	your	app.

After	successful	creation	of	your	application,	Consumer	Key	and	Consumer	Secret
Key	will	be	generated	automatically.

http://www.twitter.com

5.	 Now	you	have	to	create	the	access	token.	It	will	allow	your	Twitter	application	to
read	data	from	Twitter,	including	tweets	and	information	about	them.	Go	to	the	Keys
and	Access	Tokens	tab,	scroll	down	the	web	page,	and	click	on	the	Create	my
access	token	button.	Then,	mention	the	access	type	for	this	Twitter	application.

It	will	automatically	create	your	Access	Token	and	Access	Token	Secret	Key.
Refresh	the	page	if	you	do	not	see	the	newly	created	access	tokens.

6.	 Now,	click	on	the	Keys	and	Access	Tokens	tab	to	view	your	Consumer	Key	(API
Key),	Consumer	Secret	(API	Secret),	Access	Token,	and	Access	Token	Secret
values,	which	will	look	like	this:

Note
I	have	removed	the	keys	of	my	Twitter	application	for	security	reasons.

Creating	a	Logstash	configuration	file
In	this	section,	we	will	develop	a	configuration	file	that	will	contain	input	and	output.
Here,	input	will	be	twitter	and	output	will	be	elasticsearch,	as	we	need	to	store	data
in	Elasticsearch	for	visualization	in	Kibana.	We	will	not	use	a	filter	as	we	want	to	store	the
tweets	in	the	same	way	as	they	are	tweeted.

The	configuration	file	will	look	like	this:

input	{

		twitter	{

				consumer_key	=>		"XXXXXXXXXXXXXXXXXXX"

				consumer_secret	=>		"XXXXXXXXXXXXXXXXXX"

				oauth_token	=>		"XXXXXXXXXXXXXXXXXXXXXXXX"

				oauth_token_secret	=>		"XXXXXXXXXXXXXXXXXXXX"

				keywords	=>	["#DragMeDownDay,"#BePositive"]

				full_tweet	=>	"true"

		}

}

output	{

		elasticsearch	{

				protocol	=>	"http"

				host	=>	"localhost"

				port	=>	"9200"

				index	=>	"twitter"

				document_type	=>	"realtime"

		}

}

Save	this	configuration	as	twitter.conf	inside	the	bin	folder	of	the	downloaded	Logstash
folder.

Let’s	decode	each	parameter	for	better	understanding.

Here,	input	defines	an	input,	which	is	Twitter.	Then,	consumer_key,	consumer_secret,
oauth_token	(the	access	token),	and	oauth_token_secret	(the	access	secret	token)	are
the	credentials	needed	for	the	authorization	of	your	application	on	Twitter,	which	is	done
as	shown	earlier.	keywords	is	used	to	specify	the	keywords	for	which	you	want	to	fetch
data.	In	this	case,	we	fetched	data	about	the	trending	topics	on	Twitter.	All	of	these
parameters	are	mandatory.	The	full_tweet	parameter,	when	set	to	true,	specifies	that	we
want	to	fetch	tweets	with	all	fields.	Setting	it	to	false	would	specify	Logstash	to	fetch
tweets	with	limited	fields.

Then,	we	have	the	following	parameters	of	the	output	block:

output:	This	defines	the	output	of	the	data,	which	is	elasticsearch
protocol:	This	specifies	over	which	protocol	the	elasticsearch	instance/server	is
running
host:	This	specifies	the	host	address	of	elasticsearch
port:	This	specifies	on	which	port	elasticsearch	is	running
index:	This	specifies	the	name	of	the	index	in	which	the	fetched	data	will	be	stored
document_type:	This	specifies	the	type	of	index

Using	the	command	prompt	in	Windows	or	the	terminal	in	Ubuntu,	navigate	to	the	bin
folder	inside	the	Logstash	downloaded	folder.	To	run	the	Logstash	configuration,	run	the
following	command:

logstash	agent	–f	twitter.conf

Here,	it	tells	Logstash	to	start	its	agent	and	read	the	configuration	from	the	twitter.conf
file.

Note
Make	sure	that	Elasticsearch	is	running	before	you	start	the	Logstash	agent.	Otherwise,	it
will	give	an	error.

Upon	successful	execution	of	the	Logstash	agent,	the	following	message	will	be
displayed:

Note
Before	running	Logstash,	you	can	check	whether	your	configuration	is	correct	or	not	using
the	logstash	agent	-f	twitter.conf	--configtest	command.

Creating	visualizations	for	scenarios
In	this	section,	we	will	cover	the	various	scenarios	described	earlier	in	this	chapter,	and
create	visualizations	for	each	scenario.	After	streaming	data	into	Elasticsearch,	we	will
configure	a	new	index	in	Kibana	and	add	a	Twitter	index	into	it	to	view	the	streaming	data
as	covered	in	Chapter	1,	An	Introduction	to	Kibana.

Number	of	tweets	over	a	period	of	time
In	the	first	scenario,	we	want	to	find	out	how	many	tweets	are	being	tweeted	over	a	period
of	time	for	a	particular	brand.	Using	this,	a	company	would	come	to	know	the	frequency
of	tweets	for	its	brand	over	a	certain	period	of	time,	which	makes	it	easier	to	view	the
trend	rather	than	going	through	huge	amounts	of	raw	data.	Accordingly,	they	can	monitor
the	number	of	tweets	for	that	brand,	either	for	their	marketing	campaign	or	to	know	the
popularity	of	the	brand.

To	create	a	visualization	for	this	scenario,	we	will	use	a	line	chart:

The	y	axis	will	have	Count	as	the	metric
The	x	axis	will	contain	the	aggregation	as	the	date	histogram,	followed	by	the
timestamp	field	with	the	interval	specified	in	minutes

Now	view	the	visualization	by	clicking	on	the	Apply	Changes	button,	which	will	be	as
shown	in	the	following	screenshot:

From	this,	the	relevant	company	can	easily	monitor	the	time	period	when	people	tweet
about	them	the	most,	which	could	help	them	market	their	brand	or	product	in	specific	time
periods	to	get	maximum	attention.	They	can	also	use	this	as	a	basic	scenario	on	which
they	can	build	up	using	filters	and	by	digging	into	the	visualization	to	get	more	insights.
Let’s	save	this	visualization	as	TweetsperTime,	which	we	will	use	to	create	a	dashboard.

Number	of	tweets	in	different	languages
In	our	next	scenario,	we	want	to	find	out	how	many	people	are	tweeting	in	different
languages.	This	helps	the	company	understand	which	languages	are	popular	among	people
tweeting	about	the	company’s	brand	or	product.

To	create	a	visualization	for	this	scenario,	we	will	use	a	vertical	bar	chart:

1.	 The	y	axis	will	have	Count	as	the	metric.
2.	 Split	Bars	will	contain	the	aggregation	as	terms	specifying	the	field	as	lang	with	the

Top	10	size.
3.	 Go	to	the	Options	tab,	and	select	Bar	Mode	as	Grouped	from	the	drop-down	list.

