Chapman & Hall/CRC

Computational Science Series

**?;L';?“‘f\'“f“ﬁ Th € G ree n ﬁ&%
Computing Book

~Tackling Energy
F‘ Efficiency at
}‘” Large Scale

CRC Press |

Taylor & Francis Groupq
A CHAPMAN & HALL BOOK

THE GREEN
COMPUTING
BOOK

Tackling Energy Efficiency
at Large Scale

Chapman & Hall/CRC

Computational Science Series

SERIES EDITOR

Horst Simon
Deputy Director
Lawrence Berkeley National Laboratory

Berkeley, California, U.S.A.

PUBLISHED TITLES

COMBINATORIAL SCIENTIFIC COMPUTING
Edited by Uwe Naumann and Olaf Schenk

CONTEMPORARY HIGH PERFORMANCE COMPUTING: FROM PETASCALE
TOWARD EXASCALE
Edited by Jeffrey S. Vetter

DATA-INTENSIVE SCIENCE
Edited by Terence Critchlow and Kerstin Kleese van Dam

PETASCALE COMPUTING: ALGORITHMS AND APPLICATIONS
Edited by David A. Bader

FUNDAMENTALS OF MULTICORE SOFTWARE DEVELOPMENT
Edited by Victor Pankratius, Ali-Reza Adl-Tabatabai, and Walter Tichy

THE GREEN COMPUTING BOOK: TACKLING ENERGY EFFICIENCY AT LARGE SCALE
Edited by Wu-chun Feng

GRID COMPUTING: TECHNIQUES AND APPLICATIONS
Barry Wilkinson

HIGH PERFORMANCE COMPUTING: PROGRAMMING AND APPLICATIONS
John Levesque with Gene Wagenbreth

HIGH PERFORMANCE VISUALIZATION:
ENABLING EXTREME-SCALE SCIENTIFIC INSIGHT
Edited by E. Wes Bethel, Hank Childs, and Charles Hansen

INTRODUCTION TO COMPUTATIONAL MODELING USING C AND
OPEN-SOURCE TOOLS
José M. Garrido

INTRODUCTION TO CONCURRENCY IN PROGRAMMING LANGUAGES
Matthew J. Sottile, Timothy G. Mattson, and Craig E. Rasmussen

INTRODUCTION TO ELEMENTARY COMPUTATIONAL MODELING: ESSENTIAL
CONCEPTS, PRINCIPLES, AND PROBLEM SOLVING
José M. Garrido

PUBLISHED TITLES CONTINUED

INTRODUCTION TO HIGH PERFORMANCE COMPUTING FOR SCIENTISTS
AND ENGINEERS
Georg Hager and Gerhard Wellein

INTRODUCTION TO REVERSIBLE COMPUTING
Kalyan S. Perumalla

INTRODUCTION TO SCHEDULING
Yves Robert and Frédéric Vivien

INTRODUCTION TO THE SIMULATION OF DYNAMICS USING SIMULINK®
Michael A. Gray

PEER-TO-PEER COMPUTING: APPLICATIONS, ARCHITECTURE, PROTOCOLS,
AND CHALLENGES
Yu-Kwong Ricky Kwok

PERFORMANCE TUNING OF SCIENTIFIC APPLICATIONS
Edited by David Bailey, Robert Lucas, and Samuel Williams

PROCESS ALGEBRA FOR PARALLEL AND DISTRIBUTED PROCESSING
Edited by Michael Alexander and William Gardner

SCIENTIFIC DATA MANAGEMENT: CHALLENGES, TECHNOLOGY, AND DEPLOYMENT
Edited by Arie Shoshani and Doron Rotem

THE GREEN
COMPUTING
BOOK

Tackling Energy Efficiency
at Large Scale

Edited by
Wu-chun Feng

Virginia Polytechnic Institute
and State University

Blacksburg, USA

CRC Press
Taylor & Francis Group

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A CHAPMAN & HALL BOOK

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130916

International Standard Book Number-13: 978-1-4398-1988-3 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Table of Contents

Preface, ix
Contributors, xvii
CHAPTER 1 = Low-Power, Massively Parallel, Energy-Efficient

Supercomputers 1
IBM Brue Gene Team™

CHAPTER 2 = Compiler-Driven Energy Efficiency 43

MAHMUT KANDEMIR AND SHEKHAR SRIKANTAIAH

CHAPTER 3 = An Adaptive Run-Time System for Improving
Energy Efficiency 87

CHunG-HsinG Hsu, Wu-cHUN FENG, aND STepHEN W. Poole

CHAPTER 4 = Energy-Efficient Multithreading through
Run-Time Adaptation 115
Matthew Curtis-Maury and Dimitrious S. Nikolopoulus

CHAPTER 5 = Exploring Trade-Offs between Energy Savings
and Reliability in Storage Systems 149

ALl R. Butt, PuranjOY BHATTACHARIEE, GUANYING WANG,

AND CHris GNIADY

CHAPTER 6 = Cross-Layer Power Management 183

ZHiKUl WANG AND PARTHASARATHY RANGANATHAN

CHAPTER 7 = Energy-Efficient Virtualized Systems 231

RipAL NATHUJI AND KARSTEN SCHWAN

vii

viii B Table of Contents

CHAPTER 8 » Demand Response for Computing Centers 267

Jerrrey S. CHASE

CHAPTER 9 = Implications of Recent Trends in Performance,
Costs, and Energy Use for Servers 297

JoNATHAN G. Koomey, CHRISTIAN BELADY, MICHAEL PATTERSON,

ANTHONY SANTOS, AND KLAUs-DIETER LANGE

INDEX, 321

Preface

INTRODUCTION

In 1957, the Soviet Union launched the first Earth-orbiting artificial
satellite—Sputnik I—into space. This singular event precipitated the birth
of the space age and, more specifically, the U.S.—U.S.S.R. space race. If we
fast forward 45 years, the year is 2002, and Japan unveils the first supercom-

puter that obliterates U.S. domination in supercomputing,*creating such a
fervor that the event is dubbed Compute-nik and ignites an “arms race in
supercomputing” in which the need for speed is paramount above all else
and supercomputing (also referred to as high-performance computing or
HPC) becomes increasingly mainstream, as illustrated in Figure 0.1 from
the U.S. Council of Competitiveness, and as detailed in a report by the
President’s Information Technology Advisory Committee (PITAC).
However, this singular focus on speed as a performance metric arguably
comes at the expense of other performance metrics, such as efficiency, relia-
bility, and availability, to name a few. These “other” metrics are of particular
interest to our Supercomputing in Small Spaces (SSS) project, which started
in 2001, when being cool was “not cool.” Why? With the supercomput-
ing community’s focus on speed, supercomputing nodes were not only
becoming faster but also consuming and dissipating more power. By apply-
ing Arrhenius’s equation' to microelectronics or, more generally, computer
hardware, every 10°C increase in temperature doubles the failure rate of a
given system. This equation was supported by our own informal empirical
data at the time, specifically a 128-node cluster that resided in a warehouse
and failed approximately once per week during the winter months when the
temperature inside the warehouse was 21-23°C and approximately twice
per week during the summer months when the temperature was 30-32°C.
As a consequence, we learned that by keeping the power draw lower, and

*The Japanese supercomputer, called Earth Simulator, delivered a sustained performance that was
approximately five times faster than the next-fastest supercomputer in the world.

tArrhenius’s equation notes that for many common chemical reactions at room temperature, the
reaction rate doubles for every 10°C increase in temperature.

x M Preface

Competitive Risk from Not Having Access to HPC
3%

34%

B Could exist and compete

B Could not exist as a business
[Could not compete on quality
47% & testing issues

16% [l Could not compete on time to

Data from Council of Competitiveness. market & cost
Sponsored Survey Conducted by IDC

FIGURE 0.1 The importance of high-performance computing (HPC).

in turn system temperature lower, the efficiency, reliability, and availability
of a supercomputer could be significantly improved. Furthermore, with
65% of information technology managers reporting that their websites
were unavailable to customers over a 6-month period, and that the cost
of the service outages ran as high as $6,450,000/hour for a New York City
stockbroker and $1,200,000/hour for Amazon.com, businesses also require
HPC (or, more broadly, large- or extreme-scale computing) that delivers
near-100% availability with efficient and reliable resource usage in support
of e-commerce, enterprise applications, and data centers.

By the late 2000s, the data center community finally realized the need for
energy-efficient HPC as the annual energy costs for a data center surpassed
annual server purchase costs in 2008, as demonstrated in Figure 0.2. Around
this same time frame, the supercomputing community also recognized
the importance of both speed and power consumption in the context of
tomorrow’s exascale computing systems. For example, while past trends
indicate that an exascale supercomputer (10'® floating-point operations
per second or 10'® FLOPS) would arrive in 2018, such a system is projected
to consume more than 100 megawatts (MW) of power, thus making power
consumption the primary design constraint for achieving such exascale
performance. Even the floating-point units (FPUs) alone are projected to
consume 10 MW of power. Based on these projections, “performance at
any cost” is no longer practical.

GREEN SUPERCOMPUTING: PAST, PRESENT, AND FUTURE

While the supercomputing community focused on performance (i.e.,

speed) in the early 2000s, as exemplified by the Top500 list (http://www.top
500.org/) and the Gordon Bell Awards at the ACM/IEEE (Association for
Computing Machinery/Institute of Electrical and Electronics Engineers)

Preface W xi

3500

— Annual I&E

3000 | — Infrastructure cost /
— Energy cost

— Server cost

2500 /

2000 /

1500

Dollars

1000

500

0 T - T T T T T T
1990 1995 2000 2001 2004 2005 2008 2010

Year

FIGURE 0.2 Annual amortized costs in the data center.

Supercomputing Conference every year, I instead built MetaBlade, a 24-
node cluster having a footprint of 19 x 25 in. (or 3.3 ft*) and consuming a
meager 300 watts (W) of power at idle, when booted diskless, in 2001. To
put this into perspective, two large-size pizza boxes placed side by side have
a footprint of 16 x 32 in. (or 3.5 ft?), and the equivalent of three 100 W
lightbulbs could power MetaBlade.

How was such a feat possible? Each processor (or central processing
unit, CPU) in MetaBlade was a Transmeta TM5800 that ran our customized
high-performance code-morphing software, which improved overall per-
formance while maintaining a small thermal power envelope. Specifically,
a Transmeta TM5600 CPU by itself dissipated only 6 W under load.

As a follow-up to MetaBlade and as the first major instantiation of the
SSS project, MetaBlade was extended to create the Green Destiny supercom-
puter in April 2002 with the tenets of efficiency, reliability, and availability
in mind. Green Destiny* was a 240-node cluster with a slightly larger foot-
print than MetaBlade—24 x 30 in. (or 5.0 ft?)—but approximately 14 times

*The namesake for Green Destiny (GD) has a multiplicity of origins. First, the destiny of the GD was to
be green. Second, GD was based on computer “blade” technology; GD was also the name of the sword
blade in Crouching Tiger, Hidden Dragon. Third, the names of the groundbreaking supercomputers
from the ASCI program at the U.S. Department of Energy were named after different colors; our
project chose green.

xii M Preface

taller than MetaBlade for a total volume of 32 ft*, which is approximately
the size of a small telephone booth. The entire Green Destiny supercom-
puter consumed only 3.2 kW of power, roughly the equivalent in power to
two hairdryers. Due in large part to its very low thermal power envelope,
Green Destiny did not have any unscheduled downtime in its 2-year life-
time, despite residing in a dusty 85-90°F warehouse at over 7,000 ft above
sea level. Because the CPUs in Green Destiny consumed so little power, the
CPUs did not require active cooling, could be closely packed, and provided
tremendous savings in terms of operational costs, space constraints, and
cooling infrastructure. This audacious feat led to worldwide acclaim, in-
cluding media coverage in The New York Times, CNN, and PC World, just to
name a few.* However, this feat did not lead to the worldwide embracement
of the large-scale green computing movement, at least not at the time. It
did, however, provide the impetus for significant seminal research in the
area of large-scale green computing, as exemplified in this book.

