
US$ 7.95

www.admin-magazine.com

ADMIN
Network & Security

Parallel I/O
Will smarter I/O improve
your application’s performance?

Benchmark
Bootcamp
Using benchmarks
to your advantage

Directive
Encoding
Understanding
compiler directives

Lmod
Discover the power
of environment modules

A New World
Altair’s Bill Nitzberg describes the new
dual-license model for the PBS Pro workload manager.

HPC
Techniques

Digital

Special

http://www.pbsworks.com/2017

Table of Contents

4Parallel I/O
Even some parallel applications
handle I/O serially, which can result
in performance bottlenecks.

8Virtuous
Benchmarks

You'll save time and money on your HPC
project if you choose your benchmarks
carefully.

11A New World
Altair recently released its popular PBS
Professional workload manager under
an open source license. We talk with
Altair’s Bill Nitzberg about PBS Pro and
other recent developments in high-
performance computing.

14Directive
Encoding

The OpenACC and OpenMP standards
help you annotate code with compiler
directives to take advantage of parallelism.

18Lmod
Environment modules let you define the
user environment and a set of tools for
building your HPC application.

Contact Info

Editor in Chief
	 Joe Casad, jcasad@linuxnewmedia.com

Managing Editor
	� Rita L Sooby, rsooby@linuxnewmedia.com

Localization & Proofreading
	� Amber Ankerholz, Amy Pettle, Ian Travis

Layout and Graphic Design
	 Dena Friesen, Lori White

Advertising
	 www.admin-magazine.com/Advertise
	 Ann Jesse, ajesse@linuxnewmedia.com
	 Phone: +1-785-841-8834

Publisher
	 Brian Osborn, bosborn@linuxnewmedia.com

Marketing Communications
	 Gwen Clark, gclark@linuxnewmedia.com

Customer Service / Subscription
	 For USA and Canada:
	 Email: cs@linuxnewmedia.com
	 Phone: 1-866-247-2802
	 (toll-free from the US and Canada)

	 www.admin-magazine.com

While every care has been taken in the content of
the magazine, the publishers cannot be held
responsible for the accuracy of the information
contained within it or any consequences arising
from the use of it.

Copyright and Trademarks © 2017 Linux New
Media USA, LLC

Cover Illustration Dena Friesen

No material may be reproduced in any form
whatsoever in whole or in part without the written
permission of the publishers. It is assumed that all
correspondence sent, for example, letters, email,
faxes, photographs, articles, drawings, are
supplied for publication or license to third parties
on a non-exclusive worldwide basis by Linux New
Media unless otherwise stated in writing.

All brand or product names are trademarks
of their respective owners. Contact us if we
haven’t credited your copyright; we will always
correct any oversight.

Printed in Germany

ADMIN is published by Linux New Media USA,
LLC, 616 Kentucky St, Lawrence, KS 66044, USA.

Published in Europe by: Sparkhaus Media GmbH,
Zieblandstr. 1, 80799 Munich, Germany

Dear Readers:
High-performance computing is really different. No matter what
you have learned about coding or how many jobs you’ve held in the
commercial software industry, working with the massively parallel
HPC clusters used for cutting-edge science, engineering, and (increas-
ingly) business applications takes a whole new skill set.

If you’re new to HPC, you’re probably realizing you have a lot to
learn, and even if you’re an HPC veteran, you probably learned long
ago to keep your eyes open for new tips, tools, and techniques for
improving HPC performance. At ADMIN magazine, we’re all about
helping you find the information you need. This special edition gets
down in the trenches with some practical articles on working with
HPC applications and clusters.

You’ll also hear about an exciting new development for the HPC space: a
new open source version of Altair’s powerful PBS Pro workload manager.

Read on for a close-up look at real solutions for real problems in HPC.

Joe Casad
Editor in Chief
ADMIN magazine

HPC Techniques
ADMIN

Network & Security

HPC TECHNIQUESWelcome

3G R E AT TO O L S FO R T H E B U SY A D M I NW W W. A D M I N - M AGA Z I N E .CO M

Lately I’ve been looking at appli-
cation timing to find bottlenecks
or time-consuming portions of
code. I’ve also been reading arti-
cles about improving applications
by parallelization. Once again, this
has led me to examine application
I/​O and, in particular, the fact
that many applications handle
I/​O serially – even parallel appli-
cations – which can result in an
I/​O performance bottleneck.
I/​O in serial applications is simple:
one thread or process does it all. It
doesn’t have to read data and then
pass it along to another process or
thread. It doesn’t collect data from
other processes and threads and
perform the I/​O on their behalf.
One thread. One I/​O stream.
To improve application perfor-
mance or to tackle larger prob-
lems, people have turned to paral-
lelism. This means taking parts of
the algorithm that can be run at
the same time and doing so. Some
of these code portions might have
to handle I/​O, which is where
things can get complicated.
What it comes down to is coor-
dinating the I/​O from various
threads/​processes (TPs) to the
filesystem. Coordination can
include writing data to the appro-

priate location in the file or files
from the various TPs so that the
data files are useful and not cor-
rupt. POSIX filesystems don’t have
mechanisms to help multiple TPs
write to the filesystem; therefore,
it is up to the application devel-
oper to code the logic for I/​O with
multiple TPs.
I/​O from a single TP is straight-
forward and represents coding in
everyday applications. Figure 1
shows one TP handling I/​O for a
single file. Here, you don’t have
to worry about coordinating I/​O
from multiple TPs because there
is only one. However, if you want
to run applications faster and for
larger problems, which usually in-
volves more than one TP, I/O can
easily become a bottleneck. Think
of Amdahl’s Law [1].
Amdahl’s Law says that the per-
formance of a parallel application
will be limited by the performance
of the serial portions of the ap-
plications. Therefore, if your I/​
O remains a serial function, the
performance of the application is
driven by the I/​O.
To better understand how Am-
dahl’s Law works, I’ll examine
a theoretical application that is
80% parallelizable (20% is serial,

primarily because of I/​O). For one
process, the wall clock time is as-
sumed to be 1,000 seconds, which
means that 200 seconds is the se-
rial portion of the application. By
varying the number of processes
from 1 to 64, you can see in Fig-
ure 2 how the wall clock time on
the y-axis is affected by the num-
ber of processes on the x-axis.
The blue portion of each bar is the
serial time, and the red portion
represents time required by the
parallel portion of the application.
Above each bar is the speedup
factor. The starting point on the
left shows that the sum of the
serial portion and the parallel por-
tion is 1,000 seconds, with 20%
serial (200 seconds) and 80% par-

Understanding the I/​O pattern of your application is the starting point for improving its I/​O
performance, especially if I/​O is a fairly large part of your application’s run time. By Jeff Layton

Figure 1: I/​O from a single thread/​process.

Le
ad

 Im
ag

e
©

 Y
in

g
Fe

ng
 J

oh
an

ss
on

, 1
23

RF
.c

om

Improved Performance with Parallel I/​O

 Paths

Parallel I/​OHPC TECHNIQUES

4 H P C T EC H N I Q U E S W W W. A D M I N - M AGA Z I N E .CO M

allel (800 seconds), but with only
one process. Amdahl’s Law says
the speedup is 1.00.
As the number of processes in-
crease, the wall clock time of the
parallel portion decreases. The
speed-up increases from 1.00 with
one process to 4.71 using 64 pro-
cesses. Of course, the wall clock
time for the serial portion of the
application does not change; it
stays at 200 seconds regardless of
the number of processes.
As the number of processes in-
crease, the total run time of the
application approaches 200 sec-
onds, which is the theoretical per-
formance limit of the application,
primarily because of serial I/​O.
The only way to improve applica-
tion performance is to improve
I/​O performance by handling par-
allel I/​O in the application.

Simple Parallel I/​O

The first way to approach paral-
lel I/O, and one that many ap-
plications use, is to have each TP
write to its own file. The concept
is simple, because there is zero
coordination between TPs. All I/​O
is independent of all other I/​O.

Figure 3 illustrates this common
pattern, usually called “file-per-
process.” Each TP performs all
I/​O to its own file. You can keep
them all in the same directory by
using different file names or you
can put them in different directo-
ries if you prefer.
As you start to think about par-
allel I/​O, you need to consider
several aspects. First, the filesys-
tem should have the ability to
keep up as parallelism increases.
For the file-per-process pattern,
if each TP performs I/​O at a rate
of 500MBps, then with four TPs
the total throughput is 2GBps.
The storage needs to be able to
sustain this level of performance.
The same is true of IOPS (input/​
output operations per second) and
metadata performance. Parallel-
izing an application won’t help if

the storage and filesystem cannot
keep up.
The second consideration is that
the data files will be used out-
side your application. Does the
data need to be post-processed
(perhaps visualized) once it’s cre-
ated? Does the data read by the
application need to be prepared
by another application? If so, you
need to make sure the other appli-
cation creates the input files in the
proper format. Think of the appli-
cation workflow as a whole.
For the example in Figure 3, if
you used four TPs and each han-
dled their own I/​O, you have four
output files and probably four
input files (you can allow each
TP to read the same file). Any ap-
plication that uses the output from
the application will need to use
all four files. If you stay with the
file-per-process approach, you will
likely have to stay with four TPs
for any applications that use the
data, which now introduces an
artificial limitation into the work-
flow (four TPs).
One option is to write a separate
application that reads the separate
files and combines them into a
single file (in the case of output
data) or reads the input file and
creates separate files for input (in
the case of input data). Although
this solution eliminates the limita-
tion, it adds another step or two
to the workflow.
Performing file-per-process is
probably the easiest way to
achieve parallel I/​O, because it

Figure 2: Influence of Amdahl’s Law on a 20% serial application by number of processes.

Figure 3: Parallel I/​O via separate files (file-per-process).

HPC TECHNIQUESParallel I/​O

5H P C T EC H N I Q U E SW W W. A D M I N - M AGA Z I N E .CO M

involves less modification to the
original serial or parallel applica-
tion while greatly improving the
I/​O portion of the run time. How-
ever, as the number of TPs in-
creases, you could end up with a
large number of input and output
files, making data management a
pain in the neck.
Moreover, as the number of files
increases, the metadata perfor-
mance of the filesystem comes
under increasing pressure. Instead
of a few files, the filesystem now
has to contend with thousands of
files all doing a series of open(),
read() or write(), close() [or even
lseek()] operations at the same
time.

Single Thread/​Process I/​O

Another option for the parallel
I/​O problem is to use one TP to
handle all I/​O. This solution really
isn’t parallel I/​O, but it is a com-
mon solution that avoids the com-
plications of having multiple TPs
write to a single file. This option
also solves the data management
problem because everything is in
a single file – both input and out-
put – and eliminates the need for
creating auxiliary applications to
either split up a file into multiple
pieces or combine multiple pieces
into a single file. However, it does
not improve I/​O performance,

because I/​O does not take place in
parallel.
You can see in Figure 4 that the
first TP (the “I/​O thread/​process”)
takes care of I/​O to the file(s).
If any of the other TPs want to
write data, they send it to the I/​O
TP, which then writes to the file.
To read a file, the I/O TP reads
the data and then sends it to the
appropriate TP.
Using the single I/​O TP approach
can require some extra coding to
read and write the data, but many
applications use this approach
because it simplifies the I/​O pat-
tern in the application: You only
have to look at the I/​O pattern of
one TP.

