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Preface

This textbook aims to briefly outline the main directions in which the geometrization
of thermodynamics has been developed in the last decades. The textbook is
accessible to the people trained in thermal sciences but not necessarily with solid
formation in mathematics. For this, in the first part of the textbook a summary of the
main mathematical concepts is made. In some sense, this makes the textbook
self-consistent. The rest of the textbook consists of a collection of results previously
obtained in this young branch of thermodynamics. The content is organized as
follows.

The first part of the textbook, consisting of four chapters, presents the main
mathematical tools. Thus, Chap. 1 presents the historical background of the
geometrization of mechanics and thermodynamics. In Chap. 2 some basic concepts
are briefly reminded, such as the set theory, the relationships theory, and the theory
of simple algebraic structures. Then, the essential concepts used in the theory of
linear spaces are introduced. The chapter ends by presenting some results con-
cerning the coordinate transformations and the classification of physical quantities
in relation with these transformations. Chapter 3 describes the main types of vectors
and the standard method of vector geometrization. Then elementary results of
vector calculus are presented. The chapter ends with a very brief introduction to the
exterior differential calculus, accompanied by some specific useful results.
Chapter 4 describes results of Riemann geometry. Two approaches are presented.
The first one is the classic approach. The second approach is based on the theory of
differential manifolds and tangent spaces. Both approaches allow defining the
tensors of different orders, the Riemann metric and the covariant differentiation,
among others. The parallel between the two approaches is very useful for a deeper
understanding of concepts.

The second part of the textbook, consisting of five chapters, refers to the
application of geometric methods in equilibrium thermodynamics. Chapter 5
summarizes some results of equilibrium thermodynamics. The approach based on
potentials is presented, including the standard procedures using the energy repre-
sentation and the entropy representation. Finally, the extreme principles and the
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mathematical conditions for thermodynamic stability are presented. Chapter 6
briefly shows some results of using tools of contact geometry in thermodynamics.
Here only the first law of thermodynamics is geometrized. The chapter ends with a
few examples of contact currents in thermodynamics. In Chap. 7 an approach based
on statistical methods, which allows defining the notions of thermodynamic metric
and thermodynamic distance, is presented. The second law of thermodynamics
plays a key role in this context. The relationship between the thermodynamic
distance and the entropy production is analyzed and links with the Gouy-Stodola
theorem are highlighted. Horse-carrot type theorems are also introduced. The manner
in which the thermodynamic curvature can be defined is exposed in Chap. 8. The
chapter contains examples of calculation of thermodynamic curvature for simple
systems. Chapter 9 presents a covariant theory of the thermodynamic fluctuations
and analyzes the level of approximation introduced by the classical theory of fluc-
tuations and its Gaussian approximation.

The textbook is a more extensive version of a section of the course of Advanced
Thermodynamics presented for master students at the Faculty of Mechanical
Engineering, Polytechnic University of Bucharest, starting from the 2003–2004
academic year. The textbook is presented with an ease of access for the readers with
education in natural and technical sciences. Thus, most mathematical demonstra-
tions of the theoretical results with higher degree of difficulty are omitted and
references for the relevant literature are provided.

As usual, the preparation of such a work is the result of numerous interactions,
discussions, consultations, and collaborations. It is a pleasure to remind here some
of them. I received special support from colleagues in the European network
CARNET (Carnot Network). This cooperation was institutionalized during the
years 1994–1999 by two Copernicus projects on thermodynamic topics funded by
the European Commission. In particular, I must thank Prof. Bjarne Andresen
(University of Copenhagen), Prof. Ryszard Mrugala (University of Torun, Poland),
and Dr. Lajos Diósi (Research Institute for Particle and Nuclear Physics, Budapest)
whose publications were massively used in the present work. During the elabora-
tion of the material I received technical support from Prof. Peter Salamon
(University of San Diego). Also, discussions with Prof. Constantin Udriste
(Polytechnic University of Bucharest) allowed a better understanding of the fun-
damentals of mathematics.

Viorel Badescu
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Mathematical Tools



Chapter 1
Introduction

Theoretical thermodynamics has been developed from the practical studies of
thermal engines operation. Initially, it was based on the empirical usage of a
combination of mechanical and thermal notions. The absence of a sound basis,
consisting of well-defined and understood concepts, has often been noticed by
personalities who made important contributions in the field, among which we quote
Josiah Willard Gibbs, Hermann von Helmholtz, Pierre Duhem and Walther Nernst.
They, and many others, have tried to introduce rigor in the theoretical approach by
avoiding cyclical logical reasoning and contradictions. Constantin Caratheodory
was the first who succeeded to build an axiomatic system for equilibrium ther-
modynamics (Caratheodory 1909). Thus, notions such as measurable temperature,
heat and entropy were defined. Also, empirical assumptions were explained and
simplified. From the very beginning, the approach of Caratheodory was analogous
in spirit and practice with the axiomatic formulation of Euclidean geometry
(Antoniou 2002). The structure of equilibrium thermodynamics, expressed in
mathematical terms by Pfaff forms, turns out to be in some sense analogous to the
structure of Hamiltonian mechanics and symplectic geometry (Rastal 1970;
Peterson 1979).

The criteria proposed by Caratheodory were subsequently used to develop two
main lines of research. First, the notion of thermodynamic variable has been clar-
ified, making difference between extensive and intensive variables. Second, the
concepts of classical thermodynamics have been extended for non-equilibrium
situations.

Equilibrium thermodynamics was formulated based on conjugate pairs of
independent variables, known as generalized coordinates (such as volume, area,
length, electric charge) and generalized forces (mechanical forces, pressure, surface
tension, electric voltage) (Redlich 1968). Generalized coordinates actually corre-
spond to extensive variables because they depend on the size (extension) of the
system, while the generalized forces correspond to the intensive variables because
they are localized in space and time. This simple observation led to the formulation
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of the fundamental thermodynamic concepts by using the measure theory (Gurtin
et al. 1986). In this version, the extensive variables are positive or negative
quantities on Euclidean spaces while the intensive variables are associated densities,
defined mathematically as Radon-Nykodym derivatives. In case of extensive
variables represented by absolute continuous quantities, the corresponding intensive
variables are absolute integrable functions. In case of extensive variables repre-
sented by singular measures, located on surfaces, curves or fractals, the corre-
sponding intensive variables are generalized functions (Antoniou and Suchanecki
1999). The formulation of classical thermodynamics by using of the measure theory
has a number of advantages, among which we can mention the possibility of
rigorous generalization to the case of continuous media, to the case of special and
general relativity and to non-equilibrium situations, respectively (Antoniou 2002).

The usage of geometrical methods in thermodynamics was inspired by their
previous applicability in the field of dynamical systems theory. The idea of
approaching the solutions of the dynamic equations from a geometrical point of
view is due to Henri Poincaré. However, Nikolay Mitrofanovich Krylov was the
first who tried to formulate the statistical mechanics by using the Riemann geom-
etry (see the review by Krylov (1979)). Krylov’s ideas were developed by several
groups of researchers (see Caiani et al. 1998; Casetti et al. 2000 and references
therein). In general, conclusive results have been obtained only for constant neg-
ative curvature of the space of configurations. There are attempts to replace the
Riemannian manifolds by Finsler manifolds, which have the advantage of allowing
the geometrization of the speed dependent potentials (Dryuma 1994). Starting from
the identification of the trajectories of a Hamiltonian dynamical system with geo-
desics in the configuration space equipped with Jacobi or Eisenhart metrics, one can
develop a geometric theory of mechanics (Casetti et al. 2000). Interesting results
have been obtained, which show, for example, that chaos can be induced not only
by negative curvatures but also by positive curvatures of the configuration space,
provided that these curvatures oscillate along the geodesics. In case of systems with
very large number of particles and having large extension (what is commonly called
“the thermodynamic limit”) it is possible to describe the dynamical instability by
using dynamic models that are independent of the dynamics of microparticles,
which allows the analytical estimation of the largest Lyapunov coefficient as a
function of the mean value and the fluctuations of the curvature of the configuration
space. The main difficulty consists in the extremely complicated form of the
geometry of the configuration space, in case of systems with many particles.
Therefore, a number of more or less obvious simplifications are used in literature.
Usually, these simplifications are a posteriori justified, by comparison with results
obtained from computer simulations using statistical physics methods.

Applying geometric methods in thermodynamics was carried out mainly in the
classical theory of equilibrium (see Ruppeiner 1991; Gross and Votyakov 2000). In
this regard several procedures of geometrization have been proposed. Probably the
most popular is the approach developed by Weinhold (1975). It relies on the fact
that the differentials of the thermodynamic functions can be interpreted as vectors in
a vector space. Then, one can propose a definition of the inner product on that
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vector space, in connection with the mathematical expression of the second law of
thermodynamics, which ultimately leads to the positivity of the metrics attached to
the vector space. The procedure initiated by Weinhold experienced many exten-
sions, some of which will be mentioned throughout this book.

On the other hand, some geometrical aspects of the hypersurface of constant
energy in the phase space were used in case of the microcanonical ensemble to
define the temperature and the specific heat (Rugh 1997; Giardina and Livi 1998).
Therefore, one can make distinction between the use of geometrical and topological
concepts at the level of the macroscopic phase space (associated with phe-
nomenological thermodynamics) and at the level of the microscopic phase space
(associated with statistical thermodynamics), respectively.

When a system undergoes a phase change, fluctuations in the curvature of the
phase/configurations space, as a function of temperature or energy, have a singular
behavior in the transition point. This singularity can be described using a geometric
model. In such a model the singularity of curvature fluctuations originates in the
topology of the phase/configurations space. This is the argument leading to
the introduction of the so-called topological assumption, which states that phase
changes (at least, the continuous ones) are connected to a specific change of the
topology of system’s space of phase/configurations. This assumption allows the
usage within the statistical thermodynamics of existing results in mathematics, such
as those obtained in Morse theory. Therefore, one can make such a connection
between mathematics (topology) and statistical thermodynamics (the theory of
phase change). Existing results in the literature show that from the point of view of
Morse theory the essential information is stored in the potential energy function. If
the latter depends solely on coordinates, the usage of topological methods can be
made by restriction from the phase space to the configurations space.

An important theorem shows the need of topological changes of the hypersur-
face of constant energy, for the emergence of a first-order or second-order phase
change (Casetti et al. 2000). The demonstration is based on several assumptions
concerning the diffeomorphicity of the surface and the uniform convergence of the
Helmholtz free energy towards the thermodynamic limit for a very large number of
particles. The fact that topological changes can occur regardless of the number of
particles opens the possibility of describing the phase change in finite systems such
as nuclear and atomic clusters, polymers and proteins, as well as nanoscopic and
mesoscopic structures.

A geometric theory of thermodynamic fluctuations has already been proposed
(for a review see, Ruppeiner 1995). The theory applies to classical, extensive,
thermodynamics, in all cases where there are two independent coordinates (iden-
tified in that situation with two thermodynamic parameters). Then, a metric is
defined on the manifold determined by the two coordinates, which becomes a
Riemann manifold. Using known results of Riemann geometry is simplified in case
of extensive thermodynamics with positive defined metrics, unlike in the theory of
relativity (there, the associated Riemann manifold has four dimensions and its
metric is allowed not to be positive definite). Arguments have been provided in
support that the theory of fluctuations and, implicitly, the theory of thermodynamic
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stability, can be put into relation with the curvature (properly defined) of a Riemann
manifold, which in that case has volume units. In case of the monatomic perfect gas
it has also been showed that the curvature is null, due to the lack of interparticle
interactions. The curvature tends towards infinity at critical points. The
geometrization of thermodynamics in two dimensions was used to study the fluc-
tuations in several cases of simple systems such as the Van der Waals gas, the
paramagnetic systems, one-dimensional Ising models and quantum gases.

Important contributions to the geometrization of thermodynamics have brought
Ryszard Mrugala and H. Janyszek (Mrugala 1978, 1984; Janyszek 1986, 1991;
Janyszek and Mrugala 1989a, b) and the group of Peter Salamon (Salamon et al.
1985; Nulton and Salamon 1985). Also, by using geometric methods, Vsevolod
Radcenco and Constantin Udriste have obtained the integral submanifold of the
Gibbs-Pfaff equation, by defining ten types simple thermodynamic systems. The
study was deepened by analyzing the minimum of the internal energy of thermo-
dynamic systems, leading to the possibility of describing simple interactions of
thermodynamic systems by using mathematical methods specific to the problems of
extreme with non-holonomic constraints (Radcenco et al. 1991; Udriste 2000).
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Chapter 2
Algebraic Structures. Spaces. Reference
Frames

Mathematical structures are usually defined by using sets of axioms. The definition
of the axioms must meet the following three rules:

1. The sets of elements to which the axioms apply must not be empty.
2. The sets of elements to which the axioms apply must not be trivial; in other

words, elements which do not fulfill the axioms must exist.
3. The axioms must be independent, i.e. none of the axioms should be obtained

from the other axioms.

2.1 Sets

The definitions and the mathematical concepts are based on set theory. Moreover,
the methods of mathematical thinking are combinations of arguments of mathe-
matical logic and of set theory. To help the reader, some definitions and elementary
results of the set theory are briefly presented (Gellert et al. 1980; Kaufmann and
Precigout 1973). Georg Cantor (1845–1918) is the founder of the set theory. He
gave the following definition: a set is obtained when several objects specified by
human perception or by thought are included into a single entity; these objects are
called the elements of the set. This definition, although imprecise and prone to
induce some contradictions, has the advantage of an intuitive image. If an object x is
an element of the set S, one writes x 2 S. If S contains two distinct elements a and b,
then S is called unordered pair and it is denoted S ¼ a; bf g. A subset T of a set S is
any set which contains only elements belonging to S. This is denoted T � S. It is
said that the set T is included in the set S. The empty set is a set without elements.
The set defined by a sentence HðxÞ is denoted by x j HðxÞf g (It is read “the set of all
x so that HðxÞ”).

© Springer International Publishing Switzerland 2016
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Understanding Complex Systems, DOI 10.1007/978-3-319-33789-0_2
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The sets whose elements are sets are called families (or systems, or classes) of
sets. An important class is the set of all subsets of a given set S; this is called the
power set of S (or the set of the parts of S) and is denoted P Sð Þ.

All the systems of axioms of the set theory have in common the following four
principles.

• The principle of extensionality, which say that two sets S and T, having the same
elements, are identical (it is written S ¼ T).

• The principle of construction indicates different specific types of sentences that
are used for defining the sets. Usually it requires that those sentences must
contain only symbols of objects, logic symbols and the symbol 2.

• The principle of the existence of infinite sets must be understood as such.
Although it is difficult to motivate it in connection with reality, without this
principle an important part of mathematics (including the differential and the
integral calculus) would lose its meaning.

• The fourth principle is usually called the axiom of choice: If S is a class of
non-empty sets, then there is a set A that has precisely one element in common
with each set of S.

For the construction of new sets, starting from given sets, operations with sets
are used. The main operations are: union, intersection and difference, which are
defined in Table 2.1.

Sets whose intersection is the empty set are called disjoint sets. If S is a subset of
U, then U-S is called the complement (or relative complement) of S in U.

The main properties of operations with sets, which are often used in practice, are
commutativity, associativity, distributivity and idempotency. For convenience,
these well-known properties are reminded in Table 2.2.

Table 2.1 Operations with sets S and T

Operation name Notation Definition

Intersection S\ T xjx 2 S and x 2 Tf g
Union S[ T xjx 2 S or x 2 Tf g
Difference SnT xjx 2 S and x 62 Tf g

Table 2.2 Properties of operations with sets

Name Explanation

Commutativity S\ T ¼ T \ S S[ T ¼ T [ S

Associativity S\ ðT \RÞ ¼ ðS\ TÞ \R S[ T [Rð Þ ¼ S[Tð Þ [R

Distributivity S\ ðT [RÞ ¼ ðS\ TÞ [ ðS\RÞ
S[ ðT \RÞ ¼ ðS[ TÞ \ ðS[RÞ

Idempotency S\ S ¼ S S[ S ¼ S

10 2 Algebraic Structures. Spaces. Reference Frames



If S and T are subsets of U and their complements in U are S0 and T 0, respec-
tively, then the following relations occur:

ðS\ TÞ0 ¼ S0 [T 0 ðS[ TÞ0 ¼ S0 \ T 0 ð2:1Þ

These are the laws of De Morgan, often used in applications.

2.2 Relations

An ordered pair ða; bÞ is intuitively defined as a juxtaposition of two objects a and
b so that a can be distinguished as the first element of the ordered pair and b as the
second element. A rigorous definition will be given later.

A relation R on a set S is a set of ordered pairs of elements of S. If ða; bÞ 2 R, it is
said that R takes place for the ordered pair ða; bÞ. Sometimes this is denoted aRb.
For example, in the set S of all people alive at some moment, we can define the
relationship “A is the parent of B”.

The set x 2 Sjðx; yÞ 2 R for at least one y from Sf g is called the support of R.
The set y 2 Sjðx; yÞ 2 R for at least one x from Sf g is called the set of values or the
codomain (or the range, or the image) of R. These sets will be denoted by Sup R and
Ran R, respectively. The set Dom R ¼ Sup R is called the domain of R. Of course,
Dom R� S.

There are many relations that are commonly used in mathematics as well as in
other areas, of which the exact sciences come on the first place. It is found, through
a systematic analysis, that the relations have certain common properties, which are
listed in Table 2.3.

Table 2.3 Attributes for a relationship R on a set S

Attribute Definition

Reflexive xRx takes place for all x 2 S

Non-reflexive Does not exist x 2 S so that xRx takes place

Symmetric For every x; y 2 S, from xRy it comes yRx

Asymmetric Does not exist elements x; y 2 S with xRy and yRx

Antisymmetric For every x; y 2 S: if xRy and yRx, then x ¼ y

Transitive For every x; y; z 2 S: if xRy and yRx, then xRz

Connex For every x; y 2 S: if x 6¼ y, then xRy or yRx

Left-unique (injective) For every x; y; z 2 S: if xRz and yRz, then x ¼ y

Right-unique (univalent, right defined) For every x; y; z 2 S: if xRy and xRz, then y ¼ z

Biunivocal (one-to-one) If left-unique and right-unique

2.1 Sets 11



2.2.1 Equivalence Relations

An equivalence relation on a set S is a reflexive, symmetric and transitive relation
which has S as support. For example, the relation of parallelism between two
straight lines d si d0, which is noted djjd0, is an equivalence relation.

An equivalence relation R on S induces a partition of S into classes, which are
composed of those elements between which the equivalence relation is defined.
A partition of a set S is a nonempty family P of non-vide subsets of S, called
partition classes, with the following two properties:

• (i) two distinct classes are disjoint
• (ii) any element of S belongs to a class.

The next theorem is called the principle of identification.

Theorem 2.1 If R is an equivalence relation on a set S, then there is a partition
P of S so that the elements a; bð Þ 2 S are in the same class of P, if, and only if aRb.
Conversely, if P is a particular partition of S, then the relation
ða; bÞj there is a class C 2 P with a; b 2 Cf g is an equivalence relation.

2.2.2 Ordering

A relation R on the set S is called partial order relation if R is reflexive, transitive
and antisymmetric. If, in addition, R is concave, the relation is called total order
relation or linear order relation. For example, the relation a � b is a partial order
relation, actually a total order relation, on the set of real numbers.

An ordered set is defined as a pair ðS;RÞ, where R is a partial order relation on
the set S. Often, for brevity, the ordered set is simply denoted S. On an ordered set it
can be defined an upper bound and a maximal element. A lemma commonly used in
mathematics (Kuratowski-Zorn lemma) states that, if a totally ordered set ðS;RÞ has
a upper bound on S, then S has a maximal element. One can prove that this lemma
is equivalent to the axiom of choice.

The notion of ordered pair ða; bÞ can be rigorously defined as follows:
ða; bÞ � fag; fa; bgf g. This definition specifies the difference between the positions
of the two elements. Ordered pairs have the following fundamental property:
ða1; a2Þ ¼ ðb1; b2Þ if and only if a1 ¼ b1 and a2 ¼ b2.

Consider two sets S and T. The Cartesian product S� S of these sets (noted
S� T) is the set of all ordered pairs ða; bÞ with a 2 S and b 2 T . The Cartesian
product S� S is shortly noted S2. The Cartesian product S2 � S is noted S3 and this
system of notation can be generalized. The elements of Sn are called n-tuple of
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elements of S. For example the 3-tuple, ðða; bÞ; cÞ also called triplet is simply
denoted ða; b; cÞ. Another example: the set of complex numbers can be considered
as the Cartesian product R� R ¼ R2 of the set of real numbers with itself.

A relation with n arguments or n-ary on S is defined as a subset of Sn. Relations
with two arguments are called binary relations. Relations with n arguments are
called predicates. For example, the relationship “point A lies between the points
B and C” is a relation with three arguments for the points on a straight line.

2.3 Functions and Maps

A function on a set S with values in T is a right-unique relation with the support
S and the set of values T. The term map (or mapping) is used to mean a function,
sometimes with a specific property of particular importance. If the support is the
entire set S, it is said that the map is of S in T. If set of values of a map is the entire
set T, then it is said that the map is of S on T, or surjective. Examples of functions
are the functions defined on the set of real numbers R with values in the same set
(called real functions). The functions of n real variable are functions defined on Rn

with values in R. The maps of the set of natural numbers N in itself are called
arithmetic functions.

The functions on S with values in T are subsets of S� T . In some branches of
mathematics (e.g. complex analysis) functions are not defined as right-unique. The
most commonly used functions are maps of a set S into another set T. The set of all
maps of S in T is denoted TS.

One can define functions or maps whose arguments are functions or maps. Such
functions are called operations (e.g. maps of S2 in S), functionals (functions defined
on a set of functions with values in the set of real numbers), operators (functions
defined on a set of functions with values in another set of functions), functors and
morphisms (maps that preserve in some sense the algebraic structures).

If F is a function on S with values in T and if x; yð Þ 2 F, then y is called the
image of x by F or the value of F in x. This is denoted in various ways, such as,
y ¼ xF ; y ¼ xF; y ¼ FðxÞ or y ¼ Fx. The set F�1ðyÞ ¼ x 2 S j F xð Þ ¼ yf g is called
the inverse image (or preimage) of y.

A function on S with values in T is called injective, injection, invertible, one-to-
one or biunivocal if it is a left-unique relation. In this case, any element from the
domain of the values has a unique image and the set ðy; xÞ 2 T � Sjðx; yÞ 2 Ff g is a
function on T with values in S, which is noted F�1 and is called the inverse function
of F. If F is an injective function, then F�1 is a function if and only if F is
surjective. Such a function is called bijective. The inverse of a bijective function is
itself bijective.
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2.4 Groups

An operation on a set S is an application which associates each ordered pair ða; bÞ
of elements of S a third element c in the same set S. For example, ordinary addition
and multiplication are operations on sets of integer, rational, real or complex
numbers, respectively.

An operation (denoted by �) on a set S is called associative if ða� bÞ � c ¼
a� ðb� cÞ for any elements a, b and c of S. The operation is called commutative if
a� b ¼ b� a. An element e of the set S is called neutral element of the operation
� if a� e ¼ e� a ¼ a for any element a of S. The neutral element, if any, is
unique. An element a0 of S is called the inverse of the element a of S if
a0 � a ¼ a� a0 ¼ e. Sometimes the notation a�1 is used to designate the inverse of
the element a.

In case of operations similar with ordinary multiplication (called
multiplicative-like operations), the neutral element is called identity element. In case
of operations similar with ordinary addition (called additive-like operations), the
neutral element is called zero element and the inverse element is called additive
inverse element (or opposite element).

A group is a set G for which the following conditions are fulfilled:

1. An operation is defined on G;
2. That operation is associative;
3. The set G has a neutral element;
4. Any element of G has an inverse in G.

If the operation is commutative, the group is called commutative group (or
Abelian group).

A group is finite or infinite as the set of its elements is finite or infinite. The
number of elements is the order of the group.

A subset H of a group G is called subgroup if H is a group for the group
operation defined on G. All groups with one element are called trivial subgroups
and all subgroups of a group G different from G are called proper subgroups.

2.4.1 Homeomorphism

An mapping f of a group ðG;�Þ in a group ðG0; �Þ is called homeomorphism if the
relation f a� bð Þ ¼ f að Þ � f bð Þ occurs for any elements a; b 2 G. The left-side
product is taken in G and the right-side product is taken in G0. The image of G by
f is a subgroup of G0. If a surjective homeomorphism of G on G0 exists, then G0 is
the homeomorphic image of G. An homeomorphism may apply distinct elements of
G on the same element of G0. Homeomorphisms are not necessarily injective.

The definition of homeomorphism suggests that it preserves in a certain sense
the structure of the original group. However, in general the image is “smaller” than
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the original group. The set of the elements of G applied on the neutral element of
the image is a measure of the narrowing of G. These elements form a subgroup of
G called the kernel of the homeomorphism.

2.4.2 Isomorphism

A bijective homeomorphism is called isomorphism. If f is an isomorphism of G on
G0, then its image is G0. If there is an isomorphism from G to G0, then it is said that
the groups G and G0 are isomorphic.

The isomorphism is an equivalence relation between groups, so that the class of
all groups is divided into isomorphism classes. Isomorphic groups have the same
structure and the calculations follow the same laws, even if the elements are of
different nature and operations are defined in different ways.

2.4.3 Automorphism

An automorphism is an isomorphism of the group G on itself. The composition of
two automorphisms of a group G is also an automorphism of G. If f is an auto-
morphism, then f�1 is also an automorphism. The automorphisms of G form a
group for the operation of composition of functions. This group is called the group
of the automorphisms on G.

2.5 Fields

A field is a set K of elements that meet the following conditions (axioms):

1. On K two operations are defined (they will be referred to as addition and
multiplication).

2. The addition determines on K an Abelian group, with 0 being the neutral
element.

3. The multiplication determines on the nonzero elements of K an Abelian group.
4. Multiplication is distributive in relation to addition; therefore, for any elements

a, b, c of K the relation aðbþ cÞ ¼ abþ ca is true.

Examples of fields (for which the two operations are the ordinary addition and
multiplication, respectively) are the sets of rational numbers, real numbers and
complex numbers. Intuitively, it can be said that a field is a set in which ordinary
arithmetic operations can be performed. The fields are finite and infinite, according
to their number of elements.
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A subset P of a field K is called subfield if it satisfies the axioms of the field for
the operations defined in K. Obviously, the sum and product of the elements of
P should belong to P, as well as their inverse elements and their opposite (additive
inverse) elements of P. The field K is called the extension of the field P.

Any field K can be considered as a vector space. For this, any subfield P can be
considered a set of scalars. The addition is defined on the elements of the field as
the operation of addition in the vector space, while the multiplication on the ele-
ments of the subfield is defined as the operation of multiplication by scalars. If the
field K has a finite dimension n, the elements b1; b2; . . .; bn can be found, so that
any b 2 K is expressed by the unique form b ¼ c1b1 þ c2b2 þ 	 	 	 þ cnbn, where
c1; c2; . . .; cn are elements of P. The elements b1; b2; . . .; bn form a basis of K on P.

Given two fields K1 and K2, a bijective mapping f from K1 to K2, with the
properties that f ðaþ bÞ ¼ f ðaÞþ f ðbÞ and f ða 	 bÞ ¼ f ðaÞ 	 f ðbÞ, for any elements
a; b 2 K1, is called isomorphism of K1 on K2. In this case, K1 and K2 are called
isomorphic. An isomorphism of the field K on itself is called automorphism.

2.6 Spaces

2.6.1 Linear Spaces

There are several ways to define and to present the main properties of the linear
spaces. Here the guide is (Beju et al. 1976).

Two sets are given: a set V on which the operation + is defined and a set K on
which two operations are defined, namely 
 and �. The three operations are called
internal composition laws. It is assumed that that ðV ; þÞ is an Abelian group and
that K;
; �ð Þ is a commutative field. An operation called “product” (denoted �) of
the elements of the group V with elements of the field K, is defined as follows:

K � V 3 ða; xÞ ! a � x 2 V ð2:2Þ

The operation * is called external composition law on V, because it attaches the
element a � x of V to the couple consisting of the element a of K and the element
x of V, respectively. Denote by x; y two arbitrary elements of V, by a; b two
arbitrary elements of K and by 1 the identity element of the filed K. It is assumed
that the following four axioms are fulfilled:

a � ðxþ yÞ ¼ a � xþ a � y
ða
 bÞ � x ¼ a � xþ b � x
ða � bÞ � x ¼ a � ðb � xÞ

1 � x ¼ x

ð2:3a–dÞ
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Note that Eq. (2.3a–d) regulates how the external composition law * operates
together with the internal composition laws defined in V and K. Equation (2.3a)
shows how the “product” * with elements of K behaves in relation to the addition of
elements of V. Equation (2.3b) and (2.3c) show how the “product” * behaves in
relation to the addition and multiplication of the elements of K. Equation (2.3d)
defines the effect of the identity element of the field K in relation to the elements of
the group V. This equation ensures that the set of the values of the external com-
position law equals the set V (with other words, the product with elements of the
field K is surjective).

If the axioms (2.3a–d) are fulfilled, it is said that V is a linear space on the field
K. It is denoted V=K. In practice, two particular cases are more important, namely
when K is the field of real numbers and the field of complex numbers, respectively.
It is said that V=K represents a real or a complex linear space, respectively.

For convenience, it is customary to denote by 0 and 1, the zero element and the
identity element of the field K, respectively. By 0 is usually denoted the zero
element of the group V.

2.6.1.1 Vectors and Scalars

If the space V=K is linear, the elements of the group V are called vectors and the
elements of the field K are called scalars. For this reason, V=K is called vector
space. Therefore, the operation * can be assimilated to the product between vectors
and scalars. In this case, the zero element 0 is called zero vector.

2.6.1.2 Linear Subspace

Consider the linear space V=K and a subgroup U of V. Also, a and x are arbitrary
elements of K and U, respectively. In case that a � x 2 U, then U is a linear space
on K, denoted U=K, and it is called linear subspace of V=K. The product with
scalars of the elements of U is the product with scalars from V=K.

2.6.1.3 Linear Independence

Assume a linear space V=K and a number n of elements of V, i.e. x1; x2; . . .; xn 2 V .
The vectors xi ði ¼ 1; . . .; nÞ are called linearly independent if the relation

a1x1 þ 	 	 	 anxn ¼ 0 ð2:4Þ

with ai 2 Kði ¼ 1; . . .; nÞ, implies a1 ¼ a2 ¼ 	 	 	 ¼ an ¼ 0. Otherwise, these vec-
tors are called linearly dependent. An equivalent wording is: the system of vectors
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fxi; i ¼ 1; . . .; nÞg is linearly independent (respectively, linearly dependent). In a
linearly dependent system of vectors, one of the vectors (in general, not anyone) can
be expressed as a linear combination of the other vectors.

2.6.1.4 Dimension of a Linear Space

The linear spaces can be divided into two types. Thus, if in a linear space the
number of linearly independent vectors is infinite, the space is called of infinite
dimension. These spaces are studied by the functional analysis.

A linear space V=K is called of finite dimension if there is a finite upper bound
for the number of its linearly independent vectors. In other words, there is a natural
number n, so that there are n linearly independent vectors, but, at the same time, any
m vectors (m[ n) are mandatory linearly dependent. The number n is called the
dimension of the linear space.

2.6.1.5 Basis for a Linear Space

A maximal system of n linearly independent vectors constitutes a basis of V=K. In
another formulation, if n linearly independent vectors can be found in a linear
space, any nþ 1 vectors being linearly dependent, then the linear space has the
dimension n (it is said that the space is n-dimensional), the n linearly independent
vectors being its basis.

2.6.1.6 An Important Example of Linear Space

Assume a commutative field K. A set Kn is built, consisting of sets of n elements
taken from K. Using the Cartesian product definition, the set Kn has the form:

Kn � K � K � 	 	 	 � K|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
n times

ð2:5Þ

Two operations are defined: the “addition” of elements of Kn and the “multi-
plication” of elements of K with other elements of Kn:

ðx1; x2; . . .; xnÞþ ðy1; y2; . . .; ynÞ � ðx1 
 y1; x2 
 y2; . . .; xn 
 ynÞ
k � ðx1; x2; . . .; xnÞ � ðk � x1; k � x2; . . .; k � xnÞ

ð2:6; 7Þ

The set Kn, for which the operations (2.6,7) are defined, has the structure of a
linear space on the field K. This linear space, which is denoted Kn=K, is called
n-dimensional Cartesian space, because its dimension is n. A basis of Kn=K is made
up of the vectors
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e1 ¼ ð1; 0; . . .; 0Þ; e2 ¼ ð0; 1; . . .; 0Þ; . . .; en ¼ ð0; 0; . . .; 1Þ ð2:8Þ

Thus, any vector x 2 Kn=K; x � ðx1; x2; . . .; xnÞ can be written as follows:

x ¼ ðx1; 0; . . .; 0Þþ ð0; x2; . . .; 0Þþ 	 	 	 þ ð0; 0; . . .; xnÞ ð2:9Þ

which is equivalent with the more compact form:

x ¼ x1e1 þ x2e2 þ 	 	 	 þ xnen � xiei ð2:10Þ

The second equality in Eq. (2.10) represents the Einstein’s summation conven-
tion, which is a compact way of writing some sums. From Eq. (2.10) it follows that
any nþ 1 vectors are linearly dependent.

2.6.1.7 Comments on the Axioms of Linear Spaces

Note that the set of axioms (2.3a–d) follows the rules presented in the beginning of
this chapter. To show that the first rule is fulfilled, it must be proven that there are
elements that meet the set of axioms. This can be easily proved by example (Kn=K
is such an example of linear space). To show that the second rule, concerning the
properties of the sets of axioms properly constructed, is checked, a counter-example
will be given. Assume an additive Abelian group V and a field K. The following law
of external composition with elements of V and K is defined:

a � x ¼ 0; ð8x 2 V ; 8a 2 KÞ ð2:11Þ

Further assume two arbitrary elements x; y 2 V and two arbitrary elements
a; b 2 K. Using the definition of the law of composition Eq. (2.11) it can be
written:

a � ðxþ yÞ ¼ a � xþ a � y ¼ 0

ða
 bÞ � x ¼ a � xþ b � x ¼ 0

ða � bÞ � x ¼ a � ðb � xÞ ¼ 0

ð2:12a–cÞ

The three Eqs. (2.12a–c) lead to the following conclusions. The first conclusion is
that the first three axioms (2.3a–c) of the definition of linear space are met.
A second conclusion comes from the fact that the axiom Eq. (2.3d) is not met;
therefore the second condition of the correct way of construction of the system of
axioms is satisfied, because it was shown that there are elements that do not check
the entire set of axioms. The third conclusion, which derives from the first two, is
that axiom (2.3d) is independent of the other three axioms.
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It may be shown that the axiom (2.3b) is independent, by using the following
example, where V and K are an Abelian group and an arbitrary field, respectively.
The product of the elements of V with scalars of K is defined as follows:

a � x ¼ x; ð8x 2 V ; 8a 2 KÞ ð2:13Þ

Assume two elements x; y 2 V and two elements a;b 2 K. Using the definition
of the law of composition (2.12), it can be written:

a � ðxþ yÞ ¼ a � xþ a � y ¼ xþ y

ða � bÞ � x ¼ a � ðb � xÞ ¼ x

1 � x ¼ x

ð2:14Þ

It is found that the axioms (2.3a), (2.3c) and (2.3d) are checked. Instead, the
axiom (2.3b) is not checked, because it is seen that

ða
 bÞ � x ¼ x;

a � xþ b � x ¼ xþ x
ð2:15Þ

Hence the axiom (2.3b) is independent of the other three axioms. The third rule
of defining in a correct way a system of axioms asks the independence of the
axioms (2.3a) and (2.3c). This can be done quite easily using procedures similar to
those above.

2.6.1.8 Properties of Vector Spaces

Using the axioms of linear spaces, several important properties can be formulated.
Demonstrations can be found in Beju et al. (1976, pp. 107–108).

1. For any x 2 V , it can be checked that 0 � x ¼ 0.
2. For any a 2 K, it can be checked that a � 0 ¼ 0.
3. In any linear space, a � x ¼ 0 if and only if a ¼ 0 or x ¼ 0.
4. In any linear space, the axiom of the commutativity of the group (V, +) is a

consequence of the axioms of the linear space.
5. Any vector system containing the zero vector is linearly dependent.
6. Any system of linearly independent vectors does not contain the zero vector.
7. A system consisting of a single vector is linearly independent if and only if

x 6¼ 0.
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2.6.1.9 Coordinates in Linear Spaces

Assume an ordered basis e1; e2;. . .; en of an n-dimensional linear space V=K and an
arbitrary element x 2 V . Note that the following nþ 1 vectors: x; e1; e2; . . .; en , are
linearly dependent. It follows that some scalars a0; a1; . . .; an 2 K exist, which are
not all null, so that

a0xþ a1e1 þ 	 	 	 þ anen ¼ 0 ð2:16Þ

It is mandatory that a0 6¼ 0, because otherwise it would follow that the n vectors
e1; e2;. . .; en are not linearly independent. Thus, the relation (2.16) can be written
as:

x ¼ k1e1 þ k2e2 þ 	 	 	 þ knen ð2:17Þ

It is easily shown that the scalars kiði ¼ 1; . . .; nÞ are uniquely determined (Beju
et al. 1976, p. 110). Therefore, a set of scalars kiði ¼ 1; . . .; nÞ is associated to any
vector x. This set of scalars is unique in a given ordered basis. They constitute the
coordinates of x in that basis.

For this reason, an ordered basis in a linear space is called coordinate system.

2.6.1.10 Isomorphism of Linear Spaces

The above allow a one-to-one correspondence between the set of vectors and the set
of rows (or columns) formed by using coordinates of vectors. By this correspon-
dence, the operations of addition of vectors and the product of a vector by a scalar
may be associated with operations in Kn=K by using the rows (or columns) of
coordinates.

An important consequence of this observation is that, whatever the nature of the
elements of a n-dimensional linear space V=K (these elements being functions,
arrays, physical quantities, etc.), that space does not differ fundamentally (in terms
of its operations) from the space Kn=K. This observation is more rigorously stated
as follows:

Definition 2.1 Two vector spaces V=K and W=K are called isomorphic if there is a
mapping (function) f : V ! W which has the properties:

(a) the function f is bijective;
(b) for any elements x; y 2 V and k 2 K, the following relations are true

f ðxþ yÞ ¼ f ðxÞþ f ðyÞ; f ðk xÞ ¼ k f ðxÞ ð2:18Þ

All linear spaces of dimension n, whatever their nature, are isomorphic among
themselves and isomorphic with the space Kn=K, which can be imagined as a space
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of rows (or columns). In general, the group operations of different vector spaces
differ between them. However, due to the isomorphism, they can be marked with
the same sign (for example, +).

2.6.1.11 Scalar Product in Linear Spaces

Assume some elements x; y; z of the linear space V=K and the arbitrary element
k 2 K. Also, it is denoted by c the complex number conjugate of c. The scalar
product in the space V=K is defined as a mapping f that associates certain elements
x; y of the vector product V � V with an element, denoted \x; y[ , of the field K,
namely

f ðx; yÞ ! \x; y[ ð2:19Þ

and fulfills the following four axioms:

\x; y[ ¼ \y; x[
\xþ y; z[ ¼ \x; z[ þ\y; z[
\k 	 x; y[ ¼ k 	\x; y[
\x; x[ [ 0; if x 6¼ 0

\x; x[ ¼ 0 if x ¼ 0

� ð2:20a–dÞ

Note that, in the particular case of real linear spaces (K � R), the axiom (2.20a)
becomes \x; y[ ¼ \y; x[ , i.e. the scalar product is symmetric in its argu-
ments. Using the definition of the scalar product it can be shown that the following
general propositions take place:

\x; k 	 y[ ¼ k 	\x; y[ ; \x; yþ z[ ¼ \x; y[ þ\x; z[

\0; x[ ¼ 0; ð\x; y[ Þ2 �\x; x[ 	\y; y[

ð2:21a–dÞ

Here �k is the conjugate complex number of the number k. In the case of real linear
spaces (K � R), �k ¼ k. The proposition (2.21d) is the Cauchy–Bunyakovsky–
Schwarz inequality.

2.6.1.12 Norm and Distance in Linear Spaces

The scalar product can be used to introduce the notions of norm and distance on a
linear space. The norm of an element x of V=K, usually denoted by xk k, is a
function from the set V=K in the set of real numbers, defined by
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xk k � ð\x; x[ Þ1=2 ð2:22Þ

The norm on a linear space fulfills the standard axioms of the norm-like
functions

xk k� 0 if x 6¼ 0

xk k ¼ 0 if x ¼ 0

�

k 	 xk k ¼ kj j 	 xk k
xþ yk k� xk kþ yk k;

ð2:23a–cÞ

Relation (2.23c) is the triangle inequality.
A vector u 2 E is called unit vector or normalized vector, or versor, if uk k ¼ 1.

Any vector x 6¼ 0 can be normalized by dividing it by xk k.
The distance between the elements x and y of V=K, which is usually denoted

by d x; yð Þ, is a function from the set V � V in the set of real numbers, defined by:

dðx; yÞ ¼ x� yk k ð2:24Þ

The distance between two elements in a linear space fulfills all standard axioms
of the distance-like functions, i.e.:

dðx; yÞ� 0 if x 6¼ y

dðx; yÞ ¼ 0 if x ¼ y

�

dðx; yÞ ¼ dðy; xÞ; dðx; yÞþ dðy; zÞ� dðx; zÞ
ð2:25a–cÞ

It is seen from property (2.25b) that the distance is a symmetric function in its
arguments.

2.6.2 Unitary and Euclidean Spaces

The concepts of scalar product, norm and distance, previously defined for linear
spaces, have properties similar with the analogous notions of the Euclidean
geometry. This observation allows an extension of the formal analogy, by intro-
ducing new definitions.

The complex linear spaces in which a scalar product has been defined are called
unitary spaces while the real linear spaces in which a scalar product has been
defined are called Euclidean spaces. The dimension of the unitary (Euclidean)
space is given by the dimension of the linear space V=K. The Euclidean spaces are
usually denoted by E, while the scalar product in Euclidean spaces is usually
written in the more compact form x 	 y, commonly used in geometry. Several
notions of geometric inspiration will be introduced and discussed further.
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2.6.2.1 Orthogonal Vectors

In the Euclidean space E, the scalar product can be used to introduce the notion of
angle between two vectors. Assume x and y are two non-zero vectors. The angle
hðx; yÞ between these vectors is defined by the relation:

cos hðx; yÞ ¼ x 	 y
xk k 	 yk k ; ð0� h� pÞ ð2:26Þ

By using the Cauchy–Bunyakovsky–Schwarz inequality and the properties of
the cosine function it can be shown that the angle hðx; yÞ is well defined, i.e. it has
values in the range [0,1].

