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Preface 

This book – an in-depth examination of chemical thermodynamics – 
is written for an audience of engineering undergraduates and Masters 
students in the disciplines of chemistry, physical chemistry, process 
engineering, materials, etc., and doctoral candidates in those 
disciplines. It will also be useful for researchers at fundamental- or 
applied-research labs dealing with issues in thermodynamics during 
the course of their work. 

These audiences will, during their undergraduate degree, have 
received a grounding in general thermodynamics and chemical 
thermodynamics, which all science students are normally taught, and 
will therefore be familiar with the fundamentals, such as the principles 
and the basic functions of thermodynamics, and the handling of phase 
and chemical equilibrium states, essentially in an ideal medium, 
usually for fluid phases, in the absence of electrical fields and 
independently of any surface effects. 

This set of books, which is positioned somewhere between an 
introduction to the subject and a research paper, offers a detailed 
examination of chemical thermodynamics that is necessary in the 
various disciplines relating to chemical or material sciences. It lays the 
groundwork necessary for students to go and read specialized 
publications in their different areas. It constitutes a series of reference 
books that touch on all of the concepts and methods. It discusses both 
scales of modeling: microscopic (by statistical thermodynamics) and 
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macroscopic, and illustrates the link between them at every step. 
These models are then used in the study of solid, liquid and gaseous 
phases, either of pure substances or comprising several components. 

The various volumes of the set will deal with the following topics: 

– phase modeling tools: application to gases; 

– modeling of liquid phases; 

– modeling of solid phases; 

– chemical equilibrium states; 

– phase transformations; 

– electrolytes and electrochemical thermodynamics; 

– thermodynamics of surfaces, capillary systems and phases of 
small dimensions. 

Appendices in each volume give an introduction to the general 
methods used in the text, and offer additional mathematical tools and 
some data. 

This series owes a great deal to the feedback, comments and 
questions from all my students are the Ecole nationale supérieure des 
mines (engineering school) in Saint Etienne who have “endured” my 
lecturing in thermodynamics for many years. I am very grateful to 
them, and also thank them for their stimulating attitude. This work is 
also the fruit of numerous discussions with colleagues who teach 
thermodynamics in the largest establishments – particularly in the 
context of the group “Thermodic”, founded by Marc Onillion. My 
thanks go to all of them for their contributions and conviviality. 

This volume of the set is devoted to modeling of solid phases. 

Chapter 1 discusses the modeling of pure solids. Oscillator models 
(Einstein’s and Debye’s) are used to calculate canonical partition 
functions for four types of solid: atomic, ionic, molecular and 
metallic. These canonical partition functions can be employed, first to 
calculate the specific heat capacities at constant volume, and second to 
determine the expansion coefficients with the Grüneisen parameters. 
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Chapter 2 looks at the modeling and characterization of solid 
solutions. Following a qualitative description of the different types of 
solid solution of substitution and insertion, the short-distance and 
long-distance order coefficients are introduced. Simple solution 
models are briefly described and the thermodynamics of the 
order/disorder transformations in alloys is presented. The chapter ends 
with the experimental determination of the activity coefficients of the 
components of a solid solution. 

The third chapter deals with non-stoichiometry of solids, and 
therefore point defects in pure solids. Equilibria between defects are 
discussed in the context of quasi-chemical phenomena. 

The fourth and final chapter looks at the question of point defects 
in solid solutions that are slightly or highly concentrated. The role of 
doping of insulating and semiconductive ionic materials is discussed, 
as is the description of models of gas dissolution in solids. The chapter 
finishes with an examination of the methods used to calculate the 
equilibrium constants of point-defect creation. 

Two appendices are given at the end of the book, discussing the 
Lagrange multiplier method and a method for solving Schrödinger’s 
equation. 

 

Michel SOUSTELLE 
Saint-Vallier, 

July 2015 

 

 

 



 



 

Notations and Symbols 

{ }gas pure, { }{ }gas  in a mixture, ( )liquid  pure, ( )( )liquid in solution, solid pure, 

solid in solution 

A:   area of a surface or an interface. 

(12)
HA :  Hamaker constant between two media 1 and 2. 

A:  affinity. 

A~ :  electrochemical affinity. 

AM:  molar area. 

Am:  molecular area. 

a:  cohesion pressure of a gas or radius of the unit cell of a liquid. 

A, B, …: components of a mixture. 

amix and bmix: mixing terms of the constants in a state equation. 

B’i:  ith coefficient of the virial in the pressure expansion. 

Bi:  ith coefficient of the virial. 

b:  covolume of a gas or cosurface of an adsorbed gas. 

C:  concentration or concentration in a potential-pH plot. 

xs
PC :  molar heat capacity of excess at constant pressure. 
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Ci:  molar concentration (or molarity) of component i. 

C± :  mean concentration of ions in an ionic solution. 

CV(el):  contribution of free electrons in a metal to the molar heat capacity. 

Cv(r):  contribution of rotational motions to the heat capacity at constant 
volume. 

Cv(t):  contribution of translational motions to the heat capacity at  
  constant volume. 

Cv(v):  contribution of vibrational motions to the heat capacity at constant  
  volume. 

CV, CP:  heat capacity at constant volume and constant pressure,   
respectively. 

c:  capacity of a capacitor or number of independent components. 

D :  dielectric constant of the medium or diameter of protection or  
  contact of a molecule. 

D(T/ΘD): Debye’s function. 

d:  distance between two liquid molecules. 

deS:  entropy exchange with the outside environment. 

di:  degree of oxidation i of an element A. 

diS:  internal entropy production. 

dω:  elementary volume. 

E:  energy of the system. 

E:  Young’s modulus. 

E(T/ΘE):  Einstein’s function. 

E0:  internal energy associated with a reaction at a temperature of 0K. 

E0:  standard electrical potential or standard electromotive force (emf)  
  of an electrochemical cell. 

Eabs:  reversible emf of an electrochemical cell. 

Eb:  balance equation. 
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E :  mean total energy of an element in the canonical ensemble. 

EC:  total energy of the canonical ensemble. 

EI:  potential energy due to interactions. 

Ej:  energy of an element j of the canonical ensemble. 

Ekin:  molar kinetic energy of electrons in a metal. 

Ep:  set of variables with p intensive variables chosen to define a  
  system. 

e:  relative emf of an electrode. 

e0:  standard emf of an electrode. 

e0:  equi-activity- or equiconcentration emf of an electrode.  

eabs:  absolute emf of an electrode. 

F:  Helmholtz energy. 

mix
mF :  molar excess Helmholtz energy. 

xs
iF :  partial molar excess Helmholtz energy of the component i. 

mix
iF :  partial molar mixing Helmholtz energy of the component i. 

iF :  free energy, partial molar Helmholtz energy of the component i. 

Fel:  contribution of free electrons to the molar Helmholtz energy. 

F :  electrochemical Helmholtz energy. 

Fm:  molar Helmholtz energy. 

F:  faraday. 

hetf :  heterogeneous wetting function. 

fi:  fugacity of the component i in a gaseous mixture. 

0
if :  molar Helmholtz energy of pure component i. 

f0 or 0
if : fugacity of a pure gas i. 
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xs
mG :  excess Gibbs energy. 

Gσ :  electrocapillary Gibbs energy. 

G :  electrochemical Gibbs energy. 

xs
iG :  partial excess molar Gibbs energy of component i. 

G, , [G]: free enthalpy, partial molar free enthalpy of i, generalized free  
  enthalpy. 

mG :  molar Gibbs energy. 

mix
mG :  molar Gibbs energy of mixing. 

g:  osmotic coefficient or acceleration due to gravity or degeneration  
  coefficient or multiplicity or statistical mass. 

0
ig :  molar Gibbs energy of pure component i. 

ga:  statistical weight of fundamental electron level of nucleus a. 

gi:  coefficient of multiplicity of state i. 

g(e):  statistical weight of electron levels. 

g(r):  radial distribution function. 

g(vx):  distribution of velocity components along Ox axis. 

g*:  molar Gibbs energy of gas i at pressure of 1 atmosphere in a  
  mixture. 

0
TH :  standard molar enthalpy of formation at temperature T. 

H , iH :  enthalpy, partial molar enthalpy of i. 

H:  Hamiltonian. 

Hi,:  integral of resonance between two neighboring identical atoms. 

Hi,i:  Coulombian integral between two neighboring identical atoms. 

H:  magnetic field. 

iG
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H :  electrochemical enthalpy. 

xs
mH :  molar excess enthalpy. 

mix
mH :  molar mixing enthalpy. 

xs
iH :  partial excess molar enthalpy of component i. 

mix
iH :  partial molar mixing enthalpy of component i. 

th :  spreading coefficient. 

h:  stoichiometric coefficient of protons in an electrochemical  
  reaction. 

h:  Planck’s constant. 

0
ih :  molar enthalpy of pure component i. 

hsp:  Harkins spreading coefficient of a liquid on another. 

I:  ionic strength of a solution of ions. 

mI :  ionic strength in relation to molality values. 

I, I1, I2, I3: moments of inertia. 

II:  integral of configuration of the canonical distribution function of  
  translation. 

i:  Van’t Hoff factor. 

iJ :  partial molar value of J relative to component i. 

mix
iJ :  mixing value of J relative to component i. 

mix
iJ :  partial molar mixing value of J relative to component i. 

*
iJ :  value of J relative to component i in a perfect solution. 

*
iJ :  partial molar value of J relative to component i in a perfect 

solution. 
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0
ij :  value of J for the pure component i in the same state of  

  segregation. 

j:  rotational quantum number. 

)(, pjiK E : thermodynamic coefficient associated with the set of variables Ep.  
  Xj is its definition variable and Yi its definition function. 

( )
iK :  constant of change of equilibrium for phase transition Tr for 

component i. 

ijK :  weighting factor of local composition. 

Kads:  equilibrium adsorption constant. 

KAX:  solubility product of solid AX. 

( )
iK αβ :  coefficient of sharing of compound i between the two phases α 

and β. 

Kd:  dissociation constant. 

Kfe:  adsorption equilibrium function. 

( )c
rK :  equilibrium constant relative to concentrations. 

( )f
rK :  equilibrium constant relative to fugacity values. 

( )P
rK :  equilibrium constant relative to partial pressure values. 

Kr:  equilibrium constant. 

Ks:  solubility product. 

k:  wavenumber. 

kB:  Boltzmann’s constant. 

Lt:  latent heat accompanying the transformation t. 

lc:  capillary length. 

M:  molar mass. 

M:  magnetic moment or Madelung constant. 



Notations and Symbols     xix 

sm :  mass of solute s in grams per kilo of solvent. 

m:  total mass. 

mi:  mass of component i. 

N:  number of components of a solution or a mixture of gases or 
involved in a reaction or number of molecules of a collection. 

Na:  Avogadro’s number. 

NA:  number of molecules of component A. 

NC:  number of elements in the canonical collection. 

Nc:  total number of cells of a liquid. 

ni:  number of objects i in the system with energy εi or number of 
moles of component i. 

n:  translational quantum nimber or total number of moles in a 
solution or a mixture. 

n(α):  total number of moles in a phase α. 

<n>:  mean number of neighboring vacancies of a molecule in a liquid. 

NL:   total number of vacancies in a liquid. 

mix
cP :  critical pressure of the mixture. 

P:  pressure of a gas. 

subl
iP :  sublimating vapor pressure of component i. 

vap
iP  0

iP :  saturating vapor pressure of component i. 

mix
rP :  relative pressure of the mixture. 

Pc:  critical pressure. 

Pi:  partial pressure of component i. 

Pj:  proportion of number of elements in a state j. 

p:  number of external physical variables or spreading parameter.  

pF:  Fermi pulse. 
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Q:  heat involved. 

Qa:  reaction quotient in terms of activity. 

QP:  heat of transformation at constant pressure; quotient of reaction in  
  terms of partial pressures. 

Qr:  reaction quotient of transformation r.  

QV:  transformation heat at constant volume. 

qφ:  equilibrium heat of adsorption. 

qd:  differential heat of adsorption. 

qi:  volumetric fraction parameter.  

qisost:  isosteric heat of adsorption. 

ℜ :  reaction rate 

R:  perfect gas constant. 

R:  mean curvature radius of a surface or rate of reflux of distillation. 

Ar :  radius of the ionic atmosphere. 

r0:  minimum distance of energy between two molecules. 

rc:  radius of a cylindrical tube. 

ri:  volumetric fraction parameter. 

rK:  Kelvin radius. 

mix
mS :  molar mixing entropy. 

xs
iS :  partial excess molar entropy of component i. 

mix
iS :  partial mixing molar entropy of component i. 

S:  oversaturation of a solution. 

iS :  entropy or partial molar entropy of i. 

S :  electrochemical entropy. 

xs
mS   excess molar entropy. 
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s:  parameter of order of an alloy. 

0
is :  molar entropy of pure component i. 

T:  temperature. 

mix
cT :  critical temperature of the mixture. 

*T :  second-order transition temperature. 

mix
rT :  relative temperature of the mixture. 

T(Az):  boiling point of azeotropic solution. 

Tc:  critical temperature. 

TF:  Fermi temperature.  

Ti(Eb):  boiling point of pure i. 

Ti(F):  melting point of pure i. 

Ts:  sublimation temperature. 

Tv:  vaporization temperature. 

xs
mU :  excess molar internal energy. 

mix
mU :  mixing molar internal energy. 

xs
iU :  excess partial molar internal energy of component i. 

mix
iU :  partial mixing molar internal energy of component i. 

U, iU :  internal energy, partial molar internal energy of i. 

Uel:  contribution of free electrons to the molar internal energy. 

U :  internal electrochemical energy. 

Um:  molar internal energy. 

UR:  crosslink internal energy. 

u+, u-:  ionic mobilities of the cation and anion. 
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0
iu :  molar internal energy of pure component i. 

V, iV :  volume, partial molar volume of i. 

Vc:  critical volume. 

VG:  Gibbs variance. 

Vm:  molar volume. 

vc:  volume of the unitary element of a liquid. 

vD:  Duhem variance. 

vf:  free volume per molecule. 

v :  volume of influence around a molecule. 

0
iv :  molar volume of pure component i. 

v:  quantum vibration number. 

vm:  molecular volume. 

vM:   molar volume of solid at melting point. 

vmono:  volume of monolayer of adsorbed gas. 

vxi:  component along Ox axis of the velocity of a particle i. 

W12:  energy per square meter of interaction between the surfaces of  
  phases 1 and 2. 

wi:  mass fraction of the component i. 

wij:  energy of exchange between atoms i and j. 

)(
kx :  mole fraction of component k in phase α. 

x, y, z:  coordinates of a point in space. 

xi:  molar fraction of the component i in a solution. 

<y>:  mean value of y. 

Yi and Xi: conjugal intensive and extensive values. 

yi,j:  Mayer function. 

yi:  molar fraction of component i in a gaseous phase. 
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Z:  compressibility coefficient. 

iZ :  compressibility coefficient of gas i. 

mixZ :  compressibility coefficient of the mixture of gases. 

ZAB:  molecular partition function of interaction between molecules. 

ZC:  canonical partition function. 

ZC(A):  canonical partition function of component A. 

ZC(I):  canonical partition function of interaction. 

ZC(t):  canonical partition function of translation. 

z:  molecular partition function, altitude of a point or coordination  

  index, number of nearest neighbors. 

ze:  electron molecular partition function or electrovalence of ion i. 

zi:  number of molecules that are near neighbors of a molecule i. 

zint:  contribution of internal motions to the molecular partition  
  function. 

zn:  molecular partition function of nuclei. 

zpf:  molecular partition function of a perfect gas. 

zr:  rotational molecular partition function. 

zt:  translational molecular partition function. 

zt(pf):  translational molecular partition function of a perfect gas. 

zv:  vibrational molecular partition function. 

α:  coefficient of dissociation of a weak electrolyte or linear dilation  
  coefficient at pressure P or relative volatility or Lagrange  
  multiplier relating to the number of objects of a collection or  
  polarizability of a molecule. 

αa:  apparent dissociation coefficient of a weak electrolyte. 

β:  Lagrange multiplier relating to the energy of the objects in a  
  collection or volumetric dilation coefficient at pressure P. 

( )PEΓ :   characteristic function with the set PE  as canonical variables. 
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kΓ :  coefficient of activity of a group. 

Γ:  characteristic function. 

Γi:  surface excess or surface concentration of component i. 

Γi,j:  excess surface or surface concentration of component i in relation 
to j. 

γ :  coefficient of activity of the component i irrespective of the  
  reference state or Grüneisen parameter or structure coefficient  
  whose value is 2  for cubic crystal lattices with centered faces. 

γ0:  activity coefficient of a solvent. 

γi:  activity coefficient of the species i or Grüneisen factor of phonon 
i. 

( )I
iγ :  activity coefficient of component i, pure-substance reference. 

( )II
iγ :  activity coefficient of component i, infinitely dilute solution  

  reference. 

( )III
iγ :  activity coefficient of component i, molar solution reference. 

γ ± :  mean activity coefficient of ions in an ionic solution. 

γs:  activity coefficient of a solute. 

:  spreading of a liquid. 

Δr(A0
T):  standard value at temperature T of A associated with the  

  transformation r. 

ΔrA:  value de A associated with the transformation r. 

δi,j:  Kronecker delta. 

δ :  coefficient of pressure increase at volume V. 

A(A)ε :  network energy of an atom of A in network A. 

j
iε :  Wagner interaction coefficient. 

ε :  electrical permittivity of the medium. 
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0ε :  electrical permittivity of a vacuum. 

εattr:  energy of attraction between molecules. 

εc:  kinetic energy of a molecule. 

εC-H:  energy of the C-H bond. 

εd:  energy from the dispersion effect between molecules. 

εF:  Fermi energy. 

εi(e):  electronic energy of a molecule i. 

εi(I):  interactional energy of a molecule i. 

εi(n):  nuclear energy of a molecule i. 

εi(r):  rotational energy of a molecule i. 

εi(t):  translational energy of a molecule i. 

εi(v):  vibrational energy of a molecule i. 

εi,j:  energy of interaction between two molecules i and j or pair energy  
  between atoms i and j. 

εmm:  switch. 

εo:  energy due to the effect of orientation between molecules. 

εp:  potential energy of a molecule. 

εrep:  repulsion energy between molecules. 

η:  viscosity. 

ijη :  Warren and Cowley’s order parameter. 

ΘD:  Debye’s vibration temperature. 

ΘE:  Einstein’s vibration temperature. 

Θr:  characteristic rotation temperature. 

θ:  overlap fraction. 

θi:  surface fraction of a component. 
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λ:  linear dilation coefficient. 

λ0+, λ0-:  equivalent ionic conductivities of the cation and anion. 

λΑ :  absolute activity of component A. 

λι :   lateral chemical potential of component i.  

Λ:  equivalent conductivity of an electrolyte or thermal wavelength of  
  a molecule. 

Λ0:  maximum equivalent conductivity of an electrolyte. 

μi, [μi], iμ : chemical potential of the component i, dipolar electrical moment  
  of molecule i, generalized chemical potential. 

( ) ( ),L G
i iμ μ : chemical potential of component i in liquid/gaseous state,    

respectively.  

μ :  electrochemical potential. 

ν:  vibration frequency. 

( )k ρν :  algebraic stoichiometric number of component Ak in reaction ρ. 

νD:  Debye’s maximum frequency. 

νe:  stoichiometric coefficient of electrons in an electrochemical  
  reaction. 

ξ:  reaction extent. 

Πd:  disjunction pressure. 

ρ:  density of molecules in a spherical crown of radius r or volumetric  
  density of electrical charges or density. 

ρ(r):  density of molecules in an enclosure. 

σ:  surface energy or symmetry number. 

σe:  surface density of electrical charges. 

σ∗:  surface tension. 

τ+, τ-:  cationic and anionic transport numbers. 

Φ :  practical osmotic coefficient; expansion pressure. 
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iΦ :  coefficient of fugacity of component i in a gaseous mixture. 

φ:  coefficient of conductivity of a strong electrolyte or number of  
  Phases. 

iφ :  coefficient of fugacity of gas i in a mixture or volume fraction of a  
  component. 

φ0 or 0
iφ : coefficient of fugacity of a pure gas. 

iχ :  calorimetric coefficient relative to the variable xi. 

χ:  electrical conductivity. 

χT:  coefficient of compressibility at temperature T. 

iΨ :  electrostatic potential of ionic atmosphere. 

( )rΨ :  electrostatic potential. 

kmΨ :  energy term between two groups. 

Ψ:  wavefunction. 

ΩBE:  number of complexions in Bose-Einstein statistics. 

ΩC:  number of complexions in Fermi-Dirac statistics. 

Ω:  number of complexions. 

ωi:  set of position coordinates of molecule i. 

ωx:  rotational velocity component in direction Ox. 
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Pure Crystalline Solids 

Crystalline solids are characterized by the regular and periodic 
spatial arrangement of entities at the nodes of a lattice. The nature of 
the entities thus arranged defines the nature of the solid. There are 
four distinct classes: 

– atomic solids, comprising a lattice of atoms, such as solid argon, 
for example; 

– molecular solids, where the entities arranged at the nodes of the 
lattice are molecules, as is the case in solid benzene; 

– ionic crystals. In this case, the entities are ions, and they are 
arranged into two sublattices: one of cations and the other of anions. 
The proportions of sites occupied by these two sublattices are 
obviously such that the whole solid is electrically neutral, overall. The 
ions thus arranged could either be simple ions, as is the case with 
sodium chloride, or complex ions such as in ammonium carbonate; 

– metals, in which ions are arranged at the nodes of the lattice. To 
ensure electrical neutrality, more-or-less mobile electrons are 
distributed around these ions. 

1.1. Characteristic values of a solid 

Solids are incompressible, which means that their derivative 
( )/

T
V P∂ ∂  is practically zero, so they do not have an equation of state 

such as F(P,V,T) = 0. 

Thermodynamic Modeling of Solid Phases, First Edition. Michel Soustelle.
© ISTE Ltd 2015. Published by ISTE Ltd and John Wiley & Sons, Inc.
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However, solids do experience changes in volume, under the 
influence of temperature, which is characterized by its cubic 
expansion coefficient or its linear expansion coefficient. 

Similarly, when heat is applied to it, solids heat up. The extent of 
that rise in temperature is characterized by the solid’s specific heat 
capacity. 

When a solid is subjected to a stress (or load) – i.e. a certain 
amount of force per unit surface area or a moment per unit length, 
such as axial traction (Figure 1.1(a)) or axial compression 
(Figure 1.1(b)), for example – it normally deforms. This deformation 
is also known as “strain”. 

Other values pertaining to the dielectric and magnetic properties 
are also available. 

In the next section, we will examine the first three effects, starting 
with the effect of a stress. Then we will develop models of solids 
which we can go on to use in dealing with the questions of specific 
heat capacities and thermal expansion. 

1.2. Effect of stress and Young’s modulus 

When a solid is subjected to a stress, it generally experiences a 
strain which, if pursued, could cause the material to fracture. The 
applied stress is measured in newtons per square meter.  

 

Figure 1.1. Cylindrical test tube a) under traction; b) under compression 

Take the example of traction applied to a cylinder whose initial 
length is l0 and cross-section area is s (Figure 1.1(a)). If we begin with 
zero stress, and very gradually increase the stress (i.e. the traction 

a b 
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force) at a constant temperature, the relative strain Δl/l0 increases, 
obeying a law which is often identical to its tangent to the origin – that 
is, a practically linear law (the part “OA” of the curve shown in 
Figure 1.2) – which is known as Hooke’s law, and is written as 
follows for a given temperature: 

0

EF l
s l

Δ=  [1.1] 

 
Figure 1.2. Strain/stress curve under traction 

A solid, therefore, is characterized by its modulus of longitudinal 
elasticity, known as Young’s modulus, defined by: 

0E 1
l s

l
F

=

∂
∂

 [1.2] 

If we start at O and arrive at a point between O and A (a point 
marking the start of a lesser increase of the curve), and we slowly 
decrease the stress, the strain decreases in accordance with the same 
Hooke curve. We then say that we are in the domain of elastic 
deformation. When the stress returns to zero, the sample returns to its 
initial length. The load at point A is called the elastic limit. 

After point A in Figure 1.2, the curve changes direction, and 
Hooke’s law is no longer obeyed. If we stop at a point R’ between A 

A 

O 

Residual 
deformation 

F/s Elastic 
deformation 

zone

Plastic 
deformation zone

R R’ 

Δl/l0 
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and R, and decrease the stress, the curve then follows a straight line 
which is practically parallel to Hooke’s straight line. The result of this 
is that when the stress returns to zero, there is a remaining 
deformation which is known as the residual deformation. We say that 
between points A and R, the solid undergoes a plastic deformation. 

When we reach a point R, the test-tube breaks. The corresponding 
stress is called the fracture limit. 

The different characteristics of the curves in Figure 1.2 vary greatly 
from one material to another. Hence, for example, the fracture load is 
much greater for steel than for concrete, which has pitiful traction 
resistance – this is why steel rods are used in reinforced concrete. 

NOTE.– We have pointed out that the stress variations must, during 
increase and decrease, take place very slowly, because strictly 
speaking, the Young’s modulus depends not only on the temperature 
but also on the rate at which the load changes. 

The Young’s modulus obviously depends on the temperature, but 
these data can sometimes be replaced by a state equation in the form 
F(F,l,T) = 0, such as that given for rubber, which links the temperature 
T, the length l of a cylinder of rubber with section s, to the force of 
traction F exerted upon it in the elastic domain by way of two constants, 
B and its cubic expansion coefficient β which is of the form: 

( )
2

0
0

0

1 ll
F BT T T

l l
β= − + −  [1.3] 

We can obtain very similar results by imposing other types of 
stresses such as compression or shear. Of course, the corresponding 
moduli have completely different values from those encountered in 
the case of traction. 

1.3. Microscopic description of crystalline solids 

From a microscopic point of view, we find the four classes of 
solids introduced at the start of this chapter. 
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Based on each of these models, we will establish canonical 
partition functions which define the microscopic system, followed by 
the Helmholtz energy, which links the microscopic point of view to 
the macroscopic system, and finally the internal energy, which will be 
useful for us later on to establish the specific heat capacities. 

1.4. Partition function of vibration of a solid 

Irrespective of the nature of the solid, there are always species 
(atoms, ions and molecules) placed at the nodes of the lattice, and are 
animated with a motion of vibration around their equilibrium 
positions. Thus, the partition function will include a contribution due 
to these vibrations. On the statistical level, the entities in question 
(atoms, ions or molecules) are considered to be localized particles and, 
in general, to describe the vibrations of the solid, it is sufficient to 
place ourselves in the context of the conventional limit case of 
statistics. It results from this that the contribution CZ  of the vibrations 
to the canonical partition function can be calculated on the basis of the 
atomic partition functions z by the relation: 

N
CZ z=  [1.4] 

We will calculate this contribution by first considering a solid as a 
macromolecule with N vibrating entities, having 3N independent 
vibrational degrees of freedom: phonons. Two models can be used to 
express a contribution of these vibrations to the canonical partition 
function: Einstein’s model and Debye’s, which is more general. Let us 
look at each of these two models in turn. 

1.4.1. Einstein’s single-frequency model 

In this model, the crystalline solid is a system of 3N oscillators, in 
which all have the same fundamental frequency νE. The corresponding 
characteristic temperature of vibration, defined on the basis of the 
relation: 

E
B

h
k
νΘ =  [1.5] 
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is called the Einstein temperature ΘE. By applying equation [1.4] and 
the expression of the vibrational partition function, written as: 

E

E

exp
2

1 exp
v

Tz

T

Θ−
=

Θ− −
 [1.6] 

we can write the canonical partition function of vibration in the form: 

( )
3

3
( )

3exp 1 exp
2

N
N E E

C v v
N

Z z
T T

−
Θ Θ= = − − −

 
[1.7] 

or if we switch to the logarithm, the previous equation becomes: 

( )
3ln 3 ln 1 exp

2
E E

C v
N

Z N
T T
Θ Θ= − − − −  [1.8] 

1.4.2. Debye’s frequency distribution model 

In the case of Debye’s model, the 3N oscillators no longer have the 
same fundamental frequency. By applying the equation: 

E

E

exp
2

1 exp
v

E

Tz

T

Θ−
≅

Θ− −
∏  [1.9] 

we are able to write the following for the canonical partition function 
of vibration: 

3
B

( )
1

B

hexp
2k

h1 exp
k

i
N

C v
i i

T
Z

T

ν

ν=

−
=

− −
∏  [1.10] 



Pure Crystalline Solids     7 

However, if we reformulate in logarithmic terms, we find: 

3

3
1

( )
1B B

h
hln ln 1 exp

2k k

N

i N
i i

C v
i

Z
T T

ν
ν=

=
= − − −  [1.11] 

Debye supposes that the frequencies are sufficiently similar so that 
the distribution can be supposed to be continuous, which enables us to 
replace the sum of equation [1.11] by an integral, which is written as 
follows for a frequency distribution g(v): 

0
( )

B B0

h ( )d
hln ln 1 exp ( )d

2k k

D

D

C v

g
Z g

T T

ν

νν ν ν
ν ν ν= − − − −  [1.12] 

Debye also supposes that this frequency distribution is of the same 
form as the elastic frequency distribution of the solid, supposed to be a 
continuum. Those frequencies themselves are linked to the propagation 
of sound in that solid. These frequencies range from the value 0 to a 
maximum frequency νD defined by equation [1.13], where c is the 
celerity of sound in the solid. 

1/23
4D

N
c

V
ν

π
=  [1.13] 

The corresponding frequency temperature – defined, as for 
Einstein’s temperature, using relation [1.5] – which is called the 
Debye temperature ΘD, is thus defined by: 

B

h
k

D
D

νΘ =  [1.14] 

Table 1.1 shows a selection of values of the Debye temperature 
which can, as we can see, be very different depending on the solid. 
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Solid ΘD(K) 
Pb 88 
Ag 220 
Al 396 

KCl 227 
C (diamond) 2067 

Table 1.1. The Debye temperature of various solids  
(data taken from [INF 06]) 

 

Figure 1.3. Frequency distribution according to Debye 

The frequency distribution g(ν) is of the form (see Figure 1.3): 

2

3

9For : ( )

For : ( ) 0

D
D

D

Ng

g

νν ν ν
ν

ν ν ν

≤ =

> =
 [1.15] 

obviously, with the standardization condition: 

0

( )d 3
D

g N
ν

ν ν =  [1.16] 

Relation [1.12] then takes the form: 

2
( ) 3

B0

9 9 hln ln 1 exp d
8 k

D

D
C v

D

N N
Z

T T

ν νν ν
ν

Θ= − − − −  [1.17] 

g(ν) 

ν
νmax 
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If we set: 

B

h
k

x
T
ν=  [1.18] 

relation [1.17] can also be written: 

( )
/3

2
( ) 3

0

9 9ln ln 1 exp d
8

D T
D

C v
D

N NTZ x x x
T

ΘΘ= − − − −
Θ

 [1.19] 

The integral appearing in this formula cannot be expressed by a 
simple algebraic sum. However, if we integrate by parts, we find: 

( )

/3 3

3
0

9ln 3 ln 1 exp
8

3 exp( ) d
1 exp( )

D

D D
C v

T

D

N
Z N

T T

NT x x x
x

Θ

Θ Θ= − − − −

−+
Θ − −

 [1.20] 

1.4.3. Models with more complex frequency distributions 

Debye’s model, which allows for a frequency distribution given by 
relation [1.9], has only yielded correct values of the specific heat 
capacity at constant volume (see section 1.8) for fairly low 
temperatures. Other authors have improved the model by modifying 
that frequency distribution. For example, Born and Karman took a 
new approach to the establishment of the frequency distribution, this 
time supposing that the solid was no longer a continuum, but instead 
was represented by a periodic lattice of particles, which led them to 
the distribution function as shown in Figure 1.4(a). The distribution 
function reaches its peak very near to the limit frequency.  

Blackman, for his part, determined the vibration spectrum for 
simple cubic lattices. The frequency distribution which it achieves 
exhibits two maximum points (see Figure 1.4(b)). One point of these 
is always situated in the vicinity of the limit frequency; the other 
point, which is less clear, is at a lower frequency. 
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In fact in this types of models, with a frequency distribution 
modified compared to Debye’s, we can keep the developments 
obtained using Debye’s model, but as if the Debye temperature varied 
with temperature.  

 
Figure 1.4. Frequency distributions: a) Born and Karman; b) Blackman 

Variations in the Debye temperature with the temperature have, 
indeed, been observed by Mott and Jones. 

1.5. Description of atomic solids 

In an atomic solid, each node of the lattice is occupied by an  
atom, e.g. in the case of a solid rare gas, but also chlorine, fluorine, 
etc. For a pure solid, there is only one sort of atom. 

1.5.1. Canonical partition function of an atomic solid 

Besides the vibrating motion of the atoms which we have discussed 
above, the solid is home to electron motion and nuclear spin, each of 
which makes a contribution to the canonical partition function. 

With regard to the motion of the electrons, we choose as energy 
origin the fundamental level in the atom, and these electrons are not 
excited, so that the contribution to the atomic partition function of 
electrons is reduced to its statistical weight, according to the equation 

0z g= , and therefore the electron contribution to the canonical 
partition function will be: 

( ) 0( )ln lnC e eZ N g=  [1.21] 

 

 

 

 

 
 
 
 

g(ν) g(ν) 

νmax νmax 

ν ν 

b a 
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For the contribution of nucleus spin, we see the same situation as 
for the electrons, so their contribution will be: 

( ) 0( )ln lnC n nZ N g=  [1.22]  

The overall canonical partition function for the solid will be: 

( ) ( ) ( )ln ln ln lnC C v C e C nZ Z Z Z= + +   [1.23]  

However, it is helpful, in studying solids, to choose as the energy 
origin the atoms which are infinitely far apart, instead of the 
fundamental level of vibration. Therefore, for each atom, we need to 
involve the crosslink energy uR, which is the energy needed to send 
that atom to infinity. This introduces a new term, known as 
crosslinking – a relative distribution function of the atoms – into the 
canonical partition function, and gives us a term in the following 
form: 

( )
B B

ln
k k

R R
C r

Nu U
Z

T T
= =

 
 [1.24] 

In light of relations [1.21], [1.22] and [1.24], expression [1.23] 
becomes: 

( )
B

/3 3

3
0

9ln 3 ln 1 exp
k 8

3 exp( )               d ln
1 exp( )

D

R D D
C v

T

e n
D

U N
Z N

T T T

NT x x x N g g
x

Θ

Θ Θ= − − − −

−+ +
Θ − −

 
 [1.25] 

1.5.2. Helmholtz energy and internal energy of an atomic 
solid 

The Helmholtz energy F of a solid, comprising N atoms, can be 
calculated using the relation that links Helmholtz energy to the 
canonical partition function: 

Bk ln CF T Z= −  [1.26] 
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In view of the canonical partition function, given by relation 
[1.25], the molar Helmholtz energy Fm is obtained by applying the two 
relations N = Na and kBNa = R in expression [1.26]. From this, we can 
easily deduce the molar internal energy using the relation: 

0 2

d
1

R d

m

m

F
TU U

T T
− = −  [1.27] 

In fact, that internal energy is the sum of the four contributions: 
crosslink (independent of temperature), vibration (a function of the 
temperature), electron and nuclear activity (practically independent of 
temperature), which is written as: 

0 ( ) ( ) ( ) ( )( )m m R m v m e m nU U U U T U U− = + + +   [1.28] 

For the contribution of vibration, we can either use Einstein’s 
model, which yields: 

( )
3R

exp 1

E
m v

E

U

T

Θ
=

Θ− −
  [1.29] 

or Debye’s model, which gives us: 

( )
/4 3

( ) 3
0

9R d
exp 1

d T

m v
D

T x
U x

x

Θ

=
Θ −

 

 [1.30] 

We cannot analytically calculate the integral appearing in relation 
[1.30], but we can give two approximate values for it depending on 
whether the temperature is high or low in relation to the Debye 
temperature. 

For the high temperatures (T >>ΘD), we develop the function to be 
integrated into a Maclaurin series and integrate, we find: 

2 4

( )
9R 13R 1

8 20
D D D

m vU T
T T

Θ Θ Θ
= − + + + Ο   [1.31] 
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The term
4

D

T
ΘΟ  indicates the rest of the series development. 

For low temperatures (T <<ΘD), we replace the integral with the 
difference of two integrals – the first between 0 and infinity and the 
second between ΘD /T and infinity. We can show that we obtain: 

4 3

( ) 33R 3exp exp
5

D D D
m v

D

TU T
T T T

π Θ Θ Θ= − − + Ο −
Θ

 [1.32] 

1.6. Description of molecular solids 

If, instead of one atom per crystalline site, a solid contains a group 
of atoms (ions or molecules) at each site, if the crystal contains N 
molecules, the lattice will always have 3N degrees of vibrational 
freedom, but there will still be 3(s-1) internal degrees of freedom per 
molecule if the molecule contains s atoms. 

1.6.1. Partition function of molecular crystals 

The new “internal” degrees of freedom will generally tend to be 
vibrational degrees of freedom, and if the corresponding fundamental 
frequencies are ν1, ν2, …, νi, …, the contribution corresponding to the 
canonical partition function is: 

3

(int)
4

ln ln 1 exp
s

i
C

i

Z N
T=

Θ= − −   [1.33] 

In Einstein’s model, in view of the new electronic and nuclear 
contributions, this would give us: 

0

B

3

( ) ( )
4 1 1

3ln 3 ln 1 exp
k 2

            ln 1 exp ln ln

E E
C

s s s
i

s e s n
i i i

U N
Z N

T T T

N N g N g
T= = =

Θ Θ= − − − − −

Θ− − − + +
  [1.34] 
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and in Debye’s model, we would have: 

/3 3 3

3
40

( ) ( )
1 1

9
ln 3 ln 1 exp

8

ln 1 exp3 exp( )               d
1 exp( )

                ln ln

D

D D
C

T is

iD

s s

i e i n
i i

N
Z N

T T

NT x x
x N T

x

N g N g

Θ

=

= =

Θ Θ
= − − − −

Θ
− −−+ −

− −Θ

+ +

 
[1.35] 

It is possible that two or three of these degrees of freedom internal 
to the molecule may be better described as rotations than as vibrations. 
Such would be the case, for example, with the H2 molecule. For 
molecules containing only one atom other than hydrogen atoms – e.g. 
ClH, CH4, NH4

+– we obtain better results when we consider that a 
movement is indeed a high-temperature rotation, but also a low-
temperature vibration. There would be a rather sharp transition within 
a certain temperature range. In the case of a rotation, a rotational 
partition function term replaces a vibrational term in equation [1.30] 
and the corresponding terms in relations [1.30] and [1.32]. 

