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Preface

This book — an in-depth examination of chemical thermodynamics — is
written for an audience of engineering undergraduates and Masters students
in the disciplines of chemistry, physical chemistry, process engineering,
materials, etc., and doctoral candidates in those disciplines. It will also be
useful for researchers at fundamental- or applied-research labs, dealing with
issues in thermodynamics during the course of their work.

These audiences will, during their undergraduate degree, have received a
grounding in general thermodynamics and chemical thermodynamics, which
all science students are normally taught, and will therefore be familiar with
the fundamentals, such as the principles and the basic functions of
thermodynamics, and the handling of phase- and chemical equilibrium
states, essentially in an ideal medium, usually for fluid phases, in the absence
of electrical fields and independently of any surface effects.

This set of books, which is positioned somewhere between an
introduction to the subject and a research paper, offers a detailed
examination of chemical thermodynamics that is necessary in the various
disciplines relating to chemical- or material sciences. It lays the groundwork
necessary for students to go and read specialized publications in their
different areas. It constitutes a series of reference books that touch on all of
the concepts and methods. It discusses both scales of modeling: microscopic
(by statistical thermodynamics) and macroscopic, and illustrates the link
between them at every step. These models are then used in the study of solid,
liquid and gaseous phases, either of pure substances or comprising several
components.
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The various volumes of the set will deal with the following topics:
— phase modeling tools: application to gases;

— modeling of liquid phases;

— modeling of solid phases;

— chemical equilibrium states;

— phase transformations;

— electrolytes and electrochemical thermodynamics;

— thermodynamics of surfaces, capillary systems and phases of small
dimensions.

Appendices in each volume give an introduction to the general methods
used in the text, and offer additional mathematical tools and some data.

This series owes a great deal to the feedback, comments and questions
from all my students are the Ecole nationale supérieure des mines
(engineering school) in Saint Etienne who have “endured” my lecturing in
thermodynamics for many years. [ am very grateful to them, and also thank
them for their stimulating attitude. This work is also the fruit of numerous
discussions with colleagues who teach thermodynamics in the largest
establishments — particularly in the context of the group “Thermodic”,
founded by Marc Onillion. My thanks go to all of them for their
contributions and conviviality.

This volume in the series is devoted to the study of liquid phases.

Chapter 1 describes the modeling of pure liquids, either using the radial
distribution function or partition functions. The different models presented
herein range from the very simplest to the most complex. The results yielded
by these models are then compared, both to one another and to the results
found experimentally.

The second chapter describes the tools used for macroscopic modeling of
solutions. The use of limited expansions of the activity coefficient logarithm
is presented, before we define simple solution models such as the ideal dilute
solution, regular solutions and athermal solutions, on the basis of
macroscopic properties.



Preface xiii

Next, in Chapter 3, we present a number of solution models with
microscopic definition, including random distribution models and models
integrating the concepts of local composition and combinatorial excess
entropy.

The fourth chapter deals with the modeling of ionic solutions combining
the term due to the electrical effects, found using the Debye and Hiickel
model, with the terms of local composition and combinatorial excess entropy
found in the previous chapter.

Chapter 5 presents the various experimental methods for determining the
activity or the activity coefficient of a given component in a solution.

Finally, three appendices are provided, which recap a few notions about
statistical methods of numerical simulation (Appendix 1), and offer some
reminders about the properties of solutions (Appendix 2) and statistical
thermodynamics (Appendix 3) — subjects which were discussed in detail in
the first volume of this series.

Michel SOUSTELLE
Saint-Vallier,
April 2015






Notations and Symbols

{gas} pure, {{gas}} in a mixture, (liquid) pure, ((liquid)) in solution, (solid) pure,
<<solid>> in solution

A:
Aﬁz) :
A:

A
Ay
A,

a:

Cp':

area of a surface or an interface.
Hamaker constant between two media 1 and 2.
affinity.

electrochemical affinity.

molar area.

molecular area.

cohesion pressure of a gas or radius of the unit cell of a liquid.
components of a mixture.

mixing terms of the constants in a state equation.

i"™ coefficient of the virial in the pressure expansion.

i™ coefficient of the virial.

covolume of a gas or cosurface of an adsorbed gas.

concentration or concentration in a potential-pH plot.

molar heat capacity of excess at constant pressure.
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D(T/O)):

d:
d.S:
d;:
d;S:
dox:
E:

E:

E(T/Oy):

E()Z
E":

Eabs:
Eb:

molar concentration (or molarity) of component i.
mean concentration of ions in an ionic solution.

contribution of free electrons in a metal to the molar heat capacity.

contribution of rotational motions to the heat capacity at constant
volume.

contribution of translational motions to the heat capacity at
constant volume.

contribution of vibrational motions to the heat capacity at constant
volume.

heat capacity at constant volume and constant pressure,
respectively.

capacity of a capacitor or number of independent components.

dielectric constant of the medium or diameter of protection or
contact of a molecule.

Debye’s function.

distance between two liquid molecules.

entropy exchange with the outside environment.

degree of oxidation i of an element A.

internal entropy production.

elementary volume.

energy of the system.

Young’s modulus.

Einstein’s function.

internal energy associated with a reaction at a temperature of 0K.

standard electrical potential or standard electromotive force (emf)
of an electrochemical cell.

reversible emf of an electrochemical cell.

balance equation.
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Xvii

mean total energy of an element in the canonical ensemble.

total energy of the canonical ensemble.

potential energy due to interactions.

energy of an element j of the canonical ensemble.
molar kinetic energy of electrons in a metal.

set of variables with p intensive variables chosen to define a
system.

relative emf of an electrode.

standard emf of an electrode.

equi-activity- or equiconcentration emf of an electrode.
absolute emf of an electrode.

Helmbholtz energy.

molar excess Helmholtz energy.
partial molar excess Helmholtz energy of the component i.

partial molar mixing Helmholtz energy of the component i.

free energy, partial molar Helmholtz energy of the component .

contribution of free electrons to the molar Helmholtz energy.

electrochemical Helmholtz energy.
molar Helmholtz energy.

faraday.
heterogeneous wetting function.

fugacity of the component i in a gaseous mixture.

molar Helmholtz energy of pure component .

fugacity of a pure gas i.
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G)CS .
m -
G,

G:

=
x|

BEEE

T

excess Gibbs energy.
electrocapillary Gibbs energy.
electrochemical Gibbs energy.

partial excess molar Gibbs energy of component .

free enthalpy, partial molar free enthalpy of 7, generalized free
enthalpy.

molar Gibbs energy.

molar Gibbs energy of mixing.

osmotic coefficient or acceleration due to gravity or degeneration
coefficient or multiplicity or statistical mass.

molar Gibbs energy of pure component i.

statistical weight of fundamental electron level of nucleus a.
coefficient of multiplicity of state .

statistical weight of electron levels.

radial distribution function.

distribution of velocity components along Ox axis.

molar Gibbs energy of gas i at pressure of 1 atmosphere in a
mixture.

standard molar enthalpy of formation at temperature 7.

enthalpy, partial molar enthalpy of i.

Hamiltonian.

integral of resonance between two neighboring identical atoms.
Coulombian integral between two neighboring identical atoms.
magnetic field.

electrochemical enthalpy.
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Xix

molar excess enthalpy.

molar mixing enthalpy.

partial excess molar enthalpy of component .

partial molar mixing enthalpy of component i.
spreading coefficient.

stoichiometric coefficient of protons in an electrochemical
reaction.

Planck’s constant.
molar enthalpy of pure component i.

Harkins spreading coefficient of a liquid on another.
ionic strength of a solution of ions.

ionic strength in relation to molality values.

moments of inertia.

integral of configuration of the canonical distribution function of

translation.

Van’t Hoff factor.

partial molar value of J relative to component i.
mixing value of J relative to component .
partial molar mixing value of J relative to component i.

value of J relative to component i in a perfect solution.

partial molar value of J relative to component i in a perfect
solution.

value of J for the pure component i in the same state of
segregation.
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J: rotational quantum number.

K; (E): thermodynamic coefficient associated with the set of variables Ep.

X; is its definition variable and Y; its definition function.

Kl.(Tr) constant of change of equilibrium for phase transition Tr for
component i.

K weighting factor of local composition.

Ko equilibrium adsorption constant.

Kax: solubility product of solid AX.

Kl.(aﬁ ) : coefficient of sharing of compound i between the two phases o
and [3.

Ky dissociation constant.

Kie: adsorption equilibrium function.

Kﬁc) : equilibrium constant relative to concentrations.

K ﬁf ) equilibrium constant relative to fugacity values.

K ﬁP) : equilibrium constant relative to partial pressure values.

K. equilibrium constant.

Ki: solubility product.

k: wavenumber.

kg: Boltzmann’s constant.

Ly latent heat accompanying the transformation ¢.

I capillary length.

M: molar mass.

M: magnetic moment or Madelung constant.

m: mass of solute s in grams per kg of solvent.

m: total mass.
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XXi

m;.

NA:

NC:

n;.

(@.

<n>:

mass of component .

number of components of a solution or a mixture of gases or
involved in a reaction or number of molecules of a collection.

Avogadro’s number.

number of molecules of component A.

number of elements in the canonical collection.
total number of cells of a liquid.

number of objects i in the system with energy €; or number of
moles of component i.

translational quantum nimber or total number of moles in a
solution or a mixture.

total number of moles in a phase «.

mean number of neighboring vacancies of a molecule in a liquid.

total number of vacancies in a liquid.
critical pressure of the mixture.
pressure of a gas.

sublimating vapor pressure of component i.
saturating vapor pressure of component i.

relative pressure of the mixture.

critical pressure.

partial pressure of component i.

proportion of number of elements in a state .

number of external physical variables or spreading parameter.
Fermi pulse.

heat involved.

reaction quotient in terms of activity.
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Op: heat of transformation at constant pressure; quotient of reaction in
terms of partial pressures.

0, reaction quotient of transformation r.

Oy: transformation heat at constant volume.

9 equilibrium heat of adsorption.

qq: differential heat of adsorption.

q: volumetric fraction parameter.

Gisost: isosteric heat of adsorption.

R: reaction rate

R: perfect gas constant.

R: mean curvature radius of a surface or rate of reflux of distillation.

ry: radius of the ionic atmosphere.

7o minimum distance of energy between two molecules.

7. radius of a cylindrical tube.

7 volumetric fraction parameter.

rg. Kelvin radius.

Ay o molar mixing entropy.

E;CS partial excess molar entropy of component .

_,mix partial mixing molar entropy of component .

S: oversaturation of a solution.

Si entropy or partial molar entropy of i.

S electrochemical entropy.

S excess molar entropy.

s: parameter of order of an alloy.
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XXiii

molar entropy of pure component .
temperature.

critical temperature of the mixture.

second-order transition temperature.
relative temperature of the mixture.

boiling point of azeotropic solution.
critical temperature.

Fermi temperature.

boiling point of pure i.

melting point of pure i.

sublimation temperature.

vaporization temperature.

excess molar internal energy.

mixing molar internal energy.

excess partial molar internal energy of component .

partial mixing molar internal energy of component i.

internal energy, partial molar internal energy of i.
contribution of free electrons to the molar internal energy.
internal electrochemical energy.

molar internal energy.

crosslink internal energy.

ionic mobilities of the cation and anion.

molar internal energy of pure component 7.
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V,Vi:
V..

Vg:
|Z6%:

Vel

Vp:

Vf:

V!

X, Vs Zt
X;.

<y>;

Y; and X;:

Yij:

it

volume, partial molar volume of i.
critical volume.

Gibbs variance.

molar volume.

volume of the unitary element of a liquid.
Duhem variance.

free volume per molecule.

volume of influence around a molecule.

molar volume of pure component i.

quantum vibration number.

molecular volume.

molar volume of solid at melting point.

volume of monolayer of adsorbed gas.

component along Ox axis of the velocity of a particle i.

energy per square meter of interaction between the surfaces of
phases 1 and 2.

mass fraction of the component .

energy of exchange between atoms 7 and j.
molar fraction of component & in phase o.

coordinates of a point in space.

molar fraction of the component i in a solution.
mean value of y.

conjugal intensive and extensive values.

Mayer function.

molar fraction of component / in a gaseous phase.

compressibility coefficient.
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Zmix .
ZAB:
ch
ZC(A):
ZC(I):

ZC([):

Ze.
Zj.

Zint-

Zpf:
Z,
zp
Zupp-

Z,:

compressibility coefficient of gas i.

compressibility coefficient of the mixture of gases.

molecular partition function of interaction between molecules.
canonical partition function.

canonical partition function of component A.

canonical partition function of interaction.

canonical partition function of translation.

molecular partition function, altitude of a point or coordination
index, number of nearest neighbors.

electron molecular partition function or electrovalence of ion i.
number of molecules that are near neighbors of a molecule i.

contribution of internal motions to the molecular partition
function.

molecular partition function of nuclei.

molecular partition function of a perfect gas.

rotational molecular partition function.

translational molecular partition function.

translational molecular partition function of a perfect gas.
vibrational molecular partition function.

coefficient of dissociation of a weak electrolyte or linear dilation
coefficient at pressure P or relative volatility or Lagrange
multiplier relating to the number of objects of a collection or
polarizability of a molecule.

apparent dissociation coefficient of a weak electrolyte.

Lagrange multiplier relating to the energy of the objects in a
collection or volumetric dilation coefficient at pressure P.

characteristic function with the set B, as canonical variables.
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Iy coefficient of activity of a group.

I characteristic function.

I;: surface excess or surface concentration of component i.

I excess surface or surface concentration of component 7 in relation
toj.

v coefficient of activity of the component i irrespective of the
reference state or Griineisen parameter or structure coefficient
whose value is ~/2 for cubic crystal lattices with centered faces.

%: activity coefficient of a solvent.

W activity coefficient of the species i or Griineisen factor of phonon
i

7/1-(]) : activity coefficient of component i, pure-substance reference.

activity coefficient of component #, infinitely dilute solution

reference.

activity coefficient of component 7, molar solution reference.

mean activity coefficient of ions in an ionic solution.
activity coefficient of a solute.
spreading of a liquid.

standard value at temperature 7 of 4 associated with the
transformation r.

value de A4 associated with the transformation 7.
Kronecker delta.
coefficient of pressure increase at volume V.

network energy of an atom of A in network A.

Wagner interaction coefficient.
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XXVii

&y
Eatr

&

&t

&
EF.

Eite):
Ew:
Eim)-
&
&)

En):

anm .

electrical permittivity of the medium.

electrical permittivity of a vacuum.

energy of attraction between molecules.

kinetic energy of a molecule.

energy of the C-H bond.

energy from the dispersion effect between molecules.
Fermi energy.

electronic energy of a molecule .

interactional energy of a molecule i.

nuclear energy of a molecule i.

rotational energy of a molecule i.

translational energy of a molecule i.

vibrational energy of a molecule i.

energy of interaction between two molecules i and j or pair energy

between atoms i and ;.

switch.

energy due to the effect of orientation between molecules.
potential energy of a molecule.

repulsion energy between molecules.

viscosity.

Warren and Cowley’s order parameter.

Debye’s vibration temperature.
Einstein’s vibration temperature.
characteristic rotation temperature.

overlap fraction.
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Ao:

Hi [:ul]a M

(L)

/ui s /ul‘

Vi(p)*
Vp:

Ve:

HdZ

p@):

C.:

7, T

@),

surface fraction of a component.

linear dilation coefficient.

equivalent ionic conductivities of the cation and anion.
absolute activity of component A.

lateral chemical potential of component i.

equivalent conductivity of an electrolyte or thermal wavelength of
a molecule.

maximum equivalent conductivity of an electrolyte.

chemical potential of the component #, dipolar electrical moment

of molecule 7, generalized chemical potential.

chemical potential of component i in liquid/gaseous state,

respectively.

electrochemical potential.
vibration frequency.

algebraic stoichiometric number of component A in reaction p.

Debye’s maximum frequency.

stoichiometric coefficient of electrons in an electrochemical
reaction.

reaction extent.
disjunction pressure.

density of molecules in a spherical crown of radius r or volumetric
density of electrical charges or density.

density of molecules in an enclosure.
surface energy or symmetry number.
surface density of electrical charges.
surface tension.

cationic and anionic transport numbers.
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o :

& or 9.

(

Xi:

practical osmotic coefficient; expansion pressure.
coefficient of fugacity of component i in a gaseous mixture.

coefficient of conductivity of a strong electrolyte or number of
Phases.

coefficient of fugacity of gas 7 in a mixture or volume fraction of a

component.
coefficient of fugacity of a pure gas.
calorimetric coefficient relative to the variable x;.

electrical conductivity.

coefficient of compressibility at temperature 7.
electrostatic potential of ionic atmosphere.

electrostatic potential.

energy term between two groups.

wavefunction.

number of complexions in Bose-Einstein statistics.
number of complexions in Fermi-Dirac statistics.
number of complexions.

set of position coordinates of molecule i.

rotational velocity component in direction Ox.






Pure Liquids

This chapter will be given over to atomic and molecular liquids. A pure
molecular liquid is a liquid comprising only one type of non-dissociated
molecules. The study of liquids is more difficult than that of gases and solids
because they are in an intermediary state, structurally speaking. Indeed, as is
the case with solids, we can imagine that in liquids (and this is confirmed by
X-ray diffraction), the interactions between molecules are sufficiently
powerful to impose a sort of order within a short distance of the molecules.
However, the forces involved in these interactions are sufficiently weak for
the molecules to have relative mobility and therefore for there to be disorder
(no form of order) when they are far apart, as is the case with gases.

1.1. Macroscopic modeling of liquids

In the areas where liquids are typically used, far from the critical
conditions, it is often possible to consider liquids to be incompressible —

meaning that (V' /0P), =0 — but dilatable. The order of magnitude of a

dilation coefficient is 10~ degrees”, whereas that of the compressibility
coefficient is 10atm™.

As we approach the critical conditions, this approximation is no longer
possible, and the properties of the liquid tend more to be governed by an
equation of state. Whilst the “cubic” equations of state for gases do include
critical conditions, it is accepted that the properties of liquids often
necessitate equations of state that take account of the intervention of forces
when more than two bodies are concerned. Additionally, the third- and

Modeling of Liquid Phases, First Edition. Michel Soustelle.
© ISTE Ltd 2015. Published by ISTE Ltd and John Wiley & Sons, Inc.
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fourth coefficients of the virial, which can no longer be ignored in the case
of liquids, become necessary when these types of forces are at work.

Certain equations of state specific to liquids have been put forward in the
literature, including Rocard’s, which is written thus:

RTV? a

p=RIV___ @ [1.1]
V-b/3) V

In addition, this equation, expressed as the expansion of the virial,
assumes the form:

a \1 ab b1
It b—— | =t == |
RT )V \RT 3 )V

b oab* )1 ab® 1
+ —- —t——
27 3RT V 3RTV

This equation does indeed include the third and fourth coefficients of the
virial.

The heat capacities at constant volume and constant pressure are
practically identical, around 0.5cal/g, or 2.1kJ/kg.

1.2. Distribution of molecules in a liquid

On a structural level, liquids are classified into two categories: associated
liquids and non-associated liquids.

A liquid is said to be non-associated if the intra-molecular degrees of
freedom (rotational, vibrational, electronic and nuclear) are not majorly
disturbed by the proximity of neighboring molecules. These liquids can be
treated, as is the case with gases, with independence between the internal
motions and the translation of the molecules.

A liquid is said to be associated if, unlike in the previous case, the
molecule’s internal degrees of freedom are disturbed by the proximity of
other molecules. This disturbance may be so great that, in practical terms, we
need to consider associations between molecules, coming together to form
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dimers, trimers, etc. The new bonds that need to be taken into account are
usually hydrogen bonds, whose energy is 4-5 times less than that involved in
typical chemical bonds, but which are 4-5 times stronger than intermolecular
bonding by van der Waals forces. When the temperature rises, these bonds
are broken and, particularly when the thermal agitation energy (kg7) is much
greater than the energy in the hydrogen bond, the molecules separate and
regain individuality when they are near to the gaseous state.

These associations lend associated liquids very special properties, such as
anomalies of the dilation coefficient, high viscosity, low surface tension and
a high boiling point. Liquid water belongs to this category. The best way of
dealing with these liquids in thermodynamics is to consider them no longer
as pure liquids, but rather to treat them as associated solutions, with dimeric,
trimeric (etc.) molecules — see section 2.5.

1.2.1. Molecular structure of a non-associated liquid

Hereinafter, we shall focus only on non-associated liquids, and we shall
suppose the molecules are spherical. A non-associated liquid is characterized
by a local order, or short-distance order. The best illustration of this is of
liquid metals. In Figure 1.1, which gives a 2-dimensional image of the
arrangement of spherical molecules in a liquid, we can see that the molecules
are relatively close together, and that around each molecule, there is an area
of order which is illustrated by the circles superimposed on the figure. The
short-distance arrangement, within the circles, is almost identical to the
molecular arrangement in a solid crystal but, unlike with a crystal, there is no
long-distance order. The two circles on Figure 1.1 exhibit no periodicity.

Figure 1.1. Two-dimensional diagram of the distribution of molecules in a liquid
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The second difference between a crystal and a liquid is that in the latter,
the molecules are in perpetual motion, so Figure 1.1 is representative of the
situation only at a given time. Unlike with a solid crystal, the distribution of
those molecules would be different an instant later, although we would find
similar zones of ordered arrangement.

Hence, in order to accurately describe a liquid, we cannot content
ourselves with merely describing the position of a few appropriately-chosen
neighboring molecules, as we can with the lattice of the crystal. We would
have to define the positions of each of the molecules at every moment in
time. In view of the impossibility of the task in a medium with normal
dimensions (around a mole, which contains 10 molecules), we use
statistical methods using so-called correlation functions. The paired
correlation function which we intend to examine constitutes the first level of
this description.

1.2.2. The radial distribution function

Throughout this chapter, we shall suppose that the interactions between N
particles of a liquid medium are additive and paired, meaning that the
internal energy due to these interactions is merely the sum of the interactions
between molecules, two by two. Thus, the internal energy is the sum of the

energies between the molecules taken two by two &, j(r,.’ j). This energy

depends only on the distance between the two molecules. Hence, we have:

U(1,2,...N) :ﬁ“g,.,j (r.,) [1.3]

i<j

Consider a molecule chosen at random in the structure (Figure 1.2). Let
dN(r) signify the number of molecules whose centers are situated in the
crown between the two spheres centered on the chosen molecule, with radii »
and r+dr and volume 47 r *dr. The density of molecules in the crown p(r),
i.e. the number of molecules situated in the crown per unit volume of that
spherical crown, at a distance » from the central molecule, is such that:

[1.4]

p(r)z[dN(r)j: 1 dN(r)

dV(r) 4rr®  dr
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dr

Figure 1.2. Arrangement of molecules of liquid around the center of a cage

The volumetric density p is defined as the ratio of the total number of
molecules in the liquid in question to the volume of that liquid, i.e.:

p= [1.5]

We define the paired correlation factor or the radial distribution function
g(r) by the relation:

g(r) =<p(7r)> [1.6]

As we can see, this function is the ratio of the mean value of the local
density of molecules (mean calculated at the positions, at a given time and
over a period of time) to the volumetric density of molecules. The
correlation factor g(7) is proportional to the probability of finding a molecule
at a distance » + dr from another molecule. Thus, we can write the relation:

g(r)=piN<ﬁf6,-,, [r—r,-,,]> [1.7)

6,=0ifi#j
where O, ;is the Kronecker delta, such that: § e
J o, =lifi=
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This ratio [1.7] quantifies the local structure — in other words, the way in
which the molecules are arranged in relation to one another.

1.2.3 The curve representative of the radial distribution function

By combining relations [1.4] and [1.6], we see that the mean number
of molecules in the coronal volume between the spheres with radii » and
r+ dr will be:

(AN(r)) =4mprig(r)dr [1.8]

In the solid crystal, only certain distances exist, and the representative
curve for the function g(r) exhibits extremely slender peaks for these
distances.

In the case of the liquid, the curve representing the function g(7) has the
shape shown in Figure 1.3. We obtain a first peak with a breadth Ar/r of
several %, which represents the distance between the first neighbors. The
next peaks, which represent the second, third (etc.) neighbors, are heavily
damped because of the disorder over a long distance. The function g(r) tends
toward 1 at a long distance, there is no longer order and therefore, on
average, we always find the same number of molecules per unit volume as
are present in the overall liquid.

Figure 1.3 can be obtained by neutron diffraction or hard, very
penetrating X-ray diffraction, such as those produced by synchrotron
sources.

In principle, the distribution g(r) is null for distances less than 0.5 A,
because there is no chance of finding two molecules that close together,
given that the order of magnitude of a molecule’s diameter is between 1 and
3 A. Around values between 3 and 5 A, molecules may be found, and the
local density is greater than the overall density. Thus, g(r) is greater than 1.
Between the first series of neighbors and the second, there are few
molecules, and the factor g(r) drops back below 1. The second maximum
corresponds to the second neighbors, which are less precisely localized, and
therefore have lower local densities — hence the damping effect seen here.
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The more the peaks are damped, the more negligible the influence of the
central atom. Thus, it is easy to understand that we can often content
ourselves with the influence of the nearest neighbors, i.e. those which
correspond to the first peak.

g(r)

r,,i,;,,

0.5 3

»r(Ad)

Figure 1.3. Paired distribution function for a liquid

We can see that, apart for a few exceptions, the local order and the
intermolecular distances of the maxima are the same in the solid and
the corresponding liquid. The peaks shown in the solid are very slender, but
the first peak is situated at the same value of 7.

Diagrams such as Figure 1.3 are very useful, because they enable us to
calculate two statistical values:

— the mean distance of the first neighbors. This value is given by the first
maximum point on the curve. The breadth of the peaks shows the variation
of the distances around the mean value due to the ordering of the molecules
and to their agitation;

— the mean value of the number of first neighbors. To calculate this, we
decide that the first neighbors are those which are found at distances
between 0 and r,,;,. This value is the abscissa of the minimum which follows
the first maximum (see Figure 1.3) on the plot of g(#). Thus, for the number
of first neighbors, we can write:

”

min h

min

z= j dN(r)=4npj rg(r)dr [1.9]

In a liquid, unlike with a crystal, this number may not necessarily be an
integer.
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1.2.4. Calculation of the macroscopic thermodynamic values

We shall show that, like the partition function, the radial distribution
function contains all the information pertaining to the thermodynamic
definition of the liquid. Therefore, it can be used to calculate the
macroscopic values such as the internal energy, the pressure, an equation of
state or the heat capacities.

On the basis of relation [1.8], we can write the differential of the internal
energy due to the interactions in the form:

du = Arr pg(r)e(r)dr [1.10]
2
Hence, by integrating over the whole volume:
YUy _ j4m g(r)e(r)dr [1.11]
RT 2k T

U, denotes the internal energy of a fluid with no interaction, i.e. the

molar internal energy of the perfect gas which, according to the theorem of
equal distribution of energy, has the value:

3RT

U,= 5 [1.12]
From this, we can deduce the internal energy:
u 3
[1.13]
RT 2 2k Ty

As we have the expression of the internal energy, which is a characteristic
function in variables V' and S, we have all the necessary information to
define the phase.

To calculate the pressure, we need to have the differential of the internal
energy in variables P and 7, an expression which is of the form:

dU = T(asj dT—[P (apj }W [1.14]
T ), T ),
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Then, we calculate the pressure on the basis of the derivative of the
internal energy in relation to the volume, which gives us:

P _1_27[N§p 2 g (r )[dg(r)}

1.15
pRT 3k, T 9 [1.13]

By substituting the value of » found in relation [1.5], written for one
mole, back into the above expression, then it is easy to write the equation of

state:
PV=nNa{1—M (){de()} }RT [1.16]
3k, T

Similarly, the material derivative of the internal energy in relation to the
temperature enables us to easily calculate the heat capacity at constant
volume.

We can now calculate all the other functions, particularly the
compressibility at constant temperature 7, which gives us:

1+N —1]4xridr
=7l55), = Lk [1.17)

oP RT

Thus, we have shown that knowing the radial distribution function
enables us to completely define the phase in thermodynamic terms.

We know that a second way of calculating the macroscopic values is to
use the canonical partition function. This is the method that we shall use
from hereon in. To do so, we must construct a structure of the liquid, in
order to be able evaluate the terms of interaction in the canonical partition
function. Various techniques are used. We shall describe four such
techniques: Guggenheim’s and Mie’s models, extrapolated respectively from
the gas and solid models, the Lennard-John and Devonshire cellular model
and the cell/vacancy model.

1.3. Models extrapolated from gases or solids

In light of the proximity of the structure of liquid, firstly to that of a gas
(in terms of the mobility of the molecules and the disorder at long distance)
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and secondly to that of a solid (in terms of the presence of an order over a
short distance and figures of X-ray diffraction), the earliest models
developed were extrapolations either from a model of a gas or from one of a
solid. These models can be used to calculate the radial distribution function
and the canonical partition function. As we know that only one of the two is
necessary, in our discussion below, we shall restrict ourselves to calculating
the canonical partition function.

1.3.1. Guggenheim’s smoothed potential model

This model [GUG 32] is extrapolated from the imperfect gas model,
which can be used to calculate the second coefficient of the virial (see
section A.3.4 in Appendix 3). The canonical partition function then takes the
form of equation [A.3.41].

From this, we deduce the configuration integral due to the interactions
and to the volume, in this case the volume of slightly imperfect gases:

v¥(  NB, (1))
[ =212 2t [1.18]
NI %

Using the notation v,, to represent the volume per molecule (V/N), or the
molecular volume (which must not be confused with the volume of a
molecule), and using Stirling’s approximation [A.3.1], this expression takes
the following equivalent form:

1, =exp(N)(v, = By (T))" [1.19]

According to relation [A.3.40], the term Baa is a function only of the
temperature.

We can use such an expression for a highly-imperfect gas or a liquid,
supposing that the term Bxa is also a function of the volume. The difference
Vu-Baa(T,v,) will therefore represent the free volume per molecule v, and the
above relation will then be written:

1, =exp(N)(v, (v,))" [1.20]
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Supposing the potential function to be more or less constant, an initial
model of the liquid state was proposed.

Thus, we suppose that each molecule moves through a uniform field of
potential, the lattice energy, (—&) (attractive) which will be determined by
the mean number of near neighbors at a given distance from the molecule,
and will essentially be a function of the number of molecules per unit
volume, i.e. a function of the volume per molecule v,,. The contribution of
the interactions to the canonical function can thus be written by
supplementing it with the exponential term corresponding to that uniform
potential. Thus, we obtain:

1, =exp(V)(v, ()" {exp(%ﬂ [1.21]
This can also be written as:
I, = {exp(l)vf (v,)exp %} [1.22]

Hence, in light of relation [A.3.42], and with Stirling’s approximation
applied, the canonical partition function for the fluid will be written thus:

InZ, =M+Nln
kT

h? [1.23]

B

(ZﬁkaT)3/2 v, v, )J

+N+Nlnz, —NInN

On the basis of relations [1.23] and [A.3.48], we can calculate the
Helmholtz energy F:

(ZﬂkaT)3/2 v, (v, )J
h3

F
W:—g(vm)—kBTlIl[ [1.24]

~k,T—k,Tlnz,
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From this, we deduce the pressure:

ol
P:_(E)_Fj :MH(BTL(VM) [1.25]
W Jry v o,

m m

Most of the time, the properties of the liquid are insensitive to variations
in pressure and it is therefore correct to consider the pressure to be zero.
Thus, we shall have:

2e(v,) +kBTBInv,-(v,,,)
ov ov

m m

=0 [1.26]

Hence, the compressibility factor Z = PV/RT is essentially null regardless
of the volume.

The molecular Gibbs energy is:

G F 14
NN
3 [1.27]
(27zmk,T) v,
=—£— kBTlnT' —kyT —kyTInz,, +Pv,
The molecular internal energy is given by:
2:_]”2 M :_8+§kBT+ﬁ [128]
N oT 2 N
Thus, the molecular enthalpy is:
£:£+PK:—g+ékBT+ﬁ+Pvm [1.29]
N N N 2 N
The molecular entropy is given by:
F
S aﬁ 1 (27Z'kaT)3/2 vv,)
2 Nk «
N oT 8 h’ [1.30]

5 dinv,
+EkB +kBTa—T'+kB anint
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In view of the variation of the free volume with temperature
(see section 1.3.3) and of the independence of the volume from pressure
(xr =0), we find:

2mmk . TY v,
%:kBln{( s ) vf)J

1
3 —kBln—+§kB+kBlnzim [1.31]
In relations [1.27], [1.28] and [1.29], the pressure can be taken to be null,
in keeping with relation [1.26].

1.3.2. Mie’s harmonic oscillator model

This time referring to the local order in a liquid similar to that of a solid,
the potential function is given a form very similar to that of a harmonic
oscillator. Thus, a second model of the liquid state [MIE 03] was put
forward. Beginning with the quasi-crystalline model of a liquid, we suppose
that each molecule is in a field of potential whose minimum is &(v,,), and
that the molecule moves through that field corresponding to a three-
dimensional harmonic oscillator of frequency v, which is also a function of
the volume per molecule v,. We use the symbol » to denote the distance
from the center of the molecule to the center of the cavity where the
minimum potential is in force. At that distance, the molecule would have a

m2av)’'r’

potential energy —(&,+k,7)+ so, if we integrate for all

possible positions of the molecule, the configuration integral for the partition
function is found to be:

° 2.2 N
I, =exp| N EotKeT) [477 exp _m@mYT 1, [1.32]
7 ||} 2K, T

After integration, this gives us:

I =Jexp (&, +k,T) ( kT jm ! [1.33]
! kT 27 mv? '
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Using approximation [A.3.31] for the vibration, the complete canonical
partition function is then written:

2amk. TV (k.TY |
Zc:|:Zim[ 2 = j (th” I, [1.34]

Hence, if we take relation [1.33] into account:

sV 32N
Ze=| Zyy —MmszT exp (& +k,T) kBT2 [1.35]
h k,T 27T my

By switching to logarithms, we obtain:

_Ne,(v,)

C

InZ +3N1n(kB—T)+N+Nlnzim [1.36]

B hv(v,)

This is the partition function of the liquid, given by Mie’s 3D harmonic
oscillator model.

Based on relations [1.36] and [A.3.48], we find that the Helmholtz energy
per molecule is:

E:—go —3kBTln(kBTJ—kBT—kBTanim [1.37]
N hv

In the same way as we did above, we deduce the expressions for the
different functions:

dl
p=_OF _9& 5 p00V [1.38]
aV v v

g:—.sON —3kBT1nkB;T—kBT—kBT1nzim +Pv [1.39]
N hv

U U.

