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Preface 

This book – an in-depth examination of chemical thermodynamics – is 
written for an audience of engineering undergraduates and Masters students 
in the disciplines of chemistry, physical chemistry, process engineering, 
materials, etc., and doctoral candidates in those disciplines. It will also be 
useful for researchers at fundamental- or applied-research labs, dealing with 
issues in thermodynamics during the course of their work. 

These audiences will, during their undergraduate degree, have received a 
grounding in general thermodynamics and chemical thermodynamics, which 
all science students are normally taught. This education will undoubtedly 
have provided them with the fundamental aspects of macroscopic study, but 
usually the phases discussed will have been fluids exhibiting perfect 
behavior. Surface effects, the presence of an electrical field, real phases,  
the microscopic aspect of modeling, and various other aspects, are hardly 
touched upon (if at all) during this early stage of an academic career in 
chemical thermodynamics. 

This set of books, which is positioned somewhere between an 
introduction to the subject and a research thesis, offers a detailed 
examination of chemical thermodynamics that is necessary in the various 
disciplines relating to chemical or material sciences. It lays the groundwork 
necessary for students to go and read specialized publications in their 
different areas. It constitutes a series of reference books that touch on all of 
the concepts and methods. It discusses both scales of modeling: microscopic 
(by statistical thermodynamics) and macroscopic, and illustrates the link 
between them at every step. These models are then used in the study of solid, 
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liquid and gaseous phases, either of pure substances or comprising several 
components. 

The various volumes of the set will deal with the following topics: 

– phase modeling tools: application to gases; 

– modeling of liquid phases; 

– modeling of solid phases; 

– chemical equilibrium states; 

– phase transformations; 

– electrolytes and electrochemical thermodynamics; 

– thermodynamics of surfaces, capillary systems and phases of small 
dimensions. 

Appendices in each volume give an introduction to the general methods 
used in the text, and offer additional mathematical tools and some data. 

This series owes a great deal to the feedback, comments and questions 
from all my students at the Ecole Nationale Supérieure des Mines 
(engineering school) in Saint Etienne who have “endured” my lecturing in 
thermodynamics for many years. I am very grateful to them, and also thank 
them for their stimulating attitude. This work is also the fruit of numerous 
discussions with colleagues who teach thermodynamics in the largest 
establishments – particularly in the context of the “Thermodic” group, founded 
by Marc Onillion. My thanks go to all of them for their contributions and 
kindness. 

This seventh instalment is devoted to the study of surface phenomena and 
to the properties of phases with small dimensions. Chapter 1 looks  
at the system composed of the interface between a pure liquid and its  
vapor. A thermodynamic approach is used to determine the influence of the 
temperature and pressure on the surface tension and its consequences for the 
specific heat capacities and the latent heats. Chapter 2 describes the 
modeling and properties of the interfaces between a liquid and a liquid 
solution or a gaseous mixture. An example of a model of the interface is 
studied with the model of the strictly-regular solution. Chapter 3 examines 
the surfaces of solids and solid–solid and solid–liquid interfaces. It closes 
with the study of electro-capillary phenomena. Chapter 4 deals with small-
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volume phases, droplets or solids of small dimensions. The thermodynamic 
values are determined on the basis of Reiss’ potential functions. The chapter 
concludes with a thermodynamic study of the phenomenon of nucleation of  
a condensed phase. In Chapter 5, we study firstly the thermodynamics  
of cylindrical capillary, and secondly the properties of thin liquid films. 
Chapters 6 and 7, respectively, discuss the phenomena of physical 
adsorption and chemical adsorption of gases by solid surfaces. Finally, in an 
appendix, we present the application of physical adsorption to the 
determination of the specific areas of solids and their porosity. 

Michel SOUSTELLE 
Saint-Vallier 

April 2016 

 



 



 

Notations and Symbols 

A:  area of a surface or an interface. 
(12)
H :A   Hamaker constant between two media 1 and 2. 

A:  affinity. 

:~
A   electrochemical affinity. 

AM :  molar area. 

Am:  molecular area. 

a:  pressure of cohesion of a gas or radius of the  
elementary cell of a liquid. 

A, B, …:  components of a mixture. 

b:  cosurface of an adsorbed gas. 

Ep:  set of variables with p intensive variables chosen to  
define a system. 

F:  Helmholtz energy. 

het :f   heterogeneous wetting function. 

:Gσ   electrocapillary Gibbs energy. 

:th   spreading coefficient. 

h:  Planck’s constant. 

Hspr:  Harkins spreading coefficient of one liquid over another. 
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:)(, pjiK E  thermodynamic coefficient associated with the set of  
  variables Ep. Xj  is its definition variable and Yi is its  

definition function. 
Kads:  equilibrium constant of adsorption. 

Kfe:  equilibrium function of adsorption. 

kB:  Boltzmann’s constant. 

lc:  capillary length. 

M:  molar mass. 

Na:  Avogadro’s number. 

NA:  number of molecules of component A. 

P:  pressure of a gas. 

p:  spreading parameter. 

qφ:  equilibrium heat of adsorption. 

qd:  differential heat of adsorption. 

qisost:  isosteric heat of adsorption. 

R:  perfect gas constant. 

R:  mean radius of curvature of a surface. 

rc:  radius of a cylindrical tube. 

rK:  Kelvin radius. 

T:  temperature. 

vmono:  volume of a monolayer of adsorbed gas. 
( )
kx α :  molar fraction of the component k in the α phase. 

xi:  molar fraction of the component i in a solution. 
Yi and Xi: conjugate intensive and extensive values. 

yi,j:  Mayer function. 

( ):PE   characteristic function with the set PE as canonical variables. 

Γ :  characteristic function. 
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Γi:  excess surface or surface concentration of component i. 

Γi,j:  excess surface or surface concentration of component  
i in relation to j. 

( ):I
iγ   activity coefficient of component i in the pure-substance  

  reference. 
( ):II
iγ   activity coefficient of component i in the infinitely dilute- 

  solution reference. 
( ):III
iγ   activity coefficient of component i in the molar-solution  

  reference. 

:   spreading on a liquid. 

Δr(A):  value of A associated with the transformation r. 

θ :  fraction of coverage. 

θi :  surface fraction of a component. 

σ :  surface energy. 

σe :  surface density of electrical charges. 

σ∗ :  surface tension. 



 



1 

Liquid Surfaces 

An interface constitutes an extensive, two-dimensional defect in a system. 
Given that at least one of the intensive values of that system (as is often the 
case, for example, with the refractive index) evidently undergoes a 
discontinuity at that interface, the interface separates two distinct phases. 
Hence, the system is heterogeneous. The presence of that defect, at least in 
its vicinity, leads to the modification of the properties of the two phases thus 
separated. This leads us to model the system considering three phases: two 
so-called massive (or bulk) phases, which are the phases separated by the 
interface, and a superficial (surface) phase constituting a layer of a certain 
thickness, containing the modified properties of the two massive phases. 
Unlike the two massive phases, which each have their own thermodynamic 
properties with their own specific thermodynamic coefficients, the surface 
phase has thermodynamic properties that are dependent on the properties of 
the two phases surrounding it. Thus, we say that the surface phase is not 
autonomous. 

It is common to speak of the surface of a liquid, but in fact this is a 
misuse of language. In reality, that surface is never isolated from another 
phase, so in nature we only ever actually find interphases. For example, if 
the liquid is placed in a vacuum, it vaporizes spontaneously (and least in 
part), and we see the presence of an interphase between the liquid and its 
vapor which, in the case of a pure substance, have the same composition but 
different molecular densities. In this particular case of the equilibrium 
between a pure substance and its vapor, we sometimes speak of the surface 
of the liquid, and the properties of that interface are qualified as being the 
properties of the surface of the liquid. This chapter will be devoted to 
interfaces between a pure liquid and its vapor. 

Thermodynamics of Surfaces and Capillary Systems, First Edition. Michel Soustelle.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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The different molecular densities of the two bulk phases will lead to 
anisotropic bond forces in the surface phase. Indeed, the molecules of the 
liquid which are at the surface are on half of the space in the vicinity of other 
molecules placed at greater distances, and therefore create an intermolecular 
force field which also undergoes a discontinuity. 

The interface between a pure liquid and its vapor is characterized by easy 
mechanical deformation and easy variation of its areas. Indeed, we simply 
need to tilt a recipient to extend the area of the interface separating two fluid 
phases – i.e. increase the quantity of material making up that interface. This 
augmentation in the area of the liquid–vapor interface takes place without 
deformation, because the stresses likely to be engendered are quickly relaxed 
because the shearing modulus of a liquid is zero. 

NOTE.– It is impossible to construct an interface between two pure liquids 
because reciprocal dissolution, even slight, leads to an interface between two 
solutions, which will be discussed in Chapter 2. 

1.1. Mechanical description of the interface between a liquid and 
its vapor 

Numerous experiments in mechanics show the existence of forces acting 
on the surface of the liquid in the presence of its vapor. The resultant of 
those forces seems to be parallel to the surface and tends to reduce the area 
of the interface. 

1.1.1. Gibbs’ and Young’s interface models 

To apply mechanics and thermodynamics to interfaces, it is useful to 
have a model of that interface. The simplest model is Gibbs’, whereby the 
interface is considered to be reduced to the surface of separation of the two 
phases, with no thickness. In that model, the discontinuity of an intensive 
value upon the changing phase is sudden, as illustrated by Figure 1.1, which 
shows the discontinuity of the density on phase change. In order to take 
account of a certain number of phenomena which we encounter in the study 
of systems with multiple components, such as adsorption, segregation or 
surface excess, it is necessary to accept that the surface contains a certain 
amount of virtual material (a certain number of moles) of each of the species 
involved.  
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Figure 1.1. Discontinuity in density in Gibbs’ model 

A second, more elaborate, model is Young’s layered model. In this 
model, the interface has a certain thickness or depth, d, which is unknown 
but is likely to be small (see Figure 1.2(a)), at around a few atomic layers, 
except in the vicinity of the critical point for the liquid–vapor interface. 

In Young’s model, we cut that surface perpendicularly with a plane AB 
whose breadth is δl. Figure 1.2(b) illustrates the different forces acting on 
the left-hand side of the plane AB (with the right-hand side being subject to 
the same symmetrical forces). 

– Between A and A’, the force is exerted by the hydrostatic pressure P’’ 
of the lower phase; 

– Between B’ and B, the force results from the hydrostatic pressure P’ in 
the upper phase; 

– Between A’ and B’, the forces are distributed in accordance with an 
unknown law. 

 

Figure 1.2. Representation of an interface in Young’s model 
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Young models the system (see Figure 1.2(c)) as the existence, between B’ 
and A’, of a surface tension σ* tangent to a point C, at a distance zc from A’ 
and such that the equivalences of the forces and the moments in relation to 
A’ are assured between the two representations 1.2b and 1.2c, which we can 
express for the forces along the z axis by: 

( ) ( )z zb c
z z

F F=   [1.1] 

and for the moments in relation to A’, by: 

' '( ) ( )A Ab c
z z

M M=  [1.2] 

Between A and C, the forces are due to the pressure P’, and between C 
and B they are due to the pressure P’’. 

1.1.2. Mechanical definition of the surface tension of the liquid 

Let us look again at Young’s model for the interface between a pure 
liquid phase and its vapor. If we extend the free surface of the liquid over a 
breadth δx (Figure 1.3), the variation in the area of that surface is:  

d .A x lδ δ=  [1.3] 

 

Figure 1.3. Extension of a portion of surface of a liquid 
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The force exerted against the surface tension is: 

*F lσ δ=  [1.4] 

The work which must be injected is the product of that force by the 
displacement δx. That work will be: 

d * . * dW F x l x Aδ σ δ δ σ= = =  [1.5] 

The term σ* is called the surface tension or interfacial tension of the 
liquid. This value is expressed in Newtons per meter, as shown by 
relation [1.4]. 

1.1.3. Influence of the curvature of a surface – Laplace’s law 

Consider an element d S  of a curved interface with radii of primary 
curvatures (in two orthogonal directions) R1 and R2 (see Figure 1.4). Each 
boundary line of that element is subject to forces of surface tension exerted 
by the rest of the interface.  

 

Figure 1.4. Radii of curvature of a curved surface 

At mechanical equilibrium, the resultant of these forces is canceled out 
by the forces exerted on the surface by the pressure Pint inside the curve and 
Pext outside of it. As the tangential components, two by two, cancel one 
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another out, it is easy to calculate the normal components. Thus, for 
instance, on the side AB, the force experienced by the surface element is: 

2
1 1 1 1 2

d 1d *sin d *d
2 2

R R
θθ σ θ σ θ− ≈ −  [1.6] 

The projection of the resultant of all the components, which takes the 
value of 0, is written: 

( ) 0dd*dd*dd 2211extint122211 =−+−− θθσθθσθθ RRPPRR  [1.7] 

From this, we deduce: 

int ext
1 2

1 1*P P
R R

σ− = +  [1.8] 

This is Laplace’s law, which gives the expression of the discontinuity in 
pressure on either side of a curved interface as a function of the surface 
tension and of the primary radii of curvature of that curved surface. 

This law can be expressed in a different form, if we define the mean 
radius of curvature R by the relation: 

1 2

1 1 2
R R R

+ =  [1.9] 

Laplace’s law becomes: 

int ext
2 *P P

R
σ− =  [1.10] 

Two particular cases of relation [1.8] are often used. 

For a spherical surface, such as a drop of liquid, the primary radii of 
curvature are equal to the radius r of the sphere: 

1 2R R r= =  [1.11] 
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and Laplace’s law becomes: 

int ext
2 *P P

r
σ− =  [1.12] 

If we now consider a cylindrical surface with radius r, the primary radii 
are: 

1R r=   [1.13a] 

R2 is infinite [1.13b] 

and Laplace’s law then takes the form: 

int ext
*P P

r
σ− =  [1.14] 

We shall use relations [1.12] and [1.14] in Chapters 4 and 5, which are 
devoted to the study of phases of small dimensions. 

1.2. Thermodynamic approach to the liquid–vapor interface 

Considering that the surface work is given by the product of the area by 
an intensive value σ called the surface energy, here we shall discuss a 
thermodynamic approach to the study of interfaces which, amongst other 
things, will help us distinguish, in liquids, between the surface tension σ∗ as 
defined by relation [1.5] on the basis of mechanics and the surface energy 
σ  derived from thermodynamics. 

1.2.1. Potential functions 

Let us look again at the layered model shown in Figure 1.2(a), whereby 
the interface is defined using three volumes: that of the liquid phase, known 
as the α phase; that of the vapor phase, known as the β phase; and that of the 
interfacial layer, called the γ phase. The total volume of the system is the 
sum of those three volumes: 

( ) ( ) ( )V V V V= + +  [1.15] 
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The same is true for the other extensive functions, which will all be the 
sum of three terms – e.g. the internal energy, which would be: 

( ) ( ) ( )U U U U= + +  [1.16] 

or the entropy: 

( ) ( ) ( )S S S S= + +  [1.17] 

and the quantities of material: 

( ) ( ) ( )n n n n= + +  [1.18] 

The extensive variables defining a mole of the system form the set EU, 
such that: 

( ) ( ) ( ) ( ) ( ){ }, , , ,U S S S V V A=E  [1.19] 

This set does not contain the volume of the layer ( )V , because that latter 
variable is not independent of the area, A. Indeed, the thickness of the layer 
is a given property of the substance, and has little dependence on the other 
variables. By expressing the variation of the internal energy, we obtain: 

( ) ( ) ( ) ( ) ( )( ) ( )d d d d d d dU T S T S T S P V P V Aσ= + + − − +   [1.20] 

The surface energy σ, which is the intensive value conjugate to the area, 
is defined as the partial differential of the internal energy in relation to the 
area: 

( ) ( ), , ,S V V n

U
A

σ ∂=
∂

 [1.21] 

The unit in which σ  is measured is joules per square meter – i.e. the 
same dimensions as the surface tension σ*, which was expressed (see 
section 1.1.2) in Newtons per meter, which is equivalent to joules per square 
meter. 
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If we now choose the set of variables EH, defined by: 

( ) ( ) ( ) ( ) ( ){ }, , , , ,H S S S P P A=E  [1.22] 

The potential function would be the enthalpy, defined by: 

H U PV= +  [1.23] 

Thus, using relations [1.20] and [1.23], we find the differential of H: 

( ) ( ) ( ) ( ) ( )( ) ( )d d d d dH T S TS TS V P V P Aσ= + + + + +  [1.24] 

and the surface energy would be such that: 

( ) ( ), , ,S P P n

H
A

σ ∂=
∂

 [1.25] 

If we choose the set of variables EF defined by: 

( ) ( ){ }, , ,F T V V A=E  [1.26] 

the potential function would be the free energy, defined by: 

F U TS= −  [1.27] 

Hence, using relations [1.20] and [1.27], we can find the differential of F: 

( ) ( ) ( ) ( ) ( )( ) ( )d d d d d d dF S T S T S T P V P V Aσ= − − − − − +  [1.28] 

and the surface energy would be such that: 

( ) ( ), , ,T V V n

F
A

σ ∂=
∂

 [1.29] 

If we choose the set of variables EG, defined by: 

( ) ( ){ }, , ,G T P P A=E  [1.30] 
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the potential function would be the Gibbs energy, defined by: 

G U PV TS= + −  [1.31] 

Thus, using relations [1.20] and [1.31], the differential of G would be: 

( ) ( ) ( ) ( ) ( )( ) ( )d d d d d d dG S T S T S T V P V P Aα σ= − − − + + +  [1.32] 

and the surface energy would be such that: 

( ) ( ), , ,T P P n

G
A

σ ∂=
∂

 [1.33] 

If, finally, we choose the set of intensive variables Eσ defined by: 

( ) ( ){ }, , ,T P Pσ σ=E  [1.34] 

the potential function would be the capillary Gibbs energy, defined by: 

G U PV TS A G Aσ σ σ= + − − = −  [1.35] 

The differential of Gσ, then, can be defined using relations [1.20] and 
[1.35]: 

( ) ( )( ) ( )d d d d dG S T V P V P Aσ σ= − + + −  [1.36] 

This elementary variation dGσ corresponds to the elementary work which 
a transformation is likely to produce, which is deduced from the volume 
work and the surface work.  

Other potential functions can be defined in the same way, by choosing  
the sets of variables ( ) ( ){ }, , ,T V V σ , ( ) ( ) ( ) ( ) ( ){ }, , , , ,S S S P P σ  or 

( ) ( ) ( ) ( ) ( ){ }, , , , ,S S S V V σ . 
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1.2.2. Functions of state of surface  

For the functions relative to the layer, we can define corresponding 
surface functions of state. For example, for the functions U, H, F and G, we 
would have the surface values: 

( )
( ) U

u
A

=  [1.37a] 

( )
( ) H

h
A

=  [1.37b] 

( )
( ) F

f
A

=  [1.37c] 

( )
( ) G

g
A

=  [1.37d] 

or indeed, for the surface entropy function: 

( )
( ) S

s
A

=  [1.37e] 

1.2.3. Equivalence between surface tension and interface energy 
between two fluids 

We shall now show that, for a liquid, the two values which are expressed 
in the same dimensions – the surface tension σ∗ defined by mechanics and 
the surface energy σ  defined by thermodynamics – are identical. 

In order to do this, we consider a closed system with a planar interface 
between a pure liquid and its vapor. In this case, the pressure is identical in 
both phases in that volume, which is expressed by: 

( ) ( )P P P= =  [1.38] 

The amount of material remains constant within the system. Hence, by 
virtue of relation [1.18], we have: 

( ) ( ) ( )d d d d 0n n n n= + + =  [1.39] 
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An increase in the area, dA, produced by way of a reversible 
transformation, will require the following isothermal work: 

d dW Aσ=  [1.40] 

Also, for a transformation taking place at constant temperature, that work 
is the variation in the free energy in our system, by virtue of relation [1.28], 
because then: 

*d d dF A Wσ= =  [1.41] 

By comparing relations [1.5] and [1.40], for a liquid phase in the presence 
of its own gaseous phase, we immediately find the strict equivalence: 

*σ σ=  [1.42] 

This equivalence between the mechanical and thermodynamic aspects 
explains why the value σ  is indiscriminately called the surface tension or 
the surface energy of the liquid in question. 

NOTE.– This equivalence is demonstrated only for contact between the fluid 
phases (independently of their composition), and no longer holds true when 
the interface is limited by a solid surface undergoing elastic deformation (see 
Shuttleworth’s relation in section 3.1). 

1.2.4. Sign of the energy associated with the surface of a pure 
liquid 

We can now show how to determine the sign of the surface tension of a 
liquid in the presence of its own vapor. 

The condensation of a vapor into a liquid is always an exothermic 
phenomenon – ( vap liq ( ) 0H→ < ) – which is understandable, because the 
intermolecular bonds are stronger and more numerous (per molecule) in the 
liquid, which is denser than the vapor. 

The bonds between the molecules of a liquid are not covalent, so it is not 
necessary to take account of a finite nature on the bond in an aggregate of  
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molecules. On the other hand, the increase in density on condensation entails 
a gap in entropy, which can be approximated as: 

vap liq
molar volume of the liquid( )  R.ln   0

molar volume of the gas
S→ = <  [1.43] 

Thus, the variation of the Gibbs energy: 

vap liq vap liq vap liq( )  ( )  ( )G H T S→ → →= −
 

 

is negative if the temperature is low, but positive if the temperature is higher 
than the boiling point at the given pressure. The influence of pressure on the 
Gibbs energy of formation of a compound can be seen through the molar 
volumes (see the Clausius–Clapeyron relation). 

Let us now examine the case of a molecule situated at the edge of a liquid 
droplet: the bonds are stronger, or the coordinance is stronger, in the liquid 
than in the surrounding vapor, which has two consequences: 

– A force is exerted on the interface, directed toward the inside of the 
drop. Incidentally, mechanical equilibrium in light of the effect of that 
surface tension is the reason for the sphericity of the drop. 

– The bond energy of the molecule is intermediary between the values, 
which correspond respectively to the case of a perfect liquid and that of a 
gas. If we let vap surf ( )H→  denote that enthalpy, we therefore have: 

vap liq vap surf( ) ( ) 0H H→ →< <  [1.44] 

As an initial approximation, we can consider that the density and the 
degrees of freedom are identical for a surface molecule and a core molecule, 
so: 

vap surf vap liq( ) ( )S S→ →=  [1.45] 

The Gibbs energy of condensation at the interface, therefore, is: 

vap surf vap surf vap surf

vap surf vap liq

( )  ( )  ( )

  ( )  ( )

G H T S

H T S
→ → →

→ →

= −

= −
 [1.46] 
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Hence: 

vap surf vap liq vap surf vap liq( )  ( )  ( )  ( )G G H H→ → → →= + −  [1.47] 

The Gibbs energy vap Dlt ( )G−>  of condensation of the droplets is obtained 
by adding together the core and interface terms: 

vap Dlt vap liq vap surf
core interface

( ) ( ) ( )G G G−> → →= +  [1.48] 

so: 

vap Dlt vap liq int vap surf vap liq( )  ( )  ( )  ( )G G x H H→ → → →= + −  [1.49] 

In this expression, ( )
int /=x N N  denotes the molar fraction of the 

molecules at the surface of the droplet. 

With the area of the surface Α being expressed in m2 per mole of 
condensed product, the molar fraction at the interface is: int a / N .M mx A A= , 
where aN is Avogadro’s constant and Am is the exposed area at the surface 
per molecule. The value of that term can be estimated on the basis of the 
molecular radius, or by molecular mechanics in the case of a complex-
shaped molecule. By identification with the definition of the surface energy 
[1.33], we obtain: 

vap surf vap liq

a

( )  ( )
  

N m

H H
A

σ → →−
=   [1.50] 

We saw earlier on that the numerator must be a positive value, so the 
surface energy is also a positive value. Thus, the surface tension of a liquid 
is a positive value. 

1.2.5. Extent of the area of the surface of a liquid  

We shall now show that the area occupied by the interface has a 
minimum value at equilibrium. 
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In view of the additive properties of the extensive values, the free energy of 
the system containing two phases, α and β, with an interface, γ, is written as: 

( ) ( ) ( )F F F F= + +  [1.51] 

Because the number of atoms forming the interface is much smaller than 
the numbers contained in the two volume phases, we can see that any 
variation in the interfacial area leads to a negligible variation in the 
quantities of material of the volume phases, and hence in their free energies, 
so: 

( ) ( )

, , , ,

0
T V n T V n

F F
A A

∂ ∂+ ≈
∂ ∂

 [1.52] 

Relation [1.29] therefore gives us: 

( )

, , , ,T V n T V n

F F
A A

σ∂ ∂≈ =
∂ ∂

 [1.53] 

NOTE.– The same reasoning can be applied for the other functions U, S, H, G 
and Gσ. 

For a closed system, with constant temperature and volume and a single 
component, the function F(γ) being homogeneous and of first degree in relation 
to the quantities of material and thus the area of the interface, we would have: 

( )
( )

, ,T V n

FF A
A

∂=
∂

 [1.54] 

Thus, in view of relation [1.53]: 

( )F Aσ=  [1.55] 

Furthermore, the differentiation of the function F, based on relation 
[1.51], gives us: 

( ) ( ) ( ) ( ) ( ) ( )d d d d d d dF F F F F F Aσ= + + = + +  [1.56] 
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However, at constant temperature, volume and quantity of material, the 
free energies of the volume phases are constant, and thus in light of relation 
[1.55]: 

( ) ( ), , , ,
d d

T V n T V n
F Aσ=  [1.57] 

As the free energy function is a potential function within the set of 
variables chosen, at equilibrium we have: 

( ) , ,
d 0

T V n
Aσ =  [1.58] 

For a pure substance, the surface energy is uniform and independent of 
the area, so the equilibrium condition is simplified to give us: 

( ) , ,
d 0

T V n
Aσ =  [1.59] 

Thus, the area occupied by the interface has its minimum value at 
equilibrium. 

1.3. Influence of temperature on surface energy 

Because of the symmetry of the characteristic matrix of the system, it is 
easy to demonstrate the following relation between the derivative of the 
surface energy in relation to temperature and the entropy expressed per unit 
area: 

s
T σ
σ∂ = −

∂
 [1.60] 

However, for want of a more accurate model, initially the relation 
between the surface tension and the temperature was based solely on 
experimental observations and similarities. 

Experience tells us that usually the surface energy decreases with 
increasing temperature, reaching the value of 0 at the critical temperature Tc.  
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This observation led Eötvös to suggest a simple linear decrease, written as 
follows as a function of the temperatures, expressed in degrees Celsius: 

0 1
c

T
T

σ σ= −  [1.61]
 

However, it is clear that this linear law is very soon proven false by 
experimentation, as we approach the critical temperature, and therefore, van 
der Waals and Guggenheim were led to correct the previous formula in the 
form: 

0 1
n

c

T
T

σ σ= −  [1.62]
 

Eötvös, trying an analogy between the area and the volume and basing 
the reasoning on the perfect gas model, proposed the relation: 

( ) ( )2/30
cv k T Tσ = −  [1.63]

 

In view of the molar volume of the gas 0( )vapv , which is no longer 

negligible in relation to that of the liquid ( )0 liqv  in the vicinity of the critical 
point, the previous formula is corrected, and the new proposition from 
Eötvös and Katayama is written: 

( )

2/3

0( )0

1 1 1cvapliq
c

TkT
v Tv

σ
−

− = −  [1.64]
 

By combining relations [1.64] and [1.62] with n = 1.2, we obtain a new 
proposition, constituted by the MacLeod relation: 

( )
[ ]

3/2 3/21/4
1/4 0( )

4 5/40( ) 0( )
0

1 liqc

liq vap

k T
P v

v v

σ σ
σ

− = = ≅
−

 [1.65] 

Fowler gave a certain statistical basis to this relation. However, in order 
to progress further, we shall describe the model developed by Metzger, 
which gives an expression of the surface energy with two adjustable 
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parameters, and which seems satisfactory both for simple liquids and for 
associated liquids and metals. 

On the basis of the definition of the free energy function F and of its 
derivative in relation to temperature (-S), it is easy to demonstrate the Gibbs–
Helmholtz relation: 

FT F U
T

∂ − = −
∂

 [1.66] 

Let us express the internal energy in the form of a limited expansion of 
the temperature: 

2 3
0U U T T Tα β γ= + + +  [1.67]

 

By integration and treating 
F
T

∂
∂

 and 
d
d

F
T

 as identical, we find:
 

2 3
0 ln

2
F U T T T T aTγα β= − − − +  [1.68]

 

In view of relation [1.67] and by derivation, we obtain: 

232 ln
2

F T T a T
T

α β γ α∂ = − − − + −
∂

 [1.69]
 

The value 
F
T

∂
∂

, excepting the sign, is the same as the entropy. Let us 

bring a molecule of the liquid from the depths of the volume to the surface 
and apply the above relations to that transformation. We accept that at  
the temperature of absolute zero, the molecular order is the same at the 
surface and inside the liquid, so the variation in entropy will be 0 at absolute 
zero. This being the case, it is easy to see that this means that 0α =  and 

0a = . Relation [1.67] can therefore be simplified to: 

2 3
0U U T Tβ γ= + +  [1.70] 
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and relation [1.68] is also simplified, giving us: 

2 3
0 2

F U T Tγβ= − −  [1.71] 

For the two functions liq surfU→  and liq surf ,F→  for the next stage of our 
discussion, we shall limit ourselves to the first two terms in the expansion, 
meaning that we adopt the two expressions: 

2
liq surf liq surf 0U U Tβ→ →= +  [1.72a] 

2
liq surf liq surf 0F U Tβ→ →= −  [1.72b]

 

In the liquid, the mean of the intermolecular distances is denoted by r, 
such that, if 0( )liqv  denotes the molar molecular volume, we have: 

0( ) 3
aNliqv r=  [1.73] 

In addition, the surface energy is also the amount of work that needs to be 
injected to increase the free surface by 1 m2, and has the value σ, as we saw 
in section 1.1.2.3. 

In order to apply relations [1.72a] and [1.72b] to the free surface of the 
liquid, let us bring a molecule from inside the body of liquid to the surface. 
The area of the surface increases approximately by a quantity equal to r2,  
and the work to be injected is 2rσ . That work is also equal to 

2
liq surf liq surf 0F U Tβ→ →= − . Hence, in light of relation [1.73], we have the 

triple equality: 

( )2/30( )
2 2

liq surf liq surf 2/3
aN

liqv
F U T rβ σ σ→ →= − = =  [1.74] 

From this, we deduce the expression of the surface tension of a liquid or 
its surface energy: 

( )
( )

2 2/3
liq surf 0 a

2/30( )

N
liq

U T

v

Δ β
σ → −

=  [1.75] 
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In fact, we have supposed that the molecules of the liquid were compact 
spheres, and it is simpler to write that the area they occupy is (r – l)2 , where 
l is a correction factor which we need to determine. In these conditions, 
relation [1.75] is replaced by: 

( )
( )( )

2 2/3
liq surf 0 a

21/30( )

N

liq

U T

v l

Δ β
σ → −

=
−

 [1.76] 

We can reduce the number of constants in relation [1.76] by first writing 
that the surface energy must take the value of 0 at the critical temperature, 
which is expressed by: 

liq surf 0
2

c

U
T

β →=  [1.77] 

The expression of the surface energy, then, is: 

( )( )

2
2/3

liq surf 0 a

21/30( )

N 1
c

liq

TU
T

v l
σ

→ −

=
−

 [1.78] 

To determine l and liq surf 0U→ , we simply need to apply relation [1.78] 
for the same substance at two different temperatures on the basis of two 
experimental surface energy values, so we shall have two equations which 
allow us to determine the two unknowns liq surf 0U→  and l. 

In fact, relation [1.78] overlooks the presence of vapor on top of the 
liquid. If vaporous molecules are present, they too will exert forces on the 
surface molecules, which are expressed by a corrective term taking account 
of the work of those forces, which obey relation [1.78]. The consequence of 
this is that the effective work is the difference between two terms, which 
gives us the relation: 
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( )( ) ( )( )
2

2/3
liq surf 0 a 2 21/3 1/30( ) 0( )

1 1N 1
liq vapc

T
U

T v l v l
σ →= − −

− −
 [1.79] 

 

Figure 1.5. Variations in the surface energy with  
changing temperature in Metzger’s model 

Benzene Water Mercury 

T(°C) σ measured 
(j/m2) 

σ 
calculated 

(j/m2) 
T(°C)

σ 
measured

(j/m2) 

σ 
calculated

(j/m2) 
T(°C)

σ 
measured 

(j/m2) 

σ 
calculated 

(j/m2) 

0 0.0317 0.0317 0 0.0756 0.0756 30 0.4716 0.471 

20 0.02902 0.02905 10 0.0742 0.0744 40 0.4682 0.4669 

50 0.0251 0.0251 20 0.0727 0.0730 100 0.4562 0.4541 

70 0.0225 0.0226 40 0.0696 0.0700 200 0.4312 0.4306 

100 0.0188 0.0189 60 0.0662 0.0665 300 0.3995 0.4051 

150 0.0129 0.0129 80 0.0626 0.0627 360 0.3764 0.3887 

200 0.0074 0.0075 100 0.0589 0.0590 1450 0 0 

250 0.0027 0.0027 130 0.0528 0.0529 

288.5 0 0 

Table 1.1. Variations in surface tensions of a number  
of substances with temperature, according to Metzger 
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Often, the second term, due to the vapor, is negligible in comparison to 
the first. 

Figure 1.5 plots the variations in the surface tension with changing 
temperature. Table 1.1 gives a number of values provided by Metzger, which 
can be used to draw a comparison between the calculated values and the 
experimental values, in the cases of benzene (which is a simple liquid), of 
water (which is an associated liquid, in view of the hydrogen bonds within 
it) and for a metal: mercury. We can see the fairly close correspondence 
between the measured and calculated values. 

Remember that Metzger’s fundamental hypothesis states that at absolute 
zero, there is the same degree of order in the liquid phase and in the surface, 
meaning there is no difference in entropy at absolute zero, which is 
reminiscent of Planck’s third law. 

1.4. Surface latent heat 

Consider a transformation at constant pressure, varying only the area of 
the interface and the temperature. We shall calculate the total surface energy 

defined by 
, ,T P n

Hh
Aσ

∂=
∂

. We can write: 

g h Tsσ σ σ= −  [1.80] 

Using relations [1.33] and [1.60], we obtain:  

, ,P n A

h T
Tσ
σσ ∂= −

∂
 [1.81] 

This equation was given by Kelvin. As σ is positive (see section 1. 2.4) 
and σ  decreases as the temperature increases (see the curve in Figure 1.5), 
hσ is positive, meaning that heat is indeed absorbed by a liquid when its 
surface area increases. 
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1.5. Surface specific heat capacity 

By deriving the relation between the molar specific heat capacity and the 
enthalpy in relation to the area A, we find: 

1 P A T

T A

T A

S S
sC T A

T A A T T
σ

∂ ∂∂ ∂
∂∂ ∂ ∂= = =

∂ ∂ ∂ ∂
 [1.82] 

Taking account of relation [1.60], we obtain: 

2

2
P

T A

C
T

A T
σ∂ ∂= −

∂ ∂
 [1.83] 

This equation connects the variation in the specific heat capacity at 
constant pressure with the area of the interface to the second derivative of 
the surface energy in relation to temperature. 

If we examine the curve in Figure 1.5, we can roughly distinguish three 
zones: 

– The first zone, in which, at low temperatures, the second derivative of the 
surface energy in relation to the temperature is negative. In that zone, by virtue 
of relation [1.83], the specific heat capacity at constant pressure increases with 
the area of the interface, and more heat is needed to raise the temperature of 
the surface molecules by 1° than to produce the same temperature in the 
molecules within the liquid. 

– The second zone, where, at a medium temperature, the second 
derivative of the surface energy in relation to temperature has the value of 0. 
In that zone, by virtue of relation [1.83], the specific heat capacity at 
constant pressure is independent of the area of the interface, so the same 
amount of heat is needed to raise the temperature by 1° both for the 
molecules at the surface and for those within the liquid. 

– The third zone, in which, at a high temperature, the second derivative of 
the surface energy in relation to the temperature is positive. In that zone, by 
virtue of relation [1.83], the specific heat capacity at constant pressure 
decreases with the area of the interface. Hence, less heat is needed to raise 
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the temperature of the surface molecules by 1° than for the molecules within 
the liquid. 

However, we generally see that the surface term of the specific heat 
capacity is lower than the degree of accuracy of the measurements, which 
means that often this contribution is not taken into account.  

1.6. Influence of pressure on the surface tension of a liquid 

It is only possible to increase the pressure above a liquid interface with its 
vapor if the gaseous phase contains a foreign gas which is insoluble in the 
liquid. In such a case, the surface energy varies with the pressure of that gas. 
Experience shows us that the surface energy of the liquid is not altered for 
low pressures of around 1 atmosphere, but that this variation is far from 
negligible if we use higher pressures. Kindt showed that this variation can be 
as great as 50% if we use pressure values of 150 atmospheres. 

Due to the symmetry of the characteristic matrix, we have: 

V
P A
σ∂ ∂= −

∂ ∂
 [1.84] 

Thus, the variation of the surface energy with pressure is, in fact, a form 
factor of the liquid. 

In his model, Metzger (see section 1.3) included the pressure variable as 
follows. 

If we use relation [1.72], when a molecule comes from the interior of the 
liquid to the surface, the free energy is increased by PΔv, where Δv is the 
variation in the volume of the molecule transferred, so that the free energy 
becomes: 

2
liq surf liq surf 0F U T P vβ Δ→ →= − +  [1.85] 
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Obeying the same process of reasoning as in section 1.3, relation [1.79] is 
substituted by: 

( )( ) ( )( )

2

liq surf 0

2/3
a2 21/3 1/30( ) 0( )

1

1 1 N

c

liq vap

TU P v
T

v l v l

σ Δ→= − +

−
− −

 

[1.86]

 

This expression accounts for the fact that if the pressure is low, the inert 
gas has no influence on the surface energy. At high pressure, on the other 
hand, its influence becomes notable. 

1.7. Evaluation of the surface energy of a pure liquid  

To evaluate the surface energy of a liquid, we need to have a microscopic 
model at our disposal. The simplest available microscopic model is that of 
the monomolecular surface layer. 

In this model, we consider that the surface of the liquid is formed of a 
monomolecular layer covering the volume of the liquid. 

The model is based on the following hypotheses: 

– the potential energy between two near-neighboring molecules εΑΑ(r) 
(negative) is a rapidly-decreasing function of r, which means we can ignore 
the interactions between molecules that are not near neighbors; 

– the molecules of the liquid are arranged in a quasi-net, so for each 
molecule, we can define a mean value z for the number of near neighbors. 