Now	view	the	visualization	by	clicking	on	the	Apply	Changes	button,	which	will	show
you	this	result:

In	the	preceding	screenshot,	we	compute	the	top	10	languages	in	which	people	are
tweeting	about	a	given	product	or	brand.	Let’s	save	this	visualization	as	TopLanguages,
and	we	will	use	it	to	create	a	dashboard.

Number	of	tweets	from	different	geographical
locations
In	this	scenario,	we	want	to	compute	the	number	of	people	who	are	tweeting	from
different	geographical	locations.	It	helps	the	company	understand	the	geographical
location	of	their	existing	or	prospective	customers.

Again,	we	will	use	a	vertical	bar	chart	to	create	a	visualization	for	this	scenario:

1.	 The	y	axis	will	have	Count	as	the	metric.
2.	 Split	Bars	will	contain	the	aggregation	as	terms	specifying	field	as

place.country_code	with	the	Top	10	size.
3.	 Go	to	the	Options	tab	and	select	Bar	Mode	as	Grouped	from	the	drop-down	list.

Now	check	out	the	visualization	by	clicking	on	the	Apply	Changes	button,	which	will
show	you	the	result	like	this:

Here,	we	find	out	the	top	10	geographical	locations	where	people	tweet	about	the	product
or	brand.	Let’s	save	this	visualization	as	TopCountries,	which	we	will	use	to	create	a
dashboard.

Note
Sometimes,	the	field	may	not	show	in	the	Twitter	index.	To	solve	this	problem,	you	will
need	to	reload	the	Index	field	list.	This	is	covered	in	Chapter	5,	Exploring	the	Settings
Page,	in	the	Reloading	the	index	fields	list	section.

Number	of	tweets	from	Android,	iPhone,	iPad,	and
Web	devices
In	this	scenario,	we	want	to	find	out	how	many	tweets	are	coming	from	any	of	Android,
Web,	iPhone,	and	iPad	devices	over	a	certain	period	of	time.	Using	this,	the	company	can
come	to	know	which	devices	drive	the	brand’s	maximum	traffic	on	Twitter.	Accordingly,
they	can	shape	their	marketing	campaign.

To	create	a	visualization	for	this	scenario,	we	will	use	an	area	chart:

1.	 The	y	axis	will	have	Count	as	the	metric.
2.	 The	x	axis	will	contain	the	aggregation	as	date	histogram,	followed	by	a	timestamp

field,	with	the	interval	specified	as	hourly.
3.	 Then	we	will	split	the	area	with	the	sub-aggregation	Filters,	and	specify	the	filters	as

source:android,	source:iphone	OR	source:ipad,	and	source:web.
4.	 Then	we	will	split	the	chart	with	the	sub-aggregation	Filters	and	specify	the	same

filters.	While	splitting	the	chart,	we	will	select	the	column	to	split	the	chart	column-
wise.	Also,	the	smooth	lines	box	has	to	be	checked.

Now,	view	the	visualization	by	clicking	on	the	Apply	Changes	button.	It	will	show	you
the	result	like	this:

In	the	preceding	screenshot,	we	can	clearly	see	the	comparison	of	the	number	of	tweets
from	different	devices.	Let’s	save	this	visualization	as	DevicesComparison.	We	will	use
this	one	as	well	to	create	a	dashboard.

This	scenario	can	also	be	used	to	determine	on	which	platform	a	company	should	create
its	mobile	applications.	For	example,	if	a	company	has	a	website	and	they	want	to	create
an	Android,	iOS,	or	Windows	mobile	application,	then	using	this	Twitter	analysis,	they
can	figure	out	on	which	platform	the	application	should	be	created.	If	the	company	is
getting	its	maximum	tweets	from	Android	devices,	then	they	can	decide	to	develop	an

application	for	Android.

Number	of	tweets	in	various	languages	using
different	devices
In	our	next	scenario,	we	want	to	compute	the	number	of	people	who	are	tweeting	in
various	languages	using	any	Android,	Web,	iPhone,	or	iPad	devices	over	a	period	of	time.
This	helps	the	company	understand	which	languages	are	popular	among	people	who	tweet
about	the	company	brand	or	product.

To	create	a	visualization	for	this	scenario,	we	will	use	an	area	chart:

1.	 The	y	axis	will	have	Count	as	the	metric.
2.	 The	x	axis	will	contain	the	aggregation	as	date	histogram,	followed	by	a	timestamp

field,	with	the	interval	specified	as	3	hours	in	custom.
3.	 Then	we	will	split	the	area	with	the	sub-aggregation	as	terms,	specifying	the	field	as

lang,	with	the	Top	5	size.
4.	 Next,	we	will	split	the	chart	with	the	sub-aggregation	as	Filters,	and	specify	the

filters	as	source:android,	source:iphone	OR	source:ipad,	and	source:web.

Now,	take	a	look	at	the	visualization	by	clicking	on	the	Apply	Changes	button,	which	will
show	you	the	following	result:

In	the	preceding	screenshot,	you	can	clearly	see	the	comparison	of	the	number	of	tweets
written	in	various	languages	using	different	devices.	Let’s	save	this	visualization	as
DevicesLanguage	for	use	in	our	dashboard.

Number	of	tweets	from	various	countries	using
different	devices
In	this	scenario,	we	want	to	find	out	how	many	people	are	tweeting	from	various	countries
using	any	of	Android,	Web,	iPhone,	and	iPad	devices.	This	helps	companies	to	understand
the	demographic	locations	popular	with	the	brand	or	product.	It	also	helps	them	cater	to
the	needs	of	different	countries.

Once	again,	we	will	use	a	vertical	bar	chart	to	create	a	visualization	for	this	scenario:

1.	 The	y	axis	will	have	Count	as	the	metric.
2.	 The	x	axis	will	contain	the	aggregation	as	terms,	specifying	the	field	as

place.country_code	with	the	Top	5	size.
3.	 Then	we	will	split	the	bars	with	the	sub-aggregation	as	Filters,	and	specify	the	filters

as	source:android,	source:iphone	OR	source:ipad,	and	source:web.

Now,	view	the	visualization	by	clicking	on	the	Apply	Changes	button,	which	will	show
this	result:

Here,	we	compute	the	top	five	countries	from	which	tweets	are	made;	this	is	followed	by
using	filters	to	view	tweets	from	different	devices.	Let’s	save	this	visualization	as
DevicesperCountry,	and	we	will	use	this	one	as	well	to	create	our	dashboard.