—=—g, +3k,T+—2 1.40
Y A [1.40]
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%:—€0+3kBT+%+Pvm [1.41]
In all these relations, the term Pv,, is negligible.
The entropy per molecule is given by:

s A5,

N 5T =3kBln( hvj+4kB+kBlnzim [1.42]

This expression is independent of the volume.

Thus, we obtain two different series of expressions. We usually use the
smoothed potential model we link the properties of gases to those of liquids,
and the harmonic oscillator model to link the properties of liquids to those of
solids.

NOTE 1.1.— Relations [1.24] and [1.37] may be identical for a certain
temperature and a certain volume per molecule, identifying & with & and
attributing the following value for the molecular volume:

T V2
vm=( E j [1.43]

27 mv?

1.3.3. Determination of the free volume on the basis of the dilation and the
compressibility

The free volume of the liquid, which we need to know in order to exploit
Guggenheim’s model, can be determined by a variety of methods: velocity
of propagation of sound, vapor pressure, measurements of dilatation and
compressibility. We have chosen to discuss this latter method.

In view of their definitions, the volumetric dilation coefficient and
compressibility coefficient enable us to write:

oV /dT
ﬁz_ﬂz(a_])j [1.44]
X (8V/8P)T’N oT )y
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In light of relation [1.26] (with € and v being functions only of v,,), we
can write:

ol
(a—PJ =k, il [1.45]
T ), v v,

However, if we consider that the molecules are arranged in a cubic lattice
with centered faces, spaced the length a apart, we can take the following
value for the free volume for the molecules:

_Ar

v, —?(a—Df [1.46]

Using relation [1.51], which we shall demonstrate later on (see relations
[1.50] and [1.51] in section 1.4), we can write:

47[ 1/3
dlnv, B (3\/5)

2/3.1/2
v, v, v,

[1.47]

By substituting this value back into equations [1.44] and [1.45], we find
the value of the molecular free volume:

_ Ak

v 1.48
f 3‘};’33 [ ]

If, for Band y7, we take orders of magnitude of, respectively, 10°K™" and
10*atm™, we obtain, e. g. for chloroform:
N.v,=0.44 cm’/mole [1.49]

This value is perfectly acceptable.

1.4. Lennard-Jones and Devonshire cellular model

This model [LEN 37] is based on Figure 1.4. Each molecule is inside a
spherical cage — the cell — whose radius is a. This sphere is the molecule’s
mean sphere of influence.
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The energy of interaction between two molecules is expressed by
Lennard-Jones’ relation [A.3.44]. This interaction is limited to the
molecule’s z nearest neighbors.

Molecule in its —
cage

._,_.__Me:an sphere of
influence

Figure 1.4. Cage and molecules of liquid

This number z is the coordination index linked to the cell geometry. We
shall suppose that the molecules occupy the sites of a cubic lattice with
centered faces, and therefore the coordination index is z = 12.

The volume of liquid is divided into cells centered on each molecule,
whose near neighbors occupy the medium from the vertices of a cube with
side length 2a/ V2 . Each molecule which is a near neighbor of the original
one thus belongs to four cells, and each cell contains 1 + 12/4 = 4 molecules.
Hence, the volume of the cell is such that:

4v, =84" /(\2) [1.50]
and therefore:

a=v 2 [1.51]

The translational canonical partition function with interactions can be
written, on the basis of expression [A.3.38], taking account only of the z
molecules that are near neighbors of each molecule i.

> S, (@)

]

N
1(z, P
ZC(,):F(%] ”...jexp—‘“T(dw)N [1.52]
. Vv B
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On the basis of relation [A.3.24], using & (a)N ) to denote the double sum

appearing in the previous relation, the canonical partition function becomes:

1 h - 8(0)N) N
Zew :m[W] _w‘....!exp[—l%—TJ(da)) [1.53]

/ i
‘\g/o‘f_a OM
— / "-“‘

Figure 1.5. Distance between a molecule and one of its near neighbors

We shall now evaluate the double sum g(a)N ) . The near neighbors of a

molecule i are, in fact, situated at different distances dj; from it, and those
distances change over time. Rather than moving both the molecule i and its
near neighbors at once, we shall suppose that the center of the cell is
stationary, that the molecule i moves in concentric circles of radius  around
that center, and that the near neighbors are affixed to a concentric sphere
with radius a. The radius » varies between 0 and a. Consider the plane
passing through the molecule i at point I, one of its near neighbors at M and
the center of the cell O (Figure 1.5).

In order to simplify the multiple integration appearing in expression
[1.53], we shall create spherical symmetry and average the distance from the

atom 7 along a radius 7 to all its near neighbors. The energy g(a)N ) can be

written:

g(a)N)=%8(a)+§i[<8(d)>—e((z)] [1.54]
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<€(d)> is the mean mutual energy between the atom i and a near

neighbor when the atom i is on the disc of radius r. This energy is a function
of the distance, which is given by the following equation (see Figure 1.5):

d:\/r2+a2+2arcos¢9 [1.55]

The mean energy is:
(e(d))= j £(d)sin@do [1.56]
0

Using relation [A.3.44] for the potential energy of interaction and
substituting into it the value given by relation [1.55], we find:

e [ G o

with the following meaning for the functions “I” and “m” that appear in

equation [1.57]:
2 2)\2
1+12d—2+50[d J o
d2
I-—| -1
( QZJ [1.58]

2
1a2 a a

d? 2\3 2\*
d d
w12l &)+ &
@ d Y’
m—?{(”?][l‘ﬂ ‘1} 159

Figure 1.6 shows two curves illustrating the variations of our potential
energy as a function of the ratio d/a for two values of the ratio dy/a equal to
0.942 (part a) and 0.681 (part b). A posteriori, these two functions provide a
justification: the first, for the approximation of the smoothed potential
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theory, as the potential energy is practically constant (part a), and the
second, for the approximation of the 3D oscillator theory, with the potential
energy showing a near-parabolic shape as a function of the distance (part b).

=¥ EM b

0,5 0 0,5

—&;\' d/7 &

Figure 1.6. Potential for interaction of a molecule in a liquid according to
Lennard-Jones and Devonshire. a) for dya = 0.942; b) dy/a = 0.681

P
\ 4

0
& d/w

By substituting expression [1.57] back into relation [1.53], the
contribution of the translational motion to the canonical partition function
can be written as:

! Lh—)m] {MNJT exp(wldx} [1.60]

O N (27mk,T : kyT

According to Lennard-Jones and Devonshire, the integration limit in
equation [1.60] is of no importance, because the greater part of the
contribution is made by small distances, particularly where d < a/2.

If we set x = d/a, then the logarithm of the translational partition function
is:

g 2k T)

cw = e

65{_2(%) o) } [1.61]
a a

T +Nn(27a* )+ Nn[n(g,.d,)]

InZ +N
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We have chosen z = 12, and 7(¢g,,d, ) denotes the function defined by:

i 12
]
& |\ar

n(e,r,) = j X" exp dx [1.62]
0 kBT d ¢
2| =% | m(x)
ay

80 — 80 —
dfa | 7 k,T 10
0.942 | 0.00180 0.00161
0.918 | 0.00295 0.00269
0.891 | 0.00515 0.00478
0.858 | 0.00964 0.00916
0.818 | 0.01957 0.01920
0.765 | 0.0437 0.0445
0.730 | 0.0676 0.0700
0.681 | 0.1069 0.1125

Table 1.1. Values of the function 1(&,,d,)

The energy &a) is given by:

g(a):g{—z(ﬁ] +(ﬁ] } [1.63]
a a

Table 1.1 gives a few values, which are easy to calculate automatically,
for this function for two values of the ratio &/kgT and different values of the
ratio dy/a.

Thus, if we accept the hypothesis of a cubic stack with centered faces,
Le. Y= \/5 , and if we know the molecular volume, the translational partition

function contains only two parameters linked to the substance: dy and &,
which are the two parameters that play a part in the expression [A.3.44] (in
Appendix 3) of the Lennard-Jones interaction potential.

In order to compare the result to other models and to experimental results,
we need to deduce the expressions of the thermodynamic functions. From
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relation [A.3.48], we deduce the expression of the molecular Helmholtz

energy function:
6 12
R0
27wmk,T) a a

(
=—k.Tln
B h? B k.T

B

—kyTn(27a’) —k,TInz,, —k,T'In227n(e,.d,)v,

[1.64]

=™

Here, z,, represents the contribution of all other internal motions of the
molecule to the molecular partition function (rotations, vibrations, electronic
and nuclear spin motions). For atomic liquids, this term can be taken as
being equal to 1.

Based on the Helmholtz energy, it is easy to obtain the other
thermodynamic functions such as:

oF
PV =V — 1.65
n=Vnoy [1.65]
Thus:
6 12
1+wH@j _4@ }
k,T ay ay

PV, =RT [1.66]

43 £@ (d_j M(E0sdy) o[ dy ) 1,(E0dy)
2kpT\\ay) n(e,.d,) ay) n(&,.d,)

n,(&,,d,) and 7, (¢,,d,) being two functions, such as 7(g,,d,), of the

two variables d, and €. They can be calculated numerically using the
relations:

i 12
d
i 12 (ayj )
n,(&:1)= I X" 1(x)exp !

k,T 6
’ ’ —Z(ﬁj m(x)
L ay ]

dx [1.67]
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12
b1 i)
172 o 12¢ ay
1, (€,.1,) = jx m(x)exp| —2 . dx [1.68]
0 kT _ ﬁ
2 m(x)
ay |
d;{’/\FEkBT
1.0
111
0.5
11
\//,' I
. 3
"% 30 70 P20 1y

Figure 1.7. Isotherms calculated using the Lennard-Jones and Devonshire model

NOTE 1.2.— In expression [1.60], by comparison with the translational
canonical partition function for a perfect gas (relation [A.3.26]), we can
define the free volume of the molecules as:

v, = 2ra’ T exp [W‘?—;EW)J dx

0

[1.69]
= 27[77(80’d0)7vm = 2\/§m7(80’d0)vm

Figure 1.7 shows a few forms of isotherms in the representation
d;P/ \/EkBT as a function of \/Evm /d; . Curve (III) is that of a perfect gas,
curve (II) is obtained for 12¢,/k,7=-9, and curve (I) for
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12¢, / kT =-10. It is noteworthy that curve (II) seems very similar to the

critical isotherm which is given by:

4¢,
¢ 3ky

[1.70]

The values obtained for certain liquids (see Table 1.2) show a satisfactory
degree of accordance with their experimental values.

Substances | d, (&) | —&, (10 joules/molecule) | T, calculated | 7, observed
H, 353 4.25 41 33
Ne 29.2 4.89 47 44 .47
N, 72.5 13.25 128 126
A 56.2 16.5 160 150.66

Table 1.2. Values of the critical temperature, found experimentally and calculated
by the Lennard-Jones and Devonshire model

It is a fairly laborious task to rigorously calculate the critical volume, but
from Figure 1.7, it seems we can choose the critical volume such that:

V2,

d

2 so that v, =d>+2

[1.71]

We can see that this value is far too low. Indeed, it yields a value of 0.7
for d,P/ \/EkBT , instead of 0.3, which is the result found experimentally.

Thus, the Lennard-Jones and Devonshire cellular model can be used to
calculate thermodynamic functions with only two adjustable parameters. In
section 1.7, however, we shall demonstrate that the results obtained are very
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approximate, so there is a necessity to perfect the model. This was the
purpose of the cellular and vacancies model developed by Ono and Eyring.

1.5. Cellular and vacancies model

Whilst it does represent real progress in relation to the previous two
models, the Lennard-Jones and Devonshire model discussed above has a
serious shortcoming—it is incapable of taking account of two dynamic
properties of liquids: the phenomena of viscosity and self-diffusion. In order
to take account of these properties, Ono [ONO 47] introduced the concept of
vacancies, comparable to that which takes account of conductivity and
diffusion in the solid phase. Ono considers that certain sites in the pseudo-
lattice, or if you prefer, certain cells described in the above model, are not
occupied, forming what we call vacancies. Thus, on average, over time, a
molecule i will be surrounded by z; first neighbors in accordance with:

z, =Yz [1.72]

y; appears as the fraction of first-neighbor sites occupied around the
molecule i. Therefore, y; is a short-distance order index, whose value is zero
when the central molecule i is surrounded only by holes (i.e. no molecules),
and 1 if all the cells neighboring the central molecule are occupied (see
section 3.2.1). Its spatial mean would be <y>, and would correspond to the
mean value of the number of first neighbors <z> determined by the first
maximum of the radial distribution function demonstrated by X-ray
diffraction. The number z, which is the coordination index, is in fact that
maximum possible number of first neighbors, given by the chosen structure;
that value is often taken to be equal to 12 for cubic cells with centered faces.

In order to take account, individually, of the environs of each molecule,
we divide the liquid volume ¥V into L cells (L = N') with respective volumes
7, % ... 7. The configuration integral, which is expressed over the whole of
the volume ¥, and plays a part in relation [1.53], will be replaced by a sum
of partial integrals, each of which corresponds to an individual cell. Relation
[1.53] then becomes:

1 h VAR (")
ZCU):E{—)M} ZZJ

N
exp| — dw) [1.73]
(27Z'kaT W=l Il '[ [ kgT J( )

N
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The sum contains L" terms which correspond to L different cells, in
relation to which the coordinates of the different molecules are expressed.
Because each cell is supposed to be sufficiently small to contain at most one
molecule, and sufficiently large so that the intermolecular forces are
practically no longer felt beyond the immediately adjacent cells, the sums in
expression [1.73] contain only L!/(L-N)! non-null terms.

The energy g(a)N ) in expression [1.71] will therefore be rewritten,

instead of expression [1.54], in the form:

g(wN)=Z%g(aﬂZ%[(S(%JJ)—e(a)] [1.74]

The distance d; is given, for each cell, by a relation similar to
expression [1.55], namely:

dl.=\/rl.2+a2+2ar,.cos¢9 [1.75]

We use the notation v, to denote the volume of a given cell, and for the
cubic lattice with centered face, we have:

3
a

v=s [1.76]

Note that this cellular volume differs from the molecular volume
v, = VIN, because we no longer always have a molecule in each cell.

NOTE 1.3.— The volumes v, and v,, have a known ratio, because we have:

v, _E
—=(n)=7 [1.77]

m

Hence, instead of relation [1.61], the translational canonical partition
function is written as:

-3N
1 h LA z€(a) ).
Zpy=—| ———— exp| ————= |j(»,) | [1.78]
cw) N!|:(27rkaT)”2:l 1,2:1: lv_l{ll:][ ( ZkBT] :I
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The function j(y;) is homogeneous with a volume. It is defined by:

—ZY; [<€(dl 7yi)>:| - g(a)}

dr, [1.79]
2k, T

1

i) =[4mr? {GXP

If all the sites are occupied, y;=1 and j(y;) is identified with the free
volume logarithm vy from relation [1.69]. If y; = 0, then j(0) is the logarithm
of the volume of the cell v..

We can see that the function j(y;) is not a simple expression, and the
various authors have been led to simplify it by a linear form of y; as a
function of the logarithm of v, and v, so as to satisfy the boundary values of
Jjo- Thus, Ono proposed the expression:

i) =y,In(v,)+(1-y,)nv, [1.80]

»r

Figure 1.8. Potential energy curve for a molecule occupying a
more favorable position than a neighboring vacancy (from [REE 64])

Eyring and his collaborators [REE 64] put forward the formula:

j(yl.)=yiln(vj.g1)+(1—yi)lnvc [1.81]
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Eyring’s function differs from Ono’s only by the introduction of a factor
g, known as the degeneration factor, which is introduced because it is
natural to suppose that, of all the places that are available, on average, for a
molecule, some are more favorable than others, energetically speaking,
simply because of the organization of the other molecules. This difference in
energy between the most probable place and a less-probable near neighbor
(see Figure 1.8) must be proportional to the interaction energy z&(a)/2, and

inversely proportional to the number of vacancies n, :z(l—< yl.>). Thus,

this energy difference would be of the form:

_ kze(a) _ ke(a)

Y T2

[1.82]

k is an adjustable constant of proportionality. Thus, the degeneration
factor due to the vacancies present around a molecule would be written as:

g:1+z(1—<yi>)e"p{é_ﬂ
} [1.83]

:1+Z(1_<yi>)eXp|:%

The authors show that if we take account of relation [1.81], using the
Bragg-Williams approximation (Ag= 0 in g, see section 3.1.2) and Stirling’s
approximation [A.3.1], the translational canonical partition function [1.78]
assumes the form:

V.
InZ.,=-3NIn h + vV {— Zg(a)}+ln—f

(2zmk,T)"” v, 2k, T v,
S Bk AN L C) [1.84]
vm 2(vm _Vc )kBT

+Nlnv, +(1—v—’”]Nln(l— Ye J}
vC Vm
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Using this expression, the thermodynamic functions — particularly the
Helmholtz energy — can be calculated.

1.6. Eyring’s semi-microscopic formulation of the vacancy model

The expressions used by Eyring in the vacancy model become
complicated and tricky to calculate numerically. In order to remedy this
situation, Eyring and his collaborators [EYR 61] adapted the vacancy model
to a semi-microscopic model, by replacing Lennard-Jones’ interaction
functions with macroscopic values, involving the molar volume of the solid
V0" at its melting point and that of the liquid v"** at the temperature of
study. Observing (except for a few very rare cases, one of which is water,
which is not a non-associated liquid) a significant increase (around a twofold
increase) in the molar volume upon transitioning from the solid state to the
liquid state, the authors model a liquid as being a two-component solution:

—molecules, which behave like a molecule in a solid, i.e. three
vibrational degrees of freedom. This is the model of the short-distance lattice
aspect;

—vacancies, which behave like a gas, and therefore have three
translational degrees of freedom, which we shall suppose to be perfect, with
non-localized objects that are free to move around, which will create
disorder over a long distance and mobility of the species.

Of course, the movement of a vacancy is, in fact, the movement of a
molecule neighboring that vacancy.

Solids, just below their melting point, are assumed to contain no
vacancies. If there are any, they are few in number in relation to the
molecules. In a liquid, on the other hand, the number of vacancies is of
the same order of magnitude as the number of molecules. If N denotes the
number of molecules behaving like a solid, the number of vacancies would
be:

YOUi) _ 0(soD)

N,=N— [1.85]

VO(sol)
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Thus, the total number of cells would be:

vO(liq) _ vO(,s‘ol)

N.=N,+N=N e [1.86]
Hence, the fraction of sites with molecules would be:
X = Nﬁ - % [1.87]
and the fraction of sites with vacancies would be:
X, = Ny L [1.88]

N VO(.V()I)

The mean number of vacancies neighboring a molecule (z is the
coordination index of the lattice) would be:

0(sol)
— xL _ v
<nL>—Zx—S—ZW [189]
By applying relation [A.3.36] to both components of the solution, we can
calculate the canonical partition function on the basis of that of the localized
molecules and non-localized vacancies, so that:

Ze = ZC(S)‘ZC(L) [1.90]

As the vacancies behave like a perfect gas with three translational degrees
of freedom, we have:

VOUiq) _ 0(sol)

N
-3 L0Csol)

h 0(liq) 0(sol)
Zo =9 ——————=| (v —v
C(L) (27z_kaT)l/2 ( )

. -1
VO(lzq) _ vO(sol)
N———-!
v()(lzq)

[1.91]
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For molecules which behave like a solid, with three vibrational degrees of
freedom, if we ignore the residual vibration, we have:

£ [1.92]

Zew = N 3
1—exp -
k,T

The degeneration coefficient is calculated in a similar manner to that used
to obtain relation [1.85]. Its value is:

Ag
=l+nexp| ——— 1.93
g n p{ kT} [1.93]

B

If AU is the Helmholtz energy of sublimation of the solid, the variation
in energy A¢ (Figure 1.8) will be proportional to the sublimation energy and
inversely proportional to the number of vacancies N;. We can write this in a
similar manner to expression [1.82]:

0(sol)
e = kAUv

vO(/iq) _ vO(so/)

[1.94]

The partition function of the molecules with solid behavior would
therefore be:

NP D)
AU B
ex .
p(RTj
3
hv
l-exp| ———
kT
ZC(S) = v(l(liq) _ v()(sol) [1‘95]
1+ <n> v()(,wl)
kA UVO(mZ)

exp

- RT(VO(liq) _ vO(sol))
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Using expressions [1.90], [1.91] and [1.95] for the overall partition
function, and after application of Stirling’s approximation, we find:

A“U—3ln 1—exp _hv +
RT k,T

1 1 VO(qu) _ vO(sal) kASUVO(sol) [1 96]
S RN T RT( 0 _ oG )

N (0i) _,00sol) 0lig)
(v v ) {_3 In ( h ev }

. +1In
vO(llq) 27z'kaT)”2 N

+

We can see that the canonical partition function, and therefore all the
thermodynamic functions (particularly the Helmholtz energy) depend only
on the single adjustable parameter k£ defined in expression [1.94]. Hence, this
model is a simple and powerful tool.

The model we have just looked at is that which applies to atomic liquids,
such as argon, for instance. Eyring and his collaborators carried out parallel
tests, applied to the cases of molten salts and liquid metals.

NOTE 1.4.— It is worth noting that Eyring’s model, for the partition function
(relation [1.90]) is tantamount to mixing Guggenheim’s (section 1.3.1) and
Mie’s (section 1.3.2) models. These models gave a good account of the
properties of liquids respectively in the vicinity of a gaseous state and of a
solid state.

1.7. Comparison between the different microscopic models and
experimental results

A variety of comparisons have been offered by the different creators of
models: comparisons between a model and the experimental results,
comparisons between different models, and comparisons between results
produced by a model and those produced by simulation calculations. Indeed,
the calculation methods used for statistic simulation lend themselves very
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well to this type of problem. Examples include the static Monte Carlo
method, based on equation [1.3], or the molecular dynamics method, based
on the fundamental law of dynamics (see Appendix 1).

In terms of comparison with experimental values, we shall give the
example of the variation in heat capacity at constant volume as a function of
the temperature calculated by Eyring’s semi-microscopic method.
Remember that it is a cellular model including vacancies and a degeneration
coefficient (see section 1.6). Figure 1.9 illustrates such a comparison and

exhibits good accordance between the results obtained by the model and the
experimental results.

ACY
6 -
- k.o
3
@ S L
% model
u4 . O Experiment

o}
80 90 100110 120 130 14K TCK)

Figure 1.9. Comparison between the observed values of
the heat capacity at constant volume and those calculated using
the cellular and vacancies model by Eyring et al. [EYR 61]

Figure 1.10 shows the comparison of the result of the same model of the
radial distribution function curve for argon at a temperature of 84.4K,
against the experimental result. Once again, we see excellent accordance.

Certain comparisons are made between the measured values and those
calculated by a model, for the critical values — particularly the critical
temperature and critical pressure, using the conditions:

F P P

(a_J:_p (a_]:o 9Pl o7

v ), v ), av
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Figure 1.10. Comparison between the experimental value and that calculated by Eyring’s
model for the radial distribution function of Argon at 84.4K (data from [YOO 81])

Substance 7. CK) P (atm)
Calculated | Observed | Calculated | Observed
Neon 55.41 44.47 37.65 26.86
Argon 154.44 150.66 58.72 48.00
Krypton 208.33 210.60 69.68 54.24
Xenon 287.80 289.80 74.89 58.20

Table 1.3. Comparison of the observed values and those calculated by the Eyring
model, for the temperature and the critical pressure (data from [EYR 58])

Certain data appear in Table 1.2 for Lennard-Jones and Devonshire’s
model (see section 1.4). Others are given for the solids of rare gases in
Table 1.3, and pertain to Eyring’s model (see section 1.5).

Note that both models yield satisfactory results on this point. However, it
is important to apply the comparison to several types of results. For example,
Figure 1.11 shows that, for the representation of the distribution function,
Lennard-Jones and Devonshire’s model, Eyring’s model and the calculations
performed by numerical simulation are very similar. Meanwhile,
Figure 1.12, which gives the variation of the compressibility coefficient as a
function of a reduced volume, illustrates the significant behavioral difference
between the molecular dynamics simulation and Eyring’s model, on the one
hand, and Lennard-Jones/Devonshire’s, Guggenheim’s (see section 1.3.1)
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and Mie’s model (see section 1.3.2), on the other. It seems that the important
point which divides Eyring’s model from that of Lennard-Jones and
Devonshire is more the introduction of the degeneration coefficient than the
variability of the number of molecules that are near neighbors of a given
molecule (z;).

—— Vacancy model

___ Molecular dynamics

L-J & D model

4 6 8 0 1z A

Figure 1.11. Comparison of the curve of the radial distribution function between the
calculations of molecular dynamics and different models (according to [YOO 81])
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Figure 1.12. Comparison of the results obtained on
the compressibility factor (data from [REE 64])
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Thus, we can see that it is important to examine the validity of a model
by comparing several results produced by that model. Additionally, a good
model of the structure of liquids must also satisfy the interpretation of
properties other than the mere thermodynamic values that are of interest to
us here, e.g. surface tension, viscosity and self-diffusion. The major
advantage of Eyring’s cellular and vacancy model with a degeneration
coefficient is that it also takes account of the dynamic properties of liquids.



2

Macroscopic Modeling of
Liquid Molecular Solutions

The representation of solutions must give the expressions either for the
molar excess Gibbs energy or the activity coefficients, using a given
convention for each component as a function of the variables of the problem,
which are usually the pressure, temperature and the composition of the
solution. In this chapter, we shall only discuss the case of liquid molecular
solutions. In such solutions, usually, the pressure is no longer a variable of
the system.

A distinction must be drawn between macroscopic representations and
simulations using a microscopic model.

The advantage of a representation is that we have an expression for the
excess Gibbs energy or the activity coefficients, as a function of the
solution’s composition and possibly of the temperature, based on experience,
which can be used in expressing the law of action of the masses or in
constructing phase diagrams.

The advantage of a microscopic model is that it shows the same qualities
as the representation, with an added predictive element and a physical
meaning for the different properties that are involved.

We often work with binary solutions, which are obviously simpler, but
significant efforts are being invested in modeling solutions with more than
two components, based on the knowledge of binary solutions formed with

Modeling of Liquid Phases, First Edition. Michel Soustelle.
© ISTE Ltd 2015. Published by ISTE Ltd and John Wiley & Sons, Inc.
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different pairs of components of the solution. Another interesting method is
the modeling of binary solutions using the functional groups of the
molecules.

In this chapter, we shall discuss macroscopic models. The next chapter
(Chapter 3) will describe microscopic models.

The expressions of the activity coefficients, given to represent a solution,
must be self-consistent, and in particular, they must satisfy relation [A.2.23],
which is derived from the Gibbs—Duhem relation.

2.1. Macroscopic modeling of the Margules expansion

A helpful and simple representation of a non-perfect solution is given by
a limited expansion.

Consider a solution with two components, 1 and 2. It is always possible
to represent it by expanding the logarithm of the activity coefficient for
component 1 in reference (1), in a MacLaurin series of the molar fraction x,
of the other component — for example:

Tiny" = A +ax, + B +5,x +£x, +... [2.1]
and, absolutely symmetrically for the second component:
TInpi" = 4, + o, x, + fBox] + 6, + £,x] +... [2.2]
These expansions are known as Margules expansions.

Conventionally, the activity coefficient of a component tends toward 1 if
the molar fraction of the other component tends toward zero, so the limited
expansion does not contain a constant term.

4=4,=0 [2.3]
In addition, according to relation [A.2.23], we should have:

x,dlny, +x,dlny, =0 [2.4]
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From this, we can easily deduce the following relations, if we examine
the first five terms in the expansion:

o=0,=0 [2.5]
BB &, % and b_bia o [2.6]
2 2 3 2 2 2 3

E_ & 50 4 &__& L4 [2.7]
4 4 3 4 4 3

5 =6, [2.8]

Thus, the Margules expansion contains no constants or first-degree terms.
The first non-zero term is the second-degree one.

It is worth noting that, if we look at an expansion with two non-null
coefficients B and O,, we can write, for component 1, for instance:

Tlny,

2
Xy

=B, +6x, [2.9]

We can attempt to plot a straight line on the experimental points in a
representation TIny, /x; as a function of x,. If the representation is
properly linear, we can easily determine the two coefficients. The ordinate at
the origin of this straight line is /, and its slope is 0, .

2.2. General representation of a solution with several components

Still with the aim of having mathematical expressions for the
representation of the solution, Redlich and Kister offered a representation
that provides an expansion of the excess Gibbs energy, a pure-substance
reference in the same state of segregation as the solution (reference (I)), the
equivalent of the Margules expansion for the activity coefficients. For a
two-component solution, the polynomial expansion up to order m is written:

G® = xlxzi[fl];) (x,—x)" [2.10]
k'=0
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The coefficients L\’ are parameters which reflect atomic interactions.
Because the exponents £’ are odd and even integers, it is internationally
agreed to write the differences (x1 —xz) in alphabetical order of the chemical

symbols of the components, written as subscripts next to the molar fractions.

For a solution containing a given number of components, relation [2.10]
becomes:

G*=3x ,Zﬂ“( %) [2.11]

i#]

The alphabetical convention applies to all the couples 7, j.

2.3. Macroscopic modeling of the Wagner expansions

The Wagner expansion is another form of limited expansion, this time
used to represent the logarithms of the activity coefficients for the solutes in
a solvent, as reference (II) — an infinitely-dilute solution.

2.3.1. Definition of the Wagner interaction coefficients

Consider a solution containing the components 1, 2, ..., i, ...j, ..
Suppose that this solution is diluted in solvent 1. In order to express the
variations of the activity coefficients for the solutes as a function of
the molar fractions x; (i # 1), which are much smaller than 1, let us take the

expansion of Iny/ into a Taylor series in the vicinity of 1:

Iny" =n /" +ﬁ: [BWIJ [2.12]

If, in that expansion, we content ourselves with the first two terms, we
can write:

N
ny" =ny"" +> x, [2.13]
Jj=2
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7[(”)“’ is the value of the activity coefficient of the solute i if the solution

is very dilute — i.e. when all the molar fractions x; of the other solutes are
null.

&/ is called the Wagner coefficient of interaction of solute i with solute j.
Thus, it is defined as:

g,f=[aln7"[J [2.14]
ox; )

By simply applying relation [A.2.27] (see Appendix 2), we can show that
the matrix of Wagner coefficients is symmetrical, so:

1

& =¢ [2.15]

We can show, by application of relation [A.2.23] (see Appendix 2), that
the activity coefficient of the solvent obeys the relation:

1 )
In " =—Einxjg; [2.16]
L]

This Wagnerian representation is widely used for metal alloys with low
degrees of addition of the alloyed elements.

2.3.2. Example of a ternary solution: experimental determination of
Wagner’s interaction coefficients

Consider the ternary system constituted by solvent 1 and the two solutes
2 and 3. According to relation [2.16], we have:

Iy’ =n i + x,€ + x,6 [2.17]
Iny/ =In }é”)” +X,E + X6 [2.18]

We can distinguish two types of Wagner coefficients:

— the diagonal coefficients &; and & ;
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—the symmetrical coefficients, which are equal according to
expression [2.15]: & =&;.

Let us first determine the diagonal terms — e.g. &; . By definition:

, (oly)
= —2 2.19
& [ x ) [2.19]

As this term does not depend on the presence of component 3, we can
operate in the binary system 1-2, and simply measure the tangent to the
origin of the curve giving Iny, as a function of x, in that binary system. The

slope of the tangent is &; .
The same process can be used to obtain the other symmetrical coefficient,
this time considering the binary system 1-3, so & .

n
Iny»_()‘)

In }'5”)

» 12

Figure 2.1. Obtaining of the Wagner interaction
coefficients for a ternary system

Let us now examine the case of the mixed term &;. By definition, we
have:

T
&= CLLV [2.20]
ox; )

For different values of x;, we plot (Figure 2.1(a)) the experimental curve
of the variations of Iny, as a function of x,. By extrapolation to x, = 0, we
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obtain the values of In 72” at x, = 0 for different values of x;. We report
(Figure 2.1(b)) those values as a function of x;, and by extrapolation, we
obtain the tangent to the origin —i.e. & .

2.4. Dilute ideal solutions

Below, we shall examine a category of solution which is a limit category,
known as dilute ideal solutions. These solutions must not be confused with
perfect solutions, although they do have a certain number of properties in
common. For this reason, we shall never use the term “ideal solution” to
speak of a perfect solution, as some authors do.

2.4.1. Thermodynamic definition of a dilute ideal solution

If, in a solution, all the components bar one — the solvent — are very
dilute, the number of molecules of solute is so low that they have no effect
on the behavior of the solvent, which could be said to exhibit perfect
behavior. In this case, we say that we have a dilute ideal solution. Because of
the distinction between solvent and solute, we shall use convention (II) — the
infinitely dilute solution reference — to express the activity coefficients.

We know that for the solvent, conventions (I) and (II) are identical, and
as, hypothetically, it should exhibit perfect behavior, we will have:

v =1 =1 [2.21]

Let us apply relation [A.2.23] (see Appendix 2) to the set of components:

X dInyg” +> x dlny =0 [2.22]

From this, we deduce that "’ = constant. Yet we know, because of the
convention chosen, that if the solution is in its reference state, y~"" =1.

Hence, the value of the constant is 1, and the activity coefficients for all the
components will be "’ =1 at any temperature.
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2.4.2. Activity coefficients of a component with a pure-substance reference

With regard to the solvent, we already know its activity coefficient in
convention (I) (pure-substance reference), through expression [2.21].
Similarly as above, by applying relation [A.2.23] (see Appendix 2), we
deduce that for all solutes, the activity coefficient in reference (I) is a
constant. This constant is independent of the composition, but its value is
not 1 because the reference state does not overlap the domain of
definition of reference (I). However, given that, in reference (II), the
activity coefficient for the solute is 1, we can apply relation [A.2.21]
(see Appendix 2). From this, we deduce that the constant is Henry’s
constant K, :

y=K, [2.23]

It is only in the particular case of a perfect solution that this constant has
a value of 1.

Thus, the perfect solution appears to be a special case of the ideal dilute
solution — for which Henry’s constant is equal to 1 — but the two must not be
confused.

2.4.3. Excess Gibbs energy of an ideal dilute solution

According to expression [A.2.31] (see Table A.2.2 in Appendix 2), we
immediately obtain:

G" = RTZ x, Iny" = RTZ x,InK [2.24]

This excess Gibbs energy is non-null, but in that excess Gibbs energy,
there is no contribution from the solvent (" =1).