Within the liquid volume phase, imagine there are molecular levels 
parallel to the surface, represented by layers 1, 2 and 3 in Figure 1.6. A 
molecule A in layer 2, for instance, has near neighbors which are either in 
layer 2 itself or in the two adjacent layers, 1 and 3. Reasoning on the basis of 
the molar values, each layer contains a mole – i.e. Na molecules (Na is 
Avogadro’s number). 
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Figure 1.6. Layers within a liquid, parallel to the surface 

Let lz denote the number of molecules that are the nearest neighbors of a 
molecule and situated in the same layer as that molecule, whilst mz 
represents the number of near neighbors situated in a layer adjacent to that 
containing the molecule. We have: 

2lz mz z+ =   [1.87a] 

so: 

2 1l m+ =  [1.87b] 

For instance, if we choose the cubic stack with centered faces, we have  
z = 12, m = 1/4 and l = 1/2. 

If we imagine that the liquid is split parallel to the layers defined 
previously, then we create two free surfaces with the areas AM (molar area), 
each containing Na molecules. The excess energy caused by that split would 
be twice the surface energy, and thus: 

aN
2

AA

M

zm
A

εσ =  [1.88] 

This energy can be linked to the enthalpy of vaporization of the liquid, 
because vaporization breaks all the intermolecular bonds. Thus, we have: 

liq vap

a

2
NAA

H
z

ε →=  [1.89] 

and hence the surface energy is: 

liq vap

M

m H
A

σ →=  [1.90] 
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In fact, the split has created interfaces between the liquid and the vacuum, 
whereas the surface tension is defined in the presence of the vapor of the 
liquid. The calculation presented above, though, is correct because the 
distances between the gas molecules and the monomolecular surface layer 
are sufficiently large for us to ignore the interaction energies. 

We note that the surface energies calculated by relations [1.88] or [1.90] 
are overestimated. One of the main criticisms leveled at the model is that it is 
accepted that the surface layer has the same structure as a monomolecular 
layer situated within the liquid. 

In order to bring a molecule from inside the liquid to the surface, it is 
necessary to break the mz bonds, requiring a so-called energy of extension. 
We can define the Stéphan ratio as the ratio of the enthalpy of vaporization 
to the molar energy of extension. In our model, that ratio is  
z/mz – i.e. 1/m. This means, for example, that for a centered-face cubic net, 
that ratio would be 4 – a value which is much too high – so for example, for 
liquid argon, that ratio is only 2.38. This means that, unlike with our 
hypothesis and that employed by Metzger (see section 1.3), the surface phase 
would not have the same degree of order, and therefore the same entropy, as 
a liquid monolayer. The surface layer would be much more disordered than a 
monolayer of the liquid phase, and in particular, it would contain a great 
many vacancies. 





2 

Interfaces Between Liquids  
and Fluid Solutions 

In Chapter 1, we limited our discussion to liquid–fluid interfaces with a 
single component – in other words, interfaces between a pure liquid and its 
vapor. We shall now examine the properties of interfaces between a liquid 
and a fluid (liquid or gas) containing multiple components. The components 
will be denoted by the indices 1, 2, … i, …. In this case, the layer modeling 
the interface is the site of phenomena of adsorption, which depend on the 
composition of each of the phases in the bulk, and thus unlike those bulk 
phases whose properties are independent of their neighbors,  
the properties of the layer depend on the variables which determine the 
properties of the neighboring bulk layers. We say that the layer is a non-
autonomous phase, whilst the bulk phases on both sides of the layer are 
autonomous phases. 

2.1. Surface concentrations and surface excess 

In the layer, the position of the interface is theoretically determined by 
the difference in pressure, P(α) – P(β), which sets the mean radius of curvature 
of the surface. The layer contains a certain amount ( )

in  of each component 
Mi of the system. The surface concentration i  of the species Mi, also called 
the absolute adsorption or surface excess, will therefore be: 

( )
i

i
n
A

=  [2.1] 

Thermodynamics of Surfaces and Capillary Systems, First Edition. Michel Soustelle.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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We shall now evaluate ( )
in  or i . In order to do this, consider two 

phases in contact, α and β, with the respective volumes ( )V  and ( )V , 
separated by the interface Σ (Figure 2.1). Let ( )

iC  and ( )
iC  be the molar 

concentrations of component Mi in each of the bulk phases. If those phases 
remain uniform up to the separating surface Σ, they will contain 

( )( ) ( )
i in C V=  and ( )( ) ( )

i in C V=  moles of Mi respectively. If ni is the 
quantity of Mi contained in the whole system, by the material balance we can 
write: 

( )( ) ( ) ( )
i i i in n n n= − +  [2.2] 

This expression explains the term total surface excess relative to 
component Mi. That excess may be positive, in which case we have positive 
adsorption of Mi, or negative, which leads to negative adsorption. 

 

Figure 2.1. Variations in the concentration of a solute at an interface 

Figure 2.1 shows the variations in concentration of component Mi as we 
move perpendicularly to the interface between the abscissa values ( )x  and 

( )x β , which are the limits of the phases. The area delimited by that curve 
represents the total quantity of component Mi contained in a cylinder with 
surface of 1 and height ( ) ( )x xβ α− . i  is the area of the hatched surface. The 
figure is constructed in the case of positive adsorption. 
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The layered model, though, presents a problem in terms of the choice of 
abscissa x(γ) of the interface. We have defined it in relation to the 
discontinuity of the pressure, which sets the radii of curvature. However, this 
determination is not very accurate, and even less so when the radii of 
curvature are high. The position is no longer defined in the case of planar 
interfaces, for which there is no longer a pressure discontinuity. However, 
we can see in Figure 2.1 that the value of i  depends heavily on the position 
of the interface, and can even turn a positive value into a negative one 
simply by changing the value of x(γ). For this reason, we are led to define, 
instead of the absolute adsorption i , a relative adsorption ,1i  of 
component Mi in relation to component M1, for which it is helpful to choose 
the solvent, if it exists. 

The quantity of material ( )
in  of component Mi in the layer can be written 

in the form: 

( )( ) ( ) ( ) ( ) ( )
i i i in n C V C V= − +  [2.3] 

By introducing the total volume of the system ( ( ) ( )V V V= + ), 
relation [2.3] becomes: 

( )( ) ( ) ( ) ( ) ( )
i i i i in n C V C C Vγ α α β β= − + −  [2.4] 

The volume V  is independent of the choice of position of the interface, 
but volume ( )V β  does depend upon it. If we eliminate that volume between 
the two relations [2.4] written for component Mi, on the one hand, and 
component M1 on the other, we obtain: 

( ) ( )( ) ( ) ( ) ( )
1 1 1

( ) ( ) ( ) ( )
1 1

i i i

i i

n n C V n n C V

C C C C

− − − −
=

− −  [2.5] 

or 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 1 1( ) ( ) ( ) ( )

1 1 1 1

i i i i
i i i

C C C C
n n n C V n C V

C C C C
− −

− = − − −
− −

 [2.6] 
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As the right-hand side of relation [2.6] is independent of the position of 
the interface, the same is true of the left-hand side. If we divide by the area 
A, we define the relative adsorption ,1i  of component Mi in relation to 
component M1 by the relation: 

( ) ( )

,1 1 ( ) ( )
1 1

i i
i i

C C
C C

−
= −

−  [2.7] 

As we can see, the relative adsorption does not depend on the position of 
the interface.  

We can see from the defining relation [2.7] that if 1  = 0, we have 

,1i i= , so the relative adsorption of component Mi in relation to 
component M1 is the absolute adsorption of Mi, when the position of the 
interface is chosen such that the adsorption of M1 is null. 

We can also see that if the reference component is the solvent and if the 
solutions are sufficiently dilute, meaning that if we simultaneously have 

( ) ( )
1iC C<< and ( ) ( )

1iC C<< , the relative adsorption ,1i  is practically 
identical to the absolute adsorption i . 

NOTE.– From relation [2.7], we can deduce that the relative adsorption 1,1  
of a component in relation to itself is zero.  

A particular case of relation [2.7] is obtained if one of the phases – say, 
the β phase, for example – is a gas. We can then overlook the concentrations 
in that phase in comparison to those in the liquid phase, expressed by 

( ) ( )
i iC C<<  and ( ) ( )

1 1C C<< , and relation [2.7] becomes: 

 
( ) ( )

,1 1 1( ) ( )
1 1

i i
i i i

C x
C x

= − = −  [2.8] 

( )
ix  is the molar fraction of component i in the liquid α phase. 

If, furthermore, component 1 is the solvent in a dilute solution, then a  
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new simplification leads to a relative adsorption which varies in a linear 
fashion with the molar fraction or the concentration: 

( ) 0( ) ( )
,1 1 1 1i i i i iC v x≅ − ≅ −  [2.9] 

As formula [2.8] is valid irrespective of the position of the separating 
surface, let us place it at the lower limit of the layer – i.e. at the boundary 
between the layer and the α phase. The concentrations i  and 1  are equal 
to the quantities of i and 1 per unit surface in the layer. This means that the 
relative adsorption of i in relation to 1 is null when the components i and 1 
are present in the layer in the same proportions as in the solution. Thus, the 
relative adsorption expressed the fact that the interface is enriched or 
impoverished in terms of the various components in relation to the core of 
the solution. This is consistent with the fact that the relative adsorption of a 
component in relation to itself is zero. 

2.2. Thermodynamics of interfaces of polycomponent liquid–
fluid systems 

As we did for pure substances (section 1.2), we shall now discuss the 
thermodynamics of surfaces for polycomponent systems. 

2.2.1. Complete chemical potential of a component in a phase 

In the context of the layered model (section 1.2.1), the first set of 
variables, which are all extensive, will be: 

( ) ( ){ }( ) ( ) ( ), , , , , ,U i i iS V V A n n n=E  [2.10] 

In this set of variables, the differential of the internal energy is written: 

( ) ( )( ) ( )

( ) ( ) ( )
( ) ( ) ( )

d d d d d

d d di i i
i i ii i i

U T S P V P V A
U U Un n n

n n n γ

σ= − − +
∂ ∂ ∂+ + +

∂ ∂ ∂
 [2.11] 
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This differential includes the partial differentials ( )
i

U
n
∂

∂
, ( )

i

U
n
∂

∂
 and ( )

i

U
n
∂

∂
. 

These differentials, which resemble chemical potentials, are known as the 
complete chemical potentials or surface chemical potentials of component i, 
in the α, β and γ phases respectively. Thus, by definition of those complete 
chemical potentials, we have: 

( ) ( )

( )
( )

, , , , j

i
i S V V A n

U
n

μ ∂=
∂

 [2.12] 

and similar relations are written for the other phases. Thus, now the 
differential of the internal energy will be: 

( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

d d d d d

d d di i i i i i
i i i

U T S P V P V A

n n n

σ
μ μ μ

= − − +

+ + +  [2.13] 

The same reasoning can be applied for the functions H, F, G, and Gσ, 
each in their set of variables – e.g. for the differential of the Helmholtz 
energy, we would have: 

( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

d d d d d

d d di i i i i i
i i i

F S T P V P V A

n n n

σ
μ μ μ

= − − − +

+ + +  [2.14] 

and thus, we can write the expression of a complete chemical potential in the 
following different forms: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( )

, , , , , , , ,

( ) ( ) ( )
, , , , , , , , , , , ,

j j

j j j

i
i iS V V A n S P P A n

i i iT V V A n T P P A n T P P n

U H
n n

GF G
n n n

σ

σ

μ ∂ ∂= =
∂ ∂

∂∂ ∂= = =
∂ ∂ ∂

 [2.15] 

As is demonstrated by this last equation, the complete chemical potential 
is the generalized chemical potential for surface phenomena. 



Interfaces Between Liquids and Fluid Solutions     35 

Relations [1.21], [1.25], [1.29] and [1.33], defining the surface energy, 
remain valid, with the partial differentials being taken at constant quantities 
of the species in the different phases. 

NOTE.– As the functions H, F, G, and Gσ are homogeneous first-degree 
functions in relation to the quantities of material, the application of Euler’s 
theorem gives us: 

( ) ( ) ( ) ( ) ( ) ( )
i i i i i i

i i i

U TS PV A n n nσ μ μ μ= − + + + +  [2.16] 

( ) ( ) ( ) ( ) ( ) ( )
i i i i i i

i i i

H TS A n n nσ μ μ μ= + + + +  [2.17] 

( ) ( ) ( ) ( ) ( ) ( )
i i i i i i

i i i

F PV A n n nσ μ μ μ= − + + + +  [2.18] 

( ) ( ) ( ) ( ) ( ) ( )
i i i i i i

i i i

G A n n nσ μ μ μ= + + +  [2.19] 

( ) ( ) ( ) ( ) ( ) ( )
i i i i i i

i i i

G n n nσ μ μ μ= + +  [2.20] 

If we look again at relation [1.51], which remains valid in the case of a 
multicomponent system, then ( )F , which is the Helmholtz energy of a 
massive phase, is therefore a function of ( ) ( ), , iT V n . Similarly, ( )F , which 
is also the internal energy of a massive phase, is also a function of 

( ) ( ), , iT V n , and the global function ,F  which is a function of all of the 
variables, is a function of ( ) ( ) ( ) ( ) ( ), , , , , ,i i iT V V A n n n . We deduce from 
expression [1.51] that the internal Helmholtz energy of the surface phase 

( )F  is a function of ( ) ( ) ( ) ( ) ( ), , , , , ,i i iT V V A n n n . This shows us that this 
phase is not autonomous. Therefore, we can write the partial differentials of 
the Helmholtz energy in the forms: 

( ) ( )

( ) ( ) ( )
i i i

F F F
n n n
∂ ∂ ∂= +

∂ ∂ ∂
  [2.21a] 

( ) ( )

( ) ( ) ( )
i i i

F F F
n n n
∂ ∂ ∂= +

∂ ∂ ∂
  [2.21b] 
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( )

( ) ( )
i i

F F
n n
∂ ∂=

∂ ∂
 [2.21c] 

As the partial differential 
( )

( )
i

F
n

∂
∂

, for example, is the chemical potential of 

component i in the α phase, based on relation [2.14], we deduce the three 
relations: 

( )
( ) ( )

( )i i
i

F
n

μ μ ∂= +
∂

  [2.22a] 

( )
( ) ( )

( )i i
i

F
n

μ μ ∂= +
∂

  [2.22b] 

( ) ( )
i iμ μ=  [2.22c] 

If we let ( )f  represent the Helmholtz energy of the surface layer per unit 
area (see relation [1.37]), using relations [1.37] and [2.1] we can also 
calculate: 

( )
( )

( ) i
i i

F A f
n

μ∂ ∂= =
∂ ∂

 [2.23] 

This last equation links the chemical potential of component i in the layer 
at the excess surface of i. 

2.2.2. Chemical potentials and lateral chemical potentials 

We shall now define values ( )
iλ  and ( )

iλ , which are called the lateral 
chemical potentials of component i, by the equations: 

( )
( )

( )i
i

f
C

λ ∂=
∂

   [2.24a] 
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and: 

( )
( )

( )i
i

f
C

λ ∂=
∂

 [2.24b] 

Thus, according to definitions [2.24a] and [2.24b], the values ( )
iλ , ( )

iλ  
and ( )

iμ  are (according to relation [2.23]) functions of the intensive 
variables (T, ( )

iC , ( )
iC , i ). Hence, they are intensive values. 

By derivation in relation to the quantity of component i in α phase we can 
write: 

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) i
i i i

F f A F AA
n n V C V

λ∂ ∂ ∂= = =
∂ ∂ ∂

 [2.25] 

Similarly, for the quantity of component i in the β phase: 

( )
( )

( ) i
i

F A
n V

λ∂ =
∂

 [2.26] 

The values ( )
iλ  and ( )

iλ  are known as the lateral chemical potentials of 
component i, reflecting the fact that they give the contribution to the 
Helmholtz energy of the concentration of i on both sides of the surface. 

NOTE.– We can see, from definition [2.24], that for pure substances the 
lateral chemical potential is zero. 

By feeding back equations [2.25] and [2.26] into relations [2.24a] and 
[2.24b], we obtain: 

( ) ( ) ( )
( )i i i
A

V
μ μ λ= +  [2.27a] 

( ) ( ) ( )
( )i i i
A

V
μ μ λ= +  [2.27b] 

 



38     Thermodynamics of Surfaces and Capillary Systems 

( ) ( )
i iμ μ=  [2.27c] 

These relations demonstrate that the complete chemical potentials ( )
iμ  

and ( )
iμ  are no longer intensive variables because if the chemical 

potentials and the lateral chemical potentials are intensive, the involvement 
of the geometric ratios A/V makes the complete chemical potentials of the 
bulk phases dependent on the amount of material, amongst others. 

2.2.3. Conditions of equilibrium in a capillary system 

The general equilibrium condition for the three-phase system is expressed 
by the equality of the generalized chemical potentials – in our case the 
complete chemical potentials – of each of the three phases: 

( ) ( ) ( )
i i iμ μ μ= =  [2.28] 

In view of relations [2.27a], [2.27b] and [2.27c], this double equality 
becomes: 

( ) ( ) ( ) ( ) ( )
( ) ( )i i i i i
A A

V V
μ λ μ λ μ+ = + =  [2.29] 

We shall accept, as do Defay and Prigogine, that any portion of a system 
at equilibrium is also at equilibrium, which is tantamount to accepting that 
the equilibrium conditions must be able to be expressed on the basis of the 
intensive values alone. However, we have seen that the complete chemical 
potentials were not intensive values because of the terms A/V. 

Let us represent our system by using two volumic phases with the 
volumes V(α) and V(β) and an interface Σ (Figure 2.2). Our system ABCD can 
be mutilated by cutting off portion CDEF, and be reduced to ABEF without 
changing the equilibrium conditions. Then, only the term V(β) is reduced and, 
with the equilibrium conditions being the same, which means that the terms 
containing this volume in the complete potentials must assume the value of 
0, at equilibrium. 



Interfaces Between Liquids and Fluid Solutions     39 

 

Figure 2.2. Independence of the conditions of equilibrium  
and the dimensions of the system 

This observation is expressed by the zeroing of the lateral chemical 
potentials at equilibrium: 

( ) ( ) 0i iλ λ= =  [2.30] 

Finally, in view of relations [2.27a], [2.27b] and [2.27c], the equilibrium 
condition of the system is expressed by the equality of the ordinary chemical 
potentials: 

( ) ( ) ( )
i i iμ μ μ= =  [2.31] 

The equilibrium condition of a capillary system (containing an interface) 
is expressed, as for a volume system, by the equality of the chemical 
potentials in the three phases: the two bulk phases and the surface phase. 

2.2.4. Gibbs–Duhem relation for surface phenomena 

Look again at expression [2.20] of the generalized Gibbs energy function. 
By differentiation, we obtain: 

d d di i i i
i i

G n nσ μ μ= +  [2.32] 
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However, the transposition of relation [2.32] to the case of 
polycomponent systems gives us: 

( ) ( ) ( ) ( ) ( ) ( ) ( )d d d d d d
d di i

G S T S T S T V P V P

A n
σ

σ μ
= − − − + +

− +  [2.33] 

By combining relations [2.32] and [2.33], we find: 

( ) ( ) ( ) ( ) ( ) ( ) ( )d d d d d d 0i i
i

S T S T S T V P V P A n dσ μ+ + − − + + =  [2.34] 

This expression is the transposition of the Gibbs–Duhem relation to 
surface systems. In particular, at constant temperature, pressure and surface 
tension it is expressed in the form: 

0i i
i

n dμ =  [2.35] 

This relation is absolutely identical to the Gibbs–Duhem relation 
obtained for the bulk phases at constant pressure and temperature. 

2.2.5. Adsorption and Gibbs isotherm  

Let us apply the Gibbs–Duhem relation to all the two volumic α and β 
phases of the layered model. We have: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )d d d d 0i i i
i

S T S T V P V P n n dβ β μ+ − − + + =  [2.36] 

By subtracting equation [2.36] from equation [2.34], taking account of 
relation [2.2], we find: 

( ) ( )d d 0i i
i

S T A n dσ μ+ + =  [2.37] 

or, by dividing by the area A: 

( )d d i i
i

s T dσ μ= − −  [2.38] 
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In this expression, the volumes no longer play a part, and at constant 
temperature, equation [2.38] is simplified to: 

d i i
i

dσ μ= −  [2.39] 

The result of this is that the excess concentration of component i is: 

, , j

i
i T P μ

σ
μ

∂= −
∂

 [2.40] 

This relation constitutes the first form of the Gibbs isotherm of 
adsorption. 

This expression has the peculiarity of being impossible to use, because 
the chemical potentials, which are linked by the Gibbs–Duhem relation, are 
not independent. Therefore, it is impossible to differentiate relation [2.41] in 
relation to one of the chemical potentials whilst keeping all of the others 
constant. We shall circumvent this difficulty by replacing the absolute 
adsorption of component i by its relative adsorption in relation to a chosen 
component – say, component 1 – defined by relation [2.7], recapped here: 

( ) ( )

,1 1 ( ) ( )
1 1

i i
i i

C C
C C

−
= −

−
 [2.41] 

For this purpose, we first note that the quantities of material in the two 
bulk phases must obey the Gibbs–Duhem relation for the bulk phases: 

( ) ( )d d 0i i i i
i i

n nμ μ= =  [2.42] 

These relations lead to the concentrations: 

( ) ( )d d 0i i i i
i i

C Cμ μ= =  [2.43] 
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and thus we have: 

,1d d 0i i i i
i i

μ μ= =  [2.44] 

and we find the relation: 

,1d i i
i

dσ μ= −  [2.45] 

In this relation, because 1,1  has the value of 0, we merely need to 
perform the calculation on the basis of i = 2. Thus, we have: 

,1
, , j

i
i T P μ

σ
μ

∂= −
∂

where i  1, and i  2 [2.46] 

We have therefore avoided the problem, because in this expression 
differentiation is possible because, as the potential 1μ  plays no part, the 
potentials jμ  are all independent. 

If the solution is ideal, the chemical potential of the component i is: 

0 R lni i iT Cμ μ= +  [2.47] 

Relation [2.46] then takes the form: 

,1
, ,

R
j

i
i

i T P C

C
T C

σ∂= −
∂

 [2.48] 

This relation is the second form of the Gibbs isotherm of adsorption. It 
enables us to determine the relative adsorptions of the different components 
by varying their concentrations. It shows that it is the components tending to 
decrease the surface tension which are adsorbed positively ( ,1 0i > ). 
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2.3. Surface tension of solutions 

The thermodynamic results established above do not depend on the 
nature of the α and β phases present, which may be solid, liquid or gaseous. 

We shall now turn our attention to the properties of the interfaces 
between a liquid solution and its own vapor phase at equilibrium. In keeping 
with all of the above, the vapor phase will be the β phase, with the α phase 
then being the liquid solution, whose nature we shall not specify further. 

As the β phase is gaseous, its Helmholtz energy, Gibbs energy and 
generalized Gibbs energy in relation to the surface phenomena will be 
negligible in relation to those of the liquid phase, and therefore the overall 
value in the system is the sum of the corresponding contributions of the 
liquid phase and the layer. Thus, relation [1.34] for the generalized Gibbs 
energy of the layer (γ phase) gives us: 

( ) ( )G G Aσ σ= −  [2.49] 

By differentiating and remembering that the differential of the function G 
is the chemical potential, we obtain the following, in light of relation [2.15]: 

( )

( )
( )

( )
( )

( )

( )

, , , ,i i

i i
i iT n T n

G A
n n

σ

σ σ

μ σ μ∂ ∂= + =
∂ ∂

 [2.50] 

By explicitly stating the chemical potential as a function of the activity, 
we obtain: 

( ) ( ) ( )
( )

0 lni i i
i

ART a
n

μ μ σ ∂= + −
∂

 [2.51] 

However, at equilibrium, the chemical potentials are equal, so: 

( ) ( )
i i iμ μ μ= =  [2.52] 

The chemical potential of the component i in the liquid is of the form: 

0 R lni i ig T aμ = +  [2.53] 
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By substituting expressions [2.52] and [2.53] back into relation [2.51], we 
obtain: 

( ) ( )
( )

0 0R ln R lni i i i
i

Ag T a g T a
n

σ ∂+ − = +
∂

 [2.54] 

This formula links the activity, and therefore the composition, of the 
surface layer at equilibrium with the liquid solution to its properties. 

Note that the standard terms ( )0
ig and 0

ig  are functions only of the 
temperature and, a little (in the condensed phase), on the pressure. 

NOTE.– We would employ the same reasoning and obtain the same results if 
we were to replace the liquid solution with a solid solution in the presence of 
its vapor. Hence, condition [2.54] is the equilibrium condition of a 
condensed solution (liquid or solid) and of its surface in the presence of its 
vapor. 

2.3.1. Perfect solutions 

In the case of perfect solutions, for which the activity coefficients are 
equal to 1, relation [2.54] becomes: 

( ) ( )
( )

0 0R ln R lni i i i
i

Ag T x g T x
n

σ ∂+ − = +
∂

 [2.55] 

In addition, we know that we can model these solutions by choosing very 
similar dimensions of the molecules of the different components, which can 
be expressed by the introduction of a common term AM, such that: 

( ) ( ) ( )
1 2 3

... M
A A A A

n n n
∂ ∂ ∂= = =

∂ ∂ ∂
 [2.56] 

The term AM represents the molar area, and its value can be estimated on 
the basis of the molar volumes (or the densities) as follows: 
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Assimilate the molecule to a small cube whose volume is Vm/Na. The 
area occupied by a molecule would be: 

2/3

aN
m

m
V

A =  [2.57] 

Thus, the molar area is: 

2/3
2/3 1 3 1 3

a a aN N N/ /
M m m

MA A V
ρ

= = =  [2.58] 

Now consider the pure component i; by applying relation [2.55], we 
would have: 

( )0 0
i i i Mg g Aσ− =  [2.59] 

where iσ is the surface tension of the pure liquid i in the presence of its vapor. 

By feeding this relation into equation [2.55], we obtain the following for 
the surface tension of the solution: 

( )R ln i
i

M i

xT
A x

σ σ= +  [2.60] 

Now consider a binary system formed of components 1 and 2. We 
eliminate the term σ between the two relations [2.60] expressed for each of 
these components. We obtain: 

( )

( )

1
1

1

22
2

exp
R

exp
R

M

M

Axx T
Ax x
T

σ

σ

−
=

−
 [2.61] 

Thus, for component 1: 

( )
1

1

1
1 2

1 2

exp
R

exp exp
R R

M

M M

Ax
Tx

A Ax x
T T

σ

σ σ

−
=

− + −
 [2.62a] 
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and for component 2: 

( )
2

2

2
1 2

1 2

exp
R

exp exp
R R

M

M M

Ax
Tx

A Ax x
T T

σ

σ σ

−
=

− + −
 [2.62b] 

These are the Schuchowitsky relations. 

In light of the fact that ( ) ( )
1 2 1x x+ = , we can deduce, using 

relation [2.60], that: 

1 2
1 2exp exp exp

R R R
M M MA A A

x x
T T T

σ σ σ− = − + −  [2.63] 

Let us calculate the molar fraction in the layer. We obtain:  

( )1 2
1 2

R ln 1 exp 1
R

M

M

AT x
A T

σ σ
σ σ

−
− = + −  [2.64] 

Relations [2.64], applied to each of the two components, were put 
forward by Szyszkowski, on the basis of experimental results, in the form: 

2
1 ln 1 C

b
a

σ σ− = +  [2.65] 

with the values a and b being two constants independent of the 
compositions. 

If the surface tensions of the two components in the solution are fairly 
close, we can make the hypothesis: 

( )1 2 1
R

MA
T

σ σ−
<<   
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Then, by developing the serial exponential, then the logarithm, 
relation [2.62] is simplified to become: 

1 1 2 2x xσ σ σ= +  [2.66] 

Thus, the surface tension of a perfect solution, as a first approximation, 
obeys a law of additivity as a function of the surface tensions of its pure 
components. 

2.3.2. Highly-dilute solutions 

For the dilute solutions, with a solvent whose molar fraction is x0 and a 
solute whose molar fraction is xs, the chemical potentials obey relation 
[2.53]. The activity coefficients are equal to 1 in the case of the solvent and, 
in the case of the solute, to a reference chemical potential sμ∞ (the chemical 
potential in the infinitely-dilute solution), which is a function only of the 
temperature and pressure. 

Applying relation [2.51] to the pure solvent, we obtain: 

( )
0 0 0 0Mg Aμ σ= −  [2.67] 

and thus, relation [2.60] gives us: 

( )
( )
0

0 0
0

R lnM
x

A T
x

σ σ− =  [2.68] 

For the solute s, we can apply relation [2.55], which is then written as: 

( ) ( )R ln R lns s M s s sT x A T xμ σ μ∞ ∞+ − = +  [2.69] 

By eliminating the term σ  between relations [2.68] and [2.69], we obtain: 

( ) ( ) ( )
0

0
00 0

R Rln lns s s

M s s M M s

x xT T
A x A x A

μ μσ
∞ ∞−− = −  [2.70] 
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For a very dilute solution, we have: ( ) 1sx <<  and 1sx << . The second 
logarithm in relation [2.70] is negligible in comparison to the first, and we 
can write: 

( ) ( )( )0
exp

R
M s s ss

s

Ax
x T

σ μ μ∞ ∞− −
≅  [2.71] 

The right-hand side of this expression is an adsorption energy, which 
depends only on the temperature and pressure. Thus, in a highly-dilute 
solution, the molar fraction of the solute in the layer is proportional to its 
molar fraction in the solution. 

By feeding back into expression [2.68], we find: 

( ) ( )( )
( )( )0

0 0 R R 1 exp
R

M s s s

M s s s

A
A T x x Tx

T

σ μ μ
σ σ

∞ ∞− −
− ≅ − = −  [2.72] 

The surface tension of a sufficiently-dilute solution varies in linear 
fashion with the molar fraction of the solute. Thus, we find the practical 
formula given by Traube, who formulated that variation in the form: 

0 sbxσ σ= −  [2.73] 

NOTE.– The Szyszkowski relation [2.65] becomes identical to the Traube 
relation [2.73] if the molar fraction of one of the components tends toward 
zero. 

2.4. Interface tension between two liquids 

When two immiscible liquids are brought into contact, the separating 
surface, known as the interface, has the same properties as the surface of a 
liquid in contact with its vapor. The thermodynamics of the interface are 
dealt with in the same way, so we see the existence of a surface tension 
which, here, is called the interfacial tension. 
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Attempts have been made to establish a relation between the interfacial 
tension between two liquids, A and B, and the surface energies of each of the 
liquids. We can see through experimentation that the interfacial tension is 
always less than the surface energy of whichever pure liquid has the highest 
surface energy. Antonov proposed a simple rule expressing the fact that the 
interface tension was the absolute value of the difference between the 
surface energies of the two liquids: 

AB A Bσ σ σ= −  [2.74] 

In reality, if the two liquids are partially miscible, it is the difference 
between the surface energies of the saturated solutions which must be 
considered. 

We can see experimentally that, whilst the interfacial tension may be 
greater than that predicted by Antonov’s rule, it is never less. 

The interfacial tension is lower when the solubility of the liquids in one 
another is higher. If the two liquids are of the same nature, the interfacial 
tension becomes zero when the two liquids become miscible, meaning when 
the two phases come together at the critical temperature. 

The condition for complete miscibility of two liquids is therefore that 
their interfacial tension be null (or negative). 

2.5. Energy of adhesion of two liquids  

Consider two liquids A and B, brought into contact with one another in a 
column with a surface of 1 unit. We use the term energy of adhesion to 
describe the work necessary to separate the surfaces of the two liquids in 
contact. 

When we imagine this separation to be performed, we remove the 
interface of unit area and create two surfaces of unit area for each of the 
liquids. The creation of these two free surfaces requires an amount of work  
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equal to the sum A Bσ σ+ , whereas the removal of the interface produces 
work equal to ABσ . The adhesion energy WAB will therefore be: 

AB A B ABW σ σ σ= + −  [2.75] 

This is the Dupré relation. WAB is expressed in joules/m2. 

If the two liquids are partially miscible, it is the surface energies of the 
two saturated solutions that must be used in Dupré’s relation instead of the 
surface tensions of the two pure liquids. 

2.6. Spreading of a liquid over another liquid 

Now suppose that we deposit a drop of liquid A on the surface of liquid B 
which is immiscible with A. Liquid A may either remain in the state of a 
drop on top of B, or spread over B to form a film. In the latter case, we say 
that liquid A wets liquid B. 

We shall now try to find the conditions of wetting of B by A – i.e. the 
conditions for liquid A to spread in a film over the surface of liquid B. If 
liquid A remains as a drop, it is possible to determine the shape of that drop. 

In order to express the equilibrium condition of such a system, let us 
assimilate the surface energies to force-vectors tangential to the surfaces at a 
point on the line with three phases, or the triple line. To do this, we choose a 
vertical cross-section of the drop passing through its axis of symmetry, 
which reveals a triple point where we apply the vectors (Figure 2.3(a)). We 
let θA denote the angle between the forces σB and σAB. The definition of the 
other angle θB is similar between the forces σA and σAB. The equilibrium 
condition is expressed on the basis of the Neumann triangle (Figure 2.3(b)) 
by the relation: 

( )
A B AB

B A A Bsin sin sin 2
σ σ σ

θ θ π θ θ
= =

− −
 [2.76] 
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Figure 2.3. Spreading of a drop over a liquid: a) equilibrium  
of the triple line; b) the Neumann triangle 

This condition can only be satisfied if the greatest surface energy is less 
than the sum of the other two. We know that the interfacial energy σAB is 
less than the greatest surface energy. The equilibrium in question is 
impossible if we have:  

B A ABσ σ σ≥ +  [2.77] 

as Bσ  is supposed to be greater than A.σ  For given values of Aσ  and AB ,σ  
the angle Aθ  decreases if Bσ  increases. It is zero when Bσ  reaches the value 

A ABσ σ+ . In this case, there is the spreading of liquid A over the surface of 
B. The same is true, a fortiori, if Bσ  continues to grow. 

The spreading condition can also be formulated as: 

B AB Aσ σ σ− ≥  [2.78] 

If we take account of relation [2.75], this condition can also be written: 

AB A2W σ≥  [2.79] 

where A2σ  is the cohesion energy of liquid A. Thus, the condition of 
spreading of liquid A over liquid B is that the energy of adhesion of liquid A 
to liquid B be at least equal to the cohesion energy of liquid A. 
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Harkins used the term spreading coefficient of liquid A over liquid B to 
describe the difference between the adhesion energy and the cohesion 
energy: 

AB A B A AB2sprh W σ σ σ σ= − = − −  [2.80] 

We see the spreading of one liquid over another when its spreading 
coefficient is positive or null. The liquid does not spread if the spreading 
coefficient is negative. Harkins determined a number of spreading coefficients 
of liquids over water at 20°C. The values found range from 0.049 J.m-2 for  
N-propyl alcohol to –0.026 J.m-2 for methylene iodide. These coefficients 
increase or decrease with temperature, and we may see a switch in the sign of 
the coefficient as the temperature varies. 

NOTE.– The aforementioned values are valid for rigorously clean surfaces, 
exempt from all traces of impurities, which it is extremely difficult to obtain. 

If liquid A spreads over liquid B, it is impossible for liquid B to spread 
over liquid A. Indeed, for that to be possible, we would have to 
simultaneously satisfy the two conditions: 

B A AB 0σ σ σ− − ≥  [2.81] 

A B AB 0σ σ σ− − ≥  [2.82] 

By adding together those two conditions, we find: 

AB 0σ ≤  [2.83] 

This means that the two liquids must be totally intermiscible, which runs 
counter to our fundamental hypothesis. 

We can now examine how Antonov’s rule (relation [2.74]) fits in with the 
spreading condition. If B Aσ σ> , the condition for two liquids not to spread 
over one another is: 

B A ABσ σ σ< +  [2.84] 

Thus: 

AB B Aσ σ σ> −  [2.85] 

and Antonov’s formula [2.74] is obviously not satisfied. 
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If a liquid can be spread over another – e.g. A over B – then, in 
accordance with relation [2.77], we have: 

B A ABσ σ σ≥ +  [2.86] 

However, in light of the large contact surface, there is slight dissolution 
of the liquids in one another, so that their surface energies have become A'σ
and B'σ , and if Antonov’s rule is so often satisfied, this means that we have: 

B A AB' 'σ σ σ= +  [2.87] 

This case is encountered for the water/benzene couple. The spreading 
coefficient, which is 0.0098 for pure liquids, takes the value of 0 when each 
liquid is saturated by the other. 

2.7. Example of the microscopic modeling of surfaces of 
solutions: the monolayer model for strictly-regular solutions 

A simple model, in the case of the surfaces of strictly-regular solutions, 
can help us to understand a number of experimental phenomena. 

2.7.1. Presentation of the model  

We can model the surface of a liquid using the monolayer model 
introduced in section 1.7. We retain the hypothesis of potential interactions 
between two molecules decreasing very rapidly, meaning we can stick to an 
interaction with near neighbors only, which, for a molecule in a 
monomolecular layer are divided into lz neighbors in the same layer and mz 
neighbors in each of the adjacent layers. The molecules of the gaseous phase 
are too far removed from the surface for their interactions to be taken into 
account. The solutions will be supposed to be strictly regular, and thus we 
accept that the molecules of components A and B have practically the same 
dimensions, which will enable us to preserve relation [2.56] and the excess 
entropy in the phases will be zero. 

Let us define the system as a cylinder containing the surface layer, 
delimited on one side by the plane CD, which separates the solution and the 
surface layer, and on the other side by a line GH that is parallel to the surface, 
which delimits the volume of the solution. Let j be the number of 
monomolecular layers between the planes CD and GH within the liquid phase 
(Figure 2.4). 
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Figure 2.4. The molecular layers in the volume and  
on the surface of a liquid 

Each molecule in a layer has zl near neighbors in the same sheet and zm 
neighbors in the next monomolecular layer.  

The total number of molecules in the surface layer is ( )
aN n  with the 

respective molar fractions of ( )
1x  and ( )

2x . The molar fractions within the 
liquid are x1 and x2, with the numbers of molecules being a 1N n  and a 2N n   
(Na is Avogadro’s number). 

Let us list the different couples. 

Across the CD plane, therefore, we shall have, on average: 

– ( )( )
a 1 1N n x zmx couples 1-1, with energy 11;ε  

– ( )( )
a 2 2N n x zmx  couples 2-2, with energy 22 ;ε  

– ( ) ( )( ) ( )
a 1 2 a 2 1N Nn x zmx n x zmx+  couples 1-2, with energy 12.ε  

In the surface layer, we have: 

– ( )( )2
( )

a 1N n zl x  couples 1-1, with energy 11;ε  

– ( )( )2
( )

a 2N n zl x  couples 2-2, with energy 22;ε  

– ( )( ) ( )( )
a 1 22N n zl x x  couples 1-2, with energy 12.ε  
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Based on this list, we shall evaluate the Gibbs energy of the system and 
the chemical potentials. 

