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Preface

This book — an in-depth examination of chemical thermodynamics — is
written for an audience of engineering undergraduates and Masters students
in the disciplines of chemistry, physical chemistry, process engineering,
materials, etc., and doctoral candidates in those disciplines. It will also be
useful for researchers at fundamental- or applied-research labs, dealing with
issues in thermodynamics during the course of their work.

These audiences will, during their undergraduate degree, have received a
grounding in general thermodynamics and chemical thermodynamics, which
all science students are normally taught. This education will undoubtedly
have provided them with the fundamental aspects of macroscopic study, but
usually the phases discussed will have been fluids exhibiting perfect
behavior. Surface effects, the presence of an electrical field, real phases,
the microscopic aspect of modeling, and various other aspects, are hardly
touched upon (if at all) during this early stage of an academic career in
chemical thermodynamics.

This set of books, which is positioned somewhere between an
introduction to the subject and a research thesis, offers a detailed
examination of chemical thermodynamics that is necessary in the various
disciplines relating to chemical or material sciences. It lays the groundwork
necessary for students to go and read specialized publications in their
different areas. It constitutes a series of reference books that touch on all of
the concepts and methods. It discusses both scales of modeling: microscopic
(by statistical thermodynamics) and macroscopic, and illustrates the link
between them at every step. These models are then used in the study of solid,
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liquid and gaseous phases, either of pure substances or comprising several
components.

The various volumes of the set will deal with the following topics:
— phase modeling tools: application to gases;

— modeling of liquid phases;

— modeling of solid phases;

— chemical equilibrium states;

— phase transformations;

— electrolytes and electrochemical thermodynamics;

— thermodynamics of surfaces, capillary systems and phases of small
dimensions.

Appendices in each volume give an introduction to the general methods
used in the text, and offer additional mathematical tools and some data.

This series owes a great deal to the feedback, comments and questions
from all my students at the Ecole Nationale Supérieure des Mines
(engineering school) in Saint Etienne who have “endured” my lecturing in
thermodynamics for many years. I am very grateful to them, and also thank
them for their stimulating attitude. This work is also the fruit of numerous
discussions with colleagues who teach thermodynamics in the largest
establishments — particularly in the context of the “Thermodic” group, founded
by Marc Onillion. My thanks go to all of them for their contributions and
kindness.

This seventh instalment is devoted to the study of surface phenomena and
to the properties of phases with small dimensions. Chapter 1 looks
at the system composed of the interface between a pure liquid and its
vapor. A thermodynamic approach is used to determine the influence of the
temperature and pressure on the surface tension and its consequences for the
specific heat capacities and the latent heats. Chapter 2 describes the
modeling and properties of the interfaces between a liquid and a liquid
solution or a gaseous mixture. An example of a model of the interface is
studied with the model of the strictly-regular solution. Chapter 3 examines
the surfaces of solids and solid—solid and solid-liquid interfaces. It closes
with the study of electro-capillary phenomena. Chapter 4 deals with small-
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volume phases, droplets or solids of small dimensions. The thermodynamic
values are determined on the basis of Reiss’ potential functions. The chapter
concludes with a thermodynamic study of the phenomenon of nucleation of
a condensed phase. In Chapter 5, we study firstly the thermodynamics
of cylindrical capillary, and secondly the properties of thin liquid films.
Chapters 6 and 7, respectively, discuss the phenomena of physical
adsorption and chemical adsorption of gases by solid surfaces. Finally, in an
appendix, we present the application of physical adsorption to the
determination of the specific areas of solids and their porosity.

Michel SOUSTELLE
Saint-Vallier
April 2016






Notations and Symbols

fhet:

t

5 =

var:

area of a surface or an interface.
Hamaker constant between two media 1 and 2.
affinity.

electrochemical affinity.
molar area.
molecular area.

pressure of cohesion of a gas or radius of the
elementary cell of a liquid.

components of a mixture.
cosurface of an adsorbed gas.

set of variables with p intensive variables chosen to
define a system.

Helmholtz energy.
heterogeneous wetting function.
electrocapillary Gibbs energy.
spreading coefficient.

Planck’s constant.

Harkins spreading coefficient of one liquid over another.
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K, (6,): thermodynamic coefficient associated with the set of

variables &p. X; is its definition variable and Y;is its
definition function.

K equilibrium constant of adsorption.
Kee: equilibrium function of adsorption.
kg: Boltzmann’s constant.

l: capillary length.

M: molar mass.

Na: Avogadro’s number.

Na: number of molecules of component A.
P: pressure of a gas.

spreading parameter.

9o equilibrium heat of adsorption.

qq: differential heat of adsorption.

Gisost: isosteric heat of adsorption.

R: perfect gas constant.

R: mean radius of curvature of a surface.

P radius of a cylindrical tube.

rg Kelvin radius.

T: temperature.

Vimono: volume of a monolayer of adsorbed gas.

x,((“) : molar fraction of the component £ in the ¢ phase.

Xt molar fraction of the component 7 in a solution.
Y; and X;: conjugate intensive and extensive values.

Yij: Mayer function.

r(s,): characteristic function with the set &p as canonical variables.

I characteristic function.
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O
71_(11):

(1),

1

excess surface or surface concentration of component i.

excess surface or surface concentration of component
i in relation to J.

activity coefficient of component i in the pure-substance

reference.

activity coefficient of component i in the infinitely dilute-

solution reference.

activity coefficient of component i in the molar-solution
reference.

spreading on a liquid.

value of 4 associated with the transformation .

fraction of coverage.

surface fraction of a component.

surface energy.

surface density of electrical charges.

surface tension.






Liquid Surfaces

An interface constitutes an extensive, two-dimensional defect in a system.
Given that at least one of the intensive values of that system (as is often the
case, for example, with the refractive index) evidently undergoes a
discontinuity at that interface, the interface separates two distinct phases.
Hence, the system is heterogeneous. The presence of that defect, at least in
its vicinity, leads to the modification of the properties of the two phases thus
separated. This leads us to model the system considering three phases: two
so-called massive (or bulk) phases, which are the phases separated by the
interface, and a superficial (surface) phase constituting a layer of a certain
thickness, containing the modified properties of the two massive phases.
Unlike the two massive phases, which each have their own thermodynamic
properties with their own specific thermodynamic coefficients, the surface
phase has thermodynamic properties that are dependent on the properties of
the two phases surrounding it. Thus, we say that the surface phase is not
autonomous.

It is common to speak of the surface of a liquid, but in fact this is a
misuse of language. In reality, that surface is never isolated from another
phase, so in nature we only ever actually find interphases. For example, if
the liquid is placed in a vacuum, it vaporizes spontaneously (and least in
part), and we see the presence of an interphase between the liquid and its
vapor which, in the case of a pure substance, have the same composition but
different molecular densities. In this particular case of the equilibrium
between a pure substance and its vapor, we sometimes speak of the surface
of the liquid, and the properties of that interface are qualified as being the
properties of the surface of the liquid. This chapter will be devoted to
interfaces between a pure liquid and its vapor.

Thermodynamics of Surfaces and Capillary Systems, First Edition. Michel Soustelle.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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The different molecular densities of the two bulk phases will lead to
anisotropic bond forces in the surface phase. Indeed, the molecules of the
liquid which are at the surface are on half of the space in the vicinity of other
molecules placed at greater distances, and therefore create an intermolecular
force field which also undergoes a discontinuity.

The interface between a pure liquid and its vapor is characterized by easy
mechanical deformation and easy variation of its areas. Indeed, we simply
need to tilt a recipient to extend the area of the interface separating two fluid
phases — i.e. increase the quantity of material making up that interface. This
augmentation in the area of the liquid—vapor interface takes place without
deformation, because the stresses likely to be engendered are quickly relaxed
because the shearing modulus of a liquid is zero.

NOTE.— It is impossible to construct an interface between two pure liquids
because reciprocal dissolution, even slight, leads to an interface between two
solutions, which will be discussed in Chapter 2.

1.1. Mechanical description of the interface between a liquid and
its vapor

Numerous experiments in mechanics show the existence of forces acting
on the surface of the liquid in the presence of its vapor. The resultant of
those forces seems to be parallel to the surface and tends to reduce the area
of the interface.

1.1.1. Gibbs’ and Young’s interface models

To apply mechanics and thermodynamics to interfaces, it is useful to
have a model of that interface. The simplest model is Gibbs’, whereby the
interface is considered to be reduced to the surface of separation of the two
phases, with no thickness. In that model, the discontinuity of an intensive
value upon the changing phase is sudden, as illustrated by Figure 1.1, which
shows the discontinuity of the density on phase change. In order to take
account of a certain number of phenomena which we encounter in the study
of systems with multiple components, such as adsorption, segregation or
surface excess, it is necessary to accept that the surface contains a certain
amount of virtual material (a certain number of moles) of each of the species
involved.
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Density

Interface
/

Phase 2

Figure 1.1. Discontinuity in density in Gibbs” model

A second, more elaborate, model is Young’s layered model. In this
model, the interface has a certain thickness or depth, d, which is unknown
but is likely to be small (see Figure 1.2(a)), at around a few atomic layers,
except in the vicinity of the critical point for the liquid—vapor interface.

In Young’s model, we cut that surface perpendicularly with a plane AB
whose breadth is dl. Figure 1.2(b) illustrates the different forces acting on
the left-hand side of the plane AB (with the right-hand side being subject to
the same symmetrical forces).

— Between A and A’, the force is exerted by the hydrostatic pressure P’
of the lower phase;

— Between B’ and B, the force results from the hydrostatic pressure P’ in
the upper phase;

— Between A’ and B’, the forces are distributed in accordance with an
unknown law.

a) b) c)
z z
A A
— (B) —
= ros
—> S .
‘i/_ ______________________________ j B
e d s CI
= =
= !
- Ai """""""""""""""""" \ N A* y
> .
— P
- (A) —

Figure 1.2. Representation of an interface in Young’s model
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Young models the system (see Figure 1.2(c)) as the existence, between B’
and A’, of a surface tension o* tangent to a point C, at a distance z. from A’
and such that the equivalences of the forces and the moments in relation to
A’ are assured between the two representations 1.2 and 1.2¢, which we can
express for the forces along the z axis by:

Z(Fz)bzz(ﬁz)c [11]
and for the moments in relation to A’, by:

S (M), = (M), [1.2]

Between A and C, the forces are due to the pressure P’, and between C
and B they are due to the pressure P’.

1.1.2. Mechanical definition of the surface tension of the liquid

Let us look again at Young’s model for the interface between a pure
liquid phase and its vapor. If we extend the free surface of the liquid over a
breadth dx (Figure 1.3), the variation in the area of that surface is:

dA=06x.01 [1.3]

F: """"""""

Figure 1.3. Extension of a portion of surface of a liquid
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The force exerted against the surface tension is:
F=0%*dl [1.4]

The work which must be injected is the product of that force by the
displacement dx. That work will be:

dW =Fdéx=0*06l.ox=0*d A4 [1.5]

The term o* is called the surface tension or interfacial tension of the
liquid. This value is expressed in Newtons per meter, as shown by
relation [1.4].

1.1.3. Influence of the curvature of a surface — Laplace’s law

Consider an element dS of a curved interface with radii of primary
curvatures (in two orthogonal directions) R, and R, (see Figure 1.4). Each
boundary line of that element is subject to forces of surface tension exerted
by the rest of the interface.

Figure 1.4. Radii of curvature of a curved surface

At mechanical equilibrium, the resultant of these forces is canceled out
by the forces exerted on the surface by the pressure P, inside the curve and
P outside of it. As the tangential components, two by two, cancel one
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another out, it is easy to calculate the normal components. Thus, for
instance, on the side AB, the force experienced by the surface element is:

—R1d49lo'*sindf2 z—%RldéﬁG*dﬁz [1.6]

The projection of the resultant of all the components, which takes the
value of 0, is written:

~R d6,d6,0*-R,d0,d6,0*+(P,, — P, )R d6R,d6, =0  [1.7]

From this, we deduce:
Pim_Pext:O-*(L'i_ij [1.8]

This is Laplace’s law, which gives the expression of the discontinuity in
pressure on either side of a curved interface as a function of the surface
tension and of the primary radii of curvature of that curved surface.

This law can be expressed in a different form, if we define the mean
radius of curvature R by the relation:

= [1.9]
R] RZ
Laplace’s law becomes:
20*
m—%=j; [1.10]

Two particular cases of relation [1.8] are often used.

For a spherical surface, such as a drop of liquid, the primary radii of
curvature are equal to the radius 7 of the sphere:

R =R, =r [1.11]
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and Laplace’s law becomes:

k
Rnt _Pext = 20-

7

[1.12]

If we now consider a cylindrical surface with radius r, the primary radii
are:

R =r [1.13a]

R, is infinite [1.13b]

and Laplace’s law then takes the form:
P -P =— [1.14]

We shall use relations [1.12] and [1.14] in Chapters 4 and 5, which are
devoted to the study of phases of small dimensions.

1.2. Thermodynamic approach to the liquid—vapor interface

Considering that the surface work is given by the product of the area by
an intensive value o called the surface energy, here we shall discuss a
thermodynamic approach to the study of interfaces which, amongst other
things, will help us distinguish, in liquids, between the surface tension o* as
defined by relation [1.5] on the basis of mechanics and the surface energy
o derived from thermodynamics.

1.2.1. Potential functions

Let us look again at the layered model shown in Figure 1.2(a), whereby
the interface is defined using three volumes: that of the liquid phase, known
as the o phase; that of the vapor phase, known as the § phase; and that of the
interfacial layer, called the y phase. The total volume of the system is the
sum of those three volumes:

=@ 4y ) [1.15]
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The same is true for the other extensive functions, which will all be the
sum of three terms — e.g. the internal energy, which would be:

U=U"+u®4+y® [1.16]
or the entropy:

=@ g® 4 g [1.17]
and the quantities of material:

n=n® 4 n® 4,0 [1.18]

The extensive variables defining a mole of the system form the set &,
such that:

&, ={ss®, sy y 4l [1.19]

This set does not contain the volume of the layer V"), because that latter
variable is not independent of the area, 4. Indeed, the thickness of the layer
is a given property of the substance, and has little dependence on the other
variables. By expressing the variation of the internal energy, we obtain:

dU=TdS“ +T7ds® +7dSY - p@ qr - p® ar® + 5d 4 [1.20]

The surface energy o, which is the intensive value conjugate to the area,
is defined as the partial differential of the internal energy in relation to the

area:
o= (a—Uj [1.21]
04 )g yw o),

The unit in which o is measured is joules per square meter — i.e. the
same dimensions as the surface tension o¢*, which was expressed (see
section 1.1.2) in Newtons per meter, which is equivalent to joules per square
meter.
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If we now choose the set of variables &, defined by:

&, = {S(“),S(m,S(Y),P(“),P(m,A} [1.22]
The potential function would be the enthalpy, defined by:

H=U+PV [1.23]
Thus, using relations [1.20] and [1.23], we find the differential of H:

dH=TdS" +7S® + 78" 4+ y@d P 4y ®dpP y5d4  [1.24]

and the surface energy would be such that:

o= (aﬂj [1.25]
04 )g po) o,

If we choose the set of variables &5 defined by:
&, ={T,V(“>,V(ﬁ),A} [1.26]
the potential function would be the free energy, defined by:
F=U-TS [1.27]
Hence, using relations [1.20] and [1.27], we can find the differential of F:
dF =-SYdT-SPd7-SYdT-P@dy™ —-p®ar® 1+ 5d 4 [1.28]

and the surface energy would be such that:

P (a—Fj [1.29]
04 )y y,

If we choose the set of variables &4, defined by:

&, ={1.P", PV, 4} [1.30]
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the potential function would be the Gibbs energy, defined by:
G=U+PV-TS [1.31]
Thus, using relations [1.20] and [1.31], the differential of G would be:

dG=-Sdr-sPdT-sdT+V @ d P +v®dPP + 5d 4 [1.32]

and the surface energy would be such that:
o= (8—6) [1.33]
04 )7 pi p,

If, finally, we choose the set of intensive variables &, defined by:

&, ={r.P.PY o] [1.34]

the potential function would be the capillary Gibbs energy, defined by:
G,=U+PV-TS-—Ac=G—- Ao [1.35]

The differential of G, then, can be defined using relations [1.20] and
[1.35]:

dGo_:_SdT+V(a)dP(“)+V(B)dp(ﬁ) —Ado [1.36]

This elementary variation dG, corresponds to the elementary work which
a transformation is likely to produce, which is deduced from the volume
work and the surface work.

Other potential functions can be defined in the same way, by choosing
the sets of variables {T, V(“),V(B),O'} , {S(“),S(ﬁ),S”),P(“),P(B),O'} or

{S(“) S(ﬁ) S(V) V(“) V(B) O'}.
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1.2.2. Functions of state of surface

For the functions relative to the layer, we can define corresponding
surface functions of state. For example, for the functions U, H, F and G, we
would have the surface values:

(v)
u =Y [1.37a]
A
H®
K = [1.37b]
A
F(Y)
o= 1.37¢
f y [ ]
G
W= 1.37d
g y [1.37d]
or indeed, for the surface entropy function:
(v)
sV = Sl [1.37¢]
A

1.2.3. Equivalence between surface tension and interface energy
between two fluids

We shall now show that, for a liquid, the two values which are expressed
in the same dimensions — the surface tension ¢ defined by mechanics and
the surface energy o defined by thermodynamics — are identical.

In order to do this, we consider a closed system with a planar interface
between a pure liquid and its vapor. In this case, the pressure is identical in
both phases in that volume, which is expressed by:

P9 =p"=p [1.38]

The amount of material remains constant within the system. Hence, by
virtue of relation [1.18], we have:

dn=dn" +dn® +dn" =0 [1.39]
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An increase in the area, d4, produced by way of a reversible
transformation, will require the following isothermal work:

dW =cd 4 [1.40]

Also, for a transformation taking place at constant temperature, that work
is the variation in the free energy in our system, by virtue of relation [1.28],
because then:

dF=0c'dAd=dw [1.41]

By comparing relations [1.5] and [1.40], for a liquid phase in the presence
of its own gaseous phase, we immediately find the strict equivalence:

o*=0 [1.42]

This equivalence between the mechanical and thermodynamic aspects
explains why the value o is indiscriminately called the surface tension or
the surface energy of the liquid in question.

NOTE.— This equivalence is demonstrated only for contact between the fluid
phases (independently of their composition), and no longer holds true when
the interface is limited by a solid surface undergoing elastic deformation (see
Shuttleworth’s relation in section 3.1).

1.2.4. Sign of the energy associated with the surface of a pure
liquid

We can now show how to determine the sign of the surface tension of a
liquid in the presence of its own vapor.

The condensation of a vapor into a liquid is always an exothermic
phenomenon — (A (H)<0) — which is understandable, because the

vap—liq
intermolecular bonds are stronger and more numerous (per molecule) in the
liquid, which is denser than the vapor.

The bonds between the molecules of a liquid are not covalent, so it is not
necessary to take account of a finite nature on the bond in an aggregate of
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molecules. On the other hand, the increase in density on condensation entails
a gap in entropy, which can be approximated as:

molar volume of the 11qu1d] <0 [1.43]

A, ..(S) = Rn
P molar volume of the gas

Thus, the variation of the Gibbs energy:
Avap—)liq(G) = Avap—)liq (H) - TAvap—Hiq (S)

is negative if the temperature is low, but positive if the temperature is higher
than the boiling point at the given pressure. The influence of pressure on the
Gibbs energy of formation of a compound can be seen through the molar
volumes (see the Clausius—Clapeyron relation).

Let us now examine the case of a molecule situated at the edge of a liquid
droplet: the bonds are stronger, or the coordinance is stronger, in the liquid
than in the surrounding vapor, which has two consequences:

— A force is exerted on the interface, directed toward the inside of the
drop. Incidentally, mechanical equilibrium in light of the effect of that
surface tension is the reason for the sphericity of the drop.

— The bond energy of the molecule is intermediary between the values,
which correspond respectively to the case of a perfect liquid and that of a

gas. [f we let A (H) denote that enthalpy, we therefore have:

vap—surf

(H) < Avap~>surf (H) < 0 [144]

Avap~>liq

As an initial approximation, we can consider that the density and the
degrees of freedom are identical for a surface molecule and a core molecule,
s0:

Avap—)surf (S) = AVap—)liq (S) [1 45]
The Gibbs energy of condensation at the interface, therefore, is:

Avap%surf (G) = Avap~>surf (H) - TAvapHsurf (S)
= Avalp—)surf (H) - TAVﬁp—)liq (S)

[1.46]
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Hence:
Avap—)surf (G) = Avap—)liq (G) + |:Avap—>surf (H) - Avap—)liq (H)j| [147]

The Gibbs energy A, (G) of condensation of the droplets is obtained

by adding together the core and interface terms:

Avap—>D1t((;) :ZAvap—)qu(G) + Z Avap—>surf(c;) [148]

core interface

SO:
Avap—)Dlt(G) = Avap—)liq(G) + xint [Avap—murf(H) - Avap—)liq(l_l)] [149]

In this expression, x,, =N ™)/ N denotes the molar fraction of the

molecules at the surface of the droplet.

With the area of the surface A being expressed in m? per mole of
condensed product, the molar fraction at the interface is: x,, = 4,,/N_.4,,
where N, is Avogadro’s constant and 4,, is the exposed area at the surface
per molecule. The value of that term can be estimated on the basis of the
molecular radius, or by molecular mechanics in the case of a complex-

shaped molecule. By identification with the definition of the surface energy
[1.33], we obtain:

A H)y - A, . (H
o = vap—>surf( ;IA vap%llq( ) [150]

We saw earlier on that the numerator must be a positive value, so the
surface energy is also a positive value. Thus, the surface tension of a liquid
is a positive value.

1.2.5. Extent of the area of the surface of a liquid

We shall now show that the area occupied by the interface has a
minimum value at equilibrium.
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In view of the additive properties of the extensive values, the free energy of
the system containing two phases, o and 3, with an interface, v, is written as:

F=F“4+F® 4 [1.51]

Because the number of atoms forming the interface is much smaller than
the numbers contained in the two volume phases, we can see that any
variation in the interfacial area leads to a negligible variation in the
quantities of material of the volume phases, and hence in their free energies,

so:
(o) (B)
oF + i =0 [1.52]
04 04
T,V.n T,V.,n
Relation [1.29] therefore gives us:
(v)

(B_Fj ~ oF =0 [1.53]

04 ), , ., 04

Vs T,V.,n

NOTE.— The same reasoning can be applied for the other functions U, S, H, G
and Go.

For a closed system, with constant temperature and volume and a single
component, the function % being homogeneous and of first degree in relation
to the quantities of material and thus the area of the interface, we would have:

(v)
FO :A[aF J [1.54]
T,V.n

04

Thus, in view of relation [1.53]:
FY =04 [1.55]

Furthermore, the differentiation of the function F, based on relation
[1.51], gives us:

dF=dF“ +dF" +dFY =dF" +dF® +d(c4) [1.56]
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However, at constant temperature, volume and quantity of material, the
free energies of the volume phases are constant, and thus in light of relation
[1.55]:

(dF),,, =d(c4) [1.57]

T,V.n

As the free energy function is a potential function within the set of
variables chosen, at equilibrium we have:

d(o4),,, =0 [1.58]

For a pure substance, the surface energy is uniform and independent of
the area, so the equilibrium condition is simplified to give us:

cd(4),, =0 [1.59]

T,V.,n -

Thus, the area occupied by the interface has its minimum value at
equilibrium.

1.3. Influence of temperature on surface energy

Because of the symmetry of the characteristic matrix of the system, it is
casy to demonstrate the following relation between the derivative of the
surface energy in relation to temperature and the entropy expressed per unit
area:

teley

— == 1.60

aT o [ ]
However, for want of a more accurate model, initially the relation

between the surface tension and the temperature was based solely on
experimental observations and similarities.

Experience tells us that usually the surface energy decreases with
increasing temperature, reaching the value of 0 at the critical temperature 7..
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This observation led E6tvos to suggest a simple linear decrease, written as
follows as a function of the temperatures, expressed in degrees Celsius:

T
a-a{l—;} [1.61]

c

However, it is clear that this linear law is very soon proven false by
experimentation, as we approach the critical temperature, and therefore, van
der Waals and Guggenheim were led to correct the previous formula in the
form:

T n
G_GO(I_FJ [1.62]

c

Eo6tvés, trying an analogy between the area and the volume and basing
the reasoning on the perfect gas model, proposed the relation:

o(»*)" =k(T,-T) [1.63]

0(vap)

In view of the molar volume of the gas v , which is no longer

q

negligible in relation to that of the liquid v""" in the vicinity of the critical

point, the previous formula is corrected, and the new proposition from
E6tvos and Katayama is written:

-2/3
1 1 T
e [—Vou,-,,) ) J =k, [l - Fj [1.64]

By combining relations [1.64] and [1.62] with n = 1.2, we obtain a new
proposition, constituted by the MacLeod relation:

1/4 3/23/2
o kT, .
. —l=——t—=[P]= """ [1.65]
(VO(lzq) —0tap) ) o,

Fowler gave a certain statistical basis to this relation. However, in order
to progress further, we shall describe the model developed by Metzger,
which gives an expression of the surface energy with two adjustable
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parameters, and which seems satisfactory both for simple liquids and for
associated liquids and metals.

On the basis of the definition of the free energy function F' and of its
derivative in relation to temperature (-5), it is easy to demonstrate the Gibbs—
Helmbholtz relation:

% oy [1.66]
oT

Let us express the internal energy in the form of a limited expansion of
the temperature:

U=U,+aT + BT +yT° [1.67]

oF dr ..
By integration and treating VR and a7 as identical, we find:

F:UO—aTth—,BTz—%/T3+aT [1.68]

In view of relation [1.67] and by derivation, we obtain:

oF 3
—=—a-2pT-=yT* +a—aInT 1.69
T oa-20 27/1“ a—oaln [1.69]

oF . L
The value e excepting the sign, is the same as the entropy. Let us

bring a molecule of the liquid from the depths of the volume to the surface
and apply the above relations to that transformation. We accept that at
the temperature of absolute zero, the molecular order is the same at the
surface and inside the liquid, so the variation in entropy will be 0 at absolute
zero. This being the case, it is easy to see that this means that & =0 and
a =0 . Relation [1.67] can therefore be simplified to:

U=U,+ BT +yT’ [1.70]
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and relation [1.68] is also simplified, giving us:
F=U0—,BT2—7E/T3 [1.71]

U and A

discussion, we shall limit ourselves to the first two terms in the expansion,
meaning that we adopt the two expressions:

For the two functions A F, for the next stage of our

lig—surf lig—surf

A U=A

lig—surf lig—surf

U, + BT’ [1.72a]

F=A U, - BT? [1.72b]

lig—surf lig—surf

In the liquid, the mean of the intermolecular distances is denoted by r,
such that, if v denotes the molar molecular volume, we have:

VU =N, 7 [1.73]

In addition, the surface energy is also the amount of work that needs to be
injected to increase the free surface by 1 m?, and has the value o, as we saw
in section 1.1.2.3.

In order to apply relations [1.72a] and [1.72b] to the free surface of the
liquid, let us bring a molecule from inside the body of liquid to the surface.
The area of the surface increases approximately by a quantity equal to 77,

and the work to be injected is or’. That work is also equal to

Ayt F = A nsUy — BT . Hence, in light of relation [1.73], we have the
triple equality:
(VO(liq) )2/3
2 2
Aliq—)surfF' = Aliq%surflj - ﬁT =0r =0 2/3 [1 74]

a

From this, we deduce the expression of the surface tension of a liquid or
its surface energy:

) U _ T2 N2/3
O_:(Allqﬁsurf 0 ﬂ ) a [175]

(VO(””) >2/3
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In fact, we have supposed that the molecules of the liquid were compact
spheres, and it is simpler to write that the area they occupy is (+ — /)*, where
[ is a correction factor which we need to determine. In these conditions,
relation [1.75] is replaced by:

) , U _ T2 N2/3
o_=(Ahq—>surf 0 ﬂ ) a [176]

((vo(liq) )1/3 _ 1)2

We can reduce the number of constants in relation [1.76] by first writing
that the surface energy must take the value of 0 at the critical temperature,
which is expressed by:

Ai —sur U
B= quzf 0 [1.77]

The expression of the surface energy, then, is:

2
T
Aliq_>surfl]0Nz/3 [1 - []—;J J

o= [1.78]

((Vo(liq) )”3 _1)2

To determine / and A

U,, we simply need to apply relation [1.78]

lig—surf
for the same substance at two different temperatures on the basis of two
experimental surface energy values, so we shall have two equations which
allow us to determine the two unknowns A U, and /.

lig—surf

In fact, relation [1.78] overlooks the presence of vapor on top of the
liquid. If vaporous molecules are present, they too will exert forces on the
surface molecules, which are expressed by a corrective term taking account
of the work of those forces, which obey relation [1.78]. The consequence of
this is that the effective work is the difference between two terms, which
gives us the relation:
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2
T 1 1
o= Aliq%surfUOsz 1- [Fj s A2 a2 [1.79]
. ((Vowm )" - l) ((VO(vap) )" - Z)
Ao
Oy
1ec
0 ; » 1(°C)
Figure 1.5. Variations in the surface energy with
changing temperature in Metzger’s model
Benzene Water Mercury
o o o o o
T(°C) |0 measured| calculated |7(°C)| measured |calculated |7(°C)|measured |calculated
(j/m*) (j/m*) G/m* | (/m’) G/m* | (/m’)
0 0.0317 0.0317 0 0.0756 0.0756 30 0.4716 0.471
20 0.02902 0.02905 10 0.0742 0.0744 40 0.4682 0.4669
50 0.0251 0.0251 20 0.0727 0.0730 | 100 | 0.4562 0.4541
70 0.0225 0.0226 40 0.0696 0.0700 | 200 | 0.4312 0.4306
100 0.0188 0.0189 60 0.0662 0.0665 | 300 | 0.3995 0.4051
150 0.0129 0.0129 80 0.0626 0.0627 | 360 | 0.3764 0.3887
200 0.0074 0.0075 100 | 0.0589 0.0590 |1450 0 0
250 | 0.0027 0.0027 | 130 | 0.0528 0.0529
288.5 0 0

Table 1.1. Variations in surface tensions of a number

of substances with temperature, according to Metzger
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Often, the second term, due to the vapor, is negligible in comparison to
the first.

Figure 1.5 plots the variations in the surface tension with changing
temperature. Table 1.1 gives a number of values provided by Metzger, which
can be used to draw a comparison between the calculated values and the
experimental values, in the cases of benzene (which is a simple liquid), of
water (which is an associated liquid, in view of the hydrogen bonds within
it) and for a metal: mercury. We can see the fairly close correspondence
between the measured and calculated values.

Remember that Metzger’s fundamental hypothesis states that at absolute
zero, there is the same degree of order in the liquid phase and in the surface,
meaning there is no difference in entropy at absolute zero, which is
reminiscent of Planck’s third law.

1.4. Surface latent heat

Consider a transformation at constant pressure, varying only the area of
the interface and the temperature. We shall calculate the total surface energy

defined by A = (G_HJ . We can write:
aA T,P.,n

g,=h,—Ts, [1.80]
Using relations [1.33] and [1.60], we obtain:

Jdo

h =0o-T| — 1.81
i (aTJ sl

This equation was given by Kelvin. As o is positive (see section 1. 2.4)
and o decreases as the temperature increases (see the curve in Figure 1.5),
h,is positive, meaning that heat is indeed absorbed by a liquid when its

surface area increases.
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1.5. Surface specific heat capacity

By deriving the relation between the molar specific heat capacity and the
enthalpy in relation to the area 4, we find:

12 o(5),

T\ 04

3(85)
)y = (%J [1.82]
o4 oT aT ),

T A

Taking account of relation [1.60], we obtain:

(acpj :_T(aza) [1.83]
04 ), or* ),

This equation connects the variation in the specific heat capacity at
constant pressure with the area of the interface to the second derivative of
the surface energy in relation to temperature.

If we examine the curve in Figure 1.5, we can roughly distinguish three
zones:

— The first zone, in which, at low temperatures, the second derivative of the
surface energy in relation to the temperature is negative. In that zone, by virtue
of relation [1.83], the specific heat capacity at constant pressure increases with
the area of the interface, and more heat is needed to raise the temperature of
the surface molecules by 1° than to produce the same temperature in the
molecules within the liquid.

—The second zone, where, at a medium temperature, the second
derivative of the surface energy in relation to temperature has the value of 0.
In that zone, by virtue of relation [1.83], the specific heat capacity at
constant pressure is independent of the area of the interface, so the same
amount of heat is needed to raise the temperature by 1° both for the
molecules at the surface and for those within the liquid.

— The third zone, in which, at a high temperature, the second derivative of
the surface energy in relation to the temperature is positive. In that zone, by
virtue of relation [1.83], the specific heat capacity at constant pressure
decreases with the area of the interface. Hence, less heat is needed to raise
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the temperature of the surface molecules by 1° than for the molecules within
the liquid.

However, we generally see that the surface term of the specific heat
capacity is lower than the degree of accuracy of the measurements, which
means that often this contribution is not taken into account.

1.6. Influence of pressure on the surface tension of a liquid

It is only possible to increase the pressure above a liquid interface with its
vapor if the gaseous phase contains a foreign gas which is insoluble in the
liquid. In such a case, the surface energy varies with the pressure of that gas.
Experience shows us that the surface energy of the liquid is not altered for
low pressures of around 1 atmosphere, but that this variation is far from
negligible if we use higher pressures. Kindt showed that this variation can be
as great as 50% if we use pressure values of 150 atmospheres.

Due to the symmetry of the characteristic matrix, we have:

d 14
g9 _ 2% [1.84]
oP 04

Thus, the variation of the surface energy with pressure is, in fact, a form
factor of the liquid.

In his model, Metzger (see section 1.3) included the pressure variable as
follows.

If we use relation [1.72], when a molecule comes from the interior of the
liquid to the surface, the free energy is increased by PAv, where Av is the
variation in the volume of the molecule transferred, so that the free energy
becomes:

A

F=A U, - BT + PaAv [1.85]

lig—surf ligq—surf
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Obeying the same process of reasoning as in section 1.3, relation [1.79] is
substituted by:

2
T
0= ALl [1 - {F] } + PAv

1 B 1 N3

((Vo(liq) )1/3 _1)2 ((VO(vap) )1/3 _1)2 ‘

This expression accounts for the fact that if the pressure is low, the inert
gas has no influence on the surface energy. At high pressure, on the other
hand, its influence becomes notable.

[1.86]

1.7. Evaluation of the surface energy of a pure liquid

To evaluate the surface energy of a liquid, we need to have a microscopic
model at our disposal. The simplest available microscopic model is that of
the monomolecular surface layer.

In this model, we consider that the surface of the liquid is formed of a
monomolecular layer covering the volume of the liquid.

The model is based on the following hypotheses:

—the potential energy between two near-neighboring molecules &xa(7)
(negative) is a rapidly-decreasing function of , which means we can ignore
the interactions between molecules that are not near neighbors;

— the molecules of the liquid are arranged in a quasi-net, so for each
molecule, we can define a mean value z for the number of near neighbors.

Within the liquid volume phase, imagine there are molecular levels
parallel to the surface, represented by layers 1, 2 and 3 in Figure 1.6. A
molecule A in layer 2, for instance, has near neighbors which are either in
layer 2 itself or in the two adjacent layers, 1 and 3. Reasoning on the basis of
the molar values, each layer contains a mole — i.e. N, molecules (N, is
Avogadro’s number).
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A. Layer |
,,,,,,,, ® 0 Iae2
@ Layer 3

Figure 1.6. Layers within a liquid, parallel to the surface

Let /z denote the number of molecules that are the nearest neighbors of a
molecule and situated in the same layer as that molecule, whilst mz
represents the number of near neighbors situated in a layer adjacent to that
containing the molecule. We have:

Iz+2mz=z [1.87a]

SO:
[+2m=1 [1.87b]

For instance, if we choose the cubic stack with centered faces, we have
z=12,m=1/4and [=1/2.

If we imagine that the liquid is split parallel to the layers defined
previously, then we create two free surfaces with the areas 4,, (molar area),
each containing Na molecules. The excess energy caused by that split would
be twice the surface energy, and thus:

_ zmN €, ,

24

M

[1.88]

This energy can be linked to the enthalpy of vaporization of the liquid,
because vaporization breaks all the intermolecular bonds. Thus, we have:

2A, H
— lig—vap [1 89]
zN

a

SAA

and hence the surface energy is:

A, H
sz“& [1.90]
AM
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In fact, the split has created interfaces between the liquid and the vacuum,
whereas the surface tension is defined in the presence of the vapor of the
liquid. The calculation presented above, though, is correct because the
distances between the gas molecules and the monomolecular surface layer
are sufficiently large for us to ignore the interaction energies.

We note that the surface energies calculated by relations [1.88] or [1.90]
are overestimated. One of the main criticisms leveled at the model is that it is
accepted that the surface layer has the same structure as a monomolecular
layer situated within the liquid.

In order to bring a molecule from inside the liquid to the surface, it is
necessary to break the mz bonds, requiring a so-called energy of extension.
We can define the Stéphan ratio as the ratio of the enthalpy of vaporization
to the molar energy of extension. In our model, that ratio is
z/mz — i.e. 1/m. This means, for example, that for a centered-face cubic net,
that ratio would be 4 — a value which is much too high — so for example, for
liquid argon, that ratio is only 2.38. This means that, unlike with our
hypothesis and that employed by Metzger (see section 1.3), the surface phase
would not have the same degree of order, and therefore the same entropy, as
a liquid monolayer. The surface layer would be much more disordered than a
monolayer of the liquid phase, and in particular, it would contain a great
many vacancies.