We can see that because the excess Gibbs energy is not null, we have
another reason to avoid confusing an ideal dilute solution with a perfect
solution.
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2.4.4. Enthalpy of mixing for an ideal dilute solution

In view of the definition of an ideal dilute solution, we can write that:

1)
CLLY/— [2.25]
oT

Thus, given relation [A.2.24] (see Appendix 2), we have:
H=H" [2.26]
where, for the solvent:
H =h [2.27]

The partial molar enthalpy of the solvent is identical to its molar enthalpy
in the pure state in the same state of aggregation as the solution.

and for the solutes:

oy ' —H K -H”

oT RT? S RT? [2.28]
The difference:
W —H" =4, [2.29]

does not depend on the composition. The molar enthalpy of mixing
therefore, according to equation [A.2.17] (see Appendix 2), is:

H™ =3 x4, [2.30]

and the corresponding molar value is:

H'™ =4 [2.31]

s
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Thus, the constant A4, appears as the partial molar enthalpy of mixing of

the solute s in the solution, which enables us to write the following, in light
of relation [2.29]:

HS =h'—H™ [2.32]

s

2.4.5. Excess entropy of a dilute ideal solution
Given equations [2.30] and [2.24], we can write:

ComeGe ZxH_’" - RTZ x Ik,

m T T

[2.33]

This function, which does not contain any terms pertaining to the solvent
either, is non null. Here, again, it is important to avoid confusing the
representation of the ideal dilute solution with that of the perfect solution.

2.4.6. Molar heat capacity of an ideal dilute solution at constant pressure

If we neglect the variations of the enthalpy values with temperature
(which is often acceptable within a reasonable temperature range), we have:

aHm[x
C) = =0 2.34
P =7 [2.34]

Thus, the excess heat capacity at constant pressure of dilute ideal
solutions is practically non-existent, which means that — like perfect
solutions — dilute ideal solutions obey Kopp’s law of additivity given by
relation [A.2.14] in Table A.2.1 from Appendix 2.

2.5. Associated solutions

A number of solutions exhibit significant differences from perfection, due
largely to the forces of attraction that are exerted between certain species in
solution. The idea of the model of an associated solution is to average the
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properties of the solution by replacing the initial components with classes of
components that include the initial components but also associated species
(dimers, trimers, etc., associations between different molecules, or
dissociated species), resulting from the condensation of the initial species, at
equilibrium with them and with one another. We then consider that the new
solution thus defined has perfect behavior.

The associated and dissociated species can be revealed experimentally,
because the forces of attraction are sufficiently strong to be detected by
certain techniques, such as infrared spectroscopy.

This method is commonly used, for example, for the study of so-called
“weak” electrolytes, where the dissociation of the molecules into ions is
considered to be incomplete, and there is thought to be an equilibrium
between the ions and the non-dissociated molecules. This model is also at
the root of the quasi-chemical method of dealing with solutions (see
Chapter 3).

The superposition of one or more equilibrium states between the newly-
defined species enables us to calculate the activity coefficients or the partial
molar Gibbs energy values for the initial components.

2.5.1. Example of the study of an associated solution

In order to illustrate the model of the associated solution, we shall take
the example of a binary solution obtained by mixing n, moles of a

component A and n, moles of another component B, and suppose that the
forces of attraction between two molecules of A are strong in comparison to
k,T , and in comparison to those that are exerted between two molecules of
B, and between a molecule of A and a molecule of B. This property leads us
to a second description of the solution, in which we accept that two
molecules of A can come together to yield a dimer molecule A,, in
equilibrium with the monomer A.

We describe the solution under examination from two different points of
view:
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One option is to consider it to be a non-perfect solution, with »n, moles of

A and n, moles de B (initial quantities), with the molar fractions x, and x,
respectively, given by:

n
—_ " -
X, = and x, =

n, t+n, n,tn,

=1-x, [2.35]
The chemical potentials will be x#, and x4, and the activity coefficients
7, and %, . This is the first description of the solution.

Alternatively, we can consider the solution to be a perfect solution, with
n', moles of monomer A, n', moles of dimer A, and n'; moles of B with

the molar fractions:

n
[ A . ' _
XA= ' ' ' > X
nA+nA7+n3

1

n
and x', =— 8B [2.36]
ot +n', +n'
A A, B

The chemical potentials will be u', u', and u'y.

In this solution, we have a state of chemical equilibrium:
2A=A, [2.R1]
This imposes the condition on the affinity:

A=2u'\—pu'y, =0 [2.37]

Furthermore, the law of conservation of the elements imposes the
following relations between the amounts:

ny :n'B [238]

ny=n'y+2n', [2.39]
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Using the symbol & to denote the extent of the equilibrium, we shall write
that the amounts of the species containing A in the second solution will be:

n' =n,(l-a) [2.40]
n', =n,o/2 [2.41]

The sum of equations [2.40] and [2.41] does indeed produce
relation [2.39].

This is the second description of the solution.

NOTE 2.1.— between the two descriptions, the molar fractions of B are not
the same in the two cases, although the numbers n, and »', are equal.

2.5.2. Relations between the chemical potentials of the associated solution

We shall now establish a relation between the chemical potentials of the
different components of the second description as a function of those from
the first description.

The Gibbs energy of the solution does not depend on the way in which it
is described. Let us write the expression of that Gibbs energy in both
descriptions, and equal those expressions, which gives us:

G=nylly +nglly =n'\ 1'\+n'y W' +n'y 1'y [2.42]

If we look at relation [2.38], we can deduce:

Uy = lu'B [2.43]
and in light of relations [2.37] and [2.39], we deduce:
My =My [2.44]

W =2u, [2.45]
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2.5.3. Calculating the extent of the equilibrium in an associated solution

The law of mass action, written for equilibrium [2.R1] (with a solution
considered to be perfect) gives us:

X'
K= A, _ nAa/22[n

(-a/2)+n, 2.46
AR e 12401

However, the equilibrium constant can be expressed on the basis of the
partition functions, according to relation [A.3.50] from Appendix 3, which
gives us:

z,, AR(T
K=—"%)_exp _A4r (@) [2.47]
0 ) RT
n(a)

In this relation, A4 4°(T) is the fundamental energy level of vibration of

the molecule A,.

Thus, by combining expressions [2.46] and [2.47], we can determine ¢.

2.5.4. Calculating the activity coefficients in an associated solution

Although it is not necessary in order to study our solution, we shall
calculate the activity coefficients for the components in the first description.

If we use reference (I) — the pure substance reference — we can write:
U, =g8 +RTIny"x, [2.48]
and
u'y=gs +RTInx', [2.49]

Using expression [2.47], we obtain

y=Xa [2.50]

A
Xa
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In the same way, for component B, we find:

'

y=28 [2.51]

Xp

Using relations [2.35], [2.36], [2.41] and [2.50], equation [2.50] becomes:

A = (n, +ng)l-o) [2.52]
Yo (l—al2)+n, ’
Similarly, for B, we find:
7}(}1) — (nA +nB) [253]

n,(1-o/2)+ny

Thus, the two activity coefficients we are seeking can be expressed as a
function of the extent of the equilibrium [2.R1].

2.5.5. Definition of a regular solution

Consider a solution with N components. It is said to be regular if its
molar mixing entropy is identical to that of a perfect solution, given by
expression [A.2.10] (see Table A.2.1 in Appendix 2).

By comparing this expression with the general formula for the molar
entropy of mixing of a solution:

S = RZ ( aln% ln}/,.(”—lnxl.) [2.54]

In view of expression [A.2.10], regardless of the composition, we obtain:

i oln 7” +Iny")=0 [2.55]

In order for this equation to be satisfied, we must have the following for
any component i:

1)
x,-(Talg—Tyf(Hn 7D =0 [2.56]
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Thus, by integrating:
Ty =R, (x) [2.57]

The value thus defined, R, (x), is thus temperature-independent (we have

discounted the influence of the pressure on liquid solutions). It depends only
on the composition x.

Based on the definition we have just given, it is obvious that the excess
entropy of a regular solution is null, as are the excess partial molar entropies
of each it its components — i.e.:

=0 and S*=0 [2.58]

As the entropy of mixing of a regular solution is identical to that of a
perfect solution, we can deduce that the molar heat capacity obeys Kopp’s
law of additivity (see expression A.2.14 in Table A.2.2, Appendix 2).

We can see that the regular solution model does not give us the variations
of the activity coefficient with the amounts of substance. In fact, it is a
family of models which includes several possible subsets — each one defined
by a relation R, (x) . We shall come across two of these subsets in our study:

the Van Laar equation (see Table 3.3) and the Hildebrand-strictly-regular
solution model, which we shall touch on.

2.5.6. Strictly-regular solutions

A group of solutions known as strictly-regular solutions is of significant
interest for a number of reasons:

— it yields the most mathematically simple form of a non-perfect and non-
dilute ideal solution;

— it demonstrates that complete knowledge of the solution includes all the
phenomena that are typically superposed on the model artificially. Hence, in
certain cases, it includes the phenomenon of demixing, and the existence of
azeotropic mixtures;

— in practical terms, it is applicable in numerous cases in metallurgy with
mixtures of liquid metals, and in chemistry with solutions of homologous
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compounds. It is found in the modeling of other phenomena such as the
concept of order/disorder in alloys, or the isotherm of non-“Langmuirian”
adsorption of a gas on a solid;

—we have a microscopic model of strictly-regular solutions, as we do for
perfect solutions, which enables us to demonstrate an initial cause of
imperfection of the solutions.

2.5.7. Macroscopic modeling of strictly-regular binary solutions

Let us take the Margules expansion, limited to the first non-zero term. In
. . . B .
light of relations [2.2] to [2.5], assuming that /3, = f3, :F, where B is a

parameter independent of the temperature and of the composition, the
activity coefficients will be written as:

Iny” :gxz2 and Inp" =§x12 [2.59]

In view of the definition of B, it is clear, given [2.57], that such a solution
is regular.

Note that the function of the pressure is not specified, and therefore the
model includes all solutions defined by these two equations, whatever
the function B(P) and, in particular, B can very well be independent of the
pressure.

The solutions that we have just defined constitute a family of regular
solutions, known as strictly-regular solutions in the sense of Hildebrand.

In these solutions, the two components play a perfectly symmetrical role.

As strictly-regular solutions are, by definition, regular, we can deduce
that the entropy of mixing is the same as that of a perfect solution and
therefore that the excess entropy is null.

We shall now calculate the other main thermodynamics involved in
strictly-regular solutions.
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The excess partial molar Gibbs energy of a component is obtained
directly on the basis of the activity coefficient:

G® =RTIny,=RBx; and G,;’=RTIny, =RBx/ [2.60]

The total molar excess Gibbs energy will therefore be:

G’ =x,G"” +x,G,° =RBx;x, [2.61]

As the excess entropy is null by definition, the excess enthalpy is equal to
the excess Gibbs energy, and thus for the partial molar values, we would
have:

H® =G =RBx; and H)®=G)"=RBx] [2.62]

and for the molar excess enthalpy:

H* =x H* +x,H} =RBxx, [2.63]

As the enthalpy of mixing for a perfect solution is zero, the enthalpy of
mixing for a strictly-regular solution is identical to its excess enthalpy, so for
the the partial molar values:

H™ =H* =RBx; and H,” =H}=RBx] [2.64]

and for the molar enthalpy of mixing:

H™ =x H™ +x, H™ =RBx,x, [2.65]

We can see that the plot of the mixing enthalpy is a parabola (see
Figure 2.2) as a function of the molar fraction of a component because:

mix
H m

—x(l—x,) [2.66]
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osh H"™ |RB

02f

0.1f

0 03 > x

Figure 2.2. Parabolic form of mixing enthalpy
for a strictly-regular solution

The Gibbs energy can immediately be deduced from the definition:
Gmix — Hmix _ TSmix [267]

In the knowledge that the mixing enthalpy is the same as that for a perfect
solution, we find the following for the molar Gibbs energy of mixing:

G™ =RBx,x, + RT(x,Inx, +x, Inx,) [2.68]

and for the partial molar values:

G™ =RBx; +RTx,Inx, and G;™ =RBx. +RTx,Inx, [2.69]
As we saw earlier, because a strictly-regular solution is a regular solution,
it obey’s Kopp’s law of additivity (see relation A.2.14 in Table A.2.1,

Appendix 1) for the molar heat capacities.

We can easily calculate the expression of the activity of a component at
temperature 7. Immediately, we find:

B
al’ =y"x, = x, exp (?(1 — X, )zj [2.70]



56 Modeling of Liquid Phases

The relation is absolutely symmetrical for component 1.
1.2 a=P/P, ) -B/.T=2.T

1

0.8

0.6-

0.4

0.2-

0 0.2 0.4 0.6 0.8 1

Figure 2.2. Activity (in convention 1) of a component
of a strictly regular solution as as a function of the composition

Figure 2.3 illustrates the activity of a strictly-regular solution as a
function of the composition. We can see that the solution displays positive
deviation in relation to Raoult’s law if B/T'< 0, and negative deviation if
B/T > 0. If B/T is greater than 2, the inflection point indicates demixing into
two solutions, whose compositions are given by the endpoints of the plateau.
The activities on either side of the plateau correspond to a metastable phase.

The curves for the second component are, obviously, symmetrical.

NOTE 2.2.— the strictly-regular solution becomes a perfect solution if the
parameter B is 0 for all compositions (B/T = 0). The corresponding curve in
Figure 2.3 is Raoult’s straight line.

2.5.8. Extension of the model of a strictly-regular solution to solutions with
more than two components

Certain authors prefer to choose relation [2.89] from the expression of the
excess Gibbs energy as the definition for strictly-regular solutions. This
second definition is rigorously identical to that which we have chosen
(relation [2.87]), because relation [A.2.32] (see Table A.2.2 in Appendix 2)
links the activity coefficients and the partial molar Gibbs energy values.
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On the basis of this definition, we can extend the concept of a strictly-
regular solution to systems with more than two components, but preserve the
symmetry that is present in binary systems. For instance, for a system with N
components, we can say that a solution is strictly regular if its excess molar
Gibbs energy takes the form:

N-1 N

G* =Y Axx, [2.71]

gy
i=l j=i+l

The coefficients ﬂ?/. are positive coefficients, independent of the

temperature and composition.

By application of this relation to a two-component system, obviously, we
obtain relation [2.60], with:

A,=RB [2.72]
For a system with three components 1, 2 and 3, we find:
G™ = A,x,%, + A3 x5, + A, X, X, [2.73]

Based on the derivative of this function in relation to one of the quantities
of matter, we immediately obtain the activity coefficient of that component.
For example, for the three-component solution, we obtain:

RTIny" =aaGT =RT(A,x, + A;x;) [2.74]
1

Multicomponent strictly-regular solutions constitute an excellent model
for mixtures of molecules of the same polymer in different states of
polymerization, which is understandable in view of the similitude of the
molecules involved.

2.6. Athermic solutions

Alongside regular solutions (see section 2.5.1), we can define athermic
solutions, which are primarily found when amorphous or molten polymers
are dissolved in solvents.
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2.6.1. Thermodynamic definition of an athermic solution

In the same way as we defined a regular solution as one which has the
same entropy of mixing as a perfect solution, we shall define an athermic
solution as one which has the same enthalpy of mixing as a perfect
solution — i.e. zero. Of course, its excess molar enthalpy is also null.

2.6.2. Variation of the activity coefficients with temperature in an athermic
solution

By applying the above property of definition to expressions [A.2.24] and
[A.2.8] for a perfect solution, we deduce:

v 9tn 0
_ =0 [2.75]
o oT

As the activity coefficients do not depend on the temperature, they will be
functions only of the composition and perhaps of the pressure. Therefore,
this type of solutions is referred to as athermic.

7=y (P,x) [2.76]

Instantly, we can derive the following equality from this:

H=h [2.77]

1 1

Thus, the partial molar enthalpy of each component is identical to its
molar enthalpy when it is pure (in the same state of aggregation).

2.6.3. Molar entropy and Gibbs energy of mixing for an athermic solution

Using the general expression of the excess entropy [A.2.33], for the
excess molar entropy of an athermic solution, we obtain:

N
S¥=-R> xIny" [2.78]
i=1



Macroscopic Modeling of Liquid Molecular Solutions 59

Hence, the molar entropy of mixing is:

N

Sy =-RY x (Inp” +Inx,) [2.79]
i=1

As the molar enthalpy of mixing is null, the molar Gibbs energy of
mixing is given by:

G"™ =—TS™ = RTZN: x,(Iny" +1Inx,) [2.80]
i=1

2.6.4. Molar heat capacity of an athermic solution

The excess molar heat capacity is written simply as:

xs _ aHrf —
oT

P

0 [2.81]

Thus, the molar heat capacity is the same as that for a perfect solution and
therefore obeys Kopp’s additivity law [A.2.14]. This law can be said to be
fairly widely applicable, because we have seen it at work with perfect
solutions, regular solutions, athermic solutions and approximately with
dilute ideal solutions.

NOTE 2.3.— a solution which is both regular and athermic is a perfect
solution, because these two solutions have the same enthalpy and the same
entropy, and therefore the same Gibbs energy. Hence, they are identical.

In this chapter, we have examined a number of simple analytical models
which are extremely useful for the study of equilibrium states. However,
these models involve parameters with unknown physical meaning. In
addition, they are often not sufficiently accurate. For that reason, it is worth
considering the modeling of solutions by a microscopic description.






3

Microscopic Modeling of Liquid
Molecular Solutions

The purpose of modeling liquid solutions is to understand the structure
and the properties of the medium, and to help predict certain behaviors
by giving expressions for the molar Gibbs energies or activity
coefficients. These data can then be used in practical applications such as
the establishing of chemical equilibrium states or the plotting of phase
diagrams.

Solutions are complex media, and usually the model needs to be
“calibrated” on experiments in order to determine certain constants. The
advantage to using a model, in terms of the predictive aspect, is obviously
that it requires a minimal number of terms to be determined, and therefore a
minimal number of experiments, to calibrate it. Nevertheless, this number
must be sufficiently high for the model to represent reality as closely as
possible.

In the existing body of literature, a great many different microscopic
models are put forward. Hence, it is impossible to discuss all of them here.
Instead, we shall limit ourselves to a presentation of the most widely-used
models, which are practical and illustrate modern ideas by way of the
approaches and hypotheses that they implement. Certain models will not be
examined in detail because, whilst they were groundbreaking when they
were first published, today they are known to be specific cases of other,

Modeling of Liquid Phases, First Edition. Michel Soustelle.
© ISTE Ltd 2015. Published by ISTE Ltd and John Wiley & Sons, Inc.
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more general, models. We shall content ourselves with listing these models
in Table 3.3.

3.1. Models of binary solutions with molecules of similar dimensions

Suppose we have a binary liquid solution — a mixture of two components
A and B, which contains n, moles of component A and ng moles of
component B, which equates to Ny molecules of A and Ny molecules of B.
This solution satisfies the following six conditions:

1) There is an order over a short distance, and the short-distance lattice is
the same for the solution as for the two liquids A and B. Thus, these three
liquids exhibit the same coordination number z (e.g. 12 for the hexagonal or
cubic lattice with centered faces).

2) The molar volumes v} and vy of the two pure liquids are sufficiently

close. Certain authors have evaluated that this condition was acceptable if
the ratio of the radii of the two molecules A and B, which are supposed to be
spherical, was no greater than 1.25;

3) The free volumes v | and v, of the two pure liquids (see section

f(A f(B)

1.3.1) are near to one another (to within 30%);

4) The molar volumes and the free volumes of the two liquids are
not altered by the operation of mixing, and therefore the mixing volume is
null, which means that the volume of the solution is given by the additive
law:

V'=n,vy +ngvy [3.1]
5) The potential energy of interaction £; can be considered to be the sum

of the contributions of the closest neighboring pairs of molecules;

6) The model of the liquid chosen is Guggenheim’s smoothed potential
model (see section 1.3.1), both for the pure liquids and for the solution, and
we use &, and £y tO represent the values of the lattice energy &

which appears in expression [1.22], respectively for each of the pure liquids
A and B.
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The mean energy of interaction of two molecules of A is —2¢,,,/ z, and
similarly for two molecules of B it is —2&,, / z . Hence, we can say that the
energy levels of pairs of molecules A-A and pairs de molecules B-B are,
respectively:

2¢e 2¢
N =—% and &, :—% [3.2]

NOTE 3.1.— As we are essentially interested in the mixing values, the pure
liquid model chosen has no impact on the results.

Let us define an energy value, called the exchange energy w,, , such that,

if we begin with the two pure liquids A and B, the exchange of a molecule of
A and a molecule of B between the two liquids increases the energy of the
system by the amount 2w,,. During this process, z A-A pairs and z B-B

pairs have been destroyed, and 2z A-B pairs have been created.

Thus, the mean potential energy of the pairs A-B will be:
Ean = (_28A(A) - 28‘3(3) +2W,p ) /2z= (_gA(A) —Epp) T Wan ) lz  [3.3]

In view of equations [3.2] and [3.3], the exchange energy is:

E T E
Wap = Z(gAB _Hj [3.4]

The property wapg will be temperature-independent, so long as the type of
environment of a molecule and therefore z are not altered.

NOTE 3.2.— The energy of interaction between a molecule of A and a
molecule of B in the solution can be written as &€, =—2€,5,5,/ 2. Thus,

the exchange energy can be written as follows, if we take account of
relation [3.3]:

Wag = Exa) T Epm) 2€AB(AB)
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We can establish a general form of the configuration integral in the case
of interactions by pairs.

If we look again at relations [A.3.25] and [A.3.37], we can write the
following formula for the translational partition function of a substance A:

1 (2amk T E, v,
Ze, _N—A'[Tj [ Jexp T da’ [3.5]

where @, is the set of position coordinates of the N, molecules of A in a

given configuration.

The integral of equation [3.5] is thus extended to all configurations of the
N molecules de A.

Similarly, for a binary mixture of two species A and B, we can write the
canonical partition function of translation in the form:

, L 1 (2mmkT M Oamk, T
‘O NN R h?
I Uexp( jdwmdwga

This time, the integral is extended to all configurations of Ny molecules
of A and Ng molecules of B (the extension to solutions with more than two
components is obvious).

[3.6]

We shall use Zyp) 10 denote the canonical partition function of the pure

component A w1th0ut interaction, i.e. the perfect gas; similarly, ZB(,:/)
denotes that of component B. The canonical partition function of translation
of the solution can be written as:

112

T S B

]da) da) [3.7]
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The problem of modeling of the solution involves being able to express
the configuration integral of the mixture, whose value is:

I, =LLJ..”exp[-kE}degA degl’e [3.8]
A B* B

For each configuration, the solution comprises a certain number of pairs
A-A, pairs B-B and mixed pairs A-B.

Let us look at a particular configuration of the solution in which the
number of mixed pairs A-B is zX.

Thus, the number of neighbors of a molecule of A which are not
molecules of B is z(N,—X). Hence, the number of pairs A-A

is z(N,—X)/2 and, by the same token, the number of pairs
B-B is z(Ny —X)/2. Therefore, the total number of pairs N, of the three

species is:
z z
N, =§(NAA+NBB+NAB)=E(NA+NB) [3.9]

For this particular configuration, characterized by the value of X, the
potential energy of the solution, due to the interactions, will be:

£ o2, —X)(_ 2E58) J+ z(N, —X)(_ 288(13))

1
2 2
: z [3.10]
(—€xi a0 —Enimy T Enp)
4 oY oAM) T %(E) T an
4

Thus:

E; ==N,&, 1) = Npfyp) + X, [3.11]

This relation can also be written as follows, taking account of
expressions [3.2] and [3.8]:

E, = ZN \Epn 4 ZNyEpy +XZ(8AB _Ean +€BB) [3.12]
2 2 2
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Note in passing that, if x5 and xp are, respectively, the molar fractions of
the components A and B, the internal energy per mole of solution
(Nat+Ng=N,), which is also its enthalpy, because the volume of mixing is
null, is:

U —H =N, |:ZXA28AA + ZXB;BBi|+XZ(€AB _%j [3.13]

By substituting expression [3.12] back into equation [3.8], the exchange
integral becomes:

N,e.. + N,
IABZCXp[ AA/;(TBBBJ
B

J-feso| -2 0" (0"

N, IN,!

[3.14]

In order to calculate the integral of expression [3.14], we define the
value Y by relation:

[3.15]

As, according to hypothesis 3, the free volumes v, and v, are very

close, we can replace the arithmetic mean with the geometric mean, and use
the following approximation:

NAV/.(A) + NZV/‘(B) ~ v, v, i
.NA +N, . :(VﬂA) Vo) )[N/‘ N’*] [3.16]




Microscopic Modeling of Liquid Molecular Solutions 67

In light of relation [3.16], we can integrate the left-hand side of
expression [3.15], and we obtain:

Ny Ny
£ E
1= {exp(l)vﬂ 1) EXP (—kA(;") J:l {exp(l)vf(g) exp(—kB(;z H
B B [3.17]

(NA+NB)!ex ( Yw]

p —
N,IN,! k,T

The configuration integral /g can be broken down into three terms:
an interaction integral for the pure liquid A (term given by relation [1.22]),
an interaction integral for the pure liquid B and a mixing integral 7.3

which is:

« (N, +Np)!
pe s Wat Ny T [3.18]
N, IN,! kT

The composition Y appears as the fictitious number of mixed pairs that
would yield the right value of the partition function if the molecules were
distributed at random.

NOTE 3.3.— As pointed out earlier, the choice of the model of a pure liquid is
no longer relevant in the expression of the integral of mixing.

The integral of mixing is the contribution of the mixing to the system’s
overall partition function.

We can now calculate the Helmholtz energy of mixing and the Gibbs
energy of mixing, which are equal because the volume of mixing is null,
with the following formula:

(N, +Ny)!
N, IN,!
(N, +N;)!

N, IN,!

G™ = F"™ =k TInI" =Yw,, —k,T In
[3.19]
= Yz(eAB —@)—kg In
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Using Stirling’s approximation, this Gibbs energy of mixing takes the
form:

mix __ mix __
G" =F" =Yw,,

N, N, } [3.20]

—k.T| N,1 +N.1
B{ An(NA+NB) Bn(NA+NB)

Thus, we need to calculate the value Y. In order to do so, we write <X >

for the value of X at equilibrium, which is such that:
(X)I...Iexp(—:;";j(de )" (deg,)™
B

= j...lexp{— )1(::;3

By deriving equation [3.15] in relation to temperature, we can verify the
expression:

(X)=Y- TB_H = 3[5//;)] [3.22]

[3.21]

J(eon) g

Thus, ultimately, calculation of the partition function of our model of a
solution boils down to determining <X > and then Y using expression [3.22].

Finally, by feeding the value Y thus obtained back into expression [3.20], we
find the value of the Gibbs energy of mixing.

3.1.1. The microscopic model of a perfect solution

We have already given (see relation [A.2.28] and Table A.2.1 in
Appendix 2) the macroscopic representation of a perfect solution and the
resulting properties. Now, we are going to construct a microscopic model, to
see which hypotheses yield the same expression for the Gibbs energy of
mixing given by expression [A.2.6] (see Table A.2.1).
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We return to the previous model (section 3.1), and we shall now
determine Y by adding a seventh hypothesis to our model: the exchange
energy is null, i.e.:

26, —E,, + &
g = AB ZAA BB _ () [3.23]

Thus, by substituting this value into relation [3.13], we see that the total
enthalpy is equal to the sum of the enthalpies of the two pure liquids, and
therefore the enthalpy of mixing is zero. This means that our two solutions
are mixed with no alteration of the energy — i.e. with no thermal effect.

With our new hypothesis, relation [3.18] becomes:

(N, +Np)!
N, IN,!

mix __
]AB -

[3.24]

The Helmholtz energy of mixing is the same as the Gibbs
energy of mixing (as the mixing volume is null), and in light of
relation [3.19] (w,; =0), we calculate:

G"™ =k,T| N, lnL+ N, lnL [3.25]
N, +N, N, + N,
In order to find the molar value, we make Ny + Ng=Na and np + ng =1,
so that x5 = n and xg = ng. Thus, the molar Gibbs energy of mixing is:

G =F™ =RT(x, Inx, +x,Inx,) [3.26]

We can see that this relation is indeed identical to expression [A .6] (see
Table A.2.1 in Appendix 2). Thus, we have here a model of the perfect
solution, and note that this solution is not, as might be imagined, a solution
in which there are no inter-molecular interactions, as is the case with a
perfect gas. Rather, it is a solution in which the energy of interaction &g
between two molecules of A and of B is the arithmetic mean of the energies
of the A-A and B-B pairs because, in view of relations [3.4] and [3.23], we
obtain:

ETE
Er =% [3.27]
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Of course, as is often the case in modeling, we have established a model
of a perfect solution, but there is nothing to say that this is the only possible
model.

3.1.2. Microscopic description of strictly-regular solutions

We shall now return to our model of a solution given in section 3.1, with
the six hypotheses upon which it is founded, but exclude hypothesis 7, given
by equation [3.23]. The exchange energy wag is no longer null.

NOTE 3.4.— Whilst we continue to state the hypothesis of a random
distribution of the molecules of A and B, this hypothesis appears to
contradict the existence of an exchange energy, whose presence means that
the minimum of the Helmholtz energy cannot correspond exactly to the
random distribution. We get around the contradiction by accepting that the
short-distance order that would be caused by this exchange energy is
annihilated by the thermal agitation. In other words, we accept the condition:

Wy <<kpT [3.28]

Thus, let us write the random distribution of the mixed pairs A-B. Around

a molecule of A, there are, on average, zxg molecules of B, so the mean
number of such pairs will be given by:

z(X)=N,zx, = Nyzx, [3.29]

This enables us to write:

(X)" =N, Nyx,x, = NN, (1 —LJ[l —L] [3.30]
N, + N, N, +N,
Thus:
(X) =(Ny (X)) (Vaa () 331)

Thus, <X > is independent of the temperature. This is what is known as

the zero-order approximation or the Bragg—Williams approximation.
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This temperature-independence of <X > means that, in light of relation

[3.22], we can write:
< X> =Y [3.32]
and, using relation [3.29], we deduce from this that:

NNy

X)=Y=
< > N, + N,

[3.33]

The integral of mixing is obtained from relation [3.18]. It is of the same
form as relation [3.18]. It will be the product of two terms: one identical to
that in relation [3.24], pertaining to the perfect solution, and the other
comprising the exponential, which will, in fact, be the excess term.
According to equation [3.33], this term is:

G* =Yw,y =—* WaB [3.34]

and for the corresponding molar value (n5+ng=1), we obtain:
G =N, X, X;W,, [3.35]

As Y is independent of the temperature, the excess entropy is null, and
we find the following molar enthalpy:

oGy /T)

Hy =T
oT

=N, X, XgWap [3.36]

Thus, we see all the properties of the strictly-regular solution
(section 2.5.6) and by identification between equations [3.35] and [2.61], we
can deduce:

— NaWAB

R

B [3.37]

The difference between a strictly-regular solution and a perfect solution
lies in the exchange energy, which is null in the case of the latter.
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NOTE 3.5.— the null excess entropy is due to the temperature-independence
of Y, which means, in view of relation [3.22], that the equilibrium value

<X > is also independent of 7, and we have shown that the random

distribution of the molecules satisfies this condition. There is nothing to
show that only this distribution leads to a null excess entropy, which
explains why not all regular solutions are strictly regular.

Certain authors work differently to construct the model. They accept the
hypothesis of random distribution of the molecules. They then deduce that
the excess entropy is null. Knowing the excess enthalpy, given by relation
[3.13], they then calculate the Gibbs energy, applying relation [3.36] in
reverse. Integration is then performed, making the hypothesis that, if the
temperature tends toward infinity, the mixture behaves like a perfect
solution, which is to say that its excess enthalpy is null. In fact, this way of
working seems much simpler, and it does yield the right result. However, the
assertion that the mixture behaves like a perfect solution if the temperature
tends toward infinity is not easily conceived of. Thus, we prefer the previous
construction. This presentation also has the advantage of being able to be
used in the case of another model (see section 3.2.4).

3.1.3. Microscopic modeling of an ideal dilute solution

Let us look again at the above model of a strictly-regular solution
(section 3.1.2). If the number of molecules of B is small in relation to that of
A —in other words, if the solution is very dilute in terms of B content — then
relation [3.33] gives us:

(X)=Y=N, [3.38]
Relation [3.34] yields:

G" =N, nyw,, [3.39]
The activity coefficient of B in convention (I) thus satisfies the equality:

) _ aGXS

Ny

—RTIny

=N w 3.40
a "AB



Microscopic Modeling of Liquid Molecular Solutions 73

Therefore, we can deduce that:

Nw
I _ a ' AB
=eXp———— 341

This activity coefficient is independent of the composition of the
solution; it depends only on the temperature.

The excess molar Gibbs energy is thus:
G* =N,w,, =—RTn,Iny” [3.42]

In this excess Gibbs energy, the solvent makes no contribution at all. This
tells us that y\"’ =1. Consequently, as with the solvent, conventions (I) and

(IT) are identical. We deduce that:
7 =yl =1 [3.43]

In convention (II), therefore, the activity coefficient of the solute B is also
constant, and as with the infinitely-dilute solution, the value of this constant
1s 1. From this, we deduce that:

y =1 [3.44]

Here, we encounter all the characteristics of the ideal dilute solution
studied in section 2.4.

Henry’s constant is therefore given, on the basis of relation [2.23], by:

N, w
Ky =7 = eXp(——RTABJ [3.45]

Thus, the ideal dilute solution is the particular case of the strictly-regular
solution wherein there is a very small proportion of one of the components.

From expression [A.2.21], we deduce the physical meaning of the
chemical potential of the solute for the reference state (I1):

M, = g? - N, Wy [3.46]
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The chemical potential of reference state (II) is that of reference state (I)
less the molar exchange energy.

The most general of the three models of solutions that we have just
examined is that of the strictly-regular solution. The other two models seem
to be two particular cases; that of the perfect solution if we make w,; =0

and that of the ideal dilute solution if we make n, >>n,. In all these

models, we assumed a random distribution of the molecules, which is a
fairly restrictive hypothesis, as we mentioned in our discussion of the
strictly-regular solution. It is this hypothesis which we are going to examine
in greater detail in the next section.

3.2. The concept of local composition

In the model of strictly-regular solutions, we have indicated a
contradiction in the fact that the A-B bond involved a different amount
of energy than the A-A and B-B bonds, but admitted that this difference
did not prevent random distribution of the pairs A-B — in other words,
the local composition of the liquid around a molecule of A or a molecule
of B was the same as the overall composition. Now, we shall refine
our models by examining local distributions different to the overall
composition.