This green book is organized into nine chapters and loosely ordered
to start with low-level, hardware-based approaches and traversing up the
software stack with increasingly higher-level, software-based approaches.
Debuting in November 2004, the IBM Blue Gene approach to green su-
percomputing sets the stage in Chapter 1, “Low-Power, Massively Parallel,
Energy-Efficient Supercomputers,” authored by the IBM Blue Gene team. In
this chapter, IBM architects focus on low-power, high-performance designs
that illustrate how to improve the energy efficiency of a supercomputer by
an order of magnitude without any system performance loss in paralleliz-
able applications.

With the export of software-based mechanisms, such as dynamic voltage
and frequency scaling (DVFS) and dynamic concurrency throttling (DCT),
to control underlying computer hardware, the energy efficiency of a large-
scale computing system can be enhanced further if these mechanisms are
applied appropriately (i.e., at the right time and at the right setting). To
that end, Chapter 2, “Compiler-Driven Energy Efficiency,” by Kandemir
and Srikantaiah seeks to reshape a program either explicitly, by inserting
instructions to turn off resources that are not being used, or implicitly, by
increasing the idle periods between two usages of the resource. In particular,
the authors demonstrate this via compiler-directed energy optimizations in
both the I/O (input/output) subsystem and the network on a chip (NoC),
which can consume significant power due to on-chip communication.

*Green Destiny and an identical replica of it now reside in the Computer History Museum in Mountain
View, California, and in the Bradbury Science Museum in Los Alamos, New Mexico, respectively.

Preface M xiii

As a complement to the compiler-driven approach mentioned, Hsu,
Feng, and Poole present their dynamic run-time system that automatically
schedules the DVFS mechanism at the right voltage and frequency and at
the right time to maintain performance while reducing both power and
energy consumption. Serendipitously, the work in Chapter 3, “An Adap-
tive Run-Time System for Improving Energy Efficiency,” was in response to
criticism of Green Destiny and, in turn, as an outgrowth of the SSS project.
Specifically, many criticized Green Destiny for sacrificing too much perfor-
mance to reduce power consumption, while others complained that Green
Destiny used too many pseudoproprietary parts. By leveraging DVES on
commodity processors from AMD, the adaptive run-time system presented
in Chapter 3 addresses these criticisms in one fell swoop and has since been
adapted to other commodity processors.

Similarly, Chapter 4, “Energy-Efficient Multithreading through Run-
Time Adaptation,” by Curtis-Maury and Nikolopoulus presents a general
framework that predicts the performance impact of dynamically adjusting
different power-performance settings and derives predictors to efficiently
identify optimal settings at run time. The framework simultaneously lever-
ages both DVFS and DCT across multiple multicore processors. In addition,
this chapter provides a survey of methods for power-performance adapta-
tion in run-time systems.

Chapter 5, “Exploring Trade-Offs between Energy Savings and Reliabil-
ity in Storage Systems,” by Butt, Bhattacharjee, Wang, and Gniady not only
explores the interactions between energy management and reliability but
also studies storage system organization that maximizes energy efficiency
and reliability. To support these items, the authors propose a new metric for
simultaneously evaluating energy and reliability called the energy-reliability
product (ERP) and the basic mechanisms for idle time allocation between
energy management and reliability mechanisms to achieve a balance be-
tween energy consumption and reliability.

From a more holistic perspective, Chapter 6, “Cross-Layer Power Man-
agement,” by Wang and Ranganathan addresses the need for coordinated
power control across different layers: hardware, firmware, operating system
(OS), and application level. The authors identify a key challenge that arises
when multiple controllers at different layers interfere with each other due to
the lack of adequate coordination between the controllers and then present
the benefits of cross-layer power management solutions.

In Chapter 7, “Energy-Efficient Virtualized Systems,” Nathuji and
Schwan discuss the nexus of two problem domains, energy management

xiv B Preface

and virtualization, which are proving to be critical for cloud computing
environments and the data centers that house them. Specifically, the au-
thors articulate how current virtualization systems lack the capability to
perform active power management while still supporting quality-of-service
requirements. They then describe ways for extending existing virtualization
architectures to better support energy efficiency.

As conveyed in its title, “Demand Response for Computing Centers,”
Chapter 8 by Chase studies the demand response (DR) in computing cen-
ters, where DR refers to policies that influence the timing or location of
power demand when responding to signals from the electrical supplier
about energy production cost or availability. This, in turn, is intended to
improve the reliability and efficiency of electrical power grids and the myr-
iad associated “smart grid” initiatives.

Finally, Chapter 9, “Implications of Recent Trends in Performance,
Costs, and Energy Use for Servers,” by Koomey, Belady, Patterson, San-
tos, and Lange assesses trends in servers and their impact on data center
costs. Specifically, the authors summarize trends in server costs, energy use,
and performance and then describe the implications of these trends in the
context of the economics of high-density computing facilities.

In addition to the contributing authors of this book, there are many
people to thank for their role in its realization. First and foremost, I thank
Horst Simon for providing me with the opportunity to create this book as
a consequence of my early (and controversial) research in green supercom-
puting with Green Destiny, its evolution into a software-based approach
called beta (see Chapter 3) and commercially known as EnergyFit, and the
subsequent initiation of the Green500 (http://www.green500.0org/). As the
Chapman & Hall/CRC Computational Science Series editor, Horst provided
guidance in shaping the book and served as a source of inspiration with
his pursuit of energy efficiency for large-scale computing systems, as exem-
plified by his tireless efforts toward realizing the University of California’s
Computational Research and Theory (CRT) Facility.

Many thanks to Randi Cohen, computer science acquisitions editor for
Chapman & Hall/CRC Press, who was critical in the development and
production of this book. Without her assistance, support, cajoling, and
patience, this book would not have been possible.

Finally, I thank my wife, Annette Feng, and children, Akaela and Kai,
for their understanding and patience while I juggled the demands of work,
the preparation of this book, and family time.

Preface W xv

I hope that this green book inspires you the way that it has inspired the
authors and me to write about it and to raise the awareness of greenness as a
first-order design constraint that is on par with performance. As a tongue-
in-cheek comment, we hope that this book will encourage data centers and
supercomputing centers to simulate climate change rather than “create it.”

Contributors

Christian Belady
Microsoft
Seattle, Washington

Puranjoy Bhattacharjee
Amazon
Seattle, Washington

Ali R. Butt
Virginia Tech
Blacksburg, Virginia

Jeffrey S. Chase
Duke University
Durham, North Carolina

George Chiu
IBM T.J. Watson Research Center
Yorktown Heights, New York

Matthew Curtis-Maury
NetApp
Raleigh, North Carolina

Wu-chun Feng
Virginia Tech
Blacksburg, Virginia

Chris Gniady
University of Arizona
Tucson, Arizon

Chung-Hsing Hsu
Oak Ridge National Laboratory
Oak Ridge, Tennessee

IBM Blue Gene Team®
IBM T. J. Watson Research Center
Yorktown Heights, New York

Mahmut Kandemir
Pennsylvania State University
State College, Pennsylvania

Jonathan G. Koomey
Stanford University
Palo Alto, California

Klaus-Dieter Lange
Hewlett-Packard
Houston, Texas

Ripal Nathuji
NeoTek Labs
Austin, Texas

Dimitris Nikolopoulos
Forth Institute of Computer Science
Crete, Greece

Michael Patterson
Stanford University
Palo Alto, California

xvii

xviii W Contributors

Stephen W. Poole
Oak Ridge National Laboratory
Oak Ridge, Tennessee

Parthasarathy Ranganathan
Google
Mountain View, California

Anthony Santos
Stanford University
Palo Alto, California

Karsten Schwan
Georgia Tech
Atlanta, Georgia

Shekhar Srikantaiah
Penn State University
College Station, Pennsylvania

Guanying Wang
Virginia Tech
Blacksburg, Virginia

Zhikui Wang
HP Labs
Palo Alto, California

CHAPTER 1

Low-Power,
Massively Parallel,
Energy-Efficient
Supercomputers

IBM Blue Gene Team*

CONTENTS

1.1 Introduction 2
1.2 Voltage Scaling in Hardware Technologies 4

*IBM: P.V. Allen, C.J. Archer, R.G. Archambault, S. Asaad, J.E. Attinella, J. Balster, J.R. Behun, R.E. Bellofatto, J.R.
Bentlage, H.R. Bickford, S.K. Birkholz, M. Blocksome, M.A. Blumrich, A. Boulter, T.C. Brennan, J.J. Brewer, B. Brezzo,
A.A. Bright, J.R. Brunheroto, T.A. Budnik, L. Chang, J.D. Chauvin, D. Chen, C.-Y. Cher, G. L.-T. Chiu, T.M. Cipolla,
P.W. Coteus, A. Curioni, P. Curtis, K. Davis, M. Deindl, R.H. Dennard, B. Deskin, W. Donegan, J. Doi, M.B. Dombrowa,
S.M. Douskey, G. Dozsa, A.E. Eichenberger, D. Eisenmenger, N.A. Eisley, M.R. Ellavsky, S.D. Ellis, K.C. Evans, S.T.
Evans, G.A. Fax, A. Ferencz, S. Fetterolf,].T. Ficke, G. Fiorenza, B.G. Fitch, R.A. Fitch, B.M. Fleischer, W.T. Flynn, T.W.
Fox, D.J. Frank, R.L. Franke, S. Frei, M. Fritsch, D.S. Gallo, A Gara, R. Germain, PR. Germann, M.E. Giampapa, E.P.
Giordano, M.P. Good, T.M. Gooding, M.K. Gschwind, J.A. Gunnels, W.H. Haensch, S.A. Hall, M.J. Hamilton, R.A.
Haring, J.S. Harveland, P. Heidelberger, T.D. Helvey, D. Hoenicke, R. Hoover, B.J. Hruby, T.A. Inglett, D.J. Iverson,
H. Jacobson, G. Janssen, M.]J. Jeanson, M.C. Johnson, S.P. Jones, J.N. Judd, K.T. Kaliszewski, R. Kammerer, M. Kapur,
F. Kasemkhani, M. Kaufmann, K.H. Kim, B.L. Knudson, S. Koch, M. Kochte, B. Koehler, G.V. Kopcsay, J. Kriegel,
E. Kronstadt, S. Kumar, D.E. Lackey, A.P. Lanzetta, C. Lappi, J.A. Lawrence, D.A. Lawson, G.S. Leckband, S. Lee,
R.E. Lembach, T.A. Liebsch, D. Littrell, K.C. Lyndgaard, R.-W. Lytle, S.H. Mack, C.D. Malone, A. Mamidala, I. Mani,
J.A. Marcella, C.M. Marroquin, C.H. Mathiowetz, M.D. Maurice, M.K. McManus, M.G. Megerian, M.P. Mendell, V.
Metayer, S.J. Miller, T. Moe, R.K. Montoye, J.H. Moreno, M.B. Mundy, R.G. Musselman, T.E. Musta, L.I. Nair, B.J.
Nathanson, Y. Negishi, E. Nelson, M.T. Nelson, C. Nilsen, C.E. Obert, K. O’Brien, A.S. Ohmacht, M. Ohmacht, D.
Olson, J.L. Van Oosten, J.P. Orbeck, M.R. Ouellette, M.]. Palmer, J.J. Parker, D.P. Paulsen, K.P. Pfarr, R.A. Rand, M.
Rangarajan, J. Ratterman, D.D. Reed, M.T. Repede, D.M. Rickert, T. Roewer, B.S. Rosenburg, M.G. Rosenfield, J.J.
Ruedinger, K.D. Ryu, Y. Sabharwal, V. Salapura, D.L. Satterfield, J. Sawada, M. Schaal, P.E. Schardt, M.J. Scheckel,
B. Schenck, H.J. Schick, D. Schmunkamp, R.L. Schoen, A.A. Schram, B.A. Schuelke, S. Schwartz, EW. Sell, G.W.
Sellers, R.M. Senger, J.C. Sexton, V.V. Shah, R.H. Sharrar, R. Shearer, J.E. Sheets, E. Shmueli, B. Smith, K.M. Solie, S.A.
Strissel, B.D. Steinmacher-Burow, W.M. Stockdell, C. Stunkel, K. Sugavanam, Y. Sugawara, N. Suginaka, T. Takken,
A.T. Tauferner, J.L. Thomas, S. Tian, J.A. Tierno, M.R. Tubbs, I. Vo, S. Wahl, C.D. Wait, R.E. Walkup, A.T. Watson,
B.B. Winter, B. Wirtz, R.W. Wisniewski, G. Zhang, P.P. Zhao, M.M. Ziegler, C.G. Zoellin, L. Zumbrunnen. Columbia
University: N.H. Christ. Columbia University and Riken BNL: C. Kim. Independent: B. Ji. University of Edinburgh:
P.A. Boyle. University of Minnesota: S.J. Koester.