1.6.2. Thermodynamic functions of molecular solids 

As is the case with atomic solids, we can calculate the Helmholtz 
energy F of a solid containing N molecules by applying equation [1.26] 
using the canonical partition function given by equation [1.34] or [1.35]. 
The molar Helmholtz energy Fm is deduced in the same manner by 
applying the two relations N=Na and kBNa = R in the expressions thus 
obtained. We can easily deduce the molar internal energy from relation 
[1.26]. In fact, this internal energy is the sum of five terms: 

0 ( ) ( ) ( ) ( ) (int)( )m m R m v m e m n mU U U U T U U U− = + + + +  [1.36] 

The contributions ( )m RU  and ( )m vU are the same as with an atomic 
solid. Thus the contribution of the internal movements in the molecule 
is expressed as: 
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(int) 4
4

exp
R

1 exp

i
is

m
i i

TU
T

T
=

ΘΘ −
=

Θ− −
  [1.37] 

The electron and nuclear contributions are also sums on the 
number of atoms contained in the molecule: 

( )
( ) 2

1

d lnR 0
d

s
i e

m e
i

g
U

T T=

= =   [1.38] 

( )
( ) 2

1

d lnR 0
d

s
i n

m n
i

g
U

T T=

= =   [1.39] 

1.7. Description of an ionic solid 

An ionic solid is made up of two kinds of ions: anions and  
cations. These ions are located at the nodes of two  
interlocking periodic lattices: the anionic sublattice and the cationic 
sublattice. 

There are two distinct types of ionic solid: 

– simple ionic solids, where the ions contain only one atom; 

– complex ionic solids, containing at least one type of ion. Usually, 
the anion is a complex ion, which means that it is a molecule made up 
of several atoms, which carries an electrical charge.  

1.7.1. Crosslink energy of an ionic solid 

We model the energy of an ionic crystal limiting us to the case of a 
diatomic crystal with the formula AaBb linking a cation A with 
electrovalence zA and an anion B with electrovalence zB. We assume that 
these ions are comparable to spheres on which the charges are uniformly 
distributed. The overall cohesion of the crystal is provided by the 
Coulombian field at 1/r2 created by each ion, plus a repulsive potential 
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especially sensitive over a short distance, but which cannot be  
overlooked if we want to give an account of an equilibrium state of the 
crystal. 

1.7.1.1. Attraction energy 

Let us consider an ion i in the lattice, bearing the charge qi. At that 
point, there is an electrostatic potential Φi, created by all the other 
ions, and the energy of interaction between that ion i and the rest of 
the lattice is: 

i i iU q= Φ   [1.40] 

In order to find the total attraction energy, we only need to add the 
above expression for all the ions, taking care only to count  
the interaction between each pair of ions once (which we do by using 
the coefficient ½), as follows: 

1
2i i i

i

U q= Φ   [1.41] 

In a large crystal, it can be assumed that at each node A of the 
lattice, the potential is identical – i.e. ΦA – and at each node B,  
the potential will be ΦB (so we overlook any possible edge effects). 
Thus, if we compare the electrostatic energy to a mole, where e  
is the elementary charge, we find the following for the molar 
attraction term: 

( )a
A A B B

N a e b e
2attrU z z= Φ + Φ   [1.42] 

As a unit of length, let us choose a distance d which is 
characteristic of the lattice. An ion i will be at distance  

( )Aid ρ  from an arbitrary origin, chosen in place of an ion A and at 

distance ( )Bid ρ from another arbitrary origin, chosen in place of an 
ion B. The potentials ΦA  and ΦB  at those origins are, respectively: 
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( )i0

1 i
A

i a

z e
d pε

Φ =   [1.43] 

and 

( )i0

1 i
B

i a

z e
d pε

Φ =   [1.44] 

Because of the principle of electrical neutrality of the crystal, we 
must have: 

0A Baz bz+ =   

Thus: 

A Bz z
b a

ϖ= =   [1.45] 

The attraction energy per mole becomes: 

( ) ( )
2 2

a

0

N e
2

i i
attr

i ii B

ab
U

d p p
ϖ θ θ

ε
= −   [1.46] 

θi is equal to b if the ion i is of type A, and to (–a) if the ion i is of 
type B. This energy can be written in the form: 

2 2
a

0

N
attr

e
U

d
ϖ

ε
= M   [1.47] 

including a value M , known as the Madelung constant, which depends 
solely on the nature of the lattice and is defined by: 

( ) ( )2
i i

i ii B

ab
p p
θ θ= −M   [1.48] 
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There are various algorithms which can be used to calculate the 
Madelung constant. Table 1.2 shows the values obtained for cubic 
lattices. 

Type of lattice Madelung constant 
Sodium chloride 1.74756 
Cesium chloride 1.76267 

Blende 1.63806 
Wurtzite 1.641 

Table 1.2. Values of the Madelung constant in different cubic lattices 

1.7.1.2. Repulsion energy 

The previous expression of electrostatic energy gives an energy 
that can only grow in absolute value if the crystalline lattice parameter 
d of the crystalline lattice decreases. No equilibrium state can be 
achieved. To explain this, we must introduce a repulsion term, whose 
intensity will decrease as the distance d increases. Born and Mayer put 
forward an expression for this repulsion energy arising from the 
repulsion of the electron clouds if they intermingle. This energy has an 
exponential form that seems consistent with quantum mechanics. For 
the interaction of an ion pair i and j located a distance dρij apart, we 
set: 

,
( , ) , exp i j

rép i j i j

d
U mc

ρ
ρ

= −   [1.49] 

In this expression, ci,j and ρ are constants. Authors have shown that 
we can take the value 0.345×10-10 m for ρ for all ions, and that the 
constant ci,j is given by: 

, 1 expj i ji
i j

i j

z r rz
c

n n ρ
+

= + +   [1.50] 

In this expression, zi and zj are the electrovalences of the ions i and j, 
ni and nj are the numbers of electrons on the outermost layer, ri and rj are 
the ionic radii and m is a new constant, which we will discuss later on. 
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Looking again at the case of a biatomic solid: we still need to 
consider the repulsion energy associated with an ion A taken as the 
origin of the system, and with an ion B taken as the origin. However, 
in the case of repulsion, the potential decreases very quickly as the 
distance between the ions increases, and the only way to simplify the 
calculation is to consider the nearest neighbors to a given ion, with 
opposite signs. 

Let us first examine an ion A as the origin. All its near neighbors 
will be ions B, and there will be a number β of them. The repulsion 
energy attached to that ion A will be: 

( )
A,B

A, BA,B
1

exp i

rep
i

d
U m c

β ρ
ρ=

=   [1.51] 

where: 

A B A B
A,B

A B

1 expz z r r
c

n n ρ
+= + +   [1.52] 

If we now take an ion B as the origin, its nearest neighbors will be 
α ions A, and its contribution to the repulsion will be: 

( )
B,A

B, AB,A
1

exp - j

rep
j

d
U m c

α ρ
ρ=

=   [1.53] 

where, clearly: 

A,B B,Ac c=   [1.54] 

Hence, the repulsion energy per mole can be written as follows, by 
adding together the two contributions: 

a
A,B A,B B,A

11

N exp a exp b exp
2 i jrep

ji

m dU c
β α

ρ ρ
ρ ==

= − +   [1.55] 
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1.7.1.3. Crosslink energy 

The crystal’s total crosslink energy is given by the sum of the 
terms of attraction and repulsion, which (in light of expressions [1.47] 
and [1.55] given above) gives: 

( )
( )

2 2 A,B
a a

( ) A,B
10 B,A

1

expN N exp a
2 b exp

i

j

m R
i

j

e m d
U c

d

β

α

ρϖ
ε ρ ρ=

=

+
= + −M 

 
[1.56] 

Thus, in the expression of the crosslink energy, there is a constant m 
which needs to be determined. We can find its value by looking at the 
compressibility coefficient. Imagine that we compress a crystal at the 
temperature of absolute zero. The variation in internal energy will be: 

d dU P V= −   [1.57] 

This variation is due only to the change in the crosslink energy. By 
taking account of the definition of the compressibility coefficient, 
which is: 

1
T

T

V
V P

χ ∂= −
∂

 [1.58] 

we find: 

2
( )
2

d
1

d
R

T

U
V

V
χ =   [1.59] 

By applying the derivation of a function of function, we can write: 

22 2 2
( ) ( ) ( )
2 2 2

d d dd d
d d d d d

R R RU U UV V
d V d V d

= +   [1.60] 

For the equilibrium position d = d0, the crosslink energy is 
minimal, so: 
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0

( )d
0

d
R

d d

U
d

=

=  which gives us 
0

( )d
0

d
R

d d

U
V

=

=   [1.61] 

and therefore, equation [1.53] becomes: 

0 0

22 2
( ) ( )
2 2

d d d
d d d

R R

d d d d

U U V
d V d

= =

=   [1.62] 

The molar volume can always be written in the form: 

0 3
0v dλ=   [1.63] 

with λ being a constant that depends only on the type of lattice. Thus, 
in view of expression [1.59], relation [1.62] gives us: 

0

2 2 4
( ) 0

2 0

d 4
d

m R

d d

U d
d v

λ
χ

=

=   [1.64] 

For simplicity’s sake, let us write expression [1.56], of the 
crosslink energy, in the form: 

( ) expm R
m dU

d ρ ρ
= − + −A B   [1.65] 

where: 

2 2
a

0

N e ϖ
ε

= MA   [1.66] 

and: 

( ) ( )a
A,B A,B B,A

11

N a exp b exp
2 i jji

cB
β α

ρ ρ
==

= +   [1.67] 

By twice deriving the function [1.65], we find: 
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0

2
( ) 0

2 3 3
0

d
2 exp -

d
m R

d d

U dm
d d ρ ρ

=

= +A B   [1.68] 

By equaling the two expressions [1.64] and [1.68] for the second 
derivative, we obtain: 

2 43
0 0

0 3
0

4 2 expd d
m

v d
λρ
χ ρ

= + A
B

  [1.69] 

In view of equations [1.61] and [1.65], the equilibrium condition is 
expressed as: 

0
2 2
0

exp 0dm
d ρ ρ

+ − =A B   [1.70] 

Hence, expressions [1.69] and [1.70] constitute a system of two 
equations where the unknowns are the constants m and d0, which we 
can calculate numerically. 

1.7.2. Born/Haber cycle 

Born and Haber envisaged a thermodynamic cycle that can be used 
to calculate the crosslink energy on the basis of independently-
measured data. They begin with the observation that the crosslink 
energy is the energy that is released if the lattice is formed of gaseous 
ions which are infinitely immobile in relation to one another. 
Figure 1.5 shows the cycle for a crystal AaBb based on solid metal and 
a gaseous molecular non-metal, with the symbols having the following 
meanings: 

– S: sublimation heat for a gram atom of metal A; 

– D: dissociation heat for the non-metal B expressed in relation to a 
gram atom of that substance; 

– I: ionization energy for a gram atom of metal; 

– A: electron affinity of a gram atom of non-metal; 
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– ΔfH: enthalpy of formation of the solid crystallized from its 
elements. 

 

Figure 1.5. Born–Haber cycle for a compound AaBb 

From the cycle shown in Figure 1.5, we deduce the relation: 

( )a b a bf m RH S D I A UΔ = + + − −   [1.71] 

If the other values are known, this expression can be used to 
calculate the crosslink energy ( )m RU . 

Comparison of the direct calculation on the basis of the 
microscopic model and the result given by the Born–Haber cycle 
shows that the values overlap at less than 5%. This result is entirely 
acceptable when we remember the relatively-simple hypotheses of the 
model, and in particular the assimilation of the ions to non-deformable 
hard spheres. We can refine the model by introducing deformability of 
the ions by their polarizability, which leads us to take account of the 
ion–dipole and dipole–dipole electrostatic interactions. 

1.7.3. Vibrational partition function and internal energy of 
an ionic solid 

Earlier, when we were looking at molecular solids (see section 
1.5.1), we saw the mixture of Debyean and Einsteinian terms in the 
partition function of the same solid with degrees of vibration of the 
lattice and degrees of vibration within the molecule. We will now 
make broader use of this concept, which was developed by Born and 
Blackman, on the subject of ionic compounds. 

–  
 
 
 
 
 

Solid metal + 
molecule of 

gaseous non-
metal 

Atoms of metal 
and gaseous 
non-metal 

Atoms of 
gaseous non-

metal + cations 

Solid crystal Anions + cations 

aS+bD aI 

ΔfH -bA 

-UR 
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To begin with, in the ionic solid, we will construct neutral subsets 
by associating the minimum number of ions of opposite signs, such as 
a potassium ion and a chlorine ion to create potassium chloride, a 
calcium ion and two chlorine ions to make calcium chloride, or a 
calcium ion and a carbonate ion for calcium carbonate. Such a subset 
contains s atoms and therefore has 3s degrees of freedom – all of them 
vibrational. The whole of the solid contains N subsets and will 
therefore have 3Ns vibrational degrees of freedom. 

Born divides the 3s degrees of freedom into two categories, 
acoustic vibrations and optical vibrations (infrared): 

– acoustic vibrations (or phonons), throughout the crystal, have a 
frequency distribution with a limit frequency. This distribution could 
be that chosen by Debye (see equation [1.9]) or those proposed by 
Born or Blackman (Figures 1.4(a) and (b)). These acoustic vibrations 
give us vibrational terms for the partition function and then for the 
internal energy, which will be of the same type as those proposed by 
Debye, in accordance with equations [1.24] for the vibrational 
partition function and [1.29] for the internal energy; 

– optical vibrations, each with its own frequency, which, for the 
partition function, has a sum of Einsteinian terms such as that given 
by equation [1.3] and for the internal energy a sum of terms such as 
those in equation [1.28]. 

However, in order to express these vibrational partition functions 
and the corresponding internal energies, for a given solid, we need to 
know the number of vibrations in each group: how many acoustic 
vibrations will there be, and then how many optical vibrations? 

This distribution depends on a number of factors. 

Let us first envisage ionic compounds with simple ions – i.e. one 
anionic atom and one cationic atom, as is the case in potassium 
chloride. 

If the bond is markedly ionic in nature (say, over 50% ionic), we 
choose six acoustic vibrations. We then need to ask ourselves whether 
the two groups of three acoustic vibrations have the same value of the 
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Debye temperature. If the atoms have similar dimensions, as is the 
case with potassium chloride, we choose a single Debye temperature; 
if, however, the ions have very different dimensions – as is the case, 
for instance, with cesium fluoride or lithium iodide – we choose two 
values of the Debye temperature. The partition function and the 
internal energy then contain either one or two Debyean terms, 
depending on the case. 

If the bond is mainly covalent, we choose three acoustic vibrations 
with a Debye temperature and three optical vibrations with three 
Einsteinian temperatures. The partition function and the internal 
energy therefore include a Debyean term and the sum of three 
Einsteinian terms. 

If we now look at more complex ionic compounds, such as calcium 
fluoride or calcium carbonate, we group together species that are 
linked by a covalent bond, such as the two fluorine atoms in calcium 
fluoride, or of the carbonate ion in calcium carbonate. With regard to 
this latter bond between fluorine and calcium or between carbonate 
and calcium, we refer to the previous case depending on the covalent 
nature of the bond. Hence, for calcium fluoride which has nine 
degrees of freedom, six will be acoustic, with the same Debye 
temperature for the di-fluorine molecules and calcium, and three will 
be optical vibrations with three corresponding Einsteinian terms. The 
partition function (and the internal energy which arises from it) 
contains a Debyean term and three Einsteinian terms. 

For calcium carbonate, which has 15 degrees of freedom, six will 
be acoustic vibrations with two Debye temperatures and nine degrees 
of freedom will be optical vibrations, with an Einstein temperature for 
each one. The partition function (and the resulting internal energy) 
contains two Debyean terms and nine Einsteinian terms. 

In fact, that distribution between acoustic vibrations and optical 
vibrations is only significant at temperatures close to the Debye 
temperature. If the temperature is very low (much lower than the 
lowest Debye temperature), only the corresponding Debye term is 
predominant; the other terms are negligible. This explains why all the 
internal energies (and, as we will see in section 1.8.1) all the specific 
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heat capacities at constant volume, tend toward zero, with a T3 law for 
the latter. 

However, at high temperatures, if the temperature is much higher 
than the highest of the Debye temperatures, only Einsteinian terms  
are significant: those for which the Einstein temperature is not too low. 

1.8. Description of a metallic solid 

Over the course of history, pure metal has been described by a 
variety of models. The initial model, attributable to Drude, considered 
the metal to comprise a gas of electrons enveloping positive ions in a 
constant potential. Drude applies Maxwell–Boltzmann statistics to that 
electron gas. In fact, as the electrons are fermions, it is  
most appropriate to apply Fermi–Dirac statistics to them, as 
Sommerfeld did in his model, still using a constant potential. Unlike 
with molecules, though, because of their low mass, the electrons 
cannot be used for the approximation of the classic limit statistics 
given by: 

( )expi i in g α βε= − −  [1.72] 

However, we will see that it is helpful to apply to them the 
opposite hypothesis to that condition, i.e.: 

exp( ) 1α− >>  [1.73] 

Sommerfeld’s model is perfectly well suited for chemical 
applications – particularly for determining specific heat capacities – 
but it is totally unsuited for explaining the electrical properties and the 
experimental fact that not all energy levels are acceptable in the metal. 
It was the band theory, developed by Brillouin, which was first able to 
explain these properties and also the nature of the bond between the 
metal atoms with the introduction of a periodic field. 

We will begin by discussing Sommerfeld’s constant-field theory, 
and then go on to show the modifications made by the periodic field 
and the grouping of electrons in the metal. 
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1.8.1. Sommerfeld’s electron perfect gas model 

Thus, we consider that a metal whose volume is V contains a certain 
N number of electrons that are free to move around. The ratio of the 
number of free electrons to the number of metal atoms contained in  
the volume V, for the time being, will be taken as being close to  
1 (or perhaps 2 or 3). Only with the band model we will be able  
to actually calculate that ratio, later on. That gas cloud is  
comparable to perfect gas made up of electrons placed in a  
constant average potential, so that they are contained within the  
volume V. We will apply Fermi–Dirac statistics to that perfect gas, 
accepting condition [1.73] for now, and verifying it at the end of section 
1.8.1.1. 

1.8.1.1. Determination of the coefficient α 

To begin with, we will calculate the coefficient α, which is the 
Lagrange multiplier relative to the numbers of electrons N. In the 
knowledge that the other multiplier β always has the same value 
(1/kBT) irrespective of the molecular statistics, we can calculate  by 
using the first method described in section A.1.3 of Appendix 1. 

Because the electrons obey Fermi–Dirac statistics, the total number 
thereof obeys the following law: 

i
i

N n=  [1.74] 

and their distribution between the different energy levels obeys: 

( ) ( )
( )

exp
1 exp

i i
i FD

i

g
n

α βε
α βε

− −
=

+ − −
 [1.75] 

Hence, the number of free electrons is given by: 

B

1 exp
k

i

i i

g
N

T
εα

=
+ +

  [1.76] 
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We have chosen ε0 = 0 as the origin of the energies for the 
electrons at rest within the metal. 

Consider that the electrons, whose mass is me, are contained in a 
cubic box with side length a and volume V = a3. The kinetic energy, 
which depends on three quantum numbers (l, m and n) is given by: 

( )
2

2 2 2
2

h
8i

e

l m n
m a

ε = + +   [1.77] 

For each energy level, there are two corresponding electrons with 
opposite spin, so the degeneration coefficient is gi = 2. If we consider 
all the states with the same energy εi, the quantum numbers l, m and n 
have values arranged over the surface of the positive quarter of the 
sphere defined by: 

( )2 2 2
2 2

8 1
h

e im
l m n

a
ε = + +   [1.78] 

Thus, all the states whose energy is less than or equal to εi have the 
values of their quantum numbers located within the positive quarter of 
the sphere. The number of points with integer coordinates l, m and n 
within that positive quarter-sphere is equal to the volume of that 
quarter-sphere, so: 

3/2 3/2
3

2 2

8 8
6 h 6 h

e i e im m
a V

ε επ π=   [1.79] 

V is the volume of the space containing the electrons. 

 
NOTE.– We have chosen to use a cubic sample volume, but it is 
possible to demonstrate that relation [1.79] applies no matter what the 
shape of that space. 

After the degeneration of two of the electrons, the number of 
electron states with energy less than εi is, clearly, double the number 
of points within the quarter-sphere, so: 
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3/2

2

8
3 hi

e im
n Vε ε

επ
≤ =   [1.80] 

By deriving the above relation, we obtain the number of electron 
states for which the energy level is between ε and ε  + dε: 

( )
3/2

1/2
2

8 d
2 h

em
g Vπε ε ε=   [1.81] 

We will consider all these states to be the degeneration of a single 
energy state ε, so that: 

3/2
1/2

2

8( ) d
2 h

e
i

m
g g Vπε ε ε= =   [1.82] 

By substituting this value of gi back into relation [1.76] and 
replacing the sum with an integral, as the states are very close to one 
another, we obtain the following for the number of free electrons: 

3/2 1/2

2
0

B

8 d
2 h

1 exp
k

em
N V

T

ε επ
ε α

∞

=
+ +

  [1.83] 

For simplicity’s sake, we set the new integration variable x such 
that: 

Bk
x

T
ε =   [1.84] 

Relation [1.83] is then written as: 

( )
3/2 1/2

B
2

0

8 k d
2 h 1 exp

em T x x
N V

x
π

α

∞

=
+ +

  [1.85] 

To simplify our expressions, we will introduce an energy level that 
is characteristic of the solid, known as the Fermi energy (or Fermi-level 
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energy) as being the maximum value reached by the energy of an 
electron if the N electrons, two by two, fill all the lower energy levels; 
thus, according to relation [1.80], this energy must satisfy the condition: 

3/2

2

8
3 h

e FmN
V

επ=   [1.86] 

Therefore, by definition, the Fermi energy is: 

2/32h 3
8F

e

N
m V

ε
π

=   [1.87] 

By taking account of relation [1.85], we find that the value of this 
Fermi level is: 

( )

3/2 1/2

B 0

d3
k 2 1 exp

F x x
T x

ε
α

∞

=
+ +

  [1.88] 

Therefore, it is helpful to evaluate the integral I defined by: 

( )
1/2

0

d
1 exp

x x
I

x α

∞

=
+ +

  [1.89] 

There is no exact analytical solution for this integral, but we can 
show that a good approximation is given by a limited expansion: 

1/2 2 1/22
3 12

I α π α −

= − +   [1.90] 

Thus, if we substitute the value back into relation [1.88], the Fermi 
energy becomes: 

3/2 2 1/2
3/2

Bk 8
F

T
ε π αα≈ − +   [1.91] 
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We can see that, if we focus on the first term in this expansion, an 
approximation of the Fermi level is given by: 

BkF Tε α≈ −   [1.92] 

Based on this last approximation, which we can put back into 
equation [1.91] in place of the first term on the right-hand side, we 
obtain an approximate value of α: 

22
B

B

k1
k 12

F

F

T
T

ε πα
ε

= − −   [1.93] 

We are going to evaluate an order of magnitude for the coefficient 
α. In order to do so, we choose one electron per atom of the metal, 
with these atoms being a few angstroms apart from each other, so the 
ratio N/V is approximately: 

29 310N m
V

−≈  [1.94] 

Thus, using relation [1.88], we find the following for the Fermi 
level: 

18

B

1.25 10
k

F joules
T

ε −≈ ×   [1.95] 

Thus, at a temperature of around 1000 K, using relation [1.83], we 
obtain the following value for the coefficient α: 

90α ≈ −   [1.96] 

Hence, we can verify that the condition [1.73], which we have 
simply accepted for simplicity’s sake up until now, is indeed respected. 

Moreover, we can see that the second term in expression [1.93] has 
a value of approximately 2 41 / 90 10−≈ , which is much less than 1, 
which means that approximation [1.92] is also very appropriate. 
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1.8.1.2. Kinetic energy of electrons in the metal 

In order to calculate the kinetic energy of the mobile electrons, we 
use the relation: 

i i
i

E n ε=  [1.97] 

To do so, we merely need to introduce the term ε into the integral 
given in relation [1.83]. Thus, we obtain: 
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ε επ
ε α

∞
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  [1.98] 

Using the same change of variables as above (see equation [1.84]), 
and if we introduce the definition [1.87] of the Fermi energy, we find 
that: 

( )
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xε α

∞

=
+ +

  [1.99] 

Just like the integral I in relation [1.89], the integral in terms of x 
that appears in equation [1.99] has no analytical solution. We can 
show, however, that its approximate value can be found by the 
expansion [1.100]: 

( )
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d 2'
1 exp 5 4

x x
I

x
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∞

= ≈ − +
+ +

  [1.100] 

Taking account of the value of α given by equation [1.96], we find: 

22
Bk3 51

5 12kin F
F

T
E N

πε
ε

≈ +   [1.101] 
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Similarly as for relation [1.91], we can content ourselves with the 
following relation, with a fairly high degree of accuracy: 

a
3 N
5kin FE ε≈   [1.102] 

Thus, we obtain an absolute error of around 0.05 J at 1000 K. 

Hence, we can see that for the free electrons in a metal, the kinetic 
energy is non-null at the temperature of 0 K; this is the consequence 
of the application of the Fermi–Dirac statistics. Thus, we can no 
longer define a temperature scale on the basis of the kinetic energy of 
the free electrons in a metal. 

1.8.1.3. Electrochemical potential of the electrons in the metal 
and the Fermi energy 

Regardless of the type of statistics used, we can show that the two 
coefficients α  and β, relative to the stresses, respectively, linked to 
the number of moles and to the energy, are connected to one another 
by the expression: 

A
A

αμ
β

= −  [1.103] 

Applied to the electrochemical potential of the electron, this gives 
us: 

Bkel Tμ α= −   [1.104] 

Thus, by using relation [1.93], the electrochemical potential, still 
using the electrons at rest as the origin of the energies, is given by: 

22
Bk1

12el F
F

Tπμ ε
ε

= −   [1.105] 

The application of expression [1.92] gives us the approximate value: 

el Fμ ε=   [1.106] 
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Thus, the electrochemical potential of the free electrons, at the 
temperature of 0 K, is equal to the Fermi energy of the metal. As 
approximation [1.92] is very accurate, we can say that this 
electrochemical potential practically does not vary with temperature. 

On the basis of the Fermi energy, we define a temperature known 
as the Fermi temperature, as: 

Bk
F

FT
ε=   [1.107] 

Let us evaluate an order of magnitude for that Fermi temperature. 
In view of relation [1.95], we have: 

181.25 10F joulesε −≅ ×   [1.108] 

Thus, by applying definition [1.107], we find the value: 

49.10FT K≅   [1.109] 

Hence, in general, the temperature of the metal for which it remains 
solid is much lower than the Fermi temperature. Therefore, we can 
consider that the metal always behaves as though the temperature was  
0 K, and we can content ourselves with approximation [1.106]. The 
Fermi temperature defines the temperature beyond which the effects of  
Fermi–Dirac statistics begin to manifest themselves. We can write that: 

If  T <<TF,  then Bk elT μ<<   [1.110] 

NOTE.– We sometimes come across the term Fermi impulsion, which 
is the maximum value of the impulsion of the free electrons at the 
temperature of absolute zero. To find the expression of it, we only 
need to write: 

1/333h2
8F e F

Np m
V

ε
π

= =   [1.111] 
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1.8.1.4. Energy distribution of the free electrons 

Based on the distribution function, which is written as follows: 

1 2 3

1 2 3

3/2 2 2 2
B

2
B

1 2 3

2 k exp d .d .d
h 2 k

         .d .d .d

x x x
x x x

p p pm TNdn p p p
V m T

x x x

π + +
= −

 [1.112] 

we calculate the average number of free electrons which have the 
energy ε. It is given at 0 K, in light of expressions [1.92] and [1.106], 
by one of the following relations: 

B B B

1 1 1

1 exp 1 exp 1 exp
k k k

elF

n

T T T

ε ε με εε α
= = =

−−+ + + +
  [1.113] 

Figure 1.6 shows this distribution at the temperature 0 K. Beyond 
the Fermi level, there are no more electrons.  

 
Figure 1.6. Energy distribution of the free electrons in a metal at 0 K 

At a temperature T, the curve differs only very little from the curve 
at 0 K, because of the excellent approximation offered by relation 
[1.92] in respect to the expansion [1.91] and by relation [1.106] in 
respect to the expansion [1.105], because the temperature of the solid 
metal is generally far lower than the Fermi temperature. 

T=0 K

<n(ε) > 

ε-μel = ε-εF 0 

T
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1.8.1.5. Contribution of the free electrons to the internal energy 
of a metal 

On the basis of the electrochemical potential, we can express the 
function of the electrochemical Helmholtz energy by integrating at 
constant volume and temperature: 

0

d
N

el elF Nμ=   [1.114] 

By introducing, into that integral, the expression of the 
electrochemical potential given by relation [1.105], we find: 

2
2

B
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k1 d
12

N

el F
f

t
F Nπε

ε
= −   [1.115] 

We know, from relation [1.87], that the Fermi energy is 
proportional to (N/V)2/3. Thus, for the electrochemical Helmholtz 
energy, we calculate: 

( )
2

2
B

3 k
5 4el F

F

F N Tπε
ε

= −   [1.116] 

This expression gives us the electrochemical Helmholtz energy, 
having chosen ε0 = 0 as the origin of the energies, for the electrons at 
rest within the metal, in section 1.8.1.1. In order to compare the 
energies of the electrons with the contributions of the other terms for 
the solid, it is helpful to change the origin of that energy by taking as 
the origin the electrons at rest very far from the metal and very far 
removed from one another. This introduces a term Ep at a given 
temperature and volume. This energy represents an average potential 
energy of the free electrons obtained by averaging the attractions of 
the positive ions and the other electrons. We suppose that this energy, 
which is electrostatic in origin, is independent of the temperature  
but does depend on the volume of the solid, which alters the  
distances between the ions. If we change the temperature, this energy 
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will only vary by way of the variation in volume – i.e. the thermal 
expansion. 

For a mole of metal, if we let nel denote the number of free electrons 
per atom of metal, we can rewrite relation [1.116] in the form: 

( )
2

2
a B

3N ( ) ( ) k
5 4 ( )el el p F

F

F n E V V T
V

πε
ε

= − + −   [1.117] 

Based on this expression [1.117] of the Helmholtz energy,  
which is a characteristic function in our choice of variables, we  
have access to all the thermodynamic properties, and in particular,  
we can calculate the contribution of the free electrons to  
the (electrochemical) internal energy of the metal by using the 
relation: 

( )2 /el
el

F T
U T

T
∂

= −
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  [1.118] 

This gives us: 
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T V
πε

ε
= − + +   [1.119] 

This expression will be used later on when we are calculating the 
contribution of the free electrons to the molar specific heat capacity of 
the metal at constant volume (see section 1.8.2.1). However, in order 
to do that, we need to know the term nel, which is the number of free 
electrons per atom of the metal. Sommerfeld’s model does not provide 
us with this number, but Brillouin’s band theory, or zone theory, can 
be used to evaluate it. 

1.8.2. The metallic bond and band theory 

As we have just seen, the average potential theory cannot be used 
to determine the number of free electrons per atom of metal. In order 
to find it, we need to return to the average potential hypothesis and 
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take account of a periodic potential. To do so, we will recap a few 
details about metallic bonds. 

1.8.2.1. Origin of energy bands 

In the metal, each of the electrons is subject to the influence of all 
the nuclei and all the other electrons. In view of the periodic 
arrangement of the atoms, that potential is periodic, becoming infinite at 
each nucleus and minimal at the points furthest from the nuclei.  
We cannot hope to solve the Schrödinger equation for so complex  
a system. Certain calculations have been performed in specific  
cases – in particular, by Bloch, Brillouin, Wigner, Seitz and Slater, 
among others. 

In order to gain an understanding of the formation of the bands, we 
will greatly simplify the system, by considering a one-dimensional 
solid formed of an infinitely-long line of ions, along which, atomic 
nuclei are arranged at an equal distance from one another (Figure 1.7). 
To simplify the problem of quantum mechanics, we suppose that the 
electrons are classified into two categories; 

– the electrons in the outer layer, which are usually the bonding 
electrons, and are shared in overall orbitals created by the overlapping 
of the individual orbitals; 

– the electrons in the inner layers, which we can assume are  
not highly affected by the neighboring ions or by the electrons in the 
bond. Hence, these electrons remain in the vicinity of their respective 
nuclei. 

 

Figure 1.7. Diagrammatic representation  
of a one-dimensional metal 

We suppose that the wave function of the bond electrons is 
independent of the wave function of the ions comprising nuclei and 
inner-layer electrons. 
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Thus, it is useful to solve the Schrödinger equation for the valence 
electrons, which is written as: 

2

2

h ( - ) 0
8 p

e

E
m

ε
π

+ Φ =  [1.120] 

We construct the wave function of the valence electrons by linear 
combination of the atomic orbitals by adding the atoms in the line one 
after another, reasoning on the example of the s orbitals. 

The first atom has an s orbital with a certain level of energy. When 
a second atom is added, its s orbital overlaps with that of the previous 
atom, and forms two molecular orbitals – one bonding and the other 
antibonding. If we add a third atom, its s orbital overlaps with the 
previous two molecular orbitals to form three new molecular orbitals, 
and so on. Hence, by adding n atoms, we form s molecular orbitals, 
which, as new atoms are added, extends the available energy domain 
covered by molecular orbitals. 

We will solve the Schrödinger equation [1.120] by using the 
method of addition of the states in the Hückel approximation  
(see Appendix 2). The secular determinant is written as: 
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,i iH  and ,iH  respectively, denote the Coulomb integral and the 
resonance integral between two adjacent atoms. 

The determinant theory applied to this triangular determinant 
yields the solution: 
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, 2 cos
1k i i i

kH H
n

πε = +
+

, where k = 1, 2, …,n  [1.122] 

When the number n of nuclei is very large, the difference between 
two energy levels, corresponding to two successive values k and k + 1, 
is very slight, so that we can consider that the levels are continuous, 
but relation [1.122] gives a solution that is acceptable only if the 
cosine is between –1 and +1: 

1 cos 1
1

k
n

π− ≤ ≤
+

  [1.123] 

In view of relation [1.122], this gives us the twofold inequality at 
the conditions on the energy: 

, ,2 2i i i k i i iH H H Hε− ≤ ≤ +   [1.124] 

This means that only one energy band is allowed, and that the 
breadth of that band, therefore, is: 

4k iHεΔ =   [1.125] 

The energy band thus permitted will be known as an s band  
(Figure 1.8). 

Similarly, if the atoms used have available p orbitals, they will 
form a p band (Figure 1.8). If the energies in the p band are greater 
than those of the s band, the p band will be situated above the s band, 
and between the two, there may be an energy band that is “prohibited” 
to electrons.  

Depending on the case, the bands formed may be spaced a long 
way apart, close together or even overlapping. Hence, the bands 2s 
and 2p overlap partially (we will see later on that this overlap accounts 
for the conductive behavior of alkaline earth metals). Similarly, the 
bands 3d and 4s overlap, and this explains the conductive properties of 
the transition metals. 
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Figure 1.8. Combination of levels into bands 

1.8.2.2. Conductors, insulators and semiconductors 

If we look at the Fermi level in the conduction band, we encounter 
two possible cases: 

– in the first case, the Fermi level is included in the conduction 
band (Figure 1.9, left-hand diagram). A temperature rise enables 
electrons to pass to a higher level in that band which is still available. 
Those electrons facilitate conduction, and the solid is cataloged as a 
conductor. Such is the case, in particular, with metals. The number of 
excited electrons will be greater when the temperature is higher, but 
with this rise in temperature, the vibrations of the atoms become more 
intense, which decreases the electrons’ mobility. On balance, the 
second effect wins out over the first, and the conductivity of metals 
decreases at higher temperatures; 

– in the second case, the Fermi level is identical to the upper level 
of the conduction band (Figure 1.9, right-hand diagrams). Thus, there 
are no more levels available in the conduction band to accommodate 
electrons. The solid is then said to be non-conductive of electricity. In 
order for a substance to be able to conduct electricity, the electrons 
must be capable of crossing over a prohibited band and reaching a 
level in a new authorized band. Thus, two scenarios may arise: 

- either the energy jump required to cross the gap is too great in 
comparison to kBT, and so the gap cannot be crossed. In this case, we 
say that the non-conductor is an insulator, 
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- or the gap is sufficiently narrow, and electrons can cross it, thus 
freeing up places in the conduction band and facilitating the passage 
of electrical current. We then say that the non-conductor  
is a semiconductor. When the temperature increases, the effect  
due to the increased number of electrons jumping to the highest level 
prevails over the effect due to the most intense vibrations of the 
atoms, and the conductivity of semiconductors increases with 
temperature. 

Figure 1.9. Diagram of bands for metals, insulators and semi-conductors 

1.8.2.3. Determination of the number N of free electrons 

We will say that the free electrons are the electrons contained in 
the band with highest energy, which may be completely or partially 
filled (see Figure 1.10). Hence, the number of free electrons is N and 
ne is the ratio of that number N to the number of metal atoms n 
contained in the volume in question. 

The band contains the electrons that are furthest away from the 
nuclei, and thus we can consider that the amplitude of the periodic 
potential created by those electrons is slight. Therefore, we can make 
the approximation that, in the conduction band, the potential is 
essentially constant. Thus, all the calculations performed in  
section 1.8.1 are valid within that band, if we take the bottom of the 
band as the origin of the energies. Thus, the Fermi energy is given by 
relation [1.87], which is the height, in that band, occupied by electrons 
at absolute zero. 
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Figure 1.10. Energy band structure in a metal 

Using this reasoning, it is easy to calculate N. We will now take a 
look at a few examples. 

Let us choose an alkali metal (such as Li, Na, etc.). These atoms 
have a final electron layer which has one free electron on an s orbital. 
If the metal contains n atoms, their overlapping will give us n × s 
orbitals, and therefore n energy levels in the s band, which can thus 
accept 2n electrons. As there are fewer than 2n of them, the 
conduction band is incomplete, and the Fermi level is within that 
band. Thus, the ratio ne is equal to 1, so there is one free electron per 
metal atom. 