2

Interfaces Between Liquids
and Fluid Solutions

In Chapter 1, we limited our discussion to liquid—fluid interfaces with a
single component — in other words, interfaces between a pure liquid and its
vapor. We shall now examine the properties of interfaces between a liquid
and a fluid (liquid or gas) containing multiple components. The components
will be denoted by the indices 1, 2, ... i, .... In this case, the layer modeling
the interface is the site of phenomena of adsorption, which depend on the
composition of each of the phases in the bulk, and thus unlike those bulk
phases whose properties are independent of their neighbors,
the properties of the layer depend on the variables which determine the
properties of the neighboring bulk layers. We say that the layer is a non-
autonomous phase, whilst the bulk phases on both sides of the layer are
autonomous phases.

2.1. Surface concentrations and surface excess

In the layer, the position of the interface is theoretically determined by

the difference in pressure, P P(B), which sets the mean radius of curvature
()

of the surface. The layer contains a certain amount #;"" of each component

M,; of the system. The surface concentration /', of the species M;, also called
the absolute adsorption or surface excess, will therefore be:
n(v)

I =— 2.1
= [2.1]

Thermodynamics of Surfaces and Capillary Systems, First Edition. Michel Soustelle.
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)

We shall now evaluate n;” or I',. In order to do this, consider two

phases in contact, o and P, with the respective volumes V' and V®,

separated by the interface X (Figure 2.1). Let C and C® be the molar

concentrations of component M; in each of the bulk phases. If those phases
remain uniform up to the separating surface X, they will contain

n®=C7 and n® =C®V"® moles of M; respectively. If n; is the

quantity of M, contained in the whole system, by the material balance we can
write:

n® =n,—(n" +n®) [2.2]

This expression explains the term total surface excess relative to
component M;. That excess may be positive, in which case we have positive
adsorption of M;, or negative, which leads to negative adsorption.

Y 3
G

Interface

(j}l’))

g Phase B |
; 0 L
() ver | ®m
x Layer X

Figure 2.1. Variations in the concentration of a solute at an interface

Figure 2.1 shows the variations in concentration of component M; as we

move perpendicularly to the interface between the abscissa values x'®
B

and
x” | which are the limits of the phases. The area delimited by that curve
represents the total quantity of component M; contained in a cylinder with
surface of 1 and height x'”’ —x'“’. I'. is the area of the hatched surface. The

figure is constructed in the case of positive adsorption.
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The layered model, though, presents a problem in terms of the choice of
abscissa x” of the interface. We have defined it in relation to the
discontinuity of the pressure, which sets the radii of curvature. However, this
determination is not very accurate, and even less so when the radii of
curvature are high. The position is no longer defined in the case of planar
interfaces, for which there is no longer a pressure discontinuity. However,
we can see in Figure 2.1 that the value of ", depends heavily on the position
of the interface, and can even turn a positive value into a negative one
simply by changing the value of x™. For this reason, we are led to define,
instead of the absolute adsorption I, a relative adsorption I, of

component M; in relation to component M;, for which it is helpful to choose
the solvent, if it exists.

The quantity of material 7" of component M; in the layer can be written

in the form:

n® =n,—(CHV+cPr?) [2.3]

By introducing the total volume of the system (V =V +7®),
relation [2.3] becomes:

nl_(r) =n — Cl_(a)V + (Cl_(a) _ Ci(ﬂ)) V(ﬂ) [2.4]

The volume V' is independent of the choice of position of the interface,
but volume V?’ does depend upon it. If we eliminate that volume between
the two relations [2.4] written for component M;, on the one hand, and
component M; on the other, we obtain:

I’l,-(Y) —(l’l,- _C,‘(u)V) _ nl(Y) - (nl - Cl(a)V) [2 5]
O _c® -

or

ce _ el
nM — 0 =i i _(ni_ci(u)V)_(nl_Cl(a)V) i i

i i 2.6
i 1 Cl(u) _ CI(B) Cl(a) _ Cl(ﬁ) [ ]
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As the right-hand side of relation [2.6] is independent of the position of
the interface, the same is true of the left-hand side. If we divide by the area
A, we define the relative adsorption I, of component M; in relation to

component M; by the relation:

@ —c®
r.=r—-r———
il i 1 Cl(a) _ CI(B) [27]

As we can see, the relative adsorption does not depend on the position of
the interface.

We can see from the defining relation [2.7] that if I, = 0, we have
I, =TI, so the relative adsorption of component M; in relation to

component M; is the absolute adsorption of M;, when the position of the
interface is chosen such that the adsorption of M, is null.

We can also see that if the reference component is the solvent and if the
solutions are sufficiently dilute, meaning that if we simultaneously have

C"<<C®and CP <<CP, the relative adsorption I, is practically
identical to the absolute adsorption I°,.

NOTE.— From relation [2.7], we can deduce that the relative adsorption /7

of'a component in relation to itself is zero.

A particular case of relation [2.7] is obtained if one of the phases — say,
the B phase, for example — is a gas. We can then overlook the concentrations
in that phase in comparison to those in the liquid phase, expressed by

Cl.(B) << Cl.(“) and Cl(ﬁ ) << Cl(“) , and relation [2.7] becomes:

Ci(a) xi(ﬂ)
E’]:I—;_FIW:I—;_F]W [28]

x® is the molar fraction of component i in the liquid o phase.

1

If, furthermore, component 1 is the solvent in a dilute solution, then a
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new simplification leads to a relative adsorption which varies in a linear
fashion with the molar fraction or the concentration:
L,=r-IC" =TI -Ix" [2.9]
As formula [2.8] is valid irrespective of the position of the separating
surface, let us place it at the lower limit of the layer — i.e. at the boundary
between the layer and the o phase. The concentrations I, and /', are equal
to the quantities of i and 1 per unit surface in the layer. This means that the
relative adsorption of i in relation to 1 is null when the components i and 1
are present in the layer in the same proportions as in the solution. Thus, the
relative adsorption expressed the fact that the interface is enriched or
impoverished in terms of the various components in relation to the core of

the solution. This is consistent with the fact that the relative adsorption of a
component in relation to itself is zero.

2.2. Thermodynamics of interfaces of polycomponent liquid—
fluid systems

As we did for pure substances (section 1.2), we shall now discuss the
thermodynamics of surfaces for polycomponent systems.

2.2.1. Complete chemical potential of a component in a phase

In the context of the layered model (section 1.2.1), the first set of
variables, which are all extensive, will be:

& ={S. V1, 40 n® 0} [2.10]
In this set of variables, the differential of the internal energy is written:

du :TdS—P“*) dy —P(B) dr¥ +od4

[2.11]
(a) (B) ( )
+ Z an(a) + Z on' (ﬁ) d + Z an(7) d !
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This differential includes the partial differentials ou , U and ou .
on™ " on® on”

These differentials, which resemble chemical potentials, are known as the

complete chemical potentials or surface chemical potentials of component i,

in the o, B and y phases respectively. Thus, by definition of those complete

chemical potentials, we have:

[ﬂ;(u)] — (%J [2.12]
ani S,V("),V(m,A,nj

and similar relations are written for the other phases. Thus, now the
differential of the internal energy will be:

dU=7ds-P“dr' -pP»dr'" +od 4

2 [a ]dn + X[ u® dn® + [ dn [2.13]

The same reasoning can be applied for the functions H, F, G, and G,
each in their set of variables — e.g. for the differential of the Helmbholtz
energy, we would have:

dF =-8d7-POdr"™ -pPPdy"® +od 4

+ Z[M@ ]dnf‘” T Z[lui(ﬁ) :'dl’l,.(ﬁ) n Z[ﬂfw]dnfw [2.14]

and thus, we can write the expression of a complete chemical potential in the
following different forms:

[ﬂ@]—( oU j _(aij
! Bn,‘(a) SP@r® gn, anl.(“) §,P PP A,

[2.15]
_( E)F] _( aGJ _(E)ng
o (@) N (@) N (@)
al’li T,me(ﬁ),A,n/ ani T,P(“),P(ﬁ),A,n/. ani Tﬂp(u),,;(ﬁ),(,’,,,

As is demonstrated by this last equation, the complete chemical potential
is the generalized chemical potential for surface phenomena.
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Relations [1.21], [1.25], [1.29] and [1.33], defining the surface energy,
remain valid, with the partial differentials being taken at constant quantities
of the species in the different phases.

NOTE.— As the functions H, F, G, and G, are homogeneous first-degree
functions in relation to the quantities of material, the application of Euler’s
theorem gives us:

U=TS-PV +0A+ Z[ﬂf“’ ]n[(“) + Z[u}‘” }nfﬁ) + Z[ﬂ}” ]n}” [2.16]

H=TS+cA+ Z[ﬂ}“) e+ Z[ﬂf” i+ Zf:[ﬂf” o [2.17]
Fe_PVicA+ Z[ﬂi(a)]”fa) + Z[ﬂi(ﬁ):lni(ﬁ) + Z[ﬂlqun;w [2.18]

G=cA+ Z[ﬂim]nl_(a) + Z[ﬂ;m ]n,.“” + Z[Mgw]nlm [2.19]

Gp =2 [ ™ + 3 i+ 3 [2.20]

1

If we look again at relation [1.51], which remains valid in the case of a
multicomponent system, then F'*, which is the Helmholtz energy of a
massive phase, is therefore a function of 7,V”,n'™ . Similarly, F®®, which
is also the internal energy of a massive phase, is also a function of
T, V(B),nfﬁ), and the global function F, which is a function of all of the

variables, is a function of T ,V(“),V(ﬁ),A,nl.(“),nfﬁ),nim. We deduce from
expression [1.51] that the internal Helmholtz energy of the surface phase
FY is a function of T,V . V® 4,0 ,n® ,n™ . This shows us that this
phase is not autonomous. Therefore, we can write the partial differentials of
the Helmholtz energy in the forms:

oF _oF'“ oF"
on'® @ " on'»

[2.21a]

oF B aF(ﬁ) aF(Y)
on®  on® + on®

[2.21b]
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oF oF"
™ [2.21c]
(o)
As the partial differential ——, for example, is the chemical potential of

@
on;

component i in the o phase, based on relation [2.14], we deduce the three
relations:

aF(V)

[ﬂi(u)] =1 + = [2.22a]
aF(Y)
B = ,,®
[ =1 + = [2.22b]
[ = [2.22¢]

If we let £ represent the Helmholtz energy of the surface layer per unit

area (see relation [1.37]), using relations [1.37] and [2.1] we can also
calculate:

oF  Aof"™
om? . or " [2.23]

1

This last equation links the chemical potential of component i in the layer
at the excess surface of 7.

2.2.2. Chemical potentials and lateral chemical potentials

We shall now define values A“ and A", which are called the lateral
chemical potentials of component i, by the equations:

2@ = af(v)

=@ [2.24a]
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and:

af(v)

®) _

A =5CH [2.24b]
Thus, according to definitions [2.24a] and [2.24b], the values A, AP

and ,ui(y) are (according to relation [2.23]) functions of the intensive

variables (T, C'”,C", I',). Hence, they are intensive values.

By derivation in relation to the quantity of component i in ¢ phase we can
write:

() ) ()
OFY _ " A FT A, 2.25]

n@ T 9n®@ y@oc@ y

Similarly, for the quantity of component 7 in the 3 phase:

($9]
oF" A4 AP [2.26]

on® v

The values A and A" are known as the lateral chemical potentials of

component i, reflecting the fact that they give the contribution to the
Helmholtz energy of the concentration of i on both sides of the surface.

NOTE.— We can see, from definition [2.24], that for pure substances the
lateral chemical potential is zero.

By feeding back equations [2.25] and [2.26] into relations [2.24a] and
[2.24b], we obtain:

o o A o
[ﬂ;( )]=ﬂ,-( >+W&( ) [2.27a]
[ ] = + 4w [2.27b]
i Ty '
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[ ﬂ;ﬂ] =y [2.27¢]

These relations demonstrate that the complete chemical potentials [ yf“)}

and [,ui(m] are no longer intensive variables because if the chemical

potentials and the lateral chemical potentials are intensive, the involvement
of the geometric ratios A/V makes the complete chemical potentials of the
bulk phases dependent on the amount of material, amongst others.

2.2.3. Conditions of equilibrium in a capillary system

The general equilibrium condition for the three-phase system is expressed
by the equality of the generalized chemical potentials — in our case the
complete chemical potentials — of each of the three phases:

[lui(a):| — [ﬂlfﬁ)] — [ﬂim] [2.28]

In view of relations [2.27a], [2.27b] and [2.27c], this double equality
becomes:

A A
(@) @ — ,® ® — ;0
0+ @ A =" + %0 A = [2.29]

We shall accept, as do Defay and Prigogine, that any portion of a system
at equilibrium is also at equilibrium, which is tantamount to accepting that
the equilibrium conditions must be able to be expressed on the basis of the
intensive values alone. However, we have seen that the complete chemical
potentials were not intensive values because of the terms A/V.

Let us represent our system by using two volumic phases with the
volumes /® and /"® and an interface X (Figure 2.2). Our system ABCD can
be mutilated by cutting off portion CDEF, and be reduced to ABEF without
changing the equilibrium conditions. Then, only the term V® is reduced and,
with the equilibrium conditions being the same, which means that the terms
containing this volume in the complete potentials must assume the value of
0, at equilibrium.
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Figure 2.2. Independence of the conditions of equilibrium
and the dimensions of the system

This observation is expressed by the zeroing of the lateral chemical
potentials at equilibrium:

ﬁi(a) :ﬁ'i(ﬁ) =0 [2.30]

Finally, in view of relations [2.27a], [2.27b] and [2.27¢], the equilibrium
condition of the system is expressed by the equality of the ordinary chemical
potentials:

U = ,ufﬁ) =u [2.31]
The equilibrium condition of a capillary system (containing an interface)

is expressed, as for a volume system, by the equality of the chemical

potentials in the three phases: the two bulk phases and the surface phase.

2.2.4. Gibbs—Duhem relation for surface phenomena

Look again at expression [2.20] of the generalized Gibbs energy function.
By differentiation, we obtain:

dG, =Y s, dn+> n du, [2.32]
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However, the transposition of relation [2.32] to the case of
polycomponent systems gives us:

dG, =—-8“dr-s"dr-s"dr+v“d P + P a PP

—Ado+) udn, [2.33]

By combining relations [2.32] and [2.33], we find:

ST +SP AT+ AT -y AP P dPY + ado+ Y ndu =0 [2.34]

This expression is the transposition of the Gibbs—Duhem relation to
surface systems. In particular, at constant temperature, pressure and surface
tension it is expressed in the form:

D ndp, =0 [2.35]

This relation is absolutely identical to the Gibbs—Duhem relation
obtained for the bulk phases at constant pressure and temperature.

2.2.5. Adsorption and Gibbs isotherm

Let us apply the Gibbs—Duhem relation to all the two volumic o and 3
phases of the layered model. We have:

SWdT+sdT -y dP -y d PP+ (0 +n? )dy, =0 [2.36]

By subtracting equation [2.36] from equation [2.34], taking account of
relation [2.2], we find:

SYdT+Ado+ > nVdu, =0 [2.37]
or, by dividing by the area 4:

do=—s"dr-Y rdu [2.38]
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In this expression, the volumes no longer play a part, and at constant
temperature, equation [2.38] is simplified to:

do=->Tdu [2.39]

The result of this is that the excess concentration of component i is:

I = —(a—GJ [2.40]
a/'li T,P.u;

This relation constitutes the first form of the Gibbs isotherm of
adsorption.

This expression has the peculiarity of being impossible to use, because
the chemical potentials, which are linked by the Gibbs—Duhem relation, are
not independent. Therefore, it is impossible to differentiate relation [2.41] in
relation to one of the chemical potentials whilst keeping all of the others
constant. We shall circumvent this difficulty by replacing the absolute
adsorption of component i by its relative adsorption in relation to a chosen
component — say, component 1 — defined by relation [2.7], recapped here:

(0) _ —(B)
r,=r-r5% %

'c@O_c® [2.41]

For this purpose, we first note that the quantities of material in the two
bulk phases must obey the Gibbs—Duhem relation for the bulk phases:

Sudu=>nPdu =0 [2.42]

These relations lead to the concentrations:

ScWdu=>cPdu =0 [2.43]
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and thus we have:

2 du =30, du, =0 [2.44]

and we find the relation:

do=->"T,du [2.45]

In this relation, because 7, has the value of 0, we merely need to
perform the calculation on the basis of i = 2. Thus, we have:

r, = _(a_aj where i # 1, and i > 2 [2.46]
T,P,,u/

o,

We have therefore avoided the problem, because in this expression
differentiation is possible because, as the potential z; plays no part, the

potentials x; are all independent.

If the solution is ideal, the chemical potential of the component i is:
U =1 +RTInC, [2.47]

Relation [2.46] then takes the form:

r,=-S[o [2.48]
'Trr\oC ),

1

This relation is the second form of the Gibbs isotherm of adsorption. It
enables us to determine the relative adsorptions of the different components
by varying their concentrations. It shows that it is the components tending to
decrease the surface tension which are adsorbed positively (7, >0).
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2.3. Surface tension of solutions

The thermodynamic results established above do not depend on the
nature of the o and 3 phases present, which may be solid, liquid or gaseous.

We shall now turn our attention to the properties of the interfaces
between a liquid solution and its own vapor phase at equilibrium. In keeping
with all of the above, the vapor phase will be the B phase, with the o phase
then being the liquid solution, whose nature we shall not specify further.

As the B phase is gaseous, its Helmholtz energy, Gibbs energy and
generalized Gibbs energy in relation to the surface phenomena will be
negligible in relation to those of the liquid phase, and therefore the overall
value in the system is the sum of the corresponding contributions of the
liquid phase and the layer. Thus, relation [1.34] for the generalized Gibbs
energy of the layer (y phase) gives us:

GV =G" -4 [2.49]

By differentiating and remembering that the differential of the function G
is the chemical potential, we obtain the following, in light of relation [2.15]:

aGc(ry) (v) 04 ()
(an_(v) J " SHrOo on' " _[‘ul ] [2.50]
T,0,n," i T,0,n,"

1

By explicitly stating the chemical potential as a function of the activity,
we obtain:

(072 0 (1) _ 504
|4 | =1’ + RTInd| o [2.51]
However, at equilibrium, the chemical potentials are equal, so:
|4 = = [2.52]

The chemical potential of the component 7 in the liquid is of the form:

M, =g;) +RTIng, [2.53]
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By substituting expressions [2.52] and [2.53] back into relation [2.51], we
obtain:

"V +RTIna" _o-a—Azgo +RTIna, [2.54]
: ' on” ’

This formula links the activity, and therefore the composition, of the
surface layer at equilibrium with the liquid solution to its properties.

Note that the standard terms g?(” and g’ are functions only of the
temperature and, a little (in the condensed phase), on the pressure.

NOTE.— We would employ the same reasoning and obtain the same results if
we were to replace the liquid solution with a solid solution in the presence of
its vapor. Hence, condition [2.54] is the equilibrium condition of a
condensed solution (liquid or solid) and of its surface in the presence of its
vapor.

2.3.1. Perfect solutions

In the case of perfect solutions, for which the activity coefficients are
equal to 1, relation [2.54] becomes:

04

an_(v)

1

gV +RTInx" - o =g/ +RTInx, [2.55]

In addition, we know that we can model these solutions by choosing very
similar dimensions of the molecules of the different components, which can
be expressed by the introduction of a common term A,,, such that:

a4 4 od
) on?  on”

=4, [2.56]

The term A,, represents the molar area, and its value can be estimated on
the basis of the molar volumes (or the densities) as follows:
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Assimilate the molecule to a small cube whose volume is V,/Na. The
area occupied by a molecule would be:

V 2/3
A = (N_mj [2.57]
Thus, the molar area is:
2/3
A _ N A _ V2/3N1/3 _ M N1/3
M T Natm T "m e a [258]
P

Now consider the pure component i; by applying relation [2.55], we
would have:

g g =0, [2.59)

where 0 is the surface tension of the pure liquid i in the presence of its vapor.

By feeding this relation into equation [2.55], we obtain the following for
the surface tension of the solution:

e
0=0,+—Ih— [2.60]
M X;

Now consider a binary system formed of components 1 and 2. We
eliminate the term o between the two relations [2.60] expressed for each of
these components. We obtain:

IAM
(v) X eXp
Mo RT [2.61]
2 X, ex _ oy
2 €Xp RT

X, exXp— I]{TM
xM = [2.62a]
X, exp— M + x, exp— 24y
1 2
RT
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and for component 2:

X, exp— ﬁ
£ = [2.62b]
O-l AM 0-2 M
X eXp— 7RT + X, eXp— 7RT

These are the Schuchowitsky relations.

In light of the fact that x +x{"=1, we can deduce, using
relation [2.60], that:
O-IAM

0,4y
+x, exp— —2~ 2.63
T » CXp RT [ ]

ex —%—x exp—
RT 1 €Xp

Let us calculate the molar fraction in the layer. We obtain:

o, —O'zgln{l+x2 {exp{w}—l}} [2.64]
A, RT

Relations [2.64], applied to each of the two components, were put
forward by Szyszkowski, on the basis of experimental results, in the form:

o -0= bh{HQ] [2.65]
a

with the values a and b being two constants independent of the
compositions.

If the surface tensions of the two components in the solution are fairly
close, we can make the hypothesis:

(O-l _O-Z)AM
RT

<<1
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Then, by developing the serial exponential, then the logarithm,
relation [2.62] is simplified to become:

o =0x +0,x, [2.66]

Thus, the surface tension of a perfect solution, as a first approximation,
obeys a law of additivity as a function of the surface tensions of its pure
components.

2.3.2. Highly-dilute solutions

For the dilute solutions, with a solvent whose molar fraction is xq and a
solute whose molar fraction is x;, the chemical potentials obey relation
[2.53]. The activity coefficients are equal to 1 in the case of the solvent and,

in the case of the solute, to a reference chemical potential £ (the chemical

potential in the infinitely-dilute solution), which is a function only of the
temperature and pressure.

Applying relation [2.51] to the pure solvent, we obtain:
Hy =gy~ 0y Ay [2.67]

and thus, relation [2.60] gives us:

(v)
(0-0,) A4y, =RT 2 [2.68]
Xo

For the solute s, we can apply relation [2.55], which is then written as:
17 +RTInx" =54, =y~ +RTInx, [2.69]

By eliminating the term o between relations [2.68] and [2.69], we obtain:

(v) (v) “(v) _
RO RE 5 g A A [2.70]
Ay X, moo %o Ay
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For a very dilute solution, we have: xl(Y) <<1 and x, <<1. The second

logarithm in relation [2.70] is negligible in comparison to the first, and we
can write:

) 04y, — ,Ll:o(y)—,tl:q
al =exp n ( ) [2.71]
X RT

S

The right-hand side of this expression is an adsorption energy, which
depends only on the temperature and pressure. Thus, in a highly-dilute
solution, the molar fraction of the solute in the layer is proportional to its
molar fraction in the solution.

By feeding back into expression [2.68], we find:

|:O-0AMs - (:u.:cm _:u.:o ):|
RT

(0—0,) Ayo sRT(xS —xEy))zRTxS 1—exp [2.72]

The surface tension of a sufficiently-dilute solution varies in linear
fashion with the molar fraction of the solute. Thus, we find the practical
formula given by Traube, who formulated that variation in the form:

o=0,—bx, [2.73]

NOTE.— The Szyszkowski relation [2.65] becomes identical to the Traube
relation [2.73] if the molar fraction of one of the components tends toward
ZEer1O0.

2.4. Interface tension between two liquids

When two immiscible liquids are brought into contact, the separating
surface, known as the interface, has the same properties as the surface of a
liquid in contact with its vapor. The thermodynamics of the interface are
dealt with in the same way, so we see the existence of a surface tension
which, here, is called the interfacial tension.
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Attempts have been made to establish a relation between the interfacial
tension between two liquids, A and B, and the surface energies of each of the
liquids. We can see through experimentation that the interfacial tension is
always less than the surface energy of whichever pure liquid has the highest
surface energy. Antonov proposed a simple rule expressing the fact that the
interface tension was the absolute value of the difference between the
surface energies of the two liquids:

O =|0) — 03| [2.74]

In reality, if the two liquids are partially miscible, it is the difference
between the surface energies of the saturated solutions which must be
considered.

We can see experimentally that, whilst the interfacial tension may be
greater than that predicted by Antonov’s rule, it is never less.

The interfacial tension is lower when the solubility of the liquids in one
another is higher. If the two liquids are of the same nature, the interfacial
tension becomes zero when the two liquids become miscible, meaning when
the two phases come together at the critical temperature.

The condition for complete miscibility of two liquids is therefore that
their interfacial tension be null (or negative).

2.5. Energy of adhesion of two liquids

Consider two liquids A and B, brought into contact with one another in a
column with a surface of 1 unit. We use the term energy of adhesion to
describe the work necessary to separate the surfaces of the two liquids in
contact.

When we imagine this separation to be performed, we remove the
interface of unit area and create two surfaces of unit area for each of the
liquids. The creation of these two free surfaces requires an amount of work
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equal to the sum o, +0,, whereas the removal of the interface produces
work equal to o,; . The adhesion energy W, will therefore be:

Weo=0,+03—0,4 [2.75]

This is the Dupré relation. W, is expressed in joules/m’.

If the two liquids are partially miscible, it is the surface energies of the
two saturated solutions that must be used in Dupré’s relation instead of the
surface tensions of the two pure liquids.

2.6. Spreading of a liquid over another liquid

Now suppose that we deposit a drop of liquid A on the surface of liquid B
which is immiscible with A. Liquid A may either remain in the state of a
drop on top of B, or spread over B to form a film. In the latter case, we say
that liguid A wets liquid B.

We shall now try to find the conditions of wetting of B by A — i.e. the
conditions for liquid A to spread in a film over the surface of liquid B. If
liquid A remains as a drop, it is possible to determine the shape of that drop.

In order to express the equilibrium condition of such a system, let us
assimilate the surface energies to force-vectors tangential to the surfaces at a
point on the line with three phases, or the triple line. To do this, we choose a
vertical cross-section of the drop passing through its axis of symmetry,
which reveals a triple point where we apply the vectors (Figure 2.3(a)). We
let 85 denote the angle between the forces op and ox. The definition of the
other angle & is similar between the forces oy and ox. The equilibrium
condition is expressed on the basis of the Neumann triangle (Figure 2.3(b))
by the relation:

O-A — O-B — O-AB
sinf, sin@, sin(27-6, -6,)

[2.76]
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Figure 2.3. Spreading of a drop over a liquid: a) equilibrium
of the triple line; b) the Neumann triangle

This condition can only be satisfied if the greatest surface energy is less
than the sum of the other two. We know that the interfacial energy oap is
less than the greatest surface energy. The equilibrium in question is
impossible if we have:

0,20, +t0,, [2.77]

as o, is supposed to be greater than o,. For given values of o, and 0,;,
the angle 6, decreases if o increases. It is zero when o, reaches the value
o, +0,;. In this case, there is the spreading of liquid A over the surface of

B. The same is true, a fortiori, if o, continues to grow.
The spreading condition can also be formulated as:
Oy —0,320, [2.78]
If we take account of relation [2.75], this condition can also be written:
W 220, [2.79]

where 20, is the cohesion energy of liquid A. Thus, the condition of

spreading of liquid A over liquid B is that the energy of adhesion of liquid A
to liquid B be at least equal to the cohesion energy of liquid A.
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Harkins used the term spreading coefficient of liquid A over liquid B to
describe the difference between the adhesion energy and the cohesion
energy:

hy, =W,y =20, =03—0, =0, [2.80]

We see the spreading of one liquid over another when its spreading
coefficient is positive or null. The liquid does not spread if the spreading
coefficient is negative. Harkins determined a number of spreading coefficients
of liquids over water at 20°C. The values found range from 0.049 J.m™ for
N-propyl alcohol to —0.026 J.m™ for methylene iodide. These coefficients
increase or decrease with temperature, and we may see a switch in the sign of
the coefficient as the temperature varies.

NOTE.— The aforementioned values are valid for rigorously clean surfaces,
exempt from all traces of impurities, which it is extremely difficult to obtain.

If liquid A spreads over liquid B, it is impossible for liquid B to spread
over liquid A. Indeed, for that to be possible, we would have to
simultaneously satisfy the two conditions:

03—0,—0,,20 [2.81]
0,—03—0,;20 [2.82]
By adding together those two conditions, we find:

O, <0 [2.83]

This means that the two liquids must be totally intermiscible, which runs
counter to our fundamental hypothesis.

We can now examine how Antonov’s rule (relation [2.74]) fits in with the
spreading condition. If o, >0, , the condition for two liquids not to spread

over one another is:

0,<0,+t0,4 [2.84]
Thus:
Oup >0 =0, [2.85]

and Antonov’s formula [2.74] is obviously not satisfied.
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If a liquid can be spread over another — e.g. A over B — then, in
accordance with relation [2.77], we have:

0,20, +0,; [2.86]

However, in light of the large contact surface, there is slight dissolution
of the liquids in one another, so that their surface energies have become o',

and o'y, and if Antonov’s rule is so often satisfied, this means that we have:
o'y =0",+0, [2.87]

This case is encountered for the water/benzene couple. The spreading
coefficient, which is 0.0098 for pure liquids, takes the value of 0 when each
liquid is saturated by the other.

2.7. Example of the microscopic modeling of surfaces of
solutions: the monolayer model for strictly-regular solutions

A simple model, in the case of the surfaces of strictly-regular solutions,
can help us to understand a number of experimental phenomena.

2.7.1. Presentation of the model

We can model the surface of a liquid using the monolayer model
introduced in section 1.7. We retain the hypothesis of potential interactions
between two molecules decreasing very rapidly, meaning we can stick to an
interaction with near neighbors only, which, for a molecule in a
monomolecular layer are divided into /z neighbors in the same layer and mz
neighbors in each of the adjacent layers. The molecules of the gaseous phase
are too far removed from the surface for their interactions to be taken into
account. The solutions will be supposed to be strictly regular, and thus we
accept that the molecules of components A and B have practically the same
dimensions, which will enable us to preserve relation [2.56] and the excess
entropy in the phases will be zero.

Let us define the system as a cylinder containing the surface layer,
delimited on one side by the plane CD, which separates the solution and the
surface layer, and on the other side by a line GH that is parallel to the surface,
which delimits the volume of the solution. Let j; be the number of
monomolecular layers between the planes CD and GH within the liquid phase
(Figure 2.4).
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Figure 2.4. The molecular layers in the volume and
on the surface of a liquid

Each molecule in a layer has z/ near neighbors in the same sheet and zm
neighbors in the next monomolecular layer.

The total number of molecules in the surface layer is N,n" with the

respective molar fractions of xl(”) and xg”). The molar fractions within the
liquid are x, and x,, with the numbers of molecules being N_n, and N_n,
(N, is Avogadro’s number).

Let us list the different couples.

Across the CD plane, therefore, we shall have, on average:

— N, n"x" zmx, couples 1-1, with energy &,,;

— N_n"xzmx, couples 2-2, with energy &,,;

— Nn"xY zmx, + N_nxzmx, couples 1-2, with energy &,,.
In the surface layer, we have:

2
- Nan”)zl(xl(”) couples 1-1, with energy &,;
% ;
- Nan(”zl()c2Y ) couples 2-2, with energy &,,;

- 2Nanmzl(xl(y))x§” couples 1-2, with energy &,,.
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Based on this list, we shall evaluate the Gibbs energy of the system and
the chemical potentials.

2.7.2. Chemical potentials of the surface and bulk components of
a strictly-regular solution

The portion of the internal energy due to the interactions between two
layers is:

U

mixed

=N, n"zm [xlmxls11 +xx,6,, + ()cl(y))c2 +xx, )812 } [2.88]
The contribution of the interactions within the surface layer is:

Nan(y)zl 2 2
. =T[(’ﬂ(”) e, +(x) &, +2(x1(7)x§1’))512:| [2.89]

In the same way, we evaluate the contribution of the molecules situated in
a layer within the liquid, in expressions [2.88] and [2.89] we simply need

to replace xl(y) and xéY) with x, and x, respectively. The expression thus

obtained must be multiplied by (j—1/2), because there are j planes such as
EF. However, at the level of GH, in the application of relation [2.88], half of
the bonds must be attributed to our system delimited by GH and the other
half to the outer system.

By bringing into play the exchange energy wy, defined by the relation:

&, T€&
w, = 2(8]2 —%) [2.90]

add together the different contributions. By grouping together the terms, we
find:

Na(n1+n2)z

U = (xlgll +X,&,, ) + Naz(nl +n, )lexlxz

N ,
+—a’§ z (xl(Y)en+x§Y)£‘22)+Nazn(7)w121xl(')x§7) [2.91]

N (v)
4l 21 (xlmé'11 +xe,, ) + N, 2w, m (xl(Y)x2 +xx —x,x, )
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In this sum, the right-hand side contains three lines:

—The first line, with two terms, represents the contribution of the
interactions between molecules within the liquid bulk phase. These terms
contain no quantity relating to the surface phase.

— The second line, with two terms, which contains only the quantities of
material and the molar fractions of the surface layer, is the contribution of
the interactions between molecules situated in the surface layer.

— The third line, which also contains two terms, is the contribution of the
interactions between the molecules of the surface layer and those of the
adjacent layer belonging to the bulk phase.

It follows that the term of the internal energy due to the surface layer is
given by the sum of the last two lines:

) _ Nanl(y)Z(l+m)( (v)

US(;{rf = 5 X &y +X§Y)822) 2.92]
+ Nz, kX N Y wm (x](y)x2 +xx —x,x, )
We then see that we can write:
Ul =USy +U? [2.93]

U S(uyr): is the internal energy of the layer if the solution is perfect (wj, = 0).

Xs

This is our reference state and U'")

surf

is the excess energy of the layer, given

by:
Ui =N, zn"w, ")
[2.94]
+ N 2"w,m (xl(Y)x2 +xx, —xx, )
This expression can also be written in the form:
2 2
Us(gr)f” = Nazn(”wlzl[xl(” (xgy)) +x£Y) (xl(y)) }
[2.95]

N Nanmwmm[ A () )2 ) (500 )2}
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As regards the entropy of our system, we accept that the two surface and
bulk phases have the same structure and that the solutions therein are strictly
regular, meaning that the entropy is composed solely of the mixing term (the
excess entropy is zero). The total entropy of the system would be:

§=8+8 =x Inx, +x,Inx, +x" Inx" + x{" In x{") [2.96]

The Helmholtz energy, which is also the Gibbs energy (the layer has no
term PV), of our layer is then:

G(y) _ US(L«l/r)f* +U(y)xx _TS(y) — G(y)* n U(Y)xs [297]

surf surf

where G is the part of the Helmholtz energy of a perfect solution.

In light of equations [2.95] and [2.96], relation [2.97] is written:
G = nlm [g?m +RT1In xl(y) + Nazwlzl(xgy) )2}
+n£y> [ggm +RTIn xgy) + Nazwlzl(x§Y) )2} [2.98]
+N, zw,,m [nlm (x, )2 +nl" (x, )2 }

This Helmholtz energy of the layer depends on the composition of the
liquid bulk phase.

The chemical potentials of the components in each of the phases are then:

(v) 2
4, :(E)G ) :gl‘)(Y) +RTlnx](7) +Nazwlzl(x§”)
T,P,n 0

on, [2.99]
+N,zw,mx; —04,,
(v) 2
U, = oG = g;)(v) +RT1nx§Y) + Nazwlzl(xlm)
on, " P [2.100]

+N,zw,mx; —0A,,
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We shall now calculate the composition of the surface layer and the
surface tension when we know the composition of the liquid and the surface
tensions of the two pure liquids.

2.7.3. Surface tension and composition of the surface layer of a
strictly-regular solution

In conditions of equilibrium, the above chemical potentials are equal to
the ordinary chemical potentials of the liquid solution, which, for a strictly-
regular solution, are:

1 =g" +RTInx, + N, zw,x} [2.101a]

1, =g +RTInx, + N, zw,x [2.101b]

As the right-hand sides of relations [2.99] and [2.101a] are identical,
by using relation [2.54], we find:

(v)

2
od, =g"" g +RT1nx;1c_+ Nazwlzl[(xgﬂ) —xf} +N,zw,mx;,  [2.102]
1

Similarly, between the right-hand sides of equations [2.100] and [2.102],
the equality gives us:

(v) )
o4, :gg(y) -2 +RT1nxL+NaZW121[(x1(Y)) _x12:|+Nazw12mx12 [2.103]
X

By applying relation [2.103] to the pure component 1, we obtain:
o4, =g" -g [2.104]
Similarly, by applying relation [2.102] to the pure component 2, we find:

0,4, =g" - g [2.105]
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In light of these equalities, we can write relations [2.102] and [2.103]
respectively in the forms:

o=0,+—In— .

)
RT | x N N, zw,[ [(xgﬂ )2 B x22:| N N, zw,,m 2 2.106]
AM xl AM

M

(v) 2
O-:O-Z+E1HL+NLWI2Z[(XI(Y)) _xlz}rwxlz [2.107]
4, x, A, A

M
Thus, we obtain two symmetrical relations which were put forward by
Schuchovitsky and Guggenheim.

If, in the various relations, we make w;, = 0, we obtain the same results
as those found for perfect solutions in section 2.3.1.

Similarly, by setting wy, = 0, xéY) =0, x,=0, and thus xl(Y) =1 and

x, =1, we find the same result as for the surface energy of the pure
substance in relation [2.104].

2.7.4. Monolayer model and interface tension between two
strictly-regular solutions

The model developed in section 2.7.3 can be used to calculate the surface
tension of the interface between two liquid solutions o and B (Figure 2.5)
constituting strictly-regular solutions and, in particular, for strictly-regular
solutions of the same components but with different compositions and
immiscible.