The	most	retweeted	user	screen	name	tweeting
using	different	devices
In	this	scenario,	we	want	to	find	out	what	the	most	popular	retweeted	user	names	are	for	a
particular	brand.	This	chart	also	indicates	which	devices	(Android,	Web,	iPhone,	or	iPad)
the	retweets	have	been	made	from.	It	can	be	useful	for	companies	to	reward	users	who
have	been	retweeted	the	most,	be	it	for	any	marketing	campaign	or	event.

To	create	a	visualization	for	this	scenario,	we	will	use	a	line	chart:

1.	 The	y	axis	will	have	Count	as	the	metric.
2.	 Split	line	will	contain	the	aggregation	as	terms,	specifying	the	field	as

retweeted_status.user.screen_name	with	the	Top	7	size.
3.	 The	x	axis	will	have	the	sub-aggregation	as	Filters,	and	we	will	specify	the	filters	as

source:android,	source:web,	and	source:iphone	OR	source:ipad.

Now,	check	out	the	visualization	by	clicking	on	the	Apply	Changes	button,	which	will
show	you	this:

In	the	preceding	screenshot,	we	have	displayed	the	top	seven	retweeted	user	screen	names,
followed	by	the	different	devices	used	to	tweet.	Let’s	save	this	visualization	as
DevicesRetweetCount,	and	we	will	use	it	to	create	our	dashboard.

Note
Retweeted	user	screen	names	indicate	that	the	tweet	was	retweeted	and	included	the	user
screen	name	in	the	tweet.	Also	retweeted	tweets	are	indicated	by	RT	in	the	tweet.

The	most	tweeted	user’s	screen	name
In	this	scenario,	we	want	to	compute	the	top	tweeting	user’s	screen	name,	who	has
tweeted	the	most	tweets	related	to	the	particular	brand	or	product.	This	can	be	useful	for
companies	to	reward	users	who	have	been	the	most	active	on	Twitter	tweeting	about	their
brand,	and	companies	can	even	surprise	their	active	users	with	goodies,	vouchers,	gifts,
and	so	on	to	engage	more	people	to	build	their	brand.

To	create	a	visualization	for	this	scenario,	we	will	use	a	pie	chart:

1.	 Slice	Size	will	have	Count	as	the	aggregation.
2.	 Split	Slices	will	contain	aggregation	as	terms,	specifying	field	as	user.screen_name

with	the	Top	7	size.

Yet	again,	you	can	view	the	visualization	by	clicking	on	the	Apply	Changes	button,	and
this	is	what	you	will	see:

In	the	preceding	screenshot,	we	have	displayed	the	screen	names	of	the	seven	people	who
have	tweeted	the	most.	Let’s	save	this	visualization	as	TopTweetedUsers,	which	we	will
use	for	our	dashboard.

Popular	hashtags
In	our	final	scenario,	we	want	to	find	out	the	most	popular	hashtags	related	to	the	brand	or
product.	This	can	be	used	to	find	out	whether	any	hashtag	related	to	a	product	or	brand	has
become	popular,	with	more	people	tweeting	about	it.	It	can	also	be	used	by	the	company
to	decide	whether	to	use	any	existing	hashtag	or	decide	on	a	new	hashtag	for	their
marketing	campaign.

To	create	a	visualization	for	this	scenario,	we	will	use	a	vertical	bar	chart:

1.	 The	y	axis	will	have	Count	as	the	metric.
2.	 The	x	axis	will	contain	the	aggregation	as	date	histogram,	followed	by	a	timestamp

field,	with	the	interval	specified	as	hourly.
3.	 Then	we	will	split	the	bars	with	sub-aggregation	as	terms,	specifying	the	field	as

entities.hashtags.text	with	the	Top	5	size.

Now,	check	out	the	visualization	by	clicking	on	the	Apply	Changes	button,	which	will
show	you	the	following	result:

This	figure	shows	the	popular	hashtags	over	a	period	of	time	related	to	the	company’s
product	or	brand.

Note
The	hashtags	correspond	to	the	keywords	entered	in	the	Logstash	configuration	file.

Now,	before	we	create	a	dashboard,	let’s	add	another	visualization	of	the	Metrics	type	in
which	we	can	put	all	the	visualizations	as	numbers,	and	it	can	act	as	a	single	view	panel	to
tell	us	more	about	the	numbers	behind	the	visualizations.

Twitter	metrics
In	metrics,	we	will	add	the	following	fields	corresponding	to	our	scenarios:

The	total	count	of	documents	in	the	index
The	unique	count	of	hashtags	used	(field:	entities.hashtags.text)
The	unique	count	of	languages	(field:	lang)
The	unique	count	of	retweeted	languages	(field:	retweeted_status.user.lang)
The	unique	count	of	screen	names	of	people	who	have	tweeted	(field:
user.screen_name)
The	unique	count	of	the	retweeted	status	user	screen	names	(field:
retweeted_status.user.screen_name)
The	unique	count	of	time	zones	from	which	people	have	tweeted	(field:
user.time_zone)
Percentiles	of	user	favorites	count	percent	of	50,	90,	and	99	(field:
user.favourites_count)
A	percentile	rank	of	5,000	for	the	user	status	count

A	dashboard	containing	all	the	visualizations	created	earlier	is	shown	here:

Summary
In	this	chapter,	we	covered	the	basics	of	Logstash	along	with	the	installation	of	Logstash
in	Ubuntu	and	Windows.	This	was	followed	by	an	explanation	of	the	workflow	for	real-
time	Twitter	data	analysis,	which	included	the	creation	of	a	Twitter	developer	account	and
a	Logstash	configuration	file	to	fetch	tweets.	Finally,	visualizations	were	created	based	on
different	scenarios	and	were	then	combined	to	form	a	dashboard.

At	the	time	of	writing	this	book,	Kibana	is	like	a	baby	in	the	big	world	of	data
visualization.	The	industry	has	now	begun	understanding	the	importance	of	Kibana,	which
presents	a	bright	future	for	this	product	and	its	community.	With	this	book,	we	have	tried
to	provide	an	unprecedented	amount	of	information	about	Kibana,	covering	its
installation,	the	functionality	of	every	component	present	in	it,	and	how	it	can	be	used	to
attain	valuable	insights	from	raw	data.	We	hope	that	this	book	becomes	a	one-stop	guide
for	everyone	to	learn	Kibana.	The	beautiful	journey	of	doing	amazing	things	with	Kibana
has	just	started,	so	grab	this	opportunity,	have	a	fun	time	reading	this	book,	and	explore
Kibana	in	a	way	never	done	before.

Appendix	A.	References
This	appendix	provides	a	list	of	links	referenced	in	the	book,	which	are	sorted	chapter-
wise.

Hyperlinks	provide	a	gateway	to	the	extensive	literature	that	can	be	accessed	on	the
Internet.	They	provide	information	above	and	beyond	what	one	finds	in	a	single	article,
book,	blog,	or	other	media	formats.	However,	when	one	writes	a	book,	the	links	provided
in	the	printed	book	are	useful	to	only	those	readers	who	would	go	to	any	lengths	to	find
information.	For	others,	these	links	are	irksome,	frustrating,	and	almost	useless.	They	are,
of	course,	useful	in	online	formats,	such	as	e-books.