2 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

1.2.1 Low-Voltage Scaling of Active Devices 4

1.2.2 On-Chip Digital Noise 6

1.2.3 Power Delivery 8

1.2.4 Off-Chip Connections 12

1.2.5 Cooling 13

1.3 Blue Gene Hardware 15
1.3.1 Voltage Scaling 16

1.3.2 Low-Power Floating-Point Units 20

1.3.3 Power Delivery 20

1.3.4 Off-Chip Connections 21

1.3.5 Cooling 22

1.4 System Software 24
1.4.1 Overview 24

1.4.2 System Monitoring 26

1.4.3 Job History 27

1.4.4 Operational Phases 28

1.4.4.1 Deallocated 29

1.4.4.2 Booting 30

1.4.4.3 Allocated 30

1.44.4 Running 31

1.4.5 Low-Power Implications on Software 32

1.5 Applications 33
1.6 Conclusions 37
Acknowledgments 37
References 38

1.1 INTRODUCTION

Historically, power considerations have forced the electronics industry to
evolve from vacuum tubes, to bipolar device technology, then to NMOS (n-
type metal-oxide semiconductor), and finally to CMOS (complementary
metal-oxide semiconductor) technology. For the past four decades, steady
lithographic advancements have enabled higher integration, leading to ex-
ponentially decreasing cost per function, a trend commonly referred to as
Moore’slaw [1]. For the larger part of this period, the semiconductor indus-
try could follow the scaling guidelines developed by Dennard and coworkers
[2] to design ever-smaller devices that could operate at ever-higher speeds

while keeping power density constant. In recent years, however, fundamen-
tal physical limitations have caused CMOS technology to deviate from this

Low-Power, Massively Parallel, Energy-Efficient Supercomputers B 3

ideal device scaling. While trying to maintain speed and density improve-
ments, the industry had to give up on keeping power density constant.
Consequently, power dissipation has become a growing concern. Whereas
in the past from one device generation to the next we could shrink lithog-
raphy by a factor /2 and expect two times more transistors in the same
area while maintaining the same power density, we now find that power
nearly doubles for those two times more transistors. Since power is already a
constraint across all platforms, from handheld consumer devices to work-
stations, mainframes, and high-performance computing (HPC) systems
[3-7], this is unwelcome news.

CMOS technologies in the 45-nm generation and beyond will require
novel solutions to meet the challenge of power efficiency. However, the
widespread adoption of parallelism, such as multicore and many-core ar-
chitectures, in today’s computing systems [4—7] creates new opportunities
for power/performance optimization. To capitalize on these opportunities,
the trade-offs in technology, circuits, and systems design will have to be
evaluated from a systems perspective.

Because computing applications span a wide range of power and per-
formance targets, as well as activity factors, the term low power can be
interpreted in many different ways. This chapter does not focus on low-
activity-factor applications, ranging from sensor networks to portable
applications, which only require intermittent compute capacity. Power dis-
sipation for such low-activity-factor applications is dominated by standby
power. Known techniques that can effectively mitigate standby power in
such applications include clock gating, power gating [8], and the ad-
justment of transistor threshold voltages and gate dielectric thicknesses.
Instead, this chapter addresses the more fundamental issue of reducing dis-
sipation in the active mode, which is particularly relevant to applications
with high-performance requirements and a high activity factor. We discuss
low-power technologies as well as architectural innovations that reduce
power consumption in such a context.

In the following analysis, performance and power are considered to be
system-level metrics to be optimized. The system is assumed to consist of
core logic and its associated cache memory, off-chip main memory, and
a power delivery system. While such elements conceptualize the primary
components of a parallel supercomputer, many other computer applica-
tions are similarly organized. It is important to note that the total power in
such systems includes significant contributions from many sources—not
simply the processor itself [9].

4 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

Section 1.2 analyzes voltage scaling, which enhances power efficiency in
the overall system. Section 1.3 presents a practical case study of the IBM
Blue Gene® systems. The low-power techniques described here demand
an increase in parallelism to compensate for a reduction in operating fre-
quency. Section 1.4 presents the Blue Gene system software and Section 1.5
the Blue Gene applications. In Section 1.5, we demonstrate that the major-
ity of applications for which power efficiency is critical can be effectively
parallelized to increase system-level performance in the range of interest.
Thus, we can trade off power efficiency, frequency, and parallelism in a
systems design.

1.2 VOLTAGE SCALING IN HARDWARE TECHNOLOGIES

1.2.1 Low-Voltage Scaling of Active Devices

For many years, CMOS voltage reduction occurred in conjunction with the
reduction of technology dimensions. During this time, the scaling of MOS
field-effect transistors (MOSFETs) largely followed the theory outlined in
Table 1.1, which was originally proposed in Reference 2. By applying a suit-
able scale factor to each technology parameter, constant electric fields can
be maintained throughout the device as it shrinks in size. Such a strat-
egy protects against short-channel effects and maintains device reliabil-
ity; more important, it results in reduced circuit delay without increasing
power density. While many important advances in transistor technology

TABLE 1.1 Scaling Theory to Maintain Constant
Electric Fields in a MOSFET Device

Device or Circuit Parameter Scaling Factor
Device dimension t,,, L, W 1/k
Doping concentration N, K
Voltage V 1/k
Current | 1/k
Capacitance e A/t 1/k
Delay time/circuit VC/I 1/k
Power dissipation/circuit VI 1/k?
Power density VI/A 1

Source: Copyright from L. Chang, D. J. Frank,
R. K. Montoye, S. J. Koester, B. L. Ji, P. W.
Coteus, R. H. Dennard, and W. Haensch,
IEEE Proc., 98(2),215-236, February 2010.
Kkis a dimensionless scale factor.

Low-Power, Massively Parallel, Energy-Efficient Supercomputers B 5

have been made through the years, the basic structure has not changed
significantly, and these scaling guidelines, first proposed over 35 years ago,
are still relevant.

As CMOS technologies entered the submicron regime, several funda-
mentalissuesled to the modification of these scaling rules [10]. In particular,
due to nonscalability of the threshold voltage and underlying limits on the
subthreshold slope, supply voltage scaling slowed and in recent years has
essentially come to a halt. Difficulties in scaling the gate dielectric thickness
have also contributed to this trend, as a minimum gate dielectric thickness
will have to be maintained to limit leakage power. Consequently, a mini-
mum gate voltage will have to be applied to maintain the electric field and
device performance. In addition, as manufacturing variability has a mount-
ing influence on device characteristics, it has been prudent in some cases
to raise voltages as a precaution to preserve operating margins. As a conse-
quence, as shown in Figure 1.1, the supply voltage in modern technologies
is significantly higher than originally suggested by a scaling theory [11].

10 T

Voltage [V]

0.1 .
1 0.1 0.01

Gate Length [pm]

FIGURE 1.1 Scaling trend for power supply voltages in modern CMOS
technologies. Due to leakage and variability constraints, voltage levels have
deviated significantly from a constant field scaling theory [3]. (Copyright
from L. Chang, D.J. Frank, R. K. Montoye, S. J. Koester, B. L. Ji, P. W. Coteus,
R. H. Dennard, and W. Haensch, IEEE Proc., 98(2), 215-236, February
2010.)

6 B The Green Computing Book: Tackling Energy Efficiency at Large Scale

To first order, power dissipation in the active mode can be expressed as
Puctive = Cejfvzf + IleukV (11)

where C, is the total effective load capacitance of a chip (a more precise
definition is given in Section 1.3), V' is the operating voltage, f is the op-
erating frequency, and I;., is the total aggregate leakage current of active
devices when not being switched. The first term is the dynamic power dis-
sipation due to switching, while the second term is the power consumed
by leakage. Since C,y is weakly dependent on voltage, the combined ef-
fective voltage dependence of C.;V? has an exponent closer to 2.5 [12].
Empirically, it has been observed that the maximum operating frequency
for a wide variety of circuits is a linear function of voltage in the regime of
interest. An expression for frequency can thus be written as

f=alV-V) (1.2)

where Vj is the voltage at which the frequency approaches zero (~0.25 V
for modern technologies), and « is a constant that depends on the circuit.
This same relation also applies to circuits that are optimized at each voltage,
but with somewhat higher V; (~0.3-0.4 V) since low-voltage technologies
generally optimize to higher threshold voltages. Putting these equations
together yields

Pactive = aCeﬂVz(V - Vo) + LeatV (1.3)

While i, has a strong dependence on voltage, design optimization
tends to maintain a consistent ratio between switching and leakage dissi-
pation such that the overall voltage dependence of P,y is roughly cubic.
Operating voltage is thus clearly the most effective parameter through which
power dissipation can be improved. A reduction in voltage, however, limits
operating frequencies and inevitably degrades the performance of a given
circuit. In accordance with current trends [13], system-level performance
can be regained with additional parallel circuit blocks, which linearly adds
to power dissipation. Since the superlinear improvements in power due to
voltage scaling outweigh the linear increase in power due to parallelism, the
end system can see substantial gains in power efficiency.

1.2.2 On-Chip Digital Noise

While active transistors discussed in the previous sections can help to main-
tain logic performance and memory circuit functionality at low supply

Low-Power, Massively Parallel, Energy-Efficient Supercomputers B 7

voltages, it must also be ensured that signals propagated on properly scaled
passive interconnects [13, 14] at these low voltages are resilient to those
noise sources relevant to digital circuits. A common initial reaction to volt-
age scaling is that susceptibility to noise is increased—that at a constant
noise level, a reduction in operating voltage could compromise margins.
It is important to remember, however, that the noise sources relevant to
digital circuit operation will scale with voltage, and that the end impact
on circuit functionality may, in fact, improve. It will thus be argued in this
section that such on-chip digital noise should not be of concern if voltages
continue to be scaled.

Generally, digital CMOS circuits are quite tolerant of noise, but oper-
ating margins for some circuits can be small. In particular, dynamic logic
can suffer from charge leakage problems, while latches may see degraded
setup and hold times. Such voltage noise can be caused by resistive drops,
capacitive charge coupling, and inductive transients.

With appropriate consideration of scaling factors, each of these noise
sources decreases in importance as voltages are lowered. It should be noted
that this discussion neglects mechanisms such as thermal, shot, and 1/ f
noise. While important for analog circuits, such noise is not generally a
concern for digital circuits.

Resistive voltage drops as a fraction of the power supply voltage are re-
lated to the current drive I ofa given device and the characteristic resistance
R of the wiring path in question:

AVg IR ~ (Vop — Vp)'»

(1.4)
Vbp Vbp Vbp

Since R is not a function of voltage, this expression depends only on I,
which, for the purposes of this discussion, can be expressed as a power law
function of the gate overdrive voltage [15], where the exponent is assumed
here to be about 1.5 for modern CMOS technologies. Since I is a superlinear
function of Vpp, it scales faster than Vpp, and the expression can be seen
to decrease with voltage scaling for relevant values of Vpp and V7. Thus,
resistive voltage drops become less of a concern with voltage scaling.

Voltage noise due to capacitive coupling occurs when an aggressor of
parasitic capacitance C,q, switches by a potential difference of Vpp and acts
on a victim load capacitance C,;:

CaggVDD
AVC _ Cvic+cagg _ Cagg

Vbp Vbp B Cvic + Cagg

(1.5)

8 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

The magnitude of this coupling noise as a fraction of Vpp, is thus determined
by the capacitive divider between the victim and aggressor and is not a
function of voltage. Thus, voltage noise due to capacitive coupling scales
with Vpp and does not worsen.
Inductive voltage noise arising from current transients can be calculated
as
AVi _Lg L (Voo = Vi)' (Vop —)

Vbp Vop Vppt Vbp

(1.6)

where 7 is the characteristic time of such current spikes, which is related to
the operating frequency of the circuit in question, which, from Equation
1.2, is linearly dependent on Vpp. This overall expression is a superlinear
function of Vpp, which means that inductive noise scales faster than Vpp
and thus only improves with voltage scaling.