{3 solution

Monomolecular layer

o solution

Figure 2.5. Solutions separated by an interface in the
monomolecular layer model of an interface
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The Gibbs energy linked to the monolayer can be calculated as before,
and relation [2.85] is replaced by the expression:

2
G =p [g?m +RTInx" + Nazwlzl(xgy)) }
2
+nV [gg(” +RTInx” + N, 2w,/ (1] } [2.108]

2 2
+ (nl(y) +nl" )Nazwlzm[(xgﬂ —xga)) +(x£y) —xgﬁ)) }
The chemical potential is equal to the complete chemical potential, and

thus it can be calculated on the basis of the generalized Gibbs energy of the
surface:

aG(“/) aG(Y)
(@) _ o |— =
M, —( anm j—( anm o4, [2.109]

1

Hence, instead of expressions [2.99] and [2.100], we find relations
[2.110] and [2.111], which are written:

2
1 =g 4 RTInx" + Nazwlzl(xg"))
s s [2.110]
+ Nazwlzm[(xgw - x§“>) + (xgy) - xgﬁ)) + 2x§y> (Zx(z") - xgu) - xgﬁ) )} -0A4,

2
,ug“) = gg(” + RTlnng) + Nazwlzl(xlm)
) s [2.111]
+ Nazwlzm[(xg‘v) - x§“>) + (xgy) - xgﬁ)) +2x (ngﬂ — W P )} -04,

If we now consider that the two o and B phases are two strictly-regular
solutions of the same components, then the Gibbs energy terms for the

pure components g.") on the one hand and g"” on the other are identical
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in the previous two solutions, and expressions [2.106] and [2.107] are
replaced by:

(o)

RT, x" N, zw,l 2N
o= R (Y

[2.112]
N, zw,m o\2 2 a
+—AM12 [(xgﬂ —xg )) +(x§” —xéﬁ)) —2x1(7) (ngy) —xg ) —xgﬁ))}
(v) 2
O':Ehl x?a) +Naj—wlzl|:(xl(Y)) _(xl(a) )2:|
v X M
[2.113]
N, zw,,m o\2 2 a
+—AM]2 [(xgﬂ —xg )) +(x£Y) —xéﬁ)) +2fo) (2x§” —xg ) —xgﬁ))}

Note that these two relations can be used to calculate the unknowns,
which are the surface tension of the solution and the composition of the
monomolecular layer. We can see that the result is a long way removed from
Antonov’s law, which we saw in section 2.4, and which seems to be an
empirical law.

NOTE.— If we apply relations [2.112] and [2.113] to perfect solutions, we
obtain a surface tension of 0, which confirms that two perfect solutions of
the same components but different compositions are always miscible and are
never separated by an interface.

2.7.5. Critique of the monomolecular layer model

The monomolecular model which we have just used is extremely basic,
but yields correct results in relation to those obtained directly by
experimentation, as shown by Figure 2.6 in the case of ether—acetone
solutions. This figure compares the experimental results and those from the
previous calculation for the wvariations in surface tension of
the ether—acetone solution as a function of the molar fraction of acetone. The
straight line in Figure 2.6 represents the same variation if the solution were
perfect.
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Figure 2.6. Surface tension of the ether—acetone mixture: comparison
between experimental results and the monomolecular layer model of
the strictly-regular solution

However, we shall see that this model is not consistent. In order to do so,
we shall examine two problems.

The first deals with the expression of the complete chemical potentials;
the second with Gibbs’ law of adsorption.

We have seen that at equilibrium, the complete chemical potential of a
component of the liquid bulk phase becomes equal to the chemical potential
of that component by the zeroing of the lateral chemical potentials (see
section 2.2.3). However, if we calculate the complete chemical potential
using the last equation [2.15] using expression [2.97], we obtain:

(v)

¥
n, -i-l’l2

[:ul(a) :| - glo(Y) +RTInx + NaZW12x22 -2 m(x2 —xg'I) )x2 [2.114]

n +n2

The comparison with expression [2.100] shows that these two relations
are differentiated by the final term in [2.114]. Even though the last term may
be negligible, as shown by the correct correspondence of the numerical
results with the experience, its presence demonstrates the insufficiency of
our model.
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We can also show that the monomolecular layer model does not satisfy
Gibbs’ adsorption equation. Indeed, Gibbs’ formula [2.46] for a strictly-
regular solution is written:

r
49 I RT 2N 2w x, [2.115]
dx, X,

However, by differentiating expressions [2.106] and [2.107], we obtain:

I
do _ ——2L[RT + 2N, zw, (1= m)x,x, | [2.116]
dx, X,

Whilst the two formulae [2.115] and [2.116] are indeed identical for a
perfect solution, the difference between them shows that the strictly-regular
monomolecular layer model is a little simplistic. It has been shown that by
introducing two monomolecular layers, the result could be improved.

Our model also supposed that the two molecules of the solution had
identical dimensions. Defay and Prigogine (see bibliography) developed a
model that is applicable when the dimensions of the molecules are different.

The monomolecular layer model is still very approximate in the case
of interfaces between solutions. A better description of the interfaces is
obtained by replacing the monomolecular layer with overlapping sheets that
are thin enough to consider that, in each of them, the quantities of material
are the same at all points, whether or not a sheet is monomolecular. Each
sheet is then treated as a non-autonomous phase in contact with two uniform
phases of compositions different from its own.






3

Surfaces of Solids and Interfaces

The study of the surface of a solid differs greatly from that of a liquid.
This difference stems essentially from the extremely limited mobility of the
molecules at the surface of a solid and from a very great difference between
the shearing moduli, which is zero in the case of a liquid. Thus, any increase
in the area of the surface of a liquid is always attended by an increase in the
number of surface atoms without deformation due to the relaxation of the
stresses, which is not the case with a solid. Consequently, solid surfaces are
usually more rigid and irregular. If the solid is a crystal, toward the outside
of the faces, the microcrystals may exhibit vertices or peaks where the atoms
present enjoy different environments, making for a very heterogeneous
surface.

Another phenomenon distinguishes the surface of a solid from that of
liquids. Solid surfaces are almost always tarnished by foreign substances
attracted and held to the solid by adsorption (see Chapter 6). Thus, it is
extremely difficult to keep the surface of a solid clean for longer than a few
moments.

3.1. Surface tension and the surface energy of solids

The equivalence between surface tension and surface energy noted for
liquids (see section 1.2.3) no longer applies in the case of solids. The area of
the surface of a solid can be modified by varying the number of surface
atoms where there is no elastic strain or by applying elastic strain to a
constant number of surface atoms.

Thermodynamics of Surfaces and Capillary Systems, First Edition. Michel Soustelle.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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It is possible to increase the surface area of a solid by creating two
surfaces by severing the bonds between molecules or atoms in the bulk
phase without altering the relative positions of those molecules or atoms
(see Figure 3.1).

£ T AW

Figure 3.1. Increase in area, with an increase in the number
of surface atoms, by cleaving with no deformation

The mean area of an atom or molecule does not change, and the total number
of atoms or molecules on the surface increases. This is the same situation as for
a liquid, as discussed in section 1.2.3, with the same mechanical and
thermodynamic equivalence — i.e. equality of the surface tension and the surface
energy.

It is also possible for the area to increase due to elastic strain in response
to traction exerted on both sides of a solid (Figure 3.2). This traction causes
the elongation of the faces in parallel to the direction of traction. Thus, the
area increases but the total number of atoms or molecules present at the
surface remains unaltered. The mean area of an atom or a molecule
decreases and the interface is elastically deformed, meaning that we have:

2 %0 [3.1]

Figure 3.2. Increasing the surface area of a solid by
traction with the same number of surface atoms

This modifies the calculation of the free energy differential in relation to
the area of the surface, at constant temperature, volume and quantity of
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material in relation [1.53], which is supposed to be valid for deformed
surfaces. It now leads to an isotropic interface stress o * given by:

()
a*:(aF ] =0'+(AB—O-J =0+[ 9o j [3.2]
04 _ 04 )y y olnd).,

This stress is also known as the surface tension. The elastic deformation
(strain) € of the surface is such that:

d(lnA)=d70;57A=g 3.3]

Hence, we find the expression of the surface tension:

o*= 0'+£a—o-j [3.4]
ag TV,N

This relation was devised by Shuttleworth.

Thus, depending on whether or not the surface is deformed, we use either
relation [3.4] or [1.42] to obtain the surface tension.

3.2. Surface energy of a pure crystallized solid: the macroscopic
approach

For an initial, crude model, we shall consider the flat surface of a
monatomic crystal, and express the surface energy, taking account only of
the pair energies &4 (a value which is negative by definition) with the
nearest neighbors of an atom or a molecule. The surface of the crystal is in
the presence of its vapor, but the distances between species (atoms or
molecules) in the vaporous state are such that the interactions between
surface atoms or molecules and those in the vapor are null, as are those
between the species making up the vapor. The crystalline arrangement of the
surface thus constitutes a monomolecular layer containing N molecules.

In the plane of the layer, z/ denotes the number of nearest neighbors of a
molecule and zm the number of pairs between a molecule in the surface layer
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and one in the adjacent layer; z is the coordination number of the crystal. We
therefore have 2m+/=1.

We form a surface by cleaving a crystal in parallel to a dense plane (as in
the scenario where relation [1.42] is applied). Such cleaving creates two
fresh surfaces, each containing N molecules. The number of AA pairs broken
is zmN, but the number of near neighbors in each layer is not altered by the
cleaving. Thus, the increase in energy created by that cleaving is:

XS

e” =—zmNe,, [3.5]

If we consider a molar layer, it contains N, molecules (N, is Avogadro’s
number) and its area is 4, Thus, the surface energy is:

zmN,

o=- £ 3.6
24 m [3.6]

M

The pair energy is linked to the enthalpy of sublimation (sol — vap
transformation) by the relation:

2Asol%vapH
ey = [3.7]

If we choose the (1,1,1) face of a cubic crystal with centered faces, then
z=12 and m = Y. By feeding those values back into the previous relations,
we find:

o= mAsoHvapH _ Asol—)vap [38]
Ay 44,

Comparison with experimental data shows that, in fact, the values
deduced by this model are much higher than the true values, because the
hypotheses made are very crude: an identical degree of coordination in the
plane before and after cleaving, homogeneous surface (i.e. a crystal with no
corners or vertex atoms), etc.
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3.3. Surface energy in a mesoscopic model

In a mesoscopic model, we differentiate the various positions of the
atoms at the surface of a solid. Envisage a solid in the presence of its own
vapor. The reasoning applied in section 1.2.4 remains largely unchanged if
we apply it to the construction of the crystal from its vapor, although there
are two major differences:

— The chemical bond between atoms inside a bulk is sensitive to the size
of that bulk. This effect is linked to the quantum nature of the chemical bond
and to the origin of the energy bands in solids: it is the large number of
atoms (and therefore of atomic orbitals) which creates a large number of
molecular levels. Those molecular levels are situated in a finite energy
space, and are therefore very close together, and under the influence of
thermal expansion they meld into one. In a bulk containing a small number
of atoms, a certain quantification can therefore substitute the band structure.
This phenomenon is more marked when the electrons are shared over a long
distance. It should occur less strongly in molecular or highly-ionic crystals
than in metals. Thus, it may be necessary to take account of an effect of size
on the chemical bond even within the bulk, whose enthalpy would be:

Ay (H).

— Unlike in the case of a liquid, mechanical equilibrium is not achieved in
the solid, and its form will not necessarily be spherical. Thus, we must
distinguish between various types of structural elements at the surface,
depending on whether those elements are situated on the corners, edges or
faces, which may, themselves, differ from one to another.

The construction of the crystal from its vapor, therefore, will involve the
following transformations:

—the passage of a molecule from the vapor to the bulk of the solid:
vap — solid;

— the passage of a molecule from the vapor to the vertices of the surface:
vap — vertices;

— the passage of a molecule from the vapor to the edges: vap — edges;

—the passage of a molecule from the vapor to a face of the crystal:
vap — face.
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Instead of relation [1.50], we obtain:

O-AM = Aqu (H) + Xvertices [Avap—>s (H) - Avap—)vertices(H)J
+ xedges [Avapﬁsolid (H) - AVap%edges (H)] [3 9]
+ zxface [Avapﬁsolid (H) - Avap—)falce (H)]

As in the previous case, o is a positive value.

We cannot eliminate the term o in equation [3.9]. Indeed:

—the term A, (H) does not necessarily obey a law of proportionality
with the inverse of the radius of the particle;

—the number of vertices is independent of the size, because it is
determined only by the shape;

—the size of edges varies, in a given shape, in a linear fashion with
particle size.

Thus, the interfacial energy will generally depend on the shape and size
of the particles.

It has been shown that certain crystalline surfaces created by cleaving
along the crystallographic planes of solids exhibit interfacial energies
tending toward infinity: such is the case if there is a dipolar moment
perpendicular to the surface plane. In this case, it is possible that the face
will not appear in the true solid, or that its components will adopt different
positions those to predicted by a fixed lattice cross-section: this phenomenon
1s known as surface reconstruction, and tends to decrease the interfacial
energy.

The reasoning we employed for the interface between the solid and its
vapor would also apply to the interface between the solid and the same
substance in the molten state.

3.4. Effective surface energy: the Wulff crystal

We saw in Chapter 1 that in the case of the formation of a liquid, it was
possible to define a unique interfacial energy. In addition, the equilibrium of
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the mechanical forces means that the shape must be spherical.
Equation [3.9], which corresponds to the excess Gibbs energy in the case of
a solid, is substantially more complicated. However, we shall now define a
method whereby it can be applied directly to the case of solids, which leads
us to define the effective interfacial energy.

Consider bulks where each dimension is large on the chemical bond
scale. Therefore, we can discount:

—the term A, (H);
— the term due to the vertices, whose number remains constant in a given
polyhedron;

—the term due to the edges (which increase in number with the size) in
favor of the term due to the faces (which increase in number with the square
of the size).

Relation [3.9] then becomes:

O-‘AM = z xfaces [Avapasolid (H) - Avapaface (H):I [3 . 10]

faces

We can therefore write:

cd,=) 04, [3.11]

i faces

where A,, and o, respectively represent the area and the interfacial energy

of the face i.

We shall now show that in a solid of any given polyhedral shape, the
distribution of the interfacial energies leads to the existence of the shape
with the least energy, independent of size, using the approximation that the
interfacial energy is, itself, independent of the size.

Thus, consider a solid of any polyhedral form with constant volume V.
Pick any given point P inside the solid, and let /; represent the distance from
that point to the plane containing the face i (see Figure 3.3).
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Figure 3.3. Finding the shape of the crystal with the least energy

The volume of the elementary solid, which is determined by point P and
the vertices of the face i, is:

h A,
—jA ( jduz T [3.12]

The total volume of the solid, therefore, is:

_ liAM h [3.13]
3T

where i, is the number of faces of the polyhedron.

The total interfacial energy is:

W =Y 4, [3.14]

i=1

The shape with the least energy is such that for any infinitesimal
transformation at constant volume, the differential of the total interfacial
energy is zero. Gibbs gave us the solution to this problem. For each face
i, the ratio o, /h, is a real constant k, independent of i. Thus, we have
W = 3kV, and for any transformation dW = 3kdV, so dW is zero at
constant volume.

It is helpful to take the center of inertia of the solid as point P. We can see
that the faces whose interfacial energy is high are situated a long way from
the center of the solid: if their plane of equilibrium is further away than the
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plane containing the intersection of the adjacent faces, they will not appear
in the solid. Thus, the number i, is, itself, set by the relative o, values.

Hence, the shape of a crystal of finite size depends not on its size, but solely
on the different energies of its faces: crystals of differing sizes can be
deduced from one another by homothety, and the fraction of the area due to
each face will not depend on the size, so no matter what the value of i

1

. O .. .
between 1 and i,, the ratio —— = ¢, is independent of the size. The crystal
o

thus described is known as the Wulff crystal.

It is therefore possible to characterize the Wulff crystal using a single
length a, chosen in any given (but fixed) crystallographic direction, and from
the geometry for each case we can deduce a volumic form factor, hereafter
denoted as ¥, and a surface form factor, written as ¥, independent of a

and such that, for the volume and the surface of the crystal, we have:
V=V.d [3.15]
and

=¥ 4 [3.16]

M s

This means that we can write the total interfacial energy as:
w=d¥>oa [3.17]
i=l1

By introducing the radius r of the sphere of the same volume, i.e. such

4
that ?ﬂﬁ =¥ .a’, we find:

W= 4z’ {‘P (3%,)"" (47) " Za 2 } [3.18]

i=1
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The term in chain brackets here has the dimension of an interfacial
energy, and does not depend on the size of the crystal, but on the different
interfacial energies, which:

— directly define the terms o ;

— indirectly, by way of the morphology, define the terms ¢, ,'¥ and ¥, .

W is the effective interfacial energy of the crystal.

3.5. Interfacial energy between two solids

Up until now, our discussion has been based on the assumption that all
the solids were perfect and therefore had a molar enthalpy of formation
which depended only on the temperature. This approximation is justified in
the study of the condensation of a gas (or a liquid), because the variations
in the chemical potential as a function of the composition are much greater
in the fluid phase and, in practice, render the same effects in the solid
negligible. This is no longer true, though, with contact between two solids,
because it is the impurities in the solid which are the species that determine
the chemical potentials.

We can apply the reasoning process illustrated in section 3.3 to the
appearance of one solid from another solid, provided we use the quasi-
chemical formalism of the structural elements:

— the fluid is replaced by the original solid phase;

— the molecules or ions are replaced by the structural elements.

Let s1 and s2 represent the two solids in contact. We are led to the same
formalism as in section 3.3:

O-AM = Aqu (H) + Xyertices |:Asl—>52 (H) - Asl—>52vertices (H)]
+ xedges |:Asl—>52 (H) - Asl—>sZedges (H):| [319]
+in I:ASI’>52 (H) - ASl*>82face (H):I

In the case of a solid—fluid interface, we adopted the hypothesis that the
enthalpy of condensation must lie between 0 and the value obtained in the
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bulk of the solid. We shall see, though, that this point needs to be
reconsidered in the case of a solid—solid interface, integrating the concept of
compatibility of the crystalline lattices and of the molar volumes.

The three-dimensional order of crystallized solids requires a great deal of
entropy. The reason for it is to maximize the interactions (van der Waals
forces, hydrogen bonds, electrostatic forces, delocalization of electrons in a
metal) between the structural elements, in view of the geometric stresses
stemming from the shape of the molecules or the size of the ions. The whole
of the solid, therefore, creates a periodic potential — particularly in the space
surrounding a structural element, which therefore, in the perfect solid at OK,
occupies the position of least energy.

Solid B Solid A
X X X X X X [} o Y @ o [}
X X e X X X Y ® ® ® ® Y
X X X X x x ® ® ] ® ® ®
[ ] L] L] L ] [ ]
X X X X X X
X Position of least energy at the surface of solid B
® Position of least energy at the surface of solid A
A-B interface “H Eq}i}llbr;umB ,
osition for
ox o & & & W P >
1
\ | Potential
ox & & o« i g | created by A
1
ox Ox & [ 3 ® D '
1
® ° ® ° ® ® SH| - _NUS .
X X X X X X
________ Potential
created by B

Figure 3.4. The importance of compatibility between the crystalline lattices

As an initial approximation (notably if we overlook the phenomenon of
surface reconstruction), a structural element situated at the surface is subject
to a potential which is half of that at the core. Let us now consider the
situation at a flat interface between two solids, A and B: take a structural
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element situated both in the minima of potentials created by A and B: its
molar enthalpy is half the sum of the enthalpies in the two solids, and we see
the same situation as with the solid—fluid case, if that reasoning process were
not usually limited to a small fraction of the construction units situated at the
interface. Indeed, the potential of the solids has the same period as their
spatial arrangement, so, in the general case of solids whose crystallographic
characteristics are different, it is not possible for neighboring construction
units to be situated at the minima of potential both for A and B (see
Figure 3.4).

The least unfavorable scenarios are those where:

— either the lattices are fairly similar: in this case, the small size of one of
the solids may allow the construction units to be very close to the minima
across the whole surface;

— or the spatial periods of the lattices are commensurate, which ensures
common periodicity that affects only a fraction of the sites.

Generally speaking, we see the formation of a grain joint, where the
reconstruction of the two interfaces gives rise to an amorphous layer.

The lack of mobility in solids produces another effect: if the molar
volume of the solid formed is very different to that of the initial solid, the
surrounding phase cannot accommodate the mechanical stresses engendered.
Two scenarios may occur:

— the molar volume of the phase formed is smaller than that of the initial
phase: in this case, we see the formation of interfaces between A and the
surrounding fluid and between B and the surrounding fluid;

—the molar volume is larger: then we see the creation of mechanical
stresses and the appearance of an additional term in the interfacial energy.

The interfacial energy between two solids, therefore, may be extremely
low if they have different compositions but their crystalline lattices are
similar in terms of symmetry and mesh parameters. We shall see that this
results in the phenomena of heterogeneous primary nucleation from the fluid
phases, which ultimately results in epitaxy. On the other hand, that
interfacial energy may be very high if the lattices are very different in terms
of their molar volumes and from a crystallographic point of view.
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3.6. Interfaces between pure solids and liquids

We shall now touch on a certain number of phenomena linked to the
existence of an interface between a pure solid and a pure liquid — phenomena
which are connected to the properties of wetting and adhesion of the liquid
to the solid, and to numerous applications such as detergence.

3.6.1. Spreading and angle of contact of a liquid on a solid

As we did for the drop of liquid on a liquid (see section 2.6), we can
study the behavior of a drop of liquid placed on a solid.

Consider a flat solid surface upon which a drop of a liquid is deposited.
That drop may or may not spread. Suppose it does not spread and that the
liquid does not react with the solid. Let € be the angle of contact formed by
the tangent to the drop at the “triple” point where the three phases meet: the
solid, the liquid and the surrounding gas (see Figure 3.5(a)). This angle may
have any value at all between 0 and & radians, and is sometimes referred to
as the link angle. The three surface tensions o, o and oy are represented by
three vectors applied at that triple point, tangential to the path of the
respective interfaces.

2) b) ¢)

Figure 3.5. Lie of the drop on a solid: a) metastable equilibrium;
b) equilibrium reached at the triple point; c) all equilibria are achieved

The condition of mechanical equilibrium, therefore, is written:

- - -

os+o+0q =0 [3.20]

However, the representation of the interfacial tension vectors in
Figure 3.5(a) does not satisfy this condition. Experience tells us that within a
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short period of time, a state of mechanical equilibrium of the drop, called
temporary equilibrium, is reached, and Young and Dupré express that state
by projecting the vectorial equality onto the plane of the substrate, which
gives us:

o,=0,cos0+0, [3.21]

Let us show that this relation corresponds to a state of equilibrium.

The generalized capillary Gibbs energy for the system represented in
Figure 3.5(a) would be written as:

G,=G(T,P)+0,4, +0,4,+0,A, [3.22]

Let us now evaluate each of the interfacial areas:

— the area of the interface between the solid and the liquid is that of a disk
whose radius is 7 sin®:

A, =nmr’sin’ @ [3.23]

— the area of the gas—solid interface is given by the initial area of the solid
in the absence of the drop Ay, less the area of the previous liquid—solid
interface, which is:

A, = A, —7r’sin® @ [3.24]
—the area of the interface between the gas and the liquid is that of the

spherical cap with radius r, centered at O and observed from that point at the
solid angle Q:

Ay, =2 =271 (1-cos 6) [3.25]

By introducing the three values of the areas into relation [3.22], we
obtain:

G,=G(P,T)+xr’c,sin’ 6 +0, (4, —7r’sin’ 6) [3.26]
+27r’0, (1-cosb) |
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Thus, the capillary Gibbs energy function is a function of the variables 7,
P, r and 6. Its differential at constant temperature and external pressure,
therefore, is of the form:

9G, . 3G,
pp =g s dr e = d0=0 [3.27]

(dG,)

This differential is zero if the system is at equilibrium (be it stable
or unstable). When we differentiate expression [3.26], the equilibrium
condition takes the form:

[47rr0'L (1-cos®)+27r(o,, -0, sin’ 9)}dr
[3.28]
+[20‘L75r2 sinf+2(o, —0,)zr’sinfcos 9]d0 =0

The volume of the liquid is that of the spherical sector with radius 7,
centered at O. Its value is:

3

0
v, = Iﬂ'r sin® & rdgsiné‘):”Tr(2—3cos49+cos3 49) [3.29]
0

At equilibrium in the drop, that volume is constant, and therefore its
differential is zero:

w, . ov

av, =21 d4r+ZLdg=0 3.30]
or 20

If we differentiate relation [3.29] and make the two differentials dV
equal, this gives us:

rsin@(1+cosb)
dr=-— —-dé [3.31]
2—cos@+cos 0

By feeding back equation [3.31] into relation [3.28], we obtain the
Young—Dupré equation, given by expression [3.21]. Nothing in our
calculation specifies whether this is a stable or unstable equilibrium.

The local stable equilibrium at the triple line can be obtained by local
deformation of the solid, which then presents a bank with a slight indentation
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in the solid on both sides (see Figure 3.5(b)). This morphological alteration
of the solid is obtained by interfacial and surface diffusion, which explains
the long periods of time needed — particularly at low temperature. This
modification causes the system to tend toward a state of stable local
equilibrium, which is obtained (Figure 3.5(c)) when the curvature of the
liquid—solid interface is such that relation [3.20] is satisfied.

For certain liquid and solid couples, the drop cannot achieve equilibrium
within a short space of time, and spreads completely over the solid. Thus, the
surface tensions are such that:

o,>0,>0, [3.32]

We then say that the liquid wets the solid perfectly.

Generally, we obtain the difference:

h=0,-(0,+0,)=0,(cos6-1) [3.33]

This difference is the coefficient of spreading (see relation [1.81]) of the
liquid over the solid. Equilibrium between the drop and the solid, therefore,
can only come about if that spreading coefficient is negative — i.e. if the
liquid—solid couple satisfies the dual condition:

20, <h <0. [3.34]

3.6.2. Work of adhesion between a liquid and a solid

For the work of adhesion between a liquid and a solid, the definition
given in section 2.5 for two liquids remains valid, and by applying Dupré’s
relation [2.75], in light of relation [3.21], we obtain:

W, =0,(1+cos8) [3.35]

Thus, the work of adhesion of a solid and a liquid can be calculated if we
know the surface tension of the liquid and the contact angle between a drop
of the liquid and the solid — two values which it is possible to measure.
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3.6.3. Solid surface in contact with two liquids: displacement of
one liquid by another

Let us now look at what happens when two liquids are brought into
contact on the same solid surface. Two scenarios may arise:
— the two liquids may coexist, side by side, on the surface of the solid;

—or else, one of the liquids repels the other, and tends to occupy the
whole of the space.

OAB

Ol - L — s s s — PO

Figure 3.6. Two liquids coexisting on the surface of a flat solid

Consider the first case (Figure 3.6). The two liquids A and B may coexist
on the flat surface of the solid. Let & be the angle of contact, which is
supposed to be acute on the side of A. The temporary equilibrium condition
for this system is:

Op, =0, +0,;c0s0 [3.36]

We can calculate the interfacial tension between the two liquids o, but
we do not know the solid-liquid interfacial tensions o,, and Oy . In order

to obtain them, consider the work of adhesion of each of the two liquids to
the solid. Given relation [2.75], we have:

W.=o0,+0, -0 [3.37a]
As A s As

Wy, =0y +0, — 0y, [3.37b]
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By finding the difference, we obtain:

W, Wy =0, =0y +0z —0, [3.38]
In light of relation [3.36], we find:
W Wy =0,—0z+0,;c0s0 [3.39]
From this, we deduce:
W.,—0,)— (W —0
cos€=( s =%) = (M =) [3.40]

O-AB

If 6, and 6, are the angles of contact of liquids A and B, deposited
separately onto the solid surface, then in view of relation [3.35], we have:

W, =0, (1+cosb,) [3.41]
Wy, =0y (1+cosb,) [3.42]

These relations, when fed back into expression [3.40], give us:

o, cosf, —o,cosb,
o-AB

cosf =

[3.43]

We have supposed that the angle @ was acute on the side of A, so cosé
must be positive and less than 1, which means we can write the equilibrium
condition in the form:

o, cosd, —o, cosb
cos@=—= A b B

[3.44]
O-AB

Freundlich spoke of the tension of adhesion (not to be confused with the
work of adhesion) of each of the liquids, representing them by the terms

o, cosé, and 0, cos6;,:

T, =0,c0s6, [3.45a]
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T, =0, C0S G, [3.45b]
Hence, the equilibrium condition is written:
Tp—Tg<Ox [3.46]

The difference between the tensions of adhesion of the two liquids must
be less than their interfacial tension.

In the opposite case, when condition [3.46] is not respected there is no
possible equilibrium, and liquid A (which has the higher tension of
adhesion) spreads and forces liquid B out.

This phenomenon of displacement is exploited in the assisted extraction
of petroleum from porous rocks, but also in detergence, where a detersive
substance is added to water to help it to displace grease on the surface of a
cloth or a dish.

3.6.4. Conditions of stability of solid particles at fluid interfaces

It is easy to see that small particles of numerous solids may be at
apparently-stable equilibrium at liquid—fluid interfaces. Such is the case, for
example, with a metal needle which, though it is far denser than water, floats
on the surface of water if coated with wax. We shall now examine this
phenomenon of equilibrium of a small solid at the interface between two
fluids.

Consider a solid particle that is small enough for the influence of the
surface forces upon it to be stronger than that of gravity. For simplicity’s
sake, let us say that this solid particle is a rectangular parallelepiped. Place
that particle at the interface between two fluids — e.g. a liquid L and air
(Figure 3.7).

We can see that at a triple point, the temporary equilibrium condition is
written:

o,=0, cosf+0, [3.47]
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air

Figure 3.7. Stability of a solid particle at liquid interfaces

This relation is absolutely identical to relation [3.21], which gives the
condition of non-wetting of the solid surface by the liquid. If this condition
is not met, the liquid spreads over the whole of the solid surface, which is
then completely surrounded by liquid and therefore cannot remain at the
surface. Thus, the condition for stability of the particle is that the liquid must
not wet the solid.

Looking now at the case of the interface between two liquids, A and B
(Figure 3.8), the equilibrium condition here is:

Op=0,,c080+0, [3.48]

Then we again see condition [3.36] for the coexistence of two liquid
surfaces on the surface of a solid. If this condition is not fulfilled, the solid
particles are rejected from the liquid whose adhesion tension is higher.

The separation of ores by flotation is one of the essential applications of
this phenomenon of stability or rejection of solid particles at the interface
between two fluids.
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OB < ¢ >O—A

solid

Figure 3.8. Stability of a solid particle at the interface between two liquids

3.7. Adsorption of elements of a liquid solution by a solid

We shall now consider the interface between a pure solid and a liquid
binary solution (B phase) made up of the two components, 1 and 2. The
composition of the liquid in the vicinity of the solid expresses the
phenomenon of adsorption of the elements in the liquid solution by the solid.
The monolayer model (y phase), which we used in section 2.7, coupled with
the strictly-regular solution model, taking account only of the pair energies,
yields the following expression, which was put forward by Desré:

— —| () _ (v) _
(04 —0,) 4, =| 5" (0~ 1)+ (0, - W,) | 4,

S

[3.49]

X X,

Nt e
+RT| x In = [ +| 27 In 22— |+ (1 +m) N, w,x, x,

+IN,w,x) —(I+m)N,w, (xl(Y)x2 +x\x, )

Remember that in this relation, xl(y) and x, denote the molar fraction of

component 1 in the monolayer and in the bulk of the liquid, respectively. 4,
is the molar area, 0, and o, are the surface tensions of the solid and liquid,

each in the presence of its own vapor, 0, and 0, are respectively the surface
tensions of pure liquids 1 and 2 in the presence of their vapor, W is the work
of adhesion of the pure liquid 1 to the solid s, N, is Avogadro’s number and
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wi, is the parameter representing the difference in the pair energies which
characterizes the strictly-regular solution.

The minimization of the free energy in relation to the quantity of
component 1 in the monolayer, for a given composition of the bulk solution,
gives us:

RTIHM—

_(O-I_O-Z)AM_(VVI_VVZ)AM [3-50]
X, (1—x2y )

—IN,w,, (1—2)c§Y))+(l+n1)Naw12 (1—2x2)

Expressions [3.49] and [3.50] can be used to obtain the values of the two
unknowns: xgy) , the composition of the solution in the vicinity of the surface
of the solid; and o, the liquid—solid interface energy, for a given

composition x, of the solution.

Relation [3.49], applied to a dilute solution of component 2 in solvent 1 —
i.e. when x, tends toward zero — enables us to calculate the variation in the
interfacial energy with changing composition. We find:

(da(;g J =E{1 - exp(—iﬂ [3.51]
dx2 X, =0 AM RT

where E, is the energy of adsorption of 2 by the solid at infinite dilution,
defined by:

Ez:(0-2_O-l)AM_(VVz_VV])AM_mNanz [3.52]

The application of relation [3.50] for the dilute solution gives us:

(v)
(ij = exp [—ij [3.53]
X, W0 RT

This expression of the adsorption isotherm is similar to Henry’s law.
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Freundlich curves

Henry’s straight line

X,

Figure 3.9. Isotherm of adsorption of a solute to a solid

We know that such an equation cannot account for all the forms of
isotherms of adsorption. The application of equation [3.50] for perfect
solutions (w;, = 0) gives us the homographic form of the isotherm:

(v)
x| x exp(_ij _ K [3.54a]
1-x" | 1-x, RT) 1-x,

2

or

(v _ 3.54b
2 TR (K 1)y, 135401

More complex laws such as Freundlich’s, which expresses an exponential
variation of the quantity of fixed component 2 as a function of the
concentration of the solution (Figure 3.9), have been put forward, but no
attractive models have been developed to illustrate them.

3.8. Electrocapillary phenomena

Electrocapillarity is the combination of electrical phenomena and surface
phenomena. It is particularly useful when studying the double electrochemical
layers found at electrodes.
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3.8.1. Definition of electrocapillarity

The phenomenon of electrocapillarity consists of a variation in the
surface tension of an o phase in contact with another 3 phase when the
potential difference between the two phases varies.

This phenomenon is encountered, in particular, when a metal electrode is
in contact with an electrolyte, which essentially constitutes an interface with
a potential difference between the electrode and the electrolyte.

Although the phenomenon may arise no matter what the nature of the two
conductive phases present, we shall keep to the case of the ideally-polarizable
metal electrode — i.e. without a chemical reaction. The easiest system to study
is that of a liquid metal electrode, such as a mercury electrode.

3.8.2. Gibbs-Lippmann formula and Lippmann’s formula

Consider the ensemble formed of a mercury electrode (the o phase) in
contact with an electrolyte (the B phase) containing M; ions. The interface is
supposed to be flat, or at least with a large radius of curvature, meaning that
the pressure values on both sides of the interface can be treated as identical.
The intervention of the surface and electrical phenomena introduce the
odA4 (o is the electrolyte/electrode interface tension) and Z[l dn,

J
corresponding amounts of work into the internal energy, whose differential
is then written as:

dU=TdS-PdV+odd+) i, dn, [3.55]
J

We have directly introduced the work of the electrical forces in the form
of the electrochemical potentials of the species j. The species to be taken into
account are, obviously, the M; ions of the electrolyte, the solvent and the
electrons from the metal. The metal atoms are not taken into account,
because the metal only serves as an electron source.

Similarly, we would write the differential of the Helmholtz energy in the
form:

dF =-SdT-PdV+0dA+) i1, dn, [3.56]
J
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The differential of the Gibbs energy would then be:

dG=-SdT+VdP+0odA+) i dn, [3.57]
J

and we would define a generalized Gibbs energy (N?a, known as the
electrocapillary Gibbs energy, whose differential would be:

dG,=-SdT+VdP-Ado+) ji,dn, [3.58]
J

The differential of the surface tension is linked to the excess surface of
the components and to the electrochemical potentials by the relation:

do=-3I,dz [3.59]
J

The phase distribution of the j components would then be represented by
a curve similar in form to that shown in Figure 3.10. The cross-hatched area
on the left of the interphase represents the excess surface of the electrons, /',
and the shaded area to the right of the interphase represents the excess
surface /', of a component M; of the electrolyte.

A
C |G

interph |
_nterphase

Interface

Figure 3.10. Concentrations of ions and
electrons in the electrode/electrolyte interphase
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If z; represents the number of charges of component M;, these excess
surfaces are linked to one another by the relation of electroneutrality, in the
form:

>zl =T, [3.60]

Let us rewrite relation [3.59], separating the terms due to the electrons
from those due to the components M; of the solution. We obtain:

do=->Idi-I,d4, [3.61]

The electrochemical potentials are written on the basis of the chemical
potentials, in the forms:

7 = _(ﬁ)+ K (B)
{u, 1P +z5¢ 5621

i1, =" 50"
The chemical potential of the electrons can be deemed to be constant, so

by differentiating expressions [3.62], we find:

{da,. =dy” +z5dg" [3.63]

djt, =-5dgp"”

If we take account of the condition of electrical neutrality [3.60], then
relation [3.59] becomes:

do=-Y T, dy,-T5(¢" - ") [3.64]

The product 1§ represents the surface charge density on the electrode
O., and ((p(“) —(p(ﬁ)) is its absolute voltage. In a differential, we can replace

the absolute voltage with the relative voltage e, and thus we obtain:

do=-)I,dy —o,de [3.65]
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This is the Gibbs—Lippmann relation. Employing the hypothesis of
constant composition, this formula is simplified to become:

(a—gj =0, [3.66]
o€ )rp,

This latter relation is Lippmann’s formula.

3.8.3. Experimentally obtaining the surface tension/electrical
potential curve

The curve showing the variations in surface tension as a function of
electrical potential is called the electrocapillary curve. To obtain such
curves, we use a capillary electrometer (Figure 3.11). A tube, A, containing
mercury ends in a capillary tube of diameter » and constitutes an electrode in
contact with the electrolyte contained in a tank in which a reference
electrode is immersed. A variable voltage is applied between the mercury
electrode and a mercury counter-electrode placed at the bottom of the tank.
The height 4 of fluid in the tube of mercury is proportional to the surface
tension, and can therefore be used to determine it (see section 4.1.2.2).