3.2.1. The concept of local composition in a solution

In reality, the exchange energy has consequences for the local distribution
of the molecules. Indeed, it is easy to see that if there is a stronger force of
attraction between a molecule of A and a molecule of B than there is
between two molecules of A or between two molecules of B, then a
molecule of A will tend to be surrounded by molecules of B, and therefore
the composition of the immediate environment of the molecule of A will not
be the same as the overall composition of the solution — it will be richer in
molecules of B. The opposite effect would be observed if the two molecules
A and B had a lesser force of attraction than two molecules of A and two
molecules of B. This is the concept of local composition, first expressed by
Wilson.
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In order to describe this concept of local composition, we use a
nomenclature that enables us to clearly distinguish, every time, between the
central molecule and its closest neighboring molecules.

N;; denotes the number of molecules of i around a molecule of j, and we
define the conditional probability P; that a molecule of i will be located in
the environs of a molecule of j by the expression (where N denotes the
number of components in the solution):

N,
p o N [3.47]

ij N
>N,
i=l1

Note that this probability also represents the local molar fraction.

Evidently, we have:
N
Z P =1 [3.48]

i=1

Thus, for a binary solution, we distinguish:

— P, : local molar fraction of the molecules of A around a molecule
of A;

— FB,, : local molar fraction of the molecules of B around a molecule
of A;

— B,y ¢ local molar fraction of the molecules of B around a molecule
of B;

— P,; : local molar fraction des molecules of A around a molecule of B;
with the equalities:

Paa+ Fon =1 [3.49a]

and P, +P, =1 [3.49b]

We shall suppose that it is always possible to define a weighting factor k;
such that the local composition is the overall composition weighted by that
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factor. In other words, we shall define the factors k; by way of the following
relations — e.g. for a binary solution (x, and xg are the overall molar fractions
of the two components in the solution):

Fon Xy [3.50a]
PAA xA
Pao _ Xy [3.50D]
PBB 'xB

By combining equations [3.49a], [3.49b], [3.50a] and [3.50b], we obtain:

Xa

P, = [3.51]

xA + kaBA
and by substituting the result back into expression [3.50a], we find:

XKy [3.52]

BA —
x5+ xgky,

Similarly, around molecule B, we find:

X

Py = [3.53]

xB + xAkAB
and:

U [3.54]

AB =
Xg + X ko

NOTE 3.6.— If the arrangement of the molecules of A and B is random,
obviously we have P,; =x, and F,, = x;, and therefore k,, =kg, =1.

3.2.2. Energy balance of the mixture

We shall now recalculate the energy of mixing of N, molecules of A and
Ng molecules of B in that context of local composition, by finding the
energy balance of that mixture. We suppose that in pure liquid A, a molecule
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of A has a coordination number z,, meaning that it is surrounded by z,
molecules, which exert an influence on it in energetic terms. Similarly, in
pure liquid B, the coordination number is zg. In solution, we use z’5 and z '’
respectively to denote the coordination numbers of the molecules of A and
the molecules of B in the solution. There is no reason, a priori, for all these
coordination numbers to be equal, which runs counter to the hypothesis we
have employed up until now.

The interaction between two molecules that are not immediate neighbors
is ignored.

In order to extract a molecule of A from the pure liquid A, we must break
za A-A bonds and therefore provide the energy z, &a. We place that
molecule in the pure liquid B. This transfer forms new bonds and therefore
releases the energy z’a (Yaa&aa + ¥a&sa). The variation in energy due to the
transfer of a molecule of A from the pure liquid A into liquid B will
therefore be: zy &aa— z°a (Yan&ant YBa&sa). Obviously, we can calculate a
symmetrical expression for the transfer of a molecule of B from liquid B into
liquid A. The variation in internal energy to form a mole of mixture,
therefore, will be:

mix
m

_Na Xa I:ZAgAA —Z'y (yAAgAA * Va€sa )]

[3.55]
2 +Xg |:ZBSBB - Z'B (yBBgBB + Vas€as ):|

Taking account of relations [3.50a], [3.50b], [3.53] and [3.54], we find
the following for the excess- or mixing molar internal energy:

U :M|:XAXBKBAZ' (gBA _gAA) n X, XgK,p2's (gAB _gBB) [3.56]

m
2 X, +xKp, xXg +x, K,

Based on our knowledge of the internal mixing energy, we calculate the
Helmholtz energy using the relation:

a(FfJ
T
- J_y" [3.57]

o/ry "
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Integration gives us:

FXS FXS ) 1
( n ]_[ n ] =I”T U;fjd(—j [3.58]
T T )., i T

If Tyn is infinite, at this temperature F/7,, becomes independent of the
temperature because the mixture is identical to a mixture of perfect gases
without interaction between molecules, but F/7,, may depend on the
composition or the density of the liquid.

Finally, the modeling of the solution, i.e. the establishing of the excess
molar Helmholtz energy function, involves expressing the value of the
coefficients k; from relation [3.56], and most of the existing models differ
only in this evaluation.

3.2.3. Warren and Cowley’s order parameter

For a solution containing molecules i and j, Warren and Cowley defined
an order parameter 77, as being:

nb of molecules of i around a molecule of j

n,=1- [3.59]

mean nb of molecules of i around a molecule of j

In the case of a binary mixture, therefore, we would have:

with the condition:
0<n,, <1 [3.60]

and in parallel:

77BA=1—PB—A and 0<7,, <1 [3.61]
Xp

We can obviously deduce that:
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Fop =xp (l_nBA) [3.62a]
and P,=x, (l—ﬂAB) [3.62b]

NOTE 3.7.— if the distribution of the molecules is random, then P,; = x, and
Mea =1.

The two order parameters 77,, and 77,, are connected; indeed, the
number of pairs A-B can be expressed in two ways, such that:

Ng N, =N,z Ny [3.63]
Hence:
z'\ B, N, =z", PN, [3.64]

By introducing the values of F;,and P,; in equations [3.62a] and
[3.62b], we find:

Z' 5 XNy (=15, ) = 2" g X, Ny (1-77,) [3.65]

If we note that we have the equality:

N,N
x,N, =x, N, =—2-5_ [3.66]
VA = X5 {Vp N_+N,
We obtain:
2\ Men —Z'5 Mg =Z'5— 2 g [3.67]

Hence, the two parameters of opposite orders are not independent.

If the coordination numbers of two types of molecules are the same in the
solution (z', =z'y), then the two Warren—Cowley order parameters are also

equal (7,5 =g, ) -
There is an obvious relation between the order parameters and the

weighting factors k;; indeed, according to equations [3.51], [3.52], [3.62a]
and [3.62b], we can write:
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[3.68b]

This expression shows that if 77,, =0 or k,; =1, the distribution of
molecules A and B is random.

If n,; >0 or k,; <1, this means that P,; <x, . Thus, on average, there

are fewer mixed pairs than in the disordered solution, so there is a tendency
toward dissociation of the pairs A-B. On the contrary, if 77,, <0 or &, >1,

that would mean that there is a certain tendency toward the association of
molecules of A with molecules of B.

3.2.4. Model of Fowler & Guggenheim’s quasi-chemical solution

Let us return to our binary solution formed of two components A and B.
With the exchange energy being given by wap, we can write that the
system’s partition function of exchange is the sum of all the values of X,
with each energy state being weighted by a degeneration g(X), so that:

(2ZXWAB —ZN ,\Exn — ZNppEpsp )
zk T

Ly =Y g(X)exp| - [3.69]

g(X) is the number of arrangements which are possible for a given level
of energy. For a given value of X, the different pairs of atoms may be
arranged in accordance with the number of possibilities, proportional to:

(zN/2)!
[z(Na=X)/2][z(Ne =X)/2]1[zNas/ 2] H[2Nsa/ 2 ] !

Thus, we can write:

(ZN/2)!

gX)=k
[2(Na=X) /2] 2(Ne = X) /2] I[zNan/ 2] [2Nsa/ 2 ]!

[3.70]

In this expression, the first and second term in the denominator,
respectively, are relative to the numbers of pairs A-A and B-B, and the third
and fourth term respectively relate to the numbers of pairs A-B and B-A.
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We have introduced a coefficient of proportionality, because the A-B
bonds are not totally independent of one another. Figure 3.1 shows an
example of this non-independence. Indeed, suppose that on the lattice (which
we shall take to be flat for the purpose of simplicity), we have placed the
molecules A, By, and B, respectively on sites a, b and c. If we place a
molecule B on site d, it is clear that the bond between sites a and d is
necessarily a mixed bond A,By. In other words, the pairs are not distributed
entirely randomly. The coefficient & depends on the lattice chosen to
represent the cell.

A
\J

VAR
AN
4 AVAR
\ AN

Figure 3.1. Dependency of the pairs
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Suppose we use g,(.X) to denote the possible number of arrangements of

pairs when they are distributed “at random”. According to equation [3.70],
we have:

(ZN/Z) !
g, (XFk " - [3.71]
[z(Na=X")s2] ([2(Na=X")s2] [2Na/2 ] [2Niw2 ] !
However, we know that, for a random distribution, this number is:
N!
g,(X)=r———"— [3.72]
[Va] [Ne]

By multiplying and dividing relation [3.70] by the values of g(X) given
respectively by relations [3.72] and [3.71], which are equal, we obtain:

—X /2 N —X* o [2X" /2] [zX" /27 ! NI

[ (Na X /2]'[ (Ny X )/ 2] X /=X 2] [N,] [ Ng] !

To simplify the calculations, we apply Boltzmann’s law (see

Appendix 3), whereby the sum of all the states in equation [3.69] can be
replaced by its maximum value.
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In this case, the number of mixed pairs z<X > will be such that:

aln{IAB} 0
X

<X > is the value of X which satisfies relation [3.74].

We obtain:

2w

AB

k,T

B

(X) = (N, = (X)) (Vo = (X)) exp-

A laborious calculation performed by Christian in 1975 gives us:

< >_ 2N, Ny
(N, +N,) B, +1

If we introduce the molar fractions defined by:

fa NA

= = d = =
M tng) (N +Ng) O

Thus, for a mole of mixture (N, + N, =N, ), we have:

<X> _ 2NZx, X,
N,f, +1

The term f, is defined by:

1/2
144N, N, | exp— 2% _
zk,T

N, + N,

1/2
2 2w
=(1-2x,) +4x,x, exp——A8
O

B, =

[3.74]

[3.75]

[3.76]

[3.77]

[3.78]

[3.79]
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By substituting expression [3.78] into equation [3.22], we obtain:

2wag/zkgT
_ NNy ZkgT 2 d PATRS [3.80]
Ny+Ng 2w, o B, -1 (T

The lower bound of the integral of expression [3.80] is determined as
follows: if T —>co, we must observe a random distribution (because then

W, <<kg,T), in which Y is more or less equal to <X > , according to relation
[3.22], and where the difference ¥ —<X > is finite. Thus, Y /T tends toward
zero if 1/T tends toward zero. In view of the definition of ,Bq (relation
[3.79]), we have:

> —(1-2
exp| 2an | A= (1225 [3.81]
zk,T 4x,x,
Thus:
28.d
dl 2 | AL [3.82]
2k, T ) (B, -1+2x,)(B,+1-2x,)

By introducing this into expression [3.80], we find:

—-1+2 +1-2 +1
YAl At g Al Ay [3.83]
N,N; 2w, X, Xg
In the knowledge that:

(Na+Ng=1) [3.84]

By feeding this back into relation [3.20], we obtain the excess molar
Gibbs energy:

ﬁq T Xp =X,

x, In
xB(ﬁq +1)

A

[3.85]

+x,—X
G* :lzRT{xB In —ﬂq A B}
2

X, (ﬂq +1)
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Note that, as was the case with the strictly-regular solutions model, our
new model preserves a result that is symmetrical in relation to the two
components A and B.

Figure 3.2 shows the difference between the excess molar Gibbs energy
of the strictly-regular solution and that of this model for the values
T'=800 K, z= 12 and Naw,g = 30 kJ. The two curves reach their minimum
point at x5 = xg = 0.5.

G“(Kj/mole

Al0_02 04 06 08 ]

XB —> B
-2
-4 strictly
6 regular
-8

quasi-chemical

Figure 3.2. Comparison of the excess Gibbs energies of a strictly-regular solution and the
quasi-chemical model (reproduced from [DES 10], p.62 — see Bibliography)

We can see that the solution is no longer regular.

The activity coefficients of the two components become the following, by
derivation of the excess Gibbs energy in relation to 7;, remembering that /3,
xa and xp are functions of Ny and Np (the calculation is complicated but
yields a direct result):

B X, — X
(I _| a 3.86
S 13.8¢]
B +x;—x, o
n_| e 3.87
7}(3 xB(ﬂq+1) [ ]
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The solution thus modeled is called Fowler and Guggenheim’s quasi-
chemical model.

This model may be calibrated on an experiment with a single adjustable
parameter 3, Based on the knowledge of the values of the activity
coefficients at a given temperature 7, for a given composition, using
relations [3.86] and [3.87], we calculate G,"; then, we use relation [3.85] to
deduce £, and, with equation [3.79], we obtain the ratio wap/z — i.e. the
Exn T Epp

difference €, — 5

Let us calculate Warren and Cowley’s parameter for Fowler and
Guggenheim’s quasi-chemical model.

If we attempt to link our results to the values introduced in sections 3.1
and 3.2.3, we immediately find:

z' =z'y=z [3.88]

<X>:NAyAB =N, Ypa = NpXy =Ny Xy =Ny / 2 [3.89]

=1y, =17 =1— 28 3.90

M =Toa =11 [3.90]
XA Xp

By substituting this last relation into equations [3.76] and [3.81], we
obtain:

2zx, X

n=1-

[3.91]

,Bq is defined, as usual, by relation [3.79].

Thus, the activity coefficients expressed by relations [3.86] and [3.87]
can be written in the form:

Iny, = gln (Mj [3.92]

Xa
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Iny, =§1{MJ [3.93]

Xp

Figure 3.3 shows the variations of Warren and Cowley’s order parameter
for Fowler and Guggenheim’s quasi-chemical model, for the following
values of the parameters: 7 = 800 K, N,wag = 30 kJ and z = 12. The result
obtained respects the symmetry of the model with a minimum for the
composition x, =xg = 0.5.

An A

0 02 04 06 08 1
)C];—>

-0.051-

-0.10
-0.15}

Figure 3.3. Variation of the degree of order as a function of the composition of a
binary solution in Fowler and Guggenheim’s quasi-chemical model
(reproduced from [DES 10], p.87)

NOTE 3.8.— The values kap and kg defined by expressions [3.50a] and
[3.50b] are linked to one another by:

) G S 7 [3.94]

Xp (kaAB _xA) Xa ('xAkBA _xB)

Thus, in Fowler and Guggenheim’s quasi-chemical model, the two
weighting factors kap and kgs depend on the composition.

There are several models of solutions which use this concept of overall
composition — Wilson’s, in particular. Given the restricted reach of these
models, we have chosen to use the concept of local composition only in
the context of the much more widely-applicable models UNIQUAC (see
section 3.5) and UNIFAC (see section 3.6).
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3.3. The quasi-chemical method of modeling solutions

If we examine relation [3.31], it is exactly as though we had applied the
law of mass action to a chemical equilibrium, which can be written as:

A-A+B-B=2 A-B [3R.1]

The constant in this equilibrium would be equal to 1, meaning that it is
independent of the temperature.

Similarly, by examining relation [3.75], we are led to write a law of mass
action of the same equilibrium [3R.1], but this time with an equilibrium
constant of:

K =exp— [?—A;] [3.95]

B

It is because of these similarities that Fowler and Guggenheim’s model is
known as the quasi-chemical model.

Generalizations of this model have been put forward. Remembering that
we have only taken account of the energies of interaction between near
neighbors, we can extrapolate, by writing that the energy which is involved
in the constant could be considered to be the sum of the energies between
first neighbors, between second neighbors, etc., which would lead to a
constant K appearing as the sum of the exponential terms, in the form:

K =exp— 2Wan + exp— 3Wan + exp— AU +... [3.96]
k,T k,T k,T
Thus, we can understand why the solution given by relation [3.31], which
is the Bragg—Williams approximation, is also called the zero-order
approximation, whereas Fowler and Guggenheim’s, given by relation [3.75],

is called the /“"-order approximation. Similarly, we can have 2™-order, 3"-
order approximations, etc.

As we can see, this quasi-chemical method is not dissimilar to the
associated-solutions model discussed in section 2.5. This method has
been rendered more generally applicable by writing what are known as
quasi-equilibria — i.e. equilibria of the same type as above, but between
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fictitious entities which might be atoms, molecules, vacancies, etc. — in fact,
any entities the user cares to define. Thus, we can find pairs of molecules,
trios, or even functional groups (parts of molecules), or clusters (groups of
atoms or molecules).

A generalization of Guggenheim’s quasi-chemical method has been
constructed in order to find the number of possibilities of configurations
between groups of elements for each pair in a binary solution of N,
molecules of component A and N molecules of components B (here, the
term “molecule” is used in a generic sense to speak of the elementary units
involved in the processes). The units that come together in pairs may be true
molecules, fragments of molecules, surfaces of molecules, parts of the
surface of molecules, etc. The distinction is maintained between those
elements which belong to component A and those belonging to
component B. We suppose that the canonical partition function of mixing is
of the form:

mix Ul(a ,b yeen
Ze =Zg(ak,bk~)e><p(—%j [3.97]
k

g(a,,b,...) is the statistical weight of a configuration of elements in the
volume defined by a series of particular values a,,b, of the configuration
variables a, b, etc. These variables may be the volumic compositions, the

local volumic compositions, the global or local surfacic compositions,
depending on the elements in question.

U"(a,,b,,...) is the configuration energy of mixing, which is a function
of the configuration variables.

Generally speaking, we do not know an exact solution to the problem.
The quasi-chemical method gives an approximate value for our unknown:
the total number of all the configurations.

We know from Boltzmann’s law (see section 2.1.1) that in the sum
involved in relation [3.97], one of the terms is much greater than the others,
and that therefore the sum can be replaced by this maximum term. Hence,
we can replace relation [3.97] with:

zm =g(a,b..)exp(—%}b’m)] [3.98]
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g(a,b.) and U™ (a,b,...) are the values of g and U™ which correspond to

the most probable configuration — i.e. to the values a, b, ... of the
configuration variables which yield the maximum Z2*.

The hypothesis of the quasi-chemical method is to assume that the
statistical weight g of the solution, i.e. the number of configurations with
energy U™ that yields the maximum value of Z!™, is given by the

following equilibrium:
Pair of elements belonging to A + Pair of elements belonging to B = Mixed pair

The law of mass action applied to this quasi-chemical equilibrium is
written as:

g(a,b,..)=h(N,,Ny)g,(a,b,..)gs(a,b,...) [3.99]
g, (a,b,...) denotes the number of configurations with energy U™
which have the maximum number of homogeneous pairs A-A, and similarly
gg(a,b,...) for the pairs B-B. The method postulates that A(N,,Ny,) is
contingent only upon the amounts of each of the components N, and Np
present. The function A(N,,N,,) appears as a corrective factor, because the

simple product g, g, would yield too high a number of configurations with
the energy U.

The solution must satisfy the boundary condition, which is that if the
temperature increases indefinitely, U”" tends toward zero, and therefore we
must find the number of configurations wherein the elements are distributed
at random. For this purpose, we choose a reference model which satisfies
that boundary condition. Guggenheim chose molecules comprising pairs of
spheres of equal dimensions, distributed at random, which we examined in
section 3.2.4, whereas in the UNIQUAC model, it is Staverman’s athermic
solution for molecules of diverse shapes and sizes, distributed at random (see
section 3.5) which is chosen. Suppose that we know the functions g, (a,b...)

gy(a,b...) and g’ (a,b...) in this referential model.
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To solve relation [3.99], we shall use a two-step process: firstly, we shall
calculate the function A(N,,N,,), and then use the result in

expression [3.99].

In order to determine A(N,,N,,), we must remember that this function

depends not on the configurations but only on the amounts of the two
components. Thus, we shall choose a solution of g that satisfies our
boundary condition, which we know how to calculate. Clearly, the simplest
such solution is that which we chose as a reference, for which the values are
marked with a subscript a (e.g. g,). This is the Bragg—Williams zero-order
approximation. It obeys the following equation (random distribution):

g (a,b,.)=g,(a,b,.)gs(ab,..) [3.100]

As the chosen reference solutions are temperature-independent, the
reference solution will be such that the function Z!* in equation [3.100],
when U™ =0, is maximal. Thus, we shall write the system of equations

which makes all the partial differentials of g in relation to the configuration
variables equal to 0:

dlng, dlng,, N ding,,
da, da, da,

=0 [3.101a]

dlng, dlng,, N ding,
ob, ob, ob,

-0 [3.101b]

The resolution of this system leads us to the particular functions of the
configuration variables a,(N,,Ng), b,(N,,Ny), ..., which enables us, on
the basis of the values g, (a,b...), g;(a,b...) and g"(a,b,...), to calculate
the particular functions g, , (N,,Ny), g.5(N,,Ny) and g, (N,,Ny), and

then, because % is independent of the model, we can use relation [3.99] to
deduce the following from those functions:

h(N,,N,)=—S5_ [3.102]

gaAgaB
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Then, we move on to the second phase, searching for the so-called
1™-order approximation or Guggenheim’s quasi-chemical approximation,
characterized by the relation:

U™ (a,b,...)

b, ... -
g (a )exr{ _T

]=gA(a,b,...)gB(a,b,...) [3.103]

Now we shall cancel out the derivatives:

ding U™ (a,b,.) dlng, N dlng,
da, RT da, oa,

=0 [3.104a]

dlng _U”’“(a,b,...):E)lngA +E)lngB 0 [3.104b]
ob, RT ob, ob,

We deduce the functions a(N,,Ny;) and b(N,,Ny), which enables us
to calculate the functions g, (N,,N,) and g,(N,,N;), and then by using
expression [3.99], we can calculate the function g(N,,N;), which is the
approximate solution to our problem.

If the solution has more than two components, we write as many relations
akin to [3.99] as there are pairs of components. For example, for a solution
with three components, we shall have the following three equilibria:

Pair A-A + Pair B-B = Pair A-B
Pair A-A + Pair C-C = Pair A-C
Pair B-B + Pair C-C = Pair B-C

Hence, for N components, we would have N(N-1)/2 equilibrium states.

Thus, the quasi-chemical method offers an approximate solution whose
validity has been proven by Chang, with some extremely arduous work.



92 Modeling of Liquid Phases

3.4. Difference of the molar volumes: the combination term

In the models discussed hitherto, we have always assumed that the molar
volumes of the two components of the solution were very similar, so that the
imperfection of the solution was attributed solely to interactions between the
molecules. This hypothesis, though, is clearly not true in all cases —
particularly in solutions of a polymer in a solvent — e.g. a solution of
polystyrene in acetone, where the difference between the molar volumes is
very significant: acetone has a molar volume of 73 cm’/mole, whilst that of
polystyrene is, on average, 3333 cm’/mole. In order to take account of this
fact, we introduce the concept of combinatorial excess entropy, which is
linked to the distributions of the molecules in the space.

3.4.1. Combinatorial excess entropy

Flory and Huggins, simultaneously but independently of one another,
constructed a term representing the excess entropy known as the
conformation term or the combinatorial excess entropy. We shall now
present their reasoning process for a mixture of small molecules, of a solvent
A, and large one-dimensional molecules making up the solute B. The
hypothesis at the heart of the model is still the pseudo-lattice, whose mesh is
defined as follows: the molecule of component A (the smallest molecules)
determines the acceptable dimension on each site of the lattice — its base
volume. The larger molecules of polymer (component B) are virtually
divided into sequences of the same volume as the small molecule, so that the
large molecule contains Vv, sequences such that v, is equal to the ratio of the

s

molar volumes of the two pure components:

0
V.
v, =—=%

N

5 [3.105]
Vi

A molecule of B occupies the v sites of the pseudo-lattice. If the
solution contains N, molecules of component A (the solvent) and Np
molecules of component B (the polymer), the number of sites in the lattice
is:

N,=N, +V.N, [3.106]
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NOTE 3.9.— Nothing in the reasoning process suggests that the sequence of
polymer chosen must correspond to a unit of monomer. The choice of
sequencing relates only to the volume of the molecule of solvent. The
sequence of polymer chosen may contain more or less than a monomer unit.

We shall now construct the lattice in order to calculate the number of
complexions Q, i.e. the number of possibilities for placing N molecules of
A and Np molecules of B. Then, we shall use Boltzmann’s formula [2.41] to
calculate the corresponding entropy term.

g F!,.I'E

117
NN
Tt

11
I
1T

Figure 3.4. Distribution of the molecules of solvent and polymer on the pseudo-lattice

To construct the lattice in space, at each site, we place either a molecule
of solvent or a sequence of a polymer chain, in the knowledge that those
sequences are connected to one another. Figure 3.4 gives a 2D representation
of the solution. Each grid square represents a site in the lattice which
contains either a molecule of solvent A (in which case the square is white) or
a sequence of the solute B (in which case the square is black).

Each site is surrounded by z adjacent neighbors (z is the coordination
number of the lattice). If we examine the closest neighboring sites of a
sequence of polymer, there are two sites which must, inevitably, contain
another sequence (if we discount the ends of the chains, of which there are
very few, in relative terms). Hence, there are only z-2 neighboring sites that
can be occupied by molecules of solvent A, and therefore able to interact in
the mixture (interaction between sequences of polymer of two different
chains also takes place in the pure polymer, and is not included in the mixing
value). We suppose that the molecules of A and B are randomly distributed.
Note that the entropic term of local composition which we encountered
above is not brought into play; instead we restrict ourselves just to the
combinatorial term. Thus, we have only one term of the excess Gibbs energy
due to the distribution imposed by the volumes.
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We shall break down the number of possibilities of placing N molecules
of polymer on v,Vj sites in a lattice containing N sites. The remaining sites,
obviously, are occupied by the Ny molecules of solvent.

Suppose that we have already put i molecules of polymer in place on the
lattice. Let €., be the number of possibilities to place the (i+1)" molecule

of polymer. We can calculate Q. by considering each of its segments,

i+l
one by one. Because the first i molecules are occupying iV, sites, there are
N, —iv, places to put the first segment in place. The probability of a site

closely neighboring this first segment being free is:

(Ny—iv,—1) (N,—iv,)
NO NO

I

Do = [3.107]

Because there are z sites neighboring this first segment, on average there
are pz possibilities to place the second segment. That second segment has z-1
free neighboring sites, and the probability of those z-1 sites being vacant is:

(Ny—iv,~2) _(Ny-iv,)
NO NO

N

D= =p, [3.108]

Hence, the number of possibilities to place the third segment is p,(z—1).

By the same reasoning, the same probability p, that the neighboring sites
will be occupied is valid for the addition of any segment, provided we have:

N, >>v, [3.109]

Thus, the number of possibilities of placing the v, segments of the (i+1)"

polymer molecule on the lattice is:
Q. =(N,=iv,) py ' z(z=1)"" [3.110]

If z is not too small and v, is sufficiently large, we can replace
z(z=1)""* with (z—1)"". By doing so, we obtain:

Q. =(N,—v,)py~z(z=)"" [3.111]
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In light of expression [3.107] for p, this gives us:

. v, Z -1 V-
Q. =(N,—iv,) (N_o) - [3.112]
noting that with the condition [3.109], we can write:
(NO B ivs ) ' _
[N, —G+1v)]! [3.113]
(Ny=iv,)(Ny =iv, =1)..(N, = (i+1)v, +1) = (N, —iv,)"
By substituting this back into equation [3.112], we find:
(N iV ) Z— 1 vl
Q. = : 3.114
i+1 |:N l +1 :' '( N ) [ ]
This can also be written as:
[Ny—=(i-1)v, ]! z -1,
Q. = ( )" [3.115]

e (No_ivs)! No

However, the number of complexions or number of possibilities of
placing the Ny molecules of polymer will be such that:

a=—TiJ]2.. [3.116]
The division by Np! stems from the indiscernibility of the molecules of

polymer.

If we feed expression [3.115] back into relation [3.116], we can separate
the product into two groups in the form:

I

—zl/)
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We can show that the second factor in the above relation can be
written as:

M | Ny —(i—-1)v, |! N.!
Mo .)‘]: 0 [3.118]
o (No=iv )t (Ny =Ny, )!
Thus, the number of complexions will be:
Ng(v,-1)
N, +Nyv,)! -
QE( A Bs) z 1 [3119]
N INg! N+ Nyy,

By switching to logarithms and applying Stirling’s approximation, we
find:

NA +NBVs +N21HNA +NBVX
N, N, [3.120]
+N, (v, —=1)[In(z=1)~1]

InQ=N, In

Thus, if we substitute equation [3.120] back into Boltzmann’s relation,
we find the entropy term of conformation:

n,In N, +Npv, I N, +Npv,
S© =R N, Ny [3.121]
+ng (v, —1)[ln(z—1)—1]

If we denote the volumic fraction of component i as:

N, [3.122a]

"N, + Ny,
the conformation entropy can be written as:

S =-R{n, In®, +nyIn®, —ny (v, -1)[In(z—1)-1]} [3.122b]
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However, the conformation entropy of the pure solvent on the lattice is
zero (there is only one configuration with one molecule per site), and that of
the polymer is given by relation [3.121] with Ny =0 —i.e.:

S, =Rny{Inv, +(v, -1)[In(z-1)-1]} [3.123]
Thus, the conformation entropy of mixing of the solution is:
§"O =8-S =—R{n, n®, +n,In®,} [3.124]

If we subtract the entropy of mixing from the perfect solution given by
relation [A.2.10], we obtain the following for the molar excess conformation
entropy:

S5O = —R{xA lnﬂ+ x, In &} [3.125]

XA X

We use this expression for a model of an athermic solution, defined in
Chapter 2 (see section 2.6).

3.4.2. Flory’s athermic solution model

Flory’s model applies to an athermic solution, meaning that the excess
molar enthalpy is null, so the excess molar Gibbs energy is simply written as
follows, in light of relation [3.125]:

G =—TS® =RT {xA inZa X, 1n&} [3.126]

XA Xp

For a binary solution, we use the excess partial molar Gibbs energy to
deduce the activity coefficient of a component i:

D, D. 0 0
In 7 =1n—’+1——’=ln;—’+l—;;—’ [3.127]
.XI- X.

1 m m
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oo (1) oo (1)
Vs Va Vs

10 0.245 | 0.0012
100 | 2.7x10% | 10%
1000 | 2.7x103 | 10*°

Table 3.1. Values of activity coefficients with infinite dilution of a polymer
(B) in a solvent (A) as a function of the “length” Vi of that polymer

In particular, at infinite dilution, we obtain the activity coefficient of
each of the two components of a binary by making ng = 0 for that of
component A and n, = 0 for that of component B. This gives us:

0 0

Iny:" :ln"_10+1_v_10:1ni+1_i [3.128]
v, V, vV Vi
VO VO

Iny;" =ln2+1--2=Inv, +1-v, [3.129]
Y Y

In this model, we have not taken account of the energetic interactions
between the molecules. For precisely this reason, such as model is well
suited for solutions of polymers, as the intermolecular energy values are very
low indeed in these solutions. Table 3.1 shows that the deviation from ideal
state grows very rapidly as the “polymer chain length” v; increases.

3.4.3. Staverman’s corrective factor

In the above model, we chose linear polymer molecules and molecules of
solvent which are much smaller than those of the polymer, so that every part
of the polymer was in the vicinity of molecules of solvent.

Figure 3.5. Exclusion of sites available for the solvent
due to the closure of the polymer molecule
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Staverman examined the problem of representing a solution in which the
molecules are no longer linear, and therefore a certain amount of the
molecule would not be exposed to the molecules of solvent, because they
would be isolated inside the molecule of solute. These imprisoned sites
receive no molecules of solvent. Figure 3.5 gives a 2D representation of the
exclusion of certain sites (shaded) which are no longer able to receive
molecules of solvent as near neighbors. This introduces a corrective factor
relating to the surface of the molecule.

3.4.3.1. The concept of structural parameters

We shall now introduce two fundamental parameters of the molecules
which are used in the models of molecular solutions discussed below. These
two parameters are:

— the ratio of the van der Waals volume of the molecule to the van der
Waals volume of a standard molecule or segment:

v o [3.130]
1 V N

w(st)

— the ratio of the area of the molecule to the area of a standard molecule
or segment:

7 _ S [3.131]
i Z *

w(st)

The choice of standard is arbitrary. Frequently, we use the Abrams and
Prausnitz standard [ABR 95]: a linear molecule of polyethylene of infinite
length, which conforms to the following equation:

rxt—lzg(rﬂ—qm) where z = 10 [3.132]

This gives us:

=15.17 cm®/mole and ¥

w(st)

14

w(st)

=2.5%10°cm®/mole [3.133]
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Thus, the structural parameters are calculated on the basis of the two
relations:

=V, /1517 and ¢, = %, , /2.5%10’ [3.134]

i w(i)

Table 3.2 gives the values of the structural parameters of a several
molecules, calculated by Abrams and Prausnitz on the basis of the van der
Waals volumes and the areas published by Bondi in 1968.

Based on the structural parameters, we define:
— the volumic fraction of a component i by:
Nr 7
@ =t = [3.135]
N

X

1

M-

M-

Il
—_

1 1

— the areic fraction of a component i by:

Ng, q
g =—vidi __ N4 [3.136]

i N N
D Na, Y.xgq,
i=1 i=1

Fluid 7 qi

Water 0.92 1.40

Carbon dioxide | 1.30 1.12

Ethane 1.80 1.70
Benzene 3.19 2.40
Toluene 3.87 293
Aniline 3.72 2.83
n-Octane 5.84 4.93
Acetone 2.57 2.34

Dimethylamine | 2.33 2.09
Acetaldehyde 1.90 1.80

Polyethylene 0.67v, | 0.54v,

Table 3.2. Values of the structural parameters for various molecules
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3.4.3.2. Staverman’s model

Staverman uses Flory’s model as a starting point, but introduces a form
factor in the number of complexions, taking account of the fact that the
molecules are only in contact at their surfaces. This enables him to construct
a new expression for number of possibilities of introducing the molecule of
polymer and the molecules of solvent. Thus, the excess molar entropy term
of conformation is altered, and becomes:

N
S5O = —R{Zx,. 1n%+§2qixi 1n%} [3.137]
i=1 i i

1

We can see that the form factor is illustrated by the ratio 6, / @, .

Using the concepts which we have introduced, we shall now present one
of the most popular models of solution: the UNIQUAC model.

3.5. Combination of the different concepts: the UNIQUAC model

The UNIQUAC (Universal Quasi-Chemical) model was introduced by
Abrams and Prausnitz (1975), using Guggenheim’s quasi-chemical model
and applying the concepts of conformation with Staverman’s relation and
Wilson’s local-composition model.