Two vectors x and y are orthogonal if their scalar product is zero, i.e.:

x 	 y ¼ 0 ð2:27Þ

By using relations (2.26) and (2.27), it can be easily deduced that the angle
between two orthogonal vectors equals p=2.

A set of nonzero vectors xiði ¼ 1; . . .; nÞ is called orthogonal system if xi	xj 6¼ 0
only for i ¼ j; ði; j ¼ 1; . . .; nÞ. The systems of orthogonal vectors have several
important properties that result from the following two theorems (for demonstra-
tion, see Beju et al. 1976, p. 117):

Theorem 2.2 An orthogonal system of vectors fxi; i ¼ 1; . . .; ng is linearly
independent.

Theorem 2.3 In any Euclidean space of finite dimension there are orthogonal
bases.

2.6.2.2 Orthogonalization Process

Assume a basis fei; i ¼ 1; . . .; ng of a n-dimensional Euclidean space E. Obviously,
ei 6¼ 0 ði ¼ 1; . . .; nÞ. Starting from this basis, an orthogonal basis (denoted
f1; f2; . . .; fn) can be obtained by using the following procedure, called orthogo-
nalization or orthogonalization process.

First, denote f1 ¼ e1. Then, define f2 ¼ e2 þ a 	 f1 and determine the scalar a, by
requiring that f1 and f2 are orthogonal (i.e. f2 	 f1 ¼ 0). It is found that
a ¼ �e2 	 f1= f1k k2. Next, the mathematical induction is used. It starts from the
premise that a set of k non-zero vectors, orthogonal two by two, denoted
f1; f2; . . .; fn, has been built by using the relation
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fk ¼ ek þ a1 	 f1 þ 	 	 	 þ ak�1 	 fk�1 ðk ¼ 1; . . .;m� 1Þ ð2:28Þ

In this case, any vector fm will be given by a relation similar with equality (2.28), i.e.

fm ¼ em þ a1 	 f1 þ 	 	 	 þ am�1 	 fm�1 ð2:29Þ

The scalar coefficients a1; . . .; am�1 will be determined by using the orthogo-
nality conditions fm 	 fk ¼ 0ðk ¼ 1; . . .;m� 1Þ. In the generic case, it is found that
em 	 fk þ ak 	 fk 	 fk ¼ 0, from which the coefficient ak is determined.

A orthogonal system of normalized vectors is called orthonormal system. From
Theorem 2.3 it follows that any n-dimensional Euclidean space has orthonormal
bases. Note that in an orthonormal basis, the scalar product has the simple form:

x 	 y ¼
X
i

xiyi � xiyi ð2:30Þ

where xi; yiði ¼ 1; . . .; nÞ are the components of the vectors x and y, respectively, on
the orthonormal basis feig.

2.6.3 Affine Spaces

Geometry was the first branch of mathematics where sets of vectors have been
attached to sets of points. With the generalization of the notion of vector for linear
spaces, this observation is valid in the case of several disciplines of physics, such as
mechanics, electrodynamics and, as will see in the next chapters, thermodynamics.
For example, the force vector can be attached to a material point and a velocity
vector field can be attached to a continuous domain of points of the physical space
(i.e. a three-dimensional body).

The notion of affine space allows processing within the same mathematical
structure of two distinct categories of elements, some of which are described as
“points” and the other are called “vectors.” The two categories of elements include
geometric points and geometric vectors as particular cases.

The set of points will be denoted by M. The linear space of the vectors will be
denoted V. Each ordered pair of points of M (for example, P, Q) is associated with
a vector of V (for example x) by defining an association law. In this case, the first
point, P, is called the origin, or initial point, of the vector PQ � x, and the second
point, Q, is called its terminal point. With this notation, it is obvious that PQ 2 V .

For the setM, associated with the linear space V, to constitute an affine space, the
following axioms should be fulfilled:

(a) For any point P 2 M and any vector x 2 V , there is a point, and only one,
Q 2 M, so that PQ ¼ x.
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(b) If PQ ¼ x and QR ¼ y, then PR ¼ xþ y.
Note that the ordered pair of overlaid points ðP,PÞ 2 M is associated with the
null vector of V, i.e. PP ¼ 0. Also, if PQ ¼ x, then it can be deduced that
QP ¼ �x (Beju et al. 1976, p. 113).

If the linear space V is real or complex, finite or infinite dimensional, then it is
said that the affine space is, respectively, real or complex, finite or infinite
dimensional. The dimension of the affine space M is equal to the dimension of the
linear space V.

2.6.3.1 Coordinates in Affine Spaces

Assume the n-dimensional affine space M. Assume a point O in M and a basis
e1; e2; . . .; en in the linear space V. The assembly consisting of the point O and the
basis constitutes a system of affine coordinates inM. The point O is the origin of the
coordinate system and e1; e2; . . .; en are the vectors of the basis.

Assume a point P of M. The ordered pair ðO,PÞ is associated with the vector OP,
which is called the position vector of P in relation with the origin O. The coordi-
nates of OP in the basis e1; e2; . . .; en are denoted ðx1; x2; . . .; xnÞ. In this case, the
following relation can be written:

OP ¼ x1e1 þ x2e2 þ 	 	 	 þ xnen � xiei ð2:31Þ

The coefficients ðx1; x2; . . .; xnÞ represent the affine coordinates of the point
P. Note that these coordinates depend on the basis e1; e2; . . .; en of the linear space
V and the origin O (element of M).

Assume the point Q 2 M, of affine coordinates y1; y2; . . .; yn. The affine coor-
dinates of the vector PQ are given by:

PQ ¼ POþOQ ¼ OQ�OP ¼ ðy1 � x1Þe1 þ 	 	 	 þ ðyn � xnÞen ð2:32Þ

Relation (2.32) was obtained by considering the axiom (b) of the affine spaces and
the fact that PO ¼ �OP. The conclusion is that the affine coordinates of the vector
PQ can be written using only the affine coordinates of the points P and Q.

2.6.3.2 Distance in Affine Spaces

Consider the case of an affine space which is defined by using a linear space on
which a scalar product has been introduced. In this case, the distance between two
points A and B of the affine space can be defined by the relationship
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dðA;BÞ ¼ ðAB 	 ABÞ1=2 ð2:33Þ

By choosing an affine coordinate system consisting of a point O and an
orthonormal basis, one obtains an image of the affine space similar to that of the
space in Euclidean geometry.

2.6.3.3 Connection Between Affine Spaces and Linear Spaces

Between affine spaces and linear spaces there is a structural link. Thus, any affine
space M can be regarded as a linear space V. To prove this, it takes an arbitrary
point O 2 M. Next, a position vector OP is attached to any point P 2 M. Then,
considering the axioms (a) and (b), it is concluded that the set of position vectors
coincides with V. Conversely, any linear space V can be regarded as an affine space
M. To prove this, the elements of V are regarded as points of M and to the ordered
pair of points ða; bÞ it is attached the vector b� a 2 V . This interpretation is
encountered when making reference to the linear space of position vectors, defin-
ing, with its help, the vectors-oriented segments connecting the ends of two vectors
of position.

To remove ambiguities, it is important to specify which of the analyzed elements
have the role of points and vectors, respectively.

2.7 Equivalence Classes for Reference Frame
Transformation

Practice shows that the same physical quantity may be perceived and described
differently by different observers. The objective (scientific) description of the
quantity must be done using the intrinsic properties of that quantity, which do not
change when passing from the description of one observer to another description, of
a different observer. More generally, the objective character of scientific knowledge
can only be ensured by consistent usage of the invariant aspects of the phenomena,
which do not depend on how the phenomena are perceived by particular observers.

In this section it is exemplified how the issues which are invariant in respect to
the observer can be described by using mathematical methods. The simplest
example refers to a fundamental concept in physics, that of distance. At the end of
the section some useful generalizations are presented.
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2.7.1 Intrinsic Distance

It is accepted that the mathematical structure of the physical space is that of the
Euclidean space, denoted E3. Further, by observer it is understood a right-handed
orthonormal frame (for definition, see Sect. 3.1.1.1) equipped with a procedure for
measuring distances and time.

Assume two observers, denoted ox1x2x3 and OX1X2X3, respectively. Assume
two distinct points, R and S, of coordinates y � ðy1; y2; y3Þ and z � ðz1; z2; z3Þ,
respectively, in respect with the first observer, and of coordinates Y � ðY1; Y2; Y3Þ
and Z � ðZ1; Z2; Z3Þ, respectively, in respect with the second observer. The dis-
tances between the points R and S, determined by the two observers, are given by,
respectively:

d2ðy; zÞ ¼ ðz1 � y1Þ2 þðz2 � y2Þ2 þðz3 � y3Þ2

D2ðY;ZÞ ¼ ðZ1 � Y1Þ2 þðZ2 � Y2Þ2 þðZ3 � Y3Þ2
ð2:34a; bÞ

It is clear that, generally, the functions dðy; zÞ and DðY;ZÞ are different.
Imposing further restrictions makes possible that these functions always lead to the
same numerical value, once the points R and S are given. That numerical function,
which does not depend on the procedures adopted by observers for measuring the
distance, but only on the position of the two points, is called intrinsic distance.

Of interest are the conditions that must be met in order to obtain intrinsic
distances from the relationship of type (2.34a, b). Denote by P a certain point, of
coordinates x � ðx1; x2; x3Þ in respect to the first observer, and of coordinates X �
ðX1;X2;X3Þ in respect to the second observer. Denote by f the function that makes
the connection between coordinates xif g and Xif g of the point P, as determined by
the two observers. Obviously, this function performs a biunivocal correspondence
between E3 and E3. In vector notation, it be written:

X ¼ f ðxÞ ð2:35Þ

In case that the coordinates of the position vectors x and X of point P are used,
the relationship (2.35) becomes

XK ¼ fKðx1; x2; x3Þ ¼ fKðxiÞ ðK; i ¼ 1; 2; 3Þ ð2:36Þ

The condition of existence of an intrinsic distance in space E3 is equivalent to
the equality

dðy; zÞ ¼ DðY;ZÞ 8R; S 2 E3 ð2:37Þ

The constraint (2.37) strongly restricts the set of functions f that fulfill the
relationship (2.36). Now, it is considered that, for the first observer, the three points
P, R and S are collinear. This is equivalent with writing
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dðx; yÞþ dðy; zÞ ¼ dðx; zÞ ð2:38Þ

Restriction (2.37) leads to the following equality

DðX;YÞþDðY;ZÞ ¼ DðX;ZÞ ð2:39Þ

which is equivalent to saying that the points P, R and S are collinear from the
view-point of the second observer. Therefore, the bijective function f transforms
collinear points into collinear points, or, in other words, it transforms straight lines
into straight lines. It follows that the function f must be a linear function, according
to a theorem of affine geometry (see Mihaileanu 1971). It can be concluded that the
relationships between the components of the position vectors x and X of the point P
in the frames of the two observers must have the following form:

XK ¼ QKkxk þBK ðK ¼ 1; 2; 3Þ ð2:40Þ

where QKk and BK ðK; k ¼ 1; 2; 3Þ are constants. Denote by Q the matrix of the
components QKk and by B the column matrix of the components BK . The position
vectors x and X will be considered of column matrix type. In these conditions,
Eq. (2.40) can be written under the following matrix form, which emphasizes the
character of linear transformations

X ¼ Q 	 xþB ð2:41Þ

Classical mechanics, for example, is based on such relationships for changing
the coordinates of a point from a reference frame into another. The linearity of the
relationship (2.41) is a consequence of the premise that an intrinsic distance exists
in the physical space modeled by E3.

2.7.2 Orthogonal Transformations

It was shown that the distance between two points in the physical space E3 is
invariant for the coordinate transformations (2.41). Therefore, these so-called
orthogonal transformations are important, they being able to underpin an objective
description of the physical phenomena.

The orthogonal transformations are of two types, as seen below. Assume two
points y; z 2 E3. By using relations (2.34) and (2.37) it is obtained:

ðZK � YKÞðZK � YKÞ ¼ ðzk � ykÞðzk � ykÞ ð2:42Þ
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Then, using the relation (2.40), it can be written:

ZK � YK ¼ QKkðzk � ykÞ ðK ¼ 1; 2; 3Þ ð2:43Þ

Therefore, the Eq. (2.42) becomes

QKkðzk � ykÞQKjðzj � yjÞ ¼ ðzk � ykÞðzj � yjÞ ð2:44Þ

By the reversal of the summing order, from (2.44) it is obtained:

ðQKkQKj � dkjÞðzk � ykÞðzj � yjÞ ¼ 0 ð2:45Þ

In (2.45) the symbol dij has been used, which is known as Kronecker’s symbol,
defined as:

dij ¼ 1 if i ¼ j
0 if i 6¼ j

�
ð2:46Þ

The equality (2.45) should take place regardless of the elements y; z 2 E3.
Therefore, the following relation should be true:

QKkQKj ¼ dkj ðk; j ¼ 1; 2; 3Þ ð2:47Þ

Relation (2.47) can be more compactly rewritten in the following matrix form:

QT 	Q ¼ E ð2:48Þ

In the equality (2.48) the common notation has been used: QT is the transposed
matrix of the matrix Q, and E is the unit matrix. All these matrices are of order
three. A consequence of the relationship (2.48) is that

detðQT 	QÞ ¼ 1 ð2:49Þ

or, in other words, that

ðdet QÞ2 ¼ 1 ð2:50Þ

The previous relationships allow some comments about important properties of
the matrix Q. First, physical quantities are generally characterized by their physical
dimension (e.g., dimension of length (L), mass (M), time (T)). In some cases, the
physical dimension may be a more complex expression, of the form LaMbTc, where
a, b, c are real numbers. However, from the relation (2.41) it is found that the matrix
Q has dimensionless components from physical point of view. Second, the matrix
Q is non-singular. Then, from relations (2.48) and (2.50) it is found that the matrix
Q is invertible. The inverse of the matrix Q is:
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Q�1 ¼ QT ð2:51Þ

Using again the eq. (2.48) it is deducted that:

Q 	QT ¼ E ð2:52Þ

or, in unfolded writing:

QKkQLk ¼ dKL ðK; L ¼ 1; 2; 3Þ ð2:53Þ

The matrices that check the equalities (2.51) are called orthogonal matrices. This
explains why the linear relationships (2.41), where the matrix Q appears, are called
orthogonal transformations. It is also observed that if in (2.41) an orthogonal matrix
Q is included, the relationship (2.37) is checked unconditionally. This is justified by
the next calculations, if the relationship (2.47) is also taken into account:

D2ðY;ZÞ ¼ ðZK � YKÞðZK � YKÞ ¼ QKkðzk � ykÞQKjðzj � yjÞ
¼ QKkQKjðzk � ykÞðzj � yjÞ ¼ djkðzk � ykÞðzj � yjÞ
¼ ðzk � ykÞðzk � ykÞ ¼ d2ðy; zÞ

ð2:54Þ

Relation (2.50) can be rewritten in the following form, which is useful for the
classification of the orthogonal matrices and transformations:

det Q ¼ 
1 ð2:55Þ

An orthogonal transformation is said to be proper transformation, if det Q ¼ 1.
In the opposite case (det Q ¼ �1), the transformation is called improper. Two
reference frames (or two observers) are said to belong to the same class, if the
orthogonal transformation that turns one into the other is a proper orthogonal
transformation. Otherwise, it says that those reference frames (or observers) belong
to different classes. From Eq. (2.55) one sees that there are only two classes of
reference frames. The reference frames in the same class turns one into another by
using a proper orthogonal transformation. The reference frames in different classes
turns one into another by using an improper orthogonal transformation.

2.7.3 Classes of Physical Quantities

The importance of the transformations (2.40) or (2.41) between two reference
frames ox1x2x3 and OX1X2X3, respectively, is that they lead to an intrinsic definition
of the length. This has consequences on the shape and size of bodies.

The procedure developed previously for the intrinsic definition of the length can
be extended to other types of physical quantities. Several types of physical
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quantities will be defined and classified in the following, according with their
behavior when the transformation (2.40) occurs.

2.7.3.1 Scalars. Pseudoscalars. Vectors. Pseudovectors

In the following, only quantities with physical dimension will be considered.
Therefore, the existence of this property will not be reminded.

A quantity characterized in any reference frame by a single real number invariant
to the transformation (2.41) is called scalar. It is called pseudoscalar, a quantity
characterized in any reference frame by a real number, which, when the transfor-
mation (2.41) occurs, is changed according to the rule:

X ¼ ðdet QÞx ð2:56Þ

where x and X is the value of the pseudoscalar in the reference frames ox1x2x3 and
OX1X2X3, respectively.

A quantity characterized in any reference frame by a triplet of real numbers is
called a vector if, when the transformation (2.41) occurs, the following relation is
fulfilled between the triplets ðv1; v2; v3Þ and ðV1;V2;V3Þ which characterize the
quantity in the two reference frames:

VK ¼ QKkvk ðK ¼ 1; 2; 3Þ ð2:57Þ

The three numbers represent the vector components in that reference frame. The
vector thus defined is called a polar vector. A quantity characterized in any ref-
erence frame by a triplet of real numbers is called pseudovector if, when the
transformation (2.41) occurs, the following relation is fulfilled between the triplets
ðv1; v2; v3Þ and ðV1;V2;V3Þ which characterize the quantity in the two reference
frames:

VK ¼ ðdetQÞQKkvk ðK ¼ 1; 2; 3Þ ð2:58Þ

The three numbers represent the components of the pseudovector in that refer-
ence frame. The pseudovector is also called axial vector.

2.7.3.2 The Importance of Physical Dimension

The quantities previously defined (scalar, pseudoscalar, vector, pseudovector) need
not be associated with a physical dimension, as long as they are maintained at an
abstract level. Sometimes, using these parameters in practice requires specification
of physical dimension. In this way it is avoided the composition of quantities that
have obviously different physical significance (such as velocities and accelerations)
although they are of the same type (i.e. vectors, in this particular case). As already
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mentioned, the quantities QKk are dimensionless. By assuming the homogeneity of
the transformations (2.56) and (2.58), it is seen that the physical dimension of the
quantities is kept when the reference frame is changed.

2.7.3.3 Examples of Vectors

Next, some examples of mechanical vectors are shown. The theory can easily be
generalized and used in other areas of physics.

Assume a reference frame in the three-dimensional space and the points P0 (of
coordinates x01; x

0
2; x

0
3

� �
in that reference frame) and P (of coordinates x1; x2; x3ð Þ in

the same reference frame). Assume the quantity r P0; P
� �

, with physical dimension
of length, characterized in the same reference frame by the triplet (x1 � x01;
x2 � x02; x3 � x03). If a change of reference frame is made, the new coordinates of the
two points, P and P0, are given by

XK ¼ QKkxk þBK

X0
K ¼ QKkx

0
k þBK ðK ¼ 1; 2; 3Þ ð2:59Þ

By subtraction of the two relationships (2.59) is obtained:

XK � X0
K ¼ QKkðxk � x0kÞ ðK ¼ 1; 2; 3Þ ð2:60Þ

Relation (2.60), which has the same form as the relationship (2.40), reveals that
r P0;P
� �

is a vector. It is called the position vector of point P in relation with the
point P0.

Further, it is considered that the coordinates of point P are differentiable func-
tions of a real parameter t: xk ¼ xkðtÞ ðk ¼ 1; 2; 3Þ. In this case, a change of ref-
erence frame transforms these coordinates into:

XKðtÞ ¼ QKkxkðtÞþBK ðK ¼ 1; 2; 3Þ ð2:61Þ

The new coordinates are also differentiable functions of the real parameter t.
Assume that the point P0 is fixed. In this case, the velocity vector of the point P in
relation with point P0 can be obtained by using the vector r P0; P

� �
, as follows:

vðP0;PÞ ¼ d
dt
rðP0; PÞ ð2:62Þ

Its physical dimension is length divided by time. The components of this vector are
denoted ( _x1; _x2; _x3). Using (2.60), it is found that
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_XKðtÞ ¼ QKk _xkðtÞ ðK ¼ 1; 2; 3Þ ð2:63Þ

Relation (2.63) shows that the velocity of a point is a vector, because the
components of the velocity of point P do not depend on the coordinates of the point
P0. Thus:

vðP0; PÞ ¼ vðPÞ ð2:64Þ

Assume the case that the functions xk ¼ xkðtÞ ðk ¼ 1; 2; 3Þ have second order
derivatives in relation with the parameter t. Repeating the above process, it can be
shown that the vector acceleration of the point P, denoted aðPÞ, is given by

aðPÞ ¼ d
dt
vðPÞ ð2:65Þ

This vector has physical dimension of length divided by squared time and its
components are (€x1;€x2;€x3).

2.7.3.4 The Existence Theorem

Denotes by a1; a2; a3 the triplet of real numbers associated (in a reference frame)
with a quantity a. In the same reference frame, the components of a vector (or
pseudovector) b are denoted by b1; b2; b3. The next theorem (given without
demonstration) states the necessary and sufficient conditions for a quantity to be
vector (or pseudovector).

Theorem 2.4 (a) If, whatever the vector b, the sum akbk is a scalar (or a pseu-
doscalar), then a is a vector (or a pseudovector). (b) If, whatever the vector b, the
sum akbk is a pseudoscalar (or a scalar) then a is a pseudovector (or a vector).

2.7.3.5 Change of Components at Reference Frame Transformations

A vector or a pseudovector is completely determined by its components in a certain
reference frame. Its components can then be determined in any other reference
frame, by the transformation relationships presented below.

The components of the vector v can be obtained from relationships (2.57) and
(2.58), using the identities (2.47) and (2.53). The procedure is as follows.
Multiplying the Eq. (2.58) with QKj and by summing up, it is found
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QKjVK ¼ ðdet QÞQKkQKjvk ¼ ðdet QÞdkjvk ¼ ðdet QÞvj ð2:66Þ

Then, taking into consideration the relationship (2.55), it is obtained:

vk ¼ ðdet QÞQKkVK ðk ¼ 1; 2; 3Þ ð2:67Þ

Similarly, from the relationship (2.57), it is obtained

vk ¼ QKkVK ðk ¼ 1; 2; 3Þ ð2:68Þ

Relations (2.57) and (2.58) allow the calculation of the new components of the
vector, in case that the old components are known. The old components can be
calculated as function of the new ones by using the relationships (2.68) and (2.67).

2.7.4 Operations with Scalars and Vectors

The quantities between which a relation exists must have the same physical
dimension. The quantities subjected to operations may have the same physical
dimension or may have different physical dimensions.

2.7.4.1 Relation of Equality

The relationship of equality makes sense only between quantities with the same
physical dimension.

It is said that two scalars (or pseudoscalars) are equal if, in the same reference
frame, they are characterized by the same real number. It is said that two vectors (or
pseudovectors) are equal if, in the same reference frame, their components are
equal.

If two vectors (or pseudovectors) have equal components in a reference frame,
then they will have equal components in any other reference frame. To prove this,
consider two vectors u and v which, in two different reference frames, have the
components uk; vk ðk ¼ 1; 2; 3Þ and respectively UK ;VK ðK ¼ 1; 2; 3Þ. Using
Eq. (2.57), it is found that

UK ¼ QKkuk; VK ¼ QKkvk ðK ¼ 1; 2; 3Þ ð2:69Þ

If the two vectors are equal in the first reference frame, then uk ¼ vk ðk ¼ 1; 2; 3Þ.
From Eq. (2.69) it is deduced that the equality UK ¼ VK ðK ¼ 1; 2; 3Þ takes place
in the second reference frame.

Similar sentences can be formulated in the case of pseudovectors.
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2.7.4.2 Operation of Addition

The addition makes sense only between quantities with the same physical
dimension.

The addition of scalars (pseudoscalars) can be done in a given reference frame. It
consists in the sum of the numerical values of the scalars (pseudoscalars). Assume
two vectors (pseudovectors) u and v, of components uk and vk k ¼ 1; 2; 3ð Þ in a
given reference frame. The sum of the two vectors (pseudovectors) is a vector
(pseudovector), denoted w, whose components are equal to the sum of the
numerical values of the components of the two vectors. The addition is written as
follows:

w ¼ uþ v ð2:70Þ

To prove that the addition of two vectors (pseudovectors) produces a vector
(pseudovector), consider that wk ¼ uk þ vk ðk ¼ 1; 2; 3Þ and respectively WK ¼
UK þVK ðK ¼ 1; 2; 3Þ, are the components of w in two reference frames connected
by the relation (2.40). In case of vectors, the transformation relationship (2.57) is
applied to the components of the vectors u and v. It is found that:

WK ¼ UK þVK ¼ QKkðuk þ vkÞ ¼ QKkwk ð2:71Þ

In the case that u and v are pseudovectors, from (2.58) it is obtained

WK ¼ UK þVK ¼ ðdet QÞQKkðuk þ vkÞ ¼ ðdet QÞQKkwk ð2:72Þ

Consequently, by changing the reference frames, the components of the sum of
two vectors (pseudovectors) transforms itself as a vector (pseudovector).

2.7.4.3 Scalar Product

The set of all vectors and pseudovectors, regardless of their physical size, will be
denoted by V. Assume that u and v are elements of V. Their components, in a
certain reference frame, will be denoted uk; vk k ¼ 1; 2; 3ð Þ. The scalar product (or
inner product, or dot product) of u and v is defined as the number ukvk. This
product has physical dimension and is denoted u 	 v.

If u and v are vectors, their scalar product is a scalar. This can be easily shown.
Denote with UK and VKðK ¼ 1; 2; 3Þ the components of u and v in a reference
frame. By using relations (2.47) and (2.57), it is obtained

UKVK ¼ QKiQKjuivj ¼ dijuivj ¼ ukvk ð2:73Þ

i.e. the quantity ukvk is invariant to the transformation (2.40); thus it is a scalar.
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In case u and v are pseudovectors, their scalar product is a scalar. This can be
shown using the previous procedure, together with relation (2.58):

UKVK ¼ ðdet QÞ2QKiQKjuivj ¼ dijuivj ¼ ukvk ð2:74Þ

The above results can be applied in the case v � u. Obviously, the scalar product
u 	 u is a scalar, being a quantity invariant to orthogonal transformations. This
observation allows the introduction of a quantity which characterizes intrinsically
the vector (pseudovector) u. This quantity is the module of u, defined as

juj � ðu 	 uÞ1=2. The module is a scalar with physical dimension equal to the
physical dimension of the vector (pseudovector) u. The unit vector (or the unit
pseudovector) attached to u is defined as w � u=juj. This quantity, which has the
module equal to the unity, is a dimensionless vector (pseudovector). The vectorial
(pseudovectorial) character of this quantity it is easily shown, using relations (2.57)
and (2.58):

UK

juj ¼
UK

jUj ¼ QKk
uk
juj ;

UK

juj ¼
UK

jUj ¼ ðdetQÞQKk
uk
juj ð2:75Þ

The vector (pseudovector) u can be represented geometrically through the ori-
ented segment P0P. In this case, juj ¼ jP0Pj, i.e. the vector’s module is numerically
equal to the length of the segment P0P. Indeed, using Eq. (2.74), it is obtained by
simple processing:

juj ¼ ðukukÞ1=2 ¼ ½ðxk � x0kÞðxk � x0kÞ�1=2 ¼ jP0Pj ð2:76Þ

This relationship is used to justify why the notion of length of vector (pseudovector)
is sometimes used instead of the notion of module.

If u is a vector and v is a pseudovector, their scalar product is a pseudoscalar.
The demonstration involves using relationships (2.57) and (2.58):

UKVK ¼ ðdetQÞQKiQKjuivj ¼ ðdetQÞdijuivj ¼ ðdetQÞukvk ð2:77Þ

Therefore, the quantity ukvk is transformed, indeed, as a pseudoscalar.

2.7.4.4 Vector Product

Assume two elements u; v 2 V . In a reference frame, they have the components uk
and vkðk ¼ 1; 2; 3Þ, respectively. The vector product (or cross product) of u and v is
defined as that quantity of components

wi ¼ 2ijkujvk ði ¼ 1; 2; 3Þ ð2:78Þ
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Here 2ijk i; j; k ¼ 1; 2; 3ð Þ is the symbol of Levi-Civita, which has only six nonzero
components, i.e.:

2ijk ¼ 2jki ¼ 2kij ¼ �2jik ¼ �2ikj ¼ �2kji ¼ 1 ði; j; k ¼ 1; 2; 3Þ ð2:780Þ

The vector product is usually written as

w ¼ u� v ð2:79Þ

and it has a physical dimension equal to the product of the physical dimensions of
u and v.

Note that if u and v are vectors, their vector product is a pseudovector. This is
easy to prove. The components of u and v in a different reference frame are denoted
by UK and VKðK ¼ 1; 2; 3Þ. Using relations (2.57), the following compact form of
the vector product in the same reference frame is found

WI ¼2IJK UjVK ¼2IJK QJjQKkujvk ð2:80Þ

By multiplication with QIi and summing, it is obtained

QIiWI ¼2IJK QIiQJjQKkujvk ¼2ijk ðdet QÞujvk ¼ ðdet QÞwi ð2:81Þ

In other words

wi ¼ ðdet QÞQIiWI ð2:82Þ

which shows that the result of the vector product is a pseudovector.
The vector product of the pseudovectors u and v is a pseudovector. The

demonstration starts by observing that

WI ¼2IJK UJVK ¼2IJK ðdetQÞ2QJjQKkujvk ¼2IJK QJjQKkujvk ð2:83Þ

The calculus continues in a way similar to the case previously presented.
If one of u and v is vector and the other one is pseudovector, then their vector

product is a vector. The demonstration starts by observing that

WI ¼2IJK UJVK ¼2IJK ðdetQÞQJjQKkujvk ð2:84Þ

By multiplication with QIi and summing, it is obtained

QIiWI ¼2IJK ðdetQÞQIiQJjQKkujvk ¼2ijk ðdetQÞ2ujvk ¼ wi ð2:85Þ

which shows that the result of the vector product acts as a vector.
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2.7.4.5 Composed Operations

External Product

Assume that S is the set of scalars and pseudoscalars, regardless of their physical
dimension. Assume an element k 2 S and an element u 2 V , having the compo-
nents uk ðk ¼ 1; 2; 3Þ in a given reference frame. The external product of u and k is
defined as a quantity having the components kuk ðk ¼ 1; 2; 3Þ in that reference
frame. The external product has the physical dimension given by the product of the
physical dimensions of u and k, and it is denoted as follows:

w ¼ ku ð2:86Þ

The following sentences can be easily verified. If u is vector and k is scalar, then
w is vector. If u is pseudovector and k is scalar, then w is pseudovector. If u is
vector and k is pseudoscalar, then w is pseudovector. If u is pseudovector and k is
pseudoscalar, then w is vector.

Now, it is assumed that k and l are scalars with the same physical dimension and
u and v are vectors with the same physical dimension. In this case, the quantity
ðk uþ k vÞ is a vector. Its physical dimension is different from that of u and
v. Therefore, the external product k u is not closed, i.e. if this operation is applied on a
vector u, the result is an element with different physical dimension than that of the
vector u. Hence the important conclusion is outlined that, in general, the set of vectors
with the same physical dimension, does not form a linear space. In case thatK is a field
of dimensionless scalars, then the set of vectors with the same physical dimension
forms a linear space over K, because the external product is closed.

Mixed Product

Consider three elements u; v;w of V. The mixed product (or scalar triple product,
or box product) of u; v;w is defined as being the quantity resulting from the
composite operation u 	 ðv� wÞ.

The following sentences be can demonstrated. If u; v and w are vectors, then the
mixed product is a pseudoscalar. It can be shown, indeed, that in fact the operation
is a scalar product between a vector (u) and a pseudovector (v� w). If one of the
elements u; v and w is pseudovector and the other two elements are vectors, their
mixed product is a scalar. If two elements of the mixed product are pseudovectors,
and the third element is a vector, then their mixed product is a pseudoscalar. If u; v
and w are pseudovectors, their mixed product is a scalar.
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Vector Triple Product

The vector triple product of three vectors, u; v and w, is defined as being given by
the composite operation u� ðv� wÞ.

The following properties can be easily demonstrated. If u; v and w are vectors,
then the vector triple product is a vector. If one of u; v and w is pseudovector and
the other two elements are vectors, then the vector triple product is pseudovector. If
two elements are pseudovectors and the third is a vector, then the vector triple
product is a vector. If u; v and w are pseudovectors, then the vector triple product is
a pseudovector.

References

Beju, I., Soos, E., Teodorescu, P.P.: Tehnici de calcul vectorial cu aplicatii, Editura Tehnica,
Bucuresti (1976)

Gellert, W., Kustner, H., Hellwich, M., Kastner, H. (eds): Mica Enciclopedie Matematica, Ed.
Tehnica, Bucuresti (1980)

Kaufmann, A., Precigout, M.: Elemente de teoria multimilor si algebra moderna, vol. 2, Ed.
Tehnica, Bucuresti (1973)

Mihaileanu, N.: Geometrie analitica, proiectiva si diferentiala, Ed. Didactica si Pedagogica,
Bucuresti (1971)

40 2 Algebraic Structures. Spaces. Reference Frames



Chapter 3
Vector Calculus and Differential Forms

3.1 Geometrization of Vectors

If the linear algebra is used in physics, the operations used to defining linear and
affine spaces must be completed with other types of operations, of less abstract
nature. One of these operations consists in the addition (or the composition, in a
broader sense) of elements of the same physical quantity, attached to certain points
in three-dimensional physical space, having as a result one element of the same
physical quantity. It has been already noticed that such a category of elements is
that of the physical vectors. In the following, the theory of the physical vectors will
be complemented with other aspects (Beju et al. 1976).

Physical vectors are usually represented in a space with three dimensions (in
classical physics) or in a four-dimensional space (in case of the theory of relativity).
There are, however, some categories of physical vectors that require representations
in n-dimensional spaces. In this chapter, the standard classification of the vectors
will be presented, with exemplification in the three-dimensional space. Choosing
the three-dimensional space has the advantage that it attaches to a vector the
intuitive geometric image of an oriented segment.

3.1.1 Types of Vectors

In classical physics there are three main types of vectors: bound vectors, sliding
vectors and free vectors. These types are defined below and their properties are
briefly presented.
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3.1.1.1 Three-Dimensional Reference Frames

Assume a three-dimensional Euclidean space, denoted E3. A reference frame in this
space consists of three orthogonal axes Oxiði ¼ 1; 2; 3Þ that intersect at a point
denoted O, called the origin of the reference frame. A reference frame is called
right-handed if, when looking in the positive direction of the axis Oxi, the overlap
of the axis Oxj on the axis Oxk can be achieved through a rotation angle p=2 in the
positive sense (from right to left). For a right-handed reference frame the following
convention is adopted:

ði; j; kÞ ¼ ð1; 2; 3Þ ð3:1Þ

that means that the indices i; j; k of the coordinate axes take the distinct values
1; 2; 3 (in that order), or after a cyclic permutation.

3.1.1.2 Oriented Segments (Bound Vectors)

Assume a reference frame in the space E3 and two points Aðx1; x2; x3Þ and
Bðy1; y2; y3Þ in the same space. The ordered pair of points ðA,BÞ is called oriented
segment (or bound vector). The point A is called the origin of the segment and the
point B is called the segment end or endpoint. The oriented segment will be denoted
AB. The numbers ui ¼ yi � xiði ¼ 1; 2; 3Þ are called the canonic coordinates of the
oriented segment. The set of oriented segments (bound vectors) will be denoted Vl.

3.1.1.3 Equipollent Oriented Segments (Bound Vectors)

It is said that the oriented segments are equipollent if they have the same canonical
coordinates. Assume two points, A0 x01; x

0
2; x

0
3

� �
and B0 y01; y

0
2; y

0
3

� �
. They are chosen

in such way that to lead to an oriented segment A0B0, equipollent with AB.
According to the definition of equipollence, the following relationships take place:
yi � xi ¼ y0i � x0iði ¼ 1; 2; 3Þ. These relationships are equivalent with
ðx0i þ yiÞ=2 ¼ ðxi þ y0Þ=2, which means that the quadrilateral ABB0A0 is a paral-
lelogram. The relation of equipollence is an equivalence relationship defined on the
set of bound vectors Vl. Denote with V the set of equivalence classes defined by this
equivalence relation. A certain element u 2 V is characterized only by its canonical
coordinates ðu1; u2; u3Þ associated with the equivalence class u. Obviously, all
oriented segments of the class u have the same canonical coordinates.

An operation of addition-like can be defined between two elements u; v 2 V , the
result of the operation being the class characterized by the sum of the canonical
coordinates of u and v. An operation of product-like can be also defined between a
class ðu1; u2; u3Þ and a scalar a, the result of the operation being the class char-
acterized by the canonical coordinates (au1; au2; au3). With these two operations, it
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becomes immediately apparent that V=R has the structure of a three-dimensional
real linear space.

The oriented segment AB, with canonical coordinates ðu1; u2; u3Þ, will be
assigned as a representative of the class u 2 V . Similarly, the oriented segment BC,
of canonical coordinates ðv1; v2; v3Þ, will be designated as a representative of the
class v 2 V . The following relationships take place between the canonical coor-
dinates of u and v and the coordinates of three points, Aðx1; x2; x3Þ, Bðy1; y2; y3Þ
and Cðz1; z2; z3Þ: yi � xi ¼ ui; zi � yi ¼ vi (i = l, 2, 3). By adding the two rela-
tionships one finds zi � xi ¼ ui þ vi. But the left member of this equality represents
the canonical coordinates of the oriented segment AC. Therefore, this segment will
be representative of the addition w ¼ uþ v, since the right member of equality
corresponds to this addition. The addition in V is carried out by means of the
representatives, using the so-called triangle rule (or parallelogram rule).

3.1.1.4 Characteristics of Bound Vectors

By definition, for full determination of an oriented segment (bound vector) should
be specified its origin A (also known as point of application) and its endpoint B.
Once these two points are specified, one can determine the size of the bound vector
(oriented segment) as the length of the segment AB, i.e. the distance between the
points A and B. Sometimes, instead of magnitude (or length) of a bound vector it is
used the denomination module of a bound vector. The support of the bound vector
is the straight line determined by the points A and B. Also, the direction of the
bound vector is the direction of its support. The order in which the two points
appear in the ordered pair ðA,BÞ specifies the sense of the bound vector AB.
Therefore, once the direction of a vector has been fixed (by choosing the sense of
the bound vector) the application point and the endpoint of the vector have been
also determined.

If a bound vector is assumed as being known, all its features are also assumed as
being known: the module, the support, the direction, the origin and the endpoint.
But these features are not independent each other. To determine a bound vector
starting from the knowledge of its characteristics it is sufficient to specify:

(a) the endpoint, the module, the direction and the sense or
(b) the application point and its endpoint; or
(c) the application point, the module, the direction and the sense.

3.1.1.5 Sliding Vectors

Assume two bound vectors AB and A0B0. They are called equivalent vectors if the
following two conditions are fulfilled:
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1. the points A,B,A0;B0 are collinear and
2. the bound vectors have the same length and the same sense.

Note that, in order for two bound vectors to be equivalent, it is not necessary for
them to have the same origin or endpoint. One cans easy show that the properties 1
and 2 induce an equivalence relation on the set Vl. Denote by Va the set of the
equivalence classes associated with this equivalence relation. In this case, an ele-
ment u 2 Va will be characterized only by its module, support and sense and will be
called sliding vector. Naturally, Va is called the set of sliding vectors.

3.1.1.6 Free Vectors

A free vector is a mathematical object characterized by direction, sense and module.
If the free vector is denoted by V, then its module is denoted jVj or simply V. The
following property is fulfilled: V� 0. The free vector is completely characterized
by its canonical coordinates Viði ¼ 1; 2; 3Þ, which constitute an ordered triplet of
numbers. The module of the vector can be calculated by using the canonical
coordinates as follows:

V ¼ ðViViÞ1=2 ¼ ðV2
1 þV2

2 þV2
3 Þ1=2 ð3:2Þ

The relation (3.2) has a simple geometric interpretation: it allows calculating the
length of the diagonal of a right parallelepiped as a function of the length of its sides.

Note that in the first equality in (3.2) the Einstein summation convention has
been used. That convention states that when an index variable appears twice in a
single term and is not otherwise defined (such an index is called dummy index), it
implies summation of that term over all the values of the index. The same con-
vention defines a free index as that index which appears only once in monomial and
states that an index cannot appear three times in a monomial.

3.1.1.7 Operations with Vectors

Defining the operations with vectors can be done in two ways. First, the features
introduced above can be used: module, direction, sense, support. This procedure is
often used in sciences, with the benefit of a precise physical significance. Defining
the vector operations can be also done in a more abstract way, purely algebraically,
by using the canonical coordinates.

3.1.1.8 Equality of Two Vectors

The relation of equality can be defined on the set of vectors of the same type (bound
vectors, sliding vectors, free vectors, respectively). It is said that two vectors V1 and
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V2 of the same type are equal if the elements that characterize them are equal each
other. First, assume the case of the free vectors V1ðV1iÞ and V2ðV2iÞ. The equality
of these vectors is denoted

V1 ¼ V2 ð3:3Þ

or, by using the components:

V1i ¼ V2i ði ¼ 1; 2; 3Þ ð3:4Þ

If the equality refers to bound vectors, in addition to the condition (3.3), the
vectors must also have the same application point. In the case of the equality of two
sliding vectors, the condition of having equal free vectors is supplemented by the
condition that the two vectors must have the same support.

Assume the vectors V1, V2 and V3. The relation of equality between these
vectors has the following properties:

(a) V1 ¼ V1 (the relation is reflexive)
(b) V1 ¼ V2 , V2 ¼ V1 (the relation is symmetric)
(c) V1 ¼ V2;V2 ¼ V3 , V1 ¼ V3 (the relation is transitive)

These properties are valid for any type of vectors.

3.1.1.9 Geometric Characterization of the Types of Vectors

The types of vectors defined above are characterized by a number of common geo-
metric properties, as well as by other geometrical properties specific for each type.