This	appendix	is	an	attempt	to	provide	guidance	to	the	readers.	However,	some	essential
information	is	used	in	the	book	in	some	of	the	chapters;	the	links	to	those	are	mentioned	in
the	upcoming	sections.

Chapter	1,	An	Introduction	to	Kibana
About	Kibana:	https://www.elastic.co/products/kibana
Official	documentation	of	Kibana	v4.1.x:
https://www.elastic.co/guide/en/kibana/4.1/index.html
The	basic	concepts	of	Elasticsearch:
https://www.elastic.co/guide/en/elasticsearch/reference/current/_basic_concepts.html
Official	documentation	of	Elasticsearch	v1.5.x:
https://www.elastic.co/guide/en/elasticsearch/reference/1.5/index.html
Git	for	Windows:	https://git-scm.com/
Installation	of	Node.js	on	various	platforms:	https://github.com/nodejs/node-v0.x-
archive/wiki/Installing-Node.js-via-package-manager
GitHub	repository	for	Kibana:	https://github.com/elastic/kibana
GitHub	repository	for	Elasticsearch:	https://github.com/elastic/elasticsearch
Usage	of	elasticdump	along	with	its	GitHub	Repository:
https://github.com/taskrabbit/elasticsearch-dump
Ubuntu	community	information	on	Java	and	its	installation:
https://help.ubuntu.com/community/Java

https://www.elastic.co/products/kibana
https://www.elastic.co/guide/en/kibana/4.1/index.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_basic_concepts.html
https://www.elastic.co/guide/en/elasticsearch/reference/1.5/index.html
https://git-scm.com/
https://github.com/nodejs/node-v0.x-archive/wiki/Installing-Node.js-via-package-manager
https://github.com/elastic/kibana
https://github.com/elastic/elasticsearch
https://github.com/taskrabbit/elasticsearch-dump
https://help.ubuntu.com/community/Java

Chapter	2,	Exploring	the	Discover	Page
A	sample	tweet	explanation:	http://www.scribd.com/doc/30146338/ma
Apache	Lucene—query	parser	syntax:
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
Elasticsearch	query	string	syntax:
https://www.elastic.co/guide/en/elasticsearch/reference/1.5/query-dsl-query-string-
query.html#query-string-syntax
Elasticsearch	string	ranges:
https://www.elastic.co/guide/en/elasticsearch/guide/current/_ranges.html

http://www.scribd.com/doc/30146338/ma
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://www.elastic.co/guide/en/elasticsearch/reference/1.5/query-dsl-query-string-query.html#query-string-syntax
https://www.elastic.co/guide/en/elasticsearch/guide/current/_ranges.html

Chapter	3,	Exploring	the	Visualize	Page
Information	about	Elasticsearch	aggregations:
https://www.elastic.co/guide/en/elasticsearch/reference/1.5/search-aggregations.html
Approximate	calculations:
https://www.elastic.co/guide/en/elasticsearch/guide/current/_approximate_aggregations.html
Elasticsearch	scripting:
https://www.elastic.co/guide/en/elasticsearch/reference/1.5/modules-scripting.html

https://www.elastic.co/guide/en/elasticsearch/reference/1.5/search-aggregations.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/_approximate_aggregations.html
https://www.elastic.co/guide/en/elasticsearch/reference/1.5/modules-scripting.html

Chapter	4,	Exploring	the	Dashboard	Page
Official	documentation	of	the	Dashboard	page:
https://www.elastic.co/guide/en/kibana/4.1/dashboard.html

https://www.elastic.co/guide/en/kibana/4.1/dashboard.html

Chapter	5,	Exploring	the	Settings	Page
Official	documentation	of	Kibana	settings:
https://www.elastic.co/guide/en/kibana/4.1/settings.html
Kibana	server	settings:	https://www.elastic.co/guide/en/kibana/4.1/kibana-server-
properties.html
Kibana	production	settings:
https://www.elastic.co/guide/en/kibana/4.1/production.html
Official	documentation	of	Numeral.js:	http://numeraljs.com/
Managing	fields:	https://www.elastic.co/guide/en/kibana/4.1/managing-fields.html
Field	formatters:	https://www.elastic.co/blog/kibana-4-1-field-formatters

https://www.elastic.co/guide/en/kibana/4.1/settings.html
https://www.elastic.co/guide/en/kibana/4.1/kibana-server-properties.html
https://www.elastic.co/guide/en/kibana/4.1/production.html
http://numeraljs.com/
https://www.elastic.co/guide/en/kibana/4.1/managing-fields.html
https://www.elastic.co/blog/kibana-4-1-field-formatters

Chapter	6,	Real-Time	Twitter	Data
Analysis

Official	documentation	of	Logstash:
https://www.elastic.co/guide/en/logstash/1.5/index.html
Generating	Twitter	developer	account	tokens:
https://dev.twitter.com/oauth/overview/application-owner-access-tokens
Twitter	input	plugin—Logstash:	https://www.elastic.co/guide/en/logstash/1.5/plugins-
inputs-twitter.html
Input	plugins—Logstash:	https://www.elastic.co/guide/en/logstash/1.5/input-
plugins.html
Filter	plugins—Logstash:	https://www.elastic.co/guide/en/logstash/1.5/filter-
plugins.html
Output	plugins—Logstash:	https://www.elastic.co/guide/en/logstash/1.5/output-
plugins.html
Deprecating	Rivers:	https://www.elastic.co/blog/deprecating-rivers

https://www.elastic.co/guide/en/logstash/1.5/index.html
https://dev.twitter.com/oauth/overview/application-owner-access-tokens
https://www.elastic.co/guide/en/logstash/1.5/plugins-inputs-twitter.html
https://www.elastic.co/guide/en/logstash/1.5/input-plugins.html
https://www.elastic.co/guide/en/logstash/1.5/filter-plugins.html
https://www.elastic.co/guide/en/logstash/1.5/output-plugins.html
https://www.elastic.co/blog/deprecating-rivers

Index
A

About	tab
about	/	About

Add	Visualization	option	/	Adding	visualizations
Advanced	tab

about	/	Advanced
aggregation	designer,	visualization	canvas

about	/	Aggregation	designer
aggregations

about	/	Understanding	aggregations
bucket	aggregations	/	Bucket	aggregations
metric	aggregations	/	Metric	aggregations

AND	operator	/	Using	the	search	bar
approximate	calculations

URL	/	Chapter	3,	Exploring	the	Visualize	Page
Area	Chart

about	/	Area	Chart
overlap	/	Overlap
percentage	/	Percentage
wiggle	/	Wiggle
silhoutte	/	Silhouette