Better Parallel I/​O

A better approach for handling
parallel I/​O is shown in Figure 5.
In this approach, every TP writes
to the same file, but to different
“section” of it. Because the sec-
tions are contiguous, you have no

chance of one TP overwriting the
data from a neighboring TP. For
this approach to work, you need a
common shared filesystem that all
TPs can access (NFS anyone?).
One of the challenges of this ap-
proach is that the data from each
TP has to have its own “section”
of the file. One TP cannot cross
over into the section of another
TP (don’t cross the streams), or
you might end up with data cor-
ruption. The moral is, be sure you
know what you are doing or you
will corrupt the data file.
Also note that, most likely, if
you write data using N number
of TPs, you will have to keep
using that many TPs for any ap-
plications later in the workflow.
For some problems, this setup
might not be convenient or even
possible.
Developers of several applications
have taken a different approach:
using several TPs to process the
I/O. In this case, each TP writes
a certain part of the output file.
Typically the number of I/​O TPs
is constant, which helps any pre-
processing or post-processing ap-
plications in the workflow.
One problem with the single I/​O
TP or fixed number of I/​O TPs
approaches is that reading or
writing data from a specific sec-
tion often is not easy to accom-
plish; consequently, a solution
has been sought that allows each
TP to read/​write data from any-
where in the file, hopefully, with-
out stepping on each others’ toes.

Figure 4: Multiple threads/​processes doing I/​O via a single thread/​process.

Figure 5: Multiple threads/​processes performing I/​O to a single file.

Parallel I/​OHPC TECHNIQUES

6 G R E AT TO O L S FO R T H E B U SY A D M I N W W W. A D M I N - M AGA Z I N E .CO M

MPI-IO

Over time, MPI (Message Passing
Interface) [2] became popular
and researchers began thinking
of how to handle parallel I/​O for
MPI applications better. In MPI-2,
something called MPI-IO was
adopted. MPI-IO is a set of func-
tions that abstract I/O for MPI
applications on distributed sys-
tems. It allows the application to
perform I/​O in parallel much the
same way MPI sends and receives
messages.
Typically each process in the MPI
communicator participates in the
I/O, but it’s not required. How
each process writes to a file is up
to the developer. Although it is far
beyond the scope of this article
to discuss MPI-IO, a number of
tutorials [3], documents [4], and
even books [5] online can help
you get started.

High-Level Libraries

The last approach to parallel I/​O I’m
going to mention is high-level librar-
ies that you can use for storing data
(read and write), These libraries
take care of the parallel I/​O “under
the covers,” so to speak. Two op-
tions are worth mentioning: HDF5
and Parallel NetCDF.

Parallel HDF5

HDF5 [6] is a file format that can
be used to store large amounts
of data in an organized fashion.
HDF stands for “Hierarchical Data
Format” and the “5” indicates the
particular file format. HDF5 files
are portable, so you can write an
HDF5 file on one system and read
it on another. Moreover, a number
of languages have HDF5 APIs, in-
cluding C, C++, Fortran, Python,
Perl, Julia, Go, Matlab, R, Scilab,
Octave, and Lua, to name a few.

Parallel HDF5 [7] uses MPI-IO to
handle I/​O to the storage system.
To get the best performance read-
ing and writing to HDF5 files, you
can tune various aspects of MPI-
IO, as well as HDF5 parameters
for the underlying filesystem.

Parallel NetCDF

Another portable file format is
NetCDF [8]. The current version
4 allows the use of the HDF5 file
format. APIs for NetCDF include
C, C++, Fortran, Python, Java,
Perl, Matlab, Octave, and more.
As with HDF5, NetCDF has a par-
allel version, Parallel-NetCDF [9],
which also uses MPI-IO. This ver-
sion is based on NetCDF 3 and
was developed by Argonne Labs.
To implement parallel I/​O with
NetCDF 4, you need to use HDF5
capability and make sure HDF5
was built with MPI-IO.

Recommendations

If you have an application that
handles I/​O in a serial fashion
and the I/O is a significant por-
tion of your run time, you could
benefit by modifying the applica-
tion to perform parallel I/​O. The
fun part is deciding how you
should do it.
I recommend you start very sim-
ply and with a small-ish number
of cores. I would use the file-per-
process approach in which each
TP performs I/O to its own file.
This solution is really only suit-
able for small numbers of TPs, but
it is fairly simple to code; be sure
to have unique file names for each
TP. This approach places more
burden on the pre-processing and
post-processing tools, but the ap-
plication itself will see better I/​O
performance.
The second approach I would
take is to use a high-level library

such Parallel HDF5. You can use
MPI-IO underneath the library to
get improved I/O performance,
but it might require some tuning.
The benefit of using a high-level
library is that you get a common,
portable format across platforms
with some possible I/​O perfor-
mance improvement.
After using high-level libraries, I
would say that using MPI-IO or
confining I/​O to one TP are your
choices. Writing applications
for MPI-IO can be difficult, but
it also can reap the biggest I/​O
performance boost. Having one
TP perform all of the I/​O can be
a little complicated as well, but it
is a very common I/​O pattern for
parallel applications.
Don’t be afraid of jumping into
parallel I/​O with both feet, because
you can get some really wonderful
performance improvements.	 n

Info

[1]	 �Amdahl’s Law: 	

[http://​www.​admin‑magazine.​com/​

HPC/​Articles/​Failure‑to‑Scale]

[2]	 �MPI: [https://​computing.​llnl.​gov/​

tutorials/​mpi/]

[3]	 �MPI and MPI-IO training tutorial:

[https://​www.​hpc.​ntnu.​no/​display/​hpc/​

MPI+and+MPI+IO+Training+Tutorial]

[4]	 �MPI-IO: [http://​beige.​ucs.​indiana.​edu/​

I590/​node86.​html]

[5]	 �Liao, Wei-keng, and Rajeev Thakur.

MPI-IO. In: High Performance Parallel

I/​O, chapter 13. Chapman and Hall/​

CRC, 2014, pp. 157-167, 	

[http://​www.​mcs.​anl.​gov/​papers/​

P5162‑0714.​pdf]

[6]	 �HDF5: [http://​www.​hdfgroup.​org/]

[7]	 �Parallel HDF5: 	

[https://​www.​hdfgroup.​org/​HDF5/​

PHDF5/]

[8]	 �NetCDF: 	

[https://​en.​wikipedia.​org/​wiki/​NetCDF]

[9]	 �Parallel-NetCDF: 	

[https://​en.​wikipedia.​org/​wiki/​

NetCDF#​Parallel‑NetCDF]

HPC TECHNIQUESParallel I/​O

7G R E AT TO O L S FO R T H E B U SY A D M I NW W W. A D M I N - M AGA Z I N E .CO M

http://www.admin-magazine.com/HPC/Articles/Failure-to-Scale
http://www.admin-magazine.com/HPC/Articles/Failure-to-Scale
https://computing.llnl.gov/tutorials/mpi/
https://computing.llnl.gov/tutorials/mpi/
https://www.hpc.ntnu.no/display/hpc/MPI+and+MPI+IO+Training+Tutorial
https://www.hpc.ntnu.no/display/hpc/MPI+and+MPI+IO+Training+Tutorial
http://beige.ucs.indiana.edu/I590/node86.html
http://beige.ucs.indiana.edu/I590/node86.html
http://www.mcs.anl.gov/papers/P5162-0714.pdf
http://www.mcs.anl.gov/papers/P5162-0714.pdf
http://www.hdfgroup.org/
https://www.hdfgroup.org/HDF5/PHDF5/
https://www.hdfgroup.org/HDF5/PHDF5/
https://en.wikipedia.org/wiki/NetCDF
https://en.wikipedia.org/wiki/NetCDF#Parallel-NetCDF
https://en.wikipedia.org/wiki/NetCDF#Parallel-NetCDF

From my perspective as a user,
customer, developer, administrator,
and vendor, one of the most con-
tentious issues in the HPC industry
has been benchmarks.
As a user and customer, I used
benchmarks to get an idea of per-
formance and to compare product
metrics, such as performance/​
price or performance/​watt. After
the system is installed, the bench-
marks are often re-run to make
sure the system meets the vendor’s
guarantees. On the vendor side, I
used benchmarks to improve my
understanding of how new systems
performed, so I could make good
recommendations to customers.
Because of the enormous amount
of effort required for benchmarks,
both sides – customer and vendor
– view benchmarks as a necessary
evil. Neither side really wants them;
nonetheless, they use them. Perhaps
I can find a way to use them that
isn’t so evil. To begin this quest, I’ll
examine the benchmarks typically
run when installing a system.

Installation Benchmarks

During installation, the system
is reconstructed on the customer
site, which includes racking and
cabling the hardware and installing
or checking the system software.

Once the system is up and running,
benchmarks are run to determine
two things: Are the nodes and net-
work functioning correctly? Is sys-
tem performance as promised?
In my experience, to accomplish
these two goals, you should run
a series of benchmarks that start
with single-node runs and progress
to groups of nodes of various sizes.

Single-Node Runs

I like to start with the individual
nodes and then work up, so I begin
by running the exact same tests
on all of the nodes as close to the
same time as possible. The tests
should run fairly quickly yet stress
various components of the system.
For example, they should definitely
stress the processor(s) and memory,
especially the bandwidth. I would
recommend running single-core
tests and tests that use all of the
cores (i.e., MPI or OpenMP).
A number of benchmarks are
available for you to run. The ones
I like are the NAS Parallel Bench-
marks (NPB) [1]. NPB is a set of
benchmarks that cover a wide
range of applications, primarily
from the CFD (Computational
Fluid Dynamics) field. I’ve found
they really stress the CPU, memory
bandwidth, and network in various

ways. OpenMP and MPI versions
of NPB “classes” allow you to run
different data sizes. Plus, they are
very easy to build and run, and the
output is easy to interpret.
The NASA website [2] provides
the following details on the NPB
benchmarks.
Five kernel benchmarks:
n � IS – Sorts small integers using

the bucket sort. Typically uses
random memory access.

n � EP – Embarrassingly parallel ap-
plication. Generates independent
Gaussian random variates using
the Marsaglia polar method.

n � CG – Estimates the smallest ei-
genvalue of a large sparse sym-
metric positive-definite matrix
using the inverse iteration with
the conjugate gradient method
as a subroutine for solving sys-
tems of linear equations. Uses
irregular memory access and
communication.

n � MG – Approximates the solu-
tion of a three-dimensional
discrete Poisson equation using
the V-cycle multigrid method
on a sequence of meshes.
Exhibits both long- and short-
distance communication and is
memory intensive.

n � FT – Solves a three-dimensional
partial differential equation
(PDE) using the fast Fourier

A collection of single- and multinode performance benchmarks is an excellent place to
start when debugging a user’s application that isn’t running well. By Jeff Layton

Using benchmarks to your advantage

 Node Check

Le
ad

 Im
ag

e
©

 T
om

 D
e

Sp
ie

ge
la

er
e,

 12
3R

F.
co

m

Virtuous BenchmarksHPC TECHNIQUES

8 H P C T EC H N I Q U E S W W W. A D M I N - M AGA Z I N E .CO M

transform. Uses a great deal of
all-to-all communication.