3.8.4. Shape of the electro capillary curves

If we draw the comparison between the electrode/electrolyte interface
with an electrical capacitor, its capacity (which is a positive value) is given

by:

c=—¢ [3.67]

That capacity is constant (independent of the field), and thus by using
Lippmann’s formula [3.66], we obtain the differential equation:
d’o
c=— 3.68
i [3.68]
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('

Reference

Figure 3.11. Capillary electrometer

A first round of integration (where a is a constant) yields:

L [3.69]
de ‘

and a second integration (where b is a constant) gives us the equation of the
electrocapillary curve:

2
0'=—%+ae+b [3.70]

o Zero-charge point

Figure 3.12. Theoretical electrocapillary curve
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Equation [3.70] shows that the electrocapillary curve is a parabola whose
concave surface faces downward (¢ > 0). On the ascending part of the
parabola, we can see in view of equation [3.69] that the density of electrical
charges is negative, but it is positive on the downward part.

The maximum point of the parabola, where the charge density is 0, is
called the electrocapillary maximum, and the corresponding tension is the
zero-charge tension.

Certain authors, in haste, deduced that because the charge density was
zero at the maximum point, the same was true of the voltage, in which case it
would finally be possible to find the absolute voltage of an electrode.
However, experience shows that this is not the case, because the hypothesis
of the flat capacitor supposes that electrical charges are only present at the
interface, overlooking the presence of dipoles — in particular, the dipoles of
the water molecule, which make a notable contribution to the electrode’s
voltage. Thus, in actual fact, the experimental curves are dissymmetrical (see
Figure 3.12), essentially presenting two different parabolic branches. The
ascending branch is attributable to the anions. This means that all
electrolytes which have the same anion would give approximately the same
branch, because the dipole contribution due essentially to water varies little
in similar conditions of concentration. The descending curve, on the other
hand, is essentially due to the cations, and would be common to practically
all electrolytes sharing the same cation.

Figure 3.13 shows the electrocapillary curve of the mercury/iodide
system for three iodides: calcium iodide, sodium iodide and potassium
iodide. We can see that the ascending parabolic branch is shared by all three
curves as, in addition to having the same mercury electrode, the three
systems also share the same anion. By contrast, the descending parabolic
branches are different, because the cations are different.

NOTE.— It is worth pointing out that the reference electrode used works in the
same electrolyte with variable composition as the mercury electrode, so its
own absolute voltage is not constant, and the variation measured is not,
strictly speaking, that of the voltage of mercury. The electrocapillary curves
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therefore need to be plotted as a function of the potential £ — a potential
difference at the terminals (e.g. when using a hydrogen electrode) of the
chain:

Pt|Hg|H,O +electrolyte |H, |Pt [3.71]
Phases TI'H) Tl,)_J 2) 2)

043 o
0.41 -
0.39 -
0.37 1
0.35

Cal
033 - a0

0.31 - Nal
0.29 -

0.27 A

0-25 T T T T
-1.8 -1.3 -0.8 -0.3 0.2

e(¥)

Figure 3.13. Electrocapillary curves found experimentally
3.8.5. Applying electrocapillarity to the experimental determination
of the excess surface

Based on relation [3.65], given to us by Gibbs and Lippmann, we can
write the following for the excess surface of component i:

I = _[a_aj [3.72]
aﬂi T')ev/jj

In practice, as we saw for capillary systems (section 2.2.5), the relation
existing between the chemical potentials is incapable of delivering the above
differentiation. Therefore, all we have access to is the relative adsorptions, in
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relation to component 1 (e.g. the solvent), which obeys the following
relation, derived from expression [2.39]:

ou

i

r, :—[a—aj j#iz2 [3.73]
T.e.u,

Relations [3.72] and [3.73] are only identical for fairly-dilute solutions.

Even using the relative adsorptions or dilute solutions, if component i is
an ion, it is not possible to alter its chemical potential without modifying that
of the other ions, and thus relations [3.72] and [3.73] need to be modified to
show only the chemical potentials of neutral molecules.

To take the example of a simple case, we shall stick with 1:1 electrolytes,
such as HCIl, which dissociates into CI" and H' ions, whose relative
adsorptions /', and I’ we shall now calculate.

To measure the voltage of the mercury electrode used, we pair it with a
reference hydrogen electrode, creating the chain in [3.71]. The potential
difference at the terminals of that chain can be written as:

E=¢" =g =(p" —g")+(¢" —9) + (¢ - ) 3.74]

As the potential difference Pt/Hg (((p(ly) —(p('))) remains constant

regardless of the concentration of the electrolyte, the differential of the
potential difference can be written:

dE=d(¢" - )+d(¢? -¢”) [3.75]

or

dE=de—-de, [3.76]
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The voltage e, of the reference electrode (which, by definition, is un-
polarizable) is given by Nernst’s relation:

d +
de, = el [3.77]
and thus, in view of relation [3.76], we can write:
d +

de=dE+ alt [3.78]

Hence, in light of the Gibbs—Lippmann relation [3.65], we write:
du .

do=-I.du,. -T, du., —og,dE—o;,TH [3.79]
The condition of electrical neutrality [3.60] means we must have:

o,==(I.-I.)§ [3.80]

This relation gives rise to an identical relation between the relative
adsorptions:

o, =~(Iy, Ty ,)3 [3.81]

H',l ar,l
From this, we deduce:

do=0dE-T, (du, —du,.) [3.82]

cr

By replacing the chemical potentials with their expressions as a function
of the activities, we reveal the product of the activities of the chloride ions
and hydrogen — i.e. the mean activity of HCI — and thus we have:

do=0,dE—-2RTT_ dIn|HC]| [3.83]
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By plotting the electrocapillary curves G,(E) for different values of the
mean activity of HCIl, we can find the relative adsorption of the chloride
ions, as follows:

1 Jdo
I, = 3.84
e 2RT(81n|HCl|JTPE 84

If we also know the surface charge density, we can directly obtain, by
finding the difference, the relative adsorption of the protons, in obeisance to
the electroneutrality equation, which imposes:

r. =r. - [3.85]

NOTE.— To directly find the relative adsorption of the protons, we must
replace the hydrogen electrode with an unpolarizable electrode sensitive to
chloride ions — e.g. the calomel electrode.






4

Small-volume Phases

The term small-dimension phase denotes phases wherein the dimensions
are generally much less than a micrometer. Such phases may include small
grains or droplets (small volumes). They are the phases found during the
earliest stages of the creation of a liquid or solid condensed phase from a
bulk phase in the nucleation process.

Experience shows us that this type of phase exhibits very particular
thermodynamic properties, such as a melting point that is not constant during
the process of fusion, or the chemical stability of a phase dependent on its
dimensions, etc. These special properties are attributed to the relative
importance of the surface energies of the interfaces separating those phases
from their environment, in comparison to their bulk energy.

In spite of their slight dimensions, these phases tend to be autonomous,
which cannot be said of interfaces, whose thermodynamic properties depend —
as we saw in the earlier chapters — on those of the adjacent phases.

In this chapter, we shall examine the case of small-volume phases, in the
form of spherical liquid drops or small Wulff crystals (see section 3.4).
4.1. Laplace’s law for spherical liquid drops

The application of Laplace’s law determining the difference in pressure
between the inside and the outside of a spherical liquid drop with radius 7 is
written as follows, in view of relations [1.12] and [1.42]:

This and the previous chapter owe a great deal to the kind contribution of Patrice Nortier.

Thermodynamics of Surfaces and Capillary Systems, First Edition. Michel Soustelle.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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20
+_
r

P(int) :P(ext) [41]

This result remains valid for a bubble of gas in a liquid; the difference
between the drop and the bubble lies simply in the inversion of the nature of
the phases.

4.2. Similarity between the thermodynamics of a Wulff crystal
and that of a liquid drop

Let us look again at relation [3.18], which gives the surface energy of a
Wulff crystal. ¥ and W, are, respectively, the bulk and surface form
factors, and r is the radius of the sphere with the same volume as the crystal:

W= 4nr’ {lp (3%, )2/3(47z)”3ia,.04} [4.2]
i=l1

If we define the term in chain brackets as an effective surface tension
o, this energy can be written as:

W = anr’c, [4.3]

This relation is absolutely identical to that which gives the surface energy
of a spherical liquid drop with radius » given by the application of relation
[1.5]. Thus, for a Wulff crystal, we can write the expression of the pressure
differential between the inside of the crystal and the fluid (gas or liquid)
surrounding it in the form:

20}[/‘

P(int) :P(ext) + [44]

7

Thus, relations [4.1], pertaining to a spherical liquid drop, and [4.4],
pertaining to a Wulff crystal, are absolutely analogous, and therefore we
can state that a Wulff crystal is thermodynamically equivalent to a liquid
drop.
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4.3. Reiss’ characteristic function

Consider a small phase composed of a spherical liquid droplet whose
volume is "9, placed in a closed system with the volume /€*, containing a
gas at the pressure P™). The gas is a mixture of the vapor of the liquid and
an inert gas which is insoluble in the liquid and not adsorbed to its surface.
The temperature of the whole system is kept at the value 7.

The function of the generalized potential Gibbs energy of such a system,
known as Reiss’ function, is written:

Gy =U =TS+ P (9 1y [4.5]

NOTE.— Reiss function is a generalized Gibbs energy function.

As that function is a potential function, any spontaneous transformation
at constant temperature 7 and pressure P™ will be characterized by:

(dG,). oy 0 [4.6]

T,P

Equality in the above relation defines the state of equilibrium of the system
where Reiss’ function exhibits a minimum if that equilibrium is stable.

The internal energy and entropy of that system are linked to the
corresponding values characterizing those of the phases present, by the
additivity relations:

U=U (P) 1yt (pt) [4.7a]

S = S(gas) (P(ext) ) + S(liq) (P(int)) [47b]
The pressure P™ is the prevailing pressure inside the droplet.

Let us express Reiss’ function on the basis of the internal energies and
entropies of each of the phases. We have:

G, = U'e) (P(eXt) ) —7se) (P(m) ) + pleyp(es)
) (P(im) ) _ 7glia) (P(im) ) + plewplia) [4.8]
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The sum of the first three terms in this expression represents the Gibbs

energy of the gaseous phase at pressure PV; G'&) (P(e’“) ) The sum of the

last three terms is a different value J"¥ of the Gibbs energy of the drop
G\ (P(im)) because of the involvement of the pressure P*” in product PV

Relation [4.8] can thus be written in the form:
G, =G (p<e“) ) + ) [4.9]
The value J"@ here is defined by:

Jliar _ pyia ( P(im))_ 7.5 (i ( P(im)) + pletytia
4.10
— o) (P(int))+P(cxt)V(liq) [ ]

Now suppose that the same amount of material as that making up the
drop is taken to integrate into the bulk phase by being taken to pressure P

In this operation, U (“q)(P(im)) tends toward U (“q)(P(m)) and S (P(im))
tends toward S(liq)(P<eXt)), so J" tends toward G (P(e’“)) which, if we

overlook the compressibility of the liquid, is such that:

G(liq) (P(ext) ) _ U(liq) (P(ext) ) _ TS(nq) (P(ext) ) + P(ext)V(liq)

, A [4.11]
— F(llq) (P(ext) ) +P(ext)V(llq)
Using relations [4.10] and [4.11], we can calculate the difference:
Jlia) _ (lia) (P(eX‘) ) — flia) (P(im) ) _ ftiia) (P(e’“)) [4.12]

By finding J" from relation [4.12] and feeding it back into expression
[4.9], we obtain:

GR _ G(gas) (P(ext) ) + G(liq) (P(ext) ) n F(liq) (P(int) ) _ F(liq) (P(ext)) [4.13]
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The difference F (“q)(P(i“‘))—F (“q)(P(e’“)) represents the reversible

isothermal work needed for the transfer of a certain quantity of liquid,
corresponding to that of the future drop, at pressure P, to form the droplet
with radius r at pressure P™. This transfer can be enacted in an experiment,
represented by Figure 4.1, where the liquid initially forming a bulk phase is
placed in a syringe. The pressure exerted on piston p, of the syringe causes
the formation of the drop with radius » and volume V" at the end of the
needle.

Pistonp, —¥f

P(im)

Figure 4.1. Formation of a drop at a constant imposed external pressure

When the drop is at mechanical equilibrium, Laplace’s law [4.1] must be
satisfied. The total work necessary to form the drop is:

W= P+ 2% 4z d, 4.14
tot J‘
r
0

The work found on the left-hand side of this equation, J-47L'r2P(eXt) dr, is,
0
in fact, restored to the outside by the motion of the piston p; in the cylinder

in order to keep the pressure P constant. Thus, the only portion of the
work which contributes to the increase in the liquid’s Helmholtz energy is:

w =l (P‘““) ) — Fli) (P<e*‘) ) = G]Sﬂ'r dr [4.15]
0
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In light of relation [4.13], we then find:

Gy =G (P} =G (P™) + 471’0 [4.16]

Hence, we know the value of Reiss’ function for a spherical liquid drop.
We can see that the variables in that function are temperature 7, internal
pressure P, external pressure P™ and the radius of the drop r.

In view of the equivalence shown in section 4.1.2, expression [4.16],
which was established for a spherical liquid drop, is also applicable to a
Wulff crystal with equivalent radius (see section 3.4).

4.4. Gibbs energy of a spherical pure liquid or solid with small
volume

Once again, let us consider a spherical liquid drop with the radius r.

As the gaseous phase is a mixture of the vapor of the liquid and an inert
gas, the outside pressure is the sum of the partial pressure of the inert gas, P,,
and the pressure of the liquid vapor P, so:

(ext) _
P =P +P [4.17]

If n, and n, are, respectively, the quantities of vapor and of inert gas, the

Gibbs energy of the gaseous phase will be:

G(gas)(P(eXl)):nggg (Pg)+nvg3 (PV) [418]
If the drop of liquid contains 7, moles, its Gibbs energy will be:
G (P ) =ng (P) [4.19]

The material balance means that we can write the following relation
between the variations in the quantity of liquid and vapor:

dn,=—dn [4.20]
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By differentiating relation [4.16] in relation to the quantity n;, we can
write:
_0G,
on,

a
d 0 P(ext) 0 p i 4
R)T P v v a
( G ) , (ext) |:gl ( ) &g ( ):| ”1 84/21 (¢ ( Jdnl 0 [421]

n

Thus, we obtain the relation between the molar Gibbs energies of the
liquid and of the vapor:

gl(P)=g'(P“)+ 29 st [4.22]

v
4

This relation, in view of expression [4.1], can be written:

v

g? (P ) _ glo (P(ext) ) + (P(im) _ P(ext) )VO(liq) [4_23]

We know that in the case of a massive liquid phase, the Gibbs energy of
the vapor is equal to that of the liquid — i.e. a liquid with infinite radius
g’ (r=eo). Hence, for a pure substance A, the Gibbs energy of the liquid

phase will be:
0

gA(r)zgg (rzoo)+2—av3(“q) [4.24]
r

This is the Gibbs—Thomson relation for pure substances of small volume.

Of course, this relation can also be applied to a Wulff crystal at
equilibrium with its vapor or its pure liquid, with equivalent radius 7.

4.5. Chemical potential of a component of a solution

We shall now consider the case where the liquid and vapor are
polycomponent phases. By differentiating expression [4.16] in relation to the
amount of one of the components, i, and making that expression equal to 0
(equilibrium), we find:

(8GR] :[/J; (P(ext))_lui (Pv)i|dn1 +87[yo'(aa—rjdni =0 [4.25]

on, n;
7
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This relation gives us:
1 (r) = (r=o0)+=—V, [4.26]

Note that relation [4.26], at equilibrium, expresses the equality of the
generalized chemical potential of component i in the liquid phase and the
chemical potential of component 7 in the gaseous phase.

Relation [4.26] is the Gibbs—Thomson relation for species in solution in
small-volume phases.

NOTE.— Reiss pointed out that relation [4.26] was incorrect, because in the
differentiation leading to relation [4.21], for small objects, it was not
possible to vary the amount of one of the components and still preserve the
composition of the phase. In the case of a binary solution formed of
components 1 and 2, an additional term needs to be brought into play, and
thus for component 1, the exact relation would be:

20 - W' (1-x) a0
() =l (r =) + 207, 4 2 TUm0) 00

r r ox,

[4.27]

where V" s the molar volume of the solution.

m

The additional term only becomes significant if component 1 is dilute and

. . .00 o . : : .

is tensio-active (=——<0), so it is the opposite of the increase in chemical
X

potential due to the Gibbs—Thomson effect.

4.6. Phase change in pure substances

We shall now examine the impact of small radii of curvature on the
thermodynamic properties of the phase transformations of pure substances,
using the examples of the vaporization of a drop of liquid and the melting of
a solid made up of small grains.
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4.6.1. The saturating vapor pressure of pure liquid

Consider a liquid droplet of a pure substance, with radius r at equilibrium
with its vapor at a given temperature 7. The total pressure of the vapor phase
is kept constant by an inert gas. If equilibrium is achieved, the generalized
chemical potentials of the two phases are equal. With the notations used for
phase changes, relation [4.22] gives us:

va ; 20 o
gO( p) :gO(lq)JrTvO(lq) [4.28]

The exchange of an infinitesimal amount between the liquid and the
vapor leads to a variation of the chemical potential of the vapor which,
supposing the surface tension to be independent of the radius of the drop, is
written by differentiation:

(ng(Vap)) ‘l — 2O-v0(liq) d(lj [429]

T,P% 7

In addition, if the gaseous mixture is supposed to be perfect, the
infinitesimal variation of the chemical potential of the vapor can thus be
written:

RTdP™
(ng(vap)) :VO(vap) deap — d [430]

T.pet Pvap

By making expressions [4.29] and [4.30] equal and integrating between
the radii » and infinity, for saturating vapor pressures lying between

plv) (r) and P’ we find:

[4.31]

20"
P(vap) ’ :PO(vap) ex
(r) Pl =7

P""®) i the saturating vapor pressure when the surface of the liquid
is flat — i.e. the saturating vapor pressure of a typical bulk phase.
Relation [4.31] is known as Kelvin's formula.
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If the radius is not too small, the term beneath the exponential is slight,
and if we keep only the first two terms in the limited expansion of the
exponential, relation [4.31] can be simplified to give:

plvep) (,,) _ pOvap) 26
vap) =

4.32
P RTr 14.32]

Thus, the saturating vapor pressure of the drop with radius 7 is greater
than the liquid’s normal saturating vapor pressure.

In order for the influence of the small dimension to become apparent, we
need to use drops with a very small radius. The second column in Table 4.1
gives a few values of the ratio of the saturating pressure above the drop to
the saturating vapor pressure above a flat liquid for different drop radius
values. These values are calculated, using relation [4.31], for water with a

surface tension of ¢ =0.073J/m” at 15°C.

r(m) | Drop P"(r)/ P | Bubble P (r)/ ")
10 1.001 0.9990
107 1.011 0.9891
10°® 1.115 0.897

Table 4.1. Influence of the radii of drops and bubbles on the
saturating vapor pressure of water at 15°C

Thus, the liquid—vapor equilibrium, which is monovariant for a liquid
with a flat surface, becomes divariant for drops of small dimensions. The
saturating vapor pressure becomes a function of the temperature (particularly

)) and of the radius of the drops.

vap

0
because of pressure P (

We can show that, at constant saturating vapor pressure, the smaller the
drop is, the lower the equilibrium temperature will be.

NOTE.— It is easy to show that a set of liquid droplets constitutes an unstable
system. Indeed, any fluctuation in the size of one of the droplets will cause a
variation in the saturating vapor pressure in its vicinity, giving rise to a vapor
gradient between the vicinity of that drop and the vicinity of the other drops.
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This gradient leads to diffusion, which breaks the equilibrium in the vicinity
of the other drops. The equilibrium can only be re-established by the
variation of the dimensions of the other drops. Thus, little by little, the
process will lead to the disappearance of all but one of the drops, with that
one gaining in size at the expense of the others.

The same reasoning as that which yielded relation [4.31] can be
employed if we consider not a drop of liquid in a gas, but a bubble of gas in
liquid. The saturating vapor pressure then becomes as follows, with the gas
being on the convex side of the curvature:

0(liq)
_20v " [4.33]
RTr

P () = P exp(

Thus, the saturating vapor pressure in a bubble within a liquid is lower
than the vapor pressure of the flat liquid. For spheres, the term Kelvin radius,
r., denotes the radius at equilibrium with a certain vapor pressure

P ().

The third column in Table 4.1 shows a few values of the ratio between
the pressures in the case of an air bubble of different radii in water.

P(WPJ (r) / P"(“-‘I’}
3.‘[‘

Meniscus

P r(nm)

] ] 1 1
0 10" 10! 10° 10°

Figure 4.2. Condensation in the vicinity of a spherical
surface: concave (for a drop) or convex (for a meniscus)
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Figure 4.2 shows the results of relations [4.31] and [4.33] on
condensation in the vicinity of a spherical surface that is convex (drop) or
concave (meniscus or bubble).

4.6.2. Melting of a small grain

In the same way as we saw in the case of the liquid—vapor equilibrium for
a drop of liquid, the variance of the solid-liquid equilibrium in a small solid
grain will increase by one unit, the melting point will depend on the radius of
the grains and therefore will not be constant throughout the process of
melting of the grain.

In modeling fusion (melting), we shall accept the hypothesis that a solid
spherical grain gives rise to a spherical drop of liquid, and that the respective
radii of those two spheres are linked, because of the conservation of matter,
to the molar volumes of the two phases, thus:

(tig) \? 0(tiq)
r v
(r(sol) J - {vo(sol) J [434]
We suppose that the substrate on which the particle rests is not wetted by
the liquid (link angle of ).

The Gibbs energies (i.e. the generalized Gibbs energies which involve the
surface energy or Reiss functions) of the two phases at the melting

point 7, with the liquid being at the internal pressure P" and the solid at

)

internal pressure P are equal when the crystal and liquid are at

equilibrium, so:

go(liQ) (P(liQ) T

o S

)=g (P, T, ) [4.35]

If we apply the Gibbs—Thomson relation [4.24] for the solid and liquid
and feed the expressions thus obtained back into relation [4.35], we obtain:

2v0(liq)o_(liq)

) + o _ gO(sol) ( plext)
r

2v0(sol) (sol)

0(liq) (ext) o
0l ( P f)+—(sol) [4.36]
r

7
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YD) 06l 509 and oY respectively denote the molar volumes and

the surface tensions of the liquid phase and the solid phase. The pressure

sol)

P'*is the reference external pressure, usually chosen as 1 bar.

The Gibbs energy of melting of a grain of infinite dimensions
4 /.G(P(e’“) ’Tf) is given by the difference between the chemical potentials:

gO(liq) (P(ext) ,Tf ) _ go(sol) (P(ext) 5Tf ) _ AfG(P(eX‘) an)

o) o) [4.37]
ext ext
:AfH(P ’Tf)_TfAfS(P ’Tf)
Taking account of relation [4.34], relation [4.36] gives us:
. 2/3
2V0(501) (i) 0(liq) (so)
AH-TA S+ —r(“’l) o' I -0 =0 [4.38]

In view of the slight differences in temperature, we can overlook the
variations, with temperature, of the molar volumes, the surface tensions,
the enthalpy of fusion and the entropy of fusion. The new melting point of
the grains with radius  can then be calculated as a function of the melting

point for grains with an infinite radius 7, and we obtain:

. 2/3
) 0(sol) , ) 0(liq) 1
=T =2Y | g _gliof Y | |_1_ [4.39]
S / AfS vO(sol) r(sol)

Thus, the difference between the melting points of a massive solid and of
a small grain is approximately inversely proportional to the radius of the
grains of the solid. Figure 4.3 shows the variation in the melting points of
spherical grains of gold as a function of their radius (AS = 9.39J.mol™;
0" = 1.1381.m™; 0" = 1.400J.m™; V" = 1.138x10°m’.mol™; V' =
1.074x10°m’.mol™).

Hence, the effect of dimension is noticeable only in the case of grains
whose radius is around a few nanometers.
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This effect of dimension can be generalized to all phase-changes in pure
substances, and we find the same result: the variance of the transformation is
increased by one unit. For instance, zirconia has two polymorphic varieties:
the monoclinical variety, which is stable at low temperatures; and the
quadratic variety, which is stable at higher temperatures. We can see that for
smaller grains, the quadratic phase is stabilized at a lower temperature, or,
put differently, the temperature of the polymorphic transformation is a
function of the grain dimension, with a curve which is of the same form
as that shown in Figure 4.3. Furthermore, relation [4.39] is valid for the
temperature of that transformation if we replace the values pertaining to the
solid and the liquid with the same values pertaining to the monoclinical and
quadratic polymorphic varieties.

Ir A T =1307
1300 [~

1200 |-

1100 =

1000 |~

900 [

sol
| | | y7"(nm)
5 10 15 20

Figure 4.3. Influence of radius on the melting
point of spherical particles of gold

4.7. Alteration of the solubility of a solid due to the small
dimension of its grains

We shall now show that, in the same way as for the equilibria of
transformation of pure substances, the variance of the equilibriums of phase
transformations in solution is also increased by one unit by the involvement
of the dimensions of the phases. To illustrate this, we shall consider the
solubility of a solid with small dimensions — i.e. the equilibrium between a
pure solid of small volume and a solution. Let us consider a liquid solution
with infinite radius of curvature, containing multiple components, including
component i. This solution is at equilibrium with a small crystal of the pure
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substance i with equivalent radius . We shall let o) denote the interfacial

energy between the solution and the crystal whose molar volume is v**).
The molar fraction of component i in the solution is x,, and its activity

a, = 7,x,. Its chemical potential is 4, (x,,T). The molar Gibbs energy of i in

the solid is: g/ (,T) . At equilibrium, the following relation is satisfied:

g (r,T)=p (x,,T) [4.40]

A shift of the equilibrium at constant temperature would be expressed by
the relation:

dg!¥(r,T)=du (x,.7T) [4.41]

1

The differential, at constant temperature, of the chemical potential of
component 7 in the solution is given by:

du, (x,,T)=RTdIng, [4.42]

For the small crystal, the application of Laplace’s relation, where P™ s
the crystal’s internal pressure, gives us:

r

' (Is)
(dglf)(S) )T — VO(S) dP(m‘) — ZVO(S) d(o- j [4.43]

If x) and ™), respectively, represent the molar fraction and the

activity coefficient of component 7 in the liquid solution at equilibrium with
a solid i of infinite radius, then by substituting relations [4.42] and [4.43]
back into expression [4.41] and integrating between the radii » and o, we
find:

[4.44]

2 1
RT r

yx.(r) = ) x) exp(——
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If, in addition, the solution is sufficiently dilute, we can add the
hypothesis that }/,.(‘”) =y, . Expression [4.44] is then simplified:

0(s) __(Is)
(=) 2vio 1
x(r)=x 'exp| ———— 4.45
(1) =x, p[ RT J [4.45]

Thus, the solubility of the solid is inversely proportional to the radius of
the particles.

The calculation shows that in the case of a crystal with radius 100 nm, the
solubility is increased by around 4% (with o =0.5J.m™, at 300 K for a

solid with the molar volume 10 m’.mol™), in comparison to the solubility of
a large crystal.

NOTE.— As in the case of the liquid—vapor equilibrium, if a solution contains
a collection of small solid grains, because the smallest particles are the most
soluble, they create a gradient of concentration in the liquid between the
vicinity of the smaller and larger particles. This gradient causes diffusion,
which causes the largest particles to grow; the system is not stable and
evolves toward a single particle with a large radius, which is known as
Ostwald ripening; the small particles disappear and amalgamate with the
larger ones.

4.8. Equilibrium constant for a reaction involving small grains

The influence of the radius of curvature of the phase on the Gibbs energy
or the chemical potential of a component in that phase leads to the alteration
of the values of the equilibrium constants every time a chemical reaction
takes place with phases of small dimensions. We shall discuss the formation
of nickel carbonyl in light of Mittasch’s experiments, interpreted by Defay
and Prigogine (1951) as an example.

The reaction of solid nickel with gaseous carbon monoxide to give nickel
carbonyl, also in the gaseous state, at temperature 7 (70°C), is thus:

(Ni)+4{co}={Ni(c0),] [4R.1]
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The components Ni, CO and Ni(CO)4 will be spoken of as components 1,
2 and 3, respectively.

If o is the surface energy of the nickel in the presence of the gaseous
phase, the expression of the Reiss potential at temperature 7' and pressure

P
Gy =t (P )+ mypty (P0)+ mypa (P9 + 470 [4.46a]

The differential of this function at constant temperature and external
pressure is, in view of the Gibbs—Duhem relation for the gaseous phase:

(dGp), pew =ty dny + g1, dny + gy d g + 871'r0'§—rd n, [4.46b]

n
At equilibrium, this differential is zero:

(dGy), e =0 [4.47]

The stoichiometry of the reactions imposes the relations dn, = 4dn,
and dn; = -dn; between the variations in the amounts of matter, and the
spherical form means we can write:

0
o [4.48]
on, 4rr
The equilibrium condition then becomes:
wlo
iy (e0) + 4, — ity = [4.49]

At constant pressure and temperature, for nickel we have du(o) = 0
because the phase is pure. Then, by differentiating relation [4.49], we obtain:

4dp, —dpu, :—2v100'd(1j [4.50]
T
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If the gaseous mixture constitutes a perfect solution, for i = 2 and 3 we
have:

du, =RTdlnx, [4.51]

By substituting back into relation [4.50] with the condition x, = 1 —x3, we
find:

0
14 3x, dx, _ zvlad(lj [4.52)
I-x; x RT \r

Let x,(r) denote the molar fraction of nickel carbonyl in the gas at
equilibrium with a spherical metal sample of radius r, and x, (e<) the same

fraction at equilibrium with a flat sample of nickel. By integrating the
expression [4.52] between the two radii » = r and r = oo (planar liquid), we
obtain:

1=x,(r) ZVIOO'l

lnx3—(r)—4ln

= 4.53
(=) (=) RT 23
We express the equilibrium constants for the two radii, » and o, by:
K(}"):L)“(P(em))3 [4543]
[1 X3 (l/')]
and
(o) 3
K(M)ZL)A‘(P(EX[)) [454b]
[1 X3 (°°)]

We find a relation between the equilibrium constant obtained for a metal
sample with radius » and the equilibrium constant for a flat metal sample:

2v100'l
RT r

K(r)=K"exp [4.55]

Thus, in our example, at constant temperature and pressure, the
equilibrium constant and the progress of the reaction toward equilibrium
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increase if the radius of the solid reagent decreases. Note the similarity
between relations [4.31] and [4.55] — a similarity which fits with the fact that
the vapor pressure at equilibrium is an equilibrium constant. In the same
conditions as for equation [4.31], equation [4.55] gives us a relation similar
to expression [4.32]: thus, the equilibrium constant is essentially inversely
proportional to the radius of the grains.

4.9. Nucleation of a condensed phase

The nucleation of a condensed phase is the process whereby, from a
different phase (fluid or solid), tiny fragments of that new phase appear. This
process is a phenomenon which can be modeled by using the thermodynamic
properties of the system formed of the two phases, the newer of which has
extremely small dimensions.

It is recognized that the driving force behind the creation of a solid is
oversaturation, and that the aggregates which are the inevitable intermediary
products correspond to states of energy higher than those of the infinite
solid. The oversaturation and the interfacial energy will be the two main
terms involved in the creation of nuclei.

We shall adopt the classic terminology: the aggregates make up the
reaction path. Nucleation from a system that was initially free of the phase
formed is known as primary nucleation. If it occurs within an initial phase, it
is said to be homogeneous, whether in a fluid or solid medium. Nucleation
which takes place upon contact with a solid phase is said to be
heterogeneous.

A nucleus of a condensed phase contains a number N of molecules, and is
produced by the condensation of those N molecules belonging to a precursor.

4.9.1. Hypotheses underlying the nucleation model

When attempting to establish the Reiss function of formation of nuclei
from the precursor or the Gibbs energy of condensation, we come up against
a difficulty pertaining to the definition of the reference state:

—the newly-condensed phase forms a pure phase, which therefore
constitutes the reference state. The chemical potential of the single
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component of that phase is constant and equal to its molar Gibbs energy of
formation;

— on the other hand, species A (the precursor) is present in a phase with
multiple components (molecules or ions of a fluid or point defects of a
solid), its reference state depends on the choice of convention (I, II or III),
and its chemical potential depends on its abundance, expressed as a molar
fraction, for example;

—the aggregates are in an intermediary situation: it is tempting to
consider the smallest entities as being oligomers, small molecules in solution
whose chemical potential varies with concentration. This choice is in line
with the origin of the term of the molar fraction (or concentration) in the
chemical potential: it stems essentially from the entropy of mixing. Whilst it
is logical to consider that the juxtaposition of an infinite condensed phase
which decants and a solution floating upon it does not create disorder, we are
forced to make the opposite observation in the case of small particles kept in
suspension by Brownian motion. In addition, the application of the law of
mass action to aggregates considered as pure phases whose chemical
potential is independent of the composition would lead us to conclude that
for each oversaturation, there is a corresponding nucleus size at equilibrium,
which is belied by real-world experience.

Thus, we need to treat the aggregates as species dissolved in the initial
phase. Hence, we introduce a discontinuity between the aggregates of
increasing size and the new condensed phase (in the form of a nucleus)
although, for the moment, we are unable to define a critical size at which
that discontinuity would occur.

We now need to evaluate the partial molar Gibbs energy of the
aggregates in the reference state: let us base our reasoning on convention I,
so the reference state of any component is the pure state. Consider the
hypothetical system in which each aggregate is surrounded by a layer of
the initial phase, of infinitesimal thickness, but nonetheless sufficient for
the surface energy term to be established. The molar fraction of the
aggregates, then, is practically equal to 1, and their chemical potential is that
of their reference state. This situation is almost identical to that of the
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condensed phase making up the nucleus, with the exception of the surface
Gibbs energy term:

. N
,UR(zl,z)v = N_'ggzc + ARZ,N(O-A) [4.56]

a

Convention (I) is not well suited to dilute solutions, for which we tend to
use references (II) or (III). It is not possible to keep the activity coefficient at
the value of 1 unless the solution is perfect.

Let Ay, yG be Reiss’ standard Gibbs energy of condensation associated

with the reaction of formation of a nucleus of N construction units, from the
initial phase — i.e. the reaction:

NA = A, [4R.2]

For the variation of the Reiss potential, in view of relation [4.16], we
have:

Agy vGr =N.(g3 — 13) + RT1n|A| +0, Ay y(A) [4.57]

The term Ag, y(A) denotes the variation in surface energy between the

nucleus and the initial state of the system, all at constant external pressure
P temperature 7 and N. o; is the interfacial energy between the initial
phase (liquid or gaseous) and the final condensed phase, be it solid or liquid.

In view of the variation of the molar Gibbs energy associated with the
transformation [4R.2], which is written:

Awg = (g8 = my)+RTIn|A| [4.58]

If N, is Avogadro’s number, the variation of the Reiss potential function
of the nucleation is:

N
Aro nGr :N_ARzg"'O'LARz,N (4) [4.59]

a
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It is only possible to process this relation if we hypothesize that the
interfacial energy is not dependent upon the size of the aggregate. There is
no theoretical justification for this approximation when the aggregates are
very small (less than a thousand construction units); on the other hand, it is
logical to overlook the effects of edges or quantum effects on larger objects.

4.9.2. Homogeneous nucleation in a fluid phase: Volmer’s
approach (1905)

In the case of nucleation of a condensed phase (solid or liquid) from a
fluid phase (liquid or gaseous), we can state that:

—if the condensed phase is liquid, the initial phase is gaseous and, given
what we already know (section 4.2), the nucleus is spherical in shape
(equilibrium of shape of a liquid drop);

—if the nucleus formed is solid, then the primary phase is liquid or
gaseous, but it is always possible to treat it from the point of view of a
spherical equivalent nucleus, by using an effective interfacial energy for the
solid.

In view of the above hypotheses, the volume of the aggregate can be
obtained either as the volume of a sphere with radius 7, or on the basis of the

molar volume V) (because the aggregate is a portion of condensed phase, its
compressibility is taken to be zero), and the two values must be equal, so:

M oN [4.60a]
3 N,
Thus:
3N 0 1/3
;o= Vi [4.60b]
47N,

This can also be written as:

N 4”1} 2 [4.60c]
3v,
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We shall seek to calculate the Reiss function associated with the reaction
of condensation [4R.2] in any condition, but where the aggregates are
formed in their reference state relation [4.59] can be written:

N
ARz,NGR = N_'ARzg + O-L'ARZ,N(A) [4.61]

a

The variation in area upon the formation of a drop of radius  is:

0 2/3
Aoy (A)=471” = (4r)"” (—?\;Nj [4.62]

a

Relation [4.61] then becomes:

3 ON 2/3
Vi j [4.63]

N 13
ARZ,NGR:N_'AR2g + O-L(47T) [ N

a a

The differential of this function becomes 0 for the number N* of
molecules in the nucleus such that:

0)? 3
v, | N o
N* = _32_”(L)—“L [4.64a]

3 (Akzg)3

As we are operating in conditions for which reaction [4R.2] is
thermodynamically possible, the term (A,,g)is negative and therefore the

corresponding value of N is positive. The corresponding entity is known as
the critical nucleus.

The Reiss function passes through a maximum whose value is:

0\? 3
1 v,) O N7A
Ag,yGr =- 6”( L) ~=- Re& [4.64b]

3 (Akzg)2 N,
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In addition, the Reiss function takes the value of 0:

0 2
N =— %_”M—Na [4.65]

3 (ARzg)3

Figure 4.4(a) shows the shape of the curve representing function [4.63]
with the maximum and the point of intersection of the curve with the
abscissa axis.

b)

. Ay, G

| N : :

N : g
s »

1 ,r'*
01 < 0:- Oy 9 & o \

Figure 4.4. Examples of variation of the Gibbs energy of
condensation: a) with the number of construction units
in the aggregate; b) with the radius of the nucleus

If the primary phase is a solution, the reaction of precipitation of the
solutes A; can be written:

Z BA.=p L+ Z BA, [4R.3]

If K5 is the solubility product and Qs the reaction quotient of the
precipitation reaction, we can define the oversaturation as measuring the
distance from equilibrium, so:

[T
L2 _9 [4.66]

J
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In the above expressions, we can reveal the oversaturation by using the
relation:

Ag,g=—RTInS [4.67]

Hence, relation [4.63] becomes:

Ay xGr =_NﬂRT IS+ N“[UL (azv, )" (3v? )”} [4.68]

a

We can see that the ordinate of the maximum of the curve in
Figure 4.4(a) is smaller when the equilibrium conditions (surface phenomena
aside) are surpassed (high value of §), but that this ordinate only becomes 0
in conditions that are infinitely far removed from equilibrium (infinite value
of §) — in other words, never.