1.2.3 Power Delivery

Assuming that low-voltage logic and memory solutions are available, and
digital noise is contained, the next requirement is to ensure that this low-
voltage supply is efficiently and accurately delivered to the chip. Without
appropriate consideration of the power delivery system, excessive voltage
margins may be needed, which can counteract the gains achieved by success-
ful on-chip voltage scaling. Already today, at about 1-V supplies, the power
loss and noise in the path from the external power source to the circuits on a
chip can be significant. When voltage is reduced to improve power efficiency
at constant performance, total power is lowered, which improves power sup-
ply efficiency and stability. However, in scenarios that increase parallelism
beyond this point to improve system-level performance, the power supply
efficiency and stability may become severely degraded, and advancements
in chip packaging or point-of-load power conversion will be required.

In a traditional power delivery system, an off-chip DC-DC (direct-
current-to-direct-current) converter normally regulates the supply voltage.
The power is then delivered to, and distributed throughout, the chip via a
power grid. Nonnegligible power loss occurs in the power delivery network
dueto Joule heating, which degrades power efficiency. For a system to deliver
a power P at a voltage V and total current Ithrough a power delivery line
of effective resistance R, the power loss is given by

Puss IR (P/V)*R _ PR
P P P V2

(1.7)

Low-Power, Massively Parallel, Energy-Efficient Supercomputers W 9

While a reduction in voltage could increase power loss, the correspond-
ing drop in power dissipation levels more than compensates since the de-
pendence of power on voltage in Equation 1.3 is more than cubic. Assuming
that parallelism is achieved at the system level and not by growing chip size,
it can be assumed that the resistance remains constant. Thus, power delivery
efficiency for a fixed design may not degrade but might in fact be improved
with voltage scaling.

Supply variation due to sudden load changes can result in a voltage drop,
which can be calculated as

Av, L% qrLp
= X

Vv VvV e (18)

where L is the inductance of the power distribution network, and € is
the characteristic frequency over which current loads change (which might
be related to the distribution network rather than the voltage-dependent
chip operating frequency). As with power loss [15], supply variation scales
well with voltage, primarily due to reduced power dissipation levels. The
additional dependence on frequency may further suppress supply noise at
low voltages—rendering instability a less-critical issue than power delivery
efficiency. However, it should be remembered that circuits operating at low
voltage may be more sensitive to supply variations. It should also be noted
that this issue can also be improved by the addition of more decoupling
capacitance.

In the optimizations of Section 1.2.1, voltage scaling will improve power
efficiency at constant system performance (i.e., constant C.ssx f), which,
as stated previously, results in power delivery efficiency and manageable
supply variation issues. However, the savings in power due to voltage scaling
could instead be used to maximize the number of parallel units for a given
power budget, which will improve system performance at constant total
power. The number of parallel units could be increased dramatically—
constrained only by cost and physical chip size limits. In this constant power
scenario, Equations 1.7 and 1.8 indicate that power delivery efficiency and
supply variations could worsen significantly with voltage scaling. Thus, new
methods of power delivery may be needed.

Vijay Janapa Reddi and colleagues have studied the voltage variation of
the Intel Duo processor in detail [16]. In Figure 1.2 from their paper [16],
the voltage of an Intel Core™ 2 Duo processor is measured for a variety
of workloads. The voltage droops by as much as 9.6% from the nominal,
or set point, voltage, which was set 14% above the voltage required for

10 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

1.0

i Core 2 Duo voltage
| margin: —14% Maximum

|
| / overshoot

I
%

o
)

%—L»\

Typical case

o
NS

Distribution of Samples

0.2

Minimum

/ droop
0

0.0

-1 0 10

% of Voltage Swing

FIGURE 1.2 Voltage measured on the Intel Core 2 Duo processor for a series
of workloads. In the worst case, voltage sag was 9.6%, for which the nominal
processor voltage was set 14% high. (From V. J. Reddi, S. Kanev, W. Kim,
S. Campanoni, M. D. Smith, G.-Y. Wei, and D. Brooks, IEEE Micro, pp.
20-26, January/Febuary 2011.)

error-free operation. The authors found a very high correlation between
voltage variation and processor stalls, as seen in Figure 1.3. This is easily
understood as the voltage undershoot L dI/dt that occurs as the proces-
sor moves from the low-power to the high-power state following a stall.
Although the authors found some opportunity for software-based predic-
tive algorithms, which may allow a suitable engineered system to operate
with voltage closer to the edge of failure, this dramatic voltage variation
is predicted by the authors only to worsen in future multicore processor
designs.

We expect continued improvements in the efficiency of both alternating
current (AC)-to-DC converters and external DC-DC converters. However,
unless chip-packaging techniques can be dramatically changed to reduce
both resistance and inductance, a new strategy is required to efficiently de-
liver stable power atlow voltage. In modern computer systems, an explosion
of different voltages further aggravates the problem. As core voltage falls,
other voltages in the form of references, SRAM (static random-access mem-
ory) wordline boost voltages, input/output (I/O) driver voltages, receiver

Low-Power, Massively Parallel, Energy-Efficient Supercomputers B 11

120 1.0

Wl Y ||
j" " _avf‘\ﬁ .

I yIN A 0
40 -°H HHHAR A H B HH H H

L L L] | L L L []0.2

0 0.0

Various SPEC CPU2006 benchmarks

—o— Stall ratio
O Droops per 1,000 cycles

FIGURE 1.3 Voltage droop versus a stall ratio, explained by the authors as a
combination of various counters in the processor indication program stall.
The correlation between the change from low to high power as indicated by
the extent of the stall, and the resultant L di/dt voltage droop, is apparent.
(From V. J. Reddi, S. Kanev, W. Kim, S. Campanoni, M. D. Smith, G.-Y.
Wei, and D. Brooks, IEEE Micro, pp. 20-26, January/Febuary 2011.)

threshold voltages, and the like are proliferating. As a result, a modern
computer system can require many different voltages, most of which have
modest current demands. This points to an opportunity for on-chip DC-
DCvoltage conversion. The mix of on-chip and off-chip DC-DC conversion
will depend on the area and efficiency of the two solutions. Resistive series
regulators are fundamentally limited to low (~50%) conversion efficiencies
due to the inherent resistive divider network and thus are unsuitable for
on-chip voltage conversion. Buck converter techniques, utilizing on-chip
inductors, are more efficient, but practical implementations have been lim-
ited to about 75% due to difficulties in achieving on-chip inductors with
high-quality factors. Instead, switched-capacitor circuits may be an effective
solution for on-chip voltage conversion. Such circuits traditionally suffer
from limitations in efficiency [17], but recent advancements in process
technology can potentially enable on-chip conversion efficiencies of more
than 90%. The improvement is primarily due to the availability of trench
capacitor structures in high-performance CMOS processes. Trenches used
for embedded DRAM (dynamic RAM) [18] yield capacitors of very high
density with minimal stray parasitics. In addition, with technology scaling,

12 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

the MOSFETS used as switching devices become quite efficient at the 45-nm
node and beyond.

1.2.4 Off-Chip Connections

Combined, solutions to the aforementioned issues can enable low-voltage
operation of a chip to improve power efficiency. However, any chip must
always communicate with the rest of the system, and this can dissipate
significant power. In particular, in many applications, much of the power
associated with the memory subsystem can be attributed to such intercon-
nections. Especially for future exascale applications, which will demand
extreme memory bandwidth, it is imperative to find solutions that reduce
power in off-chip connections.

Oft-chip connections that are relatively short, or otherwise operating in
ahigh-quality channel, can be thought of aslossless. Depending on available
packaging strategies, such connections can comprise a significant portion of
overall I/O power—especially with rising needs in cache bandwidth close
to the processor. Without attenuation concerns, the driver and receiver
circuits are relatively simple, and the power needed to drive the connection
itself can dominate. For these short connections, the active power can be
expressed as

Prjo =Cir0V? fuf (1.9)

where Cy/¢ is the interconnect capacitance, V' is the operating voltage, and
feff is the effective frequency—considering application-dependent activity
factors—at which the connection is operated. Clearly, scaling of the output
voltage range in these interconnect driver circuits is an effective method
by which power could be reduced. The introduction of a locally generated
and regulated low-voltage supply can enable a power-efficient, low-voltage
driver. On the receiving end, a single-ended sense amplifier, such as en-
abled by a gated diode device [19], can provide efficient, low-voltage signal
recovery. Together, these components can minimize power in low-loss con-
nections. As long as the voltages of all connections are scaled together,
signal cross talk can be minimized. For short interconnections that follow
Equation 1.9, it may also be possible to reduce interconnect capacitance
and the effective frequency of operation. In particular, advanced packag-
ing techniques such as three-dimensional integration via wafer bonding
[20] or silicon carriers [21] bring chips closer together, which can elimi-
nate transmission line effects, reduce capacitance, and decrease power as

Low-Power, Massively Parallel, Energy-Efficient Supercomputers B 13

compared with traditional I/O pins and board-level wiring. Ultimately,
continued density scaling and single-chip integration will shorten many
off-chip connections.

Forlonger-reach interconnections, which suffer from losses due to high-
frequency attenuation, it may be possible to utilize low signal swing to
reduce power [22]. But, ultimately, channel quality limits the practicality
of such techniques, as the transceiver circuits will tend to dominate total
power. Recent work on low-power serial links has focused on equaliza-
tion techniques [23-25], which may benefit somewhat from the general
CMOS voltage-scaling strategies described in this chapter. However, volt-
age scaling in analog circuits may be limited, and parallelism is likely not
a viable solution in this case. Thus, ultimately, optical interconnects [26]
will likely be required to achieve significant power reduction in long-range
links.

It should be noted that the power associated with off-chip connections
can also be dramatically affected by the design and organization of the
overall system. For example, since significant energy is consumed in mov-
ing data between main memory and the computational engine, the most
power-efficient solutions directly attach DRAM chips to the processor chip
without intervening address/control or data redrive circuits, hub chips,
or other JEDEC (Joint Electron Devices Engineering Council) [27] stan-
dardized devices. In addition, the availability of sufficient I/O pins enables
operation of off-chip connections at a modest data rate, which allows for
source-terminated interconnects and removes the need for far-end bus ter-
mination, thus further reducing power.

1.2.5 Cooling

For several reasons, it is desirable to operate computers such that the junc-
tion temperature T; of the CMOS transistors is kept in the range of 20°C to
85°C. The reason for the lower bound is to avoid operating electronic com-
ponents below the dew point (i.e., the temperature at which water would
start to condense out of the atmosphere). The reason for the upper bound is
twofold: Repeated excursion between low and high temperature (on and off
cycles) can cause thermal cycle fatigue of mechanical connections in the chip
package. Also, CMOS devices slow and age faster as temperatures increase.
Next-generation HPC systems will contain many optical transceivers, and
these have an even more limited thermal range. Light output and aging of
optical drivers is strongly temperature dependent. For optical transceivers,

14 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

it is most desirable to operate at a relatively constant temperature, as close
to the dew point as possible.

Within these thermal constraints, we should contemplate how to mini-
mize cost. As large HPC machines are substantial, multimegawatt devices,
it is useful to review cooling at the facility level. Unless a large body of water
is available nearby, data centers use the atmosphere as a final heat sink. They
do so through use of a cooling tower, where return water from the data cen-
ter is cascaded in a fashion to equilibrate its temperature with the outside
air. It is possible in fact for the water temperature leaving a cooling tower
and returning to the data center to be several degrees centigrade cooler than
the ambient external air. What happens next depends on a choice between
air cooling and water cooling. Traditionally, data centers are air cooled,
so the water from the cooling tower cycles through a water-to-water heat
exchanger, used to cool a closed loop of water, called the chilled water loop.
Within the chilled water loop is a water chiller, which reduces the water
temperature further, typically to 6°C. At this point, the water pipes need to
be insulated to reduce ambient heating of the water and to avoid conden-
sate from the air from forming on the pipes. The chilled water then passes
through radiators within computer room air conditioners (CRACs), which
use large fans to blow the cooled air beneath a raised floor at a tempera-
ture of about 15°C. Alternatively, the air conditioning occurs in larger units
within the data center facility, and the cooled air is distributed throughout
the data center using air movers and large plenums. Ultimately, the cool air
is directed to electronics via local cooling fans within the computer racks.
For each watt of power cooled, typically another 0.35 W is used to pro-
vide the cooling. In addition, we should consider the cost of purchasing,
installing, and servicing the cooling equipment.