This model, which yields excellent results for polar and non-polar
molecular liquids, is especially well suited for the study of liquid/
vapor equilibrium and the equilibrium between two liquids that are not
completely miscible. Regardless of the number of components of the
solution, the application of this model only requires the knowledge of two
adjustment parameters per binary system, which can be deduced from the
solution. The model is so widely applicable that it actually contains a
number of previously classic models such as the models put forward by
Van Laar, Wilson, Renon et al. (the NRTL — Non Random Two Liquids —
model), Scatchard and Hildebrand, Flory and Huggins as special cases.
In addition, itlends a physical meaning to the first three coefficients
B.,6, and & in the Margules expansion (equation [2.1]).
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The model is founded on the following hypotheses:

— we accept the existence of a pseudo-lattice in space, which occupies the
whole of the volume. The vacancies in the liquid will not be taken into
consideration, either in the pure liquids or in the solution;

— the coordination number of the lattice is the same around an element of
A as it is around an element of B, and it is also the same as in each of the
pure liquids of which the solution is composed. Thus, for example, for a
binary solution, we would have:

Zy,=zp=2z',=2z'y [3.138]

—the interacting elements chosen are segments of the surface of each
molecule. Each molecule may present different surface elements;

—the fragments of components are chosen in such a way that their
dimensions, volume and surface area are practically the same. As we saw
above that vacancies are not taken into account, this means that the mixing
volume is null, and therefore that we can treat the internal energy and
enthalpy of mixing as one and the same thing, and do likewise for the
Helmholtz energy and the Gibbs energy of mixing;

— although the interacting surface elements may be different in nature
from one point in the solution to another, we shall make the hypothesis that
the energies of interaction are mean values, which depend only on the origin
of the elements. Thus, for instance, for a binary system, we would have the
energy &£, = £, between two surface elements, one of which belongs to the

molecule of component A and the other to the molecule of component B,
£,, between two elements belonging to two molecules of component A and

£y between two elements belonging to two molecules of component B.

The states will be characterized by the local areic fractions:

0,, denotes the surface fraction of surface elements derived from A

around a surface element derived from A. We can immediately deduce the
mean of the other symbols: 6,,, 6., and 6, . Of course, the balance

around any surface element gives us:

0,, +6,, =1 [3.139]
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By + 6, =1 [3.140]

Thus, as configuration variables, we can choose a value belonging to each
of the two pairs 6,, or &, , on the one hand, and 6, or 6,; on the other.

In light of our last hypothesis concerning the energies of interaction, the
internal energy of mixing will be given by the expression:

mix mix z
u™-U," = _EqANA (HAAEAA S 7N )

[3.141]
Z
_E g Ny (HBBgBB + 6AB8AB)
For the sake of ease, we shall set:
u =g =u, [3.142]

g 2 y Jt
This gives us the following expression for the internal energy of mixing:

Umix _ UO — _qANA (HAAMAA + eBAuBA )

[3.143]
—qyNy (eBBuBB +O,5llp )

We shall express the canonical partition function of mixing by using
Guggenheim’s quasi-chemical method (see section 3.3), applied with
Staverman’s athermic model as a reference, where the excess entropy is
given by relation [3.137].

In Staverman’s model, the statistical weights of the homogeneous
elements g and g, are given by:

g* _ (qlngll +q,N,0, )!
1 (qlNlell)!(qlNlezl)!

[3.144]

g* — (q2N2022 +q1N1021)!
’ (qZNZQZZ)!(qZNZQZ) '

[3.145]
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With the zero-order approximation, calculation leads us to:

N

0O = D _pg0_p 3.146

AA qANA +qBNB AB A [ ]
N,

oV = T8 _ g0 _g 3.147

BA qANA +qBNB BB B [ ]

6, is the areic fraction of the molecule i. It is given by relation [3.136].

The application of the 1¥-order approximation yields:

6,, = [3.148]

6, +6, exp( uAAj

Oy = [3.149]

by
, +0, exp[ uBB )

After calculating the partition function using relation [3.97], we deduce
the excess molar Gibbs energy using the relation:

RTInZ

ny

[3.150]

xs xs _
Gm :F;n -

We can see that this molar Gibbs energy can be expressed as the sum of
two terms:

G"x: — G;S(Com) + G;;S(ReS) [3.151]

One of them, G*“™, is drawn from Staverman’s athermic solution,
from which it draws its name — the conformation term:

D, D,
x, In—+x, In—=2
xs(Com) xA xB
G, =RT 0. 6. [3.152]
+Z Gaxy In—2+ g x, In—=
2 D D

A B
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The other term, G°**), is called the residual term. Its value is:
Gr®) =RT[~q,x, In(6, + 6,75, )~ Xy In(6, +67,,) | [3.153]

In this latter expression, the different symbols have the following
meanings:

T, = exp(—%) = exp(—%j [3.154a]
Top = exp(—"f*ﬂl{%l = exp(—‘%ﬂJ [3.154b]

@, is given by relation [3.122], which can be written in the form:

& =i [3.155]

We can easily calculate the activity coefficients for the components of a
binary solution:

=iy w1 Ty
x, 2 D, Ty
~q,In(6, +6,7;,) [3.156]
T T
+0 BA _ AB
ba (HA 0,70, O, 16,7 J
where:
zZ
L=2n=4)=(r-1) [3.157]

with a symmetrical expression for component B.
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In the view of the model’s developers, any value of the coordination
number z between 6 and 12 has practically no impact on the results. Thus,
they chose the value:

z=10 [3.158]

For a solution with N components, the above results can be extrapolated,
and we obtain the following results:

N
, @,
G = RT{E xIn—t+ =t
i=1 i

: [ZN:ql.xl ln%ﬂ [3.159]

i i

N N

G = RT[—Z q.x, 1n29/¢/.,1 [3.160]
i=1 Jj=1

7. =ex _uﬂ.—uii =eX _i [3.161]

The activity coefficients of each of the components are also divided into a
conformation term and a residual term, and we have:

2, DY
Iy =In—+ 2, 1n%+z,. =ty x [3.162]

i i xi J=1

N
Iny " =g In|1-> 67, -> [3.163]

N o O.7T.
A s Zekrk/
k=l

In 7" = In D™ 4 I ") [3.164]

We can see that the UNIQUAC model requires only two adjustable
parameters for each pair of components: the differences: u; —u;and u; —u,

(or a; and a;). However, we shall take the precaution of not involving too

many parameters. For a system with N components, there are only
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N(N—1)/2 binary systems and therefore the same number of pairs of
adjustable parameters.

Name of model Approximations about Approximations about
equation [3.152] equation [3.153]
Flory—Huggins _ _ _ —
athermic model ¢, =handg, =1, Uy =Ujand Uy, =Uy
Wilson 2-parameter _ _ —a. =1
model ¢, =handg, =1, 9=9=
xs(Com) __ -1 _ -1 _
NRTL model G, =0 (ql) _(%) =0,
Van Laar’s model G*Com _ Expansion of (Au / RT) , limited
" to the 3™ term
Scatchard— G¥(Com _ Expansion of (Au /RT ) limited
Hildebrand model m to the 3™ term
Margulés 3-term G¥(Com _ Expansion of (Au /RT ) limited
model " to the 4™ term
Flory—Huggins non- g =randq, =7 Expansion of (Au / RT) limited
athermic model b e to the linear term

Table 3.3. Particular models of solutions included in the UNIQUAC model

The model’s creators showed that a certain number of classic models of
solutions published previously were actually included in the UNIQUAC
model, as they appear to be particular cases. By way of certain
approximations performed on equations [3.152], [3.153] and [3.154], we
obtain the expressions of the excess molar Gibbs energy for these different
models. Table 3.3 lists some of these simplifications.

3.6. The concept of contribution of groups: the UNIFAC model

The UNIQUAC method requires complete calculation in each specific
case. Now, though, we are going to examine the concept of the contribution
of groups, which can be used to calculate certain properties of the molecules
a priori, using relatively small databases, and the application to a model to
calculate the excess Gibbs energy a priori.
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3.6.1. The concept of the contribution of groups

The concept of the contribution of groups is based on the idea of
additivity. Some of the properties of a molecule can be expressed by a
weighted linear combination of the contributions of the groups of atoms
making up the molecule.

Thus, for example, we can calculate the values of the parameters 7, and
g, of the volumic fraction and areic fraction of a molecule, as being the

weighted combined of values of those same properties attributed to groups of
atoms. Thus, for the volumic fraction parameter 7, we would write:

r=YVOR, [3.165]
k

v\ is the number of groups of nature k present in the molecule i, and R,

is the parameter of the volumic fraction attributed to group & (defined on the
basis of equation [3.134], as was the case for molecules). The sum is
extended to all the groups of which the molecule is composed.

Similarly, for the parameter of the areic fraction ¢,, we shall have:
0= 0, [3.166a]

To do this, we have divided the molecules into groups of atoms, which
are, themselves, divided into subgroups. Each subgroup is assigned a value
R, and a value Q, . Table 3.4 gives the contributions of a number of groups.

Each first term of an organic series constitutes a group.

The values calculated by relations [3.165] and [3.166] can be used in the
UNIQUAC model (see section 3.5) if the molecular values are not available.
3.6.2. The UNIFAC model

Models known as group models have been created, based on the
following observation: the number of systems — even just the number of
binary systems — is extremely high, and new ones are being discovered all
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the time; meanwhile, the number of functional groups of which these
molecules are composed is far less.

Group Subgroup | Ry (o)
CH; 0.9011 | 0.8480
CH, 0.6744 | 0.5400
CH;
CH 0.4469 | 0.2281
C 02195 | 0
CHy=CH | 1.3454 | 1.1760
CH=CH 1.1167 | 0.8670
Cc=C CHy=C 1.1173 | 0.9880
CH=C 0.8886 | 0.6760
Cc=C 0.6605 | 0.4850
ACH 0.5313 | 0.4000
ACH
AC 0.3652 | 0.1200
OH OH 1.0000 | 1.2000
CH;0OH | CH;0H 1.4311 | 1.4320
ACOH | ACOH 0.8952 | 0.6800
CH;CO 1.6724 | 1.4880
CH,CO
CH,CO 1.4457 | 1.1800
CHO CHO 0.9980 | 0.9480
COOH | COOH 1.013 1.2240

Table 3.4. Functional groups and subgroups and structural parameters for the UNIFAC

model (“AC” represents a carbon belonging to an aromatic ring)

The UNIFAC model

(UNIQUAC  Functional

Group Activity

Coefficient), which was put forward by Fredenslund, Jones and Prausnitz in
1975, is a group model where the idea is to use the existing data
on equilibrium states to predict the properties of systems for which
no experimental data are available. Thus, it is an entirely predictive model
which, unlike the models discussed above, does not require us to determine
parameters by calibrating the experimental results found for partial systems
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(in contrast to the UNIQUAC model, which requires the data
from binary systems in order to deduce the properties of more complex
systems).

The group-model method requires us to work back from experimental
results to determine parameters which are characteristic of the interactions
between pairs of structural groups, and then inject that knowledge back into
models to obtain the properties of new systems containing those same
structural groups.

The idea underlying the UNIFAC model is the consideration that a
solution of molecules i, j, etc. behaves like a solution of the functional
groups k, m, etc. making up those molecules.

For example, a mixture of linear alkane molecules involves three types of
interactions: CH;—CHj; CH;—CH; and CH,—CH,. The properties of any given
mixture of alkanes must be able to be deduced from the properties linked to
the three types of interactions at play. Of course, this whole construct is
founded on a hypothesis which stipulates that the interactions between
groups do not depend on the environment of these groups in their respective
molecules. Yet, indubitably, it is this hypothesis which is the main source of
errors that become apparent when the calculation results are contrasted with
experimental data. For example, we can see that, in a complex system, the
results given by the wholesale use of UNIFAC are much poorer than those
given by the use of the UNIQUAC model. For this reason, the UNIFAC
model is not used wholesale to model a complex system; instead, essentially,
it is used to obtain the necessary data on binary systems for which no
experimental data are available. These data are then fed back into a
UNIQUAC-type model (see section 3.5).

Thus, we shall apply the UNIQUAC model to this solution of functional
groups.

From this, we deduce that the activity coefficient for a component i obeys
relation [3.164], meaning that its logarithm will be the sum of two
contributions — one conformation contribution, pertaining to the entropy, due
to the arrangement of the molecules within the volume, and the other
residual, relating to the enthalpy and due to the different interactions
between pairs of molecules.

The conformation contribution is written by following relation [3.162] —
indeed, the arrangement of functional groups obeys the same laws as that of
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entire molecules, in view of the unavoidable intramolecular bonds between
the functional groups in the same molecule.

The residual contribution is obtained by considering a functional-group
solution.

The values corresponding to the functional groups will be written with
the same letter as the same value in a solution of molecules, but in
uppercase. Thus, the coefficient of activity of the group k& will be /7, , its
volume parameter R, , its surface parameter (), , its molar fraction X, . In
the energy exponential of relation [3.153], the letter 7 would be replaced by
¥, its surface fraction & would be replaced by &, . Only the term a in

the equivalent relations [3.154] would retain the same notation, a,, . By

transposition of relation [3.163] to the group solution, the residual activity
coefficient /7, for a group k will be written as:

RTIn7, =Q,|1-In Z@ Y, - Z O, [3.166b]

Z@

The different entities are defined, as before, for the groups this time by:

The surface fraction of the group £:

X9

= k=k [3.167]
R A
k
The energy term between the groups & and m:
a,
Y = eXp(——”’] [3.168]
T
The molar fraction of the group £:
ZVU)
[3.169]

zzv(l) X,
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Of course, that same coefficient of residual activity of the group is, by
definition:

RTInT, =p, —u] [3.170]

In this expression, 4, is the chemical potential of the group & in the
group solution studied, and g, is the chemical potential of component & in a

hypothetical substance in which the component £ is pure. Evidently, such a
substance can neither be formulated nor conceived. However, we are able to
conceive a pure solution of i, considered to be a solution of its groups, in
which the group k has a chemical potential 4’ and we can write the

following for the chemical potentials and the residual activity coefficients:
=1 = (1= 1) = (4" =4 ) =RT(In I =n 1) [3.171]
I\’ is the coefficient of residual activity of the component & in a pure
solution of “component” i.

In addition, the residual chemical potential of component i is given by the
linear combination of the chemical potentials of the different groups, in
accordance with:

1= v [3.172]
k

Similarly, for the pure solution of i:

g =2y’ [3.173]

k

This gives us the coefficient of residual activity of component i (using
convention (I) — pure substance) in the solution at hand:

RTIny* =, —g) =RTY v{" (In I, ~InT") [3.174]
k
The term In/", is calculated on the basis of relation [3.166]; the term

InI"" is also calculated on the basis of the same relation [3.166], but
introducing the elements for pure i — in particular, the molar fraction of the
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group kis X" in the pure component i and is given by expression [3.169],
making x; = 1. This term is then fed back into relation [3.167] and the
interactions to be taken into account in expression [3.166] exist only
between groups belonging to the component i.

Groups |CH, ACH |[|ACCH, |OH CH;0H |ACOH CH,CO [CHO |COOH
CH, |0 61.13 [76.5 986.5 [697.2 0133.3 476.4 677 663.50
ACH |[-11.12 |0 167 636.1 [637.3 1329 25.77 3473 |537.4
ACCH, |-69.7 |-146 |0 803.2 (603.3 884.9 -52.1 586.8 (8723
OH |1564 [89.6 |25.82 0 -137.1 -259.7 84 -203.6 199
CH;0H |16.51 |-50 -44.5 249.1 |0 -101.7 2339 (3064 |-202.0
ACOH (275.8 [25.34 |244.2 -451.6 [-265.2 0 -356.1 [-271.1 |408.9
CH,CO [26.76 |140.1 |[365.8 164.5 [108.7 -133.1 0 -37.36  [669.4
CHO |[505.7 |23.39 [106.0 529 -340.2 -155.6 128 0 497.5
COOH (315.3 [62.35 |89.86 -151 339.80 -11.00 -297.8  [-1655 |0

Table 3.5. Energy interaction terms of groups, expressed in Kelvin'
(“AC” represents an aromatic carbon)

All of the activity coefficient of the component i in the solution,
therefore, is given by relation [3.164], in which the terms are given by
relations [3.162] (with [3.156]) and [3.173] (with [3.166]).

We can easily calculate the excess molar Gibbs energy and the excess
molar enthalpy, using:

i

G* = RT{ZZ;C,.V;” [m Ir,—Inr? ]} [3.175]
k

(i)
HY =—RT{ > xv| T CALENS i) P [3.176]
i k aT P.n aT P.n

The calculations are conducted using values of the structural parameters
of the groups and the energy terms of pairs of groups ay,. The initial data,
drawn from the study of numerous liquid/vapor and liquid/liquid equilibria,
were provided by Gmehling in 1979. A few examples of structural
parameters and energy terms ay, (in Kelvin™) between two groups k and m
are listed in Tables 3.4 and 3.5 respectively.
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3.6.3. The modified UNIFAC model (Dortmund)

The UNIFAC model discussed in the previous section does suffer from a
number of shortcomings, particularly for values of the activity coefficients in
infinite dilution, the enthalpies of mixing and the values obtained for highly-
asymmetrical systems. In order to improve the data, adjustments were made
in three directions (1987):

—a refinement of the functional groups, and therefore of their number.
The UNIFAC Consortium (Dortmund Data Bank), a user group, now
produces 92 groups instead of the 67 that were included in the first system.
The result of this is that we are better able to take account of the groups’
environments;

—an increase in the number of binary systems studied experimentally,
with a view to refining the energy values;

— better integration of the variation of the results with temperature, by

writing the energy parameter in the form:
akm + bka + cka2 [3177]

Obviously, the consequence of this is the provision of four extra
parameters per pair (b,, ,c,, .b, and c, ).

All of these improvements were brought together in the creation of a new
model, called the Dortmund modified UNIFAC model, which is
characterized, for each binary system, by four structural parameters and six
energy parameters contained in a database.

The UNIFAC consortium also gives its subscribers a piece of software
capable of calculating various thermodynamic values on the basis of the
model and its database.

3.6.4. Use of the UNIFAC system in the UNIQUAC model

Although the UNIFAC model is totally predictive, it is rarely used for
systems with more than two components because, as indicated above, the
results given in such cases by the UNIQUAC model are often of better
quality. On the other hand, UNIQUAC requires us to know two parameters
per pair of components: the energy parameters, drawn from experimentation.
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Occasionally, when using it, we do not have the necessary data for all the
pairs that it is necessary to consider. Therefore, we use the UNIFAC model
to provide the data corresponding to certain pairs for which we have no
experimental data. It is then necessary to transfer parameters from the
UNIFAC model to the UNIQUAC model. This is what we shall now
examine.

Remember that the use of UNIQUAC requires parameters Ty, and T,
which are at play in relation [3.153] — in fact, by relations [3.154a] and
[3.154b], the energies ay, and a,; It should be noted that, in spite of the
similitude of the notations, these values are not those that are given by the
group data (e.g. in Table 3.5) which are group values, whereas those
required by UNIQUAC are mean values per molecule. In order to switch
from one to another, we proceed as follows.

For the binary system in question, we calculate the values of RT In y**

for each of the two components, on the basis of the UNIFAC system and
relation [3.174], for different values 6, i.e. the composition of the binary

solution defined by the quantities NA and NB of molecules of the two
components and relation [3.136]. We then adjust the two curves
RTIny*@,) and RTly ' (6,) on the UNIQUAC model on the

basis of relation [3.161] by choosing appropriate values Tap and Tga. These
latter values, or the corresponding energies aapg and aga, are then used with
UNIQUALC to study the complex system containing the pair A-B.

In this chapter, we have examined a number of models based on what is
known as the G* method. They share a common characteristic: they do not
take account of any possible vacancies in the liquid, i.e. non-null excess
volumes. Another method, based on equations of state, gives better results in
certain cases, particularly when one of the components of the solution is in a
hypercritical state and in the vicinity of the critical region of the solution.
These models are described in the chapters devoted to mixtures of gases.






4

lonic Solutions

Ionic solutions are set apart from molecular solutions by the intervention
of Coulombian forces between electrical charges — forces which decrease far
more slowly with increasing distance than do the van der Waals forces
which exist between molecules. An important consequence of this difference
is that for ionic solutions, we can no longer content ourselves with the two-
body interactions between near neighbors. This means that, in the case of
ionic solutions, the approximation of the ideal dilute solution model
(see sections 2.4 and 3.1.3) is acceptable only for much lower concentrations
than in the case of molecular solutions. In other words, for an identical level
of concentration, an ionic solution is more imperfect than a molecular
solution.

Numerous models of ionic solutions have been put forward in the
existing body of literature. The most important of these models, which is
actually found to be included in all the others, is Debye and Hiickel’s,
which attributes the imperfection solely to the electrostatic forces
between the ions but, in spite of this, is acceptable only for fully-dissociated
strong electrolytes and very-dilute solutions. Then, we shall cite
Pitzer’s model (1973), which combines Debye and Hiickel’s model with a
virial-type expansion, and is therefore able to extend the range of
concentrations examined. Beuner and Renon’s model (1978) builds on
Pitzer’s, extending it to solutions containing neutral molecules such as SO,,
NH;, CO, or H,S. The most recent models take account of the concept of
local composition (see section 3.2). In this category, we can cite the NRTL
electrolyte model introduced by Chen (1979). Finally, other models have
expressed the intermolecular interactions over short distances by a

Modeling of Liquid Phases, First Edition. Michel Soustelle.
© ISTE Ltd 2015. Published by ISTE Ltd and John Wiley & Sons, Inc.
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UNIQUAC simulation (see section 3.5), and even the UNIFAC version (see
section 3.6).

The objective of all the improvements made to modeling has always been
to find models that cover ranges of increasingly high concentrations, which
are usable both for weak electrolytes and strong electrolytes, i.e. introducing
models of solutions that are mixtures of ions and molecules.

In this context, we can agree that the interaction energy can be considered
to be the sum of two contributions, in the form:

w= w4 M [4.1]

(el)

The first term w'®’ is a contribution due to the electrical charges,

(Mol)

connected to long-distance interactions; the second term w corresponds

to intermolecular forces over a short distance and pertains to the molecules
and the ions independently of their charges.

In general, the first term yields Debye and Hiickel’s model (see
section 4.2).

The second term can be expressed in a variety of forms, such as the form
of a virial involving the two-way and three-way interaction terms of the
molecules (etc.) as found in Pitzer model (see section 4.3), and yield an
excess Gibbs energy in the form:

st — st(e]ec) + st(Virial) [42]

Another possibility is that the excess Gibbs energy can take the form of a
sum of two terms such that:

st — st(elec) + st(UNI) [43]

— a term of electrostatic interaction, the basis for which is still Debye and
Hiickel’s model, which pertains only to the ions;

—a “UNIQUAC” or “UNIFAC” term, concerning both the ions and the
molecules, which is of the same nature as that which we encountered in the
molecular models (see sections 3.5 and 3.6);
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Relations [4.2] and [4.3] are transposed to give relations [4.4] and [4.5] in
terms of activity coefficients:

In 7/] —In 7/i(elec) +In 7/i(viria]) [44]
Iny, =1In %% +In ™" [4.5]

In what follows, we have chosen to show the progression of the modeling
of ionic solutions, focusing at length on Debye and Hiickel’s essential
model, Pitzer’s model (which is very widely used in industrial circles) and
the extension of the UNIQUAC and UNIFAC models to mixture of ions and
molecules.

4.1. Reference state, unit of composition and activity coefficients of ionic
solutions

The molecular models that we have discussed (see Chapters 2 and 3) all
yielded activity coefficients in reference (I), pure substance reference, and
the compositions were always expressed in molar fractions. In the case of
ionic solutions, firstly the distinction between solvent and solute is often
very clear, and secondly as the notion of a pure ion is illusory, usually the
activity coefficients of the components of an ionic solution are expressed in
reference (II), the infinitely-dilute solution, or even more frequently, in
reference (III), the molar concentration. As is suggested by relations [4.4]
and [4.5], we shall add terms put in place in the case of molecular solutions
and purely ionic solutions. Thus, in order to perform this addition, we need
to be able to switch, for the molecular components, from an activity
coefficient in reference (I) to an activity coefficient in reference (II) or (III).
Relation [A.2.21] is used to switch from »’to ", and given that we

can write:

H —gf ()
= =% =In 4.6
RT I8 [4.6]

relation [A.2.21] is transformed into:

B =y Dy [4.7]
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This relation will enable us to add terms of the same nature into a sum of
activity coefficients such as relation [4.4]. As we can see, the electrostatic
term is given directly in convention (II), whereas the combination and
residual terms are, as we have seen (in section 3.5), obtained in
convention (I).

Additionally, in normal usage, the composition of an ionic solution is
very frequently expressed in terms of molality (M, : number of moles per kg
of solvent) or concentration (moles per liter of solution), rather than molar
fraction.

We find the molar fractions on the basis of the molalities using the
relation:

MS = n, = n, = X [48]
my,  nM, x,M,

The chemical potential of the component s becomes:
U =4 +RT Iy x MM, =pu” +RT InM,+RT InM_ y!"™ [4.9]
We find the following equivalences, in light of relation [4.8]:

7 =y, and 4" =pu” +RTInM, [4.10]

s

M, is the molar mass of the pure solvent and x, its molar fraction,
practically equal to 1 for dilute solutions.

If, now, the unit of composition is the concentration (molarity in moles
per liter), with v, denoting the volume of solvent, then if the solution is

sufficiently dilute we find:

¢ =2 [4.11]
VoXo

and therefore the chemical potential of the solute becomes:

u, =1 +RT Inx e,y =u"™ +RT Incy!™ [4.12]
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For the activity coefficient in reference (III), the molar solution:
7(111) _ 7(”)x ~ 7(11) and #(111) Z,Ll(”)V [4 13]
K s 00— /s s s 0 ‘

We shall also see in section 4.2.11 how to switch from using
concentrations to using molalities.

4.2. Debye and Hiickel’s electrostatic model

The purpose of Debye and Hiickel’s electrostatic model is to give an
account of the contribution of the effect of charges on the properties of
solutions. When it was first published, this model was considered a model of
an ionic solution in itself, but applicable only to sufficiently dilute solutions
of strong electrolytes, which are fully dissociated — in practice, with ionic
strengths less than 0.01 mole/l. A resurgence of interest in this model
occurred when it was understood that the interactions due to the charges
were not the only interactions at play in solutions, and that the model needed
to be used in conjunction with another, integrating the molecular interactions
over short distances. Debye and Hiickel’s model has thus become the
standard way to express the contribution of the electrical charges to the
properties of any solution containing ions.

Numerous publications have given developments of Debye and Hiickel’s
theory, some of them more condensed than others, and some more rigorous
than others. Inview of the importance of this model, which is used
unanimously in all models of ionic solutions, we have chosen to base
our presentation here on that given by Fowler and Guggenheim. Indeed,
the method developed by these authors shows numerous advantages,
including the fact that it is extremely rigorous in regard to the fundamental
hypotheses — particularly hypothesis 4 (see section4.2.5.4). This
development also establishes criteria of self-consistency which must be
respected by the accepted approximations. We have chosen to present this
model by using the concentrations (molarities) in moles/liter to express the
composition of the solutions. We shall see later on (in section 4.2.11) what
becomes of the expressions derived from the model when the compositions
are expressed in molalities (moles/kilo). In addition, if we use the SI units,
the expressions of electrostatics will respect this system, in which the
electrical permittivity of the medium is given by:

e=¢,D [4.14]
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D is the relative permittivity or dielectric constant of the medium: it is a
dimensionless property whose value is around 80, for example, in the case of
water at ambient temperature. &, is the electrical permittivity of a vacuum.

Its value is 8.85 x 10" SI, which equates to around 10~ /367 .

4.2.1. Presentation of the problem

Thus, we consider an encompassing solution, in a continuum with
dielectric constant D (which, as we shall see, will be that of the solvent).
This solution contains s types of ions 1,2,...,i,...,s with positive or negative

electrovalences  z,,z,,...,z;,...,z, at the concentrations (molarities)

cegLjgeeeg Ly

0 0 0
Cp 5Cy5enisC

1

,...,C, meaning that the volume V contains N,,N,,...,N,,...,N,
ions or n,n,,...,n,...,n, ions-moles of each type. Each ion i carries the

charge ze, where e is the elementary charge, which is 1.602x107"
Coulombs. The electrical neutrality of the collection is expressed by any one
of

the following three equations:
S Nz =0o0r Ynz=0 or Yc'z=0 [4.15]
s s i=1

The overall density of an ion j in the volume of the solution is
NV =Na¢(/-) /1000 (if the concentration is expressed in moles per liter). If

we choose an elementary volume Jdw at a point M of the solution in the
vicinity of any ion k (Figure 4.1), then following thermal agitation, at all
times, ions of the different species enter into that element, so that at a given
time, there may be an excess of positive or negative charges. The local

density of ions j around the point M will be SN, / dw=N,c!""’ /1000 (where

cj.M ) is the concentration in molecules per liter around the point M).
Nonetheless, on average, over time, the local concentration of an ion j is not
equal to its overall concentration in the solution. Thus, if the point M is a
neighbor of a cation, it is probable that the density of anions present will, on
average, be greater at point M. Put differently, the electrostatic forces over a
long distance lead to an ordered structure of the solution, the effect of which
is that the concentration of a species at any given point is not equal to its

overall concentration in the solution. We recognize the concept of local
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composition, as described in Chapter 3. We write the following for the
concentration of ions j at point M:

=g (r,z,z,T) [4.16]
ZA
®QO 5,
M y
Tij

(i)(/ > x

Figure 4.1. [on j in the vicinity of an ion i

The function g, (7;;,2,z,T) is a distribution function which depends on

the two species k and j, on the interactions between those species and
particularly, on how far apart they are 7, but also on the temperature,

because thermal agitation works against the ordering of the solution. The
distribution function will generally tend toward zero if the repulsion between
the ions k and j is strong, whereas if there is a strong force of attraction
between those two ions, this function will tend to have a high value.

At a point M, the charge density would be:

S
p:ZCEM)zie:ciM)Zz;e—ch)Z‘zi_‘e [4.17]
i=1 i i

We shall use the notation ¢! and ™ to denote the local

concentrations of positive and negative charges at that point M.

4.2.2. Notations

To clarify our arguments, in this presentation of Debye and Hiickel’s
model, we shall use a particular system of notation, which we shall begin by
presenting here.



124  Modeling of Liquid Phases

Suppose we have a value Q that quantifies a property of the collection of
ions and is dependent on their distribution within the volume, i.e. on the
configuration of the system. Just as we have done up until now, we shall use
(Q) to represent the mean value of Q across all possible configurations. If w
denotes the potential interaction energy of the system, then by virtue of the
first mean value theorem, we shall have:

J‘fexp(—g}(da) :j erxp(—k—J(dw) [4.18]

B

We use the notation <Q>a for the mean value of Q across all possible

configurations around an ion o when that ion ¢ is held still in a given
position. Thus, we shall have:

j jexp(—gj (dw)" _j J.Qexp{—k—J(da)) 1 [4.19]

The integrations are then performed on the coordinates of all the ions
other than the ion ¢

4.2.3. Poisson’s equation

Hereinafter, we shall suppose that we can define, at each point of the
solution, for any configuration at all, an electrostatic potential ¥ and a
charge density p which obey Poisson’s equation. Thus, in light of relation
[4.16], at a coordinate point » which is not occupied by an ion, we would
have:

V¥ (r) = _/;L;) [4.20]

0
If we now average this expression over all configurations with the fixed
ion k, in light of the notations introduced in section 4.2.2, we shall have:

{p®),

v: (), =20

[4.21]
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4.2.4. Electrical potential due to the ionic atmosphere

We have agreed (expression [4.1]) that the interaction energy could be
considered to be the sum of an energy due to the electrical charges
and an energy due to the molecular interactions in proximity. We now
suppose that, if the molecular interactions were the only forces at play, the
solution would be accurately represented by the model of an ideal dilute
solution (see section 3.1.3) and that the deviation from this model is due
merely to the long-distance interactions w'“” caused by the electrical

charges.

(mol)

Because our solution is dilute, the energy w is, in fact, due only to

the molecular interactions (short distance) between molecules of solvent and
ions of solute, and therefore is independent of the different relative
configurations of the ions.

The Helmholtz energy of the real solution with the charged ions would
exceed that of the hypothetical solution, wherein the ions are not charged
with an amount F'“” such that:

(Ch)

e _kBTlnI...JeXp(_ vl: T

jH(da),. )" + Nk, TInV [4.22]

In addition, the interaction energy due to the electrical charges can, itself,
be broken down into two terms:

— the energy w*?") due to the charging of each ion in the absence of all
the other charges;

— the energy w'““” due to the electrical interactions between the ions:
W(Ch) — W(Self) + W(elec) [423]

The Helmholtz energy F can thus be written:

FOD — (Sel) | po(elec) [4.24]
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We can therefore write the excess Helmholtz energy due only to the
electrical interactions in the form:

W( elec)

Ftetee) :_kBTlnj...jeXp(_ k.T
B

jH(da),.)N" +Nk,TlnV  [4.25]

b

Let us derive relation [4.24] in relation to the charge of the ion 4: e|zk

after having used expression [4.25]. We have:

onw ™ L W(Ch)j N
e exp| =~ |(dw)
ISD  gteee) _I J.e8|zk| kgT =<3W(Ch)> [4.26]

@ ez,

+ =
la| - eolz] I...Iexp(—&}(da))N
B

WED
ed|z,|

particles per unit charge of k. Thus, this mean is equal to the electrostatic
potential at the point occupied by the ion £ and therefore, in view of our
system of notation (see section 4.2.2), we can replace relation [4.26] by:

The value < > is the mean increase in energy of the ensemble of

aW(Sclf) aF(clcc)
T o =(¥(0)), [4.27]

Z k

However, ow'>"" / ea|zk| is the fraction of the electrostatic energy in k

due to the ion £ itself, and therefore this term is independent of the other
ions. If we subtract that term from (5” (0)>k , we obtain the fraction of the
mean electrostatic energy occupied by & and due to all the other ions. This is

what is known as the potential due to the ionic atmosphere. It is written as
¥, ,so:

oS

y/k = <¥I(O)>k —m

[4.28]
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and therefore, we find the following for the contribution F*”:

aF(clcc)
ea|zk| ot

[4.29]

If we take into account the contribution of each ion i in the set of ions, we
can always write:

dFE =e> ¥, d|z] [4.30]

Each term ¥, is a function of all the charges zj, z,, ..., z;, ... z; of all the
ions.