Three pseudo-applications:
n � BT – Solves a synthetic system

of nonlinear PDEs using a
block tri-diagonal solver.

n � SP – Solves a synthetic system
of nonlinear PDEs using a sca-
lar penta-diagonal solver.

n � LU – Solves a synthetic system
of nonlinear PDEs using sym-
metric successive over-relax-
ation (SSOR). Also referred to
as a Lower-Upper Gauss–Seidel
solver.

These tests have both OpenMP
and MPI versions, and a “multi-
zone” version of the pseudo-ap-
plications can be run in a hybrid
mode (i.e., MPI/​OpenMP).
The benchmark classes in Table 1
indicate the size of the problem be-
ing examined and correlate with the
amount of memory used and the
amount of time needed to complete.
NPB has been released three
times, each undergoing several
versions as bugs were found or
improvements were introduced.
As of this writing, the latest ver-
sion is 3.3.1 for both NPB and
NPB-MZ (multizone).
Benchmark results are usually
expressed in terms of how much
(wall clock) time it takes to run
and in GFLOPS (10^9 floating point
operations per second) or MFLOPS
(10^6 floating point operations
per second). For example, List-
ing 1 presents the output of the MG
benchmark (NPB 3.3.1, GCC com-
pilers, OpenMPI, single socket with
four cores with four hyperthreading
cores for eight total cores, Class C).

The output says it took 35.44
seconds to run, using a total of
4,393.44 MOPS (Mop/​s in List-
ing 1, million operations per sec-
ond; =4.393 GFLOPS).
For testing (benchmarking), I
select a subset of the NPB bench-
marks and classes, execute single-
node runs (either OpenMP or
MPI) on all of the nodes roughly
at the same time, and name the
output files to match the node
name. To collect the output from
all of the runs, I use simple Bash
or Python scripts.
With this data in hand, I first look
for performance outliers. To begin,
I compute the average (arithmetic
mean) and standard deviation of
all of the results for each test. If the
standard deviation is a significant
percentage of the average, I then
plot the data on a graph of perfor-
mance versus node number, which
I inspect visually for outliers.
From the plot, I can mark some
nodes as outliers that need to be
re-tested and possibly triaged.
Next, I remove the data of the
outlier nodes from the totals and
recompute the average and stan-
dard deviation, repeating the out-
lier identification process. At some
point, one hopes the standard de-
viation becomes a small percentage
of the average, so I can stop the
testing process with a set of good
nodes and a set of outlier nodes.
For example, I might start with a
performance standard deviation tar-
get of +/​-5 percent of the average.
(Note that 5 percent is an example,
not a hard and fast number.) If the
computed standard deviation is

greater than 5 percent, I will plot
the results and start choosing nodes
outside of this deviation. Next, I re-
compute the average and standard
deviation of the reduced set and
repeat until I reach the target 5 per-
cent deviation.
With the set of outlier nodes, I
re-run the benchmarks one or
two more times to see if the per-
formance changes. If it does not,
then I triage the nodes (up to and
including replacement).
The last step is probably one of the
most critical steps you can take, and
it goes to the heart of this article. Be
sure to store the single-node results
somewhere you can easily retrieve
them. Also, store the the source,
and even the binaries, with the
information on how you built the
code, including software versions.

Table 1: NPB Benchmark Classes

Class Test Size Application

S Small Quick tests

W Workstation From the 1990s

A, B, C Standard 4x size increases going from one class to the next

D, E, F Large ~16x size increases from each of the previous classes

Listing 1: MG Benchmark Output

 NAS Parallel Benchmarks 3.3 ‑‑ MG Benchmark

 No input file. Using compiled defaults
 Size: 512x 512x 512 (class C)
 Iterations: 20
 Number of processes: 8

 Initialization time: 5.245 seconds

 iter 1
 iter 5
 iter 10
 iter 15
 iter 20

 Benchmark completed
 VERIFICATION SUCCESSFUL
 L2 Norm is 0.5706732285739E‑06
 Error is 0.1345119360807E‑12

 MG Benchmark Completed.
 Class = C
 Size = 512x 512x 512
 Iterations = 20
 Time in seconds = 35.44
 Total processes = 8
 Compiled procs = 8
 Mop/s total = 4393.44
 Mop/s/process = 549.18
 Operation type = floating point
 Verification = SUCCESSFUL
 Version = 3.3.1
 Compile date = 28 Nov 2014

...

HPC TECHNIQUESVirtuous Benchmarks

9H P C T EC H N I Q U E SW W W. A D M I N - M AGA Z I N E .CO M

Small Node Groups

After the single-node runs are
done, I test small groups of nodes.
You can either arbitrarily pick the
number of nodes per group to
test, or you can group the nodes
together so that they all belong to
a single switch. Generally, I try to
run four nodes per group to keep
things simple. In these groups, I
run tests with both a single core
per node and all the cores per
node, allowing me to stress the
nodes in different ways. The goal
of small-node-group testing is to
start introducing network perfor-
mance as an overall parameter.
For these runs, you have to use
the MPI version of the NPB tests,
and I would run the same tests as
used in the single-node runs.
I recommend running two different
classes for these small node groups,
beginning with A or B, to stress the
network by taking a small problem
and spreading it across a number
of processes. However, real systems
are seldom run this way, because it
is not an efficient use of the system.
Therefore, I would also run the larg-
est class problem possible to stress
the memory, CPU, and network.
After running these tests, you
again perform a statistical analysis
on the results in the exact same
manner as described for the single-
node runs: compute the average
and standard deviation of the tests,
look for outliers in the data, run
more tests on those groups, and
perhaps triage the nodes if needed.
I would also recommend compar-
ing the nodes in this outlier groups
to the outliers in the single-node
tests to look for correlation.
As with the single-node tests, be
sure to store the results some-
where you can easily retrieve
them, along with the source and
binaries and how you built the
code, including versions.

Larger Node Groups

After running small groups of nodes
you can run larger groups by com-
bining the smaller groups. The most
important thing to remember is to
store the results once you are done.
You can repeat the process of test-
ing larger and larger node groups
until you reach the entire cluster.
Sometimes this is useful if you are
trying to do a TOP500 run, because
you can leave slower nodes out of
the run that hurt the final result.
After you finish all these tests
you will have a fairly extensive
database of benchmark results; it
includes the results from standard
benchmarks for all of the individual
nodes and groups of nodes, as well
as a history of outlier nodes relative
to the others.

Database of Results

The most common problem I
encountered as an admin is user
applications that do not run or run
poorly. One of the first things to do
in tackling these problems is test
the nodes that seem to be causing
the performance problems. To do
this, you need to know what kind
of performance to expect from
the nodes. Don’t forget that you
have a very nice database of test
results you can use for this testing.
Of course, these tests might not
“tickle” the node(s) in the same
way a user application does, but at
least you have a starting point.
In addition to debugging the node
itself, the database results can help
track down network problems.
With the node group tests from the
database in hand, you can re-run
the small node group tests across
the set of nodes you suspect are not
performing well and see how the re-
sults compare with the database.
Admins also update system soft-
ware from time to time (e.g., a se-

curity update or a new version of a
compiler or library). To determine
whether the nodes are performing
well after the update, you can sim-
ply re-run the tests and compare
the results to the database.
After a firmware upgrade on nodes
or switches, I definitely recommend
re-running all of the tests – from
single-nodes to larger node groups.
Again, don’t forget to store the new
results as a new baseline. If the
results are worse and triaging does
not turn up much, you might have
to roll back the firmware version
while you debug the updated firm-
ware with the manufacturer(s).
A great way to use these bench-
mark results is to re-run the tests
on nodes periodically by creating
some simple jobs, running them,
and recording and comparing the
results. A simple tool can parse the
benchmark results and throw them
into the database for comparison
with the old results, and you can
even use statistical methods in the
comparison.

Summary

Debugging a user’s application
when it isn’t running well is al-
ways difficult; however, you have
an advantage if you have a set of
baseline performance benchmarks
in your back pocket.
An excellent way to start checking
for problems is to check the nodes
they use. In particular, I would
briefly take the nodes out of produc-
tion and check their performance by
repeating the exact same tests used
to create the database and compar-
ing the results to the database.	 n

Info

[1]	� NAS Parallel Benchmarks:

[http://​en.​wikipedia.​org/​wiki/​NAS_Par-

allel_Benchmarks]

[2]	� NASA NPBs: [http://​www.​nas.​nasa.​gov/​

publications/​npb.​html]

Virtuous BenchmarksHPC TECHNIQUES

10 H P C T EC H N I Q U E S W W W. A D M I N - M AGA Z I N E .CO M

http://en.wikipedia.org/wiki/NAS_Parallel_Benchmarks
http://en.wikipedia.org/wiki/NAS_Parallel_Benchmarks
http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html

ADMIN Magazine: PBS Professional
has been a leading workload man-
ager in the HPC space for years.
What made you decide to go with
an open source licensing model?

Bill Nitzberg: The HPC world is re-
ally two separate HPC worlds: the
public sector (focused on research
and academia) and the private
sector (focused on commercial
endeavors). On the research side,
organizations are eager to take risks
and be early adopters, all in the
name of exploration; plus, research-
ers are natural collaborators. On the
commercial side, organizations are
more risk averse; they want proven
solutions (not half-working, bleed-
ing-edge tools); in addition, they
are natural competitors. These dif-
ferences have meant that the public
sector has an affinity for open
source software and the private
sector has a preference for (some-
times even demands) commercially
licensed software. This dichotomy
has really hindered innovation, by
restricting the flow between these
two worlds. This is a huge lost op-
portunity for the whole HPC world.
By dual-licensing PBS Profes-
sional – offering it with an open
source option as well as with a
commercial license option – we
hope to marry these separate HPC
worlds, to re-target efforts towards
pushing the envelope instead of

wasting effort re-implementing du-
plicate capabilities, and to really ad-
vance the state of the art in sched-
uling, bringing together the public
sector’s innovations with the private
sector’s enterprise know-how.

AM: For our readers who aren’t
familiar, what is PBS Professional
and what does it do? How does it
differ from other similar tools in
the market?

BN: PBS Professional is “job sched-
uler” or “workload manager” soft-
ware for HPC clusters and clouds.
It is infrastructure middleware that
efficiently optimizes the allocation
and use of HPC resources (CPUs,
memory, GPUs, software licenses,
electric power, …) ensuring that
resources are used wisely and en-
terprise policies are met. Engineers
and researchers submit “jobs”
(engineering simulations, weather
models, gene matching, …) and
PBS Pro schedules the right job
at the right time on the right re-
sources, automatically, handling
prioritization, traffic control, fault
recovery, notifications, and report-
ing. System administrators config-
ure site-wide system use policies
and can easily manage complex
HPC systems with thousands of
users and millions of cores, letting
PBS Pro ensure maximum utiliza-
tion, with minimum interruption.