A variant of air cooling is hydro-air cooling. Here, the hot air leaving
an electronics rack is passed through a radiator, where it is cooled, so that
it can be reused for cooling the next rack. Depending on airflow, the water
temperature in the radiator, and the heat load, the air temperature leaving
the rack could be higher, lower, or the same as the air temperature entering
the rack. These systems are advantageous when either the cost of adding
additional CRAC:s is high or if a ready source of water, higher than the 6°C
required for CRACs but lower than the exit air temperature, is available
for flowing through radiators. Note that the electricity cost of moving air
through the CRAC:s is saved as the fan that directs air through the rack can
also drive air through the radiator. A variety of manufacturers makes these
radiators, some for individual racks, and some for entire rows of racks.

Low-Power, Massively Parallel, Energy-Efficient Supercomputers B 15

Their presence and success in the market are appropriate as they can save
substantial cost.

An alternative to air cooling is indirect water cooling. It starts in the
same manner as air cooling, with a cooling tower and heat exchanger to a
closed loop of water. However, this time the closed loop is at 18°C or higher,
thus above the dew point of the air in data centers as specified by ASHRAE
(American Society of Heating, Refrigerating, and Air-Conditioning Engi-
neers) [28]. This room temperature water enters the computer rack and
regulates the temperatures within the rack through contact cooling. Ther-
mal interface materials (TIMs) are used to provide intimate thermal contact
between, for example, a copper water pipe and a processor chip or optical
transceivers. As it is difficult to cool every component in a rack with in-
direct water cooling, hybrid systems are used in which most of the heat is
exchanged to water and the remaining part to air.

1.3 BLUE GENE HARDWARE

IBM’s Blue Gene series of supercomputers—Blue Gene/L [4], Blue Gene/P
[5], and Blue Gene/Q [6, 7]—combine many tens of thousands of low-
power computing nodes of modest performance to yield massive super-
computers that are not only the most power efficient [29], but also the
fastest in the world at the time of their introductions in 2004-2011 [30].
Fundamentally based on massive parallelism, Blue Gene systems provide a

practical framework within which to discuss the strategies outlined in this
chapter. While the Blue Gene systems take some important initial strides
toward power efficiency, future systems will likely make more widespread
use of the concepts discussed in Section 1.2.

Figure 1.4 shows the Blue Gene/P packaging hierarchy. The packaging
hierarchies for Blue Gene/L and /Q are similar. Thirty-two compute cards
are packaged onto the next-level board, called the node card. Thirty-two
node cards are plugged from both sides into two vertical midplane boards.
Thus, 1,024 sockets can be placed and interconnected in a single cabinet.
This dense packaging is enabled by the relatively low power of each indi-
vidual socket. In comparison, a typical rack from other vendors contains
about 100 sockets due to power constraints.

The 1,024 compute cards (processor chip with associated DRAM chips)
per rack are used as “compute nodes.” They are interconnected in a torus
topology and run a lightweight operating system (Compute Node Kernel,
CNK, described in Section 1.4.1). In addition, a Blue Gene system uses a

16 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

BlueGene/P System
72 Racks

Rack Cabled

32 Node Cards

Node Card
32 chips
32 compute cards

288 TB

13.9 TF/s
4TB
435 GF/s

Compute Card
128 GB

1 chip, 20 DRAMs

Chip
4 processors

@

13.6 GF/s
8 MB EDRAM

13.6 GF/s
4.0 GB DDR2

FIGURE 1.4 The packaging hierarchy of the Blue Gene/P system. Each chip
has four cores. With 32 chips on a node card and 32 node cards per racks,
it has 1,024 chips or 4,096 cores in a rack. GF, gigaflops; TF, teraflops; PE,
petaflops, EDRAM, embedded DRAM.

smaller set of compute cards as “I/O nodes” to connect to the file system. I/O
nodes are placed either in additional slots on the node cards (Blue Gene/L
or/P) or in a separate enclosure (Blue Gene/Q). Logically, these I/O nodes
are placed “outside” the torus and are connected to the compute nodes by
separate links. The I/O nodes run Linux.

1.3.1 Voltage Scaling

The total compute performance in a rack can be simply described as
Performance/Rack = Performance/Watt x Watt/Rack (1.10)

The watt/rack factor is determined by thermal cooling capabilities. We
target about 30 kW (kilowatts) for air-cooled racks and about 100 kW for
water-cooled racks. Thus, to maximize the performance of a rack, we will
need to optimize the performance/watt factor, that is, the power efficiency.
We chose the low-frequency, low-power embedded IBM PowerPC 440 core

Low-Power, Massively Parallel, Energy-Efficient Supercomputers B 17

for Blue Gene/L and the IBM PowerPC 450 core for Blue Gene/P because
they had better power efficiency than high-frequency, high-power micro-
processors of the time by a factor of about 10, regardless of the manufactur-
ers of the systems. For Blue Gene/Q, we similarly chose the A2 processor,
a 64-bit, four-way, multithreaded processor optimized for throughput at
relatively low frequency.

The theoretical basis for the superior collective performance of low-
power systems was explained in Section 1.2. Any performance metric, such
as FLOPS (floating-point operations per second), MIPS (million instruc-
tions per second), or SPEC (Standard Performance Evaluation Corpora-
tion) benchmarks is linearly proportional to the chip clock frequency. On
the other hand, from Equation 1.1, the power consumption of the ith gate
on a chip is

P; = Switching Power of Gate i + Leakage Power of Gate i
= OliCl‘sz-i-L'V (1.11)

In the leakage power term, I; is the leakage current multiplied by supply
voltage V' = Vpp. The leakage power becomes increasingly important
as technology dimensions shrink. For Blue Gene/L chips, built in 130-
nm technology, leakage contributes less than 2% of the system power. For
Blue Gene/P, built in 90-nm technology, leakage power is around 8-9% of
total power. For Blue Gene/Q, built in 45-nm technology, leakage power is
around 14% of total power (in a LINPACK [31] application) but can range
up to 20% for chips on the fast end of the manufacturing spread. Operation
at the lowest possible voltage for a given technology will minimize the
leakage current and thereby leakage power.

In the switching power term, C; is the load capacitance of the ith gate,
and f is the frequency of the fastest on-chip clock. The “switching factor”
a; expresses that not every gate output will switch on every clock cycle
at frequency f. The switching factor o; = 1 only for the fastest on-chip
clock circuits that both charge and discharge a load capacitance every clock
cycle at frequency f, transferring a charge Q; = C;V from power supply
voltageVto ground. For data circuits, which either charge or discharge a
load, at most every clock cycle, ; = 0.5 or less.

The switching power consumed in a chip then is the sum of the power
of all switching gates, expressed as

Py = X (Switching power of gate i) = CeﬁrVZf (1.12)

18 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

where the average switching chip capacitance is given by
Ceﬁf = ZaiCi (1-13)

It is difficult to predict C.y accurately because we seldom know the
switching factor «; of every gate in every cycle. Furthermore, «; has a
dependence on the instantaneous workload of the circuit. To simplify the
discussion, we use an averaged value of C, obtained either from direct
measurement or from power modeling tools.

As explained in Section 1.2.1, for a given circuit design, the clock fre-
quency f is roughly proportional to the supply voltage V; thus, the power
consumed per chip Py is proportional to V?* f or f°. Thus, it is advanta-
geous in terms of power efficiency to run individual processors (of a given
design) at the lowest possible voltage for a given technology, and at the
corresponding low frequency, and compensate for the lost performance
(proportional to f) by increased parallelization—assuming the intended
workloads permit such parallelization. This then is a major part of the Blue
Gene design philosophy. Of course, the optimal design point also has to
consider the complexities of mechanical component counts and sizes, the
power required to communicate between the increased number of pro-
cessors, the failure rate of those processors, the cost of packaging those
processors, and so on. The Blue Gene systems are a complex balance of
these factors and many more. Table 1.2 shows an overview of the hardware
parameters for the three Blue Gene system generations as related to power
efficiency.

Blue Gene systems utilize efficient, voltage-scaled processors combined
with system-on-a-chip designs that integrate memory controllers, a net-
work router, and an I/O adapter alongside the processor and local cache.
The Blue Gene/L, /P, and /Q processor chips, fabricated in 130-nm, 90-nm,
and 45-nm processes, respectively, operate at 700, 850, and 1,600 MHz—
frequencies well below that of other processors in similar technologies. Table
1.2 also shows that, as Blue Gene designs progressed, the operating volt-
age progressively decreased below the nominal voltage for the technology,
saving on both active and leakage power. As stated previously, the design
philosophy is that system-level parallelism will compensate for individual
chip performance.

While current Blue Gene systems employ low voltages that are within
technology specifications, future designs may leverage subnominal supply
voltages to attain greater power efficiency—eventually driving the need for
low-voltage device and memory techniques.

Low-Power, Massively Parallel, Energy-Efficient Supercomputers B 19

TABLE 1.2 Overview of Blue Gene Hardware Parameters Relating to Power Efficiency

Processor type
SIMD FPU per
processor
Threads per
processor
Processors per
chip
Maximum
concurrent
threads per
chip
Chip technology
Nominal voltage
for technology
Blue Gene chip
operating
voltage under
load (for
medium-speed
chip)
Processor
frequency
Chip peak
performance
Main memory
Memory interface
bandwidth
Node power
(Chip +
DRAMs;
Linpack)
Node
performance
Nodes per rack
Rack peak
performance
System
performance
(LINPACK)

Blue Gene/L
PPC440
2 wide

2

Cu-11 (130 nm)
1.5V

15V

700 MHz

5.6 GFLOPS

0.5- to 1-GB DDR
5.6 GB/s (16 B wide)

~ 16W

~ 0.28GFLOPS/W

1,024
5.7 TFLOPS

0.20 GFLOPS/W

Blue Gene/P
PPC450
2 wide
1
4
4

Cu-08 (90 nm)
1.2V

1.1V

850 MHz

13.6 GFLOPS

2-to 4-GB DDR2
13.6 GB/s (32B wide)

~ 23W

~ 0.44GFLOPS/W

1,024
13.9 TFLOPS

0.38 GFLOPS/W

Blue Gene/Q
PPC A2
4 wide

16+1+1

64 +4

Cu-45 (45 nm)
1.0V

0.85V

1600 MHz

204.8 GFLOPS

16 GB DDR3
42.6 GB/s (32B wide)

~ 68W

~ 2.4GFLOPS/W

1,024
209.7 TFLOPS

2.1 GFLOPS/W

The bottom row numbers were current entries in the Green500 list June 2012 [29].

20 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

1.3.2 Low-Power Floating-Point Units

A common method to increase the FLOPS/watt ratio is to integrate multiple
floating-point engines on a chip. This concept can be traced back to the
early 1970s when vector processors, such as CDC STAR-100 [32] and Cray-
1 [33], were introduced. Although not integrated on the same chip at the
time, it was recognized that SIMD (single instruction, multiple data) vector
processors can increase the performance withouta similar increase in power.
SIMD floating-point units (FPUs) are also being used extensively in recent
HPC systems, such as IBM Cell Engines [34], Intel’s Polaris chip [35], and
GPUs (graphics processor units) [36].

A modern FPU consumes typically from 0.1 W to a few watts [37,
38], depending on many factors, such as frequency, width of the data path
(single precision versus double precision), and so on. However, increasing
FPUs from 1 to 8 units incurs a relatively minor increase in the overall
chip power. Hence, Blue Gene/L and Blue/P used a two-way SIMD double-
precision FPU for each processor core, doubling peak performance and
increasing power efficiency at the same time. Blue Gene/Q went further
in the same direction and incorporates a four-way SIMD double-precision
FPU for each processor core.

Projecting into the future, both voltage-scaling and low-power SIMD
FPUs will continue to be the foundation of power-efficient supercomputer
designs.

1.3.3 Power Delivery

In a massive parallel system, generating, monitoring, and preserving the
requisite supply voltages can be challenging—due to the sheer number of
voltages required and the stringent requirements on supply robustness and
redundancy. With increased parallelism and voltage scaling, these issues
will become more severe in future-generation systems.