However, the Helmholtz energy is a function of state, so we can apply
Schwartz’s equation, meaning that we have:

oY, dJY¥,
k= [4.31]
a‘zj‘ 8|z,{|

This relation will be extremely useful because, as it is very general, it can
be used to test the self-consistency of any approximate expression of the
potentials ¥ .

4.2.5. Debye and Hiickel’s hypotheses

Debye and Hiickel’s model is an approximate evaluation of the potentials
¥ and of p(r), in order to solve Poisson’s equation [4.24]. This model is

1

founded on five hypotheses.

4.2.5.1. Hypothesis 1: shape of the ions and nature of the medium

The ions are all considered to be hard spheres with the same radius a and
different charges. The medium in which they are bathed is considered as a
continuum with the dielectric constant D chosen as being that of the pure
solvent, independently of the presence of the ions.
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4.2.5.2. Hypothesis 2: pairwise interactions

(elec)

We suppose that the energy w**’, which is due to mutual electrostatic
interactions between the ions, is the sum of all the potential energies of
interaction of the pairs of ions which it is possible to envisage on the basis of
the ions present in the solution. We write this condition as:

el — Zzgkj [4.32]

k=1 j#k

If we take account of relation [4.14], the pairwise energies &;; are such
that:

2
lele
y =—— —— forn, 2a [4.33]
4re,Dr,,
and
g, = for r;, <a [4.34]

This last condition simply expressed the fact that the centers of two ions
cannot come any closer to one another than a distance 2a.
4.2.5.3. Hypothesis 3: Boltzmann distribution

The third hypothesis is to accept that the distribution function of the ions,
gy (1;,2,2,T), in the space is such that at the distance ry; (greater than or

equal to 2a) of an ion £, the concentration of ions j is given by:

&y N, E,.
¢ =c’exp| —L | or ON, =—L Swexp| ——2 [4.35]
J J kBT J V k T

B
This is the form of Boltzmann’s distribution.
NOTE 4.1.—- The energy &;; has multiple meanings. Indeed, it is:

— the mean Helmholtz energy of an ion j at a distance ry; from an ion £;
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—the work needed to bring an ion j from an infinite distance to the
distance r; from the ion k (this work is averaged over all the configurations
of the other ions);

—the potential energy, whose derivative gives the mean force exerted
between two ions k and j, set a distance ry; apart.

From this third meaning, we can deduce:
£ =Ex [4.36]

This expression is not clear for an energy averaged over all the
configurations.

Based on the expressions [4.35] and [4.17], we can calculate the charge
density at the distance » from the ion £. We can then easily calculate:

{p(r), ZZ =—Z\ \N exp[ j [4.37]

By substituting this back into Poisson’s relation [4.21], we obtain:

‘N exp[

It is envisageable to solve this equation when we know the relation that
exists between <'1” (r))k and g, .

V(¥ (1), )=

] [4.38]

/¢k

4.2.5.4. Hypothesis 4: relation between <'z”(r)>k and &

Debye posits a fundamental approximation which is a relation between
the mean energy ¢, and the mean potential <‘l’(r)>k , and accepts that we

have:

gy =elz |(F (), [4.39]
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Using equation [4.36], we can deduce that:
|2, /(7 @), =l /(¥ ), [4.40]

Irrespective of the pair of ions in question, this relation [4.41] can only be
verified if:

(), _(FO),

|2 ‘Z.i‘

[4.41]

If we feed relation [4.39] back into expression [4.38] we obtain Debye’s
equation:

Vi ((# (), )=

2N, exr{ WJ [4.42]

To simplify the notations, we shall write ¥ (r) instead of <'1’ (r)>k and

rewrite relation [4.42] in the form:

Vi (# ()= ;V e exp[—l’;—T] [4.43]

The relation is often called the Poisson—Boltzmann relation.

4.2.5.5. Hypothesis 5: primacy of thermal agitation

Although equation [4.43] can be solved, Debye’s final hypothesis, the
aim of which is to simplify this resolution, is to consider the case where the
thermal agitation energy is much greater than the interaction energy:

&y <<kgT [4.44]

On the basis of equation [4.39], the above equation can be expressed by
the inequality:

elz,| ¥ (r) << k,T [4.45]
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This approximation enables us to replace the exponential in relation
[4.43] with a limited expansion, which Debye limits to the second term —
Le.:

~

[4.46]

elz,[(¥(r), el <Y’(r)>k_ elz,|¥(r)
eXp[_ K, T J~1_ kT kT

Indeed, we can easily see that the first term of the expansion disappears
in expression [4.43], because of electrical neutrality, which imposes the
following condition:

3 Nz =0 [4.47]
i=1

Thus, we can write the Poisson—Boltzmann equation [4.43] can be written
in the form:

V(¥ () =k¥(r) [4.48]

x denotes a constant defined by:

2 s

= Y NZ=— an where x>0 [4.49]
&,DVk,T 5 &, Dk, T 2

If we use the concentrations to measure the composition of the solution,
and if these concentrations are expressed in mole/l, rather than in mole/m’,
relation [4.49] is written as:

N—eZcf’zf [4.50]
1000 £,Dk T 5

In this new definition of the constant &~ , we see the appearance of the
ionic strength / as defined by relation [A.2.49]. Thus, this constant can also
be written as:

2N, e’

I LI [4.51]
1000&,Dk,,T
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We shall now easily be able to integrate equation [4.48] by using the
spherical coordinates.

4.2.6. Debye and Hiickel’s solution for the potential due to the ionic
atmosphere

In spherical coordinates and spherical symmetry, the Laplacian contains
only the radial term, which is:

1 d(rz dsg(r))
V2 (¥(r)) == 4 [4.52]
r dr
Thus, in light of equation [4.41], the equation to be solved is:
2
), 2490) _ opy [4.53]

dr? r dr

Equation [4.53] is a second-order differential equation, which implies that
the solution must satisfy boundary conditions to set the two integration
constants.

The first condition is that the potential ¥ (r) and the field, i.e. the

()

derivative of the potential , become null as r tends toward infinity.

The second condition is that the electrical induction be constant at the
boundary between the inside and the outside of the ion, meaning that for
r=a.

The solution of equation [4.53], which remains finite as » tends toward
infinity, will be of the form:

¥ (r) :§exp(—l<‘r) [4.54]
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K is a constant determined by the continuity of induction. The radial
component of the electrical induction for » > a, according to relation [4.54],
is:

' 4me, DK
47:5[8 (F)J =022 (1 kr)exp(—xr) [4.55]
ar r=a+é& r
However, in the vicinity of the boundary, within the ion, induction is due
only to the charge on the ion, and therefore its value is:

D(Mj =izj|. [4.56]
ar r=a—&

a
Let us write the continuity of the induction for » = a, which is:

4re, DK

a’ dra

(1—I<‘a)exp(—1(a):47[L|Z"| [4.57]

2

By drawing K from expression [4.57] and substituting it back into
relation [4.54], we obtain the potential as a function of r:

e|Zk|

)= e Dr(1 1 xa)

exp[—l((r — a)] [4.58]

and in particular, for » = a, this solution is:

(@) -— L]

= 4.59
4ne,Da(1+ ka) 14.59]

If we now subtract from ¥ (a) the potential due to the ion & for » = a, we
obtain the potential ¥, due to the other ions, i.e. the potential due to the
ionic atmosphere:

€|Zk| _ e|Zk| _ €|Zk| K

 4me,Dr(1+xa) 4me,Da  4me,D1+Ka

[4.60]

k
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4.2.7. Charge and radius of the ionic atmosphere of an ion

Consider a sphere centered on an ion & with radius ». The areic charge
density at the surface of the sphere is calculated on the basis of the mean
charge density:

oy(r)=4nr* (o) [4.61]

k

By taking account of Poisson’s law and of expression [4.48], we find the
following for the areic density:

o, (r) = 47r’e, DK™ (r) [4.62]

However, ¥(r) is provided by expression [4.58], which gives us an areic
charge density on the sphere of:
rK’ e|zk|

og(r)= Toxa exp(ka)exp(—kr) [4.63]

If we study this function of , we see that it exhibits a maximum for:

d[r exp(—K‘r)]

=0 4.64
i [4.64]

By solving equation [4.64], we find that this maximum is obtained by:
r,=1/x [4.65]

This radius 7, is known as the radius of the ionic atmosphere around an

ion k. Itis the distance at which we find the maximum of the electrical
density of the ionic atmosphere of the ion 4.

Figure 4.2 shows the shape of the areic distribution as a function of » for
two values of the ionic strength (/ = 1 and /= 107 moles/l). We can see that
the maximum point of the curve shifts toward larger radii if the ionic
strength decreases, and that the amplitude of the corresponding peak also
decreases.



lonic Solutions 135

15042

1.004 I=1mole/l

050 I=10.01mole/l

000— T T ’
0 500 1000 1500 2000

Figure 4.2. Distribution of net charge around an ion k

In water at 25°C, we calculate (in meters):

30.8x107
]/' e —

i

Table 4.1 gives the value of the radius of the ionic atmosphere for these
two values of the ionic strength.

[4.66]

Ionic strength (moles/1) | Radius r4(nm)
0.01 308
1 30.8

Table 4.1. Radius of the ionic atmosphere for a few values of the ionic strength

If, for the radius of the ion, we choose the value of 30 nm, this means that
for an ionic strength of 1 mole/l, in water at ambient temperature, the radius
of the ionic atmosphere is of the order of magnitude of the radius of the ion,
so:

for /=1 mole/l r, =l: a [4.67]
K

Note that, as x is proportional to the square root of V, the radius of the
ionic atmosphere will increase with the square root of the volume and
therefore of the dilution.
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4.2.8. Excess Helmholtz energy and excess Gibbs energy due to charges

Considering condensed solutions, we ignore the variations in volume, and
therefore we can treat the excess Gibbs energy due to the charges as the
same thing as the corresponding Helmholtz energy, and returning to relation
[4.30], we write:

dG =dF =) ¥, d|z| [4.68]
In order to integrate this equation, we shall imagine a virtual path which

consists of progressively charging the ions. A point on that path would be
characterized by a fractional extent of the charge A between 0 and 1. At that

point, the charge of the ioni would be le|zi , and we integrate relation

[4.68] in relation to A:
1
G = [ Y N, (A)e|z|dA [4.69]
0 i

Of course, the envisaged path is purely a calculation ploy, because a
charge less than the elementary charge is inconceivable.

Integration is done in the following manner:

2 2 .1 2 22
G(elec) =_Z NiZi eK ﬂ“ d/l :_NaZ—nlzl ¢ KT(K'a) [470]
~ 4ne,D | 1+ Aka — 127€,D
The function 7(x) is defined by:
3 x’
(x)==% log(1+x)—x+7 [4.71]
X

T(x):l——x+§x - +=xt - [4.72]
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Table 4.2 contains several values of the function T(x) .

NOTE 4.2.— From the approximation which we have just added, we can see
that the expression envisaged for the excess Gibbs energy is only acceptable
for xa << 1. This means that, for a given radius (around 30 nm), our Gibbs
energy is acceptable only for values of x such as 3x107"; (k' <<1), which
corresponds to an ionic strength less than 1 mole/l. However, this restriction
is not a true restriction because, for such values of the ionic strength, it has
certainly been a long time since Debye’s hypotheses have been proved to be
unacceptable.

Thus, we can keep only the first term in expansion [4.72] and write the
following for the excess Gibbs energy:

22 3/2
[Nl.zl.e J ! [4.73]

&D \/W

By switching to concentrations in moles per liter, we find:

N.zZ2e*kx 1
G(elec) - i“i -
2 127€,D 3 2

i i

G — _N Znizizezlc __ 1 ZNaC,OZerV ¥ [4.74]
‘“T2me,D 3. JAxVk,T \ T 1000g,D

By revealing the ionic strength /, we obtain the following for the
electrostatic excess Gibbs energy:

02 ( N, eI T/z

G(elec) —_
3/4xVk,T | 1000&,D

[4.75]

Thus, we shall use the formulae [4.75] and [4.76], drawn from the first
form of relation [4.66]:

2 12 2
G 1 Nyxe [ o ZJ __ NJxe

[4.76]
31000.47€,D 3000.47,D
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4.2.9. Activity coefficients of the ions and mean activity coefficient of the
solution

By deriving equation [4.70] in relation to the amount of component & in
the solution, we can calculate the excess partial molar Gibbs energy of the
ion k due to electrical charges:

(oo aG(elec)
RTInyh) =yl = T
k
Z Ne [4.77]

2.2
ze'N, K

o(Ka
87:80D1+1(a 12;ng oy (a)

This gives us the activity coefficient of the ion 4:

zje’ K K
Inyil) =——=* + Vo0 (Ka) [4.78]
8re,DkpT 1+ Kka  247e, DV
o (x) is the function defined by:
3 1
0(x) = | 1+ x————2In(1+x) [4.79]
X I+x
or
G =1-32x+32x2 3200 4324 . [4.80]
4 5 6 7

A number of values of o(x) are given in Table 4.2. We can see that at a

very high level of dilution, if xa<<1 the function o(ka) tends toward 1

and in the conditions we chose previously, the activity coefficient is such

that:
n__ ne Kk _ zé 1000€,Dk, T 1]
ke ek, T 1+ ka 2Degk,T . 2N &1 :
4q |—=Tam 7
1000&,Dk, T

In
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This function is usually written in the form of the decimal logarithm:

m _
log k) —

T
R

2 x (x) | o(x)

0.0000 | 0.0000 | 1.000 | 1.000

0.001 | 0.0316 | 0.976 | 0.954

0.002 0.0447 | 0.967 | 0.936

0.003 | 0.0557 | 0.960 | 0.922

0.004 0.0633 | 0.954 | 0.912

0.005 | 0.0707 | 0.949 | 0.902

0.006 0.0775 | 0.945 | 0.893

0.007 | 0.0837 | 0.941 | 0.886

0.008 0.0894 | 0.937 | 0.879

0.009 | 0.0947 | 0.934 | 0.871

0.010 | 0.1000 | 0.931 | 0.866

0.100 | 0.3162 | 0.811 | 0.659

0.200 | 0.4472 | 0.752 | 0.569

Table 4.2. Table of values of functions t(x) and o(x)

[4.82]

with the following meanings, for the term B (sometimes called Debye and
Hiickel’s constant) and the term 4:

2 2N ¢
1000 &, Dk ,T

B=2.303

2Dek, T

[4.83]
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2
4o | 2N [4.84]
1000 &, Dk, T

Let us recap the values of the electrostatic constants:

1

& =—— e=1,602.10"C 4.85
* " 36710° and [4.85]

The law [4.82] is called Debye and Hiickel’s extended law (as opposed to
the limit law, which we shall see in section 4.2.13).

At 25°C, by choosing to use the dielectric constant of water for aqueous
solutions ( D =78.54 ), we calculate:

B=0.5111"mole™*’ [4.86]
A=0.3287x10"1"mole ™ m™" if a is in meters. [4.87]

NOTE 4.3.— It is worth noting that if we choose the value of the radius as
a=3.04x10""m, we find Aa=11"mole™’, and relation [4.82] is then
rewritten as:

J1

log ¥y = =Bz, ——= [4.88]

1++1

The “electrostatic” chemical potential of the solvent is calculated, for
instance, as follows:

(elee) _ aG(elec) ~ aG(elec) aKa_V

= 4.89
M T o T ok ovom, [4.89]
Using relation [4.77], we obtain:
Z:Nl.zfe2
elec i K
) = Vo) O (K@) [4.90]

1272£,D 2V
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In the context of very dilute solutions, o(xa) =1, this potential becomes:

Z:Nl.zl.ze2
- K
' N [4.91]

127,D 2V

(elec)

Hy "=

v, is the molar volume of the pure solvent. The solvent’s activity

coefficient can thus be calculated, and we shall verify that it satisfies the
Gibbs—Duhem relation.

We know that it is impossible to determine the coefficients of the
individual ions by experimentation, but that we can determine the mean
coefficient ")

*(0)

of the solution. In light of electric neutrality:

vz, +v.z =0 [4.92]

Using relation [A.2.45] for the mean activity coefficient, we can easily
calculate:

2
n__ z, z_‘e K

*9 T 87, Dk, T 1+ Ka

In

[4.93]

With D=78.54 for water at 25°C, we calculate the following, with a
being in meters:

JI

1403287 %1070 g /T

log i =—0.511z,

+() T

2|

[4.94]

Although the dielectric constant varies with temperature, the product DT
which is the only one that plays a role practically does not change between
18 and 25°, and therefore the values of the coefficients 4 and B do not either.

4.2.10. Self-consistency of Debye and Hiickel’s model

Any model of an ionic solution must satisfy two categories of self-
consistency criteria: thermodynamic criteria and electrostatic criteria.
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4.2.10.1. Thermodynamic criteria

We have already checked, at the end of section 4.2.9, that the Gibbs—
Duhem relation was verified. With regard to the other criteria:

— the model must satisfy the symmetry of the characteristic matrix:

oy oM,
on; dn,

1

[4.95]

If we apply this relation to the expression of the chemical potential, given
by relation [4.77], we note that this relation is respected, provided we take
both terms from equation [4.77], because the first term on its own is not able
to satisfy this criterion. Certainly, the second term may be numerically
negligible, but it cannot be taken as equal to zero. Hence, Debye and
Hiickel’s model satisfies this criterion.

— the terms in the diagonal of the characteristic matrix must be positive:

Oy _ [4.96]
on.

1

We can see, from relation [4.70], that Debye and Hiickel’s model satisfies
this criterion.

—the excess Gibbs energy must be homogeneous of degree 1 (like all
extensive values) in relation to the amounts of material.

If we examine relation [4.50], we can see that x is of degree !4 in

relation to the concentrations and that \/7 is also of degree 4, and therefore,
in relation [4.76], the “electrical” excess Gibbs energy is of degree 1 and the
function is homogeneous because each quantity N; is the product:

N, =N nx, [4.97]
and therefore the quantity » can be factorized.

4.2.10.2. Electrostatic criteria

We have three electrostatic criteria to satisfy.
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The first criterion needing to be respected is the proportionality between
the potential due to the ionic atmosphere and the charge. Relation [4.58]
shows that Debye and Hiickel’s solution satisfies this criterion.

We have encountered the criterion given by relation [4.31] that must be
satisfied by the potential of the ionic atmospheres of the ions. Let us now
examine whether Debye and Hiickel’s solution conforms to this criterion. By
writing:

¥, =8'{’k oK (4.98]
0z, Jk 0z,

Fowler and Guggenheim show that the derivative d ¥, /dz; contains the
product z;z,, and also only depends on z; and z, by way of the coefficient

&, and therefore this derivative is symmetrical in relation to j and &, and
thus the criterion [4.31] is verified.

The third criterion is that the solution must respect electrical neutrality.
To determine this, we calculate the overall charge of the atmosphere
surrounding an ion k. We shall consider two spheres centered on the ion £,
with respective radii » and »+ dr. The electrical charge contained in the
volume between these two spheres is:

dg, =o,(r)dr [4.99]

By integrating this equation between r =a and an infinite value of r, we
obtain the charge of the whole of the ionic atmosphere surrounding the ion £,
meaning that the electrical charge of the whole solution decreases by that of
the ion k. Thus, we have:

4, =Tas(r)dr [4.100]

Returning to expression [4.63] for the areic charge, we calculate that this
overall charge is:

4 =z [4.101]
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Thus, the charge surrounding the ion k is precisely the opposite of the
charge on that ion, which shows that Debye and Hiickel’s law respects the
condition of electrical neutrality.

We have gone into detail in our examination of the respect of these
criteria, because we shall see that certain corrections, proposed to improve
the model’s conformity to experience, yield solutions which no longer
respect all these criteria.

4.2.11. Switching from concentrations to molalities

Up until now, we have chosen to quantify the composition of solutions in
concentrations (molarities) expressed in moles/liter. Very often, users of
Debye and Hiickel’s model use molality values M,, which are expressed in

moles per kilogram of solvent. Between these two values, if the solution is
sufficiently dilute (which is the case in the domain of validity of Debye and
Hiickel’s model) to enable us to treat the volume of the solution and that of
the solvent as one and the same thing, we can write:

M
LT el [4.102]
1000

The coefficient 1000 stems from the fact that the molality is given in
moles/kg and the molarity in moles/l, rather than in moles/m”.

If we work on the basis of the second expression of the “electrical”
excess Gibbs energy given by relation [4.76], using expression [4.102], we
obtain:

Mz2eM, )
gow oL |y MMz e, [4.103]
34nVk, T\ T 1000g,D

Thus, we define an ionic strength in terms of molality, which is
expressed, similarly to definition [A.2.49], by:

I, = %ZMZ,? [4.104]
i=1
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Thus, the “electrical” excess Gibbs energy can be written:

242 N M

G(elec) —_
3J4nVk, T 1000g,D

[4.105]

Similarly, on the basis of expression [4.50], using relations [4.102] and
[4.104], we write the coefficient &~ in the form:

__MNpet [4.106]
1000¢,Dk, T " ’

and for the activity coefficient linked to the molality values, we find:

log 7)) ==B./p, — Af N [4.107]
0

For water, though, we apparently have p,=1kg/dm’ at normal

temperature, so relation [4.82] with the values of the coefficients B and 4
given by equations [4.86] and [4.87], is conserved, with the ionic strength
relative to the concentrations being replaced by the ionic strength relative to
the molality values /.

Thus, equation [4.82] applies indifferently, whether the compositions are
expressed in molarity or molality. The ionic strength is expressed, in each
case, with the same unit of composition.

In addition, we can express the activity coefficient in any one of the
conventions, but using relations [4.10] and [4.13], if the solution is
sufficiently dilute, the values of the different coefficients become the same,
because we find:

amy _

Yi

ury

=~y =y [4.108]

Definitively, all the activity coefficients are given by relation [4.82] with,
in an aqueous solution, the values of the coefficients B and 4 given by
equations [4.86] and [4.87], and choosing / or /), depending on whether the
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compositions are expressed in molarity (or concentration) or molality. The
same is true for the mean activity coefficients, using relations [4.86] or
[4.87]. Thus, we no longer make the distinction between the different
activity coefficients, simply writing them as y, , and similarly for the mean

activity coefficients, which we shall denote by y, .

4.2.12. Debye and Hiickel’s law: validity and comparison with
experimental data

Experience tells us that ionic solutions only behave like ideal dilute
solutions (7, =1) below a concentration of 10™* moles per liter, whereas for

a molecular solution, such behavior is acceptable below 107 moles per liter.

Figure 4.3 shows a comparison of the variations of the mean activity
coefficient of magnesium chloride as a function of the ionic strength. The
points are obtained experimentally and the downward curve is obtained
by application of Debye and Hiickel’s law. The figure demonstrates that
the model begins to deviate from the experimental values long before
the ionic strength reaches one. In particular, for most electrolytes, the
real curve exhibits an extremum which Debye and Hiickel’s model never
shows.

A+
1.05F

Davies
0.65]

0.25 Experience

0.15
Debye & Hiickel

0.55

0 5' ]'" ]'! I (mole/kg)

Figure 4.3. Variations of the mean activity coefficient of
magnesium chloride with the ionic strength
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In practice, we consider that Debye and Hiickel’s law, expressed by
relation [4.82], and in particular using its form [4.88] in water, can only be
used for solutions in which the ionic strength is no greater than 10”mol/l,
although in certain cases, ionic strengths of 10'mol/l can also yield
acceptable results. Certain authors prefer to adjust the law [4.82] by
adjusting two experimental conditions:

—the extrapolation for an ionic strength of zero for which the mean
activity coefficient is one;

— the radius of the ion a with the experimental curve.

By this method, we are able to apply the formula [4.82] to a broader
range of ionic strengths. However, the values thus determined for a still need
to be acceptable in terms of the physical meaning. Indeed, certain
experiments yield very low values of the radius ¢ — sometimes zero, and
sometimes even negative values are required. The true value of @ must be no
lower than the ionic radius determined in a crystal of a corresponding salt.

Nevertheless, let us remember that Debye and Hiickel’s law supposes the
ions are spherical, which can be accepted for sufficiently dilute solutions in
which the radius of the ionic atmosphere is larger than a and therefore in
which the ions are relatively far removed from one another. If the ions come
closer together, the hypothesis of sphericity becomes trickier to accept for a
large number of types of ions — particularly for polyatomic ions.

4.2.13. Debye and Hiickel’s limit law

For very significant degrees of dilution (10 <7< 107), the denominator
term in law [4.82] becomes much smaller than 1, and we obtain what is
known as Debye and Hiickel’s limit law.

This limit law is written as:
logy, =—Bz’\T [4.109]

The curve giving the mean activity coefficient, calculated using this limit
law, is tangential to the origin of the complete curve given by equation
[4.82], as illustrated by Figure 4.4, and can be used for the extrapolation of
the real curve at infinite dilution.
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Iny,

F 3
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Limit—¥
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Figure 4.4. Comparison of the complete law and Debye and Hiickel’s limit law

The fact that this limit law can be obtained numerically by making a =0
in expression [4.82] does not mean that it must be attributed to an
approximation in which the ions are assimilated to single-point charges. This
approximation, which is sometimes presented, is totally erroneous, because
it is easy to show that a collection of electrically-charged points is
completely unstable; indeed, it is the existence of a non-null radius a which
lends stability, because two ions can never come together completely, as is
demonstrated by the second form [4.34] of the potential function.

4.2.14. Extensions of Debye and Hiickel’s law

The limits exhibited by Debye and Hiickel’s law in its application to real-
world cases have led many researchers to attempt to improve it. These
improvements were first made in the strict framework of the law [4.82],
before branching out in a new direction, integrating the molecular
interactions that we shall see in sections 4.3 and 4.4.

One of the earliest methods involved adding one or more adjustable
parameters to the law [4.82]. Thus, Hiickel, taking account of a variation in
the medium’s dielectric constant with changing ionic strength, was led to
propose the following relation:

JI

logy, =—Bz; ———=+KI
1+ga\/7

[4.110]
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This relation is able to represent the minimum of the curve in Figure 4.3.
Unfortunately, the term K cannot be calculated a priori, and must be
determined experimentally, which takes away from the advantage of this
type of formula.

Along the same lines, after numerous measurements, Davies proposed to
determine the mean activity coefficient of aqueous solutions (at standard
temperature) using the following relation:

VI o3 [4.111]
1+41,

He proposed a second version of the relation:

I [4.112]

logy,=—B,z, |z.| ————=—+C
% * |1+C,Ama\/ﬂ :

logy, =—0.511z, |z_|

He drew up lists of values of the constants C; and C, for each family of
electrolytes.

Figure 4.3 gives the result obtained by that model for magnesium
chloride. We can see that whilst the model does show the minimum of the
curve, it quickly deviates from the experimental results and, therefore, is
hardly any better than Debye and Hiickel’s original model.

A second way of improving Debye and Hiickel’s model was to review
some of its hypotheses, making them less stringent.

An initial attempt was made by modifying hypothesis 5 (see
section 4.2.5.5), increasing the number of terms chosen in the serial
expansion of expression [4.46] or indeed by solving the complete Poisson—
Boltzmann equation with the exponential term, which is possible. Of course,
the expressions obtained are complex, but they all manifest a major
shortcoming: they no longer satisfy the electrostatic criterion represented by
relation [4.41], which greatly takes away from their interest.

A second way to improve was to keep certain terms (at least two) in the
expansion [4.72], but we have already pointed out in section 4.2.8 that the
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degree of accuracy obtained became illusory in relation to the other
hypotheses.

A third way of improving the law was attempted by Bjerrum, who
introduced interactions between the ions in the form of associated species
between ions that are sufficiently close. We can also introduce terms linked
to the shapes of the ions by introducing parameters resulting from the
associations between the anions and cations present in the solution. Using
this technique, Guggenheim was able to develop a law with multiple
parameters, which can be deduced from the experimental behaviors of pure
salts.

It is clear that, ultimately, these latter attempts consist of taking account
of the interactions between the ions over short distances. This observation
has led to a new general way of modeling ionic solutions: now we no longer
modify the law [4.82] or its derivatives, but instead superpose on the effects
of the electrostatic interactions, represented by that law, the effects due to
the molecular interactions over short distances, as found in non-ionic
solutions. It is this method which we are going to discuss in sections 4.3 and
4.4 below — a method which enables us to move away from just strong
electrolytes, to take account of mixtures of ions and neutral molecules, and
therefore weak electrolytes.

4.3. Pitzer’s model

Pitzer’s model is a semi-empirical model based on Debye and Hiickel’s
extended law [4.82], where additional terms have been introduced in order to
take account of the effects of the ionic strength on the binary interactions
over a short distance.

Although we noted that this operation rendered the model non-self-
consistent, in order to improve its conformity to experimental results, Pitzer
proposed an expansion of the exponential of relation [4.43], limited to the
first three terms instead of two, as Debye and Hiickel did in relation [4.46],
so:

2
exp| —— |=1- 2 | W [4.113]
kT kT | kT



lonic Solutions 151

If /'tij and 4 respectively denote the terms describing the pairwise

interactions between the species i and j and the three-way interactions
between the species i, j and k, expressed in kg”.mole and kg’mole”, the
excess Gibbs energy is written as:

Gn G(elec)
T + ZZA.M,M/. D3 MMM, [4.114]
i i j ok

(elec)

is the term expressing the long-distance electrostatic interactions

between the ions. It is a function of the temperature and of the ionic strength.
This function stems directly from Debye and Hiickel’s hard-sphere model
(see section 4.2). With the new hypotheses chosen by Pitzer, it is expressed
thus as a function of the ionic strength:

G(elec)
- =—x0MB p (1+bf) [4.115]

B is Debye and Hiickel’s constant, expressed in relation to the molality

values and given, as is shown by the comparison of relations [4.82] and
[4.107], by:

B, =B\p, [4.116]

The parameter B is given by relation [4.86]. The term b is an adjustable
parameter which has been optimized and taken as equal to 1.5kg"*.mole™?
for all temperatures and all solutes. It is theoretically linked to the distance
beyond which the forces of repulsion between the ions become significant.
P, 1s expressed in kg/dm’.

NOTE 4.4.— In ionic solutions containing molecular species, the parameters
A; must include the molecule-molecule interactions of the ions, excluding

the effect of charge, and molecule-ion interactions. The parameter (,; must

include the molecule-molecule-molecule interactions (again including the
ions but excluding the effect of charge).
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We consider that the solution contains 7. types of cations numbered
1, 2, ...c,... n. and n, types of anions numbered 1, 2, ...q, ... n,. We shall
rewrite relation [4.114] to separately introduce the terms linked to cations
and anions. The excess Gibbs energy becomes:

G _ _Mm(l +5NT)+ 22 EMM, {Bw + (zszc )}C
RT a c¢ c
Y SMM, {com +%ZMQWM} 4117

DRTE| PIES v |

This relation exhibits the advantage of introducing adjustable parameters
with experimental data: B,,C_, ¢, and @_,..

The terms B, are given by:
B, =B+ B0 f(aNT)+ B2 f (aPNT) [4.118]

The coefficients 8", B and B are assimilated to second-order virial

coefficients, expressing the short-distance effects between the ions ¢ and a.
They are expressed in kg/mole. The function f{y) is defined by:

_ 2[1—(1+y)exp(—y)]

() . [4.119]
Y
The second-order virial coefficients have the following properties:
B, =B, [4.120]
B; =, =0ifiand; have the same sign [4.121]

NOTE 4.5.— The London forces of repulsion prevent interactions between
ions over a short distance.
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The parameters C,, are given by the expression:

s

C, ZL [4.122]
2.z z

a—c

The parameters ¢, and ¢, . are also functions of the ionic strengths

given by:

Do = Qo = B+ BT [4.123]
and

Pov = Pua = Bia + Bl (1) [4.124]

The coefficients B and B are functions of the ionic strength and of

the charges on the ions. We have seen that these coefficients are null if they
refer to cations or anions of the same charge (z, = z,> or z. = z.»).

Thus, the new form [4.117] of the excess Gibbs energy brings into play
various parameters that are adjustable to each ionic solution studied. These
parameters may be classified into two categories:

—so-called “binary” parameters. This category includes the parameters:
(0) ) (2) (1) (2) * . . . .
B, and B, o) and «;’, C, , which characterize binary solutions

ca a ca?

(with an anion a and a cation ¢ in addition to the solvent);

— so-called “ternary” parameters, which include the parameters 5" and
ﬁ((cl') 4 l//(?aa' and l//(?c'u ‘

NOTE 4.6~ the parameters A and A, which relate to pairwise
interactions, are described as “ternary” because they characterize ternary
solutions with an anion or a cation in common, as the electrolytes: mixtures

of ac and a’c or of ac and ac’.

Pitzer’s model, as we have just described it, can be used for solutions
whose ionic strength can be up to 6M.
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For lower ionic strengths, it is possible to use simplified forms. In
particular, we can often simplify the model by setting S =0 for any

couple ca.

The coefficients ¢ are such that, frequently, we can use the following

values:
— oV =2 for all the electrolytes ca except those of the type 2-2( z, and

‘za‘ , which are different from 2);
— oV =12 for all the electrolytes ca of the type 2-2 (‘Zu‘ =z, =2).

Therefore, in the highly-simplified version, there are now only three
types of parameters to identify — namely £, B and C . In these
circumstances, relation [4.118] can be simplified to:

—if &) =2 —i.e. for all electrolytes ca except those of type 2-2:

1—3exp(2\/7)

B,=pY - 4.125
ca ﬁLll ﬁtll 2] [ ]
—if &) =12 —i.e. for all electrolytes ca of type 2-2:
1-13exp(—1241
B, =B -5 ( ) [4.126]
771

For example, for a solution with only one electrolyte (a cationic species
and an anionic species), it is easy to see that the excess Gibbs energy
assumes the simplified form:

G _ 4B1

4.127
RT [4.127]

c c L’a]

In(1+b63T)+2MM, [B,, +2M,C

The parameter C,, conforms to definition [4.125], and the parameter
B, depending on the type of electrolyte, conforms to one or other of
relations [4.125] or [4.126].
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The activity coefficients of the ions can be calculated in the following
way:

d0G” _dG" oM, 1 9G”
on, oM, dn, Mn, oM,

RTIny" = [4.128]

no 1s the amount of solvent of molar mass M.

Additionally, Pitzer’s model has been extended by Beuter and Renon to
apply to solutions containing dissolved molecular species stemming from
gases.

4.4. UNIQUAC model extended to ionic solutions

The extension of the UNIQUAC model to ionic solutions was first
envisaged by Sander et al. in 1986. The basic idea is to think of the excess
Gibbs energy of an ionic solution as being the sum of two contributions:

—the term G*““? drawn from Debye and Hiickel’s model, to take
account of the long-distance electrostatic interactions between the ions (see
section 4.2);

—the UNIQUAC term as it is used for molecular solutions (see
section 3.5), in order to take account of the short-distance interactions
between molecules, between molecules and ions and between ions.