Award-winning PBS Professional
is fast and powerful and is de-
signed to improve productivity,
optimize utilization and efficiency,
and simplify HPC administra-
tion. It automates job scheduling,
management, monitoring, and re-
porting. PBS Pro has been proven
for over 20 years at thousands of
global sites; it is the trusted solu-
tion for complex TOP500 systems
and small cluster owners alike.

AM: Open source means commu-
nity. Vendors often open-source
their products to encourage partic-
ipation from third-party developers
and volunteers. What kinds of re-
sources do you have now for de-
velopers, testers, and other volun-
teers to get involved with PBS Pro?
What kinds of steps are you taking
to encourage more participation?

BN: Altair has made a big invest-
ment into the open source com-
munity and continues to do so. We
have opened the full core of PBS
Pro, not just a weak subset or an
older version. We have reorganized
to behave as one of the many con-
tributors and have added staff to
support the community as well.
We have implemented community-
accepted practices and tools, such
as OSI-approved licenses and using
GitHub and JIRA. We are focused
on building a viable and sustainable

An open source license for PBS Pro

 A New World
The powerful PBS Pro workload manager gets a new open
source license. By Joe Casad

HPC TECHNIQUESAltair’s PBS Pro

11H P C T EC H N I Q U ESW W W. A D M I N - M AGA Z I N E .CO M

community that is aggressively open
and inclusive while maintaining a
high level of respect and profession-
alism towards one another.
PBS Professional is a community
effort providing a variety of ways to
engage. We have created a forum to
facilitate communication between
users and developers alike. The
contributor’s portal provides a huge
amount of step-by-step instructions,
details on roadmaps and processes,
and more.

AM: PBS Pro will actually have a
dual-licensing model. Tell us about
the other side. Do you plan to con-
tinue to maintain a closed-source
version of PBS Professional?
What’s different about the pre-
mium edition? What are some sce-
narios in which you would recom-
mend the commercial version?

BN: Our goal is to have a common
core but to continue to provide
a commercially hardened ver-
sion for customers who need a
bullet-proof enterprise edition,
and where commercial license
terms are desired or required. For
organizations whose infrastruc-
ture has depended on PBS Pro for
many years, we want to ensure
that there is no change and that
they still get the same hardened
code, fantastic support, and criti-
cal updates that they have been
getting for many years. Therefore,
the commercial version will have
significantly more testing and ad-
ditional quality assurance.

AM: How do you see the HPC space
in general, compared to where it
was a few years ago? And where do
you see it going in the future?

BN: The HPC space has become
interesting again… it feels as if we
are in the middle of a Cambrian
tech-explosion in both hardware

and software. On the hardware side,
what was very homogeneous a few
years ago (clusters of Intel architec-
ture systems where the big differ-
ences were pretty minor – Ethernet
vs. Infiniband and how much mem-
ory to put in each node) is now a
hotbed of innovation with Xeon
Phi, GPUs, ARM, POWER, SSDs;
even FPGAs are back. On the soft-
ware side, Linux had become the
de facto HPC operating system and
MPI + OpenMP was the dominant
programming model. Although the
Linux kernel remains the HPC op-
erating system of choice, the variety
of Linux distributions has greatly
expanded, and now includes vari-
ants provided by cloud providers;
the use of containers (aka Docker)
has allowed each individual ap-
plication to precisely craft what
amounts to an application-specific
Linux distribution. Programming
models are also much more in-
teresting, making use not only of
cloud APIs but also, in a major way,
microservices, containers, and the
elephant in the room – big data
with Hadoop (although even that’s
feeling old), not to mention Spark.
There’s more every day.
This explosion of new technologies
is being driven by collaboration,
and the collaboration is powered by
open source. Most of the new tools
mentioned above are, in fact, open
source. The collaborative power of
open source not only helps explore
new ideas, but it’s accelerating
adoption. (This is where our dual-
license support naturally fits in, and
with PBS Pro as part of the Linux
Foundation’s OpenHPC initiative, it
truly feels as if there is the potential
to change the landscape of the HPC
supercomputing space by collabo-
rating on a common set of tools that
anyone can use.)

AM: High-performance computing
used to be the preserve of college

professors and high-end engineer-
ing and simulation teams. Now we
hear a lot about Big Data: corpora-
tions using HPC techniques to ana-
lyze data and look for patterns. Do
you see PBS Professional, and Al-
tair’s products in general, finding
their way into this Big Data space,
or will your primary focus remain
with science and engineering?

BN: Science and engineering are
being driven more and more by
data in addition to computation,
so even in the traditional HPC
areas, Big Data is becoming as
important as Big Compute. So,
yes, Altair sees Big Data as a key
driver for our technologies (both
inside and outside engineering). I
believe the common definition of
HPC will include Big Data in the
near future. (In fact, my definition
of HPC is “pushing the limits of
computing slightly beyond where
it works really well,” and, as such,
Big Data fits right in there today.)
Interestingly, some sectors of HPC,
such as weather and climate, have
always had a Big Data problem –
huge datasets, streaming in real
time, messy accuracy – but they
have been around long enough that
they have captured their big data
into efficient HPC workflows. Even
modern engineering simulations
now include Big Data aspects; for
example, with Altair’s HyperStudy
design exploration tool, a single
engineer on a single aspect of one
design can end up with datasets
topping 500 runs. The new users of
data in other industries are still grap-
pling with how to best manage it.
At Altair, we’re focusing on two
parts of the convergence: one is
scheduling combined workloads
(mixing Big Data and Big Compute)
using PBS Pro; the other is analytics
on Big Data using Altair’s new Envi-
sion business intelligence platform.
Envision is a modern cloud-based

Altair’s PBS ProHPC TECHNIQUES

12 H P C T EC H N I Q U E S W W W. A D M I N - M AGA Z I N E .CO M

analytics solution and is the power
behind PBS Analytics and Altair’s
Software Asset Optimization (SAO),
both of which are a part of the PBS
Works suite. PBS Analytics allows
administrators to visualize historical
HPC resource usage for optimized
returns on investments. Altair’s SAO
provides organizations the ability to
measure and analyze utilization of
their software assets to ensure that
technology investments are used in
the best way possible.

AM: The last time we talked, Altair
had just launched HyperWorks
Unlimited. How’s the cloud busi-
ness going? How will the licensing
changes and other developments
with the PBS family of tools affect
the cloud operation?

BN: Our cloud business is ramping
up. We now have HyperWorks Un-
limited appliances that are available
on the private and public clouds,
and we have announced two new
cloud solutions: PBSCloud.io and
Inspire Unlimited.
HyperWorks Unlimited is a state-
of-the art appliance available in
both physical and virtual formats,
offering unlimited use of all Altair
software. Altair’s cloud appliances
address the unique needs of en-
terprises by providing access to an
HPC infrastructure at an afford-
able cost. This allows engineers
and scientists access to hardware,
software, and HPC support that en-
ables robust product designs.
PBSCloud.io is an SaaS platform
that easily creates, manages, de-
ploys, and monitors HPC appliances
for public clouds, private clouds,
and bare metal. Solution architects
are able to define fully engineered
HPC appliances whether it is in the
cloud or on on-premise hardware.
A vast variety of middleware is
supported, including applications
from Altair, third-party solutions,

and in-house software. In addition,
engineers and scientists can easily
deploy and use appliances via a
self-service model.
Inspire Unlimited is the cloud plat-
form that will host solidThinking
Inspire. Inspire is a topology opti-
mization software that allows engi-
neers and designers to create and
investigate structurally efficient
concepts quickly and easily. Other
solidThinking solutions including
Evolve and Click2Cast will eventu-
ally become a part of it, as well.

AM: Is there anything Altair is
working on now that you’re partic-
ularly excited about? A new prod-
uct? Or new and interesting use
cases that have evolved around
the Altair toolkit? What should
Altair-watchers be watching for?

BN: The 2017 release of PBS Works
is really great – fast, scalable, beau-
tiful – it includes everything from
totally new modules (like web-
based real-time workload monitor-
ing) to small touches (like native
iOS notifications). One really excit-
ing new module is the workload
simulator. The simulator allows a

system administrator to test and
verify infrastructure changes before
committing to the changes, and
especially before putting those
changes into production (Figure 1).
For example, let’s say some jobs
are taking too long to complete be-
cause they appear to languish in the
queues while waiting for resources.
You believe that adding resources
will solve the problem, but how
do you figure out exactly what to
buy, and then how do you convince
your management that it’s the right
thing to do? The simulator lets you
run a study based on your site’s real
workload (for example, last quar-
ter’s workload), varying the number
of resources added. Using it, you
can show the effect of adding big
memory nodes vs. GPU nodes vs.
software licenses vs. whatever on
job waiting times. With the simula-
tor, you can not only determine
that you should buy 12 big memory
nodes plus one GPU node to ensure
your high-priority jobs get done
overnight, but you can take the
charts to your management to jus-
tify the budget and explain exactly
what is needed and why and how
much of an impact it will have.	 n

Figure 1: Proposed changes can be verified via simulation before being deployed in production; the

top graphs show how VIP job turnaround improves (blue actual vs. green simulated with proposed

changes), and it shows that other job types show a slight degradation in turnaround.

HPC TECHNIQUESAltair’s PBS Pro

13H P C T EC H N I Q U E SW W W. A D M I N - M AGA Z I N E .CO M

I’ve always loved this interaction
from the movie Contact [1]. To me,
it illustrates that you constantly
have to think about all aspects of a
problem and can’t focus on just one
thing too long. You have to spin the
problem, turn it around, and turn it
inside out to understand the prob-
lem and solve it – or at least take a
step in that direction.
Two current trends in the HPC
world are intersecting: using more
than one core and using accelera-
tors. They can result in lots of op-
portunities, but sometimes you
need to turn a problem around and
examine it from a different perspec-
tive to find an approach to solving
the problem that comes from the
intersection of possible solutions.
In the HPC world, opportunities
can mean faster performance (it
does stand for “high performance,”
after all), easier or simpler pro-

gramming, more portable code, or
perhaps all three. To better under-
stand the interaction, I’ll examine
the trend of helping coders get past
using only a single core.

Using More than One Core

XSEDE [2] is an organization,
primarily of colleges and univer-
sities, that integrates resources
and services, mostly around HPC,
and makes them easier to use and
share. XSEDE’s services and tools
allow the various facilities to be
federated and shared. You can see
a list of the resources [3] on their
website. It’s definitely not a small
organization, having well over
12x10^15 floating-point opera-
tions per second (12PFLOPS) of
peak performance in aggregate.
At the recent XSEDE conference
[4] during a panel session [5], it

was stated that 30% of the jobs
run through XSEDE in 2012 only
used a single core. From another
presentation [6], only 70% used
16 cores (about a single node).
There at least has to be an easy
way to accelerate the single-core
jobs to use a good percentage of
the cores in a single node. Perhaps
some simple “hints” or directives
can be added to code to tell the
compiler that it can create a binary
that takes advantage of all of the
computational capability available.