To facilitate efficiency in chip-to-chip communications and to enable
cycle-reproducible operation, a single system clock is distributed to all com-
pute nodes in a Blue Gene system. Since each processor chip must run at the
same frequency, tailored supply voltages are used to minimize power in the
presence of process variations. In manufacturing, chips are speed sorted
into groups. The 32-way node cards are populated homogeneously with
chips of a given speed sort bin, and the power supplies on the node card are
adjusted—with the fastest chips (which also have the most leakage current)

Low-Power, Massively Parallel, Energy-Efficient Supercomputers W 21

running at a lower voltage and the slowest chips running at a higher voltage.
This approach minimizes both active and leakage power.

With a multitude of supplies operating at high current levels and en-
ergy densities, redundancy, supply stability, and infrared (IR) with resistive
losses must be carefully addressed. To ensure high system reliability, supply
voltages are provided by distributed point-of-load converters with N + 1
or N + 2 redundancy. While a supply failure may create a large transient
response, the frequent near-instantaneous changes of up to 40% in pro-
cessor power due to synchronous clocks and power-gating techniques also
create large voltage transients. The power converter loop response and re-
covery from a supply failure must be fast enough so that the voltage droop
does not fall below the minimum voltage required to run the processor. To
ensure this, the nominal voltage is raised high enough to cover the worst-
case voltage droop and thus adds to the nominal power dissipation. Power
planes on the circuit cards are designed to minimize these droops and match
the voltage delivered to each processor chip. Processor nodes far from the
power supply have additional conduction paths in other circuit card layers
to reduce resistance while parallel connections may be removed from other
nodes. As a result, supply equipotentials are created at each processor chip
location. The number of power planes on a circuit card is fixed, however,
such that as extra power supply voltages are added (as needed for DRAM
and 1I/0O), distribution losses inevitably worsen.

On Blue Gene/Q, the final stage of DC-DC voltage conversion is per-
formed directly on the system planar. In future systems, as discussed in
Section 1.2.3, the final stage of DC-DC voltage conversion will ideally be
performed on the processor chip itself. By delivering higher voltages closer
to the chip, supply stability and resistive losses can be improved, which will
be especially important as operating voltages are further scaled down. In ad-
dition, local voltage generation and regulation could significantly simplify
the power delivery system by reducing the number of supplies needed.

1.3.4 Off-Chip Connections

As discussed in Section 1.2.4, the power associated with moving data be-
tween processor and memory is minimized if the memory controller is
located directly on the processor chip. In Blue Gene systems, each proces-
sor chip contains a wide interface (16B wide for Blue Gene/L; 32B wide
for Blue Gene/P and /Q) to directly attached memory (see Table 1.2).

22 MW The Green Computing Book: Tackling Energy Efficiency at Large Scale

Source-terminated I/O cells that are impedance matched to the transmis-
sion lines between the processor and DRAM eliminate the need for other
data line termination. The power dissipated in these lines follows Equation
1.9, where the capacitance is minimized by placing memory immediately
adjacent to the processor chip. Using variable-voltage I/O cells and cor-
responding power supplies, low-voltage memory can be introduced as it
becomes available.

Going forward, processor-to-memory bus frequencies will increase.
Thus, the power dissipated in the connections between the processor
and external memory will increase unless the interconnect capacitance
can be reduced to compensate for increasing bus frequencies. By utiliz-
ing high I/O count DRAM stacks, based on through-silicon vias or other
high-wiring-density interconnect media, large amounts of external DRAM
can be placed adjacent to the processor with greatly reduced wiring path
lengths.

The longest oft-chip connections in a Blue Gene system are used for
communication between racks. In Blue Gene/L and /P these links, which
can be up to 8 min length, are managed by electrical cables using differential
signaling at up to 3.4 Gb/s (gigabits per second). In Blue Gene/Q, the
rack-to-rack communication links are optical fiber connections. In optical
connections, attenuation is substantially less than in electrical connections,
which means that links of up to 100 m will operate with little or no more
power than links of a few meters—a characteristic that may lead to new
system design paradigms.

1.3.5 Cooling

Blue Gene/L is entirely air cooled. At 25 kW/rack, it is a relatively high-
power machine but still coolable in most data centers without difficulty.
In traditional data centers, the airflow enters the machine room proper
through perforations in the raised floor, is typically pulled through elec-
tronics racks from a “cold aisle” in front of a row of racks to a “hot aisle”
in back of a row of racks, and then somehow makes its way back to the
CRAC units on the perimeter of the raised floor or, via exhaust vents,
to a facility-level air conditioning plant. Indeed, many data centers must
leave vast expanses of valuable machine room floor unoccupied to allow
enough perforations for the volume of air required for high-power HPC
machines.

Blue Gene/L improves on the efficiency of the airflow. As shown in Fig-
ure 1.5, cold air is drawn directly from the raised floor into a tapered side

Low-Power, Massively Parallel, Energy-Efficient Supercomputers B 23

Sheet-Metal
Divider ~ _ _

-
an
Q

-

Hot Hot II Ho
I

"\W:‘\\W)\'\m\

etc etc

\ \ \ \

Raised floor Cold Cold Cold
Concrete floor

>

FIGURE 1.5 Airflow through a row of Blue Gene/L or /P racks, showing
complementary tapered plenums.

plenum. A wall of fans pulls the air across the rack and exhausts into a
second plenum, which directs the warm air to the ceiling. A ceiling plenum
returns the air to the air conditioners. Only the bulk power supplies on top
of the rack are cooled with air in the machine room proper, and even this
air is drawn from the aisle and directed upward, permitting all aisles to be
“cold aisles.” Thus, the Blue Gene/L solution allows a compact design, with
aisle width limited only by the needs of people access, further reducing
cost. Further, the unique side-to-side airflow permits a midplane design
without air perforations, so that a maximum number of circuit cards can
be connected together without electrical cables, thus reducing power and
cost.

Blue Gene/P increased the rack power to 32 kW, which is more challeng-
ing for air cooling. However, the side-to-side airflow of Blue Gene allows
the straightforward introduction of hydro-air cooling, in the form of ra-
diators between racks. These radiators have sufficient cooling capability
to cool the air leaving a rack back to its entrance air temperature. A cost
analysis comparing air cooling with CRACs to hydro-air cooling for Blue
Gene/P, including estimates for equipment purchase as well as electricity
cost of $0.10/kWh, resulted in about $7,500 savings per rack over a 5-year
lifetime. This analysis includes the purchase and power of a commercial
water conditioner to raise the chilled water temperature to above the dew
point before entering the rack radiator. If a ready supply of 18°C closed-loop
water is available, the cost savings more than doubles. The largest installed

24 MW The Green Computing Book: Tackling Energy Efficiency at Large Scale

Blue Gene/P system, a 72-rack, 1-PetaFLOPS machine in Jiilich, Germany,
is cooled via the hydro-air technique and a facility-level water conditioning
unit.

Per Table 1.2, Blue Gene/Q has a power efficiency of about 2.1
GigaFLOPS/W. With an aggregate peak performance of 209.7 Ter-
aFLOPS/rack, a highly efficient application could consume nearly 100
kW/rack. This exceeds the capabilities of air cooling. On each 32-way node
card assembly within a Blue Gene/Q compute rack, all major components
(compute cards, power supplies, link chips, and optics) are clamped to cold
rails that are cooled with water that flows through a single, continuous
serpentine copper tube. As discussed, the inlet water temperature is about
18°C (above dew point), keeping the optical transceivers well below 50°C
and the compute chips below 85°C. Other system components (bulk power
supplies, I/O drawers) are still air cooled.

1.4 SYSTEM SOFTWARE
1.4.1 Overview

Blue Gene installations can scale to large node counts. For example, the
Jiilich Blue Gene/P installation mentioned counts 72-Ki nodes (288-Ki
processors), and the Sequoia Blue Gene/Q installation counts 96-Ki nodes
(over 1.5-Mi processors). Such large systems pose many challenges for the
design of the system software:

1. Scalability: System software that needs to scale to hundreds of thou-
sands of cores requires solid software design and strict adherence to
the principles embodied by the design.

2. Performance: System software should not be the performance-
limiting factor. We maintained the Blue Gene design philos-
ophy that the machine speed should be limited by hardware
constraints.

3. Functionality: Although Blue Gene systems are primarily aimed at
HPC applications, we continue to look for opportunities for non-HPC
applications to utilize the computing power of Blue Gene.

4. Power Efficiency: Machines of this size consume a tremendous
amount of power. We designed system software that helped under-
stand and reduce the amount of power used by applications.

Low-Power, Massively Parallel, Energy-Efficient Supercomputers B 25

) Collective
Service Node Front-end File Server ¥ X
rFr—=—=1 C-Node 0 C-Node 63
CNK CNK

L

o
-
|
Control
| Ethernet
| (1 Gb)

Torus
app |+ —*> | app

L—— /
I Functional 1 1 A I T

b Ethernet TTorus Torus
| (10 Gb v v

I C-Node 0 C-Node 63

J

CNK CNK

app app

| A |
collective

Power supplies, fans
Temperature sensors

A8
-

FIGURE 1.6 Blue Gene system software organization. Shown are the soft-
ware components for compute nodes, I/O nodes, control system, front-end
and file servers, and the interconnect networks.

As shown schematically in Figure 1.6, a Blue Gene system consists of

several hardware components and interconnection networks, with corre-
sponding software [39].

e Compute nodes form the bulk of a Blue Gene system. Compute
nodes are interconnected with high-bandwidth networks: a 3D torus
network and a separate collective network for both Blue Gene/L
and/P; a unified 5D torus network for Blue Gene/Q. Compute nodes
run the actual computational applications, with operating system
services supplied by a lightweight Compute Node Kernel (CNK).
CNK provides a familiar POSIX (portable operating system inter-
face) interface. Notable is that file system operations are function
shipped; they are off-loaded to the I/O nodes that interface with
the file system. Another notable feature is that CNK only sup-
ports a single-user application, and once the user application is
running, it normally only provides the services requested by the
application. This makes application run characteristics predictable,
with little operating system “noise.”

e The I/O nodes are Blue Gene compute chips that are located “on the
face” of a Blue Gene machine. They do not participate in the torus

26 MW The Green Computing Book: Tackling Energy Efficiency at Large Scale

network that defines the “compute volume” of the machine but are
connected to the compute nodes via separate links. I/O nodes run
Linux, mount the file systems, and interface to external computers
called “front-end nodes.” It is notable that I/O nodes run CIOD (con-
trol and input/output daemon), which provides control (job launch-
ing, signaling, termination) and file system services for the compute
nodes.

e The control system software, MMCS (Midplane Management and
Control System), runs on a separate “host” computer (service node)
external to the Blue Gene racks. MMCS is responsible for various
tasks, such as allocating and booting partitions of Blue Gene nodes,
scheduling jobs to run on those partitions, and other resource man-
agement activities. In addition, MMCS threads monitor the hardware
on defined intervals, generally around 5 min. For boot, monitor, and
debug functions, MMCS communicates with a Blue Gene system via
a private control Ethernet network, which has a tree topology. The
leaves of this control network are control field-programmable gate
arrays (FPGAs) located on each node board, which interface with
power supplies, temperature sensors, and via a JTAG (Joint Test Ac-
tion Group) (IEEE 1149.1) interface, with each Blue Gene compute,
/O or link chip.

In the next sections, we describe the system monitoring capability of
the MMCS and its ability to record job history. We show how they can be
combined into a powerful tool for analyzing and understanding the power
consumption on a Blue Gene machine. We then present four different op-
erational phases provided by the system software and describe their power
optimizations.

1.4.2 System Monitoring

The Blue Gene control system, MMCS, continuously monitors the hardware
status and thereby has several important roles in helping to monitor and
understand power consumption on Blue Gene machines.

1. MMCS reads the status of all of the hardware on the machine. This
includes node cards, link cards, service cards, fan modules, power
modules on cards, individual nodes, and bulk power modules. Com-
bined, there are over 200 unique pieces of “environmental” data

Low-Power, Massively Parallel, Energy-Efficient Supercomputers B 27

(voltages, currents, temperatures, status flags, fan speeds) gathered
from the hardware and stored in a database.

2. When anomalies occur in the hardware readings, MMCS sends warn-
ings and error messages into the Blue Gene database that can be
monitored by an administrator. For example, if a piece of hardware
is over the warning threshold for temperature, not only will the tem-
perature be recorded along with the location and timestamp, but also
a warning event will be issued. This allows an administrator to just
look at warning and error events and not have to look at all of the
recorded environmental data.