Let us now consider an alkaline earth metal (Mg, Ca, etc.). These 
atoms have a final electron layer containing two electrons on an s 
orbital. If the metal contains n atoms, then their overlap will give n × s 
orbitals, so n energy levels in the s band, which can therefore 
accommodate 2n electrons. Hence, the s band is complete and the Fermi 
level is at the upper level of that band. Alkaline earth metals should not 
exhibit metallic behavior; however, experience proves that they are, 
indeed, metals. This arises from the fact that, in these elements, the s 
band partially overlaps the p band immediately above it, to form one 
conduction band, so that the Fermi level actually lies somewhere within  
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that conduction band, because the new band can accommodate more 
than two electrons per atom (with a maximum of eight if the s and p 
bands were precisely tangential to one another). Hence, the ratio ne is 
equal to 2, meaning that there are two free electrons per atom of  
metal. These metals, which have two free electrons per atom,  
should conduct electricity better than alkali metals. However,  
this is absolutely not the case, because, at a temperature higher  
than absolute zero, the number of single electrons, which are 
responsible for conduction, is lesser in alkaline earth metals than in 
alkali metals. 

We now look at the example of solid fluorine (or any other 
halogen). Its atoms have a last electron layer comprising two electrons 
on an s orbital and 5 electrons on three equivalent p orbitals. If the 
solid contains n atoms, then their overlap will give us n × s orbitals 
and 3n×p orbitals, and therefore a total of 4n energy levels which can 
accommodate 8n electrons, so the band (s + p) is incomplete,  
and the Fermi level is included in that band. Halogens should  
behave like metals, but experience tells us that they are not 
conductive. This arises from the fact that it is not atoms of  
fluorine which make up the solid, but rather diatomic F2 molecules. 
The combination of those n/2 molecules of di-fluorine gives us  
n × s orbitals, 2n × p orbitals and n/2 orbitals linking two fluorines,  
and all of those levels, of where there are 7n/2, can accept  
up to 7n electrons, which means that the Fermi level is at the highest 
part of the sp band thus constructed, and therefore fluorine is an 
insulator. 

1.8.2.4. Distribution of energy states and of free electrons at 
absolute zero 

In order to find the distribution of the electrons, it is important to 
know the distribution function g(ε) which, in a solid with volume V, 
gives us the number g(ε) of states whose energy is between ε and 
ε+dε. Each state is capable of accommodating two electrons. It is 
complicated to calculate this distribution. Figure 1.11 shows the 
distribution calculated by Jones and Mott for the band created by the s 
and p bands in a centered cubic crystal. 
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Figure 1.11. Distribution of states of s and p bands, with overlap,  
for a centered cubic crystal (data from [FOW 49]) 

The curve OABCE represents the distribution in the s band, which 
has the lowest energy (the curve OBG is a parabola). The curve FDG 
represents the distribution in the start of the p band, which is highest. 
The plot OABCDG shows the distribution resulting from the partial 
overlap of the s and p bands. 

Figure 1.12 shows the distribution of the energy levels and electron 
filling in four cases at the temperature of absolute zero. Cases (a) and 
(b) correspond respectively to mono- and divalent metals (alkali 
metals and alkaline earth metals found in section 1.8.2.3). These are 
conductive metals, in which the s and p bands partly overlap. In case 
(a), the electrons do not completely fill the s band; in case (b), they 
completely fill the s band, but the p band is available because of the 
partial overlap. Case (c) corresponds to the case of a non-insulating 
semiconductor, wherein the bands do not overlap. The lower band is 
full but the upper band is very close to the former. Case  (d) 
corresponds to an insulator, where the bands do not overlap. The 
lower band is full, and the upper band is very far removed and is 
empty.  

Thus, we find (a), (b) and (c) – the three cases of conduction 
illustrated in Figure 1.9. 
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Figure 1.12.Occupation of states in a) a monovalent metal; b) a divalent 
metal; c) a semi-conductor; d) an insulator 

1.9. Molar specific heat capacities of crystalline solids 

We can determine the molar specific heat capacities at constant 
volume by derivation of the molar internal energy, using the relation: 

m
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U
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T
∂=
∂

 [1.126] 

We know that depending on the solids, the molar internal energy is 
the sum of several contributions – e.g. the sum shown in relation 
[1.35]. By application of relation [1.126], we find that the overall 
specific heat capacity will also be the sum of various contributions, 
but only the contributions of the internal energy, which are 
temperature-dependent, give us a term for the contribution to the 
overall specific heat capacity. 

1.9.1. Contribution of the vibrational energy to the specific 
heat capacity at constant volume 

The contribution of the vibrational motions to the internal energy is 
found in all crystalline solids, and is always temperature-dependent. 
We have found two types of contributions: 
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– the so-called Einsteinian contribution, with a unique vibration, 
mainly applicable to an optical vibration; 

– the distribution of 3N acoustic vibrations in Debye’s model and 
its derivatives. 

We will now calculate the contribution corresponding to each of 
these models to the specific heat capacity at constant volume. 

1.9.1.1. Case of a unique vibration in Einstein’s model 

By combining expressions [1.29] and [1.126], we obtain the 
contribution of a unique vibration to the specific heat capacity at 
constant volume: 

2
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  [1.127] 

We often adopt the function E(T/ΘΕ), known as Einstein’s function, 
which is defined by: 
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  [1.128] 

The corresponding specific heat capacity will thus be written: 

( ) 3REV v
E

TC =
Θ

 [1.129] 

At high temperature, the molar specific heat capacity is reduced to: 

( ) 3RV vC ≅   [1.130] 
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This is the Dulong and Petit law, which we can deduce from the 
kinetic theory of gases, noting that 3N vibrational degrees of freedom 
correspond to 6N quadratic terms. 

At low temperature, the molar specific heat capacity tends toward 
zero. 

The Einstein temperature is obtained on the basis of the infrared 
spectra which enable us to determine the vibration frequencies of the 

links and then apply the expression E
B

h
k
νΘ = . 

1.9.1.2. Case of Debye’s acoustic vibration distribution 

By combining relations [1.30] and [1.126], we obtain the 
contribution of an acoustic vibration distribution, according to Debye, 
to the specific heat capacity at constant volume, so: 
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We often posit the function D(T/ΘE), known as Debye’s function, 
defined by: 
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  [1.132] 

The corresponding specific heat capacity is then written: 

( ) 3R DV v
D

TC =
Θ

  [1.133] 

At high temperature, the molar specific heat capacity is reduced to: 

( ) 3RV vC ≅   [1.134] 

We see the Dulong–Petit law. 
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At low temperature (T <<ΘD), relation [1.26] gives the so-called  
“T 3” law, for the specific heat capacity: 

3
4

( )
12 R
5V v

D

TC π=
Θ

  [1.135] 

Figure 1.13 compares the curve given by the Einsteinian relation 
[1.129] and that given by Debye’s law [1.133]. We can see a 
difference between the two curves – particularly at low temperature. 

The Debye temperature can be measured in a variety of ways. The 
most common are: 

– evaluation on the basis of the whole curve Cv(T); 

– evaluation on the basis of the values of the specific heat 
capacities obtained at low temperature (less than ΘD/12), and 
application of the T 3 law [1.135]; 

– the Debye temperature can also be deduced from elastic data in 
the vicinity of 200 K. 

 
Figure 1.13. Comparison of the curves of the Einstein and Debye 

contributions for the specific heat capacity 
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Figure 1.14 gives a few of the values that are used. For example, 
for copper, the values obtained by the different methods all fall within 
the range 310–340 K. 

If we choose a wavelength distribution other than Debye’s, then 
the laws are obviously changed. For example, the Born–von Karmann 
distribution (Figure 1.4(a)) gives us a law combining the Einsteinian 
and Debyean terms, as follows: 

( )
3 0,8R E D
2V v

m m

T TC γ= +
Θ Θ

  [1.136] 

where γ  and Θm being two constants, which we adjust in relation to 
the experimental data. 

Choosing to use Blackman’s distribution (Figure 1.4(b)), Nernst 
and Lindemann put forward the following law: 

( )
3 2R E E
2V v

T TC = +
Θ Θ

  [1.137] 

We are going to make use of these contributions of the vibrations 
to the construction of the specific heat capacity at constant volume for 
different types of solids. 

1.9.2. Specific heat capacity of an atomic solid at constant 
volume 

An atomic solid has an energy given by a relation similar in form to 
equation [1.28], which involves a temperature-dependent vibrational 
term, which gives us a vibrational contribution to the specific heat 
capacity of the form: 

( ) 3R DV v
D

TC =
Θ

 [1.138] 

A priori, the vibrational term is the only one in equation [1.28] 
which is temperature-dependent. However, we need to take a slightly 
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closer look at the electron contribution – particularly in the wake of 
our study of section 1.7, and distinguish conductive atomic solids 
from non-conductive solids. 

1.9.2.1. Case of conductors 

Conductive solids have free levels for the electrons above the 
Fermi level in the conduction band. Thus, we distinguish between: 

– electrons in the lower bands, which are not excited, whose 
internal energy does not depend on the temperature (as envisaged in 
relation [1.28]) and which make no contribution to the specific heat 
capacity; 

– electrons which can be described as “free”, located at the 
temperature 0 K in the conduction band below the Fermi level. At 
temperature T, the internal energy of these free electrons is given by 
relation [1.119], which is a function of the temperature. By applying 
expression [1.126], we can deduce a contribution of the free electrons 
to the specific heat capacity, given by: 

8/3 2/3

( ) 2/3 2 2/3
a

4 R
3 h NV el

VC Tχ π=   [1.139] 

Thus, strictly speaking, the specific heat capacity of a metal at 
constant volume will be the sum of two contributions: one from the 
vibration of the ions and the other from the free electrons, so by 
applying the contributions [1.138] and [1.139]: 

8/3 2/3

2/3 2 2/3
a

4 R 3R D
3 h NV

D

V TC Tχ π= +
Θ

  [1.140] 

Based on this general relation, we can formulate two observations: 

1) The first deals with the relative orders of magnitude of the two 
terms in addition [1.140]. The electronic term would be order of  
5 × 10-4 TJ/mole.K-1, which means it is negligible at normal 
temperatures. It only becomes significant at around 1 K. This was 
confirmed by Keesom and Kok, who measured such a contribution of 
2.5 × 10-4 T for copper, which corresponds to a contribution of  
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0.033 J/mole.K-1 at 133 K, as compared to a vibrational contribution of 
16.2 J/mole.K-1. 

2) The second observation pertains to the influence of the 
temperature. The same two authors observed that in the vicinity of 
absolute zero, the value of the specific heat capacity is greater than 
that given by the extrapolation of the T3 law given by equation [1.135]. 
The capacity is thus written as: 

38/3 2/3
4

2/3 2 2/3
a

4 R 12 R
3 h N 5V

D

V TC Tχ π π= +
Θ

  [1.141] 

At the temperature of 1 K, the T term could even become 
predominant. 

1.9.2.2. Case of insulating materials 

In the case of insulating materials, the electrons in the conduction 
band do not have the opportunity to gain energy by an increase in 
temperature, as the gap to be crossed is very large indeed, so the 
electron contribution will be null. However, as we noted in the case of 
fluorine, the crystal must be considered to be a crystal of diatomic 
molecules. This being the case, each molecule F2 has six degrees of 
freedom. Three will be degrees of acoustic vibrations, arising from the 
Debye term, and three will be optical vibrations, each arising from an 
Einsteinian term. Thus, the specific heat capacity contains only a 
vibrational contribution, formed of four terms in accordance with the 
following (for a mole of fluorine or ½ a mole of difluorine): 

6

s
4 ( )

3R RD E
2 2

s

V
sD E s

T TC
=

=

= +
Θ Θ

  [1.142] 

If the three Einsteinian terms have very similar frequencies, then 
the relation can be simplified to: 

3R D E
2V

D E

T TC = +
Θ Θ

  [1.143] 
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In fact, in general, the Debye temperature is much lower than the 
Einstein temperature, so we can divide the temperature scale into three 
regions: 

– if T<<ΘD, the Debye term is predominant, the Einstein term can 
be ignored and we find the T3 law around the temperature of absolute 
zero; 

– if T>>ΘD, the Einstein term is predominant, and Debye’s can be 
ignored.  

Only if the temperature lies between those two characteristic 
temperatures we do need to apply relation [1.143]. 

 

Figure 1.14. Debye curve and specific heat capacities at  
constant volume for a number of atomic solids 

NOTE.– In the case of semiconductors, the situation is the same as for 
insulators, but there is the possibility of populating the band above the 
Fermi level by increasing the temperature, which would introduce an 
electron term, as a function of the temperature in the internal energy 
and therefore an electron contribution to the specific heat capacity. 
However, the breadth of the gap to be crossed is such that few 
electrons can make that jump at low temperature, and therefore the 
corresponding term will always be negligible in comparison to the 
vibrational term. 

Figure 1.14 shows that Debye’s curve corresponds closely with  
the variations in the Cv/3R ratio for a number of metals. Note that the 
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curve is only plotted above a certain temperature, above the temperature 
where the electronic term becomes significant. 

1.9.3. Specific heat capacity of a molecular or ionic solid at 
constant volume 

For molecules, as for ionic solids after grouping into neutral entities 
(see section 1.7.3), the internal energy is given by the sum such as 
[1.35], wherein only the vibrational term varies with temperature. 

However, as we have seen in section 1.7.3, the vibrations are 
divided into acoustic vibrations by multiples of three and arising from 
the Debyean terms and optical vibrations, whose number is 
complementary to the former and which all result from an Einsteinian 
term. Hence, the specific heat capacity takes the following form: 

ac opt
3R D EV

D E

T TC = +
Θ Θ

 [1.144] 

In general, at low temperatures, only the Debye terms need to be 
taken into account, whereas at high temperatures, the Einstein terms are 
largely predominant. This means that the T 3 extrapolation to absolute 
zero is correctly observed, because only the Debye term remains. 

1.9.4. Conclusion as to the specific heat capacity of a 
crystalline solid 

In conclusion, it can very often be admitted that, outside of metals, 
the specific heat capacity varies with temperature like Debye’s law at 
low temperatures, with a law proportional to T 3 at very low 
temperatures (below 40 K), while Einstein’s law performs better at 
higher temperatures. For metals, caution needs to be exercised when 
we come very close to absolute zero: a law proportional to T is better 
than the T 3 law. 

At very high temperatures, all laws tend toward the Dulong–Petit 
law, meaning that the specific heat capacity at constant volume 
becomes temperature-independent, obeying relation [1.130]. 
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Macroscopic modeling always gives us the specific heat capacity at 
constant volume. We can switch to the specific heat capacity at 
constant pressure by using the relation: 

P V
V P

P VC C T
T T

∂ ∂− =
∂ ∂

 [1.145] 

Using the thermomechanical coefficients (see section 1.9.1), we 
construct expression [1.146], which links the difference between the 
specific heat capacities at constant pressure and volume to the 
expansion coefficient β, and to the compressibility coefficient :Tχ  

2

P V
T

V
C C

β
χ

− =   [1.146] 

This very general relation for solids is the equivalent of relation 
[1.145], but is easier to use for gases on the basis of the state equation. 

1.10. Thermal expansion of solids 

The thermal expansion of a solid is the variation in that solid’s 
dimensions when its temperature is changed. A few exceptions aside, 
dimensions generally increase when the temperature rises. This 
expansion is due to the anharmonicity of the molecules’ vibrations. 

1.10.1. Expansion coefficients 

On the macroscopic level, the expansion is characterized by the 
linear and cubic expansion coefficients. 

1.10.1.1. Linear expansion coefficient 

In a direction in space, the increase of a length under the influence 
of temperature is defined at a given pressure by the linear expansion 
coefficient at constant pressure α: 

1

P

l
l T

α ∂=
∂

  [1.147] 
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We often express that coefficient in relation to the l0 at the 
temperature of 0°C, defining a standard linear expansion coefficient 

0α  as: 

0
0

1

P

l
l T

α ∂=
∂

  [1.148] 

Table 1.3 gives the value of the linear expansion coefficient for a 
number of substances at standard temperature. 

This linear expansion coefficient can be measured either by using a 
dilatometer or by shift in X-ray diffraction lines as a function of the 
temperature. 

Substance α (10-6 C-1) Substance α (10-6 C-1) 

Aluminum 22.38 Brass 18.5 

Copper 16.70 Invar 1 

Iron 11.70 Glass 7 

Lead 27.26 Pyrex glass 3 

Tantalum 6.46 Quartz 0.55 

Tungsten 4.28 Porcelain 3 

Zinc 35.40   

Table 1.3. Linear expansion coefficients of a number of substances 

1.10.1.2. Thermal expansion tensor 

In anisotropic solids, the expansion coefficient depends on the 
direction, so to describe the expansion we use a second-order 
symmetrical tensor, which, in the case of a triclinic solid, has six 
expansion coefficients: 

11 12 13

21 22 23

31 32 33

α α α
α α α
α α α
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Because this tensor must be symmetrical, we have: 

12 21α α= ; 13 31α α=  and 23 32α α=  

With an orthorhombic solid, the tensor is diagonal, the three terms 
12α , 12α  and 12α  have a value of zero, and the three diagonal terms 

12α  , 12α  and 12α  give the expansion along the three axes a, b and c 
of the material. 

The eigenvalues of that tensor are the three primary expansion 
coefficients 1α , 2α  and 3α . 

1.10.1.3. Cubic expansion coefficient (or coefficient of relative 
volume increase) 

To characterize changes in volume under the influence of 
temperature, we define a volume expansion coefficient for a level of 
pressure maintained as constant, thus: 

1

P

V
V T

β ∂=
∂

  [1.149] 

Sometimes that coefficient is expressed in relation to the volume 
V0 occupied at the temperature of 0°C: 

0
0

1

P

V
V T

β ∂=
∂

  [1.150] 

The volume expansion coefficient is obtained by “plotting” the 
expansion tensor – i.e. by the sum of the three primary coefficients –
but also, because the plot of a square matrix is invariant in a changed 
system of coordinates, by the sum of the three diagonal terms in the 
thermal expansion tensor, which gives us the relations: 

1 2 3 11 22 33β α α α α α α= + + = + +  [1.151] 

NOTE.– In isotropic media, the linear expansion coefficient is the 
same in all three directions in space, so: 
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1 2 3α α α α= = =  

Thus: 

3β α=  [1.152] 

1.10.1.4. Relation between the thermomechanical coefficients 

We define the isothermal compressibility coefficient at constant 
temperature T by the relation: 

1
T

T

V
V P

χ ∂= −
∂

  [1.153] 

The minus sign is introduced because the true intensive variable, 
conjugate to the volume, is the opposite of the pressure: –P. 

We also define the coefficient of pressure increase at constant 
volume by the relation: 

1

V

P
P T

δ ∂=
∂

  [1.154] 

If, for the phase in question, there is an equation of state such as 
f(P,V,T) = 0, we have the relation: 

T Pβ δχ=   [1.155] 

Indeed, for that state function, we can write: 

1 1 1 1.T

f f f
VP V VP P

f f fP V V V T
T P T

δχ β

∂ ∂ ∂
∂∂ ∂ ∂= − = − = =

∂ ∂ ∂ ∂
∂ ∂ ∂

 

1.10.2. Origin of thermal expansion in solids 

We will now show that the thermal expansion can be attributed to 
the vibrations of the atoms at the nodes of the crystalline lattice. 
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For this purpose, we will use the following values for the definite 
integrals: 

2exp dx x π
+∞

−∞

− =   [1.156]  

2exp d 0x x x
+∞

−∞

− =    [1.157] 

3 2exp d 0x x x
+∞

−∞

− =   [1.158] 

4 2 3exp d
4

x x x π+∞

−∞

− =   [1.159] 

To begin with, we will consider a harmonic vibration. In 
conventional mechanics, the curve that gives the potential energy of 
the harmonic oscillator as a function of the length of the spring is a 
parabola (Figure 1.15(a)). On that parabola, an increase in 
temperature results in a rise of the potential energy, at various 
temperatures T1, T2, T3 and T4 shown in the figure. When the 
temperature is raised, we can clearly see from the figure that the 
average position of the end of the spring does not change, and 
therefore this average position follows a vertical line. This means 
that no expansion is observed with this increase in temperature. This 
can be demonstrated numerically.  

The equation for the curve of the parabola is written as: 

2 2
0 0 ( )a r r axε ε− = − =   [1.160] 

Let us calculate the average stretching of the spring <r – r0> by 
applying the definition of the average of a value Q: 

 
1

Accessible states

Accessible states

Q
Q< > =   [1.161] 
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When we apply this formula to the average stretching, by using 
Boltzmann statistics, we find: 

2
0

B B
0 2

0

B B

exp d exp d
k k

 0
exp d exp d

k k

axx x x x
T T

r r
axx x

T T

ε ε

ε ε

+∞ +∞

−∞ −∞
+∞ +∞

−∞ −∞

−− −
− = = =

−− −
  [1.162] 

 

Figure 1.15. Potential energy curves for a) the harmonic oscillator,  
and b) an anharmonic oscillator 

We can see from the value of the integral [1.157] that the 
stretching is zero. Thus, we confirm the approximation of a harmonic 
oscillator which does not allow for thermal expansion. 

Now let us consider an anharmonic oscillator, the potential  
energy for which is plotted by the curve in Figure 1.15(b). We  
can clearly see that this shape of curve allows for the breaking of  
the link. However, we can also see that if the temperature increases, 
the average position of the end of the spring follows a curve that 
inclines to the right, thus showing an expansion. We can demonstrate 
this numerically. 

To the equation for the parabola, we add a cubic term to express 
the anharmonicity of the potential energy curve. Thus, we adopt a 
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position that is fairly close to the minimum – i.e. at low temperatures. 
Hence, the energy can be written as: 

2 3 2 3
0 0 0 ( ) ( )a r r b r r ax bxε ε− = − + − = +   [1.163] 

Using Boltzmann statistics like in equation [1.162] but with the 
new formula for the energy given by relation [1.163], we obtain: 

2 3

B B
0 2 3

B B

exp exp d
k k

 
exp exp d

k k

ax bxx x
T T

r r
ax bx x

T T

+∞

−∞
+∞

−∞

− −
− =

− −
  [1.164] 

The exponential term of anharmonicity, which is deemed to be 
low, is replaced by the development limited to the first two terms: 

3 3

B B

exp 1
k k
bx bx

T T
− ≈ −   [1.165] 

By substituting this value back into equation [1.164], we find: 

2 3

B B
0 2 3

B B

exp 1 d
k k

 
exp 1 d

k k

ax bxx x
T T

r r
ax bx x

T T

+∞

−∞
+∞

−∞

− −
− =

− −
  [1.166] 

The numerator and the denominator in this fraction can both be 
expanded, giving us: 

2 4 2

B B B
0 2 3 2

B B B

exp exp d
k k k

 
exp exp d

k k k

ax bx axx x
T T T

r r
ax bx ax x

T T T

+∞ +∞

−∞ −∞
+∞ +∞

−∞ −∞

− − −
− =

− − −
  [1.167] 
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We recognize the different definite integrals whose values are 
given in equations [1.156], [1.157], [1.158] and [1.159]. If we 
substitute in those values, the stretching becomes: 

0 B2

3 k
4

br r T
a

< − > = −   [1.168] 

The expansion coefficient can thus be obtained on the basis of its 
definition: 

0
B2

0 0

d1 3 k
d 4
r r b

r T a r
α

−
= = −   [1.169] 

We can see that simply introducing an anharmonic term into the 
equation for the potential energy curve is sufficient to take account of 
the existence of linear expansion. 

Unfortunately, our model gives us a linear expansion coefficient 
that is temperature-independent. This result would be kept if a larger 
number of terms were added to the potential energy equation in 
relation [1.163]. However, experience tells us that α  is dependent on 
the temperature.  

In order to achieve a correct representation of the expansion, we 
will approach the problem using quantum mechanics. 

1.10.3. Quantum treatment of thermal expansion. 
Grüneisen parameter 

To begin with, note that by using relations [1.152], [1.154] and 
[1.155], we can write: 

3
T

V

P
T

χα ∂=
∂

  [1.170] 
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In order to calculate the linear expansion coefficient, we first need 
to calculate the thermodynamic coefficient ( )/

V
P T∂ ∂ . For this 

purpose, we will work with the variables V and T. 

We will consider our solid to be a collection of quantum 
oscillators, phonons, each of which has its own natural frequency of 
vibration νi. 

The partition function relative to such an oscillator is: 

B

B

hexp
2k

h1 exp
k

i

i
i

T
z

T

ν

ν

−
=

− −
  [1.171] 

The characteristic function with variables T, V is the Helmholtz 
energy. Thus, for each phonon, we can write its contribution to the 
Helmholtz energy in the form: 

B B
B

h hk ln k ln 1 exp
2 k

i i
i iF T z T

T
ν ν= − = + − −   [1.172] 

Similarly, the contribution of that phonon to the internal energy 
will be: 

BB

ln h h
21 exp 1

kk

i i i
i

i

z
U

h
TT

ν ν
ν

∂
= − = +

−∂
  [1.173] 

The anharmonic effect of the oscillations will be taken into account 
by considering that the vibration frequency of the phonon is a function 
of the volume. 

As the pressure is the derivative of the Helmholtz energy in 
relation to the volume, the contribution of our phonon to that pressure 
will be: 
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B

B

hh exp
h k

h2 1 exp
k

i i

i i
i

iT

F V T
P

V V
T

ν ν
ν

ν

∂ −
∂ ∂ ∂= − = − +
∂ ∂ − −

  [1.174] 

From this, we deduce: 

B

h h
h2 exp 1
k

i i i
i

i i

U
P

V V
T

ν ν
ν ν

∂ ∂
= − + = −

∂ ∂−
  [1.175] 

Additionally, we can always write: 

i i i i i

i

ln. . .
ln

V
V V V V V
ν ν ν ν ν

ν
∂ ∂ ∂= =
∂ ∂ ∂

  [1.176] 

We define a value iγ  by the expression: 

iln
lni V

νγ ∂= −
∂

  [1.177] 

This value is called the Grüneisen factor of the phonon i. 

The pressure due to all the phonons, in view of relations [1.176] 
and [1.177], and by adding relation [1.175] for all the phonons, will be 
written as: 

i
i i

i i

U
P P

V
γ= =   [1.178] 

We derive this pressure in relation to temperature, at constant 
volume. In view of expression [1.126], we obtain: 

1 1i
i i Vi

i iV T

UP C
T V T V

γ γ∂∂ = =
∂ ∂

  [1.179] 
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By substituting that derivative back into equation [1.170], the 
expansion coefficient is written as: 

3 3

i Vi
iT T

i Vi Vi
i iVi

i

C
C C

V V C

γ
χ χα γ= =   [1.180] 

We define the value γ (T,V), called the Grüneisen parameter, by 
the expression: 

( , )
i Vi

i

Vi
i

C
T V

C

γ
γ =   [1.181] 

NOTE.– It is important not to confuse the Grüneisen factor γi with the 
Grüneisen parameter γ (T,V). 

Thus, the expansion coefficient will be: 

( , )
3

T
VT V C

χα γ=   [1.182] 

As the isothermal compressibility Tχ  and the specific heat 
capacity at constant volume VC  are both values which are always 
positive, the Grüneisen parameter has the same sign as the expansion 
coefficient – i.e. positive in the majority of cases and negative in the 
few cases of contraction with increased temperature. 

Experience tells us that the product ( , ) /T T V Vχ γ is essentially 
constant as the temperature varies, which means that, in practice, the 
linear expansion coefficient is practically proportional to the specific 
heat capacity at constant volume, i.e.: 

VCα ∝   [1.183] 

Thus, the variation of the expansion coefficient with temperature 
will be the same in form as that of the specific heat capacity at 
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constant volume, so we obtain the curve shown in Figure 1.16, which 
has the same shape as Figure 1.14. 

 

Figure 1.16. Shape of the curve of the expansion coefficient  
with temperature in the context of the Debye approximation 

In view of expression [1.183], we can reach the same conclusions 
as those about the specific heat capacity at constant volume in  
section 1.9.1.2 (see relations [1.134] and [1.135]): 

3    
     essentially constant

D

D

T T
T

α
α

<< Θ ∝
>> Θ

  [1.184] 

Experimentally, the Grüneisen parameter is determined at zero 
pressure or atmospheric pressure, on the basis of measurements of the 
volume expansion coefficient β , the adiabatic compressibility 
(constant entropy) Sχ  and the specific heat capacity at constant 
pressure PC  because we have: 

3( , )
T V S P

VT V
C C
α βγ

χ χ
= =   [1.185] 

Relation [1.177] shows that the Grüneisen parameter for the 
phonon i is dimensionless, and therefore the parameter γ(T,V), defined 
by relation [1.181], is also dimensionless. 

In the majority of cases, the Grüneisen parameter is of the order of 
magnitude of a few units at all temperatures, as is demonstrated by the 

T 
θD

α 
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curves in Figure 1.17, which give the variations of that parameter for 
several alkali halides. 

 

Figure 1.17. Grüneisen parameter for a few alkali halides  
(data from [WHI 65]) 

However, we note a few cases of values that are far greater – either 
positive or negative. 

The Grüneisen parameter also varies with the volume, as is shown 
by the example of copper illustrated in Figure 1.18. 

 

Figure 1.18. Variation of the Grüneisen parameter for copper  
with the volume (data taken from [GIR 00])  
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1.10.4. Expansion coefficient of metals 

The reasoning we employed in the previous section is valid for 
insulating solids. Indeed, for metals, we know that a contribution is 
made by the free electrons to the partition function and therefore to the 
specific heat capacity at constant volume. We will now look at the 
situation for the expansion. 

We can think in the case of the electron gas subject to Fermi–Dirac 
statistics, but calculation shows that we obtain an identical result by 
using the simple model of the gas of electrons subject to three degrees 
of freedom of translation, in the case of the equal energy distribution 
model. If the metal includes ne electrons per atom, its molar internal 
energy will be: 

a B3 N k
2

e
el

n T
U =   [1.186] 

By application of the ideal gas law, we deduce the electron 
pressure: 

a BN k 2
3

e el
el

n T U
P

V V
= =   [1.187] 

By deriving this pressure in relation to the temperature, we find: 

2 2
3 3

el el
Vel

V V

P U
C

T V T V
∂ ∂= =
∂ ∂

  [1.188] 

If we substitute this back into equation [1.170], we find an electron 
parameter of the Grüneisen constant: ( , ) 2 / 3el T Vγ =  

Thus, the linear expansion coefficient of the metal will be the sum 
of two terms: the contribution of the lattice ( , )r VrT V Cγ  and the 
contribution of the free electrons ( , )el VelT V Cγ . Hence, we can write: 

( )1 ( , ) ( , )
3 T e Ve r VrT V C T V Cα χ γ γ= +   [1.189] 
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At low temperature, we know that the contribution of the lattice 
varies as the cube of the temperature. By keeping the product 

( , )T e T Vχ γ  practically constant, the electron contribution also varies 
as the electron contribution to the specific heat capacity at constant 
volume. However, as we have seen (relation [1.139]), that 
contribution varies with T, so, at low temperature, the linear expansion 
coefficient of a metal will be of the form: 

3aT bTα ≅ +   [1.190] 

 
Figure 1.19. Expansion of copper at low temperature,  

according to [PER 70] 

Figure 1.19 shows a good example of the application of this law. 
For copper, it represents the curve showing the / Tα  ratio as a 
function of the square of the temperature. This curve is, indeed, a 
straight line with the equation: 

10 11 21.3 10 2.7 10 T
T
α − −≅ × + ×  

On the basis of this expression, authors have determined the value
( , ) 0.57e T Vγ = for the electron Grüneisen parameter, which is near to 

the theoretical value of 2/1. 

As previously stressed, other properties characterize solids – electrical 
properties, magnetic properties and other mechanical properties such as 
resilience, resistance to hardness, etc. All of these properties are not 
studied here because they are beyond the remit of this book.
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Solid Solutions 

A mixture of two solids A and B may appear in two forms: 

– a solid solution – i.e. a single-phase solid with two components A 
and B; 

– a mixture of two phases. These two phases may be two pure 
phases, respectively, made up of the solids A and B, or a mixture of 
two solid solutions, each with the two components A and B but with 
different compositions, or a mixture of one of the two pure solids (for 
example, A) and a solid solution of A in B. 

2.1. Families of solid solutions 

The solids A and B may be metal atoms. Mixing them will give us 
monophasic – or polyphasic alloys or atoms of non-metals. It may also 
be molecules of organic compounds or polymers. Finally, there are 
solutions of complex mineral compounds. Thus, alkali feldspars 
constitute a solid solution between the potassium term orthoclase 
(Si3AlO8)K, and the sodium term albite (Si3AlO8)Na, which is 
unstable at low temperature. 

In certain cases, the solution can have any composition, ranging 
between pure A and pure B; we, therefore, say that the components A 
and B are miscible in all proportions. In other cases, the solid A can, at 
most, only accept a certain proportion of B; in such cases, the limit of 
solubility of B in A is reached. The lattice of the solid solution is the 
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same as that of the pure solid A. Similarly, the solvent might be B, and 
may only be able to accommodate, at most, a certain proportion of A, 
which is then the limit of solubility of A in B. In this latter case, it is the 
lattice of the pure solid B which is the lattice of the solution. The solid 
solutions thus obtained are known as primary solid solutions. 

It occurs that the two components A and B can react with each other 
to give a chemical compound which we call a definite compound, with 
the formula  AaBb. In general, this compound has its own crystalline 
lattice, which is different from those of the pure substances A and B. This 
definite compound can react with A or B to give solid solutions which, 
finally, constitute a new type of solid solution, formed of the components 
A and B. These new solutions are called secondary solutions. 

We usually distinguish two types of solid solutions. 

2.1.1. Substitutional solid solutions 

We distinguish two types of solids: those in which the nodes of the 
lattice are all identical, such as metals or, more generally, solids with 
covalent bonds and solids with two families of lattice nodes, such as 
ionic compounds. 

In solids containing only one family of nodes, the atoms (or 
molecules) of the two components are placed on the nodes of the single 
lattice, the coordination index is the same for both components. For 
instance, with a binary solution of the solvent A and solute B, the 
crystalline lattice is that of the pure A and, at certain sites, atoms of B 
substitute atoms of A in the initial structure, but without modifying that 
structure. 

The limit of solubility of B in A, to form a substitutional solution, 
is governed – particularly with metal alloys – by the empirical rules 
devised by Hume and Rothery. According to these rules, there are four 
factors which determine the degree of solubility of a substance B in a 
substance A: 

– structural rule: the crystallographic structures of the solids A and 
B must match; 
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– electron structural rule: electronically similar metals can form 
extended solutions because of the similarity of their bond; 

– valence rule: if they have the same valence, the metals A and B 
will dissolve one another easily. However, metals with a low valence 
will more easily dissolve a metal with a similar valence than metals 
with a high valence; 

– atomic radius rule (or atomic diameter rule, or “15% rule”): in 
order for complete miscibility to occur, the difference between the 
atomic radii must be no greater than 15%, meaning that we must have: 

A B

A B

2
0.15

r r
r r

−
≤

+
 [2.1] 

In the case of non-total miscibility, the solubility is inversely 
proportional to the difference in size of the atoms. 

Let us take the example of copper–nickel alloys. Table 2.1 lists 
some of the characteristics of the atoms. We can see that the two pure 
metals have the same structure, have extremely similar atomic radii 
and electronegativity values, on the Pauling scale, which are also very 
close. Copper and nickel are indeed miscible in all proportions. 

Metals Crystalline lattice Atomic radius (nm) Electronegativity 
Copper Ccf 0.128 1.9 
Nickel Ccf 0.125 1.8 
Zinc Hc 0.133 1.6 

Table 2.1. Comparison of the characteristics of copper and nickel 

As another example, let us take a look at copper–zinc alloys.  
Table 2.1 shows quite different characteristics of the two elements; in 
particular, they crystallize in two different crystalline systems 
(centered cubic faces for copper and hexagonal compact for zinc). 
Although the 15% rule is respected (there is a difference of 4%), these 
two metals are not miscible in all proportions, which shows that this 
rule is not sufficient, alone, to ensure total solubility. In addition, we 
can see that zinc is more soluble in copper than vice versa. This is 
attributable to the fact that the valences of the two metals are  
different – the valence of zinc is 2, whereas that of copper is 1. 
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In the case of ionic compounds, the two families of nodes of the 
lattice each form a sublattice. Generally, when the substitution is 
made, the nature of the substituent substance is respected. Thus, 
cations can only be substituted by cations and anions can only be 
substituted by anions. For example, sodium chloride and potassium 
chloride are miscible in all proportions. The sodium and potassium 
ions are interchangeable in those substances. 

Mineral solids such as the feldspars mentioned above are often the 
site of such substitutions.  

The solubility limit is reach even more quickly when the 
substituted ions are different from the substituting ions. Solubility is 
favored by crystallization in an identical crystalline system in the two 
pure solids, the same charge on the ions and similar ionic radii. 

If the substituting ion has a different charge from that of the 
substituted ion, the conservation of electrical neutrality causes 
modifications, which will be studied in Chapter 3. 

In numerous cases, known as reciprocal solutions, the solid 
solution can be considered to be the product of two pairs of pure 
compounds, which are called the poles. Thus, the solution between 
iron sesquioxide (Fe3O4) and nickel chromate (NiCr2O4) yields spinel 
(Fe2+, Ni2+)1-x(Cr3+, Fe3+)x. However, this solution could also give rise 
to the following pure compounds: iron chromate (FeCr2O4) and nickel 
ferrite (NiFeO4). We say that the possible poles of spinel are either the 
iron sesquioxide–nickel chromate pair or the iron chromate–nickel 
ferrite pair. 

The density of the binary substitutional solution of A and B is 
calculated by the relation: 

( )A A B B

aN
n x M x M

V
ρ

+
=  [2.2] 

In this relation, n is the number of atoms per mesh, V is the volume 
of the mesh, Na is Avogadro’s constant, xA and xB are the molar 
fractions of each of the components, whose, respectively, molar 
masses are MA and MB. 
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When there are a higher number of components, relation [2.2] can 
be generalized, and the density is: 

aN

i i
i

n x M

V
ρ =  [2.3] 

2.1.2. Insertion solid solution 

The atom (or molecule) of the component of the smallest volume is 
placed in the interstices of the atoms (or molecules) of the other 
component. The coordination indices of the two species are no longer 
necessarily equal. 