2.7.2. Chemical potentials of the surface and bulk components of 
a strictly-regular solution  

The portion of the internal energy due to the interactions between two 
layers is: 

( ) ( ) ( ) ( ) ( )( )mixed a 1 1 11 2 2 22 1 2 2 1 12NU n zm x x x x x x x xε ε ε= + + +   [2.88] 

The contribution of the interactions within the surface layer is: 

( )
( )( ) ( )( ) ( ) ( )( )2 2

a
layer 1 11 2 22 1 2 12

N 2
2
n zl

U x x x xε ε ε= + +   [2.89] 

In the same way, we evaluate the contribution of the molecules situated in 
a layer within the liquid, in expressions [2.88] and [2.89] we simply need  
to replace ( )

1x  and ( )
2x  with 1x  and 2x  respectively. The expression thus 

obtained must be multiplied by (j–1/2), because there are j planes such as 
EF. However, at the level of GH, in the application of relation [2.88], half of 
the bonds must be attributed to our system delimited by GH and the other 
half to the outer system. 

By bringing into play the exchange energy w12 defined by the relation: 

11 22
12 12 2

w z
ε εε += −   [2.90] 

add together the different contributions. By grouping together the terms, we 
find: 

( ) ( ) ( )
( )

( ) ( )( ) ( ) ( ) ( )

( )
( ) ( )( ) ( ) ( ) ( )( )

a 1 2
surf 1 11 2 22 a 1 2 12 1 2

a 1
1 11 2 22 a 12 1 2

a 1
1 11 2 22 a 12 1 2 2 1 1 2

N
N

2
N N

2
N N

2

n n z
U x x z n n w x x

n zl
x x zn w lx x

n zm
x x n w m x x x x x xγ

ε ε

ε ε

ε ε

+
= + + +

+ + +

+ + + + −

  [2.91] 
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In this sum, the right-hand side contains three lines: 

– The first line, with two terms, represents the contribution of the 
interactions between molecules within the liquid bulk phase. These terms 
contain no quantity relating to the surface phase. 

– The second line, with two terms, which contains only the quantities of 
material and the molar fractions of the surface layer, is the contribution of 
the interactions between molecules situated in the surface layer. 

– The third line, which also contains two terms, is the contribution of the 
interactions between the molecules of the surface layer and those of the 
adjacent layer belonging to the bulk phase. 

It follows that the term of the internal energy due to the surface layer is 
given by the sum of the last two lines: 

( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

a 1
surf 1 11 2 22

a 12 1 2 a 12 1 2 2 1 1 2

N
2

N N

+
= +

+ + + −

n z l m
U x x

zn w lx x n w m x x x x x x

ε ε
  [2.92] 

We then see that we can write:  

( ) ( ) ( )*
surf surf surf

xsU U U= +   [2.93] 

( )*
surfU  is the internal energy of the layer if the solution is perfect (w12 = 0). 

This is our reference state and ( )
surf

xsU  is the excess energy of the layer, given 
by: 

( ) ( ) ( ) ( )

( ) ( ) ( )( )
surf a 12 1 2

a 12 1 2 2 1 1 2

N

N

=

+ + −

xsU zn w lx x

n w m x x x x x x
  [2.94] 

This expression can also be written in the form: 

( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )

2 2

surf a 12 1 2 2 1

2 2

a 12 1 2 2 1

N

N

xsU zn w l x x x x

n w m x x x x

= +

+ +
  [2.95] 
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As regards the entropy of our system, we accept that the two surface and 
bulk phases have the same structure and that the solutions therein are strictly 
regular, meaning that the entropy is composed solely of the mixing term (the 
excess entropy is zero). The total entropy of the system would be: 

( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2 1 1 2 2ln ln ln lnS S S x x x x x x x x= + = + + +   [2.96] 

The Helmholtz energy, which is also the Gibbs energy (the layer has no 
term PV), of our layer is then: 

( ) ( ) ( ) ( ) ( ) ( )* *
surf surf surf

xs xsG U U TS G U= + − = +   [2.97] 

where ( )*G  is the part of the Helmholtz energy of a perfect solution. 

In light of equations [2.95] and [2.96], relation [2.97] is written: 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

20
1 1 1 a 12 2

20
2 2 2 a 12 2

2 2
a 12 1 2 2 1

g R ln N

g R ln N

N

G n T x zw l x

n T x zw l x

zw m n x n x

= + +

+ + +

+ +

  [2.98] 

This Helmholtz energy of the layer depends on the composition of the 
liquid bulk phase. 

The chemical potentials of the components in each of the phases are then: 

( )
( ) ( ) ( )( )

1

20
1 1 1 a 12 2

1 , , ,

2
a 12 2

R ln N

N
T P n

M

G g T x zw l x
n

zw mx A
σ

μ

σ

∂= = + +
∂

+ −

  [2.99] 

( )
( ) ( ) ( )( )

1

20
2 2 2 a 12 1

2 , , ,

2
a 12 2

R ln N

N
T P n

M

G g T x zw l x
n

zw mx A
σ

μ

σ

∂= = + +
∂

+ −

  [2.100] 
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We shall now calculate the composition of the surface layer and the 
surface tension when we know the composition of the liquid and the surface 
tensions of the two pure liquids. 

2.7.3. Surface tension and composition of the surface layer of a 
strictly-regular solution 

In conditions of equilibrium, the above chemical potentials are equal to 
the ordinary chemical potentials of the liquid solution, which, for a strictly-
regular solution, are: 

( )0 2
1 1 1 a 12 2R ln Ng T x zw xμ = + +  [2.101a] 

( )0 2
2 2 2 a 12 1R ln Ng T x zw xμ = + +  [2.101b] 

As the right-hand sides of relations [2.99] and [2.101a] are identical,  
by using relation [2.54], we find: 

( )
( )

( )( )20 0 2 21
1 1 a 12 2 2 a 12 2

1

R ln N NM
x

A g g T zw l x x zw mx
x

σ = − + + − +   [2.102] 

Similarly, between the right-hand sides of equations [2.100] and [2.102], 
the equality gives us: 

( )
( )

( )( )20 0 2 22
2 2 a 12 1 1 a 12 1

2

R ln N NM
x

A g g T zw l x x zw mx
x

σ = − + + − +  [2.103] 

By applying relation [2.103] to the pure component 1, we obtain: 

( )0 0
1 1 1MA g gσ = −   [2.104] 

Similarly, by applying relation [2.102] to the pure component 2, we find: 

( )0 0
2 2 2MA g gσ = −   [2.105] 
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In light of these equalities, we can write relations [2.102] and [2.103] 
respectively in the forms: 

( )
( )( )2

2 2a 12 a 121
1 2 2 2

1

N NR ln
M M M

zw l zw mxT
x x x

A x A A
σ σ= + + − +  [2.106] 

( )
( )( )2

2 2a 12 a 122
2 1 1 1

2

N NR ln
M M M

zw l zw mxT
x x x

A x A A
σ σ= + + − +  [2.107] 

Thus, we obtain two symmetrical relations which were put forward by 
Schuchovitsky and Guggenheim. 

If, in the various relations, we make w12 = 0, we obtain the same results 
as those found for perfect solutions in section 2.3.1. 

Similarly, by setting w12 = 0, ( )
2 0,=x  2 0,=x  and thus ( )

1 1x =  and 

1 1,x =  we find the same result as for the surface energy of the pure 
substance in relation [2.104]. 

2.7.4. Monolayer model and interface tension between two 
strictly-regular solutions 

The model developed in section 2.7.3 can be used to calculate the surface 
tension of the interface between two liquid solutions α and β (Figure 2.5) 
constituting strictly-regular solutions and, in particular, for strictly-regular 
solutions of the same components but with different compositions and 
immiscible. 

 

Figure 2.5. Solutions separated by an interface in the  
monomolecular layer model of an interface 
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The Gibbs energy linked to the monolayer can be calculated as before, 
and relation [2.85] is replaced by the expression: 

  

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

20
1 1 1 a 12 2

20
2 2 2 a 12 2

2 2

1 2 a 12 2 2 2 2

g R ln N

g R ln N

N

G n T x zw l x

n T x zw l x

n n zw m x x x x

= + +

+ + +

+ + − + −

  [2.108] 

The chemical potential is equal to the complete chemical potential, and 
thus it can be calculated on the basis of the generalized Gibbs energy of the 
surface: 

( )
( )

( )

( )

( )i M
i i

G G A
n n

σμ σ∂ ∂= = −
∂ ∂

  [2.109] 

Hence, instead of expressions [2.99] and [2.100], we find relations 
[2.110] and [2.111], which are written: 

( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

20
1 1 1 a 12 2

2 2

a 12 2 2 2 2 2 2 2 2

R ln N

N 2 2 M

g T x zw l x

zw m x x x x x x x x A

μ

σ

= + +

+ − + − + − − −
  [2.110] 

( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

20
2 2 2 a 12 1

2 2

a 12 2 2 2 2 1 2 2 2

R ln N

N 2 2 M

g T x zw l x

zw m x x x x x x x x A

μ

σ

= + +

+ − + − + − − −
  [2.111] 

If we now consider that the two α and β phases are two strictly-regular 
solutions of the same components, then the Gibbs energy terms for the  
pure components ( )0

2g  on the one hand and ( )0
1g  on the other are identical  
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in the previous two solutions, and expressions [2.106] and [2.107] are 
replaced by: 

( )

( )
( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

2 2( )a 121
2 2

1

2 2
a 12

2 2 2 2 1 2 2 2

NR ln

N 2 2

M M

M

zw lxT x x
A Ax

zw m
x x x x x x x x

A

σ = + −

+ − + − − − −
 [2.112] 

( )

( )
( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

2 2( )a 122
1 1

2

2 2
a 12

2 2 2 2 1 2 2 2

NR ln

N 2 2

M M

M

zw lxT x x
A Ax

zw m
x x x x x x x x

A

σ = + −

+ − + − + − −
  [2.113] 

Note that these two relations can be used to calculate the unknowns, 
which are the surface tension of the solution and the composition of the 
monomolecular layer. We can see that the result is a long way removed from 
Antonov’s law, which we saw in section 2.4, and which seems to be an 
empirical law. 

NOTE.– If we apply relations [2.112] and [2.113] to perfect solutions, we 
obtain a surface tension of 0, which confirms that two perfect solutions of 
the same components but different compositions are always miscible and are 
never separated by an interface. 

2.7.5. Critique of the monomolecular layer model 

The monomolecular model which we have just used is extremely basic, 
but yields correct results in relation to those obtained directly by 
experimentation, as shown by Figure 2.6 in the case of ether–acetone 
solutions. This figure compares the experimental results and those from the 
previous calculation for the variations in surface tension of  
the ether–acetone solution as a function of the molar fraction of acetone. The 
straight line in Figure 2.6 represents the same variation if the solution were 
perfect. 
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We can also show that the monomolecular layer model does not satisfy 
Gibbs’ adsorption equation. Indeed, Gibbs’ formula [2.46] for a strictly-
regular solution is written: 

[ ]21
a 12 1 2

2 2

d R 2N
d

T zw x x
x x
σ = − +   [2.115] 

However, by differentiating expressions [2.106] and [2.107], we obtain: 

[ ]21
a 12 1 2

2 2

d R 2N (1 )
d

T zw m x x
x x
σ = − + −   [2.116] 

Whilst the two formulae [2.115] and [2.116] are indeed identical for a 
perfect solution, the difference between them shows that the strictly-regular 
monomolecular layer model is a little simplistic. It has been shown that by 
introducing two monomolecular layers, the result could be improved. 

Our model also supposed that the two molecules of the solution had 
identical dimensions. Defay and Prigogine (see bibliography) developed a 
model that is applicable when the dimensions of the molecules are different. 

The monomolecular layer model is still very approximate in the case  
of interfaces between solutions. A better description of the interfaces is 
obtained by replacing the monomolecular layer with overlapping sheets that 
are thin enough to consider that, in each of them, the quantities of material 
are the same at all points, whether or not a sheet is monomolecular. Each 
sheet is then treated as a non-autonomous phase in contact with two uniform 
phases of compositions different from its own. 





3 

Surfaces of Solids and Interfaces  

The study of the surface of a solid differs greatly from that of a liquid. 
This difference stems essentially from the extremely limited mobility of the 
molecules at the surface of a solid and from a very great difference between 
the shearing moduli, which is zero in the case of a liquid. Thus, any increase 
in the area of the surface of a liquid is always attended by an increase in the 
number of surface atoms without deformation due to the relaxation of the 
stresses, which is not the case with a solid. Consequently, solid surfaces are 
usually more rigid and irregular. If the solid is a crystal, toward the outside 
of the faces, the microcrystals may exhibit vertices or peaks where the atoms 
present enjoy different environments, making for a very heterogeneous 
surface. 

Another phenomenon distinguishes the surface of a solid from that of 
liquids. Solid surfaces are almost always tarnished by foreign substances 
attracted and held to the solid by adsorption (see Chapter 6). Thus, it is 
extremely difficult to keep the surface of a solid clean for longer than a few 
moments. 

3.1. Surface tension and the surface energy of solids  

The equivalence between surface tension and surface energy noted for 
liquids (see section 1.2.3) no longer applies in the case of solids. The area of 
the surface of a solid can be modified by varying the number of surface 
atoms where there is no elastic strain or by applying elastic strain to a 
constant number of surface atoms. 

Thermodynamics of Surfaces and Capillary Systems, First Edition. Michel Soustelle.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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It is possible to increase the surface area of a solid by creating two 
surfaces by severing the bonds between molecules or atoms in the bulk 
phase without altering the relative positions of those molecules or atoms  
(see Figure 3.1). 

 

Figure 3.1. Increase in area, with an increase in the number  
of surface atoms, by cleaving with no deformation 

The mean area of an atom or molecule does not change, and the total number 
of atoms or molecules on the surface increases. This is the same situation as for 
a liquid, as discussed in section 1.2.3, with the same mechanical and 
thermodynamic equivalence – i.e. equality of the surface tension and the surface 
energy. 

It is also possible for the area to increase due to elastic strain in response 
to traction exerted on both sides of a solid (Figure 3.2). This traction causes 
the elongation of the faces in parallel to the direction of traction. Thus, the 
area increases but the total number of atoms or molecules present at the 
surface remains unaltered. The mean area of an atom or a molecule 
decreases and the interface is elastically deformed, meaning that we have: 

0
A
σ∂ ≠

∂
 [3.1] 

 

Figure 3.2. Increasing the surface area of a solid by  
traction with the same number of surface atoms  

This modifies the calculation of the free energy differential in relation to 
the area of the surface, at constant temperature, volume and quantity of 
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material in relation [1.53], which is supposed to be valid for deformed 
surfaces. It now leads to an isotropic interface stress *σ  given by: 

( )

, , , ,, ,

*
lnT V N T V NT V N

F A
A A A

γ σ σσ σ σ∂ ∂ ∂= = + = +
∂ ∂ ∂

 [3.2] 

This stress is also known as the surface tension. The elastic deformation 
(strain) ε of the surface is such that: 

( ) dd ln AA
A A
σ δ ε= ≅ =  [3.3] 

Hence, we find the expression of the surface tension: 

, ,

*
T V N

σσ σ
ε

∂= +
∂

 [3.4] 

This relation was devised by Shuttleworth. 

Thus, depending on whether or not the surface is deformed, we use either 
relation [3.4] or [1.42] to obtain the surface tension. 

3.2. Surface energy of a pure crystallized solid: the macroscopic 
approach  

For an initial, crude model, we shall consider the flat surface of a 
monatomic crystal, and express the surface energy, taking account only of 
the pair energies εAA (a value which is negative by definition) with the 
nearest neighbors of an atom or a molecule. The surface of the crystal is in 
the presence of its vapor, but the distances between species (atoms or 
molecules) in the vaporous state are such that the interactions between 
surface atoms or molecules and those in the vapor are null, as are those 
between the species making up the vapor. The crystalline arrangement of the 
surface thus constitutes a monomolecular layer containing N molecules.  

In the plane of the layer, zl denotes the number of nearest neighbors of a 
molecule and zm the number of pairs between a molecule in the surface layer 
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and one in the adjacent layer; z is the coordination number of the crystal. We 
therefore have 2m+l=1. 

We form a surface by cleaving a crystal in parallel to a dense plane (as in 
the scenario where relation [1.42] is applied). Such cleaving creates two 
fresh surfaces, each containing N molecules. The number of AA pairs broken 
is zmN, but the number of near neighbors in each layer is not altered by the 
cleaving. Thus, the increase in energy created by that cleaving is: 

AA
xse zmN= −  [3.5] 

If we consider a molar layer, it contains Na molecules (Na is Avogadro’s 
number) and its area is AM. Thus, the surface energy is: 

a
AA

N
2 M

zm
A

σ ε= −  [3.6] 

The pair energy is linked to the enthalpy of sublimation (sol vap
transformation) by the relation: 

a

vapsol
AA N

2
z

H→=ε  [3.7] 

If we choose the (1,1,1) face of a cubic crystal with centered faces, then 
z = 12 and m = ¼. By feeding those values back into the previous relations, 
we find: 

MM A
H

A
Hm

4
vapsolvapsol →→ ==σ  [3.8] 

Comparison with experimental data shows that, in fact, the values 
deduced by this model are much higher than the true values, because the 
hypotheses made are very crude: an identical degree of coordination in the 
plane before and after cleaving, homogeneous surface (i.e. a crystal with no 
corners or vertex atoms), etc. 
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3.3. Surface energy in a mesoscopic model 

In a mesoscopic model, we differentiate the various positions of the 
atoms at the surface of a solid. Envisage a solid in the presence of its own 
vapor. The reasoning applied in section 1.2.4 remains largely unchanged if 
we apply it to the construction of the crystal from its vapor, although there 
are two major differences: 

– The chemical bond between atoms inside a bulk is sensitive to the size 
of that bulk. This effect is linked to the quantum nature of the chemical bond 
and to the origin of the energy bands in solids: it is the large number of 
atoms (and therefore of atomic orbitals) which creates a large number of 
molecular levels. Those molecular levels are situated in a finite energy 
space, and are therefore very close together, and under the influence of 
thermal expansion they meld into one. In a bulk containing a small number 
of atoms, a certain quantification can therefore substitute the band structure. 
This phenomenon is more marked when the electrons are shared over a long 
distance. It should occur less strongly in molecular or highly-ionic crystals 
than in metals. Thus, it may be necessary to take account of an effect of size 
on the chemical bond even within the bulk, whose enthalpy would be: 

).(qu H  

– Unlike in the case of a liquid, mechanical equilibrium is not achieved in 
the solid, and its form will not necessarily be spherical. Thus, we must 
distinguish between various types of structural elements at the surface, 
depending on whether those elements are situated on the corners, edges or 
faces, which may, themselves, differ from one to another. 

The construction of the crystal from its vapor, therefore, will involve the 
following transformations: 

– the passage of a molecule from the vapor to the bulk of the solid:  
vap  solid; 

– the passage of a molecule from the vapor to the vertices of the surface: 
vap  vertices; 

– the passage of a molecule from the vapor to the edges: vap  edges; 

– the passage of a molecule from the vapor to a face of the crystal:  
vap  face. 
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Instead of relation [1.50], we obtain: 

[ ]
[ ]

[ ]→→

→→

→→

−+

−+

−+=

)(  )(

)(  )( 

 )(  )(  )(  

facevapsolidvapface

edgesvapsolidvapedges

verticesvapsvapverticesqu

HHx

HHx

HHxHAMσ

 [3.9] 

As in the previous case, σ  is a positive value. 

We cannot eliminate the term σ  in equation [3.9]. Indeed: 

– the term )(qu HΔ  does not necessarily obey a law of proportionality 
with the inverse of the radius of the particle; 

– the number of vertices is independent of the size, because it is 
determined only by the shape; 

– the size of edges varies, in a given shape, in a linear fashion with 
particle size.  

Thus, the interfacial energy will generally depend on the shape and size 
of the particles. 

It has been shown that certain crystalline surfaces created by cleaving 
along the crystallographic planes of solids exhibit interfacial energies 
tending toward infinity: such is the case if there is a dipolar moment 
perpendicular to the surface plane. In this case, it is possible that the face 
will not appear in the true solid, or that its components will adopt different 
positions those to predicted by a fixed lattice cross-section: this phenomenon 
is known as surface reconstruction, and tends to decrease the interfacial 
energy. 

The reasoning we employed for the interface between the solid and its 
vapor would also apply to the interface between the solid and the same 
substance in the molten state. 

3.4. Effective surface energy: the Wulff crystal 

We saw in Chapter 1 that in the case of the formation of a liquid, it was 
possible to define a unique interfacial energy. In addition, the equilibrium of 
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the mechanical forces means that the shape must be spherical. 
Equation [3.9], which corresponds to the excess Gibbs energy in the case of 
a solid, is substantially more complicated. However, we shall now define a 
method whereby it can be applied directly to the case of solids, which leads 
us to define the effective interfacial energy. 

Consider bulks where each dimension is large on the chemical bond 
scale. Therefore, we can discount: 

– the term qu ( );H  

– the term due to the vertices, whose number remains constant in a given 
polyhedron; 

– the term due to the edges (which increase in number with the size) in 
favor of the term due to the faces (which increase in number with the square 
of the size). 

Relation [3.9] then becomes: 

faces vap solid vap face
faces

.  ( )  ( )MA x H Hσ → →= −  [3.10] 

We can therefore write: 

 faces
 

iM i M
i

A Aσ σ=   [3.11] 

where 
iMA and iσ respectively represent the area and the interfacial energy 

of the face i. 

We shall now show that in a solid of any given polyhedral shape, the 
distribution of the interfacial energies leads to the existence of the shape 
with the least energy, independent of size, using the approximation that the 
interfacial energy is, itself, independent of the size. 

Thus, consider a solid of any polyhedral form with constant volume V. 
Pick any given point P inside the solid, and let hi represent the distance from 
that point to the plane containing the face i (see Figure 3.3). 
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Figure 3.3. Finding the shape of the crystal with the least energy 

The volume of the elementary solid, which is determined by point P and 
the vertices of the face i, is: 

2

0

   d   
3

i

i

i

h
i M

i M
i

h AuV A u
h

= =  [3.12] 

The total volume of the solid, therefore, is: 

1

1  
3

m

i

i

M i
i

V A h
=

=  [3.13] 

where im is the number of faces of the polyhedron. 

The total interfacial energy is: 

1
 

m

i

i

i M
i

W Aσ
=

=  [3.14] 

The shape with the least energy is such that for any infinitesimal 
transformation at constant volume, the differential of the total interfacial 
energy is zero. Gibbs gave us the solution to this problem. For each face  
i, the ratio /i ihσ is a real constant k, independent of i. Thus, we have 

  3 ,W kV=  and for any transformation d   3 d ,W k V=  so dW is zero at 
constant volume. 

It is helpful to take the center of inertia of the solid as point P. We can see 
that the faces whose interfacial energy is high are situated a long way from 
the center of the solid: if their plane of equilibrium is further away than the 
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plane containing the intersection of the adjacent faces, they will not appear 
in the solid. Thus, the number im is, itself, set by the relative iσ values. 
Hence, the shape of a crystal of finite size depends not on its size, but solely 
on the different energies of its faces: crystals of differing sizes can be 
deduced from one another by homothety, and the fraction of the area due to 
each face will not depend on the size, so no matter what the value of i 

between 1 and im, the ratio  i
i

σ α
σ

= is independent of the size. The crystal 

thus described is known as the Wulff crystal. 

It is therefore possible to characterize the Wulff crystal using a single 
length a, chosen in any given (but fixed) crystallographic direction, and from 
the geometry for each case we can deduce a volumic form factor, hereafter 
denoted as v , and a surface form factor, written as s , independent of a 
and such that, for the volume and the surface of the crystal, we have: 

3  .vV a=    [3.15] 

and  

2
M   .sA a=   [3.16] 

This means that we can write the total interfacial energy as: 

2

1
  . .

mi

s i i
i

W a σ α
=

=   [3.17] 

By introducing the radius r of the sphere of the same volume, i.e. such 

that 3 34   . ,
3

= vr aπ
 
we find: 

( ) ( )2/3 1/32

1
  4 3 4

mi

s v i i
i

W rπ π σ α
− −

=

=   [3.18] 
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The term in chain brackets here has the dimension of an interfacial 
energy, and does not depend on the size of the crystal, but on the different 
interfacial energies, which: 

– directly define the terms ;iσ  

– indirectly, by way of the morphology, define the terms ,i vα and s . 

W is the effective interfacial energy of the crystal. 

3.5. Interfacial energy between two solids 

Up until now, our discussion has been based on the assumption that all 
the solids were perfect and therefore had a molar enthalpy of formation 
which depended only on the temperature. This approximation is justified in 
the study of the condensation of a gas (or a liquid), because the variations  
in the chemical potential as a function of the composition are much greater 
in the fluid phase and, in practice, render the same effects in the solid 
negligible. This is no longer true, though, with contact between two solids, 
because it is the impurities in the solid which are the species that determine 
the chemical potentials. 

We can apply the reasoning process illustrated in section 3.3 to the 
appearance of one solid from another solid, provided we use the quasi-
chemical formalism of the structural elements: 

– the fluid is replaced by the original solid phase; 

– the molecules or ions are replaced by the structural elements. 

Let s1 and s2 represent the two solids in contact. We are led to the same 
formalism as in section 3.3: 

 

qu vertices s1 s2 s1 s2vertices

edges s1 s2 s1 s2edges

s1 s2 s1 s2face

  ( )  ( )  ( )  

 ( )  ( )

( )  ( )

M

i
i

A H x H H

x H H

x H H

σ −> −>

−> −>

−> −>

= + −

+ −

+ −

 [3.19] 

In the case of a solid–fluid interface, we adopted the hypothesis that the 
enthalpy of condensation must lie between 0 and the value obtained in the 
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bulk of the solid. We shall see, though, that this point needs to be 
reconsidered in the case of a solid–solid interface, integrating the concept of 
compatibility of the crystalline lattices and of the molar volumes. 

The three-dimensional order of crystallized solids requires a great deal of 
entropy. The reason for it is to maximize the interactions (van der Waals 
forces, hydrogen bonds, electrostatic forces, delocalization of electrons in a 
metal) between the structural elements, in view of the geometric stresses 
stemming from the shape of the molecules or the size of the ions. The whole 
of the solid, therefore, creates a periodic potential – particularly in the space 
surrounding a structural element, which therefore, in the perfect solid at 0K, 
occupies the position of least energy. 

 

Figure 3.4. The importance of compatibility between the crystalline lattices 

As an initial approximation (notably if we overlook the phenomenon of 
surface reconstruction), a structural element situated at the surface is subject 
to a potential which is half of that at the core. Let us now consider the 
situation at a flat interface between two solids, A and B: take a structural 
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element situated both in the minima of potentials created by A and B: its 
molar enthalpy is half the sum of the enthalpies in the two solids, and we see 
the same situation as with the solid–fluid case, if that reasoning process were 
not usually limited to a small fraction of the construction units situated at the 
interface. Indeed, the potential of the solids has the same period as their 
spatial arrangement, so, in the general case of solids whose crystallographic 
characteristics are different, it is not possible for neighboring construction 
units to be situated at the minima of potential both for A and B (see 
Figure 3.4). 

The least unfavorable scenarios are those where: 

– either the lattices are fairly similar: in this case, the small size of one of 
the solids may allow the construction units to be very close to the minima 
across the whole surface; 

– or the spatial periods of the lattices are commensurate, which ensures 
common periodicity that affects only a fraction of the sites. 

Generally speaking, we see the formation of a grain joint, where the 
reconstruction of the two interfaces gives rise to an amorphous layer. 

The lack of mobility in solids produces another effect: if the molar 
volume of the solid formed is very different to that of the initial solid, the 
surrounding phase cannot accommodate the mechanical stresses engendered. 
Two scenarios may occur: 

– the molar volume of the phase formed is smaller than that of the initial 
phase: in this case, we see the formation of interfaces between A and the 
surrounding fluid and between B and the surrounding fluid; 

– the molar volume is larger: then we see the creation of mechanical 
stresses and the appearance of an additional term in the interfacial energy. 

The interfacial energy between two solids, therefore, may be extremely 
low if they have different compositions but their crystalline lattices are 
similar in terms of symmetry and mesh parameters. We shall see that this 
results in the phenomena of heterogeneous primary nucleation from the fluid 
phases, which ultimately results in epitaxy. On the other hand, that 
interfacial energy may be very high if the lattices are very different in terms 
of their molar volumes and from a crystallographic point of view. 



Surfaces of Solids and Interfaces     77 

3.6. Interfaces between pure solids and liquids 

We shall now touch on a certain number of phenomena linked to the 
existence of an interface between a pure solid and a pure liquid – phenomena 
which are connected to the properties of wetting and adhesion of the liquid 
to the solid, and to numerous applications such as detergence. 

3.6.1. Spreading and angle of contact of a liquid on a solid  

As we did for the drop of liquid on a liquid (see section 2.6), we can 
study the behavior of a drop of liquid placed on a solid.  

Consider a flat solid surface upon which a drop of a liquid is deposited. 
That drop may or may not spread. Suppose it does not spread and that the 
liquid does not react with the solid. Let θ be the angle of contact formed by 
the tangent to the drop at the “triple” point where the three phases meet: the 
solid, the liquid and the surrounding gas (see Figure 3.5(a)). This angle may 
have any value at all between 0 and π radians, and is sometimes referred to 
as the link angle. The three surface tensions σs, σL and σsL are represented by 
three vectors applied at that triple point, tangential to the path of the 
respective interfaces. 

 

Figure 3.5. Lie of the drop on a solid: a) metastable equilibrium;  
b) equilibrium reached at the triple point; c) all equilibria are achieved 

The condition of mechanical equilibrium, therefore, is written: 

0s L sLσ σ σ
→ → →

+ + =    [3.20] 

However, the representation of the interfacial tension vectors in 
Figure 3.5(a) does not satisfy this condition. Experience tells us that within a 
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short period of time, a state of mechanical equilibrium of the drop, called 
temporary equilibrium, is reached, and Young and Dupré express that state 
by projecting the vectorial equality onto the plane of the substrate, which 
gives us: 

coss L sLσ σ θ σ= +    [3.21] 

Let us show that this relation corresponds to a state of equilibrium. 

The generalized capillary Gibbs energy for the system represented in 
Figure 3.5(a) would be written as: 

( ),= + + +L L s s sL sLG G T P A A Aσ σ σ σ    [3.22] 

Let us now evaluate each of the interfacial areas: 

– the area of the interface between the solid and the liquid is that of a disk 
whose radius is r sinθ: 

2 2sinsLA rπ θ=    [3.23] 

– the area of the gas–solid interface is given by the initial area of the solid 
in the absence of the drop A0, less the area of the previous liquid–solid 
interface, which is: 

2 2
0 sinGsA A rπ θ= −    [3.24] 

– the area of the interface between the gas and the liquid is that of the 
spherical cap with radius r, centered at O and observed from that point at the 
solid angle Ω: 

( )2 22 1 cosGLA r rΩ π θ= = −    [3.25] 

By introducing the three values of the areas into relation [3.22], we 
obtain: 

( ) ( )
( )

2 2 2 2
0

2

, sin sin

2 1 cos
sL s

L

G G P T r A r

r

σ π σ θ σ π θ

π σ θ

= + + −

+ −
   [3.26] 
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Thus, the capillary Gibbs energy function is a function of the variables T, 
P, r and θ. Its differential at constant temperature and external pressure, 
therefore, is of the form: 

( ) ,
d d d 0

T P

G G
G r

r
σ σ

σ θ
θ

∂ ∂= + =
∂ ∂

   [3.27] 

This differential is zero if the system is at equilibrium (be it stable  
or unstable). When we differentiate expression [3.26], the equilibrium 
condition takes the form: 

( ) ( )
( )

2

2 2

4 1 cos 2 sin d

2 sin 2 sin cos d 0

L sL s

L sL s

r r r

r r

π σ θ π σ σ θ

σ π θ σ σ π θ θ θ

− + −

+ + − =
  [3.28] 

The volume of the liquid is that of the spherical sector with radius r, 
centered at O. Its value is: 

( )( ) ( )
3

2 2 3

0

sin sin 2 3cos cos
3L
r

V r rd
θ ππ ε ε ε θ θ= = − +   [3.29] 

At equilibrium in the drop, that volume is constant, and therefore its 
differential is zero: 

d d d 0L L
L

V V
V r

r
θ

θ
∂ ∂= + =
∂ ∂

   [3.30] 

If we differentiate relation [3.29] and make the two differentials dVL 

equal, this gives us: 

( )
2

sin 1 cos
d d

2 cos cos
r

r
θ θ

θ
θ θ

+
= −

− +
  [3.31] 

By feeding back equation [3.31] into relation [3.28], we obtain the 
Young–Dupré equation, given by expression [3.21]. Nothing in our 
calculation specifies whether this is a stable or unstable equilibrium. 

The local stable equilibrium at the triple line can be obtained by local 
deformation of the solid, which then presents a bank with a slight indentation 
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in the solid on both sides (see Figure 3.5(b)). This morphological alteration 
of the solid is obtained by interfacial and surface diffusion, which explains 
the long periods of time needed – particularly at low temperature. This 
modification causes the system to tend toward a state of stable local 
equilibrium, which is obtained (Figure 3.5(c)) when the curvature of the 
liquid–solid interface is such that relation [3.20] is satisfied. 

For certain liquid and solid couples, the drop cannot achieve equilibrium 
within a short space of time, and spreads completely over the solid. Thus, the 
surface tensions are such that: 

s sL Lσ σ σ> >    [3.32] 

We then say that the liquid wets the solid perfectly. 

Generally, we obtain the difference: 

( ) ( )cos 1t s sL L Lh σ σ σ σ θ= − + = −   [3.33] 

This difference is the coefficient of spreading (see relation [1.81]) of the 
liquid over the solid. Equilibrium between the drop and the solid, therefore, 
can only come about if that spreading coefficient is negative – i.e. if the 
liquid–solid couple satisfies the dual condition:  

2 0L thσ− ≤ ≤ .   [3.34] 

3.6.2. Work of adhesion between a liquid and a solid  

For the work of adhesion between a liquid and a solid, the definition 
given in section 2.5 for two liquids remains valid, and by applying Dupré’s 
relation [2.75], in light of relation [3.21], we obtain: 

( )1 cossL LW σ θ= +   [3.35] 

Thus, the work of adhesion of a solid and a liquid can be calculated if we 
know the surface tension of the liquid and the contact angle between a drop 
of the liquid and the solid – two values which it is possible to measure. 
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3.6.3. Solid surface in contact with two liquids: displacement of 
one liquid by another  

Let us now look at what happens when two liquids are brought into 
contact on the same solid surface. Two scenarios may arise: 

– the two liquids may coexist, side by side, on the surface of the solid; 

– or else, one of the liquids repels the other, and tends to occupy the 
whole of the space. 

 

Figure 3.6. Two liquids coexisting on the surface of a flat solid 

Consider the first case (Figure 3.6). The two liquids A and B may coexist 
on the flat surface of the solid. Let θ be the angle of contact, which is 
supposed to be acute on the side of A. The temporary equilibrium condition 
for this system is: 

Bs As AB cosσ σ σ θ= +   [3.36] 

We can calculate the interfacial tension between the two liquids AB ,σ  but 
we do not know the solid–liquid interfacial tensions Asσ  and Bsσ . In order 
to obtain them, consider the work of adhesion of each of the two liquids to 
the solid. Given relation [2.75], we have: 

As A s AsW σ σ σ= + −   [3.37a] 

Bs B s BsW σ σ σ= + −   [3.37b] 
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By finding the difference, we obtain: 

As Bs A B Bs AsW W σ σ σ σ− = − + −   [3.38] 

In light of relation [3.36], we find: 

As Bs A B AB cosW W σ σ σ θ− = − +   [3.39] 

From this, we deduce: 

( ) ( )As A Bs B

AB

cos
W Wσ σ

θ
σ

− − −
=   [3.40] 

If Aθ  and Bθ  are the angles of contact of liquids A and B, deposited 
separately onto the solid surface, then in view of relation [3.35], we have: 

( )As A A1 cosW σ θ= +   [3.41] 

( )B B B1 cossW σ θ= +   [3.42] 

These relations, when fed back into expression [3.40], give us: 

A A B B

AB

cos coscos σ θ σ θθ
σ

−=   [3.43] 

We have supposed that the angle θ  was acute on the side of A, so cosθ  
must be positive and less than 1, which means we can write the equilibrium 
condition in the form: 

A A B B

AB

cos coscos σ θ σ θθ
σ

−=   [3.44] 

Freundlich spoke of the tension of adhesion  (not to be confused with the 
work of adhesion) of each of the liquids, representing them by the terms 

A Acosσ θ  and B Bcosσ θ : 

A A Acosτ σ θ=   [3.45a] 
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B B Bcosτ σ θ=   [3.45b] 

Hence, the equilibrium condition is written: 

A B ABτ τ σ− <  [3.46] 

The difference between the tensions of adhesion of the two liquids must 
be less than their interfacial tension. 

In the opposite case, when condition [3.46] is not respected there is no 
possible equilibrium, and liquid A (which has the higher tension of 
adhesion) spreads and forces liquid B out. 

This phenomenon of displacement is exploited in the assisted extraction 
of petroleum from porous rocks, but also in detergence, where a detersive 
substance is added to water to help it to displace grease on the surface of a 
cloth or a dish. 

3.6.4. Conditions of stability of solid particles at fluid interfaces 

It is easy to see that small particles of numerous solids may be at 
apparently-stable equilibrium at liquid–fluid interfaces. Such is the case, for 
example, with a metal needle which, though it is far denser than water, floats 
on the surface of water if coated with wax. We shall now examine this 
phenomenon of equilibrium of a small solid at the interface between two 
fluids. 

Consider a solid particle that is small enough for the influence of the 
surface forces upon it to be stronger than that of gravity. For simplicity’s 
sake, let us say that this solid particle is a rectangular parallelepiped. Place 
that particle at the interface between two fluids – e.g. a liquid L and air 
(Figure 3.7). 

We can see that at a triple point, the temporary equilibrium condition is 
written: 

s L sLcosσ σ θ σ= +  [3.47] 
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Figure 3.7. Stability of a solid particle at liquid interfaces 

This relation is absolutely identical to relation [3.21], which gives the 
condition of non-wetting of the solid surface by the liquid. If this condition 
is not met, the liquid spreads over the whole of the solid surface, which is 
then completely surrounded by liquid and therefore cannot remain at the 
surface. Thus, the condition for stability of the particle is that the liquid must 
not wet the solid. 

Looking now at the case of the interface between two liquids, A and B 
(Figure 3.8), the equilibrium condition here is: 

sB AB sAcosσ σ θ σ= +  [3.48] 

Then we again see condition [3.36] for the coexistence of two liquid 
surfaces on the surface of a solid. If this condition is not fulfilled, the solid 
particles are rejected from the liquid whose adhesion tension is higher. 