Bound Vectors

Remember that the bound vector is a mathematical object characterized by direc-
tion, sense, module and origin (point of application). Assume a coordinate system
Oxi. The position vector of an arbitrary point A, denoted rðx1; x2; x3Þ, has the
application point in the origin O of the coordinate system and the end point in the
point A. It is a bound vector. An arbitrary bound vector V has the origin in a certain
point (denoted, for example, by A) which is specified by the vector position r. The
terminal point of the vector V is found in a different point, denoted for example B.
Therefore, the bound vector V ¼ AB (where AB is an oriented segment) may be
characterized by the bound vector r and the free vector V (its representative in the
point A). In other words, the bound vector is characterized by two ordered triplets
of numbers (xi and Viði ¼ 1; 2; 3Þ, respectively).
Sliding Vectors

The sliding vector is a mathematical object that can be characterized by direction,
sense, module and support. The vector is placed on a specified straight line but its
application point is not specified. Hence the common assertion that such a vector
can slide on the support line.
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Similarly to a bound vector, the sliding vector can be specified by two triplets of
numbers (xi and Viði ¼ 1; 2; 3Þ, respectively). However, in case of a sliding vector a
certain relationship exists between these two triplets. Therefore, a sliding vector is
specified by five real numbers. To obtain a bound vector from a sliding vector,
knowledge of a real number is also needed; this allows the specification of the
application point of the bound vector on the support line, with reference to an origin
chosen on that line.

Operations with sliding vectors are performed by using representatives of these
vectors.

Free Vectors

In the case that two equal free vectors are bounded to two different application
points, two bound vectors are obtained, which are equipollent. Note that a bound
vector can be considered as an element of the set of equipollent vectors that have
the same direction, the same sense and the same module.

Operations with free vector are performed by using representatives of these
vectors.

3.1.1.10 Algebraic Structures on Sets of Vectors

Note that, in general, the set of bound vectors Vl and the set of sliding vectors Va do
not form a group. Therefore, for these sets one cannot speak of a linear space
structure. This distinguishes the two sets of vectors from the set V=R of equipollent
vectors, which has the structure of a linear space.

3.1.2 Geometrization of Physical Vectors

In order to represent a vector as an oriented segment, a reference frame ox1x2x3 will
be considered. Also, consider the vector (or pseudovector) w, which has compo-
nents ðw1;w2;w3Þ in that reference frame. Two points must be identified,
P0ðx01; x02; x03Þ and Pðx1; x2; x3Þ, respectively, in such a way that

xk � x0k ¼ wk ðk ¼ 1; 2; 3Þ ð3:5Þ

Relations (3.5) can be seen as a system of equations in the unknowns
xk; x0kðk ¼ 1; 2; 3Þ. The matrix of the coefficients of this system has the form:

1 0 0 �1 0 0
0 1 0 0 �1 0
0 0 1 0 0 �1

8<
:

9=
; ð3:6Þ
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This is a matrix of rank three. The system of equations is compatible and indeter-
minate. Consider xkðk ¼ 1; 2; 3Þ as the main unknowns, the other unknowns being
chosen as independent parameters. This is equivalent to choose an arbitrary point P0.
In this case, the point P is uniquely determined by solving the system (3.5).

What is essential in this procedure is that a vector (or pseudovector) was
associated with a set of segments P0P, which is obtained by solving the Eq. (3.5). It
can be said that these segments are oriented, because the meaning of the point P0 is
different from the meaning of the point P (the first point is the origin and the second
is the end of the segment, respectively).

Note that the vectors which are associated with oriented segments lose their own
physical dimension, by obtaining the dimension of length.

3.1.2.1 Geometrization of Free Physical Vectors

Assume that the vector (or pseudovector) w is not associated with a certain point,
being a free vector (pseudovector). In this case, the vector can be associated with all
the set of oriented segments. Consider two oriented segments, labeled P0P and
P00P0. The coordinates of the four points that define the segments fulfill the
Eq. (3.5), i.e.

x0k � x00k ¼ xk � x0k ðk ¼ 1; 2; 3Þ ð3:7Þ

This is equivalent to saying that the segments P0P and P00P0 are parallel and equal,
or to stating that the quadrilateral P0PP0P00 is a parallelogram.

3.1.2.2 Geometrization of Bound Physical Vectors

In physics there are numerous examples in which the vector (or pseudovector) w is
bound, being attached to a specific point in space (e.g. the velocity vector or the
acceleration vector). In this case, that point will be chose the origin P0 of the vector.
By solving the system (3.5), the point P is obtained in a unique way.

3.1.2.3 Geometrization of Sliding Physical Vectors

In some branches of physics (e.g. the solid mechanics) the vector (or pseudovector)
w is sliding, i.e. it is associated with a straight line whose vector parameters are
precisely the components of that vector. In this situation, it is said that the point P0

can “slide” on the line determined by P and P0. The components of the vectors
(pseudovectors) get a clear geometric meaning through this procedure; they rep-
resent the projections on the coordinate axes of the oriented segment P0P.
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3.1.3 Representations of Vectors in Given Bases

The elementary results presented below refer to the specific case of the real space
R3. They can however be easily generalized to the case of n-dimensional spaces.

3.1.3.1 The Contravariant Components of a Vector

A positive basis is considered, consisting of the vectors eiði ¼ 1; 2; 3Þ. By defini-
tion, such a basis fulfills the condition that the mixed product of the base vectors is
a positive number:

ðe1; e2; e3Þ[ 0 ð3:8Þ

Consider a certain vector V. Regardless of its type (free vector, bound vector or
sliding vector) this vector can be represented as

V ¼ V1e1 þV2e2 þV3e3 � Viei ð3:9Þ

Here Viði ¼ 1; 2; 3Þ are the components of the vector V in the basis eif g and in the
last equality of (3.9) the Einstein summation convention has been used (which will
also be used further). The components Vi are called contravariant. They can be
expressed as (Beju et al. 1976, p. 41):

Vi ¼ 2ijk ðV; ej; ekÞ
2ðe1; e2; e3Þ ði ¼ 1; 2; 3Þ ð3:10Þ

where the Levi-Civita permutation symbol has been used. Note that relations (3.10)
are similar with the Cramer rule in the theory of linear algebraic equations. This
observation allows the introduction of a reciprocal basis (or dual basis), defined by
using the vectors

ei ¼ 2ijk ej � ek
2ðe1; e2; e3Þ ði ¼ 1; 2; 3Þ ð3:11Þ

These vectors are normal on the planes formed with the vectors of the initial basis,
taken in pairs. It is noted that if the basis vectors are polar vectors (or, in other
words, free vectors, bound vectors or sliding vectors) then the vectors of the
reciprocal basis are axial vectors (or, in other words, pseudovectors).

Another relationship that occurs is:

ei ¼ 2ijk e j � ek

2ðe1; e2; e3Þ ði ¼ 1; 2; 3Þ ð3:12Þ
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which means that the reciprocal of the reciprocal basis is the initial basis. One can
notice that:

ðe1; e2; e3Þ ¼ 1
ðe1; e2; e3Þ [ 0 ð3:13Þ

Another way to write relations (3.10) is based on using the scalar product, as
follows:

Vi ¼ V � ei ði ¼ 1; 2; 3Þ ð3:14Þ

3.1.3.2 The Covariant Components of a Vector

Regardless of its type (bound vector, sliding vector or free vector), the vector V can
be represented in the reciprocal basis feig by using the relationship

V ¼ Viei ð3:15Þ

Here Viði ¼ 1; 2; 3Þ are the covariant components of the vector. The covariant
components allow to writing relations which are similar to those written above by
using the contravariant components. Thus, these components may be obtained from
the formulas

Vi ¼ 2ijk ðV; e j; ekÞ
2ðe1; e2; e3Þ ði ¼ 1; 2; 3Þ ð3:16Þ

or may be written by using the scalar product, as

Vi ¼ V � ei ði ¼ 1; 2; 3Þ ð3:17Þ

3.1.3.3 Transition from One Type of Component to Another

The following relationship, involving both the vectors of the base and the vectors of
the reciprocal base, takes place:

ei � ej ¼ dij ði; j ¼ 1; 2; 3Þ ð3:18Þ

In the relation (3.18) the Kronecker’s symbol d j
i has been used, defined in a way

similar to the definition of dij given in Eq. (2.46), i.e.:
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d j
i �

1 if i ¼ j
0 if i 6¼ j

�
ð3:19Þ

Relations presented in previous subsections allow to writing the vector V under one
of the following forms

V ¼ ðV � ejÞe j ¼ ðV � e jÞej ð3:20Þ

Next, the so-called coefficients of the fundamental form, denoted gij and gij,
respectively, are defined. The definitions are:

gij � ei � ej
gij � ei � e j ði; j ¼ 1; 2; 3Þ ð3:21; 22Þ

Relationships (3.20) and the definitions (3.21) and (3.22) are now used for two
specific cases, namely if V ¼ ei and V ¼ ei, respectively, yielding the relationships:

ei ¼ gije j; ei ¼ gijej ði ¼ 1; 2; 3Þ ð3:23Þ

allowing the calculation of the vectors of the initial base eif g as a function of the
vectors of the reciprocal basis fe jg, and vice versa. The system consisting of the
first linear Eq. (3.23) can be solved for finding the unknown feig as function of the
vectors fe jg, only if this system is nonsingular. This implies that the determinant g
of the system, which is given by

g � det jgijj ¼
g11 g12 g13
g21 g22 g23
g31 g32 g33

������
������ ð3:24Þ

must be different from zero. It can be shown that (Beju et al. 1976, p. 43)

g ¼ ðe1; e2; e3Þ2 [ 0 ð3:25Þ

The normalized minor of the element gij of the determinant of (3.24) is denoted
by gji. Because of the relation of symmetry gij ¼ gji, which is obvious considering
the definition (3.21), the following result is obtained: gji ¼ gij. It is noted that the
normalized minor corresponds to the relations (3.22) and the following relation-
ships take place:

gikg
kj ¼ d j

i ; gikgkj ¼ dij ði; j ¼ 1; 2; 3Þ ð3:26Þ
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Taking into account the relationship (3.13), the following result is obtained:

det jgijj ¼ 1
g

ð3:27Þ

The scalar multiplication of the relations (3.23) by V leads to the following
formulas

Vi ¼ gijV
j Vi ¼ gijVj ði ¼ 1; 2; 3Þ ð3:28Þ

These formulas allow the calculation of the contravariant components of a vector
in function of the covariates components, and vice versa.

3.1.3.4 Vectors as Dual Quantities

Relationships (3.28) allow the observation that a vector can be represented in two
forms, characterized by contravariant components and by covariant components,
respectively. It is said that the vector is a dual quantity. An important consequence
is that the module of a vector can be expressed by any of the relationships

V2 ¼ gijV
iV j ¼ gijViVj ¼ ViV

i ð3:29Þ

3.1.3.5 Comments on Bases

Orthonormal Basis

In the particular case of an orthonormal basis, the following relationships take
place:

ðe1; e2; e3Þ ¼ ðe1; e2; e3Þ ¼ 1 ð3:30Þ

Also, the reciprocal basis coincides with the given basis and the coefficients of the
fundamental form gij, as well as the coefficients gij, become Kronecker symbols.
Consequently, the covariant components coincide with the contravariant compo-
nents. In this case it is customary to use only subscripts. Also, one uses a single set
of unit vectors (sometimes denoted by ijðj ¼ 1; 2; 3Þ� �

), which specify the given
orthonormal basis.

Orthogonal Basis

If the basis is orthogonal, the coefficients gij and gij are zero for i 6¼ j, but they are
not Kronecker symbols, because g11; g22; g33; g11; g22; g33 are generally not equal to
unity.
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Negative Basis

Instead of a positive base one can also use a negative base. In this situation the
reciprocal basis is also negative.

3.2 Elements of Vector Calculus

3.2.1 Scalar and Vector Fields

An excellent guide to vector calculus is the work by Beju et al. (1976), which will
be followed closely. A scalar field is defined by using a map that transforms every
point P of the physical space, characterized by the position vector rðx1; x2; x3Þ, into
a real number. The map is denoted ðx1; x2; x3Þ ! Uðx1; x2; x3Þ. Assume that the
function U ¼ UðPÞ has continuous derivatives of the first order. In the next sections
the need for higher order derivatives will be mentioned explicitly.

A vector field is defined by using a map that transforms every point P of the
physical space into a vector. The map is denoted ðx1; x2; x3Þ ! Vðx1; x2; x3Þ. The
vector which is involved in this definition is a bound vector, having the point P as
the application point. The function V ¼ VðPÞ has continuous first order derivatives.

After choosing the basis ijðj ¼ 1; 2; 3Þ� �
, the vector V ¼ Vðx1; x2; x3Þ ¼ VðrÞ

can be written as:

Vðx1; x2; x3Þ ¼ Vjðx1; x2; x3Þij ð3:31Þ

where Vjðj ¼ 1; 2; 3Þ are the components of the vector. For further developments, it
is useful to introduce some vector fields, which involve spatial derivatives of the
components of the vector:

@V
@xi

¼ V;i ¼ @Vj

@xi
ij ¼ Vj;iij ð3:32Þ

and to introduce the differential of the vector, defined as follows:

dV ¼ V;idxi ð3:33Þ

In previous relationships, the subscript which appears to the right of the comma
shows the variable for which the differentiation is performed.

3.2.1.1 Lines of Vectors

The lines of vectors are curves with the property that the tangents at any point P
have the direction VðrÞ. Lines of vectors form a congruency (or, in other words, a
family) of curves. One can show that the differential dr of the position vector is
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tangent to the lines of vectors. As a result, the vector equation of the lines of vectors
has the form

VðrÞ � dr ¼ 0 ð3:34Þ

Lines of vectors can be determined by solving the following system of first order
differential equations:

dx1
V1

¼ dx2
V2

¼ dx3
V3

ð3:35Þ

3.2.1.2 Potential

It is considered a scalar field U and a field vector V, defined by relations

Vi ¼ U;i ði ¼ 1; 2; 3Þ ð3:36Þ

It is also considered a certain unit vector n n1; n2; n3ð Þ. Notice the following
relationship:

V � n ¼ U;ini ¼ @U
@n

ð3:37Þ

On a new three-orthogonal reference frame, Ox01 x
0
2 x

0
3, the components of the

vector V defined by (3.36) are @U=@x0iði ¼ 1; 2; 3Þ. This shows that the definition of
the vector field V does not depend on the chosen reference frame. The vector field
defined by (3.36) is called conservative field and the appropriate vectors are called
conservative vectors. Also, it is said that a conservative field derives from the
potential field (or, in short, from the potential) U.

To obtain the necessary and sufficient conditions for the scalar functions

Vi ¼ Viðx1; x2; x3; tÞ ði ¼ 1; 2; 3Þ ð3:38Þ

to be components of a quasi-conservative vector, the relationships (3.36) are used.
Also, it is required that the mixed second order derivatives of the quasi-potential
U ¼ Uðx1; x2; x3; tÞ (for which it is presumed that it has second order derivatives
with respect to spatial variables) be independent of the differentiation order. The
following conditions are obtained:

2ijk @jVk ¼2ijk Vk;j ¼ 0 ði ¼ 1; 2; 3Þ ð3:39Þ

Equipotential Surfaces

Assume a surface with the property that in any point the scalar potential has a
constant value. The equation of this surface has the form:
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Uðx1; x2; x3; tÞ ¼ Cð¼ constÞ ð3:40Þ

Assume that U is a differentiable function. The surface defined by the Eq. (3.40)
is called equipotential surface. If the potential depends on the spatial coordinates
and a parameter t, i.e. U ¼ Uðx1; x2; x3; tÞ, it is said that it is an equi-quasi-potential
surface. It is written:

Uðx1; x2; x3; tÞ ¼ Cð¼ constÞ ð3:41Þ

In case that the point ðx01; x02; x03Þ belongs to two equipotential surfaces, the
following relations can be written:

Uðx01; x02; x03Þ ¼ C1; Uðx01; x02; x03Þ ¼ C2 ð3:42Þ

where C1 and C2 are constants. By subtraction of the above relationships it is found
that C1 ¼ C2. Since the scalar function is assumed to be uniform, it is deduced that
these two equipotential surfaces coincide. Another consequence is that if two
equipotential surfaces do not coincide, they have no common point.

Gradient

The following vector differential operator is due to Hamilton:

r � ij
@

@xj
¼ ij@j ð3:43Þ

It is called gradient, or Hamilton operator, or “nabla” operator.With this operator,
the vector field V can be expressed as a function of the potential U, under the form:

V ¼ U;jij ¼ ij
@

@xi

� 	
U ¼ rU ð3:44Þ

If the operator r is applied on the scalar function U, a vector function called the
gradient of U is obtained, which is denoted as follows:

gradU ¼ rU ð3:45Þ

Therefore, the operator r transforms a scalar field into a vector field. The
gradient provides information about the variation of a scalar function. Knowing the
gradient is equivalent to the knowledge of the first order derivatives of the scalar
function. Using the gradient definition, the Eq. (3.37) can be rewritten as

n � gradU ¼ @U
@n

ð3:46Þ
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where @U=@n is the derivative of the scalar field U on the direction of the unit
vector n. Therefore, the gradient forms a vector field, regardless of the chosen
reference frame.

Gradient Properties

The gradient has a number of properties, whose knowledge often simplify the
calculation. Consider two scalar functions U1 and U2 and a differentiable and
integrable function f . A list of gradient properties follows. They can be used for
potential fields as well as for quasi-potential fields:

gradðU1 þU2Þ ¼ gradU1 þ gradU2

gradðU1U2Þ ¼ U1gradU2 þU2gradU1

gradðCUÞ ¼ CgradU; ðC ¼ constÞ
gradC ¼ 0; ðC ¼ constÞ
grad f ðUÞ ¼ f 0ðUÞgradU
grad f ðU1;U2Þ ¼ f 0U1

gradU1 þ f 0U2
gradU2

f ðUÞgradU ¼ grad
Z

f ðUÞdU

ð3:47a–gÞ

For the particular case of the position vector r, the following properties apply:

grad r ¼ 1
r
r;

grad f ðrÞ ¼ f 0ðrÞ
r

r;

gradðC � rÞ ¼ C; C ¼ const:

ð3:48a–cÞ

Differential and Derivative of a Scalar Potential

If the field potential depends on a parameter, i.e. U ¼ Uðr; tÞ, a vector field can be
defined by using relations (3.36). It is a quasi-conservative field, its vectors being
quasi-conservative vectors. Similarly, the scalar function U is called quasipotential.
One finds that a conservative vector field is a gradient field.

The differential of a quasipotential can be expressed as follows

dU ¼ U;jdxj þ _Udt ¼ rU � drþ _Udt ð3:49Þ

where _U � @U=@t. Consider the case when the position vector depends on the
parameter t, i.e. r ¼ rðtÞ. The total derivative (also called the substantial derivative)
of the quasipotential is given by the sum of the spatial derivative and temporal
derivative, i.e.:

dU
dt

¼ U;j _xj þ _U ¼ rU � _rþ _U ð3:50Þ
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In case of a potential, the relation (3.50) is reduced only to the spatial derivative.
Consider the potential U ¼ Uðx1; x2; x3Þ ¼ UðrÞ. The relationships (3.49) and

(3.50) leads to the following form of its differential dU:

dU ¼ gradU � dr ð3:51Þ

Relation (3.51) proves that the symbol d of the total differential can be conceived as
an operator, expressed by the following scalar product

d ¼ dr � r ¼ dr � grad ð3:52Þ

Knowledge of a quasi-conservative field, allows obtaining the scalar quasipo-
tential from which it is derived, by using a curvilinear integral on an arbitrary curve:

Z
P0P

Vjdxj ð3:53Þ

Here, the point P0 is considered fixed and the point P is considered variable. First,
the variable t is assumed as a parameter. In this case, the scalar quasipotential is
reduced to the form U ¼ Uðx1; x2; x3Þ. The integrand in (3.53) becomes an exact
total differential, since the curvilinear integral (3.53) does not depend on the path.
The properties of the quasipotential do not change by adding an arbitrary function
of variable t. Similarly, the properties of a potential U ¼ Uðx1; x2; x3Þ do not
change by adding an arbitrary constant.

Gradient and Equipotential Surfaces

Consider a curve C, on which a point Pðx1; x2; x3Þ is moving. Assume that the
differential dr of the position vector r has the direction of the tangent to the curve C.
By canceling the expression (3.49) it follows that, in case of a scalar quasipotential
field, the C curve cannot be found on a corresponding equi-quasipotential surface.
In case of a potential field, the curve C can be found on a corresponding equipo-
tential surface.

The gradient can be written as a function of the unit vectors of the coordinate
system, as follows:

gradU ¼ U;jij ð3:54Þ

Therefore, the gradient of the scalar function U is normal to the equipotential
surface Uðx1; x2; x3Þ � C ¼ 0. Next, define n as the unit vector of gradU. Using
Eq. (3.54), it follows that the sense of the gradient of U is in such a way that the
value of U increases. Therefore, the congruence of the gradient lines is normal to
the family of the corresponding equipotential surfaces, their sense being that in
which the value of U increases. One may check that these properties remain valid
for the particular case of quasi-conservative scalar fields.
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Work of a Conservative Vector

A quantity often encountered in mechanics and thermodynamics is work. For the
particular case of afield of conservative vectors, the elementarywork has the expression

dL ¼ rU � dr ¼ dU ð3:55Þ

Note that the above expression is an exact total differential. Therefore, by inte-
grating on a finite distance between the points P0 and P1 one finds:

LP0P1ðVÞ ¼ UðP1Þ � UðP0Þ ð3:56Þ
It is found that, in the case of a conservative vector, the work does not depend on

the path between two points but only on the potential values in those points.
The circulation of a vector on a closed curve is defined as the work of the vector

on that closed curve. One may prove that the circulation of a conservative vector on
a closed curve is zero.

Directional Derivative

A curve C can be defined by a function s ! rðsÞ that applies the set of real numbers
into the set of position vectors. The parameter s may optionally be identified with
the time. A scalar potential UðrÞ associated with the respective curve becomes
U ¼ UðsÞ. This leads to:

@U
@s

¼ dU
ds

¼ gradU � dr
ds

¼ gradU � s ð3:57Þ

This is the derivative on the direction of unit vector s of the tangent to the curve C.
Note that in this case the partial derivative is equal to the total derivative.

Similarly, one can introduce the operator directional derivative on the direction
of the unit vector n. For this, use relation (3.46) and obtain:

@

@n
� n � r ¼ n � grad ð3:58Þ

For the particular situation in which r = r(s) and n ¼ s, one obtains the operator

@

@s
¼ d

ds
¼ r0ðsÞ � r ¼ s � grad ð3:59Þ

Differential and Derivative of a Vector Field

Assume a vector A, constant or variable. Using this vector, the following linear
scalar differential operator A � r can be defined:

A � r ¼ A � grad ¼ Ai
@

@xi
¼ Ai@i ð3:60Þ
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This operator can be applied to the scalar field U. The result is the scalar

ðA � gradÞU ¼ ðAi@iÞU ¼ AiU;i ð3:61Þ

The same operator can be applied to the vector field V. The following vector is
obtained

ðA � gradÞV ¼ ðAj@jÞðVkikÞ ¼ AjVk;jik ð3:62Þ

As a particular case, the total differential of a vector field V ¼ Vðx1; x2; x3Þ is
obtained, under the form

dV ¼ ðdr � gradÞV ð3:63Þ

Another special case is the directional derivative on the direction of unit vector
n, which has the form

@V
@n

¼ ðn � gradÞV ð3:64Þ

In the case of a curve parameterized by the relationship r ¼ rðsÞ, one uses n ¼ s
and the result is

@V
@s

¼ dV
ds

¼ ðs � gradÞV ð3:65Þ

3.2.1.3 First Order Differential Operators

Consider again the vector A, constant or variable. It may be used to define the
vector differential operator A�r:

A�r �2jkl Aj@kil ð3:66Þ

Applying this operator on a scalar field U, the result is

ðA�rÞU ¼2jkl AjU;kil ð3:67Þ

The divergence of a vector V is defined by using the differential operator r�,
applied to the vector V. The following equivalent notations are often used:

divV � r � V ¼ @iVi ¼ Vi;i ð3:68Þ

The divergence is a scalar quantity and is therefore invariable for a change in the
system of coordinates.
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The curl of a vector V is defined by using the differential operator r�, applied
to the vector V:

curlV � r� V ¼2jkl @jVkil ¼2jkl Vk;jil ð3:69Þ

A vector field is called irrotational if

curlV ¼ r� V ¼ 0 ð3:70Þ

It is noted that the gradient field:

V ¼ gradU ¼ rU ð3:71Þ

is irrotational because curl gradU ¼ 0. It follows that all fields of conservative
vectors are at the same time irrotational. Moreover, these fields are the only ones
that have this property. The property is valid for quasi-conservative fields because
the condition (3.70) is equivalent to conditions (3.39). This is the condition that the
integrand in the integral (3.53) represents an exact total differential.

A vector field is called solenoidal if

divV ¼ r � V ¼ 0 ð3:72Þ

It is noted that a field of curls V, defined as:

V ¼ curlW ¼ r�W ð3:73Þ

is always solenoidal, because div curlW ¼ 0. It can be shown that this is the only
vector field which is solenoidal.

3.3 Elements of Exterior Differential Calculus

The main source further used for the exterior differential calculus is Mihaileanu
(1972, p. 130). Consider the following linear differential form:

x ¼ kdxþ ldyþ mdz ð3:74Þ

where k; l; m are functions of x; y; z. An expression x of the type (3.74) is called
Pfaff form (or one-form). Consider two differentiation directions, specified by the
letters d and d, respectively:

xðdÞ ¼
X
i

kidx
i; xðdÞ ¼

X
i

kidx
i

ðki ¼ k; l; mÞ; ðxi ¼ x; y; zÞ
ð3:75Þ
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The alternative differentials are:

dxðdÞ ¼
X
i

@ki
@x

dxþ @ki
@y

dyþ @ki
@z

dz

� 	
dxi þ

X
i

kiddx
i

dxðdÞ ¼
X
i

@ki
@x

dxþ @ki
@y

dyþ @ki
@z

dz

� 	
dxi þ

X
i

kiddx
i

ð3:76a; bÞ

If the operators d; d are permutable, by applying them to the independent
variables one finds:

ddx ¼ ddx; ddy ¼ ddy; ddz ¼ ddz ð3:77Þ

By subtracting relations (3.76), it is obtained:

dxðdÞ � dxðdÞ ¼
X
i;j

@ki
@y j

dxidy j � dy jdxi
� �

¼ 1
2

X
i;j

@ki
@y j

� @lj
@xi

� 	
dxidy j � dy jdxi
� � ð3:78Þ

Denote:

½x1;x2� ¼

P
i
k1idxi

P
i
k2idxiP

i
k1idxi

P
i
k2idxi

�������
�������

dx ¼ dxðdÞ � dxðdÞ

ð3:79; 80Þ

From (3.78) and (3.80) it is obtained:

dx ¼ 1
2

X
i;j

@ki
@y j

� @lj
@xi

� 	
dxi; dyi

 � ð3:81Þ

Relation (3.81) allows the introduction of two important notions. First, x1;x2½ � is
called the exterior product of the forms xk ¼

P
i
kkidxi. Secondly, dx is the exterior

differential of the form x. From (3.81) it is obvious that if x is an exact differential,
then dx ¼ 0. The following relationship is true:

½x1;x2� ¼ �½x2;x1� ð3:82Þ
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The exterior differential and the exterior product have the following properties:

½kx1;x2� ¼ k½x1;x2�
x1; ðx2 þx3Þ½ � ¼ ½x1;x2� þ ½x1;x3�
dðkxÞ ¼ kdxþ ½dk;x�
dðx1 þx2Þ ¼ dx1 þ dx2

dðdxÞ ¼ 0

ð3:83a–eÞ

The exterior differential calculus was introduced by Cartan in 1926. The
important theorem (3.83e) has been demonstrated by Henry Poincaré.

3.3.1 Equations of Space Structure

Assume that I1; I2; I3 is a three-orthogonal reference frame. By definition, for this
reference frame the following relations apply:

I21 ¼ I22 ¼ I23 ¼ 1 I1 � I2 ¼ I2 � I3 ¼ I3 � I1 ¼ 0 ð3:84Þ

Consider an arbitrary point Mðx; y; zÞ. Consider an infinitesimal movement of the
reference frame. The movement dI is accompanied by a variation dM of the
position vector of the point M. The following relationships are true:

dM ¼ x1I1 þx2I2 þx3I3

dI ¼ x1
i I1 þx2

i I2 þx3
i I3

ð3:85; 86Þ

The following relationship is obtained by differentiation of (3.84):

I1dI2 þ I2dI1 ¼ 0 ð3:87Þ

Taking into account (3.86) all terms will become equal to zero, except I21 and I22,
which involve the coefficients x1

2 and x2
1. The same occurs for the homologous

products. Therefore

xi
j þx j

i ¼ 0 ð3:88Þ

In particular, xi
i ¼ 0. Of the nine coefficients x j

i ði; j ¼ 1; 2; 3Þ, only three
independent coefficients remain, for example

x1
2 ¼ u3; x2

3 ¼ u1; x3
1 ¼ u2 ð3:89Þ
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which cause the rotation of the reference frame. To these one can add the three
parameters x1;x2;x3 that determine the translation of the reference frame.

The exterior differential is applied to the relationship (3.85). By using the
foregoing properties, it is obtained:

0 ¼ dðdMÞ ¼ d
X
k

xkIk

 !
¼
X
k

dðxkIkÞ ¼
X
k

Ikdx
k þ dIk;x

k

 �� �

¼
X
k

Ikdx
k þ

X
h

xh
kIh;x

k

 �( )

¼
X
k

Ikdx
k þ

X
h

½xh
k ;x

k�Ih
( )

¼
X
k

Ik dxk þ
X
h

xk
h;x

h

 �( )

ð3:90Þ

Since the vectors Ik are independent, one obtains:

dxk ¼
X
h

xh;xk
h


 � ðk ¼ 1; 2; 3Þ ð3:91Þ

By differentiation of formula (3.86), it follows:

0 ¼ dðdIiÞ ¼ d
X
k

xk
i Ik

 !
¼
X
k

d xk
i Ik

� �

¼
X
k

Ikdx
k
i þ dIk;x

k
i


 �� � ¼
X
k

Ikdx
k
i þ

X
h

xh
kIh;x

k
i


 �( )

¼
X
k

Ikdx
k
i þ

X
h

xh
k ;x

k
i


 �
Ih

( )
¼
X
k

Ik dxk
i þ

X
h

xk
h;x

h
i


 �( )

ð3:92Þ

Therefore

dxk
i ¼

X
h

xh
i ;x

k
h


 � ði; h ¼ 1; 2; 3:Þ ð3:93Þ

Equations (3.91) and (3.93) are the so-called Cartan equations of the space
structure.
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3.3.2 Applications to the Theory of Surfaces

The relations (3.86) become:

dI1 ¼ �u3I2 þ u2I3 dI2 ¼ u3I1 � u1I3 dI3 ¼ �u2I1 þ u1I2 ð3:94Þ

Use the Cartan equations of the space structure. Thus, relations (3.91) become

dx1 ¼ x2; u3

 �� x3; u2


 �
; dx2 ¼ x3; u1


 �� x1; u3

 �

;

dx3 ¼ x1; u2

 �� x3; u1


 � ð3:95Þ

and from the relationships (3.93) one finds:

du1 ¼ � u2; u3

 �

; du2 ¼ � u3; u1

 �

; du3 ¼ � u1; u2

 � ð3:96Þ

The notion of exterior product will be used in subsequent chapters and it will
obtain a richer physical meaning.
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Chapter 4
Elements of Riemann Geometry

There are many bibliographic sources that can be used for a good introduction to
the Riemann spaces and Riemann geometry. Here the guide is the work of Beju
et al. (Tehnici de calcul vectorial cu aplicatii, Ed. Tehnica, Bucharest, 1976), which
has the advantage of a more pronounced intuitive character. Some notions will be
treated again on a more abstract basis in the second section of this chapter, and in
subsequent chapters.

4.1 Standard Notions of Non-Euclidean Geometry

4.1.1 Riemann Spaces

Consider a coordinate system fxig in a n-dimensional space. Define the funda-
mental form, which is a positive definite quadratic form, whose coefficients are
differentiable functions of the coordinates fxig. It is said that the n-dimensional
space is a metric space. This is justified by the fact that introducing the fundamental
form is equivalent to defining the element of arc length:

ds2 ¼ gijdx
idx j ð4:1Þ

Such a metric space is called n-dimensional Riemann space (denoted Vn).
Considered another coordinate system, fx0ig. Assume that there is a non-singular
coordinate transformation fxig ! fx0ig:

x0j ¼ x0jðx1; x2; . . .; xnÞ ðj ¼ 1; . . .; nÞ ð4:2Þ

© Springer International Publishing Switzerland 2016
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which yields to the next form of the arc length element, as function of the new
coordinates:

ds2 ¼ ðdx01Þ2 þðdx02Þ2 þ � � � þ ðdx0nÞ2 ð4:3Þ

Then, it is said that the Riemann space Vn is an Euclidean space En. Euclidean
spaces are frequently used in applications.

4.1.2 Curvilinear Coordinates with Arbitrary Bases

Assume an arbitrary point P, which will be specified by its vector of position r. In
general, the position vector is a function of coordinates, which are denoted
q1; q2; q3ð Þ in the three-dimensional case. Depending on the coordinates, the
position vector is written as follows:

rðq1; q2; q3Þ ¼ xjðq1; q2; q3Þij ð4:4Þ

In the case that the moving point ðq1; q2; q3Þ generates a domain D of R3, the
point P generates a domain denoted V. In every point of the domain V one can build
three coordinate curves: the first curve is given by q2 ¼ const and q3 ¼ const, the
second curve is given by q3 ¼ const and q1 ¼ const and the third curve is given by
q1 ¼ const and q2 ¼ const. The coordinates on these curves are called curvilinear
coordinates. Between the orthogonal Cartesian coordinates x1; x2; x3ð Þ and the
curvilinear coordinates, there is the following relation

xj ¼ xjðq1; q2; q3Þ ðj ¼ 1; 2; 3Þ ð4:5Þ

In the following it will be assumed that the functions occurring in (4.5) are
differentiable. In the case that

det
@ðx1; x2; x3Þ
@ðq1; q2; q3Þ
����

���� 6¼ 0 ð4:6Þ

the transformation (4.5) from the curvilinear coordinates to the orthogonal Cartesian
coordinates is invertible. In ordinary cases it is assumed that this transformation is
biunivocal. This is equivalent to saying that to a point P x1; x2; x3ð Þ corresponds a
single system of curvilinear coordinates ðq1; q2; q3Þ, and vice versa.

The differential of the position vector is given by:

dr ¼ @r
@qi

dqi ð4:7Þ
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Note that the vectors eiði ¼ 1; 2; 3Þ, defined as follows:

ei � @r
@qi

ði ¼ 1; 2; 3Þ ð4:8Þ

are tangent to the coordinate curves. These vectors constitute a local basis because

ðe1; e2; e3Þ ¼ det
@ðx1; x2; x3Þ
@ðq1; q2; q3Þ
����

���� 6¼ 0 ð4:9Þ

The traditional notation, already used in the previous chapter, is used in the
following to define the scalar product between pairs of vectors of the local basis:

gij ¼ gji ¼ @r
@qi

� @r
@q j

¼ ei � ej ði; j ¼ 1; 2; 3Þ ð4:10Þ

4.1.3 Curvilinear Coordinates with Orthogonal Bases

The maximum number of different quantities gij i; j ¼ 1; 2; 3ð Þ is nine. An impor-
tant particular case is that of a curvilinear orthogonal coordinate system, for which:

gij ¼ 0; i 6¼ j

g11 ¼ @r
@q1

� �2

; g22 ¼ @r
@q2

� �2

; g33 ¼ @r
@q3

� �2 ð4:11Þ

Two cases of curvilinear orthogonal coordinates are often encountered in
practice, i.e. the cylindrical coordinates and the spherical coordinates, which are
briefly defined below.

A cylindrical coordinate system ðr; h; zÞ, with r� 0; 0� h� 2p, is linked to the
orthogonal Cartesian coordinates of the point P through the relationships

x1 ¼ r cos h; x2 ¼ r sin h; x3 ¼ z ð4:12Þ

A spherical coordinate system (R;u; h), with R� 0; 0�u� p; 0� h� 2p, is
linked to the orthogonal Cartesian coordinates through the relations

x1 ¼ R sinu cos h; x2 ¼ R sinu sin h; x3 ¼ R cosu ð4:13Þ
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4.1.4 Element of Volume

By using the vectors e1dq1; e2dq2; e3dq3 one can build a curvilinear parallelepiped.
The element of volume of this parallelepiped is given by

ds ¼ ðe1; e2; e3Þdq1dq2; dq3 ð4:14Þ

If the vectors eiði ¼ 1; 2; 3Þ constitute a positive basis, one may show that the
volume element is given by

ds ¼ g1=2dq1dq2dq3 ð4:15Þ

In the particular case of orthogonal curvilinear coordinates, there are major
simplifications of calculation. One of these simplifications is:

g ¼ g11g22g33 ð4:16Þ

Also, it is easily seen that the expression of the volume element in cylindrical
coordinates is

ds ¼ rdrdhdz ð4:17Þ

and in spherical coordinates it is

ds ¼ R2 sinudRdudh ð4:18Þ

4.1.5 Element of Arc Length

Consider the case of a point P moving on a curve C, that will be parameterized
using a parameter t 2 ½t0; t1� and three mappings t ! qiðtÞði ¼ 1; 2; 3Þ. The element
of arc length on the curve C, ds � jdrj, is defined as follows

ds2 ¼ dr2 ¼ @r
@qi

dqi � @r
@qi

dqi ð4:19Þ

By using the notation (4.10), another very useful way to writing the square of the
arc element is obtained:

ds2 ¼ gijdqidq j ð4:20Þ

Relation (4.20) defines the metric on the Euclidean space.
In the case of orthogonal curvilinear coordinates, the expressions are signifi-

cantly simplified. A few examples useful in applications are presented in the
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following. Thus, by direct calculation it can be shown that in cylindrical coordinates
the arc element is given by the following expression

ds2 ¼ dr2 þ r2dh2 þ dz2 ð4:21Þ

In spherical coordinates, the expression is:

ds2 ¼ dR2 þR2du2 þR2 sin2 udh2 ð4:22Þ

4.1.6 Tensors

The curvilinear coordinates and the transformations between different coordinate
systems can be used to systematically classify the physical quantities.

4.1.6.1 Transformations of Curvilinear Coordinates

Consider two curvilinear coordinate systems: qi i ¼ 1; 2; 3ð Þ and q0i i ¼ 1; 2; 3ð Þ,
respectively. The bases of these systems are eif g and e0i

� �
, respectively. The

transformation from the first coordinate system to the second one is done by using
the mappings ðq1; q2; q3Þ ! q0 jðq1; q2; q3Þ j ¼ 1; 2; 3ð Þ, assumed as being differ-
entiable. According to (4.8), the basis e0i

� �
of the second coordinate system is given

by

e0j ¼ @r
@q0 j

ð4:23Þ

Using these relationships for the basis of the first coordinate system leads to the
following relations

e0j ¼ ei
@qi

@q0j
ðj ¼ 1; 2; 3Þ ð4:24Þ

Similarly, the following relationships are obtained

ei ¼ e0j
@q0j

@qi
ði ¼ 1; 2; 3Þ ð4:25Þ
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Multiplying the expressions (4.24) and (4.25) among themselves and taking into
account the properties of the scalar product between the vectors of the bases, it is
found that:

@qi

@q0j
@q0j

@qk
¼ dik;

@q0i

@q j

@q j

@q0k
¼ dik ð4:26Þ

4.1.6.2 Tensors of Zero Order

It is said that a function U q1; q2; q3ð Þ is a zero-order tensor (or a scalar) if it is
invariant under a change of curvilinear coordinates. This means that through a
change of curvilinear coordinates, the function U q1; q2; q3ð Þ is transformed into the
function U0 q01; q02; q03ð Þ, by obeying the condition of invariance.

Relative Tensors of Zero Order

Denote by J the Jacobian of the curvilinear coordinate transformation
ðq1; q2; q3Þ ! q0jðq1; q2; q3Þ j ¼ 1; 2; 3ð Þ:

J � det
@ðq01; q02; q03Þ
@ðq1; q2; q3Þ

����
���� ð4:27Þ

The coefficients of the fundamental form are introduced in the second coordinate
system, under the form of the scalar products

g0ij ¼ e0i � e0j ði; j ¼ 1; 2; 3Þ ð4:28Þ

Denote g0 � detjg0ijj. Also, the following relationship takes place:

ðg0Þ1=2 ¼ 1
J
ðgÞ1=2 ð4:29Þ

It is said that a function U is a relative scalar of weighting P if, after a change of
curvilinear coordinate, it is transformed according to the following relationship

U0 ¼ J�PU ð4:30Þ

In case P ¼ 0, it is an absolute scalar, if P ¼ 1 it is a scalar density and if P ¼ �1
it is a scalar capacity.
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4.1.6.3 First Order Tensors (Vectors)

Contravariant Components

In the following, formulas are obtained for the transformation of the contravariant
components of a vector in the basis eif g into contravariant components in the basis
e0i

� �
, and vice versa. Note that a given vector can be represented in the two bases in

the following forms

V ¼ V 0je0j ¼ Viei ¼ V 0j @q
i

@q0j
ei ¼ Vi @q

0j

@qi
e0j ð4:31Þ

From the previous equations, the next expressions are obtained:

V 0j ¼ Vi @q
0j

@qi
ðj ¼ 1; 2; 3Þ Vi ¼ V 0j @q

i

@q0j
ði ¼ 1; 2; 3Þ ð4:32; 33Þ

The sets of threes functions which obey the formulas (4.32) or (4.33) in a trans-
formation of curvilinear coordinates are the contravariant components of a first-
order tensor (or the contravariant components of a vector).

Covariant Components

Next, formulas are obtained for the transformation of the covariant components of a
vector in the basis eif g into the covariant components in the base e0i

� �
, and vice

versa. To do this, the definition of the mixed product of three vectors is used and
Eq. (4.24) is taken into account. It is obtained

ðe01; e02; e03Þ ¼ ðe1; e2; e3Þ det @ðq1; q2; q3Þ
@ðq01; q02; q03Þ
����

���� ¼ 1
J
ðgÞ1=2 ð4:34Þ

The vectors of the reciprocal basis of a curvilinear coordinate system can be
expressed by using Eq. (3.11). By using the normalized minors of the elements of
the functional determinant given by (4.27), the following two sets of relationships
are obtained:

e0j ¼ ei
@q0j

@qi
ðj ¼ 1; 2; 3Þ; ei ¼ e0j

@qi

@q0j
ði ¼ 1; 2; 3Þ ð4:35; 36Þ

A vector V can be represented by means of the covariant components:

V ¼ V 0
j e

0j ¼ Viei ¼ V 0
j
@q0j

@qi
ei ¼ Vi

@qi

@q0 j
e0j ð4:37Þ
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This yields the following two series of formulas:

V 0
j ¼ Vi

@qi

@q0 j
ðj ¼ 1; 2; 3Þ; Vi ¼ V 0

j
@q0j

@qi
ði ¼ 1; 2; 3Þ ð4:38; 39Þ

The sets of threes functions which obey the formulas (4.38) or (4.39) in a trans-
formation of curvilinear coordinates are the covariant components of a first-order
tensor (or covariant components of a vector).