In the context of compact lattices: cubic centered faces (ccf), cubic 
centered (cc) and hexagonal compact (hc), there are two types of 
insertion sites: octahedral and tetrahedral sites. 

 

Figure 2.1. Insertion sites in a compact lattice: a) octahedral  
site and b) tetrahedral site 

Octahedral sites (Figure 2.1(a)) are characterized by six equidistant 
near neighbors which form an octahedron, while tetrahedral sites 
(Figure 2.1(b)) contain only four equidistant near neighbors, forming a 
tetrahedron. In principle, it is the site whose dimension is nearest to 
the radius of the inserted atom which is occupied. Maximum solubility 
is obtained when all the interstitial sites of the same nature are 
occupied. 

The inserted atoms are usually those which have the smallest 
atomic radius – i.e. essentially atoms of non-metals at the top of the 
periodic classification. Table 2.2 shows the atomic radii of these 
atoms which are inserted most often. 
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Atom H B C N O 
Atomic radius (nm) 4.6 9.7 7.7 7.1 6.0 

Table 2.2. Atomic radii of the atoms that are most  
frequently inserted into a solid solution 

Let us look at the position, saturation and dimension of the 
insertion sites of compact stacks. 

2.1.2.1. Octahedral sites of the cubic centered faces lattice 

In the cubic centered faces system, we find (Figure 2.2(a)) an 
octahedral interstitial site at the center of the mesh of coordinates (1/2, 
1/2, 1/2) and a site at the middle of each edge (1/2, 0.0). Thus, we find 
four sites per mesh. As the system contains four atoms per mesh, we 
have one interstitial site per atom. Thus, saturation is attained for a 
molar fraction of solute: xB = 0.5. 

In Figure 2.2(b), we easily calculate the relation between the 
different values: the mesh parameter a, the atomic radius of the solvent 
rA and the radius of the insertion site – i.e. the radius ri of the largest 
sphere which it is possible to insert: 

A
2
4

ar =  [2.4] 

 

Figure 2.2. Octahedral sites in a cubic lattice with centered faces 

0.47ir a=  [2.5] 

( )A A2 1 0.414ir r r= − =  [2.6] 

a 
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If we look at the example of the insertion into austenite (γ iron), the 
mesh parameter there is a = 35.4 nm. If we compare the dimension of 
the corresponding octahedral site (ri = 5.2 nm), calculated using 
relation [2.5], with the atomic radii of the atoms that are most 
frequently inserted (Table 2.2), we see that only the hydrogen atom 
has an atomic radius that is smaller than the insertion radius, and 
therefore in order for other atoms to be inserted into an octahedral site, 
the lattice would need to be expanded. 

2.1.2.2. Tetrahedral sites of the cubic centered faces lattice 

In the cubic centered faces system, we find (Figure 2.3(a)) a 
tetrahedral interstitial site a quarter of the way along the major 
diagonals, with coordinates (1/4, 1/4, 1/4). Thus, we have eight sites 
per mesh. As the system contains four atoms per mesh, we have one 
interstitial site for two atoms. Hence, saturation is attained for a molar 
fraction of solute: xB = 0.33. 

In Figure 2.2(b), we easily calculate the relation between the 
different values: the mesh parameter a, the atomic radius of the solvent 
rA and the radius of the insertion site – i.e. the radius ri of the largest 
sphere which it is possible to insert. 

We obtain: 

0.079ir a=  [2.7] 

A A
3 1 0.225
2ir r r= − =  [2.8] 

 
Figure 2.3. Tetrahedral sites in a cubic system with centered faces 
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Looking again at the example of insertion into austenite (γ iron), 
the mesh parameter is a = 35.4 nm. If we compare the dimension of 
the corresponding tetrahedral site (ri = 2.8 nm), calculated using 
relation [2.7], with the atomic radii of the atoms most frequently 
inserted (Table 2.2), we can see that the insertion of any one of these 
atoms would require the expansion of the lattice. 

2.1.2.3. Octahedral sites in the cubic centered lattice 

In the cubic centered system, we find (Figure 2.4(a)) an octahedral 
interstitial site at the center of each face, with coordinates (1/2, 1/2, 0). 
Therefore, we count six sites per mesh. As the system contains two 
atoms per mesh, therefore, we have three interstitial sites per atom. 
Hence, saturation is attained for a molar fraction of solute: xB = 0.75. 

Using the values defined in Figure 2.4(b), we can easily calculate 
the characteristic values. 

0.274hr a=  [2.9] 

A0.632hr r=  [2.10] 

0.067i kr r a= =  [2.11] 

A A
2 1 0.154
3i kr r r r= = − =  [2.12] 

 

Figure 2.4. Octahedral sites in a centered cubic system 

kr2  

a2  

ar 34 A =  

hr2  

a) b) 
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If we take the example of insertion into ferrite (α iron), the mesh 
parameter is a = 28.6 nm. If we compare the radius of the 
corresponding octahedral site (ri = 1.9 nm), calculated using relation 
[2.11], with the atomic radii of the atoms which are most commonly 
inserted (see Table 2.2), we see that all the atoms in the table can only 
be inserted if the lattice is expanded. 

2.1.2.4. Tetrahedral sites in the cubic centered lattice 

In the cubic centered system, we find (Figure 2.5(a)) a tetrahedral 
interstitial site at the quarter-points of the edges and halfway along the 
sides, with coordinates (1/2, 1/4, 0). Therefore, we have 12 sites per 
mesh. As the system contains two atoms per mesh, therefore, we have 
six interstitial sites per atom. Thus, saturation is attained for a molar 
fraction of solute: xB = 6/7 = 0.85. 

With the values defined in Figure 2.5(b), we can easily calculate 
the characteristic values. 

0.126ir a=  [2.13] 

A0.291ir r=  [2.14] 

 

Figure 2.5. Tetrahedral sites in a centered cubic system 

If we look again at the example of insertion into ferrite (α iron), 
the mesh parameter is a = 28.6 nm. Comparing the radius of the 
corresponding octahedral site (ri = 3.6 nm), calculated on the basis of 

ba b) 
a) 
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relation [2.13], with the atomic radii of the atoms that are most 
frequently inserted (Table 2.2), we can see that all of the atoms in the 
table can only be inserted if the lattice is expanded. 

2.1.2.5. Octahedral sites in the hexagonal compact lattice 

In the hexagonal compact system, we find (Figure 2.6), as for the 
cubic centered face lattice, four octahedral interstitial sites per  
mesh, and hence one interstitial site per atom. Indeed, the two 
structures hexagonal compact (HC) and CFC are both compact stacks 
of compact planes. The only difference between the two is the relative 
position of the third plane. 

Thus, saturation is attained for a molar fraction of solute: xB = 0.5. 

 

 

 

 

 

Figure 2.6. Octahedral sites in a hexagonal compact structure 

We can use relations [2.4]–[2.6] to determine the insertion radius. 
The insertion conditions are, therefore, the same as in cubic centered 
face lattices. 

2.1.2.6. Tetrahedral sites in the hexagonal compact lattice 

Figure 2.7 shows the position of a tetrahedral site in a hexagonal 
compact lattice. As in the previous case, the conditions of insertion 
into the hexagonal compact lattice will be the same as in  
the tetrahedral sites of the cubic centered face lattice – i.e. one 
interstitial site for two atoms, which means saturation xB = 0.33. 
Relations [2.7] and [2.8] remain valid for the ratios between the 
characteristic values. 
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Figure 2.7. Tetrahedral sites in a hexagonal compact lattice 

2.1.2.7. Condition of insertion in the different compact lattices 

By comparing relations [2.6] and [2.8] for the cubic centered face 
system and the hexagonal compact system, we can see that the 
octahedral site is larger than the tetrahedral site. Therefore, insertion 
in such lattices will tend to take place more on octahedral sites. The 
insertion radius will, therefore, be A0.414ir r= . 

By comparing relations [2.12] and [2.14], for the cubic centered 
face system, we see that the octahedral site is smaller than the 
tetrahedral site. Hence, insertion in such lattices will tend to take place 
on tetrahedral sites. The insertion radius will, therefore, be 

A0.291ir r= . 

2.1.2.8. Density of an insertion solution 

We can easily calculate that, in a binary insertion solution, the 
density is given as a function of the composition xA of the solution by 
the relation: 

( )A A B B

a A

(A)
N

n x M x n
Vx

ρ
+

=  [2.15] 

For a solution with more than two components, we also calculate 
the density: 

a
A

(A)
N

i i
i

j
j

n x M

V x
ρ

≠

=  [2.16] 
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We have only looked at the case where the lattice was made up of 
all identical sites – i.e. sites which had the same coordination index. 
There is another kind of solid solution in which the coordination 
indices of the two components are not necessarily equal – that in 
which the atoms of each component are placed at the nodes of a 
distinct sublattice, so the lattice is formed of two families of non-
identical sites. This type of solution often gives us definite 
compounds, which frequently exhibit major deviations from 
stoichiometry (see Chapter 3). 

2.2. Order in solid solutions 

In the case of a substitutional solid solution, the atoms of the solute 
B can occupy a variety of positions in relation to the atoms of the 
solvent A. 

The atoms of solvent and the atoms of solute may be distributed 
utterly randomly among the various sites of the lattice, in which case 
the solution is said to be “disordered”. Such is the case when the two 
elementary components are perfectly equivalent (with the same 
crystalline structure and similar atomic dimensions). Figure 2.8(a) 
offers an illustration of such an entirely disordered solution. The gray 
circles and the black circles, which each represent one type of 
component, are distributed completely at random. 

In other cases, there is a more or less marked tendency toward the 
acquisition of an order. This might be an ordered position of the 
solute in relation to the solvent, as in the example of an atom of 
solvent which tends to be surrounded by atoms of solute. We then 
have a “short-distance order”. It might also be a systematic position 
of the solute atoms in relation to the solvent atoms, with a spatial 
periodicity to that arrangement. In this case, we have a long-distance 
order, as represented in Figure 2.8(b), which shows a periodic 
distribution of the gray circles and a periodic distribution of the 
black circles. We then say that we have an ordered solution. It is 
also possible to find collections of atoms of the same type, leading to 
clusters– i.e. areas of space which appear to be single-component 
phases. Figure 2.8(c) gives a diagrammatic representation of this 
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kind of arrangement. There are zones which are completely filled 
with gray circles, and others which are entirely filled with black 
circles. This ordering often leads to demixing of the solid solution 
into two distinct phases. 

 

Figure 2.8. Diagrammatic representation: a) completely  
disordered solution; b) ordered solution and; c) solution  

with single-component clusters 

2.2.1.  Short-distance order 

We find the concept of local composition in solid solutions, just as 
it is found for liquid solutions. Because of the existence of an 
exchange energy, we can imagine that if a molecule of A and a 
molecule of B experience a greater force of attraction than two 
molecules of A or two molecules of B, a molecule of A will tend to be 
surrounded by molecules of B and therefore the composition of the 
immediate environment of the molecule of A will not be the same as 
the overall composition of the solution: the immediate vicinity is 
richer in molecules of B. The opposite effect is obtained if the 
molecules A and B attract each other less strongly than do two 
molecules of A or two molecules of B. This is the concept of local 
composition, which was first put forward by Wilson. 

To describe this concept of local composition, we use a 
nomenclature which enables us to clearly distinguish, every time, 
between the central molecule and its nearest surrounding molecules. 

We use the notation Nij to speak of the number of molecules of i 
immediately neighboring a molecule of j. The probability of finding a 
molecule of i immediately neighboring a molecule of j is given by the 

a b cb) a) c) 
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following relation (where N denotes the number of components in the 
solution): 

1

ij
ij N

ij
i

N
P

N
=

=  [2.17] 

This number also represents the local molar fraction of the atoms 
of i around an atom of j. 

Clearly, we have: 

1
1

N

ij
i

P
=

=   [2.18] 

Thus, for a binary solution, we distinguish: 

– AAP : local molar fraction of the molecules of A around a 
molecule of A; 

– BAP : local molar fraction of the molecules of B around a molecule 
of A; 

– BBP : local molar fraction of the molecules of B around a molecule 
of B; 

– ABP : local molar fraction of the molecules of A around a 
molecule of B. 

with the equalities: 

AA BA 1P P+ =  [2.19a] 

BB AB 1P P+ =  [2.19b] 

For a solution containing molecules i and j, Warren and Cowley 
defined an order parameter ijη as: 

number of molecules of  around a molecule of 1
average number of molecules of  around a molecule of  ij

i j
i j

η = −
 
[2.20] 
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Thus, in the case of a binary mixture, we would have: 

AB
AB

A

1 P
x

η = −   [2.21] 

with the condition: AB0 1η< ≤  [2.22] 

and symmetrically: 

BA
BA

B

1 P
x

η = −  [2.23] 

and the condition BA0 1η< ≤  [2.24] 

Distinctly, we can deduce from this that: 

( )BA B BA1P x η= −   [2.25a] 

( )AB A AB1P x η= −  [2.25b] 

NOTE.– If the molecules are randomly distributed, then AB AP x= and 

BA 1.η =  

The two order parameters ABη  and BAη  are interlinked – indeed, 
the number of pairs A-B can be expressed in two different ways, such 
that: 

BA A AB BN N N N=   [2.26] 

Thus: 

A BA A B AB B' 'z P N z P N=  [2.27] 

By introducing the values of BAP and ABP  from equations [2.25a] 
and [2.25b], we obtain: 

A B A BA B A B AB' (1 ) ' (1 )z x N z x Nη η− = −   [2.28] 
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Noting that we have the equality: 

A B
B A A B

A B

N N
x N x N

N N
= =

+
  [2.29] 

we find: 

A BA B AB B B' ' ' 'z z z zη η− = −  [2.30] 

Hence, the two parameters of opposite orders are not independent. 

In a substitutional solid solution with a single type of site, the 
coordination indices of the two types of molecules are the same in the 
solution ( A B' ' )z z= , so the two Warren and Cowley order parameters 
are also equal ( AB BA ).η η=  

In view of the relations [2.25a], if AB 0η = , then the distribution of 
molecules A and B is random. 

If AB 0η > , this means that AB AP x< . Hence, on average, there are 
fewer mixed pairs than there are in the disordered solution, which 
leads to a tendency toward separation of the entities A and B 
(demixing). However, if AB 0η < , this would mean that there is a 
certain tendency toward the association of the molecules of A with the 
molecules of B, so solution tends to become ordered. 

As the temperature increases, the short-distance order decreases, 
because of two mutually complementary phenomena: the exchange 
energies decrease and the thermal agitation increases. The solution 
then tends toward random distribution. 

When we decrease the temperature, the exchange energies increase 
and, below a certain critical temperature Tc, the interactions begin to 
be felt at a long distance and we obtain a long-distance order (see 
section 2.2.2). 

This notion of short-distance order comes into play in certain 
solution models, and is encountered in the quasi-chemical model (see 
section 2.3.4). 
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2.2.2. Long-distance order 

The concept of long-distance order introduced previously is, 
practically, encountered only for metal alloys. For this reason, we 
limit our remarks here to solutions of atoms. 

When we decrease the temperature of a solid solution of metal 
atoms, we see the emergence of distinct families of sites which form 
sublattices. Thus, each sublattice is occupied by a specific type of 
atom. When each sublattice is occupied by a single type of atom, the 
solution is completely ordered: this is “long-distance order”. Ordering 
is generally accompanied by a drop in symmetry. 

2.2.2.1. Order and disorder in an alloy 

Without going into crystallographic detail about the different types 
of ordered solutions, let us give a few simple examples. 

Figure 2.9 shows the ordering of copper and gold in the equi-atomic 
alloy Au-Cu. In the disordered phase, all the sites of a cubic centered 
faced crystal are randomly occupied by atoms of copper or gold. The 
probability that a given site will be occupied by an atom of copper is 
½. The same is true of the probability of a site being occupied by an 
atom of gold. This is represented by the presence, at each site, of a 
semi-shaded circle. 

 

Figure 2.9. Order in the alloy CuAu 

For the ordered phase, if the copper atoms occupy the vertices of 
the previous cube (black circles), then the gold atoms are situated on 
the faces of the cubes (white circles). Thus, the crystal exhibits two 
cubic sublattices. 

Disordered Ordered

Au 50% Cu 50% 

Au  

Cu  
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In our example, all the crystalline sites initially play the same role 
in the disordered phase: it is only when the phase is ordered that we 
can distinguish two types of sites. The notion of distinct sites thus 
occurs in the ordered phase of the alloy. 

Let us now examine the example of alloys with the composition 
Fe3Al (Figure 2.10). 

 

Figure 2.10. Order in the alloy Fe3 Al 

The disordered phase exhibits two types of sites: one which is 
always occupied by iron atoms and second which is randomly 
occupied by either an iron atom or an aluminum atom, with a 50% 
probability of finding one element or the other. Thus, the iron atoms 
are not all placed equally in the disordered crystal. The two tiers of 
iron atoms occupy a simple cubic crystal in all conditions. The 
remaining iron atoms, along with the aluminum atoms, randomly 
occupy the vertices of a simple cubic crystal. 

In the ordered solution, the iron sites of the first species always 
occupy their specific sites, while atoms are ordered around the other 
sites, one out of every two sites is occupied by an iron atom and one 
out of two sites is occupied by an aluminum atom. One-third of  
the iron atoms and the aluminum atoms form a cubic crystal with 
centered faces such as NaCl. Thus, in this example, not all atoms are 
affected by the order-disorder arrangement. In the completely 
disordered solution, there are two types of sites: those which are 
always occupied by iron and those which are randomly occupied by 
either iron or aluminum. In the ordered solution, again we have two 
types of sites: those occupied by iron and those occupied by 
aluminum. In fact, because of their origin, we can clearly see that the 
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sites occupied by iron in the ordered phase must be distinguished and 
thus there must be three types of sites in the ordered phase. 

It is clear that, in order for such exchanges of atoms between sites 
to be possible, it is necessary for these atoms to have relatively similar 
dimensions. Any difference in volume necessarily leads to the creation 
of stresses which the solid must be able to withstand. 

On an experimental level, order in a solid solution can be detected 
by X-ray diffraction (see section 2.4.5).  

2.2.2.2. Degree of long-distance order 

We have perfectly defined the two states of order and disorder. 
However, we can imagine intermediary states – e.g. a state where a 
certain number of atoms of A are on sites that are normally attributed 
to A in the perfectly ordered solution. This number would obviously 
be between the average and the total number of atoms of A. In order 
to characterize such an intermediary state, Bragg and Williams 
defined a degree of order or long-distance order parameter s, such 
that this degree is equal to 1 if the solution is perfectly ordered, and 0 
in the case of a completely random distribution solution. 

With this in mind, we start with the completely ordered state and 
use the notation AA to denote an atom of A placed on a site attributed 
to A and BB for an atom of B placed on a site attributed to B. If the 
order is not complete, we would have four types of atoms: 

– atoms AA: atoms of A placed on sites attributed to A in the 
ordered solution; their number is A(A)N ; 

– atoms BB: atoms of B placed on sites attributed to B in the 
ordered solution; their number is B(B)N ; 

– atoms AB: atoms of A placed on sites attributed to B in the 
ordered solution; their number is A(B)N ; 

– BA: atoms of B placed on sites attributed to A in the ordered 
solution; their number is B(A)N . 
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Let us use the symbol x to represent the molar fraction of the 
element A in the solid solution; obviously, the molar fraction of the 
element B will be 1 – x. 

We will use y to denote the fraction of sites normally occupied by 
the atom A in the perfectly ordered alloy. The fraction of sites 
occupied by B will be 1 – y. 

NOTE.– In the definition of the fraction of sites, in the denominator, 
we see the sum of all the sites on the lattice. It is clear that this sum 
only takes account of the sites which are “active” in the order/disorder 
operation. For example, in the case of the solution Fe3Al we looked at 
previously, only the sites shown in gray in Figure 2.10 in the 
disordered alloy will be counted. The other sites in the iron, which are 
inactive, are not taken into account. 

We suppose that the lattice contains no vacancies, meaning that 
each and every node is occupied either by an atom A or by an atom B. 
This means that the total number of sites ( ) ( )A BN N+  is equal to the 

total number of atoms A BN N+ , so: 

( ) ( )A B A BN N N N N= + = +   [2.31] 

In given temperature conditions, the solid solution will contain: 

– AAN atoms of A placed on sites of A; 

– BAN atoms of A placed on sites of B; 

– ABN atoms of B placed on sites of A; 

– BBN atoms of B placed on sites of B. 

The molar fraction of A and the fraction of sites of type A, are, 
therefore: 

A

A B

N
x

N N
=

+
 [2.32a] 
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( )

( ) ( )

A

A B

N
y

N N
=

+
  [2.32b] 

The probabilities of occupation of the sites of A and B by the two 
types of atoms will, therefore, be given by: 

( )

A

A

A
A

A

N
P

N
=  [2.33a] 

( )

B

B

A
A

B

N
P

N
=  [2.33b] 

( )

A

A

B
B

A

N
P

N
=  [2.33c] 

( )

B

B

B
B

B

N
P

N
=   [2.33d] 

All these probabilities are linked to each other by simple relations: 

A AA B 1P P+ =  [2.34a] 

B BA B 1P P+ =   [2.34b] 

We can also write, on the basis of the definitions of the molar 
fractions and the fractions of sites: 

( )
A BA A1x yP y P= + −   [2.35] 

( )
B AB B1 1x y P yP− = − +   [2.36] 

The degree of order at long distance, s, or the Bragg and Williams 
degree of order1, is defined by the relation: 

                         
1 Other authors define the degree of order differently. For example, Borelius defines a 
degree of order which corresponds to 1-s2. 
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A B B AA A B Bs P P P P= − = −   [2.37] 

x, y AAN  
BAN  

ABN  
BBN  

x, y ( )(A)N x ys+  ( )(B)N x ys−  (A) 1N x ys− −  (B) 1N x ys− +  

x = y ( )(A) 1N x s+  ( )(B) 1N x s−  ( )(A) 1 1N x s− −  ( )(B) 1 1N x s− +  

y = ½ 2 2
N s

x +  
2 2
N s

x −  1
2 2
N s

x− −  1
2 2
N s

x− +  

x = y = 
1/2 ( )1

4
N

s+  ( )1
4
N

s−  ( )1
4
N

s−  ( )1
4
N

s+  

Table 2.3. Populations of the different sites of an alloy as a  
function of the degree of order (for any given values  

of x and y, for x = y, for y = ½ and for x = y = ½) 

Thus, by combining relations [2.32]–[2.35], the populations of the 
different sites are calculated as a function of this parameter s. The 
expressions obtained are given in the first row of Table 2.3. 

We will now examine the values of the degree of order in the 
extreme cases. 

If the alloy is completely disordered, then the probability of finding 
an atom A on a site of A is given by the molar fraction of the atoms of 
A – i.e. x – and therefore the order parameter is null: s = 0. 

If the alloy is ordered as fully as possible, two scenarios can be 
envisaged: 

1) If the alloy’s composition is stoichiometric – i.e. if the atomic 
fraction of A is identical to the fraction of sites A (x = y) – then  
the degree of order reaches its maximum value (s = 1). The quantities 
of the different combinations are shown in the second row of  
Table 2.3. 

2) If the alloy’s composition is not stoichiometric (x  y), then even 
in an ordered alloy, certain atoms are not on their usual sites. 
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If x > y, all the sites of A are occupied by atoms of A, but as they 
are more numerous, the remaining atoms of A will be placed on sites 
usually reserved for B, and thus we have: 

( )AA AN N=  [2.38a] 

and 

 
BA 0N ≠   [2.38b] 

In this case, the degree of order will reach a maximum value  
given by: 

max
1
1

xs
y

−=
−

  [2.39] 

We can see that this maximum value is less than 1. 

If x < y, all the sites of B are occupied by atoms of B, but as there 
are more of them, the other atoms of B are placed on the sites for A, 
and thus we have: 

AA
xN
y

=   [2.40] 

In this case, the degree of order will reach a maximum value  
given by: 

max
xs
y

=   [2.41] 

We can see that this maximum value is still less than 1. 

Hence, the value of the degree of order will, in all cases, be 
between zero, which corresponds to maximum disorder, and a 
maximum value, which can reach up to 1 in the case of stoichiometric 
alloys, where the order is perfect. 
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2.3. Thermodynamic models of solid solutions 

The models used to describe the thermodynamic properties of solid 
solutions are the same as for liquid solutions. The hypotheses upon 
which these models are founded can be easily applied – all the more 
because the hypothesis of the pseudo-lattice used for liquid solutions 
now becomes perfectly appropriate, and is no longer a hypothesis, but 
simply corresponds to the crystalline lattice. 

In these models, we are merely interested in obtaining the mixing 
values in order to find the Gibbs energy of mixing, and therefore the 
activities. Thus, we are not concerned with the models of solids used 
for the pure components. Thus, the models giving the mixing values 
are, therefore, independent of the solid-state models chosen, which we 
saw in Chapter 1. 

Essentially, we are looking at the solubility of metals in other 
metals – i.e. monophase metal alloys. The most commonly used 
solution models are the models with similar atomic volumes, which 
give us the perfect solution, the infinitely-dilute solution and the 
strictly-regular solution. Thus, we will then look at Guggenheim’s 
quasi-chemical model, which includes the notion of short-distance 
order. 

2.3.1. Determination of the Gibbs energy of mixing 

Let us consider a solid binary solution: a mixture of the two 
components A and B, which contains nA moles of component A and 
nB moles of component B – i.e. NA molecules of A and NB molecules 
of B. This solution satisfies the following five conditions: 

1) The crystalline lattice of the solid solution is very similar to the 
lattices of each of the pure solids A and B. In particular, these three 
solids exhibit the same coordination index z (say, 12 for the hexagonal 
lattice or the cubic, centered face lattice). 

2) The molar volumes 0
Av  and 0

Bv  of the two pure solids are 
sufficiently similar. Certain authors have evaluated this condition to 
be acceptable if the ratio between the radii of the two molecules A and 
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B (which are supposed to be spherical) is no greater than 1.25. This 
property is very commonly found with monophase metal alloys. 

3) The mixing volume is null, which means that the volume of the 
solution is given by the additive law: 

0 0
A A B BV n v n v= +  [2.42] 

4) The potential energy of interaction EI can be considered to be 
the sum of the contributions of the most closely neighboring pairs of 
molecules. 

5) ( )A Aε  and ( )B Bε , respectively, denote the energy necessary to 

extract an atom of A or B from the solution and convert it into a 
perfect gaseous phase where we consider that the potential energy of 
each atom is null (lattice energies). Thus, the potential energy of an 
atom A measured with reference to the monatomic perfect gas A is  
- ( )A Aε . The minus sign simply indicates that in the chosen temperature 

conditions, the solid state is more stable than the gas. Similarly, we 
would have the potential energy - ( )B Bε  for the atom B in relation to the 

pure perfect gas B. 

If we consider a pair of close neighbors A-A, each atom A 
contributes for a part of ( )A A / zε  to the energy of the pair A-A. 

The average energy of interaction between two molecules of A is, 
therefore, ( )A A2 / zε− , and similarly for two molecules of Bit is 

( )B B2 / .zε−  Thus, we can state that the energies of pairs of molecules 

A-A and pairs of molecules B-B are, respectively: 

( )A A
AA

2

z

ε
ε = −  [2.43a] 

( )B B
BB

2

z

ε
ε = −   [2.43b] 
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NOTE.– As we are essentially dealing with the mixing values, the pure 
solid model used has no influence on the results. 

Let us define an energy, called the exchange energy ABw , such that, 
if we start with two pure solids A and B, the exchange of a molecule 
of A and a molecule of B between the two solids increases the 
system’s energy by AB2w . In the course of this process, we have 
destroyed z pairs A-A and z pairs B-B, and created 2z pairs A-B. 

Thus, the average potential energy of the pairs A-B will be: 

( ) ( )( ) ( ) ( )( )AB AB ABA A B B A A B B2 2 2 / 2 /w z w zε ε ε ε ε= − − + = − − +  [2.44] 

In view of equations [2.43a], [2.43b] and [2.44], the exchange 
energy is, therefore: 

AA BB
AB AB 2

w z
ε εε += −  [2.45] 

The value wAB will be independent of the temperature, provided the 
type of environment of a molecule, and therefore z, is not altered. 

In addition, the different energies of interaction between atoms do 
not depend on the interatomic distances. 

NOTE.– The energy of interaction between a molecule of A and a 
molecule of B in the solution can be written as: 

AB AB(AB) BB(AB)2 2 /z zε ε ε= − = −  

so that, in light of relation [2.45], the exchange energy can be written 
as follows: 

( ) ( ) ( )AB A A B B AB AB2w ε ε ε= + −  [2.46] 

We can establish a general form for the integral of configuration in 
the case of pairwise interactions. 
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A configuration is defined by the number of pairs A-A, pairs B-B 
and pairs A-B in the solid solution. For each configuration, there are 
several corresponding states, with each being defined by the 
distribution of the pairs in the spatial configuration. 

The problem of modeling the solution boils down to being able to 
express the configurational partition function of the mixture, which 
involves accepting that the normal modes of vibration of the lattice are 
independent of the configuration. Thus, by definition, the 
configurational partition function is written as: 

B

exp
k

iI
c

i

E
Z

T
=  [2.47] 

For each configuration, the solution is made up of a certain number 
of pairs A-A, pairs B-B and mixed pairs A-B, arranged in a very 
specific way in the space. 

iI
E  is the configurational energy of the state 

i. The above sum is extended to all configurations i for a given 
composition. 

For a composition of AN  atoms of A and BN  atoms of B 
distributed randomly, the number of states is equal to the number of 
possible ways in which to distribute the AN  atoms of A and the BN  
atoms of B on the A B( )N N N= +  sites of the lattice – i.e.: 

( )A B

A B

!
! !

N N
g

N N
+

=   [2.48] 

Let us consider a particular configuration of the solution in which 
the number of mixed pairs A-B is .zX  

Thus, the number of neighbors of a molecule of A which are not 
molecules of B is A( )z N X− , so the number of pairs A-A is 

A( ) / 2z N X− , and by the same token, the number of pairs B-B is 

B( ) / 2z N X− . 
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The total number of pairs pN  of the three species is: 

( )AA BB AB A B( )
2 2p
z zN N N N N N= + + = +  [2.49] 

For this particular configuration, characterized by the value of X, 
the potential energy of the solution, due to the interactions, will be: 

( ) ( )

( ) ( )

A A B BA B

ABA A B B

2 2( ) ( )
2 2

( )
     

iI
z N X z N X

E
z z

zX
z

ε ε

ε ε ε

− −= − + −

− − +
+

 [2.50] 

Thus: 

A A B B ABiI
E N N Xwε ε= − − +  [2.51] 

This relation can also be written differently, if we take account of 
expressions [2.43] and [2.48], as follows: 

A AA B BB AA BB
AB2 2 2iI

zN zN
E Xz

ε ε ε εε += + + −  [2.52] 

The mixing term due to this configuration is, therefore, according 
to relation [2.45]: 

AA BB
AB AB2

mix
cE Xz Xw

ε εε += − =   [2.53] 

We note in passing that, if xA and xB are, respectively, the molar 
fractions of the components A and B, the internal energy for a mole of 
solution (NA + NB = Na), which is also its enthalpy because the mixing 
volume is null, is: 

A AA B BB AA BB
a ABN

2 2 2m m
zx zx

U H Xz
ε ε ε εε += = + + −  [2.54] 
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By substituting the expression of [2.53] back into equation [2.47], 
the mixing partition function becomes: 

AB

B

exp
k

mix
c i

i

Xw
Z g

T
= −   [2.55] 

In order to calculate the sum in expression [2.55], we define the 
value Y  by the relation: 

AB AB

B B

exp exp
k k

Yw Xw
g

T T
− = −   [2.56] 

This value is the fictitious number of mixed pairs which would 
yield the correct value of the partition function if the molecules were 
distributed at random. Thus, if we take account of relation [2.48], this 
mixing partition function mix

cZ  is: 

( )A B AB

A B B

!
exp

! ! k
mix
c

N N Yw
Z

N N T
+

= −   [2.57] 

The mixing partition function is the contribution of mixing to the 
overall partition function of the system.  

We can now calculate the Helmholtz energy of mixing and the 
Gibbs energy of mixing, which are equal because the mixing volume 
is null, by: 

( )

( )

A B
B c B

A B

A BAA BB
AB B

A B

!
k ln k  ln

! !
!

k  ln
2 ! !

mix mix mix
AB

N N
G F T Z Yw T

N N

N N
Yz T

N N
ε εε

+
= = − = −

++= − −
  [2.58] 

If we use Stirling’s approximation, this Gibbs energy of mixing 
takes the form: 
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( ) ( )
A B

B A B
A B A B

k  ln ln

mix mix
ABG F Yw

N N
T N N

N N N N

= =

= +
+ +

  [2.59] 

Thus, we need to calculate the value of Y. In order to do so, we let 
X  be the value of X at equilibrium at the given temperature. This 

value is that which gives a maximum of the partition function, and this 
value is identical to the average value which, according to the average 
theorem, is such that: 

AB AB

B B

exp exp
k k
w w

X X
T T

− = −  [2.60] 

By deriving equation [2.56] in relation to temperature, we can 
verify the expression: 

[ ]
( )

/
1 /
Y TYX Y T

T T
∂∂= − =

∂ ∂
  [2.61] 

Thus, ultimately, the calculation of the partition function for our 
model of the solution consists of determining first X  and then Y by 
using expression [2.61]. Finally, by substituting the value of Y thus 
obtained in expression [2.59], we obtain the value of the Gibbs energy 
of mixing. 

2.3.2. The microscopic model of the perfect solution 

Let us look again at the model given at the section 2.3.1, and 
determine the Gibbs energy of mixing by adding a sixth hypothesis to 
our model. Let us write that the exchange energy is null: 

AA BB
AB 0

2
ε εε +− =  [2.62] 
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Thus, by feeding this value back into relation [2.54], we see that 
the total enthalpy is equal to the sum of the enthalpies of the two pure 
solids, and therefore the enthalpy of mixing is null. This means that 
the mixing of our two solutions takes place without modification of 
the energy level – i.e. without a thermal effect. 

With our new hypothesis, relation [2.57] becomes: 

( )A B
c

A B

!
! !

mix N N
Z

N N
+

=   [2.63] 

The Gibbs energy of mixing is identical to the enthalpy (zero 
mixing volume), and we calculate ( ABw 0= ): 

B c

A B
A B

A B A B

k ln

k ln ln

mix mix

mix
B

F T Z

N N
G T N N

N N N N

= − ≅

≅ +
+ +

  [2.64] 

In order to find the molar value, we write NA + NB = Na and  
nA + nB = 1, so that xA = nA and xB = nB. Thus, the molar Gibbs energy 
of mixing is: 

( )A A B BR ln lnmix mix
m mG F T x x x x≅ = +  [2.65] 

By derivation, we are able to calculate the partial Gibbs molar 
energies of mixing, and we note that the activity coefficients in 
reference (I) are equal to 1. 

Hence, we have a model of the perfect solution, and note that this 
solution is not, as we might imagine, a solution in which the 
interactions between molecules are null, as is the case for a perfect 
gas, but rather is a solution where the energy of interaction εAB 
between two molecules of A and B is the arithmetic mean of the 
energies of the couples A-A and B-B because, from relation [2.62], we 
obtain: 
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AA BB
AB 2

ε εε +=   [2.66] 

Of course, as is often the case with modeling, we have established 
one model of a perfect solution, but there is nothing to say that this is 
the only possible model. 

2.3.3. Microscopic model of strictly-regular solutions 

We will now go back to our model solution from section 2.3.1, 
with its six underlying hypotheses, but omit hypothesis 6, which is 
expressed by equation [2.62]. The exchange energy wAB is neither 
null, nor it is sufficient to counteract the thermal agitation, therefore 
the random distribution is preserved. 

NOTE.– As we continue to use the hypothesis of a random distribution 
of the molecules of A and B, this hypothesis appears to conflict with 
the existence of an exchange energy that means the minimum of the 
Helmholtz energy cannot correspond exactly to the random 
distribution. In other words, we circumvent the contradiction by 
accepting that the short-distance order, which would be introduced by 
the exchange energy, is annihilated by the thermal agitation. That is 
we accept the condition: 

AB Bkw T<<  [2.67] 

Thus, let us write the random distribution of the mixed pairs A-B. 
Around a molecule of A, on average, there are zxB molecules of B, so 
the average number of such pairs will be given by: 

A BB Az X N zx N zx= =   [2.68] 

This enables us to write: 

2 A B
A B A B

A B A B

1 1A B
N N

X N N x x N N
N N N N

= = − −
+ +

 [2.69] 
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Hence: 

( )( )2
AA BBX N X N X= − −   [2.70] 

Thus, X is independent of the temperature. This is known as the 
zero-order approximation or the Bragg and William approximation. 

This temperature-independence of X  means that, in view of 
relation [2.61], we can write: 

X Y=   [2.71] 

and, by using relation [2.68], we deduce: 

A B

A B

N N
X Y

N N
= =

+
  [2.72] 

The partition function of mixing is obtained on the basis of relation 
[2.57]. It will be the product of two terms: one identical to that in 
relation [2.63], relative to perfect solution, and the other constituted 
by the exponential, which will, in fact, be the excess term. According 
to equation [2.41], this term is: 

a A B
AB AB

A B

Nxs n n
G Yw w

n n
= =

+  [2.73] 

and for the corresponding molar value (nA + nB = 1), we obtain: 

a A BNxs
m ABG x x w=     [2.74] 

As Y  is independent of the temperature, the excess entropy is null, 
and we find the following for the molar enthalpy: 

( )2
a A B AB

/
N

xs
mxs

m

G T
H T x x w

T

∂
= − =

∂
  [2.75] 
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By deriving relation [2.73], we obtain the partial molar excess 
Gibbs energies, which give us the activity coefficients in reference (I), 
and we obtain: 

( ) 2
A B

1ln
R

xs
I

A

G B x
T n T

γ ∂= =
∂

  [2.76] 

( ) 2
B A

B

R ln
xs

I G
T Bx

n
γ ∂− = = −

∂
  [2.77] 

with aN
R

ABw
B =   [2.78] 

Thus, the difference between the strictly-regular solution and the 
perfect solution is simply the exchange energy, which is null for the 
latter. 