Below N, the associated Reiss function is positive. For larger sizes, it is

negative. For this reason, we consider that the nucleus has been formed
beyond that size.

If we define the nucleus as being the smallest particle of aggregate which
is stable in relation to the precursor A, it will contain N’ construction units,

and thus the nucleus will indeed be an aggregate of the size N=N".
It is easy to verify that N™ is smaller than N".

In the foregoing discussion, we evaluated the Reiss function on the basis
of the quantity N. Using relation [4.60b], we can now express the Reiss
function and its noteworthy points as a function of the radius of the nucleus.
We find the following:

3
AT A g + 4mrc, [4.69]

ARz,NGR = 3,0
L

The maximum has the coordinates (critical nucleus):

0
.__ 20,v,

r 3
(ARzg)

[4.70]
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and:

Ao nGi = lor () 01 =—4”(W$)2 [4.71]

(ARzg)z 3

The intersection with the abscissa axis takes place for the maximum
radius of the nucleus:

0
P =0 [4.72]

(Arog)

Figure 4.4(b) shows the curve satisfying equation [4.69], which is
Volmer’s curve.

Based on Volmer’s curve, we deduce the dimension of the final nucleus,
defined as the maximum dimension of the nucleus from which growth
proceeds. The division of the heterogeneous reaction into two processes —
nucleation and growth — is based on four criteria, the first two thermodynamic
in nature, and the last two kinetic in nature:

— criterion no. 1: the two processes are spontaneous;

— criterion no. 2: the effects of surface on the Gibbs energy will be taken
into account in nucleation but is negligible in growth;

— criterion no. 3: the solid B already formed has no influence on the
mechanism of nucleation, but is involved in that of growth;

— criterion no. 4: the contribution of nucleation to the overall reaction rate
(quantity of material transformed per unit time) is negligible in comparison
to that of growth.

The first criterion implies that both processes are associated with a
negative Reiss—Gibbs energy. If we look again at Volmer’s curve
(Figure 4.4(b)), the application of this condition at the start of the curve
means that nucleation must stop at a value of r greater than 7.
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The second part of the curve, which pertains to growth, occurs beyond

the radius /. The increase in the dimensions of the condensed phase

. . . . . dAR2,NGR
(growth) will be associated with a negative Gibbs energy B — <0].
r

For the second criterion, beyond a certain point of the downward
parabolic branch in Volmer’s curve, the surface contribution to the Gibbs
energy becomes negligible in comparison to the bulk contribution, and thus
we can consider that the molar Gibbs energy no longer varies with the
dimension of the grain of the new phase. This is all the more true when the
dimension r is significantly greater than . This condition is compatible with
the limit of growth set by the previous criterion.

The third criterion, which is a kinetic criterion, states that nucleation must
involve the smallest possible quantities of the new phase.

Criterion number four implies the negligibility of the contribution of
nucleation in the expression of the reaction rate, and this holds true even
more strongly when the new phase is small.

Table 4.2 recaps the conditions we have just examined.

Criterion Nucleation if Growth if
1) Spontaneity of the two processes r>r r>r
2) Surface contribution Yes Not if r>> 7"
3) Involvement of B in the mechanism r as small as possible
4) Rate of reaction practically given by the growth | r as small as possible

Table 4.2. Criteria defining the nucleus
of maximum dimensions

Ultimately, these conditions give rise to a certain contradiction, whereby
we need to have as large a transition value 7 as possible to satisfy criterion 2
and as small as possible (but greater than »*) for the last two criteria. To
resolve this contradiction, though admittedly with only a mediocre degree of
precision, we choose the point of ordinate zero (r = r*) as the transition point
characterizing the end of the formation of the nucleus, noting that at that
point, Volmer’s curve is monotonic decreasing, and tends toward a parabolic
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branch in the direction Az,g<0. The corresponding dimension r* is the
maximum dimension of the nucleus.

However, to reach this point, we need to cross the energy barrier, which
can only take place because of local fluctuations enabling us to achieve a

radius 7 >7” . Radius #*, for this reason, is called the critical radius of the
nucleus, which must not be confused with the maximum radius »* beyond
which specialists in heterogeneous chemical kinetics deem the process of
nucleation to be complete and to have been replaced by the process of
growth.

NOTE.— In fact, in practice, there is nothing to say that the nucleation should
not strictly obey the Volmer curve over time, as it is a growth curve.

4.9.3. Homogeneous nucleation within a solid phase

The reasoning process in section 4.9.2 was conducted for a fluid initial
phase, but it is worth noting that such a hypothesis is never used in the
calculation. This thought process and its results, therefore, apply only to the
case of condensation of the defects within a solid phase.

In practice, though, there are a number of caveats which must be kept in
mind:

— the experimental determination of the promoter(s) is more difficult;
— the energy references need to be carefully monitored;

— the far slower diffusion in solids than in fluid phases will often result in
the existence of not-insignificant concentration gradients, meaning that the
above reasoning processes can only be applied locally.

4.9.4. Primary heterogeneous nucleation from a fluid phase

Experience shows us that, in many cases, the new phase forms from an
interface in the initial phase: on the walls of the recipient or the blades of a
stirrer in the case of crystallization from a solution, and on the surface of the
grains in the case of solid—solid surfaces. As this is an interface with a solid
which is not the product of the reaction, it is indeed a primary nucleation, but
it is then said to be heterogeneous, because it means that the initial system
cannot be treated as a single phase.
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We shall now examine the case of the heterogeneous nucleation of a
liquid from a vapor phase and the heterogeneous nucleation of a solid from
another solid.

4.9.4.1. Heterogeneous nucleation of a liquid from a vapor

We shall now discuss the case of the nucleation of a liquid from a vapor
onto a solid surface. We suppose that at equilibrium, the nucleus is in the
form of a drop with a spherical surface, whose radius is r, resting on the
solid substrate (Figure 4.5) and forming an angle 8 with that surface, which
is the wetting angle of the solid by the liquid.

Liquigl phase

Solid substrate

Figure 4.5. Shape of the nucleus and various interfacial energies
in the case of heterogeneous liquid nucleation on a solid substrate

We shall calculate the variation of the Reiss function upon formation of
the nucleus from the gas at a given external pressure and temperature. We
choose to use the geometric variables @ and r. The calculation could be
performed in the same way if we chose the wetting angle and the number of
molecules in the nucleus N as the variables.

We have already calculated (relation [3.29]) the volume of the drop — i.e.
the volume of the nucleus — which we can write in the form:

4rr’
v, :Tfhet [4.73]

The function f,, , called the wetting function, depends only on 6, and it is

a function that varies, as shown by Figure 4.6, between the value 0 if the
liquid does not wet the solid at all (6= 0) and the value 1 obtained when the
liquid wets the solid perfectly (8= ).
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Figure 4.6. Shape of the curve fuei(6)

On formation of the nucleus, we see the creation of the area 4;; between
the liquid and the gas, and of the area Ag;, between the liquid and the solid
support. On the other hand, the area A5; between the gas and the solid support,
whose initial value is 4, decreases because the area Ay, is taken away from it.
In light of these modifications, the variation of the Reiss function, which
always contains a bulk term proportional to the variation of the molar Gibbs

energy of the transformation A, , g and a surface energy term, is written:

Amr’
(ARZ,NGR) =3T-fhe1AR2g + O-LGALG+(O-SL_O-SG)ASL [4.74]
L

het

Let us evaluate each of the interfacial areas. The area of the interface
between the solid and the liquid is that of a disk of radius rsiné, so:

Ay, =7r’sin’ @ [4.75]

The area of the gas/solid interface is given by the initial area of the solid

in the absence of the drop A4, less the area of the previous liquid—solid
interface, so:

Ay, = A, —7r*sin® @ [4.76]

The area of the interface between the gas and the liquid is that of the
spherical cap with radius r, centered at O and observed from that point at the
solid angle €, so:

Ao =Qr* =271 (1-cos ) [4.77]
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The Young—Dupré relation (see relation [3.21]) is written here with our
notations:

Og; =0,;c0s0+0, [4.78]

By introducing the three values of the areas into relation [4.74] and taking
account of relation [4.78], we obtain:

4rr’
(ARZ,NGR )het = 3,0 JreaBr28 [4.79]
L .

+ 271’0, (1-cos@)—nr’o,; cosOsin’ 6

By comparing relation [4.79] with relation [4.69], obtained for
homogeneous nucleation, we see that it is possible to link the two Reiss
functions obtained in heterogeneous and homogeneous conditions by the
expression:

(ARZ,NGR ) = (ARZ,NGR )
het

As the function f,, is independent of the radius r, the shape of the curve

St [4.80]

hom

(ARZ,NGR)h,t (r) is the same as the curve (ARZ!NGR )h (r) represented in

Figure 4.3(b). The remarkable values of the radii 7 and 7* are identical and
the ordinate of the maximum is given by:

(ARz,NG;et )hét = (ARz,NG; )hom Jhet [4.81]

As the value of f,,  is generally smaller than 1, by comparing

equations [4.71] and [4.81], we note that the height of the potential barrier
needing to be overcome is less in heterogeneous nucleation than in
homogeneous nucleation, which explains why heterogeneous nucleation is
easier and therefore more common than homogeneous nucleation. In view of
the unavoidable presence of solid dust particles, it is ultimately always
heterogeneous nucleation which causes the condensation of a liquid from its
vapor.

4.9.4.2. Heterogeneous nucleation from a solid on another solid

Consider a system composed of a solid support, a solid nucleus and a
fluid phase.
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If the interfacial energy between the nucleus and the support is less than
the sum of the interfacial energies of the two solids with the fluid phase, it is
obvious that the nucleus formed on contact with the support (heterogeneous
nucleation) will have a lower energy than that which forms within the fluid
(homogeneous nucleation). We have seen the role of the interfacial energy
on the Gibbs energy of condensation which will also be lower. To perform a
quantitative calculation, it is necessary to establish a set form for the
nucleus.

) Germ of the solid
Fluid phase F

product P
a GpF
h
GORP ORF
Solid support R

Figure 4.7. Heterogeneous nucleation of a
parallelepipedic solid on a solid support

We can simplify the problem by looking at the case of a parallelepipedic-
shaped nucleus whose interfacial energy does not depend on the face, i.e. on
a flat support. Thus, we consider a nucleus with a square surface, with side
length a and height 4, placed on a flat support (Figure 4.7).

The interfacial energy in the system wherein the agglomerate is not in
contact with the support would be:

Wiw = Oedy + 0wp(2a° + 4ah) [4.82]

hom
where A is the area of the support.

The juxtaposition of the agglomerate on the support causes the
disappearance of two surfaces (RF and PF) and the appearance of an
interface RP. Thus, the interfacial energy becomes:

Wit = Oredy + O-PF(2a2 + 4ah) + (Oy — O — O-p}f)a2 [4.83]
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The volume Vp of the nucleus is fixed by the number of construction units
of the agglomerate:

Vo = ad’h = —w [4.84]

The shape of the nucleus (ratio a/h) is given by the minimal surface
energy. However, this energy is minimal when the differential in relation to
a of the surface energy is zero, such that:

M _ [4.85]
da
Consider:
24:1+0RP—URF:1_M [4.86]
a O-pF O-PF
Let us set:
p = Ore — Ogp [4.87]
O-PF

===z [4.88]

Examine the ranges of value of p:

—1if the interface energy created by juxtaposition of the two solids is
greater than the sum of those taken away, there will be no sticking, and
relation [4.88] must not be applied. This situation corresponds to:

Owp — Ogp — Opp > 0s0p < —1
— if, however, sticking is favored (p > 0), the ratio #/a tends toward zero:

the solid P spreads as much as possible over the support R. On the other
hand, a value of p greater than 1 leads to an abnormal situation (4 < 0).
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Thus, we define the value p, called the spreading parameter, of the
interfacial system (R, P, F) as follows:

— if the spreading coefficient /4, (see relation [3.8]) is positive — i.e. if:

Owp — Ogp — Opp 2 0 [4.89a]
then p = -1 [4.89b]

—if the spreading coefficient is positive, and if:

020y — Op — Op 2 20, [4.90a]
then p = Zre "% [4.90D]
O-PF

— if the spreading coefficient is positive, and if:
020y — Op — Op < 20, [4.91a]
then p = +1 [4.91b]

This definition also has the advantage of being consistent with the
formalism applied to liquids, where p is the cosine of the wetting angle.

For the morphology at equilibrium, by substituting relations [4.88] and
[4.90] back into relation [4.83], we obtain:

Wi = Opeedy + 30pp.0°.(1 = p) [4.92]

We can now evaluate the Gibbs energy associated with the formation of a
mole of nuclei on the surface of the solid support, with each nucleus
containing N construction units:

—the system in question contains the solid support, in an indifferent
quantity but sufficient so that the adsorption of the nuclei is not sterically
inhibited, the initial solution and the nuclei formed:

- the chemical term remains: (N/N,)4,,g;
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- the interfacial term, which is obtained by subtracting the energy in the
initial state (support plus solution with no nucleus) oy..4, from the value in

the final state, given by relation [4.92], modified to apply to one mole of
nucleus:

Wi = 30p.a’.(1 = p) [4.93]
Using relation [4.84], we can write:

3
1_
N Zao p [4.94]
N, v 2

We can see that this value becomes 0 when p = 1: in the case of fotal
wetting, there is no longer a nucleation barrier.

In light of relation [4.94], the sum of the two terms gives us:

a (p)

ARZ,N(GR)het = NORY 4,8 + 3GPF’a2(1 -p) [4.95]
P

Let us define an equivalent radius and an apparent interfacial tension by
the relations:

8’ =(4y)" = %ﬁf [4.96a]
and:
3 1/3
oy = (EJ O [4.96b]

After reorganizing the terms, and when these values are fed back into the
previous relation, we find:

47 (1 -p)

(-p)
ARz,N (GR )het = 3‘}[(3 T Ar,g + 47[0-3’”2 5 [4.97]
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We recognize an expression similar to that which was established for
homogeneous primary nucleation [4.69], with each term multiplied by a
value that depends only on the geometry and the spreading parameter. We

shall denote this value as f,:

4rr’
ARZ,N (GR)het = 3,0 Jhet D28 + 47[O-srthet [4.98]
P

1 —
where f,, = Tp [4.99]

The function f,, will be called the wetting function.

In view of the definition of p, f,, varies between 0 (total wetting, with

the disappearance of the interfacial term) and 1 (no wetting). In the latter
case, heterogeneous nucleation has the same energy as homogeneous
nucleation.

We saw earlier that in the case of a drop in form of a spherical cap, we
are led to the same result, with the definition [4.73] of fi in accordance
with:

_2—3cos6'+cos36’= Q2+ pd -p)

= 4.100

e y 2 [ ]
This definition is consistent with the equation:

p =cosé [4.101]

Generally speaking, we consider that for each form, it is possible to
define a function f, , ranging from 0 for p = 1 (total wetting) to 1 for p =—1

(no wetting), such that the Reiss potential for nucleus formation is of the
form given in equation [4.98].

Hence, for each form, we can define the function fi, on the basis of the
equilibrium dimensions of the nucleus, as we did on the basis of equation
[4.85], of the term os and of the equivalent radius, as we did with
relations [4.96].
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Of course, in all cases, the curves of the Reiss function as a function of
the equivalent radius have the same form as shown in Figure 4.4(b), with a
maximum and an intersection of the abscissa axes given by the same
expressions. The concepts of critical nucleus and nucleus of maximum
dimensions are thus preserved.






5

Capillary Tubes and Thin Films

In the previous chapter, we examined phases with small dimensions in all
directions. This chapter is devoted to the study of phases which exhibit small
dimensions in only one or two directions. Such phases will either be
capillary tubes (cylindrical or flat) or thin liquid films.

5.1. Behavior of a liquid in a capillary space

We shall examine the thermodynamic properties of a liquid phase placed
in a capillary space (in a cylindrical tube or between two parallel plates that
are close together) in the presence of a gaseous phase.

. 't',)

Figure 5.1. a) Spherical meniscus in a cylindrical tube; b) cylindrical meniscus
between two plates; c) cylindrical meniscus on the walls of a cylinder

This liquid phase can be separated from the gaseous phase either by a
spherical meniscus, as will be the case in a cylindrical capillary tube

Thermodynamics of Surfaces and Capillary Systems, First Edition. Michel Soustelle.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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(Figure 5.1(a)) or by a cylindrical meniscus which may develop between two
planes (Figure 5.1(b)) or in a cylindrical tube (Figure 5.2(c)).

We studied the thermodynamic properties linked to the spherical
meniscus in the previous chapter (see sections 4.1 to 4.8). We shall now
examine the thermodynamic properties linked to the cylindrical meniscus.

5.2. Thermodynamics of the cylindrical meniscus

The thermodynamics of the cylindrical meniscus has an effect, as with
the case with the spherical meniscus, on the variance of the equilibria of
state change, and also, because of the presence of a non-limited dimension of
a phase, on the extent of the phase by the phenomenon of capillary ascension.

5.2.1. Laplace’s law for the cylindrical meniscus

Consider the expression of Laplace’s law in the vicinity of a cylindrical
curve of radius 7 which is of the form:

R [5.1]
r

It is easy, with a cylindrical meniscus, to carry out a study similar to that
performed for the bubble or the spherical meniscus in sections 4.1 to 4.8. In
the case of a liquid meniscus, the inside (as understood in the sense of
Laplace’s law) is the gas and the outside is the liquid. Thus, we can deduce
the saturating vapor pressure above the cylindrical meniscus of radius »
which, based on relation [4.33], will be:

(vap) (vap) Ve
P =PV (e - 5.2
()= (e -2 52

This is Kelvin’s law for the cylindrical meniscus. The radius r¢ at
equilibrium at the saturating vapor pressure P (r,) is sometimes called
the Kelvin radius for the cylinders for that pressure.
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Obviously, in the same way, we can study other properties — e.g. the
melting of a small solid cylinder in a capillary tube or between two parallel
planes. With the hypothesis of a liquid cylinder with the same height as the
solid cylinder from which it comes, we find the relation:

0(sol) ) 0(liq) 1
7T, =~—| o~ _||— [5.3]
. . AfS v (sol) V(SO )

The difference between the melting points of the bulk phase and the
capillary phase is qualitatively identical to that given by equation [2.39] in
the case of droplets, meaning that this difference is inversely proportional to
the radius of the cylinder.

5.2.2. Capillary ascension

In this chapter, we consider a liquid phase of small dimensions in contact
with a gaseous bulk phase.

5.2.2.1. Contact of a liquid with a wall

Consider a liquid in a recipient whose walls are supposed to be flat. With
those walls, the liquid forms a contact angle 6, determined by Young’s law.
This causes deformation of the surface of the liquid in the vicinity of the
wall (Figure 5.2).

We want to calculate the profile of that deformation. It is clear that the
mean radius of curvature at a point on the surface separating the liquid and
the gas above it is equal to the radius of curvature at the point with
coordinates (z, x) in the plane xOz, meaning that at every point, the surface
behaves like a cylindrical meniscus with radius . Therefore we can apply
Laplace’s law [2.1], written in the new context, which gives, in the vicinity
of the surface separating the two phases, the pressure in the liquid as a
function of the pressure in the gaseous phase in the form:

plia) — ptexy _ T [5.4]
r
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i
A TSN
Figure 5.2. Contact of a liquid with a vertical wall

If we assume the liquid incompressible with is density p, the distribution
of pressure in the liquid gives us:

plia) — plext) — pgz [5.5]

From relations [5.4] and [5.5], we deduce the equality:

o
= 5.6
pgz [ ]

If ¢ denotes the angle of the Ox axis with the tangent to the curve of

abscissa x, and if s is the curvilinear abscissa along the curve in the
“upward” direction, the local curvature of a planar curve is given by:

1 de
—=—" 5.7
r ds [5.7]

The curvilinear abscissa is such that:
ds=+dx*+dz* [5.8]

Although the tangent of the angle ¢ is the derivative of the function z(x),
s0:

tan(ng [5.9]
dx
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By combining expressions [5.6], [5.7], [5.8] and [5.9], we find:

pgz:ad—(p= odg =0'cos¢tangod(p [5.10]
ds  dx\1+tan’ @ dz
which can also be written in the form:
pgzdz =osinpd@ [5.11]
By integration on both sides of the above equation, we obtain:
1,
Epgz =-—ocos ¢+ Cte [5.12]

To determine the constant, we note that if z =0, meaning that at the level of
the horizontal plane of the liquid, far from the wall, then the angle ¢ is zero and

cos @ =1. By feeding this property back into expression [5.12], we obtain:

%pgz2 =O'(1—COS¢)=20'Sin2% [5.13]

Such is the equation of the profile of deformation of the meniscus.

Let us now define the capillary length /. by the expression:

[ = |— [5.14]

By feeding this formula back into relation [5.12], the new equation for
the meniscus is:

z=21 sin§ [5.15]

We can see that the deformation along the wall is of the order of
magnitude of the capillary length. When € =0,then ¢ =0 and thus the

maximum height which it is possible to achieve is:

Zinax = 21, [5.16]
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Thus, for water, the capillary length is approximately 1.5 mm, which
gives us a maximum height of a little more than 3 mm.

5.2.2.2. Jurin’s law

If we immerse a capillary tube in a liquid, under the influence of the
surface in the vicinity of the wall, the level of the liquid in the tube is
different to its level in the recipient (Figure 5.3(a)). A height / separates the
two levels.

We suppose that the capillary effects are predominant in the tube,
meaning that the radius of the tube 7, is smaller than the capillary length /.
defined by relation [5.13]. We can then consider that the pressure of the
liquid is the same across the whole of the surface of the meniscus. This
surface is assumed to be spherical (this hypothesis is not necessary, but it is
very complicated to calculate /# without it) with radius 7.

a) b)
Fe
_’ r
h :E:
-] ool

Figure 5.3. a) Capillary tube; b) detailed
view of the meniscus

In Figure 5.3(b), it can be clearly seen that the radius of the cap is linked
to the radius of the tube by the relation:

=—F< 5.17
: cos@ [ ]

where 6 is the contact angle between the liquid and the wall, or the wetting
angle.
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The pressure of the liquid at the meniscus, therefore, by virtue of
Laplace’s law for a spherical meniscus, is:

plio _ pew _ 9 [5.18]
r

This pressure is also that of the gas in the tank minus the weight of the
liquid between the two levels, such that, if p is the density of the liquid and g
is the acceleration due to gravity:

P = pe _ Hor [5.19]
By comparing relations [5.18] and [5.19], we immediately obtain:

_20cosf _2cost
PEr. Te

h I [5.20]

c

This law is Jurin’s law, which thus specifies that the height /4 is inversely
proportional to the radius of the tube.

For instance, in the case of water in a glass capillary (8 = 0) for a tube
I cm in radius, the height reaches 14 mm. For a radius of 1 um, the height
would then be 14 m, which leads to a negative pressure, because
atmospheric pressure is equivalent to a column of water of height 10.33 m. It
is unsurprising that the liquid exerts a force of “attraction” on the walls, as
does a metal under the force of traction.

In Figures 5.3, it was assumed that the liquid wetted the tube (€< /2). If
the liquid does not wet the tube (6> m/2), the opposite effects are observed:
the level of the liquid in the tube is lower than in the recipient (Figures 5.4(a)
and 5.4(b)). Such is the case, for example, of mercury with glass, where we
have € =140°.

"§

Figure 5.4. Capillary drop: a) capillary tube;
b) contact of liquid with the vertical wall
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These properties of Laplace’s and Jurin’s laws are applied for
determining the size of the pores of a solid material using a mercury
porosimeter.

Imagine a porous solid, placed in a bath of mercury, on which a pressure
P(r.) is exerted. Initially, imagine that all the pores in the solid are cylinders

with the radius .. We would then see a sudden increase in the volume of

mercury which would be absorbed by those pores as soon as the pressure
reaches the value which compensates for the surface tension, given by:

)220'cos6 (521]

P(r,
r

c

dvidr,

a)

o

P /\ »
>

[y
>

Figure 5.5. a) Curve showing the filling as a function of the
pressure; b) distribution of the pores in terms of volume

In reality, we actually see a more gradual increase, which corresponds to
the progressive filling of increasingly small pores (Figure 5.5(a)). By
measuring the volume absorbed as a function of the pressure applied, we are
able to work out the size distribution of the pores of the solid under
examination.

Let V() denote the total volume of the pores of the material whose
radius is less than 7, and V| the total volume of the pores in the material.
We measure the difference V' =V, —V(r,)) as a function of the pressure.
Based on that difference, we can write:

ar) _dvdp__pdr

= [5.22]
dr, dPdr, r.dP
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We deduce:

ar _pd(r-r(r))
drc_r dpP

c

[5.23]

Thus, by knowing the dependence of the volume on P, we are able to
calculate the distribution of the pores in the volume (Figure 5.5(b)). The
pressures applied are high (up to 1000 bars, which corresponds to radii of
700 nm) and the solid must obviously be capable of resisting crushing at
such pressures.

Practical determination of the pore radius distribution is performed, using
the experimental curve (Figure 5.5(a)), by dividing the abscissa axis into
equal intervals and choosing, at the middle of each interval, a mean radius
and attributing to that mean radius the ratio of the difference in volumes to
the difference in radii on either side of that mean value.

NOTE.— In reality, the pores are not cylindrical and the mercury input radius
is the radius of aperture of the pore; on the other hand, the volume measured
is the true volume of the pore corresponding to that inlet radius. The pores,
therefore, are considered to be cylinders (Figure 5.6) having a height /4 such
that:

h=—r [5.24]

Real pore “Measured” pore

Figure 5.6. Real pore and fictitious cylindrical measured pore
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5.2.3. Capillary condensation

In view of Kelvin’s law [4.31], the saturating vapor pressure of a liquid in
a space of dimensions of the order of magnitude of the capillary length /. is
less than the saturating vapor pressure of the same liquid in a space of large
dimensions. This results in condensation in the capillary space at vapor
pressures less than the “normal” vapor pressure of the liquid at equilibrium.
Thus, the liquid may appear in the capillary space, although in a larger
volume the vapor would remain dry. This is the phenomenon of capillary
condensation.

5.2.3.1. Capillary condensation in a cylindrical medium

Consider a cylindrical pore with radius 7.. Above that pore, the pressure
of a substance is P (Figure 5.7(a)).

Various domains of remarkable values of the pressure P need to be
considered:

— if the pressure P s less than the saturating vapor pressure in the

pore (P < pOC) (7)), rx is the Kelvin radius defined by:
r

po= e 5.25
K cos@ [ ]

The pore is empty and the vapor is dry.

ploe) = plenl a) b)

r, ﬂp(\'ﬂp): p 0l J(r - FK)

Wall

PP i i i

Liquid

Cylindrical
pore x

e e

Wall

Figure 5.7. Filling of a pore: a) in a cylinder; b) between two plates
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—if the pressure P g equal to the saturating vapor pressure in the
pore (P = potvw) (7)), the liquid condenses in the pore and fills it until
the level of the liquid reaches the edge of the tube, respecting the wetting
angle 6. This pressure is given by relation [4.33], because the meniscus with

the smallest radius of curvature liable to form is a spherical cap whose radius
is equal to the Kelvin radius rx defined by relation [5.23], and satisfying:

o VO
= ) [5.26]
2RT1HW
P ()

—if the vapor pressure lies between Kelvin’s value and the “normal”
saturating vapor pressure — i.e. if we have P*"*") (r,)< pi) < potan) () =

then the vapor will condense in the tube with meniscus radii greater than 7, .

As the vapor pressure increases, the radius of curvature of the meniscus also
increases, and the tube fills (Figure 5.7(a)) until an infinite radius is reached.
In other words, the result is a full pore with a horizontal interface.

5.2.3.2. Capillary condensation between two flat plates

Consider two parallel plates, situated a distance D apart from each other,
which is of the order of magnitude of the length of the Kelvin radius
(Figure 5.7(b)). The meniscus likely to form between the two plates is a
cylindrical meniscus. The Kelvin saturating vapor pressure for the cylinders
is given, if we ignore the compressibility of the liquid, by relation [5.2]. In
view of that relation, the Kelvin radius of the cylindrical meniscus is:

0(liq)
ov
e =— [5.27]
RTIHW
P ()

where 7, <0.

For a given vapor pressure, condensation will occur between the two
plates if the distance D is such that:

D<D, ==2r,cos@ [5.28]
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For distances larger than Dy, the vapor remains dry; for a distance equal
to Dy, the meniscus forms, and the space between the plates is filled with
liquid in such a way that the wetting angle of the solid by the liquid is
respected. With distances greater than Dy, the radius of curvature of the
cylindrical meniscus increases with that distance D until it is practically
infinite, thus leading to a quasi-planar surface.

5.3. Modeling the interactions between two surfaces of an
insulating material

It may seem surprising that we should discuss the modeling of this
phenomenon here, in a chapter which is devoted to thin films, when it might
have been expected to be in Chapter 1, when we were looking at liquid
surfaces. This is due to the fact that, when two materials are in contact with
one another, between the two surfaces there is always a third substance, in
the form of a thin thread — generally air. The system is then formed of two
interfaces between different materials.

Thus, let us begin by considering two surfaces of two materials (one of
them solid, liquid or gaseous), 1 and 2 (which may be identical). Between
two elements (atoms or molecules), A and B, belonging to each of the two
materials, there are forces of interaction created by a potential & p:

S =—grade, [5.29]

At a sufficiently small distance between the surfaces of the two materials,
that potential &£y begins to no longer be negligible in comparison to the
other forms of energy — kinetic, potential, etc.

If we place the surfaces of these two materials face to face and consider
an elementary volume dr of material 1 at a distance d from a molecule of
material 2 (see Figure 5.8(a)), where v/ and v) respectively denote the
molecular volumes of materials 1 and 2, the energy of interaction per unit
volume between those two elements would be:

Exp(r)
—5—dr
IV,

deg,p, = [5.30]
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Hence, by integrating for the whole of the volume of material 1, we find
the energy of the molecule of material 2 placed at a distance d from material
1 to be:

Equtiy = Iffa”OB—Y)dr [5.31]

By integrating on the volume of material 2, we obtain the surface energy
of material 1 placed at a distance e from material 2 (Figure 5.8(b)):

W) = [€in(d)dr [5.32]

This energy is expressed per unit surface. It is linked to a surface force
which is exerted on the walls of the surfaces in accordance with:

dw,
£y, =_SM [5.33]
de
Molecule 2 % Wﬂﬁ””?””?
i %z Material 2 /
) b)
¥ ’.'4 d e ¥ :
7, Material | 77 7 7 Macrial | 77

Figure 5.8. Interactions between a surface
and: a) a molecule; b) another surface

The most common form of interaction between molecules is given by the
van der Waals forces. We know that if we discount the forces of repulsion in
1/7'* in comparison to that of attraction in 1/7°, the Lennard—Jones attraction
potential between two molecules A and B situated a distance r apart is given
by the relation:

m
Eap = T [5.34]
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The coefficient m is the sum of the three contributions of orientation,
induction and dispersion, and depends on the permanent electrical moments
and particularly on the polarizabilities of the molecules of material 1 and
material 2.

Let us apply the integration [5.31] on the basis of Figure 5.9. Operating in
spherical coordinates, if €2 denotes the solid angle from which a spherical
cap in material 1 is observed from the molecule of 2, the elementary volume
of material 1 is given by:

dz=Qr*dr=27r"(1-cos6)dr [5.35]

(Material 2)

(Material 1)

Figure 5.9. Integration of the energy of a molecule of (2)
in relation to the surface of (1) in spherical symmetry

By feeding this back into relation [5.31], for the energy per unit volume
of material 2 placed at a distance d from a surface of material 1, we obtain:

i =% [2mr (1—cos9)(—ﬂ6jdr [5.36]

172 r r
This gives us:

—Tm
gsurfl/Z =~ 003 [537]

0.0 3
6v, v, r

Now let us apply integration [5.32]. We immediately obtain the following
for the energy per unit surface of a surface of material 1 placed at a distance
e from the material 2:

(12)
-Ttm  —Ay

- 12e*vvy 1278

[5.38]

Wi
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The value 4\ is called that Hamaker constant for materials 1 and 2. It
is expressed in joules and is defined by:

H = 0.0 [5.39]

As it is the effect of dispersion which is often greatest in the different
contributions to the van der Waals interaction, the most important values in
m are the polarizabilities. Thus, we can write that the Hamaker constant is of
the order of magnitude of:

a .
AP =222 [5.40]
vl V2

where o4 and o, are the polarizabilities of phases 1 and 2.

The values of the Hamaker constant, in fact, vary fairly little from one
material to another. Table 5.1 gives a few typical values for a number of
families of materials.

Materials A
Low-energy surface (organic solid) 102"
High-energy surface (ceramics) ~10"]
Vapor phase negligible

Table 5.1. Noteworthy values of the Hamaker constant

The fact that the Hamaker constant is negligible for vapor or for air
renders the properties of surfaces in contact with air or a vapor absolutely
identical to those obtained in contact with a vacuum.

NOTE.— The calculation we have performed is applicable to insulating
materials, but it cannot be applied to electrical conductors, because of the
mobility of the electrons, which produces forces that are very different to the
van der Waals forces.

Now consider the stack of three materials, such as a film of liquid L
between two materials 1 and 2, as illustrated by Figure 5.10. For this case,
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Lifschitz performed a similar calculation to the one performed above. The
expression of the energy of interaction between materials 1 and 2 through
the liquid is again approximately given by:

—m _AS/L/Z)

1240 1276

W, = [5.41]

The Hamaker constant then depends on the dielectric constants of the
three materials.

Hamaker constants are generally tabulated for interfaces composed of the
same material separated by a vacuum or a solvent. To calculate the constant
between two different materials, we can use the approximation of the
geometric mean, in the form:

A}({l/L/Z) = 'AI(—II/L/I)AI(—INL/Z) [542]

The study of the interactions between surfaces brings us back to the
notion of surface energy (which is the surface tension for liquids). This is
defined as being the energy needed to create two surfaces by separating a
given volume of material into two. We can write, if a, is the size of one
molecule:

20=W (o) =W (a,) [5.43]
If A" is the Hamaker constant of the interface between material 1 and
the vacuum, we deduce a new expression for the surface tension:
A0V

=_—H 5.44
24r7a; [>-44]

With this relation, it is possible to establish the tables of the Hamaker
constant.

We can also look again at the energy of adhesion if we write, for a
medium 1, in view of relation [5.43]:

20, =W, [5.45]
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From this, we deduce the interfacial tension between media 1 and 2:
1
012:E(m1+%2)_m2:01+0-2_pl/12 [5.46]

Then, for the energy of adhesion, we find Dupré’s expression [3.76].

Relations [5.44] and [5.46] are indeed satisfied for apolar molecules.
However, they are less exact in the case of polar molecules, for which the
approximation of the exclusive contribution of the forces of dispersion to the
van der Waals forces is less accurate.

5.4. Thin liquid films

We shall now look at a new category of small-dimension phases, with
thin liquid films on the surface of a liquid. Such films are a few nanometers
in thickness. It is important not to confuse a thin liquid film with an interface
between two liquid phases, even though the dimensions may be similar.
Indeed, the phase of which a thin film is composed of is of a different nature
to the phase which supports it, and unlike interfaces, constitutes an
independent phase. However, these films possess specific properties because
of their low thickness, which means that a certain amount of interaction can
take place between the two bulk phases surrounding the films.

5.4.1. Disjunction pressure

Consider a thin liquid film L, of thickness e and area 4, trapped between
two phases 1 and 2 (Figure 5.10), at least one of which is condensed. For
instance, phase 1 might be liquid and phase 2 might be air.

Vs
Phase (2)
A
Phase (L) e¢
Phase (1)
¥

Figure 5.10. Liquid film between two bulk phases
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We make a small variation in the thickness e (e.g. an increase by de) by
adding liquid. The volumes of the phases 1 and 2 are sufficiently great to be
assumed to remain constant in the elementary transformation.

We can now show that the pressure P in the thin film is different from
the external pressure P in phases 1 and 2 in the vicinity of the interfaces.

The total Helmholtz energy of the system is written:
F=U-TS+A[o,, +0,, +W,(e)] [5.47]

W,,(e) is the energy of interaction between the surfaces of phases 1 and 2

through the liquid. In the elementary transformation whereby the thickness
varies by de, the variation in Helmholtz energy, at constant temperature and
volumes V; and V>, where V' is the volume of the film, will be:

dF:f“de—Pde+A9gﬁde [5.48]
e

In view of the fact that the volume of the film is given by the product Ae
and that the area 4 is kept constant, this variation in Helmholtz energy can
be written as:

dF:AP@”de—Aﬂ“de+A%?ﬁde [5.49]
e

We define the disjunction pressure 11,(e) of the film by the difference:
,(e)= P — p* [5.50]

The equilibrium condition of the film is expressed by a minimum value
of the Helmholtz energy, so dF =0. By combining this condition with
expressions [5.49] and [5.50], we obtain:

dw,
de

I, (e)=— [5.51]
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Two scenarios may arise:

—if II,(e) >0, the two surfaces tend to repel one another, meaning that

the film tends to become thicker by the addition of matter. In this case, the
liquid wets phases 1 and 2 perfectly (contact angles of 0);

—if II,(e)<0, the two surfaces tend to come closer together, and the

liquid tends to be ejected. We then say that it wets phases 1 and 2
imperfectly (contact angles between 0 and 90°).

Of course, if the liquid does not wet the two phases 1 and 2, no film can
form and the problem no longer arises.