The separation of ores by flotation is one of the essential applications of 
this phenomenon of stability or rejection of solid particles at the interface 
between two fluids. 



Surfaces of Solids and Interfaces     85 

 

Figure 3.8. Stability of a solid particle at the interface between two liquids 

3.7. Adsorption of elements of a liquid solution by a solid  

We shall now consider the interface between a pure solid and a liquid 
binary solution (β phase) made up of the two components, 1 and 2. The 
composition of the liquid in the vicinity of the solid expresses the 
phenomenon of adsorption of the elements in the liquid solution by the solid. 
The monolayer model (γ phase), which we used in section 2.7, coupled with 
the strictly-regular solution model, taking account only of the pair energies, 
yields the following expression, which was put forward by Desré: 

( ) ( ) ( ) ( ) ( )

( )
( )

( )
( )

( )

( ) ( ) ( ) ( )( )

sL s 1 1 1 2 2 2

1 2
1 2 a 12 A B

1 2

a 12 A a 12 1 2 2 1

R ln ln N

N N

M MA x W x W A

x x
T x x l m w x x

x x

l w x l m w x x x x

γ

σ σ σ σ− = − + −

+ + + +

+ − + +

 [3.49] 

Remember that in this relation, ( )
1x and 1x  denote the molar fraction of 

component 1 in the monolayer and in the bulk of the liquid, respectively. AM 
is the molar area, sσ  and Lσ  are the surface tensions of the solid and liquid, 
each in the presence of its own vapor, 1σ  and 2σ  are respectively the surface 
tensions of pure liquids 1 and 2 in the presence of their vapor, 1W is the work 
of adhesion of the pure liquid 1 to the solid s, Na is Avogadro’s number and 
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w12 is the parameter representing the difference in the pair energies which 
characterizes the strictly-regular solution. 

The minimization of the free energy in relation to the quantity of 
component 1 in the monolayer, for a given composition of the bulk solution, 
gives us: 

( ) ( )
( )( ) ( ) ( )

( )( ) ( ) ( )

2 2
1 2 1 2

2 2

a 12 2 a 12 2

1
R ln

1

N 1 2 N 1 2

M M

x x
T A W W A

x x

l w x l m w x

σ σ
−

= − − −
−

− − + + −

 [3.50] 

Expressions [3.49] and [3.50] can be used to obtain the values of the two 
unknowns: ( )

2x , the composition of the solution in the vicinity of the surface 
of the solid; and sLσ , the liquid–solid interface energy, for a given 
composition 2x  of the solution.  

Relation [3.49], applied to a dilute solution of component 2 in solvent 1 – 
i.e. when 2x  tends toward zero – enables us to calculate the variation in the 
interfacial energy with changing composition. We find: 

( )
2

2

2 0

R 1 exp
R

sL

Mx

d ET
A Tdx

σ

→

= − −   [3.51] 

where 2E  is the energy of adsorption of 2 by the solid at infinite dilution, 
defined by: 

 ( ) ( )2 2 1 2 1 a 12NM ME A W W A m wσ σ= − − − −  [3.52] 

The application of relation [3.50] for the dilute solution gives us: 

( )

( )
2

2 2

2 0

exp
R

x

x E
x Tγ →

= −  [3.53] 

This expression of the adsorption isotherm is similar to Henry’s law. 
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Figure 3.9. Isotherm of adsorption of a solute to a solid 

We know that such an equation cannot account for all the forms of 
isotherms of adsorption. The application of equation [3.50] for perfect 
solutions (w12 = 0) gives us the homographic form of the isotherm: 

( )

( )
2 2 2 2

2 22

exp
1 R 11

x x E Kx
x T xx

= − =
− −−

  [3.54a] 

or 

( )

( )
2

2
21 1

Kx
x

K x
=

+ −
 [3.54b] 

More complex laws such as Freundlich’s, which expresses an exponential 
variation of the quantity of fixed component 2 as a function of the 
concentration of the solution (Figure 3.9), have been put forward, but no 
attractive models have been developed to illustrate them. 

3.8. Electrocapillary phenomena 

Electrocapillarity is the combination of electrical phenomena and surface 
phenomena. It is particularly useful when studying the double electrochemical 
layers found at electrodes. 
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3.8.1. Definition of electrocapillarity 

The phenomenon of electrocapillarity consists of a variation in the 
surface tension of an α phase in contact with another β phase when the 
potential difference between the two phases varies. 

This phenomenon is encountered, in particular, when a metal electrode is 
in contact with an electrolyte, which essentially constitutes an interface with 
a potential difference between the electrode and the electrolyte. 

Although the phenomenon may arise no matter what the nature of the two 
conductive phases present, we shall keep to the case of the ideally-polarizable 
metal electrode – i.e. without a chemical reaction. The easiest system to study 
is that of a liquid metal electrode, such as a mercury electrode. 

3.8.2. Gibbs–Lippmann formula and Lippmann’s formula 

Consider the ensemble formed of a mercury electrode (the α phase) in 
contact with an electrolyte (the β phase) containing Mi ions. The interface is 
supposed to be flat, or at least with a large radius of curvature, meaning that 
the pressure values on both sides of the interface can be treated as identical. 
The intervention of the surface and electrical phenomena introduce the 

d Aσ  (σ is the electrolyte/electrode interface tension) and dj j
j

nμ  

corresponding amounts of work into the internal energy, whose differential 
is then written as: 

d d d d dj j
j

U T S P V A nσ μ= − + +  [3.55] 

We have directly introduced the work of the electrical forces in the form 
of the electrochemical potentials of the species j. The species to be taken into 
account are, obviously, the Mi ions of the electrolyte, the solvent and the 
electrons from the metal. The metal atoms are not taken into account, 
because the metal only serves as an electron source. 

Similarly, we would write the differential of the Helmholtz energy in the 
form: 

d d d d dj j
j

F S T P V A nσ μ= − − + +  [3.56] 
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The differential of the Gibbs energy would then be: 

d d d d dj j
j

G S T V P A nσ μ= − + + +  [3.57] 

and we would define a generalized Gibbs energy Gσ , known as the 
electrocapillary Gibbs energy, whose differential would be: 

d d d d dj j
j

G S T V P A nσ σ μ= − + − +  [3.58] 

The differential of the surface tension is linked to the excess surface of 
the components and to the electrochemical potentials by the relation: 

d dj j
j

σ μ= −  [3.59] 

The phase distribution of the j components would then be represented by 
a curve similar in form to that shown in Figure 3.10. The cross-hatched area 
on the left of the interphase represents the excess surface of the electrons, e , 
and the shaded area to the right of the interphase represents the excess 
surface i  of a component Mi of the electrolyte. 

 

Figure 3.10. Concentrations of ions and  
electrons in the electrode/electrolyte interphase 
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If zi represents the number of charges of component Mi, these excess 
surfaces are linked to one another by the relation of electroneutrality, in the 
form: 

i i e
i

z =  [3.60] 

Let us rewrite relation [3.59], separating the terms due to the electrons 
from those due to the components Mi of the solution. We obtain: 

d d di i e e
i

σ μ μ= − −  [3.61] 

The electrochemical potentials are written on the basis of the chemical 
potentials, in the forms: 

( )

( )

( )

( )

i i i

e e

z
α

μ μ ϕ

μ μ ϕ

= +

= −

F

F
 [3.62] 

The chemical potential of the electrons can be deemed to be constant, so 
by differentiating expressions [3.62], we find: 

( )

( )

( )d d d

d d
i i i

e

z
α

μ μ ϕ

μ ϕ

= +

= −

F

F
 [3.63] 

If we take account of the condition of electrical neutrality [3.60], then 
relation [3.59] becomes: 

( ) ( )( )d di i e
i

σ μ ϕ ϕ= − − −F  [3.64] 

The product eF  represents the surface charge density on the electrode 

σe, and ( ) ( )( )ϕ ϕ−  is its absolute voltage. In a differential, we can replace 

the absolute voltage with the relative voltage e, and thus we obtain: 

d d di i e
i

eσ μ σ= − −  [3.65] 



Surfaces of Solids and Interfaces     91 

This is the Gibbs–Lippmann relation. Employing the hypothesis of 
constant composition, this formula is simplified to become: 

, , i

e
T Pe μ

σ σ∂ = −
∂

 [3.66] 

This latter relation is Lippmann’s formula. 

3.8.3. Experimentally obtaining the surface tension/electrical 
potential curve 

The curve showing the variations in surface tension as a function of 
electrical potential is called the electrocapillary curve. To obtain such 
curves, we use a capillary electrometer (Figure 3.11). A tube, A, containing 
mercury ends in a capillary tube of diameter r and constitutes an electrode in 
contact with the electrolyte contained in a tank in which a reference 
electrode is immersed. A variable voltage is applied between the mercury 
electrode and a mercury counter-electrode placed at the bottom of the tank. 
The height h of fluid in the tube of mercury is proportional to the surface 
tension, and can therefore be used to determine it (see section 4.1.2.2). 

3.8.4. Shape of the electro capillary curves 

If we draw the comparison between the electrode/electrolyte interface 
with an electrical capacitor, its capacity (which is a positive value) is given 
by: 

d
d

ec
e

σ=  [3.67] 

That capacity is constant (independent of the field), and thus by using 
Lippmann’s formula [3.66], we obtain the differential equation: 

2

2

d
d

c
e
σ= −  [3.68] 
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Figure 3.11. Capillary electrometer 

A first round of integration (where a is a constant) yields: 

d
d sce a

e
σ σ= − + = −  [3.69] 

and a second integration (where b is a constant) gives us the equation of the 
electrocapillary curve:  

2

2
ce

ae bσ = − + +  [3.70] 

 

Figure 3.12. Theoretical electrocapillary curve 
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Equation [3.70] shows that the electrocapillary curve is a parabola whose 
concave surface faces downward (c > 0). On the ascending part of the 
parabola, we can see in view of equation [3.69] that the density of electrical 
charges is negative, but it is positive on the downward part. 

The maximum point of the parabola, where the charge density is 0, is 
called the electrocapillary maximum, and the corresponding tension is the 
zero-charge tension. 

Certain authors, in haste, deduced that because the charge density was 
zero at the maximum point, the same was true of the voltage, in which case it 
would finally be possible to find the absolute voltage of an electrode. 
However, experience shows that this is not the case, because the hypothesis 
of the flat capacitor supposes that electrical charges are only present at the 
interface, overlooking the presence of dipoles – in particular, the dipoles of 
the water molecule, which make a notable contribution to the electrode’s 
voltage. Thus, in actual fact, the experimental curves are dissymmetrical (see 
Figure 3.12), essentially presenting two different parabolic branches. The 
ascending branch is attributable to the anions. This means that all 
electrolytes which have the same anion would give approximately the same 
branch, because the dipole contribution due essentially to water varies little 
in similar conditions of concentration. The descending curve, on the other 
hand, is essentially due to the cations, and would be common to practically 
all electrolytes sharing the same cation. 

Figure 3.13 shows the electrocapillary curve of the mercury/iodide 
system for three iodides: calcium iodide, sodium iodide and potassium 
iodide. We can see that the ascending parabolic branch is shared by all three 
curves as, in addition to having the same mercury electrode, the three 
systems also share the same anion. By contrast, the descending parabolic 
branches are different, because the cations are different. 

NOTE.– It is worth pointing out that the reference electrode used works in the 
same electrolyte with variable composition as the mercury electrode, so its 
own absolute voltage is not constant, and the variation measured is not, 
strictly speaking, that of the voltage of mercury. The electrocapillary curves  
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therefore need to be plotted as a function of the potential E – a potential  
difference at the terminals (e.g. when using a hydrogen electrode) of the 
chain: 

2 2
(1') (1) (2')(2)

  Hg H O electrolyte H PtPt
Phases

+  [3.71] 

 

Figure 3.13. Electrocapillary curves found experimentally 

3.8.5. Applying electrocapillarity to the experimental determination 
of the excess surface 

Based on relation [3.65], given to us by Gibbs and Lippmann, we can 
write the following for the excess surface of component i: 

, , j

i
i T e μ

σ
μ

∂= −
∂

 [3.72] 

In practice, as we saw for capillary systems (section 2.2.5), the relation 
existing between the chemical potentials is incapable of delivering the above 
differentiation. Therefore, all we have access to is the relative adsorptions, in  
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relation to component 1 (e.g. the solvent), which obeys the following 
relation, derived from expression [2.39]: 

,1
, , j

i
i T e μ

σ
μ

∂= −
∂

2j i≠ ≥  [3.73] 

Relations [3.72] and [3.73] are only identical for fairly-dilute solutions. 

Even using the relative adsorptions or dilute solutions, if component i is 
an ion, it is not possible to alter its chemical potential without modifying that 
of the other ions, and thus relations [3.72] and [3.73] need to be modified to 
show only the chemical potentials of neutral molecules.  

To take the example of a simple case, we shall stick with 1:1 electrolytes, 
such as HCl, which dissociates into Cl- and H+ ions, whose relative 
adsorptions H ,1+ and Cl ,1−  we shall now calculate. 

To measure the voltage of the mercury electrode used, we pair it with a 
reference hydrogen electrode, creating the chain in [3.71]. The potential 
difference at the terminals of that chain can be written as: 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1' 2' 1' 1 1 2 2 2'E ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ= − = − + − + −  [3.74] 

As the potential difference Pt/Hg ( ( ) ( )( )1' 1ϕ ϕ− ) remains constant 

regardless of the concentration of the electrolyte, the differential of the 
potential difference can be written: 

( ) ( )( ) ( ) ( )( )1 2 2 2'd d dE ϕ ϕ ϕ ϕ= − + −  [3.75] 

or 

refd d d= −E e e  [3.76] 
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The voltage refe  of the reference electrode (which, by definition, is un-
polarizable) is given by Nernst’s relation: 

H
ref

d
de

μ +=
F

 [3.77] 

and thus, in view of relation [3.76], we can write: 

H
d

d de E
μ += +
F

 [3.78] 

Hence, in light of the Gibbs–Lippmann relation [3.65], we write: 

H
H H Cl Cl

d
d d d ds sE

μ
σ μ μ σ σ +

+ + − −= − − − −
F

 [3.79] 

The condition of electrical neutrality [3.60] means we must have: 

( )H Cleσ + −= − − F  [3.80] 

This relation gives rise to an identical relation between the relative 
adsorptions: 

( )H ,1 Cl ,1eσ + −= − − F  [3.81] 

From this, we deduce: 

( )Cl ,1 Cl H
d d d de Eσ σ μ μ− − += − −  [3.82] 

By replacing the chemical potentials with their expressions as a function 
of the activities, we reveal the product of the activities of the chloride ions 
and hydrogen – i.e. the mean activity  of HCl – and thus we have: 

Cl ,1
d d 2R dln HCle E Tσ σ −= −  [3.83] 
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By plotting the electrocapillary curves σs(E) for different values of the 
mean activity of HCl, we can find the relative adsorption of the chloride 
ions, as follows: 

Cl ,1
, ,

1
2R ln HCl

T P E
T

σ
−

∂= −
∂

 [3.84] 

If we also know the surface charge density, we can directly obtain, by 
finding the difference, the relative adsorption of the protons, in obeisance to 
the electroneutrality equation, which imposes: 

H ,1 Cl ,1
sσ

+ −= −
F

 [3.85] 

NOTE.– To directly find the relative adsorption of the protons, we must 
replace the hydrogen electrode with an unpolarizable electrode sensitive to 
chloride ions – e.g. the calomel electrode. 





4 

Small-volume Phases   

The term small-dimension phase denotes phases wherein the dimensions 
are generally much less than a micrometer. Such phases may include small 
grains or droplets (small volumes). They are the phases found during the 
earliest stages of the creation of a liquid or solid condensed phase from a 
bulk phase in the nucleation process. 

Experience shows us that this type of phase exhibits very particular 
thermodynamic properties, such as a melting point that is not constant during 
the process of fusion, or the chemical stability of a phase dependent on its 
dimensions, etc. These special properties are attributed to the relative 
importance of the surface energies of the interfaces separating those phases 
from their environment, in comparison to their bulk energy. 

In spite of their slight dimensions, these phases tend to be autonomous, 
which cannot be said of interfaces, whose thermodynamic properties depend – 
as we saw in the earlier chapters – on those of the adjacent phases.  

In this chapter, we shall examine the case of small-volume phases, in the 
form of spherical liquid drops or small Wulff crystals (see section 3.4).  

4.1. Laplace’s law for spherical liquid drops 

The application of Laplace’s law determining the difference in pressure 
between the inside and the outside of a spherical liquid drop with radius r is 
written as follows, in view of relations [1.12] and [1.42]: 
                                       
 This and the previous chapter owe a great deal to the kind contribution of Patrice Nortier. 

Thermodynamics of Surfaces and Capillary Systems, First Edition. Michel Soustelle.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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( ) ( )int ext 2P P
r
σ= +  [4.1] 

This result remains valid for a bubble of gas in a liquid; the difference 
between the drop and the bubble lies simply in the inversion of the nature of 
the phases. 

4.2. Similarity between the thermodynamics of a Wulff crystal 
and that of a liquid drop  

Let us look again at relation [3.18], which gives the surface energy of a 
Wulff crystal. v  and s  are, respectively, the bulk and surface form 
factors, and r is the radius of the sphere with the same volume as the crystal:  

( ) ( )2/3 1/32

1
  4 3 4

mi

s v i i
i

W rπ π σ α
− −

=

=  [4.2] 

If we define the term in chain brackets as an effective surface tension 
,effσ  this energy can be written as: 

2  4 effW rπ σ=  [4.3] 

This relation is absolutely identical to that which gives the surface energy 
of a spherical liquid drop with radius r given by the application of relation 
[1.5]. Thus, for a Wulff crystal, we can write the expression of the pressure 
differential between the inside of the crystal and the fluid (gas or liquid) 
surrounding it in the form: 

( ) ( )int ext 2 effP P
r

σ
= +  [4.4] 

Thus, relations [4.1], pertaining to a spherical liquid drop, and [4.4], 
pertaining to a Wulff crystal, are absolutely analogous, and therefore we  
can state that a Wulff crystal is thermodynamically equivalent to a liquid 
drop. 
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4.3. Reiss’ characteristic function 

Consider a small phase composed of a spherical liquid droplet whose 
volume is V(liq), placed in a closed system with the volume V(gas), containing a 
gas at the pressure P(ext). The gas is a mixture of the vapor of the liquid and 
an inert gas which is insoluble in the liquid and not adsorbed to its surface. 
The temperature of the whole system is kept at the value T. 

The function of the generalized potential Gibbs energy of such a system, 
known as Reiss’ function, is written: 

( ) ( )( )liq= − + +ext gas
RG U TS P V V  [4.5] 

NOTE.– Reiss function is a generalized Gibbs energy function. 

As that function is a potential function, any spontaneous transformation 
at constant temperature T and pressure P(ext) will be characterized by: 

( ) ( )ext,
d 0R T P

G ≤  [4.6] 

Equality in the above relation defines the state of equilibrium of the system 
where Reiss’ function exhibits a minimum if that equilibrium is stable. 

The internal energy and entropy of that system are linked to the 
corresponding values characterizing those of the phases present, by the 
additivity relations: 

( ) ( )( ) ( ) ( )( )gas ext liq intU U P U P= +      [4.7a] 

( ) ( )( ) ( ) ( )( )gas ext liq intS S P S P= +  [4.7b] 

The pressure P(int) is the prevailing pressure inside the droplet. 

Let us express Reiss’ function on the basis of the internal energies and 
entropies of each of the phases. We have: 

( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( )( ) ( ) ( )

gas ext gas ext ext gas

liqliq int int ext liq

RG U P TS P P V

U P TS P P V

= − +

+ − +
 [4.8] 
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The sum of the first three terms in this expression represents the Gibbs 
energy of the gaseous phase at pressure P(ext): ( ) ( )( )gas extG P . The sum of the 

last three terms is a different value J(liq) of the Gibbs energy of the drop 
( ) ( )( )liq intG P  because of the involvement of the pressure P(ext) in product PV. 

Relation [4.8] can thus be written in the form: 

( )( ) ( )ext liqgas= +RG G P J  [4.9] 

The value J(liq) here is defined by: 

( )( ) ( )( ) ( )

( )( ) ( )

int int ext(liq) (liq) (liq) (liq)

int ext(liq) (liq)

J  U P TS P P V

F P P V

= − +

= +
 [4.10]  

Now suppose that the same amount of material as that making up the 
drop is taken to integrate into the bulk phase by being taken to pressure P(ext). 
In this operation, ( ) ( )( )liq intU P  tends toward ( ) ( )( )liq extU P  and ( ) ( )( )liq intS P  

tends toward ( ) ( )( )liq extS P , so ( )liqJ  tends toward ( ) ( )( )liq extG P  which, if we 

overlook the compressibility of the liquid, is such that: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

liq ext liq ext liq ext ext liq

liq ext ext liq

G P U P TS P P V

F P P V

= − +

= +
 [4.11] 

Using relations [4.10] and [4.11], we can calculate the difference: 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )liq liq ext liq int liq extJ G P F P F P− = −  [4.12] 

By finding J(liq) from relation [4.12] and feeding it back into expression 
[4.9], we obtain: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )gas ext liq ext liq int liq ext
RG G P G P F P F P= + + −  [4.13] 
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The difference ( ) ( )( ) ( ) ( )( )liq int liq extF P F P−  represents the reversible 

isothermal work needed for the transfer of a certain quantity of liquid, 
corresponding to that of the future drop, at pressure P(ext), to form the droplet 
with radius r at pressure P(int). This transfer can be enacted in an experiment, 
represented by Figure 4.1, where the liquid initially forming a bulk phase is 
placed in a syringe. The pressure exerted on piston p2 of the syringe causes 
the formation of the drop with radius r and volume V(liq) at the end of the 
needle. 

 

Figure 4.1. Formation of a drop at a constant imposed external pressure 

When the drop is at mechanical equilibrium, Laplace’s law [4.1] must be 
satisfied. The total work necessary to form the drop is: 

( )ext 2
tot

0

2 4 d
r

W P r r
r
σ π= +  [4.14] 

The work found on the left-hand side of this equation, ( )ext2

0

4 d
r

r P rπ , is, 

in fact, restored to the outside by the motion of the piston p1 in the cylinder 
in order to keep the pressure P(ext) constant. Thus, the only portion of the 
work which contributes to the increase in the liquid’s Helmholtz energy is: 

( ) ( )( ) ( ) ( )( )liq int liq ext

0

8 d
r

W F P F P r rσ π= − =  [4.15] 
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In light of relation [4.13], we then find: 

( ) ( )( ) ( ) ( )( )gas ext liq int 24RG G P G P rπ σ= − +  [4.16] 

Hence, we know the value of Reiss’ function for a spherical liquid drop. 
We can see that the variables in that function are temperature T, internal 
pressure P(int), external pressure P(ext) and the radius of the drop r. 

In view of the equivalence shown in section 4.1.2, expression [4.16], 
which was established for a spherical liquid drop, is also applicable to a 
Wulff crystal with equivalent radius (see section 3.4). 

4.4. Gibbs energy of a spherical pure liquid or solid with small 
volume 

Once again, let us consider a spherical liquid drop with the radius r.  

As the gaseous phase is a mixture of the vapor of the liquid and an inert 
gas, the outside pressure is the sum of the partial pressure of the inert gas, Pg, 
and the pressure of the liquid vapor v ,P  so: 

( )ext
g vP P P= +  [4.17] 

If vn  and gn  are, respectively, the quantities of vapor and of inert gas, the 
Gibbs energy of the gaseous phase will be: 

( ) ( )( ) ( ) ( )gas ext 0 0
g g g v v vG P n g P n g P= +  [4.18] 

If the drop of liquid contains nl moles, its Gibbs energy will be: 

( ) ( )( ) ( )( )liq ext ext0
l lG P n g P=  [4.19] 

The material balance means that we can write the following relation 
between the variations in the quantity of liquid and vapor: 

v ld dn n= −  [4.20] 
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By differentiating relation [4.16] in relation to the quantity nl, we can 
write: 

( ) ( )
( )( ) ( )ext
ext0 0

l v v l l,
l l

d d 8 d 0R
R T P

G rG g P g P n r n
n n

π σ∂ ∂= = − + =
∂ ∂

 [4.21] 

Thus, we obtain the relation between the molar Gibbs energies of the 
liquid and of the vapor: 

( ) ( )( )ext0 0 0(liq)
v v l

2
g P g P v

r
σ= +  [4.22] 

This relation, in view of expression [4.1], can be written: 

( ) ( )( ) ( ) ( )( )ext int ext0 0 0(liq)
v v lg P g P P P v= + −  [4.23] 

We know that in the case of a massive liquid phase, the Gibbs energy of 
the vapor is equal to that of the liquid – i.e. a liquid with infinite radius 

( )0
l .= ∞g r  Hence, for a pure substance A, the Gibbs energy of the liquid 

phase will be: 

( ) ( )0 0 0(liq)
A A

2
Ag r g r v

r
σ= = ∞ +  [4.24] 

This is the Gibbs–Thomson relation for pure substances of small volume. 

Of course, this relation can also be applied to a Wulff crystal at 
equilibrium with its vapor or its pure liquid, with equivalent radius r. 

4.5. Chemical potential of a component of a solution 

We shall now consider the case where the liquid and vapor are 
polycomponent phases. By differentiating expression [4.16] in relation to the 
amount of one of the components, i, and making that expression equal to 0 
(equilibrium), we find: 

( )( ) ( )ext
i i v i i

i i

d 8 d 0
j

R

n

G r
P P n r n

n n
μ μ π σ∂ ∂= − + =

∂ ∂
 [4.25] 
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This relation gives us: 

( ) ( )0 0
i i

2
ir r V

r
σμ μ= = ∞ +  [4.26] 

Note that relation [4.26], at equilibrium, expresses the equality of the 
generalized chemical potential of component i in the liquid phase and the 
chemical potential of component i in the gaseous phase. 

Relation [4.26] is the Gibbs–Thomson relation for species in solution in 
small-volume phases. 

NOTE.– Reiss pointed out that relation [4.26] was incorrect, because in the 
differentiation leading to relation [4.21], for small objects, it was not 
possible to vary the amount of one of the components and still preserve the 
composition of the phase. In the case of a binary solution formed of 
components 1 and 2, an additional term needs to be brought into play, and 
thus for component 1, the exact relation would be: 

( ) ( ) ( )(liq)
10 0

1 1 1
1

3 12 mV x
r r V

r r x
σ σμ μ

− ∂= = ∞ + +
∂

 [4.27] 

where (liq)
mV  is the molar volume of the solution.  

The additional term only becomes significant if component 1 is dilute and 

is tensio-active (
1

0
x
σ∂ <

∂
), so it is the opposite of the increase in chemical 

potential due to the Gibbs–Thomson effect. 

4.6. Phase change in pure substances 

We shall now examine the impact of small radii of curvature on the 
thermodynamic properties of the phase transformations of pure substances, 
using the examples of the vaporization of a drop of liquid and the melting of 
a solid made up of small grains. 
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4.6.1. The saturating vapor pressure of pure liquid 

Consider a liquid droplet of a pure substance, with radius r at equilibrium 
with its vapor at a given temperature T. The total pressure of the vapor phase 
is kept constant by an inert gas. If equilibrium is achieved, the generalized 
chemical potentials of the two phases are equal. With the notations used for 
phase changes, relation [4.22] gives us: 

( ) ( )0 vap 0 liq 0(liq)2
g g v

r
σ= +  [4.28] 

The exchange of an infinitesimal amount between the liquid and the 
vapor leads to a variation of the chemical potential of the vapor which, 
supposing the surface tension to be independent of the radius of the drop, is 
written by differentiation: 

( )( )0 vap 0( )

,

1d 2 d
ext

liq

T P
g v

r
σ=  [4.29] 

In addition, if the gaseous mixture is supposed to be perfect, the 
infinitesimal variation of the chemical potential of the vapor can thus be 
written: 

( )( )0 vap 0( )

,

R dd d
ext

vap
vap vap

vapT P

T P
g v P

P
= =  [4.30] 

By making expressions [4.29] and [4.30] equal and integrating between 
the radii  r and infinity, for saturating vapor pressures lying between 

( ) ( )vapP r  and ( )0 vapP , we find: 

( ) ( ) ( )
0(liq)

vap 0 vap 2exp
R
vP r P
Tr

σ=  [4.31] 

( )0 vapP  is the saturating vapor pressure when the surface of the liquid  
is flat – i.e.  the saturating vapor pressure of a typical bulk phase. 
Relation [4.31] is known as Kelvin’s formula. 
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If the radius is not too small, the term beneath the exponential is slight, 
and if we keep only the first two terms in the limited expansion of the 
exponential, relation [4.31] can be simplified to give: 

( ) ( ) ( )

( )

vap 0 vap 0(liq)

0 vap

2
R

P r P v
TrP

σ−
≈  [4.32] 

Thus, the saturating vapor pressure of the drop with radius r is greater 
than the liquid’s normal saturating vapor pressure. 

In order for the influence of the small dimension to become apparent, we 
need to use drops with a very small radius. The second column in Table 4.1 
gives a few values of the ratio of the saturating pressure above the drop to 
the saturating vapor pressure above a flat liquid for different drop radius 
values. These values are calculated, using relation [4.31], for water with a 
surface tension of 20.073J/mσ =  at 15°C. 

r (m) Drop ( ) ( )vap 0 vap( ) /P r P  Bubble ( ) ( )vap 0 vap( ) /P r P  

 1 1 

10-6 1.001 0.9990 

10-7 1.011 0.9891 

10-8 1.115 0.897 

Table 4.1. Influence of the radii of drops and bubbles on the  
saturating vapor pressure of water at 15°C 

Thus, the liquid–vapor equilibrium, which is monovariant for a liquid 
with a flat surface, becomes divariant for drops of small dimensions. The 
saturating vapor pressure becomes a function of the temperature (particularly 
because of pressure ( )0 vapP ) and of the radius of the drops. 

We can show that, at constant saturating vapor pressure, the smaller the 
drop is, the lower the equilibrium temperature will be. 

NOTE.– It is easy to show that a set of liquid droplets constitutes an unstable 
system. Indeed, any fluctuation in the size of one of the droplets will cause a 
variation in the saturating vapor pressure in its vicinity, giving rise to a vapor 
gradient between the vicinity of that drop and the vicinity of the other drops. 
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This gradient leads to diffusion, which breaks the equilibrium in the vicinity 
of the other drops. The equilibrium can only be re-established by the 
variation of the dimensions of the other drops. Thus, little by little, the 
process will lead to the disappearance of all but one of the drops, with that 
one gaining in size at the expense of the others. 

The same reasoning as that which yielded relation [4.31] can be 
employed if we consider not a drop of liquid in a gas, but a bubble of gas in 
liquid. The saturating vapor pressure then becomes as follows, with the gas 
being on the convex side of the curvature: 

( ) ( ) ( )
0(liq)

vap 0 vap 2exp
R
v

P r P
Tr

σ= −  [4.33] 

Thus, the saturating vapor pressure in a bubble within a liquid is lower 
than the vapor pressure of the flat liquid. For spheres, the term Kelvin radius, 

Kr , denotes the radius at equilibrium with a certain vapor pressure 
( ) ( )vap .KP r  

The third column in Table 4.1 shows a few values of the ratio between 
the pressures in the case of an air bubble of different radii in water. 

 

Figure 4.2. Condensation in the vicinity of a spherical  
surface: concave (for a drop) or convex (for a meniscus) 
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Figure 4.2 shows the results of relations [4.31] and [4.33] on 
condensation in the vicinity of a spherical surface that is convex (drop) or 
concave (meniscus or bubble). 

4.6.2. Melting of a small grain 

In the same way as we saw in the case of the liquid–vapor equilibrium for 
a drop of liquid, the variance of the solid–liquid equilibrium in a small solid 
grain will increase by one unit, the melting point will depend on the radius of 
the grains and therefore will not be constant throughout the process of 
melting of the grain. 

In modeling fusion (melting), we shall accept the hypothesis that a solid 
spherical grain gives rise to a spherical drop of liquid, and that the respective 
radii of those two spheres are linked, because of the conservation of matter, 
to the molar volumes of the two phases, thus: 

( )

( )

( )

( )

3liq 0 liq

sol 0 sol

r v
r v

=  [4.34] 

We suppose that the substrate on which the particle rests is not wetted by 
the liquid (link angle of π). 

The Gibbs energies (i.e. the generalized Gibbs energies which involve the 
surface energy or Reiss functions) of the two phases at the melting  
point fT , with the liquid being at the internal pressure ( )liqP  and the solid at 

internal pressure ( )solP  are equal when the crystal and liquid are at 
equilibrium, so: 

( ) ( )( ) ( ) ( )( )0 liq liq 0 sol sol, ,f fg P T g P Tσ σ=  [4.35] 

If we apply the Gibbs–Thomson relation [4.24] for the solid and liquid 
and feed the expressions thus obtained back into relation [4.35], we obtain: 

( ) ( )( )
( ) ( )

( )
( ) ( )( )

( ) ( )

( )

0 liq liq 0 sol sol
liq ext sol ext0 0

liq sol

2 2, ,f f
v vg P T g P T

r r
σ σ+ = +  [4.36] 
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( ) ( ) ( ) ( )0 liq 0 sol liq sol, ,   and v v σ σ  respectively denote the molar volumes and 
the surface tensions of the liquid phase and the solid phase. The pressure 

( )extP is the reference external pressure, usually chosen as 1 bar. 

The Gibbs energy of melting of a grain of infinite dimensions 
( )( )ext ,f fG P TΔ  is given by the difference between the chemical potentials: 

( ) ( )( ) ( ) ( )( ) ( )( )
( )( ) ( )( )

liq ext sol ext ext0 0

ext ext

, , ,

, ,

f f f f

f f f f f

g P T g P T G P T

H P T T S P T

− =

= −
 [4.37] 

Taking account of relation [4.34], relation [4.36] gives us: 

( )

( )
( )

( )

( )
( )

2/30 sol 0 liq
liq sol

sol 0 sol

2 0f f f
v vH T S
r v

σ σ− + − =  [4.38] 

In view of the slight differences in temperature, we can overlook the 
variations, with temperature, of the molar volumes, the surface tensions,  
the enthalpy of fusion and the entropy of fusion. The new melting point of 
the grains with radius r can then be calculated as a function of the melting 
point for grains with an infinite radius fT ∞ , and we obtain: 

( )
( ) ( )

( )

( ) ( )

2/30 sol 0 liq
sol liq

0 sol sol

2 1
f f

f

v vT T
S v r

σ σ∞ − = −  [4.39] 

Thus, the difference between the melting points of a massive solid and of 
a small grain is approximately inversely proportional to the radius of the 
grains of the solid. Figure 4.3 shows the variation in the melting points of 
spherical grains of gold as a function of their radius (ΔfS = 9.39J.mol-1;  
σ(liq) = 1.138J.m-2; σ(sol) = 1.400J.m-2; v0(liq) = 1.138×10-5m3.mol-1; v0(sol) = 
1.074×10-5m3.mol-1). 

Hence, the effect of dimension is noticeable only in the case of grains 
whose radius is around a few nanometers.  
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This effect of dimension can be generalized to all phase-changes in pure 
substances, and we find the same result: the variance of the transformation is 
increased by one unit. For instance, zirconia has two polymorphic varieties: 
the monoclinical variety, which is stable at low temperatures; and the 
quadratic variety, which is stable at higher temperatures. We can see that for 
smaller grains, the quadratic phase is stabilized at a lower temperature, or, 
put differently, the temperature of the polymorphic transformation is a 
function of the grain dimension, with a curve which is of the same form  
as that shown in Figure 4.3. Furthermore, relation [4.39] is valid for the 
temperature of that transformation if we replace the values pertaining to the 
solid and the liquid with the same values pertaining to the monoclinical and 
quadratic polymorphic varieties.  

 

Figure 4.3. Influence of radius on the melting  
point of spherical particles of gold 

4.7. Alteration of the solubility of a solid due to the small 
dimension of its grains 

We shall now show that, in the same way as for the equilibria of 
transformation of pure substances, the variance of the equilibriums of phase 
transformations in solution is also increased by one unit by the involvement 
of the dimensions of the phases. To illustrate this, we shall consider the 
solubility of a solid with small dimensions – i.e. the equilibrium between a 
pure solid of small volume and a solution. Let us consider a liquid solution 
with infinite radius of curvature, containing multiple components, including 
component i. This solution is at equilibrium with a small crystal of the pure  
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substance i with equivalent radius r. We shall let ( )lsσ  denote the interfacial 
energy between the solution and the crystal whose molar volume is ( )0 s .v  
The molar fraction of component i in the solution is ix , and its activity 

i i ia xγ= . Its chemical potential is ( ),i ix Tμ . The molar Gibbs energy of i in 
the solid is: ( )0(s) ,ig r T . At equilibrium, the following relation is satisfied:  

( ) ( )0(s) , ,=i i ig r T x Tμ  [4.40] 

A shift of the equilibrium at constant temperature would be expressed by 
the relation: 

( ) ( )0(s)d , d ,=i i ig r T x Tμ  [4.41] 

The differential, at constant temperature, of the chemical potential of 
component i in the solution is given by: 

( )d , R ln=i i ix T Td aμ  [4.42] 

For the small crystal, the application of Laplace’s relation, where ( )intP  is 
the crystal’s internal pressure, gives us: 

( ) ( ) ( ) ( )
( )ls

0 s int 0 s0(s)d d 2 di T
g v P v

r
σ= =  [4.43] 

If ( )
ix ∞  and ( )

iγ ∞ , respectively, represent the molar fraction and the 
activity coefficient of component i in the liquid solution at equilibrium with 
a solid i of infinite radius, then by substituting relations [4.42] and [4.43] 
back into expression [4.41] and integrating between the radii r and , we 
find: 

( ) ( )
( ) ( )0 s ls2 1( ) exp
Ri i i i

vx r x
T r
σγ γ ∞ ∞=  [4.44] 
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If, in addition, the solution is sufficiently dilute, we can add the 
hypothesis that ( ) .∞ =i iγ γ  Expression [4.44] is then simplified: 

( )
( ) ( )0 s ls2 1( ) exp
Ri i

vx r x
T r
σ∞=  [4.45] 

Thus, the solubility of the solid is inversely proportional to the radius of 
the particles. 

The calculation shows that in the case of a crystal with radius 100 nm, the 
solubility is increased by around 4% (with ( )ls 20.5 J.mσ −= , at 300 K for a 
solid with the molar volume 10-5 m3.mol-1), in comparison to the solubility of 
a large crystal. 

NOTE.– As in the case of the liquid–vapor equilibrium, if a solution contains 
a collection of small solid grains, because the smallest particles are the most 
soluble, they create a gradient of concentration in the liquid between the 
vicinity of the smaller and larger particles. This gradient causes diffusion, 
which causes the largest particles to grow; the system is not stable and 
evolves toward a single particle with a large radius, which is known as 
Ostwald ripening; the small particles disappear and amalgamate with the 
larger ones. 