3. MMCS can take hardware off-line should the problem be severe
enough. For example, if there are repeated failures of a bulk power
module, the hardware monitor component can take a rack off-line
and prevent jobs from running on that rack until after it is serviced.

Since voltage and current are being recorded for the bulk power modules
as well as for all the node cards, link cards, and service cards on the machine,
alarge amount of data is available to understand the power behavior of the
machine. The control system provides a simple and intuitive way to query
this database and analyze and display the data. Thus, power usage can be
analyzed for a particular partition or for the entire machine, either at a
desired point in time or for the duration of a job or collection of jobs.

1.4.3 Job History

The Blue Gene control system software also stores the details of the jobs
that have run on the machine. For each job, the control system stores the
executable, the arguments, the start time, the end time, the exit status, the
user name, and many other attributes of the job into a database, includ-
ing the number of Blue Gene nodes that the job occupied and the specific
location of those nodes. Part of this extensive job history is useful in deter-
mining power usage. By combining the specific location of the hardware
used, the starting and ending times of the job, and the detailed power usage
measurements for the hardware, the power utilization can be determined
on a per job basis.

This means that users can answer questions like, “Which jobs use the
most power?” or “In a particular month, how much power did each job

28 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

use?” An example query showing the power and flexibility of the database
approach follows:

SELECT JobId, NodesUsed, timestampdiff (4, char(entrydate-starttime))
as RuntimeInMinutes, decimal(timestampdiff (4,char(entrydate-
starttime))/60.0 * avg(outputOvoltage * outputOcurrent),8,2) *
(nodesused/1024) * 9/1000 as KWBulk

FROM tbgpjob_history a, (select blockid,substr(bpid,1,3) as
rack from tbgpbpblockmap group by blockid, substr(bpid,1,3) having
count(*¥) <> 1) as x, bgpbulkpowerenvironment c

WHERE x.blockid = a.blockid and c.time>starttime and
c.time<entrydate and substr(c.location,1,3) = x.rack and date
(entrydate) > = ’10/01/2009’ and date(entrydate) < = ’10/31/2009’

GROUP BY jobid,nodesused, starttime,entrydate order by 4 desc

This query takes the voltage and current output as measured from the
bulk power modules and correlates them to jobs that have run on those
racks of hardware. It then computes the power usage by capturing the data
from the nine bulk power modules for the duration of a job and, in this
example, confines the results to jobs that ran in October 2009. Therefore,
the result of the query is a listing of the jobs that ran during the month
ordered by the kilowatts of power that they used.

These data are gathered and recorded continuously without inter-
vention or setup needed on the part of the user or administrator. Thus,
information on historical power usage, the temperature of the racks, or fan
speeds (or for Blue Gene/Q, water temperatures) for any job that was run
is readily available.

1.4.4 Operational Phases

The Blue Gene system software provides four different operational phases.
Power is optimized in each of these phases. In this section, we present a
description of each phase and then provide details on that phase and on
the power optimizations that occur during that phase. The four phases are
as follows:

Deallocated: the period when the node software is not functional;

Booting: the period in which node software is loaded and configured on
the hardware;

Allocated: the period when the node software is booted but is not run-
ning a job;

Running: the period in which an active job is running on the node.

Low-Power, Massively Parallel, Energy-Efficient Supercomputers B 29

Before describing the power optimizations for each phase, we present a
general workflow for job execution on a Blue Gene system. The first step is
to identify the specific nodes that will be used for the job. On Blue Gene, a
collection of nodes on which a job can be executed is called a block. A user
or system administrator can use Blue Gene commands to define a block or
may use scheduling software that interacts with the Blue Gene software to
define a block. A block is defined by a number of nodes and, optionally,
the shape of the torus. Thus, a collection of compute nodes and I/O nodes
is identified and given a unique name on the system. Once identified, the
block must be booted before it can run any jobs. The default state for a
block is deallocated, meaning that the block has been defined, but it has
not been booted, so the nodes are in reset and not running any software.
When a block is to be booted, the control system must first validate that all
hardware identified by the block is available, and that no overlapping blocks
are already booted on the hardware. Once this check has been performed,
the control system starts the nodes and begins loading the kernels onto the
nodes. This process is the booting phase. The booting phase is completed
when the CNK is loaded onto all compute nodes, the Linux kernel is loaded
onto all I/O nodes, every I/O node has reported that Linux has successfully
initialized, and all file system mounts have completed. When all nodes have
reported success, the block goes to an allocated status. This means that it is
ready to run jobs, but no jobs are running yet. The CIOD daemon running
on each I/O node is waiting to be contacted. The final step is when a job
is submitted, either directly by a user or via a scheduler. This occurs via a
command called mpirun, which contacts the I/O node daemons and tells
them which binary executable to load from the mounted file system and
start it, along with details such as arguments to the job and environment
variables. When all I/O nodes have successfully launched the job on their
connected compute nodes, the block is in running status.

Next, we describe the power optimizations that occur during each of
the four operational phases.

1.4.4.1 Deallocated

Traditionally, an HPC system isbooted once, and compute jobs are launched
on behalf of specific users. On a Blue Gene system, the control system can
deallocate unused sections of the compute nodes, called a block. When a
block is not allocated, the control system holds the compute nodes in reset,
which is an extremely low-power state. All logic inside the chip is held at a
steady state, with no latch switching to consume power. When the compute

30 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

nodes are needed again, the control system must release the chips from
reset, which requires a boot of the CNK on the compute nodes. This is not
too onerous due to the lightweight nature of CNK.

1.4.4.2 Booting

The control system makes several power optimizations during a boot. One
of the first steps in booting a block (i.e., a set of compute and I/O nodes) is
enabling the clocks to each processor chip. Typically, the chip logicis divided
into multiple local clock domains. Some of the logic is activated optionally
based on the location and function of the node. For example, each BLC
(Blue Gene/L Compute) and BPC (Blue Gene/P Compute) chip contains
an Ethernet MAC (Media Access Control) function. However, only chips
deployed as I/O nodes actually use the Ethernet functionality, to connect to
front-end nodes and the file system. The control system will therefore only
activate the Ethernet clock domain on I/O nodes. The BQC (BlueGene/Q
Compute) chip similarly has a PCle (peripheral component interconnect
express) function that is only activated on I/O nodes.

Because the Ethernet or PCle I/O functions are not being clocked on
compute nodes, which form the bulk of the system, this selective clocking
policy saves power.

During the booting of a block, the control system will broadcast boot-up
and configuration commands to all the chips in the block, including clock
domain startup commands. Accordingly, the compute chips on a node
card, typically in the same block, will activate their clock domains nearly
simultaneously. Such a sudden step up in current demand may cause a
pronounced voltage droop across the chip. To mitigate this effect, the control
system will stagger the activation commands for the various on-chip clock
domains. This “soft start” approach smoothes the step rises in current and
thereby reduces the demands on the power distribution system.

1.4.4.3 Allocated

When a block is booted but has no job running on the compute nodes, the
operating system enters an idle state, waiting for the next application to run.
With a general-purpose operating system, even in the idle state there will be
some activity on the node due to periodic interrupts and background dae-
mons, making it hard to minimize power consumption. With a lightweight
operating system such as CNK, the system knows it is waiting for just one or
two things, the next command from the control system or from theI/O node,

Low-Power, Massively Parallel, Energy-Efficient Supercomputers W 31

and it can wait for those in as efficient a manner as possible. On Blue Gene/L
and /P, the waiting takes the form of a polling loop in which both code and
data reside in the processor’s L1 cache, effectively quiescing the rest of the
memory system. As the memory system is one of the large power draws, this
technique reduces overall power consumption. On Blue Gene/Q, CNK goes
further and parks all but one of the 68 hardware threads in wait instructions,
where they consume no execution unit or memory system resources at all.
(The one thread that remains active, polling the L1 cache during this phase,
is a CNK node controller thread.) When a command arrives from the I/O
node, the Blue Gene/Q wakeup unit will break one thread out of its wait
instruction. This thread will then control the download and start of the new
application.

1.4.4.4 Running

Once a job is running on the Blue Gene nodes, the temperature and power
consumption of the node can vary significantly within phases of the ap-
plication and across different applications. There are two main voltage do-
mains on the node, one voltage domain for the compute chip and another
voltage domain for the off-chip memory. CNK has the ability to throttle
power consumption on a specific voltage domain using either reactive or
proactive power management. There are several techniques for slowing the
processor domain; CNK relies on a periodic interrupt and spin wait to ac-
complish this task. To throttle the off-chip memory voltage domain, the
compute chip’s memory controller can be placed into a special mode that
adds some stall cycles to certain memory accesses, thereby giving the node
board’s power distribution system time to recover from the previous burst
of memory activity. This technique allows the average power demand to be
smoothed.

Reactive power management is activated when the node card tells CNK
that either the temperature or power consumption is exceeding a preset
threshold. CNK will throttle both voltage domains once the power sup-
ply warning is detected. Since each node acts independently, CNK com-
municates this reactive mode to all of the other nodes executing the job.
The purpose of this communication is so that the nodes can coordinate
their power-throttling activities. This scheduling is important to avoid
performance noise due to each node randomly reducing performance.
When a threshold-exceeded event occurs, the nodes will only have a few
milliseconds to respond before the power supplies can no longer deliver the

32 B The Green Computing Book: Tackling Energy Efficiency at Large Scale

current power levels. This tight timing constraint means that CNK (rather
than the control system) must react to the power management request.
Once the reactive mode has been activated, the control system is informed
via a RAS (reliability, availability, serviceability) message.

Proactive power management is similar to reactive power management
except that the user conveys that the job should start with proactive power
throttling. The user can also specify which voltage domain to target along
with various settings on intensity. Proactive power management is intended
for applications that are known to exceed a certain power profile. This al-
lows the application to maintain control and specify when or where power
management occurs without invoking reactive power management. Al-
though the application may specify proactive mode, the power supplies
could still hit the reactive power management thresholds. If this occurs,
then the reactive power management settings will override the proactive
settings. When proactive mode is activated, the control system is informed
via a RAS message.

1.4.5 Low-Power Implications on Software

As mentioned, a focus on power efficiency resulted in the hardware design
using relatively simple, low-frequency processor cores, as the system is opti-
mized for collective performance, as opposed to single-thread performance.
For example, each core has a simpler design (e.g., less branch prediction
capability) than other modern high-performance processors. Thus, wher-
ever system software is adversely affected by single-thread performance,
optimization work needs to be done. For example, it required some work
to achieve the targeted I/O bandwidth, to activate OpenMP® (Open Multi-
Processing) threads and to enable “hybrid” programming models, such as
MPI (message-passing interface) with OpenMP. Most affected, however, is
the messaging software stack.

We provide a few examples of the optimizations in the messaging soft-
ware stack. One way to maximize performance within the design resource
constraints is to take advantage of the DMA (direct memory access) fa-
cility in the torus network logic. The DMA is especially helpful when
moving large amounts of data. Instead of tying up a processor core for
many cycles while moving data, the messaging software only spends a few
processor cycles setting up the DMA. Then, the DMA engine takes over
and moves the data efficiently between the torus network logic and mem-
ory without further processor involvement. This minimizes the messaging

Low-Power, Massively Parallel, Energy-Efficient Supercomputers B 33

overhead, and therefore the power, in the Blue Gene/P and BlueGene/Q
torus networks.

Additional optimizations are required in the messaging software stack
to meet the performance provided by the hardware. The messaging code
is written to help the compiler better utilize the instruction cache and
minimize branches by using “likely_if()” and “unlikely_if()” pragmas. A
likely_if() branch tells the compiler the branch is usually going to be taken;
therefore, it would be good to preload instructions along that path and
to set up the branch prediction such that the branch is assumed. The
messaging code also eliminates as many branches as possible and opti-
mizes the expected-case paths for latency. In addition, certain operations,
such as accessing the DMA hardware or addressing virtual-to-physical ad-
dress mappings, can be expensive due to system calls or long latency ac-
cess paths to device configuration registers. As this information changes
infrequently, a copy is cached in the application’s address space for fast
access.