Auto-refresh	page
about	/	The	Auto-refresh	page

average	aggregation	/	Average

B
bucket	aggregations

about	/	Bucket	aggregations
date	histogram	/	Date	histogram
histogram	/	Histogram
range	/	Range
date	range	/	Date	range
IPv4	range	/	IPv4	range
terms	/	Terms
filters	/	Filters
significant	terms	/	Significant	terms
GeoHash	/	GeoHash

C
cluster

about	/	The	basic	concepts	of	Elasticsearch
components,	Discover	page

time	filter	/	Understanding	the	time	filter
toolbar	/	Understanding	the	toolbar
fields	list	/	Understanding	the	Fields	list
document	data	/	Understanding	document	data

concepts,	Elasticsearch
field	/	The	basic	concepts	of	Elasticsearch
document	/	The	basic	concepts	of	Elasticsearch
type	/	The	basic	concepts	of	Elasticsearch
index	/	The	basic	concepts	of	Elasticsearch
ID	/	The	basic	concepts	of	Elasticsearch
mapping	/	The	basic	concepts	of	Elasticsearch
node	/	The	basic	concepts	of	Elasticsearch
cluster	/	The	basic	concepts	of	Elasticsearch
sharding	/	The	basic	concepts	of	Elasticsearch
inverted	index	/	The	basic	concepts	of	Elasticsearch
REST	API	/	The	basic	concepts	of	Elasticsearch

configuration,	Elasticsearch
modifying	/	Changing	the	Elasticsearch	configuration

configuration,	Kibana
modifying	/	Changing	the	Kibana	configuration

configuration	file,	Logstash
creating	/	Creating	a	Logstash	configuration	file

count	aggregation	/	Count
CRUD	/	The	basic	concepts	of	Elasticsearch
cURL

about	/	The	basic	concepts	of	Elasticsearch

D
dashboard

embedding,	in	web	page	/	Embedding	a	dashboard	in	a	web	page
dashboard	canvas

about	/	Understanding	the	dashboard	canvas
visualizations,	moving	/	Moving	visualizations
visualizations,	resizing	/	Resizing	visualizations
visualizations,	editing	/	Editing	visualizations
visualizations,	removing	/	Removing	visualizations

Dashboard	page
toolbar	/	Understanding	the	toolbar
URL,	for	official	documentation	/	Chapter	4,	Exploring	the	Dashboard	Page

data
searching,	ways	/	Using	the	search	bar
viewing,	in	document	data	/	View	data

Data	Table
about	/	Data	Table

date	histogram	aggregation	/	Date	histogram
date	range	aggregation	/	Date	range
debug	panel

about	/	Understanding	the	debug	panel
Table	/	Table
Request	/	Request
Response	/	Response
Statistics	/	Statistics

Deprecating	Rivers
URL	/	Chapter	6,	Real-Time	Twitter	Data	Analysis

Disable	filter	/	The	Disable	filter
document

about	/	The	basic	concepts	of	Elasticsearch
document	data

about	/	Understanding	document	data
field,	adding	to	/	Add	a	field	to	document	data
field,	removing	from	/	Remove	a	field	from	document	data
data,	viewing	in	/	View	data
sorting	/	Sorting	documents
fields,	moving	in	/	Moving	fields	in	document	data

E
elasticdump

installing	/	Installing	elasticdump
installing,	on	Ubuntu	14.04	/	Installing	elasticdump	on	Ubuntu	14.04
installing,	on	Windows	/	Installing	elasticdump	on	Windows

elasticdump,	GitHub	Repository
URL	/	Chapter	1,	An	Introduction	to	Kibana

Elasticsearch
about	/	Understanding	Elasticsearch
installing	/	Installation	of	Elasticsearch
installing,	on	Ubuntu	14.04	/	Installation	of	Elasticsearch	on	Ubuntu	14.04
installing,	on	Windows	/	Installation	of	Elasticsearch	on	Windows,	Installation
of	GIT
configuration,	modifying	/	Changing	the	Elasticsearch	configuration
JSON	file,	importing	into	/	Importing	a	JSON	file	into	Elasticsearch
URL	/	Chapter	1,	An	Introduction	to	Kibana

Elasticsearch	aggregations
URL	/	Chapter	3,	Exploring	the	Visualize	Page

Elasticsearch	scripting
URL	/	Chapter	3,	Exploring	the	Visualize	Page

Elasticsearch	v1.5.x
URL,	for	official	documentation	/	Chapter	1,	An	Introduction	to	Kibana

Enable	filter	/	The	Enable	filter

F
field

about	/	The	basic	concepts	of	Elasticsearch
filtering	by	/	Filtering	by	field
adding,	to	document	data	/	Add	a	field	to	document	data
removing,	from	document	data	/	Remove	a	field	from	document	data

field	formatters
URL	/	Chapter	5,	Exploring	the	Settings	Page

field	properties
Name	/	Managing	the	field	properties
Type	/	Managing	the	field	properties
Format	/	Managing	the	field	properties
Analyzed	/	Managing	the	field	properties
Indexed	/	Managing	the	field	properties

fields
moving,	in	document	data	/	Moving	fields	in	document	data

fields	list
about	/	Understanding	the	Fields	list
field	data	information,	viewing	/	View	field	data	information

fields	management
URL	/	Chapter	5,	Exploring	the	Settings	Page

field	type	format
about	/	The	field	type	format
String	/	The	field	type	format
URL	/	The	field	type	format
Date	/	The	field	type	format
Number	/	The	field	type	format
Bytes	/	The	field	type	format
Percentage	/	The	field	type	format

filters
positive	filter	/	Filtering	by	field
negative	filter	/	Filtering	by	field
functionalities	/	Functionalities	of	filters

filters	aggregation	/	Filters
functionalities,	filters

Enable	filter	/	The	Enable	filter
Disable	filter	/	The	Disable	filter
Pin	filter	/	The	Pin	filter
Unpin	filter	/	The	Unpin	filter
Invert	filter	/	The	Invert	filter
Toggle	filter	/	The	Toggle	filter
Remove	filter	/	The	Remove	filter

G
GeoHash	/	GeoHash
GIT

installing	/	Installation	of	GIT
Git,	for	Windows

URL	/	Chapter	1,	An	Introduction	to	Kibana
GitHub	repository,	Elasticsearch

URL	/	Chapter	1,	An	Introduction	to	Kibana
GitHub	repository,	Kibana

URL	/	Chapter	1,	An	Introduction	to	Kibana
GIT	ZIP	package

URL	/	Installation	of	GIT
grouping	/	Using	the	search	bar

H
histogram

time	filter,	setting	from	/	Setting	the	time	filter
histogram	aggregation	/	Histogram