2.3.4. Microscopic model of the ideal dilute solution 

Let us look again at the above model of the strictly-regular solution 
(section 2.3.3). If the number of molecules in B is smaller than that of 
A – i.e. if the solution is very dilute in terms of B – then relation 
[2.72] gives us: 

BX Y N= ≅   [2.79] 

Relation [2.73] yields: 

a B ABNxsG n w=   [2.80] 

Thus, the activity coefficient of B in convention (I) satisfies the 
equation: 

( )
B a ABR ln N

xs
I

B

GT w
n

γ ∂− = =
∂

 [2.81] 
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From this, we deduce: 

( ) a AB
B

Nexp
R

I w
T

γ = −   [2.82] 

This activity coefficient is independent of the composition of the 
solution; it depends only on the temperature. 

The excess Gibbs energy is, therefore: 

( )
a B AB BN R lnxs IG n w T γ= = −   [2.83] 

In that excess Gibbs energy, there is no contribution from the 
solvent. We can deduce from this that ( )

A 1Iγ = . Therefore, as is the case 
for the solvent, conventions (I) and (II) are identical, so we can deduce: 

( ) ( )
A A 1I IIγ γ= =   [2.84] 

In convention (II), the activity coefficient of the solute B is, 
therefore, also constant, and as is the case for the infinitely-dilute 
solution, the value of this constant is 1. Hence, we can deduce that: 

( )
B 1IIγ =   [2.85] 

Thus, Henry’s constant is given by: 

( ) a AB
B B

Nexp
R

I
H

w
K

T
γ= = −  [2.86] 

Thus, the ideal dilute solution is a specific case of the strictly-
regular solution when one of the components is present only in very 
small proportions. 

We deduce the physical meaning of the chemical potential in 
reference state (II) for the solute: 

0
a ABNs sg wμ∞ = −   [2.87] 
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The chemical potential in reference state (II) is that of reference 
state (I) less the molar exchange energy. 

We have just examined three models of solutions. The most 
commonly found is that of the strictly-regular solution. The other two 
models are two specific cases; that of the perfect solution if we make 

AB 0w = , and that of the ideal dilute solution if we make A Bn n>> . In 
all these models, we have only made the hypothesis of random 
distribution of the molecules, which is a fairly restrictive hypothesis, 
as mentioned with the strictly-regular solution. It is this hypothesis 
which we will examine in much detail in the next section. 

2.3.5. Fowler and Guggenheim’s quasi-chemical model of 
the solution 

Let us look again at our binary solution formed of the two 
components A and B. The exchange energy is given by wAB. This 
time, this energy is sufficient to influence the distribution of the 
atoms, which, therefore, is no longer random. 

The quasi-chemical model of a solution postulates the existence of 
a true thermodynamic equilibrium2 between one pair A-A, one pair  
B-B and two pairs A-B, as follows: 

A-A +B-B = 2A-B [2R.1] 

Such an equilibrium is known as a quasi-chemical equilibrium. 

We will apply the law of mass action to that equilibrium, supposing 
that the species A-A, B-B and A-B constitute a perfect solution. 

( ) ( )
( )

( ) ( )
( )

( ) ( )

2

A B

A B

A B A B

QC

z X

z X z N X z N X
K

z N X z N X

z X z N X z N X z X z N X z N X

+ − + −
=

− −

+ − + − + − + −
 

 [2.88] 

                         
2 A complete demonstration of this model, yielding this result, is given in Chapter 3 
of Volume 2 of this series, on liquid phases (see Bibliography). 
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We calculate the value of the equilibrium constant using statistical 
thermodynamics. Because we assume that there is only one mode of 
vibration of the lattice, which is identical for each of the three solids 
(pure A, pure B and the solid solution), the equilibrium constant is 
reduced to the exponential of the difference in energy between the 
initial state and the final state. This difference is -2wAB. Thus, we 
obtain: 

( )( )2 AB
A B

B

2exp
k
w

X N X N X
T

= − − −   [2.89] 

A laborious calculation, as done by Christian in 1975 [CHR 75], 
gives us: 

( )
A B

A B

2
1q

N N
X

N N β
=

+ +
 [2.90] 

If we introduce the molar fractions defined by: 

( ) ( )
A A

A
A B A B

n N
x

n n N N
= =

+ +
 [2.91a] 

and ( ) ( )
B B

B
A B A B

n N
x

n n N N
= =

+ +
 [2.91b] 

for a mole of mixture ( )A B aNN N+ = , we have: 

2
a A B

a

2N
N 1q

x x
X

β
=

+
  [2.92] 

The term “βq” is defined by: 

1/ 2

AB
A B

B

A B

21 4 exp 1
k

q

w
N N

z T

N N
β

+ − −

=
+

 [2.93] 
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This can also be written as: 

( )
1/2

2 AB
A A B

B

21 2 4 exp
kq
w

x x x
z T

β = − + −  [2.94] 

By substituting expression [2.92] into equation [2.61], we find: 

AB B2 / k
A B B AB

A B 12 B0

k 22 d
2 1 k

w z T

q

N N z T w
Y

N N w z Tβ
=

+ −
 [2.95] 

The lower bound of the integral of expression [2.95] is determined 
as follows: if T → ∞ , we must find a random distribution (because 
then 12 Bkw T<< ) in which Y is basically equal to X , according to 

relation [2.59], and the difference Y X−  is finite. Thus, /Y T  tends 
toward zero as 1 / T tends toward zero. In view of the definition of qβ
(relation [2.94]), we have: 

( )2
AAB

B A 2

1 22
exp

k 4
q xw

z T x x
β − −

=  [2.96] 

Thus: 

( )( )
AB

B A A

2 d2d
k 1 2 1 2

q q

q q

w
z T x x

β β
β β

=
− + + −

  [2.97] 

By introducing this in expression [2.95], we find: 

A AB
A B

A B AB A B

1 2 1 2 1k ln ln ln
2 2 2 2

q q qx xz TY
x x

N N w x x
β β β− + + − +

= + −  [2.98] 

in the knowledge that: 

(NA+NB=1)   [2.99] 



Solid Solutions     109 

By substituting this back into relation [2.58], we obtain the excess 
molar Gibbs energy: 

( ) ( )
A A B

B A
A

1 zR ln ln
2 1 1

q B qxs

q q

x x x x
G T x x

x xB

β β
β β

+ − + −
= +

+ +
 [2.100] 

 

Figure 2.11. Comparison of the excess Gibbs energy values  
for a strictly-regular solution and for the quasi-chemical  

model (data from [DES 10]) 

We note that, as it is the case for strickly-regular solutions, the 
model is symmetric relative to the two components A and B.  

Figure 2.11 shows the gap between the excess Gibbs molar energy 
of the strictly-regular solution and that of this model, for the values  
T = 800 K, z = 12 and NawAB = 30 kJ. The two curves exhibit a 
minimum at xA = xB = 0.5. 

As we can see, the solution is no longer regular. 
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The activity coefficients of the two components become, by 
derivation of the excess Gibbs energy in relation to ni, remembering 
that βq, xA and xB are the functions of NA and NB (the calculation is 
complex but is direct): 

( )

/2

A B( )
A

A 1

z

qI

q

x x

x

β
γ

β
+ −

=
+

  [2.101] 

( )

/2

B A( )
B

B 1

z

qI

q

x x

x

β
γ

β
+ −

=
+

  [2.102] 

The solution thus modeled is called the quasi-chemical model. 

This model can be calibrated on an experiment with a single 
adjustable parameter βq. If we know the values of the activity 
coefficients at a given temperature T, for a given composition, using 
relations [2.101] and [2.102], we calculate xs

ùG ; then, with relation 
[2.98] we deduce βq, and with equation [2.94] we obtain the ratio 

wAB/z, which is the difference AA BB
AB 2

ε εε +− . 

NOTE.– We have seen that relation [2.70] of the strictly-regular 
solution model was called the Bragg and Williams zero-order 
approximation. Similarly, in view of relation [2.89], the quasi-
chemical solution is called an approximation of order 1. The order at 
hand is, in fact, the power to which the exponential appearing in 
relation [2.89] is raised: power zero for the Bragg and Williams 
model, and power 1 for the quasi-chemical model. 

Let us calculate Warren and Cowley’s parameter for the quasi-
chemical model. 

If we try to link our results to the properties introduced in section 
2.2.1, then we immediately find: 
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A B' 'z z z= =  [2.103] 

A AB A BA B A A B AB /X N y N y N x N x N z= = = = =  [2.104] 

AB
AB BA

A B

1 x
x x

η η η= = = −   [2.105] 

By substituting this relation back into equations [2.90] and [2.96], 
we obtain: 

A B21
1q

zx xη
β

= −
−

 [2.106] 

qβ  is, as ever, defined by relation [2.94]. 

Thus, the activity coefficients expressed by relations [2.101] and 
[2.102] can be written in the form: 

B
A

A

1 (1 )ln ln
2

xz
x

ηγ − −=  [2.107a] 

A
B

B

1 (1 )ln ln
2

xz
x

ηγ − −=  [2.107b] 

Figure 2.12 shows the variations in Warren and Cowley’s order 
parameter for the quasi-chemical model, with the following values of  
the parameters: T = 800 K, NawAB = 30 kJ and z = 12. The result 
obtained respects the symmetry of the model, with a minimum for the 
composition xA = xB = 0.5. 

2.4. Thermodynamic study of the degree of order of an alloy 

The concept of a long-distance degree of order leads us to ask the 
question: what would the degree of order of a solid solution be in 
given conditions of temperature and composition? 
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Figure 2.12. Variation of the degree of order as a  
function of the composition of a binary solution in the  

quasi-chemical model (data taken from [DES 10]) 

The method used to calculate this degree of order consists of 
expressing the term of the Helmholtz energy due to the configuration 
of the mixture of atoms as a function of the degree of order. The 
Helmholtz energy is calculated on the basis of the configuration term 
in the partition function, which is also a function of the degree of 
order. The state of equilibrium – i.e. the value of the degree of order 
for a certain temperature – is then found by making the derivative of 
the configurational Helmholtz energy in relation to the degree of order 
equal to zero. 

2.4.1. Hypotheses of the model: configuration energy 

We suppose that there is no short-distance order in the alloy, and 
therefore all of the configurational partition function is due to the 
long-distance order. 

All of the configuration energy is due solely to an interaction 
between near-neighboring atoms, and each atom A or B is surrounded 

xB

ηΑΒ 
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by z near neighbors. The energies of the pairs AA, BB and AB are 
different.  

For a given composition of the solution and in a given state τ, we 
would have nAA pairs A-A with energy, AAε , nBB pairs B-B with 
energy BBε  and nAB pairs A-B whose energy is ABε . For this state τ, 
the configuration energy will, therefore be: 

( )AA AA B BB AB ABE n n nτ ε ε ε= + +   [2.108] 

Using relation [2.45], this expression takes the form: 

AB AB
AA AA BB BB AB2 2

ABn n w
E n n n

zτ ε ε= + + + +   [2.109] 

In the models developed below, the interaction energies will be 
taken to be independent of both the temperature and the interatomic 
distances or, if readers prefer, we suppose that these interatomic 
distances are not altered by the creation of order. 

2.4.2. Expression of the configuration partition function 

The configuration partition function is a function of the 
temperature which can be expressed as a sum of terms, each of which 
is the contribution that corresponds to a value of the degree of order s. 
We express this idea as follows: 

( ) ( , )C C
s

Z T Z T s=  [2.110] 

Let us explicitly write each of these contributions, which are 
characterized by a value Eτ  of the energy expressed by equation 
[2.108], so by definition of the partition function: 

B

( , ) exp
kC
E

Z T s
T
τ

τ
= −   [2.111] 
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For a given degree of order and a given temperature, as all the 
configurations have the same energy, the terms in the above sum are 
all identical, and if we let g(s) denote the number of those 
configurations, the partition function of configuration will be: 

B

( )( , ) ( ) exp
kC
E sZ T s g s

T
= −   [2.112] 

In order to evaluate the functions g(s) and E(s), we need to know 
the distribution of the atoms on the lattice for the given value of s. 
Two models have been developed: the Gorsky, Bragg and Williams 
model and the quasi-chemical model. The hypotheses upon which 
these models are based are similar, respectively, to those used for the 
model of a strictly-regular solution (see section 2.3.3) and those used 
for Fowler and Guggenheim’s quasi-chemical solution model (see 
section 2.3.5). 

We are going to look at these models in the simple case of an alloy 
where the molar fractions of A and B are equal to ½ and the fractions 
of sites are also equal to ½ (that is x = y = ½ in the notation used in 
Table 2.3) – this is the Gorsky expansion. The calculations are carried 
out in the same way for any given values of x and y, but the 
expansions are, naturally, more complex. 

2.4.3. The Gorsky, Bragg and Williams model 

The Gorsky, Bragg and Williams model is denoted by the 
abbreviation GBW. This model postulates that between the atoms of the 
alloy, there are pairwise interactions over short distances, which are 
only experienced by the nearest neighbors. We have already used these 
interactions in section 2.3.1 and the energies in expressions [2.43–2.45]. 
However, as in the case of strictly-regular solutions, we suppose  
that these interactions have no influence on the relative arrangement of 
the atoms, which remains random. For a value of s, we have seen in  
the last row of Table 2.3 that the number of atoms of A on a site  
A is N(1+s)/4. Each of them has z sites for B as near neighbors,  
and the average fraction of occupation of these z sites by an atom of B is 
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(1-s)/2. The number of pairs A-A in the solution will, therefore, be 
given by: 

( )2
AA 1

8
Nzn s= −   [2.113] 

In the same way, we calculate the number of pairs B-B, which 
gives us the same result. The number of A-B pairs will thus be given 
by the difference between the total number of pairs (which is Nz/2) 
and the number of pairs A-A and B-B: 

AB AA BB2
Nzn n n= − −   [2.114] 

Table 2.4 recalls the number of pairs of the different types. On the 
basis of the data given in Table 2.4 and relation [2.109], we can easily 
calculate the configuration energy of mixing, which is, therefore, an 
average energy, for each value of s. We obtain: 

2
AB

AA BB AB
2( ) 2

8
w sNzE s

z
ε ε ε< >= + + +   [2.115] 

Type of pair A-A B-B A-B 

Number ( )21
8

Nz
s−  ( )21

8
Nz

s−  ( )21
4

Nz
s+  

Table 2.4. Number of pairs of different types for a random  
distribution in an alloy AB 

If we let (0)E< >  be the average energy if s = 0, then relation 
[2.115] becomes: 

2
AB( ) (0)
4

Nw s
E s E< >=< > +   [2.116] 

Let us now examine how to calculate the statistical weight. We 
said earlier that the atoms of A and B were distributed at random, and  
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therefore the statistical weight will be the number ga(s) equal to the 
number of ways there are in which to randomly divide the N/2 sites A 
into two groups and the N/2 sites B into two groups. The number of 
sites of each group is given by the last row in Table 2.3 (x = y =1/2). 
Hence, we can write: 

( ) ( )
A A

2

(A)
2 2

A B

! / 2 ! / 2 !
( )

! !
(1 ) ! (1 ) !

4 4

a

N N N
g s

N N N Ns s

= =

+ −
  [2.117] 

By switching to logarithms and using Stirling’s approximation, we 
obtain: 

( ) ( ) ( ) ( )ln ( ) 1 ln 1 1 ln 1 2ln 2
2a
Ng s s s s s= − + + + − − −   [2.118] 

We can now calculate the Helmholtz energy of configuration based 
on relation [2.112], using the expression: 

B B( ) k ln ( , ) k ln ( ) ( )C aF s T Z T s T g s E s= − = − + < >   [2.119] 

Into that expression of the Helmholtz energy, we feed the value of 
the statistical weight, the logarithm for which is given by relation 
[2.118], and the value of the energy given by relation [2.116]. We 
obtain: 

( ) ( ) ( ) ( )B

2
AB

( ) k 1 ln 1 1 ln 1 2ln 2
2

(0)
4

N
F s T s s s s

Nw s
E

= + + + − − −

+ < > +
 [2.120] 

We calculate the particular value obtained by that partition 
function for s = 0, thus: 

[ ]B(0) k 2ln 2 (0)
2
NF T E= − + < >   [2.121] 
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In order to eliminate the term <E(0)>, we work on the difference 

B

( ) (0)2
k

F s F
N T

− , which is written as: 

( ) ( ) ( ) ( ) 2

B

( ) (0)2 1 ln 1 1 ln 1
k

F s F s s s s s
N T

− = + + + − − −   [2.122] 

Now, we look for the value of the degree of order at equilibrium of 
the system at temperature T. This value is obtained by zeroing the 
derivative of the Helmholtz energy in relation to s, or, which amounts 
to the same thing, by zeroing the derivative of the function [2.122]. 
We are led to: 

( )
( )

AB

B

1
ln

1 k
s w s
s T

+
= −

−
  [2.123] 

Let us recall the mathematical relation deduced from the definition 
of the hyperbolic tangent: 

( )
( )
1

ln Arg tanh
1

x
x

x
+

=
−

 [2.124] 

Thus, we find the solution at thermodynamic equilibrium: 

AB

B

tanh
2k
w

s
T

= −   [2.125] 

For all values of the ratio –wAB/kBT, one of the roots of equation 
[2.125] is zero: 

– when –wAB is negative, the root s = 0 is the only one which 
corresponds to a minimum of F(s). Therefore, there is never long-
distance order in the solution, and the alloy simply behaves like a 
strictly-regular solution as defined in section 2.3.3; 
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– when –wAB is positive, for high temperatures (i.e. for low 
values of –wAB/kBT), the root s = 0 is the only one which gives a 
minimum value for the function F(s). There is still no long-distance 
order and the solution is, still, a simple strictly-regular solution; 

– when –wAB is positive, for sufficiently low temperatures (i.e. for 
high values of –wAB/kBT), then in addition to the root s = 0, there is a 
second root whose value is between 0 and 1. By looking at the sign of 
the second derivative of the function F(s), we see that the first root  
s = 0 corresponds to a maximum. Thus, the system is in an unstable 
state of equilibrium. The second root corresponds to a minimum of the 
function F(s) and therefore a stable thermodynamic equilibrium. 

In order to represent these variations in graph form, in Figure 2.13 

we have shown the variations of the function 
B

( ) (0)2 ( )
k

F s F f s
N T

− =  for 

different values of the ratio –wAB/kBT. 

From this figure, it is clear that there is a critical value of the 
temperature Tc which is such that: 

If T < Tc, the degree of order is positive, and decreases as the 
temperature rises. This degree reaches zero at the critical temperature 
and remains at zero when the temperature is higher. 

For the critical temperature, both roots of the function [2.125] are 
equal to zero. 

Hence, the critical temperature is determined by the threefold 
condition: 

0s =  [2.126a] 

0F
s

∂ =
∂

 [2.126b] 

2

2 0F
s

∂ =
∂

  [2.126c] 
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This gives us the expression of the critical temperature: 

AB
Bk

2c
w

T = −   [2.127] 

 

Figure 2.13. Variations in Helmholtz energy as a function of  
the degree of order, according to the GBW model for a  

solid AB with different values of the ratio –wAB/2kBT 

This enables us to write the definition of s on the basis of relation 
[2.125] in the form: 

Arg tanh c

s T
s T

=   [2.128] 

Figure 2.14(a) shows the variations in the degree of order for 
temperatures below the critical temperature. 

Throughout our presentation of the GBW model, we have 
supposed that the composition of the alloy was x = y = ½. The same 
calculations can be performed, maintaining the equality of x = y, but 
with arbitrary atomic fractions xA = x and xB = 1-x. 
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Figure 2.14. Variations of the degree of order with temperature:  
a) solid of type AB and b) solid of type A3B 

In Figure 2.14(b), we have shown the variations in the degree of 
order of system as a function of the quantity -kBT/2wAB, in the case of 
an A3B solid – i.e. one where xA = 0.75 and xB = 0.25. As we can see, 
when the temperature is lowered, a second minimum of the function 
F(s) appears for a value s = 0 of the degree of order. The first 
minimum is still at s = 0. The position of this second minimum 
descends as the temperature decreases. The first minimum 
corresponds to a metastable state, represented by the branch ba in 
Figure 2.14(b), and the second minimum corresponds to the state of 
stable thermodynamic equilibrium, represented by the branch ab. 
Between the two minima, obviously, there is a maximum which 
corresponds to an unstable state. This state corresponds to the branch 
bc in Figure 2.14(b). 

Ultimately, in this case, at high temperatures the order parameter is 
zero. When the temperature decreases, we observe the emergence of a 
metastable ordered state (the branch bc on the curve), in addition to 
the stable ordered state (the branch ab).  

2.4.4. The quasi-chemical model 

The quasi-chemical model is denoted by the symbol “QC”. We 
will now use a method similar to that which we used in section 2.3.1.  
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We will conduct the calculation in the simple case of the alloy AB, in 
which the atomic fractions and the fractions of sites are both equal  
to ½. More complex calculations, which are nevertheless similar on  
all points to those carried out above, can be used to solve more general 
cases. 

In the circumstances of our scenario, we again refer to the last row 
of Table 2.3 for the expressions of the numbers of types of atoms as a 
function of the degree of order. 

On the basis of Table 2.5, we will now calculate the number  
of pairs of neighboring sites occupied in the four possible cases:  
AA-BB, AA-AB, AA-BA and BA-BB for any value of the degree of order 
s. The total number of pairs, obviously, is Nz/2. If we let zX represent 
the number of pairs AA-AB, it is easy to fill in the cells of Table 2.5. 

Type of pair AA-AB AA-BB BA-AB BA-BB 

Number zX    

Table 2.5. Number of pairs of different  
types for an alloy AB 

It is clear that to set the value 
AAN is to set the value of s. 

We can also see that if the two values 
AAN and X are known, then 

the number of pairs of atoms of each type in the solid is perfectly well 
determined. Therefore, we can bring together all the states which have 
the same values of those two properties 

AAN  and X. 

According to relation [2.109], the energy of such a state is: 

AA AB AB AB( , ) 2 (0) 2
2
NE X N z Xw E Xwε= − = −   [2.129] 

In view of relation [2.112], we know that the configurational 
partition function for all the states characterized by a pair of values

AA( , )X N  is: 

( )XNNz −
AA-2/( )AAz N X− zX
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A

A

A
A

B

( , )
( ) ( , ) exp

kC

E X N
Z T g X N

Tτ
= −   [2.130] 

The problem of calculating this partition function is that we are 
unable to calculate the function

AA( , ),g X N  which is the number of 
possible ways to distribute Nz/2 entities (pairs of atoms) into four 
groups containing the number of pairs indicated in Table 2.5. Indeed, 
we cannot consider that these pairs are distributed at random because 
the pairs of atoms are not independent entities. In order to show this, 
let us choose four sites – a, b, c and d – in the same plane of the 
crystalline lattice (see Figure 2.15). We place one pair of atoms A and 
B on sites a and b, one pair A-A on the sites ac and one pair B-B on 
the sites bd. It is then clear that the pair in place on the sites cd can 
only be a pair A-B. 

 
Figure 2.15. Dependence of pairs situated  

on four sites adjacent to a plane 

We will now circumvent this difficulty. In order to do so, we write 
the partition function [2.130], grouping together those terms whose X 
value is the same. This function then becomes: 

A

A

AA

A
A

B

( , )
( ) ( , )exp

kC
N X

E X N
Z T g X N

T
= −   [2.131] 

a c 

d b 

A A 

B B 
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The first sum is extended to all the values of X for a given value of 

AA .N  We replace each by its maximum term. If we adopt 
AA ,N  for 

example, the maximum of the sum in relation to X would be 
determined if X satisfied the condition: 

A AA A Bln ( , ) ( , ) / k
0

g X N E X N T

X

∂ −
=

∂
  [2.132] 

We will assume that this condition is satisfied if X takes the value 
<X> and that this value results from a quasi-chemical equilibrium, 
which would be written as: 

AA-AB + BA-BB = AA-BB + BA-AB [2R.2] 

The pairs solution is then considered to be a perfect solution – i.e. 
one which satisfies the statistical weight ga(s) given by relation 
[2.117], and corresponds to a random distribution of the atoms of A 
and B. 

This equilibrium expresses the exchange of two atoms between 
two sites and therefore involves the energy 2wAB/z. 

The application of the law of mass action to the equilibrium [2R.2] 
gives us: 

[ ][ ]
[ ][ ]

A B A B

A B A B

B A A B
A A B B

K
− −

=
− −

  [2.133] 

We are dealing with the solid phase, so the only contributions to 
the partition functions of the components are the vibrational terms. If 
we suppose that we have an Einsteinian solid with a single 
fundamental frequency of vibration, independent of the distribution  
of the atoms, then the constant K calculated by statistical 
thermodynamics becomes: 

AB

B

2exp
k
w

K
z T

= −   [2.134] 
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By replacing the concentrations of the pairs with the values given 
in Table 2.5 (the volume being considered to be independent of the 
composition), we find: 

( )
A A

AB
A A

B

2exp
2 k

wNN X N X X
z T

− < > − − < > = < > −   [2.135] 

Using the data in Table 2.3, we deduce from this: 

( )
( )

2

2 AB

B

1 / 2

2 21 1 exp 1 1
k

sNX
ws

z T

−
< >=

+ − − − +

  [2.136] 

To simplify the formulation, we will set: 

( )2 AB

B

21 1 exp 1
ks
w

s
z T

β = + − − −   [2.137] 

The energy <E(s)> corresponding to the average distribution <X> 
will then be as follows, in light of relation [2.129]: 

( )2
AB

AB

1
( )

2 2 1s

sNwNzE s ε
β

−
< >= −

+
  [2.138] 

However, this function <E(s)> corresponds to the average value of 
the energy as given by the mean value theorem, meaning that we 
have: 

B B

exp ( ) exp
k k
E EE E s

T T
τ

τ
τ τ

τ− ≅< > −   [2.139] 

We will now introduce a fictitious value of the energy, written as 
<<E(s)>>, so that with this value, the solution exhibits perfect 
behavior. This fictitious value, therefore, must satisfy the equation: 
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B B

( )( , ) exp ( ) exp
k kC a
E E sZ s g s

T T
τ

τ
τ << >>= − ≅ −   [2.140] 

By comparing expressions [2.132] and [2.140], we discover a 
relation between the two values ( )E s< >  and ( )E s<< >> , which is 
written as: 

( )
( )
( ) /

( )
1 /

E s T
E s

T
∂ << >>

< >=
∂

  [2.141] 

Hence, by using this relation, the value of ( )E s<< >>  which 
corresponds to the value of ( )E s< >  given by expression [2.138]  
will be: 

AB

B

2
k 2

AB B AB
AB

B0

k 21( )
2 2 2 1 k

w
z T

s

w z T wN sE s z d
z T

ε
β

−

−−<< >>= − +
−

  [2.142] 

The integration constant is determined by the condition: 

AB 0
lim ( ) (0)

w
E s E

→
<< >>=< >  [2.143] 

The calculation of the above integral thus gives us: 

( ) ( )

AB
AB 2

( )
12 1 ln 1 ln 2ln

2 1 1 2
s s s

wz
N

E s
z s s

s s
s s

ε

β β β

−
<< >>=

+ − ++ + + − −
+ −

 [2.144] 

The configurational Helmholtz energy then becomes: 

Bk ln ( ) ( )aF T g s E s= − + << >>  [2.145] 
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Hence, in view of relations [2.144] and [2.118]: 

( ) ( ) ( ) ( )

( ) ( )

B

( ) 1 ln 1 1 ln 1
k

2
1

2ln 2 1 ln 1 ln 2ln
2 1 1 2

s s s

F s s s s s
N T

s sz s s
s s

β β β

= + + + − −

+ − +
− + + + − −

+ −

  [2.146] 

We can easily calculate F(0) and therefore the ratio: 

( ) ( ) ( ) ( )

( ) ( )
B

( ) (0)2 1 ln 1 1 ln 1
k

1 ln 1 ln ln
2 1 1

s s
s

F s F s s s s
N T

s sz s s
s s

β β β

− = + + + − −

+ −+ + + − −
+ −

  [2.147] 

The function [2.147] generates graphic representations that are 
very similar to those shown in Figure 2.13. 

By deriving the function [2.147] in relation to s and zeroing the 
derivative, we obtain the value of s at equilibrium, which is given by 
the implicit equation: 

( )
( )
12ln ln

2 1
s

s

ss z
s s

β
β

++ −=
− −

  [2.148] 

The critical temperature is then determined by applying conditions 
[2.126a]–[2.126c]. These conditions are fulfilled if s = 0 and: 

AB

B

ln
k 2c

w zz
z T z

= −
−

  [2.149] 

With Figure 2.14(a), we can compare the curve given by the GBW 
approximation with that given by the quasi-chemical approximation 
and the experimental result in the case of the alloy CuZn. We can see 
that the second curve is closer to the experimental points. 
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The quasi-chemical model is based on the hypothesis of distribution 
of the pairs represented by the equilibrium [2R.2]. This hypothesis has 
been proven by Bethe, using the grand partition function. 

2.4.5. Comparison of the models against experimental 
results 

The difficulty of the experimental approach is in actually achieving 
equilibrium. We need to make sure that the degree of order obtained is 
indeed that which corresponds to equilibrium at the chosen 
temperature. In order to do so, we usually proceed as follows: we heat  
the alloy to a high temperature, far greater than the critical 
temperature, so as to rapidly create total disorder in the alloy. The 
sample is then plunged as quickly as possible to a temperature lower 
than that at which we want to achieve the equilibrium. In most of  
the cases, although there are exceptions, at low temperature the  
alloy keeps the maximum disorder which it had previously  
acquired. Thus, we take a reading at the desired temperature and wait 
a sufficient amount of time to ensure that the equilibrium is 
established. 

The degree of order is measured by X-ray diffraction. Indeed, 
the move from order to disorder is usually accompanied by a rise in 
the level of symmetry in the crystal, and the two arrangements of 
the atoms of A and B create substructures characterized by specific 
diffraction lines. However, as X-rays only give us an average 
picture of a situation, each experiment leaves room for a certain 
amount of doubts. Does the result represent the presence of ordered 
zones in a disordered matrix? Or does it reveal a value of the 
uniform degree of order in the sample? The answer is all the more 
delicate when the degree of order is lower. Of course, X-ray 
pictures can be taken at the temperature of the reading at 
equilibrium. Their stability over time constitutes an indicator that 
equilibrium has been reached. 

The models and experiments can be compared on the basis of 
several values: the curve giving the degree of order as a function of 
the temperature, the measurement of the enthalpy of transformation, 
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that of the critical temperature and its variations with the composition 
of the alloy, and finally the comparison of the calculated curves and 
the experimental curves illustrating the specific heat capacity as a 
function of the temperature. 

2.4.5.1. Variation of the degree of order with temperature 

In Figure 2.14(a), we saw the comparison of the curves showing 
the variations in the degree of order with temperature in the case of a 
solid AB – specifically, the alloy CuZn. We can see that the results of 
the two models are not too far from reality, but the QC model gives a 
better representation of the real world than does the GBW model.  

 

Figure 2.16. Comparison of the models with experiments  
in the variation of the degree of order with the temperature  

in the case of the alloy Fe3Al(Tc=665K)  

Figure 2.16 shows another example of the variation of the degree 
of order with the temperature in the case of the alloy Fe3Al. We know 
that, in spite of its chemical formula, this alloy is an AB alloy, because 
only a third of the iron atoms involved in reordering (see figure 2.10). 
Once again, the models yield results which are generally correct, 
surrounding the experimental curve. In this example, once again, the 
QC model seems to be the closest to reality. 

2.4.5.2. Determination of the enthalpy of transformation 

In the two models, we have found the expression of the Helmholtz 
energy given by the two relations [2.120] and [2.146]. In each case, we 
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can calculate the internal energy of configuration (which is the same as 
the enthalpy, as the pressure has no influence at all) using the relation: 

2 ( / )F TU T
T

∂=
∂

  [2.150] 

In general, it is preferable to calculate the difference 0

Bk
T TU U
N T

=−  or 

the difference 
Bk

T TU U
N T

=∞− . Note that we have: 

( ) (0)T TU U U s U=∞− = −  [2.151a] 

and 0 ( ) (1)T TU U U s U=− = −   [2.151b] 

We find the following results: 

For the GBW model: 

( )22
ABAB

1
( ) (0) (1)

2 4

N s wNs w
U s U U

−
= + = −   [2.152] 

For the QC model, in light of relation [2.131]: 

( )2
AB

AB

1
( ) ( )

2 2 1s

sNwNzU s E s ε
β

−
=< >= −

+
  [2.153] 

Source GBW QC Experimental 

0

Bk
cT T

c

U U
N T

=−
 0.50 0.49 0.43 

Table 2.6. Comparison between experimental  
results and models of the values of the internal  

energy for the alloy CuZn (calculations performed  
with z = 8), at the critical temperature 742 K 
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On the basis of these expressions, we can perform the calculation 
at any temperature. For example, the calculation for the alloy CuZn, at 
the critical temperature of Tc = 742 K with z = 8, gives us the results 
collected in Table 2.6. Again, we see that both models yield results 
that are fairly similar to each other, and also values that are not too 
different from the experimental reality.  

2.4.5.3. Measurement of the critical temperature and its 
variations with composition 

We have performed the calculation of the critical temperature in 
the two models in the case of the compositions x = y = ½. As pointed 
out, it is entirely possible to perform the same calculations for a 
fraction of site y = ½ and a molar fraction of one of the components x 
between 0 and 1. Figures 2.17(a) and 2.17(b), respectively, for the 
alloy CuZn and Fe3Al, give the variations of the critical temperature 
as a function of the composition. 

 

Figure 2.17. Critical temperature as a function of the  
composition. Comparisons between models and experience. a)  

Case of CuZn and b) case of Fe3Al (according to [SYK 37])  

In Figure 2.17(a), the results given by the two models are very 
similar, and differ notably from the experimental results when the 
composition deviates from x = 1/2. In Figure 2.17(b), the QC model 
gives correct results around the composition Fe3Al. 
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2.4.5.4. Variations of specific heat capacity with temperature 

The variations in the specific heat capacities with temperature are 
determined on the basis of the measured or calculated values of the 
internal energy using the relation: 

( ) ( )( ) U T U sC T
T T

∂ ∂= =
∂ ∂

  [2.154] 

Figure 2.18 shows the variations of the average of the specific heat 
capacities for copper and zinc (dotted curve), and an experimental 
curve for the CuZn. 

The curve derived from a model results from the sum of the 
configurational specific heat capacity calculated by that model and the 
specific heat capacities of the pure metals, in order to compare the result 
with the experimental value, which gives the total specific heat capacity. 

 

Figure 2.18. Specific heat capacity (per atom) of CuZn – comparison  
of the models and the experimental results [SYK 37] 

We can see that the comparison is very poor – particularly in the 
vicinity of the critical temperature, for which both models are 
absolutely incapable of accounting for the discontinuity suggested by 
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the experimental curve – a discontinuity which enables us to deduce 
that in the case of the copper–zinc alloy, the order–disorder 
transformation is a second-order transformation. 

Ultimately, the comparison of the models with the experimental 
reality gives qualitative agreements for most experiences but the 
comparison is not at all good in terms of the specific heat capacities. 

The differences which we observe need to be viewed in relation to 
the hypotheses common to the two models – first an interatomic 
distance and therefore an energy of interaction which is independent 
of the degree of order. More recently, Koslov and Ginsburg attempted 
to introduce a correction to the energy of interaction, expressed by a 
correlation between the energy and the square of the differences 
between an average interatomic distance and the true distance. They 
applied this correlation to the GBW model. At the most, they managed 
to obtain a curve giving the variation of the degree of order as a 
function of the temperature, close to that obtained directly by the QC 
model as represented in Figure 2.14(a). 

It seems that the main shortcomings of the simple models we have 
presented here are due essentially to the hypothesis of interactions 
limited to that which exists between two closely neighboring atoms. 

2.5. Determination of the activity of a component of a solid 
solution 

We will examine the methods for determining the activities, or the 
activity coefficients, of the components of a solid solution whose 
composition is known. Note in passing that this determination of the 
activity can quickly lead us to the chemical potential of that 
component, by knowledge of the chemical potential of that component 
in the reference state. 

Remember that the activity and the activity coefficient of a 
component in a solution depend both on the composition of the 
solution and its temperature. Therefore, a determined value of the 
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activity of a component is only valid at a given temperature and 
known composition of the solution. 

It must also be remembered that there are several activities for the 
same component, depending on the convention chosen to define it – i.e.: 

– convention (I): pure-substance references; 

– convention (II): infinitely dilute solution reference; 

– convention (III): reference of a molar solution of all solutes.  

Therefore, if it is not generally applicable, each method must 
specify the convention in which the determination is performed. 

The methods to determine the activities (or the activity 
coefficients) are divided into two main categories: 

– experimental methods, which are dealt with in this chapter; 

– methods using a model of solution, methods which arise directly 
from the study of the different models (see section 2.3). 

The experimental methods which we are about to examine are 
based on the properties of solid solutions, and more specifically, on 
their behavior in a system at physico-chemical equilibrium.  
The component whose activity we wish to measure is involved  
in a state of physical, chemical or electrochemical equilibrium  
and the only unknown degree of activity is that which we are 
searching for. 

Numerous methods which are applicable both to solid solutions 
and liquid solutions will not be examined in detail but simply 
mentioned. A detailed description of these methods is given in 
Chapter 5 of Volume 2 in this collection, devoted to liquid phases  
(see Bibliography). Alongside these general methods, there are a few 
that are more specific to solid solutions. The experimental difficulty 
which is often encountered with solid solutions arises from the fact 
that the measurements need to be carried out at high temperature, 
which sometimes complicates display technology. 
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2.5.1. Methods common to solid solutions and liquid 
solutions 

These methods are divided into two categories: computational 
methods and experimental methods. 

2.5.1.1. Calculating an activity coefficient on the basis of the 
known values of other coefficients 

Let us recall the two methods which are, in fact, computational 
methods based on the knowledge either of the activity of the other 
species in the solution or of the activity of the species sought at a 
temperature other than the desired one. 

2.5.1.1.1. Calculating the activity of a component when we 
know those of the other components of the solution 

This method is based on the integration of the Gibbs–Duhem 
relation at fixed temperature and pressure. 

1
d ln 0

N

i i
i

x γ
=

=  [2.155] 

We suppose that, for all the compositions between a known state 
(usually the reference state) and the composition under study, we 
know the activities (or the activity coefficients) of all the components 
of a solid solution in the same convention, except for one between 
them, and we need to calculate the unknown activity of that 
component for the chosen composition. This method is valid 
regardless of the convention adopted. Thus, we obtain the activity (or 
the activity coefficient) in the chosen convention for the known 
values. 