Accelerators

At the same time, HPC has had an
insatiable appetite for more per-
formance. CPUs have evolved to
include several tiers of cache, from
L1 to L2 to L3 (and even L4), before
going to main memory. Current
CPUs also have several cores per
processor. Although CPU improve-
ments have brought wonderful
gains in performance, the desire
for even more performance has
been strong, leading to the adop-
tion of co-processors, which take on
some of the computational load to
improve application performance.
These coprocessors, also referred
to as “accelerators,” can take many
shapes: graphical processing units
(GPUs), many-core CPU processors
like Intel’s Xeon Phi, digital signal
processors (DSPs), and even field-
programmable gate array (FPGAs). Le

ad
 Im

ag
e

©
 M

at
t

Tr
om

m
er

, 1
23

RF
.c

om

Directive coding is annotating your code with compiler directives to take advantage of parallelism
or accelerators. The two primary standards are OpenACC and OpenMP. By Jeff Layton

Parallel directives with OpenACC and OpenMP

 Parallel Decree

Ellie Arroway: You found the primer.

S. R. Hadden: Clever girl! Lights. … Pages and pages of data. Over
63 thousand in all, and on the perimeter of each …

Ellie: … alignment symbols, registration marks, but they don’t line up.

Hadden: They do, if you think like a Vegan. An alien intelligence
is going to be more advanced. That means efficiency functioning on
multiple levels and in multiple dimensions.

Ellie: Yes! Of course. Where is the primer?

Hadden: You’ll see. Every three-dimensional page contains a piece of
the primer; there it was all the time, staring you in the face. Buried
within the message itself, is the key …

– Contact (1997)

Directive CodingHPC TECHNIQUES

14 H P C T EC H N I Q U E S W W W. A D M I N - M AGA Z I N E .CO M

All of this hardware has been
added in the name of better per-
formance. Meanwhile, applications
and tools have evolved to take
advantage of the extra hardware,
with applications like OpenMP [7]
using the hardware on a single
node or the message-passing inter-
face (MPI) [8] taking advantage of
the extra processing power across
independent nodes.
Certain applications or parts of ap-
plications can be rewritten to use
these accelerators, greatly increas-
ing their performance. However,
each accelerator has its own unique
properties, so applications have to
be written for that specific accelera-
tor. How about killing two birds
with one technology? Is it possible
to have a simple way to help people
write code that uses multiple cores
or accelerators or both? Wouldn’t it
be nice to have compiler directives
that tell compilers what sections
of code could be built for accel-
erators, including extra CPU cores,
and build the code for the targeted
accelerator? Turns out a couple of
directives are available.

OpenACC

The first set of compiler directives
is called OpenACC [9], which was
started by Cray, CAPS, Nvidia,
and PGI (Portland Group) and is
somewhat similar to OpenMP in
that you annotate your code with
a series of comments that the
compiler interprets as directives to
build sections of code for the ac-
celerator. OpenACC originally tar-
geted GPUs from Nvidia and AMD
(ATI), but it was expanded to
target other accelerators, possibly
including other CPU cores (multi-
core processors), at some point.
OpenACC has two major versions:
Version 1.0 of the standard [10],
announced November 14, 2011,
included a number of directives for

coding accelerators (initially GPUs),
after which, OpenACC compilers
very quickly became available.
Version 2.0 [11] was finalized on
June 2013, although a preview was
posted [12] on November 12, 2012.
It added some new capabilities and
expanded functionality acquired
since version 1.0 was released.
Work is ongoing for the next
OpenACC standard, as well, and
OpenACC 2.6 is tentatively sched-
uled for completion by mid-2017.
As mentioned previously,
OpenACC is a set of directives you
add to your code as comments. An
OpenACC compiler will interpret
these as directives, but if the com-
piler is not OpenACC-ready, it will
think they are just comments and
ignore them. This makes it easy to
create portable code that can be
used with a variety of compilers.
The directives cover a fairly large
range of capability that tells com-
pilers to create code that does a
wide range of tasks, including:
n � Initiate the accelerator startup/​

shutdown.
n � Manage program, data transfer,

or both between the CPU and
the accelerator. (Note: At this
time, OpenACC assumes that
the memory in the accelerator
is distinct from the CPU, requir-
ing data transfer.)

n � Manage the work between the
accelerator and the CPU.

On the basis of the directives, the
compilers generate the best code
possible, but it is up to the pro-
grammer to tune their code to take
advantage of the accelerators.
Because accelerators target paral-
lel computations, you can imagine
that application code sections that
target accelerators include both
coarse-grained and fine-grained
parallelism. Coarse-grained paral-
lelism allows multiple executions
in the accelerator at the same time,
whereas fine-grained parallel-

ism includes threads of execution
within a single execution unit,
such as SIMD and vector opera-
tions. Moreover, accelerators are
good candidates for work-sharing
loops, or “kernel” regions, wherein
one or more loops are executed as
kernels. (Generically, a kernel is a
small section of code.)
The syntax for directives is pretty
simple. For Fortran, the directive
looks like:

!$acc directive [clause [, clause] ...]

From free-format Fortran 90 on-
ward, ! is a comment. For C, the
directive looks like:

#pragma acc directive [U

 clause [, clause] ...]

OpenACC directives fall into sev-
eral categories:
n � Accelerator parallel region/​

kernels directives
n � Loop directives
n � Data declaration directives
n � Data region directives
n � Cache directives
n � Wait/​update directives
n � Environment variables
Although I won’t go through all of
the directives and clauses, I’ll look
at a couple to get a feel for what
they look like and do.
The first directive or construct is a
parallel construct. In Fortran, the
code looks something like this:

!$acc parallel [clause [, clause] ...]

< structured code block >

!$acc end parallel

Notice that in Fortran you have to
insert a directive that tells where
the parallel region ends. In C, the
code looks like this:

#pragma acc directive [U

 clause [, clause] ...]

< structured code block >

HPC TECHNIQUESDirective Coding

15H P C T EC H N I Q U E SW W W. A D M I N - M AGA Z I N E .CO M

This directive tells the compiler to
create code where gangs of worker
threads are executing the “struc-
tured code block” in parallel on
the accelerator. [Note: In CUDA,
a “gang of workers” is a CUDA
block of threads.] One worker in
each gang begins executing the
code in the structured block. The
number of gangs and the number
of workers in each gang remain
constant for the duration of the
parallel region.
The second directive is a kernels
directive. In Fortran, the directive
looks like this:

!$acc kernels [clause [, clause] ...]

< structured code block>

!$acc end kernels

< structured code block >

In C, the same thing looks like:

#pragma acc kernels [clause [, clause] ...]

< structured code block >

The kernels directive tells the com-
piler that the structured code block
has a region that can be compiled
into a sequence of kernels for
execution on the accelerator. It is
similar to the parallel directive, but
the loops in the kernels will be in-
dependent kernels rather than one
large kernel. These independent
kernels and associated data trans-
fers may overlap with other kernels.
A simple example of this directive
(in Fortran) is shown in Listing 1.
With the simple kernels directive,

the compiler creates a kernel from
the first loop and a second kernel
from the second loop (i.e., they are
independent). These kernels can
then be run on the accelerator.
You can find a lot of introduc-
tory materials on the web about
OpenACC, as well as some
YouTube videos [13] that walk
through OpenACC with examples.

OpenMP

OpenMP [14] was the first set of
directives developed that helped
the compiler find regions of code
that could be run in parallel on
shared memory systems. The last
bit, “shared memory systems,” is
important. OpenACC handles data
movement to and from accelera-
tors that each can have their own
memory, whereas OpenMP has to
use shared memory. Today’s mul-
ticore and multisocket systems are
shared memory, so that’s usually
not an issue.
OpenMP started in 1997 with ver-
sion 1.0 for Fortran. Version 4.0
of the specification, released in
July 2013, has some directives
that allow for the use of accel-
erators. OpenMP 4.5, released
November 2015, added the ability
to divide iterations of a loop into
tasks and to express dependen-
cies in parallelized loops, among
other improvements. (Version 4.5
was released after this article was
originally written, so all examples
use v4.0 capabilities.) The non-
profit OpenMP consortium, which
manages OpenMP, is also working
on new directives that work with
accelerators [15]. Remember that
in the future, OpenACC may be tar-
geting CPUs as well as accelerators.
Because OpenMP is targeting
shared memory, it can use threads,
which are created by the “master”
thread and forked to run on dif-
ferent processors, thereby running

certain portions of the code in
parallel. By default, each thread ex-
ecutes its section of code indepen-
dently; therefore, you can create
“work sharing” by dividing a task
among threads so that each thread
can run its portion of the code. In
this way, you can create both task
and data parallelism.
OpenMP uses several directives:
n � PARALLEL
n � DO/PARALLEL DO and SECTIONS

(primarily for work sharing)
n � SHARED and PRIVATE clauses for

sharing data (or not) between
threads

n � CRITICAL, ATOMIC, and BARRIER
directories that coordinate and
synchronize threads

n � Run-time functions and en-
vironment variables (not
directives, but functions that
OpenMP makes available).

The form of the directives is very
similar to OpenACC. For C, the
directives look like this:

#pragma omp construct [clause [clause] ...]

For free-format Fortran, the direc-
tives look like:

!$omp construct [clause [, clause] ...]

A simple Fortran example of the
PARALLEL directive is shown in
Listing 2. The PARALLEL directives
tell the compiler to create code
so that the write(*,*) statement
is executed by each thread. You
control the number of threads
with an environment variable,
OMP_NUM_THREADS, that you set to
the number of threads you want.
OpenMP also has a concept of
work sharing using the DO direc-
tive, which specifies that iterations
of the loop immediately following
the directive must be executed in
parallel. This assumes that a parallel
region has been initiated with the
PARALLEL directive. The DO construct

!$acc kernels
 do i=1,n
 a(i) = 0.0
 b(i) = 1.0
 c(i) = 2.0
 end do

 do i=1,n
 a(i) = b(i) + c(i)
 end do
!$acc end kernels

Listing 1: Fortran kernels Directive

Directive CodingHPC TECHNIQUES

16 H P C T EC H N I Q U E S W W W. A D M I N - M AGA Z I N E .CO M

can get a little complicated, but the
simple example in Listing 3 adds
two vectors together and stores
them in a third vector.
The OpenMP portion of the code
creates a parallel region and in-
dicates that the variables A, B, C,
and chunk are shared between the
threads but the loop variable i is
specific to each thread (i.e., each
thread has its own copy). Next is
the DO directive that tells the com-
piler that the iteration of the loop
will be distributed dynamically in
chunk-sized sections.
As with OpenACC, you can find
many tutorials and examples on
the web, including YouTube. I en-
courage you take a look at them,
because the reward is the pos-
sibility of greatly reducing the run
time of your application.