I
ID

about	/	The	basic	concepts	of	Elasticsearch
index

about	/	The	basic	concepts	of	Elasticsearch
index	fields	list

reloading	/	Reloading	the	index	fields	list
index	pattern

configuring	/	Configuring	an	index	pattern
default	index	pattern,	setting	/	Setting	the	default	index	pattern
removing	/	Removing	an	index	pattern

Indices	tab
about	/	Indices
index	pattern,	configuring	/	Configuring	an	index	pattern
default	index	pattern,	setting	/	Setting	the	default	index	pattern
index	fields	list,	reloading	/	Reloading	the	index	fields	list
index	pattern,	removing	/	Removing	an	index	pattern
field	properties,	managing	/	Managing	the	field	properties

installation,	elasticdump
about	/	Installing	elasticdump
on	Ubuntu	14.04	/	Installing	elasticdump	on	Ubuntu	14.04
on	Windows	/	Installing	elasticdump	on	Windows

installation,	Elasticsearch
about	/	Installation	of	Elasticsearch
on	Ubuntu	14.04	/	Installation	of	Elasticsearch	on	Ubuntu	14.04
on	Windows	/	Installation	of	Elasticsearch	on	Windows,	Installation	of	GIT

installation,	GIT
about	/	Installation	of	GIT

installation,	Java
about	/	Installation	of	Java
on	Ubuntu	14.04	/	Installation	of	Java	on	Ubuntu	14.04
on	Windows	/	Installation	of	Java	on	Windows

installation,	Kibana
on	Ubuntu	14.04	/	Installation	of	Kibana	on	Ubuntu	14.04
on	Windows	/	Installation	of	Kibana	on	Windows

installation,	npm
about	/	Installation	of	npm
on	Ubuntu	14.04	/	Installation	of	npm	on	Ubuntu	14.04
on	Windows	/	Installation	of	npm	on	Windows

installation	of	Node.js,	on	various	platforms
URL	/	Chapter	1,	An	Introduction	to	Kibana

installation	prerequisites,	Kibana	4.1.1	/	Prerequisites	for	installing	Kibana	4.1.1
installing

Logstash,	on	Ubuntu	14.04	/	The	installation	of	Logstash	on	Ubuntu	14.04
Logstash,	on	Windows	/	The	installation	of	Logstash	on	Windows

inverted	index
about	/	The	basic	concepts	of	Elasticsearch

Invert	filter	/	The	Invert	filter
IPv4	range	aggregation	/	IPv4	range

J
Java

installing	/	Installation	of	Java
installing,	on	Ubuntu	14.04	/	Installation	of	Java	on	Ubuntu	14.04
installing,	on	Windows	/	Installation	of	Java	on	Windows

Java	JDK,	Sun	Microsystems	site
URL	/	Installation	of	Java	on	Windows

JavaScript	Object	Notation	(JSON)
about	/	The	basic	concepts	of	Elasticsearch

JSON	file
importing,	into	Elasticsearch	/	Importing	a	JSON	file	into	Elasticsearch

K
Kibana

installing	/	Installation	of	Kibana
installing,	on	Ubuntu	14.04	/	Installation	of	Kibana	on	Ubuntu	14.04
configuration,	modifying	/	Changing	the	Kibana	configuration
URL	/	Chapter	1,	An	Introduction	to	Kibana

Kibana	4.1.1
installation,	prerequisites	/	Prerequisites	for	installing	Kibana	4.1.1

Kibana	production	settings
URL	/	Chapter	5,	Exploring	the	Settings	Page

Kibana	server	settings
URL	/	Chapter	5,	Exploring	the	Settings	Page

Kibana	settings
URL,	for	official	documentation	/	Chapter	5,	Exploring	the	Settings	Page

Kibana	v4.1.x
URL,	for	official	documentation	/	Chapter	1,	An	Introduction	to	Kibana

L
Line	Chart

about	/	Line	Chart
log	/	Log
square	root	/	Square	root

Load	Saved	Dashboard	option	/	The	Load	Saved	Dashboard	option
Load	Saved	Search	option	/	Load	Saved	Search
Logstash

installing	/	The	installation	of	Logstash
installing,	on	Ubuntu	14.04	/	The	installation	of	Logstash	on	Ubuntu	14.04
installing,	on	Windows	/	The	installation	of	Logstash	on	Windows
configuration	file,	creating	/	Creating	a	Logstash	configuration	file
URL,	for	official	documentation	/	Chapter	6,	Real-Time	Twitter	Data	Analysis

Logstash,	filter	plugins
URL	/	Chapter	6,	Real-Time	Twitter	Data	Analysis

Logstash,	input	plugins
URL	/	Chapter	6,	Real-Time	Twitter	Data	Analysis

Logstash,	output	plugins
URL	/	Chapter	6,	Real-Time	Twitter	Data	Analysis

Logstash,	Twitter	input	plugin
URL	/	Chapter	6,	Real-Time	Twitter	Data	Analysis

M
mapping

about	/	The	basic	concepts	of	Elasticsearch
markdown	widget

about	/	Markdown	widget
max	aggregation	/	Max
metric	aggregations

about	/	Metric	aggregations
count	/	Count
sum	/	Sum
average	/	Average
min	/	Min
max	/	Max
unique	count	/	Unique	count
percentile	/	Percentile
percentile	ranks	/	Percentile	ranks

Metric	visualization
about	/	Metric

min	aggregation	/	Min

N
negative	filter	/	Filtering	by	field

adding	/	Filtering	by	field
New	Dashboard	option	/	The	New	Dashboard	option
New	Search	option	/	New	Search
node

about	/	The	basic	concepts	of	Elasticsearch
NOT	operator	/	Using	the	search	bar
npm

installing	/	Installation	of	npm
installing,	on	Ubuntu	14.04	/	Installation	of	npm	on	Ubuntu	14.04
installing,	on	Windows	/	Installation	of	npm	on	Windows

Numeral.js
URL,	for	official	documentation	/	Chapter	5,	Exploring	the	Settings	Page

O
-	operator	/	Using	the	search	bar
Objects	tab

about	/	Objects
saved	Searches,	managing	/	Managing	saved	searches,	visualizations,	and
dashboards
saved	Visualization,	managing	/	Managing	saved	searches,	visualizations,	and
dashboards
saved	Dashboards,	managing	/	Managing	saved	searches,	visualizations,	and
dashboards
saved	object,	viewing	/	Viewing	a	saved	object
saved	object,	editing	/	Editing	a	saved	object
saved	object,	deleting	/	Deleting	a	saved	object
saved	object,	exporting	/	Exporting	saved	objects
saved	object,	importing	/	Importing	saved	objects

OR	operator	/	Using	the	search	bar

P
percentile	aggregation	/	Percentile
percentile	ranks	aggregation	/	Percentile	ranks
Personal	Package	Archive	(PPA)

about	/	Installation	of	Java	on	Ubuntu	14.04
Pie	Chart

about	/	Pie	Chart
Pin	filter	/	The	Pin	filter
positive	filter	/	Filtering	by	field

adding	/	Filtering	by	field
preview	canvas,	visualization	canvas

about	/	Preview	canvas
primary	shard	/	The	basic	concepts	of	Elasticsearch
proximity	searches	/	Using	the	search	bar