4.8. Equilibrium constant for a reaction involving small grains  

The influence of the radius of curvature of the phase on the Gibbs energy 
or the chemical potential of a component in that phase leads to the alteration 
of the values of the equilibrium constants every time a chemical reaction 
takes place with phases of small dimensions. We shall discuss the formation 
of nickel carbonyl in light of Mittasch’s experiments, interpreted by Defay 
and Prigogine (1951) as an example. 

The reaction of solid nickel with gaseous carbon monoxide to give nickel 
carbonyl, also in the gaseous state, at temperature T (70°C), is thus: 

{ } ( ){ }4
Ni 4 CO Ni CO+ =  [4R.1] 
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The components Ni, CO and Ni(CO)4 will be spoken of as components 1, 
2 and 3, respectively. 

If σ is the surface energy of the nickel in the presence of the gaseous 
phase, the expression of the Reiss potential at temperature T and pressure 

( )extP  is: 

( )( ) ( )( ) ( )( )ext ext ext 2
1 1 2 2 3 3 4RG n P n P n P rμ μ μ π σ= + + +  [4.46a] 

The differential of this function at constant temperature and external 
pressure is, in view of the Gibbs–Duhem relation for the gaseous phase: 

( ) ( )ext 1 1 2 2 3 3 1,
1

d d d d 8 dR T P

rG n n n r n
n

μ μ μ π σ ∂= + + +
∂

 [4.46b] 

At equilibrium, this differential is zero: 

( ) ( )ext,
d 0R T P

G =  [4.47] 

The stoichiometry of the reactions imposes the relations dn2 = 4dn1 
and dn3 = -dn1 between the variations in the amounts of matter, and the 
spherical form means we can write: 

0
1

2
1 4

vr
n rπ

∂ =
∂

 [4.48] 

The equilibrium condition then becomes: 

( )
0
1

1 2 3
24 v

r
σμ μ μ∞ + − =  [4.49] 

At constant pressure and temperature, for nickel we have dμ1( ) = 0 
because the phase is pure. Then, by differentiating relation [4.49], we obtain: 

0
2 3 1

14d d 2 d
r

vμ μ σ− = −  [4.50] 
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If the gaseous mixture constitutes a perfect solution, for i = 2 and 3 we 
have: 

d R d lni iT xμ =  [4.51] 

By substituting back into relation [4.50] with the condition x2 = 1 – x3, we 
find: 

0
3 3 1

3 3

1 3 d 2 1d
1 R

x x v
x x T r

σ+
=

−
 [4.52] 

Let 3 ( )x r  denote the molar fraction of nickel carbonyl in the gas at 
equilibrium with a spherical metal sample of radius r, and ( )3x ∞  the same 
fraction at equilibrium with a flat sample of nickel. By integrating the 
expression [4.52] between the two radii r = r and r =  (planar liquid), we 
obtain: 

( ) ( )
0

3 3 1

3 3

( ) 1 ( ) 2 1ln 4ln
1 R

x r x r v
x x T r

σ−− =
∞ − ∞

 [4.53] 

We express the equilibrium constants for the two radii, r and , by: 

[ ]
( )( )3ext3

4
3

( )( )
1 ( )

x r
K r P

x r
=

−
 [4.54a] 

and 

 
[ ]

( )( )3ext3
4

3

( )( )
1 ( )

x
K P

x
∞∞ =

− ∞
 [4.54b] 

We find a relation between the equilibrium constant obtained for a metal 
sample with radius r and the equilibrium constant for a flat metal sample: 

0
12 1( ) exp

R
v

K r K
T r
σ∞=  [4.55] 

Thus, in our example, at constant temperature and pressure, the 
equilibrium constant and the progress of the reaction toward equilibrium 
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increase if the radius of the solid reagent decreases. Note the similarity 
between relations [4.31] and [4.55] – a similarity which fits with the fact that 
the vapor pressure at equilibrium is an equilibrium constant. In the same 
conditions as for equation [4.31], equation [4.55] gives us a relation similar 
to expression [4.32]: thus, the equilibrium constant is essentially inversely 
proportional to the radius of the grains. 

4.9. Nucleation of a condensed phase 

The nucleation of a condensed phase is the process whereby, from a 
different phase (fluid or solid), tiny fragments of that new phase appear. This 
process is a phenomenon which can be modeled by using the thermodynamic 
properties of the system formed of the two phases, the newer of which has 
extremely small dimensions. 

It is recognized that the driving force behind the creation of a solid is 
oversaturation, and that the aggregates which are the inevitable intermediary 
products correspond to states of energy higher than those of the infinite 
solid. The oversaturation and the interfacial energy will be the two main 
terms involved in the creation of nuclei. 

We shall adopt the classic terminology: the aggregates make up the 
reaction path. Nucleation from a system that was initially free of the phase 
formed is known as primary nucleation. If it occurs within an initial phase, it 
is said to be homogeneous, whether in a fluid or solid medium. Nucleation 
which takes place upon contact with a solid phase is said to be 
heterogeneous. 

A nucleus of a condensed phase contains a number N of molecules, and is 
produced by the condensation of those N molecules belonging to a precursor. 

4.9.1. Hypotheses underlying the nucleation model 

When attempting to establish the Reiss function of formation of nuclei 
from the precursor or the Gibbs energy of condensation, we come up against 
a difficulty pertaining to the definition of the reference state: 

– the newly-condensed phase forms a pure phase, which therefore 
constitutes the reference state. The chemical potential of the single 
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component of that phase is constant and equal to its molar Gibbs energy of 
formation; 

– on the other hand, species A (the precursor) is present in a phase with 
multiple components (molecules or ions of a fluid or point defects of a 
solid), its reference state depends on the choice of convention (I, II or III), 
and its chemical potential depends on its abundance, expressed as a molar 
fraction, for example; 

– the aggregates are in an intermediary situation: it is tempting to 
consider the smallest entities as being oligomers, small molecules in solution 
whose chemical potential varies with concentration. This choice is in line 
with the origin of the term of the molar fraction (or concentration) in the 
chemical potential: it stems essentially from the entropy of mixing. Whilst it 
is logical to consider that the juxtaposition of an infinite condensed phase 
which decants and a solution floating upon it does not create disorder, we are 
forced to make the opposite observation in the case of small particles kept in 
suspension by Brownian motion. In addition, the application of the law of 
mass action to aggregates considered as pure phases whose chemical 
potential is independent of the composition would lead us to conclude that 
for each oversaturation, there is a corresponding nucleus size at equilibrium, 
which is belied by real-world experience. 

Thus, we need to treat the aggregates as species dissolved in the initial 
phase. Hence, we introduce a discontinuity between the aggregates of 
increasing size and the new condensed phase (in the form of a nucleus) 
although, for the moment, we are unable to define a critical size at which 
that discontinuity would occur. 

We now need to evaluate the partial molar Gibbs energy of the 
aggregates in the reference state: let us base our reasoning on convention I, 
so the reference state of any component is the pure state. Consider the 
hypothetical system in which each aggregate is surrounded by a layer of  
the initial phase, of infinitesimal thickness, but nonetheless sufficient for  
the surface energy term to be established. The molar fraction of the 
aggregates, then, is practically equal to 1, and their chemical potential is that 
of their reference state. This situation is almost identical to that of the  
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condensed phase making up the nucleus, with the exception of the surface 
Gibbs energy term: 

( ) 0
R2, R2,R2

a

  .   ( )
N c

I
N N

N g Aμ σ° = +   [4.56] 

Convention (I) is not well suited to dilute solutions, for which we tend to 
use references (II) or (III). It is not possible to keep the activity coefficient at 
the value of 1 unless the solution is perfect. 

Let R2,NG  be Reiss’ standard Gibbs energy of condensation associated 
with the reaction of formation of a nucleus of N construction units, from the 
initial phase – i.e. the reaction: 

A  A NN =  [4R.2] 

For the variation of the Reiss potential, in view of relation [4.16], we 
have: 

)(.  AlnR)  .(  ,R2
0
A

0
AR,R2 ATgNG NLN σμ ++−=  [4.57] 

The term )A(,R2 N  denotes the variation in surface energy between the 
nucleus and the initial state of the system, all at constant external pressure 
P(ext), temperature T and N. σL is the interfacial energy between the initial 
phase (liquid or gaseous) and the final condensed phase, be it solid or liquid. 

In view of the variation of the molar Gibbs energy associated with the 
transformation [4R.2], which is written: 

( )0 0
R2 A A    R ln Ag g Tμ= − +  [4.58] 

If Na is Avogadro’s number, the variation of the Reiss potential function 
of the nucleation is: 

)(  
N

  ,2RR2
a

R,R2 AgNG NLN σ+=  [4.59] 
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It is only possible to process this relation if we hypothesize that the 
interfacial energy is not dependent upon the size of the aggregate. There is 
no theoretical justification for this approximation when the aggregates are 
very small (less than a thousand construction units); on the other hand, it is 
logical to overlook the effects of edges or quantum effects on larger objects. 

4.9.2. Homogeneous nucleation in a fluid phase: Volmer’s 
approach (1905) 

In the case of nucleation of a condensed phase (solid or liquid) from a 
fluid phase (liquid or gaseous), we can state that: 

– if the condensed phase is liquid, the initial phase is gaseous and, given 
what we already know (section 4.2), the nucleus is spherical in shape 
(equilibrium of shape of a liquid drop); 

– if the nucleus formed is solid, then the primary phase is liquid or 
gaseous, but it is always possible to treat it from the point of view of a 
spherical equivalent nucleus, by using an effective interfacial energy for the 
solid. 

In view of the above hypotheses, the volume of the aggregate can be 
obtained either as the volume of a sphere with radius r, or on the basis of the 
molar volume 0

Lv  (because the aggregate is a portion of condensed phase, its 
compressibility is taken to be zero), and the two values must be equal, so: 

0
3

a

4  .
3 N

Lv
r N

π =   [4.60a] 

Thus:  

1/30

a

3  
4 N

LNv
r

π
=  [4.60b] 

This can also be written as:  

3a
0

4 N  
3 L

N r
v

π
=  [4.60c] 
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We shall seek to calculate the Reiss function associated with the reaction 
of condensation [4R.2] in any condition, but where the aggregates are 
formed in their reference state relation [4.59] can be written: 

R 2, R2 R 2,
a

  .    . ( )
NN R L N
N

G g Aσ= +   [4.61] 

The variation in area upon the formation of a drop of radius r is: 

( )
2/30

1/32
R 2,

a

3( ) 4 4
N

L
N

v N
A rπ π= =  [4.62] 

Relation [4.61] then becomes: 

( )
2/30

1/3
R 2, R2

a a

3.    4
N N

L
N R L

v NN
G g σ π= +  [4.63] 

The differential of this function becomes 0 for the number N  of 
molecules in the nucleus such that: 

( )
( )

20 3

3
R2

32
3

L a Lv N
N

g

σπ≠ = −  [4.64a] 

As we are operating in conditions for which reaction [4R.2] is 
thermodynamically possible, the term ( )2R g is negative and therefore the 
corresponding value of N  is positive. The corresponding entity is known as 
the critical nucleus. 

The Reiss function passes through a maximum whose value is: 

( )
( )

20 3
R 2

R 2, 2
aR 2

16  
3 N

L L
N R

v N g
G

g

σπ ≠
≠ = − = −  [4.64b] 
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In addition, the Reiss function takes the value of 0: 

( )
( )

20
a*
3

R 2

N36  
3

Lv
N

g

π= −  [4.65] 

Figure 4.4(a) shows the shape of the curve representing function [4.63] 
with the maximum and the point of intersection of the curve with the 
abscissa axis. 

a)        b) 

 

Figure 4.4. Examples of variation of the Gibbs energy of  
condensation: a) with the number of construction units  

in the aggregate; b) with the radius of the nucleus 

If the primary phase is a solution, the reaction of precipitation of the 
solutes Ai can be written: 

A Ai i L j j
i j

Lβ β β= +  [4R.3] 

If KS is the solubility product and QS the reaction quotient of the 
precipitation reaction, we can define the oversaturation as measuring the 
distance from equilibrium, so: 

/

/

A
1

A

i S

j S

i
i S

S Sj
j

Q
S

K K

β β

β β= =
∏
∏

 [4.66] 
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In the above expressions, we can reveal the oversaturation by using the 
relation: 

STg lnR  2R −=  [4.67] 

Hence, relation [4.63] becomes: 

( ) ( )+−=
3/203/13/2

a
,A 3 4   ln R

N
   LaLRN vNNSTNG πσ   [4.68] 

We can  see  that  the  ordinate  of  the  maximum  of  the  curve  in  
Figure 4.4(a) is smaller when the equilibrium conditions (surface phenomena 
aside) are surpassed (high value of S), but that this ordinate only becomes 0 
in conditions that are infinitely far removed from equilibrium (infinite value 
of S) – in other words, never. 

Below *N , the associated Reiss function is positive. For larger sizes, it is 
negative. For this reason, we consider that the nucleus has been formed 
beyond that size. 

If we define the nucleus as being the smallest particle of aggregate which 
is stable in relation to the precursor A, it will contain *N construction units, 
and thus the nucleus will indeed be an aggregate of the size N = *.N  

It is easy to verify that N ≠  is smaller than *.N  

In the foregoing discussion, we evaluated the Reiss function on the basis 
of the quantity N. Using relation [4.60b], we can now express the Reiss 
function and its noteworthy points as a function of the radius of the nucleus. 
We find the following: 

3
2

R 2, R 20

4    4
3N R L

L

r
G g r

v
π π σ= +  [4.69] 

The maximum has the coordinates (critical nucleus): 

( )
0

3

R 2

2 L Lv
r

g

σ≠ = −    [4.70] 
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and: 

( )
( )

( )2 20 3

R 2, 2

R 2

416 
3 3

L L L
N R

v r
G

g

σ π σπ ≠
≠ = = −  [4.71] 

The intersection with the abscissa axis takes place for the maximum 
radius of the nucleus: 

( )
0

*

R 2

3 L Lv
r

g
σ= −  [4.72] 

Figure 4.4(b) shows the curve satisfying equation [4.69], which is 
Volmer’s curve. 

Based on Volmer’s curve, we deduce the dimension of the final nucleus, 
defined as the maximum dimension of the nucleus from which growth 
proceeds. The division of the heterogeneous reaction into two processes – 
nucleation and growth – is based on four criteria, the first two thermodynamic 
in nature, and the last two kinetic in nature: 

– criterion no. 1: the two processes are spontaneous; 

– criterion no. 2: the effects of surface on the Gibbs energy will be taken 
into account in nucleation but is negligible in growth; 

– criterion no. 3: the solid B already formed has no influence on the 
mechanism of nucleation, but is involved in that of growth; 

– criterion no. 4: the contribution of nucleation to the overall reaction rate 
(quantity of material transformed per unit time) is negligible in comparison 
to that of growth. 

The first criterion implies that both processes are associated with a 
negative Reiss–Gibbs energy. If we look again at Volmer’s curve 
(Figure 4.4(b)), the application of this condition at the start of the curve 
means that nucleation must stop at a value of r greater than r*. 
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The second part of the curve, which pertains to growth, occurs beyond 
the radius r . The increase in the dimensions of the condensed phase 

(growth) will be associated with a negative Gibbs energy < 0
d

d ,2

r
GRNR .  

For the second criterion, beyond a certain point of the downward 
parabolic branch in Volmer’s curve, the surface contribution to the Gibbs 
energy becomes negligible in comparison to the bulk contribution, and thus 
we can consider that the molar Gibbs energy no longer varies with the 
dimension of the grain of the new phase. This is all the more true when the 
dimension r is significantly greater than r*. This condition is compatible with 
the limit of growth set by the previous criterion. 

The third criterion, which is a kinetic criterion, states that nucleation must 
involve the smallest possible quantities of the new phase. 

Criterion number four implies the negligibility of the contribution of 
nucleation in the expression of the reaction rate, and this holds true even 
more strongly when the new phase is small. 

Table 4.2 recaps the conditions we have just examined. 

Criterion Nucleation if Growth if 

1) Spontaneity of the two processes *r r>  r r≠>  

2) Surface contribution Yes Not if *r r>>  

3) Involvement of B in the mechanism r as small as possible  

4) Rate of reaction practically given by the growth r as small as possible  

Table 4.2. Criteria defining the nucleus  
of maximum dimensions 

Ultimately, these conditions give rise to a certain contradiction, whereby 
we need to have as large a transition value r as possible to satisfy criterion 2 
and as small as possible (but greater than r*) for the last two criteria. To 
resolve this contradiction, though admittedly with only a mediocre degree of 
precision, we choose the point of ordinate zero (r = r*) as the transition point 
characterizing the end of the formation of the nucleus, noting that at that 
point, Volmer’s curve is monotonic decreasing, and tends toward a parabolic 
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branch in the direction R2 0g < . The corresponding dimension *r  is the 
maximum dimension of the nucleus. 

However, to reach this point, we need to cross the energy barrier, which 
can only take place because of local fluctuations enabling us to achieve a 
radius r r≠≥ . Radius r , for this reason, is called the critical radius of the 
nucleus, which must not be confused with the maximum radius r* beyond 
which specialists in heterogeneous chemical kinetics deem the process of 
nucleation to be complete and to have been replaced by the process of 
growth. 

NOTE.– In fact, in practice, there is nothing to say that the nucleation should 
not strictly obey the Volmer curve over time, as it is a growth curve. 

4.9.3. Homogeneous nucleation within a solid phase 

The reasoning process in section 4.9.2 was conducted for a fluid initial 
phase, but it is worth noting that such a hypothesis is never used in the 
calculation. This thought process and its results, therefore, apply only to the 
case of condensation of the defects within a solid phase. 

In practice, though, there are a number of caveats which must be kept in 
mind: 

– the experimental determination of the promoter(s) is more difficult; 

– the energy references need to be carefully monitored; 

– the far slower diffusion in solids than in fluid phases will often result in 
the existence of not-insignificant concentration gradients, meaning that the 
above reasoning processes can only be applied locally. 

4.9.4. Primary heterogeneous nucleation from a fluid phase 

Experience shows us that, in many cases, the new phase forms from an 
interface in the initial phase: on the walls of the recipient or the blades of a 
stirrer in the case of crystallization from a solution, and on the surface of the 
grains in the case of solid–solid surfaces. As this is an interface with a solid 
which is not the product of the reaction, it is indeed a primary nucleation, but 
it is then said to be heterogeneous, because it means that the initial system 
cannot be treated as a single phase. 
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We shall now examine the case of the heterogeneous nucleation of a 
liquid from a vapor phase and the heterogeneous nucleation of a solid from 
another solid. 

4.9.4.1. Heterogeneous nucleation of a liquid from a vapor 

We shall now discuss the case of the nucleation of a liquid from a vapor 
onto a solid surface. We suppose that at equilibrium, the nucleus is in the 
form of a drop with a spherical surface, whose radius is r, resting on the 
solid substrate (Figure 4.5) and forming an angle θ with that surface, which 
is the wetting angle of the solid by the liquid. 

 

Figure 4.5. Shape of the nucleus and various interfacial energies  
in the case of heterogeneous liquid nucleation on a solid substrate 

We shall calculate the variation of the Reiss function upon formation of 
the nucleus from the gas at a given external pressure and temperature. We 
choose to use the geometric variables θ and r. The calculation could be 
performed in the same way if we chose the wetting angle and the number of 
molecules in the nucleus N as the variables. 

We have already calculated (relation [3.29]) the volume of the drop – i.e. 
the volume of the nucleus – which we can write in the form:  

3

het
4

3L
r

V f
π=  [4.73] 

The function hetf , called the wetting function, depends only on θ, and it is 
a function that varies, as shown by Figure 4.6, between the value 0 if the 
liquid does not wet the solid at all (θ = 0) and the value 1 obtained when the 
liquid wets the solid perfectly (θ = π). 
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Figure 4.6. Shape of the curve fhet(θ) 

On formation of the nucleus, we see the creation of the area ALG between 
the liquid and the gas, and of the area ASL between the liquid and the solid 
support. On the other hand, the area ASG between the gas and the solid support, 
whose initial value is A0, decreases because the area ASL is taken away from it. 
In light of these modifications, the variation of the Reiss function, which 
always contains a bulk term proportional to the variation of the molar Gibbs 
energy of the transformation R 2,N g  and a surface energy term, is written: 

( ) ( )
3

R 2, het R 20het

4    
3N R LG LG SL SG SL

L

r
G f g A A

v
π σ σ σ= + + −  [4.74] 

Let us evaluate each of the interfacial areas. The area of the interface 
between the solid and the liquid is that of a disk of radius sinr θ , so: 

2 2sinSLA rπ θ=  [4.75] 

The area of the gas/solid interface is given by the initial area of the solid 
in the absence of the drop A0 less the area of the previous liquid–solid 
interface, so: 

2 2
0 sinSGA A rπ θ= −  [4.76] 

The area of the interface between the gas and the liquid is that of the 
spherical cap with radius r, centered at O and observed from that point at the 
solid angle Ω, so: 

( )2 22 1 cos= = −LGA r rπ θ  [4.77] 
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The Young–Dupré relation (see relation [3.21]) is written here with our 
notations: 

cosSG LG SLσ σ θ σ= +  [4.78] 

By introducing the three values of the areas into relation [4.74] and taking 
account of relation [4.78], we obtain: 

( )
( )

3

R 2, het R 20het

2 2 2

4  
3

  2 r 1 cos r cos sin

N R
L

LG LG

rG f g
v

π

π σ θ π σ θ θ

=

+ − −
 [4.79] 

By comparing relation [4.79] with relation [4.69], obtained for 
homogeneous nucleation, we see that it is possible to link the two Reiss 
functions obtained in heterogeneous and homogeneous conditions by the 
expression: 

( ) ( )R 2, R 2, hethet homN R N RG G f=  [4.80] 

As the function hetf is independent of the radius r, the shape of the curve 

( )R 2, hét
( )N RG r  is the same as the curve ( )R 2, hom

( )N RG r  represented in 

Figure 4.3(b). The remarkable values of the radii r  and r* are identical and 
the ordinate of the maximum is given by: 

( ) ( )R 2, R 2, héthét hom
 N R N RG G f≠ ≠=  [4.81] 

As the value of hetf  is generally smaller than 1, by comparing 
equations [4.71] and [4.81], we note that the height of the potential barrier 
needing to be overcome is less in heterogeneous nucleation than in 
homogeneous nucleation, which explains why heterogeneous nucleation is 
easier and therefore more common than homogeneous nucleation. In view of 
the unavoidable presence of solid dust particles, it is ultimately always 
heterogeneous nucleation which causes the condensation of a liquid from its 
vapor. 

4.9.4.2. Heterogeneous nucleation from a solid on another solid 

Consider a system composed of a solid support, a solid nucleus and a 
fluid phase. 
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If the interfacial energy between the nucleus and the support is less than 
the sum of the interfacial energies of the two solids with the fluid phase, it is 
obvious that the nucleus formed on contact with the support (heterogeneous 
nucleation) will have a lower energy than that which forms within the fluid 
(homogeneous nucleation). We have seen the role of the interfacial energy 
on the Gibbs energy of condensation which will also be lower. To perform a 
quantitative calculation, it is necessary to establish a set form for the 
nucleus. 

 

Figure 4.7. Heterogeneous nucleation of a  
parallelepipedic solid on a solid support 

We can simplify the problem by looking at the case of a parallelepipedic-
shaped nucleus whose interfacial energy does not depend on the face, i.e. on 
a flat support. Thus, we consider a nucleus with a square surface, with side 
length a and height h, placed on a flat support (Figure 4.7). 

The interfacial energy in the system wherein the agglomerate is not in 
contact with the support would be: 

2
hom RF 0 PF   (2   4 )W A a ahσ σ= + +  [4.82] 

where Α0 is the area of the support. 

The juxtaposition of the agglomerate on the support causes the 
disappearance of two surfaces (RF and PF) and the appearance of an 
interface RP. Thus, the interfacial energy becomes: 

2 2
het RF 0 PF RP RF PF   (2   4 )  (     )W A a ah aσ σ σ σ σ= + + + − −   [4.83] 
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The volume VP of the nucleus is fixed by the number of construction units 
of the agglomerate: 

2 0
P P

a

     
N
NV a h v= =  [4.84] 

The shape of the nucleus (ratio a/h) is given by the minimal surface 
energy. However, this energy is minimal when the differential in relation to 
a of the surface energy is zero, such that: 

d   0
d

hetW
a

=  [4.85] 

Consider: 

P RP RF RF RP
3

PF PF

2       1    1  V
a

σ σ σ σ
σ σ

− −= + = −  [4.86] 

Let us set:  

RF RP

PF

    p
σ σ

σ
−=  [4.87] 

Relation [4.86] becomes: 

P

3

1    
2

Vp h
a a

− = =   [4.88] 

Examine the ranges of value of p: 

– if the interface energy created by juxtaposition of the two solids is 
greater than the sum of those taken away, there will be no sticking, and 
relation [4.88] must not be applied. This situation corresponds to: 

RP RF PF      0σ σ σ− − >  so   1p < −   

– if, however, sticking is favored (p > 0), the ratio h/a tends toward zero: 
the solid P spreads as much as possible over the support R. On the other 
hand, a value of p greater than 1 leads to an abnormal situation (h < 0). 



132     Thermodynamics of Surfaces and Capillary Systems 

Thus, we define the value p, called the spreading parameter, of the 
interfacial system (R, P, F) as follows: 

– if the spreading coefficient ht (see relation [3.8]) is positive – i.e. if: 

RP RF PF      0σ σ σ− − ≥  [4.89a]   

then    1p = −  [4.89b] 

– if the spreading coefficient is positive, and if: 

RP RF PF PF0       2σ σ σ σ≥ − − ≥    [4.90a] 

then RF RP

PF

  p
σ σ

σ
−=   [4.90b] 

– if the spreading coefficient is positive, and if: 

RP RF PF PF0       2σ σ σ σ≥ − − ≤  [4.91a] 

then   1p = +  [4.91b] 

This definition also has the advantage of being consistent with the 
formalism applied to liquids, where p is the cosine of the wetting angle. 

For the morphology at equilibrium, by substituting relations [4.88] and 
[4.90] back into relation [4.83], we obtain: 

2
het RF 0 PF .   3 . .(1  )W A a pσ σ= + −   [4.92] 

We can now evaluate the Gibbs energy associated with the formation of a 
mole of nuclei on the surface of the solid support, with each nucleus 
containing N construction units: 

– the system in question contains the solid support, in an indifferent 
quantity but sufficient so that the adsorption of the nuclei is not sterically 
inhibited, the initial solution and the nuclei formed: 

- the chemical term remains: ( )a R 2/N ;N gΔ  



Small-volume Phases     133 

- the interfacial term, which is obtained by subtracting the energy in the 
initial state (support plus solution with no nucleus) RF 0.Aσ  from the value in 
the final state, given by relation [4.92], modified to apply to one mole of 
nucleus: 

2
het PF 3 . .(1  )W a pσ= −  [4.93] 

Using relation [4.84], we can write: 

3

0
a P

1
N 2
N a p

v
−=  [4.94] 

We can see that this value becomes 0 when p = 1: in the case of total 
wetting, there is no longer a nucleation barrier. 

In light of relation [4.94], the sum of the two terms gives us: 

( ) ( )3
2

R2, R 2 PF0het
P

1-p
     3 . (1  )

2N R
a

G g a p
v

Δ Δ σ= + −  [4.95] 

Let us define an equivalent radius and an apparent interfacial tension by 
the relations: 

( )3/23 3
RP

4a   
3

A r
π= =   [4.96a] 

and: 

1/3

PF
3  

4Sσ σ
π

=  [4.96b] 

After reorganizing the terms, and when these values are fed back into the 
previous relation, we find: 

( ) ( )3
2

R2, R 2 S0het
P

1-4 (1  )     4
3 2 2N R

pr pG g r
v

π πσ −= +   [4.97] 
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We recognize an expression similar to that which was established for 
homogeneous primary nucleation [4.69], with each term multiplied by a 
value that depends only on the geometry and the spreading parameter. We 
shall denote this value as het :f  

( )
3

2
R2, het R 2 S het0het

P

4     4
3N R

rG f g r f
v

π πσ= +   [4.98] 

where het
1    

2
p

f
−=   [4.99] 

The function hetf  will be called the wetting function. 

In view of the definition of p, hetf  varies between 0 (total wetting, with 
the disappearance of the interfacial term) and 1 (no wetting). In the latter 
case, heterogeneous nucleation has the same energy as homogeneous 
nucleation. 

We saw earlier that in the case of a drop in form of a spherical cap, we 
are led to the same result, with the definition [4.73] of fhet in accordance 
with: 

23 (2  )(1  )2 3cos cos  
4 4het

p p
f θ θ + −− += =   [4.100] 

This definition is consistent with the equation: 

cosp θ=  [4.101] 

Generally speaking, we consider that for each form, it is possible to 
define a function hetf , ranging from 0 for p = 1 (total wetting) to 1 for p = –1 
(no wetting), such that the Reiss potential for nucleus formation is of the 
form given in equation [4.98]. 

Hence, for each form, we can define the function fhet on the basis of the 
equilibrium dimensions of the nucleus, as we did on the basis of equation 
[4.85], of the term σS and of the equivalent radius, as we did with 
relations [4.96]. 
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Of course, in all cases, the curves of the Reiss function as a function of 
the equivalent radius have the same form as shown in Figure 4.4(b), with a 
maximum and an intersection of the abscissa axes given by the same 
expressions. The concepts of critical nucleus and nucleus of maximum 
dimensions are thus preserved. 





5 

Capillary Tubes and Thin Films 

In the previous chapter, we examined phases with small dimensions in all 
directions. This chapter is devoted to the study of phases which exhibit small 
dimensions in only one or two directions. Such phases will either be 
capillary tubes (cylindrical or flat) or thin liquid films. 

5.1. Behavior of a liquid in a capillary space  

We shall examine the thermodynamic properties of a liquid phase placed 
in a capillary space (in a cylindrical tube or between two parallel plates that 
are close together) in the presence of a gaseous phase. 

 

Figure 5.1. a) Spherical meniscus in a cylindrical tube; b) cylindrical meniscus 
between two plates; c) cylindrical meniscus on the walls of a cylinder 

This liquid phase can be separated from the gaseous phase either by a 
spherical meniscus, as will be the case in a cylindrical capillary tube 

Thermodynamics of Surfaces and Capillary Systems, First Edition. Michel Soustelle.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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(Figure 5.1(a)) or by a cylindrical meniscus which may develop between two 
planes (Figure 5.1(b)) or in a cylindrical tube (Figure 5.2(c)). 

We studied the thermodynamic properties linked to the spherical 
meniscus in the previous chapter (see sections 4.1 to 4.8). We shall now 
examine the thermodynamic properties linked to the cylindrical meniscus. 

5.2. Thermodynamics of the cylindrical meniscus 

The thermodynamics of the cylindrical meniscus has an effect, as with 
the case with the spherical meniscus, on the variance of the equilibria of 
state change, and also, because of the presence of a non-limited dimension of 
a phase, on the extent of the phase by the phenomenon of capillary ascension. 

5.2.1. Laplace’s law for the cylindrical meniscus 

Consider the expression of Laplace’s law in the vicinity of a cylindrical 
curve of radius r which is of the form: 

( )int (ext )P P
r
σ= +  [5.1] 

It is easy, with a cylindrical meniscus, to carry out a study similar to that 
performed for the bubble or the spherical meniscus in sections 4.1 to 4.8. In 
the case of a liquid meniscus, the inside (as understood in the sense of 
Laplace’s law) is the gas and the outside is the liquid. Thus, we can deduce 
the saturating vapor pressure above the cylindrical meniscus of radius r 
which, based on relation [4.33], will be:  

( ) ( ) ( )
0(liq)

vap (v )  exp
R

ap vP r P
Tr

σ= ∞ −  [5.2] 

This is Kelvin’s law for the cylindrical meniscus. The radius rK at 
equilibrium at the saturating vapor pressure ( ) ( )vap

kP r  is sometimes called 
the Kelvin radius for the cylinders for that pressure. 
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Obviously, in the same way, we can study other properties – e.g. the 
melting of a small solid cylinder in a capillary tube or between two parallel 
planes. With the hypothesis of a liquid cylinder with the same height as the 
solid cylinder from which it comes, we find the relation: 

( )
( ) ( )

( )

( ) ( )

0 sol 0 liq
sol liq

0 sol sol

1
f f

f

v vT T
S v r

σ σ
Δ

∞ − = −  [5.3] 

The difference between the melting points of the bulk phase and the 
capillary phase is qualitatively identical to that given by equation [2.39] in 
the case of droplets, meaning that this difference is inversely proportional to 
the radius of the cylinder. 

5.2.2. Capillary ascension 

In this chapter, we consider a liquid phase of small dimensions in contact 
with a gaseous bulk phase. 

5.2.2.1. Contact of a liquid with a wall 

Consider a liquid in a recipient whose walls are supposed to be flat. With 
those walls, the liquid forms a contact angle θ, determined by Young’s law. 
This causes deformation of the surface of the liquid in the vicinity of the 
wall (Figure 5.2). 

We want to calculate the profile of that deformation. It is clear that the 
mean radius of curvature at a point on the surface separating the liquid and 
the gas above it is equal to the radius of curvature at the point with 
coordinates (z, x) in the plane xOz, meaning that at every point, the surface 
behaves like a cylindrical meniscus with radius r. Therefore we can apply 
Laplace’s law [2.1], written in the new context, which gives, in the vicinity 
of the surface separating the two phases, the pressure in the liquid as a 
function of the pressure in the gaseous phase in the form: 

(liq) (ext )P P
r
σ= −   [5.4] 
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Figure 5.2. Contact of a liquid with a vertical wall 

If we assume the liquid incompressible with is density ρ, the distribution 
of pressure in the liquid gives us: 

(liq) (ext) gP P zρ= −   [5.5] 

From relations [5.4] and [5.5], we deduce the equality: 

gz
R
σρ =   [5.6] 

If φ  denotes the angle of the Ox axis with the tangent to the curve of 
abscissa x, and if s is the curvilinear abscissa along the curve in the 
“upward” direction, the local curvature of a planar curve is given by: 

1 d
dr s
ϕ=   [5.7] 

The curvilinear abscissa is such that: 

2 2d d ds x z= +   [5.8] 

Although the tangent of the angle φ  is the derivative of the function z(x), 
so: 

dtan
d

z
x

ϕ =   [5.9] 
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By combining expressions [5.6], [5.7], [5.8] and [5.9], we find: 

2

d d cos tan dg
d dd 1 tan

z
s zx

ϕ σ ϕ σ ϕ ϕ ϕρ σ
ϕ

= = =
+

  [5.10] 

which can also be written in the form: 

g sin dzdzρ σ ϕ ϕ=   [5.11] 

By integration on both sides of the above equation, we obtain: 

21 g cos
2

z Cteρ σ ϕ= − +   [5.12] 

To determine the constant, we note that if 0z = , meaning that at the level of 
the horizontal plane of the liquid, far from the wall, then the angle ϕ  is zero and 
cos 1ϕ = . By feeding this property back into expression [5.12], we obtain: 

( )2 21 g 1 cos 2 sin
2 2

z ϕρ σ φ σ= − =   [5.13] 

Such is the equation of the profile of deformation of the meniscus. 

Let us now define the capillary length lc by the expression: 

gcl
σ
ρ

=   [5.14] 

By feeding this formula back into relation [5.12], the new equation for 
the meniscus is: 

2 sin
2cz l ϕ=   [5.15] 

We can see that the deformation along the wall is of the order of 
magnitude of the capillary length. When 0, thenθ = 0ϕ =  and thus the 
maximum height which it is possible to achieve is: 

max 2 cz l=   [5.16] 
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Thus, for water, the capillary length is approximately 1.5 mm, which 
gives us a maximum height of a little more than 3 mm. 

5.2.2.2. Jurin’s law 

If we immerse a capillary tube in a liquid, under the influence of the 
surface in the vicinity of the wall, the level of the liquid in the tube is 
different to its level in the recipient (Figure 5.3(a)). A height h separates the 
two levels.  

We suppose that the capillary effects are predominant in the tube, 
meaning that the radius of the tube rc is smaller than the capillary length lc 
defined by relation [5.13]. We can then consider that the pressure of the 
liquid is the same across the whole of the surface of the meniscus. This 
surface is assumed to be spherical (this hypothesis is not necessary, but it is 
very complicated to calculate h without it) with radius r. 

a)     b) 

 

Figure 5.3. a) Capillary tube; b) detailed  
view of the meniscus 

In Figure 5.3(b), it can be clearly seen that the radius of the cap is linked 
to the radius of the tube by the relation: 

cos
crr
θ

=   [5.17] 

where θ is the contact angle between the liquid and the wall, or the wetting 
angle. 
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The pressure of the liquid at the meniscus, therefore, by virtue of 
Laplace’s law for a spherical meniscus, is: 

(liq) (ext ) 2P P
r
σ= −   [5.18] 

This pressure is also that of the gas in the tank minus the weight of the 
liquid between the two levels, such that, if ρ is the density of the liquid and g 
is the acceleration due to gravity: 

(liq) (ext) gP P zρ= −   [5.19] 

By comparing relations [5.18] and [5.19], we immediately obtain: 

22 cos 2cos
g c

c c

h l
r r

σ θ θ
ρ

= =   [5.20] 

This law is Jurin’s law, which thus specifies that the height h is inversely 
proportional to the radius of the tube. 

For instance, in the case of water in a glass capillary (θ = 0) for a tube  
1 cm in radius, the height reaches 14 mm. For a radius of 1 m, the height 
would then be 14 m, which leads to a negative pressure, because 
atmospheric pressure is equivalent to a column of water of height 10.33 m. It 
is unsurprising that the liquid exerts a force of “attraction” on the walls, as 
does a metal under the force of traction. 

In Figures 5.3, it was assumed that the liquid wetted the tube (θ < π/2). If 
the liquid does not wet the tube (θ > π/2), the opposite effects are observed: 
the level of the liquid in the tube is lower than in the recipient (Figures 5.4(a) 
and 5.4(b)). Such is the case, for example, of mercury with glass, where we 
have 140θ ≅ ° . 

 

Figure 5.4. Capillary drop: a) capillary tube;  
b) contact of liquid with the vertical wall 
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These properties of Laplace’s and Jurin’s laws are applied for 
determining the size of the pores of a solid material using a mercury 
porosimeter. 