Parting Comments

It’s very interesting that 30% of
the jobs at XSEDE, an organization
that supplies HPC to university
researchers, would only use a
single core – probably because the
researchers have never been taught
the concepts of parallel program-
ming or how easy it is to achieve.
I have to admit that I’m guilty of
writing single-thread (serial) code
when I need something quick and
dirty. However, if the code takes a
fairly long time to run or if I have
to run it many times, I will reach
for compiler directives to parallel-
ize the code easily.
At the same time, in an effort to
get more speed from HPC systems,
accelerators (co-processors) are
becoming more and more preva-
lent. GPUs, DSPs, multicore (Phi),
and FPGAs are all being used to
improve performance. Coding
for these isn’t always easy; the
directive-based approach called
OpenACC allows you to code for
accelerators more easily. Right

now, OpenACC is focused on
GPUs, but the promise is there for
it to abstract other accelerators.
A rule of thumb that you can use
for the moment is that, if you
want to parallelize the code on a
single system that has multiple
cores, then OpenMP is your likely
tool. If you want to use GPUs,
then OpenACC is your friend. You
can combine both of them in the
same code if you desire.
The GNU set of compilers [16]
have had OpenMP capability for
some time. In version 5.1 of the
compilers, OpenACC support had
been added as well, although I’m
not sure whether all of OpenACC
2.0 is supported. Now you have
the opportunity to try directive
programming for multicore pro-
cessors, for GPUs, or for both.
One last comment: I’m sure
people are reading this and think-
ing, “Why hasn’t OpenACC and
OpenMP merged?” My answer is
that I don’t know, but I do know
the two organizations talk to each
other. Maybe someday they will
create one set of directives.	 n

Info

[1]	� Contact (movie): [http://​www.​imdb.​

com/​title/​tt0118884/​?​ref_=nv_sr_1]

[2]	� XSEDE: [https://​www.​xsede.​org/]

[3]	� XSEDE resources overview: [https://​

www.​xsede.​org/​resources/​overview]

[4]	� XSEDE conference:

[https://​conferences.​xsede.​org/]

[5]	� XSEDE15 plenary panel:

[http://​www.​hpcwire.​com/​2015/​07/​

31/​xsede‑panel‑highlights‑​diver‑

sity‑of‑nsf‑computing‑resources/]

[6]	� Comet: [http://​cdn.​opensfs.​org/​

wp‑content/​uploads/​2015/​04/​

SDSC‑Data‑Oasis‑GEn‑II_Wagner.​pdf]

[7]	� OpenMP: [https://​en.​wikipedia.​org/​

wiki/​OpenMP]

[8]	� MPI: [https://​en.​wikipedia.​org/​wiki/​

Message_Passing_Interface]

[9]	� OpenACC: [https://​en.​wikipedia.​org/​

wiki/​OpenACC]

[10]	� Parallel programming standard:

[http://​www.​openacc.​org/​node/​93]

[11]	� OpenACC v2.0:

[http://​www.​openacc.​org/​sites/​default/​

files/​OpenACC%202%200.​pdf]

[12]	� OpenACC v2.0 preview:

[http://​www.​openacc.​org/​node/​173]

[13]	� OpenACC YouTube videos:

[https://​www.​youtube.​com/​results?​

search_query=OpenACC]

[14]	� OpenMP specifications:

[http://​openmp.​org/​specifications/]

[15]	� OpenMP for Accelerators: [https://​

cterboven.​files.​wordpress.​com/​2012/​

09/​omp4‑openmp_for_accelerators.​pdf]

[16]	� GCC: [http://​www.​gnu.​org/​software/​

gcc/]

The Author

Jeff Layton has been in the HPC business

for almost 25 years (starting when he was

4 years old). He can be found lounging

around at a nearby Frys enjoying the coffee

and waiting for sales.

Listing 2: Fortran PARALLEL Directive

 program hello
 implicit none

!$OMP PARALLEL
 write(*,*)'hello world'
!$OMP END PARALLEL

 stop
 end

Listing 3: Simple DO Construct

 program Vec_Add
 integer n, chunksize, chunk, i
 parameter (n=1000)
 parameter (chunksize=100)
 real :: A(i), B(i), C(i)

! Some initializations
 do i = 1, n
 A(i) = i * 1.0
 B(i) = A(i)
 enddo

 chunk = chunksize
!$OMP PARALLEL SHARED(A,B,C,chunk) PRIVATE(i)
!$OMP DO SCHEDULE(DYNAMIC,chunk)
 do i = 1, n
 C(i) = A(i) + B(i)
 enddo
!$OMP END DO
!$OMP END PARALLEL

 end program

HPC TECHNIQUESDirective Coding

17H P C T EC H N I Q U E SW W W. A D M I N - M AGA Z I N E .CO M

http://www.imdb.com/title/tt0118884/?ref_=nv_sr_1
http://www.imdb.com/title/tt0118884/?ref_=nv_sr_1
https://www.xsede.org/
https://www.xsede.org/resources/overview
https://www.xsede.org/resources/overview
https://conferences.xsede.org/
http://www.hpcwire.com/2015/07/31/xsede-panel-highlights-diversity-of-nsf-computing-resources/
http://www.hpcwire.com/2015/07/31/xsede-panel-highlights-diversity-of-nsf-computing-resources/
http://www.hpcwire.com/2015/07/31/xsede-panel-highlights-diversity-of-nsf-computing-resources/
http://cdn.opensfs.org/wp-content/uploads/2015/04/SDSC-Data-Oasis-GEn-II_Wagner.pdf
http://cdn.opensfs.org/wp-content/uploads/2015/04/SDSC-Data-Oasis-GEn-II_Wagner.pdf
http://cdn.opensfs.org/wp-content/uploads/2015/04/SDSC-Data-Oasis-GEn-II_Wagner.pdf
https://en.wikipedia.org/wiki/OpenMP
https://en.wikipedia.org/wiki/OpenMP
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/OpenACC
https://en.wikipedia.org/wiki/OpenACC
http://www.openacc.org/node/93
http://www.openacc.org/sites/default/files/OpenACC%202%200.pdf
http://www.openacc.org/sites/default/files/OpenACC%202%200.pdf
http://www.openacc.org/node/173
https://www.youtube.com/results?search_query=OpenACC
https://www.youtube.com/results?search_query=OpenACC
http://openmp.org/specifications/
https://cterboven.files.wordpress.com/2012/09/omp4-openmp_for_accelerators.pdf
https://cterboven.files.wordpress.com/2012/09/omp4-openmp_for_accelerators.pdf
https://cterboven.files.wordpress.com/2012/09/omp4-openmp_for_accelerators.pdf
http://www.gnu.org/software/gcc/
http://www.gnu.org/software/gcc/

One of the key tools for any
cluster is environment modules,
which allow you to define your
user environment and the set of
tools you need or want, to build
and execute your application. The
modules feed into a resource man-
ager (job scheduler), where you
can recreate the same environ-
ment to run the application that
you used to build the application.
One implementation of Environ-
ment Modules, Lmod [1], is under
constant development and has
some unique features that can be
very useful in high-performance
computing (HPC). It can even be
useful on your own desktop if
you write code and want to use
a variety of tools and libraries. I
use Lmod on my desktop and lap-
top to try new compilers or new
versions of compilers or libraries.

Fundamentals

Programmers use a number of
compilers, MPI libraries, compute li-
braries, and other tools to write ap-
plications. For example, one person
might code with OpenACC [2], tar-
geting GPUs, and Fortran, requiring
the PGI compilers along with Open
MPI, whereas another person might
use the GNU 6.2 compilers with
MPICH. The first user might use

PETSc [3] to solve their problem;
the second user might want to use
OpenBLAS [4] for their code. Tools
such as Lmod that allow users and
developers to specify the exact set
of tools they want or need is key to
operating an effective HPC system.
“Effective” can mean better per-
formance (choosing the tools that
allow your code to run as fast as
possible), more flexibility (choice of
tools that match the specific case),
or ease of configuration of the envi-
ronment for specific tools.
For example, assume you have
three versions of the GNU compiler,
4.8, 5.4, and 6.2; the latest Intel
and PGI compilers; and MPICH 3.3
and Open MPI 2.1. Furthermore,
let’s assume the users need two
versions of PETSc and two versions
of OpenBLAS. Altogether you have
40 possible combinations (five
compilers, two MPI libraries, two
PETSc versions, and two OpenBLAS
versions). This is a very large num-
ber of combinations, and making
it easy for users to use whatever
combination they want is extremely
difficult and very time consuming.
At this point you have two choices:
You can reduce the number of
combinations (e.g., get rid of some
of the compilers and perhaps one
of the MPI libraries), or you can
use Environment Modules so us-

ers can choose the combination of
compiler, MPI library, and computa-
tional library they want or need.
As a user, I might build a parallel
application using GNU 4.8, the de-
fault compiler for CentOS 7.3, and
MPICH; however, the GNU 6.2 com-
pilers have some unique features
that I might want use to try building
the same application. Environment
modules allow the user to select the
tools used for production while al-
lowing the use of a different toolset
for development.
The secret to environment modules
is manipulating the environment
variables. Users can manipulate en-
vironment variables such as $PATH,
$LD_LIBRARY_PATH, and $MANPATH and
make changes to these variables ac-
cording to the tool combinations de-
sired. Changing the toolset changes
these environment modules accord-
ingly. It’s fairly simple conceptually,
but it’s not always easy in practice.

Lmod

Lmod is an environment mod-
ules system that provides simple
commands for manipulating your
environment for the selection of
tools and libraries. A set of “mod-
ules” is written to modify $PATH,
$LD_LIBRARY_PATH, and $MANPATH and
create needed environment vari-

Lmod is an indispensable tool for high-performance computing. It allows users to control their
build and execute environment with ease. By Jeff Layton

©
 n

ob
ea

st
so

fie
rc

e,
 12

3R
F.

co
m

Lmod – An essential cluster tool

 Mod Your Environment

Lmod Environmental ModulesHPC TECHNIQUES

18 H P C T EC H N I Q U E S W W W. A D M I N - M AGA Z I N E .CO M

ables for the specific tool or library
that is needed. These modules
also define dependencies, so you
don’t assemble conflicting tools.
By “loading” or “unloading” these
modules, you can change your en-
vironment to use what you need.
If you “purge” all of your modules,
they are all unloaded, and $PATH,
$LD_LIBRARY_PATH, and $MANPATH
are returned to the values present
when you logged into the system.
Lmod provides a complete set of
tools for using and manipulat-
ing these modules. For example,
you can list available modules,
load and unload modules, purge
all modules, swap modules, list
loaded modules, query modules,
ask for help on modules, show
modules, and perform many other
related tasks. Other options aren’t
used as frequently but are there if
you need them.
One of the coolest features of Lmod
is its ability to handle a module
hierarchy, so that Lmod will only
display modules that are dependent
on loaded modules, preventing you
from loading incompatible mod-
ules. This feature can help reduce
unusual errors with mismatched
modules that are sometimes very
difficult to diagnose. I’ll explain
more about module hierarchy in a
later section, because it is a very
important feature in Lmod.
One of the first widely used envi-
ronment module tools is Environ-
ment Modules Tcl/​C [5], so-called
because the code is written primar-
ily in C and the modules in Tcl [6].
Lmod is a different implementation
of environment modules and retains
the ability to read and use modules
written in Tcl. It adds the ability to
read and use modules written in
Lua [7], a popular language in its
own right and a very embeddable
language for applications.
Module files are not that difficult
to create. In the case of Lua, there

are a few functions that you use to
manipulate $PATH, $LD_LIBRARY_PATH,
and $MANPATH for the targeted appli-
cation or library. Other environment
variables can also be easily created.
The module contains the depen-
dencies so Lmod can track that
information. You can also include
help information in the module.
You place these files in a directory
hierarchy and add a couple of com-
mands in the module so that Lmod
knows the tool dependencies.
In the next section, Lmod Hierar-
chical Modules are discussed and
explained, focusing on how to orga-
nize module files and how to limit
the visibility of dependent module
files. I’ll use an example from my
own laptop (a Lenovo G50-45) to
help illustrate this process. Addi-
tionally, I’ve tried to add comments
about Lmod best practices, some
of which I’ve gathered from email
discussions with the developer of
Lmod, Dr. Robert McLay, on the
Lmod users mailing list and others
from Lmod documentation and pre-
sentations. I hope these help with
your Lmod deployment.