In the case of van der Waals interactions, by applying relation [5.41], the
disjunction pressure becomes:

A(]/L/Z)
,(e)=- 6263 [5.52]

Thus, the disjunction pressure is a force tending to separate the two
interfaces of a thin film with the phases surrounding it.

5.4.2. Formation of a film by condensation

Consider a solid surface, covered with a thin film of liquid in contact with
its own vapor at a pressure P less than its saturating vapor pressure
P’ In view of the existence of a disjunction pressure, the vapor pressure
at equilibrium with the thin liquid film must be different from the saturating
vapor pressure P’ . The pressure in the liquid film is imposed by the
relation:

plia) — P;l)[(’;ap) —1I,(e) [5.53]

The molar Gibbs energy of a liquid varies with the pressure, in
accordance with:

0(liq)
dg _ 00ia)

- [5.54]
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If g) is the Gibbs energy of the liquid (or the vapor) at normal
equilibrium between the two phases, the Gibbs energy of the liquid at the
pressure P’ would be:

gO(“q) — gSOat 4+ 0ia) (P(liQ) _PO(Vap)) [5.55]

The Gibbs energy of the vapor at pressure P would be:

(V)

gV =g’ +RTIn——— [5.56]

PO( vap)

Equality of the chemical potentials arises at a pressure of equilibrium
between the liquid and the vapor P'Y) = P*™™  such that:

RT P

(L) 0(vap)
Vi P

:(P(uq) _PO(vap)) [5.57]

In light of relation [5.53], this expression can also be written:

RT B'gr(r:/ap) 0(vap) 0(vap)
D) mPO(vam :(Pﬁlm -r _He) [5.58]
M

0(liq)

However, if we calculate the term R7/v™", it is such that we can accept

the approximation:

RT Pﬁolir:,ap) 0(vap) 0(vap)
O nPO(vap) >> (Pﬁlm -P ) [5.59]
Relation [5.58] is simplified to give us:
RT . B™
In—fo— —_J7 [5.60]

vO(liq) PO(vap) - e
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From this, we deduce the pressure at equilibrium between the vapor and
the film:

vO(liq)He

Po(ﬁlm) — PO(VaP) eXp——
RT

[5.61]

We can see that it is possible to condense liquid at a pressure lower than
the saturating vapor pressure, if the disjunction pressure is positive.

If we consider that van der Waals interactions are responsible for the
disjunction pressure, using relation [5.52], the vapor pressure at equilibrium
with the film would be:

o) - Alg]iq/v)vo(]iq)
P = pria) ey H 5.62
film P 6 7R T >62]

Thus, we can see, in the case that the Hamaker coefficient between the
liquid and its vapor — i.e. between the liquid and a vacuum — is negative, or if
the liquid wets the solid, then if we start with a very low value and increase
the vapor pressure, there comes a moment when a thin liquid film of the
compound is deposited.

In this case, we speak of pre-wetting rather than of wetting, because the
phase obtained is stable in the film state but unstable as a bulk, because the
vapor pressure remains less than the saturating vapor pressure.

5.4.3. Ascension of a liquid along a wall

We shall now show that when a liquid is contained in a recipient, a film
of that liquid, of height /# and thickness e, which is a function of 4, is
thermodynamically stable along the walls of the recipient.

Thus, consider a recipient containing a liquid (Figure 5.11). A film of that
liquid is supposed to be formed on the walls. We shall now examine whether
this is true. The pressure within the film, according to relation [5.50], is:

PY () =P, —11,(e(h)) [5.63]
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Oy

Solid

Liquid

Figure 5.11. Ascension of a liquid along a wall

We can see that this column of liquid has a certain weight, and therefore
that, if p is the density of the liquid, we also have mechanical equilibrium,
which yields:

PO =P, - pgh

[5.64]
By comparing equations [5.63] and [5.64], we find:

daw
I, (e(h) =~ = pgh [5.65]
de
This equation gives us the thickness of the film at the height /.

This film, then, is stable, but exists only if the disjunction pressure is
positive — i.e. if the liquid perfectly wets the solid forming the recipient.

We shall evaluate the thickness and the height of that film at
thermodynamic equilibrium.

The energy (i.e. the Helmholtz energy) of the liquid per unit length along
the wall is given by:

h
F = [[pgez+0y +0,, +W(e)-0y,]dz [5.66]
0
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If we reveal the spreading coefficient defined by relation [3.81], by:

h =0y, -0y —0,, =0, (cosf-1) [5.67]

1
the equilibrium condition of the film in relation to its dimensions is:

dF _

T [5.68]

which gives us the equilibrium for a maximum height /.,,x and a thickness
e

pgh..e —h+W(e)=0 [5.69]
In light of relation [5.59], this condition becomes:
Il,e.—h +W=0 [5.70]

Thus, this relation defines the thickness at equilibrium at the maximum
height of the film.

For instance, in the context of van der Waals interactions, in view of
relations [5.41] and [5.51], equation [5.70] is written:

A1) A1)
h——F—+e.—~—=0 [5.71]
2re; 6re;

By solving this equation, we find the value of e., and by substituting that
value back into equation [5.69], we obtain the following for e. and the
maximum height:

_ASV)

— H
‘ 4rh,
_ A(S/L/V)

H

" 6mpge,

[5.72]

max

For typical values of the spreading coefficient and the Hamaker constant,
the minimum thickness e, is around a nanometer — i.e. approximately equal
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to the size of a molecule — and the film spreads over the walls until it forms a
monomolecular layer.

This film is the explanation for the Rollin films obtained, in particular,
with helium below a certain temperature. If we evaluate the height of that
liquid in the case of helium with a Hamaker constant of around 10" J, and
accept the hypothesis that the thickness of the film is 1 nm, the height may
be up to 500 m. Thus, we can understand why, in a recipient of reasonable
dimensions, liquid helium escapes from the recipient by flowing above the
walls. This phenomenon is less marked in other liquids, because it is
counteracted by viscosity, which is zero in the case of superfluid helium.

5.4.4. Minimum spreading thickness

Now let us consider a puddle of liquid deposited on a solid support which
it wets perfectly (see Figure 5.12). The thickness of that puddle is supposed
to be uniform, and the amount of liquid and hence the volume of the puddle
are also taken to be constant. We shall now evaluate the minimum thickness
of the puddle at equilibrium if there are no walls to limit its spreading.

ext)
Liquéd P Vapor

Figure 5.12. Maximum spreading of a drop on a solid support

The Helmholtz energy of the puddle considered to be a thin film of
negligible mass is as follows (the volume of gas above the puddle and the
support is assumed to be constant):

F=U-TS+AW —h A [5.73]
Its differential in a transformation would be:

dF:TdS—P@)dV(“+A‘L—Wde+WdA—h,dA [5.74]
e
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If that transformation is the spreading of the puddle, its volume remains
constant, having the value:

V™ = 4ge [5.75]
which we write as:
ar® =0 [5.76]
From this, we deduce:
Ade=—-ed 4 [5.77]

Hence, at constant temperature and volume of liquid 7 and ", the
differential of the Helmholtz energy (relation [5.74]) becomes:

sz(—d—W+W—htjdA [5.78]
e

The equilibrium condition obtained for the minimum of the function F'
will occur with a thickness e obeying the equation:

—de+W—h,:O [5.79]
de

Here we see the same equation as relation [5.70]; thus, the thickness at
equilibrium is the same as that of the vertical film on the walls:e =e,.

Hence, this thickness is roughly that of a monomolecular layer. This low
thickness is the reason for the interference taints often observed on such
films.






6

Physical Adsorption of Gases by Solids

Any time a gas is in the presence of a solid surface, we know that a
certain number of molecules of that gas will attach to the surface of the solid.
This is the phenomenon of adsorption. The reverse process, by which
molecules detach from the surface and enter the gaseous medium, is known
as desorption.

6.1. Shapes of the isotherms of physical adsorption found
experimentally

The main manifestation of the phenomenon of adsorption is shown by the
curves known as isotherms of adsorption, which represent the quantity
adsorbed as a function of the pressure of the gas at a specific temperature.
The aim of thermodynamic studies is to attach physical meaning and
mathematical expressions to these curves. With that goal in mind, Brunauer
[BRU 40] established a classification of the experimental curves found into
five types (Figure 6.1). These curves show the quantity of gas adsorbed 7, as
a function of the ratio P/P°, where P” denotes the pressure of liquefaction of
the gas at the same temperature.

Type I, known as a Langmuir isotherm, is found with non-porous or
microporous solids, where the pore diameter is less than 250 nm. The
horizontal part of the curve corresponds to the saturation of the surface of the
solid with a monolayer of molecules of gas. For all other types, adsorption
takes place with several layers of gas affixed to the surface.

Type 1I isotherms are essentially found with macroporous solids — i.e.
solids whose pore diameters are greater than 2000 nm.

Thermodynamics of Surfaces and Capillary Systems, First Edition. Michel Soustelle.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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Type 111 isotherms are found more infrequently, and are a derivative of
type 11, as described above.

Type IV isotherms are found with porous solids where the pore diameters
are between 250 and 2000 nm, sometimes referred to as mesopores. These
isotherms exhibit a plateau of saturation.

Type V isotherms are less common, and have a shape derived from that
of type IV isotherms.

. &

v V

Figure 6.1. The five types of isotherms of physical adsorption [BRU 40]

6.2. Potential energy of a gaseous molecule in the presence of
the surface of a solid

The essential value in determining the behavior of a molecule of gas in
the vicinity of the surface of a solid is the potential energy of that molecule
under the influence of the solid. Lennard-Jones recognized that the forces
exerted from a surface on a molecule of gas are of different natures
depending on whether the solid is an electrical insulator or an electron
conductor such as a metal.
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6.2.1. Adsorbent insulating solid

If the solid is an insulator, the force exerted between the solid and the
gaseous molecule G is the resultant of the van der Waals forces exerted
between the gaseous molecule G and each of the molecules of the solid. We
know that these van der Waals forces derive from a potential which, between
two molecules A and B, includes two terms — a term of attraction and a term
of repulsion — which lead to a distance of equilibrium 7, between the two
molecules A and B.

Let us first examine the term of attraction, which is written in the form:

6
e =" - 2g, (r—‘)j [6.1]
r

For the whole of the solid, we find the sum of each of the terms of
attraction between the molecule G and each molecule of the solid. If we let N
be the number of molecules of solid per unit volume, the overall potential of
attraction of the molecule will be formulated as:

&9 = [ Ndy [6.2]

We express the elementary volume composed of a spherical cap of the
solid centered at the molecule (Figure 6.2(a)) in the form:

dV:Sdr=2ﬂ'r2(1—cos¢9)dr=27zr2(l—£)dr [6.3]

r

If we combine expressions [6.1], [6.2] and [6.3], the attraction term is
shown to be:

e = ENES [6.4]

3z

We can see that an intermolecular attraction potential which is inversely

proportional to the distance between molecules to the power of 6 results in

an attraction potential between the molecule G and the solid which is
inversely proportional to the distance z to the power of 3.
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Let us now turn our attention to the van der Waals repulsion potential.
Between two molecules A and B, it is expressed in the form:

/ r O\
e = r% =-¢, [—Oj [6.5]

r

By performing the same integration as for the attraction potential, we find
the repulsion potential between the molecule of gas and the solid:

g0 = TNEN” [6.6]

45z

Thus, an intermolecular repulsion potential inversely proportional to

the distance between molecules, to the power of 12, leads to a repulsion

potential between the molecule G and the solid which is inversely
proportional to the distance z, to the power of 9.

an 22 sold

e B )

Figure 6.2. Calculation of the energy of a molecule of gas
in the presence of a solid: a) insulating solid; b) conductive solid

By combining the two contributions, [6.4] and [6.6], the potential energy
of the molecule G in the presence of the solid is written as:

3 9
£©) = ZNewy | (n) _1(n [6.7]
3 z 15\ z

The curve given the potential energy as a function of the distance z does
have a minimum (Figure 6.3), corresponding to the equilibrium distance z,
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which is obtained by zeroing the differential of the function [6.7] in relation
to z, giving us:

¥

0 [6.8]

ZO = 51/6

The term 7, is a distance characteristic of the couple formed by the
molecule G and the molecule which constitutes the solid. Note that the
distance z, is smaller than the distance 7. At equilibrium, the molecule of G
is nearer to the surface than an isolated molecule of the solid would be.

6.2.2. Electronically-conductive adsorbent solid

Lennard-Jones noted that the potential given by relation [6.7] was not
applicable when the solid is an electronic conductor. The mobility of the free
electrons under the influence of the distribution of charges in the adsorbed
molecule led Lennard-Jones to put forward a model where the electrons in
the metal form the instantaneous electrical image of the charge distribution,
variable over time, of the molecule. This model ignores the relaxation time
of the electrons in the solid — in other words, the assumption is made that
those electrons have infinite mobility.

We shall now calculate this Lennard-Jones potential in a case where the
molecule of gas has a permanent electrical moment: g = 2¢gl.

At a given time, the molecule G, which is at a distance z from the solid,
has an electrical moment which forms an angle a with the surface of the
solid, assumed to be limitless (Figure 6.2(b)).

The forces of attraction are exerted between the charges ¢, placed at A
and A’ on the one hand, and also at B and B’ on the other. The intensities of
those forces are:

q
F,..=- [6.9a]
AA (2}/'1 )2
and:
2
F=——1 [6.9b]
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The attraction potential between the molecule and the surface would be:

ca 2 2
@__fl_ 94 . 9 |4 [6.10]
R I

In Figure 6.2(b), we use geometric logic to calculate:

rn=z—1Isin@ [6.11a]
and:

r,=z+I[sin@ [6.11D]

By feeding these expressions back into relation [6.10] and calculating the
integral, we find the following for the attraction potential between the
molecule and the solid:

2
eiG)=—q—( ! ! j [6.12]

+
4z\ z—1Isin@ z+Isin@

The forces of repulsion are exerted between the charges placed at points
A and B’ on the one hand, and A’ and B on the other. Their intensities are, in
both cases:

2

Fop=Fy :‘rf’—2 [6.13]

Thus, the repulsion potential can be calculated by the integral:

2
g;m:% —dz [6.14]

p r
In Figure 6.2(b), it is easy to calculate:

r=23Jz>+1sin’ @ [6.15]



Physical Adsorption of Gases by Solids 169

If we adopt the hypothesis that z* >>/*sin” @, the repulsion potential is
then written:

2 2 2
£ =;1_(1+—1 = o j [6.16]
z z

Hence, in view of the two potentials of attraction (relation [6.12]) and
repulsion (relation [6.16]), the total interaction potential between the
molecule G and the electronically conductive solid becomes:

2 2 2
1
e z—q——q—312 cos’ @+

_ 6.17
2z 6z 2z [*sin’@ [6.17]
1- Zz
This can alternatively be written:
2 2
£9=—L_Pcos’0+L_sin*6 [6.18]

6z 2z

The dipole G is mobile over time, and the potential varies arbitrarily, so
we use an angle o that is the average of the mean values of the square cosine
and the square sine. We can calculate the mean value cos’@ by the
expression:

J.coszﬁde 1—02059(19 |
cos’ §="— =2 =5 [6.19]
jde jde
0 0

Similarly, for sin® & , we have:

; 1
sin® @=1-cos’ 925 [6.20]
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E(G)A

Insulating
solid

Conductive solid

Figure 6.3. Potential for interaction of a
molecule of gas in the vicinity of a solid

In light of the expression of the electrical moment:
1 =2gl [6.21]

the interaction potential becomes:

2
e ___H 6.22
122° [ ]

If the molecule does not have a permanent dipole moment, we can use the
same relation provided we replace the permanent moment with the mean
dipole moment due to the internal fluctuations in the molecule, and the
interaction potential becomes:

2
e —__H 6.23
122° [6.23]

Relations [6.22] and [6.23] do not give us the equilibrium position for the
adsorbed molecule (no minimum on the corresponding curve in Figure 6.3),
because of the approximation of z* and /* which we made in order to bring
the calculation to fruition. The potential calculated is thus only valid for a
satisfactory distance between the molecule and the surface of the solid. That
distance does not include the minimum which would tell us the position at
equilibrium.
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6.3. Thermodynamic models for physical adsorption

In order to study the thermodynamics of the process of physical
adsorption, it is necessary to imagine a model which defines a state for the
adsorbed molecule. This model needs to take two important experimental
results into account:

— the variance of the system is 2, meaning that the quantity adsorbed at
equilibrium is a function of the gas pressure and the temperature;

—the phenomenon of adsorption is exothermic, which means that an
increase in temperature decreases the quantity adsorbed at equilibrium.

Two states have been envisaged for the adsorbed species. One led to the
development of Hill’s model, and the other to Hill and Everett’s model.

6.3.1. Hill’s model

In this model, the adsorption layer — i.e. the ensemble of adsorbate and
adsorbed material — is assimilated to a solution of the adsorbed gas G and the
adsorbate solid S. Thus, we can apply the general properties of solutions.
The possible variables are: the pressure, assimilated to the partial pressure of
G in the case of a pure gas (the partial pressure of the solid S is negligible);
the temperature; the adsorbed quantity of G in solution; the quantity of S in
solution. If the quantity of adsorbed gas, My is denoted by n,, then the

number of independent components is 2 (G and S), the number of external
intensive parameters is 2, the pressure and temperature and the number of
phases is also 2: the solid solution and the gas. Thus, the Gibbs variance is 2.
Hence, we can define:

—isotherms giving the quantity of gas adsorbed n, = f{P) at constant
temperature;

— isobars given n, = f(T) at constant pressure;

— isosteres P = f{T) at constant adsorbed quantity n,.



172  Thermodynamics of Surfaces and Capillary Systems

6.3.1.1. General equation for equilibrium in Hill’s model

With regard to the adsorbed phase (solution), we work with a constant
quantity of adsorbate, aln<<S>> =(. The variation of the chemical potential of

the gas <<G>> in the adsorbed phase is:

dpty =—S, dT+V,  dP+ Hio) dn [6.24]
o) =Sy 47 V) o : -
PN

The variation of the chemical potential of the adsorbed material G in the
gaseous phase with a single component is:
dg{OG} = —st} dT+v{°G} dpP [6.25]

Equilibrium of the adsorbed material G between the two phases requires
that the variations of its chemical potential be equal between the two phases
in the case of any disturbance — i.e. that:

_ 0
At =dgly [6.26]

In view of expressions [6.24] and [6.25], this equality is expressed by:

. o du
0 0 ((a)) _
(3161 =S JAT + (¥ =) Ja7 +[ an, J dn, =0 [6.27]
P,T,n

()

From this general expression, giving all of the points of equilibrium, we
shall deduce the equations of the different curves: isosteres, isotherms and
isobars.
6.3.1.2. Equation of the isostere in Hill’s model

To find the equation of the isostere, we apply the general equation [6.27] at
a constant quantity of adsorbed G, such that: dn, =0 . This relation becomes:

0

( dP j _ St~ St [6.28]
0

M0 Viy =V
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If we assume the molar volume of the gas to be much greater than the
partial molar volume of the component G in the adsorbed layer:

0
Vigy >> V<<G>> [6.29]
and that the gas is perfect:
RT
V{OG} = ? [630]
we can then write for the difference in volume:
S RT
0 _ =0 =7
Vigy V<<G>> =g = 2 [6.31]

Furthermore, by definition of the molar enthalpy, we can write in each of
the two phases:

Hyay =H gy =TS g [6.32]
and
O [6.33]

At equilibrium, the chemical potentials in the two phases are equal, and
thus:

Hia) = o) [6.34]
We define the isosteric heat of adsorption (see section 6.3) on the basis of
the difference between the entropies (first equation [6.35]), and by

combining relations [6.32], [6.33] and [6.34], we obtain the difference
between the enthalpies, and we have:

T g~ 8y = [6.35]
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Let the isosteric heat of adsorption be:

Groon =iy = H g, [6.36]

By feeding expressions [6.31], [6.35] and [6.36] into relation [6.28] and
ignoring the variations in isosteric heat with differing temperature, we obtain
the equation of the isostere:

dlnP ot
) 5
o)

As we saw earlier, this equation makes the assumption that the gas is
perfect — an approximation which is often perfectly reasonable in the
phenomenon of adsorption, particularly when we are not too near to the
saturation close to the condensation of the gas.

6.3.1.3. Equation of the isotherm in Hill’s model
From the general equation [6.27], we can deduce the equation for the
isotherm by making d7" = 0, which gives us:
— ou
0 ((s)) _
(Vo =iy} +[ on, J an =0 16:38]
PTs)

Using the same hypotheses about the volumes which led us to
approximation [6.31], the equation of the isotherm is written:

1 [ %)

dlnP) =—ry| —— d 6.39
(dnP), RT[ an, J 2 [6.39]
P.,T.n

()

The model of a solution used to express the chemical potential as a
function of the composition at a chosen temperature will give the expression
of its differential in relation to that same composition and will enable us to
make relation [6.39] more precise.
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6.3.1.4. Equation of the isobar in Hill’'s model

From the general equation [6.27], we deduce the equation of the isobar by
making dP = 0, which gives us:

na

— ou
(i) _
(s —S<<G>>)dT+[ . J dn, =0 [6.40]
P,T,n<<s>>

In light of relations [6.35] and [6.36], the general expression of the isobar
becomes as follows, if we ignore the variations in isosteric heat with
changing temperature:

ou
qisos; — _L <<G>> J dna = 0 [641]
RT on,

P.T.n(M)

(=)

The choice of a solution model will, as before, enable us to calculate the
differential of the chemical potential in relation to the composition.

6.3.2. Hill and Everett’s model

The adsorbed phase is assimilated to a pure condensed phase of the
species forming the gas, which is represented as <(G)> . This phase could, for
instance, be characterized by a function of state. In order to calculate the
Gibbs variance, we consider that we have a single component G in two
different phases — one gaseous, {G}, and the other condensed, <(G)> —and
that there are three external intensive factors: temperature, pressure and the

interaction due to the solid surface. We then see a situation very similar to
the liquid film deposited on a solid, as seen previously (see section 5.4.4).

6.3.2.1. General equilibrium equation

0
()

) denote the molar entropy and molar volume of the pure adsorbed

If we let 4, denote the area occupied by a mole on the surface, and s

0
and Vo)

phase, the differential of the molar Gibbs energy of the adsorbed layer is:

dg’ =—S<O dT +v)

(@) @) (aydP+4,do [6.42]
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We let @ denote the value defined by the expression:
D=0, — 0, [6.43]

Osg and Gag are, respectively, the interfacial tensions between the initial
solid phase and the gaseous phase and between the adsorbed phase and the
gaseous phase.

We can see that in expression [6.42], for the surface phase, in relation to
the area A4, @ plays the same role as pressure in a three-dimensional phase in
relation to the volume. Thus, @is called the expansion pressure.

Let I” denote the inverse of the molar area. 7 tells us the number of
moles adsorbed per unit area, defined by relation [2.1]. This number is
expressed, in our particular case, by:

[=— 6.44
s [6.44]

Relation [6.42] is then written:

1
dglay ==Sjay 4T+, dP+Fd¢ [6.45]

(©)

With regard to the compound G in the gaseous phase, its molar Gibbs
energy is:

dg{OG} = —st} d7 + V{OG} dpP [6.46]

Equality between the two differentials [6.45] and [6.46] gives us the
general equilibrium equation:

1
0 0 0 0 _
(s{G} —s<(G)>)dT+(v{G} Vi) )dP+chD =0 [6.47]

From this equation, we can deduce the different functions with a single
variable — particularly the isotherm and the isostere.
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6.3.2.2. Equation of the isotherm

At a constant temperature, the general equation [6.47] is reduced to:

1
0 0 b= 4

G}

In light of the usual approximations about the volumes:

RT
0o _ 0
V{G} = ? >> V<(G)> [649]
The equation of the isotherm is written:

d®=-RTTdInP [6.50]

We can also write this in its integral form:
P
®=-RT [[dInP [6.51]
0

This relation is Gibbs’ relation for adsorption. In particular, it is the case
of relation [2.41] applied to the adsorption of a pure gas by a pure solid.

6.3.2.3. Equation of the isostere: equilibrium heat of adsorption

We now work with the spreading constant (d@ = 0). The general equation
[6.47] becomes:

(t6) =50y ) AT+ (Ve =ley JaP =0 [6.52]

(G)

The equation of the isostere is then written:

sl —s’ Spy =S
(d_Pj =719 7o) el o) p [6.53]
dT @ V{G}_V<(G)> RT
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Because of the equality of the molar Gibbs energies at equilibrium, we
can introduce the enthalpy terms into that expression, and write the isostere
in the form:

0 0 0 0
dinP\ S =Sy e ~Miey g,
_ - ) _ 4o [6.54]
dr )~ RT RT RT

where ¢, is the equilibrium heat of adsorption.

We can link the molar enthalpy of the adsorbed phase to the molar
enthalpy of the liquid component G by writing that the difference between
the two phases is due only to the surface effect, and that this surface effect
has no impact on the entropy, so:

0
B

= h("G) + @4, [6.55]
Hence, as the entropies of the liquid state and the adsorbed state are
identical, we have:
0 0
Stey 5@ [6.56]
The two states are very similar, and the adsorbed state is, in fact,
assimilated to a thin liquid film, as we saw in section 5.4.4.

6.3.3. Adsorption heats

We have already defined two heat values linked to adsorption: the
isosteric heat, based on Hill’s model, given by:

dpP

 =RT?| — 6.57
qlSOSt (dT jna [ ]

and the adsorption heat based on Hill and Everett’s model, given by the
relation:

dpP

=RT?| — 6.58
qtp (dTJAo' [ ]
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The first is easy to determine experimentally by finding the slope of the
isostere when the adsorbed quantity is constant. In order to calculate the
second, we shall now establish a relation between these two adsorption
heats. These two heats are defined, on the basis of the entropies, by
relations [6.35] and [6.54], respectively. By adding these two definitions

together, term by term, and adding and subtracting the quantity S () from

the relation thus obtained, we find:
_ 0 0 <~ o _ I — 0
9o = (S{G} - S(G) - S<<G>> + <<G>> )T = Gisost + (S<<G>> - S(G) )T [659]

However, the differential of the chemical potential at constant pressure,
area and adsorbed quantity of the adsorbed species is independent of the
model. Thus, we can write the equality between that chemical potential
given by relation [6.24] for Hill’s model and that given by relation [6.45] for
Hill and Everett’s model:

1
_ _ 0
(d%qLﬁm——%@wﬂxﬂﬁde+Fd¢ [6.60]

From this, we deduce:

P 1(0®
S, =50 :——(——j [6.61]
( {(6) <G>) r\or ),
and by substituting back into relation [6.59], it follows that we have:
T (0d
=q ——|— 6.62
qqf' qlsost F ( aT jr [ ]

Generally speaking, there are as many heats linked to adsorption as there
are ways to achieve it, because the heat exchanged in the course of a
transformation is not a function of state. Let O denote such a heat defined in
specific conditions. We speak of the corresponding differential heat to refer
to the differential of Q in relation to the adsorbed quantity:

_do
=4 [6.63]
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The two quantities gisox and g, are two examples of differential heats
linked to adsorption.

Thus, for each differential heat, there will be a corresponding integral
heat, defined by:

0= njqdna [6.64]

A commonplace mode of adsorption is adsorption where the volume of
the gas, the volume of the quantity adsorbed and the area of the solid are
kept constant. Then, the differential of the heat is given by the difference
between the Helmholtz energies:

(dQ)V{G}’ , ,=dU —dU, [6.65]

Consider the case of Hill’s model. For the Helmholtz energies, we have:

du
ufy =— [6.66a]
dn
A
and:
du,
Upan =4, [6.66b]

Rl B 6.67
! Q) = 94 [6.67]

qq 1s called the differential heat of adsorption: it is the heat that would
be measured when carrying out adsorption in an enclosed isothermal
calorimeter, such as the Calvet microcalorimeter.
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The differential heat of adsorption can be linked to the isosteric heat by
finding the difference of these two heats, and by using the entropic definition
[6.35] for the latter, we find:

_.0 7m0 _(rr  _pg
qd_Qisost_u{G} TS{G} (U<<G>> TS<<G>>) [6.68]

We know that generally, given the definition of the Gibbs energy, we can
write:

U-TS=G-PV [6.69]
When applied to relation [6.68], this gives us:

_ 50 _ (U _
9a = o = &y = PVjq) (/“<<c>> P V<<c>>) [6.70]

In addition, at equilibrium, we have equality of the chemical potentials in
the gas phase and the adsorbed phase. Hence, in Hill’s model:

g{OG} = g [6.71]
By feeding this back into expression [6.70], we obtain:
R
4= s =P (Ve V) ) [6.72]

With the usual approximation about the relative values of the molar
volumes of the adsorbed phase and the gaseous phase, the latter being
considered to be a perfect gas, we find:

94 = Gison = —RT [6.73]

Because the two values ¢, and ¢, can be measured experimentally, this
relation is easy to verify.
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1 layer

Figure 6.4. Example of the variation in the
isosteric heat with the adsorbed quantity

Many experimental results can be explained by the presence of van der
Waals forces and by relation [6.7].

In general, the adsorption heats are not constant: they depend on the
quantity of material adsorbed, although graphite is an exception to this rule.
This variation with the adsorbed quantity is proof that there is heterogeneity
over the course of the adsorption. Figure 6.4 shows an example of such a
heterogeneity.

Note, though, that beyond a certain adsorbed quantity, the heat of
adsorption is practically equal to the enthalpy of liquefaction of the gas
A H

v—L °

6.4. Monolayer adsorption

Adsorption with the formation of a single layer of gas adsorbed stems
from the Type I isotherm in Brunauer’s classification (see Figure 6.1). The
adsorbed quantities are relatively slight: to saturate a surface, it takes around
10" molecules per cm’, which equates to around 10™* moles per m®’.
Saturation is reached for low values of the ratio P/P’, far from the liquid
state. In this case, the concept of the adsorbed quantity is often replaced by
that of the fraction of coverage, €, which is defined by the ratio of the
surface of the solid covered by the gas to the total surface of the solid.
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6.4.1. Energy distribution of adsorbed molecules

The two expressions, [6.39] and [6.54], of the isotherms given by Hill’s
and Hill and Everett’s models cannot be immediately used to plot the
isothermal curves without further information about the adsorbed state.

In section 6.1, we calculated mean energies over the whole surface for the
adsorption of a gas. We can see that the periodicity of the arrangements of
the atoms on the surface of a solid results, in fact, in a periodic energy of
adsorption, exhibiting points of minimum energy, in a position of stable
equilibrium, and points of maximum energy in a position of unstable
equilibrium. The difference between the maximum and minimum energies,
therefore, needs to be compared to the heat energy kg7 (Figure 6.5). Two
limiting cases are found:

— if the difference between the energies of two neighboring positions of
stable equilibrium is greater than the energy of thermal agitation
(Figure 6.5(a)), then that phenomenon prevents the molecule from crossing
the barriers between two positions. We then say that we have localized
adsorption;

—if, on the other hand, the difference between the energies of two
neighboring positions of stable equilibrium is smaller than the energy of
thermal agitation (Figure 6.5(b)), it enables the molecule to cross the barriers
between two positions, in which case we say we have mobile adsorption.

a a) ‘A b)
A
ok surface kT A surface
v : » ;
L
v H

Figure 6.5. Energy states of adsorbed
molecules: a) localized; b) mobile

In addition, we have seen that the heats of adsorption varied with the
adsorbed quantity, even during the course of the adsorption of a single layer
(Figure 6.4). This means that when a certain number of molecules have been
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adsorbed, the adsorption of a new molecule does not involve the same
variation in energy as the adsorption of the previous ones. This can be
interpreted in two different ways:

— either the surface of the solid is not energetically homogeneous. Our
calculation of this energy in section 6.2 was a mean value, but this value
may fluctuate from one point on the surface to another;

—or there is an interaction between the molecules already adsorbed,
which is expressed by the fact that the potential energy of a given site
depends on the state of occupation of the neighboring sites.

The calculation of the isotherm in the two cases is different, but the result
of the experiment does not enable us to distinguish between these two cases,
because on the adsorption of a new molecule, there is no way of telling
whether the energy variation seen already existed from the start on the bare
surface, or whether it is caused by the presence of the molecules adsorbed
previously. We say, in both cases, that we have adsorption with interactions.

Depending on the different properties — layers localized or otherwise,
with or without interactions between the molecules — we shall examine the
different models used to describe monolayer adsorption.

6.4.2. Isotherms of adsorption in mobile monolayers with no
interaction

The adsorbed molecules, arranged in a monolayer, are free to move
around on the surface, and there is no interaction between them.

6.4.2.1. Hill and Everett’s model

In this model, the adsorbed phase is a pure, two-dimensional phase, for
which we can calculate the molecular partition function with only two
degrees of freedom. It is of the form:

z, = A(M’;’#j z [6.74]

In this relation, z;, is the contribution, to the molecular partition function,
of the energy terms internal to the molecule. The term in parentheses is the
contribution of a two-dimensional motion of translation.
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If we look at the limiting statistical case for N4 indiscernible molecules
for a single gas, the molecular partition function is:

z, =—la [6.75]
Nad.\'!

The Helmholtz energy of the adsorbed molecules is given by:
F,=-Nk,TInZ, [6.76]

By applying Stirling’s approximation and combining relations [6.74],
[6.75] and [6.76], the Helmholtz energy of the adsorbed molecules is
expressed by:

N,.h’
F,=-N k,TIn{ —*— - N_k,T [6.77]
2rmk Tz, A

From this, we deduce, by analogy with a pressure, the pressure of
expansion by differentiating the Helmholtz energy in relation to the surface:

__9F _NKT [6.784]
A 4
or:
®=IRT [6.78b]

Equation [6.78b] is an equation of state for the adsorbed phase.

NOTE.— It should be noted that this equation of state is for a two-dimensional
phase, similar to that of the perfect gas for a bulk phase, and is written as
follows for one mole of adsorbed molecules:

@4, =RT [6.79]

By looking again at the differential form [6.50] of Gibbs’ equation and
differentiating relation [6.78b], we obtain:

RTATC =RTTdInP [6.80]
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which, after integration, gives us:
I'=kpP [6.81]

This isotherm is called Henry’s isotherm because it is similar to Henry’s
law of solubility of perfect gases in a liquid.

6.4.2.2. Hill's model

Looking at relation [6.39] again and assuming the solution is perfect — i.e.
for the chemical potential, we have the expression:

/u<<G>> = IUS<G>> + RT 11’1 F [682]

By differentiating relation [6.82] and feeding back into expression [6.39],
we find:

dlnP=dInrl" [6.83]
which again gives us Henry’s isotherm [6.81].

Thus, Hill and Everett’s and Hill’s models yield the same expression for
the isotherm of adsorption.

Instead of applying relation [6.82] for the perfect gas, we could have
repeated the whole reasoning process by statistical thermodynamics for a
perfect solution, transposed to a two-dimensional phase, and of course, we
would have again obtained Henry’s expression.

6.4.3. Isotherms of adsorption in mobile monolayers with
interactions

Let us again consider Hill and Everett’s model. There are two methods
available to us to take account of the interactions between molecules in the
adsorbed phase:

—either we adopt a statistical description, formulating the model
developed in the case of gases and thus transposing the second coefficient of
the virial to a two-dimensional phase;

—or we choose to transpose an equation of state for real gases and apply
it to the adsorbed phase.
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Let us choose the second method and define the surface phase by an
equation similar to van der Waals’ equation for gases:

®(4, —b)=RT [6.84]

Here, b is the co-surface — i.e. the surface area covered when it is
completely saturated. Obviously, for the concentrations, we have:

['=— 6.85a
and:
oo / .

By feeding back into expression [6.84], we find:

RTT

b= = [6.86]
1—-—
I,
By differentiating, we obtain:
dr
do=RT——— [6.87]
r
1—
By identifying with Gibbs’ equation [6.50], we are led to:
dr
I'dnP=—— [6.88]
r
1-——
I,
Knowing that the coverage fraction is given by:
AR [6.89]
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By integrating [6.88] in light of [6.89], we obtain:

o 0
P=i—2 exp| -2 6.90
1-9”%1—9} [6.90]

This is the Volmer isotherm.

If we replace van der Waals’ equation of state [6.84] with Berthelot’s,
written in the form:

(QD+AL2J(AM—b)=RT [6.91]

M
the same calculation gives us:

P:kligexp(

0 J_ 2al’ 0 [6.92]
1-6 RT

This Type I isotherm was found by Hill using statistical thermodynamics.
It is true that for all equations of state of gases that we are able to find by
statistical thermodynamics, we can replace the macroscopic reasoning on
the basis of the equation of state with the corresponding microscopic
demonstration on the basis of statistical thermodynamics. Not every approach,
though, constitutes a new model, as we find all too often in the existing body
of literature.

6.4.4. Isotherms of adsorption in localized monolayers without
interaction

The adsorbed molecule is attached at a given point on the surface, and we
consider it to be fixed to an adsorption site. The surface of the solid can then
be viewed as a lattice of free or occupied sites. The model is said to be
“without interaction” when the interactions between free sites and occupied
sites or between different occupied sites are identical to the interactions
between different free sites.

We shall work on the basis of a slight modification of Hill’s model,
considering that the surface is a solution of free sites <<S>> and occupied
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sites <<SG>> In the model without interaction, we find ourselves precisely

in the conditions of a perfect solution.

The adsorption reaction is written:
((s))+{G}=((sG)) [6R.1]

Considering the solution to be perfect, the law of mass action gives us:

[6.93]

It is easy to link the molar fractions to the degree of coverage of the
surface. We have:

=0 [6.94a]

=2 =1-0 [6.94b]

By feeding these expressions back into equation [6.93], we find:

H:ﬂ [6.95]
1+K, P

The coverage fraction is a homographic function of the gas pressure. It is
the equation of the Langmuir isotherm for Type I isotherms.

6.4.5. Isotherms of adsorption in localized monolayers with
interactions

We can model this scenario either by introducing a macroscopic model of
the solution which allows us to give the expressions of the activities of the

components <<S>> and <<SG>>, or by going back to the source and
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imagining a statistical model, as we did to find certain macroscopic models
of solutions.

We shall use the first method, employing the model of the strictly-regular
solution.