To determine the activity coefficient γj of the component j whose 
molar fraction is xj, we write, in light of relation [2.155]: 

d ln d lnk
j k

k j j

x
x

γ γ
≠

= −  [2.156] 
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This relation is integrated between two states p and q. Each state is 
characterized by a composition of the solution: 

d ln dln
q q k

j kp p
k j j

x
x

γ γ
=

= −   [2.157] 

Generally, as the lower bound p, we choose the reference state, 
which gives a value of 1 for the activity coefficient jγ , and  
as the upper bound q we choose the solution in which we  
are looking for the coefficient. Usually, we operate by numerical 
integration. 

2.5.1.1.2. Determination of the activity of a component at one 
temperature if we know its activity at a different temperature 

This method is based on Helmholtz’s second relation. Let us, 
respectively, write *

iH and x
iH for the partial molar enthalpies of the 

component i in the reference solution and in the solution at hand, for 
which the molar fraction of the component i is x. We have: 

( ) *
i

2

/
-

x
i iT H H

T T
μ∂ −=
∂

 [2.158] 

On this relation, we superimpose the expression of the derivative 
of the logarithm of the activity coefficient with the temperature: 

( )(*)
i /lnR i T

T T
μγ ∂∂ =

∂ ∂
  [2.159] 

From this, we deduce the activity coefficient of the component i at 
temperature T’, for the molar fraction x: 

(*) *

2

ln
R

x
i i iH H

T T
γ∂ −=

∂
  [2.160] 

It is possible to integrate this expression, in the chosen convention, 
if we know the variations of the enthalpies with the temperature. We 
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obtain the activity coefficient of the component i at temperature T if 
we know the values of the activity coefficient of the same component 
at another temperature (*)

( ')i Tγ . 

Usually, these enthalpies are considered to be constant in too great 
a temperature interval, so between two temperatures T and T’, we can 
integrate relation [2.160] in any one of the references (denoted by *) 
in the form: 

*
(*) (*)
( ) ( ')

1 1ln ln
R '

x
i i

i T i T
H H

T T
γ γ −

− = −  [2.161] 

The partial molar enthalpies *
iH and *

iH are then constant. 

2.5.1.2. Determination of the activity on the basis of the 
measured value of the equilibrium pressure 

The methods using the vapor tensions derive measurements 
directly from the properties of the equilibrium between the solid 
solution and one of its gaseous components, which is a consequence 
of the equality of the chemical potentials of the component in question 
in the solution and in the gaseous phase at equilibrium with it. In 
general, the measurements take place at sufficiently high temperatures  
and sufficiently low pressures so that the gaseous phase can be 
considered to be perfect in all senses of the word. This equality gives 
us the very general relation between the partial pressure of the 
component i, its activity ( )S

ia in the solid solution and an equilibrium 

constant ( )SV
iK : 

( )
( )

SV
iS

i

P K
a

=   [2.162] 

Experimentally, these methods only require the measurement of 
the partial pressure, with a mass spectrometer, and the measurement of 
the composition of the solid phase. The best technique is 
thermogravimetry. This method is primarily used in the case of  
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dissolution of gases, because then only that gas is present in the 
gaseous phase. The partial pressure can then be taken to be equal to 
the total pressure if that gas is pure. We then proceed as follows: we 
set a low value P1 of the pressure Pi and wait for equilibrium to be 
achieved, and then take away the mass m1. We then raise the pressure 
successively to values of P2, P3, etc. Each time, we wait for 
equilibrium to be reached and take away the masses m2, m3, etc. 
Finally, we create a vacuum above the sample and measure the mass 
m0, which will be the initial mass of the solution: in fact, the mass of 
the non-volatile solvent on its own. From these measurements, we 
deduce the table of the couples of pressure–composition in the 
solution. 

We can distinguish two approaches:  

– one, called the direct method, which is mainly used with a pure-
substance reference convention – i.e. for a single-component solution 
for which we choose convention (I); 

– the other, which is based on the measured value of Henry’s 
constant, which is mainly used for solutes with the choice of 
convention (II). 

We will base our examination on the simple case where only one 
component of the solution is present in the gaseous phase, in which it 
is pure. 

2.5.1.2.1. Measurement by the direct method 

For this method, we choose to adopt convention (I), the solid-vapor 
equilibrium constant, with the saturating vapor pressure of the pure 
solute under study 0

iP , which is expressed by: 

0
( ) ( ) iI S
i i

P P
xγ

=   [2.163] 

We need to be very careful when it comes to the choice of the 
pressure 0

iP . Indeed, it is the saturating vapor pressure of the  
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component i in the same state of aggregation as the solution. This 
means that the pure substance must be considered to be crystallized in 
the same crystalline system as the solution. However, the solute is 
usually not solid if it is pure in the conditions in which the solution is 
studied. Thus, to begin with, we can calculate this vapor pressure on 
the basis of the known value – usually for a much lower temperature. 
Yet, even at that temperature where the component i is solid, it 
generally does not crystallize in the same crystalline system as the 
solid solution. Therefore, we need to simulate a change of solid phase 
for which we do not have either the latent heat or the associated 
entropy. We can obtain a correct approximation by ignoring the 
variation of entropy between two solid states and choosing a variation 
in enthalpy of around 1/4 of the latent heat of fusion of the same pure 
component. 

Relation [2.163] then directly gives us: 

( )
( ) 0

I
i S

i i

P
x P

γ =   [2.164] 

Thus, if we know the pressure–composition couples, we can 
calculate the activity coefficient for the different compositions at the 
measuring temperature. 

2.5.1.2.2. Method using Henry’s constant 

We remain in the case of the presence of a single component in the 
gaseous phase. If we adopt convention (II) for a solute, the expression 
of the solid-vapor equilibrium for the component i is written, at a 
given temperature, in the form: 

( )
( )( ) ( )

SVi
iS II S

i i

P
K

xγ
=   [2.165] 

If the gaseous mixture can be considered to be perfect,  
the equilibrium constant is the product of the saturating vapor  
pressure of the pure component with Henry’s constant ( iHK ) for the  
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same component i and, for the equilibrium state, relation [2.165] gives 
us: 

( ) 0
( )( ) ( )

LVi
i i iHS II S

i i

P
K P K

xγ
= =   [2.166] 

If the solution were perfect, the solute i would obey Henry’s law, 
and thus we would have the equation: 

0
( )

i
i iHS

i

P
P K

x
=   [2.167] 

This means that the constant iHK  is the limit, when the content 
( )S
ix  tends toward zero, i.e. when ( )( )S II

iγ  is equal to 1, of the ratio 

0 ( )
i

S
i i

P
P x

, which is: 

( ) 0 ( )

lim
0

i
iH S S

i i i

P
K

x P x
=

→
 [2.168] 

We determine the value of the ratio 
0 ( )

i
S

i i

P
P x

for various decreasing 

values of ( )L
ix , we extrapolate the curve obtained at ( ) 0S

ix = . The 

order then gives us the constant iHK . 

The extrapolation is shown in Figure 2.19. The curve must have a 
limit with a horizontal slope. If this is not the case, the fact is that  

the measurements of the ratio 
0 ( )

i
S

I i

P
P x

have not been carried out  

for sufficiently low values of the molar fraction of i in the solid and 
thus achieve the validity of the limit law with a correct degree of 
precision. 
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Figure 2.19. Determination of Henry’s constant 

We then feed that extrapolated value back into equation [2.166] 
and deduce the activity coefficient of the component i in convention 
(II): 

( )( )
( ) 0

S II i
i S

i i iH

P
x P K

γ =  [2.169] 

As before, this law requires us to know the appropriate value of the 
vapor pressure 0

iP . 

NOTE.– The expressions which we have used suppose that the solute 
and the gas have the same molecular form. If, on the other hand, the 
solute were in monatomic form and the gas in diatomic form, all the 
pressures which come into play in expressions [2.164] and [2.169] 
would be replaced by square roots, expressing the dissociation of the 
gas upon dissolution. 

2.5.2. Methods specific to solid solutions 

We will now present two methods for measuring the activities 
which are more specifically designed for solid solutions. The first 
method, involving the solid solution in a reaction which does not 
involve any other solution. Note that this method could be applied to 
liquid solutions but usable reactions are then very rare. The second 
method is an electrochemical method designed for single-phase metal 
alloys. 

)( L
ix

iHK
Limit
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2.5.2.1. Determination of the activity of a component on the 
basis of the composition of a system at chemical equilibrium 

We can determine the activity of a component of a solution by 
involving it in a chemical equilibrium. The method is particularly 
interesting when the compound under study is the only component in 
solution which participates in the chosen chemical equilibrium. 

In order to illustrate the method, we describe how to determine the 
activity coefficient of carbon in a steel. Remember that a steel is a 
solid solution of carbon in iron. We will use this steel in the form of 
sheets, with which we will seek to realize the equilibrium: 

2CO C 2CO+ =   [2R.3] 

At equilibrium, we measure the ratio 
2

2 /CO COP P for different levels 
of carbon content. The application of the law of mass action in 
reference (II) is written as: 

2

2
( )

( )
II CO

II
CO c c

P
K

P xγ
=  [2.170] 

In the chosen convention, the activity coefficient tends toward 1 if 
the carbon content tends toward zero. Therefore, we can write: 

2

2
( )

0
lim

c

IICO

x
CO c

P
K

P x→
=   [2.171] 

Thus, we take the ratio 
2

2 /CO c COP x P  as a function of the molar 
fraction of carbon xc (Figure 2.20). Extrapolation of the curve for  
xc = 0 gives the value of the equilibrium constant ( )IIK . Thus, to 
calculate the activity coefficient at the content level chosen, we apply 
the relation: 

2

2
( )

( )
II CO

c II
CO c

P
P x K

γ =  [2.172] 
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Figure 2.20. Determination of the equilibrium constant  
between carbon, CO and CO2 

NOTE.– Certain authors propose to determine the activity coefficient 
of carbon in the pure-substance reference (I) using the relation: 

2

2
( )

( )
I CO

c I
CO c

P
P x K

γ =   [2.173] 

In order to do so, as an equilibrium constant ( )IK , they use that 
determined by achieving the equilibrium [2R.3] with pure carbon in 
graphic form. Thus, they make the approximation of neglecting the 
Gibbs energy of the passage of pure carbon from the graphic state to a 
hypothetical state of a carbon crystallized in the same system as the 
iron in steel. It is true that this Gibbs energy may not be hugely 
different from that of the passage from the graphite form to the 
diamond form, which could, therefore, be used as a best 
approximation. 

2.5.2.2. Measuring the activity of a component non-ionic 
conductive solution (metal solution) 

If we consider an electrode reaction which is written as: 

i i eM e 0
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The potential is given by the Nernst equation. 

0 R ln M i

i
i

Te e ν

ν
= + ∏

eF
 [2.174] 

In this expression, we see the activities of all the species Mi 
involved in the equilibrium [2R.4]. 

In general, the electrode is made of a pure metal whose activity is 1. 
However, if the electrode is made of an alloy forming a solution, 
relation [2.174] will include the activity of the active metal in the alloy. 
However, relation [2.174] contains several other activities which are 
usually unknown. Let us examine the problem on a concrete example. 

Thus, we will envisage measuring the activity of lead in a silver–
lead alloy of the molar fraction x1 of lead. The electrode is composed 
of the alloy under examination and a lead salt, so, for example: 

( )2 3 2
Pb (solid solution) ( ) / Pb CH COOx (aqueous solution) 

The potential of this electrode is written as: 

0

1

PbR
2

Te e
a

++

= +
F

  [2.175] 

The activity a1 of the lead can only be deduced from the measured 
value of the potential of that electrode if the activity of the lead in the 
aqueous solution is known. 

In order to get around this difficulty, we will construct a cell, 
similar to concentration cells, but the dissymmetry of the cell will be 
assured by a difference in concentration between the two electrode 
alloys, and not by two ionic compartments. 

We will include our electrode in a cell whose other electrode is the 
same alloy but with a different molar fraction of lead x2. The two 
electrodes are immersed in a solution of a lead salt – e.g. acetate. 
Thus, we will create the following electrode: 
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( )2 3 2

3 1

Pb (solid solution) ( ) / Pb CH COO

CH COOH  / Pb (solid solution) ( )

x

x
 

For the two electrodes, the reference state of lead is the same, so 
the electromotive force of the battery is written as: 

1

2

R ln
2

aTE
a

=
F

  [2.176] 

By separating the molar fraction and the activity of lead in our 
solid solution under study, this expression can be put in the form: 

1 2 1
2 ln ln ln
R

E x a
T

γ+ = −F
  [2.177] 

When the molar fraction of lead in our solution 1x  tends toward 

zero, the activity coefficient ( )
1

IIγ tends toward 1, so we can write: 

1

( )
1 20

2 ln ln
R

II

x

ELim x a
T→

+ =F   [2.178] 

To use this last relation, we can measure the electromotive forces 
of the cell for different values of the molar fraction 1x  and plot the 

curve giving the value 1
2 ln
R

E
y x

T
= +F

 as a function of the molar 

fraction 1x . Figure 2.21 shows such a curve. 

 

Figure 2.21. Obtaining the activity of an element of an alloy  

x1

y

0

)(
2ln IIa  
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The extrapolation of this curve to the origin of the abscissa axis 
enables us to calculate the value of ( )

2ln IIa , which is the activity of 
lead in the second compartment. We can then easily calculate the 
activity coefficient sought for each concentration by using relation 
[2.177] in the form: 

( ) ( )
1 1 2

2ln ln ln
R

II IIE
x a

T
γ = − − +F

 [2.179] 

The method is particularly elegant, and does not require the use of 
a junction. 

Another very similar method can also be used – particularly to 
measure the activity of an element in a metal alloy at high 
temperature. We create a cell with two electrodes, one of which is the 
pure metal and the other is the solid solution, using a solid ionic 
conductor as an electrolyte. By measuring the electromotive force of 
the cell, at the chosen temperature, we will be able to calculate the 
activity of an element of the alloy at the desired temperature. 

We will illustrate the method on the following example. 

Thus, let us consider an alloy of tantalum and molybdenum 
comprising a solid solution. We wish to determine the activity of the 
tantalum in that solution at 1300 K. For this, we use a solid electrolyte 
with ionic conduction, which is a solid solution of thorium oxide 
ThO2, containing 6% mass of yttrium oxide (Y2O3). We construct the 
following cell: 

2 5 2 2 3

2 2 5

Ta (pure metal Ta O  compact) / ThO  (6%Y  O )/ 
Ta (solid solution ( ) Ta O  compact)x

+
+

 

The reactions at the electrodes are: 

– on the side of pure tantalum:<Ta> Ta+5+5e; 

– on the side of the alloy: Ta+5+5e <<Ta>>. 
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The electromotive force of the cell has been measured by Singhal 
and Worrel at 1200 K for different proportions x2 of tantalum in the 
alloy. 

The cell reaction is simply the passage of tantalum atoms from the 
pure metal into the alloy. The variation of the Gibbs energy with this 
reaction is: 

0 ( )
2 2 2R ln I

sG G g T aΔ = − =   [2.180] 

However, this Gibbs energy is linked to the electromotive force of 
the cell by the relation: 

( )
2R ln

5 5

I
sG T a

E
Δ= − =

F F
  [2.181] 

From this, we deduce the activity of the tantalum in the alloy: 

( )
2

5exp
R

I Ea
T

= − F
  [2.182] 

The difficulty in using such a method is threefold. First, we need to 
work at a high temperature; second, we need to ensure very good 
contact between the solids; and finally, we need to make sure that the 
electrolyte works well for ionic conduction. 

In Chapter 4, we will return to solid solutions, after having 
introduced structural elements and non-stoichiometry in Chapter 3. 
This will enable us to correlate the notion of a solid solution with that 
of non-stoichiometry. 



3 

Non-stoichiometry in Solids 

The concept of a structure element is absolutely crucial in studying 
the thermodynamics of non-stoichiometry in solids. 

In most crystalline mineral solids, the concept of a molecule has no 
physical reality. For example, if we look at zinc oxide, whose formula 
is ZnO, we cannot attribute a specific oxygen atom to a particular zinc 
atom.  

Additionally, in comparison to an ideal crystal, comprising zinc 
ions and oxygen ions regularly arranged in space, many solids exhibit 
defects such as the presence of a zinc ion in an abnormal position, 
qualified as interstitial, because it is between the positions of the ions 
in the ideal crystal.  

Moreover, many of these compounds exhibit differences from 
stoichiometry, meaning that they do not rigorously obey the chemical 
formula of the ideal compound, such as zinc oxide which, in reality, 
presents an excess of zinc in relation to oxygen (which is known as 
overstoichiometry in zinc). Strictly speaking, its formula should be 
written as Zn1+xO, with the value of x varying under the influence of 
various stresses (oxygen pressure, temperature, etc.). 

3.1. Structure elements of a solid 

Because of all these peculiarities, the description of a solid simply 
through the lens of its atoms, ions or molecules cannot give an 

Thermodynamic Modeling of Solid Phases, First Edition. Michel Soustelle.
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account of numerous physical and physicochemical properties, and 
that description must be precise, involving the nature of the sites 
occupied by the atoms – i.e. specifying their environment. This is the 
description of the solid in its structure elements. 

3.1.1. Definition 

A structure element is an atom, an ion or a vacancy (an empty 
space) at a specific site in the crystal. The concept of a structure 
element brings together that of a chemical species and that of its 
environment by the nature of the crystalline site in question. A 
structure element could be: 

– an atom or an ion of the solid at a normal site (in the sense of the 
ideal solid); 

– an atom or an ion of the solid at an abnormal site (atom 
substituting an atom of a different type, atom in an interstitial position, 
etc.); 

– a vacancy in the normal (an empty space in the ideal solid); 

– an empty interstitial position which we can consider to be a 
vacancy in an interstitial position; 

– a foreign atom or ion in the solid at a specific site (an example is 
offered by chromium in place of zinc in zinc oxide). 

Thus, we can completely describe the solid by enumerating  
its structure elements, assimilating the free electrons and the electron 
holes likely to be present to structure elements, for the sake of 
completeness. 

The structure elements can carry different charges. The “effective 
charge” of a structure element, denoted by qe, is the difference between 
its real charge, represented by qr, and the charge that the structure 
element occupying the same site in the ideal crystal would have, or the 
“normal charge”, denoted by qn: 

   e r nq q q= −  [3.1] 
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A structure element is said to be non-ionized if its effective charge 
is zero. Consequently, an ionized structure element may perfectly well 
be a neutral atom. 

The normal structure elements of the solid – i.e. the elements that 
are present in the ideal solid (an atom or ion in the solid at a normal 
site or an empty interstitial position) – have an effective charge of 
zero. 

Structure elements other than the normal elements of the solid are 
often referred to as the solid’s point defects. 

3.1.2. Symbolic representation of structure elements 

In the same way that in chemistry, we see the need to symbolically 
represent the atoms and molecules, it has become necessary to have  
a symbolic representation of the structure elements. This  
notation system must provide three types of information about an 
element: 

– the atom or chemical element in question; 

– the site on the lattice that is occupied (in reference to the ideal 
solid); 

– the effective charge (or the real charge). We tend more to choose 
the effective charge, because it is zero for all normal elements, which 
are generally present in very large numbers. 

The International Union of Pure and Applied Chemistry (IUPAC) 
prescribes the use of Kröger’s notation. Tables 3.1, 3.2, 3.3, 3.4 and 
3.5 all show this notation for the different types of structure elements, 
applied to the (fictitious) example of alumina. 

The symbol ' above and to the right of an element means that  
the element has an effective charge of –1; the symbol ° represents  
the effective charge +1; the effective charge of 0 is represented  
by the superscript x, but it is not obligatory to use this sign at all.  
An element in an interstitial position is denoted by the subscript 
symbol “i”. 
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Al3+ ion in the normal position (qe= 0)….....AlAl

O2- ion in the normal position (qe= 0)……....OO 

Empty interstitial (qe= 0)……….…….……..Vi 

Table 3.1. Symbols of normal structure elements 

Free electron (qe= -1)……….…e’ 
Free electron holes (qe= 1)…….h°

Table 3.2. Symbols of the free charges 

Note that a vacancy is denoted by the symbol V. In view of the 
possibility of confusion with the representation of vanadium, which 
has the same symbol, the IUPAC advocates that, where structure 
elements are involved, the symbol for vanadium is replaced by “Va”. 

Al3+ ion in an interstitial position (qe= 3) ….. iAl°°°

O2- ion in an interstitial position (qe= -2)…….. ''
iO

Al atom in an interstitial position (qe= 0)…..…Ali 

Table 3.3. Symbols for structure elements  
in interstitial positions 

Vacancy of an Al3+ ion (qe= -3)………………………...….…. '''
AlV  

Vacancy of an O2- ion (qe= -2) …………………………..…… OV°°  

Vacancy of an Al3+ ion trapping an electron hole (qe= -2)….... ''
AlV  

Vacancy of an O2- ion trapping an electron (qe= 1)…………... OV°  

Table 3.4. Symbols for vacancy structure elements 

Ion S2- in substitution of an O2- ion (qe= 0)………....SO 
Ion Mg2+ in substitution of an Al3+ ion (qe= -1)… '

AlMg

Ion Zr4+ in substitution of an Al3+ ion(qe= 1)…….. AlZr°

Ion Li+ in an interstitial position (qe= 1)………….. iLi°  

Table 3.5. Symbols for structure elements  
occupied by foreign elements 
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Associations between structure elements are represented by 
indicating, in parentheses, the associated elements without their 
effective charge and, after the parenthesis, the effective charge of the 
whole thing. For example, the association, in alumina, of an aluminum 
ion vacancy and an oxygen ion vacancy is written as: ( )Al OV V '.  Note 
that we would obtain the same entity and therefore the same notation 
for the effective charge, -1, if each of those vacancies were ionized, 
having respectively trapped an electron hole and an electron. 

3.1.3. Building unit of a solid 

The building unit (or building block) of a solid is a combination of 
structure elements, such that the addition or subtraction of such a 
combination does not alter the ratios between the numbers of the 
various sites in the crystal (conservation of the structure). The true 
solid can only be constructed by the juxtaposition of such units, in 
varying numbers; for this reason, we sometimes call these entities the 
building blocks of the crystalline solid. 

For a compound AB (with one interstitial position per site of A), 
the building units may be the sum of appropriate structure elements, as 
in the following examples: 

A B iA B V+ + ; A B iV V V+ + ; A B iF B V+ +  

where F is the symbol for a foreign atom other than A and B. 

Differences such as B BV B−  or i iB V−  also constitute building 
units. 

3.1.4. Description and composition of a solid 

By introducing the concept of structure elements, we are able to 
consider them as the components of a solid solution because, in a real 
solid, their proportions are likely to vary continually (the 
compositional proportion of a structure element can vary without 
phase change, which is the distinguishing feature of a component in a 
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solution). We will see that we can take the solid described in terms of 
structure elements and apply the concepts of thermodynamics of 
solutions to it. In order to do so, we need to define properties which 
quantify the composition of the solid phase in terms of each of the 
structure elements which make it up. Several types of properties are 
used for this purpose. 

3.1.4.1. Fraction of sites 

The fraction of sites is the number of structure elements of a given 
type, divided by the total number of sites of that type of structure 
elements (whether occupied or vacant) in the same volume of the 
solid. 

Take, as an example, the case of barium oxide which, as we will 
see, has barium cations in interstitial positions. The fraction of sites 
for those barium ions is given by the ratio of the quantity (number of 
moles) of barium ions in that interstitial position to the total quantity 
of interstitial positions, whether occupied or otherwise, in that same 
volume. Thus, we will represent that fraction of sites as: 

i

Ba

v Ba

i

i

n

n n

°°

°°+
 [3.2] 

In cases where the structure element in question is very dilute, this 
expression can be simplified to: 

Ba

v

i

i

n

n
°°

 [3.3] 

It is this value that we will use in our thermodynamic studies using 
structure elements. 

3.1.4.2. Concentration 

To define the concentration, we use the same definition as that 
given for liquid solutions, i.e. it is the quantity of the structure element 
in question, divided by the volume of the phase. In our example of 
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barium cations in interstitial positions in barium oxide, the 
concentration is given by: 

Bai
n

C
V

°°

=  [3.4] 

3.1.4.3. Atomic fraction 

The atomic fraction is the quantity of the structure element  
divided by the total quantity of matter contained in the volume. In  
our example, the atomic fraction of interstitial barium ions would  
be: 

Ba

Ba O

i
n

n n
°°

+
 [3.5] 

where Ban  and On , respectively, represent the total quantities of 
barium and oxygen. 

It is easy to move from one of the properties defined above to 
another, using the molar masses and densities. 

3.2. Quasi-chemical reactions in solids 

The calculations for equilibrium states involving structure  
elements will be carried out using the quasi-chemical method, with 
equilibrium between reactions creating or involving those structure 
elements. 

3.2.1. Definition and characteristics of a quasi-chemical 
reaction between structure elements 

When a solid enters into a reaction, we accept that it is, in fact, the 
structure elements which react. Similarly, the production or 
elimination of a defect in a solid is the consequence of reactions 
which, necessarily, involve those structure elements. All these 
reactions can be represented by a formulation, similar to the 
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formulation of conventional chemical reactions, but using the symbol 
system of structure elements. We obtain what are known as quasi-
chemical reactions. 

Such reactions have a certain number of characteristics: 

– they must not alter the structure of the solid, and therefore must 
preserve the ratios between the numbers of the different sites in the 
solid. One consequence of this property is that a quasi-chemical 
reaction must be able to be written by using building units (we will 
exploit this property in section 3.3 to define the chemical potentials of 
the structure elements), or the structure elements, as a reaction in an 
aqueous solution can be written either using the ions or the neutral 
molecules that surround those ions; 

– quasi-chemical reactions must preserve the electrical charges, 
and in particular the effective charges; 

– they must preserve the chemical elements. 

As an example, we will examine the reaction between gaseous 
oxygen and barium oxide. This oxide has interstitial cations and 
contains free electrons and therefore an excess of cations. At 
equilibrium, this overstoichiometry is greater or lesser depending on 
the oxygen pressure, which reigns over the solid. This is due to a 
reaction which it is tempting to write with the usual chemical symbols 
in the form: 

(1 ) 2Ba O  O   (1 )BaO
2x
x x+ + = +  

where (1 )Ba Ox+  denotes the non-stoichiometric form of barium oxide 
(x > 0). 

Writing the reaction this way exhibits several disadvantages: 

– it suggests that, under the influence of the oxygen, the barium 
oxide automatically becomes stoichiometric, and thus that there are 
two forms of barium oxide – one stoichiometric and the other  
non-stoichiometric; 
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– it does not show which barium ions are directly involved in the 
reaction, because it does not distinguish between the ions in a normal 
position and those in an interstitial position; 

– it involves stoichiometric numbers (x) that vary with the 
pressure, which is rather odd for a stoichiometric number. 

Thus, we will systematically reject this type of formulation, which 
would also exhibit other disadvantages when we attempt to apply the 
laws of equilibrium, such as the law of mass action (it is difficult to 
imagine the role of x in such a scenario). 

To write the quasi-chemical reaction, we proceed as follows: 

– we write the ideal stoichiometric oxide in structure elements. We 
have the equivalence: 

Ba O iBaO  Ba O V≡ + +  

– we do the same for the non-stoichiometric form: 

(1 ) Ba O i iBa O  Ba O Ba (1 )V 2 'x x x xe+ ≡ + + + − +  

– we now substitute, into the above chemical equilibrium, the two 
forms of oxide as written above. After simplification of the elements 
present on both sides of the equation, we obtain the quasi-chemical 
reaction: 

i 2 Ba O i
1Ba 2e' O Ba O V2

°° + + = + +  

This clearly shows us that the addition of gaseous oxygen takes 
place at the expense of the barium ions in interstitial position and the 
free electrons, and only them. Note that the quantity x has 
disappeared, and we see that increasing the oxygen pressure, at 
equilibrium, decreases the number of interstitial barium ions (shifting 
the equilibrium toward the right), but this does not mean that the  
oxide automatically becomes stoichiometric. Note that  
this formulation preserves the ratios between sites, the effective 
charges and the elements, but the reaction results in the appearance of 
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a new building unit, causing an increase in the dimensions of the 
crystal. 

Quasi-chemical reactions may take place in the homogeneous 
phase within the solid, or be heterogeneous and occur at an interface 
between the solid and another phase. We will examine the different 
types of quasi-chemical reactions. 

3.2.2. Homogeneous quasi-chemical reactions in the solid 
phase 

These reactions take place within the solid phase. We can 
distinguish four categories of homogeneous reactions: electron 
reaction, reactions creating disorders (and conversely annihilating 
disorders), ionization reactions and addition reactions. 

3.2.2.1. Electron reaction 

An electron reaction is the recombination of the free electrons and 
electron holes, which is written as: 

e' h 0°+ =  [3R.1] 

The electrons involved are those in the conduction band, and the 
holes are at the top of the valence band in the energy diagram (see 
Figure 3.1). The Gibbs energy associated with that reaction is 
represented by the height of the gap. 

 

Figure 3.1. Representation of the electron reaction on the band diagram 
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3.2.2.2. Reactions creating disorders 

We will take the example of the creation of the Schottky disorder 
in a binary solid, which is written as: 

A B0 V Vn m= +  [3R.2] 

This reaction creates a new building unit of the crystal, whose 
dimensions therefore increase (conservation of the ratio of sites). 

3.2.2.3. Ionization reactions 

Any structure element can, a priori, be ionized either by fixing an 
electron (or releasing an electron hole) – for example, for a vacancy of 
A which fixes an electron: 

A AV e' V'+ =  [3R.3] 

or by fixing an electron hole (or releasing an electron) – for example, 
for an interstitial atom fixing a hole: 

i iA h A° °+ =  [3R.4] 

An electron donor defect introduces a new energy level into the 
gap band, near to the conduction band, and ionization is the passage of 
the electron from the element into that band (see Figure 3.2).  
However, a host element is situated in the vicinity of the valence band 
(Figure 3.2), from which it can capture an electron. 

 

Figure 3.2. Representation of ionization reactions  
in the band diagram 
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3.2.2.4. Addition reactions 

Addition reactions are reactions where structure elements 
combined. They are obviously very simple to write, such as in the 
creation of a bi-vacancy: 

A A A2V  (V ,V )=  [3R.5] 

Note that an ionization may be considered to be a particular 
addition reaction, combining a free electron or a hole with an atomic 
structure element. 

3.2.3. Inter-phase reactions 

Heterogeneous inter-phase reactions create or consume defects in 
the solid, with a different phase containing at least one element in 
common with the solid.  

For example, we can write the reaction of creation of an atom of B 
in an interstitial position in the unary solid B with the gas B2. 

This creation leads to the formation of an atom of B in an 
interstitial position in the solid B which we will write as iB , combined 
with the consumption of an interstitial vacancy Vi: 

2 i i
1 B V   B
2

+ =  [3R.6] 

3.3. Equilibrium states between structure elements in 
solids 

For the chemical potential (and for all the partial molar values) of a 
structure element, we again find the same difficulty as encountered in 
the case of ions. Indeed, it is impossible to maintain the quantities of 
elements for all types of structure elements of a solid, except for one of 
them because, in addition, the electrical neutrality but also the ratios 
between sites must be preserved in a transformation. In order to 
circumvent the difficulty, we use the same approach as with the ions, 
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noting that a reaction involving structure elements must also be able to 
be written by using building units instead, for which the definition of a 
partial molar value presents no difficulty. This means that, for any 
intensive value (and in particular for the Gibbs energy), the expression: 

r i i
i

X X=  [3.6] 

retains a true meaning, even though the individual terms iX  are 
imaginary in value. Thus, in the context of the application of relation 
[3.6], we can preserve the classic expression of the chemical potential 
for a structure element: 

R lno
i i ig T a= +  [3.7] 

Thus, as the expression of the affinity presents no problem, the 
deduction of the law of mass action to write the equilibrium 
conditions for a quasi-chemical reaction applies naturally. 

NOTE.– Schottky adopted the reasoning of statistical thermodynamics 
to obtain the expression of the law of mass action in terms of fractions 
of sites. His idea was to use the model of the perfect solution with a 
mixture of structure elements within the same solid phase. 

3.4. Thermodynamics of structure elements in unary solids 

A solid is said to be unary if, in the perfect state, it contains only a 
single type of element which we will write as M, occupying a single 
type of site.  

3.4.1. Structure elements of a unary solid 

The structure elements of a unary solid may be: 

– atoms or ions of M in the normal position in the lattice; 

– vacant interstitial positions; 

– vacancies of M, VM, either neutral or ionized; 

– atoms or ions of M in an interstitial position Mi; 
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– free electrons e’; 

– electron holes h°; 

– foreign atoms or ions in substitution FM or in insertion Fi; 

– combinations of the above elements. 

The first two types of structure elements are normal elements of the 
solid, while the others are native point defects. In general, a given solid 
contains several types of defects, which will be as many components in 
the thermodynamic sense of the term, and will form a solution with  
the normal elements. In practice, the problem boils down to the 
superposition of the equilibria of a base of the vector space. Usually,  
the defects are very dilute in comparison to the normal elements, so that 
they can be considered to be solvents with constant activity and the 
activities of the defects can be considered equal to their site fractions. 

To construct the basis of the vector space of the balance equations, 
besides the electronic equilibrium between electrons and holes, we 
will use the equilibria of the formation of defects: the vacancies, the 
interstitials and the equilibria of ionization and association. 

3.4.1.1. Formation of neutral vacancies 

Neutral vacancies are formed by displacement of atoms initially in 
the normal position within the lattice toward normal positions on the 
surface of the crystal or other extended defects such as dislocations. 
We say that the source (and, conversely, the well) of the vacancies is 
an extended defect. When the surface comes into play, this results in  
an increase in the crystal’s dimensions. If we take account of all the 
structure elements which are involved, the equilibrium of formation of 
the neutral vacancies is written as: 

MM(surf) + MM = MM(surf) + MM + VM + αVi  [3R.7] 

For the thermodynamic study, this formulation is simplified as: 

 0 = VM + αVi [3R.8] 

where α denotes the number of interstitial positions per atom of M in 
the crystal. 
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3.4.1.2. Ionization of vacancies 

The ionization of the vacancies can be written in two different 
ways, depending on whether the electrons or electron holes are 
involved. For example, to form a vacancy once ionized negatively, we 
would have: 

'
M MV e ' V+ =  (or '

M MV V h°= + ) [3R.9] 

NOTE.– If there are no neutral vacancies, we can directly write the 
formation of the ionized vacancies by superposing the equilibria 
[3R.8] and [3R.9], in the form: 

e’ = V’M + αVi [3R.10] 

3.4.1.3. Formation of neutral interstitials 

An atom which is placed in an interstitial position can only come 
from an atom in the normal position on the surface of the crystal (or 
from an extended defect), even if this displacement happens little by 
little. The equilibrium of formation of the interstitial is written as: 

i iM V M+ =  [3R.11] 

The surface vacancy that is necessarily formed is not taken into 
account, because in actuality, it merely expresses the fact that the 
displacement of the surface is accompanied by a decrease in the 
crystal’s dimensions. 

NOTE.– If we choose an atom of the volume to form the atom in an 
interstitial position, we would simultaneously introduce the creation of 
a vacancy of M. 

3.4.1.4. Ionization of the interstitials 

Similarly as for the vacancies, the ionization of the interstitials can 
be written in two ways, depending on whether the free electrons or the 
electron holes are involved. For example, to positively ionize the 
interstitials, we can write: 

i iM M e'°= +  (or i iM h M° °+ = ) [3R.12] 
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As is the case for the vacancies, the direct formation of ionized 
interstitials is written as follows, by superposition of the equilibria 
reactions [3R.11] and [3R.12] for positive interstitials: 

i iM V M e'°+ = +  [3R.13] 

Of course, to each of the equilibria, we can apply the law of mass 
action, usually with the approximation of very dilute defects. 

3.4.2. Global equilibrium of an isolated crystal – influence 
of temperature 

In order to determine the global equilibrium conditions, we 
superimpose the partial equilibria. The equilibria that need to be taken 
into account depend on the nature of the defects taken into account for 
the solid. In general, for a given solid, the number of types of defects 
needing to be taken into account is relatively limited. For example, we 
will look at the case where six types de defects, four of which are 
ionized, come into play. 

Thus, let us consider a solid M which, in addition to the normal 
elements, contains the following elements: 

– vacancies of M, VM, neutral or once ionized negatively V’M; 

– atoms of M in interstitial positions Mi, neutral or once ionized 
positively Mi

°; 

– free electrons e’; 

– electron holes h°. 

The system of equations to be solved will involve application of 
the law of mass action to the equilibria [3R.1], [3R.8], [3R.9], [3R.11] 
and [3R.12], whose equilibrium constants are, respectively, eK , VK , 

1K , nK  and 2K , to which we must add the expression of electrical 
neutrality, written as: 

[ ] [ ]i ih M V' e'° °+ = +   [3.8] 
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We can see that the exact calculation quickly becomes complex. In 
order to simplify it, we apply Brouwer’s approximation, known as the 
majority state approximation, to relation [3.8]: the expression of 
electrical neutrality. Thus, relation  [3.8] will assume one of the 
following four extreme forms, each of which defines a temperature 
region: 

Region 1: [ ]h e'° =  [3.9a] 

Region 2: [ ]iM e'° =  [3.9b] 

Region 3: [ ]i iM V'° =  [3.9c] 

Region 4: [ ]ih V'° =  [3.9d] 

Table 3.6 gives the expressions of the concentrations of the 
different defects in the different regions. 

It can be remarked upon that the values of the concentrations of the 
neutral species do not depend on the region, which is obvious because 
those concentrations, which are not involved in the equation of 
electrical neutrality, are unaffected by the choice of a given 
approximation. 

The limits of the regions can also be expressed as a function of the 
different equilibrium constants; for this purpose, we need only express 
two inequalities for each of the regions, so: 

Region 1: [ ] [ ]MV' e '<<  and M h° °<<   [3.10a] 

Region 2: [ ] [ ]MV' e '<<  and M h° °>>   [3.10b] 

Region 3: [ ] [ ]MV' e '>>  and M h° °>>   [3.10c] 

Region 4: [ ] [ ]MV' e '>>  and M h° °<<   [3.10d] 
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For each region, if we replace relation [3.8] with one of the 
relations [3.10], we calculate the concentrations of the different 
structure elements. These results are collected in Table 3.6. 