Imagine a porous solid, placed in a bath of mercury, on which a pressure
( )cP r  is exerted. Initially, imagine that all the pores in the solid are cylinders 

with the radius cr . We would then see a sudden increase in the volume of 
mercury which would be absorbed by those pores as soon as the pressure 
reaches the value which compensates for the surface tension, given by: 

( ) 2 cos
c

c

P r
r

σ θ=   [5.21] 

 

Figure 5.5. a) Curve showing the filling as a function of the  
pressure; b) distribution of the pores in terms of volume 

In reality, we actually see a more gradual increase, which corresponds to 
the progressive filling of increasingly small pores (Figure 5.5(a)). By 
measuring the volume absorbed as a function of the pressure applied, we are 
able to work out the size distribution of the pores of the solid under 
examination. 

Let ( )cV r  denote the total volume of the pores of the material whose 
radius is less than cr , and 0V  the total volume of the pores in the material. 
We measure the difference 0 ( )cV V V r= −  as a function of the pressure. 
Based on that difference, we can write: 

d ( ) d d d
d d d d

c

c c c

V r V P P V
r P r r P

= = −   [5.22] 
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We deduce: 

( )( )0dd
d dc c

V V rV P
r r P

−
=   [5.23] 

Thus, by knowing the dependence of the volume on P, we are able to 
calculate the distribution of the pores in the volume (Figure 5.5(b)). The 
pressures applied are high (up to 1000 bars, which corresponds to radii of 
700 nm) and the solid must obviously be capable of resisting crushing at 
such pressures. 

Practical determination of the pore radius distribution is performed, using 
the experimental curve (Figure 5.5(a)), by dividing the abscissa axis into 
equal intervals and choosing, at the middle of each interval, a mean radius 
and attributing to that mean radius the ratio of the difference in volumes to 
the difference in radii on either side of that mean value. 

NOTE.– In reality, the pores are not cylindrical and the mercury input radius 
is the radius of aperture of the pore; on the other hand, the volume measured 
is the true volume of the pore corresponding to that inlet radius. The pores, 
therefore, are considered to be cylinders (Figure 5.6) having a height h such 
that: 

2
p

c

V
h

rπ
=   [5.24] 

 

Figure 5.6. Real pore and fictitious cylindrical measured pore 
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5.2.3. Capillary condensation 

In view of Kelvin’s law [4.31], the saturating vapor pressure of a liquid in 
a space of dimensions of the order of magnitude of the capillary length lc is 
less than the saturating vapor pressure of the same liquid in a space of large 
dimensions. This results in condensation in the capillary space at vapor 
pressures less than the “normal” vapor pressure of the liquid at equilibrium. 
Thus, the liquid may appear in the capillary space, although in a larger 
volume the vapor would remain dry. This is the phenomenon of capillary 
condensation. 

5.2.3.1. Capillary condensation in a cylindrical medium 

Consider a cylindrical pore with radius rc. Above that pore, the pressure 
of a substance is ( )vapP  (Figure 5.7(a)). 

Various domains of remarkable values of the pressure ( )vapP  need to be 
considered: 

– if the pressure ( )vapP  is less than the saturating vapor pressure in the 
pore ( ( ) ( ) ( )vap 0 vap

KP P r< ), rK is the Kelvin radius defined by: 

cos
c

K
r

r
θ

=   [5.25] 

The pore is empty and the vapor is dry. 

 

Figure 5.7. Filling of a pore: a) in a cylinder; b) between two plates 
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– if the pressure ( )vapP  is equal to the saturating vapor pressure in the 
pore ( ( ) ( ) ( )vap 0 vap

KP P r= ), the liquid condenses in the pore and fills it until 
the level of the liquid reaches the edge of the tube, respecting the wetting 
angle θ. This pressure is given by relation [4.33], because the meniscus with 
the smallest radius of curvature liable to form is a spherical cap whose radius 
is equal to the Kelvin radius rK defined by relation [5.23], and satisfying: 

( )
( ) ( )

0(liq)

0(v )

0 vap

 

2R ln
K ap

K

vr
P

T
P r

σ=
∞

  [5.26] 

– if the vapor pressure lies between Kelvin’s value and the “normal” 
saturating vapor pressure – i.e. if we have ( ) ( ) ( ) ( ) ( )0 vap vap 0 vap

KP r P P< < ∞  – 
then the vapor will condense in the tube with meniscus radii greater than Kr . 
As the vapor pressure increases, the radius of curvature of the meniscus also 
increases, and the tube fills (Figure 5.7(a)) until an infinite radius is reached. 
In other words, the result is a full pore with a horizontal interface. 

5.2.3.2. Capillary condensation between two flat plates 

Consider two parallel plates, situated a distance D apart from each other, 
which is of the order of magnitude of the length of the Kelvin radius  
(Figure 5.7(b)). The meniscus likely to form between the two plates is a 
cylindrical meniscus. The Kelvin saturating vapor pressure for the cylinders 
is given, if we ignore the compressibility of the liquid, by relation [5.2]. In 
view of that relation, the Kelvin radius of the cylindrical meniscus is: 

( )
( ) ( )

0(liq)

0(v )

0 vap

 

R ln
K ap

K

vr
P

T
P r

σ=
∞

  [5.27] 

where 0.Kr <  

For a given vapor pressure, condensation will occur between the two 
plates if the distance D is such that: 

2 cosk KD D r θ< = −   [5.28] 
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For distances larger than DK, the vapor remains dry; for a distance equal 
to DK, the meniscus forms, and the space between the plates is filled with 
liquid in such a way that the wetting angle of the solid by the liquid is 
respected. With distances greater than DK, the radius of curvature of the 
cylindrical meniscus increases with that distance D until it is practically 
infinite, thus leading to a quasi-planar surface. 

5.3. Modeling the interactions between two surfaces of an 
insulating material 

It may seem surprising that we should discuss the modeling of this 
phenomenon here, in a chapter which is devoted to thin films, when it might 
have been expected to be in Chapter 1, when we were looking at liquid 
surfaces. This is due to the fact that, when two materials are in contact with 
one another, between the two surfaces there is always a third substance, in 
the form of a thin thread – generally air. The system is then formed of two 
interfaces between different materials. 

Thus, let us begin by considering two surfaces of two materials (one of 
them solid, liquid or gaseous), 1 and 2 (which may be identical). Between 
two elements (atoms or molecules), A and B, belonging to each of the two 
materials, there are forces of interaction created by a potential εA/B: 

A/B A/Bgradf ε= −   [5.29] 

At a sufficiently small distance between the surfaces of the two materials, 
that potential εA/B begins to no longer be negligible in comparison to the 
other forms of energy – kinetic, potential, etc. 

If we place the surfaces of these two materials face to face and consider 
an elementary volume d  of material 1 at a distance d from a molecule of 
material 2 (see Figure 5.8(a)), where 0

1v  and 0
2v  respectively denote the 

molecular volumes of materials 1 and 2, the energy of interaction per unit 
volume between those two elements would be: 

A/B
surf1/2 0 0

1 2

 ( )d dr
v v

εε τ=   [5.30] 
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Hence, by integrating for the whole of the volume of material 1, we find 
the energy of the molecule of material 2 placed at a distance d from material 
1 to be: 

A/B
surf1/2 0 0

1 2

( ) d
r d

r
v v

εε τ
>

=   [5.31] 

By integrating on the volume of material 2, we obtain the surface energy 
of material 1 placed at a distance e from material 2 (Figure 5.8(b)): 

1/2 surf1/2( ) ( )d
e

W e d rε
∞

=   [5.32] 

This energy is expressed per unit surface. It is linked to a surface force 
which is exerted on the walls of the surfaces in accordance with: 

1/2
1/2

d ( )
d

W e
F S

e
= −   [5.33] 

 

Figure 5.8. Interactions between a surface  
and: a) a molecule; b) another surface 

The most common form of interaction between molecules is given by the 
van der Waals forces. We know that if we discount the forces of repulsion in 
1/r12 in comparison to that of attraction in 1/r6, the Lennard–Jones attraction 
potential between two molecules A and B situated a distance r apart is given 
by the relation: 

A/B 6

m
r

ε = −   [5.34] 
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The coefficient m is the sum of the three contributions of orientation, 
induction and dispersion, and depends on the permanent electrical moments 
and particularly on the polarizabilities of the molecules of material 1 and 
material 2. 

Let us apply the integration [5.31] on the basis of Figure 5.9. Operating in 
spherical coordinates, if Ω denotes the solid angle from which a spherical 
cap in material 1 is observed from the molecule of 2, the elementary volume 
of material 1 is given by: 

( )2 2d d 2 1 cos dr r r rτ π θ= = −   [5.35] 

 

Figure 5.9. Integration of the energy of a molecule of (2)  
in relation to the surface of (1) in spherical symmetry 

By feeding this back into relation [5.31], for the energy per unit volume 
of material 2 placed at a distance d from a surface of material 1, we obtain: 

( )2
surf1/2 0 0 6

1 2

1 2 1 cos d
r

m
r r

v v r
ε π θ

∞

= − −   [5.36] 

This gives us: 

surf1/2 0 0 3
1 26

m
v v r

πε −=   [5.37] 

Now let us apply integration [5.32]. We immediately obtain the following 
for the energy per unit surface of a surface of material 1 placed at a distance 
e from the material 2: 

(12)
H

1/2 2 0 0 2
1 212 12

AmW
e v v e
π

π
−−= =   [5.38] 
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The value (1/2)
HA  is called that Hamaker constant for materials 1 and 2. It 

is expressed in joules and is defined by: 

2
(1/2)
H 0 0

1 2

mA
v v
π=   [5.39] 

As it is the effect of dispersion which is often greatest in the different 
contributions to the van der Waals interaction, the most important values in 
m are the polarizabilities. Thus, we can write that the Hamaker constant is of 
the order of magnitude of: 

(1/2) 1 2
H 0 0

1 2

A
v v
α α≈  [5.40] 

where α1 and α2 are the polarizabilities of phases 1 and 2. 

The values of the Hamaker constant, in fact, vary fairly little from one 
material to another. Table 5.1 gives a few typical values for a number of 
families of materials. 

Materials A 

Low-energy surface (organic solid) 10-21 J 

High-energy surface (ceramics)  10-18 J 

Vapor phase negligible 

Table 5.1. Noteworthy values of the Hamaker constant 

The fact that the Hamaker constant is negligible for vapor or for air 
renders the properties of surfaces in contact with air or a vapor absolutely 
identical to those obtained in contact with a vacuum. 

NOTE.– The calculation we have performed is applicable to insulating 
materials, but it cannot be applied to electrical conductors, because of the 
mobility of the electrons, which produces forces that are very different to the 
van der Waals forces. 

Now consider the stack of three materials, such as a film of liquid L 
between two materials 1 and 2, as illustrated by Figure 5.10. For this case, 



152     Thermodynamics of Surfaces and Capillary Systems 

Lifschitz performed a similar calculation to the one performed above. The 
expression of the energy of interaction between materials 1 and 2 through 
the liquid is again approximately given by: 

(1/L/2)
H

1/2 2 0 0 2
1 212 12

AmW
e v v e
π

π
−−= =   [5.41] 

The Hamaker constant then depends on the dielectric constants of the 
three materials. 

Hamaker constants are generally tabulated for interfaces composed of the 
same material separated by a vacuum or a solvent. To calculate the constant 
between two different materials, we can use the approximation of the 
geometric mean, in the form: 

(1/L/ 2) (1/L/1) (2/L/ 2)
H H HA A A≅   [5.42] 

The study of the interactions between surfaces brings us back to the 
notion of surface energy (which is the surface tension for liquids). This is 
defined as being the energy needed to create two surfaces by separating a 
given volume of material into two. We can write, if a0 is the size of one 
molecule: 

( ) ( )02 W W aσ = ∞ −   [5.43] 

If (1/V)
HA  is the Hamaker constant of the interface between material 1 and 

the vacuum, we deduce a new expression for the surface tension: 

(1/V)
H

2
024

A
a

σ
π

=   [5.44] 

With this relation, it is possible to establish the tables of the Hamaker 
constant. 

We can also look again at the energy of adhesion if we write, for a 
medium 1, in view of relation [5.43]: 

1 112 Wσ =   [5.45] 
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From this, we deduce the interfacial tension between media 1 and 2: 

( )12 11 22 12 1 2 12
1
2

W W W Wσ σ σ= + − = + −   [5.46] 

Then, for the energy of adhesion, we find Dupré’s expression [3.76]. 

Relations [5.44] and [5.46] are indeed satisfied for apolar molecules. 
However, they are less exact in the case of polar molecules, for which the 
approximation of the exclusive contribution of the forces of dispersion to the 
van der Waals forces is less accurate. 

5.4. Thin liquid films 

We shall now look at a new category of small-dimension phases, with 
thin liquid films on the surface of a liquid. Such films are a few nanometers 
in thickness. It is important not to confuse a thin liquid film with an interface 
between two liquid phases, even though the dimensions may be similar. 
Indeed, the phase of which a thin film is composed of is of a different nature 
to the phase which supports it, and unlike interfaces, constitutes an 
independent phase. However, these films possess specific properties because 
of their low thickness, which means that a certain amount of interaction can 
take place between the two bulk phases surrounding the films. 

5.4.1. Disjunction pressure 

Consider a thin liquid film L, of thickness e and area A, trapped between 
two phases 1 and 2 (Figure 5.10), at least one of which is condensed. For 
instance, phase 1 might be liquid and phase 2 might be air. 

 

Figure 5.10. Liquid film between two bulk phases 
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We make a small variation in the thickness e (e.g. an increase by de) by 
adding liquid. The volumes of the phases 1 and 2 are sufficiently great to be 
assumed to remain constant in the elementary transformation. 

We can now show that the pressure P(L) in the thin film is different from 
the external pressure P(ext) in phases 1 and 2 in the vicinity of the interfaces. 

The total Helmholtz energy of the system is written: 

[ ]1/ 2/ 12 ( )L LF U TS A W eσ σ= − + + +   [5.47] 

12 ( )W e  is the energy of interaction between the surfaces of phases 1 and 2 
through the liquid. In the elementary transformation whereby the thickness 
varies by de, the variation in Helmholtz energy, at constant temperature and 
volumes V1 and V2, where V is the volume of the film, will be: 

( ) ( ) 12dd d d d
d

ext L W
F P V P V A e

e
= − +   [5.48] 

In view of the fact that the volume of the film is given by the product Ae 
and that the area A is kept constant, this variation in Helmholtz energy can 
be written as: 

( ) ( ) 12dd d d d
d

ext L W
F AP e AP e A e

e
= − +   [5.49] 

We define the disjunction pressure ( )d e of the film by the difference: 

( ) ( )( ) ext L
d e P P= −   [5.50] 

The equilibrium condition of the film is expressed by a minimum value 
of the Helmholtz energy, so d 0F = . By combining this condition with 
expressions [5.49] and [5.50], we obtain: 

12d( )
dd
W

e
e

= −   [5.51] 
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Two scenarios may arise: 

– if ( ) 0d e > , the two surfaces tend to repel one another, meaning that 
the film tends to become thicker by the addition of matter. In this case, the 
liquid wets phases 1 and 2 perfectly (contact angles of 0); 

– if ( ) 0d e < , the two surfaces tend to come closer together, and the 
liquid tends to be ejected. We then say that it wets phases 1 and 2 
imperfectly (contact angles between 0 and 90°). 

Of course, if the liquid does not wet the two phases 1 and 2, no film can 
form and the problem no longer arises. 

In the case of van der Waals interactions, by applying relation [5.41], the 
disjunction pressure becomes: 

( )1/L/ 2
H

3( )
6e
A

e
eπ

= −   [5.52] 

Thus, the disjunction pressure is a force tending to separate the two 
interfaces of a thin film with the phases surrounding it. 

5.4.2. Formation of a film by condensation 

Consider a solid surface, covered with a thin film of liquid in contact with 
its own vapor at a pressure (vap)P less than its saturating vapor pressure

0(vap)P . In view of the existence of a disjunction pressure, the vapor pressure 
at equilibrium with the thin liquid film must be different from the saturating 
vapor pressure 0(vap)P . The pressure in the liquid film is imposed by the 
relation: 

(liq) 0(vap) ( )film dP P e= −   [5.53] 

The molar Gibbs energy of a liquid varies with the pressure, in 
accordance with: 

0(liq)
0(liq) dg v

dP
=   [5.54] 
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If 0
satg  is the Gibbs energy of the liquid (or the vapor) at normal 

equilibrium between the two phases, the Gibbs energy of the liquid at the 
pressure (L)P  would be: 

( )0(liq) 0 0(liq) (liq) 0(vap)
satg g v P P= + −   [5.55] 

The Gibbs energy of the vapor at pressure (V)P  would be: 

(V)
(V) 0

sat 0(vap)ln P
g g RT

P
= +   [5.56] 

Equality of the chemical potentials arises at a pressure of equilibrium 
between the liquid and the vapor (V) 0(film) ,=P P  such that: 

( )
0(v )

(l ) 0(vap)
(L) 0(vap)

R ln
ap

film iq

M

PT P P
v P

= −   [5.57] 

In light of relation [5.53], this expression can also be written: 

( )
0(vap)

0(vap) 0(vap)film
film(L) 0(vap)

R ln e
M

PT
P P

v P
Π= − −   [5.58] 

However, if we calculate the term 0(liq)R / ,T v  it is such that we can accept 
the approximation: 

( )
0(vap)

0(vap) 0(vap)film
film0(liq) 0(vap)

R ln PT
P P

v P
>> −  [5.59]  

Relation [5.58] is simplified to give us: 

0(vap)
film

0(liq) 0(vap)

R ln e
PT

v P
Π= −   [5.60] 
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From this, we deduce the pressure at equilibrium between the vapor and 
the film: 

0(liq)
0(film) 0(vap) exp

R
ev

P P
T
Π

= −   [5.61] 

We can see that it is possible to condense liquid at a pressure lower than 
the saturating vapor pressure, if the disjunction pressure is positive. 

If we consider that van der Waals interactions are responsible for the 
disjunction pressure, using relation [5.52], the vapor pressure at equilibrium 
with the film would be: 

( )liq/V 0(liq)
0(vap) 0(vap) H

film 3exp
6 R

A v
P P

Teπ
=   [5.62] 

Thus, we can see, in the case that the Hamaker coefficient between the 
liquid and its vapor – i.e. between the liquid and a vacuum – is negative, or if 
the liquid wets the solid, then if we start with a very low value and increase 
the vapor pressure, there comes a moment when a thin liquid film of the 
compound is deposited. 

In this case, we speak of pre-wetting rather than of wetting, because the 
phase obtained is stable in the film state but unstable as a bulk, because the 
vapor pressure remains less than the saturating vapor pressure. 

5.4.3. Ascension of a liquid along a wall 

We shall now show that when a liquid is contained in a recipient, a film 
of that liquid, of height h and thickness e, which is a function of h, is 
thermodynamically stable along the walls of the recipient. 

Thus, consider a recipient containing a liquid (Figure 5.11). A film of that 
liquid is supposed to be formed on the walls. We shall now examine whether 
this is true. The pressure within the film, according to relation [5.50], is: 

(L) ( ) ( ( ))atm dP h P e h= −   [5.63] 
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Figure 5.11. Ascension of a liquid along a wall 

We can see that this column of liquid has a certain weight, and therefore 
that, if ρ is the density of the liquid, we also have mechanical equilibrium, 
which yields: 

(L) ( ) atmP h P ghρ= −   [5.64] 

By comparing equations [5.63] and [5.64], we find: 

d( ( ))
dd
We h gh
e

ρ= − =   [5.65] 

This equation gives us the thickness of the film at the height h. 

This film, then, is stable, but exists only if the disjunction pressure is 
positive – i.e. if the liquid perfectly wets the solid forming the recipient.  

We shall evaluate the thickness and the height of that film at 
thermodynamic equilibrium. 

The energy (i.e. the Helmholtz energy) of the liquid per unit length along 
the wall is given by: 

[ ]SL LV SV
0

( ) d
h

F gez W e zρ σ σ σ= + + + −   [5.66] 
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If we reveal the spreading coefficient defined by relation [3.81], by: 

( )SV SL LV LV cos 1th σ σ σ σ θ= − − = −   [5.67] 

the equilibrium condition of the film in relation to its dimensions is: 

d 0
d

F
h

=  [5.68] 

which gives us the equilibrium for a maximum height hmax and a thickness 
ec: 

( )max 0c tgh e h W eρ − + =   [5.69] 

In light of relation [5.59], this condition becomes: 

. 0d c te h WΠ − + =   [5.70] 

Thus, this relation defines the thickness at equilibrium at the maximum 
height of the film. 

For instance, in the context of van der Waals interactions, in view of 
relations [5.41] and [5.51], equation [5.70] is written: 

( ) ( )S/L/V S/L/V
H H

2 3
c c

0
2 6t c
A A

h e
e eπ π

− + =   [5.71] 

By solving this equation, we find the value of ec, and by substituting that 
value back into equation [5.69], we obtain the following for ec and the 
maximum height: 

( )

( )

S/L/V
H

S/L/V
H

max 3
c

4

6

c
t

A
e

h

A
h

ge

π

πρ

−=

−=

  [5.72]  

For typical values of the spreading coefficient and the Hamaker constant, 
the minimum thickness ec is around a nanometer – i.e. approximately equal 



160     Thermodynamics of Surfaces and Capillary Systems 

to the size of a molecule – and the film spreads over the walls until it forms a 
monomolecular layer. 

This film is the explanation for the Rollin films obtained, in particular, 
with helium below a certain temperature. If we evaluate the height of that 
liquid in the case of helium with a Hamaker constant of around 10-19 J, and 
accept the hypothesis that the thickness of the film is 1 nm, the height may 
be up to 500 m. Thus, we can understand why, in a recipient of reasonable 
dimensions, liquid helium escapes from the recipient by flowing above the 
walls. This phenomenon is less marked in other liquids, because it is 
counteracted by viscosity, which is zero in the case of superfluid helium. 

5.4.4. Minimum spreading thickness 

Now let us consider a puddle of liquid deposited on a solid support which 
it wets perfectly (see Figure 5.12). The thickness of that puddle is supposed 
to be uniform, and the amount of liquid and hence the volume of the puddle 
are also taken to be constant. We shall now evaluate the minimum thickness 
of the puddle at equilibrium if there are no walls to limit its spreading. 

 

Figure 5.12. Maximum spreading of a drop on a solid support 

The Helmholtz energy of the puddle considered to be a thin film of 
negligible mass is as follows (the volume of gas above the puddle and the 
support is assumed to be constant): 

tF U TS AW h A= − + −   [5.73] 

Its differential in a transformation would be: 

( ) ( ) dd d d d d d
d

L L
t

WF T S P V A e W A h A
e

= − + + −   [5.74] 
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If that transformation is the spreading of the puddle, its volume remains 
constant, having the value: 

(L)V Ae=    [5.75] 

which we write as: 

(L) 0dV =   [5.76] 

From this, we deduce: 

d dA e e A= −   [5.77] 

Hence, at constant temperature and volume of liquid T and V(L), the 
differential of the Helmholtz energy (relation [5.74]) becomes: 

dd d
d t
WF W h A
e

= − + −   [5.78] 

The equilibrium condition obtained for the minimum of the function F 
will occur with a thickness e* obeying the equation: 

*

d 0
d t

W W h
e

− + − =   [5.79] 

Here we see the same equation as relation [5.70]; thus, the thickness at 
equilibrium is the same as that of the vertical film on the walls: *

ce e= . 
Hence, this thickness is roughly that of a monomolecular layer. This low 
thickness is the reason for the interference taints often observed on such 
films. 



 



6 

Physical Adsorption of Gases by Solids 

Any time a gas is in the presence of a solid surface, we know that a 
certain number of molecules of that gas will attach to the surface of the solid. 
This is the phenomenon of adsorption. The reverse process, by which 
molecules detach from the surface and enter the gaseous medium, is known 
as desorption. 

6.1. Shapes of the isotherms of physical adsorption found 
experimentally 

The main manifestation of the phenomenon of adsorption is shown by the 
curves known as isotherms of adsorption, which represent the quantity 
adsorbed as a function of the pressure of the gas at a specific temperature. 
The aim of thermodynamic studies is to attach physical meaning and 
mathematical expressions to these curves. With that goal in mind, Brunauer 
[BRU 40] established a classification of the experimental curves found into 
five types (Figure 6.1). These curves show the quantity of gas adsorbed na as 
a function of the ratio P/P0, where P0 denotes the pressure of liquefaction of 
the gas at the same temperature. 

Type I, known as a Langmuir isotherm, is found with non-porous or 
microporous solids, where the pore diameter is less than 250 nm. The 
horizontal part of the curve corresponds to the saturation of the surface of the 
solid with a monolayer of molecules of gas. For all other types, adsorption 
takes place with several layers of gas affixed to the surface. 

Type II isotherms are essentially found with macroporous solids – i.e. 
solids whose pore diameters are greater than 2000 nm. 

Thermodynamics of Surfaces and Capillary Systems, First Edition. Michel Soustelle.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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Type III isotherms are found more infrequently, and are a derivative of 
type II, as described above. 

Type IV isotherms are found with porous solids where the pore diameters 
are between 250 and 2000 nm, sometimes referred to as mesopores. These 
isotherms exhibit a plateau of saturation. 

Type V isotherms are less common, and have a shape derived from that 
of type IV isotherms. 

 

Figure 6.1. The five types of isotherms of physical adsorption [BRU 40] 

6.2. Potential energy of a gaseous molecule in the presence of 
the surface of a solid 

The essential value in determining the behavior of a molecule of gas in 
the vicinity of the surface of a solid is the potential energy of that molecule 
under the influence of the solid. Lennard-Jones recognized that the forces 
exerted from a surface on a molecule of gas are of different natures 
depending on whether the solid is an electrical insulator or an electron 
conductor such as a metal. 
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6.2.1. Adsorbent insulating solid 

If the solid is an insulator, the force exerted between the solid and the 
gaseous molecule G is the resultant of the van der Waals forces exerted 
between the gaseous molecule G and each of the molecules of the solid. We 
know that these van der Waals forces derive from a potential which, between 
two molecules A and B, includes two terms – a term of attraction and a term 
of repulsion – which lead to a distance of equilibrium r0 between the two 
molecules A and B. 

Let us first examine the term of attraction, which is written in the form: 

6
(AB) 0 0

06 2a
m r
r r

ε ε= − =  [6.1] 

For the whole of the solid, we find the sum of each of the terms of 
attraction between the molecule G and each molecule of the solid. If we let N 
be the number of molecules of solid per unit volume, the overall potential of 
attraction of the molecule will be formulated as: 

(G) (A ) dB
a a

z

N Vε ε
∞

=  [6.2] 

We express the elementary volume composed of a spherical cap of the 
solid centered at the molecule (Figure 6.2(a)) in the form: 

( )2 2d d 2 1 cos d 2 1 dz
V S r r r r r

r
π θ π= = − = −  [6.3] 

If we combine expressions [6.1], [6.2] and [6.3], the attraction term is 
shown to be: 

6
(G) 0 0

33a
N r

z
π εε =  [6.4] 

We can see that an intermolecular attraction potential which is inversely 
proportional to the distance between molecules to the power of 6 results in 
an attraction potential between the molecule G and the solid which is 
inversely proportional to the distance z to the power of 3. 



166     Thermodynamics of Surfaces and Capillary Systems 

Let us now turn our attention to the van der Waals repulsion potential. 
Between two molecules A and B, it is expressed in the form: 

12
(AB) 0 0

012r
l r
r r

ε ε= = −  [6.5] 

By performing the same integration as for the attraction potential, we find 
the repulsion potential between the molecule of gas and the solid: 

12
(G) 0 0

945r
N r

z
π εε =  [6.6] 

Thus, an intermolecular repulsion potential inversely proportional to  
the distance between molecules, to the power of 12, leads to a repulsion 
potential between the molecule G and the solid which is inversely 
proportional to the distance z, to the power of 9. 

 

Figure 6.2. Calculation of the energy of a molecule of gas  
in the presence of a solid: a) insulating solid; b) conductive solid 

By combining the two contributions, [6.4] and [6.6], the potential energy 
of the molecule G in the presence of the solid is written as: 

3 93
(G) 0 0 0 01

3 15
N r r r

z z
π εε = −  [6.7] 

The curve given the potential energy as a function of the distance z does 
have a minimum (Figure 6.3), corresponding to the equilibrium distance z0,  
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which is obtained by zeroing the differential of the function [6.7] in relation 
to z, giving us: 

0
0 1/65

r
z =  [6.8] 

The term r0 is a distance characteristic of the couple formed by the 
molecule G and the molecule which constitutes the solid. Note that the 
distance z0 is smaller than the distance r0. At equilibrium, the molecule of G 
is nearer to the surface than an isolated molecule of the solid would be. 

6.2.2. Electronically-conductive adsorbent solid 

Lennard-Jones noted that the potential given by relation [6.7] was not 
applicable when the solid is an electronic conductor. The mobility of the free 
electrons under the influence of the distribution of charges in the adsorbed 
molecule led Lennard-Jones to put forward a model where the electrons in 
the metal form the instantaneous electrical image of the charge distribution, 
variable over time, of the molecule. This model ignores the relaxation time 
of the electrons in the solid – in other words, the assumption is made that 
those electrons have infinite mobility. 

We shall now calculate this Lennard-Jones potential in a case where the 
molecule of gas has a permanent electrical moment: μ = 2ql. 

At a given time, the molecule G, which is at a distance z from the solid, 
has an electrical moment which forms an angle  with the surface of the 
solid, assumed to be limitless (Figure 6.2(b)). 

The forces of attraction are exerted between the charges q, placed at A 
and A’ on the one hand, and also at B and B’ on the other. The intensities of 
those forces are: 

( )
2

AA ' 2
12

qF
r

= −   [6.9a] 

and: 

( )
2

BB' 2
22

qF
r

= −  [6.9b] 
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The attraction potential between the molecule and the surface would be: 

( ) ( )
2 2

(G)
2 22 2

1 2

d
2 2

a
z

q q z
r r

ε
∞

= − +  [6.10] 

In Figure 6.2(b), we use geometric logic to calculate: 

1 sinr z l θ= −    [6.11a] 

and: 

2 sinr z l θ= +  [6.11b] 

By feeding these expressions back into relation [6.10] and calculating the 
integral, we find the following for the attraction potential between the 
molecule and the solid: 

2
(G) 1 1

4 sin sina
q

z z l z l
ε

θ θ
= − +

− +
 [6.12] 

The forces of repulsion are exerted between the charges placed at points 
A and B’ on the one hand, and A’ and B on the other. Their intensities are, in 
both cases: 

2

AB' A'B 2

qF F
r

= =  [6.13] 

Thus, the repulsion potential can be calculated by the integral: 

2
(G)

2

1 d
2r

z

q z
r

ε
∞

=  [6.14] 

In Figure 6.2(b), it is easy to calculate: 

2 2 22 sinr z l θ= +    [6.15] 
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If we adopt the hypothesis that 2 2 2sinz l θ>> , the repulsion potential is 
then written: 

2 2 2
(G)

2

cos1
2 3r
q l

z z
θε = +  [6.16] 

Hence, in view of the two potentials of attraction (relation [6.12]) and 
repulsion (relation [6.16]), the total interaction potential between the 
molecule G and the electronically conductive solid becomes: 

2 2 2
(G) 2 2

2 23

2

1cos
sin2 6 2 1

q q ql
lz z z

z

ε θ
θ

= − − +
−

 [6.17] 

This can alternatively be written: 

2 2
(G) 2 2 2 2

3 3cos sin
6 2
q ql l
z z

ε θ θ= − +  [6.18] 

The dipole G is mobile over time, and the potential varies arbitrarily, so 
we use an angle  that is the average of the mean values of the square cosine 
and the square sine. We can calculate the mean value 2cos θ  by the 
expression: 

2

2 0 0

0 0

1 coscos d d
2 1cos

2
d d

π π

π π

θθ θ θ
θ

θ θ

−

= = =  [6.19] 

Similarly, for 2sin θ , we have: 

2 2 1sin 1 cos
2

θ θ= − =  [6.20] 



170     Thermodynamics of Surfaces and Capillary Systems 

 

Figure 6.3. Potential for interaction of a  
molecule of gas in the vicinity of a solid 

In light of the expression of the electrical moment: 

2qlμ =  [6.21] 

the interaction potential becomes: 

2
(G)

312z
με = −  [6.22] 

If the molecule does not have a permanent dipole moment, we can use the 
same relation provided we replace the permanent moment with the mean 
dipole moment due to the internal fluctuations in the molecule, and the 
interaction potential becomes: 

2
(G)

312z
με = −  [6.23] 

Relations [6.22] and [6.23] do not give us the equilibrium position for the 
adsorbed molecule (no minimum on the corresponding curve in Figure 6.3), 
because of the approximation of z2 and l2 which we made in order to bring 
the calculation to fruition. The potential calculated is thus only valid for a 
satisfactory distance between the molecule and the surface of the solid. That 
distance does not include the minimum which would tell us the position at 
equilibrium. 
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6.3. Thermodynamic models for physical adsorption 

In order to study the thermodynamics of the process of physical 
adsorption, it is necessary to imagine a model which defines a state for the 
adsorbed molecule. This model needs to take two important experimental 
results into account: 

– the variance of the system is 2, meaning that the quantity adsorbed at 
equilibrium is a function of the gas pressure and the temperature; 

– the phenomenon of adsorption is exothermic, which means that an 
increase in temperature decreases the quantity adsorbed at equilibrium. 

Two states have been envisaged for the adsorbed species. One led to the 
development of Hill’s model, and the other to Hill and Everett’s model. 

6.3.1. Hill’s model 

In this model, the adsorption layer – i.e. the ensemble of adsorbate and 
adsorbed material – is assimilated to a solution of the adsorbed gas G and the 
adsorbate solid S. Thus, we can apply the general properties of solutions. 
The possible variables are: the pressure, assimilated to the partial pressure of 
G in the case of a pure gas (the partial pressure of the solid S is negligible); 
the temperature; the adsorbed quantity of G in solution; the quantity of S in 
solution. If the quantity of adsorbed gas, 

Gn , is denoted by na, then the 

number of independent components is 2 (G and S), the number of external 
intensive parameters is 2, the pressure and temperature and the number of 
phases is also 2: the solid solution and the gas. Thus, the Gibbs variance is 2. 
Hence, we can define: 

– isotherms giving the quantity of gas adsorbed an  = f(P) at constant 
temperature; 

– isobars given an  = f(T) at constant pressure; 

– isosteres P = f(T) at constant adsorbed quantity .an  
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6.3.1.1. General equation for equilibrium in Hill’s model 

With regard to the adsorbed phase (solution), we work with a constant 
quantity of adsorbate,

S 0dn = . The variation of the chemical potential of 

the gas G  in the adsorbed phase is: 

( A )
S

G
aG G G

, ,

d d d d
a

P T n

S T V P n
n

μ
μ

∂
= − + +

∂
 [6.24] 

The variation of the chemical potential of the adsorbed material G in the 
gaseous phase with a single component is: 

{ } { } { }
0 0 0
G G Gd d dg s T v P= − +  [6.25] 

Equilibrium of the adsorbed material G between the two phases requires 
that the variations of its chemical potential be equal between the two phases 
in the case of any disturbance – i.e. that: 

{ }
0
GGd d gμ =  [6.26] 

In view of expressions [6.24] and [6.25], this equality is expressed by: 

{ }( ) { }( )
S

G0 0
aG GG M

a
, ,

d d d 0
P T n

s S T v V P n
n

μ∂
− + − + =

∂
 [6.27] 

From this general expression, giving all of the points of equilibrium, we 
shall deduce the equations of the different curves: isosteres, isotherms and 
isobars. 

6.3.1.2. Equation of the isostere in Hill’s model 

To find the equation of the isostere, we apply the general equation [6.27] at 
a constant quantity of adsorbed G, such that: a 0dn = . This relation becomes: 

{ }

{ }a

0
G G

0
G Gn

s SdP
dT v V

−
=

−
 [6.28] 
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If we assume the molar volume of the gas to be much greater than the 
partial molar volume of the component G in the adsorbed layer: 

{ }
0
G Gv V>>  [6.29] 

and that the gas is perfect: 

{ }
0
G

RTv
P

=  [6.30] 

we can then write for the difference in volume: 

{ } { }
0) 0)
G GG

RTv V v
P

− ≅ ≅  [6.31] 

Furthermore, by definition of the molar enthalpy, we can write in each of 
the two phases: 

G G GH T Sμ = −  [6.32] 

and 

{ } { } { }
0 0 0
G G Gg h Ts= −  [6.33] 

At equilibrium, the chemical potentials in the two phases are equal, and 
thus: 

{ }
0
GG gμ =  [6.34] 

We define the isosteric heat of adsorption (see section 6.3) on the basis of 
the difference between the entropies (first equation [6.35]), and by 
combining relations [6.32], [6.33] and [6.34], we obtain the difference 
between the enthalpies, and we have: 

{ }
{ }
0
G G0isost

G G

h Hq
s S

T T

−
= − =  [6.35] 
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Let the isosteric heat of adsorption be: 

{ }
0

isost G Gq h H= −  [6.36] 

By feeding expressions [6.31], [6.35] and [6.36] into relation [6.28] and 
ignoring the variations in isosteric heat with differing temperature, we obtain 
the equation of the isostere: 

M

isost
2

ln
Rn

qd P
dT T

=  [6.37] 

As we saw earlier, this equation makes the assumption that the gas is 
perfect – an approximation which is often perfectly reasonable in the 
phenomenon of adsorption, particularly when we are not too near to the 
saturation close to the condensation of the gas. 

6.3.1.3. Equation of the isotherm in Hill’s model 

From the general equation [6.27], we can deduce the equation for the 
isotherm by making dT = 0, which gives us: 

{ }( )
S

G0
aG G

a
, ,

d d 0
P T n

v V P n
n

μ∂
− + =

∂
 [6.38] 

Using the same hypotheses about the volumes which led us to 
approximation [6.31], the equation of the isotherm is written: 

( )
S

G
a

a
, ,

1ln d
RT

P T n

d P n
T n

μ∂
=

∂
 [6.39] 

The model of a solution used to express the chemical potential as a 
function of the composition at a chosen temperature will give the expression 
of its differential in relation to that same composition and will enable us to 
make relation [6.39] more precise. 
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6.3.1.4. Equation of the isobar in Hill’s model 

From the general equation [6.27], we deduce the equation of the isobar by 
making dP = 0, which gives us:  

{ }( )
S

G0)
aG G

a
, ,

d d 0
P T n

s S T n
n

μ∂
− + =

∂
 [6.40] 

In light of relations [6.35] and [6.36], the general expression of the isobar 
becomes as follows, if we ignore the variations in isosteric heat with 
changing temperature: 

( A )
S

G
a2

a
, ,

d 0
R

isost

P T n

q
n

T n

μ∂
= − =

∂
 [6.41] 

The choice of a solution model will, as before, enable us to calculate the 
differential of the chemical potential in relation to the composition. 