Q
query	parser	syntax,	Apache	Lucene

URL	/	Chapter	2,	Exploring	the	Discover	Page
query	string	syntax,	Elasticsearch

URL	/	Chapter	2,	Exploring	the	Discover	Page

R
range	aggregation	/	Range
real-time	Twitter	data	analysis

workflow	/	The	workflow	for	real-time	Twitter	data	analysis
refresh	interval

setting	/	The	Auto-refresh	page
refresh	interval	option

about	/	The	Auto-refresh	page
regular	expressions	/	Using	the	search	bar
Remove	filter	/	The	Remove	filter
replica	shard	/	The	basic	concepts	of	Elasticsearch
Representational	State	Transfer	/	The	basic	concepts	of	Elasticsearch
REST	API

about	/	The	basic	concepts	of	Elasticsearch

S
sample	tweet	explanation

URL	/	Chapter	2,	Exploring	the	Discover	Page
Save	Dashboard	option	/	The	Save	Dashboard	option
saved	object

viewing	/	Viewing	a	saved	object
editing	/	Editing	a	saved	object
deleting	/	Deleting	a	saved	object
exporting	/	Exporting	saved	objects
importing	/	Importing	saved	objects

Save	Search	option	/	Save	Search
search	bar

using	/	Using	the	search	bar,	Using	the	search	bar
New	Search	/	New	Search
Save	Search	/	Save	Search
Load	Saved	Search	/	Load	Saved	Search

sharding
about	/	The	basic	concepts	of	Elasticsearch

shards
primary	shard	/	The	basic	concepts	of	Elasticsearch
replica	shard	/	The	basic	concepts	of	Elasticsearch

significant	terms	aggregation	/	Significant	terms
steps,	for	designing	visualization

about	/	Steps	for	designing	visualization
visualization	type,	selecting	/	Step	1	–	selecting	a	visualization	type
search	data	source,	selecting	/	Step	2	–	selecting	search	data	source
visualization	canvas	/	Step	3	–	the	visualization	canvas

string	ranges,	Elasticsearch
URL	/	Chapter	2,	Exploring	the	Discover	Page

String	type	format
lower	case	/	The	field	type	format
upper	case	/	The	field	type	format
short	dots	/	The	field	type	format

sum	aggregation	/	Sum

T
tabs,	Settings	page

Indices	tab	/	Indices
Advanced	tab	/	Advanced
Objects	tab	/	Objects
About	tab	/	About

terms	aggregation	/	Terms
Tile	Map

about	/	Tile	Map
Shaded	Circle	Markers	/	Shaded	Circle	Markers
Shaded	GeoHash	Grid	/	Shaded	GeoHash	Grid
Heatmap	/	Heatmap
Desaturate	map	tiles	/	Desaturate	map	tiles

time	filter
about	/	Understanding	the	time	filter
setting	/	Setting	the	time	filter
setting,	from	histogram	/	Setting	the	time	filter

Toggle	filter	/	The	Toggle	filter
TO	keyword	/	Using	the	search	bar
toolbar

about	/	Understanding	the	toolbar
search	bar,	using	/	Using	the	search	bar

toolbar,	Dashboard	page
about	/	Understanding	the	toolbar
New	Dashboard	option	/	The	New	Dashboard	option
Add	Visualization	option	/	Adding	visualizations
visualizations,	adding	/	Adding	visualizations
search	bar,	using	/	Using	the	search	bar
Save	Dashboard	option	/	The	Save	Dashboard	option
Load	Saved	Dashboard	option	/	The	Load	Saved	Dashboard	option
saved	dashboard,	loading	/	The	Load	Saved	Dashboard	option
Share	option	/	Sharing	the	saved	dashboard
saved	dashboard,	saving	/	Sharing	the	saved	dashboard

toolbar,	visualization	canvas
about	/	Toolbar
New	Visualization	/	New	Visualization
Save	Visualization	/	Save	Visualization
Load	Saved	Visualization	/	Load	Saved	Visualization
Share	Visualization	/	Share	Visualization
Refresh	/	Refresh

Twitter
URL	/	Creating	a	Twitter	developer	account

Twitter	developer	account

creating	/	Creating	a	Twitter	developer	account
Twitter	developer	account	tokens

URL	/	Chapter	6,	Real-Time	Twitter	Data	Analysis
type

about	/	The	basic	concepts	of	Elasticsearch
string	/	The	basic	concepts	of	Elasticsearch
integer	/	The	basic	concepts	of	Elasticsearch
long	/	The	basic	concepts	of	Elasticsearch
float	/	The	basic	concepts	of	Elasticsearch
double	/	The	basic	concepts	of	Elasticsearch
boolean	/	The	basic	concepts	of	Elasticsearch
date	/	The	basic	concepts	of	Elasticsearch
geo_point	/	The	basic	concepts	of	Elasticsearch

U
Ubuntu	14.04

Java,	installing	on	/	Installation	of	Java	on	Ubuntu	14.04
Elasticsearch,	installing	on	/	Installation	of	Elasticsearch	on	Ubuntu	14.04
Kibana,	installing	on	/	Installation	of	Kibana	on	Ubuntu	14.04
npm,	installing	on	/	Installation	of	npm	on	Ubuntu	14.04
elasticdump,	installing	on	/	Installing	elasticdump	on	Ubuntu	14.04
Logstash,	installing	on	/	The	installation	of	Logstash	on	Ubuntu	14.04

Ubuntu	community	information,	on	Java
URL	/	Chapter	1,	An	Introduction	to	Kibana

unique	count	aggregation	/	Unique	count
Unpin	filter	/	The	Unpin	filter
URL	type	format

link	/	The	field	type	format
URL	Template	/	The	field	type	format
Label	Template	/	The	field	type	format
Image	/	The	field	type	format