Defect Region 1 Region 2 Region 3 Region 4 

[ ]e'  eK  2 nK K  2

1

n

V

K K
K K

 
1

e

V

K
K K

 

h°  eK  
2

e

n

K
K K

 1

2

V
e

n

K K
K

K K
 1e VK K K  

[ ]iV'  1 V eK K K  1 2V nK K K K  1 2 n eK K K K  1 n eK K K  

iM°  2 n

e

K K
K

 
2 nK K  1 2 n eK K K K  1

2
V

n
e

K K
K K

K
 

[ ]iV  VK  VK  VK  VK  

iM  nK  nK  nK  nK  

Table 3.1. Equilibria of a solid with six defects, four of which are charged 

If, for each region, we substitute back the expressions of the 
concentrations drawn from Table 3.6, we can deduce the conditions 
for the equilibrium constants: 

Region 1: 1 1VK K << and 2 n eK K K<<   [3.11a] 

Region 2: 1 1VK K << and 2 n eK K K>>   [3.11b] 

Region 3: 1 1VK K >> and 2 n eK K K>>   [3.11c] 

Region 4: 1 1VK K >> and 2 n eK K K<<   [3.11d] 

It is obvious that, for a given solid, not all the conditions may be 
possible in its domain of stability, which would reduce the number of 
regions to be taken into account. 

In order to express the different concentrations as a function of the 
temperature, we merely need to apply the van’t Hoff law expressing 
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the equilibrium constant with the temperature through the 
corresponding standard enthalpies. 

Similarly, we could also study the equilibria of the crystal with its 
vapor by adding an equilibrium of phase change between the structure 
elements of the solid and the vapor, such as, for instance: 

M M 2M V 1/ 2M (gas)= +   [3R.14] 

For a solid exhibiting neutral vacancies and a diatomic vapor, it is 
clear that the solid–vapor equilibrium chosen must be written with 
structure elements that are supposed to be present in the solid. 

3.5. Thermodynamics of structure elements in 
stoichiometric binary solids 

A solid is said to be binary if it ideally contains at least two 
structure elements occupied by atoms or ions. We sometimes 
encounter: 

– two different chemical elements on sites of the same nature; 

– two different chemical elements on two different types of sites; 

– a single chemical element on two different types of sites. 

The second case is, by far, the most important. It pertains, for 
example, to metal oxides, sulfides, halogenides, etc. Our study will 
pertain to this type of binary. 

Our binary solid contains at least two elements, written as A and B, 
and at least three types of normal sites: sites of A, sites of B and at 
least one type of interstitial sites. In such binary compounds, we can 
find the following atomic defects, charged or non-charged: 

– vacancies of A; 

– vacancies of B; 

– atoms of A in an interstitial position; 

– atoms of B in an interstitial position; 
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– atoms of A on sites of B; 

– atoms of B on sites of A. 

Experience leads us to classify these solids into two families: 
stoichiometric solids and non-stoichiometric solids. 

A solid is said to be stoichiometric if the ratio of the quantities of 
the two elements A and B remains constant and equal to its theoretical 
value in the perfect crystal. The ratio between the number of sites of A 
and the number of sites of B also remains constant. These two 
constants mean that we must have at least two types of defects 
occurring simultaneously. This set of two defects present 
simultaneously is known as a disorder. We can see from the list of 
defects set out above that there are six classes of disorders with two 
defects, which are classified into two groups: symmetrical disorders 
and anti-symmetrical disorders. In practice, we find only four types of 
disorders with two defects. 

3.5.1. Symmetrical disorders in stoichiometric binary solids 

A disorder is symmetrical if one of the two defects which make it 
up involves the lattice of the element A and the other the lattice of the 
element B. In practice, we find Schottky disorder and the anti-
structure disorder. 

Schottky disorder is the simultaneous presence of vacancies of 
each of the two chemical species, with these vacancies being in 
stoichiometric proportions to maintain the ratio between the numbers 
of sites. 

This disorder is formed under the influence of the temperature, by 
transformation of the normal sites of A and B within the solid at the 
normal sites of A and B on the surface, which results in an increase in 
the dimensions of the crystal. In the case of a compound with the 
theoretical formula BmAn, the reaction of formation of the disorder can 
be written as: 

A B i0 V V Vn m= + +   [3R.15] 
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The equilibrium constant Ks depends on the temperature, through 
the van’t Hoff law, and the standard enthalpy of the reaction 0

S H . 

The anti-structure disorder is the simultaneous presence of two 
types of exchanged atoms AB and BA. As these exchanges do not alter 
the stoichiometry, the equilibrium of formation of the disorder is 
written as follows, regardless of the values of the numbers m and n in 
the theoretical formula: 

A B B AA B A B+ = +   [3R.16] 

The well and the source of disorder are on the actual sites. The 
corresponding equilibrium constant KA also depends on the 
temperature on the basis of the standard enthalpy 0

AH . 

The anti-structure disorder is encountered particularly if the two 
elements A and B have similar properties (comparable volumes, close 
electronegativity values, etc.), as happens in certain inter-metallic 
compounds. This is the disorder that is created during the 
transformation from order to long distance disorder in alloys (see 
Chapter 2). 

3.5.2. Asymmetrical disorders in stoichiometric binary 
solids 

In an asymmetrical disorder, the two defects that make it up 
pertain to the same sub-lattice of A or of B. In practice, we find only 
two families of anti-symmetrical disorders: Frenkel disorder and so-
called “AS” disorder. 

Frenkel disorder is the simultaneous presence of vacancies and 
interstitials of the same element. Thus, we have two possible Frenkel 
disorders for a binary system: Frenkel disorder on the element A and 
on the element B. Frenkel disorder is essentially found if there is a 
significant difference between the dimensions of the atoms of A and 
those of the atoms of B. It is for the smallest element (so as to 
accommodate the small atom in an interstitial position in the cavities 
left by the sub-lattice of the largest) that the Frenkel disorder is most 
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likely to occur, as it is found in silver halides, which have Frenkel 
disorder in the silver. 

Let us choose Frenkel disorder on A. Regardless of the values of 
the numbers m and n, the formation reaction is written as: 

A i i AA V A V+ = +   [3R.17] 

The disorder does not alter the stoichiometry of sites, so the 
expression of the law of mass action does not involve the coefficients 
m and n. The equilibrium constant KF(A) depends on the temperature 
by the standard enthalpy of formation 0

(A)F H . 

The AS disorder is characterized by the simultaneous presence of 
vacancies and exchanged atoms of the same nature. Thus, we will 
have two possibilities of AS disorder: either on the sublattice of A 
with the defects VA and AB, or on the sublattice of B with the defects 
VB and BA. The equilibrium of formation of disorder is written as: 

A B AA A 1 Vn
m

= + +   [3R.18] 

The creation of the disorder leads to the formation of a new 
building unit of the solid BmAn. 

The possibility of the existence of atom exchange leads to 
necessary conditions similar to those encountered for anti-structure 
disorder (dimensions and electronegativities very close to those of the 
atoms of A and of B). This type of disorder is found essentially for 
inter-metallic compounds. An example is the AS disorder on the 
nickel in NiAl. 

NOTE.– There is another disorder with two defects: the disorder of 
cationic distribution, which is found for binary compounds possessing 
two types of cationic sites. Such is the case, for example, in the spinel 
structure of Fe3O4, which has tetrahedral cationic sites and octahedral 
cationic sites, between which the Fe3+ and Fe2+ ions are distributed. 
This disorder is dealt with in the same way as the anti-structure  
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disorder. In fact, this type of compound is closer to a ternary 
compound than to a binary compound, with the Fe3+ and Fe2+ ions 
being considered to be different components. 

3.6. Thermodynamics of structure elements in  
non-stoichiometric binary solids 

In numerous solids there are differences, sometimes very slight (of 
around 10-4), in the ratio between the quantities of the two elements, 
but the ratio of the quantities of sites is still the same as in the ideal 
solid. These solids are said to be non-stoichiometric. The presence of 
electrons or electron holes in such ionic solids lends them the 
properties of semiconductors. 

3.6.1. Deviations from stoichiometry and point defects 

For a compound with the theoretical formula BmAn, the result of 
the chemical analysis shows deviations from theoretical stoichiometry 
m/n. The real formula can then be written in one of the following four 
forms, which we write in the case of an excess of B in relation to the 
theoretical value: 

B
B Am n+  or 

B(1 ' )B Am n+  or 
A-B Am n  or 

B
B Am n+  

This deviation from stoichiometry can also be expressed as the 
difference between the real ratio and the theoretical ratio: 

B B
B

m m m '
n n n n
+= − = =   [3.12] 

To express the values , B  or B'  in terms of concentrations of 
defects, we use the following relations: 

The result of the raw chemical analysis which gives us: 

[ ]
[ ]
B
A

total B

total

m
n
+=   [3.13] 
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Generally speaking, the solid simultaneously contains vacancies of 
A, of B, interstitial atoms of A and B and the atoms of A and B 
exchanged. As all these species may be ionized to a greater or lesser 
degree. We use the notation BV  to denote the total concentration of 
vacancies of B, ionized or otherwise. We use the same formulation for 
the concentrations of the other species, then the relation of 
conservation of sites is written as: 

[ ] [ ] [ ]
[ ] [ ] [ ]

B B B

A A A

B A V
A B V

m
n

+ +
=

+ +
  [3.14] 

The balance on the species A, which is written as: 

[ ] [ ] [ ] [ ]A B iA A A A
total

= + +   [3.15] 

The balance on the species B which is: 

[ ] [ ] [ ] [ ]B A iB B B B
total

= + +   [3.16] 

By combining equations [3.13], [3.14], [3.15] and [3.16], we obtain: 

[ ] [ ] [ ] [ ]{ } [ ] [ ] [ ] [ ]{ }
[ ]

A i B B B i A A

l

B B A V A A B V
AB

tota

n m+ − − + + − −
=   [3.17] 

This expression can also be written in the form: 

[ ] [ ] [ ] [ ]{ }
[ ]

[ ] [ ] [ ] [ ]{ }
[ ]

A i B B B i A AB

l l

B B A V A A B V
A Atota tota

m
n n

+ − − + − −
= −   [3.18] 

However, if the defects are very dilute, we can accept the 
approximation: 

[ ]
[ ]
B
A

total

total

m
n

=   [3.19a] 

and therefore [ ] [ ]A B
total total

n
m

=   [3.19b] 
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Thus, equation [3.18] becomes: 

[ ] [ ] [ ] [ ]
[ ]

[ ] [ ] [ ] [ ]
[ ]

A i B B B i A AB

l l

B B A V A A B V
B Atota tota

m
n n

+ − − + − −
= −   [3.20] 

This expression shows that  (or B ) is the difference between 
two terms: 

– one accounts for the excess species B; 

– the other accounts for the excess species A. 

If the first term is predominant, then we would have an overall 
excess of B. If, however, the second term is greater, we would have an 
overall excess of A, in which case the value of B  would be negative. 

3.6.2. The predominant defect method – the Wagner 
classification 

Considering that in ionic compounds a defect of exchanged ions  
is highly improbable, and that very often, a disorder constitutes  
a defect of matter, and an electron defect is present in much  
larger amounts that other disorders, Wagner classified  
ionic compounds into four classes, with each class being characterized 
by a predominant defect. This approximation, and the  
fact that [ ] [ ]B AA B 0= = , simplify relation [3.20]. In every case, the 
electronic part of the disorder (electrons or electron holes) can be free 
or trapped on other structure elements, normal elements or atomic 
defects. 

3.6.2.1. Compounds with predominant anionic vacancies 

Such compounds are characterized by the following 
concentrations: 

[ ]AV 0≠  [ ] [ ] [ ]B i iV B A 0= = =   [3.21] 

The deviation from stoichiometry is then simply expressed as: 
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[ ]
[ ]

[ ]
[ ]

A A

A

V V
A A

total

m m
n n

= ≅   [3.22] 

Electrical neutrality is assured by an electronic part made up of 
free or trapped electrons, which lends this group the properties of a 
semiconductor n. Cerium oxide CeO2 is an example of a substance 
belonging to this family. 

3.6.2.2. Compounds with predominant interstitial cations 

Such compounds are characterized by the following 
concentrations: 

[ ]iB 0≠  [ ] [ ] [ ]B A iV V A 0= = =   [3.23] 

The deviation from stoichiometry is then simply expressed as: 

[ ]
[ ]

[ ]
[ ]

i i

B

B B
B B

total

m m
n n

= ≅   [3.24] 

Electrical neutrality is assured by an electronic part composed of 
free or trapped electrons, which lends this group the properties of a 
semiconductor n. We can cite barium oxide BaO as an example of a 
substance that belongs to this family. 

3.6.2.3. Compounds with predominant cationic vacancies 

Such compounds are characterized by the following 
concentrations: 

[ ]BV 0≠
 [ ] [ ] [ ]A i iV B A 0= = =   [3.25] 

The deviation from stoichiometry is then simply expressed as: 

[ ]
[ ]

[ ]
[ ]

B B

B

V V
A B

total

m m
n n

= ≅   [3.26] 



Non-stoichiometry in Solids     173 

Electrical neutrality is ensured by an electronic part made up of 
free or trapped electron holes, giving this group semiconductive 
properties p. We can cite iron (II) oxide FeO as belonging to this 
family. 

3.6.2.4. Compounds with predominant interstitial anions 

Such compounds are characterized by the following 
concentrations: 

[ ]iA 0≠  [ ] [ ] [ ]B i AV B V 0= = =   [3.27] 

The deviation from stoichiometry is then simply expressed as: 

[ ]
[ ]

[ ]
[ ]

i i

A

A A
A A

total

m m
n n

= ≅   [3.28] 

Electrical neutrality is assured by an electronic part made up of 
free or trapped electron holes, which gives this family the properties 
of a semiconductor p. For example, we can cite uranium oxide UO2 as 
belonging to this family. 

Ultimately, the Wagner solid is characterized by a disorder with an 
atomic defect and an electronic defect. Table 3.7 shows the four 
Wagner cases, each time specifying the sign of the electronic defect 
and the type of semiconductor. 

Predominant defect Sign of the charge carrier Type of semiconductor 

Anion vacancies – n 

Interstitial cations – n 

Cation vacancies + p 

Interstitial anions + p 

Table 3.2. The four Wagner cases of the predominant defect 
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3.6.3. Equilibrium of a Wagner solid with one of its gaseous 
elements 

The Wagner approximation is sometimes sufficient to study the 
defects of a solid in a chemical equilibrium. For example, we can 
easily study the equilibrium of a Wagner solid with an oxidizing or 
reducing gas, in pressure domains which maintains the solid in 
question stable. Let us look, for instance, at the equilibrium of the 
defects in cerium oxide with the oxygen pressure in the pressure 
domain of stability of that oxide. We can see that, because cerium 
oxide is a solid with anionic vacancies, an increase in oxygen pressure 
brings the solid closer to stoichiometric composition. The quasi-
chemical reaction with oxygen can be written in the form: 

'
O Ce O Ce 2O Ce V 2Ce 1/2O°°+ = + +   [3R.19] 

The application of the law of mass action to that equilibrium, with 
the hypothesis of ideal solutions, gives us: 

2

' 1/2
O Ce OV CeK P°°=   [3.29] 

We can easily deduce the expression of the concentrations of 
defects as a function of the oxygen pressure, so: 

( )
2

1/3' 1/6
O Ce O2 V Ce 2K P°° −= =   [3.30] 

The concentration of defects decreases when the oxygen pressure 
increases. 

The reasoning would be the same for a reaction in the presence of a 
reducing gas – e.g. with hydrogen, an increase in the pressure of that 
gas will take the solid further away from stoichiometry. The reaction 
is written as: 

'
2 O Ce O Ce 21/2H O Ce V 2Ce H O°°+ + = + +   [3R.20] 

The application of the law of mass action enables us to 
immediately formulate the variations in the concentrations of defects 



Non-stoichiometry in Solids     175 

with the ratio of the partial pressures of hydrogen and water vapor. 
Thus, we can show that the concentrations of defects increase when 
we raise the partial pressures of hydrogen and water vapor. 

3.6.4. General equilibrium of a non-stoichiometric binary 
solid with one of its gaseous elements 

In the hypothetical case where the approximation of the 
predominant Wagner defect is no longer sufficient, the solid will 
contain several atomic defects, and the examination of its behavior in 
an equilibrium state will involve the superposition of chemical 
equilibria – some internal to each of the phases present, and others 
expressing inter-phase transfers. We can see that we soon find 
complex systems of the same type as those encountered with ionic 
equilibria in an aqueous solution. However, to formulate approximate 
solutions, Brouwer used the approximation of the majority defect 
which we already encountered in section 3.4.2. 

For example, consider a compound AB exhibiting the following 
defects: 

'
A B A A i iA ,B ,V ,V ,A ,A , e' and h° °  

We wish to study the equilibrium of that compound with the  
gas B2. 

The deviation from stoichiometry is linked to the concentrations of 
defects, in line with the use of relation [3.20], as follows: 

'
i i A AA A -V -V°= +   [3.31] 

We are going to determine the concentrations of the different 
defects, in isothermal conditions, as a function of the partial pressure 
of the gas B2. In order to do so, we will look at the different equilibria. 

3.6.4.1. Internal equilibria in the solid  

Let us write the independent equilibria of formation of the defects. 
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– formation of a neutral vacancy of A and an interstitial atom A 
(Frenkel disorder): 

i A0 A V= +  with [ ]i AA VFK °=   [3.32] 

– ionization of the vacancy of A: 

'
A AV e ' V+ =  with 

[ ] [ ]

'
A

1

A

V

V e'
K =   [3.33] 

– ionization of the interstitial atom A: 

i iA h A° °+ =  with 
[ ]

i

2

i

A
K

A h

°

°
=   [3.34] 

– electronic equilibrium:  

0 e' h°= +  with [ ]e' hiK °=   [3.35] 

To these equations, we have to add the condition of electrical 
neutrality: 

[ ]'
A iV  e'  h  A° °+ = +   [3.36] 

3.6.4.2. Transfer of atoms between the two phases 

We will write an inter-phase equilibrium which involves only 
the defects taken into account in the above equilibria. Let us 
choose the neutral vacancy of A, which enables us to write the 
equilibrium in the form: 

2 B A1/ 2B B V= +  with 
[ ]

2

A
1/2
B

V
PBVK =    [3.37] 

We can easily show that any other transfer equilibrium is a linear 
combination of the above one and the internal equilibria. 
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3.6.4.3. Solving the system 

We have six independent relations [3.32], [3.33], [3.34], [3.35], 
[3.36] and [3.37] for seven unknowns, which are: 

[ ] [ ] [ ]
2

'
A A i i BV , V , A , A , e' , h  and P P° ° =  

Thus, we can express all the unknowns as a function of one of 
them – e.g. the pressure P of B2. 

In fact, the system thus obtained is complex to solve, particularly 
when we do not have the numerical values of the equilibrium 
constants. We can simplify the calculation by using Brouwer’s 
majority defect approximation, which, remember, involves 
considering only the two largest terms (one with each sign) in the 
expression of electrical neutrality [3.36]. Thus, in our example, we 
would have four Brouwer cases, defined by: 

Case 1: [ ]iA  e'  ° =          Case 2: [ ]e'   h°=  

Case 3: '
A iV A°=        Case 4: '

AV  h°=  

NOTE.– In each case, these expressions define the majority defects, 
which may not necessarily be the predominant defects in Wagner’s 
sense. Indeed, the neutral defects, which do not appear in the 
expression of electrical neutrality, may be present in larger amounts 
than the majority defects and become predominant. 

Table 3.8 gives the expressions of the concentrations of each of the 
defects. Each Brouwer case corresponds to a pressure domain, which 
we will write explicitly. For this purpose, let us set: 

1
1

1

BV

R
K K

=  [3.38a] 

and 2
2

F

BV

K K
R

K
=   [3.38b] 
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If we replace the concentrations in the inequalities, we obtain the 
following conditions: 

Case 1:
[ ] '

A

i

e' V

h A° °

>>

<<
 so 

2
1
2
2

;
P R
P R

<<
<<

 Case 2:
[ ] '

A

i

e' V

h A° °

>>

>>
 so 

2
1
2
2

P R
P R

<<
>>  

Case 3:
[ ] '

A

i

e' V

h A° °

<<

<<
 so 

2
1
2
2

;
P R
P R

>>
<<  Case 4:

[ ] '
A

i

e' V

h A° °

<<

>>
 so 

2
1
2
2

P R
P R

>>
>>

 

We can see that the four cases are not possible simultaneously for 
the same solid, and that we must envisage two possibilities depending 
on the relative values of R1 and R2 at the temperature in question: 

1st possibility: if 2 1R R>   [3.39] 

If the pressure P increases, we successively encounter cases 1, 3 
and 4. 

Species Region 1 Region 2 Region 3 Region 4 

[ ]e'  1/42 i F

BV

K K K
P

K
−  iK  1/22

1

1 F i

BV

K K K
P

K K
− 1/4

1

i

BV

K
P

K K
−  

h ° 1/ 4

2

BV i

F

K K
P

K K
 iK  1/21

2

i
BV

F

K K
K P

K K
 1/ 4

1i BVK K K P  

'
AV 1/ 4

1 2i F BVK K K K K P 1 BV iK K K P 2 1i FK K K K  1/ 4
1i BVK K K P  

0
iA 1/ 4

2

BV i

F

K K
P

K K
 2 1/ 2F i

BV

K K K
P

K
−

2 1i FK K K K  1/41
2

i
F

BV

K K
K K P

K
−

[ ]AV BVK P  BVK P  BVK P  BVK P  

iA F

BV

K
K P

 F

BV

K
K P

 F

BV

K
K P

 F

BV

K
K P

 

Table 3.3. Concentrations of defects at equilibrium of a binary with a gas 

2nd possibility: if 2 1R R<   [3.40] 

Only the succession of cases 1, 2 and 4 will be possible. 
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Figure 3.3 illustrates the curves giving the concentrations of the 
different species as a function of the pressure of B2 in the case where 
R2 < R1. The diagram obtained is known as a Kröger–Vink diagram. 
The diagram is plotted on the basis of the approximate expressions 
given in Table 3.8. In theory, the true curves are not straight lines, so 
strictly speaking, the lines drawn here are merely asymptotes to the 
real curves. The breaks which appear in the diagram are solely due to 
Brouwer’s approximations. 

Note that the zone furthest to the left in Figure 3.3 corresponds to 
the case of the Wagner solid with an interstitial cation A and free 
electrons, while the zone furthest to the right corresponds to the case 
of a Wagner solid with a cationic vacancy and free electron holes. 
Thus, we can show the possibility, with the same solid, of moving 
from a semiconductor n to a semiconductor p merely under the 
influence of the gas pressure. 

NOTE.– For a given system with a given solid and gas, the pressure 
domain covered depends on the stabilities of the system and is, in fact, 
limited by equilibria of phase change such as the condensation of gas 
B2, the stability of the compound AB, etc. Hence, in real cases, it is 
extremely rare to obtain three zones for the same system. 

 

Figure 3.3. Representation of a Kröger–Vink diagram 
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3.7. Representation of complex solids – example of metal 
oxy-hydroxides  

We can easily imagine that increasing the complexity in the 
description of a solid in its structure elements when we switch from 
binary solids to ternary, quaternary (etc.) solids. Certain simplification 
methods are used to correctly model the behavior of solids more 
complex than binaries. These degeneration methods enable us to 
decrease the number of structure elements taken into account. We will 
cite two fairly common examples. 

3.7.1. The pseudo-binary approximation 

In a solid, there may be different kinds of bonds between the 
atoms, meaning that we can group together several atoms bound 
together in a single structure element. Such is the case with ionic 
compounds containing complex ions: the atoms which make them up 
are linked by covalent bonds, and each complex ion will behave like a 
unique element on a unique site. 

Such is the case, for example, with metal carbonates in which we 
can define the metal cations, on the one hand, and the carbonate 
anions on the other hand, as normal structure elements. We will not 
distinguish the behavior of the individual oxygen atoms. Thus, these 
compounds can be considered to be binaries, so this approximation is 
referred to as “pseudo-binary”. These compounds may, of course, 
contain defects, such as an oxygen ion on an anionic site which is 
normally occupied by a carbonate ion. 

3.7.2. The predominant-defect generalization  

As Wagner did with binary compounds, in a more complex solid, it 
is possible to take account only of the defects deemed to be 
predominant and describe the solid in view only of those defects. 

Let us take the example of metal oxy-hydroxides such as boehmite 
(AlOOH). We can describe the ideal solid using the following 
structure elements: 
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AlAl, OHOH and OO 

True boehmite exhibits defects in relation to the sites of the 
hydroxyl groups. The defect of an oxygen ion in substitution of OH 
(which must not be confused with an oxygen ion in the oxygen 
position) is taken to be the predominant defect. So that electrical 
neutrality is respected, thus results in the presence of vacancies of OH- 
ions, such that we have: 

'
OH OHO V°=   [3.41] 

Because of the conservation of the sites of the OH ions, we need 
the relation: 

'
OH OH OHO V OH 1°+ + =   [3.42] 

Hence, for the description of the properties of boehmite linked to 
the loss of water, we do not need to worry about the aluminum ions 
and oxygen ions placed in their normal positions. The departure of the 
water is expressed by the reaction: 

OH 2 OH OH2OH H O V O° −= + +   [3R.21] 

By studying this equilibrium, we can find the concentrations of the 
different structure elements in question, as a function of the water 
vapor pressure. 

The concept of a structure element and that of non-stoichiometry 
are most important in understanding phenomena involving solids, 
such as electrical conductivity, the mechanisms of heterogeneous 
reactions and certain optical and magnetic properties. 

3.8. Determination of the equilibrium constants of the 
reactions involving structure elements 

All quasi-chemical reactions involving structure elements, and in 
particular, point defects (which we saw above), obviously involve 
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equilibrium constants that need to be determined. In most cases, these 
constants are calculated on the basis of data gleaned by statistical 
thermodynamics. 

3.8.1. Recap on calculating the equilibrium constants using 
statistical thermodynamics 

The reactions which we have encountered, with the exception of 
the inter-phase reactions, take place in the solid phase, so all the 
components in the reaction are components of the same solid solution. 

For such a solution, the variation in volume due to the reaction is 
negligible, and therefore we will have:  

( ) ( ) ( )r r r rG T F T P V F T= + ≅   [3.43] 

We can express the Helmholtz energy using statistical 
thermodynamics, remembering that the molecules of solid are 
considered to be discernible molecules. If we have a population of Ni 
molecules of the species i which each have a molecular partition 
function zi, then the Helmholtz energy of that species i is written as: 

B( ) (0) k lni i i i iN F T F N T z− = −   [3.44] 

In this expression, the solution is taken to be perfect, because no 
account is taken of an enthalpy of mixing. 

In standard conditions, at temperature T, the Helmholtz energy of n 
moles of the component i becomes: 

0 0( ) (0) R lni i i if T f n T z= −   [3.45] 

0 (0)if  is the standard molar Helmholtz energy of the pure 
component i at the temperature of 0 K. At this temperature, the 
entropy of all the species is zero, and therefore the Helmholtz energy 
is identical to the internal energy which, in view of approximation 
[3.43], is identical to the enthalpy at 0 K, so: 

0 0(0) (0)i if u≅  [3.46] 
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For a reaction in which the stoichiometric numbers are ai, we write: 

0 0( ) (0) R lnr i i i i
i i

f T a f T a z= =   [3.47] 

By definition, and in view of relation [3.43], the equilibrium 
constant is: 

0 0R ln ( ) ( )x r rT K g T f T− = =   [3.48] 

Using relations [3.46] and [3.47], we find: 

( )0R ln (0) R ln ia
x r i i

i

T K u T z− = − ∏   [3.49] 

Thus, for the equilibrium constant relative to the molar fractions: 

( ) 0exp
R

ia r
x i

i

u
K z

T
= −∏    [3.50] 

In the case of solids, the only terms included in the partition 
function are: 

– the coefficient of multiplicity of the electron state ,
ieg  which 

usually takes the value of 1 but, in the presence of charged species 
which have one free electron, takes the value of 2 (two spin states); 

– the vibration term which, in most cases, is simply written in the 
form: 

Bk
hv

i

T
z =  [3.51] 

The frequency ν is the vibrational frequency of the lattice in the 
Einsteinian approximation. 

If we substitute these values back into relation [3.50], the 
equilibrium constant (relative to the molar fractions) becomes: 

0Bk
exp

h R

i

i

a

r
x e

i i

uT
K g

T
= −∏    [3.52] 
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We can see that this relation is the product of two terms: the pre-
exponential term and the variation in internal energy due to residual 
vibrations at the temperature of 0 K. 

NOTE.– The equilibrium constant expressed by relation [3.52] is that 
which pertains to the activity levels. If we use the concentrations, we 
can easily show that, for very dilute solutions, which is generally the 
case for point defects: 

– the activity coefficient relative to the concentrations (molar-
solution reference) is practically equal to the activity coefficient in the 
pure-substance reference; 

– if we let 0
0v  denote the molar volume of the solvent the solid 

here), the equilibrium constant relative to the concentrations is 
expressed, on the basis of the constant Kx, by the relation: 

( )0
0

i
ic xK K v=  [3.53] 

3.8.2. Examination of the pre-exponential term in the  
quasi-chemical equilibrium constants 

To begin with, we can accept the hypothesis that a point defect 
does not affect the lattice’s fundamental vibration frequency,  
and therefore the term ν in relation  [3.51] does not depend on  
the species involved in the quasi-chemical reaction. For ionic 
compounds, we sometimes choose one anionic vibration frequency 
and one cationic frequency. Certain authors, such as Mott [MOT 38], 
opt instead for a half frequency for the defect. We will now examine a 
few examples, with the vibration frequency being kept constant and 
unique. 

3.8.2.1. Creation of a vacancy 

The reaction is written as: 

0  V [3R.22] 
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Remembering that the “0” on the left-hand side of the above 
reaction actually represents the ideal solid, the pre-exponential term 
would be: 

1
0 B B
V

k k 1
h hi i

T T
K

−

= =   [3.54] 

3.8.2.2. Creation of an interstitial atom 

The reaction is written as: 

M i i
(perfect critical)
M V M+ ⇔  [3R.23] 

The pre-exponential term would be: 

1
0 B B
V

k k 1
h hi i

T T
K

−

= =   [3.55] 

3.8.2.3. Association of two vacancies 

The reaction is written as: 

2V  (V)2 [3R.24] 

Hence, the pre-exponential term would be: 

2 1
0 B B B
V

k k k
h h hi i i

T T T
K Z Z

− −

= =   [3.56] 

Z is the number of near neighbors of a vacancy, because a 
bivacancy has Z equivalent positions, which gives us the multiplicity 
coefficient Z for the vibrational partition function – e.g. 6 for a cubic 
centered lattice. 

3.8.2.4. Ionization of a vacancy 

The reaction is written as: 

Vi +e’  V’ [3R.25] 
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Thus, the pre-exponential term would be: 
1

0 B B B
V

k k k1
h h hi i i

T T T
K

−

= =   [3.57] 

The coefficient 1 represents the assumption that the ionized 
vacancy has one free electron. 

3.8.2.5. Creation of a Schottky disorder 

The reaction is written as: 

0  VA+VB [3R.26] 

Thus, the pre-exponential term would be: 
1

0 B B B
V

k k k
h h hi i i

T T T
K

−

= =   [3.58] 

3.8.2.6. Creation of a Frenkel disorder 

The reaction is written as: 

M+Vi  Mi +VM [3R.27] 

Hence, the pre-exponential term would be: 
2 2

0 B B
V

k k 1
h hi i

T T
K

−

= =   [3.59]   

3.8.2.7. Inter-phase exchange reaction 

Let us examine the equilibrium between an atom B of the lattice 
and the gas B2. The reaction is written as: 

BB  VB +1/2[B2] [3R.28] 

In the case of a gas, it is wise to take account of the translational 
partition function expressed in relation to the molar volume and the 
rotational partition function (with the moment of inertia I). The  
pre-exponential term becomes: 
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1/ 21 3/ 2 2
0 0B B B B
V 2 2

1/ 23/ 2 2
0 B B

2 2

k k 2 k 4 k
h h h h

2 k 4 k
h h

B
i i

B

T T m T I T
K v

m T I T
v

−

=

=

  [3.60] 

The term m is the mass of the molecule B2 and 0
Bv  is its molar 

volume. 

3.8.2.8. Case of electron equilibrium 

The electron equilibrium reaction is written as: 

0  e’ + h° [3R.29] 

Fundamentally, electrons and holes behave like monatomic gases 
in the volume of the solid. That being the case, the partition function 
includes only the molar translation term, which immediately gives us 
the pre-exponential term: 

3
0 B
e 2

2 k
4

h
m T

K =   [3.61] 

The factor 4 comes from the two electron statistical weights for the 
two levels of spin, and m is the real mass of the electron. 

3.8.3. Determination of the internal energy of 
transformation of quasi-chemical reactions 

The energy term included in the exponential of relation [3.52] is 
the transformation energy envisaged at 0 K. This energy can be 
deduced from experience, but the energy values relative to point 
defects are often extremely tricky or difficult to implement. It is in this 
context that the importance of prior calculation of those energies 
becomes apparent. Of the various energies of defect creation, we are 
going to envisage two cases: the energy of creation of a defect, 
however, and the energy of creation of a disorder which, by definition, 
includes multiple defects. We will begin by looking at this second 
case. 
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3.8.3.1. Energy of creation of a disorder 

The energy of creation of a disorder is determined on the basis of a 
Born–Haber cycle. We will look at the example of formation of the 
doubly-ionized Schottky disorder. We envisage the following Born–
Haber cycle: 

'
A aA A (gas) V+→ +  ( )A

H + : enthalpy of creation of the defect V’A 

B BB B (gas) V− °→ +  ( )B
H − : enthalpy of creation of the defect V°B 

A (gas) e A(gas)+ −+ →    ( )A-I : ionization energy of A) 

B (gas) B(gas) e− −→ +     ( )- BE : electronic affinity of B 

A BA(gas) B(gas) A B+ → +  ( )ABH : enthalpy of formation of the 
solid AB from its gaseous elements 

'
A B0 V V°→ +  ( )'SH : 

enthalpy of formation of the
doubly-ionized Schottky disorder

  

From this, we can deduce the relation: 

A B ABA B
'SH I E H H H+ −= − − + + +   [3.62] 

The terms in this sum are known, with the exception of the two 
enthalpies ( )A

H +  and ( )B
H −  of defect creation. Thus, we are led to 

the determination of the enthalpies of defect creation. 

NOTE.– In order to use expression [3.52], we must take the enthalpies 
of the different reactions at 0 K. 

3.8.3.2. Determination of the defect creation energies 

Let us begin by saying that calculating the energy of creation of a 
defect is a complex operation, normally carried out by specialists in 
automated numerical computation. For this reason, we will content 
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ourselves with outlining the methods used without going into the 
technical details of the computation. 

It is clear that if we wish to calculate, say, the energy of creation of 
a vacancy, we need to be able to calculate a lattice energy of a solid 
with and without the defect. The difference between these two terms 
would give us the energy of formation of the defect. We now begin to 
see the first difficulty: the result we are seeking is the difference 
between two significant numbers, so obviously, we need a precise 
measure of each of them. 

If, indeed, we proceed in this way, contenting ourselves with 
removing an atom or an ion to create the vacancy, the result is 
disastrous. Indeed, this type of crude calculation gives us an energy of 
formation of around 8eV per molecule, while experience tells us that 
the real value is 2eV per molecule. 

NOTE.– The unit used by specialists in calculating these energies is the 
electron-volt (eV) per molecule, which equates to 96.48 kJ/mole. 

 

Figure 3.4. 2D representation of the crystal, showing a) the relaxation of the 
ions around the vacancy; b) Mott and Littleton’s calculation zones 

The difference observed here arises from two phenomena. When 
the atom is removed, the neighboring atoms move and deform. These 
phenomena are known as relaxation and polarization (Figure 3.4(a)) of 
the atoms or ions, and the energy corresponding to these phenomena 
is, indeed, around 6eV. 
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Thus, we can see that in order to calculate the energy of creation of 
the defect, it is clearly necessary to have a potential function but also 
to be capable of taking account of the relaxations and polarization of 
the atoms or ions placed around the defect. 

The potential functions we have were constructed by combination 
of the following interactions between two atoms or two ions: 

– electrostatic forces between ions, often assimilated to points. 
These are forces that are exerted over a long distance (in 1/r2, and the 
energy is in 1/r); 

– the Lennard–Jones forces of attraction, exerted between atoms 
(charged or otherwise), at a short distance (energy in 1/r6); 

– the forces of repulsion resulting from the interpenetration of the 
electron clouds of neighboring atoms, exerted at a very short distance 
(energy in 1/r12 or in exponentials of r). 

The various methods used, in fact, belong to two families: 
supercell methods and fixed cluster methods, which are also called 
force equilibrium methods. Both types of methods have their 
advantages and disadvantages, with the supercell method possibly 
being better adapted in the case of solutions with a high concentration 
of defects, whereas the fixed-cluster method is better suited for the 
case of dilute defects. The second family of methods is perhaps a little 
more accurate, so it is that method which we will describe. 

The force equilibrium group of methods are all drawn from a famous 
publication from Mott and Littleton [MOT 38]. This family is therefore 
known as the ML method, which, over time, has undergone certain 
modifications which tend to increase the precision of the calculations 
and yield the following methods: Point Polarizable Ion (PPI) model, 
Modified Point Polarizable Ion (MPI) model and Extended Polarizable 
Point Ion (EPPI) model. For example, Mott and Littleton only took 
account of the electrical forces and the forces of repulsion. The other 
forces have been added in order to improve the results. 

The ML method is based on the two-region strategy. We choose a 
central point, or origin, which is situated at the center of the defect.  
If the defect is composed of multiple entities, the central  
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point is identical to the center of those entities. Around the defect, the 
space is divided into two spherical regions (Figure 3.4(b)): the inner 
sphere is called region 1, and the space between the two spheres 
constitutes region 2a. The rest of the space, of supposedly infinite 
dimensions, is called region 2b. The dimensions of the spheres are 
defined by their radius and the number of atoms (or ions) they contain. 
Of course, this number must be evaluated. If it is too high, the 
computation time becomes prohibitive, but too low a number will very 
quickly afflict the precision of the calculations. Catlow estimates that 
region 1 should typically include 100 atoms (or ions). 