Relative Tensors of the First Order

The sets of three functions which obey the following formulas in a transformation
of curvilinear coordinates:

V 0
j ¼ J�PVi

@qi

@q0j
ðj ¼ 1; 2; 3Þ ð4:40Þ

are the contravariant components of a relative tensor of first-order (or, in other
words, the contravariant components of a relative vector). The case P ¼ 0 corre-
sponds to the contravariant components of an absolute vector, the case P ¼ 1
corresponds to a vector density, and the case P ¼ �1 corresponds to a vector
capacity. Similarly, one may define the covariant components of a relative vector.

The transformations of coordinates treated above are linear and homogeneous.
This can be demonstrated by using the transitivity property of the Jacobian of the
transformation:

det
@ðq001; q002; q003Þ
@ðq1; q2; q3Þ

����
���� ¼ det

@ðq001; q002; q003Þ
@ðq01; q02; q03Þ

����
���� det @ðq

01; q02; q03Þ
@ðq1; q2; q3Þ

����
���� ð4:41Þ

Therefore, if all the components of a relative vector are zero in a reference frame,
they also become equal to zero in any other reference frame. An important con-
sequence is: if an equation containing relative vectors is true in a curvilinear
coordinate system, it is true in any other curvilinear coordinate system. Also, the
relative vectors in the left-hand side and the right-hand side of an equation,
respectively, must have the same weighting.

4.1.7 Differential Operators in Curvilinear Coordinates

If the condition (4.6) is met, from the relations (4.5) one may deduce the existence
of some relationships of the form
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qi ¼ qiðx1; x2; x3Þ ði ¼ 1; 2; 3Þ ð4:42Þ

4.1.7.1 First Order Differential Parameters

Denote by feig and feig the vectors of the basis and reciprocal basis, respectively.
By defining some surfaces of coordinates qi ¼ const ði ¼ 1; 2; 3Þ, one arrives to
the following form of the gradient of the curvilinear coordinates given by the
relationships (4.42):

grad qi ¼ ei ði ¼ 1; 2; 3Þ ð4:43Þ

The modules of these gradients of coordinates are called first order differential
parameters and are given by the following relationships containing coefficients of
the fundamental form associated with the basis eif g:

h1 � jgrad q1j ¼ ðg11Þ12; h2 � jgrad q2j ¼ ðg22Þ12;
h3 � jgrad q3j ¼ ðg33Þ12

ð4:44Þ

The unit vectors of the reciprocal basis eif g are compactly expressed by using the
first order differential parameters, as follows

i1 ¼ 1
h1

e1; i2 ¼ 1
h2

e2; i3 ¼ 1
h3

e3 ð4:45Þ

4.1.7.2 Lamé Coefficients

The coefficients of the fundamental form associated with the basis feig can be used
to define the Lamé coefficients, whose squares are

H2
1 � g11; H2

2 � g22; H2
3 � g33 ð4:46Þ

The Lamé coefficients allow to writing the unit vectors of the basis feig under the
form

i1 ¼ 1
H1

e1; i2 ¼ 1
H2

e2; i3 ¼ 1
H3

e3 ð4:47Þ

The physical components of a vector V correspond to the three sides of the
parallelepiped built on the three vectors of the basis feig, having V as a diagonal.
The Lamé coefficients allow to writing the expression of these physical components
in the compact form ðH1V1;H2V2;H3V3Þ. For this, see the relationship (3.9).
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Similarly, the orthogonal projections of the vector V on the three vectors of the
basis feig are given by ðV1=H1;V2=H2;V3=H3Þ.

4.1.7.3 Conversion Formulas

Using the relations (3.11), (3.24), (4.47) and (4.45) one obtains:

h1 ¼ 1

ðgÞ1=2
H2H3; h2 ¼ 1

ðgÞ1=2
H3H1; h3 ¼ 1

ðgÞ1=2
H1H2 ð4:48Þ

H2
1 ¼ ðgÞ1=2 h

2h3

h1
; H2

2 ¼ ðgÞ1=2 h
3h1

h2
; H2

3 ¼ ðgÞ1=2 h
1h2

h3
ð4:49Þ

These relationships represent conversion formulas between the first order differ-
ential parameters and the Lamé coefficients, and vice versa. The differential
parameters and the Lamé coefficients are used for convenient switching from a
Cartesian orthogonal reference frame x1; x2; x3ð Þ to a system of curvilinear coor-
dinates q1; q2; q3ð Þ.

4.1.7.4 Element of Arc Length

The arc length element is given by the general formula (4.20). Its components along
the coordinate lines are

ds1 ¼ H1dq
1; ds2 ¼ H2dq

2; ds3 ¼ H3dq
3; ð4:50Þ

4.1.7.5 Gradient

The gradient of a scalar field U q1; q2; q3ð Þ can be expressed as

gradU ¼ @U
@qi

grad qi ¼ @U
@qi

ei ð4:51Þ

Therefore, @U=@qi are the covariant components of the gradient in the system of
curvilinear coordinates. Consequently, in a curvilinear coordinate system having the
basis eif g and the unit vectors i jðj ¼ 1; 2; 3Þ, the gradient operator is given by

grad ¼ h1i1
@

@q1
þ h2i2

@

@q2
þ h3i3

@

@q3
ð4:52Þ
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4.1.7.6 Divergence and Curl

The relations (3.68) and (3.69) define the divergence and the curl of a vector,
respectively. In curvilinear coordinates, the divergence and the curl can be expressed
in the following form

divV ¼ 1

ðgÞ1=2
@

@qi
½ðgÞ1=2Vi� ð4:53Þ

curlV ¼ 1

ðgÞ1=2
e1 e2 e3
@
@q1

@
@q2

@
@q3

V1 V2 V3

������
������ ¼

1

ðgÞ1=2
2ijk @Vk

@q j ei ð4:54Þ

4.1.7.7 Orthogonal Curvilinear Coordinates

In practice, systems of orthogonal curvilinear coordinates are often used. In this
important case, the reciprocal basis feig is orthogonal, while its vectors have the
same directions as the vectors of the basis feig. Also, gij ¼ gij ¼ 0 for i 6¼ j.
Consequently:

g ¼ ðH1H2H3Þ2 ¼ 1

ðh1h2h3Þ2 ð4:55Þ

In general g 6¼ 1, because the basis feig, having i1 ¼ i1; i2 ¼ i2; i3 ¼ i3, is not
orthonormal. Relations (4.49) lead to

H1 ¼ 1
h1

; H2 ¼ 1
h2

; H3 ¼ 1
h3

ð4:56Þ

Detailed calculations for quantities often encountered in practice are presented
next. Two particular cases will be considered, namely cylindrical coordinates and
spherical coordinates, respectively.

Element of Arc Length

The arc length element is given by the expression

ds2 ¼ ðds1Þ2 þðds2Þ2 þðds3Þ2

¼ H2
1ðdq1Þ2 þH2

2ðdq2Þ2 þH2
3ðdq3Þ2

ð4:57Þ
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In cylindrical coordinates, the following simple relationships take place:

H1 ¼ 1; H2 ¼ r ;H3 ¼ 1; g ¼ r2 ð4:58Þ

For the line of coordinates q2 ¼ h, the expression of the component of the arc
length element can be written as

dsh ¼ rdh; ð4:59Þ

In spherical coordinates, the following relations take place

H1 ¼ 1; H2 ¼ R; H3 ¼ R sinu; g ¼ R4 sin2 u ð4:60Þ

For the coordinates q2 ¼ u; q3 ¼ h, the following expressions of the compo-
nents of the arc length element are obtained

dsu ¼ Rdu; dsh ¼ R sinudh; ð4:61Þ

Element of Volume

The element of volume, generally given relation (4.15), takes the very simple form

ds ¼ H1H2H3dq
1dq2dq3 ð4:62Þ

Gradient

The gradient operator, which has the general form (4.52), becomes in this particular
case:

grad ¼ 1
H1

i1
@

@q1
þ 1

H2
i2

@

@q2
þ 1

H3
i3

@

@q3
ð4:63Þ

In the case of the cylindrical coordinates, the next relationship occurs:

@

@sh
¼ 1

r
@

@h
ð4:64Þ

and the gradient operator is reduced to:

grad ¼ ir
@

@r
þ 1

r
ih

@

@h
þ iz

@

@z
ð4:65Þ

76 4 Elements of Riemann Geometry



If spherical coordinates are considered, the following relations occur:

@

@su
¼ 1

R
@

@u
;

@

@sh
¼ 1

R sinu
@

@h
ð4:66Þ

and the gradient operator has the form

grad ¼ iR
@

@R
þ 1

R
iu

@

@u
þ 1

R sinu
ih

@

@h
ð4:67Þ

4.1.7.8 Divergence

In curvilinear orthogonal coordinates, the divergence has the following form:

divV ¼ 1
H1H2H3

@

@q1
ðH2H3V

1Þþ @

@q2
ðH3H1V

2Þ
�

þ @

@q3
ðH1H2V

3Þ
� ð4:68Þ

In the particular cases of cylindrical coordinates and spherical coordinates,
respectively, the divergence is expressed as:

divV ¼ 1
r
@

@r
ðrVrÞþ 1

r
@Vh

@h
þ @Vz

@z

divV ¼ 1
R2

@

@R
ðR2VRÞþ 1

R sinu
@

@u
ðsinuVuÞþ 1

R sinu
@Vh

@h

ð4:69; 70Þ

4.1.7.9 Curl

In curvilinear orthogonal coordinates, the curl operator has the expression

curlV ¼ 1
H2H3

@

@q2
ðH3V

3Þ � @

@q3
ðH2V

2Þ
� �

i1

þ 1
H3H1

@

@q3
ðH1V

1Þ � @

@q1
ðH3V

3Þ
� �

i2

þ 1
H1H2

@

@q1
ðH2V

2Þ � @

@q2
ðH1V

1Þ
� �

i3

ð4:71Þ

In the particular cases of cylindrical coordinates and spherical coordinates,
respectively, the curl is given by the following expressions:
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curlV ¼ 1
r
@Vr

@h
� @Vh

@z

� �
ir þ @Vr

@z
� @Vz

@r

� �
ih

þ 1
r

@

@r
ðrVhÞ � @Vr

@h

� �
iz

curlV ¼ 1
R sinu

@

@u
ðsinuVhÞ � @Vu

@h

� �
iR

þ 1
R

1
sinu

@VR

@h
� @

@R
ðRVhÞ

� �
iu þ 1

R
@

@R
ðRVuÞ � @VR

@u

� �
ih

ð4:72; 73Þ

4.1.7.10 Laplace Operator

The Laplace operator in curvilinear orthogonal coordinates can be expressed as:

D ¼ 1
H1H2H3

@

@q1
H2H3

H1

@

@q1

� �
þ @

@q2
H3H1

H2

@

@q2

� ��

þ @

@q3
H1H2

H3

@

@q3

� �� ð4:74Þ

In the particular case of cylindrical coordinates and spherical coordinates,
respectively, this operator is given by:

D ¼ 1
r
@

@r
r
@

@r

� �
þ 1

r2
@2

@h2
þ @2

@z2

D ¼ 1
R2

@

@R
R2 @

@R

� �
þ 1

R2 sinu
@

@u
sinu

@

@u

� �
þ 1

R2 sin2 u

@2

@h2

ð4:75; 76Þ

4.1.8 Differentiation of Vectors in Curvilinear Coordinates

4.1.8.1 Christoffel Symbols of the First and Second Kind

Relation (3.21) can be differentiated with respect to the variable qk . The result is

ei;k � ej þ ei � ej;k ¼ gij;k ði; j; k ¼ 1; 2; 3Þ ð4:77Þ

This expression can be rewritten by circular permutation:

ej;i � ek þ ej � ek;i ¼ gjk;i
ek;j � ei þ ek � ei;j ¼ gki;j ði; j; k ¼ 1; 2; 3Þ ð4:78Þ
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By taking into account the relation (4.8) and the fact that the mixed second order
derivatives of the position vector r do not depend on the differentiation order, it can
be shown that:

ei;j ¼ ej;i ð4:79Þ

The Christoffel symbols of first kind can be defined taking into account (4.79).
First, the relations (4.78) are added. Next, the relationship (4.77) is subtracted. The
result is:

½ij; k� � i j

k

" #
� Ckij � ei;j � ek ¼ 1

2
ð�gij;k þ gjk;i þ gki;jÞ ði; j; k ¼ 1; 2; 3Þ ð4:80Þ

Here three common notations have been used to designate the Christoffel symbols
of first kind. The Christoffel symbols of the second kind are defined as follows:

k
i j

	 

¼ Ck

ij ¼ gkl½ij; l� ði; j; k ¼ 1; 2; 3Þ ð4:81Þ

The index variables i and j in the Christoffel symbols are interchangeable, meaning
that the next relations can be written:

½ij; k� ¼ ½ji; k�; k
i j

	 

¼ k

j i

	 

ði; j; k ¼ 1; 2; 3Þ ð4:82Þ

It follows that the Christoffel symbols of the first and the second kind, respectively,
contain 18 distinct symbols each.

The Christoffel symbols are useful in calculating the derivatives of the elements
of the fundamental forms. For example, the expression (4.81) is multiplied by gkm
and the relationship (3.26) is used, resulting

½ij; k� ¼ gkl
l
i j

	 

ði; j; k ¼ 1; 2; 3Þ ð4:83Þ

Then, using Eq. (4.81) one finds that the Christoffel symbols are linked with the
derivatives of the vectors of the reciprocal basis, i.e.

k
i j

	 

¼ ei;j � ek; ei;j ¼ k

i j

	 

ek i; j; k ¼ 1; 2; 3ð Þ ð4:84Þ

Further, by using relations (4.77) and (4.83), the following expression is
obtained, in which derivatives of the components of the fundamental form occur:

4.1 Standard Notions of Non-Euclidean Geometry 79

http://dx.doi.org/10.1007/978-3-319-33789-0_3


gij;k ¼ gjl
l

i k

	 

þ gil

l
j k

	 

i; j; k ¼ 1; 2; 3ð Þ ð4:85Þ

At the same time, the relationship (3.26) allows writing a useful expression:

gik;lg
kj þ gikg

kj
;i ¼ 0 ð4:86Þ

This expression leads to a relationship which is similar with Eq. (4.85), i.e.:

gik;k ¼ �gjk
i

l k

	 

� gil

j
l k

	 

ði; j; k ¼ 1; 2; 3Þ ð4:87Þ

Finally, one can show that

@

@qi
lnðgÞ1=2 ¼ j

i j

	 

i ¼ 1; 2; 3ð Þ ð4:88Þ

Note that this derivative with respect to the curvilinear coordinates is expressed
in terms of the Christoffel symbols. To obtain the expression (4.88), the develop-
ment of the determinant g ¼ det jgijj with respect to the elements of a row (or of a
column) has been used.

The transformation law of the Christoffel symbols of second kind is expressed as

k
i j

	 
0

¼ n
l m

	 

@xi

@x0i
@xm

@x0 j
@xk

@x0n
þ @2xp

@x0i@x0 j
@x0k

@xp
i; j; k ¼ 1; . . .; nð Þ ð4:89Þ

In the case that the Christoffel symbols of second kind are identically zero with
respect to a coordinate system x0if g, the fundamental form gij has constant com-
ponents hij. It can be shown that this is a necessary and sufficient condition.

4.1.8.2 Covariant Derivative

Derivative of a Scalar

Consider a scalar function U. The partial derivatives U;i constitute the covariant
components of a vector. Indeed, if one takes into account the condition which must
be met by a scalar function, the partial derivatives in a new reference frame, denoted
U0

;j are given by:

U0
;j ¼ U;i

@qi

@q0 j
j ¼ 1; 2; 3ð Þ ð4:90Þ
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The covariant derivative of a scalar U of weight P may be written as

U;i ¼ Uji¼ U;i � P
j
i j

	 

U i ¼ 1; 2; 3ð Þ ð4:91Þ

Derivative of a Vector

Considered a vector V. Taking into consideration the representation (3.9), the
partial derivative V;j of this vector can be expressed as a function of the con-
travariant components of the vector and of its derivatives, in the following way:

V;j ¼ Vi
;jei þViei;j ð4:92Þ

The covariant derivative of the contravariant components of a vector are defined
as follows

Vi
;j � Vi

��
j¼ Vi

;j þ
i

j k

	 

Vk i; j ¼ 1; 2; 3ð Þ ð4:93Þ

Using this definition, the previous relation can be written in a more compact way:

V;j ¼ Vi
;jei j ¼ 1; 2; 3ð Þ ð4:94Þ

Similarly, the covariant derivative of the covariant components of the vector can
be defined by the relationship:

Vi;j � Vijj¼ Vi;j � k
i j

	 

Vk i; j ¼ 1; 2; 3ð Þ ð4:95Þ

Thus, the partial derivative V;j of the vector is given by:

V;j ¼ Vi;jei j ¼ 1; 2; 3ð Þ ð4:96Þ

The two covariant derivatives defined above allow the differentiation of the
components of a vector. Conversely, if one takes into account the relationships
(4.94) and (4.96), it is obvious that both the basis eif g and the reciprocal basis e jf g
remain apparently constant.

Differential of a Vector

Two differentials of a vector are defined: the differential of the contravariant
components and the differential of the covariant components, respectively:
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DVi � dVi þ i
j k

	 

Vkdq j; DVi � dVi � k

i j

	 

Vkdq i ¼ 1; 2; 3ð Þ ð4:97; 98Þ

Thus, the differential of the vector can be expressed in two ways, as follows:

dV ¼ ðDViÞei ¼ ðDVjÞe j ð4:99Þ

Particular Cases

If all components gij of the fundamental form are constant, then all the Christoffel
symbols are zero. Therefore, the covariant differentiation is reduced to ordinary
differentiation. Note that, in general, the covariant derivative of a vector with
constant components is not null.

The case of orthogonal Cartesian coordinate systems is often encountered in
practice. It is characterized by gij ¼ dij and, according to the above theory, in this
coordinate system, the covariant derivative reduces to the usual derivative. The
formalism of modern physics requires that the vector relationships are invariant to
the change of the coordinate system. This means that the equalities valid in
orthogonal Cartesian coordinate systems must be valid into an arbitrary coordinate
system. Consequently, to the operator of ordinary differentiation in a Cartesian
coordinate system must correspond the operator of covariant differentiation in the
other coordinate system. This is achieved by a transcription which moves in a
convenient way the index variables.

For example, consider the divergence of a vector V and the Laplace operator. If
one takes into account the general relationship (4.88), the expression of the
divergence can be written as:

div V ¼ 1
g1=2

ðg1=2ViÞ;i ð4:100Þ

If the vector is conservative, i.e. V ¼ grad U, it follows that Vi ¼ gijU;j. The
Laplace operator applied to the scalar U can be written as:

DU ¼ div gradU ¼ 1
g1=2

ðgijg1=2U;jÞ;i ð4:101Þ

In an orthogonal Cartesian coordinate system, the divergence has the form
shown in the relationship (3.68). By using the covariant differentiation, one obtains
a formally simpler expression:

div V ¼ Vi
;i ð4:102Þ
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4.1.9 Intrinsic Derivative

Consider a domain D � R3 and a one-dimensional manifold (a curve) C in this
domain. The curve is defined parametrically, by using the bounded parameter t 2
t1; t2½ � and the differentiable relations C : xi ¼ xiðtÞ i ¼ 1; 2; 3ð Þ. Consider a dif-
ferentiable vector field V ¼ Vðx1; x2; x3Þ, defined in the domain D. The vectors
V which are defined on the one-dimensional manifold C depend of parameter t.
Then, the following relationship occurs

dV
dt

¼ V;j _x
j ¼ Vi

;j _x
jei ð4:103Þ

If one takes into account the expression (4.93) of the covariant derivative, the
relationship (4.103) can be rewritten as follows

dV
dt

¼ V;j _x
j ¼ @Vi

@t
þ i

j k

	 

V jxk ð4:104Þ

where the following notation has been used:

@Vi

@t
� Vi

;j _x
j i ¼ 1; 2; 3ð Þ ð4:105Þ

Relation (4.104) is the intrinsic derivative (or the absolute derivative) of the con-
travariant components Vi of the vector, with respect to the parameter t. The intrinsic
differentiation keeps the usual differentiation rules.

4.1.10 Parallel Transport

Consider a one-dimensional manifold (a curve) C of parameter t and a point P on
that curve. In this point, consider a vector V of arbitrary orientation. The point P is
moving on the curve, yielding a field of parallel vectors along the curve, and this
field does not depend of the parameter t. For this reason, on the whole curve C the
following simple relationship is fulfilled:

dV
dt

¼ 0 ð4:106Þ

Therefore, the contravariant components of the vector V satisfy the differential
equations system
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@Vi

@t
þ i

j k

	 

V j _xk ¼ 0 ði ¼ 1; 2; 3Þ ð4:107Þ

Consider a three-dimensional Euclidean manifold, for which the concept of field
of parallel vectors makes sense. Equation (4.107) can be rewritten as

Vi
;k þ

i
j k

	 

V j

� �
_xk ¼ 0 ði ¼ 1; 2; 3Þ ð4:108Þ

Note that, for a given point, this relationship is checked for any curve C passing
through that point. The consequence is that any field of parallel vectors in the
Euclidean space E3 fulfill the system of equations

Vi
;k ¼ Vi

;k þ
i

j k

	 

V j ¼ 0 ði; k ¼ 1; 2; 3Þ ð4:109Þ

Relationships (4.109) are the so-called parallel transport conditions of the con-
travariant components of the vector V. In the case of the covariant components of
the vector V, the conditions for parallel transport are

Vi;k ¼ Vi;k þ
j

i k

( )
Vj ¼ 0 i; k ¼ 1; 2; 3ð Þ ð4:110Þ

Consider a curve C depending on the bounded curvilinear coordinate s 2 s1; s2½ �.
The curve C is defined by the equations xi ¼ xiðsÞ i ¼ 1; 2; 3ð Þ. Assume that a field
of parallel vectors V exists on the curve C. Then, the following relationships should
be fulfilled:

@Vi

@s
þ i

j k

	 

V j dx

k

ds
¼ 0 i ¼ 1; 2; 3ð Þ ð4:111Þ

Previously, parallel vectors of arbitrary direction with respect to the curve
C have been considered. Now, consider a field of vectors which are tangent to that
curve. The field is described by the quantities dxi=ds i ¼ 1; 2; 3ð Þ. Using the
relation (4.111), which represents the condition for those vectors to be parallel each
other, one obtains

d2xi

ds2
þ i

j k

	 

dx j

ds
dxk

ds
¼ 0 ði ¼ 1; 2; 3Þ ð4:112Þ

These relationships constitute the equations of a straight line in a curvilinear
coordinate system. Consider now the particular case of an orthogonal Cartesian
coordinate system. In this situation, the Christoffel symbols are canceled and the
relationships (4.112) reduce to d2xi=ds2 ¼ 0ði ¼ 1; 2; 3Þ.
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The notions can be extended to the general case of a Riemannian manifold Vn of
metric (4.1). In this case, the length of the arc of curve is given by

s ¼
Zt2
t1

ðgijxix jÞ1=2dt ð4:113Þ

The geodesics of the manifold Vn are given by the extremal curves of the
functional (4.113). To find these extremal curves, one may apply the known results
of variational calculation (Badescu 2003). Thus, starting from the corresponding
Euler–Lagrange equations, one obtains, after some processing, the following dif-
ferential equations:

d2xi

ds2
þ i

j k

	 

dx j

ds
dxk

ds
¼ 0 ði ¼ 1; . . .; nÞ ð4:114Þ

These are the equations of the extremal curves of the functional (4.113) and, at
the same time, the equations of the geodesic lines in the manifold Vn. Note that
Eq. (4.114) have the same form as the Eq. (4.112) of the straight line in the
Euclidean space E3. Some examples: on a sphere, the geodesics are great circles and
on a cylinder or on a cone, the geodesics are the generators of the cylinder or the
cone, respectively.

Consider the particular case of a Euclidean manifold Vn. There is a coordinates
system where the Christoffel symbols are zero. In that system, the relations (4.114)
reduce to the following relationships, showing that geodesics in the Euclidean space
are straight lines:

d2xi

ds2
¼ 0 ði ¼ 1; . . .; nÞ ð4:115Þ

Finally, consider the case of a curve on the manifold Vn. The previous theory can
be extended to build parallel vectors along that curve. It can be shown that the
vectors obtained by the parallel transport of a vector which is tangent to a geodesic,
are permanently tangent to that geodesic. It is said that the geodesics are self-
parallel curves.

4.2 Recent Formalizations of Riemann Geometry

In this section, concepts and notations used recently in the presentation of Riemann
geometry are briefly present. The exposure of Casetti et al. (2000) will be closely
followed. The main purpose of the section is to create an intuitive image about the
main concepts, since the approach has not the purpose to constitute a rigorous
treatment of the subject. For a more elaborated introduction the reader is sent to the
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general relativity book of Landau and Lifshitz (2000) or to more complete works,
but still easily accessible, such as Wald (1984) and Ionescu-Pallas (1980). A more
rigorous mathematical treatment, but accessible to physicists and engineers is given
by Carmo (1993). Finally, an exhaustive and rigorous presentation, but far
exceeding the level of this book is the work of Kobayashi and Nomizu (1991).

In this section, the Einstein summation convention for the dummy indices is
systematically used. The dependence on time of the vector and tensor components
is not explicitly mentioned. This will be done only when necessary.

4.2.1 Manifolds

In a space of dimension m, one can define a hypersurface of dimension m (or, in
other words, a m-hypersurface) by specifying an equation of the form:

g x1; . . .; xmð Þ ¼ 0 ð4:116Þ

It is said that the hypersurface is smooth if the function g is differentiable and the
vector of the normal at the surface (4.116), given by the following expression,
where the gradient operator appears:

grad g � @g
@x1

; . . .;
@g
@xm

	 

ð4:117Þ

does not cancel. Consider r hypersurfaces of dimension m, given by the system of
equations:

g1 x1; . . .; xmð Þ ¼ 0

� � �
gr x1; . . .; xmð Þ ¼ 0

ð4:118Þ

The intersection M of all these hypersurfaces, i.e. the set of all points that satisfy
the Eq. (4.118), is called manifold of dimension m–r, provided that the vectors of
the normals to the r hypersurfaces, grad g1; . . .; grad gr, are linearly independent at
any point.

Thus, a manifold z-dimensional is given by m–z equations. Also, a manifold of
dimension m − 1 is conceived as a hypersurface.

4.2.1.1 Riemannian Manifolds

A set of coordinates, i.e. a set of real numbers x1; . . .; xnð Þ representing the “posi-
tion” of a point on a manifold, is called chart. A collection of charts on a manifold
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is called atlas on that manifold. A set M is called differentiable manifold if it can be
covered with a collection, finite or numerable, of charts, so that each point of M is
represented in at least one chart, and different charts are differentially connected to
each other. The number n of coordinates of the chart is the same, for each connected
part the manifold (and for the whole manifold, if it is connected, i.e. if it cannot be
separated into two disjoint parts which still preserves the property that they are
manifolds). Such a number is called the dimension of the manifold.

Vectors and Tensors

A vector (more precisely, a tangent vector) can be defined by using curves on the
manifold M. Given a curve c on M, represented in local coordinates by the para-
metric equations x ¼ uðtÞ, a tangent vector is defined in the point P 2 M as the
velocity vector of the curve in the point P, i.e.:

v ¼ _c ¼ lim
t!0

uðtÞ � uð0Þ
t

; uð0Þ ¼ P ð4:119Þ

so that the n components of the tangent vector v are given by:

vi ¼ dui

dt
ð4:120Þ

The set of all tangent vectors of M in P forms a linear space called tangent space
of M in P, which is denoted TPM. Each tangent space is isomorphic with the n-
dimensional Euclidean space. Given a chart x1; . . .; xnð Þ in the neighborhood of P, a
basis X1; . . .;Xnð Þ of TPM can be defined, so that an arbitrary vector v is expressed
as the sum of the vectors Xi of the basis, weighted by its own components:

v ¼ viXi ð4:121Þ

The basis fXig is called basis of coordinates of TPM and its components Xi are
usually denoted by @=@xi. The origin of this notation comes from the fact that the
tangent vectors can be defined as directional derivatives on M (see, for example,
Wald 1984). The basis depends on the chart. By choosing a different
chart, x01; . . .; x0nð Þ, one obtains another basis, X 0

i

� �
. The components of v in the two

bases are related through the rule:

v0i ¼ v j
@x0i

@x j
ð4:122Þ

which is called the vectors transformation rule. Relationship (4.122) may serve as a
definition of the tangent vector, which may be seen as a set of numbers whose
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components transform themselves according to that relation. The set of all tangent
spaces on the manifold M, denoted

TM ¼ [
P2M

TPM ð4:123Þ

is a 2n-dimensional manifold, called the tangent bundle of M.
A vector field on the manifold M is obtained by attaching a vector vP to each

point P 2 M. If f is a smooth function, then, for any P 2 M, the result

Vðf ÞjP¼ vPðf Þ ð4:124Þ

is a real number; in other words vðf Þ is a function defined on M. If vðf Þ is a smooth
function, one says that V is a smooth vector field on M. The curves uðtÞ which
satisfy the differential equations

_u ¼ VðuðtÞÞ ð4:125Þ

are called trajectories of the field V, and the map ut : M ! M defined for any point
P ofM along the trajectory of V passing through the P is called flow of V. Given two
vector fields V and W, their commutator is defined as a vector field ½V ;W � so that

V ;W½ � fð Þ � V W fð Þð Þ �W V fð Þð Þ ð4:126Þ

or, using local components,

V ;W½ � j¼ Vi @W
j

@xi
�Wi @V

j

@xi
ð4:127Þ

Note that if Xif g is a coordinate basis, then the following relation can be written

Xi;Xj
� � ¼ 0 8i; j ð4:128Þ

and that, conversely, giving n vector fields that do not cancel, do commute and are
linearly independent, then there is always a chart for which these vectors constitute
a coordinate basis.

The tangent vectors are not the only vector-like quantities that can be defined on
the manifold M. There are also cotangent vectors that can be defined as follows.
First, remind that the dual space V* of a vector space V is the space of linear maps
from V in the set of real numbers. Given a basis of V, denoted uif g, then a basis of
V*, noted u	if g, called dual basis, is defined by

u 	i uj

 � ¼ dij ð4:129Þ
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The dual space of TM, denoted T*M, is called cotangent bundle of M. Its ele-
ments are called cotangent vectors, or covariant vectors (while the tangent vectors
are called contravariant vectors). The elements of the dual basis are usually denoted
dx1; . . .; dxn and dxi has the property that dxi @=@x jð Þ ¼ dij. The components xi of
the cotangent vectors transform themselves by the rule

x0
i ¼ xj

@x j

@x0i
ð4:130Þ

This relationship can be compared with Eq. (4.122). The usual rule is to use
subscripts to designate the components of the dual vectors and superscripts to
designate the components of vector.

A (k, l)-tensor over the vector space V is an multi-linear map

T : V 	 
 � � � 
 V	|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
k times

0
@

1
A
 V 
 � � � 
 V|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

l times

0
@

1
A ! R ð4:131Þ

i.e. acting on k dual vectors and l vectors, T produces a real number, and does this in
a way that, if one fixes all the vectors or dual vectors, except one, it is a linear map
in the remaining variable. With this notation, a (0, 0) tensor is a scalar, a (0, 1)
tensor is a vector and a (1, 0) tensor is a dual vector. The space s k; lð Þ of tensors of
type (k, l) is a linear space. A (k, l)-tensor is defined once its action on the k vectors
of the dual basis and the l vectors of the base is known. Since there are nknl

independent ways to choose these basis vectors of the two bases, s k; lð Þ is a nkþ l-
dimensional linear space.

On the set of tensors one can define two operations. The first one is called
contraction with respect to the arguments of the ith dual vector and jth vector,
respectively, being a map of the type

C : T 2 s k; lð Þ ! CT 2 s k � 1; l� 1ð Þ ð4:132Þ

defined by

CT ¼
Xn
r¼1

T . . .; v	r|{z}
i

; . . .; . . .; vr|{z}
j

; . . .

0
@

1
A ð4:133Þ

The contracted tensor CT is independent of the choice of the basis, so that the
contraction is a well defined, invariant, operation. The second operation is the
tensor product, which maps an element s k; lð Þ 
 s k0; l0ð Þ in the element
s kþ k0; lþ l0ð Þ, i.e., it maps two tensors T and T’ in a new tensor, denoted by
T � T 0, defined as follows: being given k + k’ dual vectors v	1; . . .; v	kþ k0 and
l + l’ vectors w1; . . .;wlþ l0 , then
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T � T 0 v	1; . . .; v	kþ k0 ;w1; . . .;wlþ l0
� �

¼ T v	1; . . .; v	k;w1; . . .;wl

 �

T v	kþ 1; . . .; v	kþ k0 ;wlþ 1; . . .;wlþ l0
� � ð4:134Þ

The tensor product enables to construct a basis for s k; lð Þ starting from a basis
vl

� �
of V and its dual basis v	mf g; such a base is given by the nkþ l tensors

vl1 � � � � � vlk � v 	m1 � � � � � v	ml� �
. Thus, every tensor T 2 s k; lð Þ allows the

decomposition

T ¼
Xn

l1;...;ml¼1

Tl1...l
m1...ml

vl1 � � � � � v	vl ð4:135Þ

where the numbers Tl1...l
m1...ml are called the components of T in basis vl

� �
. The

components of the contracted tensor CT are

CTð Þl1...lk�1
m1...ml�1

¼ Tl1...r...lk
m1...r...ml ð4:136Þ

(one reminds that the Einstein summation convention is used), and the components
of the tensor product T � T 0 are

T � T 0ð Þl1...lkþ k0
m1...mlþ l0

¼ Tl1...lk
m1...ml T

0 lkþ 1...lkþ k0
mlþ 1...mlþ l0

ð4:137Þ

All these results are valid for an arbitrary vector space. Therefore, they hold for
the particular cases of the vector spaces of the tangent bundle TM of M. Over these
spaces, tensors and tensor fields can be defined (analogously to the vector fields).

Riemann Metrics

The square of the infinitesimal distance on the manifold M, i.e. the length of the
element ds2 (which is often called the metric) can be defined at any point P 2 M by
using a (0,2)—tensor g, provided that it is symmetric, meaning g v;wð Þ ¼ g w; vð Þ
and non-degenerate, i.e. g v;wð Þ ¼ 0; 8v 2 TPM, if and only if w ¼ 0. Considering
that g is a symmetric tensor, the last condition may be rephrased in the following
way: g v;wð Þ ¼ 0; 8v 2 TPM if and only if v ¼ 0. In fact, a tensor g with these
properties induce on the tangent bundle TM a non-degenerate quadratic form (called
scalar product), which is denoted as follows:

g v;wð Þ � \v;w[ : TM 
 TM ! R ð4:138Þ
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The introduction of this metric makes it possible to measure the lengths on that
manifold. A manifold M, equipped with a scalar product is called Riemannian
manifold and the scalar product thus defined is considered a Riemannian structure
on the manifold M. If the quadratic form (4.138) is positive definite, it is said that it
is Riemann metric. In this case, the square of the length element is always positive.
The length of a curve can be defined as follows:

l cð Þ ¼
Z
c
ð\ _c; _c[ Þ1=2 ð4:139Þ

The curves (denoted c) that are extremals of the length functional are called
geodesics of M.

In a coordinate basis, the metric g can be expanded as follows:

g ¼ gijdx
i � dx j ð4:140Þ

Therefore, in local coordinates one can define (the square of) the length element,
invariant on the manifold, in the following way:

ds2 ¼ gijdx
idx j ð4:141Þ

The scalar product of two vectors v and w is given, in terms of g, by

\v;w[ ¼ gijv
iw j ¼ vjw

j ¼ viwi ð4:142Þ

In the above relationship, it has been made use of the fact that g makes a
bi-univocal correspondence between the vectors and the dual vectors, which, in
components, looks like this:

gijv
j ¼ vi ð4:143Þ

For this reason, the components of the inverse metric g�1 are simply denoted gij

instead of g�1ð Þij. The inverse metric allows the passage from the (covariant)
components of the dual vector to the (contravariant) components of the vector:

gijvj ¼ vi ð4:144Þ

The operation of raising and lowering the indices can be applied not only to the
vector components, but also to the components of tensors. This allows the passage
from the components of a tensor (k, l) to the corresponding components of the
tensor (k + 1, l − 1), and vice versa. Doing this, does not change the sum k + l,
which is called the rank (or the order) of the tensor.
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4.2.2 Covariant Differentiation

As seen, the introduction of a differential calculus on a manifold which is not
Euclidean is complicated by the fact that ordinary derivatives do not map common
vectors into vectors. This means that, for example, the ordinary derivatives of the
components of a vector w, denoted dwi=dt, calculated at a point P on the given
curve cðtÞ, do not represent the components of a vector in TPM, because they do not
transform themselves according to the rule (4.122). The geometric explanation of
this fact is that the parallel transport of a vector from the point P to a point Q in a
non-Euclidean manifold depends on the chosen path to go from P in Q. Indeed, to
define the derivative of a vector in P, first, this vector must be moved from P in a
neighboring point Q on the curve. To evaluate the difference between the vector in
P and the vector in Q, the vector must be parallel transported back to the point P. It
follows that the rigorous definition of the differentiation operation requires a clear
definition of what the parallel transport is. Conversely, if it has been already defined
a consistent differentiation operation, i.e. a differentiation operation which maps
vectors into vectors, the parallel transport can be defined by the statement that a
vector is parallel transported along a curve if its derivative along that curve is null.
The two procedures are equivalent. Next, the first procedure will be followed, by
introducing the notion of connection, and using it to define the differentiation
operation. Such a derivative is called covariant derivative.

Connections can be defined by using tensor fields but the definition using vectors
is simpler. A (linear) connection on a manifold M is a map that, from two vector
fields A and B, yields a third vector field, labeled rAB, with the following
properties:

1. rAB is bilinear in A and B, meaning that rA aBþ bCð Þ ¼ arABþ brAC and
raAþbBC ¼ arACþ brBC;

2. rf Að ÞB ¼ f rABð Þ;
3. rAf Bð Þ ¼ @Afð ÞBþ f rABð Þ, where @A is the ordinary directional derivative in

the direction of A. This last property is called Leibnitz rule.

One defines the parallel transport of a vector V along a curve c, whose tangent
vector field is denoted _c, as the (unique) vector field W tð Þ ¼ W c tð Þð Þ along c tð Þ
having the following properties

1. W 0ð Þ ¼ V ;
2. r _cW ¼ 0 along c.

The notion of covariant derivative immediately follows: the covariant derivative
DV=dt of V along c is given by the vector field

DV
dt

¼ r _cV ð4:145Þ
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Based on the Eq. (4.145) (and forcing the language) it is often said about rXY
that it is the covariant derivative of Y along X, where X and Y are two arbitrary
vector fields. For a given metric g, among all possible linear connections, there is
one and only one, with the following properties:

(i) it is symmetric, i.e.

rXY �rYX ¼ ½X; Y � ð4:146Þ

(ii) it preserves the scalar product, i.e. the scalar product of two parallel vector
fields, P and P′, is constant along c, according with the equation

d
dt
\P;P0 [ ¼ 0 ð4:147Þ

Such a linear connection is obviously the natural one on a Riemannian manifold,
being called Levi-Civita connection (or Riemannian connection). Further usage of
the covariant derivative without prior specifications implicitly assumes that it is the
covariant derivative induced by the Riemannian connection.

The components of the Riemannian connection r with respect to a basis of
coordinates fXig are called Christoffel symbols of the second kind, given by

Ci
jk ¼ \dqi;rXjXk [ ð4:148Þ

These symbols can be expressed in terms of the derivatives of the metric
components, following the relationship:

Ci
jk ¼

1
2
gim @jgkm þ @kgmj � @mgjk


 � ð4:149Þ

where @i ¼ @=@xi. In local coordinates, the expression (4.145) of the covariant
derivative of a vector field V is

DVi

dt
¼ dVi

dt
þCi

jk
dx j

dt
Vk ð4:150Þ

4.2.2.1 Geodesics

Geodesic curves have been defined as curves of extremal length on a manifold.
They can also be defined as self-parallel curves, i.e. curves having the property that
the tangent vector is always parallel transported. Consequently, the geodesics are
those curves cðtÞ that satisfy the following equation (called geodesic equation):
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D _c
dt

¼ 0 ð4:151Þ

In local coordinates the expression of this equation is obtained from Eq. (4.150):

d2xi

dt2
þCi

jk
dx j

dt
dxk

dt
¼ 0 ð4:152Þ

Since the norm of the tangent vector _c of a geodesic is constant, jdc=dtj ¼ c, the
arc length on a geodesic is proportional to the parameter

s tð Þ ¼
Zt2
t2

j dc
dt

jdt ¼ c t2 � t1ð Þ ð4:153Þ

If the parameter is actually the arc length, i.e. c ¼ 1, it is said that the geodesic is
normalized. In the following, when a geodesic is considered, it is implicitly
assumed that it is normalized. This means that Eq. (4.152) are nothing but the
Euler–Lagrange equations for the length functional on the curve c sð Þ parameterized
by the arc length

l cð Þ ¼
Z
c

ds ð4:154Þ

Given a geodesic c sð Þ on M, there is only one vector field G on TM so that its
trajectories are c sð Þ; _c sð Þð Þ. Such a vector field is called geodesic field and its flow is
called geodesic flow on M.

4.2.3 Curvature

Intuitively, the curvature of a Riemannian manifold M; gð Þ is a way to measure how
much this manifold differs from an Euclidean manifold. The curvature tensor,
which is also called Riemann-Christoffel tensor, is a tensor of order four defined as
follows:

R X; Yð Þ ¼ rXrY �rYrX �r X;Y½ � ð4:155Þ

where r is the Levi-Civita connection on M. One sees that, if M ¼ RN , then
R X; Yð Þ ¼ 0 for all pairs of tangent vectors X, Y, due to the commutativity of the
ordinary derivatives. In addition, R represents a measure of the non-commutativity
of the covariant derivative. In fact, once the coordinate system x1; . . .; xnf g is
chosen, one finds (since @=@xi; @=@xj

� � ¼ 0):
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R
@

@xi
;
@

@xj

� �
¼ r@=@xir@=@xj �r@=@xjr@=@xi ð4:156Þ

In local coordinates, the components of the Riemann curvature tensor (which is a
(1, 3)-tensor) are given by:

Ri
jkl ¼

@Ci
jl

@xk
� @Ci

kl

@x j
þCr

jlC
i
kr � Cr

klC
i
jr ð4:157Þ

For a given metric g, the curvature R is uniquely defined. A manifold (M, g) is
said to be flat when the curvature tensor cancels.