Instead of relation [6.93], the law of mass action is expressed as a

function of the activities in the form:

[6.96]

If the surface solution is strictly regular, the activity coefficients are
expressed in the form:

_ B 2
g =—0 [6.97a]

B
In ¥ =7 (1- 6)’ [6.97b]

By feeding those expressions back into relation [6.96], we find:

o B 2B6
K P=——exp—exp——— 6.98
P e e [6.98]

If we switch to a microscopic model using statistical thermodynamics, we
obviously obtain the same result as for strictly-regular solutions (see
Chapter 3, of [SOU 15b]), so for the coefficient B, we have the expression:

_ N, Wy 65

ks

B [6.99]

The interaction term wy . is, itself, defined by applying the expression:

E.. T E
WsGs = Z[gS,GS -=2 > s j [6.100]
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The isotherm [6.98] is known as the Fowler isotherm.

NOTE.— The fact that we are dealing with a two-dimensional solution, rather
than a three-dimensional one, is reflected in the expression of the constant
K,, which contains the partition function due to two translational terms
instead of three.

The presence of interactions is, as stated earlier, either the consequence of
a genuine interaction between the adsorbed molecules or the result of a non-
uniform surface — i.e. one which is heterogeneous in terms of energy. In
order to continue using the relation of the Langmuir isotherm, Graham
proposed to keep this expression but replace the equilibrium constant K, by a
variable K. Thus, Kyis called the equilibrium function. The variations of that
function will depend on the degree of coverage in accordance with a curve,
which depends on the type of adsorption.

Figure 6.6 shows a few examples of variations in K.

For a layer without interaction, K, = K, is a constant (this is the Langmuir
isotherm): curve a in Figure 6.6.

K
A f

Uniform surlace with
interaction

a Uniform surface without
interaction

d Heterogeneous surface
with interaction

Heterogeneous surface
without interaction
2

Figure 6.6. Equilibrium function in the
different cases of interactions
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For a non-ideal system, we may have:

— interactions between molecules adsorbed to a uniform surface (curve b
in Figure 6.6), as is the case, for instance, with the Fowler isotherm [6.98],
for which we obtain:

B 2B6
K, =K exp——exp— 6.101
f a p T p T [ ]

—adsorption on a heterogeneous surface without interaction (curve ¢ in
Figure 6.6);

— adsorption on a heterogeneous surface with interactions between the
adsorbed molecules (curve d in Figure 6.6).

In conclusion, we can see that the number of isotherm equations likely to
represent the monolayer is limitless by the introduction of a varied equation
of state for mobile layers or of different solution models for immobile
adsorption layers.

6.5. Multilayer adsorption

We now turn our attention to models capable of accounting for the shapes
of Type II and Type III isotherms (see Figure 6.1). In this case, the adsorbed
quantity is much greater than in the case of a monolayer, and a certain
saturation occurs when the ratios P/P° are near to 1.

This multilayer adsorption is such that we can consider the first layers to
be successive monolayers, in which the forces exerted by the solid are
crucially important, but as we move further away from the solid, its
influence becomes steadily less and becomes slight in comparison to the
influence of the lower layers, until the liquid phase is reached, at which point
only the adsorbed molecules exert a force on the last molecules to attach. We
can then see why, in order to model such a continuous variation of the
properties, two limiting cases were examined. The Brunauer, Emmet and
Taylor model favors the multi-monolayer aspect, and is valid for pressures
far from the value of condensation into liquid, whilst the Frankel, Halsey and
Hill, and Polanyi models favor the neighboring properties of the liquid for
the adsorbed layer and generally perform better as we approach the pressure
of condensation into liquid.
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6.5.1. The Brunauer, Emmet and Taylor (B.E.T.) isotherm

The adsorption is localized, based on Langmuir’s model, but a given site
may be covered by multiple layers, and only the last adsorbed layer, furthest
away from the solid, is at equilibrium with the gases.

A given site may be covered by 0, 1, 2 ... localized layers of gas without

interaction. Let 4o, Ay, 4», ..., 4; represent the areas covered respectively by
0,1,2,...,ilayers of gas (Figure 6.7).

A, A Ao ‘

Figure 6.7. Filling by layers in the B.E.T. model

If A4 is the total area of the solid, the equilibrium between the bare surface
and the surface covered by a layer means we can write:

AA_A

4z 1 [6.102]
A A A,

The equilibrium between the surface covered by a layer and the surface
covered by two layers is expressed by:

L _kp [6.103]
Al

and so on. The equilibrium between the layers i and i—1 gives us:

kP [6.104]

S 4 =4 [6.105]
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In addition, if we let vy denote the volume of gas per unit surface which
would just cover the whole surface of a monolayer, the total volume would
be:

oo

V=0+1vA + 29y Ay ¥ iV A, +..= v Y i4, [6.106]

i=0
Let vimeno denote the product:

Viono = VoS, [6.107]

v_... thus denotes the volume of gas which would be just necessary to

mono

cover the whole surface with a monolayer.

The total volume found can be written:

oo

] Sid

V= ) A = Vo [6.108]
i=0
2.4

To find a simple solution, we shall suppose that from the point of fixation
of the second layer, with adsorption always taking place on a previously-
adsorbed layer, the equilibrium constant remains the same —i.e. K = K; = ... =
K,’ = ... = Ka.

To simplify the formulae, let us posit that:

= [6.109a]
KH
and by analogy:
=L [6.109b]
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with the relation:

o= B [6.110]

The system of equations for the equilibria then becomes:

A = cx4,
A, =cx’ 4,
A =cx'4,

By finding the sum, member by member:

A=A0[1+c(x+x2+...+x'+...)] [6.111]

Supposing, for the moment, that 0<x <1 (this inequality is explained
and justified a little later on), relation [6.111] becomes:

c—1)x
A:AO(HC—XJ:AO N Gt [6.112]
1-x I-x
In the same way, we calculate:
o 2 .-l oxA,
Did = cxd, (1++2x +3x7 + ..+ ix +...)=(1 v [6.113]
i=0 —-X

By substituting back into equation [6.108], the fixed volume would be:

cxXV.

mono [6.114]

V:(l-x)[1+(c-1)x]
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Let us look for the physical meaning of x. If x = 1, the volume tends
toward infinity, meaning that the gas liquefies, and thus the pressure is: P =
P°. Hence:

0
P—=1 [6.115a]
Kl
Thus:
P
x:?<1 [6.115b]

The expression of the isotherm, if we feed back this final equation into
relation [6.114], is written:

Vv i B [6.116]
(P° —P)[l +(c —1)130}
This is the equation of the B.E.T. isotherm.
This equation can also be written:
P 1 c—-1)P/P°
= + (c=1) [6.117]

V(P - P ) CVinono Vinono

Experimentally, if on the basis of the measurement of the volume
adsorbed at each pressure, we plot the left-hand side of equation [6.117] as a
function of the ratio P/P°, we obtain a straight line with the slope 1/cv

mono

and with ordinate at the origin (c¢—1)/cv,,,, which is why it is possible to

calculate values for v, andc.
If we establish the B.E.T. relation using statistical thermodynamics, the
constant ¢ appears to be the ratio:

c=exp|A]H|;{?HLH| [6.118]
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In this expression, A H is the enthalpy of adsorption of the first layer of

gas, and A | H is the enthalpy of liquefaction of the gas.

v—L
NOTE.— The enthalpy of adsorption is less strongly negative than the
enthalpy of liquefaction of the gas, so we deduce that the value ¢ must be
positive. Consequently, if in a given experiment we are led to adopt a
negative value of c, then we shall be led to reject the B.E.T. model. The
coincidence of the isotherm with relation [6.116] is fortuitous.

Note that the expression of the isotherm is established for an infinite
number of layers, which accounts for the name infinite form of the B.E.T.
equation given to relation [6.116]. The statistical calculation carried out for a
finite number n of layers leads to:

ex 1=(n+1)x" + nx™!

l-x 1+(c—1)x—cx”+1

V=v

~ Ymono

[6.119]

This is the B.E.T. isotherm with n layers.

NOTE.— The model accepts the coexistence of a high number of layers and of
a non-covered surface. This, in fact, leads to negative surface tensions,
which is the reason why the model only conforms to real-world experience
when the pressure ratio /P’ is less than 0.35.

6.5.2. Frenkel, Halsey and Hill’s liquid layer model

This model is founded on Hill and Everett’s hypothesis. The adsorbed
layer is compared to a liquid. The two phases are subject to van der Waals
forces deriving from a potential given by relation [6.7], and the hypothesis is
adopted that the difference between the adsorbed layer and the liquid lies
only in the difference between their van der Waals potentials. The reference
liquid has a uniform thickness / and contains /" moles per unit surface. It has
a density of N, moles per unit volume such that:

Ny == [6.120]
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This difference in van der Waals potentials is, in view of relation [6.7],
and if we ignore the effects of repulsion:

6 6
aNgry AN &

3z° 3z

Ae® = [6.121]

In light of the pressures of equilibrium with the gas, the chemical
potential difference of the fixed species between the adsorbed phase and the
liquid is:

P
p=thy, =RTIn— [6.122]

We consider that this difference is due only to the differences in
Helmholtz energy — i.e. to the difference between the van der Waals
potentials. By comparing relations [6.121] and [6.122] and replacing 4 with
its value, drawn from expression [6.120], we obtain:

P
In—5 = —% [6.123]

We know that a is constant at a given temperature, which is expressed
thus:

4 6 3 6
_ NG E oy — TNN G E

[6.124]
3k, T

a
Other authors have proposed adopting a more general expression than
relation [6.123], in the form:

P
5= —% [6.125]

where 2 <n < 3.

By another method, based on Hill and Everett’s thermodynamic model,
Harkins and Jura found n = 2.
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6.5.3. Polanyi’s potential model

The model put forward by Polanyi is very old (1914) but remains useful
even today, as it is the only model which is capable of making predictions.

Relying once again on Hill and Everett’s hypothesis, we perform the
same comparison as in the previous model, attributing the difference
between the liquid and the adsorbed phase simply to the difference in
interaction potential between the solid and the molecule, so we can write:

0

H, —,u=RT1n%=A€ [6.126]

Figure 6.8(a) shows the plot of the equipotential curves (A& constant) in
the vicinity of the surface of a solid.

A pe
b)

adsorption
Zoneg

A

Figure 6.8. Polanyi’s potential model: a)
equipotentials; b) characteristic curve

This time, we shall not state an expression for Ag, instead choosing a
different means of comparison.

Let v,, v,, ..., v, denote the volumes contained between the solid and
the equipotentials Ag,, Ag,, ..., 0. v is the total volume of the

max

adsorption zone. As v increases from 0 to v Ae decreases from its

max ?

maximum value to 0.

The process of construction of the adsorbed layer can then be represented
by a curve known as the characteristic adsorption curve Ag = f(v). That

curve can be plotted on the basis of an isotherm found experimentally, by
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way of a hypothesis about the nature of the adsorbed phase which, in our
case, is supposed to be very similar to the liquid. In this case, the volume v,

corresponding to a potential Ag; will be given by:

y =M [6.127]
Py

where m; is the adsorbed mass and p, is the density of the liquid at

temperature 7 of the experimental isotherm.

Conversely, if by one means or another we know a characteristic curve of
adsorption, we can use it to work back to the isotherm.

Polanyi makes the hypothesis that, for a given gas and solid, the
characteristic curve of adsorption does not depend on the temperature. This
hypothesis was verified by Titoff in the case of the adsorption of carbon
dioxide by wood charcoal. Thus, on the basis of a characteristic curve of
adsorption, we can obtain isotherms at other temperatures, and consequently,
by using relation [6.54], calculate the equilibrium heat of adsorption ga..
Figure 6.8(b) shows the characteristic curve of adsorption found by Titoff.
Note the similarity in shape between the curve in Figure 6.8(b) and that
given in Figure 6.4.

With the aim of determining the isotherms of adsorption of two different
gases A and B on the same solid, Polanyi and Berenyi examined the
relations between the characteristic curves of adsorption of the different
gases on the same solid. On wood charcoal, they found the relation:

1/2
ae, _ {“—Aj 6.128]

Agy  \ ay

aa and ag denote the coefficients a of each of the two gases, A and B, in
their respective van der Waals equations. If this expression is supposed to be
satisfied for Ae 20 (v#v_ ), we must have:

max

ln(P—O] =(“—A] h{P—Oj [6.129]
P \a P,
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This expression has been properly verified by Lindau.

This result led Dubinin to postulate that for all gases on a given solid, the
characteristic curve of adsorption had the equation:

Ae=Bf () [6.130]

The function fv) is independent of the gas. The coefficient Sis called the
affinity coefficient of the adsorbent.

Experience has shown that for two gases A and B, the coefficients £ have
the same ratio as that existing between the molar volumes of the adsorbates
in the adsorbed state, i.e. liquid, which is expressed by:

0

v
&=% [6.131]
By V)

Hence, we find:
0 0

[%P_ {%P_ o) 6.132]
Via) P V) P .

Using this relation, it is possible to calculate an isotherm on the basis of
another by way of the characteristic curves.

Certain criticisms have been leveled at this model. London noted that
as the adsorption potentials vary in 1/, the values Ae quickly become
negligible. This is undoubtedly compensated by the fact that the adsorbed
layer itself has an adsorption potential. Lewis, for his part, proposed to
replace the pressures by the fugacities, arguing that the proximity between
the adsorbed phase and the liquid phase leads to not-insignificant
interactions.

Ultimately, and paradoxically, the success of this model stems from the
fact that it does not give an isotherm equation, but instead requires us, in
order to find such an equation, to have at least one experimental curve at our
disposal. This knowledge enables us, in view of the different observations, to
find the isotherm of adsorption of the same gas on different solids at
different temperatures.
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6.6. Adsorption on porous substances

In the models we have discussed up until now, the gas was considered to be
adsorbed on the whole of the surface of the solid, which was fully accessible.
All points on that surface had equivalent (if not identical) properties. Thus,
these models are completely legitimate to represent adsorption on:

— the surfaces of non-porous solids;

— solids exhibiting pores so small that the molecule of gas is not sterically
able to penetrate them;

— solids whose pores have a sufficient value so that all the effects linked
to the radii of curvature of those pores are negligible. The surface of those
pores, then, presents no difference with the rest of the surface.

We shall now turn our attention to solids exhibiting medium porosity,
whose adsorption is characterized by Type IV or V isotherms (see
Figure 6.1).

Type IV isotherms present a sharply ascending part for high relative
pressures, which closely follows the part represented by the B.E.T. isotherm,
for instance (Figure 6.9). The quantities adsorbed on saturation become very
great.

Ra

Desorption

Adsorption

€ »-
a LnP/"

Figure 6.9. Hysteresis of the Type IV isotherm

In addition, for this type of isotherm, it has been observed that the curve
plotted by decreasing the relative pressure (desorption curve) was not
identical to that obtained by increasing the relative pressure (adsorption
curve). We see an effect of hysteresis between the two parts of the curve (see
Figure 6.9).
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These two peculiarities of Type IV and V isotherms have been explained
by including the phenomenon of capillary condensation in the pores of the
adsorbent solid.

To present this explanation, in the following we shall consider a simple
specific case which leads to a strictly-vertical ascendant part of the isotherm
of adsorption (Figure 6.10).

6.6.1. Process of pore filling

Consider a solid whose pores are all identical to cylinders of the same
radius 7 and open at both ends.

Starting from zero, when we increase the pressure of the gas, it is
adsorbed to the whole surface, including the internal surface of the pores. In
this step, we see multilayer adsorption far from saturation — i.e. which is
accurately represented by the B.E.T. isotherm.

When the layer inside of the cylinders is sufficiently thick — a thickness
estimated for a relative pressure of 0.35 — to have a surface tension to speak
of, the cylindrical film has a saturating vapor pressure equal to that given
by a cylindrical meniscus whose Kelvin radius is equal to the diameter of the
cylinder and is given by relation [5.26]. The ratio of the pressures at
equilibrium is then given by relation [4.31] (Figure 6.10(a)). We can show that
this film becomes unstable in relation to a certain surface containing the same
quantity of material, and which has the property of having a mean radius of
curvature less than the radius of the cylindrical pore (Figure 6.10(b)).

As the pore continues to fill, that surface grows, and its mean radius of
curvature decreases (see Figure 6.10(c)). Filling continues until the pore is
obstructed by a biconcave liquid lens (Figure 6.10(d)). The liquid is then
limited by a spherical meniscus whose average radius is equal to the radius
of the cylinder, 7.

e) f)

Figure 6.10. Capillary condensation in a cylindrical pore
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JRT  rRT /RT  IRT

Figure 6.11. a) Adsorption; b)
desorption — with capillary condensation

Filling continues (Figure 6.10(e)) as long as the radius of the meniscus is
equal to the radius of the cylinder.

If we continue filling, the radius of the meniscus increases until it
becomes infinite (Figure 6.10(g)).

6.6.2. Shape of the adsorption curve

On a diagram (Figure 6.11(a)), let us plot the quantity adsorbed as a

function of the logarithm of the pressure ratio. On the abscissa axis, we place
0 0

and —
RT rRT

values of the pressure at equilibrium of a cylindrical meniscus and a
spherical meniscus, both concave, with a Kelvin radius equal to the radius of
the pore.

the two noteworthy values — , which correspond to the

Figures 6.10(a)—(f) correspond respectively to points (a)(f) in
Figure 6.11(a).

We shall now plot the isotherm by setting different increasing values of
the ratio P/P, (Figure 6.11(a)). Once we reach the point a, the experimental
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conditions will be out of equilibrium (which would be at H, equilibrium of a
cylindrical meniscus) and the system will evolve spontaneously so as to
re-establish its state of equilibrium — i.e. the figurative point will shift
directly in terms of firreversibly.

If the pores are not identical, it is easy to show that this results, on the
isotherm, in a non-vertical ascending part, whose limit abscissa values
depend on the limit radii of the pores.

6.6.3. Shape of the evaporation curve, phenomenon of hysteresis

As we saw earlier, it can be shown experimentally that the isotherm
obtained by decreasing the pressure is not identical to the isotherm of
adsorption.

This phenomenon of hysteresis can easily be explained, which we did
using a simple example of a solid containing identical cylindrical pores with
radius 7. Figure 6.12(g) shows the state of the pores, which are full to begin
with.

When the pressure is decreased, reversible evaporation takes place (see
Figures 6.12(h), 6.12(i) and 6.12(j)) until the two spherical menisci of liquid
are tangential to one another (Figure 6.12(j)). At that moment, the particular
surface reforms (Figure 6.12(k)) and we again see the cylindrical meniscus.
Figure 6.11(b) shows the corresponding plot of the desorption curve. Once
we reach point j, the system, where the pressure is fixed, spontaneously and
irreversibly evolves at m.

i

Figure 6.12. Evaporation in a cylindrical pore

Finally, the whole of the two plots appears in the form shown in
Figure 6.13. The two verticals are such that:

(if :(ﬁJ [6.133]
P), \P),
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Figure 6.13. Theoretical adsorption and
desorption isotherms for identical cylindrical pores

Hence, the classic process of multilayer adsorption followed by capillary
condensation account for the isotherms of Type IV and V.

It is also worth noting that the vertical part of the adsorption does not
correspond to a state of equilibrium, unlike the wvertical part due to
desorption. For this reason, it is the desorption curve that is used to
determine the radii of the pores.

If the pores are not uniform, it can be shown that the desorption part
remains practically vertical.

6.6.4. Relationship between the shape of the pores and the
hysteresis loop

Barrer, de Boer and their collaborators studied the influence of pore
shape on the shape of the hysteresis loop. Thus, de Boer distinguishes five
types of hysteresis loops, which he calls A, B, C, D and E. As types A, B and
E occur most commonly, we shall limit our discussion here to those three
types, whose isotherms are shown in Figure 6.15.
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a) c)

Figure 6.14. Shapes of pores leading
to type-A hysteresis loops

Type A is found in the following cases (Figure 6.14):
— cylindrical capillary tubes open at both ends (Figure 6.14(a));

— expanded cylindrical capillary tubes with a small radius of aperture and
with the condition on the radii 7, < r,< 2r,, (Figure 6.14(b));

— rectangular-section capillaries, open at both ends (Figure 6.14(c));

—cylindrical ink-bottle pores, with the conditions 7,< r,< 2r,
(Figure 6.14(d));

— cylindrical capillary tubes with a narrower part, where r,< r,< 2r,
(Figure 6.14(e));

— cylindrical ink-bottle pores with the condition 2r,< r,, (Figure 6.14(f));

—cylindrical ink-bottle pores open at both ends, where r, > 2r,
(Figure 6.14(g)).

Type B is found in the following two cases:

— very wide capillaries (radius greater than 50 nm);

— parallel planes at a certain distance from one another.
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Figure 6.15. Shapes of hysteresis loops for types A, B and
E of the pore shapes according to De Boer’s classification

Type E strongly resembles type A; it can be attributed to open pores of
radius r,, having spherical parts with radius r,, greater than 2r,,.

If there is a distribution of the minimum radii 7, the desorption branch
will no longer be absolutely vertical.

In all cases where the pore does not have a uniform radius, the desorption
branch corresponds to the radius of aperture of the pore (at the ends).

The shapes of the hysteresis loops are used to determine the pore radius
distributions (see the Appendix).

Thus, we have used models to illustrate monolayer adsorption which
leads to Type I isotherms, multilayer adsorption leading to Type III and
Type IV isotherms, and multilayer adsorption and capillary condensation for
Type V and VI isotherms in Brunauer’s classification system.
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Chemical Adsorption of Gases by Solids

Physical adsorption (see Chapter 6) involves physical bonds between
molecules. We shall now describe a different type of adsorption, known as
chemical adsorption, where gas molecules are linked to a solid by chemical
bonds (molecular orbitals).

7.1. Chemical force between gas and solid surfaces

If the gas atom has single electrons, or if the dissociation of the gaseous
molecule creates atoms with single electrons, or even if the gas molecule
contains a multiple bond liable to be broken, there is the possibility of a
chemical bond being formed between the gas and the solid. We shall
distinguish between two types of solids: metals and semiconductors.

7.1.1. Chemical adsorption on metals

By magnetic studies, the main results have been obtained for the
adsorption of gases on nickel.

With hydrogen, it has been shown that, at a constant temperature, the
magnetization of the nickel decreases in a linear fashion with the amount of
hydrogen fixed, and corresponds to two electron holes in the d band per
molecule of hydrogen. This result proves that the adsorption of a molecule of
hydrogen takes place with two bonds, rendering a dissociative chemical
adsorption of hydrogen to nickel likely, meaning that the gas molecule is
split into two atoms when bonded with the metal. The same result is found
with nitrogen molecules.

Thermodynamics of Surfaces and Capillary Systems, First Edition. Michel Soustelle.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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The adsorption of a molecule of ethylene gives the same magnetic result
as that of a hydrogen molecule, which appears to prove that the chemical
adsorption of a molecule of ethylene takes place by means of its & electrons.
At 100°C, the number of electrons transferred would be around 6, implying
the dissociation of the ethylene molecule on adsorption.

The adsorption of a molecule of benzene fills 6 electron holes in band d,
from which we deduce that the bond is made by the m electrons in the
benzene ring.

It has also been shown that ethane is fixed by 6 electrons, which involves
the breaking of three bonds in the gas molecule. By contrast, carbon
monoxide is adsorbed without dissociation of the molecule.

Chemical adsorption of most gases results in a variation in the potential
for electron extraction of the metal A¢@. In the majority of cases, adsorption
gives a negative film; however, ethylene, acetylene and vapors of alkali
metals create positive films on the nickel. These results can be explained by
the relative position of the Fermi level of the metal and the bond energy or
the electron affinity of the gas. Indeed, if the ionization potential of the gas
E; is less than the metal’s electron extraction potential, this means that the
energy level of the electron in the adsorbate in the neutral state is higher
than the Fermi level of the metal, so we have a polarized bond G'M"
(Figure 7.1(a)).

If the electron affinity £, of the adsorbate is greater than the work needed
to extract the electrons from the metal, this means that there is an energy
level of the electrons in the ionized gas in the form G~ which is lower than
the Fermi level of the metal and we obtain a bond G M" (Figure 7.1(b)).

Figure 7.1. Relative position of the Fermi level of the metal:
a) the potential d (ionization of the gas); b) the electron affinity of the gas
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In all cases, if we adopt Helmholtz’s hypothesis that the adsorbed layer
forms a flat capacitor, of thickness d equal to the distance between the
adsorbed particle and the support, and potential difference A¢g, according to
the classic relations of electrostatics, we have:

_Q

c

Ag [7.1]

Q is the adsorbed quantity, proportional to the degree of coverage 6, e is
the elementary charge and c is the capacity of the capacitor with surface area
S, which obeys the relation:

_es
d

c [7.2]

If i denotes the dipole moment of the bond between the molecule and the
metal, we deduce:

_ useé

Ag [7.3]

Thus, we see that the absolute value of the extraction potential varies in a
linear fashion with the degree of coverage. Thus, in the case of a negative
layer, if we ignore the energies of interaction between adsorbed particles, the
enthalpy of adsorption would be:

AH=E,—-p=A,H"-b0 [7.4]

Thus, without bringing into play the concept of a heterogeneous surface,
we can explain affine variations in the heat of adsorption with the degree of
coverage.

Thus, by measuring the potential difference A@, we are able to find the
dipole moment of the bond, and therefore its ionic nature.

NOTE.— The use of relation [7.2] can be prevented if the distance between
the solid and the linked molecule is of the same order of magnitude as that
which separates the charges in the molecule. More sophisticated models
have got around this difficulty and yielded qualitatively-similar results.
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7.1.2. Chemical adsorption on semiconductors

Studies of chemical adsorption on semiconductors have shown that the
electrical conductivity of the solid varies with the adsorbed quantity in one
direction or the other. Also, at saturation, the covered fraction is often much
less than the whole.

Three approaches have been taken to the modeling of the adsorption of
gas on semiconductive solids: the concrete model method, the band diagram
method and the valence line method. These methods — particularly the
first two — must not be viewed as different models, but rather as different
approaches to the same phenomenon.

7.1.2.1. Concrete model method

Consider the adsorption of a gas G to an ionic semiconductor formed of
cations C" and anions A~. Wolkenstein showed that it was necessary to take
account of two types of bond between the gas and the solid: the weak bond
and the strong bond.

In the so-called weak bond, the set formed by the adsorbed gas molecule
G and its adsorption site undergoes no electrical alteration. The bond is
formed by a single electron, similar to the bond in the molecule H,". We
shall represent such a bond by the symbol GL, with L denoting the lattice. A
dipolar electrical moment occurs because of the movement, to a greater or
lesser extent, of the electron clouds of the gas and of the support particle.
The support particle may be either a cation or an anion in the lattice (see
Figures 7.2).

cCC A C A C A cCCAC A C A
A C A C A C A Ct oA oA C
ct A C A C A cC A C A C A

Figure 7.2. Weak adsorption with only one electron

In the so-called strong bond, the fixed particle keeps either an electron or
a free electron hole close to it, and thus behaves like a charged particle. We
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can then see that the electrical conductivity can be modified. If an electron is
retained, the bond formed will be an n bond (written as GeL); if an electron
hole is retained, then it will be a p bond (GpL). We can easily see that the
adsorption of an electron acceptor gas will increase the conductivity by
fixing to a semiconductor p, whereas that conductivity would be decreased
on a semiconductor of type n. The opposite result is obtained by the
adsorption of an electron donor gas.

The strong bond leads to the formation of a double electrical layer,
positive or negative on the outside and of the opposite sign on the inside.
This double layer renders it more difficult to extract electrons from the solid,
which necessarily decreases the enthalpy of adsorption. In the same way, a
calculation similar to that put forward by Helmholtz for metals gives us
relation [7.4]. Thus, we find the linear decrease of the enthalpy of
adsorption.

According to Wolkenstein, only weakly-bonded gas molecules are liable
to desorb in the same state as they were in before adsorption.

7.1.2.2. Band diagram model/

An ionic semiconductor can be represented by a band diagram showing
two energy bands: a valence band for lower energy levels and a conduction
band for higher energies. These two bands are separated by the forbidden
band (gap), whose “width” is a characteristic of the semiconductor. In the
forbidden band, a few levels are authorized by the presence in the
semiconductor of point defects that are electron donors or acceptors
(Figure 7.3).

Conduction band

Valence band

Figure 7.3. Energy position of a
donor and an acceptor

It has been shown that a foreign particle G chemically adsorbed to the
surface by a weak bond has its “image” at level A or at level D, depending
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on whether G is an electron acceptor or donor. The appearance of an electron
on level A indicates the passage from the weak bond to the strong bond, and
this may take place either by the falling to level A of electrons from the
conduction band (e.g. oxygen on ZnO), or by the raising to A of an electron
from the valence band (e.g. oxygen on Cu,0). The same reasoning can be
applied for level D, near to the valence band. The creation of the strong bond
causes the appearance of a surface electric charge. This results in a curvature
of the band diagram in the vicinity of the surface, which leads to an
alteration of the Fermi level, and therefore a limitation of the adsorbed
quantity. Figures 7.4(a) and 7.4(b) respectively show the shape of the bands
in the adsorption of an electron acceptor to a semiconductor n and of an
electron donor to a semiconductor p.

Surface

=~ &

Figure 7.4. Shape of the bands in a semiconductor on the
adsorption: a) of an acceptor gas to type-n; b) of a donor to type-p

7.1.2.3. Valence lines model

In this model, we consider that the free electrons and electron holes in
the semiconductors constitute free valences on the surface of the solid.
Figures 7.5(a), 7.5(b) and 7.5(c) respectively show the valence arrangement
of a weak bond, a strong bond n and a strong bond p. The localization is not
specified, other than the fact that the electron defect is associated with an
ionic point defect, and we find, for instance, oxygen vacancies as the site of
adsorption of an oxide n liable to accommodate an electron donor gas.

a) b) c)

G G G
mg W/} W/ﬁ

Figure 7.5. Different types of valence lines on a semiconductor
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7.2. Physical adsorption and chemical adsorption

Let us return to the comparison between the potential energy of the
adsorbed molecule and the thermal (kinetic) energy kg7. We have already
used this comparison for the instantaneous potential energy, which enabled
us to differentiate mobile physical adsorption and localized adsorption (see
section 6.4.1).

We shall now compare the mean potential energy of a gas molecule
approaching a solid using thermal energy. We shall base our discussion on
the example of the adsorption of nitrogen to nickel, and examine three cases:

— the mean potential energy is less than the heat energy, in which case we
speak of collision rather than adsorption, and the phenomenon can simply be
modeled as the specular backscattering of the gas molecules onto the surface
of the solid. We say that the accommodation coefficient, which is defined as
the probability of a gas molecule of being adsorbed on contact, is nearly
zero. This coefficient will be nearer to 1 when the interaction energy is close
to the kinetic energy of the gas. The molecules spend only a very short
period of time — around 10™°s — in interaction with the solid wall (this is the
period of oscillation at the minimum of the potential trough);

— the mean potential energy is around a few kg7, in which case we have
physical adsorption. In this case, the accommodation coefficient is near to 1,
and the residence time in the vicinity of the surface is of the order of 107's at
a temperature of 300 K. The curve giving the potential energy as a function
of the distance from the wall reaches a minimum at equilibrium (Figure 7.6),
with an attraction in 1/ (see section 6.2);

— the mean potential is greater than 10 or 20 times the kinetic energy kg7
We then have chemical adsorption. The adsorption is attended by the
breaking of the N-N chemical bond, which produces a curve showing an
energy of activation of adsorption, E,, before reaching the position of
equilibrium of chemical adsorption (Figure 7.6). The accommodation
coefficient will be 1 and the residence time around 10"'s at a temperature of
300 K.

Table 7.1 presents the details for the three cases envisaged here.
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Figure 7.6. Physical adsorption and chemical adsorption

Energy of interaction | Residence time Accommodation Phenomenon
(kJ/mole) (s) coefficient
0.4 10" 0 Collision
40 107 1 Physical
adsorption
180 107" 1 Chemical
adsorption

Table 7.1. Comparison of the differing behaviors
of a gas molecule as it approaches a solid surface

da A

Physical adsorption

Chemical adsorption

T

|-
|

Figure 7.7. Transition from physical adsorption
to chemical adsorption
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The existence of an activation energy for the process of chemical
adsorption means that this process tends to take place at a high temperature,
whereas physical adsorption, which is a non-activated process, can occur at a
lower temperature. It is possible for the same gas—solid couple to be
involved in both phenomena in succession as the temperature increases, as is
shown by Figure 7.7. This figure illustrates that, when the temperature rises,
the absorbed quantity (isobar of adsorption) passes from a characteristic
curve of physical adsorption to a characteristic curve of chemical adsorption.

7.3. Isotherms of adsorption and experimental results

As the bond between the gas and the surface of the solid is chemical in
nature, this often results in the existence of a monolayer of gas at the
maximum. That same bond means that we have localized adsorption.

As in the case of physical adsorption in a monolayer, we very often
choose the fraction of coverage @ (or degree of filling), at equilibrium, of the
surface as the value linked to the adsorbed quantity.

My

—» prpt

Figure 7.8. Isotherm of chemical adsorption

Experience shows us that chemical adsorption is also a divariant
phenomenon. The quantity fixed at equilibrium is a function of the gas
pressure and of the temperature.

Figure 7.8 shows the typical shape of an isotherm of chemical adsorption.
Note a saturation effect at high pressures.
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The difficulty of obtaining isotherms experimentally usually lies in the
achievement of low gas pressures that are perfectly controlled, which cannot
be obtained directly, but instead are established on the basis of a chemical
equilibrium which determines the gas pressure (for example the fixation of
very low pressures of pure oxygen because of the tension of dissociation of
an oxide).

The phenomenon of chemical adsorption is exothermic, which results in a
decrease of the quantity adsorbed at equilibrium as the temperature
increases, which has been verified experimentally.

It is very helpful to be able to measure the heat of adsorption. This can be
done directly by calorimetry, or indirectly on the basis of the isotherms
obtained at different temperatures. Experimentally, we see that the heat of
adsorption frequently varies with the fraction of coverage (Figure 7.9). The
values given by the tables, therefore, are usually the initial heats of
adsorption (with zero coverage).

o

oo

>

Figure 7.9. Variation in enthalpy of chemisorption
with degree of coverage

7.4. Langmuir’s model of equilibrium of chemical adsorption
The above characteristics, which are comparable to those of localized

monolayer physical adsorption (see section 6.4.4), mean that Langmuir’s is
the fundamental model for equilibria of chemical adsorption.
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Remember that in the conditions of that model, the equilibrium of
chemical adsorption is written:

G+s=G-s [7R.1]

where the species s and G—s are two components of the same solution.

The law of mass action, applied for the equilibrium of the previous
reaction, is written:

}/G—s 0 —

Py (-0) = [7.5]

where y,  and y_ respectively denote the activity coefficients of the
components of the solution: s and G—s.

As K is an equilibrium constant, it obeys van ‘t Hoff’s law with changing
temperature, SO:

A H°
K = Kexp| — =« 7.6
Xp( RT j [7.6]

The activity coefficients are not independent: at constant total pressure
and temperature, they are linked by the equation derived from the Gibbs—
Duhem equation:

6dIny, +(1 - &)dlny, =0 [7.7]

If we examine the particular case of a surface which would constitute a
perfect solution of free and occupied sites, the activity coefficients are both
equal to 1, and obviously, we have Langmuir’s isotherm:

KP

0= [7.8]
1+ KP

In view of the variations in the equilibrium constant with temperature,
given by relation [7.6], Langmuir’s equation takes the form:

0
K°Pexp — (A“H ]
RT
0= [7.9]

0
1+ K Pexp — [A“H ]

RT
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This Langmuir equation is obviously identical to that found in physical
adsorption; only the orders of magnitude of the enthalpies are different —
around 20 kJ/mole in physical adsorption, as opposed to around 100 kJ/mole
in chemical adsorption.

7.5. Dissociative adsorption and Langmuir’s model

It is difficult to imagine how stable, saturated gas molecules (H,, O,, etc.)
could form a chemical bond with an atom at the surface of the solid. To
explain this bond, as we saw in section 7.1, we are led to accept the
hypothesis, in numerous cases, of dissociation of the gaseous molecule
accompanying the adsorption.

Thus, consider a gas G, with atomicity 1 which dissociates on adsorption,
according to:

G = iG [7R.2]

i

The equilibrium of fixation is written as:

l.G,.+s=G—s [7.10]
1

The same reasoning as in the previous section yields:

1/76;59 =K [7.11]
Py (1 - 0)

which, in the case of a perfect solution, gives us:

”,L = [7.12]
P (1- 0)

This is Langmuir’s new equation in the case of dissociation of the gas on
adsorption. The curve obtained is of the same shape as that represented in
Figure 7.8.
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It may be that the different fragments of a gas AB do not attach to the
same sites, so for instance, for a gas dissociating into two entities A and B,
the equilibrium is written:

AB+s, +s,=A-s, +B-s, [7R.3]
The equilibrium condition gives us:

8,6, _
P(1- 0,)1- 6,)

[7.13]

If, in addition, the fractions of coverage of the two entities are identical,
we obtain:

g

— 4 =K [7.14]
P(l_ 9,4)

This relation is of the same form as equation [7.12] for i = 2.

7.6. Chemical adsorption of mixtures of gases in Langmuir’s
model

Consider the adsorption of a mixture of two gases A and B, which are
adsorbed to the same surface. Then, two scenarios may arise:

— either there are sites specific to A and sites specific to B, in which case
the two adsorption reactions are independent, and the equations of the
isotherms are given by relations [7.8] or [7.14];

— or the adsorption sites of the solid are the object of competition between
A and B. Thus, let 8, and &; denote the fractions of the surface at
equilibrium respectively covered by A and B, and let P, and P; by the partial
pressures of each of the two gases. The equilibria of adsorption will be:

A+s=A-s [7R.4]
and

B+s=B-s [7R.5]
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The molar fractions of the species will, respectively, be:

x,,= 0, [7.15a]

X, = 0, [7.15b]
and:

x, =1-6, -6, [7.15¢]

Thus, let us apply the law of mass action to each of the two equilibria; the
isotherms become:

Va0 - K, [7.16a]
Py (1 - 6,-6)
and
Vs-Os [7.16b]

:KB
Fyd-6,- 6,

In the context of Langmuir’s hypothesis of the perfect solution, we
obtain:

o
4 =K, [7.17a]
P - 6, - 6)
and
[
5 =K, [7.17b]
PB(l - eA - 63)
which gives us, for the coverage of each species:
K P
0, = 44 [7.18a]

1+ K,P, +K,P,
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and

K,P
6, = 58 [7.18b]
1+ K,P, +K,P,

We can see that the ratio between the fractions of coverage is
proportional to the ratio between the partial pressures.