In the earliest versions of the method, which emerged when we did 
not yet have the resources currently at our disposal, only the first 
region was treated as being composed of discrete entities (6 atoms to 
begin with); regions 2a and 2b were treated as dielectric elastic 
continua. 

Region 1 will be considered to be greatly disturbed by the defect, 
and the ions it contains can be displaced to new positions that 
eliminate the forces to which they are subject. However, regions 2a 
and 2b will be considered to be only slightly disturbed, and their 
displacements can be determined approximately. 

To begin with, we will combine regions 2a and 2b into a unified, 
unique region 2. Let x be the Cartesian coordinates of the atoms and ξ 
the displacements in Cartesian coordinates. Then we can express the 
total energy of the system as the sum of the energies of each of the 
regions 1 and 2 and of the energy of interaction between them, which 
we will formulate as follows: 

11 12 22( , ) ( ) ( , ) ( )totU x U x U x U= + +   [3.63] 

If the forces acting on region 2 are slight, we can suppose that the 
region supports the hypothesis of harmonicity, and therefore the 
energy of region 2 will be written as: 

22 22
1( , ) H
2

U x =   [3.64] 
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In this expression, H22 is the Hessian matrix for region 2 – i.e. the 
matrix of the second partial derivatives in relation to the displacements. 
If we now write that the displacements in region 2 are at equilibrium, 
then we need to satisfy the following condition: 

12
22

( , ) ( , ) H 0tot

x x

U x U x∂ ∂= + =
∂ ∂

  [3.65] 

By combining this equation with relation [3.64], we can eliminate 
the energy in region 2 and the use of the Hessian matrix (which would 
be of infinite dimensions), and we obtain: 

12
11 12

( , )1( , ) ( ) ( , )-
2tot

x

U x
U x U x U x

∂= +
∂

  [3.66] 

Thus, we are led back to the calculation of the potential energy of 
region 1 and the energy of interaction between region 1 and region 2 
only. 

The energy of formation of the defect ( , )defU x  is, in fact, the 

difference between the total energy of the perfect crystal ( , )pf
totU x  

and the total energy of the crystal containing the defect ( , )df
totU x , so: 

( , ) ( , )- ( , )df pf
def tot totU x U x U x=   [3.67] 

The next step in the method, therefore, is to look for the values of 
the x coordinates and the displacements ξ which minimize the energy. 
In fact, in practice, once the energy is minimal, we recalculate the 
forces that are exerted between each pair of atoms in region 1 as a 
function of those distances and displacements, and we minimize the 
force thus obtained, which is why the method is known as the force 
equilibrium method. 

To calculate the terms 11( )U x , we consider all the pairs of atoms 
(or ions) in region 1 and, for each, we calculate the energies resulting 
from the application of the three potentials: electrostatic, Lennard–
Jones attraction and repulsion of the electron clouds. 
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In order to calculate the term 12 ( , )U x , we return to the separation 
of the two zones 2a and 2b. In region 2a, the forces exerted on the 
individual ions due to the Lennard–Jones potential and the Coulomb 
potential are calculated, but to simplify the calculations, experience 
shows that, in order to take account of region 1, we only need to  
take account of the forces due to the defect itself. Region 2b is of 
infinite dimensions, and we only take account of the Coulomb forces. 
The Coulomb energy of region 1 is replaced by the charge of the 
defect, and we simply calculate the energy of relaxation induced by 
that charge. With the computational resources available to us today, 
region 2b is now considered to be made up of individual points. In 
their time, Motte and Littleton described the interaction with region 2b 
by the approximation of a dielectric continuum. 

We now have a large number of energies of defects and disorders 
which have been evaluated. Table 3.9 gives the example of the 
energies of vacancy formation in atomic solids. 

Solid Kr Cd Pb Zn Mg Al Ag Cu Ni 

H (kJ / mol) 7.7 38 48 49 56 68 106 120 168 

Table 3.9. Values of some of the energies of formation  
of a vacancy in atomic solids 

In ionic binary compounds, the orders of magnitude of the defect 
energies are often a few electron-volts per molecule (a few hundred 
kilojoules per mole). 



 



4 

Solid Solutions and  
Structure Elements 

The modeling of solid solutions, when the solvent and the solute 
exhibit major behavioral differences, is not easy. The required models 
quickly become complex. The intervention of structure elements 
enables us to model such solutions using quasi-chemical equilibria.  

In this chapter, we will examine two cases where that modeling 
enables us to correctly represent the behavior of the poly-constituent 
solid phase. We will look, in turn, at the study of ionic solid solutions 
and the fixation of water molecules in the lattices of salts. 

4.1. Ionic solid solutions 

Ionic solids, unlike metal alloys and molecular solids, exhibit 
crystalline sites which are very different from each other. Generally 
speaking, there tends to be a very clear division into anionic sites 
(which receive anions) and cationic sites (which receive cations). The 
crystal has two distinct sublattices. In view of this arrangement,  
the probability of exchange of an ion between a site of one type and 
site of the opposite type is practically none. 

Thus, solid solutions are the solutions of ions which are placed in 
an interstitial position or in substitution on the sublattice which 
corresponds to their charge. 

Thermodynamic Modeling of Solid Phases, First Edition. Michel Soustelle.
© ISTE Ltd 2015. Published by ISTE Ltd and John Wiley & Sons, Inc.
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As ions are never found alone, the dissolution of an ion will be 
accompanied by the dissolution of another ion of the opposite sign. If 
that accompanying ion is already present in the solvent, then the result 
is the same as if we had simply dissolved the ions not common to the 
two solids. 

If the introduced ions have the same charge as the ions in the 
solvent, the effect of the dissolution will be very slight. For example, 
mixed crystals of sodium chloride and potassium chloride can be 
considered as solutions of Na+ ions in KCl (or of K+ ions in NaCl). 
The resulting solution has all the characteristics of a perfect solution. 
Indeed, we know that the difference from perfection in a solution is, 
primarily, due to the exchange energy wAB. In the case of the 
substitution of K+ ions by Na+ ions, this energy is extremely low. This 
results in large solubility and even in the chosen case, complete 
miscibility of the two solids. 

If, on the other hand, the introduced ion has a different charge to 
that of one of the ions in the solvent, the consequences are more 
significant. Such is the case, for example, with the substitution of  
the Na+ ions in sodium chloride by calcium ions (Ca++). Two 
consequences of this substitution are evident. 

First, because of the electrostatic forces exerted over a long distance, 
it is certain that the exchange energy wAB between an ion Na+ and an ion 
Ca++ is far from negligible. The solution obtained will be far from 
perfect and solubility will be limited. In this case, it is extremely 
difficult to model the imperfection of the solution. The easiest way to do 
so, when the solution is involved in a state of equilibrium, is to use 
quasi-chemical modeling with structure elements, thus enabling us to 
consider the solution to be perfect. Certain authors advocate the use of 
the quasi-chemical approximation, but with the supposition that the 
solution obeys the Debye and Hückel theory of strong electrolytes1. 

The second consequence of the difference in charge between the 
initial ion and the introduced ion pertains to the absolute need to 
respect electrical neutrality in the crystal. This neutrality will be 
                         
1 Debye and Hückel’s model is presented in Chapter 4 of Volume 2 in this series of 
books [SOU 15b]. 
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expressed differently depending on whether the host solid is 
stoichiometric or non-stoichiometric.  

This modification of the properties of the initial solid by the 
dissolution of ions with a different charge has led to the practice of 
doping, which consists of introducing a foreign element in a solid in a 
deliberate and controlled manner. We can distinguish between 
insertional doping, where the foreign element takes up an interstitial 
position and yields an insertional solid solution, and substitutional 
doping, where the foreign element takes the place of a normal element 
in the lattice and yields a substitutional solution. 

A dopant may be introduced by reacting the solid in question with 
another phase (solid, liquid or gaseous) containing the foreign element 
to be introduced. Let us look at the example of an oxide BO, which we 
wish to dope with elements A. In order to do so, we can bring the 
solid BO into contact with the oxide AO of A, at high temperature (to 
speed up diffusion). An interface reaction will allow A to penetrate 
into the lattice AO and achieve a homogeneous distribution within it  
(it is likely that this treatment will also cause the opposite reaction – 
i.e. the penetration of B into the oxide AO). Another method, which 
can be used if A is volatile, is to bring the solid BO into contact with 
the vapor of A at high temperature. A third method consists of using 
the nitrate of A, dissolved in water, to fill the pores of BO with just 
the requisite amount of nitrate solution, and then heat the mixture so 
that the substance is broken down by thermolysis and the elements A 
penetrate into BO (this technique is known as dry impregnation). 

NOTE.– An impurity in a solid solution in the phase in question is 
simply a dopant, whose presence is both unintended and uncontrolled. 
Thus, the study of the effects of dissolved impurities in solid phases is 
identical to the study of dopants. 

4.1.1. Introduction of foreign elements into stoichiometric 
binary solids 

In order to study the effect of a dopant on a stoichiometric 
compound, we are going to look at the example of potassium chloride 
doped with divalent calcium ions. To begin with, we note that the 
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substitutional doping of a stoichiometric compound with an element 
of the same valence causes no major alteration in the properties of the 
initial solid. 

If we introduce calcium ions, Ca2+, to substitute the potassium ions, 
K+, in the potassium chloride, it is necessary to preserve the electrical 
neutrality of the solid and the ratio of 1:1 between the number of 
cationic and anionic sites. This is only possible in two scenarios: 

– either by the formation of a potassium vacancy for each calcium 
ion introduced. Figure 4.1(a) gives a two-dimensional (2D) 
diagrammatic representation of substitution. The introduction reaction 
is written as: 

'
2 K Cl KCaCl Ca 2Cl V°= + +   [4R.1] 

– or by the formation of a chlorine ion in an interstitial position for 
each calcium ion introduced, as shown in Figure 4.1(b). In this case, 
the introduction reaction is written thus: 

'
2 K Cl iCaCl Ca Cl Cl°= + +   [4R.2] 

In the case of our example, the first possibility is the more likely, 
because, on the one hand, the chlorine ion is too large to occupy an 
interstitial position, and on the other hand, pure potassium chloride 
exhibits Schottky disorder, with vacancies of potassium and chlorine. 
Thus, we can see that the introduction of calcium alters the ratio 
between the anionic vacancies and the cationic vacancies in potassium 
chloride. 

 

Figure 4.1. Diagram of potassium chloride a) in the pure  
state and b) doped with calcium ions 

 

 

 

 

 

K+ K+Cl- Cl-

K+ K+Cl- Cl-

Ca++ Cl- Cl-
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We can look at the problem in quantitative terms. In order to do 
this, we write the law of mass action for the creation of Schottky 
disorder: 

'
K Cl0 V V°= +  [4R.3] 

Thus: 

'
K ClV V SK° =   [4.1] 

By finding the balance of the different types of sites, we can write: 

'
Cl KV Ca VK
° °+ = , where CaK c° =  [4.2] 

We will now examine the effect of doping in the significant case 
characterized by the Brouwer domain: 

'
KV CaK

°=   [4.3] 

On the basis of relations [4.1] and [4.3], we deduce: 

'
KV c=  and ClV /SK c° =   [4.4] 

These relations are valid if the following condition is fulfilled: 

ClVc °>  so 1/2
sc K>   [4.5] 

Figure 4.2 shows the variations of the logarithms for the vacancy 
concentrations as a function of the logarithm for calcium 
concentration with the two domains, with the second domain fulfilling 
condition [4.5], whereas for low values of c, we find ourselves with 
the case of practically pure potassium chloride with equal numbers of 
chlorine vacancies and potassium vacancies. 

Thus, the doping of potassium chloride with cations whose valence 
is greater than 1 results in an increase in the concentration of cationic 
vacancies and a decrease in the concentration of anionic vacancies. 
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Figure 4.2. Concentrations of vacancies in  
calcium-doped potassium chloride 

The calculation can be carried out for a cationic impurity with 
valence Z’, substituting for cations of valence Z for the different types 
of disorder of binary stoichiometric solids. Table 4.1 gives the results 
obtained in the cationic doping of a metaloxide MO, of Schottky or 
Frenkel, on M. 

 
Type of 
solid 

Z’>Z Z’<Z 

Schottky MV  increases 0 O
V  decreases MV  

decreases 
OV  

increases 

Frenkel iM  decreases MV  increases iM  
increases 

MV  
decreases 

Table 4.1. Influences of dopants on stoichiometric binary solids 

We see the same result as for Schottky potassium chloride doped 
with calcium (Z’ > Z).  

4.1.2. Influence of foreign elements introduced into a  
non-stoichiometric binary solid 

The addition of a foreign element whose valence is different from 
those of the basic components will enable us to control the electronic 

cln

]  ln[

°
ClV  '

KV  

'
KV  

°
ClV  
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deviation from the Wagner disorder, for example. We will illustrate 
this point by the introduction of lithium into iron(II) oxide in cationic 
substitution. The valence Z of the basic element being replaced is +2; 
that of the foreign substitute is Z’ = +1. Under normal conditions, this 
iron oxide contains cationic vacancies, compensated by electron holes 
trapped on Fe+2 ions in the lattice, transforming them into Fe+3 ions. 
Figure 4.3(a) offers an illustration of pure iron oxide. 

The introduction of lithium into vacancies in iron has the effect of 
modifying the number of Fe+3 ions (in actual fact, the number of electron 
holes), the introduction reaction is as follows, if we use lithium vapor: 

'' '
Fe Fe Fe FeLi ( ) V Fe Li Fegas °+ + = +   [4R.4] 

 

Figure 4.3. Diagram of iron oxide a) in the pure state and 
b) doped with lithium 

Figure 4.3(b) illustrates the new situation. Li+ ions are placed to 
substitute the Fe2+ ions in the vacancies present in the pure solid. If the 
number of lithium ions introduced is sufficient, there are no longer 
enough iron vacancies to accommodate them, and we then see that the 
lithium ions introduced are placed in an interstitial position, which 
will lead to a further reduction in the number of Fe3+ ions. 

In order to quantitatively appreciate the effect of doping, let us 
examine the first case of lithium ions introduced in substitution of 
Zn2+ ions in zinc oxide, at equilibrium with the oxygen. Zinc oxide 
exhibits overstoichiometry of zinc, which results in the presence of 
zinc ions in an interstitial position and free electrons. The equilibrium 
with oxygen is written as follows: 
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i 2 Zn OZn 2e' 1/2O Zn O°° + + = +   [4R.5] 

The concentration of lithium is supposed to be fixed at the value c: 

'LiFe c=   [4.6] 

Application of the law of mass action to the equilibrium relation 
[4R.5] gives us: 

[ ] 1/2
i

1

e ' Zn
K

P°°
=   [4.7] 

In light of the condition imposed by electrical neutrality, which is 
of the form: 

[ ]'
i Zn2 Zn Li e'°° = +   [4.8] 

We are led to define two Brouwer regions: 

– region 1 characterized by: [ ]i2 Zn e'°° = , so [ ]e' c<<    [4.9] 

     – region 2 characterized by: [ ]i2 Zn e'°° = , so [ ]e' c>>  [4.10] 

Table 4.2 gives the concentrations of vacancies for the two regions. 
The boundary between them obeys the condition: 

[ ]e' c= , so 6
2

4
Pc

K
=   [4.11] 

Elements 
Region 1 

6
2

4
Pc

K
=  

Region 2 
6

2

4
Pc

K
=  

e'  
1/4

2 1
Kc P

 
1/3

1/6

2 1
K P

 

iZn°°  
2
c  

1/3

1/6

1 2 1
2 K P

 

Table 4.2. Concentrations of vacancies in lithium-doped zinc oxide 
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The effect of the dopant is only apparent in region 1. Figure 4.4(a) 
shows the Kröger−Vink diagram as a function of the lithium 
concentration at a given oxygen pressure. 

 

Figure 4.4. Kröger-Vink diagrams for lithium-doped zinc oxide  

In particular, in zone 1 (on the right of the diagram), we note that 
the concentration of electrons is inversely proportional to the square 
root of the lithium concentration. 

Figure 4.4(b) shows the diagram as a function of the oxygen 
pressure at a given concentration of lithium introduced. We can see 
that at sufficiently high pressure (zone 1), the concentration of 
interstitial zinc ions becomes independent of the oxygen pressure. 

If the lithium were replaced by a trivalent cation – i.e. one whose 
valence Z’ is greater than the valence Z of the cation being  
substituted – we would see variations in the opposite direction. 

Table 4.3 shows the direction of variation of the concentration of 
charge carriers in a semi-conductor, as the result of the substitutional 
doping of the cation of valence Z with a dopant of valence Z’. 

Type of 
oxide Z’>Z Z’<Z 

p Number of charge carriers 
decreases 

Number of charge carriers 
increases 

n Number of charge carriers 
increases 

Number of charge carriers 
decreases 

Table 4.3. Influence of a dopant on a Wagner semi-conductor 
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NOTE.– It is easy to show that doping with cations in an interstitial 
position, regardless of the charge on the ion introduced, yields the 
same qualitative results as substitutional doping with a cation of 
higher valence. 

We can easily show that doping with an anion leads to qualitative 
results opposite to those obtained with cations. 

NOTE.– Induced valence. In certain cases, the foreign atom can 
assume several degrees of oxidation, and its charge adapts to that of 
the normal elements of the lattice, which then produce no effect. We 
say that the valence of the dopant is induced by the lattice. 

4.2. Thermodynamics of equilibria between water vapor 
and saline hydrates: non-stoichiometric hydrates 

Numerous salts are capable of fixing water. This introduced water 
may either remain in molecular form (H2O) or be dissociated, with the 
then appearing as solutions of OH-and H+ ions. We are going to look 
at the molecular dissolution of water in salts. 

The equilibrium between two hydrated salts and water vapor can 
be written thus: 

S,nH2O + q H2O = S,(n+p)H2O  [4R.6] 

The numbers n and q are two positive numbers, although the value 
of n may actually be zero. 

We will see that this overall equilibrium can be refined, because 
our formulation does not specify whether the two hydrated forms with 
n and n + q water molecules form a single solid phase or constitute 
two distinct solid phases. 

4.2.1. Experimental demonstration of non-stoichiometry of 
a hydrate 

When we look at the equilibrium states of such a system, we 
usually use isothermal- and isobaric-thermogravimetry at a controlled 
water vapor pressure. 
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We will use ε  to denote the total amount of water retained by the 
solid per mole of salt S. The amount of water involved in the 
equilibrium reaction is ε – n. 

The maximum value of ε is limε , such that: 

lim n pε = +  and therefore lim n pε − =   [4.12] 

Experimentally, we can see that two forms of curves are obtained 
for to equilibrium isotherms. 

The first shape of the curve, represented in Figure 4.5(a), is 
characterized by the presence of two steps which correspond to the 
compositions of the two hydrates with n and n + q moles of water, 
separated by a vertical at a definite pressure. If we change the 
temperature, the shape of the curve remains the same; only the vertical 
separating the two platforms is placed at a different value of the 
pressure. 

The second shape of the curve, shown in Figure 4.5(b), is 
characterized by a constant variation of the water content of the whole 
solid as the pressure varies. At a different temperature, a new curve 
exhibiting the same characteristic is obtained. 

 

Figure 4.5. Equilibrium isotherm between water vapor and  
a) a stoichimetric hydrate and b) a non-stoichiometric hydrate 

The first experimental result thus obtained is, in fact, the variance 
of the system. Indeed, in the case of Figure 4.5(a), we see that if the 
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temperature remains static, equilibrium between the two compositions 
only occurs at a given pressure, represented by the vertical, and 
therefore the variance of the system is 1. However, in the case of 
Figure 4.5(b), the water content of the solid varies continuously with 
the pressure at a given temperature, and each point depends on the 
temperature, so the variance of the system is 2. 

Let us look again at Gibbs’ phase rule for these systems. In both 
cases, the number of independent components is 2 (salt and water), 
and the number of external parameters taken into account is also 2 
(pressure and temperature). In both systems, there is a gaseous phase, 
and if we let sϕ  denote the number of solid phases, then Gibbs’ law is 
written as follows: 

2 2 1 sv ϕ= + − − and therefore 3s vϕ = −   [4.13] 

We can use this, in both cases, to deduce the number of solid 
phases mentioned in Table 4.4. 

 
Figure Variance Number of phases Solid phases 

(a) 1 3 2 
(b) 2 2 1 

Table 4.4. Number of solid phases in the equilibrium  
of a hydrated solid and water vapor 

If the variance is 1, as is the case in Figure 4.5(a), there are two 
solid phases at equilibrium: the two hydrates, each with a very specific 
composition of n and n + p water molecules. 

If the variance is 2, we say that we have a divariant hydrate: the 
two hydrate forms with n and n + p water molecules are merely two 
extreme forms of the single hydrate phase, whose composition varies 
continuously with the pressure and temperature. Thus, it is a solid 
solution or, which is equivalent, a non-stoichiometric hydrate. The 
water contained in the solid is sometimes referred to as zeolitic 
because zeolites constitute a family of solids which have that property 
shared by other hydrates noted in the existing literature. 
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4.2.2. Equilibria between stoichiometric hydrates 

In the equilibrium reaction [4R.6], the two hydrates constitute two 
solid phases, the law of mass action applied to that equilibrium is 
written as: 

0 6
6 6 exp

R
H

K P K
T

Δ= = −   [4.14] 

This is expressed by the fact that at a given temperature, the 
equilibrium water vapor is fixed. 

 

Figure 4.6. Pressure–temperature diagram  
for a stoichiometric hydrate  

Figure 4.6 shows the curve for this equilibrium in the pressure–
temperature diagram. On the left of the curve, we see the domain of 
stability of the superior hydrate (q = n + p), and on the right  
of the curve, we see the domain of stability of the inferior hydrate (n). 
The value of n may be 0, in which case we have the anhydrous  
form. The enthalpy associated with the transformation is generally 
positive (endothermic dehydration). 

4.2.3. Equilibrium reactions in non-stoichiometric hydrates 

We will now model divariant equilibria by non-stoichiometry of 
the hydrates. Various models are envisaged, and we interpret different 
examples. 

T

P 

S, (n+p) H2O

S, n H2O
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4.2.3.1. Definition of models 

As is the case with the different solid compounds found in this 
volume, we will model non-stoichiometry of the hydrates using  
quasi-chemistry of structure elements. This approach, however, 
presents a number of difficulties because these hydrates are  
relatively-complex solids, with at least three main components: the 
anion (which itself is usually complex), the cation and water. In cases 
where the salt can accept several successive limited hydrates, even  
the water molecules are not all equivalent in terms of the sites they 
occupy and the energy of their bond to the lattice. In order to  
simplify the model, we will use a pseudo-binary approach, 
considering the hydrated salt to be formed of two main  
components – one of which is the water involved in the equilibrium  
in question (p molecules per salt molecule) and the other is the 
skeletal structure of the salt, involving the anhydrous part, and 
possibly the n water molecules of inferior hydrates not involved in the 
equilibrium. 

For example, we will look at isothermal curves. Thus, we can 
disregard the point defects in the skeleton, which will remain more or 
less constant in nature and in number. Hence, we are only interested in 
the structure elements relating to water, and we distinguish: 

– the water molecules in a normal position in the lattice, written as 
<H2O> or <H2O>q, if those elements are associated q with q; 

– the water molecules in an interstitial position written as (H2O) or 
(H2O)q; 

– the water vacancies, written as <> or <>q; 

– the vacant interstitial positions, written as ( ) or ( )q; 

– the non-localized water molecules, which are mobile in the solid, 
written as <<H2O>>. 

The water in the gaseous state will be written as [H2O].  

We will make the hypothesis of the predominant defect in a given 
hydrate, supposing that water molecules are never to be found on a 
site normally occupied by the skeleton. 
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We will look at two limit cases of non-stoichiometry of the 
hydrates: 

– the water molecules are all delocalized and free to move about in 
the lattice (e.g. in channels); 

– the water molecules are localized on specific sites in the solid, 
which leads us to two possibilities; substoichiometric hydrates which 
exhibit water vacancies and overstoichiometric hydrates which have 
water molecules in an interstitial position. 

4.2.3.2. Non-stoichiometric hydrates with mobile water 
molecules 

As the water molecules do not occupy specific crystallographic 
positions, we define the model in quasi-chemical form: 

[H2O] = <<H2O>>  [4R.7] 

If we assign the index 1 to all the values relating to the skeleton, 
the index 2 to those relating to the water molecules in the solid and the 
index G to the values relating to the gases, it is easy to show that all of 
the equilibrium positions are given by the relation: 

( ) ( ) 2
2 2

,

d d d 0G G
P T

S S T V V P
μ ε
ε

∂− − − + =
∂

  [4.15] 

From this expression, we can obtain various curves. In order to 

simplify the calculations, we set 2
R

G
TV V

P
<< = . We define the 

enthalpy by: 27 GH H HΔ = − . In particular, we can extract the 
isothermal curves defined by dT = 0: 

1

2

, , 1

d ln 1
d RT P T n

P
T

μ
ε ε =

∂=
∂

  [4.16] 

However, the chemical potential of the water in the solid is of the 
form: 
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0
2 2 2 2R lnT xμ μ γ= +   [4.17] 

and it is easy to show that the molar fraction of the water in the solid is: 

2 1
nx

n
ε

ε
−=

+ −
  [4.18] 

Hence, we obtain the following expression for the isotherm: 

2 7

-
-

Pn
K P

ε
γ

=   [4.19] 

Curve 1 in Figure 4.7 shows the shape of that isotherm in the case 
of ideal behavior of water in the solid (γ2 = 1). We can see that the 
concavity of that curve is turned upward, except near to saturation, 
which is not taken into account by the model because, near to the 
saturation point, the water molecules lose their mobility. 

We can take account of the interactions between the water molecules 
and the solid by way of the coefficient γ 2.  We can make the model of 
the solution more complex by decreasing the mobility of the water, and 
we see a tendency toward a curve with down-turned concavity (curve 4 
in Figure 4.7) which, as we will see later on (section 4.2.3.3), 
characterizes models where the water molecules are localized. 

We can also take account of the interactions between the water 
molecules by considering molecules associated q with q. The 
equilibrium is then written as: 

q[H2O] = <<H2O>>q  [4R.8] 

The expression of the isotherm then becomes: 

2 8

-
-

q

q

qPn
K P

ε
γ

=   [4.20] 

We then obtain a curve similar to that shown by curve 2 in  
Figure 4.7. When the value of q increases, the curve tends toward the 
straight line 3 in Figure 4.7. 
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Figure 4.7. Equilibrium isotherms between water vapor and a  
non-stoichiometric hydrate with non-localized water molecules 

4.2.3.3. Non-stoichiometric hydrates with localized water 
molecules 

In this category of models, the water molecules are localized. They 
may either be in their normal position (in which case we would have 
substoichiometric hydrates of the limited hydrate S,(n + p) H2O), or in 
an interstitial position, in which case we are dealing with an 
overstoichiometric hydrate of the inferior hydrate S, nH2O. 

4.2.3.3.1. Substoichiometric hydrates 

In this model, the water molecules occupy specific crystallographic 
positions, and some of those positions are not occupied, thus 
constituting water vacancies. In the most usual case of associated 
defects q and q, the quasi-chemical equilibrium is written as follows: 

q[H2O] + <>q= <H2O>q  [4R.9] 

If the indices 1 and 2 are assigned, respectively, to the relative 
values of the water vacancies and the normal elements of water,  
it is easy to show that the molar fractions of those entities are given 
by: 

1
n px

p q
ε+ −=

+
 and 2

nx
p q
ε −=

+
  [4.21] 
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We can easily show that the set of equilibrium states satisfies the 
relation: 

9 1 2d R ln - d 0qH
T T P

T
μ μ ε
ε ε

°Δ ∂ ∂+ + =
∂ ∂  

 [4.22] 

From this, we deduce the expression of the isotherm by making  
dT = 0: 

1 2d ln 1
d R

qP
T

μ μ
ε ε ε

∂ ∂= −
∂ ∂

  [4.23] 

If we take account of the expressions of the chemical potentials, 
which are of the form of equation [4.17], the expression of the 
isotherm becomes: 

1

2

1
9

2

q

q

p P
n

K P

γ
γε γ

γ

= +
+

  [4.24] 

The simplest form of this isotherm is obtained for an ideal solution 
(γ1 = γ2 = 1) and q = 1, so: 

9

pPn
K P

ε = +
+

  [4.25] 

This expression is illustrated by curve 1 in Figure 4.8. We can see 
that the concavity of the curve is now turned downward, unlike with 
curve 1 in Figure 4.7, which pertains to mobile water molecules. 

Curve 2 in Figure 4.8 is the isotherm given by relation [4.22] for 
ideal solutions where q > 1. In this case, if we know the value of q, the 
position of the point of inflection can be used to calculate the 
equilibrium constant, and vice versa. 

A more refined model can be used, with activity coefficients which 
are functions of the composition; this is tantamount to increasing the 
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interactions between the water molecules. Thus, eventually, we have 
to gradually move from the isotherm with q = 1 (curve 1) to  
the isotherm q > 1 (curve 2). This is what we see when we choose the 
model of a strictly-regular solution, for example. The system can 
continue up to the point of demixing. 

 

Figure 4.8. Isothermal curves showing the equilibrium between water vapor 
and a non-stoichiometric hydrate with localized water molecules 

4.2.3.3.2. Overstoichiometric hydrates 

This time, the water molecules are in an interstitial position. The 
corresponding equilibrium is written thus: 

q[H2O] + ( )q= (H2O)q  [4R.10] 

The calculation tells us that this view of things also yields 
expression [4.24] for the isotherm. In fact, this means that a zone of 
divariance with localized water molecules can be viewed either as a 
substoichiometric hydrate in relation to a superior hydrate, or as an 
overstoichiometric hydrate in relation to an inferior hydrate (or an 
anhydrous salt). The two models are absolutely equivalent. 

4.2.4. The limits of the domains of divariance 

In the pressure–temperature space, the domain of divariance is 
generally limited. In most cases, a phenomenon, represented by an 
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εlim-n 
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equilibrium reaction, limits the domain by superposing itself on the 
non-stoichiometry equilibrium. We can distinguish two categories of 
phenomena: 

– those which involve water in the vaporous state, such as the 
liquefaction of water, which we write as: 

[H2O] = H2Oliquid  [4R.11] 

– those which only involve water vapor, such as the precipitation 
of the inferior hydrate into a new crystallographic structure – i.e. a 
new phase. We can represent this precipitation by the equilibrium 
reaction: 

<<S,nH2O>>Phase 1 = <S,nH2O>Phase 2  [4R.12] 

with “phase 1” being the stoichiometric phase and “phase 2” being the 
non-stoichiometric phase. 

By way of example, we will look at this final case. The limit of the 
domain of divariance is characterized by the equilibrium [4R.9], 
where q = 1 and in ideal solution conditions, i.e. represented by the 
isotherm [4.25]. The new equilibrium can be written, in structure 
elements, as the simple disappearance of the vacancies (without 
conservation of the sites following the phase change), so: 

2H OV 0=   [4R.13] 

In order to examine the limit of the divariance zone in the P(T) 
diagram, we superimpose the equilibrium reactions [4R.9] and 
[4R.13]. By application of the law of mass action to the equilibrium 
relation [4R.13], we find that the molar fraction of the vacancies is: 

13
1

13

1 exp
R

G
x

K T

°Δ= =   [4.26] 

and, by substituting that value back into the expression of the isostere, 
obtained by making dε = 0 in expression [4.15] and taking account of 
the fact that the sum of the fractions of sites of the water molecules 
and the vacancies is equal to 1, we obtain: 



Solid Solutions and Structure Elements     215 

0 13exp exp 1G G
P

RT RT

° °Δ Δ= − − −   [4.27] 

This limit is represented by the curve marked “1” in Figure 4.9, 
and separates the phase 1 domain from the domain of divariance in the 
non-stoichiometric phase 2. The introduction of the new equilibrium 
lowers the variance of the system to 1. The curves labeled “2” in 
Figure 4.9 represent the curves of isocomposition (isosteres) in the 
non-stoichiometric phase. 

 

Figure 4.9. Domain of divariance limited by precipitation of the  
inferior hydrate into a new solid phase 

NOTE.– Phase 1 itself may be another zone of divariance if the inferior 
hydrate in its new structure is, itself, non-stoichiometric, in which 
case, two domains, separated by the curve representing the separation 
of the two phases, can be described as two phases which represent the 
hydrate with n water molecules – one substoichiometric (phase 1) and 
the other overstoichiometric in relation to n (phase 2). 
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Appendix 1 

The Lagrange Multiplier Method 

A.1.1. Statement of the problem 

We wish to find the value of the extremum (maximum or 
minimum) of a function f of several variables x1, x2, … , xn. 

If the variables undergo a slight variation from 1 1x xδ+  to 
,i ix xδ+  the function varies from f to ,f fδ+  such that: 

1

n

i
i i

ff x
x

δ δ
=

∂=
∂

 

For an extremum, 0fδ = , and therefore: 

1
0

n

i
i i

f x
x

δ
=

∂ =
∂

 [A.1.1] 

If all the variables are independent, this equation can be solved by 
zeroing each term in the sum: 

0            i
i

f x
x

∂ = ∀
∂

 

The problem which interests us here is how to find the extremum if all 
the variables xi are not independent, but instead there are relations 
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between them, which are called “constraints”; in this case, the above 
solution is no longer valid. We then use the Lagrange multiplier method. 

A.1.2. Solution by the multiplier method 

Let us suppose, in order to illustrate the method, that there is a 
constraint which exists between the variables xi such that: 

( ) 0ig x =  

The constraint g is always true, and the value of g remains 
unchanged when the values of the variables xi vary, so: 

1
( ) 0

n

i i
i i

gg x x
x

δ δ
=

∂= =
∂

 

Because gδ  is null, we can multiply it by an arbitrary parameter 
λ  and add it to equation [A.1.1], in which case we obtain: 

 

1

0
n

i
i i i

f g x
x x

λ δ
=

∂ ∂+ =
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 [A.1.2] 

Equation [A.1.2] can be solved for one of the variables – e.g. for  
i = n, as a function of the other variables (i = 1, 2, …, n–1), which are 
independent. For the time being, λ  is arbitrary, but we can perfectly 
well choose its value so that the term in xn in equation [A.1.2] is zero – 
that is we can choose λ  in such a way that: 

0
n n

f g
x x

λ∂ ∂+ =
∂ ∂

 [A.1.3] 

Thus, equation [A.1.2] becomes: 

1

1
0

n

i
i i i

f g x
x x

λ δ
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Now, the n–1 variables are independent and the solution is: 

0
i i

f g
x x

λ∂ ∂+ =
∂ ∂  

i = 1, 2, …, n 

However, equation [A.1.3] has exactly the same form, and thus the 
maximum or minimum of f can be found by solving the system: 

0
i i

f g
x x

λ∂ ∂+ =
∂ ∂  

i = 1, 2, …, n 

If there are multiple constraints, then we introduce into [A.1.2] as 
many multipliers as there are constraints, and deduce the same number 
of equations in the form of [A.1.3]. 

A.1.3. Determination of the values of the multipliers 

There are two possible methods to determine the value of the 
arbitrary constant λ. 

The first method is to solve equation [A.1.3] rather than injecting it 
into the minimization process. 

The second method is to keep the multiplier λ as an unknown until 
we can deduce a property whose value is known. It is this method 
which is often used in statistical thermodynamics to determine the 
multiplier B1/ k Tβ = . 

In the case of several multipliers, the above methods can be mixed, 
with some of the constants being determined by the first method, and 
the others by the second method. We see such mixing in determining 
the two constants α  and β  in statistical thermodynamics (see sections 
4.2.2, 4.2.3, 4.5.3 and 4.5.4). 



 



Appendix 2 

Solving Schrödinger’s Equation 

The Schrödinger equation governs the wave mechanics to be used 
instead of classical mechanics for atomic environments. For a set of 
particles i and time-independent systems, this equation is of the form: 

2 2 2 2

2 2 2

1
2 i

i

V W
m x x z

∂ ∂ ∂− + + + =
∂ ∂ ∂

 

In this equation, V is the potential energy and W is the total energy 
of the system. 

Except in very rare cases, Schrödinger’s equation is too 
complicated to be solved exactly, and we often merely content 
ourselves with finding an approximate solution by various methods; 
one of the most widely used such methods is the variation method. 

We choose a normed function Φ dependent on various  
parameters – obtained, for example, by linear combination of linearly-
independent normed functions 1 2, ... ...i nφ φ φ φ  (this is known as the 
linear state superposition principle): 

i in
λ φΦ =  

There is no reason for Φ to be a solution to Schrödinger’s equation. 
Also, the average energy W of the system in that hypothetical state is 
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certainly greater than the energy W0, which is as low as possible and 
corresponds to the system’s base state. 

For the sake of simplicity of the notation, let us write: 

*
, di j i jn

S φ φ τ= and *
, H di j i jn

H φ φ τ=  

By norming Φ, we are able to write: 

( ) ( )* * * *
,

,
d . d 1i i i i i j i jn n

i i i j

N Sτ λ φ λ φ τ λ λ= Φ Φ = = =  

The average value of the energy is: 

( ) ( )* * * *
,

,
H d H di i i i i j i jn n

i i i j

W Hτ λ φ λ φ τ λ λ= Φ Φ = =  

We are going to determine the minimum value of the average 
energy, which will be an approximate value of W0, by choosing 
appropriate values for the coefficients λI, while keeping N = 1. In 
order to do so, we employ the Lagrange multiplier method (see 
Appendix 1). 

Thus, we obtain a system of n homogeneous linear equations such 
that: 

( )*
, , 0j i j i j

j

H WSλ − =  [A.2.1] 

This system can only accept a solution (other than λj = 0 for all 
values of j) if its determinant is zero, which we can write in shortened 
form as: 

, , 0i j i jH WS− =  [A.2.2] 

By zeroing the determinant, we find an equation, called the secular 
equation, of degree n in W. The smallest root of this equation gives us an 
approximate value for W0. J.K.L. MacDonald showed that the other 
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roots constituted approximate values of the energy in the different 
excited states of the system. 

With each root Wk of the secular equation, the system shown in 
equation [A.2.1] matches a certain corresponding function Φk. 

It appears that the error committed by replacing a value of the 
energy with the corresponding root Wk of the secular equation is less 
than 2

k kD W− , where Dk and Wk denote the integrals: 

( )( )*H H .dk k kn
D τ= Φ Φ  and * H .dk k kn

W τ= Φ Φ  
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