Given a positive function f 2, the transformation specified by the following
equation

M; gð Þ ! M; �gð Þ; �g � f 2g ð4:158Þ

is called conformal transformation. Two Riemann manifolds are said to be con-
formally related if they are linked by a conformal transformation. In particular, a
manifold (M, g) is conformally flat if it is possible to find a conformal transfor-
mation that transform g into a flat metric. The conformally flat manifolds are
characterized by significant simplification of the calculation of the curvature tensor
components.

Close to the notion of curvature tensor is the sectional curvature (or Riemann
curvature), which is defined next. Consider two vectors u; v 2 TPM, and defines

ju ^ vj � juj2 � jvj2 �\u; v[
� �1=2

ð4:159Þ

which is the area of a two-dimensional parallelogram determined by u and v. If
ju ^ vj 6¼ 0, then the vectors u, v determine a bi-dimensional subspace p � TPM.
The sectional curvature in point P relative to p is defined as follows:

K P; u; vð Þ � K P; pð Þ ¼ \R v; uð Þu; v[
ju ^ vj2 ð4:160Þ

It can shown that the sectional curvature is independent of the choice of the two
vectors u; v 2 p. In local coordinates, Eq. (4.160) becomes

K P; u; vð Þ ¼ Rijkl
uiv jukvl

ju ^ vj2 ð4:161Þ

Knowledge of K for the NðN � 1Þ planes generated by a maximal set of linearly
independent vectors completely determines the curvature tensor R in point P.
If dimðMÞ ¼ 2, then K will coincide with the Gaussian curvature of the surface,
i.e. with the product of the reciprocals of the two curvature radii.
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A manifold is said to be isotropic if K P; pð Þ does not depend on the choice of the
plane p. A remarkable result (Schur’s theorem) states that in this case the curvature
K is constant, i.e. it is no longer dependent on the point P.

Very important are certain ways of averaging the sectional curvature. A first
example is the Ricci curvature KR in P in the direction v, which is defined as the
sum of the sectional curvatures in P relative to the planes determined by v and the
N � 1 directions orthogonal to v. More specifically, if e1; . . .; eN�1; v ¼ eNf g is an
orthogonal basis on TPM and pi is the plane generated by v and ei, then

KR P; vð Þ ¼
XN�1

i¼1

K P; pið Þ ð4:162Þ

A second example is the scalar curvature < in P, given by the sum of the
N Ricci curvatures in P,

< Pð Þ ¼
XN
i¼1

KR P; eið Þ ð4:163Þ

Such curvatures can be defined in terms of the components of the curvature
tensor, as follows (in formulas, the dependence on the point P is implicit, since
these components are local quantities). First, the Ricci tensor is defined as being a
second order tensor whose components, Rij, are obtained by contracting the first and
the third indices in the Riemann tensor

Rij ¼ Rk
ikj ð4:164Þ

So

KR vð Þ ¼ Rijv
iv j ð4:165Þ

The right-hand side of the Eq. (4.165) is called “the saturation” of Rij with
respect to v. The scalar curvature can be obtained as the trace of the Ricci tensor,
according to the relationship

< ¼ Ri
i ð4:166Þ

In the case of a manifold of constant curvature, the components of the Riemann
curvature tensor have the remarkably simple form

Rijkl ¼ K gikgkl � gilgjk

 � ð4:167Þ
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where K is the constant sectional curvature, so that the Ricci tensor components are

Rij ¼ Kgij ð4:168Þ

and all the curvatures defined above are constant, being related through the fol-
lowing relationships, which are particularly useful in applications because they
depend only on the parameter N:

K ¼ 1
N � 1

KR ¼ 1
N N � 1ð Þ < ð4:169Þ

4.2.4 Jacobi Equation

In this subsection a way of deducing of the Jacobi equation is presented. The
procedure is as follows. First, the geodesic separation vector field J is defined.
Then, it is shown that J is actually a Jacobi field, i.e. it obeys the Jacobi equation.

A geodesic congruence is defined as a family of geodesics cs sð Þ ¼ c s;ðf sÞjs 2
Rg passing through the neighboring V of a point of a manifold, smoothly depending
on the parameter s. A reference geodesic c s; s0ð Þ is chosen. Denote by _cðsÞ the
tangent vector field to c s; s0ð Þ in s, i.e. the velocity vector field, whose components
are

_ci ¼ dxi

ds
ð4:170Þ

and denote by JðsÞ the tangent vector field in s0 to the curves csðsÞ for a fixed s, i.e.
a vector field of components

Ji ¼ dxi

ds
ð4:171Þ

The field J is called geodesic separation field; it is a measure of the distance
between nearby geodesics.

The demonstration that J is a Jacobi field follows. First, notice that the field
J commutes with _c, i.e. _c; J½ � ¼ 0. In fact, from the definition of the commutator
(Eq. (4.127)), the definition of J (Eq. (4.171)) and the definition of _c (Eq. (4.170)),
one finds

_c; J½ �i¼ _c j
@Ji

@x j
� J j @ _c

i

@x j
¼ @x j

@s
@Ji

@x j
� @x j

@s
@ _ci

@x j
¼ @Ji

@s
� @ _ci

@s
ð4:172Þ
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Using again the Eqs. (4.171) and (4.170), one finds that

@Ji

@s
¼ @

@s
@xi

@s
¼ @

@s
@xi

@s
¼ @ _c

ds
ð4:173Þ

so _c; J½ � ¼ 0. Now, the covariant derivative r2
_cJ of the field J is computed. Note

that the covariant derivative comes from a Levi-Civita connection, which is sym-
metric (see Eq. (4.146)), so

r _cJ �rJ _c ¼ _c; J½ � ð4:174Þ

Since it has just been shown that _c; J½ � ¼ 0, one can write

r _cJ ¼ rJ _c ð4:175Þ

Using this result, and the fact that r _c _c ¼ 0 (since _c is a geodesic) one can write

r2
_cJ ¼ r _cr _cJ ¼ r _crJ _c ¼ r _c;rJ

� �
_c ð4:176Þ

From this relationship, by using the definition of the curvature tensor (Eq. (4.155))
and, again, canceling the commutator _c; J½ �, one obtains

r2
_cJ ¼ R _c; Jð Þ _c ð4:177Þ

This last relationship is the Jacobi equation, written in a compact manner.
It is worth mentioning about the normal component J? of J, (i.e. that component

of J orthogonal to _c along the geodesic c), that it is also a Jacobi vector field,
because one can always write J ¼ J? þ k _c. It follows immediately that the velocity
_c satisfies the Jacobi equation, so that J? must satisfy the same equation. This often
allows restricting the study only to normal Jacobi fields.
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Part II
Applications of Geometric

Methods in Thermodynamics



Chapter 5
Equilibrium Thermodynamics

The foundations of the equilibrium thermodynamics have been established by
Rudolf Clausius. In his understanding, the fundamental quantities are two extensive
quantities, namely the internal energy U and the entropy S, while the main pos-
tulates are the first and the second laws of thermodynamics. There are many
excellent introductory books in equilibrium thermodynamics, such as those of
Landau and Lifshitz (1970) and Adkins (1997). Here, the principal results of the
equilibrium thermodynamic are briefly presented, following the survey of Baylin
(1994). Only those notions which are of interest for the next chapters are
summarized.

5.1 Thermodynamic Potentials

In 1869, Francois Massieu proved that one single function is sufficient to describe
consistently the entire edifice of equilibrium thermodynamics. From this function,
through differentiation, one can get all thermodynamic relations. Following the
terminology of mechanics, such a function was called thermodynamic potential.
Massieu showed that the thermodynamic potential is not unique and pointed to two
quantities which can play the role of potential:

• the Helmholtz free energy, F, given by the relationship:

F ¼ U � TS ð5:1Þ

• the Gibbs free energy, G, defined by:

G ¼ U � TSþPV ð5:2Þ

© Springer International Publishing Switzerland 2016
V. Badescu, Modeling Thermodynamic Distance, Curvature and Fluctuations,
Understanding Complex Systems, DOI 10.1007/978-3-319-33789-0_5

101



In these relationships, V is the volume of the thermodynamic system (extensive
quantity) and P and T are the pressure and the temperature (intensive quantities).

To illustrate the method used by Massieu, the thermodynamic relationships will
be deduced now by starting from Helmholtz free energy. The first law of ther-
modynamics for closed systems is written in the local form:

dQ� dW ¼ dU ð5:3Þ

where dQ and dW represent very small amounts of heat and mechanical work
transferred between the system and the environment and dU is the infinitesimal
variation of the internal energy of the system. Consider the limit case, when the
processes that occur in the system during the thermodynamic transformation are
reversible. Then dQ and dW can be expressed by using state variables, through the
relationships:

dQ ¼ TdS; dW ¼ PdV ð5:4a; bÞ

By using relations (5.3) and (5.4) one can write again the expression of the first
law of thermodynamics, under the form:

dU ¼ TdS� PdV ð5:5Þ

The starting idea used by Massieu was the observation that the relationship (5.5)
can be deduced by using purely mathematical arguments. So, the internal energy
U can be considered from the very beginning as a function of two independent
variables, namely V and S:

U ¼ UðV ; SÞ ð5:6Þ

Then, the pressure and the temperature can be defined by the relations

P � � @U
@V

� �
S
; T � @U

@S

� �
V

ð5:7; 8Þ

Through differentiation of U and taking into consideration the relationships
(5.6), (5.7) and (5.8) one obtains the relationship (5.5).

Massieu applied a similar procedure to the Helmholtz free energy F. By dif-
ferentiating the relation (5.1) one obtains

dF ¼ dU � TdS� SdT ð5:9Þ

By using the relation (5.5) one obtains:

dF ¼ �SdT � PdV ð5:10Þ

102 5 Equilibrium Thermodynamics



By comparing the relationships (5.10) and (5.5) one sees that F may be considered
as a function of two independent variables, T and V, i.e.:

F ¼ FðT ;VÞ ð5:11Þ

In this case, in order for the differential of F to be given by (5.10), the entropy and
pressure must be defined by the relations:

S � � @F
@T

� �
V
; P ¼ � @F

@V

� �
T

ð5:12; 13Þ

Relations (5.12) and (5.13) show how, by the differentiation of F, one can obtain
two thermodynamic quantities.

The procedure may be repeated for other quantities. For example, the internal
energy is obtained by replacing the entropy given by Eq. (5.12) in (5.1), i.e.

U ¼ F � T
@F
@T

� �
V
¼ �T2 @ðF=TÞ

@T

� �
V

ð5:14Þ

The specific heat at constant volume, cV , is obtained by using the standard
definition, and followed by the usage of relation (5.4a). One finally obtains:

cV � dQ
dT

� �
V
¼ T

@S
@T

� �
V
¼ �T

@2F
@T2

� �
V

ð5:15Þ

The idea of Massieu is important. Indeed, his procedure uses just one function,
for example F(T, V), from which all thermodynamic relations can be deduced.
Instead, the initial procedure which was used by Clausius, has been based on two
functions, for example the energy and the entropy.

The procedure proposed by Massieu can be used in case of the Gibbs free
energy, G. Thus, from the relations (5.2) and (5.3) one finds the expression:

dG ¼ �SdT þVdP ð5:16Þ

Relation (5.16) suggests that G may be considered as function of the indepen-
dent variables T and P, i.e.:

G ¼ GðT;PÞ ð5:17Þ

In this case, in order for the differential of G to be given by (5.16), the entropy
and the volume must be defined by the equations:

S � � @G
@T

� �
P
; V ¼ @G

@P

� �
T

ð5:18; 19Þ
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The internal energy is obtained by replacing the entropy and the volume given
by the relationships (5.18) and (5.19), respectively, in Eq. (5.2), i.e.

U ¼ G� T
@G
@T

� �
P
�P

@G
@P

� �
T

ð5:20Þ

The specific heat at constant pressure, cP, is obtained from the standard defi-
nition, followed by the successive usage of the relations (5.4a) and (5.18). Making
all calculations leads to the following chain of relations:

cP � dQ
dT

� �
P
¼ T

@S
@T

� �
P
¼ �T

@2G
@T2

� �
P

ð5:21Þ

The manner of using the procedure proposed by Massieu allows emphasizing
two important observations:

• By passing from the relationship (5.6) to the relation (5.11), and then to the
relationship (5.17), the independent variables were changed from ðS;VÞ to
ðT ;VÞ, and finally to ðP;VÞ.

• Changing the dependent variables, from U to F, and finally to G, was made in a
systematic way, by using the following scheme. One starts from a generic
potential, denoted IðX; YÞ, of two independent variables, X and Y. For this
potential, one can write dIðX; YÞ ¼ AdX þBdY , where A and B are partial
derivatives. Next, one passes to a new potential, having the form J � I � AX. Its
differential is given by dJ ¼ dI � AdX � XdA. Substituting in this expression
the previous relation for dI, it is found that dJ ¼ �XdAþBdY . From this, one
can deduce that J must be function of A and Y, i.e. J ¼ JðA; YÞ.
It can be concluded that, by forming the new dependent variable F ¼ U � TS,

the independent variables automatically changed from ðS;VÞ to ðT ;VÞ. In mathe-
matics, such a transformation, that change simultaneously both the dependent
variable and the independent variable, is called Legendre transformation.

Note that not any transformation of thermodynamic coordinates is necessarily a
Legendre transformation. Consider, for example, the case when the internal energy
U is a function of T and V. This is comparable with the relationship (5.5), which
gives the differential dU only if S is considered function of T and V. Then:

dUðT ;VÞ ¼ T
@S
@T

� �
V
dT þ T

@S
@V

� �
T
�P

� �
dV ð5:22Þ

From Eq. (5.22), by the derivation of U, the following expressions are obtained:

@U
@T

� �
V
¼ T

@S
@T

� �
V
;

@U
@V

� �
T
¼ T

@S
@V

� �
T
�P ð5:23; 24Þ
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It is clear that the Eqs. (5.7) and (5.8) are simpler than the Eqs. (5.23) and
(5.24). In addition, the acceptance of the Eq. (5.6), which stated the dependence
U ¼ UðS;VÞ, has two advantages:

• It follows directly from the first law of thermodynamics and
• Its differentiation makes possible to obtain the entire information about the

thermodynamic system.

This is the reason why Josiah Willard Gibbs has considered the equation U ¼
UðS;VÞ as a particular form of the fundamental thermodynamics relation.

Note that the fundamental relationship U ¼ UðS;VÞ can be put, if certain
mathematical conditions are met, under the form S ¼ SðU;VÞ. Because of this, the
theory can be developed in two equivalent directions, as follows:

• If the internal energy U is the dependent variable and the entropy S is the
independent variable, it is said that the energy representation is used;

• if the relationship S ¼ SðU;VÞ is adopted, it is said that the entropy represen-
tation is used.

5.2 Open Systems. Chemical Potential

Massieu’s ideas were continued by Gibbs who developed in 1870 the theory to the
case of open systems. This development is briefly present in the following.
Consider an open system, which contains particles of different species that can enter
or exit the system. The number of particles of species a in the system is denoted Na.
In this case, the fundamental relationship will have the following form (in the
energy representation):

U ¼ UðS;V ;N1;N2; . . .Þ ð5:25Þ

The derivative of the internal energy in relation to the number of particles of
species a is the chemical potential (or the electrochemical potential) of that species:

la �
@U
@Na

� �
S;V ;Nb 6¼a

ð5:26Þ

where Nb6¼a means that the numbers of particles in all species different from a are
kept constant. With this notation, the differential of U becomes:

dU ¼ TdS� PdV þ
X
a

ladNa ð5:27Þ
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Similarly, after simple calculations it is found that the differential of the
Helmholtz free energy takes the form:

dF ¼ �SdT � PdV þ
X
a

ladNa ð5:28Þ

Differential relationships of the type (5.27) are called Gibbs equations. These
relationships are not regarded as generalizations of the first law, but they refer to
virtual transformations that can take place between equilibrium states. Relations
(5.27) can be extended, by introducing the generalized displacements yi. In this
case, the fundamental relation of thermodynamics has the form (in energy
representation):

U ¼ UðS;V ;Na; y1; y2; . . .Þ ð5:29Þ

and a very small amount of work dW transferred between the system and the
environment during a reversible process can be expressed as:

dW ¼ X1dy1 þX2dy2 þ � � � : ð5:30Þ

where Xi are the so-called generalized forces.

5.3 Fundamental Relations and the Euler Relationship

In summary, it can be said that in the approach initiated by Massieu, all the
information about a closed thermodynamic system is contained within the functions
(potentials) FðT;VÞ and GðP; TÞ. In case of open thermodynamic systems, a full
description requires using several additional variables, namely the particle numbers
of different species, Na, and the chemical potential of these species, la. Therefore, if
the number of species is n, in the description of the thermodynamic system are
involved 2nþ 5 variables, i.e.:

P;T ;V ;U; S;Na; la ða ¼ 1; . . .; nÞ ð5:31Þ

Gibbs argued that among these variables, nþ 2 are independent variables, which
can be chosen arbitrarily. For example, the list of independent variables may consist
of P, T and Naða ¼ 1; . . .; nÞ. The other nþ 3 variables in (5.31) are considered
dependent and their values can be obtained as function of the values of the inde-
pendent variables, either by using theoretical relationships or by experimental
procedures.

The choice of the independent variables is influenced by some practical rea-
sons or by convenience. It should be noted that this choice dictates on the
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thermodynamic potential which should be used. For example, if the nþ 2 inde-
pendent variables are S, V and Naða ¼ 1; . . .; nÞ, then the potential that can be
used is:

U ¼ UðS;V ;NaÞ ða ¼ 1; . . .; nÞ ð5:32Þ

The other nþ 3 dependent variables are determined as follows. Relation (5.32)
allows getting one of these dependent variables while the other nþ 2 dependent
variables are obtained by differentiating the thermodynamic potential:

T ¼ @U
@S

� �
V ;Na

�P ¼ @U
@V

� �
S;Na

; la ¼
@U
@S

� �
S;V ;Nb 6¼a

ða ¼ 1; . . .; 2Þ ð5:33Þ

The above considerations justify why Gibbs has designated the Eq. (5.32) as the
fundamental relationship. The set of independent variables S,V and Naða ¼
1; . . .; nÞ is also called set of natural coordinates. On the other hand, it can be
shown by direct calculation that not every set of nþ 2 independent variables has the
properties of the natural coordinates. For example, if T ;V and Naða ¼ 1; . . .; nÞ are
chosen as independent variables, the entropy S cannot be obtained by differentiation
of UðT;V ;NaÞ ða ¼ 1; . . .; nÞ, but only ð@S=@VÞT ;Na

. Such sets of independent
variables constitute unnatural coordinates.

The Eq. (5.32) is not the only fundamental relationship. A second fundamental
relationship often used is F ¼ FðT ;V ;NaÞ. From this expression one can obtain the
entropy S and the pressure P by using Eqs. (5.12) and (5.13), respectively, while
the chemical potential la is obtained from

la ¼
@F
@Na

� �
T ;V ;Nb 6¼a

ð5:34Þ

Finally, the internal energy is obtained from the relationship U ¼ Fþ TS.
Other fundamental relations often used are G ¼ GðP; T;NaÞ and

H ¼ HðS;P;NaÞ. A fifth fundamental relationship is the Euler relationship:

U � TSþPV �
X
a

laNa ¼ 0 ð5:35Þ

By the differentiation of (5.35) and using (5.27), the Gibbs-Duhem relationship
is found:

�SdT þVdP�
X
a

Nadla ¼ 0 ð5:36Þ
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5.4 Thermodynamic Stability

The theory of the stability of thermodynamic systems was developed by similarity
with the theory of mechanical stability. In this regard, it is useful to recall some
basic ideas on the mechanical equilibrium.

5.4.1 Mechanical Equilibrium

Consider, for simplicity, a discrete mechanical system consisting of a finite number
of particles. The resultant of the forces acting on the particle i is denoted Fi. If the
force Fi is conservative, then there is a scalar potential U so that:

Fi ¼ �riU ð5:37Þ

Assume that the particle i is initially in equilibrium. If the force Fi is null
(Fi ¼ 0), then the particle will remain in equilibrium. From Eq. (5.37) one sees that
riU ¼ 0, which means that U reaches its extreme value. Therefore, at that extreme,
the variation in the function U is null, i.e.:

dU ¼ 0 ð5:38Þ

The classic example is that of a mechanical system consisting of a single small,
heavy ball located inside a spherical cavity. If U is identified in this case with the
gravitational potential energy, the ball finds its equilibrium only when it is at the
bottom of the spherical cavity.

5.4.2 Principles of Extreme in Thermodynamics

It was seen that in mechanics the notion of equilibrium is associated with the
extreme of a potential. By similarity, the same thing happens in thermodynamics.
Next, two examples are presented, which are often used in applications.

5.4.2.1 The Principle of Maximum Entropy

The Principle of Maximum Entropy was deduced by Gibbs starting from the
Clausius inequality. This inequality says that the necessary and sufficient condition
for an isolated thermodynamic system (possibly heterogeneous) to be in
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thermodynamic equilibrium, is that during all virtual variations in the system state
that do not change its energy, the entropy variations are negative or null:

dSU;V ;Na � 0 ð5:39Þ

Assume that a thermodynamic system is in equilibrium state. This state can be of
three kinds, depending on the sign of dSU;V ;Na , as follows:

• Stable equilibrium, if dSU;V ;Na\ 0 for all variations in the neighborhoods
Z around the equilibrium state;

• Neutral equilibrium, if dSU;V ;Na ¼ 0 for certain variations in the neighborhoods
Z around the equilibrium state and dSU;V ;Na\ 0 for the rest of the variations;

• Unstable equilibrium if dSU;V ;Na [ 0 for certain variations in the neighborhoods
around the state of equilibrium.

5.4.2.2 The Principle of Minimum Internal Energy

The Principle of the Minimum Internal Energy is as follows: the necessary and
sufficient condition for an isolated thermodynamic system (possibly heterogeneous)
to reach the thermodynamic equilibrium, is that during all virtual variations in the
system state, that do not change the system entropy, the energy variations are
negative or null:

dUE;V ;Na � 0 ð5:40Þ

In this case, the state of thermodynamic equilibrium of a system is of three kinds,
depending on the sign of dUS;V ;Na , as follows:

• Stable equilibrium, if dUS;V ;Na [ 0 for all variations in the neighborhoods
Z around the equilibrium state;

• Neutral equilibrium, if dUS;V ;Na ¼ 0 for certain variations in the neighborhoods
Z around the equilibrium state and dUS;V ;Na [ 0 for the rest of the variations;

• Unstable equilibrium if dUS;V ;Na\ 0 for certain variations in the neighborhoods
around the state of equilibrium.

5.5 Non-equilibrium Quantities

Thermodynamic systems are found most often in non-equilibrium. The methods of
equilibrium thermodynamics can be used in these situations, as long as the notion of
equilibrium makes sense at least locally. This involves the decomposition of the
system into subsystems which continue to have macroscopic nature, and between
these subsystems the transfer of energy and mass is sufficiently low that they can be
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considered in first approximation as being in equilibrium. One says that the system
obeys the local equilibrium hypothesis, if each of these subsystems can be con-
sidered in equilibrium.

All the extensive quantities can be used for the description of the local ther-
modynamic equilibrium states. Among them, nþ 2 are independent, for example
U;V ;Na or S;V ;Na. By using these independent variables, some intensive quan-
tities can be defined locally, such as the temperature, the pressure and the chemical
potentials.

In addition, the description of the global non-equilibrium state requires the local
definition of some non-equilibrium quantities, denoted a; b; . . .. The
non-equilibrium quantities will be denoted collectively by a. Examples of such
quantities are the deviations of the local temperature, or of the number of particles
Nac in the phase c, relative to the average temperature values, or to the average
number of particles, respectively, corresponding to the state of equilibrium. At
thermodynamic equilibrium, all the non-equilibrium quantities become zero, i.e.
a ¼ 0.

It is concluded that the local thermodynamic equilibrium can be described by
functions such as S(U;V ;Na; a) or UðS;V ;Na; aÞ.

5.6 The Nature of the State of Thermodynamic
Equilibrium

Consider a heterogeneous system in equilibrium. It may be conceptually split into
two subsystems, denoted as first and second, respectively. Part of the first sub-
system is conceptually transferred to the second subsystem. This will change the
volume, the entropy and the particle number of each species, both in the first
subsystem and in the second subsystem. The total system being in equilibrium, the
variations of the volume, entropy and particle number of each species, at the level
of the whole system, will be null, i.e.

dV ¼ dV 0 þ dV 00 ¼ 0

dS ¼ dS0 þ dS00 ¼ 0

dNa ¼ dN 0
a þ dN 00

a ¼ 0

ð5:41Þ

The energy representation will be used. In this case, the following dependencies
can be written:

U0 ¼ U0ðS0;V 0;N 0
aÞ; U00 ¼ U00ðS00;V 00;N 00

a Þ ð5:42Þ

The variation of the internal energy of the total system, dU ¼ dU0 þ dU00, will be
determined next. After elementary calculations one finds:
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dU ¼ @U0

@V 0

� �
0
dV 0 þ @U0

@S0

� �
0
dS0 þ

X
a

@U0

@N 0
a

� �
dN 0

a

þ @U00

@V 00

� �
0
dV 00 þ @U00

@S00

� �
0
dS0 þ

X
a

@U00

@N 00
a

� �
dN 00

a ð5:43Þ

Here, the subscript 0 designates the initial state, before changing the configu-
ration of the two subsystems. In case of the energy representation, the intensive
variables are introduced in the usual way, as derivatives of the internal energy:

@U0

@V 0

� �
0
¼ �P0;

@U0

@S0

� �
0
¼ T 0; l0a ¼

@U0

@N 0
a

� �
0

ð5:44Þ

Similar relationships occur for the quantities of the second subsystem. In
addition, from the Eq. (5.41) it is deduced that dV 00 ¼ �dV 0,dS00 ¼ �dS0 and
dN 00

a ¼ �dN 0
a. Substituting these last results in Eq. (5.43), the variation of the

internal energy dU of the entire system is obtained. For the system to be in stable
thermodynamic equilibrium, the condition dU� 0 is needed, i.e.:

dU ¼ ðP00 � P0ÞdV 0 þ ðT 0 � T 00ÞdS0 þ
X
a

ðl0a � l00aÞdNa � 0 ð5:45Þ

The equilibrium conditions and the stability conditions of the thermodynamic
system will be analyzed one by one. To address the equilibrium conditions, note
that relation (5.45) must be checked for any independent variation of dV 0; dS0; dN 0

a.
Therefore, in order to obey the extreme condition, dU ¼ 0, the following relations
must be fulfilled:

P00 � P0 ¼ 0; T 0 � T 00 ¼ 0; l00a � l0a ¼ 0 ð5:46Þ

The relations (5.46) are the equilibrium conditions for the thermodynamic
system.

To address the stability conditions, first it is denoted by a or b any of the
extensive quantities S;V or Na. Then, one denotes by Ua the derivative of the
internal energy in respect to the quantity a. It was previously shown that, in the new
notation, da00 ¼ �da0 (see relationships (5.41)). Consider, moreover, that
U0

ab ¼ U00
ab. Since at stable equilibrium the internal energy is a minimum, the sta-

bility condition is d2U[ 0. After calculations, which are similar to those necessary
for the deduction of relationship (5.45), one finds:

d2U ¼ 2
1
2

� �X
a

X
b

U0
abda

0db0 [ 0 ð5:47Þ
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Here, the variations da0; db0 refer to dV 0; dS0; dN 0
a. Because these variations are

arbitrary, they may be chosen as being null, except for only one of them. For
different choices of the variations of the extensive quantities, it follows that, in order
that the relationship (5.47) to be fulfilled, one needs that:

@2U
@V2 � 0;

@2U
@S2

� 0;
@2U
@N2

a
� 0 ð5:48a; b; cÞ

The relationships (5.48a, b, c) constitute the conditions for mechanical, thermal
and chemical stability, respectively. Note that a single principle (i.e. the minimum
internal energy principle) has been used to obtain all the three conditions of
stability.

5.7 Other Extreme Principles. Availability Function

Stability of fluid phases can be addressed by using the concept of availability
function. The principle of the minimum of the availability function is stated as
follows. A necessary and sufficient condition for a homogeneous system to be in
equilibrium in the state E0ðU0; S0;V0;Na0Þ is that the parameters T0;R0; la0 exist so
that the availability function A0ðZÞ, defined as follows:

A0ðZÞ � U � T0SþP0V �
X
a

la0Na ð5:49Þ

is null for that state Z ¼ E0, and has non-negative variations of the first order for all
neighboring states ZðU; S;V ;Na; aÞ, whether they are states of equilibrium, or
non-equilibrium states:

A0ðE0Þ ¼ 0; dA0 � 0 ð5:50a; bÞ

Here A0ðE0Þ is a notation for A0ðU0; S0;V0;Na0Þ.

5.8 Another Form of the Stability Condition

The Euler equation (5.35) can be applied successively for two equilibrium states,
EðU; S; T ;V ;P;NaÞ and E0ðU0; S0; T0;V0;P0;Na0Þ, respectively. By subtracting the
obtained expressions, the following result is found:

U � U0 ¼ TS� T0S0 � PV þP0V0 þ
X
a

laNa�
X
a

la0Na0 ð5:51Þ
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Equation (5.51) is replaced in the availability theorem (5.50a, b), applied to the
case of the equilibrium state E, yielding:

SðT � T0Þ � VðP� P0Þþ
X
a

Naðla � la0Þ[ 0 ð5:52Þ

The same reasoning can be applied to the equilibrium state E0. Instead of (5.52) it is
obtained:

S0ðT0 � TÞ � V0ðP0 � PÞþ
X
a

Na0ðla0 � laÞ[ 0 ð5:53Þ

Adding these equations and using the notations dP0 � P0 � P, dT0 � T0 � T , etc.,
it is found that:

dTdS� dPdSþ
X
a

dladNa [ 0 ð5:54Þ

Relation (5.54) is another form of the stability condition for the thermodynamic
system. This result is due to Gibbs.

5.9 Applications for Systems in Contact

The principle of the minimum of the availability function can be used to study the
time evolution of a thermodynamic system in contact with sources (or reservoirs) of
different kinds. The thermodynamic system will be further denoted with K. Sources
(reservoirs) are thermodynamic systems (usually considered to be very large),
whose properties do not change over time, even if they are in contact with other
thermodynamic systems. Common examples of sources are:

• (h) sources of heat, at temperature T0;
• (v) sources of volume, at pressure P0 and temperature T0;
• (a) sources of particulate of species a, at potential chemical la0 and temperature

T0;
• (w) sources of work �W0. This work will be referred to as “special work.” It is of

a different kind than the displacement work (given, in case of reversible pro-
cesses, by the relationship of the type PdV).

The classical cases considered by Gibbs refer to the sources of kind (h) and (v).
In the following it is shown how the availability function can be used in this
context. Any finite change of property will be denoted by D.

One can show that the properties U; S;V and Na of the system K, being in
contact with the above sources, evolve over time in such a way that they satisfy the
following inequality (Baylin 1994):
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DU � T0DSþP0DV �
X
a

la0DNa � �W0 ¼ �DQ0\0 ð5:55Þ

In this relationship DQ0 is a measure of the inequality and represents the lost
work. Relation (5.55) can be expressed by using the availability function as follows:

DA0 � �W0 � 0 ð5:56Þ

It is expected that the availability function decreases during the system evolution
and cancels at equilibrium. In this later case, the system parameters will become
equal with V0;P0 and la0.

In order to demonstrate the relationship (5.55), assume that the total system
(consisting of the system K and the sources with which it is in contact) is isolated.
In this case, the variation of the total system volume and total number of particle
species a is null, i.e.:

DV þDV0 ¼ 0; DNa þDNa0 ¼ 0 ð5:57; 58Þ

Also, the total internal energy of the system is conserved:

DUþDUh þDUv þDUw þ
X
a

DUa ¼ 0 ð5:59Þ

The entropy of the total system satisfies the second law of thermodynamics,
which in mathematical terms has the form:

DSþDSh þDSv þDSw þ
X
a

DSa ¼ T�1
0 DQ0 � 0 ð5:60Þ

The four sources satisfy the following Gibbs equations:

DUh � T0DSh ¼ 0

DUv � T0DSv þP0DV0 ¼ 0

DUa � T0DSa � la0DNa0 ¼ 0

DUw � T0DSw þ �W0 ¼ 0

ð5:61a–dÞ

The calculation continues in the following way. Multiply the Eq. (5.60) by T0
and the result is subtracted from the sum of the four relationships (5.61a–d). The
result is put into a simpler form using (5.57) and (5.58). Finally, one gets the
expected result, which is the relationship (5.55).

If, for the moment, the special work �W0 is ignored, from (5.55) one can derive
some relationships that characterize the time evolution of the systems:
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DSð ÞUVNa
� 0

DUð ÞSVNa
� 0

DFð ÞTVNa
� 0

ð5:62a–cÞ

These relationships, which are consistent with the extreme principles already
presented, highlight the importance of the thermodynamic potentials for the
appropriate description of the trends of processes development.

5.10 Work Potentials

Gibbs was the first to notice that the functions U and F can be used as a measure of
the ability of a thermodynamic system to do work, similarly with the potentials of
the conservative forces in classical mechanics. The following comparison will make
this clearer.

5.10.1 Work Potential in Mechanics

In mechanics, the work W done by a conservative force is linked with the variation
of the potential energy Umec of a system by means of the following relationship,
which is a form of the energy conservation law:

W ¼ �DUmec ð5:63Þ

Remember that, if the mechanical system consists of a single material point, the
work is given by the curvilinear integral:

W ¼
Z

F � dr ð5:64Þ

where dr is the element of trajectory of the material point and F is the force acting
on it. If this force is conservative, one finds that:

F ¼ �rUmec ð5:65Þ

These simple relationships show that the potential energy Umec plays the role of
work potential.
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5.10.2 Potentials of Special Work in Thermodynamics

The special work done on the system obeys the relationship (5.56), i.e. �W0 �DA0.
Therefore, DA0 is the minimum amount of special work to be transferred from the
environment towards a system that initially is in equilibrium, for changing the
system properties with DU;DS, etc.

It is observed, however, that �W0 initially appears in the relationship (5.61d),
which refers to a reversible process. In that relationship, �W0 may be replaced with
�W0, where W0 is the work carried out by the system. In doing so, Eq. (5.56)
becomes W0 ��DA0, which means that the maximum special work that a system
can perform on the environment, when the system exhibits the variations DU;DS,
etc, is �DA0.

It is concluded that the thermodynamic evolution of the same system can be
formulated both by a maximum principle and by a minimum principle:

W0 ��DA0 ¼ �DUþ T0DS� P0DV þ
X
a

la0DNa

�W0 �DA0 ¼ DU � T0DSþP0DV �
X
a

la0DNa

ð5:66; 67Þ

It is important to note that in thermodynamics the availability function A0 is a
measure of the systems ability to transfer work. Therefore, A0 may be assimilated
with a work potential. This potential occurs in relationships (5.66) and (5.67),
which, from a mathematical point of view, are inequalities. In mechanics, the
mechanical work potential Umec appears within an equality (i.e. Eq. (5.63)).

In case that restrictions (constraints) exist, the general relations (5.66) and (5.67)
take different forms, often encountered in practice. For example, when the entropy,
the volume and the number of particles of each species are constant, the relationship
(5.66) becomes:

W0 ��ðDUÞS;V ;Na
ð5:68Þ

If the temperature remains equal to the ambient temperature (T ¼ T0) and the
volume and the number of particles of each species are constant, the relationship
(5.66) becomes:

W0 ��ðDFÞT ;V ;Na
ð5:69Þ

The right side of the relationships (5.68) and (5.69) cancels at equilibrium state,
under the prescribed restrictions (constraints).
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5.10.3 Total Work Potentials

The “special” work does not include the displacement work. The total work
W transferred between the system and the environment can be defined as the sum of
the displacement work and the special work:

W ¼
X
i

P0iDVi þW0 ð5:70Þ

The maximum principle can be reformulated for the total work, starting from the
Eq. (5.66):

W ��DUþ T0DSþ
X
a

la0DNa ð5:71Þ

In the case that restrictions (constraints) exist, the general relationship (5.71)
takes particular forms. For example, when the entropy and the particle number of
each species are constant, the Eq. (5.71) becomes:

W ��ðDUÞS;Na
ð5:72Þ

If the temperature remains equal to the ambient temperature (T ¼ T0) and the
number of particles of each species is constant, the Eq. (5.71) becomes:

W ��ðDFÞT ;Na
ð5:73Þ

In equilibrium state, the right hand side of the relations (5.72) and (5.73) is
canceled. In non-equilibrium state, that right side no longer cancels and relation-
ships (5.72) and (5.73) can be used to define the thermodynamic forces:

XaðUÞ ¼ � @U
@a

� �
S;N

; XaðUÞ ¼ � @F
@a

� �
T ;N

ð5:74a; bÞ

Here a denotes a non-equilibrium variable.

5.11 The Principle of Maximum for Thermally Isolated
Systems

It is assumed that a thermally isolated system, initially is in an unspecified state
(0) and then evolves adiabatically towards a state of equilibrium characterized by
the quantities S, V and Na. During the evolution, the system can exchange work
with the environment. For a thermally isolated system, the first law of thermody-
namics is reduced to:

5.10 Work Potentials 117



W ¼ �DU ð5:75Þ

Denote the final internal energy of the system by UðS;V ;NaÞ. The work per-
formed by the system during the adiabatic transformation is

W ¼ U0 � U S;V ;Nað Þ ð5:76Þ

Consider different final states, having the same volume V and the same number
of particles Na, but having different values of the entropy S. Assume that in all cases
the system starts from the same initial state. The different final states previously
considered correspond to different relaxation processes. Using relation (5.76), one
can calculate the work done by the system during these different relaxation
processes.

From (5.76) one can see that:

@W
@S

� �
V ;N

¼ � @U S;V ;Nað Þ
@S

¼ �T\0 ð5:77Þ

This relationship states that for the same volume V and the same number of particles
Na, the work W decreases if the final value of the entropy S increases. Therefore, to
maximize the work transferred from the system towards the environment, the
relaxation should tend towards a final state of minimum entropy. Since the entropy
of an isolated system cannot decrease, it is concluded that the work can be maxi-
mized by choosing a process that ends with a value of the entropy equal to the
initial value (if such a process is possible).

5.11.1 Connection with Gouy-Stodola Theorem

The previous result, concentrated in the relationship (5.77), is linked to the
Gouy-Stodola theorem, which states that in an adiabatic process during which the
entropy of a system increases with the value DS, the amount of available work of
the environment decreases by the value T0DS, where T0 is the smallest available
temperature.
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Chapter 6
Thermodynamics as a Contact
Geometry Structure

6.1 Contact Manifolds

In the last twenty years, modern mathematical methods, previously employed
successfully in other branches of physics, began to be used in the field of ther-
modynamics. Methods of differential geometry, differential forms and Lie groups
have already gained some authority. They were used previously to systematize
classical mechanics, relativity theory and dynamical systems theory.

The main methods that will be considered here are those that use the techniques
of contact geometries (Mrugala 1978, 1984, 1993, 2000). Recently, Poisson
geometries and Jacobi geometries have been also used.

The chapter closely follows the excellent presentation by Mrugala (2000). The
fundamental mathematical concept that underlies the usage of any of these
geometries in thermodynamics is the thermodynamic phase space (TPS). For a
thermodynamic system with n degrees of freedom, the TPS has the dimension
2nþ 1, being a manifold endowed with a contact structure as defined by a Gibbs
1-form h, in which all parameters are independent.

The contact structure allows the introduction of a metric G over TPS. The
thermodynamics significance of such metric is not clear so far. The metric G can be
reduced for a Gibbs space of dimension nþ 1. This approach will not be discussed
here. Also, the metric G can be reduced to a n-dimensional Legendre submanifold
S of the TPS. From the physical point of view, S represents different states of
several, possibly different, thermodynamic systems.

Several results of contact geometry are reminded now. They will be used later.
A 2nþ 1-dimensional manifold is called contact manifold if it allows the exis-

tence of a differential 1-form h with the property that:

h ^ dhð Þn 6¼ 0 ð6:1Þ
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where ^ represents the exterior product and ðdhÞn � dh ^ ðn timesÞ ^ dh.
Condition (6.1) states that h is non-degenerate. The form h is called contact form.

According to the theorem of Darboux, there is a canonical (contact) local
coordinate system ðx0; xi; piÞ, i ¼ 1; � � � ; n, in which h has the simplest canonical
form:

h � dx0 þ pidx
i ði ¼ 1; � � � ; nÞ ð6:2Þ

In this expression, and further, the Einstein summation convention is used.
The condition of non-degeneracy (6.1) is interpreted geometrically in many

ways, but using Eq. (6.2) it is deduced that h ^ dhð Þn represents the volume form
on the manifold M.

A 1- form h defines on a manifold M a 2n-dimensional distribution D, i.e. a field
of tangent 2n-dimensional hyperplanes Dm, so that the following relations can be
written:

D ¼ U
m2M

Dm; Dm ¼ X 2 TmM; h Xð Þ ¼ 0f g ð6:3Þ

where X denotes a field of vectors on M and TmM is the tangent space to M in a
point m 2 M. Locally, D is given by 2n vector fields, for example:

Pk ¼ @

@pk
; vk ¼

@

@xk
� pk

@

@x0
; ðk ¼ 1; . . .; nÞ ð6:4Þ

The distribution D is called contact distribution or contact structure on the
manifold M.

The contact structure D is not given by a unique 1-form h. If q is a function that
does not vanish on M, the 1-form qh satisfies the degeneration condition (6.1) and
defines the same field D of hyperplanes.

In thermodynamics, the most important role is played by the maximum
dimensional integral submanifolds of the contact distribution D, which are called
Legendre submanifolds, denoted further on by S. Their name comes from the fact
that the Legendre transformations preserve the submanifolds S, that these trans-
forms map any Legendre manifold onto itself. From the thermodynamic point of
view, the dimension of any Legendre submanifold coincides with the number of
thermodynamic degrees of freedom.

The next theorem states that from a geometric point of view, the condition (6.1)
means that D is maximally non-integrable, i.e. the dimension of its integral sub-
manifolds cannot exceed n.

Theorem 6.1 Let M; hð Þ be a contact manifold with 2nþ 1 dimensions. The
maximal dimension of the integral submanifolds of the contact distribution D (or,
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equivalently, of the integral submanifolds of h ¼ 0) is n. The proof of this theorem
is found in Mrugala (2000).