Thus, from the excess Gibbs energy of the solution, we write:

G* = st(ion) + st(UNI) [4129]

For a given species i, this relation results in a relation between the
activity coefficients, given by:

In " =1n A" 4 1O [4.130]

Normally, the UNIQUAC model leads to the activity coefficients with the

(UNI)

pure-substance reference hl}fl.(l) . To switch to the activity coefficient for
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reference Il — the infinitely-dilute solution — we use relation [4.2], so
equation [4.130] is reformulated as:

7/(1)(UN/)
In %(11) —In %_(11)(elec) +1HW [4.131]

The term }/,.([)m(UN[) is the activity coefficient of the species i in infinite

dilution. Thus, it is calculated by the UNIQUAC model by taking a molar
fraction of one unit for the solvent (and therefore a molar fraction of zero for
all the other components), so that:

In 7= = Jim In 7O [4.132]

Xy —1

Thus, definitively, the parameters of the model are:

— the parameters B and A (often taken as equal to 1.5) used by Debye and
Hiickel as a function of the temperature;

—the parameters linked to the UNIQUAC model, i.e. the structural
parameters r; and g; and the energy parameters a; and a; for each pair of
components.

The number of parameters needed for this model, therefore, is less than
that needed for Pitzer’s model.

The problem with electrolytes is that of the nature of the species that are
actually present in the solution, which may be very different to those
introduced when making up the solution. Indeed, we may see more or less
complete dissociations, reactions with the solvent (water, for example),
solvation of ions as introduced by Lu and Maurer (1993). These equilibrium
states introduce new relations between the activity coefficients. For example,
for the solvation of a cation c, the equilibrium is written as:

hcH,0 +¢=c(H,0),

This equilibrium introduces the expression of the law of mass action,

which is the relation:

1)

K _ xha

he
.= — T [4.133]
xx 7%
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In such cases, only an iterative method can be used to calculate the
activity coefficients because, in order to find the molar fractions, we must
already know the activity coefficients to use relations such as [4.133].

The UNIQUAC part of the model can be extended to the UNIFAC
version in order to enhance the model’s predictive capability.

This type of model can obviously be used for ionic solutions “with no
solvent” such as pure salts in the molten state.






5

Determination of the Activity of a
Component of a Solution

In this chapter, we shall examine the methods for determining the
activities, or the activity coefficients of the components of a condensed
liquid solution whose composition is known. Note in passing that this
determination of the activity may soon yield that of the chemical potential of
the same component, if we know the chemical potential of that component in
the reference solution.

Remember that the activity and the activity coefficient of component of a
solution depend simultaneously on the composition of the solution and its
temperature. Consequently, a determination of the activity of a component is
valid only at a given temperature and for a known composition of the
solution.

Remember, also, that there are several activities for the same component
depending on the convention chosen to define it (see section A.2.5), namely:

— convention (I) — pure-substance reference;

— convention (II) — infinitely-dilute solution reference;

— convention (III) — molar solution reference for all solutes.

Hence, if it is not universal, each method must specify the convention in
the context of which the determination is performed.

Modeling of Liquid Phases, First Edition. Michel Soustelle.
© ISTE Ltd 2015. Published by ISTE Ltd and John Wiley & Sons, Inc.
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The methods for determining the activities (or the activity coefficients)
can be divided into two main categories:

— experimental methods, which are our focus in this chapter;

—methods using a model of a solution — methods which stem directly
from the study of different models (see Chapters 2, 3 and 4).

The experimental methods which we are about to examine are based on
the properties of the solutions — specifically on their behavior in a system at
physicochemical equilibrium. The component whose activity we wish to
measure is involved in a physical, chemical or electrochemical equilibrium,
and the only unknown activity is that for which we are searching. Certain
methods apply more to molecular solutions than to ionic solutions, whereas
others are reserved for conductive solutions (ionic solutions or electrical
conductors), and others are valid for all types of solutions.

5.1. Calculation of an activity coefficient when we know other
coefficients

Before discussing experimental methods per se for determining the
activity, we shall examine two methods which are, in fact, calculation
methods based on knowledge of either the activity of the other species in the
solution or the activity of the species in question at a different temperature to
the desired conditions.

5.1.1. Calculation of the activity of a component when we know that of the
other components in the solution

Suppose that, for all compositions between a known state (generally the
reference state) and the composition under examination, we know the
activities (or activity coefficients) of all the components of a solution in the
same frame of reference, except for one of them, and we are going to
calculate the unknown activity of that component for the chosen
composition. This method is founded on the Gibbs—Duhem relation, which is
valid regardless of the convention adopted. Thus, we obtain the activity (or
the activity coefficient) in the chosen convention for the known values.
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For the activity coefficients, at constant temperature and pressure and for
a solution with N components (see equation A.2.23), this relation is written
as:

N
D x,dlny, =0 [5.1]

i=1

In light of relation [5.1], if we wish to determine the activity coefficient v;
of the component j whose molar fraction is x;, we shall write:

diny, ==Y *diny, [5.2]

k#jxj

This relation is integrated between two states p and ¢. Each state is
characterized by a composition of the solution:

q _ qx_k
jpdlnyj = ;L xjdln}/k [5.3]

In general, the lower bound p is chosen as the reference state, which gives
a value of 1 for the activity coefficient y;, and the upper bound g is taken as

the solution in which we are seeking the coefficient. In convention (1), the
pure-substance reference, this gives us:

A X
7 diny =_k2jjl fdln D [5.4]
# J

Integration yields:

X
In " =—Zj}qx—kdln 7 [5.5]
J

k#j

In convention (II), for the solvent, in the infinitely-dilute solution
reference (which is to say, pure solvent), the relation is identical to the
previous one:

q9X
ny" == | x—"dln ) [5.6]
0

k#0
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In convention (II), for the solvent, in the infinitely-dilute solution
reference, the relation becomes:

Iy == ['Zdin " [5.7]
xS

k#s

Expressions [5.5], [5.6] and [5.7] are usually used by numerical
integration.

5.1.2. Determination of the activity of a component at one temperature if
we know its activity at another temperature

If we know an activity coefficient at a certain temperature, it is possible
to obtain the value for another temperature, knowing the dissolution enthalpy
of the component as a function of the composition and the temperature.

Let us employ the terms H_, and H, respectively to denote the partial

molar enthalpies of the component i in the reference solution and in the
solution under study, for which the molar fraction of the component i is x.
The application of Helmholtz’s second relation to the chemical potential of a
component i (which is the partial molar Gibbs energy of that component) is
written:

I /T) _ H=H _,0mny”

oT T’ oT

[5.8]

From this, we deduce the variation of the activity coefficient of that
component:

oy T

5.9
oT RT? 591

If we consider a solvent, regardless of the reference state, or a solute in
the pure-substance reference (I), the above relation is written:

dlny" B —H;

5.10
oT RT? [5.10]
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The difference hio—ﬁi appears as the opposite of the partial molar

enthalpy of dissolution A, H; of substance i from the pure state to the state

diss
of composition x.

If, for a solute, we choose reference (II) — the infinitely-dilute solution —
then relation [5.9] is written as:

dlny" H”-H;

5.11
oT RT? -1
The numerator in the right-hand fraction can also be written as:
H™ - H_zx = (H_zm - hio ) - (I—I_zV - hio ) =AuHT = Ay H [5.12]

Thus, we find the difference between the variation of the partial molar
enthalpy of dissolution of the pure substance in an infinitely-dilute solution
and that of dissolution of the same pure substance in a solution of the chosen
composition. These two values are given (Figure5.1) on the curve
representing the enthalpy of dissolution of the component as a function of its

molar fraction. The first value A, H; is the slope of the tangent to the

origin of the curve, and the second value A, H; is the slope of the tangent
to the same curve at abscissa point x.

It is possible to integrate the different expressions [5.11] and [5.12] if we
know the variations of the enthalpies of dissolution with temperature.

Usually, these enthalpies are considered to be constants within a
reasonable range of temperature, so between two temperatures 7 and 7°, we
can integrate relation [5.9] in the different cases in the form:

H -H'(1 1
*) *) _ i i
In [(T)—ln%(r,)—T(F—?] [5.13]

The partial molar enthalpies E and E or the enthalpies of
dissH i)f and A

values of the activity coefficient y{), is known in the same composition.

dissolution A H; are therefore constants, and one of the

diss
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A
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diss
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>

Figure 5.1. Enthalpy of dissolution of a species
as a function of the molar fraction

5.2. Determination of the activity on the basis of the measured vapor
pressure

The vapor pressure methods derive directly from the properties of the
equilibrium between the condensed solution and the vapor — a consequence
of the equality of the chemical potentials of the component in question in the
solution and in the gaseous phase at equilibrium with it. This equality gives
us a very general relation between fugacity coefficient of component i in the

gaseous phase @', the total pressure, the activity a'* of the component in

the solution and an equilibrium constant K'*":

L= gD [5.14]

In experimental terms, these methods only require measurements of the
pressure and the composition of the gaseous phase.

We can distinguish two approaches:

— one, known as the direct method, which is primarily used with a pure-
substance reference convention, meaning either for a component in a
solution, for which we choose convention (I), or for the solvent of a solution,
for which we choose convention (II);
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— the other, which is based on the measurement of Henry’s constant, and
is mainly used for solutes with the choice of convention (II).

5.2.1. Measurement by the direct method

For this method, we choose to adopt convention (I). Thus, the equilibrium
constant for the liquid/vapor equilibrium is the same as the saturating vapor

pressure of the pure liquid in question P”, which is expressed by:

o9p
ZL)([) = Ki(LG)(I) = PiO [5.15]
a;

In order for us to use this method, we need the pure component i and the
solution to be in the same physical state so as to preserve the same standard
state. Such is often the case, for example, with aqueous solutions of salts in
which the water and the solution are in the same state, which cannot be said
for the salt. Particular caution must be exercised with solid solutions: the
solution and the solid i under examination must crystallize in the same
crystalline system.

The simplest case of the use of the direct method is found when the
component being studied is much more volatile than the others, so that it
alone practically constitutes the gaseous phase, which is then said to be pure.
The conditions then allow us to treat fugacity and pressure as one and the
same thing. Relation [5.15] then directly gives us:

P
xi(L)PiO

}/FL)(I)
1

[5.16]

The pressure P is often not very different from the saturating vapor
pressure of the pure substance P°. To improve the accuracy, therefore, it is

preferable to work with a differential measurement. We use a pressure-
differential sensor, which measures the difference in pressure that
exists between two tanks placed in a thermostatic chamber at the chosen
temperature. In one tank, equilibrium is established between the pure
component and the vapor phase, and in the other, that equilibrium is
established between the solution and the vapor phase. The saturating vapor
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pressure of the pure gas is measured using an absolute pressure sensor in
relation to the first chamber, or read from thermodynamic tables.

When two components are notably present in the gaseous phase but it can
be considered to exhibit perfect behavior both as a gas and as a solution,
relation [5.15] gives us:

(G)
(LX) — Xi P 5.17
71( xi(L)R-O [ . ]

In addition to the above measurements, the method requires us to know
the composition of the gaseous phase, which can be found using a mass
spectrometer.

More generally, we can use the Lewis relation to characterize the fugacity
of the component i in the gaseous phase on the basis of its fugacity

coefficient in the pure state @*“ . That relation is:
P = P9
Relation [5.15] then becomes:

DO x P
xV P’

yD = [5.18]

The fugacity coefficient of the pure gas is supposed to be known or
determined separately.

5.2.2. Method using the vaporization constant in reference I1

If we adopt convention (II) for a solute, the expression of the liquid/vapor
equilibrium for the component i is written as follows at a given temperature:

(G)
Qi P _ K(LV)

.(L)(II)

iy = K [5.19]

If the gaseous mixture can be considered to be perfect, the equilibrium
constant is the product of the saturating vapor pressure by Henry’s constant
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(Ki(;)) of the component 7, and relation [5.19] gives us the following for
equilibrium:

F, L) 0
ygL)(ll)ng) = Ki( =B K, [5.20]

If the solution were perfect, it would obey Henry’s law, and would
therefore satisfy the equation:

B _ o
~io = K [5.21]

1

This means that the constant K, is the limit, as the context x* tends

toward zero — in other words, if }/fL) is equal to 1, with the ratio SO:

i
0_(L)°
i Xi

lim P
K.

0= o o 522

We determine the value of the ratio at various decreasing values

i
0_(L)
P

of x", and extrapolate the curve obtained at x”’ =0. The ordinate value

than gives us the constant K, .

The extrapolation is illustrated in Figure 5.2. The slope of the curve must

be horizontal. Otherwise, the measurements of the ratio have not

i
POX-(L)

been taken for sufficiently low values of the molar fraction of 7 in the liquid
and thus found the validity of the limit law with a sufficient degree of
accuracy.

We can then feed that extrapolated value back into equation [5.20] and
deduce the activity coefficient of the component i in convention (II):

©)
Y — F, x, P
i

— (L) po = (L) po
x, B Ky x"FKy

[5.23]
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Figure 5.2. Determination of Henry's constant

As before, this law is easier to use when the component i is practically

pure in the gaseous phase (x'“=1), which is rare. If not, then a

measurement of the composition of the gaseous phase is needed.

5.3. Measurement of the activity of the solvent of the basis of the
colligative properties

A colligative property is a property of a solvent which depends solely on
its molecular constitution rather than on the nature of the solutes in that
solution. The existence of colligative properties is the consequence of the
major dilution of the solute by the solvent.

Thus, these methods are used to determine the activities of solvents.
Hence, we always use the pure-solvent reference, irrespective of the
convention chosen for the solution. Therefore, this convention no longer
needs to be explicitly stated.

Note that the method using the vapor pressures (see section 5.2.1) is

already a colligative method.

5.3.1. Use of measuring of the depression of the boiling point —
ebullioscopy

We suppose that the solute has a very low vapor pressure in comparison
to that of the solvent. We can consider that the gaseous phase is pure and
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contains only the vapor of the solvent. In the presence of the solute, the
solvent’s boiling point is lowered. To calculate this depression, we write the
equilibrium, which is expressed by the equality of the chemical potentials of
the solvent in both phases, with the gaseous phase being under partial
pressure of 1 atmosphere from the solution (at boiling point). Thus, we find
the expression:

(L) 0
alnaV;xO — _f{v]{lg [5.24]

To begin with, we can suppose that the vaporization enthalpy A A is
independent of the temperature. This being the case, it is easy to integrate
this expression between the boiling point of the pure solvent 7 ,,,, and the

boiling point of the solution 7. If we use AT, to denote the difference

between T -1, 4, , we find:

A AT,
Iny, E—M—ln(l—zxf,”j [5.25]
’ RToz(Boil) s

Thus, this relation enables us to determine the activity coefficient of the
solvent at temperature 7, which is not hugely different from 7 5, -

If the solution is sufficiently dilute, the sum of the molar fractions of the
solutes is much less than 1 and we can content ourselves with the first term
of the expansion of the logarithm, and write:

Avh(())ATEBoil)
T—ij_“ [5.26]

0(Boil)

Iny, =-

Now, if the enthalpy of vaporization depends on the temperature, it is
sufficient to take it into account by integrating relation [5.24]. Note that this
precaution is actually very rarely necessary, because the boiling points of the
solvent and the solution are only a few degrees apart.

For the moment, we shall restrict ourselves to applying relation [5.26] to
molecular solutions. We shall discuss the application to ionic solutions in the
next section (see section 5.3.2), with regard to the cryoscopic method.
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5.3.2. Use of measuring of the depression of the freezing point — cryoscopy

In a very similar manner to ebullioscopy, which we have just discussed,
we can determine the activity, or the activity coefficient, of a solvent by
cryoscopy, i.e. by looking at the depression of the freezing point of the
solvent AT, owing to the presence of the solutes. If the solvent is pure in

the solid phase, in the same conditions and with the same hypotheses, we
establish a relation similar to relation [5.25] which, in the case of cryoscopy,
is written as:

A AT
Iny, =———"~In| 1= x" 5.27
Y o7 ( Zx ] [5.27]

0(F)

Thus, we obtain the activity coefficient at a temperature 7 which is not
hugely different from the melting point of the pure solvent 7}, .

As before, if the solution is sufficiently dilute, the sum of the molar
fractions of the solutes is smaller than 1, and we can content ourselves with
the first term in the expansion of the logarithm and write:

0
N

Iny, = _T_ 3 a0 [5.28]

0(F) s
This relation is easily applicable for molecular solutions.

In the case of ionic solutions, a factor called the Van 't Hoff factor, due to
the dissociation of the electrolyte, comes into play in the sum of the molar
fractions of the solutes. Thus, the situation is complex for weak electrolytes
with incomplete dissociation, for which the dissociation coefficient is
unknown. In order to resolve this impasse, it is possible to perform
measurements using both ebullioscopy and cryometry at once.

Let us take the example of a molecule of solute s which dissociates,
giving rise to V; ions, and let ¢ be its degree of ionization. If we initially
consider n; moles of non-dissociated solute, the total amount of solute n,)
after partial dissociation will be the sum of the amount of non-dissociated
species and that of the ions:

e =n(1-a)+any, =n[1+(v,- e, ] [5.29]
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In this case, the sum of the molar fractions of the solutes will be:

n[1+(v, -1)e, |
z Zn0+n [1+(v,-1)e, ]

s

[5.30]

If the solution is sufficiently dilute, the second term in the denominator of
the above fraction is smaller than n, (the amount of solvent) and therefore
the sum of the molar fractions is approximately:

dx =y x[1+(v,-1e,] [5.31]

For each dissociable solute, we see the emergence of a factor i; defined
by:

i =[1+(v, -1, | [5.32]

This factor i; is known as the Van 't Hoff factor.

The relation found by ebullioscopy therefore involves the mean activity
coefficient. According to expression [5.26], it is written thus:

AWAT,,
RT?

0(Eb) s

Iny, =- ix" [5.33]

If the solution contains only one electrolyte, then relation [5.33] can be
simplified to:

A AT,
Iny, = ————U _; xH 5.33a
N [5.33a]

0(Eb)

Similarly, on the basis of cryoscopic measurements, relation [5.28] gives
us:

A hy AT(F)
RT?

0(F)

Iny, = Z <” [5.34]
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In the case of the dissolution of a single electrolyte, relation [5.34] can be
simplified to:

A BAT,
Iny,=——22 O _; ® 5.34a
/A R7% X [5.34a]

0(F)

Thus, we have two equations [5.33a] and [5.34a] and two unknowns: the
coefficient of dissociation ¢ and the mean activity coefficient ¥, .
Obviously, this coefficient will be obtained for a mean temperature between
the solvent’s freezing and boiling points.

NOTE.— In the case of strong electrolytes (¢ = 1), the Van’t Hoff factor is
equal to the number of ions V;supplied by the dissociation of that
electrolyte.

5.3.3. Use of the measurement of osmotic pressure

Remember that the osmotic pressure is the pressure difference between a
solution and its solvent, separated by a semi-permeable membrane, which
allows the solvent, but not the solute, to pass through (see Figure 5.3).

solution Semi-

permeable

membrane
solvent
‘\

Figure 5.3. Osmotic pressure

Taking account of the variation of the chemical potential with the
pressure, we can show that for sufficiently dilute, wherein the partial molar
volume of the solvent in the solution can be treated as the same as its molar
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volume in the pure state, the equality of the solvent’s chemical potential in
both phases gives us the relation:

I1v
Iny, =——2—In 5.35
% RT Xy [5.35]

In this relation, /7 is the osmotic pressure, i.e. the difference between the
pressure P over the solution and the pressure P, over the solvent (see
Figure 5.3).

If the solution contains several solutes with the molar fraction x,, this
expression can also be written as follows, for a dilute solution:

Ilv,
RT

Iny, =- +)x, [5.36]

In order for the accuracy to be sufficient, the osmotic pressure — i.e. the
height 4 measured in Figure 5.3 — must be significant. This result is easy to
obtain with solutions of polymers, for which numerous semi-permeable
membranes are available. It is more difficult to find a good membrane for
smaller molecules of solutes. Nevertheless, often, the measurement is
significant because, for instance, for an aqueous solution of sodium chloride
of 0.1 molar concentration, at 25°C, the osmotic pressure reaches
4.61 x 10’ Pa.

5.4. Measuring the activity on the basis of solubility measurements

The solubility which results from an equilibrium of a component between
two phases — one the pure phase of one of the components, and the other the
solution —can also be used to determine the activity or the activity
coefficient of a component in a solution. In general, it pertains mainly to
solutes, but it is also applicable to solutions for which the concept of a
solvent is no longer clear. The two phases including the component in
questions are usually the pure solid phase on the one hand, and the liquid
solution on the other.

Nevertheless, we shall distinguish between two cases, depending on
whether the solution is molecular or ionic, i.e. whether the species in
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solution is identical to that of the solid, or whether it has undergone
alterations as it dissolved.

5.4.1. Measuring the solubilities in molecular solutions

The molecule of the component in pure phase and that of the solution are
identical; thus, there is a simple equilibrium between the two phases, so the
chemical potentials of the component concerned are equal for both phases.
Thus, we find the following relation, which is valid regardless of the
convention chosen for the solution:

AR 1T 1
nyP =20 2 2 n(]— 2 5.37
I R {T TJ ( ij ) [5-37]

i(F) J#

If the solution has a very high content of component 0 (as is the case with
a solvent), this relation is simplified, for that solvent, to:

0
In 74 :M[ ! —lJ+Zx;.L) [5.38]
R TO(F) T Jj#0

Thus, relations [5.37] or [5.38] enable us to calculate the activity
coefficient of a component if we know the composition of the solution, the
temperature of solubility equilibrium chosen, the melting point of the pure
component in its natural phase and its standard enthalpy of melting at the
temperature in question.

5.4.2. Measuring the solubilities in ionic solutions

We shall only envisage the case of complete dissociation of the
electrolyte, which is true for all salts and most other species with low
solubility at the solubility equilibrium, because then the solutions are very
dilute.

The species in solution (the ions) result from this dissociation upon
dissolution. The equilibrium between the solid and the solution, therefore, is
characterized by a solubility product K. If S denotes the solubility measured
by the amount of solid which has passed into solution (as opposed to the
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amount of ions in the solution), and if the dissociation of a molecule of solid
yields v, cations and v_ anions, we can show that writing the equilibrium

gives us the following relation:

Cnnst.
Vs

S [5.39]

¥, is the mean activity coefficient and the constant, which depends only
on the temperature, is linked to the solubility product by:

% (v, +v,)
co {_V - j [5.40]
VvV, V.~

If we switch to a logarithmic system, relation [5.39] is rewritten as:
11_17/i zlnconst._lns [5‘41]

The mean activity coefficient tends toward 1 when the ionic strength of
the solution tends toward 0. Thus, we deduce relation [5.42]:

InC”" =Jim(In S [5.42]

1-0

In S

4.9 l [ lﬂ Cm\L

4.891

4.861 \

4.84 " )
0 0.05 0.10

» I

>

Figure 5.4. Solubility of silver nitrate as a function
of the ionic strength (reproduced from [POP 30])
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Thus, by measuring the solubility S at different ionic strengths / and
extrapolating the curve at an ionic strength of zero (Figure 5.4), we obtain
the value of the constant C”" in relation [5.41], because then the mean
activity coefficient tends toward 1. From this we deduce the value of the
solubility product K, by relation [5.40], and that of the mean activity
coefficient, regardless of the value of the ionic strength, by relation [5.41].

5.5. Measuring the activity by measuring the distribution of a solute
between two immiscible solvents

If we know the activity coefficient 7 of a component in a phase (), for

example, and the partition coefficient Ki(“ﬂ ) of that component between that

phase a and another phase # which is immiscible with it, then it is easy, by
describing the equality of the chemical potentials of the component i

between the two phases, to obtain the other activity coefficient 7,.(ﬂ ) using
the relation:

K)o e
7D = % [5.43]
xi

Thus, it is only necessary to know the molar fractions x'* and x,.(ﬁ ' of
the component in the two phases at equilibrium and of the activity
coefficient in phase « to obtain 7/,@ ). Relation [5.43] is independent of the
reference state chosen.

5.6. Activity in a conductive solution

If the solution at hand is able to conduct electrical current, the panoply of
methods that can be used is enriched with a set of electrochemical methods.
These methods can be used in the case of ionic solutions used as electrolytes.

5.6.1. Measuring the activity in a strong electrolyte

In a strong electrolyte, we may be led to measure either the absolute
activity of an ion or the mean activity of the electrolyte.
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5.6.1.1. Measuring the absolute activity of an ion

The measurement of the absolute activity of an ion of a strong electrolyte
(salts, strong acids and bases) is based on the complete dissociation of that
electrolyte into ions, and uses the measurement of the electromotive force of
a cell involving that ion.

In principle, we use the fact that electrode potentials are linear functions
of the logarithm of the ion activity if the cell’s behavior is reversible.

Thus, it is sufficient to construct a battery formed of an active electrode
of the ion under study — the measuring electrode — and a reference electrode.
In general, the liquids in which the electrodes are bathed are connected by a
siphon, filled with a concentrated electrolyte in order to minimize the
junction potentials.

For example, in order to measure the activity of the hydrogen ion, we can
construct a system containing a mercurous-chloride electrode (the reference
electrode) and a hydrogen electrode (the measuring electrode), connected by
a junction siphon (see Figure 5.6).

The potential, in this case, is measured at 25°C, and obeys the relation:

E . =0.252-0.06In|H"

[5.44]

Junction siphon I, (P = 1 atm)

L

Hg,Cl, electrode

L

/Hz electrode

KCl solution __— > é

Hg,Cl, paste —_| Measuring

solutio

B

H

_— Platinum Platinum

wire

Figure 5.5. Measuring the activity of the protons in a solution

Thus, by measuring this potential, we are able to measure the activity of
the solutions in terms of protons.
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A variant of this method is to create a concentration cell by taking two
identical electrodes, immersed in two solutions with different activities, one
of which is known.

For example, we immerse two silver electrodes in two solutions of Ag"
ions — one in which the activity of the silver is known (solution 2) and the
other being the solution in which we wish to measure the activity in silver
ions (solution 1). The potential of the cell thus constituted will be:

E,, =}, +0.06In|4g"| —e, —0.06In|4g"| [5.45]
Thus:
[4¢"),
E,,, =0.06In—— [5.46]
[4¢7)

This relation enables us to measure the activity of the unknown solution
without needing to know the value of the standard potential of silver egg .

In practice, the true value of the activity of an ion is difficult to find
because of the error introduced by the junction siphon. Although the
assembly attempts to minimize the junction potential, our calculation
supposes that the potential is null, and the true value of the activity
coefficient of the ion is tainted with an error.

5.6.1.2. Measurement of the mean activity coefficient of a strong electrolyte

In order to obtain more accurate results, it is preferable to use cells with
no junction, but in that case, the method of measuring the activity
coefficients of strong electrolytes will yield only the mean activity
coefficient.

If we know the standard potential of a carefully-chosen cell (which may
be determined experimentally or calculated on the basis of the electrode
standard potential tables), then we can calculate the mean activity coefficient
at any concentration.
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We shall demonstrate the method with the example of measuring the
mean activity coefficient of a zinc chloride solution of concentration c. For
that purpose, we create the following cell with no junction:

Zn / ZnCl, (solution) / AgCl (dissolved), Ag

The cell’s emf would be:

E, = -2z |lcr| [5.47]
abs ZF

This involves only the product of the activities |Zn++ C1'|2 rather than

the individual activities of the ions, which would be:

‘Zn++

=[2n)y,,. =cy,.. and |CI'|=[CI" ]y, =2y, [5.48]

By combining relations [5.47] and [5.48], the emf of the chain becomes:

RT

RT T
=E"———In4c® - L on [5.49]

abs 2F

However, the mean activity coefficient is defined by:
R =1, 7 5.50)
Relation [5.49] can thus be written in the form:

_p Ry —31;—FT1n o [5.51]

abs 2F

If we know the standard cell potential £° and the concentration ¢, we can
deduce the mean activity of the ions using the relation derived from the one
above:

2F 4c?
Iny, =— E°—E, )—-In— 5.52
}/, RT( abs) 3 [ ]
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Let us stress the fact that it is advisable to create cells without junctions,
because no matter how perfect those junctions may be, they cause significant
errors of up to 50% on the value of the cell emf.

5.6.2. Determination of the mean activity of a weak electrolyte on the basis
of the dissociation equilibrium

Suppose that we know the dissociation constant of the weak electrolyte
AH and its dissociation coefficient ¢ at the chosen concentration c. The
dissociation constant is written:

a‘c v,
K = e
l-ay,y

[5.53]

Hypothesize that we are dealing with a sufficiently dilute solution of
electrolyte AH. We know that when the concentration decreases, solutions of
neutral molecules approach the ideal state much more quickly than do those
containing ions. Hence, we shall set 7,;; =1. Then, we immediately obtain:

K(l1-a)

_ [5.54]
o c

Vi =

This simplification means that we now only have one unknown value —
the mean activity coefficient of the ions in the solution. Such an
approximation is correct provided the concentration of electrolyte is no
greater than 10™'-107 moles per liter.
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Appendix 1

Statistical Methods of
Numerical Simulation

The purpose of this appendix is not to give readers a grounding in
statistical simulation, but rather to enable future thermodynamicists to
conduct a dialog with simulation specialists. We wish to demonstrate the
physics which lies behind each simulation, and its reach, so that it is possible
to appreciate the thermodynamic results of a simulation that the reader has
conducted in complete collaboration with the specialists.

The objective of a simulation is to generate particle motion by using
appropriate algorithms and to obtain an adequate distribution function, and
thus, the macroscopic properties. In thermodynamics, we use this method to
calculate the energy of interaction of a collection of molecules, the part of
configuration of the translational partition function and the radial distribution
function.

A.1.1. The physical bases of simulation

A simulation, whatever the method employed, is based on physical
hypotheses. In the case of the molecular simulation, there are two
fundamental hypotheses:

—the first pertains to the link between the internal energy of the set of
molecules and the interactions which exist between them. One of the most
commonly chosen hypotheses is to consider only the sum of the pairwise

Modeling of Liquid Phases, First Edition. Michel Soustelle.
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interactions between the molecules, excluding interactions involving more
than two substances. In the case of the internal energy of configuration, it
obeys the relation:

U,(1,2,..N) =ﬁgﬁj (r.,) [A.1.1]

i<j

Thus, we can calculate the configuration part of the canonical partition
function of translation, which is:

v [ e(n)
I, =) exp| ——~=12 [A.1.2
: Z kT ]

We can also obtain the radial distribution function given by:

g(r)=pLNii5i,j(V—”i,j) [A-1.3]

i=1 j=1

—the second fundamental hypothesis is the choice of the potential
function of interactions between molecules. In the hypothesis chosen in

relation [A.1.1], it is the choice of the function ¢, ; (r,.,_]. ) .

A variety of laws have been encountered for the potential of attraction:

— the Lennard-Jones potential in 1/d°, which relates to the van der Waals
forces between molecules and stems from electrostatic forces between
electrical dipoles. This potential is used for real gases and liquids;

— the Coulombian potential in 1/d, stemming from the electrostatic forces
between two points or two conductive spheres, used between ions in an ionic
solution;

—the ion-dipole potential in 1/d* of electrostatic nature between a
conductive sphere and an electric dipole, which is useful, for instance, for
examining the solvation of ions in a dipolar medium such as water;

— the potential for interaction between a molecule and a surface, in 1/d,
used for physical adsorption, which is the resultant of the different Lennard-
Jones potentials.
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For the repulsion potential, we normally use a potential in d"”, frequently
with n =12, which expresses the repulsion to the interpenetration of the
electron clouds, which is therefore used for ions as well as molecules. To
avoid an integral which diverges as the distance tends toward zero, we often
adopt the approximation of a hard sphere, which gives an infinite potential
for a protection distance less than or equal to D which is the minimum
approach distance.

Of course, the overall potential requires the combination of potential of
attraction and a potential of repulsion in order to represent the possibility of
a position of equilibrium.

A.1.2. Construction of the sample

If we consider a system containing, for example a mole of liquid, this
represents around 10** molecules, which represents 10** x 10**/2, which is
around 10" couples of molecules that need to be taken into account in
relation [A.1.1], for all combinations of relative positions of those couples
(the configurations of the system). There is no computer system, no modern
memory, that is capable of storing such a phenomenal amount of
information. Therefore, we need to perform the simulation on a much
smaller sample, whilst remaining faithful to the behavior of the real system.
The sample adopted, therefore, needs to satisfy two fairly contradictory
conditions:

— it should not contain too many elements in order to be manageable;

— it should contain enough elements for it to still be representative of the
system.

In order to resolve this dilemma, we use a variety of techniques:

— limiting the distance over which the interactions between molecules are
taken into account, by truncating the potential function;

—eliminating the edge effects, which can become very significant,
relatively speaking, in a small system;

— testing the validity of the calculation at every step to limit its duration.
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A.1.2.1. Truncation of the potential function

The curve showing the potential function generally tends toward zero
when the distance between two elements increases, as is shown by
Figure A.1.1. This means that, if we accept a slight degree of error, we can
take account only of a molecule’s interactions with its fairly close neighbors,
that is, if the distance 7; ; between two elements is less than a given distance

r., called the cutoff distance (Figure A.1.2), so:

ifr, , <r, then e =¢;
o [A.1.4]
ifr, , >r, thene=0

We then compile what are called Verlet lists which, for each element in
the sample, give the list of all the elements j which are at a distance less
than a certain minimum distance r, (Figure A.1.2), so as to be able to
perform multiple steps of calculation without changing the list relative to a
particle.

AEp

~

S

Figure A.1.1. Lennard-Jones potential and cutoff radius

The minimum radius 7,, is such that:

rn

1

=7 +2kAt [A.1.5]

In this formula, & is the number of times we use the list without changing
it, At is the step increment (see section A.1.3.1). It is advisable to take the
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size of the sample for the calculation as that which contains Ny, €lements,
which is given by:

Ny =4Tﬁ or [A.1.6]

S| m

Here, p is the density of the real system in terms of molecules.

Figure A.1.2. Cutoff radius and Verlet list

A.1.2.2. Limitation of edge effects

When we choose a set with a small number of elements, the edge effects
are very significant, meaning that a high proportion of the elements are near
to the boundary of the system, and this poses two problems:

— during the course of a displacement, an element may stray out of the
domain, and therefore we are no longer working with a constant number of
particles. We remedy this problem by using what is known as the periodic
boundary condition;

—an element near to the edge of the domain no longer inhabits its
“normal” environment. We correct this effect by using the minimum-image
convention.