Lmod Hierarchical Modules

One of the key capabilities of
Lmod is module hierarchy. With
Tcl/​C Environment Modules, you
can load pretty much any mod-
ules you want, even if they are
not compatible, whereas Lmod
doesn’t allow you to see all pos-
sible modules, so you might not
be aware of what is available
might conflict with your modules.
However, the Lmod module spider
command lets you see all possible
modules. Figure 1 illustrates the
module hierarchy of the module
files for my laptop. Anything
marked with “(f)” is a file. Every-
thing else is a directory.
At the top of the diagram, /usr/
local/modulefiles is the Lmod

default directory where all module
files are stored. For single systems,
this is fine. For clusters, the direc-
tory /usr/local would be NFS-ex-
ported to all of the compute nodes,
or you could have installed Lmod
to another NFS-exported directory.
Below the root directory are three
main subdirectories: Core, compiler,
and mpi. These directories indicate
the dependencies of the various
modules. For example, everything in
the compiler directory depends on
a specific compiler (e.g., GCC 6.2).
Everything in the mpi directory is
dependent on a specific MPI and
compiler combination. Everything
in the Core directory does not de-
pend on anything but the OS.
By default, Lmod reads module
files in /usr/local/modulefiles/
Core, so a best practice is to put
any module files in this directory
that do not depend on either a
compiler or an MPI. This means
you also put the compiler module
files in the Core directory.
The gcc subdirectory under Core is
where all of the module files for the
GNU family of compilers are stored.
A best practice from the developer
of Lmod, Dr. Robert McLay [8] at
the University of Texas Advanced
Computing Center (TACC), is to
make all subdirectories beneath
Core, compiler, and mpi lowercase.
In McLay’s own words, “Lmod is
designed to be easy to use inter-
actively and be easy to type. So
I like lowercase names wherever
possible.” He continues: “I know
of some sites that try very hard to
match the case of the software:
Open MPI, PETSc, etc. All I can say
is that I’m glad I don’t have to work
on those systems.”
In the gcc subdirectory is a module
file named “6.2.” You will have a
module file corresponding to every
GCC compiler version. If you have
versions 5.1, 6.2, and 7.0, then you
should have three module files in

HPC TECHNIQUESLmod Environmental Modules

19H P C T EC H N I Q U E SW W W. A D M I N - M AGA Z I N E .CO M

/usr/local/modulefiles/Core/gcc
corresponding to these versions.
In the case of GCC version 6.2, as
shown in Figure 1, a module file
named 6.2.lua is labeled 6.2 (f),
with the (f) indicating that it is a
file and not a directory. This file
contains the details for version 6.2
of the GNU compilers. The exten-
sion .lua, although not shown in
Figure 1, indicates that the module
file is written in Lua; however, it
could be written in Tcl.
Notice that for a different set
of compilers (e.g., those from
PGI [9]), you would create a direc-
tory under /use/local/modulefiles/
Core (i.e., /usr/local/modulefiles/
Core/pgi) and then place the mod-
ule files corresponding to the spe-
cific versions in this subdirectory.
All Lmod commands start with
module followed by options. For ex-
ample, you can find what modules

are available using the avail option
with the module command (List-
ing 1). Notice that compiler mod-
ules are “available” to be loaded.
After loading a module, I list the
modules loaded:

$ module load gcc/6.2

$ module list

Currently Loaded Modules:

 1) gcc/6.2

In this case, the gcc/​6.2 compiler.
The compiler module files modify
the Lmod environment variables to
point to the appropriate compiler
and use commands to tell Lmod
what MPI libraries are available that
have been built with the loaded
compiler. Therefore, only the MPI
tools that depend on the loaded
compiler are available to the user.
If you now type module avail, you

get the response
shown in List-
ing 2. Notice
the two subdi-
rectories under
/usr/local/
modulefiles/com‑
piler, one for
each compiler
“family.” Under
the gcc compiler

family is another subdirectory for
each version of the GCC compiler
that has modules. In this case, it’s
only version 6.2.
Under that subdirectory are all of
the modules for applications and/or
libraries that are dependent on the
GCC 6.2 compiler. In Figure 1 there
are two libraries that are dependent
upon the gcc/6.2 module and are
listed as subdirectories, mpich and
openmpi. Under these directories
are the module files corresponding
to the specific MPI library version.
These modules are denoted with an
(f) next to their name in Figure 1.
Loading the MPICH 3.2 mod-
ule should modify the $PATH,
$LD_LIBRARY_PATH, and $MANPATH
environment variables, as well
as add some environment vari-
ables specific to MPICH. You can
check by looking at the paths to
the mpicc and mpif77 scripts:

$ module load mpich/3.2

$ module list

Currently Loaded Modules:

 1) gcc/6.2 2) mpich/3.2

$ which mpicc

~/bin/mpich‑3.2/bin/mpicc

$ which mpif77

~/bin/mpich‑3.2/bin/mpif77

Notice that mpicc and mpif77 point
to the correct scripts (you can tell
by the path).
An important key to making every-
thing work correctly is in the mod-
ule files. To better understand these
module files, I’ll take a deeper look
at them.

Under the Module File Hood

Lmod handles everything quite
well so far. Modules can be loaded,
unloaded, deleted, purged, and so
on; however, Lmod executes what-
ever commands you put in the

Figure 1: Example module file layout.

[laytonjb@laytonjb‑Lenovo‑G50‑45 ~]$ module avail

‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ /usr/local/modulefiles/Core ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 gcc/6.2 pgi/16.10

‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ /usr/local/lmod/lmod/modulefiles/Core ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 lmod/6.5 settarg/6.5

Use "module spider" to find all possible modules.
Use "module keyword key1 key2 ..." to search for all possible modules
matching any of the "keys".

Listing 1: module avail Before Loading

Lmod Environmental ModulesHPC TECHNIQUES

20 H P C T EC H N I Q U E S W W W. A D M I N - M AGA Z I N E .CO M

module file, so you need to build
good ones. To understand what’s
happening with these files, let’s
examine gcc/6.2 compiler module
that is a file underneath the “Core”
branch of the module hierarchy as
an example in Listing 3.
For this module, the GNU 6.2
compilers were installed in my
home directory. Because this
system is my laptop, I’m not too
worried about where the compil-
ers are installed. However, for
clusters, I would install them in
either /usr/local/, /opt/, or some
directory that could be NFS-shared
to all of the cluster nodes.
The module file can be broken
down into several sections. The first
part of the file is the help function,
which is printed to stdout when
you ask for help with the module.
The next section defines the major
environment variables $PATH, $LD_
LIBRARY_PATH, and $MANPATH. Notice
that the prepend_path function is
used to put the compiler “first” in
these environment variables.

The third major section is
where the specific environment
variables for the compiler are
defined. For this module, the
variables are pretty straightfor-
ward: CC, cc, f90, F90, and so on.
These are specific to the compiler
and are defined using the push‑
env function, which pushes the
variables into the environment. It
also uses the pathJoin function,
which helps creates the correct
paths for these
variables.
The last section
under Setup
Modulepath for
packages built
by this com-
piler, is very
important and
is key to Lmod.
Two environ-
ment variables
are defined for
Lmod: $MODULE‑
PATH and $MODU‑
LEPATH_ROOT.

The line

local mdir = pathJoin(U

 mroot,"compiler/gcc", version)

creates a local variable named mdir,
which is a concatenation of the
variable mroot ($MODULEPATH_ROOT)
and compiler/gcc which is the
branch of the modulefile hierarchy
where the file is located. This tells
Lmod that subsequent module avail

Listing 2: module avail After Loading

[laytonjb@laytonjb‑Lenovo‑G50‑45 ~]$ module avail

‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ /usr/local/modulefiles/compiler/gcc/6.2 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 mpich/3.2 openmpi/2.1

‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ /usr/local/modulefiles/Core ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 gcc/6.2 (L) pgi/16.10

‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ /usr/local/lmod/lmod/modulefiles/Core ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 lmod/6.5 settarg/6.5

 Where:
 L: Module is loaded

Use "module spider" to find all possible modules.
Use "module keyword key1 key2 ..." to search for all possible modules
matching any of the "keys".

Listing 3: gcc/6.2 Module

‑‑ ‑*‑ lua ‑*‑
‑‑
‑‑ GNU 6.2 compilers ‑ gcc, g++, and gfortran. (Version 6.2.0)
‑‑

help(
[[
This module loads the gcc‑6.2.0 compilers (6.2.0). The
following additional environment variables are defined:

CC (path to gcc compiler wrapper)
CXX (path to g++ compiler wrapper)
F77 (path to gfortran compiler wrapper)
F90 (path to gfortran compiler wrapper)

See the man pages for gcc, g++, gfortran (f77, f90). For
more detailed information on available compiler options and
command‑line syntax.
]])

‑‑ Local variables
local version = "6.2"
local base = "/home/laytonjb/bin/gcc‑6.2.0/"

‑‑ Whatis description
whatis("Description: GNU 6.2.0 compilers with OpenCoarrays")
whatis("URL: www.gnu.org")

‑‑ Take care of $PATH, $LD_LIBRARY_PATH, $MANPATH
prepend_path("PATH", pathJoin(base,"bin"))
prepend_path("PATH", pathJoin(base,"sbin"))
prepend_path("PATH", pathJoin(base,"include"))
prepend_path("LD_LIBRARY_PATH", pathJoin(base,"lib"))
prepend_path("LD_LIBRARY_PATH", pathJoin(base,"lib64"))
prepend_path("MANPATH", pathJoin(base,"share/man"))

‑‑ Environment Variables
pushenv("CC", pathJoin(base,"bin","gcc"))
pushenv("CXX", pathJoin(base,"bin","g++"))
pushenv("F90", pathJoin(base,"bin","gfortran"))
pushenv("F77", pathJoin(base,"bin","gfortran"))
pushenv("FORT", pathJoin(base,"bin","gfortran"))
pushenv("cc", pathJoin(base,"bin","gcc"))
pushenv("cxx", pathJoin(base,"bin","g++"))
pushenv("f90", pathJoin(base,"bin","gfortran"))
pushenv("f77", pathJoin(base,"bin","gfortran"))
pushenv("fort", pathJoin(base,"bin","gfortran"))

‑‑ Setup Modulepath for packages built by this compiler
local mroot = os.getenv("MODULEPATH_ROOT")
local mdir = pathJoin(mroot,"compiler/gcc", version)
prepend_path("MODULEPATH", mdir)

‑‑ Set family for this module
family("compiler")