The Legendre submanifolds can be locally described by using a generating
function U, according to the following theorem.

Theorem 6.2 For any partition I [ J of the set of indices i; . . .; nf g in two disjoint
subsets I and J, and for a function U pI ;XJ

� �
of n variables pi; i 2 I and x j; j 2 J,

the nþ 1 equations:

xi ¼ @U
@pi

; pj ¼ � @U
@x j

x0 ¼ U� pi
@U
@pi

ð6:6Þ

define a Legendre submanifold S of M2nþ 1. Conversely, any Legendre submanifold
of M; hð Þ, in the neighborhood of any point, is defined by these equations, for at
least one of the 2n possible choices of the subset I. The proof of this theorem is
found in Mrugala (2000).

U pI ; xJð Þ is called generating function for the Legendre submanifolds, because all
the variables pJ , xI and x0 are completely defined by U and the derivatives of U. It is
easy to see the connection between the solutions (6.6) and the Legendre
transformations.

6.1.1 Formulation of the First Law of Thermodynamics

The first law of thermodynamics can be expressed in terms of the Legendre sub-
manifolds as follows:

Any thermodynamic system in equilibrium is represented in a TPS ðM; hÞ by
the Legendre submanifolds of the equation h ¼ 0.

It is obvious that a thermodynamic system is not represented by a single
Legendre manifold. It will be represented by a n-dimensional surface composed of
fragments of different Legendre submanifolds, one piece for each thermodynamics
phase. Through every point in M there is an infinity of Legendre submanifolds.
Only some of these submanifolds correspond to real thermodynamic systems. From
Theorem 6.2 one sees that in the contact coordinates (see Eq. (6.2)), a given
Legendre manifold S can be represented, in principle, in an equivalent manner,
by 2n functions U of n variables. These functions correspond to different thermo-
dynamic potentials. Therefore, for given generating function U, the system of
Eq. (6.6) can be interpreted as consisting of a fundamental relationship and
n thermodynamic equations of state.
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6.1.2 The Dual Approach

There is a single one-dimensional (1D) characteristic distribution, dual of D,
denoted by N, defined by a global characteristic vector field n, so that:

indh ¼ 0; inh ¼ 1 or in h ^ dhð Þnð Þ ¼ dhð Þnð Þ ð6:7Þ

where in is the interior (internal, inner) product (contraction) with n. In contact
coordinates, the global characteristic vector field is:

n ¼ @

@x0
ð6:8Þ

Thus, TM ¼ D� N where TM is the tangent bundle on M and D and N are two
complementary vector subbundles of TM. The fields (6.4) and (6.8) satisfy the
following commutation relations:

vi; vj
� � ¼ Pi;Pj

� � ¼ vi; n½ � ¼ Pi; n½ � ¼ 0; vi;Pj
� � ¼ dijn ð6:9Þ

From the last relationship (6.9) one sees that D is not involutive.

6.2 Contact Transformations and Contact Vector Fields

Definition 6.1 A diffeomorphism k : M ! M is said to be a contact diffeomor-
phism if it preserves the contact distribution D of M, i.e. if k checks

k�h ¼ qh; k 2 C ð6:10Þ

where q is a function which does not cancel on M, k� is the pull-back map induced
by k and C is a group of diffeomorphisms.

Note that k�h is a contact form, because it is non-degenerate, i.e.
qh ^ dðqhð ÞÞn ¼ qnþ 1h ^ ðdhÞn 6¼ 0. Therefore, k preserves the contact structure,
but does not preserve the contact form. The diffeomorphisms with q ¼ 1 preserve
the contact form, too, and are called strict contact transformations.

Similarly, by a one-parameter group of continuous contact transformations one
means a subgroup of the maps kt : M ! M of C, that preserves the contact dis-
tribution D, i.e.:

k�t h ¼ qth ð6:11Þ

where qt is a function that does not cancel on M.
Define X as a generator of this one-parameter subgroup of C, that is X is given by

the relationships:
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Xfð Þ mð Þ ¼ d
dt
jt¼0 k�t f ðmÞ
� � ¼ d

dt
jt¼0 f kt mð Þð Þ½ �; ð8m 2 MÞ ð6:12Þ

for any function f on M. Therefore X is a vector field associated with kt.
The definition (6.11) of kt can be expressed in terms of X in the following way:

LXh � d
dt
jt¼0ðk�t hÞ ¼ sth ð6:13Þ

where st ¼ dqt=dt and LX is a Lie derivative. What matters here is that LXh is a
product of h with a function st on M (if st is zero, it is said that the 1-form h is
invariant). This justifies the Definition 6.2.

Definition 6.2 A vector field X on M is called contact vector field if it preserves the
contact structure D or, equivalently, if

LXh ¼ sh; adica LXh ^ h ¼ 0 ð6:14Þ

One can prove that any contact vector field forms a Lie algebra and that it does
not belong to the contact distribution.

Now, consider M as a one-dimensional principal fiber bundle, its fibers being the
integral curves of n. Then h becomes a connection form and D and N are called
horizontal and vertical distributions, respectively.

Any vector X can be decomposed into its horizontal and vertical components, hX
and vX, respectively:

X ¼ vX þ hX; where vX � hðXÞn and hX ¼ X � vX ð6:15Þ

This allows the introduction of covariant differentiation on M. For a function f of
real variable on M, its covariant differential Df is defined concisely by the two
following relationships that may be considered equivalent:

Df Xð Þ ¼ df hXð Þ sau Df ¼ df� nfð Þh ð6:16Þ

for any vector field X on M.

Definition 6.3 By contact vector field associated with a function f on M, it is
understood a vector field Xf defined by:

iXf h � h Xf
� � ¼ f ; iXf dh ¼ �Df ð6:17Þ

These two equations define the horizontal component hXf � �Xf and the vertical
component vXf , respectively, of Xf :

Xf ¼ hXf þ vXf ¼ Xf þ f n ð6:18Þ
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One can see that, in contact coordinates:

Xf ¼ @f
@pi

@

@xi
þ pi

@f
@x0

� @f
@xi

� �
@

@pi
þ f � pi

@f
@pi

� �
@

@x0

�Xf ¼ @f
@pi

@

@xi
þ pi

@f
@x0

� @f
@xi

� �
@

@pi
� pi

@f
@pi

@

@x0

ð6:19; 20Þ

Note that Xf and �Xf are combinations of the vector fields (6.4) and n:

Xf ¼ Pifð Þvi � vifð ÞPi þ f n

Xf ¼ Pifð Þvi � vifð ÞPi
ð6:21Þ

From relations (6.21) it is clear that �Xf belongs to the contact distribution while Xf

does not belong. Note that the definitions (6.21) depend on the coordinates, while
the definition (6.3) does not depend on coordinates.

From the definition of Xf and the property of the Lie derivative, LX ¼ iXdþ diX ,
it is seen that Xf is a contact vector field, because the following relationships are
valid:

LXf h ¼ d iXf hþ iXf dh ¼ df � Df ¼ nfð Þh� sh ð6:22Þ

This shows that Xf is a generator of a continuous contact transformation on M with
s ¼ nf . In contrast, �Xf is not a contact vector field, because

LXf h ¼ d iXfhþ iXfdh ¼ �Df ¼ �df þ nfð Þh 6¼ sh ð6:23Þ

Moreover, the field vectors Xf form a Lie algebra, because

L Xf ;Xg½ �h ¼ LXf ; LXg

� �
h ¼ LXf ngð Þhð Þ � LXg nfð Þhð Þ

¼ LXf ngð Þ � LXg nfð Þ� �
h� sh

ð6:24Þ

Instead, the fields �Xf do not form a Lie algebra. Both fields, Xf and �Xf , can be used
to define in thermodynamics the Poisson, Jacobi and other, weaker, structures.

In local coordinates, or in a coordinate independent manner, one can prove that
Xf and �Xf have the following important properties:

ðaÞ Xc ¼ cn; X1 ¼ nð Þ; Xc ¼ 0 c ¼ constantð Þ
ðbÞ X�f ¼ �Xf ; X�f ¼ �Xf

ðcÞ Xf þ g ¼ Xf þXg; Xf þ g ¼ Xf þXg

ðdÞ Xfg ¼ fXg þ gXf � fgn; Xfg ¼ f Xg þ gXf

ðeÞ Xf f ¼ f nfð Þ; Xf f ¼ 0
ðfÞ Xf f n ¼ nf n nfð Þ

ð6:25Þ
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Comparing Xf with the general form of a vector field X on M

X ¼ _xi
@

@xi
þ _pi

@

@pi
þ _x0

@

@x0
ð6:26Þ

one obtains the following 2nþ 1 differential equations:

_xi ¼ @f
@pi

� Pif

_pi ¼ pi
@f
@x0

� @f
@xi

� �vif

_x0 ¼ f � pi
@f
@pi

� f � piPif

ð6:27Þ

Therefore, the flow induced by Xf represents a kind of contact Hamilton equations,
having a contact Hamiltonian f. From (6.27) we see that, unlike the Hamiltonian
flows in classical mechanics, the contact Hamiltonian flows depend not only on the
derivatives of f, but also on f.

An important property of the contact Hamiltonian flows can be deduced from the
property (6.25e) of Xf . This can be rewritten as Xf f � df Xf

� � ¼ f ðnf Þ, which
means that in the general case Xf is not tangent to all surfaces of constant level
f ¼ constant. Xf is tangent only to one constant level surface, namely to the surface
on which f ¼ 0.

Moreover, if it happens that a Legendre manifold S is contained by the surface of
zero level of f, S 	 f�1ð0Þ, then Xf is tangent to S. In this case, the contact Hamilton
equations can be interpreted as describing a thermodynamic process.

6.3 Brackets Structures in Thermodynamics

First, remind some notions of classical mechanics and classical Poisson brackets.
In conservative Hamiltonian mechanics, the basic concept is represented by a
2n-dimensional phase space P2n endowed with a closed differential 2-form
x ðxn 6¼ 0; dx ¼ 0Þ. The pair ðP2n;xÞ is called symplectic manifold and x is
called symplectic form.

According to Darboux theorem, on P2n there is a local canonical coordinate
system ðpi; qiÞ in which x ¼ dpi ^ dqi. The dynamics of a mechanical system with
a given Hamilton function Hðp; qÞ is governed by a Hamiltonian vector field XH ,
defined by H and x according with the formula iXHx ¼ �dH where i is the interior
product. In canonical coordinates XH is given by:
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XH ¼ @H
@pi

@

@qi
� @H

@qi
@

@pi
ð6:28Þ

This means that the Hamilton equations of the system (the Hamilton flow) have the
form:

_qi ¼ @H
@pi

; _pi ¼ � @H
@qi

ð6:29Þ

One can prove that x is invariant with respect to XH , i.e. the Lie derivative of x
is zero:

LXHx ¼ 0 ð6:30Þ

For any two smooth functions f and g on P it can be defined, in several
equivalent ways, the following Poisson bracket f ; gf g:

ff ; gg ¼ xðXf ;XgÞ ¼ Xf g ¼ LXf g ð6:31Þ

The same Poisson brackets can be defined by using canonical coordinates, as
follows:

ff ; gg ¼ @f
@pi

@g
@qi

� @f
@qi

@g
@pi

ð6:32Þ

Definition 6.4 A Poisson bracket on a smooth manifold N is a map ;f g :
C1ðN;RÞ 
 C1ðN;RÞ ! C1ðN;RÞ on the space of real functions C1 on N, with
the following properties (the dimension r of N is arbitrary):

(1) bilinearity, i.e. ff ; kg1 þ lg2g ¼ kff ; g1gþ lff ; g2g takes place, whatever
k; l 2 R;

(2) antisimmetry (skew-symmetry), i.e. ff ; gg ¼ �fg; f g;
(3) Jacobi identity, i.e. ff ; fg; hgg ¼ fg; fh; f ggþfh; fh; ggg ¼ 0;
(4) Leibniz rule, i.e. ff ; ghg ¼ gff ; hgþff ; ggh.

It is said that ;f g defines a Poisson structure on N, and that the pair N; ;f gð Þ is
a Poisson manifold.

It can be shown, using the Definition 6.4, that in local coordinates y1; . . .; yrð Þ the
Poisson bracket has the form:

ff ; gg ¼
Xr
k;l¼1

JklðyÞ @f
@yk

@g
@yl

¼
Xr
k;l¼1

fyk; ylg @f
@yk

@g
@yl

ð6:33Þ

where JklðyÞ are certain functions on N, that check Definition 6.4. From (6.33) one
sees that the Poisson bracket f ; gf g is known, if the Poisson brackets for the local
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coordinates are known. Moreover, f and g enters in the Poisson brackets only
through their first order partial derivatives.

According with Darboux theorem, there is on N a canonical system of local
coordinates ðp1; . . .; pn; q1; . . .; qn; z1; . . .; zhÞ, in which:

ff ; gg ¼
Xn
k;l¼1

ð @f
@pk

@q
@ql

� @f
@qk

@g
@pl

Þ ð2nþ h ¼ rÞ ð6:34Þ

The Poisson manifolds form a larger class than that of the symplectic manifolds,
since N is not required to be of even dimension. The Poisson brackets can be
degenerated for any dimension of N. This can be seen from (6.33) and (6.34).

Definition 6.5 A Jacoby bracket on a differential manifold N is a map ;f g :
C1ðN;RÞ 
 C1ðN;RÞ ! C1ðN;RÞ on the space of real functions C1 on N,
having the first three properties of Poisson bracket but with the fourth property (the
Leibniz rule) replaced by the weaker condition:

ð40Þ Supp f ; gf g 	 Supp f \ Supp g

Any Poisson structure on the contact manifold M; hð Þ must be degenerated, since
the dimension of M is 2nþ 1. On M; hð Þ one can define other algebraic structures,
less symmetric than the Poisson brackets.

Definition 6.6 On a contact manifold M; hð Þ, the following brackets can be defined:
(a) Jacobi brackets:

ff ; gg ¼ hð½Xf ;Xg�Þ ¼ Xf ðgÞ � fnf gg
¼ �dhðXf ;XgÞþ f ðngÞ � gðnf Þ ð6:35Þ

(b) Cartan brackets

½f ; g� ¼ �Xf ðgÞ ¼ �dhðXf ;XgÞ ¼ �dhð�Xf ; �XgÞ ð6:36Þ

(c) Lagrange brackets

ðf ; gÞ ¼ �Xf ðgÞ ¼ ff ; ggþ gfnf g ¼ ½f ; g� þ f ðngÞ ð6:37Þ

These brackets can be defined in terms of the vector fields Pi; vi and n as
follows:

ff ; gg ¼ ðPif Þvig� ðvif ÞPigþ f ng� gnf ;

½f ; g� ¼ ðPif Þvig� ðvif ÞPig

ðf ; gÞ ¼ ðPif Þvig� ðvif ÞPigþ f ng

ð6:38Þ
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The latter relationships are useful because they highlight the symmetry prop-
erties of the brackets. The three brackets can be defined in local coordinates, too:

f ; gf g ¼ @f
@pi

@g
@xi

� @f
@xi

@g
@pi

þ pi
@f
@x0

@g
@pi

� @f
@pi

@g
@x0

� �

þ f
@g
@x0

� g
@f
@x0

f ; g½ � ¼ @f
@pi

@g
@xi

� @f
@xi

@g
@pi

þ pi
@f
@x0

@g
@pi

� @f
@pi

@g
@x0

� �

f ; gð Þ ¼ @f
@pi

@g
@xi

� @f
@xi

@g
@pi

þ pi
@f
@x0

@g
@pi

� @f
@pi

@g
@x0

� �
þ f

@g
@x0

ð6:39−41Þ

Remark 6.1 In the subspace C1
0 ðM;RÞ 	 C1ðM;RÞ of the first integrals of n, i.e.

for f and g so that the following relations take place:

nf � Lnf ¼ ng � Lng ¼ 0; ð6:42Þ

all these brackets are reduced to the standard Poisson brackets

ff ; ggdh ¼ �dhðXf ;XgÞ ð6:43Þ

This can be demonstrated with the help of the local coordinates representation:

f ; gf g ¼ f ; g½ � ¼ f ; gð Þ � f ; gf gdh¼
@f
@pi

@g
@xi

� @f
@xi

@g
@pi

ð6:44Þ

From the local expressions of these brackets it is observed that:

• ;f g has all the properties of the Poisson bracket, but the Leibniz rule;
• ;½ � does not obey the Jacobi identity;
• ;ð Þ is not antisymmetric and does not obey the Jacobi identity;
• ;ð Þ is bilinear and obey the Leibniz rule, but only in the second entry;
• only ;ð Þ produces directly a flow contact Hamiltonian because the components

Xf are equal to:

_xi ¼ ðf ; xiÞ; _pi ¼ ðf ; piÞ; _x0 ¼ ðf ; x0Þ ð6:45Þ

The general relations presented in this section will be used in applications in the
next section.
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6.4 Examples of Contact Flows in Thermodynamics

In thermodynamics, the manifold M of the previous section is usually a subset of
R2nþ 1. In the energy representation (in which internal energy UðS;VÞ is a function
of entropy and volume), the following correspondence between the variables of
Sect. 6.3 and the thermodynamic quantities exists:

ðx0; x1; . . .; xn; p1; . . .; pnÞ
, ðU; S;V ;N1; . . .;Nn�2; �T ;P;�l1; . . .;�ln�2Þ

ð6:46Þ

Also, the differential 1-form h is given by:

h ¼ dU � TdSþPdV � lkdN
k ðk ¼ 1; . . .; n� 2Þ ð6:47Þ

The 2nþ 1 variables are assumed independent, except the case when restriction to a
Legendre submanifold is made.

The entropy representation SðU;VÞ can be also used, the correspondence
between the variables in Sect. 6.3 and thermodynamic quantities being easy to
establish.

The obvious applications of Xf in thermodynamics are:

• Xf induces a continuous contact transformation of M, i.e. a map of the manifold
M on itself, so LXf h ¼ ðnf Þh� h;

• As mentioned, Xf or the bracket ;ð Þ allows to find the thermodynamic contact
Hamiltonian equations _xi ¼ ðf ; xiÞ, _pi ¼ ðf ; piÞ and _x0 ¼ ðf ; x0Þ;

• ðf ; gÞ ¼ Xf g ¼ LXf g allows finding first integrals of the flow induced by Xf . If,
ðf ; gÞ ¼ 0 and ðf ; hÞ ¼ 0, then ðf ; ghÞ ¼ 0.

For applications, the following theorem is important, whose demonstration can
be found in Mrugala (2000).

Theorem 6.3 Assume S is a Legendre submanifold of a contact manifold ðM; hÞ.
Xf is the tangent to S if and only if f cancels on S, i.e. S 	 f�1ð0Þ.

Further examples will be given about the physical meaning of Xf . Also, the
associated contact Hamilton equations will be built. A simple thermodynamic
system is considered, characterized by usual thermodynamic quantities and, in
addition, by the constant R (which is the perfect gas constant).

Example 6.1 For f ¼ U � TSþRNT � lN, by using (6.19), (6.45) and (6.47) one
finds:

Xf ¼ ðS� RNÞ @

@S
þN

@

@N
þP

@

@P
þRT

@

@l
þU

@

@U
ð6:48Þ
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and the contact Hamilton Eq. (6.27) have the form:

_T ¼ _V ¼ 0; _P ¼ P; _l ¼ RT ; _S ¼ S� RN; _N ¼ N; _U ¼ U ð6:49Þ

Their integral curves are given by:

T ¼ T0; P ¼ P0e
t; l ¼ RT0tþ l0

S ¼ ðS0 � RN0tÞet; V ¼ V0; N ¼ N0e
t; U ¼ U0e

t ð6:50Þ

For an ideal gas f ¼ 0. Then, Xf is tangent to the Legendre submanifold S which
represents this ideal gas and describes a “thermodynamic process” at constant
volume V0 and constant temperature T0. It is easy to verify that this “process”
preserves all thermodynamic relationships for ideal gases, such as:

PV ¼ NRT ; U ¼ 3
2
NRT ; U ¼ TS� PV þ lN ð6:51Þ

Example 6.2 For f ¼ NRT � ð2=5ÞTS� ð2=5ÞlN, one finds:

Xf ¼ 2
5
S� RN

� �
@

@S
þ 2

5
N

@

@N
� 2
5
T

@

@T
þ RT � 2

5
l

� �
@

@l
ð6:52Þ

The integral curves of Xf take the form:

S ¼ ðS0 � RN0tÞe2t=5; V ¼ V0; N ¼ N0e
2t=5;

T ¼ T0e
�2t=5; P ¼ P0; l ¼ ðl0 þRT0tÞe�2t=5; U ¼ U0

ð6:53Þ

These relationships describe a “process” which is isobaric, isochoric and isoener-
getic. Note that relations (6.51) keep their validity.

In Examples 6.1 and 6.2, the functions f were chosen so that the Legendre
submanifolds S of the perfect gas are placed on the level hypersurfaces f�1ð0Þ.
Consequently, Xf is tangent to S and could be treated as a “thermodynamic pro-
cess”. The situation is different if S is not placed on f�1ð0Þ. In the following
examples Xf is not tangent to S and therefore cannot be treated as a generator of a
thermodynamic process. Rather, Xf can be considered as a generator for a
one-parameter family of thermodynamic systems.

Example 6.3 Assume that f is an affine function of the intensive parameters:
f ¼ aþ bipi. Then:

_xi ¼ bi; _pi ¼ 0; _x0 ¼ a ð6:54Þ
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and, as a consequence:

xi ¼ xi0 þ bit; pi ¼ pi0; x0 ¼ x00 þ at ð6:55Þ

Therefore, the intensive parameters are kept constant while the extensive parame-
ters are linear functions of t. None of the Eq. (6.51) is kept in this case. Instead, Xf

generates a continuous one-parameter family of thermodynamic systems (or, in
other words, a one-parameter family of Legendre submanifolds St). A remarkable
situation appears for f ¼ bP. Then V ¼ V0 þ bt and all other parameters are fixed.
For a fixed value of b, St represents a one-parameter family of hard spheres gases.

Example 6.4 If f ¼ aþ bixi is an affine function of extensive parameter, then Xf

belongs to a class of contact vector fields. The integral curves of Xf take the form:

_xi ¼ xi0; _pi ¼ pi0 � bit; _x0 ¼ x00 þðaþ bix
i
0Þt ð6:56Þ

and they do not represent a thermodynamic process. In this case, the physical
meaning of Xf is not clear.

Example 6.5 Assume that f ¼ x0 � /ðx1; � � � ; xnÞ. Then, the integral curves of Xf

are:

_xi ¼ 0; _pi ¼ pi þ @/
@xi

; _x0 ¼ x0 � / ð6:57Þ

In this case Xf produces a one-parameter family of Legendre submanifolds St, for a
given manifold S. Assume that /ðx1; . . .; xnÞ is such that x0 ¼ /ðx1; � � � ; xnÞ rep-
resents the fundamental relation of the thermodynamic system. Then Xf

��
S¼ 0 and,

of course, S is preserved.

Example 6.6 Assume that f1 ¼ bP, with b a non-negative constant; then the integral
curves of Xf1 ¼ b@=@V are so that all parameters are preserved, except the volume
V, that changes according with the relationship V ¼ V0 þ bt. Therefore, Xf1 maps an
ideal gas into a gas of hard spheres without interactions.

If f2 ¼ �aV�1 ða[ 0Þ, the integral curves of the field

Xf2 ¼ � a
V

@

@U
� a
V2

@

@P
ð6:58Þ

are so that (the new parameter s is to be noticed):

U ¼ U0 � a
V0

s; P ¼ P0 � a
V2
0
s ð6:59Þ
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while all other parameters are preserved. It can be said that Xf2 maps a perfect gas
into a gas of point-like particles that interact each other.

If one takes f ¼ f1 þ f2 ¼ bP� aV�1, the integral curves of Xf are so that T ; S;N
and l do not change, while the following relationships occur

V ¼ V0 þ bt; U ¼ U0 � a
b
ln
V0 þ bt
V0

; P ¼ P0 � at
V0ðV0 þ btÞ ð6:60Þ

The equation of state of the perfect gas (P0V0 ¼ N0RT0) is no longer conserved.
It turns into:

ðPþ at
VðV � btÞÞðV � btÞ ¼ NRT ð6:61Þ

which, for t ¼ 1 resembles the Van der Waals equation of state. For fixed a and
b one obtains a family of one-parameter Van der Waals gases.

Example 6.7 Two other forms of the Van der Waals gas are obtained if, instead of a
transformation induced by Xf1 þ f2 , two consecutive transformations are assumed:
that of Xf1 , followed by that of Xf2 , and vice versa. Two different two-parameter
transformations are obtained, since the transformations induced by f1 and f2 do not
commute. This can be seen from the Lie bracket:

Xf1 ;Xf2

� � ¼ b
@

@V
;� a

V
@

@U
� a
V2

@

@P

	 

¼ ab

V2

@

@U
þ 2ab

V3

@

@P
6¼ 0 ð6:62Þ

or from the Jacobi bracket (6.39)

f1; f2f g ¼ bP;� a
V

n o
¼ @f1

@P
@f2
@V

¼ ab
V2 6¼ 0 ð6:63Þ

In case Xf1 is followed by Xf2 , instead of (6.61) a two-parameter family of
equations of state is obtained:

Pþ a
V2 s

� �
ðV � btÞ ¼ NRT ð6:64Þ

A different result is obtained if Xf2 is followed by Xf1 :

Pþ a

ðV � btÞ2 s
 !

ðV � btÞ ¼ NRT ð6:65Þ

Equation (6.64) reproduces exactly the Van der Waals equation of state.
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Chapter 7
Thermodynamic Distance

The distance between two thermodynamic states can be defined in several ways.
An approach that uses statistical tools is presented in the following (Diósi and
Salamon 2000).

7.1 Classical Theory of Statistical Distance

Consider discrete classical statistical ensembles. They are parameterized by the
normalized probability distributions p ¼ ðp1; . . .; pk; . . .Þ. The space of parameters
is the hyperplane: X

k

pk ¼ 1; ðpk � 0Þ ð7:1Þ

An alternative parametrization c ¼ ðc1; . . .; ck; . . .Þ can be introduced, where the

components of the vector c are the square roots of the probabilities ck ¼ p1=2k for
k ¼ 1; 2; . . .. Then, the space of parameters (7.1) becomes spherical:

jjcjj ¼ 1; ck � 0 ð7:2Þ

i.e. by varying the components of the vector c, a sector is generated on the surface
of the unit hypersphere.

In practice, the probabilities pk represent the relative frequencies xk of some
events of a given sample. The statistical distinguishability of the ensembles requires
that the probabilities (7.1) are treated as relative frequencies in a larger sample of
dimension N.
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7.2 Parameterized Statistics

Assume that the statistical ensembles of probability distribution p are parameterized
by a finite number of parameters y ¼ ðy1; . . .; ynÞ. These distributions represent a
n-dimensional submanifold on the hypersurface of the sphere (7.2) and this
hypersurface does not inherit a Euclidean geometry but a Riemannian geometry.
The metric and the curvature that can be attached to this Riemannian geometry
depend on y.

The distance between two elements, pðyiÞ and pðyf Þ, must be measured along a
path that entirely belongs to the submanifold whose distribution is described by y.
The distance dl between infinitely close elements remains the same. If the elements
are y and yþ dy, it can be shown that:

dl ¼ 2N1=2 dck k ð7:3Þ

where

dc ¼
Xn
k¼1

@c
@yk

dyk ð7:4Þ

In the space of the parameters y, the following Riemannian metric, gikðyÞ, can be
defined:

gik ¼ 4N
X
r

@cr
@yi

@cr
@yk

ð7:5Þ

In this case, the infinitesimal statistical distance (7.3) can be written in standard
Riemannian form:

dl ¼
Xn
i¼1

Xn
k¼1

gikðyÞdyidyk
 !1=2

ð7:6Þ

These equations describe a Riemannian geometry on the manifold of the
parameterized discrete distributions pðyÞ. The expressions can be rewritten by using
probability distributions. In this case, the statistical metric (7.5) is:

gikðyÞ ¼ 4N
X
r

@cr
@yi

@cr
@yk

¼ N
X
r

pr
@ ln pr
@yi

@ ln pr
@yk

ð7:7Þ
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The compound forms of this expression are:

gikðyÞ ¼ N\
@ ln pðyÞ

@yi
@ ln pðyÞ

@yk
[ ¼ �N\

@2 ln pðyÞ
@yi@yh

[ ð7:8Þ

where \ [ represent expectation values, calculated by using the probability
distribution pðyÞ.

The earlier expressions have applicability in the case of continuous distributions.
Let pðC; yÞ be the probability distribution of the continuous random variables C,
depending on the continuous parameters y. The normalization condition for the
probability is:

Z
pðC; yÞdC ¼ 1 ð7:9Þ

Equation (7.8) will have the following explicit form:

gikðyÞ ¼ �N
Z

@2 ln pðC; yÞ
@yi@yk

pðC; yÞdC ð7:10Þ

7.3 Gibbs Statistics and Thermodynamics

Phenomenological thermodynamics can be derived from the statistical physics of
particle systems. Consider a macroscopic system containing M moles of substance.
If the system is in equilibrium, then its state C in the phase space is characterized by
the probability distribution:

pðC; yÞ ¼ exp �UðyÞ � yFðCÞ½ � ð7:11Þ

where y ¼ ðy1; . . .; ynÞ are intensive parameters and FðCÞ ¼ ðF1ðCÞ; . . .;FnðCÞÞ are
conjugated quantities that are conserved during the system motion. The function
UðyÞ ensures the fulfillment of the normalization condition (7.9).

When the quantity M ! 1, the ratio UðyÞ=M must converge towards the
phenomenological thermodynamic potential uðyÞ, per mole of system:

UðyÞ
M

!
M!1

uðyÞ ð7:12Þ

This is the so-called thermodynamic limit, which is the essence of statistical
theory of Gibbs.
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Compute now the statistical matrix of the Gibbs ensembles. Substituting (7.11)
in (7.8), one finds:

gikðyÞ ¼ N
@2UðyÞ
@yi@yk

ð7:13Þ

If the system is large enough, the thermodynamic limit is valid and U can be
replaced in (7.13) by Mu. This makes appearing a factor MN in the equation. Next,
M is “absorbed” in N to yield:

gikðyÞ ¼ N
@2uðyÞ
@yi@yk

ð7:14Þ

This metric determines the statistical distance between different Gibbs ensem-
bles, for different parameters y. It is expressed in terms of the second derivatives of
the thermodynamic potential.

An important aspect should be emphasized: the concept of statistical distance has
induced the concept of distance between thermodynamic states. This last distance
was previously used by Weinhold (1975) and Ruppeiner (1995).

It is instructive to get the Riemann metric by starting from the extensive
parameters xk ¼ �@u=@yk ðk ¼ 1; . . .; nÞ, instead of starting from the intensive
parameters. The convention is that the intensive parameters have high indices
(superscripts) and the extensive parameters have low indices (subscripts). Therefore
the metric tensor will have low indices for the intensive parameters and high indices
for the extensive parameters. The result is:

gikðxÞ ¼ �N
@2sðxÞ
@xi@xk

ð7:15Þ

Here sðxÞ is the function of specific entropy, related to the specific thermody-
namic potential uðyÞ by the Legendre transformation:

s ¼ x � y� u ð7:16Þ

The metric (7.15) can be called macroscopic, since it consists of second
derivatives of the macroscopic entropy, with respect to the extensive variables of
the macroscopic system. Note that the matrix of the metric contains second order
derivatives, in both (7.14) and (7.15). This is true only for the entropy and its
complete Legendre transformation, not for any partial Legendre transformations.

Next, briefly remind some terminological conventions. An extensive specific
quantity is obtained by dividing the corresponding extensive quantity by the
number of moles. Extensive density (in short, density), is called the corresponding
extensive quantity divided by the volume. For simple systems in equilibrium, the
number of independent extensive parameters exceeds by one the number of the
specific extensive quantities.
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It is useful to have a convenient expression for the metric, in terms of the
extensive macroscopic variables Xk ¼ Nxk ðk ¼ 1; . . .; nÞ and Xnþ 1 ¼ N, instead of
the specific extensive parameters s; x1; . . .xn. From (7.15) it is obtained:

gikðXÞ ¼ � @2SðXÞ
@Xi@Xk

ð7:17Þ

where SðXÞ ¼ NsðxÞ is the extensive entropy function. Because:

@2S
@2X2

nþ 1
¼ @2S

@N2 ¼ 0 ð7:18Þ

one finds that gikðXÞ is degenerate, i.e. there are directions along which the metric
measures a null distance. These directions always correspond to scaling one phase
of the system. If the scale of the system is not fixed, the structure is only
semi-Riemannian. Null directions result from the linear growth of the entropy,
when any of the phases is scaled. This linearity makes the second derivatives, and
finally the appropriate components of the metric tensor, to vanish along those
directions.

Weinhold (1975) noted that by forming a suitable combination of such null
directions, by simultaneously scaling two phases of a pure substance, a phase
transition may be represented.

7.4 The Relevance of Riemann Geometry
in Thermodynamics

Weinhold (1975) introduced the following metric for the phenomenological
thermodynamics:

Gik Zð Þ ¼ @2U Zð Þ
@Zi@Zk

ð7:19Þ

where U is the internal energy and Z ¼ S;V ;N1;N2; � � �ð Þ 2 Rnþ 1 is the vector of
the extensive variables of the system in the energy representation. Weinhold used
the geometry only locally, to express in a convenient way the relations between the
variations of the state variables. Later, Salamon and coworkers observed that the
distances calculated for the perfect gas by using the metric G are actually familiar
expressions of the variations of the kinetic energy of the gas molecules as a result of
the passing of a shock wave. This then led to the idea of a connection between
geometry and dissipation (Diósi and Salamon 2000).

Ruppeiner (1979) used the metric g of (7.15) to extend the scale for which the
thermodynamic fluctuations theory can be used.
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The metrics g from (7.15) and G from (7.14), respectively, are conformally
equivalent (this means that the squares of the length elements differ by a scale
factor—possibly dependent on position). However, it turns out that the metric g is
more fundamental.

Similarly to the role of the energy representation in phenomenological ther-
modynamics, G serves mainly as an useful tool in computing g Xð Þ, where X ¼
U;V ;N1;N2; � � �ð Þ 2 Rnþ 1 is the vector of the extensive variables in the entropy
representation, for which S ¼ S Xð Þ is the complete information.

Some issues that involve the notion of thermodynamics distance will be pre-
sented next, such as:

• fluctuation theory (which will be developed in the subsequent chapters);
• interpretation of dissipation;
• discussion of several horse-carrot-like theorems, which connect the dissipation

in a system with imposing some conditions concerning the passage of the
system through a given sequence of states.

7.5 A Covariant Theory of Fluctuations

In this section some elements of the theory of fluctuations are presented, but only
when they are related with the notion of thermodynamic distance. The fluctuation
theory will be addressed in more detail in the following chapters.

Consider the traditional expression for a fluctuation in a subsystem of volume V
placed in a larger system of volume V0 �1 and extensive densities x0. The
probability that the subsystem have the extensive densities x is given by the
Einstein-Smoluchowski theory:

P x;V jx0;1ð Þdnx ¼ C exp
S x; x0ð Þ

kB

� �
dnx ð7:20Þ

where C is a normalization constant, kB is Boltzmann’s constant and S x; x0ð Þ is the
total entropy of the system having the extensive densities x0, containing the sub-
system of finite volume V in the state x. This expression applies to small fluctua-
tions (i.e. for large values of the volume V). When the volume is infinite, the
fluctuations vanish. Consequently:

P x;V jx0;1ð Þdnx ¼ dðx� x0Þ ð7:21Þ
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For large volumes, (7.21) leads to the Gaussian approximation:

Pðx; V x0j ; 1Þ ¼ C exp
V
2kB

X
i;k

@2sðx0Þ
@xi @xk

x� x0ð Þi x� x0ð Þk
 !

¼ C exp
1
2kB

X
i;k

gikðX0Þ x� x0ð Þi x� x0ð Þk
 ! ð7:22Þ

One sees that the exponent in (7.22) is proportional to the square of the statistic
(or thermodynamic) distance, measured from the equilibrium value. Therefore, this
length element is the natural measure of the size of the fluctuations.

The important comment of Ruppeiner (1995) was that, although (7.20) depends
on the choice of the parameters x used for defining the state, by mean of the volume
dnx, the approximation (7.22) is invariant to the reparametrization. This makes the
result have physical significance. One may conclude that this invariance must be
kept for small volumes, too.

One starts from the thermodynamic limit V ! 1 and the state x0. When the
volume of the subsystem gets smaller, its fluctuations depend on the state of the
neighborhoods. A Markov process is obtained for the fluctuations inside fluctua-
tions. The associated Chapman-Kolmogorov equation describes how the fluctuation
in a system of volume V depends on the state of the system at a slightly higher
volume V 0 ¼ V þ dV . The role of the time is played by the quantity 1=V , which
becomes zero when the distribution function is given by delta function (7.21). With
decreasing volume, the distribution takes smaller values, being given by (7.22). The
Chapman-Kolmogorov equation takes the form of a Fokker-Planck covariant
equation. In case the parameters are densities of extensive quantities, this last
equation has the form:

@

@V�1 P x;V jx0;1ð Þ ¼ 1
kB

X
i;k

@2

@xi@xk
gik xð ÞP x;V jx0;1ð Þ

� �
ð7:23Þ

The equation complies with all conservation laws. These issues will be taken up
and developed in subsequent chapters.

7.6 The Entropy Production

At macroscopic level, the Riemann structure is intimately related with the pro-
duction of entropy. Let X ¼ ðU;V ;N1;N2; � � �Þ 2 Rnþ 1 and ~X ¼
ð~U; ~V ; ~N1; ~N2; � � �Þ 2 Rnþ 1 be the vectors of the extensive variables of the systems
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A and eA, respectively. During an interaction between the two systems, when the
infinitesimal vector of flows dX passes from ~A to A, the generation of entropy is:

dSu ¼ dSA þ dS~A ¼
Xn
i¼1

ðYi � ~YiÞdXi ð7:24Þ

where

Y ¼ @S
@X

� 1
T
;
P
T
;
l1
T
;
l2
T
; � � �

� �
ð7:25Þ

and the following conservation law was used

dXi ¼ �d~Xi ði ¼ 1; � � � ; nÞ ð7:26Þ

Equation (7.24) is the common expression, describing the entropy production as
a product between a thermodynamic flow (or thermodynamic flux) and a thermo-
dynamic force. It resembles the length element dl2 of Riemann geometry. To show
this, the expression (7.24) is re-written in the following form:

dSu ¼ �
Xn
i¼1

DYidXi ¼ �DY � dX ð7:27Þ

where DY ¼ ~Y� Y. The second law of thermodynamics asks that the sum in (7.27)
must be positive. The element of thermodynamic length may be written as:

dl2 ¼
Xn
j¼1

Xn
i¼1

gðXÞdXidXj ð7:28Þ

which is a symmetric product. Because:

dYj ¼
Xn
i¼1

@Yj
@Xi

dXi ¼
Xn
i¼1

@2S
@Xi@Xj

dXi ¼ �
Xn
i¼1

gijðXÞdXi ð7:29−31Þ

the length element can be written now as:

dl2 ¼ �dY � dX ð7:32Þ

Note the similarity between (7.32) and (7.27). Also, although the terms dY and
DY look similar, they represent quantities of different nature. dY is an infinitesimal
change in the system state A, while DY is the difference ~Y� Y.
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The equivalence of the metrics G and gðXÞ is easily proved by using the
symmetric product �dY � dX of (7.32). Substituting:

dX1 ¼ dU ¼ TdSþ
Xn
i¼2

WidZi

Wi ¼ @U
@Zi

¼ �TYi; Zi ¼ Xi; ði ¼ 2; � � � ; nÞ

ð7:33−35Þ

in (7.32) one obtains:

dl2 ¼ �dY � dX ¼ dW � dZ
T

¼ GijdZidZj
T

¼ dL2

T
ð7:36−39Þ

Equations (7.36)−(7.39) represent the Gouy-Stodola theorem in infinitesimal
form. This theorem shows the connection between the loss availability (or exergy)
at temperature T and the associated entropy generation.

7.7 Dissipation for Near Equilibrium Processes

There is a particularly important case for which there is a close connection between
dY and DY. This case corresponds to the equilibration of a system in contact with a
thermal bath (i.e. in contact with a thermodynamic system whose temperature can
be controlled).

Consider a system large enough that any change in its intensive variables ~Y can
be neglected. It is allowed to the system A to equilibrate with the system ~A, so that
the final values of Y to be equal with ~Y. The integration of the entropy generation
on the path toward equilibrium gives:

DSu ¼
Z

dSu ¼ �
Z

DY � dX ð7:40Þ

which, in virtue of (7.31) becomes:

DSu ¼
Z

DXtgðXÞdX ð7:41Þ

up to the first order of approximation in DX ¼ X0 � X, where X0 is the vector of
the extensive variables of the system A, after equilibrating the bath ~A. In this
approximation order, one may assume that the matrix of the metric gðXÞ is constant.
Then (7.41) can be integrated, resulting in:
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DSu ¼ 1
2
DXtgðXÞDX ¼ 1

2
Dl2 ð7:42; 43Þ

7.8 Discrete Theorems of Horse-Carrot Kind

The Horse-carrot theorems are resulting from the general expression (7.43), which
gives the connection between the length of an equilibration process and the cor-
responding entropy generation.

Consider a path in the space of the states of system A and an equilibration
process. Select the states of k thermal baths, used to match the values of the
intensive variable of the system �Y in k points along the path.

The discrete horse-carrot theorem answers the question: how the states of the
thermal baths must be chosen so as to minimize the total generation of entropy in
the k successive equilibrations of the k baths, along the path?

For large k numbers, the answer is simple: the baths should be placed
equidistantly in the geometry described by gðXÞ. This conclusion comes from the
observation that the overall entropy generation in the k processes, which is given by

DSu ¼
Xk
j¼1

DjSu ¼ 1
2

Xk
j¼1

Djl
2 ð7:44Þ

must be minimized, with the restriction that the total length of the k processes is
fixed:

l ¼
Xk
j¼1

Djl ð7:45Þ

Minimization of entropy generation is done by using the Lagrange multiplier
method and this yields:

Djl ¼ constant ¼ l
k

ð7:46Þ

Substituting this result in (7.44) one obtains the so-called horse-carrot inequality:

DSu �DSmin
u ¼ l2

2k
ð7:47Þ

A more detailed analysis shows that, for large times, the same number of
relaxation times should be allocated for each equilibration process. So, the path of
minimum entropy generation, to drive the system in a finite time, along a given
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path, by using a fixed number k of intermediate equilibrations, is of making
equidistant steps, with a constant number of relaxation times allocated for each step.