6.3.2. Hill and Everett’s model 

The adsorbed phase is assimilated to a pure condensed phase of the 
species forming the gas, which is represented as (G) . This phase could, for 
instance, be characterized by a function of state. In order to calculate the 
Gibbs variance, we consider that we have a single component G in two 
different phases – one gaseous, {G}, and the other condensed, (G)  – and 
that there are three external intensive factors: temperature, pressure and the 
interaction due to the solid surface. We then see a situation very similar to 
the liquid film deposited on a solid, as seen previously (see section 5.4.4). 

6.3.2.1. General equilibrium equation 

If we let AM denote the area occupied by a mole on the surface, and 0
(G)s  

and 0
(G )v  denote the molar entropy and molar volume of the pure adsorbed 

phase, the differential of the molar Gibbs energy of the adsorbed layer is: 

0 0 0
(G ) (G ) (G )d d d dMg s T v P A Φ= − + +  [6.42] 
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We let denote the value defined by the expression: 

SG AGσ σ= −  [6.43] 

σSG and σAG are, respectively, the interfacial tensions between the initial 
solid phase and the gaseous phase and between the adsorbed phase and the 
gaseous phase. 

We can see that in expression [6.42], for the surface phase, in relation to 
the area A, Φ  plays the same role as pressure in a three-dimensional phase in 
relation to the volume. Thus, Φ is called the expansion pressure. 

Let Γ denote the inverse of the molar area. Γ  tells us the number of 
moles adsorbed per unit area, defined by relation [2.1]. This number is 
expressed, in our particular case, by: 

1

MA
=  [6.44] 

Relation [6.42] is then written: 

0 0 0
(G) (G) (G)

1d d d dg s T v P Φ= − + +  [6.45] 

With regard to the compound G in the gaseous phase, its molar Gibbs 
energy is: 

{ } { } { }
0 0 0
G G Gd d dg s T v P= − +  [6.46] 

Equality between the two differentials [6.45] and [6.46] gives us the 
general equilibrium equation: 

{ }( ) { }( )0 0 0 0
G (G) G (G)

1d d d 0s s T v v P− + − + =  [6.47] 

From this equation, we can deduce the different functions with a single 
variable – particularly the isotherm and the isostere. 
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6.3.2.2. Equation of the isotherm 

At a constant temperature, the general equation [6.47] is reduced to: 

{ }( )0 0
G (G)

1d d 0v v P− + =  [6.48] 

In light of the usual approximations about the volumes: 

{ }
0 0
G (G)

RTv v
P

= >>  [6.49] 

The equation of the isotherm is written: 

d R d lnT P= −  [6.50] 

We can also write this in its integral form: 

0

R d ln
P

T P= −  [6.51] 

This relation is Gibbs’ relation for adsorption. In particular, it is the case 
of relation [2.41] applied to the adsorption of a pure gas by a pure solid. 

6.3.2.3. Equation of the isostere: equilibrium heat of adsorption 

We now work with the spreading constant (dΦ = 0). The general equation 
[6.47] becomes: 

{ }( ) { }( )0 0 0 0
G (G) G (G)d d 0s s T v v P− + − =  [6.52] 

The equation of the isostere is then written: 

{ }

{ }

{ }
0 0 0 0
G (G) G (G)

0 0
G (G)

d
R

s s s sP P
dT v v T

− −
= =

−
 [6.53] 
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Because of the equality of the molar Gibbs energies at equilibrium, we 
can introduce the enthalpy terms into that expression, and write the isostere 
in the form: 

{ } { }
0 0 0 0
G (G) G (G)

2 2

d ln
d R R R

s s h h qP
T T T T

− −
= = =  [6.54] 

where q is the equilibrium heat of adsorption. 

We can link the molar enthalpy of the adsorbed phase to the molar 
enthalpy of the liquid component G by writing that the difference between 
the two phases is due only to the surface effect, and that this surface effect 
has no impact on the entropy, so: 

0 0
(G )(G ) Mh h A= +  [6.55] 

Hence, as the entropies of the liquid state and the adsorbed state are 
identical, we have: 

0 0
(G)(G)s s=  [6.56] 

The two states are very similar, and the adsorbed state is, in fact, 
assimilated to a thin liquid film, as we saw in section 5.4.4. 

6.3.3. Adsorption heats 

We have already defined two heat values linked to adsorption: the 
isosteric heat, based on Hill’s model, given by: 

2
isost

dR
an

Pq T
dT

=  [6.57] 

and the adsorption heat based on Hill and Everett’s model, given by the 
relation: 

2 dR Pq T
dT Δσ

=  [6.58] 
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The first is easy to determine experimentally by finding the slope of the 
isostere when the adsorbed quantity is constant. In order to calculate the 
second, we shall now establish a relation between these two adsorption 
heats. These two heats are defined, on the basis of the entropies, by 
relations [6.35] and [6.54], respectively. By adding these two definitions 
together, term by term, and adding and subtracting the quantity GS  from 

the relation thus obtained, we find: 

{ }( ) ( )0 0 0
(G) isost (G)G G G Gq s s S S T q S s TΦ = − − + = + −  [6.59] 

However, the differential of the chemical potential at constant pressure, 
area and adsorbed quantity of the adsorbed species is independent of the 
model. Thus, we can write the equality between that chemical potential 
given by relation [6.24] for Hill’s model and that given by relation [6.45] for 
Hill and Everett’s model: 

{ }( ) 0
(G)G G, ,

1d d d d
aP A n

S T s Tμ = − = − +  [6.60] 

From this, we deduce: 

( )0
(G)G

1S s
T

∂− = −
∂

 [6.61] 

and by substituting back into relation [6.59], it follows that we have: 

isost
Tq q

T
∂== −
∂

 [6.62] 

Generally speaking, there are as many heats linked to adsorption as there 
are ways to achieve it, because the heat exchanged in the course of a 
transformation is not a function of state. Let Q denote such a heat defined in 
specific conditions. We speak of the corresponding differential heat to refer 
to the differential of Q in relation to the adsorbed quantity: 

d
d a

Qq
n

=  [6.63] 
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The two quantities qisost and qa are two examples of differential heats 
linked to adsorption. 

Thus, for each differential heat, there will be a corresponding integral 
heat, defined by: 

0

d
an

aQ q n=  [6.64] 

A commonplace mode of adsorption is adsorption where the volume of 
the gas, the volume of the quantity adsorbed and the area of the solid are 
kept constant. Then, the differential of the heat is given by the difference 
between the Helmholtz energies: 

( )
{ } { }G G, ,d d d

a
aV V A

Q U U= −  [6.65] 

Consider the case of Hill’s model. For the Helmholtz energies, we have: 

{ }
{ }

{ }

G0
G

G

d

d

U
u

n
=  [6.66a] 

and: 

a
G

a

d
d
U

U
n

=  [6.66b] 

The corresponding differential heat, then, will be: 

( )
{ }

{ }

0
G , , 0

G G

d

d
av v A

d
a

Q
u U q

n
= − =  [6.67] 

qd is called the differential heat of adsorption: it is the heat that would  
be measured when carrying out adsorption in an enclosed isothermal 
calorimeter, such as the Calvet microcalorimeter. 
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The differential heat of adsorption can be linked to the isosteric heat by 
finding the difference of these two heats, and by using the entropic definition 
[6.35] for the latter, we find: 

{ } { } ( )0 0
isost G G G Gdq q u Ts U T S− = − − −  [6.68] 

We know that generally, given the definition of the Gibbs energy, we can 
write: 

U TS G PV− = −  [6.69] 

When applied to relation [6.68], this gives us: 

{ } { } ( )0 0
isost G G G Gdq q g Pv PVμ− = − − −  [6.70] 

In addition, at equilibrium, we have equality of the chemical potentials in 
the gas phase and the adsorbed phase. Hence, in Hill’s model: 

{ }
0
G Gg μ=  [6.71] 

By feeding this back into expression [6.70], we obtain: 

{ }( )0
isost G Gdq q P v V− = − −  [6.72] 

With the usual approximation about the relative values of the molar 
volumes of the adsorbed phase and the gaseous phase, the latter being 
considered to be a perfect gas, we find: 

isost Rdq q T− = −  [6.73] 

Because the two values dq  and isostq  can be measured experimentally, this 
relation is easy to verify. 
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Figure 6.4. Example of the variation in the  
isosteric heat with the adsorbed quantity 

Many experimental results can be explained by the presence of van der 
Waals forces and by relation [6.7]. 

In general, the adsorption heats are not constant: they depend on the 
quantity of material adsorbed, although graphite is an exception to this rule. 
This variation with the adsorbed quantity is proof that there is heterogeneity 
over the course of the adsorption. Figure 6.4 shows an example of such a 
heterogeneity.  

Note, though, that beyond a certain adsorbed quantity, the heat of 
adsorption is practically equal to the enthalpy of liquefaction of the gas 

v L H→ .  

6.4. Monolayer adsorption 

Adsorption with the formation of a single layer of gas adsorbed stems 
from the Type I isotherm in Brunauer’s classification (see Figure 6.1). The 
adsorbed quantities are relatively slight: to saturate a surface, it takes around 
1015 molecules per cm2, which equates to around 10-4 moles per m2. 
Saturation is reached for low values of the ratio P/P0, far from the liquid 
state. In this case, the concept of the adsorbed quantity is often replaced by 
that of the fraction of coverage, θ,  which is defined by the ratio of the 
surface of the solid covered by the gas to the total surface of the solid. 
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6.4.1. Energy distribution of adsorbed molecules 

The two expressions, [6.39] and [6.54], of the isotherms given by Hill’s 
and Hill and Everett’s models cannot be immediately used to plot the 
isothermal curves without further information about the adsorbed state.  

In section 6.1, we calculated mean energies over the whole surface for the 
adsorption of a gas. We can see that the periodicity of the arrangements of 
the atoms on the surface of a solid results, in fact, in a periodic energy of 
adsorption, exhibiting points of minimum energy, in a position of stable 
equilibrium, and points of maximum energy in a position of unstable 
equilibrium. The difference between the maximum and minimum energies, 
therefore, needs to be compared to the heat energy kBT (Figure 6.5). Two 
limiting cases are found: 

– if the difference between the energies of two neighboring positions of 
stable equilibrium is greater than the energy of thermal agitation 
(Figure 6.5(a)), then that phenomenon prevents the molecule from crossing 
the barriers between two positions. We then say that we have localized 
adsorption; 

– if, on the other hand, the difference between the energies of two 
neighboring positions of stable equilibrium is smaller than the energy of 
thermal agitation (Figure 6.5(b)), it enables the molecule to cross the barriers 
between two positions, in which case we say we have mobile adsorption. 

 

Figure 6.5. Energy states of adsorbed  
molecules: a) localized; b) mobile 

In addition, we have seen that the heats of adsorption varied with the 
adsorbed quantity, even during the course of the adsorption of a single layer 
(Figure 6.4). This means that when a certain number of molecules have been 
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adsorbed, the adsorption of a new molecule does not involve the same 
variation in energy as the adsorption of the previous ones. This can be 
interpreted in two different ways: 

– either the surface of the solid is not energetically homogeneous. Our 
calculation of this energy in section 6.2 was a mean value, but this value 
may fluctuate from one point on the surface to another; 

– or there is an interaction between the molecules already adsorbed, 
which is expressed by the fact that the potential energy of a given site 
depends on the state of occupation of the neighboring sites. 

The calculation of the isotherm in the two cases is different, but the result 
of the experiment does not enable us to distinguish between these two cases, 
because on the adsorption of a new molecule, there is no way of telling 
whether the energy variation seen already existed from the start on the bare 
surface, or whether it is caused by the presence of the molecules adsorbed 
previously. We say, in both cases, that we have adsorption with interactions. 

Depending on the different properties – layers localized or otherwise, 
with or without interactions between the molecules – we shall examine the 
different models used to describe monolayer adsorption. 

6.4.2. Isotherms of adsorption in mobile monolayers with no 
interaction 

The adsorbed molecules, arranged in a monolayer, are free to move 
around on the surface, and there is no interaction between them. 

6.4.2.1. Hill and Everett’s model 

In this model, the adsorbed phase is a pure, two-dimensional phase, for 
which we can calculate the molecular partition function with only two 
degrees of freedom. It is of the form: 

B
int2

2 k
ha
m T

z A z
π=  [6.74] 

In this relation, zint is the contribution, to the molecular partition function, 
of the energy terms internal to the molecule. The term in parentheses is the 
contribution of a two-dimensional motion of translation. 
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If we look at the limiting statistical case for Nads indiscernible molecules 
for a single gas, the molecular partition function is: 

!
a

a
ads

z
Z

N
=  [6.75] 

The Helmholtz energy of the adsorbed molecules is given by: 

a BN k lna aF T Z= −  [6.76] 

By applying Stirling’s approximation and combining relations [6.74], 
[6.75] and [6.76], the Helmholtz energy of the adsorbed molecules is 
expressed by: 

2

a a B
B int

hN k ln N k
2 k

ads
a B

N
F T T

m Tz Aπ
= − −  [6.77] 

From this, we deduce, by analogy with a pressure, the pressure of 
expansion by differentiating the Helmholtz energy in relation to the surface: 

a BN kaF T
A A

∂= − =
∂

 [6.78a] 

or: 

RT=  [6.78b] 

Equation [6.78b] is an equation of state for the adsorbed phase.  

NOTE.– It should be noted that this equation of state is for a two-dimensional 
phase, similar to that of the perfect gas for a bulk phase, and is written as 
follows for one mole of adsorbed molecules: 

RMA T=   [6.79] 

By looking again at the differential form [6.50] of Gibbs’ equation and 
differentiating relation [6.78b], we obtain: 

R d R d lnT T P=  [6.80] 
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which, after integration, gives us: 

kP=  [6.81] 

This isotherm is called Henry’s isotherm because it is similar to Henry’s 
law of solubility of perfect gases in a liquid. 

6.4.2.2. Hill’s model 

Looking at relation [6.39] again and assuming the solution is perfect – i.e. 
for the chemical potential, we have the expression: 

0 R lnG G Tμ μ<< >> << >>= +  [6.82] 

By differentiating relation [6.82] and feeding back into expression [6.39], 
we find: 

d ln d lnP =  [6.83] 

which again gives us Henry’s isotherm [6.81]. 

Thus, Hill and Everett’s and Hill’s models yield the same expression for 
the isotherm of adsorption. 

Instead of applying relation [6.82] for the perfect gas, we could have 
repeated the whole reasoning process by statistical thermodynamics for a 
perfect solution, transposed to a two-dimensional phase, and of course, we 
would have again obtained Henry’s expression. 

6.4.3. Isotherms of adsorption in mobile monolayers with 
interactions 

Let us again consider Hill and Everett’s model. There are two methods 
available to us to take account of the interactions between molecules in the 
adsorbed phase: 

– either we adopt a statistical description, formulating the model 
developed in the case of gases and thus transposing the second coefficient of 
the virial to a two-dimensional phase; 

– or we choose to transpose an equation of state for real gases and apply 
it to the adsorbed phase. 
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Let us choose the second method and define the surface phase by an 
equation similar to van der Waals’ equation for gases: 

( ) RMA b T− =  [6.84] 

Here, b is the co-surface – i.e. the surface area covered when it is 
completely saturated. Obviously, for the concentrations, we have: 

1

MA
=   [6.85a] 

and: 

1
b∞ =  [6.85b] 

By feeding back into expression [6.84], we find: 

R

1

T

∞

=
−

 [6.86] 

By differentiating, we obtain: 

2d R

1

dT

∞

=

−
 [6.87] 

By identifying with Gibbs’ equation  [6.50], we are led to: 

2ln

1

dd P

∞

=

−
 [6.88] 

Knowing that the coverage fraction is given by: 

θ
∞

=  [6.89] 
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By integrating [6.88] in light of [6.89], we obtain:  

exp
1 1

P k
θ θ

θ θ
=

− −
 [6.90] 

This is the Volmer isotherm. 

If we replace van der Waals’ equation of state [6.84] with Berthelot’s, 
written in the form: 

( )2 RM
M

a
A b T

A
+ − =  [6.91] 

the same calculation gives us: 

2exp
1 1 R

a
P k

T
Γ θθ θ

θ θ
∞= −

− −
 [6.92] 

This Type I isotherm was found by Hill using statistical thermodynamics. 
It is true that for all equations of state of gases that we are able to find by 
statistical thermodynamics, we can replace the macroscopic reasoning on  
the basis of the equation of state with the corresponding microscopic 
demonstration on the basis of statistical thermodynamics. Not every approach, 
though, constitutes a new model, as we find all too often in the existing body 
of literature. 

6.4.4. Isotherms of adsorption in localized monolayers without 
interaction 

The adsorbed molecule is attached at a given point on the surface, and we 
consider it to be fixed to an adsorption site. The surface of the solid can then 
be viewed as a lattice of free or occupied sites. The model is said to be 
“without interaction” when the interactions between free sites and occupied 
sites or between different occupied sites are identical to the interactions 
between different free sites. 

We shall work on the basis of a slight modification of Hill’s model, 
considering that the surface is a solution of free sites S and occupied 
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sites SG . In the model without interaction, we find ourselves precisely 
in the conditions of a perfect solution. 

The adsorption reaction is written: 

{ }S G SG+ =   [6R.1] 

Considering the solution to be perfect, the law of mass action gives us: 

SG

S
a

x
K

x P
=  [6.93] 

It is easy to link the molar fractions to the degree of coverage of the 
surface. We have: 

0
SG

0

s s
x

s
θ−= =      [6.94a] 

S
0

1sx
s

θ= = −  [6.94b] 

By feeding these expressions back into equation [6.93], we find: 

1
a

a

K P
K P

θ =
+

 [6.95] 

The coverage fraction is a homographic function of the gas pressure. It is 
the equation of the Langmuir isotherm for Type I isotherms. 

6.4.5. Isotherms of adsorption in localized monolayers with 
interactions 

We can model this scenario either by introducing a macroscopic model of 
the solution which allows us to give the expressions of the activities of the 
components S  and SG , or by going back to the source and  
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imagining a statistical model, as we did to find certain macroscopic models 
of solutions. 

We shall use the first method, employing the model of the strictly-regular 
solution. 

Instead of relation [6.93], the law of mass action is expressed as a 
function of the activities in the form: 

SG SG

S S
a

x
K P

x

γ

γ
=  [6.96] 

If the surface solution is strictly regular, the activity coefficients are 
expressed in the form: 

2
Sln B

T
γ θ=     [6.97a] 

( )2
SGln 1B

T
γ θ= −  [6.97b] 

By feeding those expressions back into relation [6.96], we find: 

2exp exp
1a

B BK P
T T

θ θ
θ

= −
−

 [6.98] 

If we switch to a microscopic model using statistical thermodynamics, we 
obviously obtain the same result as for strictly-regular solutions (see 
Chapter 3, of [SOU 15b]), so for the coefficient B, we have the expression: 

,Na S GS

B

w
B

k
=  [6.99] 

The interaction term ,S GSw  is, itself, defined by applying the expression: 

, ,
S,GS , 2

S S GS GS
S GSw z

ε ε
ε

+
= −  [6.100] 
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The isotherm [6.98] is known as the Fowler isotherm. 

NOTE.– The fact that we are dealing with a two-dimensional solution, rather 
than a three-dimensional one, is reflected in the expression of the constant 
Ka, which contains the partition function due to two translational terms 
instead of three. 

The presence of interactions is, as stated earlier, either the consequence of 
a genuine interaction between the adsorbed molecules or the result of a non-
uniform surface – i.e. one which is heterogeneous in terms of energy. In 
order to continue using the relation of the Langmuir isotherm, Graham 
proposed to keep this expression but replace the equilibrium constant Ka by a 
variable Kf. Thus, Kf is called the equilibrium function. The variations of that 
function will depend on the degree of coverage in accordance with a curve, 
which depends on the type of adsorption. 

Figure 6.6 shows a few examples of variations in Kf. 

For a layer without interaction, Kf  = Ka is a constant (this is the Langmuir 
isotherm): curve a in Figure 6.6. 

 

Figure 6.6. Equilibrium function in the  
different cases of interactions 
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For a non-ideal system, we may have: 

– interactions between molecules adsorbed to a uniform surface (curve b 
in Figure 6.6), as is the case, for instance, with the Fowler isotherm [6.98], 
for which we obtain: 

 
2exp expf a

B BK K
T T

θ= −  [6.101] 

– adsorption on a heterogeneous surface without interaction (curve c in 
Figure 6.6); 

– adsorption on a heterogeneous surface with interactions between the 
adsorbed molecules (curve d in Figure 6.6). 

In conclusion, we can see that the number of isotherm equations likely to 
represent the monolayer is limitless by the introduction of a varied equation 
of state for mobile layers or of different solution models for immobile 
adsorption layers. 

6.5. Multilayer adsorption 

We now turn our attention to models capable of accounting for the shapes 
of Type II and Type III isotherms (see Figure 6.1). In this case, the adsorbed 
quantity is much greater than in the case of a monolayer, and a certain 
saturation occurs when the ratios P/P0 are near to 1. 

This multilayer adsorption is such that we can consider the first layers to 
be successive monolayers, in which the forces exerted by the solid are 
crucially important, but as we move further away from the solid, its 
influence becomes steadily less and becomes slight in comparison to the 
influence of the lower layers, until the liquid phase is reached, at which point 
only the adsorbed molecules exert a force on the last molecules to attach. We 
can then see why, in order to model such a continuous variation of the 
properties, two limiting cases were examined. The Brunauer, Emmet and 
Taylor model favors the multi-monolayer aspect, and is valid for pressures 
far from the value of condensation into liquid, whilst the Frankel, Halsey and 
Hill, and Polanyi models favor the neighboring properties of the liquid for 
the adsorbed layer and generally perform better as we approach the pressure 
of condensation into liquid. 
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6.5.1. The Brunauer, Emmet and Taylor (B.E.T.) isotherm 

The adsorption is localized, based on Langmuir’s model, but a given site 
may be covered by multiple layers, and only the last adsorbed layer, furthest 
away from the solid, is at equilibrium with the gases.  

A given site may be covered by 0, 1, 2 … localized layers of gas without 
interaction. Let A0, A1, A2, …, Ai represent the areas covered respectively by 
0, 1, 2, …, i layers of gas (Figure 6.7). 

 

Figure 6.7. Filling by layers in the B.E.T. model 

If A is the total area of the solid, the equilibrium between the bare surface 
and the surface covered by a layer means we can write: 

1 1
1

0 0

/
/

A A A
K P

A A A
= =  [6.102] 

The equilibrium between the surface covered by a layer and the surface 
covered by two layers is expressed by: 

2
2

1

A
K P

A
=  [6.103] 

and so on. The equilibrium between the layers i and i–1 gives us: 

1

i
i

i

A
K P

A −

=  [6.104] 

Let us state that the sum of the surfaces is equal to the total surface: 

0
i

i

A A
∞

=

=  [6.105] 
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In addition, if we let v0 denote the volume of gas per unit surface which 
would just cover the whole surface of a monolayer, the total volume would 
be: 

0 1 0 2 0 0
0

0 1. 2. ... . ...i i
i

V v A v A i v A v iA
∞

=

= + + + + =  [6.106] 

Let vmono denote the product: 

mono 0 tv v S=  [6.107] 

monov thus denotes the volume of gas which would be just necessary to 
cover the whole surface with a monolayer. 

The total volume found can be written: 

mono 0
mono

0

0

i
i

i
i

i
i

iA
v

V iA v
A A

∞

∞
=
∞

=

=

= =  [6.108] 

To find a simple solution, we shall suppose that from the point of fixation 
of the second layer, with adsorption always taking place on a previously-
adsorbed layer, the equilibrium constant remains the same – i.e. K2 = K3 = … = 
Ki = … = Ka. 

To simplify the formulae, let us posit that: 

a

Px
K

=   [6.109a] 

and by analogy: 

1

Pcx
K

=  [6.109b] 
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with the relation: 

1

aK
c

K
=  [6.110] 

The system of equations for the equilibria then becomes: 

1 0
2

2 0

0

.............

.............

i
i

A cxA
A cx A

A cx A

=
=

=
  

By finding the sum, member by member:  

( )2
0 1 ... ...iA A c x x x= + + + + +  [6.111] 

Supposing, for the moment, that 0 1x< <  (this inequality is explained 
and justified a little later on), relation [6.111] becomes:  

( )
0 0

1
1 1

1 1
c xcxA A A

x x
−

= + = +
− −

 [6.112] 

In the same way, we calculate: 

( )
( )

2 1 0
0 2

0
1 2 3 ... ...

1
i

i
i

cxA
iA cxA x x ix

x

∞
−

=

= + + + + + + =
−

 [6.113] 

By substituting back into equation [6.108], the fixed volume would be: 

( ) ( )
mono

1 1 1
cxv

V
x c x

=
− + −

 [6.114] 
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Let us look for the physical meaning of x. If x = 1, the volume tends 
toward infinity, meaning that the gas liquefies, and thus the pressure is: P = 
P0. Hence: 

0

1

1P
K

=    [6.115a] 

Thus: 

0 1Px
P

= <  [6.115b] 

The expression of the isotherm, if we feed back this final equation into 
relation [6.114], is written: 

( ) ( )
mono

0
01 1

cPV v
PP P c
P

=
− + −

 [6.116] 

This is the equation of the B.E.T. isotherm. 

This equation can also be written: 

( )
( ) 0

0
mono mono

1 /1 c P PP
cv cvV P P

−
= +

−
 [6.117] 

Experimentally, if on the basis of the measurement of the volume 
adsorbed at each pressure, we plot the left-hand side of equation [6.117] as a 
function of the ratio P/P0, we obtain a straight line with the slope mono1 / cv  
and with ordinate at the origin ( ) mono1 /c cv− , which is why it is possible to 
calculate values for monov  and c. 

If we establish the B.E.T. relation using statistical thermodynamics, the 
constant c appears to be the ratio: 

1 v Lexp
R

H H
c

T
→−

=  [6.118] 
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In this expression, 1H  is the enthalpy of adsorption of the first layer of 
gas, and v L H→  is the enthalpy of liquefaction of the gas. 

NOTE.– The enthalpy of adsorption is less strongly negative than the 
enthalpy of liquefaction of the gas, so we deduce that the value c must be 
positive. Consequently, if in a given experiment we are led to adopt a 
negative value of c, then we shall be led to reject the B.E.T. model. The 
coincidence of the isotherm with relation [6.116] is fortuitous. 

Note that the expression of the isotherm is established for an infinite 
number of layers, which accounts for the name infinite form of the B.E.T. 
equation given to relation [6.116]. The statistical calculation carried out for a 
finite number n of layers leads to: 

( )
( )

1

mono 1

1 1
1 1 1

n n

n

n x nxcx
V v

x c x cx

+

+

− + +
=

− + − −
 [6.119] 

This is the B.E.T. isotherm with n layers. 

NOTE.– The model accepts the coexistence of a high number of layers and of 
a non-covered surface. This, in fact, leads to negative surface tensions, 
which is the reason why the model only conforms to real-world experience 
when the pressure ratio P/P0 is less than 0.35. 

6.5.2. Frenkel, Halsey and Hill’s liquid layer model 

This model is founded on Hill and Everett’s hypothesis. The adsorbed 
layer is compared to a liquid. The two phases are subject to van der Waals 
forces deriving from a potential given by relation [6.7], and the hypothesis is 
adopted that the difference between the adsorbed layer and the liquid lies 
only in the difference between their van der Waals potentials. The reference 
liquid has a uniform thickness h and contains Γ moles per unit surface. It has 
a density of N(L) moles per unit volume such that: 

(L)N
h

=   [6.120] 
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This difference in van der Waals potentials is, in view of relation [6.7], 
and if we ignore the effects of repulsion: 

66
(L) 0 0(L)(G) 0 0

3 33 3
N rN r

z z
π επ εε = −   [6.121] 

In light of the pressures of equilibrium with the gas, the chemical 
potential difference of the fixed species between the adsorbed phase and the 
liquid is: 

(L) 0R ln PT
P

μ μ− =  [6.122] 

We consider that this difference is due only to the differences in 
Helmholtz energy – i.e. to the difference between the van der Waals 
potentials. By comparing relations [6.121] and [6.122] and replacing h with 
its value, drawn from expression [6.120], we obtain: 

0 3ln P a
P

= −   [6.123] 

We know that a is constant at a given temperature, which is expressed 
thus: 

4 6 3 6
(L) 0 0(L) (L) 0 0

B3k
N r NN r

a
T

π ε π ε−
=  [6.124] 

Other authors have proposed adopting a more general expression than 
relation [6.123], in the form: 

0ln n

P a
P

= −   [6.125] 

where 2 < n < 3.  

By another method, based on Hill and Everett’s thermodynamic model, 
Harkins and Jura found n = 2.  
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6.5.3. Polanyi’s potential model 

The model put forward by Polanyi is very old (1914) but remains useful 
even today, as it is the only model which is capable of making predictions. 

Relying once again on Hill and Everett’s hypothesis, we perform the 
same comparison as in the previous model, attributing the difference 
between the liquid and the adsorbed phase simply to the difference in 
interaction potential between the solid and the molecule, so we can write: 

0

(L) R ln PT
P

μ μ ε− = =  [6.126] 

Figure 6.8(a) shows the plot of the equipotential curves (Δε constant) in 
the vicinity of the surface of a solid. 

 

Figure 6.8. Polanyi’s potential model: a)  
equipotentials; b) characteristic curve 

This time, we shall not state an expression for ε , instead choosing a 
different means of comparison. 

Let 1v , 2v , …, maxv  denote the volumes contained between the solid and 
the equipotentials 1ε , 2ε , …, 0 . maxv  is the total volume of the 
adsorption zone. As v  increases from 0 to maxv , ε  decreases from its 
maximum value to 0. 

The process of construction of the adsorbed layer can then be represented 
by a curve known as the characteristic adsorption curve ( )f vε = . That 
curve can be plotted on the basis of an isotherm found experimentally, by 
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way of a hypothesis about the nature of the adsorbed phase which, in our 
case, is supposed to be very similar to the liquid. In this case, the volume iv  
corresponding to a potential iε  will be given by: 

(L)

i
i

m
v

ρ
=  [6.127] 

where im  is the adsorbed mass and (L)ρ  is the density of the liquid at 
temperature T of the experimental isotherm. 

Conversely, if by one means or another we know a characteristic curve of 
adsorption, we can use it to work back to the isotherm. 

Polanyi makes the hypothesis that, for a given gas and solid, the 
characteristic curve of adsorption does not depend on the temperature. This 
hypothesis was verified by Titoff in the case of the adsorption of carbon 
dioxide by wood charcoal. Thus, on the basis of a characteristic curve of 
adsorption, we can obtain isotherms at other temperatures, and consequently, 
by using relation [6.54], calculate the equilibrium heat of adsorption qΔσ. 
Figure 6.8(b) shows the characteristic curve of adsorption found by Titoff. 
Note the similarity in shape between the curve in Figure 6.8(b) and that 
given in Figure 6.4. 

With the aim of determining the isotherms of adsorption of two different 
gases A and B on the same solid, Polanyi and Berenyi examined the 
relations between the characteristic curves of adsorption of the different 
gases on the same solid. On wood charcoal, they found the relation: 

1/2

A A

B B

a
a

ε
ε

=  [6.128] 

aA and aB denote the coefficients a of each of the two gases, A and B, in 
their respective van der Waals equations. If this expression is supposed to be 
satisfied for 0ε ≠  ( maxv v≠ ), we must have: 

1/20 0
A

BA B

ln lnaP P
P a P

=  [6.129] 
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This expression has been properly verified by Lindau. 

This result led Dubinin to postulate that for all gases on a given solid, the 
characteristic curve of adsorption had the equation: 

( )f vε β=  [6.130] 

The function f(v) is independent of the gas. The coefficient β is called the 
affinity coefficient of the adsorbent.  

Experience has shown that for two gases A and B, the coefficients β have 
the same ratio as that existing between the molar volumes of the adsorbates 
in the adsorbed state, i.e. liquid, which is expressed by: 

0
(A)A
0

B (B)

v
v

β
β

=  [6.131] 

Hence, we find: 

0 0

0 0
(A) (B)A B

R Rln ln ( )T P T P f v
v P v P

= =  [6.132] 

Using this relation, it is possible to calculate an isotherm on the basis of 
another by way of the characteristic curves. 

Certain criticisms have been leveled at this model. London noted that  
as the adsorption potentials vary in 1/r3, the values Δε  quickly become 
negligible. This is undoubtedly compensated by the fact that the adsorbed 
layer itself has an adsorption potential. Lewis, for his part, proposed to 
replace the pressures by the fugacities, arguing that the proximity between 
the adsorbed phase and the liquid phase leads to not-insignificant 
interactions. 

Ultimately, and paradoxically, the success of this model stems from the 
fact that it does not give an isotherm equation, but instead requires us, in 
order to find such an equation, to have at least one experimental curve at our 
disposal. This knowledge enables us, in view of the different observations, to 
find the isotherm of adsorption of the same gas on different solids at 
different temperatures. 



202     Thermodynamics of Surfaces and Capillary Systems 

6.6. Adsorption on porous substances 

In the models we have discussed up until now, the gas was considered to be 
adsorbed on the whole of the surface of the solid, which was fully accessible. 
All points on that surface had equivalent (if not identical) properties. Thus, 
these models are completely legitimate to represent adsorption on: 

– the surfaces of non-porous solids; 

– solids exhibiting pores so small that the molecule of gas is not sterically 
able to penetrate them; 

– solids whose pores have a sufficient value so that all the effects linked 
to the radii of curvature of those pores are negligible. The surface of those 
pores, then, presents no difference with the rest of the surface. 

We shall now turn our attention to solids exhibiting medium porosity, 
whose adsorption is characterized by Type IV or V isotherms (see 
Figure 6.1). 

Type IV isotherms present a sharply ascending part for high relative 
pressures, which closely follows the part represented by the B.E.T. isotherm, 
for instance (Figure 6.9). The quantities adsorbed on saturation become very 
great. 

 

Figure 6.9. Hysteresis of the Type IV isotherm 

In addition, for this type of isotherm, it has been observed that the curve 
plotted by decreasing the relative pressure (desorption curve) was not  
identical to that obtained by increasing the relative pressure (adsorption 
curve). We see an effect of hysteresis between the two parts of the curve (see 
Figure 6.9). 
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These two peculiarities of Type IV and V isotherms have been explained 
by including the phenomenon of capillary condensation in the pores of the 
adsorbent solid. 

To present this explanation, in the following we shall consider a simple 
specific case which leads to a strictly-vertical ascendant part of the isotherm 
of adsorption (Figure 6.10). 

6.6.1. Process of pore filling 

Consider a solid whose pores are all identical to cylinders of the same 
radius r and open at both ends. 

Starting from zero, when we increase the pressure of the gas, it is 
adsorbed to the whole surface, including the internal surface of the pores. In 
this step, we see multilayer adsorption far from saturation – i.e. which is 
accurately represented by the B.E.T. isotherm. 

When the layer inside of the cylinders is sufficiently thick – a thickness 
estimated for a relative pressure of 0.35 – to have a surface tension to speak  
of, the cylindrical film has a saturating vapor pressure equal to that given  
by a cylindrical meniscus whose Kelvin radius is equal to the diameter of the 
cylinder and is given by relation [5.26]. The ratio of the pressures at 
equilibrium is then given by relation [4.31] (Figure 6.10(a)). We can show that 
this film becomes unstable in relation to a certain surface containing the same 
quantity of material, and which has the property of having a mean radius of 
curvature less than the radius of the cylindrical pore (Figure 6.10(b)). 

As the pore continues to fill, that surface grows, and its mean radius of 
curvature decreases (see Figure 6.10(c)). Filling continues until the pore is 
obstructed by a biconcave liquid lens (Figure 6.10(d)). The liquid is then 
limited by a spherical meniscus whose average radius is equal to the radius 
of the cylinder, r. 

 

Figure 6.10. Capillary condensation in a cylindrical pore 
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Figure 6.11. a) Adsorption; b)  
desorption – with capillary condensation 

Filling continues (Figure 6.10(e)) as long as the radius of the meniscus is 
equal to the radius of the cylinder. 

If we continue filling, the radius of the meniscus increases until it 
becomes infinite (Figure 6.10(g)). 

6.6.2. Shape of the adsorption curve 

On a diagram (Figure 6.11(a)), let us plot the quantity adsorbed as a 
function of the logarithm of the pressure ratio. On the abscissa axis, we place 

the two noteworthy values 
0

R
v

r T
σ−  and 

02
R

v
r T
σ− , which correspond to the 

values of the pressure at equilibrium of a cylindrical meniscus and a 
spherical meniscus, both concave, with a Kelvin radius equal to the radius of 
the pore. 

Figures 6.10(a)–(f) correspond respectively to points (a)–(f) in 
Figure 6.11(a). 

We shall now plot the isotherm by setting different increasing values of 
the ratio P/P0 (Figure 6.11(a)). Once we reach the point a, the experimental  
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conditions will be out of equilibrium (which would be at H, equilibrium of a 
cylindrical meniscus) and the system will evolve spontaneously so as to  
re-establish its state of equilibrium – i.e. the figurative point will shift 
directly in terms of f irreversibly. 

If the pores are not identical, it is easy to show that this results, on the 
isotherm, in a non-vertical ascending part, whose limit abscissa values 
depend on the limit radii of the pores. 

6.6.3. Shape of the evaporation curve, phenomenon of hysteresis 

As we saw earlier, it can be shown experimentally that the isotherm 
obtained by decreasing the pressure is not identical to the isotherm of 
adsorption.  

This phenomenon of hysteresis can easily be explained, which we did 
using a simple example of a solid containing identical cylindrical pores with 
radius r. Figure 6.12(g) shows the state of the pores, which are full to begin 
with. 

When the pressure is decreased, reversible evaporation takes place (see 
Figures 6.12(h), 6.12(i) and 6.12(j)) until the two spherical menisci of liquid 
are tangential to one another (Figure 6.12(j)). At that moment, the particular 
surface reforms (Figure 6.12(k)) and we again see the cylindrical meniscus. 
Figure 6.11(b) shows the corresponding plot of the desorption curve. Once 
we reach point j, the system, where the pressure is fixed, spontaneously and 
irreversibly evolves at m. 

 

Figure 6.12. Evaporation in a cylindrical pore 

Finally, the whole of the two plots appears in the form shown in 
Figure 6.13. The two verticals are such that: 

2

0 0
d a

P P
P P

=  [6.133] 
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Figure 6.13. Theoretical adsorption and  
desorption isotherms for identical cylindrical pores 

Hence, the classic process of multilayer adsorption followed by capillary 
condensation account for the isotherms of Type IV and V. 

It is also worth noting that the vertical part of the adsorption does not 
correspond to a state of equilibrium, unlike the vertical part due to 
desorption. For this reason, it is the desorption curve that is used to 
determine the radii of the pores. 

If the pores are not uniform, it can be shown that the desorption part 
remains practically vertical. 