0, _ K, L,
= === [7.19]
63 KB PB
These results can easily be generalized to the adsorption of more complex
mixtures, and we can show that for the gas A, belonging to a mixture, we
have:

= _KP [7.20]
1+2.K,P,
j

where j represents all of the gases present in the mixture, which are adsorbed
to the same sites as the gas A.

NOTE.— If the gases are dissociated and the sites competitive, in repeating the
method in the previous section, we need to replace the partial pressures with
those pressures assigned to the power 1/i;, where i; denotes the atomicity of
the gas j.

7.7. “Non-Langmuirian” isotherms of adsorption

Langmuir’s expression (and its derivatives) is considered to be verified
by experience, as the accuracy of the measurements was so poor. Today, we
know that this expression represents a reasonably good approximation.
However, it is very useful, because all expressions established more recently
derive from Langmuir’s; in addition, it is a simple analytical expression
which, most of the time, is sufficient when adsorption is one of the
phenomena, along with others, occurring in a heterogeneous reaction, for
example.
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Two methods have been used to obtain other representations of the
isotherm of adsorption.

With the first method, we consider that not all the adsorption sites are
equivalent. The distribution of sites, which may be continuous or
discontinuous, is characterized by their heats of adsorption. It is not possible
to detect whether that heterogeneity of the sites pre-exists the adsorption on
the surface of the solid or if it is created as the surface becomes filled
following the interaction between the affixed molecules (or both reasons).
The two origins obviously lead to the same result.

In this method, we apply Langmuir’s relation [7.9] to sites in category i,
characterized by an enthalpy AaHl.O, and add across all the categories of
sites.

Various energy distributions have been put forward:

—suppose we have a single type of sites; we then obviously find
Langmuir’s relation again;

— suppose we have an exponential distribution of sites:

AH?
n, =n, exp[— AHIOJ [7.21]
0

by summing together across all the values of @, then for small values of &,
we find:

In@g = R—TolnP + Constant [7.22]
AH

0
SO:
6 = kP [7.23]

This is the expression of Freundlich’s isotherm;

— other authors posit that the heat of adsorption is an affine function of
the degree of coverage, meaning that the curve in Figure 7.9 is assimilated to
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a straight line (remember that such a curve was justified in section 7.1, by
relation [7.4]). Thus, we posit:

AH® = AHJ (1 - f36) [7.24]

A [} represents the initial heat of adsorption. Substitute that relation back
into expression [7.9], and let us set:

0
A = Koexp{ - ARh],?} [7.25]
We obtain:
0
% = APexp{%} [7.26]

and expressed in logarithmic form, this gives us:

InP = In - In4 - —= [7.27]

AH, S0,
1- 6 RT

In the range of average coverage (@ approximately 0.5), the first term on
the right-hand side can be discounted, and we find the isotherm put forward
by Temkin:

o= - S j4p [7.28]
AHLP

The second method for obtaining “non-Langmuirian” expressions is
based on the general relation of the model [7.5], with which we associate a
model of a non-perfect solution, which will express the activity coefficients
as a function of the molar fractions — i.e. as a function of the degree of
coverage. For instance, if we take the model of strictly-regular solutions, the
activity coefficients are of the form:

w

1= 8y
RT( 0) [7.29a]

ln }/G—s =



226  Thermodynamics of Surfaces and Capillary Systems

and
w
hy = —& 7.29b
8 RT [ ]

By substituting back into relation [7.5], we find:

0 _ w20 - 1) 30
o KP exp[—RT } [7.30]

which is of the same form as Tempkin’s isotherm.

This second method for introducing heterogeneity by taking into account
the interactions between adsorbed molecules and free sites (by the activity
coefficients) is richer than the first method. Indeed, the models of solutions
often have a physical basis, but the energy distributions in the first method
are often set a priori. In addition, this second method is very well suited to
all the different types of adsorption encountered (dissociative, mixture of
gases, etc.).
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Applications of Physical Adsorption to the
Study of the Area and Porosity of Solids

Physical adsorption is at the root of two measurements characteristic of
solids:

— the specific area;

— the pore radius distribution.

A.1. Determination of the specific area of a solid

The specific area is defined as the total external area accessible to a gas,
per unit mass, usually in m*/g. To measure it, we use the B.E.T. method.

A.1.1. Specific area and capacity of a monolayer

The capacity of a monolayer v, of a solid in relation to a gas is defined

as being the volume of gas, expressed in normal conditions of pressure and
temperature, which would be necessary to cover the surface of one gram of
the solid with a complete monolayer on adsorption of the gas. This value is
fictitious, because clearly, upon adsorption, the creation of upper layers
begins before the monolayer is fully in place. When the quantity v is

mono

reached, this means that there are sufficient molecules adsorbed in the
different layers to completely cover the solid in a monolayer.

Let g,, represent the number of molecules of gas adsorbed per gram of
solid to form a monolayer, and o, , the surface occupied by a molecule of

mol
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gas on the surface of the solid, measured in square angstrom. Thus, for the
specific area, we find:

X(m*/ g)=10"¢g,0,, (A% [A1]
However, the number ¢, is linked to v, = by the relation:

q, = %6.02 x10” =0.269y [A.2]
This gives us the specific area:

X(m*/g)=0.269v, (cm’/gT,P,N)o, (A%) [A.3]

Note the particular units usually adopted in measuring the specific areas.

A.1.2. Areas of the molecules

In evaluating the area occupied on the solid by an adsorbed molecule, we
suppose for simplicity’s sake that these molecules are spherical and that the
molecules on the surface of the solid present a compact hexagonal
arrangement. If we let M denote the molar mass, p; the specific mass of the
adsorbed liquid product and N, Avogadro’s number, we deduce:

o =210 — M [A.4]
42N, p,

Hence, for instance, we choose the value 16.27 A? for the area of the
nitrogen molecule at the temperature of liquefaction of nitrogen, and 32.1 A’
for the butane molecule.

A.1.3. Measuring the capacity of a monolayer

Various methods, based on physical adsorption, are used to evaluate the
capacity of a monolayer and ultimately the specific area. The main two ones
are:

— the B-point method, which is fast but not hugely accurate;
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—the B.E.T. method, which takes longer to implement but yields more
definite results.

A.1.3.1. The B-point method

The B-point method is essentially a fast and simple method to evaluate a
specific area. Emmet and Brunauer, considering Type II isotherms (see
Figure 6.1), believed that the monolayer capacity should correspond to a
remarkable point on the isotherm. According to the authors, such an
isotherm exhibits five remarkable points called A, B, C, D and E (see
Figure A.1).

» /P’

Figure A.1. Isotherm of adsorption

Point chosen Measured error
A 7-28%
B 3-12%
C 5-17%
D 7-20%
E 11-27%

Table A.1. Errors in terms of the specific areas obtained
based on the remarkable points on the isotherms

They measured the specific area of known solids, supposing that the five
remarkable points corresponded successively to the volume of the
monolayer. The differences obtained, for each of the points, with the true
value of the specific area are given in Table A.1.
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Note that point B is the most satisfactory. This result was confirmed by
the same authors, noting that curve giving the heat of adsorption as a
function of the adsorbed quantity often showed a maximum for the value
corresponding to that of point B on the isotherm.

In addition, Halsey showed that this point B was where the affinity of the
surface for the gas changed most quickly.

Ultimately, it is unsurprising that no remarkable point on the curve
corresponds to the specific surface, given that the monolayer is simply a
mental construction and that fixation in multiple layers begins long before
the surface has been fully covered.

A.1.3.2. The B.E.T. method

The B.E.T. method is much more accurate than the B-point method, and
can be considered a true analytical method for measuring the specific area.

Equation [6.117] enables us to calculate the capacity of the monolayer
(see section 6.5.1). In general, experience yields a straight line for

vmona

values of the ratio between the pressures of between 0.05 and 0.35. Thus, we
can say that the B.E.T. model is correct in that range.

To take the measurements, it is advantageous to choose a gas which gives
a high value of the parameter c. Indeed, for V' =v we can write

P Ve—-1
vaono =

mono 2

P
. The higher the value of ¢, the smaller the ratio s is. This

is why nitrogen is often used at the temperature of liquid air.

-1 .
In the case that ¢ >>1, and therefore Tl , we obtain =~ (0 and

C (&%

mono

the equation of the B.E.T line becomes:

= [A.5]

Then, the line passes through the origin, and thus a single point is
sufficient to measure the capacity of the monolayer v

mono *
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For measuring very small specific areas (around 1 m*/g), a small fraction
of gas is adsorbed, so the quantity adsorbed cannot be known with precision.
This difficulty can be overcome by working at temperatures where the vapor
pressure of the adsorbed gas is sufficiently low to increase the value of the
ratio between the pressures. For this purpose, it is common to use krypton at
the temperature of liquid air; in such a case, the gas has a saturating vapor
pressure of around 2 hPa. In these conditions, we can go far below 1 m¥/g,
using samples of a few grams of solid.

In any case, the measurement of the specific area of a solid is one which
does not yield a high degree of precision, and it would be illusory to
envisage values with precision greater than 10%.

A.2. Determination of the pore radii based on the isotherms of
adsorption

We have seen (section 6.6) that the pore radius is linked to the isotherms
of physical adsorption with a hysteresis loop; hence the idea to use these
isotherms to try to deduce a distribution of the radii of the open pores in a
solid.

A.2.1. Pore radius at equilibrium at a given pressure

At a point on the desorption branch of the hysteresis loop, the liquid is
condensed in spherical pores with a given Kelvin radius such that:

P 20v°
ln - =—
P’ rRT

[A.6]
This Kelvin radius is, in fact, the radius » of the pore less the thickness t

of the adsorbed layer for the given pressure ratio P/P°. Thus, we have:
r=r,+t [A.7]

To determine r, then, we need to know the desorption curve of a gas to
find 7, and its adsorption curve to determine ¢.

For these measurements, it is usual to use the adsorption of nitrogen, and
we shall see how to calculate the thickness of the adsorbed layer z.
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A.2.2. Calculation of thickness t of the adsorbed layer

To determine ¢ we can, as Linsen did, assimilate the adsorbed gas to the
liquid. Let X denote the volume of liquid adsorbed in cm® per gram of solid,
and S the surface area covered in m” per gram of solid. Immediately, we can
write:

X104 X,
HRA)y=" =210 A8
=107 s A5

However, if we assimilate the adsorbed gas to the liquid, and if V' is the
volume of the adsorbed gas in cm®, we can write:

_ massofliquid  mass ofadsorbed gas MV [A.9]
density of the liquid  density of the adsorbed gas 224000 '
By feeding this back into relation [A.8], we obtain:
4
(= 10°MV [A.10]
2240008

In the case that the adsorbed gas is nitrogen, we have the following
1
alues: p=——g/em’ and M =28, so:
T L

1215.47% [A.11]

De Boer accepts that the surface of the pores is practically equal to the
specific surface measured by the B.E.T. method which, in the case of
nitrogen, tells us:

S =8, =16,27x0269v, =437y m’/g [A.12]

Hence, the thickness of the adsorbed layer:

vV
v

mono

t=3.54 [A.13]
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In this expression, V is the volume adsorbed excluding the volume
condensed in the pores.

Hence, in order to calculate the pore radius, it is helpful to know the

function t(%} , which can be used to calculate the thickness ¢ on the basis

of the isotherm without having to first calculate the capacity of the
monolayer v

mono *

Three methods can be used to determine the function t(%j .

A.2.2.1. De Boer’s method

De Boer calculated the quantity 3.54 for different solid samples. He

mono

plotted that quantity as a function of the ratio P/P°.

For values of P/P° less than 0.75, he notes that the points relative to the
different solid samples all lie on the same curve.

For values of the ratio P/P° slightly greater than 0.75, the curves relative
to each sample separate slightly. The second column in Table A.2 gives the
values obtained by de Boer.

P/P° #(A) de Boer #(A) B.ET. #(A) F.H.H.
0.1 3.63 3.91 4.60
0.2 436 4.42 5.17
0.3 5.01 5.05 5.70
0.4 5.71 5.90 6.23
0.5 6.50 7.08 6.83
0.6 7.36 8.92 7.61
0.7 8.57 11.9 7.89
0.8 10.6 17.8 9.98
0.9 15 35.4 12.92

Table A.2. Compared values of the thicknesses of adsorbed layers as a
function of the ratio between the pressures, obtained using different methods
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A.2.2.2. B.E.T. method
If we accept equation [6.116] for the isotherm, then we can deduce:
P

S
r i [A.14]

v P P
mono (I_F)\Jl:l_’_(c_l)])o}

However, for nitrogen, we have ¢ >>1, and for a certain range of the

. P . . .
pressure ratio CF >>1, the equation of the isotherm is reduced to:

__ [A.15]

This gives us the following value of the thickness of the adsorbed layer:

A.16
1-—

The third column in Table A.2 gives the values of ¢ thus obtained. Note
that they match closely with those found by de Boer as long as the pressure

ratio P/P" is less than 0.4 — in fact, in the domain of validity of the B.E.T.
equation.

A.2.2.3. Frenkel, Halsey and Hill (F.H.H.) method

It has been remarked that for high relative pressures, the F.H.H. isotherm
was far more satisfactory than the B.E.T. isotherm. We saw earlier (in
section 6.5.2) that this isotherm is expressed in the form:

ernioz—i:—L [A.17]
P

F3 V 3
( vmono J
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From this, the following ratio was derived:

1/3

v _|_K = [A.18]
Yoona | RT In"—
P

For nitrogen at 77 K, the proposed ratio K/RT = 5, so we have the
following value of #:

1/3

=354 — > [A.19]

0

P
2.3log—
=p

The last column in Table A.2 shows that the values obtained match well
with de Boer’s results.

A.2.3. Determination of the pore radius distribution in a solid

Thus, consider a solid whose pores do not all have the same radius. We
want to plot the curve giving the volume of the pores as a function of their
radius, which is called the pore volume distribution curve. We suppose that
the hysteresis loop for the adsorption of nitrogen to the solid in question is
known.

A.2.3.1. General method

At pressure P,, all the pores of radius » < r, are filled with liquid. Divide
the abscissa axis of the isotherm (axis of relative pressures) into equal
intervals. If the pressure is decreased from P, to P,.; < P,, the pores whose
radius is between r, and r,+ < r,, will empty.

If the interval (P,, P,+) is small, we can say that these pores have a mean
radius given by:

v+
In T Tl A20
> [A.20]

7=
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If L, denotes the total length of the pores of radius r, and ZSH the

surface area of the already-empty pores, the total volume AV freed up in

n+l
that interval is equal to the volume of liquid evaporated from the pores of
radius r,, plus the quantity of gas desorbed from the pores already emptied of
liquid, so:

AV =7(7 1, ) L +(1,~1,.,) S, [A21]

n+l

However, if we let V'

1y Tepresent the volume of already-empty pores

with radius 7,.;, the surface of the already-empty pores is:

2

>, =y = [A.22]

7

n—1
Furthermore, the total length of the pores with radius 7, is:

Vil
L, =-t2r [A.23]
r,

n

By feeding back the values given by expressions [A.22] and [A.23] into
expression [A.21], we obtain:

—2

r, _
Vo= AV — A24
p(r”) (F —t )2 ntl ( n+1)z (_ [ ]
n n+l
Based on the isotherm, then, it is possible to plot the curve Vp(r) as a
function of 7, (with 7, being calculated using Kelvin’s equation [A.6] and

t, by one of the methods indicated in sections A.2.2.1, A.2.2.2 or A.2.2.3).

A.2.3.2. Approximate method for very nearly vertical adsorption
curves

When the ascending part of the curve is vertical or very nearly vertical
(Figure A.3), it can be assumed that for a given relative pressure, the total
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fixed amount is given by the desorption curve, whilst the adsorption curve
shows the adsorbed quantity. This gives us our method.

The pores with radius 7, have the volume:

n

= A(AV) [A.25]

P(Fn) n+l

However, in view of Figure A.38, we have:

A(AV)=A,B, - A

n+l

B [A.26]

n+1""n+1

On the basis of the curves which give V., = f(7,), we can plot the

n

distribution given:

L= (%), [A.27]

n, & A

|,

B, Bn:

. })
>
P

Figure A.2. Hysteresis loop for nitrogen adsorption

The adsorption method can be used to measure pore diameters of between
100 and 2500 nm. Above this range, the pressure ratio is too close to 1.
Below this range, Kelvin’s formula [A.6], which is a macroscopic formula,
no longer applies, and hysteresis loops no longer occur.
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NOTE.— We have seen another method to determine the pore size
distribution, based on the infiltration of mercury (see section 3.2.2.2). In this
case, we can measure volumes greater than 700 nm, so the two methods
overlap in the 7002000 nm range. Indeed, the results obtained match within
10%.



Bibliography

[ATK 90] ATKINS P.W., Physical Chemistry, Oxford University Press, Oxford,
1990.

[BEN 12] BEN-NAIM A., Entropy and the Second Law, World Scientific Publishing
Company, New Jersey, 2012.

[BRU 40] BRUNAUER S., DEMING L.S., DEMING W.E. et al., “On a theory of the van
der Waals adsorption of gases”, Journal of the American Chemical Society,
vol. 62, pp. 1723-1732, 1940.

[DEF 51] DEFAY R., PRIGOGINE l., Tension superficielle et adsorption, Editions
Desoer, Li¢ge, 1951.

[DEM 73] DEMANGE H., GERMAIN G., NOTIN M., Comprendre et appliquer la
thermodynamique, Masson, Paris, 1973.

[DES 10] DESRE P., HODAJ F., Thermodynamique des matériaux, Equilibres de
phase et métastabilité, EDP Sciences, Paris, 2010.

[EMS 51] EMSCHWILLER G., Chimie Physique, PUF, Paris, 1951.

[FOW 49] FOWLER R., GUGGENHEIM E.A., Statistical Thermodynamics, Cambridge
University Press, London, 1949.

[GER 59] GERMAIN J.E., Catalyse hétérogene, Dunod, Paris, 1959.

[GOK 96] GOKCEN N.A., REDDY R.G., Thermodynamics, Plenum Press, New York,
1996.

[HIL 56] HiLL T.L., Statistical Mechanics, McGraw-Hill, New York, 1956.

[INF 06] INFELTA P., GRAETZEL M., Thermodynamique, principes et applications,
BrownWalker Press, Boca Raton, 2006.

Thermodynamics of Surfaces and Capillary Systems, First Edition. Michel Soustelle.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.



240 Thermodynamics of Surfaces and Capillary Systems

[KLO 08] KrLoTtz I.M., ROSENBERG R.W., Chemical Thermodynamics: Basic
Concepts and Methods, 7" ed., John Wiley and Sons, New York, 2008.

[LAL 06] LALAUZE R., Physico-chimie des interfaces solide-gaz 1, Hermés-
Lavoisier, Paris, 2006.

[LIN 32] LINDAU G., “Uber adsorption und kapillarkondensation”, Kolloid Zeitschr,
vol. 60, pp 253-263, 1932.

[MCQ 99] MCQUARRIEN D.A., SIMON J.D., Molecular Thermodynamics, University
Science Book, Sausalito, 1999.

[MEZ 46] MEzZGER E., “Loi de variation de la tension superficielle avec la
temperature”, J. Phys. Radium, vol. 7, no. 10, pp. 303-309, 1946.

[PRI 46] PRIGOGINE 1., DEFAY R., Thermodynamique chimique, Dunod, Paris, 1946.

[REI 87] REID R.C., PRAUSNITZ J.M., POLING B.E., Properties of Gas and Liquids,
McGraw-Hill, New York, 1987.

[SOU 68] SOUCHAY P., Thermodynamique chimique, Masson, Paris, 1968.

[SOU 90] SOUSTELLE M., Modélisation macroscopique des transformations
physico-chimiques, Masson, Paris, 1990.

[SOU 10] SOUSTELLE M., Handbook of Heterogeneous Kinetics, ISTE, London and
John Wiley and Sons, New York, 2010.

[SOU 11] SOUSTELLE M., Cinétique chimique : éléments fondamentaux, Hermes-
Lavoisier, Paris, 2011.

[SOU 15a] SOUSTELLE M., Phase Modeling Tools, ISTE, London and John Wiley
and Sons, New York, 2015.

[SOU 15b] SOUSTELLE M., Modeling of Liquid Phases, ISTE, London and John
Wiley and Sons, New York, 2015.

[SOU 15c] SOUSTELLE M.., Thermodynamic Modeling of Solid Phases, 1STE,
London and John Wiley and Sons, New York, 2015.

[SOU 15d] SOUSTELLE M., Chemical Equilibria, ISTE, London and John Wiley and
Sons, New York, 2015.

[SOU 16a] SOUSTELLE M., Phase Transformations, ISTE, London and John Wiley
and Sons, New York, 2016.

[SOU 16b] SOUSTELLE M., lonic and Electrochemical Equilibria, ISTE, London
and John Wiley and Sons, New York, 2016.

[VOL 25] VOLMER M., WEBER A., “Keimbildung in iibersittigten Gebilden
(Nucleation of supersaturated structures)”, Z. Phys. Chem., vol. 119, pp. 277—
301, 1925.



Index

AB,C

absolute

adsorption, 31

voltage, 90
accommodation coefficient, 215
adsorption, 65

with interactions, 184
Antonov’s rule,49, 52, 61
B.E.T. (isotherm), 196, 202
band

diagram, 213

diagram model, 11
Barrer, 206
Berenyi, 200
Berthelot (equation of state), 188
Brunauer

(classification), 163, 182

Emmet and Taylor (model), 192
Calvet (microcalorimeter), 180
capillary

condensation, 146

electrometer, 91

length, 141
characteristic adsorption curve, 199
chemical adsorption, 209
cleaving, 68

complete chemical potential, 34, 62
coverage fraction, 182, 187, 189
critical

nucleus, 123

radius of the nucleus, 126

D,E,F

de Boer, 206
Defay and Prigogine, 63
Desré, 85
detergence, 83
differential heat of adsorption, 180,
181
disjunction pressure, 154
distribution of the pores, 145
double electrochemical layer, 87
Dubinin, 201
Dupré, 78
relation, 50
effective interfacial energy, 74
electrical moment, 167
electro-
capillarity, 88
capillary curve, 91-93
capillary Gibbs energy, 89
electron affinity, 210

Thermodynamics of Surfaces and Capillary Systems, First Edition. Michel Soustelle.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.



242  Thermodynamics of Surfaces and Capillary Systems

energy of
adhesion of two liquids, 49
adsorption, 86
extension, 27
enthalpy of sublimation, 68
Eo6tvos, 17
equilibrium
function, 191
heat of adsorption, 178
excess surface, 89, 94
expansion pressure, 176, 185
Fermi (level), 210
flotation, 84
Fowler (isotherm), 191
Frankel, Halsey and Hill
(model), 192
Freundlich, 82, 87
(isotherm), 224

G,H,I

generalized capillary Gibbs
energy, 78
Gibbs
(equation), 185, 187
(isotherm of adsorption), 41, 62
Gibbs’ interface model, 2
Gibbs—
Duhem (relation), 40
Helmbholtz (relation), 18
Lippmann (relation), 91
Thomson (relation), 105, 106, 110
Graham, 191
grain joint, 76
Guggenheim, 17
Hamaker (constant), 151
Harkins, 52
and Jura, 198
Helmholtz, 211
Henry
(isotherm), 186
(law), 86

heterogeneous nucleation, 117, 127
Hill
(model), 171, 186
and Everett (model), 175, 184
homogeneous nucleation, 117, 120
hysteresis, 202, 205
loop, 206
independent phase, 153
ink-bottle pores, 207
integral heat, 180
interfacial tension, 48
interference taints, 161
ionization potential, 210
isobare, 175
isostere, 172, 174,177, 179
isosteric heat, 173, 181
isotherm, 163, 174, 177, 188
of adsorption, 87

J,K L

Jurin (law), 143
Katayama, 17
Kelvin

(formula), 107

(law), 138

(radius), 138, 146
Kindt, 24
Langmuir

(isotherm ), 163, 189, 191, 219

(model), 193
Laplace (law), 6,99, 138
lateral chemical potential, 37
layered model, 31
Lennard-Jones, 164, 167
Lewis, 201
Lifschitz, 152
Lindau, 201
link angle., 77
Lippmann (formula), 91
local curvature, 140
localized adsorption, 183
London, 201
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M, N, O

maximum dimension of the
nucleus, 124, 126
mean
activity, 96
radius of curvature, 6, 139
melting points of spherical
grains, 111
mercury
electrode, 88
porosimeter, 144
Metzger (model), 17, 24
Mittasch, 114
mobile adsorption, 183
molar area, 26, 44
molecular partition function, 184
monolayer mode, 53, 85
monomolecular surface layer, 25
multilayer adsorption, 192
near neighbors, 25
Nernst (relation), 96
Neumann (triangle), 50
nickel carbonyl, 114
non-Langmuirian adsorption, 223
Ostwald (ripening), 114
oversaturation, 122

P,Q,R

pair energy, 68
perfect solution, 44, 189
Polanyi (model), 192, 199
positive adsorption, 30
potential, 149

curve, 91

for electron extraction, 210
pre-wetting, 157
Prigogine, 114
primary nucleation, 117
quasi-net, 25
radii of primary curvatures, 5
radius of aperture of the pore, 145

Reiss (characteristic function), 101
relative adsorption, 31, 94
Rollin (films), 160

S, T,V

saturating vapor pressure in a
bubble, 109
Schuchowitsky (relation), 46
second coefficient ofthe virial, 186
Shuttleworth (relation), 67
spreading
coefficient, 52, 82, 159
condition, 51
parameter, 132
Stirling (approximation), 185
strictly-regular solution, 58, 190
strong bond, 212
superfluid helium, 160
surface, 60
charge density, 90
energy, 7, 8, 12
latent heat, 22
reconstruction, 70
specific heat capacity, 23
tension, 4, 5, 12, 67
Szyszkowski (formula ), 46
Temkin (isotherm), 225
tension of adhesion, 82
Thomson (law), 146
Titoff, 200
total surface excess, 30
Traube (formula), 48
true volume, 145
van ‘t Hoff (law), 219
van der Waals, 17
equation of state, 188
forces, 149, 165
very dilute solution, 47
Volmer, 124
(isotherme), 188
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W, Y, Z

weak bond, 212
wetting
angle, 127
function,127, 134
Wolkenstein, 212
work of adhesion, 80

Wulff (crystal), 73, 100, 104
Young, 78

(law), 139

(layered model), 3
Young—Dupré (relation), 129
zero-charge tension, 93



Other titles from
SSle=
n

Chemical Engineering

2016

SOUSTELLE Michel

Chemical Thermodynamics Set
Volume 5 — Phase Transformations

Volume 6 — lonic and Electrochemical Equilibria

2015

SOUSTELLE Michel
Chemical Thermodynamics Set
Volume 1 — Phase Modeling Tools

Volume 2 — Modeling of Liquid Phases
Volume 3 — Thermodynamic Modeling of Solid Phases
Volume 4 — Chemical Equilibria

2014

DAL PONT Jean-Pierre, AZZARO-PANTEL Catherine
New Approaches to the Process Industries: The Manufacturing Plant of the
Future



HAMAIDE Thierry, DETERRE Rémi, FELLER Jean-Francois
Environmental Impact of Polymers

2012

DAL PONT Jean-Pierre
Process Engineering and Industrial Management

2011

SOUSTELLE Michel
An Introduction to Chemical Kinetics

2010

SOUSTELLE Michel
Handbook of Heterogenous Kinetics



WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.


http://www.wiley.com/go/eula




CHEMICAL THERMODYNAMICS SET
Coordinated by Michel Soustelle

This book is part of a set of books which offers advanced students
successive characterization tool phases, the study of all types of
phase (liquid, gas and solid, pure or multi-component), process
engineering, chemical and electrochemical equilibria, and the
properties of surfaces and phases of small sizes. Macroscopic and
microscopic models are in turn covered with a constant correlation
between the two scales. Particular attention has been given to the
rigor of mathematical developments.

This volume, the final of the Chemical Thermodynamics Set, offers
an in-depth examination of chemical thermodynamics.

The author uses systems of liquids, vapors, solids and mixtures of
these in thermodynamic approaches to determine the influence of
the temperature and pressure on the surface tension and its
consequences on specific heat capacities and latent heats.

Electro-capillary phenomena, the thermodynamics of cylindrical
capillary and small volume-phases are also discussed, along with
a thermodynamic study of the phenomenon of nucleation of a
condensed phase and the properties of thin liquid films. The final
chapters discuss the phenomena of physical adsorption and
chemical adsorption of gases by solid surfaces.

In an Appendix, applications of physical adsorption for the
determination of the specific areas of solids and their porosity are
given.

Michel Soustelle is a chemical engineer and Emeritus Professor at
Ecole des Mines de Saint-Etienne in France. He taught chemical
kinetics from postgraduate to Master degree level while also

carrying out research in this topic.
STe= wicey ]|

www.iste.co 91781848l1218703




	Cover
	Title Page
	Copyright
	Contents
	Preface
	Notations and Symbols
	1: Liquid Surfaces
	1.1. Mechanical description of the interface between a liquid and its vapor
	1.1.1. Gibbs’ and Young’s interface models
	1.1.2. Mechanical definition of the surface tension of the liquid
	1.1.3. Influence of the curvature of a surface – Laplace’s law

	1.2. Thermodynamic approach to the liquid–vapor interface
	1.2.1. Potential functions
	1.2.2. Functions of state of surface
	1.2.3. Equivalence between surface tension and interface energy between two fluids
	1.2.4. Sign of the energy associated with the surface of a pure liquid
	1.2.5. Extent of the area of the surface of a liquid

	1.3. Influence of temperature on surface energy
	1.4. Surface latent heat
	1.5. Surface specific heat capacity
	1.6. Influence of pressure on the surface tension of a liquid
	1.7. Evaluation of the surface energy of a pure liquid

	2: Interfaces Between Liquids and Fluid Solutions
	2.1. Surface concentrations and surface excess
	2.2. Thermodynamics of interfaces of polycomponent liquid–fluid systems
	2.2.1. Complete chemical potential of a component in a phase
	2.2.2. Chemical potentials and lateral chemical potentials
	2.2.3. Conditions of equilibrium in a capillary system
	2.2.4. Gibbs–Duhem relation for surface phenomena
	2.2.5. Adsorption and Gibbs isotherm

	2.3. Surface tension of solutions
	2.3.1. Perfect solutions
	2.3.2. Highly-dilute solutions

	2.4. Interface tension between two liquids
	2.5. Energy of adhesion of two liquids
	2.6. Spreading of a liquid over another liquid
	2.7. Example of the microscopic modeling of surfaces of solutions: the monolayer model for strictly-regular solutions
	2.7.1. Presentation of the model
	2.7.2. Chemical potentials of the surface and bulk components of a strictly-regular solution
	2.7.3. Surface tension and composition of the surface layer of a strictly-regular solution
	2.7.4. Monolayer model and interface tension between two strictly-regular solutions
	2.7.5. Critique of the monomolecular layer model


	3: Surfaces of Solids and Interfaces
	3.1. Surface tension and the surface energy of solids
	3.2. Surface energy of a pure crystallized solid: the macroscopic approach
	3.3. Surface energy in a mesoscopic model
	3.4. Effective surface energy: the Wulff crystal
	3.5. Interfacial energy between two solids
	3.6. Interfaces between pure solids and liquids
	3.6.1. Spreading and angle of contact of a liquid on a solid
	3.6.2. Work of adhesion between a liquid and a solid
	3.6.3. Solid surface in contact with two liquids: displacement of one liquid by another
	3.6.4. Conditions of stability of solid particles at fluid interfaces

	3.7. Adsorption of elements of a liquid solution by a solid
	3.8. Electrocapillary phenomena
	3.8.1. Definition of electrocapillarity
	3.8.2. Gibbs–Lippmann formula and Lippmann’s formula
	3.8.3. Experimentally obtaining the surface tension/electrical potential curve
	3.8.4. Shape of the electro capillary curves
	3.8.5. Applying electrocapillarity to the experimental determination of the excess surface


	4: Small-volume Phases
	4.1. Laplace’s law for spherical liquid drops
	4.2. Similarity between the thermodynamics of a Wulff crystal and that of a liquid drop
	4.3. Reiss’ characteristic function
	4.4. Gibbs energy of a spherical pure liquid or solid with small volume
	4.5. Chemical potential of a component of a solution
	4.6. Phase change in pure substances
	4.6.1. The saturating vapor pressure of pure liquid
	4.6.2. Melting of a small grain

	4.7. Alteration of the solubility of a solid due to the small dimension of its grains
	4.8. Equilibrium constant for a reaction involving small grains
	4.9. Nucleation of a condensed phase
	4.9.1. Hypotheses underlying the nucleation model
	4.9.2. Homogeneous nucleation in a fluid phase: Volmer’s approach (1905)
	4.9.3. Homogeneous nucleation within a solid phase
	4.9.4. Primary heterogeneous nucleation from a fluid phase
	4.9.4.1. Heterogeneous nucleation of a liquid from a vapor
	4.9.4.2. Heterogeneous nucleation from a solid on another solid



	5: Capillary Tubes and Thin Films
	5.1. Behavior of a liquid in a capillary space
	5.2. Thermodynamics of the cylindrical meniscus
	5.2.1. Laplace’s law for the cylindrical meniscus
	5.2.2. Capillary ascension
	5.2.2.1. Contact of a liquid with a wall
	5.2.2.2. Jurin’s law

	5.2.3. Capillary condensation
	5.2.3.1. Capillary condensation in a cylindrical medium
	5.2.3.2. Capillary condensation between two flat plates


	5.3. Modeling the interactions between two surfaces of an insulating material
	5.4. Thin liquid films
	5.4.1. Disjunction pressure
	5.4.2. Formation of a film by condensation
	5.4.3. Ascension of a liquid along a wall
	5.4.4. Minimum spreading thickness


	6: Physical Adsorption of Gases by Solids
	6.1. Shapes of the isotherms of physical adsorption found experimentally
	6.2. Potential energy of a gaseous molecule in the presence of the surface of a solid
	6.2.1. Adsorbent insulating solid
	6.2.2. Electronically-conductive adsorbent solid

	6.3. Thermodynamic models for physical adsorption
	6.3.1. Hill’s model
	6.3.1.1. General equation for equilibrium in Hill’s model
	6.3.1.2. Equation of the isostere in Hill’s model
	6.3.1.3. Equation of the isotherm in Hill’s model
	6.3.1.4. Equation of the isobar in Hill’s model

	6.3.2. Hill and Everett’s model
	6.3.2.1. General equilibrium equation
	6.3.2.2. Equation of the isotherm
	6.3.2.3. Equation of the isostere: equilibrium heat of adsorption

	6.3.3. Adsorption heats

	6.4. Monolayer adsorption
	6.4.1. Energy distribution of adsorbed molecules
	6.4.2. Isotherms of adsorption in mobile monolayers with no interaction
	6.4.2.1. Hill and Everett’s model
	6.4.2.2. Hill’s model

	6.4.3. Isotherms of adsorption in mobile monolayers with interactions
	6.4.4. Isotherms of adsorption in localized monolayers without interaction
	6.4.5. Isotherms of adsorption in localized monolayers with interactions

	6.5. Multilayer adsorption
	6.5.1. The Brunauer, Emmet and Taylor (B.E.T.) isotherm
	6.5.2. Frenkel, Halsey and Hill’s liquid layer model
	6.5.3. Polanyi’s potential model

	6.6. Adsorption on porous substances
	6.6.1. Process of pore filling
	6.6.2. Shape of the adsorption curve
	6.6.3. Shape of the evaporation curve, phenomenon of hysteresis
	6.6.4. Relationship between the shape of the pores and the hysteresis loop


	7: Chemical Adsorption of Gases by Solids
	7.1. Chemical force between gas and solid surfaces
	7.1.1. Chemical adsorption on metals
	7.1.2. Chemical adsorption on semiconductors
	7.1.2.1. Concrete model method
	7.1.2.2. Band diagram model
	7.1.2.3. Valence lines model


	7.2. Physical adsorption and chemical adsorption
	7.3. Isotherms of adsorption and experimental results
	7.4. Langmuir’s model of equilibrium of chemical adsorption
	7.5. Dissociative adsorption and Langmuir’s model
	7.6. Chemical adsorption of mixtures of gases in Langmuir’s model
	7.7. “Non-Langmuirian” isotherms of adsorption

	Appendix: Applications of Physical Adsorption to the Study of the Area and Porosity of Solids
	A.1. Determination of the specific area of a solid
	A.1.1. Specific area and capacity of a monolayer
	A.1.2. Areas of the molecules
	A.1.3. Measuring the capacity of a monolayer
	A.1.3.1. The B-point method
	A.1.3.2. The B.E.T. method


	A.2. Determination of the pore radii based on the isotherms of adsorption
	A.2.1. Pore radius at equilibrium at a given pressure
	A.2.2. Calculation of thickness t of the adsorbed layer
	A.2.2.1. De Boer’s method
	A.2.2.2. B.E.T. method
	A.2.2.3. Frenkel, Halsey and Hill (F.H.H.) method

	A.2.3. Determination of the pore radius distribution in a solid
	A.2.3.1. General method
	A.2.3.2. Approximate method for very nearly vertical adsorption curves



	Bibliography
	Index
	Other titles from ISTE
in
Chemical Engineering
	EULA