This is the origin of introducing the concept of thermodynamic speed, defined
by:

v � dl
dn

ð7:48Þ

where dn ¼ dt=e, t is the time and e is the relaxation time of the system.
Therefore, for a process in k steps, the constant thermodynamic speed is optimal.

7.9 Comments on the Loss of Exergy

An expression fully similar to Eq. (7.43) can be obtained for the loss of exergy DAu

during a small equilibration process:

DAu ¼ 1
2
DZtGDZ ¼ 1

2
DL2 ð7:49; 50Þ

By analyzing these relationships one can understand why the conformal
equivalence between the two metrics given by the seconds derivatives of S and U is
of primary importance. This conformal equivalence, expressed by Eq. (7.38), is the
differential form of the Gouy-Stodola theorem:

DAu ¼ �TaDSu ð7:51Þ

where Ta is the temperature of the “environment”. For the infinitesimal process
(7.38), the role of the “environment” is played by the system ~A.

The ambiguity about the place where the heat associated to the exergy loss DAu

is delivered, severely limits the usefulness of the following horse-carrot type
inequality:

DAu � L2

2k
ð7:52Þ

For isothermal processes, the inequalities (7.47) and (7.52) are equivalent. For
non-isothermal processes, however, the thermodynamic lengths l and L, respec-
tively, are not linked by a simple relationship. Although the length L is sometimes
useful, dL2 is often used for the assessment of dl2, through the relationship (7.38).
This will be discussed in the next section.
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7.10 A Continuous Theorem of Horse-Carrot Kind

Consider the following problem. The thermodynamic system A must follow the
path X tð Þ; t 2 0; s½ �. Which is the amount of entropy generated during the
evolution?

If the total duration s of the process is high enough, the answer is similar to that
found in case of discrete processes. This time the optimal control analysis leads to
the conclusion that the optimal control means a constant rate of entropy generation,
instead of the prior conclusion, which was that of the optimal control means a
constant thermodynamic speed.

It is assumed that one can control in a reversible way the system ~A and that the
system A is only indirectly affected, through its contact with the system ~A. The
reasoning starts from the integral form of the relationship (7.27) for the total
generation of entropy:

DSu ¼
Zs
0

dSu ¼ �
Zs
0

DY � dX ð7:53Þ

Equation (7.53) can be rearranged to highlight the link between dissipation and
geometry. Define a state Xe by the following simple relationship:

� ~Y� Y
� � ¼ g Xð Þ Xe � Xð Þ ð7:54Þ

The metric g Xð Þ is not necessarily invertible. In case that Xe consists of several
homogenous phases, it is necessary that their scales are separated. This condition
can be accomplished by specifying the way each of these scales of A evolves.

Consider a state Xe close to state X. In this case, the state Xe can be interpreted
as a state of the system A, which minimizes the entropy production rate, when this
system is in contact with the present state of the system ~A, provided that A is on the
path though X on the direction dX.

Substituting (7.54) in (7.53) and replacing dX by dX=dlð Þdl, one finds the total
production of entropy:

DSu ¼
Zs
0

Xe � Xð Þtg Xð Þ dX
dl

dl ð7:55Þ

Remind that a metric defines an inner product on a vector space. The integrand
in Eq. (7.55) is the inner product obtained using the metric g Xð Þ of the deviation
Xe � X and the unit tangent vector dX=dl. Therefore, this integrand can be inter-
preted as the distance between the current state and the state that the system is
trying to achieve, projected on the direction of dX. Denote by D ¼ dSu=dl this
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projected distance. Note that by using a mean theorem, the total dissipation can be
written as:

DSu ¼
Z l

0

Ddl ¼ �Dl ð7:56Þ

So, the total generation of entropy is given by the product of the average distance
to equilibrium and the total distance traveled.

Another interesting relationship can be found by considering the quantity:

e ¼ dSu=dt

dl=dtð Þ2 ð7:57Þ

Keep in mind that e has dimension of time. It is also seen that for sufficiently
slow processes with separable time scales, e is just the relaxation time. This is seen
by writing:

dX
dt

¼ Xe � X
e

ð7:58Þ

According to the definition of Xe, dX=dt and Xe � X should have the same
direction and therefore they are proportional. It is assumed that the process is slow
and the time scales are separable. Then, except the slowest mode of the system, the
other modes must balance instantly. Therefore, X0 � X must be proportional with
dX=dt, i.e. Xe ¼ X0.

With or without accepting the hypotheses of slow process and separable time
scales, respectively, the definition (7.57) allows writing the total generation of
entropy as follows:

DSu ¼
Zs
0

e
dXt

dt
g Xð Þ dX

dt
dt ¼

Zs
0

e
dl
dt

� �2

dt ð7:59Þ

Applying a mean theorem, one finds:

DSu ¼ �e
Zs
0

dXt

dt
g Xð Þ dX

dt
¼ �e

Zs
0

dl
dt

� �2

dt ð7:60Þ

A third interesting expression of DSu is obtained if the parameter along the
trajectory X tð Þ is changed and the dissipation integral is expressed in terms of the
number of relaxations, n. Note that dn ¼ dt=e. Thus:

7.10 A Continuous Theorem of Horse-Carrot Kind 147



DSu ¼
ZN
0

dXt

dn
g Xð Þ dX

dn
dn ¼

ZN
0

dl
dn

� �2

dn ð7:61Þ

where

N ¼
Zs
0

dn ¼
Zs
0

dt
e

ð7:62Þ

All three previously deducted relationships are generally valid. However, the
physical significance of D and e is formal, except for the case when the processes
are slow and the time scales are separable, when A and ~A are almost in equilibrium
at any time.

A fourth relationship involving DSu is obtained from a linearized
flux-thermodynamics force equation of Onsager–Prigogine type:

dX
dt

¼ c � DY ð7:63Þ

where c is the kinetic coefficients matrix (which is symmetric and positively
defined). If the Eq. (7.63) is solved for DY and replaced in (7.53), one obtains:

DSu ¼
Zs
0

dXt

dn
c�1 dX

dt
dt ¼

Zs
0

dk
dt

� �2

dt ð7:64Þ

In this expression one sees the integral of a squared speed. This time k is given
by another metric (i.e. by c�1). There is a fundamental difference between this
metric and the other metrics previously considered. The coefficients in the metric c
are kinetic quantities, unlike the coefficients entering the previously considered
metrics, which are equilibrium quantities. In other words, the coefficients of the
metric g Xð Þ are covariant quantities while the coefficients of c are temporal
correlations.

7.11 A Simple Optimization Lemma

In some of the cases discussed in the previous sections, an integral of the following
form it minimized:
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Zs
0

f ðxÞ dx
dt

� �2

dt ð7:65Þ

with given values for xð0Þ and xðsÞ. Imposing the necessary Euler-Lagrange con-
ditions for the autonomous Lagrangian K:

K ¼ f ðxÞ dx
dt

� �2

ð7:66Þ

one obtains (see Badescu 2003):

K � dx
dt

@K
@ðdx=dtÞ ¼ const: ð7:67Þ

Substituting the expression of K from (7.66) into (7.67), one finds that, to
achieve optimality, the Lagrangian K must be constant.

A useful corollary corresponds to the particular case f ¼ 1:

K ¼ dx
dt

� �2

¼ const: ð7:68Þ

This implies

dx
dt

¼ const: ¼ Dx
s

ð7:69Þ

and the extreme value of the integral will be:

Zs
0

dx
dt

� �2

dt� Dx2

s
ð7:70Þ

This particular case is of special importance when x is the length of the arc
associated with a certain metric M. The coordinates in this space are denoted X.
Then, the inequality (7.70) becomes:

Zs
0

dXt

dt
M

dX
dt

dt�
Zs
0

dXt

dt
M

dX
dt

� �1=2

dt

0
@

1
A

2

=s ð7:71Þ
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7.11.1 Lemma Applications

The application of the previous Lemma for relations (7.59) and (7.64) lead to the
conclusion that, in order to minimize the entropy production, one must use a
constant rate of entropy generation:

_Su ¼ e
dl
dt

� �2

¼ dk
dt

� �2

¼ const: ð7:72Þ

Applying the corollary of that Lemma to the squared speed in relationships
(7.60) and (7.61) one obtains different continuous versions of the horse-carrot
inequality:

DSu � �el2

s
; DSu � l2

N
ð7:73; 74Þ

These inequalities impose lower limits for the dissipations occurring during the
processes, namely the square of the thermodynamic distance over the number of
relaxations. The inequalities (7.73) and (7.74) resemble the inequality (7.47).
However, these inequalities do not say anything useful about how to monitor the
entropy generation in a given time interval. Indeed, the averaging process in which
�e and N are obtained for a given interval of time, is based on an implicit
dependence.
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Chapter 8
Geometrization of Thermodynamic
Fluctuations

The entropy S can be calculated based on the number of microstates X of a
thermodynamic system by using the well-known formula due to Ludwig
Boltzmann:

S ¼ kB lnX ð8:1Þ

The inverse of this formula is:

X ¼ exp
S
kB

� �
ð8:2Þ

Einstein made from the relationship (8.2) a starting point of the theory of ther-
modynamic fluctuations. In this chapter, the excellent presentation by Ruppeiner
(1995) is followed closely. Further details may be found in Ruppeiner (1979, 1991).

Consider a closed thermodynamic system AV0 , very large, in equilibrium. This
system has fixed volume V0 and fixed energy per unit volume u0. It is also con-
sidered a subsystem AV of AV0 . The energy per unit volume of AV is denoted by
u and is not subjected to restrictions. All other thermodynamic parameters of the
system AV are constant.

8.1 Fluctuations of a Thermodynamic Quantity
(Classical Theory)

In the usual formulation, the second law of thermodynamics states that, at equi-
librium, the internal energy u has a specific value that maximizes the entropy
S0 u; u0ð Þ of the system AV0 . Statistical mechanics brings more information, allowing
description of the fluctuations around this state of maximum entropy. The statistical
method will be exemplified further by using the microcanonic ensemble. The basic
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postulate is that all accessible microstates of AV0 have the same probability of
occurring. Therefore, the probability of finding the internal energy of the subsystem
AV between u and uþ du is proportional to the number of microstates of AV0

corresponding to this interval:

PVðuju0Þdu ¼ CXVðu; u0Þdu ð8:3Þ

where XV ðu; u0Þ is the density of states and C is a normalization constant. Using
(8.2) and (8.3) yields:

PV ðuju0Þdu ¼ C exp
S0ðu; u0Þ

kB

� �
du ð8:4Þ

8.1.1 Gaussian Approximation

The next step is to consider the limit V0 ! 1 and to approximate the probability
density Pðuju0Þ by developing the entropy around its maximum at u ¼ u0 and
keeping only terms lower than the second order. After elementary calculations, one
finds:

PVðuju0Þdu ¼ Vgðu0Þ
2p

� �1=2

exp �V
2
gðu0Þðu� u0Þ2

� �
du ð8:5Þ

where

gðu0Þ � � 1
kB

d2s
du2

� �
u¼u0

ð8:6Þ

and s ¼ sðuÞ is the entropy per unit volume in the thermodynamic limit. Relation
(8.5) is the so-called Gaussian approximation, which is valid for small deviations of
u with respect to u0.

8.1.2 Difficulties of the Gaussian Approximation

The Gaussian approximation, despite its simplicity, hides some conceptual diffi-
culties. To illustrate this, assume that instead of the energy density u, another
thermodynamic parameter x ¼ xðuÞ is used for characterizing the thermodynamics
state of the system AV .

The counting of the microstates that led to Eq. (8.3) can be repeated in case of
the parameter x. Assume, again, that the entropy is proportional to the logarithm of
the states density. Then, the result should be the same as that given by Eq. (8.4),
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with x replacing u. However, if one starts with the Eq. (8.4) and the change of
coordinates u ! uðxÞ is performed, a different result is obtained. The left-hand side
of (8.4) becomes:

PV ðuju0Þdu ¼ PV ðuju0Þ du
dx

� �� �
dx � PVðxjx0Þdx ð8:7Þ

which gives the probability of finding the new parameter in the interval x to xþ dx.
In the right-hand side of (8.4), the entropy is a state function, invariant with respect
to the coordinate transformation. Thus:

PVðxjx0Þdx ¼ C
du
dx

� �
exp

S0ðx; x0Þ
kB

� �
dx; ð8:8Þ

which does not have the form of Eq. (8.4), since the derivative of u from the
right-hand side is not generally constant and, therefore, cannot be absorbed in the
normalization constant C.

The conclusion is that, when using statistical mechanics one obtains an expres-
sion which is different from that obtained by using purely mathematical reasoning.
The last type of reasoning clearly shows that the thermodynamic fluctuations for-
mula (8.4) depends on coordinates. It is said that this equation is not covariant.

Also, the Eq. (8.4) suffers of a certain inconsistency. To show this, define the
average value of a thermodynamic function as:

\f [ ¼
Z

f ðxÞPV ðxjx0Þdx ð8:9Þ

On the other hand, there is no principle allowing to state that the entropy
function, which is involved indirectly in the average definition (8.9), by means of
the relation (8.8), guarantees the relationship:

\u[ ¼ u0 ð8:10Þ

when V0 ! 1. From the physical point of view, Eq. (8.10) must be valid for any
value of V, but it is clear that when using (8.4) this does not happen, unless
S0ðu; u0Þ is an even function of u� u0. No law of thermodynamics guarantees this.

8.1.3 Advantages of the Gaussian Approximation

Even with the drawbacks mentioned above, the Gaussian approximation (8.5) has a
number of features that make it appealing.

First, it is becoming increasingly more accurate when the volume V of the
subsystem gets bigger, because in this case the fluctuations of the intensive
quantities are becoming smaller.
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Second, the Gaussian approximation is covariant. A coordinate transformation
u ! xðuÞ in Eq. (8.5) shows that the second-order approximation of the displace-
ments with respect to x0ð¼xðu0ÞÞ is:

PV ðxjx0Þdu ¼ Vgðx0Þ
2p

� �1=2

exp �V
2
gðx0Þðx� x0Þ2

� �
dx ð8:11Þ

where

gðx0Þ � du
dx

� �2
gðu0Þ ð8:12Þ

Since the fluctuations are small in the range of validity of the Gaussian
approximation, it is expected that the derivative in (8.12) is nearly constant in the
region of the states with reasonable probability. Therefore, the Eq. (8.11) has
exactly the same form as the Eq. (8.5), which is written in energy coordinates.

Third, from the symmetry of the Gaussian distribution, it is seen that the average
value of x is x0, regardless of the choice of the coordinate, which could be the
energy density.

8.2 Classical Fluctuation of Two Independent Quantities

The above discussion refers to the case when just one single thermodynamic
quantity fluctuates. The fluctuations of two independent variables will be treated in
the following. As an example, consider a subsystem that exchange particles and
energy with the environment. If there are two variables, it is possible to develop a
formalism based on Riemann geometry, leading to a non-zero thermodynamic
curvature.

The basic concept of a two-dimensional Riemann geometry is a surface, or a
two-dimensional manifold that is, roughly speaking, a set of points smoothly
parametrized by two coordinates, x ¼ ðx0; x1Þ. As shown in the Chap. 1, the points
on the manifold represent physical quantities with intrinsic meaning (here, they are
thermodynamic states).

The second element of the Riemann geometry is a procedure that defines the
distance Dl for every pair of neighboring points, having the coordinate differences
Dxa. The distance is given by the quadratic form:

ðDlÞ2 ¼
X1
l;m¼0

glmðxÞDxlDxm ð8:13Þ
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where the matrix of the coefficients gabðxÞ is called the metric tensor. One reminds
that a manifold where the distance has been defined by using the relationship (8.13)
is called Riemann manifold. A key requirement is that, for a given couple of points,
the distance Dl must be independent of the coordinate system used to specify those
points.

It is important to note that there is no requirement that these two-dimensional
Riemannian manifolds are surfaces which can be embedded in three-dimensional
flat spaces, although the latter are of course examples of Riemannian manifolds.

To represent a physical problem using a Riemann manifold, it is necessary, first,
to have a set of physical objects corresponding to the set of the points on the
manifold, and, second, that the distance, which is defined by a quadratic form of
type (8.13), has a physical motivation and is unique.

Approaching the theory of thermodynamic fluctuations in the case of two
parameters requires a generalization of the case discussed in Sect. 8.1, by consid-
ering an open subsystem AV of the closed infinite system AV0 . It is allowed the
exchange of particles between subsystem and environment, so that the energy per
unit volume a0 and the number of particles per unit volume can fluctuate.

Developing the total entropy in Taylor series around its maximum, up to second
order terms, leads to the following expression (Ruppeiner 1995):

PVðaja0Þda0da1 ¼ V
2p

exp �V
2

X1
l;m¼0

glmða0ÞDalDam
" #

gða0Þð Þ12da0da1 ð8:14Þ

where Daa ¼ aa � aa0 and

gabða0Þ ¼ � 1
kB

@2s
@aa@ab

; gða0Þ ¼ det½gabða0Þ� ð8:15; 16Þ

For two given neighboring states, the value of the positive defined quadratic
form, given by

ðDlÞ2 ¼
X1
l;m¼0

glmða0ÞDalDam ð8:17Þ

is independent of the choice of coordinate system, since the difference of entropy
between two states does not depend on the coordinate system used to represent
those states. This is a necessary condition, because the probability of a fluctuation
depends only on the thermodynamic states.

Note that the unit of the square of the thermodynamic length ðDlÞ2 is that of an
inverse volume.
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8.3 Classical Gaussian Approximation
in the General Case

One can discern two categories of parameters that can be used to specify the
thermodynamic state of a subsystem. First, there are mechanical parameters such as
energy, number of particles, magnetization, which can be calculated by adding the
corresponding microscopic quantities. The second category consists of thermody-
namic parameters, such as temperature, chemical potential and entropy. They are in
connection with the distributions over microscopic states, and, unlike the
mechanical parameters, they have no equivalent in microscopic quantities. The
former parameters are most suitable for describing the thermodynamic state of a
subsystem.

Consider an open subsystem AV , of fixed volume V, of a closed thermodynamic
system AV0 of a very large volume V0. The system AV0 consists of r fluid compo-
nents, supposed not to interact chemically but being in equilibrium. Denote by
a0ða10; a20; . . .; an0Þ the group of quantities consisting of the internal energy per unit
volume and the number of particles per unit volume, corresponding to the r com-
ponents of AV0 . These mechanical parameters represent the standard densities in the
entropy representation and constitute the thermodynamics state of AV0 . Similarly,
the subsystem AV has the thermodynamic state a. The classical theory of fluctua-
tions is based on the following three axioms.

Axiom 8.1 AV and its reservoir AVc ¼ AV0 � AV , having the volume Vc ¼ V0 � V ,
are homogeneous systems, which, in the thermodynamic limit, can be described
thermodynamically.

Axiom 8.2 The conditional probability of finding AV in a state for which the
parameters are found between a and aþ da, provided that AV0 is found in the state
a0, is

PV ðaja0Þda0da1 � � � dar ¼ C exp
Sða; a0Þ

kB

� �
da0da1 � � � dar ð8:18Þ

where Sða; a0Þ is the entropy of the system AV0 when the subsystem AV is found in
the state a, and C is a normalization constant.

Axiom 8.3 The entropy is additive but is not conserved. The standard extensive
parameters (internal energy and number of particles) are additives and conserved.

The next step consists of developing the entropy in series up to second order
terms around the homogenous state, where a ¼ a0. Using the Axioms 8.1 and 8.3,
one finds:

Sða; a0Þ ¼ VsðaÞþVcsðacÞ ð8:19Þ
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where sðaÞ is the entropy per unit of volume and ac are the standard densities of
AVc . Using Axiom 8.3, one can write:

aac ¼
V0aa0 � Vaa

Vc
ð8:20Þ

Developing the entropy densities in (8.19) around aac ¼ aa0 ¼ aa, it is obtained:

Sða; a0Þ ¼ Vsða0ÞþVcsða0ÞþV
@s
@al

ðal � al0ÞþVc
@s
@al

ðalc � al0Þ

þ 1
2
V

@2s
@al@am

ðal � al0Þðam � am0Þ

þ 1
2
Vc

@2s
@al@am

ðalc � al0Þðamc � am0Þþ � � �

ð8:21Þ

where all derivatives are evaluated in a0.
The Einstein summation convention is used in the following. It means that for

repeated indices in products, all contributions are summed. Also, it is accepted the
convention that the list of the indices which do not contribute to the summation in
an expression begins with a while the list of the indices which do contribute to the
summation begins with l.

Substituting (8.20) in (8.21) and passing to the limit Vc ! 1, one obtains:

Sða; a0Þ ¼ V0sða0Þþ 1
2
V

@2s
@al@am

DalDam þ � � � ð8:22Þ

where

Daa � aa � aa0 ð8:23Þ

Cancellation of the first order terms in the development shows that the state
a ¼ a0 corresponds to an extreme of the total entropy. By imposing the usual
conditions of stability, it can show that the extreme is a maximum. Alternately, the
stability condition may be imposed by asking that the entropy has a maximum for
a ¼ a0.

Equation (8.22) is valid only in case of standard densities (or in the case of linear
transformations of these densities), because these coordinates have the additivity
property. The general case, in which S0 is described in an arbitrary system of
thermodynamic coordinates x ¼ xðaÞ, requires a careful analysis. It may be shown
that the entropy development up to terms of second order around the maximum of
x ¼ x0 � xða0Þ leads to (Ruppeiner 1995):

Sðx; x0Þ ¼ S0ðx0; x0Þþ 1
2

@2S0
@xl@xm

DxlDxm þ � � � ð8:24Þ
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where Dxa � xa � xa0. Here, unlike the situation in (8.22), the second derivatives are
not typical thermodynamic derivatives, because S0ðx; x0Þ depends on two distinct
thermodynamic systems, with different states. These derivatives are now expressed
in terms of thermodynamic quantities. First, they have to be transformed into
another coordinate system x0 ¼ x0ðxÞ. Using the common rule:

@

@xa
¼ @x0l

@xa
@

@x0l
ð8:25Þ

it may be shown that

@2S0
@xa@xb

¼ @2x0l

@xa@xb
@S0
@x0l

þ @x0l

@xa
@x0m

@xb
@2S0

@x0l@x0m
ð8:26Þ

At the maximum of S0, this expression becomes

@2S0
@xa@xb

¼ @x0l

@xa
@x0m

@xb
@2S0

@x0l@x0m
ð8:27Þ

which represents the transformation rule for the components of a tensor of the
second rank. Now it is possible to express the general second order derivatives in
terms of thermodynamic quantities. By comparing Eqs. (8.22) and (8.27) it is
found that

@2S0
@xa@xb

¼ V
@al

@xa
@am

@xb
@2s

@al@am
ð8:28Þ

Using the quadratic development, the Gaussian approximation of the theory of
thermodynamic fluctuations can be written as follows:

PVðxjx0Þdx0dx1 � � � dxr

¼ V
2p

� �n=2
exp �V

2
glmðx0ÞDxlDxm

� �
gðx0Þð Þ1=2dx0dx1 � � � dxr

ð8:29Þ

where

gabðx0Þ ¼ � 1
VkB

@2S0
@xa@xb

� �
x¼x0

; gðx0Þ ¼ det½gabðx0Þ� ð8:30; 31Þ

Using the probability distribution (8.29), the following average values can be
calculated:

\Dxa [ ¼ 0; \DxaDxb [ ¼ gabðx0Þ
V

ð8:32; 33Þ

where gab represent the elements of the inverse matrix of gab.
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One can easily verify that the quadratic form in the argument of the exponential
(8.29) transforms itself as a scalar under a change of coordinates. In the first order
of approximation

Dxa ¼ @xa

@x0l
Dx0l ð8:34Þ

This is the transformation rule for a contravariant tensor of first rank.
Substituting (8.34) in the quadratic form and using (8.27), with the terms noted
prime and without prime interchanged, the expected invariance is revealed. This is
necessary, because neither the probability of a fluctuation between two states, nor
the entropy difference should not depend on the choice of the coordinate system
used to describe those states.

The quadratic form

ðDlÞ2 � glmðx0ÞDxlDxm ð8:35Þ

constitutes a positive definite Riemann metric, on the space of the thermodynamic
states. It is independent of the volume V (see Eqs. (8.28) and (8.30)). The physical
interpretation of the distance between two thermodynamic states is that the less is
the probability of a fluctuation between the two states, the larger is the distance
between the two states. Note that

gðx0Þð Þ1=2dx0dx1 � � � dxr ð8:36Þ

is the invariant element of volume on a Riemann manifold.
The condition that the element of thermodynamics length Dl be positive for any

set of values of the differentials of the coordinates impose conditions on the ele-
ments of the metric gab. First, all elements on the diagonal of the metric must be
positive. These elements represent, for example, heat capacities and compressibility
factors. The condition that they are positive is the thermodynamic stability
condition.

However, the fact that the diagonal elements are positive does not ensure the
positivity of the element of thermodynamics length. A necessary and sufficient
condition is that leading minors of the metric elements, defined by:

p0 � 1; p1 � g00; p2 � det
g00 g01
g10 g11

� �
;

p3 � det

g00 g01 g02
g10 g11 g12
g20 g21 g22

0
B@

1
CA; . . .; pn � detðgÞ

ð8:37a–eÞ

be all positive.
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8.3.1 Particular Forms of Thermodynamic Metrics

Next it will be shown the form taken by the thermodynamics metric in different
coordinate systems. Two useful relationships will be deduced on this basis. First,
the following notation is adopted

F ¼ 1
T
;� l1

T
; . . .;� lr

T

� �
ð8:38Þ

for the standard intensive quantities in the entropy representation:

Fa ¼ @sðaÞ
@aa

ð8:39Þ

Here T is the temperature and li is the chemical potential of the component i. The
n quantities Fa constitute a complete set of coordinates in the phase space. The
pressure p, which is the conjugate of the fixed volume V, is not expressed in terms
of the other coordinates. Using (8.22) one finds:

ðDlÞ2 ¼ � 1
kB

DFlDl ð8:40Þ

This relationship will be used to express the metric in different coordinate
systems. Another useful relationship can be achieved on the basis of the variables
used in the energy representation. In this case, s replaces u as the zeroth coordinate
and the conjugate intensive variables are:

P ¼ ðT ; l1; . . .; lrÞ ð8:41Þ

Substituting

Da0 ¼ Du ¼ TDsþ
Xr

i¼1

liDai; DF0 ¼ � 1
T2 DT;

DFi ¼ li

T2 DT � 1
T
Dli

ð8:42–44Þ

(with 1� i� r) in the relationship (8.40), one obtains

ðDlÞ2 ¼ 1
kBT

DTDsþ 1
kBT

Xr

i¼1

liDai ð8:45Þ
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To express the metric in the F coordinates one writes

Daa ¼ @aa

@Fl
DFl ð8:46Þ

and this expression is replaced in (8.40), yielding

ðDlÞ2 ¼ 1
kB

@2/
@Fl@Fm

DFlDFm ð8:47Þ

where

/ðF0;F1; . . .;FrÞ ¼ s� Flal ð8:48Þ

It may be easily shown that

/ ¼ p
T

ð8:49Þ

This thermodynamic potential is kB=T times larger than the logarithm of the
macrocanonic partition function.

To express the metric in the coordinates ðT ; a1; . . .; arÞ, one writes:

Ds ¼ @s
@T

� �
DT þ

Xr

i¼1

@s
@ai

� �
Dai; Dli ¼ @li

@T

� �
DT þ

Xr

j¼1

@li

@a j

� �
Dai ð8:50a; bÞ

Using the Maxwell relationship:

@s
@qi

� �
¼ � @li

@T

� �
ð8:51Þ

and substituting it in (8.45), one obtains

ðDlÞ2 ¼ 1
kBT

@s
@T

� �
ðDTÞ2 þ 1

kBT

Xr

i;j¼1

@li

@a j

� �
DaiDa j ð8:52Þ

This element of thermodynamic length is diagonalized for the case r ¼ 1 and for a
multicomponent mixture of gases.

To express the metric in P coordinates, the following relationships are first
written

Ds ¼ @s
@T

� �
DT þ

Xr

i¼1

@s
@li

� �
Dli; Dai ¼ @ai

@T

� �
DT þ

Xr

j¼1

@ai

@l j

� �
Dli ð8:53a; bÞ
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Substituting these relationships into (8.45), one obtains

ðDlÞ2 ¼ � 1
kB

@2x
@Pl@Pm

DPlDPm ð8:54Þ

where

xðP0;P1; . . .;PrÞ ¼ u� Ts�
Xr

i¼1

liai ð8:55Þ

It may be easily shown that

x ¼ �p ¼ �/T ð8:56Þ

Table 8.1 shows the forms of the thermodynamic metric in various coordinate
systems. There, qi is the density of component i (the number of particles per unit
volume).

8.3.2 The Analogy Fluid System—Magnetic System

A class of physical systems that allow an approach which is similar to the fluid
systems is the class of magnetic systems. In terms of thermodynamics, the analogy
between the two classes of systems is simple and will be presented for the case
n ¼ 2. Consider a system consisting of N magnetic spins placed in a magnetic field
of intensity h. Denote byM the magnetization of the system, which is the sum of the
magnetic moments of all spins in the system. It can be shown that the differential of
the internal energy is given by:

dU ¼ TdSþ hdM ð8:57Þ

Here, thefield h (but not themagnet generating thisfield) is assumed asmaking part
of the system. On the other hand, for a fluid system offixed volumeV, it can bewritten

Table 8.1 Thermodynamic potentials and the square of the element of thermodynamics length for
four coordinate systems (Ruppeiner 1995)

Coordinates Thermodynamic potential ðDlÞ2
a ¼ ðu;q1; � � � ; qrÞ s � 1

kB
@2s

@al@am Da
lDam

F ¼ 1
T ;� l1

T ; . . .;� lr

T

� �
/ðFÞ ¼ s� Flal 1

kB
@2/

@Fl@Fm DFlDFm

P ¼ ðT ;l1; . . .; lrÞ xðPÞ ¼ u� Ts�Pr
i¼1

liai � 1
kBT

@2x
@Pl@Pm DPlDPm

a ¼ ðT ; q1; . . .;qrÞ f ¼ u� Ts 1
kBT

@s
@T

� 	ðDTÞ2 þ 1
kBT

Pr
i;j¼1

@li

@a j DaiDa j
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dU ¼ TdSþ ldN ð8:58Þ

Therefore, the following formal analogy between the two types of systems can
be established:

N $ V ; M $ N; m $ q ð8:59Þ

where m � M=N is the magnetization per spin.
This analogy have some theoretical difficulties, which finally can be resolved

(see Ruppeiner 1995).

8.4 Covariant and Consistent Theory of Fluctuations

In this section it is presented a covariant theory of thermodynamic fluctuations. The
main early contributions to this topic were made by Ruppeiner (1995). The starting
point is the assumption that the probability density of the thermodynamic fluctu-
ations is the solution of a set of partial differential equations of second order, linear
parabolic type, whose coefficients are determined from the condition that in ther-
modynamic limit the solution converges towards the classical solution. This
approach is similar in spirit to the theory of quantum mechanics, which starts from
the assumption that the main tools are partial differential equations, which must
meet a series of general principles.

8.4.1 The Equation of the Probability Density
of Fluctuations

It is assumed that the probability density of fluctuations satisfies a generalized
partial differential equation of diffusive type:

@P
@t

¼ c0ðxÞPþ cl1ðxÞ
@P
@xl

þ 1
2
clm2 ðxÞ @2P

@xl@xm
ð8:60Þ

In this equation, the “time” is not a measure of the real time, but it is a measure
of the volume:

t ¼ V�1 ð8:61Þ

The equation should be linear in P, in order to allow a normalization constant.
The form of the Eq. (8.61) does not allow an explicit normalization. The normal-
ization appears as an implicit relationship between the coefficients. A form of the
equation that keeps the normalization is
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@P
@t

¼ � @

@xl
KlðxÞP½ � þ 1

2
@2

@xl@xm
glmðxÞP½ � ð8:62Þ

This is the equation which will be further used to describe the volume depen-
dence of the thermodynamic fluctuations. It is formally identical to a Fokker–
Planck equation and appears to be the simplest, but still general, mathematical
formulation compatible with the theory of the thermodynamic fluctuations.

In Eq. (8.62), Ka is called drift vector and gab is the inverse of the metric tensor,
which is supposed to be symmetric for the exchange of indices. Standard termi-
nology is somehow improper because the quantity Ka does not actually transform
itself like a contravariant tensor of the first rank. Generally, all coefficients
appearing in (8.62) are functions of t and x. The absence of the dependence on
t (i.e., indirect dependence on volume) constitutes the so-called hypothesis of
translational invariance.

8.4.1.1 Average Values

Equation (8.62) can be used for the calculation of average values, which are defined
as follows

\f [ �
Z

fPdx ðdx � dx0dx1 � � � dxrÞ ð8:63a; bÞ

Multiplication of (8.62) with the differential of the coordinates, followed by inte-
gration by parts, leads to:

d
dt

Z
Pdx ¼ 0;

d
dt
\xa [ ¼ \Ka [ ;

d
dt
\xaxb [ ¼ \xaKb [ þ\xbKa [ þ\gab [

ð8:64a–cÞ

The boundary contributions have not been considered here.
A specific case is considered now, i.e. the classical theory in the thermodynamic

limit t ! 0. A Dirac delta function is adopted now as initial condition:

Pt!0ðxjx0Þ ¼ dðx� x0Þ ð8:65Þ

where x0 represents the state of the infinite reservoir. From (8.64b) and (8.64c) it is
found that

lim
t!0

d
dt
\ðxa � xa0Þðxb � xb0Þ[ ¼ gabðx0Þ ð8:66Þ
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or, in the first order in t:

\DxaDxb [ ¼ gabðx0Þt ð8:67Þ

This relationship is identical to (8.33). The obvious notation Dxa ¼ xa � xa0 was
used here.

It can be shown that the mean values of the standard density coordinates are
independent of t. For small values of t, the average value of KaðxÞ is very close to
its value assessed in x0. Equation (8.64b) yields:

KaðaÞ ¼ 0 ð8:68Þ

This result, together with the transformation rules for KaðxÞ and gabðxÞ, which will
be presented below, uniquely determines the equation coefficients, for any coor-
dinate system.

8.4.1.2 Thermodynamic Markovicity

Several essential properties arising from Eq. (8.62) will be presented in the fol-
lowing. First, note that a parabolic partial differential equation has a unique solution
in a particular domain, if an initial condition for P is provided at some initial’time’
t0 and a specific boundary condition is also provided.

From a mathematical point of view, the process by which the initial condition at
t ¼ t0 has been reached is not of particular importance. Such a statement is called
the Markov rule and it motivates the usual notation of the density of probability:

P
x
t





 x0t0
� �

ð8:69Þ

TheDirac delta function is inmost cases used as an initial condition, because in the
limit t ! t0 the system AV is in the same state as the system AV0 . The Markov rule has
an obvious physical significance: for given subsystem, at a given time (in a particular
thermodynamic state), the probability of a fluctuation inside that subsystem depends
only on the state of the subsystem and does not depend on the state of the environment.

The Markov rule is only an approximation, which is more suitable for
short-range intermolecular potentials and for not very small subsystems. There are
arguments pro and against the assumption that the validity of the Markov rule does
not stop near the critical point (Ruppeiner 1995).

The Markov rule is implicit in the canonical ensemble, where equal probability
is allocated to all microstates associated with given macroscopic parameters.
However, the usage of the canonical ensemble is appropriate only in the thermo-
dynamic limit. It is hoped that a weaker version of the Markov rule is still a good
approximation in case of very small volumes.
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8.4.1.3 The Chapman-Kolmogorov Equation

The solutions of the Eq. (8.62) are also solutions of the following
Chapman-Kolmogorov equation

P
x
t





 x0t0
� �

¼
Z

P
x
t





 x1t1
� �

P
x1
t1





 x0t0
� �

dx1 ð8:70Þ

with t[ t1 [ t0. The proof is done in two stages. Firstly, one checks that the
right-hand side of Eq. (8.70) is a solution of Eq. (8.62), if

P
x
t





 x1t1
� �

ð8:71Þ

is a solution. Secondly, the usage of the initial condition, which is a Dirac delta
function, yields:

lim
t!t1;x¼x1

Z
P

x
t





 x1t1
� �

P
x1
t1





 x0t0
� �

dx1 ¼ P
x1
t1





 x0t0
� �

ð8:72Þ

that is just the required initial condition. The uniqueness theorem of the solutions of
the Eq. (8.62), which is not presented here, completes the proof.

The classical theory of the thermodynamic fluctuations is not compatible with
the Chapman-Kolmogorov equation, while the Gaussian approximation theory does
satisfy that equation, as long as the metric elements do not depend on the ther-
modynamic state.

8.4.1.4 Covariance

The covariance of the partial differential equations of the thermodynamic fluctua-
tions is discussed to some extent. First, the meaning of the covariance to a coor-
dinate transformation from a set of thermodynamic variables x into another set x0ðxÞ
should be explained. This is equivalent to saying that, when developing the new
theory, by using the new coordinates, the new equation must be formally similar to
the Eq. (8.62). Also, there is an explicit relationship between the probability density
expressed in the new coordinates and the relationship expressed in the old coor-
dinates, namely:

Pdx ¼ P0dx0 ð8:73Þ

This equation comes from the necessity that the probability of finding the par-
ticular state in a certain range of thermodynamic states does not depend on the

166 8 Geometrization of Thermodynamic Fluctuations



coordinates used to specify that particular range. Finally, it must be demonstrated
that the equation of the thermodynamic fluctuations in the new coordinates is
equivalent with the fluctuations equation in the old coordinates. The fact that an
equation of the form (8.62) satisfies all these requirements is not a priori so obvious.
This is shown next.

In x0 coordinates one can write:

@P0

@t
¼ � @

@x0l
K 0lP0½ � þ 1

2
@2

@x0l@x0m
g0lmP0½ � ð8:74Þ

Next, the Eqs. (8.62) and (8.74) are systematically compared. This will show
how to express K 0a and g0ab in terms of Ka and gab. First, one can write the
equation:

P0 ¼ dx
dx0










P ð8:75Þ

where the coefficient of P in the right-hand side is the Jacobian of the transfor-
mation of variables. Then, replace (8.75) in (8.74) and express the derivatives with
respect to x0, by using:

@

@x0a ¼
@xl

@x0a
@

@xl
ð8:76Þ

Compare with Eq. (8.62) by differentiating, dividing by the Jacobian and taking
into account the equality of the corresponding coefficients of the derivatives of
P. The following identities are used during calculation:

@

@xa
@x
@x0










 ¼ � @x

@x0










 @x

m

@x0l
@2x0l

@xa@xm
;

@

@xa
@xb

@x0c










 ¼ � @xl

@x0c
@xb

@x0m
@2x0m

@xa@xl

@xa

@x0l
@x0l

@xb
¼ @x0a

@xl
@xl

@x0b
¼ dab

ð8:77–79Þ

where the delta function of Kronecker has been used, which is defined as follows:

dab ¼ 0 if a 6¼ b
1 if a ¼ b

�
ð8:80Þ

All derivatives with respect to x0a can be placed in the Jacobian, or in the
factors of

@xa

@x0b
ð8:81Þ
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From the equality of the n2 second order derivatives of P, it is obtained:

g0ab ¼ @x0a

@xl
@x0b

@xm
glm ð8:82Þ

From the equality of the n first derivatives of P, one finds:

K 0a ¼ @x0a

@xl
Kl þ 1

2
glm

@2x0a

@xl@xm
ð8:83Þ

All the coefficients of the equation are now determined. Also, the factors con-
taining only P are equals. This concludes the calculation required to prove the
covariance of Eq. (8.62).

8.4.1.5 Translational Invariance

The theory is implicit in notation: neitherKa nor gab depend explicitly on t. This is the
assumption of translational invariance, which was already mentioned. In the classical
theory, this hypothesis is contained in theAxiom8.1. The assumption is reasonable for
volumes larger than the correlation volume, but it is questionable at smaller volumes.

8.4.1.6 Summary

The covariant theory of thermodynamic fluctuations presented here was developed
based on five principles, which are listed below:

1. The average standard densities do not depend on volume;
2. The validity of a Chapman-Kolmogorov equation;
3. The theory is covariant;
4. The theory is consistent with the classical theory of fluctuations, in the limit of

very large volumes;
5. The translational invariance.

Equation (8.62) satisfies all these five principles. Note that even the Gaussian
approximation of the classical theory of fluctuations satisfies the five principles.
However, this approximation is limited only to the case of very large volumes.
When the volumes are not very large, the complete classical theory (beyond the
Gaussian approximation) does not satisfy the first three principles.
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8.4.2 Fluctuations at Large Volumes

The solutions of the equation of thermodynamic fluctuations can be naturally
separated into three categories, corresponding to large volumes, intermediate vol-
umes and low volumes, respectively. First, consider the case of large volumes, for
which t is small. The probability distribution is strongly centered on the initial state
x0 and the coefficients Ka and the metric elements gab do not change very much in
the range of states accessible to the system. As a first approximation, the coefficients
are evaluated in x0 and one can write:

@P
@t

¼ �Kl @P
@xl

þ 1
2
glm

@2P
@xl@xm

ð8:84Þ

Assume the initial condition is a Dirac delta function. Then, one can easily check
that the normalized solution is:

P
x
t





 x00
� �

¼ 1
2pt

� �n=2
g1=2 exp � 1

2t
glmðDxl � KltÞðDxm � KmtÞ

� �
ð8:85Þ

For any given value Dxa, with t becoming smaller and smaller, this solution
approaches the Gaussian approximation solution of the equation of the classical
theory (8.29):

P
x
t





 x00
� �

¼ 1
2pt

� �n=2
g1=2 exp � 1

2t
glmDxlDxm

� �
ð8:86Þ

The approximation solution of the Eq. (8.84) neglects the fact that the first
derivatives of gab are, formally, of similar importance as the coefficients Ka. To see
this, compute explicitly the derivatives in Eq. (8.62), before considering the coef-
ficients as being constant:

@P
@t

¼ 1
2
glm;lm � Kl

;l

� �
Pþðglm;m � KlÞ @P

@xl
þ 1

2
glm

@2P
@xl@xm

ð8:87Þ

Next, the coefficients are evaluated in x0. The solution is:

P
x

t





 x00
� �

¼ c
1
2pt

� �n=2
g1=2 exp

1
2
glm;lm � Kl

;l

� �
t

� �

� exp � 1
2
glm Dxl þ gln;n t � KltÞðDxm þ gmn;n t � Kmt

� �� � ð8:88Þ
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where c is a constant. In the thermodynamic limit t ! 0, this solution is reduced to
the Gaussian approximation of the classical theory. However, this solution does not
preserve the normalization, because of the first exponential term.