V
Vertical	Bar	Chart

about	/	Vertical	Bar	Chart
percentage	/	Percentage
grouped	/	Grouped

visualization	canvas
about	/	Step	3	–	the	visualization	canvas
toolbar	/	Toolbar
aggregation	designer	/	Aggregation	designer
preview	canvas	/	Preview	canvas

visualizations
moving	/	Moving	visualizations
resizing	/	Resizing	visualizations
editing	/	Editing	visualizations
removing	/	Removing	visualizations

visualizations,	creating	for	scenarios
about	/	Creating	visualizations	for	scenarios
number	of	tweets,	over	period	of	time	/	Number	of	tweets	over	a	period	of	time
number	of	tweets,	in	different	languages	/	Number	of	tweets	in	different
languages
number	of	tweets,	from	different	geographical	locations	/	Number	of	tweets
from	different	geographical	locations
number	of	tweets,	from	Android	/	Number	of	tweets	from	Android,	iPhone,
iPad,	and	Web	devices
number	of	tweets,	from	iPhone	/	Number	of	tweets	from	Android,	iPhone,	iPad,
and	Web	devices
number	of	tweets,	from	iPad	/	Number	of	tweets	from	Android,	iPhone,	iPad,
and	Web	devices
number	of	tweets,	from	Web	devices	/	Number	of	tweets	from	Android,	iPhone,
iPad,	and	Web	devices
number	of	tweets	in	various	languages,	with	different	devices	/	Number	of
tweets	in	various	languages	using	different	devices
number	of	tweets	in	various	countries,	with	different	devices	/	Number	of	tweets
from	various	countries	using	different	devices
most	retweeted	user	screen	name	tweeting,	with	different	devices	/	The	most
retweeted	user	screen	name	tweeting	using	different	devices
most	tweeted	user’s	screen	name	/	The	most	tweeted	user’s	screen	name
poular	hashtags	/	Popular	hashtags
Twitter	metrics	/	Twitter	metrics

visualization	types
about	/	An	explanation	of	visualization	types
Area	Chart	/	Area	Chart
Data	Table	/	Data	Table

Line	Chart	/	Line	Chart
markdown	widget	/	Markdown	widget
Metric	/	Metric
Pie	Chart	/	Pie	Chart
Tile	Map	/	Tile	Map
Vertical	Bar	Chart	/	Vertical	Bar	Chart

W
web	page

dashboard,	embedding	in	/	Embedding	a	dashboard	in	a	web	page
wildcard	searches	/	Using	the	search	bar
Windows

Java,	installing	on	/	Installation	of	Java	on	Windows
Elasticsearch,	installing	on	/	Installation	of	Elasticsearch	on	Windows,
Installation	of	GIT
Kibana,	installing	on	/	Installation	of	Kibana	on	Windows
npm,	installing	on	/	Installation	of	npm	on	Windows
elasticdump,	installing	on	/	Installing	elasticdump	on	Windows
Logstash,	installing	on	/	The	installation	of	Logstash	on	Windows

Windows	Installer	(.msi)	file
URL,	for	downloading	/	Installation	of	npm	on	Windows

workflow,	for	real-time	Twitter	data	analysis	/	The	workflow	for	real-time	Twitter
data	analysis

	Kibana Essentials
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. An Introduction to Kibana
	Understanding Elasticsearch
	The basic concepts of Elasticsearch
	Prerequisites for installing Kibana 4.1.1
	Installation of Java
	Installation of Java on Ubuntu 14.04
	Installation of Java on Windows
	Installation of Elasticsearch
	Installation of Elasticsearch on Ubuntu 14.04
	Installation of Elasticsearch on Windows
	Installation of GIT
	Installation of Kibana
	Installation of Kibana on Ubuntu 14.04
	Installation of Kibana on Windows
	Additional information
	Changing the Elasticsearch configuration
	Changing the Kibana configuration
	Importing a JSON file into Elasticsearch
	Installation of npm
	Installation of npm on Ubuntu 14.04
	Installation of npm on Windows
	Installing elasticdump
	Installing elasticdump on Ubuntu 14.04
	Installing elasticdump on Windows
	Summary
	2. Exploring the Discover Page
	Understanding the time filter
	Setting the time filter
	The Auto-refresh page
	Understanding the toolbar
	Using the search bar
	New Search
	Save Search
	Load Saved Search
	Understanding the Fields list
	View field data information
	Filtering by field
	Functionalities of filters
	The Enable filter
	The Disable filter
	The Pin filter
	The Unpin filter
	The Invert filter
	The Toggle filter
	The Remove filter
	Understanding document data
	Add a field to document data
	Remove a field from document data
	View data
	Sorting documents
	Moving fields in document data
	Summary
	3. Exploring the Visualize Page
	Understanding aggregations
	Bucket aggregations
	Date histogram
	Histogram
	Range
	Date range
	IPv4 range
	Terms
	Filters
	Significant terms
	GeoHash
	Metric aggregations
	Count
	Sum
	Average
	Min
	Max
	Unique count
	Percentile
	Percentile ranks
	Steps for designing visualization
	Step 1 – selecting a visualization type
	Step 2 – selecting search data source
	Step 3 – the visualization canvas
	Toolbar
	New Visualization
	Save Visualization
	Load Saved Visualization
	Share Visualization
	Refresh
	Aggregation designer
	Preview canvas
	An explanation of visualization types
	Area Chart
	Overlap
	Percentage
	Wiggle
	Silhouette
	Data Table
	Line Chart
	Log
	Square root
	Markdown widget
	Metric
	Pie Chart
	Tile Map
	Shaded Circle Markers
	Shaded GeoHash Grid
	Heatmap
	Desaturate map tiles
	Vertical Bar Chart
	Percentage
	Grouped
	Summary
	4. Exploring the Dashboard Page
	Understanding the toolbar
	The New Dashboard option
	Adding visualizations
	Using the search bar
	The Save Dashboard option
	The Load Saved Dashboard option
	Sharing the saved dashboard
	Understanding the dashboard canvas
	Moving visualizations
	Resizing visualizations
	Editing visualizations
	Removing visualizations
	Embedding a dashboard in a web page
	Understanding the debug panel
	Table
	Request
	Response
	Statistics
	Summary
	5. Exploring the Settings Page
	Indices
	Configuring an index pattern
	Setting the default index pattern
	Reloading the index fields list
	Removing an index pattern
	Managing the field properties
	The field type format
	Advanced
	Objects
	Managing saved searches, visualizations, and dashboards
	Viewing a saved object
	Editing a saved object
	Deleting a saved object
	Exporting saved objects
	Importing saved objects
	About
	Summary
	6. Real-Time Twitter Data Analysis
	The installation of Logstash
	The installation of Logstash on Ubuntu 14.04
	The installation of Logstash on Windows
	The workflow for real-time Twitter data analysis
	Creating a Twitter developer account
	Creating a Logstash configuration file
	Creating visualizations for scenarios
	Number of tweets over a period of time
	Number of tweets in different languages
	Number of tweets from different geographical locations
	Number of tweets from Android, iPhone, iPad, and Web devices
	Number of tweets in various languages using different devices
	Number of tweets from various countries using different devices
	The most retweeted user screen name tweeting using different devices
	The most tweeted user's screen name
	Popular hashtags
	Twitter metrics
	Summary
	A. References
	Chapter 1, An Introduction to Kibana
	Chapter 2, Exploring the Discover Page
	Chapter 3, Exploring the Visualize Page
	Chapter 4, Exploring the Dashboard Page
	Chapter 5, Exploring the Settings Page
	Chapter 6, Real-Time Twitter Data Analysis
	Index