HPC TECHNIQUESLmod Environmental Modules

21H P C T EC H N I Q U E SW W W. A D M I N - M AGA Z I N E .CO M

commands should look at the com‑
piler/gcc subdirectory under the
compiler subdirectory on the main
modulefiles tree (the left hand
branch). In particular, Lmod will
only display modules in the /usr/
local/modulefiles/compiler/gcc/6.2
path. As the writer of the modules,
you control where the module files
that depend on the compilers are
located. This step is the key to mod-
ule hierarchy. You can control what
modules are subsequently available
by manipulating the mdir variable.
This key attribute of Lmod gives
you great flexibility.
The very last line in the module file,
the statement family("compiler"),
although optional, makes things
easier for users (i.e., a best prac-
tice). The function family tells
Lmod to which family the module
belongs. A user can only have one
module per family loaded at a time.
In this case, the family is compiler,
so that means no other compilers

can be loaded. Adding this line
helps users prevent self-inflicted
problems from loading a module
that is incompatible with the loaded
compiler. Even though the state-
ment is somewhat optional, I highly
recommend using it.
If the gcc 6.2 compiler module is
loaded, then the diagram of the
module layout should look some-
thing like Figure 2. The green
labels indicate the module path re-
sulting from the currently loaded
module (the gcc 6.2 compiler
module). The red labels indicate
the path to the modules that de-
pend on the loaded compiler mod-
ule – in this case, the MPI mod-
ules, mpich/3.2 and openmpi/2.1.
Note that the MPI modules are
under the compiler directory be-
cause they depend on the compiler
module that is loaded.
In the previous section, I loaded the
mpich‑3.2 module (Listing 4) that
was built with the gcc/6.2 compil-

ers. If you compare this module file
to the compiler module file, you
will see many similarities. The clas-
sic environment variables, $PATH,
$LD_LIBRARY_PATH, and $MANPATH, are
modified, and certain environment
variables are defined. Because you
want the MPI tools associated with
the module to be “first” in $PATH,
the prepend_path Lmod module
command is again used.
Toward the end of the file, examine
the code for the module path. The
local variable mdir points to the
“new” module subdirectory, which
is mpi/gcc/6.2/mpich/3.2. (Techni-
cally, the full path is /usr/local/
modulefiles/mpi/gcc/6.2/mpich/3.2
because $MODULEPATH_ROOT is /usr/
local/modulefiles.) In this subdi-
rectory, you should place all mod-
ules that point to tools that have
been built with both the gcc/6.2
compilers and the mpich/3.2 tools.
Examples of module files that de-
pend on both a compiler and an

‑‑ ‑*‑ lua ‑*‑
‑‑
‑‑ mpich‑3.2 (3.2) support. Built with gcc‑6.2 (6.2.0)
‑‑

help(
[[
This module loads the mpich‑3.2 MPI library built with gcc‑6.2.
compilers (6.2.0). It updates the PATH, LD_LIBRARY_PATH,
and MANPATH environment variables to access the tools for
building MPI applications using MPICH, libraries, and
available man pages, respectively.

This was built using the GNU compilers, version 6.2.0.

The following additional environment variables are also defined:

MPICC (path to mpicc compiler wrapper)
MPICXX (path to mpicxx compiler wrapper)
MPIF77 (path to mpif77 compiler wrapper)
MPIF90 (path to mpif90 compiler wrapper)
MPIFORT (path to mpifort compiler wrapper)

See the man pages for mpicc, mpicxx, mpif77, and mpif90. For
more detailed information on available compiler options and
command‑line syntax. Also see the man pages for mpirun or
mpiexec on executing MPI applications.
]])

‑‑ Local variables
local version = "3.2"

local base = "/home/laytonjb/bin/mpich‑3.2"

‑‑ Whatis description
whatis("Description: MPICH‑3.2 with GNU 6.2 compilers")
whatis("URL: www.mpich.org")

‑‑ Take care of $PATH, $LD_LIBRARY_PATH, $MANPATH
prepend_path("PATH", pathJoin(base,"bin"))
prepend_path("PATH", pathJoin(base,"include"))
prepend_path("LD_LIBRARY_PATH", pathJoin(base,"lib"))
prepend_path("MANPATH", pathJoin(base,"share/man"))

‑‑ Environment Variables
pushenv("MPICC", pathJoin(base,"bin","mpicc"))
pushenv("MPICXX", pathJoin(base,"bin","mpic++"))
pushenv("MPIF90", pathJoin(base,"bin","mpif90"))
pushenv("MPIF77", pathJoin(base,"bin","mpif77"))
pushenv("MPIFORT", pathJoin(base,"bin","mpifort"))
pushenv("mpicc", pathJoin(base,"bin","mpicc"))
pushenv("mpicxx", pathJoin(base,"bin","mpic++"))
pushenv("mpif90", pathJoin(base,"bin","mpif90"))
pushenv("mpif77", pathJoin(base,"bin","mpif77"))
pushenv("mpifort", pathJoin(base,"bin","mpifort"))

‑‑ Setup Modulepath for packages built by this compiler/mpi
local mroot = os.getenv("MODULEPATH_ROOT")
local mdir = pathJoin(mroot,"mpi/gcc", "6.2","mpich","3.2")
prepend_path("MODULEPATH", mdir)

‑‑ Set family for this module (mpi)
family("mpi")

Listing 4: mpich‑3.2 Module

Lmod Environmental ModulesHPC TECHNIQUES

22 H P C T EC H N I Q U E S W W W. A D M I N - M AGA Z I N E .CO M

MPI tool are applications or librar-
ies such as PETSc.
Also notice that the mpich/3.2
module also uses the family()
function, so the user cannot load
a second MPI module. You could
even have a family() function for
libraries such as PETSc.

Module Usage
for the Admin
In an article from a couple of
years ago [10], I presented a way
to gather logs about Tcl/​C envi-
ronment module usage. It was a
bit of a kludge, but it did allow me
to gather the data I needed. With
Lmod, this ability was brought to
the forefront.
Tracking module usage is concep-
tually fairly easy, but a number of
steps are involved. Having this in-
formation can be amazingly impor-
tant, because it allows you to track
which tools are used the most. (I
associate one tool with one mod-
ule.) If you have various versions
of a specific tool, it allows you to
track the usage of each so that you
can either deprecate an older ver-
sion or justify keeping it around
and maintaining it. You can also
see which modules are used as a
function of time, which helps you
understand when people run their
jobs and what modules they use.

Summary
Although I’ve written about Lmod
before, I continue to come back
to it because it is so useful. It
greatly helps users sort out their
environment so that they don’t ac-
cidentally load conflicting libraries
and tools. The first time you have
to debug a user’s code when they
have mixed MPI implementations,
you will be thankful for Lmod.
Environment modules in general,
and Lmod specifically, allow you to

keep multiple versions of the same
package on a system to service ap-
plications that have been built with
older versions of a compiler, MPI,
or library, or even old libraries that
are needed. I even saw a posting to
the Open MPI mailing list [11] ask-
ing about LAM-MPI, even though
it basically has been dead for a de-
cade. You would be surprised how
long applications stick around and
bring their dependencies with them.
Because Lmod can read Tcl module
files in addition to Lua (the pre-
ferred language), you can move eas-
ily from Tcl/​C Environment Mod-
ules to Lmod. As you can see from
the Lua module file examples here,
the syntax is very clean and simple,
making them very easy to read.
Finally, Lmod is developing tools to
audit module usage. This informa-
tion is amazingly useful, as pointed
out in two articles from Harvard
[12] [13]. The author gives a very
good explanation of how to set
up Lmod to collect module usage
data, put it into a database, and
mine that database – which is very
cool stuff indeed.	 n

Info

[1]	� Lmod: [https://​www.​tacc.​utexas.​edu/​

research‑development/​tacc‑projects/​

lmod]

[2]	� OpenACC:

[http://​www.​openacc‑standard.​org/]

[3]	� PETSc:

[http://​www.​mcs.​anl.​gov/​petsc/]

[4]	� OpenBLAS:

[http://​www.​openblas.​net/]

[5]	� Environment Modules:

[http://​modules.​sourceforge.​net/]

[6]	� Tcl: [https://​www.​tcl.​tk/]

[7]	� Lua: [https://​www.​lua.​org/]

[8]	� Dr. Robert McLay:

[https://​www.​tacc.​utexas.​edu/​about/​

directory/​robert‑mclay]

[9]	� PGI: [http://​www.​pgroup.​com/​index.​htm]

[10]	� “Gathering Data on Environment

Modules” by Jeff Layton:

[http://​www.​admin‑magazine.​com/​

HPC/​Articles/​Gathering‑Data‑​on‑​

Environment‑Modules]

[11]	� “Looking for LAM-MPI Sources to

Create a Mirror,” Open MPI User’s

Mailing List Archives:

[http://​www.​open‑mpi.​org/​

community/​lists/​users/​2015/​06/​

27079.​php]

[12]	� “Scientific Software as a Service

Sprawl,” part 1, by James Cuff:

[http://​blog.​jcuff.​net/​2012/​07/​

scientific‑software‑as‑service‑sprawl.​

html]

[13]	� “Scientific Software as a Service

Sprawl,” part 2, by James Cuff:

 [http://​blog.​jcuff.​net/​2012/​07/​part‑​

two‑scientific‑​software‑as‑​service.​

html]

Figure 2: Active path after gcc/6.2 is loaded.

HPC TECHNIQUESLmod Environmental Modules

23H P C T EC H N I Q U E SW W W. A D M I N - M AGA Z I N E .CO M

https://www.tacc.utexas.edu/research-development/tacc-projects/lmod
https://www.tacc.utexas.edu/research-development/tacc-projects/lmod
https://www.tacc.utexas.edu/research-development/tacc-projects/lmod
http://www.openacc-standard.org/
http://www.mcs.anl.gov/petsc/
http://www.openblas.net/
http://modules.sourceforge.net/
https://www.tcl.tk/
https://www.lua.org/
https://www.tacc.utexas.edu/about/directory/robert-mclay
https://www.tacc.utexas.edu/about/directory/robert-mclay
http://www.pgroup.com/index.htm
http://www.admin-magazine.com/HPC/Articles/Gathering-Data-on-Environment-Modules
http://www.admin-magazine.com/HPC/Articles/Gathering-Data-on-Environment-Modules
http://www.admin-magazine.com/HPC/Articles/Gathering-Data-on-Environment-Modules
http://www.open-mpi.org/community/lists/users/2015/06/27079.php
http://www.open-mpi.org/community/lists/users/2015/06/27079.php
http://www.open-mpi.org/community/lists/users/2015/06/27079.php
http://blog.jcuff.net/2012/07/scientific-software-as-service-sprawl.html
http://blog.jcuff.net/2012/07/scientific-software-as-service-sprawl.html
http://blog.jcuff.net/2012/07/scientific-software-as-service-sprawl.html
http://blog.jcuff.net/2012/07/part-two-scientific-software-as-service.html
http://blog.jcuff.net/2012/07/part-two-scientific-software-as-service.html
http://blog.jcuff.net/2012/07/part-two-scientific-software-as-service.html

http://shop.linuxnewmedia.com

	001-001_Cover_Altair_Supp
	002-002_
	003-003_TOC
	004-007_Parallel_IO
	008-010_Benchmarks
	011-013_Interview
	014-017_directives
	018-023_lmod
	024-024_Correct_Ad