8.5 Examples

Several examples of covariant calculus of fluctuations are presented in this section,
for known thermodynamic systems (Ruppeiner 1995).

8.5.1 Paramagnetic System

Consider a subsystem AN of N spins that do not interact each other, in an envi-
ronment containing an infinite number of spins, characterized by temperature T and
the external magnetic field intensity h. Each spin has two possible microstates, up
and down, denoted for the spin i by ri ¼ þ 1 or �1, respectively. Specifying all
values ri is equivalent with the specification of subsystem’s microstate.

The probability of finding a particular microstate of the system is given by a
relationship known from statistical mechanics:

1
Z
exp �H

T

� �
ð8:89Þ

where the Hamiltonian of the system is

H ¼ �h
XN
i¼1

ri ð8:90Þ

and the partition function is:

Z ¼ 2N coshN
h
T

� �
ð8:91Þ

A unit system for which kB ¼ 1 is adopted in this example and in the next one. The
free energy per spin is given by:

xðT ; hÞ ¼ � T
N
ln Z ¼ �T ln j2 cosh h

T

� �
j ð8:92Þ
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Knowing this relationship allows deducting all other thermodynamic relations. For
example, the magnetization for the environment AN0ðN0 ! 1Þ is

m0 ¼ � @x
@h

� �
T
¼ tanh

h
T

� �
ð8:93Þ

and the entropy per spin, written as a function of magnetization, is

sðmÞ ¼ � @x
@T

� �
h
¼ ln 2 1=ð1� m2Þ� 
1=2h i

� ðtanh�1 mÞm ð8:94Þ

Since the entropy can be written as function of only one independent variable (i.e.
the magnetization), the geometry of this system is one-dimensional.

The metric element comes from the two-times differentiation of sðmÞ (see
Table 8.1 and Eq. (8.59)):

g ¼ 1
1� m2 ð8:95Þ

The drift term K is null in these coordinates. Therefore, using Eq. (8.62) one
finds the equation of the fluctuations

@P
@t

¼ 1
2

@2

@m2 ð1� m2ÞP� 	 ð8:96Þ

where t ¼ 1=N. The equation is obeying the initial condition

Pt!0ðmjm0Þ ¼ dðm� m0Þ ð8:97Þ

and the boundary conditions for m ¼ �1, which preserve normalization

@

@m
ðg�1PÞ ¼ 0 ð8:98Þ

On the boundary, g�1 is zero. Therefore, the value \m[ is constant, as expected
for a standard extensive parameter. Since the derivative of g�1 does not vanish on
the boundary, the Eq. (8.98) requires the boundary condition P ¼ 0.

The results obtained by using the covariant theory are closer to those obtained by
using statistical mechanics, than the results predicted by the rigorous classical
theory of fluctuations (i.e., without adopting the Gaussian approximation)
(Ruppeiner 1995). Note that the covariant theory preserves the mean value \m[,
while the rigorous classical theory does not preserve it.
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8.5.2 The One-Dimensional Ising Model

The one-dimensional Ising model consists of a set of spins, as in Sect. 8.5.1, but
this time they are arranged on a single line. In addition, each spin can interact with
its closest neighbors, as shown by the Hamiltonian:

H ¼ �J
X1
i¼1

ririþ 1 � h
X1
i¼1

ri ð8:99Þ

where J is a coupling constant. In the ferromagnetic case, the adjacent spins tend to
align with each other and the constant J is positive. In the antiferromagnetic case,
the adjacent spins do not align each other and J is negative. Using the methods of
statistical mechanics, one can show that the thermodynamic potential of this
system is:

/ðx; yÞ ¼ ln ex cosh yþ e2x sinh2 yþ e�2x� 
1=2h i
ð8:100Þ

where x � J=T and y � �h=T . The metric elements can be calculated easily in the
coordinates F by using the thermodynamic length element found in the Eq. (8.47)
and the Eq. (8.59) of the analogy magnetic system—fluid.

Results reported by Ruppeiner (1995) show that the covariant theory is more
accurate than the rigorous classic theory (i.e., without adopting Gaussian approx-
imation) even at very large volumes.
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Chapter 9
Thermodynamic Curvature. Correlation.
Stability

The Gaussian approximation (8.86) for the fluctuations distribution loses its validity
at large values of the parameter t. This has two explanations. First, the fluctuations
become so large that the metric elements can not be considered as having constant
values (evaluated at the initial state x0). The second reason is that the drift terms
proportional with t in the argument of the exponential inside the Eq. (8.85) become
too large to be neglected.

For any value of t and any initial state x0 it is possible to find a system of
coordinates so that one or both of the above reasons become obvious. The limit of t
for which the Gaussian approximation is valid in all coordinate systems is zero. The
main problem is whether there is a limit of t so that the classical theory of the
thermodynamic fluctuations ceases its validity in all systems of coordinates, for all
values of t exceeding that limit.

At first sight it seems that the conversion rules (8.82) and (8.83) can always be
used to find a coordinate system such that the drift vector Ka is globally null and for
which the elements of the metric gab are constant, at global level. However, this is
not possible, as it will be shown below.

Two ways to building an ideal coordinate system are quite obvious. The first
method begins with a transformation towards a class of coordinate systems in which
Ka ¼ 0, followed by a transformation to make the elements of the metrics gab
constant at global level. The second method reverses the order of the two
operations.

The first method may not lead to the desired results. Indeed, assuming that in the
first stage it has been found a coordinate system for which Ka ¼ 0, this equality can
be preserved through a linear transformation. But such a transformation, using
Eq. (8.82), will not lead in general to constant elements gab, unless the case when
the transformation of the first stage has already made them constant. Another
possible way is to choose certain nonlinear transformations which cancel the second
term of the right-hand side of Eq. (8.83) and at the same time, transform the
elements of the metric into constants. However, in general it is not possible to
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obtain the second effect, and even less possible to obtain both effects, as it will be
shown below.

The reasoning outlined above leads to the conclusion that, for a given thermo-
dynamic system, the existence of an ideal system of coordinates it is almost ruled
out. But this way of thinking does not lead to finding the limiting value of t, i.e. the
value for which the classical theory should cease to be valid, for any system of
coordinates. For this reason, the second procedure of the first attempt to obtain
constant metric elements should be studied in more details.

9.1 Equivalent Metrics

In geometry, the following problem may be formulated. For a given metric gabðxÞ,
can a new coordinate system be found such that the metric has constant elements
throughout the space? To a similar, but more general question, Riemann provided
an answer in 1861. Next, some details on this issue are given, following the
excellent approach by Ruppeiner (1995).

The question is whether, given a coordinate system x, with the square of the
length of a line element given by:

dl2 ¼ glmðxÞdxldxm ð9:1Þ

it is possible to find another coordinate system x0 ¼ x0ðxÞ, having a given metric
g0abðx0Þ. The restriction is that the coordinate transformation x0ðxÞ keeps the distance
between any pair of neighboring points, i.e.:

glmðxÞdxldxm ¼ g0lmðx0Þdx0ldx0m ð9:2Þ

Riemann showed that this is possible, if and only if, a certain quantity is trans-
formed as a fourth rank tensor.

A metric relationship of the type (9.2) can be expressed as a partial differential
equation of the first order for x0ðxÞ:

gabðxÞ ¼ @x0l

@xa
@x0m

@xb
g0lmðx0Þ ð9:3Þ

Both metrics are symmetric, so that only nðnþ 1Þ=2 of their elements are
independent. It is noted that in (9.3) there are nðnþ 1Þ=2 independent equations,
with only n functions. It is clear that, for these n functions to constitute a solution,
they have to satisfy nðnþ 1Þ=2� n additional relationships.

The idea to be followed is as follows. It is assumed that the solution exists, and
the conditions of existence of that solution should be found. For this, it is con-
sidered a point x0 and one writes:
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x0aðxÞ ¼ x0a0 þ x0a;lDx
l þ 1

2!
x0a;lm Dx

lDxm þ 1
3!
x0a;lmn Dx

lDxmDxn þ � � � ð9:4Þ

where the coefficients Dxa ¼ xa � xa0 and all coefficients of the derivative-type are
evaluated in x0. The derivatives can be computed by repeated differentiation of the
Eq. (9.3) and solving relatively simple algebraic equations. But the procedure for
obtaining the derivatives has a potential difficulty. Indeed, the coefficients of the
series that are obtained might have not all of their lower indices commutable. Such
invariance of the change of indices is essential, because the order of the partial
differentiation should be of no importance.

First, the focus is on the first derivative and calculations are performed. When
passing to the next derivative, only the change of the two last indices will be
considered, as the other indices already commute, due to processing of the
lower-order derivatives. The first group of algebraic equations consists of the partial
differential Eq. (9.3), evaluated in the point x0:

gab ¼ x0l;ax
0m
;bg

0
lm ð9:5Þ

It is said that g and g0 are congruent matrices in point x0. It can be shown that if
one matrix is symmetric, then the other matrix must be symmetric, too.

Of fundamental importance for building a local Cartesian coordinate system is
the theorem which states that any positive definite symmetric matrix is congruent to
the identity matrix.

By differentiation of (9.3) with respect to xc one finds:

gab;c ¼ @x
0l

@xa
@x

0m

@xb
@x

0n

@xc
g

0
lm;n þ

@x
0l

@xb
@2x

0m

@xa@xc
g

0
lm

þ @x
0l

@xa
@2x

0m

@xb@xc
g

0
lm

ð9:6Þ

where the derivatives of glm and g
0
lm are carried out in relation to their natural

variables x and x0.
To find the second derivatives, x0a;bc, it is useful to introduce the Christoffel

symbols of second kind (see Eq. (4.149)):

Ca
bc �

1
2
gla glb;c þ glc;b � gbc;l

� � ð9:7Þ

It is immediately apparent that the Christoffel symbols are symmetrical in the
two lower indices:

Ca
bc ¼ Ca

cb ð9:8Þ
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A similar definition exists for the coordinates x0. After computation with indexed
quantities and using the relationship:

g0ab ¼ @x
0a

@xl
@x

0b

@xm
glm ð9:9Þ

one finds:

@2x
0a

@xb@xc
¼ Cl

bc

@x
0a

@xl
� C

0a
lm
@x

0l

@xc
@x

0m

@xb
ð9:10Þ

Since the Christoffel symbols are symmetric, the right-hand side of the equation
is invariant with respect to the interchange of b and c, as wanted. By evaluation in
the point x0, the second order coefficients of the Taylor series are found.
Equation (9.10) is differentiated with respect to xd and the following relationship is
found:

@3x
0a

@xb@xc@xd
¼ �Cl

bdC
0a
mn
@x

0m

@xc
@x

0n

@xl
� Cl

bcC
0a
;mn

@x
0m

@xd
@x

0n

@xl

� Cl
cdC

0a
mn
@x

0m

@xl
þC

0l
mnC

0a
lo
@x

0m

@xd
@x

0n

@xc
@x

0o

@xb
þC

0l
mnC

0a
lo
@x

0m

@xd
@x

0n

@xb
@x

0o

@xc

þ Cl
bcC

m
ld
@x

0a

@xm
þCl

bc;d

@x
0a

@xl
� C

0a
lm;n

@x
0l

@xc
@x

0m

@xb
@x

0n

@xd

ð9:11Þ

where the second order derivatives were eliminated by replacing the known values
(9.10). Third order derivatives of (9.11) are already symmetric to the interchange of
b cu c, but they are not necessarily symmetric to the interchange of c with d. It is
requires that:

x
0a
;bcd � x

0a
;bdc ¼ 0 ð9:12Þ

Performing the calculations shows that this condition is fulfilled if and only if the
following quantity with four indices

Ra
bcd ¼ Ca

bc;d � Ca
bd;c þCl

bcC
a
ld � Cl

bdC
a
lc ð9:13Þ

(with a similar definition in the coordinates x0) is transformed as a tensor of rank
four, namely:

Ra
bcd ¼

@xa

@x0l �
@x

0m

@xb
� @x

0n

@xc
� @x

0o

@xd
� R0l

mno ð9:14Þ

Ra
bcd is called the Riemann (curvature) tensor and its transformation rule is

precisely the necessary relation looked for.
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The proof is virtually complete, since the fourth order coefficients x
0a
;bcde should

have the last two indices commutable, both d and e coming out from the differ-
entiating of a single expression. This is maintained for higher order coefficients, too.

Equation (9.14) is a necessary condition for the existence of a solution of the
partial differential Eq. (9.3). It allows building a solution in terms of Taylor series.
Riemann showed that the relationship (9.14) is the sufficient condition, for the
particular case of zero curvature. Later, Christoffel demonstrated that relationship
(9.14) is a sufficient condition for the existence of the solution in the general case.

9.2 Properties of Riemann Curvature Tensor

Several properties that are easy to demonstrate of the Riemann tensor are shown
below. From (9.13) one finds:

Ra
bcd ¼ �Ra

bdc

Ra
bcd þRa

cdb þRa
dbc ¼ 0

ð9:15; 16Þ

The following tensor with four covariant indices, obtained by using the coeffi-
cients of the fundamental form, is important:

Rabcd ¼ gal � Rl
bcd ð9:17Þ

Calculation using (9.7), (9.13) and the next identities, quite easy to prove:

gal � glb;c ¼ �gal;c � glb
gab;c ¼ gal � Cl

bc þ gbl � Cl
ac

ð9:18; 19Þ

demonstrates that:

Rabcd ¼ Rcdab; Rabcd ¼ �Rbacd ¼ �Rabdc ¼ Rbadc

Rabcd þRacdb þRadbc ¼ 0
ð9:20–22Þ

Define the Ricci tensor of second rank:

Rab ¼ Rl
alb ð9:23Þ

It can be rewritten as:

Rab ¼ glm � Rlamb ð9:24Þ
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Equation (9.20) leads to the conclusion that the Ricci tensor is symmetric. The
Riemann curvature scalar is defined as follows:

R ¼ glm � Rlm ð9:25Þ

The value of R in any point is independent of the choice of coordinates.
Therefore R is a scalar.

Note that other notations and conventions of sign are sometimes used in liter-
ature for the previous relationships (as seen in previous chapters).

9.3 Normal Riemann Coordinates

Consider again the problem of finding a coordinate system for which the metric
elements are constant. In such a coordinate system, all curvature components
should be zero, as follows from the definition (9.13) of the curvature. But, if the
curvature is zero in one coordinate system, it must be zero in all coordinate systems;
this is a result of the tensor transformation (9.14). Therefore, the cancellation of the
Riemann tensor is a necessary condition for the existence of a coordinate system
whose metric components are constant. This is equally well a sufficient condition,
because canceling the Riemann curvature allows satisfying the consistency
Eq. (9.14) with a constant metric.

All these results are valid only locally. There is no consequence on the global
topology. For example, the Riemann curvature of a cylinder is zero, but the cylinder
is not topologically equivalent to a plan. The thermodynamic curvature of a perfect
gas is null, as shown below. However, in the general case of non-ideal gases, the
curvature is not zero.

The following question arises: how far from the point x0 the state of the system
can be moved, but still keeping the system geometry reasonably close to that of a
flat surface? To answer this question, the first problem is to find a coordinate system
x0ðxÞ as close as possible to the Cartesian coordinates near the point x0. Without loss
of generality, the assumption x00 ¼ 0 is adopted here.

The first condition is that the elements of the metric are (locally) Cartesian in x00:

g0ab ¼ dab ð9:26Þ

This is done easily by solving the algebraic Eq. (9.5) in the first derivatives x0a;b. The
number of unknowns is larger than the number of equations and, consequently, the
additional degrees of freedom enable a change of orientation of the coordinate
system.

Next, try to cancel in x0 as many derivatives of g0ab ðxÞ as possible. Start with the
first derivatives and take:
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C0a
bc ¼ 0 ð9:27Þ

Using (9.27) and (9.10) yields the second derivatives coefficients:

x0a;bc ¼ Cl
bc � x0a;l ð9:28Þ

However, the second derivatives of g0abðxÞ cannot all be zero, because this would
mean a zero curvature, which is not wanted. This is the end of the process of
canceling the derivatives of the metric elements.

One can make improvements by looking to the geodesics. The first step is to
observe that, since the first derivatives of g0ab can be canceled, it follows that:

R0a
bcd ¼ C0a

bc;d � C0a
bd;c ð9:29Þ

where the left hand side is already known from the transformation rule of the
curvature tensor, Eq. (9.14). The first derivatives of the Christoffel symbols may be
chosen in such a way that this consistency relationship is satisfied. However, the
choice is not unique. Indeed, one can add a symmetric quantity in indices c and d to
the first derivatives of the Christoffel symbols without changing the difference in
Eq. (9.29). The specific choice:

C0a
bc;d ¼

1
3

R0a
bcd þR0a

cbd

� �
ð9:30Þ

fulfils the Eq. (9.29), as it can be easily checked by using the Eqs. (9.15) and
(9.16). Then, substituting (9.30) in (9.11), would get xa;bcd. These coordinates are
named normal Riemann coordinates. It can be shown that they are the closest
coordinates to the local Cartesian coordinates. The coefficients of the type of higher
derivatives are not unique.

In the following the prime sign is dropped since the original coordinate system
will not be used. A central notion in Riemann geometry is the geodesic, which is the
path of the shortest distance between points. The length of a path xðkÞ is given by
the following integral equation:

Z
jglm dx

l

dk
dxm

dk
j

� �1=2

dk ð9:31Þ

where k is the arc length of the curve. It has been shown in previous chapters that
the geodesics are solutions of the geodesics equation, which, written in terms of the
parameter k, have the form:

d2xa

dk2
þCa

lm
dxl

dk
dxm

dk
¼ 0 ð9:32Þ
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Without loss of generality, one can choose x0 ¼ 0, and k can be measured in
relation with this point. The geodesic curves passing through x0 ¼ 0 can be
expressed by using the expansion in Taylor series:

xa ¼ bakþ 1
2!
cak2 þ 1

3!
dak3 þ � � � ð9:33Þ

The development of the Christoffel symbols in a Taylor series, keeping the first
terms, is:

Ca
lmðxÞ ¼ Ca

lm þCa
lm;nb

nkþ � � � ð9:34Þ

Substituting this series in the geodesics equation written in Riemann normal
coordinates, and equating the similar powers of k, one finds that the term with ca

vanishes. Indeed, the Christoffel symbols are canceled and da cancels due to the
antisymmetry of the Riemann tensor in its last two indices. The result is:

xa ¼ bakþ � � � ð9:35Þ

In a curved space, this equation is the closest to that of a flat space.

9.4 The Validity of the Classical Theory of Fluctuations

Recall that the objective is to assess how much the system state can be moved with
respect to the point x0 so that its geometry remains almost flat. A two-dimensional
(2D) geometry is now used, where a measure of the deviation with respect to
flatness is the circumference of a circle of (small) radius r, centered in x0 ¼ 0. The
circle is the geometric locus of those points on the geodesics that start from x0, with
parameter k ¼ r.

One develops in Taylor series the metric elements:

gab ¼ dab þ 1
2
gab;lmb

lbmk2 þ � � � ð9:36Þ

The direction cosines are express parametrically:

b1 ¼ cos h; b2 ¼ sin h ð9:37Þ

where h varies from 0 to 2p. In normal Riemann coordinates, Eq. (9.19) leads to:

gab;cd ¼ 1
3
ðRacbd þRbcadÞ ð9:38Þ
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The relationship that gives the scalar Riemann curvature in terms of the Riemann
tensor is also used:

R ¼ 2R1212

g
ð9:39Þ

which is valid in any coordinate system. The length of the circumference of the
circle is given by the integral:

C ¼
Z2p
h¼0

jglm dx
l

dh
� dx

m

dh
j

� �1=2

� dh ð9:40Þ

Replacing the expansion of the metric and the parametric expressions of ba, and
performing laborious calculations, one finally obtains:

C ¼ 2prþ p
6
Rr3 þ � � � ð9:41Þ

In the Riemann geometry of thermodynamics, the square of the distance has
dimension of inverse volume. In conjunction with (9.41), one sees that R must have
the dimension of volume. For the geometry to be almost flat, the first term of the right
member of (9.41) must dominate the second term. This condition is obtained if:

r2 � 12
jRj ð9:42Þ

It can be shown (Ruppeiner 1995) that typical fluctuations act on a distance of
the order of

r2 � 2
V

ð9:43Þ

Therefore, in order for the classical theory to give a correct description of the
fluctuations, the following condition should be fulfilled:

V � 1
6
jRj ð9:44Þ

So, jRj fixes the lower limit of the volume for the validity of the classical theory.
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9.5 Weinhold Geometry

In a series of papers, Weinhold (1975, 1976) proposed a geometrical representation
of the standard equilibrium thermodynamic. Weinhold used the energy represen-
tation, denoting the nþ 1 extensive variables of the subsystem by
Ye ¼ S;N1; . . .;V ; . . .;Nnð Þ. These variables are similar to those used in the entropy
representation, with the difference that in the first position appears the entropy
instead of the internal energy. The last variable sets the scale of the subsystem; it
can be the volume. The conjugated intensive variables are:

Pa
e ¼

@U
@Ya

e
ð9:45Þ

i.e. Pe ¼ T ; l1; . . .;�P; . . .; lrð Þ. Taking into account the Gibbs–Duhem relation-
ship, any of the quantities Pa

e can be expressed as a function of the other quantities.
The dependent variable Pa

e is usually listed at the end, being the conjugate of the
fixed scale of the subsystem.

The differentials of the thermodynamic functions can be associated with vectors
in a vector space. The basis of the vector space may be built by using the n inde-
pendent values dPa

e , since:

df ¼
Xn�1

l¼0

@f
@Pl

e
dPl

e ð9:46Þ

for any thermodynamic function f. Weinhold associated the inner product:

dPa
e j dPb

e

� � ¼ @2U

@Ya
e @Y

b
e

ð9:47Þ

to the pairs of the basis vectors. The inner product is commutative. Also, Weinhold
imposed the condition that the inner product is bilinear:

dPa
e j adPb

e þ bdPc
e

� � ¼ a dPa
e j dPb

e

� �þ b dPa
e j dPc

e

� � ð9:48Þ

for any constant values of a and b.
In the thermodynamic space of phases one can define, in principle, any kind of

inner product. To make the inner product useful in applications, it must have a
physical motivation. Weinhold’s idea was to associate the inner product, positive
defined, with the second law of thermodynamics. It can be shown that:

Xn�1

l;v¼0

@2U
@Yl

e @Ym
e
dYl

e dY
m
e ¼ �T

Xn�1

l;v¼0

@2S
@Xl

e @Xm
e
dXl

e dX
m
e ð9:49Þ
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The right hand side of (9.49) is a positive definite quadratic form. This is enough to
prove that the matrix of (9.47) is positive definite. Thus:

dPa
e j dPa

e

� �� 0 ð9:50Þ

and

dPa
e j dPa

e

� �
dPb

e j dPb
e

� �� dPa
e j dPb

e

� �2 � 0 ð9:51Þ

These inequalities are ways of expressing the second law of thermodynamics.
Weinhold geometry can be developed by using the entropy representation,

because the sign of the inequalities does not change when the inner product is
multiplied by any positive function. The entropy representation is usually preferred,
due to its applications in the theory of fluctuations and in the theory of finite time
thermodynamics.

The inner product introduced by Weinhold may lead to a Riemann metric, as
shown in (9.49). However, such geometry does not seem to have physical inter-
pretation in the strict context of equilibrium thermodynamics. Meanings can be
found in the context of fluctuations theory or of finite time processes theory.

9.6 Thermodynamic Curvature

For a given thermodynamics state, the value of the scalar curvature is independent
of the coordinate system in which calculations are conducted. Therefore, the choice
of the coordinates is arbitrary. This observation is essential because it endows the
curvature with intrinsic physical significance.

9.6.1 Simple Examples

In the following there are presented some examples of simple systems for which the
calculation of the thermodynamic curvature may be conducted in detail. Also, the
results are discussed and interpreted (for more details see Ruppeiner 1995).

9.6.1.1 One-Component Perfect Gas

The perfect gas model is well-known. The molecules are considered identical and
do not interact with one another except when they are in direct contact.

Calculations can be done by starting either from the energy representation U ¼
UðS;VÞ or from the entropy representation S ¼ SðU;VÞ. The way these
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representations can be obtained in case of a monoatomic perfect gas is briefly
presented. It can start from simple expressions, such as that of the internal energy
and that of the state equation, respectively:

U ¼ 3
2
NRT ; PV ¼ NRT ð9:52; 53Þ

where N is the amount of substance (in mole) and R is the universal constant of
perfect gases. The well-known relation which expresses the internal energy in terms
of the pressure P and volume V is inferred from the relationships (9.52) and (9.53):

U ¼ 3
2
PV ð9:54Þ

Next, consider the expression of the perfect gas entropy in terms of volume and
pressure:

S ¼ S0 þðRþCV Þ ln V
V0

þCV ln
P
P0

ð9:55Þ

Here CV is the molar heat at constant volume (which, in the case of the perfect
gas, is a constant) and the quantities with subscript 0 represent integration con-
stants. From Eq. (9.55) the pressure can be expressed under the form P ¼ P S;Vð Þ.
If this relationship is replaced in (9.54), a relationship is obtained in which the only
variables are U; S and V. By extracting the internal energy U from that relation, the
explicit energy representation U ¼ U S;Vð Þ is found. Similarly, by extracting the
entropy S, the explicit representation of entropy S ¼ S U;Vð Þ is obtained. The
thermodynamic curvature calculation can be performed by starting from any of the
two representations. However, a different approach, proposed by Ruppeiner (1995),
is presented here.

The Helmholtz free energy per unit volume, f, is defined by the standard
relationship

f ¼ u� Ts ð9:56Þ

where u and s are the internal energy and the entropy, respectively, both of them per
unit volume. For the perfect gas, the explicit relationship which gives the Helmholtz
free energy is:

f ðT ; qÞ ¼ qkBT ln qþ qkBf1ðTÞ ð9:57Þ

where q ¼ N=V is the gas density, expressed in number of moles per unit volume,
kB is Boltzmann constant and f1ðTÞ is a function of temperature (having negative
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second derivative, in order to yield to a positively definite heat capacity). The
entropy s and the chemical potential l may be obtained by using the equations:

s ¼ � @f
@T

� �
q

; l ¼ @f
@q

� �
T

ð9:58; 59Þ

It can be shown that, by using these relationships, one obtains the following
diagonalized expression of the square of the thermodynamic length Dl (Ruppeiner
1995):

Dl2 ¼ � q � f 001 Tð Þ
T

DTð Þ2 þ 1
q

Dqð Þ2 ð9:60Þ

where the sign ″ designates the second derivative. It is useful to show that the
thermodynamic curvature is canceled by a change to the Euclidean coordinates.
First, define:

t ¼
ZT
T0

� f 001 Tð Þ
T

� �1=2

dT ð9:61Þ

where T0 is a positive arbitrary constant. Then, define the following two
coordinates:

x1 ¼ ð2qÞ1=2 cos
t
2

� �
þ sin

t
2

� �h i
; x2 ¼ ð2qÞ1=2 cos

t
2

� �
� sin

t
2

� �h i
ð9:62; 63Þ

Direct calculations lead to an expression of the square of the thermodynamic
length of the form:

Dl2 ¼ Dx1
� �2 þ Dx2

� �2 ð9:64Þ

which refers to the length of a locally Euclidean line segment. This observation is
enough to understand that the Riemann curvature of the perfect gas is zero. It can be
shown that the curvature of a perfect gas whose scale is fixed by the number of
particles instead of its volume, is also null. The conclusion that the thermodynamics
curvature of the perfect gas is zero is an important result, which obvious connects
the thermodynamics curvature with the interaction between particles.

Also, a null curvature is obtained from the original metric (9.60), by using the
equation of the Riemann curvature. For a diagonal metric,

Dl2 ¼ g11 Dx1
� �2 þ g22 Dx2

� �2 ð9:65Þ
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one can easily find from the Eq. (9.39) that the scalar Riemann curvature is given
by:

R ¼ 1
g1=2

@

@x1
1

g1=2
@g22
@x1

� �
þ @

@x2
1

g1=2
@g11
@x2

� �� 	
ð9:66Þ

The replacement of the line element (9.60) yields to a zero curvature.
If the metric is not diagonal, but has the form:

Dl2 ¼ g11 Dx1
� �2 þ 2g12 Dx1Dx2 þ g22 Dx2

� �2 ð9:67Þ

it is easy to prove that the expression of the scalar Riemann curvature is (Ruppeiner
1995):

R ¼ � 1
g1=2

@

@x1
1

g1=2
g12
g11

� @g11
@x2

� 1
g1=2

� @g22
@x1

� �

þ @

@x2
2

g1=2
� @g12
@x2

� 1
g1=2

� @g11
@x2

� 1
g1=2

� g12
g11

� @g11
@x1

� �
2
6664

3
7775 ð9:68Þ

Note that, even when the curvature is null, the topology of this surface endowed
with Riemann geometry is not that of a flat surface.

9.6.1.2 Ideal Paramagnetic System

Another simple application refers to an ideal paramagnetic system consisting of
magnetic spins without interaction. The system is characterized by the following
equation of state:

m ¼ f
h
T

� �
; ð9:69Þ

where m is the spin magnetization, h is the intensity of the magnetic field and f is a
function with positive first derivative. The state equation yields the relationship:

@u
@h

� �
T
¼ 0 ð9:70Þ

The length of the line segment in ðT;mÞ coordinates is, according to the analogy
between a fluid and a magnetic system:

Dl2 ¼ gTT � DTð Þ2 þ gmm Dmð Þ2 ð9:71Þ
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where

gTT ¼ 1
kBT

@s
@T

� �
m
; gmm ¼ 1

kBT
@h
@m

� �
T

ð9:72; 73Þ

Using the magnetic equation of state (9.69), the next relationship is found, which
is useful to find the extreme:

@gmm
@T

� �
m
¼ 0 ð9:74Þ

Also, Eq. (9.70) gives:

@gTT
@m

� �
T
¼ 0 ð9:75Þ

Replacing into the thermodynamic curvature Eq. (9.66), one sees that the cur-
vature of the ideal paramagnetic system is zero, provided that the following metric
element does not cancel:

gTT 6¼ 0 ð9:76Þ

If, however, this metric element is null, as in the case when the spins and the
lattice do not have internal energy levels, the geometry is singular and actually
one-dimensional. From the mathematical point of view, this also leads to a zero
curvature, since in a one-dimensional geometry one can always find an Euclidean
coordinate system.

9.6.1.3 Mixture of Perfect Gases

The Helmholtz free energy per unit volume of a mixture of r perfect gases is
(Ruppeiner 1995):

f T ; a1; a2; � � � ; ar� � ¼ Xr

i¼1

aikBT ln ai þ
Xr

i¼1

aikBfiðTÞ ð9:77Þ

where ai is the density of gas i (number of particles per unit volume) and the
functions fiðTÞ depend on temperature and have negative second derivatives, in
order to obtain a positive caloric capacity. Using the expression of the free energy
in the metric equation, one can finally get the square of the length of a line segment
under the following diagonal form:
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Dl2 ¼
Xr

i¼1

ai � hi Tð Þ
" #

DTð Þ2 þ
Xr

i¼1

1
ai
� Dai
� �2 ð9:78Þ

where

hiðTÞ ¼ � f 00i ðTÞ
T

[ 0 ð9:79Þ

Since the metric is simple, many of the elements of the curvature tensor are
canceled. Using Eq. (9.25), the scalar curvature is obtained:

R ¼

Pr
i¼1

hi Tð Þ �Pr
j¼1

a j � hj Tð Þ �Pr
i¼1

ai hi Tð Þ½ 	2

2
Pr
i¼1

ai � hi Tð Þ
� 	2 ð9:80Þ

If all functions hiðTÞ are identical, as in case when all the components of the
mixture are monoatomic gases, the Eq. (9.80) reduces to:

R ¼ r � 1
2q

ð9:81Þ

where

q ¼
Xr

i¼1

ai ð9:82Þ

is the total density of the mixture. This result is simple and surprising. It depends
neither on temperature nor on the relative densities of the component gases but only
on the total density of the gas mixture.

If the “mixture” consists of a single gas, r ¼ 1 and this yields R ¼ 0, which is to
be expected.

9.6.1.4 Perfect Quantum Gases

It is possible to calculate the thermodynamic curvature of a Fermi gas, as well as of
a Bose gas (Janyszek 1986; Ruppeiner 1995). The thermodynamic potential to be
used is:

U
1
T
;� l

T

� �
¼ kB 2Sþ 1ð Þk�3f


5
2
; g

� �
ð9:83Þ
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where

k ¼ h

ð2pmkBTÞ1=2
ð9:84Þ

is the thermal wavelength and the following two notations were used

g ¼ e
l

kBT ; f
 l; gð Þ ¼ 1
C lð Þ

Z1
0

xl�1

g�1ex 
 1
dx ð9:85; 86Þ

In these relationships h is Planck’s constant, m is the mass of the particle, S is spin
of the particle and C is the Euler gamma function. Also, a Fermi gas corresponds to
a plus sign and a minus sign means a Bose gas.

In coordinates C ¼ 1=T ;�l=Tð Þ, the elements of the metric are:

gab ¼ 1
kB

� U;ab ð9:87Þ

It can be shown that, if the metric elements can be written as second order
derivatives of a specific potential, the thermodynamics curvature is given by
(Ruppeiner 1995):

R ¼ kB
2

det
U;11 U;12 U;22

U;111 U;112 U;122

U;112 U;122 U;222

0
@

1
A

det
U;11 U;12

U;12 U;22

� �� 	2 ð9:88Þ

This relationship is obtained from Eq. (9.39) of the thermodynamics curvature.
Note that it contains second and third order derivatives. After calculating the
derivatives, one finds:

R ¼ � 5k3

2Sþ 1ð Þ

f 2

3
2
; g

� �
f


1
2
; g

� �
� 2f


5
2
; g

� �
f 2


1
2
; g

� �

þ f

5
2
; g

� �
f


3
2
; g

� �
f
 � 1

2
; g

� �
2
6664

3
7775

5f
 5
2 ; g
� �

f
 1
2 ; g
� �� 3f 2


3
2 ; g
� �
 �2 ð9:89Þ

For a Fermi gas, the curvature R is always positive while for a Bose gas, R is
always negative and strongly diverge when T ! 0. This limit is in connection with
Bose-Einstein condensation. In both cases (Bose and Fermi), R tends to zero in the
limit of the perfect gas.
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9.6.1.5 Van der Waals Gas

Details about the calculation of the curvature of a closed system consisting of a Van
der Waals gas are presented in the following. In this case, the Helmholtz free energy
per unit volume is

f ðT; qÞ ¼ qkBT ln
q
q0

� �
þ qkBeðTÞ � qkBT lnð1� bqÞ � akBq

2 ð9:90Þ

where eðTÞ is a function of the temperature, having negative second derivative,
while a,b and q0 are constants. The constant heat capacity per molecule is denoted
cv. A units system where cv is dimensionless quantity of the order unity, for
example 3/2 for a mono-atomic perfect gas, is considered here. Then,

eðTÞ ¼ �cvT ln
T
T0

� �
þ e0 ð9:91Þ

where T0 and e0 are constants. The metric is diagonal, as seen from Eq. (8.52). The
metric elements are:

gTT ¼ qcv
T2 ; gqq ¼ 1

qð1� bqÞ2 �
2a
T

ð9:92Þ

The curvature is calculated by using Eq. (9.66):

R ¼

�ð1� bqÞ
� 2a2qþ 6a2bq2 � 6a2b2q3 þ 2a2b3q4 þ 2aT

� acvT � 2abqT þ 3abcvqT � 3ab2cvq2T

þ ab3cvq
3T þ bcvT

2

2
64

3
75

cv �2aqþ 4abq2 � 2ab2q3 þ Tð Þ2 ð9:93Þ

Near the critical point, the metrics element gqq and its first derivative with
respect to q are zero. The thermodynamics curvature near the critical point is
computed as follows. The critical parameters of the system are defined by using
standard relationships:

Tc ¼ 8a
27b

; qc ¼
1
3b

ð9:94Þ

Using (9.93) and replacing the critical density qc and the reduced temperature
s � T=Tc, one finds, in the first order of approximation in s,

R ¼ � 3b
2cv

1
s2

ð9:95Þ
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The quantity R is of the order of the molecular volume.
Very close to the critical point, the specific heat is given by

Cq ¼ �Tc
@2f
@T2 ¼

cvkB
3b

ð9:96Þ

and the combination

RCqs
2 ¼ � 1

2
kB ð9:97Þ

is valid in first order of approximation in s.
It can be shown that, in case of the van der Waals gas, the curvature does not

have a particular behavior for first order phase transitions. From Eq. (9.93) it is seen
that a divergence can occur only when the denominator is canceled, and this
happens at the critical point.

9.6.2 Thermodynamics Curvature and Correlation Length

The thermodynamics curvature has volume units. It has been seen that the curvature
is zero in case of the ideal gas, for which no long distance interactions between
particles exist. The curvature tends to infinity at the critical point, in a similar way
with the correlation volume nd (here n is the correlation length and d is the spatial
dimension). These properties suggest that thermodynamics curvature can be used as
a measure of the degree of interaction between the particles of the system.

The theory also showed that the thermodynamics curvature can be used as a
measure of the smallest volume for which the classical fluctuations theory, based on
the assumption of a homogeneous medium, is valid. Near the critical point this
volume is expected to be nd . In other words, it is expected that a relationship of
proportionality between the curvature and correlation volume does exist. Assume
that this relation has the following form:

R ¼ j2n
d ð9:98Þ

where j2 is a dimensionless constant of the order of unity.
The thermodynamics curvature can be linked with another aspect of the theory

of fluctuations, which is usually overlooked. First, the free energy per unit volume
is used as a thermodynamic potential

/ ¼ s� 1
T
lþ l

T
q ð9:99Þ
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Assume that the energy and the number of particles are conserved. Then, the
deviation of the entropy with respect to its maximum value is

DS0 ¼ V Ds� 1
T0

Duþ l0
T0

Dq

� 	
ð9:100Þ

where the subscript 0 refers to the parameters of the very large system AV0 .
The fluctuations of temperature and chemical potential tend to zero near the

critical point. On the contrary, the fluctuations of the entropy and standard extensive
quantities close to the critical point become very large. This can be shown by
standard approaches. Therefore, the quantity in the brackets of the Eq. (9.100) is
very close to the differential of / and

DS0 � VD/ ð9:101Þ

For common size fluctuations the following relation applies:

jDS0j � kB ð9:102Þ

Therefore

jD/j � kB
V

ð9:103Þ

If the magnitude of the fluctuations of the thermodynamic potential per unit
volume is in the same range with magnitude of the potential, one can write:

D/ � / ð9:104Þ

Equation (9.103), together with (9.104), leads to:

/ ¼ � j1kB
nd

ð9:105Þ

where j1 is a dimensionless constant of the order of unity. This is sometimes called
the hyperscaling hypothesis. Note that / refers only to the singular part of the free
energy, i.e. that part associated with long-range interactions between parts of the
system. But n diverges at the critical point. Consequently, / must tend to zero at the
critical point.

Therefore, / may be determined, at least in the first order of approximation, by
subtracting from the actual value of the free energy, the value of the free energy at
the critical point.
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One may use the Eq. (9.98) to eliminate the correlation volume from (9.105).
The result is:

R ¼ �j
kB
/
; ðj � j1j2Þ ð9:106Þ

This equation states the proportionality between the thermodynamics curvature and
the inverse of the free energy.

Next, an example will be shown by using a simple model.

9.6.2.1 One-Dimensional Ising Model

The thermodynamics of the one-dimensional Ising model is relatively simple. It can
be shown that the following expression gives the thermodynamics curvature:

�R ¼ cosh y sinh2yþ e�4x� ��1=2 þ 1 ð9:107Þ

Here the notation of Sect. 8.5.2 is used. The correlation length was assessed
using statistical mechanics in the ferromagnetic case (J[ 0), where the correlation
function is monotonously damped (Ruppeiner 1995). It was found that the value of
the Gauss curvature:

nG � �R
2

ð9:108Þ

is in very good agreement with the correlation length, without deviating from it by
more than a single lattice constant. In the anti-ferromagnetic case ðJ\0Þ, the
dampening of the correlation function oscillates, with an wavelength of the order of
the lattice parameter, while nG is of the order of separation distance between the
neighboring spins.

The results are compelling for the ferromagnetic case J[ 0 but those for the
anti-ferromagnetic case J\0 are not self-evident. For a brief discussion, some
statistical mechanics arguments are used. Consider the following new variables:

r0i ¼ ð�1Þiri; h0i ¼ ð�1Þih ð9:109a; bÞ

By using the transformation

J 0 ¼ �J[ 0 ð9:110Þ
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the following Hamiltonian is obtained

H ¼ �J 0
X1
i¼1

r0ir
0
iþ 1 �

X1
i¼1

h0ir
0
i ð9:111Þ

which is identical with that obtained in the ferromagnetic case J[ 0. As a result, by
using the new variables (9.109), the same thermodynamics curvature and correla-
tion length are obtained as in the case J[ 0.

Without the use of variables (9.109), it can be shown that for h ¼ 0 the spins are
locked into a single microstate, with alternating spins on a length corresponding to
the correlation length n. The correlation length n diverges when T ! 0. Therefore,
n gives the lower limit for the volume where thermodynamics can be used. In this
situation, thermodynamics curvatures of the order of magnitude of the lattice
parameter do not have, of course, physical significance.

9.6.3 Thermodynamics Curvature and Stability

In this chapter it was argued that the thermodynamics curvature may be used as a
measure for the correlation length. Janyszek and Mrugala (1989a, b) proposed
another interpretation of the thermodynamics curvature. These authors suggested
that R is a measure of stability. Thus, the higher R is (with the sign convention) the
more stable the system is. This interpretation is motivated, in part, by the results of
the one-dimensional Ising model, where the magnetization in the ferromagnetic
case has large fluctuations at low temperature and zero magnetic field intensity, but
the fluctuations in the anti-ferromagnetic case are small. Therefore, in the first case,
large groups of spins align up or down, and the system is less stable.

Another motivation lies in the results obtained for ideal quantum gases of bosons
and fermions, respectively. These systems, which are fundamentally different from
each other, have opposite thermodynamic curvatures. For a Bose gas, the curvature
R is negative and for a Fermi gas the curvature is positive, which shows that the
Bose gas, with attractive interactions, is less stable.

The interpretation of the thermodynamic curvature as a measure of systems
stability is appealing. However, it has some weaknesses, such as that it does not
allow an interpretation of the meaning of the units of thermodynamic curvature and
does not offer an explanation for the fact that the correlation length is of the order of
magnitude of the thermodynamic curvature.
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