6.6.4. Relationship between the shape of the pores and the 
hysteresis loop 

Barrer, de Boer and their collaborators studied the influence of pore 
shape on the shape of the hysteresis loop. Thus, de Boer distinguishes five 
types of hysteresis loops, which he calls A, B, C, D and E. As types A, B and 
E occur most commonly, we shall limit our discussion here to those three 
types, whose isotherms are shown in Figure 6.15. 
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Figure 6.14. Shapes of pores leading  
to type-A hysteresis loops 

Type A is found in the following cases (Figure 6.14): 

– cylindrical capillary tubes open at both ends (Figure 6.14(a)); 

– expanded cylindrical capillary tubes with a small radius of aperture and 
with the condition on the radii rm< rw< 2rm (Figure 6.14(b)); 

– rectangular-section capillaries, open at both ends (Figure 6.14(c)); 

– cylindrical ink-bottle pores, with the conditions rm< rw< 2rm 

(Figure 6.14(d)); 

– cylindrical capillary tubes with a narrower part, where rm< rw< 2rm 
(Figure 6.14(e)); 

– cylindrical ink-bottle pores with the condition 2rm< rw (Figure 6.14(f));  

– cylindrical ink-bottle pores open at both ends, where rw > 2rm 
(Figure 6.14(g)). 

Type B is found in the following two cases: 

– very wide capillaries (radius greater than 50 nm); 

– parallel planes at a certain distance from one another. 
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Figure 6.15. Shapes of hysteresis loops for types A, B and  
E of the pore shapes according to De Boer’s classification 

Type E strongly resembles type A; it can be attributed to open pores of 
radius rm having spherical parts with radius rw greater than 2rm. 

If there is a distribution of the minimum radii rm, the desorption branch 
will no longer be absolutely vertical. 

In all cases where the pore does not have a uniform radius, the desorption 
branch corresponds to the radius of aperture of the pore (at the ends). 

The shapes of the hysteresis loops are used to determine the pore radius 
distributions (see the Appendix). 

Thus, we have used models to illustrate monolayer adsorption which 
leads to Type I isotherms, multilayer adsorption leading to Type III and 
Type IV isotherms, and multilayer adsorption and capillary condensation for 
Type V and VI isotherms in Brunauer’s classification system. 



7 

Chemical Adsorption of Gases by Solids 

Physical adsorption (see Chapter 6) involves physical bonds between 
molecules. We shall now describe a different type of adsorption, known as 
chemical adsorption, where gas molecules are linked to a solid by chemical 
bonds (molecular orbitals). 

7.1. Chemical force between gas and solid surfaces 

If the gas atom has single electrons, or if the dissociation of the gaseous 
molecule creates atoms with single electrons, or even if the gas molecule 
contains a multiple bond liable to be broken, there is the possibility of a 
chemical bond being formed between the gas and the solid. We shall 
distinguish between two types of solids: metals and semiconductors. 

7.1.1. Chemical adsorption on metals 

By magnetic studies, the main results have been obtained for the 
adsorption of gases on nickel.  

With hydrogen, it has been shown that, at a constant temperature, the 
magnetization of the nickel decreases in a linear fashion with the amount of 
hydrogen fixed, and corresponds to two electron holes in the d band per 
molecule of hydrogen. This result proves that the adsorption of a molecule of 
hydrogen takes place with two bonds, rendering a dissociative chemical 
adsorption of hydrogen to nickel likely, meaning that the gas molecule is 
split into two atoms when bonded with the metal. The same result is found 
with nitrogen molecules. 

Thermodynamics of Surfaces and Capillary Systems, First Edition. Michel Soustelle.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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The adsorption of a molecule of ethylene gives the same magnetic result 
as that of a hydrogen molecule, which appears to prove that the chemical 
adsorption of a molecule of ethylene takes place by means of its  electrons. 
At 100°C, the number of electrons transferred would be around 6, implying 
the dissociation of the ethylene molecule on adsorption. 

The adsorption of a molecule of benzene fills 6 electron holes in band d, 
from which we deduce that the bond is made by the  electrons in the 
benzene ring. 

It has also been shown that ethane is fixed by 6 electrons, which involves 
the breaking of three bonds in the gas molecule. By contrast, carbon 
monoxide is adsorbed without dissociation of the molecule. 

Chemical adsorption of most gases results in a variation in the potential 
for electron extraction of the metal Δφ. In the majority of cases, adsorption 
gives a negative film; however, ethylene, acetylene and vapors of alkali 
metals create positive films on the nickel. These results can be explained by 
the relative position of the Fermi level of the metal and the bond energy or 
the electron affinity of the gas. Indeed, if the ionization potential of the gas 
Ei is less than the metal’s electron extraction potential, this means that the 
energy level of the electron in the adsorbate in the neutral state is higher  
than the Fermi level of the metal, so we have a polarized bond G+M– 

(Figure 7.1(a)). 

If the electron affinity EA of the adsorbate is greater than the work needed 
to extract the electrons from the metal, this means that there is an energy 
level of the electrons in the ionized gas in the form G– which is lower than 
the Fermi level of the metal and we obtain a bond G–M+ (Figure 7.1(b)). 

 

Figure 7.1. Relative position of the Fermi level of the metal:  
a) the potential d (ionization of the gas); b) the electron affinity of the gas 
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In all cases, if we adopt Helmholtz’s hypothesis that the adsorbed layer 
forms a flat capacitor, of thickness d equal to the distance between the 
adsorbed particle and the support, and potential difference Δφ, according to 
the classic relations of electrostatics, we have: 

Qe
c

ϕ =  [7.1] 

Q is the adsorbed quantity, proportional to the degree of coverage θ, e is 
the elementary charge and c is the capacity of the capacitor with surface area 
S, which obeys the relation: 

Sc
d

ε=  [7.2] 

If  denotes the dipole moment of the bond between the molecule and the 
metal, we deduce: 

Sμ θϕ
ε

=  [7.3] 

Thus, we see that the absolute value of the extraction potential varies in a 
linear fashion with the degree of coverage. Thus, in the case of a negative 
layer, if we ignore the energies of interaction between adsorbed particles, the 
enthalpy of adsorption would be: 

0
a A aH E H bϕ θ= − = −  [7.4] 

Thus, without bringing into play the concept of a heterogeneous surface, 
we can explain affine variations in the heat of adsorption with the degree of 
coverage. 

Thus, by measuring the potential difference Δφ, we are able to find the 
dipole moment of the bond, and therefore its ionic nature. 

NOTE.– The use of relation [7.2] can be prevented if the distance between 
the solid and the linked molecule is of the same order of magnitude as that 
which separates the charges in the molecule. More sophisticated models 
have got around this difficulty and yielded qualitatively-similar results. 
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7.1.2. Chemical adsorption on semiconductors 

Studies of chemical adsorption on semiconductors have shown that the 
electrical conductivity of the solid varies with the adsorbed quantity in one 
direction or the other. Also, at saturation, the covered fraction is often much 
less than the whole. 

Three approaches have been taken to the modeling of the adsorption of 
gas on semiconductive solids: the concrete model method, the band diagram 
method and the valence line method. These methods – particularly the  
first two – must not be viewed as different models, but rather as different 
approaches to the same phenomenon. 

7.1.2.1. Concrete model method 

Consider the adsorption of a gas G to an ionic semiconductor formed of 
cations C+ and anions A–. Wolkenstein showed that it was necessary to take 
account of two types of bond between the gas and the solid: the weak bond 
and the strong bond. 

In the so-called weak bond, the set formed by the adsorbed gas molecule 
G and its adsorption site undergoes no electrical alteration. The bond is 
formed by a single electron, similar to the bond in the molecule H2

+. We 
shall represent such a bond by the symbol GL, with L denoting the lattice. A 
dipolar electrical moment occurs because of the movement, to a greater or 
lesser extent, of the electron clouds of the gas and of the support particle. 
The support particle may be either a cation or an anion in the lattice (see 
Figures 7.2). 

 

Figure 7.2. Weak adsorption with only one electron 

In the so-called strong bond, the fixed particle keeps either an electron or 
a free electron hole close to it, and thus behaves like a charged particle. We  
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can then see that the electrical conductivity can be modified. If an electron is 
retained, the bond formed will be an n bond (written as GeL); if an electron 
hole is retained, then it will be a p bond (GpL). We can easily see that the 
adsorption of an electron acceptor gas will increase the conductivity by 
fixing to a semiconductor p, whereas that conductivity would be decreased 
on a semiconductor of type n. The opposite result is obtained by the 
adsorption of an electron donor gas. 

The strong bond leads to the formation of a double electrical layer, 
positive or negative on the outside and of the opposite sign on the inside. 
This double layer renders it more difficult to extract electrons from the solid, 
which necessarily decreases the enthalpy of adsorption. In the same way, a 
calculation similar to that put forward by Helmholtz for metals gives us 
relation [7.4]. Thus, we find the linear decrease of the enthalpy of 
adsorption. 

According to Wolkenstein, only weakly-bonded gas molecules are liable 
to desorb in the same state as they were in before adsorption. 

7.1.2.2. Band diagram model 

An ionic semiconductor can be represented by a band diagram showing 
two energy bands: a valence band for lower energy levels and a conduction 
band for higher energies. These two bands are separated by the forbidden 
band (gap), whose “width” is a characteristic of the semiconductor. In the 
forbidden band, a few levels are authorized by the presence in the 
semiconductor of point defects that are electron donors or acceptors 
(Figure 7.3). 

 

Figure 7.3. Energy position of a  
donor and an acceptor 

It has been shown that a foreign particle G chemically adsorbed to the 
surface by a weak bond has its “image” at level A or at level D, depending  
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on whether G is an electron acceptor or donor. The appearance of an electron 
on level A indicates the passage from the weak bond to the strong bond, and 
this may take place either by the falling to level A of electrons from the 
conduction band (e.g. oxygen on ZnO), or by the raising to A of an electron 
from the valence band (e.g. oxygen on Cu2O). The same reasoning can be 
applied for level D, near to the valence band. The creation of the strong bond 
causes the appearance of a surface electric charge. This results in a curvature 
of the band diagram in the vicinity of the surface, which leads to an 
alteration of the Fermi level, and therefore a limitation of the adsorbed 
quantity. Figures 7.4(a) and 7.4(b) respectively show the shape of the bands 
in the adsorption of an electron acceptor to a semiconductor n and of an 
electron donor to a semiconductor p. 

 

Figure 7.4. Shape of the bands in a semiconductor on the  
adsorption: a) of an acceptor gas to type-n; b) of a donor to type-p 

7.1.2.3. Valence lines model 

In this model, we consider that the free electrons and electron holes in  
the semiconductors constitute free valences on the surface of the solid.  
Figures 7.5(a), 7.5(b) and 7.5(c) respectively show the valence arrangement 
of a weak bond, a strong bond n and a strong bond p. The localization is not 
specified, other than the fact that the electron defect is associated with an 
ionic point defect, and we find, for instance, oxygen vacancies as the site of 
adsorption of an oxide n liable to accommodate an electron donor gas. 

 

Figure 7.5. Different types of valence lines on a semiconductor 

a) b) 
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7.2. Physical adsorption and chemical adsorption 

Let us return to the comparison between the potential energy of the 
adsorbed molecule and the thermal (kinetic) energy kBT. We have already 
used this comparison for the instantaneous potential energy, which enabled 
us to differentiate mobile physical adsorption and localized adsorption (see 
section 6.4.1). 

We shall now compare the mean potential energy of a gas molecule 
approaching a solid using thermal energy. We shall base our discussion on 
the example of the adsorption of nitrogen to nickel, and examine three cases: 

– the mean potential energy is less than the heat energy, in which case we 
speak of collision rather than adsorption, and the phenomenon can simply be 
modeled as the specular backscattering of the gas molecules onto the surface 
of the solid. We say that the accommodation coefficient, which is defined as 
the probability of a gas molecule of being adsorbed on contact, is nearly 
zero. This coefficient will be nearer to 1 when the interaction energy is close 
to the kinetic energy of the gas. The molecules spend only a very short 
period of time – around 10-13s – in interaction with the solid wall (this is the 
period of oscillation at the minimum of the potential trough); 

– the mean potential energy is around a few kBT, in which case we have 
physical adsorption. In this case, the accommodation coefficient is near to 1, 
and the residence time in the vicinity of the surface is of the order of 10-7s at 
a temperature of 300 K. The curve giving the potential energy as a function 
of the distance from the wall reaches a minimum at equilibrium (Figure 7.6), 
with an attraction in 1/r3 (see section 6.2); 

– the mean potential is greater than 10 or 20 times the kinetic energy kBT. 
We then have chemical adsorption. The adsorption is attended by the 
breaking of the N-N chemical bond, which produces a curve showing an 
energy of activation of adsorption, Ea, before reaching the position of 
equilibrium of chemical adsorption (Figure 7.6). The accommodation 
coefficient will be 1 and the residence time around 10+17s at a temperature of 
300 K. 

Table 7.1 presents the details for the three cases envisaged here. 
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Figure 7.6. Physical adsorption and chemical adsorption 

Energy of interaction 
(kJ/mole) 

Residence time 
(s) 

Accommodation 
coefficient 

Phenomenon 

0.4 10-13 0 Collision 

40 10-7 1 Physical 
adsorption 

180 10+17 1 Chemical 
adsorption 

Table 7.1. Comparison of the differing behaviors  
of a gas molecule as it approaches a solid surface 

 

Figure 7.7. Transition from physical adsorption  
to chemical adsorption 
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The existence of an activation energy for the process of chemical 
adsorption means that this process tends to take place at a high temperature, 
whereas physical adsorption, which is a non-activated process, can occur at a 
lower temperature. It is possible for the same gas–solid couple to be 
involved in both phenomena in succession as the temperature increases, as is 
shown by Figure 7.7. This figure illustrates that, when the temperature rises, 
the absorbed quantity (isobar of adsorption) passes from a characteristic 
curve of physical adsorption to a characteristic curve of chemical adsorption. 

7.3. Isotherms of adsorption and experimental results 

As the bond between the gas and the surface of the solid is chemical in 
nature, this often results in the existence of a monolayer of gas at the 
maximum. That same bond means that we have localized adsorption. 

As in the case of physical adsorption in a monolayer, we very often 
choose the fraction of coverage θ (or degree of filling), at equilibrium, of the 
surface as the value linked to the adsorbed quantity.  

 

Figure 7.8. Isotherm of chemical adsorption 

Experience shows us that chemical adsorption is also a divariant 
phenomenon. The quantity fixed at equilibrium is a function of the gas 
pressure and of the temperature. 

Figure 7.8 shows the typical shape of an isotherm of chemical adsorption. 
Note a saturation effect at high pressures. 
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The difficulty of obtaining isotherms experimentally usually lies in the 
achievement of low gas pressures that are perfectly controlled, which cannot 
be obtained directly, but instead are established on the basis of a chemical 
equilibrium which determines the gas pressure (for example the fixation of 
very low pressures of pure oxygen because of the tension of dissociation of 
an oxide). 

The phenomenon of chemical adsorption is exothermic, which results in a 
decrease of the quantity adsorbed at equilibrium as the temperature 
increases, which has been verified experimentally. 

It is very helpful to be able to measure the heat of adsorption. This can be 
done directly by calorimetry, or indirectly on the basis of the isotherms 
obtained at different temperatures. Experimentally, we see that the heat of 
adsorption frequently varies with the fraction of coverage (Figure 7.9). The 
values given by the tables, therefore, are usually the initial heats of 
adsorption (with zero coverage). 

 

Figure 7.9. Variation in enthalpy of chemisorption  
with degree of coverage 

7.4. Langmuir’s model of equilibrium of chemical adsorption 

The above characteristics, which are comparable to those of localized 
monolayer physical adsorption (see section 6.4.4), mean that Langmuir’s is 
the fundamental model for equilibria of chemical adsorption. 
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Remember that in the conditions of that model, the equilibrium of 
chemical adsorption is written: 

G s G s+ = −  [7R.1] 

where the species s and G–s are two components of the same solution. 

The law of mass action, applied for the equilibrium of the previous 
reaction, is written: 

G s

s

  
(1 )

K
P

γ θ
γ θ

− =
−

 [7.5] 

where G sγ −  and sγ  respectively denote the activity coefficients of the 
components of the solution: s and G–s. 

As K is an equilibrium constant, it obeys van ‘t Hoff’s law with changing 
temperature, so: 

0
0  exp  

R
a H

K K
T

= −  [7.6] 

The activity coefficients are not independent: at constant total pressure 
and temperature, they are linked by the equation derived from the Gibbs–
Duhem equation: 

G s sln (1  ) ln   0d dθ γ θ γ− + − =  [7.7] 

If we examine the particular case of a surface which would constitute a 
perfect solution of free and occupied sites, the activity coefficients are both 
equal to 1, and obviously, we have Langmuir’s isotherm: 

 
1

KP
KP

θ =
+

 [7.8] 

In view of the variations in the equilibrium constant with temperature, 
given by relation [7.6], Langmuir’s equation takes the form: 

0
0

0
0

exp   
R

  
1 exp   

R

a

a

HK P
T

H
K P

T

θ
−

=
+ −

 [7.9] 
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This Langmuir equation is obviously identical to that found in physical 
adsorption; only the orders of magnitude of the enthalpies are different – 
around 20 kJ/mole in physical adsorption, as opposed to around 100 kJ/mole 
in chemical adsorption. 

7.5. Dissociative adsorption and Langmuir’s model 

It is difficult to imagine how stable, saturated gas molecules (H2, O2, etc.) 
could form a chemical bond with an atom at the surface of the solid. To 
explain this bond, as we saw in section 7.1, we are led to accept the 
hypothesis, in numerous cases, of dissociation of the gaseous molecule 
accompanying the adsorption. 

Thus, consider a gas Gi with atomicity i which dissociates on adsorption, 
according to: 

G   Gi i=  [7R.2] 

The equilibrium of fixation is written as: 

1G s G sii
+ = −  [7.10] 

The same reasoning as in the previous section yields: 

G s
1/

s

  
(1  )i K

P
γ θ

γ θ
− =

−
 [7.11] 

which, in the case of a perfect solution, gives us: 

1/   
(1  )i K

P
θ

θ
=

−
 [7.12] 

This is Langmuir’s new equation in the case of dissociation of the gas on 
adsorption. The curve obtained is of the same shape as that represented in 
Figure 7.8. 
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It may be that the different fragments of a gas AB do not attach to the 
same sites, so for instance, for a gas dissociating into two entities A and B, 
the equilibrium is written: 

A B A BAB s s A s B s+ + = − + −  [7R.3] 

The equilibrium condition gives us: 

  
(1  )(1  )

A B

A B

K
P

θ θ
θ θ

=
− −

 [7.13] 

If, in addition, the fractions of coverage of the two entities are identical, 
we obtain: 

2

2   
(1  )

A

A

K
P

θ
θ

=
−

 [7.14] 

This relation is of the same form as equation [7.12] for i = 2. 

7.6. Chemical adsorption of mixtures of gases in Langmuir’s 
model 

Consider the adsorption of a mixture of two gases A and B, which are 
adsorbed to the same surface. Then, two scenarios may arise: 

– either there are sites specific to A and sites specific to B, in which case 
the two adsorption reactions are independent, and the equations of the 
isotherms are given by relations [7.8] or [7.14]; 

– or the adsorption sites of the solid are the object of competition between 
A and B. Thus, let θA and θB denote the fractions of the surface at 
equilibrium respectively covered by A and B, and let PA and PB by the partial 
pressures of each of the two gases. The equilibria of adsorption will be: 

A s A s+ = −  [7R.4] 

and 

B s B s+ = −  [7R.5] 
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The molar fractions of the species will, respectively, be: 

 A s Ax θ− =  [7.15a]  

 B s Bx θ− =  [7.15b] 

and: 

  1    s A Bx θ θ= − −  [7.15c] 

Thus, let us apply the law of mass action to each of the two equilibria; the 
isotherms become: 

 
(1   )

A s A
A

A s A B

K
P

γ θ
γ θ θ

− =
− −

 [7.16a] 

and 

 
(1   )

B s B
B

B s A B

K
P

γ θ
γ θ θ

− =
− −

 [7.16b] 

In the context of Langmuir’s hypothesis of the perfect solution, we 
obtain: 

  
(1     )

A
A

A A B

K
P

θ
θ θ

=
− −

 [7.17a] 

and 

  
(1     )

B
B

B A B

K
P

θ
θ θ

=
− −

 [7.17b] 

which gives us, for the coverage of each species: 

  
1    

A A
A

A A B B

K P
K P K P

θ =
+ +

  [7.18a] 
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and 

  
1    

B B
B

A A B B

K P
K P K P

θ =
+ +

 [7.18b] 

We can see that the ratio between the fractions of coverage is 
proportional to the ratio between the partial pressures. 

  .a aA

B B B

K P
K P

θ
θ

=  [7.19] 

These results can easily be generalized to the adsorption of more complex 
mixtures, and we can show that for the gas A, belonging to a mixture, we 
have: 

  
1

A A
A

j j
j

K P
K P

θ =
+

 [7.20] 

where j represents all of the gases present in the mixture, which are adsorbed 
to the same sites as the gas A. 

NOTE.– If the gases are dissociated and the sites competitive, in repeating the 
method in the previous section, we need to replace the partial pressures with 
those pressures assigned to the power 1/ij, where ij denotes the atomicity of 
the gas j. 

7.7. “Non-Langmuirian” isotherms of adsorption  

Langmuir’s expression (and its derivatives) is considered to be verified 
by experience, as the accuracy of the measurements was so poor. Today, we 
know that this expression represents a reasonably good approximation. 
However, it is very useful, because all expressions established more recently 
derive from Langmuir’s; in addition, it is a simple analytical expression 
which, most of the time, is sufficient when adsorption is one of the 
phenomena, along with others, occurring in a heterogeneous reaction, for 
example. 
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Two methods have been used to obtain other representations of the 
isotherm of adsorption. 

With the first method, we consider that not all the adsorption sites are 
equivalent. The distribution of sites, which may be continuous or 
discontinuous, is characterized by their heats of adsorption. It is not possible 
to detect whether that heterogeneity of the sites pre-exists the adsorption on 
the surface of the solid or if it is created as the surface becomes filled 
following the interaction between the affixed molecules (or both reasons). 
The two origins obviously lead to the same result. 

In this method, we apply Langmuir’s relation [7.9] to sites in category i, 
characterized by an enthalpy ,0

iaH  and add across all the categories of 
sites. 

Various energy distributions have been put forward: 

– suppose we have a single type of sites; we then obviously find 
Langmuir’s relation again; 

– suppose we have an exponential distribution of sites: 

0

0 0
0

  exp  i
i

H
n n

H
= −  [7.21] 

by summing together across all the values of θi, then for small values of θ , 
we find: 

0
0

Rln  ln   ConstantT
P

H
θ = +  [7.22] 

so: 

  nkPθ =  [7.23] 

This is the expression of Freundlich’s isotherm; 

– other authors posit that the heat of adsorption is an affine function of 
the degree of coverage, meaning that the curve in Figure 7.9 is assimilated to  
 



Chemical Adsorption of Gases by Solids     225 

a straight line (remember that such a curve was justified in section 7.1, by 
relation [7.4]). Thus, we posit: 

( )0 0
0  1  H H βθ= −  [7.24] 

Δ 0
0H  represents the initial heat of adsorption. Substitute that relation back 

into expression [7.9], and let us set: 

0
0 0  exp    

R
H

A K
T

= −  [7.25] 

We obtain: 

0
0  exp

1 R
H

AP
T
βθθ

θ
∞=

−
 [7.26] 

and expressed in logarithmic form, this gives us: 

0
0ln   ln   ln   

1  R
H

P A
T
βθθ

θ
∞= − −

−
 [7.27] 

In the range of average coverage (θ approximately 0.5), the first term on 
the right-hand side can be discounted, and we find the isotherm put forward 
by Temkin: 

0
0

R   lnT AP
H

θ
β

= −  [7.28] 

The second method for obtaining “non-Langmuirian” expressions is 
based on the general relation of the model [7.5], with which we associate a 
model of a non-perfect solution, which will express the activity coefficients 
as a function of the molar fractions – i.e. as a function of the degree of 
coverage. For instance, if we take the model of strictly-regular solutions, the 
activity coefficients are of the form: 

2
G sln   (1   )

R
w
T

γ θ− = −  [7.29a] 
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and 

2
sln    

R
w
T

γ θ=  [7.29b] 

By substituting back into relation [7.5], we find: 

(2  1)   exp
1 R

wKP
T

θ θ
θ

−=
−

 [7.30] 

which is of the same form as Tempkin’s isotherm. 

This second method for introducing heterogeneity by taking into account 
the interactions between adsorbed molecules and free sites (by the activity 
coefficients) is richer than the first method. Indeed, the models of solutions 
often have a physical basis, but the energy distributions in the first method 
are often set a priori. In addition, this second method is very well suited to 
all the different types of adsorption encountered (dissociative, mixture of 
gases, etc.). 



Appendix 

Applications of Physical Adsorption to the 
Study of the Area and Porosity of Solids 

Physical adsorption is at the root of two measurements characteristic of 
solids: 

– the specific area; 

– the pore radius distribution. 

A.1. Determination of the specific area of a solid 

The specific area is defined as the total external area accessible to a gas, 
per unit mass, usually in m2/g. To measure it, we use the B.E.T. method. 

A.1.1. Specific area and capacity of a monolayer 

The capacity of a monolayer monov  of a solid in relation to a gas is defined 
as being the volume of gas, expressed in normal conditions of pressure and 
temperature, which would be necessary to cover the surface of one gram of 
the solid with a complete monolayer on adsorption of the gas. This value is 
fictitious, because clearly, upon adsorption, the creation of upper layers 
begins before the monolayer is fully in place. When the quantity monov  is 
reached, this means that there are sufficient molecules adsorbed in the 
different layers to completely cover the solid in a monolayer. 

Let qm represent the number of molecules of gas adsorbed per gram of 
solid to form a monolayer, and molσ  the surface occupied by a molecule of 
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gas on the surface of the solid, measured in square angström. Thus, for the 
specific area, we find: 

2 20 2( / ) 10 (Ä )m molm g qΣ −=  [A.1] 

However, the number qm is linked to monov  by the relation: 

236.02 10 0.269
22400

mono
m mono

v
q v= × =  [A.2] 

This gives us the specific area: 

2 3 2( / ) 0.269 ( / , , ) (Ä )mono molm g v cm gT P NΣ =  [A.3] 

Note the particular units usually adopted in measuring the specific areas. 

A.1.2. Areas of the molecules 

In evaluating the area occupied on the solid by an adsorbed molecule, we 
suppose for simplicity’s sake that these molecules are spherical and that the 
molecules on the surface of the solid present a compact hexagonal 
arrangement. If we let M denote the molar mass, ρL the specific mass of the 
adsorbed liquid product and Na Avogadro’s number, we deduce: 

16

a

2 310
4 2Nmol

L

Mσ
ρ

=  [A.4] 

Hence, for instance, we choose the value 16.27 Ä2 for the area of the 
nitrogen molecule at the temperature of liquefaction of nitrogen, and 32.1 Ä2 
for the butane molecule. 

A.1.3. Measuring the capacity of a monolayer 

Various methods, based on physical adsorption, are used to evaluate the 
capacity of a monolayer and ultimately the specific area. The main two ones 
are: 

– the B-point method, which is fast but not hugely accurate; 
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– the B.E.T. method, which takes longer to implement but yields more 
definite results. 

A.1.3.1. The B-point method 

The B-point method is essentially a fast and simple method to evaluate a 
specific area. Emmet and Brunauer, considering Type II isotherms (see 
Figure 6.1), believed that the monolayer capacity should correspond to a 
remarkable point on the isotherm. According to the authors, such an 
isotherm exhibits five remarkable points called A, B, C, D and E (see  
Figure A.1). 

 

Figure A.1. Isotherm of adsorption 

Point chosen Measured error 

A 7-28% 

B 3-12% 

C 5-17% 

D 7-20% 

E 11-27% 

Table A.1. Errors in terms of the specific areas obtained  
based on the remarkable points on the isotherms 

They measured the specific area of known solids, supposing that the five 
remarkable points corresponded successively to the volume of the 
monolayer. The differences obtained, for each of the points, with the true 
value of the specific area are given in Table A.1. 
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Note that point B is the most satisfactory. This result was confirmed by 
the same authors, noting that curve giving the heat of adsorption as a 
function of the adsorbed quantity often showed a maximum for the value 
corresponding to that of point B on the isotherm. 

In addition, Halsey showed that this point B was where the affinity of the 
surface for the gas changed most quickly. 

Ultimately, it is unsurprising that no remarkable point on the curve 
corresponds to the specific surface, given that the monolayer is simply a 
mental construction and that fixation in multiple layers begins long before 
the surface has been fully covered. 

A.1.3.2. The B.E.T. method 

The B.E.T. method is much more accurate than the B-point method, and 
can be considered a true analytical method for measuring the specific area. 

Equation [6.117] enables us to calculate the capacity of the monolayer
monov (see section 6.5.1). In general, experience yields a straight line for 

values of the ratio between the pressures of between 0.05 and 0.35. Thus, we 
can say that the B.E.T. model is correct in that range. 

To take the measurements, it is advantageous to choose a gas which gives 
a high value of the parameter c. Indeed, for monoV v= , we can write 

0

1
1mono

P Vcv
P c

−=
−

. The higher the value of c, the smaller the ratio 0

P
P

is. This 

is why nitrogen is often used at the temperature of liquid air. 

In the case that 1c >> , and therefore 
1 1c

c
− ≈ , we obtain 1 0

monocv
≈ and 

the equation of the B.E.T line becomes: 

( ) 00

1

mono

P P
v PV P P

=
−

 [A.5] 

Then, the line passes through the origin, and thus a single point is 
sufficient to measure the capacity of the monolayer monov . 
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For measuring very small specific areas (around 1 m2/g), a small fraction 
of gas is adsorbed, so the quantity adsorbed cannot be known with precision. 
This difficulty can be overcome by working at temperatures where the vapor 
pressure of the adsorbed gas is sufficiently low to increase the value of the 
ratio between the pressures. For this purpose, it is common to use krypton at 
the temperature of liquid air; in such a case, the gas has a saturating vapor 
pressure of around 2 hPa. In these conditions, we can go far below 1 m2/g, 
using samples of a few grams of solid. 

In any case, the measurement of the specific area of a solid is one which 
does not yield a high degree of precision, and it would be illusory to 
envisage values with precision greater than 10%. 

A.2. Determination of the pore radii based on the isotherms of 
adsorption 

We have seen (section 6.6) that the pore radius is linked to the isotherms 
of physical adsorption with a hysteresis loop; hence the idea to use these 
isotherms to try to deduce a distribution of the radii of the open pores in a 
solid. 

A.2.1. Pore radius at equilibrium at a given pressure 

At a point on the desorption branch of the hysteresis loop, the liquid is 
condensed in spherical pores with a given Kelvin radius such that: 

0

0

2ln
RK

P v
P r T

σ= −  [A.6] 

This Kelvin radius is, in fact, the radius r of the pore less the thickness t 
of the adsorbed layer for the given pressure ratio P/P0. Thus, we have: 

Kr r t= +  [A.7] 

To determine r, then, we need to know the desorption curve of a gas to 
find rK, and its adsorption curve to determine t. 

For these measurements, it is usual to use the adsorption of nitrogen, and 
we shall see how to calculate the thickness of the adsorbed layer t. 
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A.2.2. Calculation of thickness t of the adsorbed layer  

To determine t we can, as Linsen did, assimilate the adsorbed gas to the 
liquid. Let X denote the volume of liquid adsorbed in cm3 per gram of solid, 
and S the surface area covered in m2 per gram of solid. Immediately, we can 
write: 

24
4

20

.10(Ä) 10
.10

X Xt
S S

= =  [A.8] 

However, if we assimilate the adsorbed gas to the liquid, and if V is the 
volume of the adsorbed gas in cm3, we can write: 

mass of liquid mass of adsorbed gas
density of the liquid density of the adsorbed gas 22400

MVX
ρ

= = =  [A.9] 

By feeding this back into relation [A.8], we obtain: 

410t
22400

MV
Sρ

=  [A.10] 

In the case that the adsorbed gas is nitrogen, we have the following 

values: 31 g/cm
12.4

ρ =  and M 28= , so: 

15.47Vt
S

=  [A.11] 

De Boer accepts that the surface of the pores is practically equal to the 
specific surface measured by the B.E.T. method which, in the case of 
nitrogen, tells us: 

2
BET mono mono16,27 0.269 4.37 m /gS S v v= = × =  [A.12] 

Hence, the thickness of the adsorbed layer: 

mono

t 3.54 V
v

=  [A.13] 
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In this expression, V is the volume adsorbed excluding the volume 
condensed in the pores. 

Hence, in order to calculate the pore radius, it is helpful to know the 

function 0

Pt
P

, which can be used to calculate the thickness t on the basis 

of the isotherm without having to first calculate the capacity of the 
monolayer monov . 

Three methods can be used to determine the function 0

P
t

P
. 

A.2.2.1. De Boer’s method 

De Boer calculated the quantity 
mono

3.54 V
v

for different solid samples. He 

plotted that quantity as a function of the ratio P/P0. 

For values of P/P0 less than 0.75, he notes that the points relative to the 
different solid samples all lie on the same curve. 

For values of the ratio P/P0 slightly greater than 0.75, the curves relative 
to each sample separate slightly. The second column in Table A.2 gives the 
values obtained by de Boer. 

P/P0 t(Ä) de Boer t(Ä) B.E.T. t(Ä) F.H.H. 

0.1 3.63 3.91 4.60 

0.2 4.36 4.42 5.17 

0.3 5.01 5.05 5.70 

0.4 5.71 5.90 6.23 

0.5 6 .50 7.08 6.83 

0.6 7.36 8.92 7.61 

0.7 8.57 11.9 7.89 

0.8 10.6 17.8 9.98 

0.9 15 35.4 12.92 

Table A.2. Compared values of the thicknesses of adsorbed layers as a  
function of the ratio between the pressures, obtained using different methods 
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A.2.2.2. B.E.T. method 

If we accept equation [6.116] for the isotherm, then we can deduce: 

( )

0

0 01 1 1mono

PcV P
P Pv c
P P

=
− + −

 [A.14] 

However, for nitrogen, we have c >>1, and for a certain range of the 

pressure ratio 0 1Pc
P

>> , the equation of the isotherm is reduced to: 

mono
0

1

1

V
Pv
P

=
−

 [A.15] 

This gives us the following value of the thickness of the adsorbed layer: 

0

3.54

1
t

P
P

=
−

 [A.16] 

The third column in Table A.2 gives the values of t thus obtained. Note 
that they match closely with those found by de Boer as long as the pressure 
ratio P/P0 is less than 0.4 – in fact, in the domain of validity of the B.E.T. 
equation. 

A.2.2.3. Frenkel, Halsey and Hill (F.H.H.) method 

It has been remarked that for high relative pressures, the F.H.H. isotherm 
was far more satisfactory than the B.E.T. isotherm. We saw earlier (in 
section 6.5.2) that this isotherm is expressed in the form: 

30 3

mono

R ln P a KT
P V

v

= − = −  [A.17] 
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From this, the following ratio was derived: 

1/3

0
mono ln

V K
Pv RT
P

=  [A.18] 

For nitrogen at 77 K, the proposed ratio K/RT = 5, so we have the 
following value of t: 

1/3

0

53.54
2.3log

t
P
P

=  [A.19] 

The last column in Table A.2 shows that the values obtained match well 
with de Boer’s results. 

A.2.3. Determination of the pore radius distribution in a solid 

Thus, consider a solid whose pores do not all have the same radius. We 
want to plot the curve giving the volume of the pores as a function of their 
radius, which is called the pore volume distribution curve. We suppose that 
the hysteresis loop for the adsorption of nitrogen to the solid in question is 
known. 

A.2.3.1. General method 

At pressure Pn, all the pores of radius r < rn are filled with liquid. Divide 
the abscissa axis of the isotherm (axis of relative pressures) into equal 
intervals. If the pressure is decreased from Pn to Pn+1 < Pn, the pores whose 
radius is between rn and rn+1 < rn will empty. 

If the interval (Pn, Pn+1) is small, we can say that these pores have a mean 
radius given by:  

1

2
n n

n
r r

r ++=  [A.20] 
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If Ln denotes the total length of the pores of radius rn and 1nS − the 

surface area of the already-empty pores, the total volume 
1

n

n
V

+
 freed up in 

that interval is equal to the volume of liquid evaporated from the pores of 
radius rn, plus the quantity of gas desorbed from the pores already emptied of 
liquid, so: 

( ) ( )2
1 1 11

n

n n n n n nn
V r t L t t SΔ π + + −+

= − + −  [A.21] 

However, if we let ( 1)p nV −  represent the volume of already-empty pores 
with radius rn-1, the surface of the already-empty pores is: 

( 1)
1

1

2 p n
n

n

V
S

r
−

−
−

=  [A.22] 

Furthermore, the total length of the pores with radius nr  is: 

( )
2

p n n
n

n

V r
L

rπ
=  [A.23] 

By feeding back the values given by expressions [A.22] and [A.23] into 
expression [A.21], we obtain: 

( ) ( )
( ) ( )

2
( 1)

12 1
11

2
n

n
p nn

n np r n
nn n

Vr
V V t t

rr t
−

++
++

= − −
−

 [A.24] 

Based on the isotherm, then, it is possible to plot the curve ( )np r
V  as a 

function of nr  (with nr  being calculated using Kelvin’s equation  [A.6] and 
tn by one of the methods indicated in sections A.2.2.1 , A.2.2.2  or A.2.2.3).  

A.2.3.2. Approximate method for very nearly vertical adsorption 
curves  

When the ascending part of the curve is vertical or very nearly vertical 
(Figure A.3), it can be assumed that for a given relative pressure, the total 
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fixed amount is given by the desorption curve, whilst the adsorption curve 
shows the adsorbed quantity. This gives us our method. 

The pores with radius nr  have the volume: 

( ) ( )
1n

n

p r n
V V

+
=  [A.25] 

However, in view of Figure A.38, we have: 

( ) 1 11
A B A B

n

n n n nn
V + ++

= −  [A.26] 

On the basis of the curves which give ( ) ( )
n np rV f r= , we can plot the 

distribution given: 

( )d
d

p
n r

n

V
f r

r
=  [A.27] 

 

Figure A.2. Hysteresis loop for nitrogen adsorption 

The adsorption method can be used to measure pore diameters of between 
100 and 2500 nm. Above this range, the pressure ratio is too close to 1. 
Below this range, Kelvin’s formula [A.6], which is a macroscopic formula, 
no longer applies, and hysteresis loops no longer occur. 
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NOTE.– We have seen another method to determine the pore size 
distribution, based on the infiltration of mercury (see section 3.2.2.2). In this 
case, we can measure volumes greater than 700 nm, so the two methods 
overlap in the 700–2000 nm range. Indeed, the results obtained match within 
10%. 
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