A.1.2.2.1. Periodic boundary condition

Let us consider that the system in question is delimited by a cube of side
length a. We can construct the cubes adjacent to that initial cell by exactly
reproducing the composition of the initial cell. Figure A.1.3 offers a
2D representation of the stack thus created. The three Cartesian axes can be
used to write, for example, that the central cell in our study is such that its
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boundaries have the abscissa values X=a/2 and X=-a/2, and similarly in
the other two directions. During the displacement of the elements, one of
them (A) near to the boundary may leave the central cell, crossing that
boundary. So as to work with a constant number of elements, we shall use
the Born and von Karman method, which consists of bringing in a
corresponding element (B) across the opposite boundary, i.e. setting the
following condition, for example, along the abscissa axis:

iij<—a/2thenxj:xj+a

) [A.1.7]
1ij >al2 thenxj =Xx;—a

Figure A.1.3. Born—von Karman periodic boundary condition

A.1.2.2.2. Minimum-image convention

If an element A is too close to the border of its environment, there is a
risk that it will not be complete. In order to correct this effect, we apply
the minimum-image convention, which consists of including in the
Verlet list for that element A, and in the calculation (Figure A.1.4), the
elements neighboring A, situated in adjacent copies of the calculation cell,
such as B.
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O
Calculation cell O
~1,
O

Sphere of influence —

of A O\//OO

Figure A.1.4. Minimum-image convention

A.1.2.3. Estimation of the duration of the calculation

All of these calculation methods work on a step-by-step basis. A step has
an increment, denoted by Af. In general, we begin with an initial
configuration — e.g. the compact stack represented in two dimensions in
Figure A.1.5 — and then, by successive displacements, at each step, we
obtain a succession of configurations. One problem that arises during
the calculation is knowing the number of steps after which the calculation
should be halted in order to be representative of the state of the true system.

Figure A.1.5. The initial compact hexagonal stack

To determine this number of steps, we use a coefficient called the self-
correlation coefficient on g(r), for example.

The self-correlation coefficient measures how the value of x at step 7+ At
is connected to the previous value of x at step ¢; or, if readers prefer to think
of it this way, it measures the influence of the previous state on the present
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state. This function is calculated by relation [A.1.8], which gives a curve that
begins at 1 in the initial state and tends toward zero after a relatively long
period of time (see Figure A.1.6). We need only set the acceptable error to
determine the stopping point of the calculation.

C(t)=-~ [A.1.8]

LN

Figure A.1.6. Self-correlation function

A.1.3. The main calculation methods

There are two types of calculation methods: static methods, which lead to
a state deemed to be stable, and dynamic methods, which show the system’s
evolution over time until it reaches a stable configuration.

A.1.3.1. The Monte-Carlo method
The Monte-Carlo method is a static statistical simulation method.

In this method, we begin with an initial configuration and the total energy
of the system U, is calculated on the basis of relation [A.1.1]. Then, each
element is shifted in the three directions of small amplitudes Ax, Ay and Az.
This amplitude is chosen as around 10% of the molecular diameter. Thus,
each element has a new position, which gives a new configuration, for which
we calculate the new energy U,. If U, is less than U, the new configuration
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is accepted and the coordinates of the elements are saved to memory. If the
new energy U, is greater than U;, we calculate the ratio I1 defined by:

= exp{— Y, ]/exp{—i] [A.1.9]
k,T k,T

This ratio is compared with a random number A between zero and one. If
A is smaller than II, the new configuration is refused and the first
configuration is saved to memory again. If A is larger than II, the new
configuration is accepted and saved to memory. Then, we carry out a new
calculation step. All the elements are again shifted by the same distances as
before, and the new value of IT is compared to a new random number A’, and
so on. Thus, we find around 10° to 10° configurations.

The increments, Ax, Ay and Az, of displacement must not be too large,
otherwise few solutions are accepted, nor too small, which would lead to too
high a number of acceptable solutions.

A.1.3.2. The molecular dynamics method

In this method, the evolution over time of the system with of N elements
is studied on the basis of the fundamental law of dynamics:

F=ma [A.1.10]

The calculation step, in this method, is a period of time. The forces on
each element are calculated at each step, with:

i<j

.9
F =_a_r{zg""’(r””} [A.1.11]

For this, we use an appropriate algorithm, of which one of the best known
is attributable to Verlet. In this algorithm, the displacement of a particle ;l.at

time ¢ + A ¢ is chosen on the basis of the previous two displacements at time ¢
and ¢ — A ¢. Thus, we obtain the positions and velocities of all the elements at
each step of the calculation. Based on those data inscribed in memory, we
can calculate the radial distribution function using relation [A.1.3].
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Reminders of the Properties of Solutions

A.2.1. Values attached to solutions

Consider a solution comprising N components which contains #; moles of
component 1, n, moles of component 2, ..., n; moles of component i, etc.

The molar fraction of component i is x;, defined by:

N
X = ]\7" where 0<x; <1 and le:l [A.2.1]

i=1

We use y; to denote the chemical potential of component i.
This solution is completely characterized by the knowledge of the

function the Gibbs energy G, which is written as follows, in differential
form:

N
dG=-SdT+PdV+) udn, [A.2.2a]
i=1

In order to find this function, we only need to know the chemical
potentials, because they are the partial molar Gibbs energies, and we have:

G=> un, [A.2.2b]

Modeling of Liquid Phases, First Edition. Michel Soustelle.
© ISTE Ltd 2015. Published by ISTE Ltd and John Wiley & Sons, Inc.
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A.2.2. Peculiar values and mixing values

Generally speaking, an extensive value — e.g. the volume of a solution —
is not the simple sum (weighted or otherwise) of the volumes of substances
introduced when making up the solution. Usually, an extra term is added
which is attributable solely to the mixing of the substances, called the
corresponding mixing value.

A.2.2.1. Definitions

Consider a partial molar value 7, . In a uniform solution, that value is a

function of the variables temperature and composition. If we examine a mole
of the overall solution, taking as composition variables the molar fractions x;,
it is always possible to decompose that function into the sum of two
functions such that one depends only on the temperature (we ignore the
influence of pressure on a liquid solution) — this is the peculiar function

p
Ji

— and the other is a function of all the variables of temperature and

nixX
composition, and is known as the mixing function J; . This decomposition

1s written thus:

— pec —mix

Ji =Ji (T)+Jl (T,XIXZ...XN) [A23]
As a peculiar value, we choose the molar value of the pure substance 7 in

the same state of agglomeration as the solution. The decomposition [A.2.3]
is then written:

J =)+ (Toxx,.x,) [A.2.4]
jio denotes the molar value of the pure property:

The operation [A.2.4] can also be applied to any linear combination of
partial molar values, and in particular to the combination:

N J—
J, =Y nJ, [A.2.5]
i=1
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Mixing Definition Expression
value
. , N , N
Gibbs Gh* =7 Cul- — g?) [A26] | GWY =RTY x;Inx; [A2.7]
energy i=1 i=1
Helmbholtz H’:?ix = %xi (ﬁl - hio) [A.2.8] .
encry i=1 Hp™ =0 [A.2.9]
mix %
) S =—-RY x;Inx; [A2.11]
vt | Sl -t i
. N ymx — 0 [A2.13]
Mixin 0 m 2.
| & yom = in(Vi — v ) [A.2.12]
volume i1
Specific
heat N 0
capacityat | Cp, = DX (CP, cp; )[Az 14] | Cp = Y cpp [A.2.15]
constant i=l i=l
pressure

Table A.2.1. Definitions of the mixing properties and values for a perfect solution

We use J,, ™ to denote the molar value of mixing of the solution, defined
by:
. N —_—
VEERAVASY [A.2.16]
i=1

The second column in Table A.2.1 gives the definitions of several molar
values of mixing.
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A.2.3. Characterization of the imperfection of a real solution

A perfect solution is defined as a solution in which the chemical potential
of each of the components obeys the relation:

0
#i = g + RTInx; [A.2.17]

From this definition, we deduce a certain number of classic properties of

the perfect solution. Table A.2.1 gives a few molar values of mixing for a
perfect solution.

Two methods have been distinguished. What they have in common is that
they characterize a real solution by its difference from a perfect solution:

— the first method, from Lewis’ school of thought, introduces the activity
coefficients;

—the second method uses the excess values, in particular the excess
Gibbs energy.

A.2.4. Activity coefficients

Lewis refers to the expression [A.2.17] of the chemical potential,
attempting to preserve its form. In order to do so, he introduces an activity
coefficient % which is a function of the temperature and of the composition
of the solution, writing the chemical potential of a component i of the
solution in the form:

i, =1’ +RTInyx, [A.2.18]

A.2.5. Activity coefficients and reference states

The product of the activity coefficient and the molar fraction is called the
activity of the component 7 in the solution. The activity in a real solution
plays the same thermodynamic role as the molar fraction does in a perfect
solution:

a =7y, [A.2.19]
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The reference chosen for convention (I) is components in the pure state in
the same state of segregation as the solution (this reference is called the

D _

pure-substance reference), in which case, 71'( . We chose to use it in

section A.2.2 for the mixing values. In these conditions, the chemical
potential of the reference state is the molar Gibbs energy of the pure 7, and
then the chemical potential is written:

=g (T)+RTIny"x, [A.2.20]

This reference is mainly used when all the components in a solution play
the same role, and in particular, have comparable molar fractions. For
example, this convention is chosen when the data cover a broad spectrum of
composition, possibly ranging from one pure substance to another.

Convention (II), called the infinitely-dilute solution reference,
distinguishes, among the components of the solution, that (or those) present
in a high proportion, called the solvent(s), and those which are present in
lower proportions, called the solutes. The reference state is different for
these two categories of components:

— for a solvent, we choose its pure state (in the same state of segregation
as the solution) as a reference, and therefore its chemical potential will
obey relation [A.2.20]. For a solvent, convention (II) is the same as
convention (I);

— for a solute, the reference state is an imaginary solution in which all the
solutes are infinitely dilute. The reference chemical potential is therefore that

of the solute in this imaginary solution, and is written as g for a solute s.

The activity coefficient is equal to 1 in this imaginary solution and the
chemical potential will then be written, for all solutes (accepting that the
activity tends toward 1 if the molar fraction tends toward the composition of
the reference state):

u, =4 (T)+RTInyx, [A.2.21]

The activity coefficients of a solute in reference (I) — pure substance —
and (II) — infinitely-dilute solution — are linked to one another because the
chemical potential of the solute does not depend on the convention chosen.
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From this, we deduce:

n" 4 (T)-g/(T)

In J(f”) = _T

=k, [A.2.22]

Thus, the constant K,; linking the activity coefficients expressed in the

two conventions: the pure-substance reference and the infinitely-dilute
solution reference do not depend on the composition of the solution, but
instead depends on the temperature by means of (amongst others) the
chemical potentials of the reference states. The value K, is called Henry’s

constant. This constant can be determined, in particular, on the basis of the
measured vapor pressure at equilibrium between the solution and the vapor
phase (see section 5.2.2).

A.2.5.1. Relation between the activity coefficients of the components of a
solution

Let us place ourselves in the context of any given convention. The
Gibbs—Duhem relation applies to chemical potentials which, at constant
temperature, obey the relation:

N
le. du =0 [A.2.23]
i=1

From this, we deduce:
N
Zx,.d Iny, =0 [A.2.24]
i=1

Thus, if, for each composition of the solution, we know the activity
coefficients of all the components in a convention, except for one of them,
relation [A.2.24] can be used to calculate the unknown activity coefficient in
the same convention (see section 5.1.1).
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A.2.5.2. Influence of the different variables on the activity coefficients
A.2.5.2.1. Temperature

If H? is the partial molar enthalpy of component i in the reference state
at temperature 7, we can show that:
oy -,

: - A.2.25
aT RT? [ ]

This relation [A.2.24] gives us the variation of the activity coefficient at
constant composition when the temperature changes.

The numerator in expression [A.2.25] reveals a difference which
represents the enthalpy of transport, at constant temperature, of a mole of i,
from the real solution under study to the solution in the reference state. We
must imagine that the transport takes place with a large amount of solutions
so it does not alter the compositions of the two solutions. If we adopt
convention I, it is clear that this difference is the opposite of the enthalpy of

mixing (because then H?(l ) =ndy.

A.2.5.2.2. Influence of the composition on the activity coefficients

If a solution is perfect, it obeys Raoult’s law, which is written as:
a’ =x, [A.2.26]

This law is represented by Raoult’s straight line, which is the first
bisector in the system of axes (al.(' ),xl- ).

An ideal dilute solution is defined by an activity coefficient in reference
(IT) equal to 1. Its activity coefficient in reference (I) will therefore be given
by relation [A.2.22]. Thus, the activity of i in convention (I) in an infinitely-
dilute ideal solution is:

a;” =Ky x, [A.2.27]
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This is Henry’s law. This law is represented by Henry’s straight line,
whose slope is K, in the system of axes (ai([),xl- ). Henry’s constant K, is

independent of the composition and has a very clear value when the
temperature is constant (see relation [A.2.22]).

Ifp===========-smeemeae—g | T T T TR
. Henry’s
':/s’"ig"'t lite
] Vi %
' R4 by,

a b Raoult’s

-
;
straight line’
o
A
.
.
,
.
,

- “4——— Raoult’s
. straight line Henry’s

straight line

A 4

- >
0 —> 1
x x

Figure A.2.1. Activity curve of a component as a function of its molar fraction for
a) a component with positive deviation and b) a component with negative deviation

For a real solution, the activity, in the pure-substance reference, of a
component tends toward 1 when its molar fraction tends toward 1. It tends
toward 0, along Henry’s straight line, when its molar fraction tends toward 0.
Thus, the curve showing its activity, in the pure-substance reference, as a
function of its molar fraction, is tangential to Raoult’s straight line at the
point x = 0. It is tangential to Henry’s straight line at the point x = 1.

A solution is said to show positive deviation if its activity coefficient in
the pure-substance reference is greater than 1(y"" >1), the curve is above
Raoult’s straight line. This solution is said to show negative deviation if its
activity coefficient in the pure-substance reference is less than 1(¥™" <1),
with the curve below Raoult’s straight line.

Besides, we can show the inter-relation between the activity coefficients
of two components in a solution:

dlny, =81n}/k [A.2.28]
ox, ox, o
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This relation stems from a similar relation between the chemical
potentials, which is the consequence of the symmetry of the characteristic
matrix.

A.2.6. Excess values

We can show that the activity coefficient of a component in a perfect
solution in the infinitely-dilute solution reference is also 1 at all temperatures
and in all compositions.

7=y =1 [A.2.29]
NOTE.— Henry’s constant for a perfect solution has a value of 1.

Consider an extensive property J of a solution and use J# to denote the
value of that property in given conditions of temperature and pressure if that

solution were perfect. We speak of the excess value of J, denoted by J*
and defined by:

Je=J-J" [A.2.30]

J* 1s indeed characteristic of the difference between our real solution
and a perfect solution.

As this value is extensive, it has corresponding partial molar values
pertaining to each component in the solution, which are defined by:

T = [a./ ' ] [A.2.31]
P,T,nm»

on,

Table A.2.2 presents a few excess values, along with the corresponding
excess partial molar values.

This table also demonstrates the equivalence between the two approaches
to the modeling of real solutions: Lewis’ approach based on the activity
coefficients, and the approach based on the excess values.
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Property Excess molar value Excess partial molar value
- y _ ()
Gibbs G =RTY x;Iny!) (a232) | Gi" =RThy
energy i=1 [A.2.33]
(D
N omyD _p Ol
SE=RY| x| -T—2——nyD ||| s&=R or
Entropy 5 T D
—In 7/1
[A.2.34] [A235]
N Jl (1) 7
HY = RY |52 o000 o _gp2 oy
hal i=1 T i T
Enthalpy or
[A.2.36] [A.2.37]
22 1n 5!
N -T 2
Specific C¥ =RY| x, oT
heat P bt 198
i=1 dlny,
capacity - ET
[A.2.38]

Table A.2.2. Excess values and excess partial molar values

A.2.7. Ionic solutions

Ionic solutions exhibit several peculiarities in comparison to molecular
solutions. The main source of these differences is to be found in the
existence of inter-ion forces that are much stronger than those that exist
between molecules — particularly over a long distance.

A.2.7.1. Composition of an ionic solution and reference state

To express the composition of the ionic solutions, we usually use the
concentration (or molarity) ¢; of a component i in a phase. This is the

quotient of the amount of that component by the volume of the phase, so:
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[A.2.39]

The concentration is often expressed in moles/liter. For solutions in
which the proportion of one of the components is much greater than the
others (often that component is called the solvent), we frequently treat the
volume of the phase as the same thing as the volume of the component
introduced in the highest quantity when making up the solution. Its
concentration is often considered constant, with the addition of a small
amount of another component.

The reference state is usually defined by convention (III), which makes
the distinction between solvent and solute:

—for the solvent, the reference (III) convention is identical to
reference (I) — the pure substance — and therefore the chemical potential of
the solvent is always given by relation [A.2.20] ;

— for the solute, we shall agree to choose that the activity coefficient of an
ion tends toward 1 as its concentration tends toward zero, which gives us the
following convention:

v, —>1if e, —0 [A.2.40]

A.2.7.2. Chemical potential of an ion

In spite of the difficulty, in the case of ions, of defining a derivation in
relation to one of the components whilst preserving the values of the other
constants, we can show that it is exactly as if we had chosen the usual
relation to express the chemical potential:

=1 +RTInyc, [A.2.41]

The potential ,u,Q is, of course, that of the reference state.
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A.2.7.3. Relation between the activities of the ions and the overall activity
of the solutes

Consider the dissolution of an electrolyte with the chemical formula
AV+BV7. Suppose that it is a strong electrolyte; it dissociates completely. Its

Gibbs energy is written as:
G =notty +ng (V+ A TV_Ho ) [A.2.42]

However, we know that the chemical potential of the solute is also:

Uy =V iy +V_ilg [A.2.43]

From this, we deduce:

¥ses =(7aca)” (78cs)” [A.2.44]

This equation links the molecular point of view about the solution to the
ionic point of view.

A.2.7.4. Mean concentration and mean activity coefficient of the ions

The methods for precisely measuring the activity coefficients (see
section 5.6.1.1) are incapable of giving us the activity coefficients of the
individual ions. Thus, it has proved helpful, for an electrolyte Ay, B, , to

introduce the concept of the mean activity coefficient defined by:

y )I/(V++v,)

Ve = (7!* . [A.2.45]

The mean activity coefficient obeys the same convention as the
individual activity coefficients.

We can also define a mean concentration by a similar relation. If ¢ is the
molar concentration of solute, the concentrations of the different ions (for
fully-dissociated strong electrolytes) would be:

c,=v,cand c_=v_c [A.2.46]
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and the mean concentration would be:

v )1/(v++v,))

¢ = c(v+V+v_ - [A.2.47]

A.2.7.5. Activity coefficient of an individual ion

We have already mentioned how difficult it is to determine the individual
activity coefficients for the ions by experimentation. It is obvious that if we
were able to determine the activity coefficient of a single individual ion, then
little by little we could — on the basis of the mean activity coefficient, which
we are able to measure (see section 5.6.1.2) — deduce that of all the other
ions. In order to do so, Maclnnes exploited the fact that in potassium
chloride, the chloride ion and the potassium ion have the same charge in
absolute value, have the same electron structure and therefore the same size,
roughly the same mobility and masses that are not hugely different.
Maclnnes deduces from this that they should have approximately the same
activity coefficient. In light of that result, we deduce, from the mean activity
coefficient of potassium chloride, that of the separate ions, using the relation:

Yor =7x = ;/i [A.2.48]

By the same hypothesis, the results obtained for a set of ions show that
monovalent ions have approximately the same activity coefficient, and that
the activity coefficients are primarily influenced by the electrovalences of
the ions and by the presence of other ions, which gives rise to the concept of
ionic strength.

A.2.7.6. Concept of ionic strength

The activity coefficient of the ions is influenced by the presence of other
ions. Experience shows us that the important value is the ionic strength,
defined by:

1
I= EZ ¢z} [A.2.49]

The sum is extended to all the ions present in the solution.
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Reminders on Statistical
Thermodynamics

The purpose of this appendix is to recap, but not demonstrate, a few
results of statistical thermodynamics which are used in this second volume.
The detail and expansion of these concepts are presented in the first volume
of the collection [SOU 15].

We know that a microscopic approach to a phase considers it as a
collection of molecules-objects whose energies are distributed in accordance
with a statistical law. The state of a collection of molecules-objects is
constantly changing but, over time, the collection goes through a certain type
of distribution in which the molecules-objects may be in a variety of
different states. We use the term number of complexions for the number of
distributions of molecules-objects between the different states that they are
liable to assume. Out of all the possible distributions, there is one that
corresponds to the maximum number of complexions. Boltzmann’s principle
accepts that the number of complexions corresponding to the most probable
type of distribution is practically equal to the total number of complexions,
and vice versa. The state of the collection is then always that which
corresponds to the maximum number of complexions.

Most of the calculations in statistical thermodynamics are based on
Stirling’s approximation, which enables us to simplify the expression of the
factorial logarithm # if the number 7 is large. It is written thus:

Inn!=nlnn—n=nlnn [A.3.1]

Modeling of Liquid Phases, First Edition. Michel Soustelle.
© ISTE Ltd 2015. Published by ISTE Ltd and John Wiley & Sons, Inc.
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A.3.1. The three statistical distributions

Each element in the collection has an energy &, and the number of
elements which have that energy is n;. The total number of elements will be
N, such that:

N=>n, [A.3.2]

Hence, the total energy is:
E=)ng [A.3.3]
The number of complexions, i.e. of configurations of the collection of
elements, is represented by Q.

The mean energy of an element is <€> , and by applying relation [2.2], we
find:

(e)=— [A.3.4]

Thus, for the number of objects in the state i, we find:
n, = g, exp(—a)exp(-pe,) [A.3.5]

where g; is the statistical weight or the coefficient of degenerescence or the
multiplicity of the energy level ¢,. It is the number of different states with
the same energy &, .

The coefficient Sis a universal value which is:

1
B= or [A.3.6]

k, is Boltzman’s constant (the quotient of the joule constant, R, by
Avogadro’s number N,).
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Depending on the nature of the molecule-object, three kinds of statistics
have been developed.

A.3.1.1. Maxwell-Boltzmann statistics

Maxwell-Boltzmann statistics applies to objects for which there is no
room to resort to quantum mechanics, i.e. fairly large and easily-discernible
objects. This branch of statistics is also applicable to discernible or localized
quantum objects, such as the “molecules” distributed at the nodes of a
crystalline lattice.

The coefficient « from relation [A.3.5] is given, in this case, by:

N
exp(—o)= [A.3.7]
( ) Zgi exp(—ﬂei)
The distribution law becomes:
Ng. —fe.
_ Neexp(-fe) [A3.8]

"7 g exp ()

i

[ is defined by relation [A.3.6].

A.3.1.2. Bose—Einstein quantum statistics

Bose—Einstein quantum statistics applies to non-localized quantum
objects, i.e. which are indiscernible and have integer spin (most of the
molecules and the ions, the atoms). The distribution of the objects obeys the
expression:

(n) _ 8; eXp(_a_ﬁgi)

- 1-exp(—a— fe,) [A-39]

The value of the coefficient ¢ is difficult to determine. We shall come
back to this point later on (relation [A.3.11]).
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A.3.1.3. Fermi—Dirac quantum statistics

Fermi-Dirac quantum statistics applies for non-localized quantum
objects, meaning indiscernible objects with fractional spin (some molecules
and ions, and electrons). The distribution of the objects obeys the expression:

(1), = expl-o—fe) [A3.10]

- 1+exp(—a - fe,)

The value of the coefficient « is as difficult to calculate as in the previous
case.

For the two branches of statistics for non-discernible objects, we content
ourselves, for that coefficient ¢z, with a limited expansion of the form:

2 3
exp(—aA)=a0+alﬂ+a2[£] +a3(£J +... [A.3.11]
Za Za ZA

Laborious calculations show that the coefficients a; in this expansion are:

1 1 1
a,=0; a,=1; a,=% a,=— [A.3.12]

DXL > G 4 _337 )
In the coefficient a,, the + sign applies for Fermi—Dirac statistics, and
the — sign applies for Bose—Einstein statistics.
A.3.1.4. Classic limit case

The three quantical statistics (MB, BE and FD) come together to form
one, called the classic limit case, if the following condition is fulfilled:

exp(—ar) <<1 [A.3.13]
Thus, o must be large.
In these conditions, the three laws come together in the form:

n, =g exp(—o— fe,) [A.3.14]
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We can see that this limit case maintains the formula of the Maxwell—
Boltzmann distribution. Thus, ¢ is determined by the relation:

exp(—a, —ﬂ [A.3.15]

Za
We can show that in this case, we also have the condition:

N<<g, [A.3.16]

i.e. if the number of particles is much less than the number of possible states.

A.3.2. Partition functions of a molecule object
A.3.2.1. Definition

The partition function of a molecule object of a collection is the sum z
defined by:

z= z g exp[——J Z g .exp(-¢,8) [A.3.17]
The sum is extended to all the levels of energy that the object may attain.

A.3.2.2. Independence of the energies

The complete partition function for a system includes terms that refer to
the various forms of energy: nuclear, electronic, vibration of the molecules,
their rotation, their translation and the energy of interaction between the
different molecules.

To simplify, we accept that these different forms of energy, for a
molecule, are independent.

In these conditions, we can write the total energy of a molecule as
the sum of the different contributions of the forms of energy — nuclear
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g, , electronic £, vibrational €, rotational €, translational € and

no

interactional &,, so that:
E=E,+E,+E +E +E +E, [A.3.18]

The molecule’s partition function becomes:

Zp(ﬁjzp[ kBrJ?“"( kBrj
gi,, _ gi, %
Yo - [Reo| -5 e %)

Thus, we reveal partial partition functions, which are afferent to the
different forms of energy:

BBl Tl

z, —ZGXp(——'J z, —Zexp[——] Ze p(——j [A.3.20]

[A.3.19]

The overall partition function then assumes the form of a product of the
partial partition functions:

z2=2,2,2,2,2,Z, [A.3.21]

Sometimes, we use the hypernym internal contribution to speak of the
product:

z,.=22,27Z [A.3.22]

n"e"vTr

It is the product of all the contributions other than those of translation and
interaction.

Thus, obviously, the overall molecular partition function becomes:

z=2z.22, [A.3.23]

int='¢
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A.3.2.3. Partial molecular partition functions, relating to the different
motions

By applying definition [A.3.20], we can calculate the contributions of
each of the motions of the molecule to the molecular partition function.

A.3.2.3.1. Translation

The molecule has three degrees of freedom for translation. We can show
that if it is subject to no other constraint than having to remain in the
volume V, the contribution of translation is:

3/2
z = V(Mj [A.3.24]

For the perfect gas, with no interaction (z; = 1) between the molecules,
the molecular partition function can be written as follows, in light of
relation [A.3.24]:

2 k T 3/2
z, :V[”’;’—ZBJ Z [A.3.25]

Thus, the translational partition function of the perfect gas is:

2 k T 3/2
- V(M—Bj [A.3.26]

A.3.2.3.2. Rotation with moment of inertia [

A molecule may have two or three degrees of freedom for rotation. We
distinguish three families of molecules.

For homonuclear diatomic molecules (i.e. where the two atoms are
identical), the partition function per degree of freedom is:

. 4z’ Ik, T

) = [A.3.27]
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For heteronuclear diatomic molecules, the partition function per degree of
freedom is:

2
z, =w [A.3.28]
h
In the case of complex molecules, the partition function per degree of
freedom is:

sz2(27xk. 7Y JI LI
z,= (27k, )2 L3 [A.3.29]
oh

where o is a coefficient of symmetry which depends on the complexity of
the molecule, whose value is at most a few units.

A.3.2.3.3. Vibration of frequency v

We can show that the partition function of one degree of freedom of
frequency vis given by:

exp| — hv
Pl ok,

7 =— L “fef ] [A.3.30]

' hv
l—exp —ﬁ
B

.. hv . .
Note that if —— >>1, we can content ourselves with a simpler form:
B

z, =B [A.3.31]

A.3.3. Canonical partition function

To use statistics for the characterization of the phases, it is interesting to
construct the canonical ensemble.
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A.3.3.1. Canonical ensemble

A so-called canonical ensemble is an ensemble, comprising replicas of
the system under examination. Each element is closed, so the number of
molecules N is identical in every element of the ensemble. This number is
constant because there is no exchange of matter between the elements, or
between those elements and the outside world. The volume V' is the same for
all the elements. The elements are in thermal contact with one another, and
can thus exchange energy. Their temperature 7 is identical. Each element has
an energy E;. The total energy of the canonical ensemble would be E¢. This
energy is constant because the ensemble is isolated from the outside.

A.3.3.2. Canonical partition functions

Similarly, as for molecules, we define the partition function for the
canonical ensemble by the sum:

Z. = exp(-BE,) [A.3.32]

This sum is extended to all the elements in the ensemble.

A.3.3.3. Canonical partition function and molecular partition functions

We can link the canonical partition function, firstly to the molecular
canonical functions, and secondly to the thermodynamic functions which
define the phase on the macroscopic level (U, F, G, S, etc.). These two types
of relation use the canonical partition function to form the link between the
microscopic definition of the phase and its macroscopic thermodynamic
properties.

In order to calculate the canonical partition function on the basis of the
molecular functions, we distinguish two cases, depending on whether the
molecules are discernible or indiscernible.

A.3.3.3.1. Case of collections of discernible molecules
If the molecules are all identical and discernible, we show that we can use

the expression:

Z.=z" [A.3.33]
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If the phase comprises several types of molecules — Ny molecules of A, in
Np molecules of B, etc., the canonical partition function becomes:

Zo=2 2. [A.3.34]

A.3.3.3.2. Case of collections of indiscernible molecules

If the molecules are all identical and indiscernible, we show that we can
use the expression:

N
z

- [A.3.35]

C

If the phase comprises several types of molecules — Ny molecules of A in
Np molecules of B, etc. — the canonical partition function becomes:

Ny _Ng
z.=22 % [A.3.36]
NN,

In the case that the medium under examination is a mixture of several
phases ¢, S, % etc., the canonical partition function of the ensemble is the
product of the canonical partition functions of the different phases, in
accordance with:

Z.=220 7. [A.3.37]

Each canonical partition function for each of the phases obeys one of the
relations [A.3.33], [A.3.34], [A.3.35] or [A.3.36].

A.3.4. Interactions between molecules

Let us consider the mixture of N independent molecules, with no
interaction between them. This collection is treated as an assembly of non-
discernible quantum particles in the classic limit case of validity of relation
[A.3.13].

If we use the notation @ to denote the set of position coordinates (x;, x,,
x3); of the particle i, between two particles i and j there is an energy of
interaction ¢&,;, and we suppose that the interaction energy only contains
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terms such as & although many molecules interact mutually. This
hypothesis is known as the pairwise interaction model. The configuration
integral thus takes the form:

1= [ [ TTexp- ;;}(d“’)N [A.3.38]

Nv, i<j

The integrals are extended to the available volume for the molecules, so
NVf.

We suppose that there is a zone of interaction for the molecule, the sphere
of influence, and that there is only one molecule j which is within the sphere
of influence of a molecule i. Thus, by ignoring the volume of those
molecules in relation to the total volume, we establish a term of interaction
in the molecular partition function of the form:

NZBAA (T)

I, =exp— =

[A.3.39]

The term B,,(T)) being given by the expression, a function of the
distance r between two molecules:

B

B, (T)= —%j47zr2 {exp(— lfAAT )— l}dr [A.3.40]
0

Usually, we content ourselves with a limited expansion of this
contribution in the form:
NZBAA (T)

I =1 -

[A.3.41]
For a collection of N molecules of gas (indiscernible molecules), this

gives us a canonical partition function which has the expression:

N! 14

N
2amke VT [A.3.42]
h2 ZintV ) N
|:1_N BAA(T):|

N N
Z. :i[l_NzBAA(T)}

N! 14
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The second coefficient of the virial is therefore:

B (T)=N,B,,(T) [A.3.43]

The energy &xa of interaction between two molecules may take a variety
of forms, particularly the Lennard-Jones form, which is due to the van der
Waals forces:

6 12
Ena _ _2(ﬁj + (ﬁj [A.3.44]
& d d

where d is the distance between two molecules which corresponds to the
minimum.

Up until now, we have defined an energy of interaction between
molecules &;. It is possible to work another way, considering the molecules
without interaction and introducing a term representing the overall energy of
interaction E.

The configuration integral is written, at the level of the canonical
partition function, by replacing the formula [A.3.38] by:

=] jexp(_

E

L lda" [A.3.45]
k,T
A.3.5. Canonical partition functions and thermodynamic functions

We can demonstrate the following formulae to express the
thermodynamic functions on the basis of the canonical partition function.

For the internal energy:

dlnZ dlnZ
UM -U(0)=-Y e _ 23 TR e

VL ; e [A.3.46]
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For the entropy:

1dInZ
S=ky|InZ, —— . A3.47
? { © T omp } [ ]
For the Helmholtz energy function:
Zln Zea
F(T)-F(0)= —AT =—kyTY InZ,, [A.3.48]
A

NOTE (on the molar values).— In the expressions of the molecular and
canonical partition functions, we worked for a certain number of molecules —
a number of particles symbolized by N, for component A.

To obtain the molar values of the thermodynamic functions, it is wise to
choose Avogadro’s number (N,) as the value of N,.

To obtain the value of a function for an amount n, (in moles) of the
component, then for N, we use the product n, N,.

A.3.6. Equilibrium constants in the liquid phase and partition functions

As the thermodynamic constants — particularly the Gibbs energies — can
be expressed on the basis of the partition function, the same must be true of
the equilibrium constants.

The equilibrium constant of a reaction is expressed on the basis of the
partition functions of the reagents and products, in the case of liquid perfect
solutions of dilute ideal solutions, by the expression:

RT

1

K =TT(z00)" exp(—wJ [A.3.49]

The term z° . is the molecular partition function of the component i, the

m(i)
partition function expressed in relation to a molecule, so:

Sz G [A.3.50]
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The term A h°(T) is the linear combination, weighted by the

stoichiometric numbers, of the residual vibrational energies of each of the
substances.

Thus, if each component has k; vibrational degrees of freedom with the
fundamental frequency V,g , we would have:

N,h
2

Au’(0)= D@ v)=Ah(0) [A.3.51]

If the solution is not perfect, this term is joined by the energy of
interaction of mixing at the temperature of 0 K.
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UNIFAC, 86, 107-110, 114, 115, parameter, 79
118,119, 157 weighting factor, 75, 79, 86
consortium, 114 Wilson, 74, 86, 101, 107
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Van’t Hoff factor, 170172
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