Significant effort was spent reducing overhead for collective calls. As the
node counts increase, the costs of doing many point-to-point send/receive
calls increases. To minimize this overhead, the component collective mes-
saging interface (CCMI) was developed. CCMI is based on the concept of
multisends. Each processor is involved only once in a given multisend call.
Each collective has a data movement “schedule” that defines data flow and
operations on the data. The schedule is then “executed” by the node in the
multisend call. This helps absorb overhead that would normally be present
in a collective operation in which each node calls send or receive multiple
times.

1.5 APPLICATIONS

This chapter described how power and packaging considerations have

driven the Blue Gene design point, in particular how power-efficient su-
percomputers can be built from moderate-performance processor chips,
compensating for individual processor performance by increasing system-
level parallelism. This section shows that this approach is actually valid,
that is, that a significant class of HPC applications scales well to very large
processor counts.

The first major Blue Gene/L system installation occurred in 2005 at
Lawrence Livermore National Laboratories (LLNL). This system included
64 racks, had 131,072 individual compute cores, and delivered a peak

34 MW The Green Computing Book: Tackling Energy Efficiency at Large Scale

performance of 367 TeraFLOPs. When it was installed, it took the num-
ber one spot on the international list of top 500 supercomputers [30]. In
that same year, the runner-up systems on the top 500 list had core counts
on the order of 10,000 or less. Blue Gene/Ls core counts thus represented
a very significant increase over what, at the time, was the norm.

Today, managing massive concurrency in parallel applications is well
understood, and there are many systems installed with core counts in the
50,000+ range. At the time of Blue Gene’s first installation, however, from
theapplication programmer’s point of view, the order of magnitude increase
in core count was a potential barrier to adoption of Blue Gene systems. In
its design, however, Blue Gene had a significant number of innovations to
support efficient large-scale parallelism for applications. A number of ap-
plication teams completed considerable preparation work during the Blue
Gene development phase to prepare applications that could take advantage
of what was, at the time, a unique architecture.

In the years since Blue Gene was first introduced, a wide variety of
applications and application domains has successfully been ported to and
are in production use on Blue Gene systems around the world. Application
domains span from modeling of materials and proteins at the nanoscale;
to computational fluid dynamics and structural mechanics in engineering
applications; and to systems biology, whole-organ simulation, and gene
sequence analysis in the life sciences domain.

As examples of successful applications that make optimal (and thereby
the most power-efficient) use of the machine, we discuss the four appli-
cations that won separate Gordon Bell awards in the period 2005 to 2007.
The Gordon Bell awards are given each year for the highest-performance
applications submitted to the annual Supercomputing Conference—the
International Conference for High Performance Computing, Networking,
Storage, and Analysis.

e In 2005, the Gordon Bell prizewinner was a classical molecular dy-
namics simulation of metal solidification, which achieved over 100
TeraFLOPs of sustained performance on the LLNL Blue Gene sys-
tem [40]. The core algorithm for this simulation requires a very large
number of independent force calculations for the individual atoms
in the simulation. This calculation in itself is easily parallelized, so
that performance scaling becomes dependent on managing the com-
munications requirements, in this case making optimal use of the
special integrated torus network built into Blue Gene. Thus, perfor-
mance scaling was achieved by careful domain decomposition of the

Low-Power, Massively Parallel, Energy-Efficient Supercomputers B 35

TABLE 1.3 Strong Scaling Performance for the Molecular Dynamics Code on Blue Gene/L
as Reported in Reference 40.

Processor Cores Atoms Atoms/Core Elapsed Time (s) Scaling Fraction
1,024 2,048,000 2,000 461.72 1.00
2,048 2,048,000 1,000 245.68 0.94
4,096 2,048,000 500 139.87 0.83
8,192 2,048,000 250 70.24 0.82
16,384 2,048,000 125 40.61 0.71
32,768 2,048,000 62.5 26.63 0.54
131,072 2,048,000 15.625 18.52 0.19

This table shows how overall wall clock time is reduced for a fixed-size problem as processors
are added. For 1,024 processor cores, this simulation assigns 2,000 atoms per core, so that
for 131,072 cores, there are 15.6 atoms per core on average. Scaling is not perfect, but
out to 32,768 processors, scaling is about 50%. Even at 131,072 processors, meaningful
performance gains are achieved.

problem across the high Blue Gene node count. Table 1.3 demonstrates
the strong scaling performance for one specific data set described in
Reference 40. This data set modeled the solidification of a system of 2
million uranium atoms. The table shows solution time decreases for
this fixed problem size as the processor count increases. Ideally, one
would like to see solution time decreasing proportional to the increase
in processors used. The table shows reasonable scaling from 1,024 to
32,768 processors. At 131,072 processors, scaling has fallen off but still
shows decreasing solution time. A variation of this application code
also won the 2007 Gordon Bell prize [41].

e In 2006, Blue Gene won two Gordon Bell prizes. The first was for a
quantum molecular dynamics simulation of metals, which achieved
207 TeraFLOPs on the LLNL system [42]. This performance equated
to 56% of peak, enabled by two key Blue Gene capabilities. The first of
these was the bandwidth match between memory system and proces-
sor cores (see Table 1.2), enabling high performance on dense matrix
operations. The second of these was again the integrated torus net-
work, which, with careful decomposition of the problem, delivers
scalable communications.

e The second 2006 Gordon Bell winner was for a subnuclear chemistry
application [43], which is a weak scaling problem (i.e., the problem
size grows with the size of the machine). Table 1.4 shows perfect weak
scaling from 1,024 to 131,072 cores for two different solution methods.
Again, the integrated torus network was key to delivering this result.

36 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

TABLE 1.4 Application Scaling Performance for QCD (Quantum
Chromo Dynamics) on Blue Gene/L as measured in the context of
Reference 43.

Dirac Operator Conjugate Gradient

Sustained Inverter Sustained
Performance per ~ Performance per

Racks Processor Cores Core (%) Core (%)

0.5 1,024 19.2 18.7

1 2,048 19.2 18.7

2 4,096 19.3 18.6

4 8,192 19.2 18.6

8 16,384 19.3 18.6
16 32,768 19.3 18.5
20 40,960 19.3 18.5
64 131,072 19.2 18.5

This table shows almost perfect performance scaling from 1,024 to
131,072 processor cores. Data for two different kernels are presented.
These kernels include the Dirac operator kernel, which is a sparse ma-
trix vector operation, and a full conjugate gradient inverter, which
inverts the Dirac operator. The table shows sustained performance (as
a percentage of peak performance) of both kernels in weak scaling
mode, where the size of the vectors involved is scaled with the number
of cores, thus keeping the work per core constant.

e Recently, Blue Gene also demonstrated the most energy efficient so-
lution for very-large-scale data uncertainty quantification: More than
9 TB of data could be validated by estimating the inverse of the data
covariance matrix in less than 20 min. This application ran on the
full 72 Racks Blue Gene/P at the Jiilich Research Center performing at
73% of theoretical peak [44]. The simultaneous presence of the torus
and integrated collective network was instrumental to the efficient
implementation of this algorithm.

As demonstrated by these examples, it is possible to build scalable, ro-
bust HPC systems that can provide significant application performance at
concurrency levels one to two orders of magnitude greater than previously
proven. The very tight integration of networking, memory, and processors
has been proven to enable application scalability to very high processor
core counts. With such architectural optimizations in place, and software
that takes advantage of them, these examples demonstrate the feasibility of
driving power efficiency into HPC with massively parallel systems based on
tight integration of low-power, moderate-performance processor cores.

Low-Power, Massively Parallel, Energy-Efficient Supercomputers B 37

1.6 CONCLUSIONS

In conclusion, power and power efficiency will be playing an increas-

ingly important role in HPC. The key to power efficiency is a combi-
nation of architecture and technology choices. On the technology side,
low voltage is critical to power efficiency. On the architecture side, how-
ever, simply taking an existing high-performance optimized design and
scaling it to lower voltage will not achieve optimal power efficiency.
Instead, to achieve an optimal system design, resources such as mem-
ory bandwidth, and interconnect bandwidth should also use appropri-
ate low-power technology choices. This integrated approach has been
extremely successful in the Blue Gene program over multiple generations of
machines.

As we look forward, exponentially higher levels of concurrency will be
necessary to achieve the desired (and forecasted) performance levels. As the
performance grows, better power efficiency will be essential. The lessons
learned in the Blue Gene program will be leveraged, but additional tech-
niques will be necessary. Architectural innovation will be a critical enabler
of usable future systems as voltage scaling will be increasingly challenging,
and as foreseeable technology advances may provide only minor relief in
terms of power efficiency.

Low-level power management of systems will become commonplace,
but in the end, systems must deliver performance and be highly usable. As
users continue to migrate to programming models that are consistent with
high levels of single-node parallelism, new architecture options will open up
that can more easily achieve both exceptional sustained price performance
and power efficiency.

Supercomputers will continue to be the venue that first experiences
difficult computing issues and will be the place where solutions are first im-
plemented and widely utilized. Recently, the focus on power has also taken
on an environmental component, transcending simple cost considerations.
The concept of responsible computing is emerging in the supercomputing
community, and this nearly equates to power-efficient computing.

ACKNOWLEDGMENTS

This work has benefitted from cooperation of many individuals at IBM
Research (Yorktown Heights, NY) and at the IBM Systems and Technology
Division (Rochester, MN; East Fishkill, NY; Burlington, VT; and Raleigh,
NC). The Blue Gene/L, Blue Gene/P, and Blue Gene/Q projects have been

38 MW The Green Computing Book: Tackling Energy Efficiency at Large Scale

supported and partially funded by Argonne National Laboratory and the
Lawrence Livermore National Laboratory, on behalf of the U.S. Department
of Energy, under Lawrence Livermore National Laboratory subcontracts no.
B517552 and B554331.

Parts of the first three sections of this chapter originally appeared in IEEE
Proceedings, 98(2),215-236, 2010, and we are indebted to those authors [3].

REFERENCES

1.

2.

G. E. Moore, Progress in digital integrated electronics, IEDM Tech. Dig.,
11-13, 1975.

R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, and
A. R. LeBlanc, Design of ion-implanted MOSFETs with very small physical
dimensions, IEEE J. Solid-State Circuits, SC-9, 256-268, October 1974.

. L. Chang, D. J. Frank, R. K. Montoye, S. J. Koester, B. L. Ji, P. W. Coteus,

R. H. Dennard, and W. Haensch, Practical strategies for performance-
efficient computing, IEEE Proc., 98(2), 215-236, February 2010.

. A. Gara, M. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus, P. Coteus, M. E.

Giampapa, R. A. Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay, T. A.
Liebsch, M. Ohmacht, B. D. Steinmacher-Burow, T. Takken, and P. Vranas,
Overview of the Blue Gene/L system architecture, IBM J. Res. Dev., 49(2/3),
195-212, 2005.

. G. Almasi, S. Asaad, R. E. Bellofatto, H. R. Bickford, M. A. Blumrich, B.

Brezzo, A. A. Bright, J. R. Brunheroto, J. G. Castanos, D. Chen, G. Chiu, P.
Coteus, M. Dombrowa, G. Dozsa, A. E. Eichenberger, A. Gara, M. Giampapa,
E Giordano,J. A. Gunnels, S. A. Hall, R. Haring, P. Heidelberger, D. Hoenicke,
M. Kochte, G. Kopcsay, S. Kumar, A. Lanzetta, D. Lieber, B. J. Nathanson,
K. O’Brien, A. S. Ohmacht, M. Ohmacht, R. A. Rand, V. Salapura, J. C.
Sexton, B. D. Steinmacher-Burow, C. Stunkel, T. Takken, S. Tian, B. M. Trager,
R. B. Tremaine, P. Vranas, R. E. Walkup, M. E. Wazlowski, S. Winograd, R. W.
Wisniewski, P. Wu, D. R. Busche, S. M. Douskey, M. R. Ellavsky, W. T. Flynn,
P. R. Germann, M. J. Hamilton, L. Hehenberger, B. J. Hruby, M. . Jeanson,
E Kasemkhani, R. E. Lembach, T. A. Liebsch, K. C. Lyndgaard, R. W. Lytle,
J. A. Marcella, C. M. Marroquin, C. H. Mathiowetz, M. D. Maurice, E. Nelson,
D. M. Rickert, G. W. Sellers, J. E. Sheets, S. A. Strissel, C. D. Wait, B. B. Winter,
C.J. Wood, L. M. Zumbrunnen, M. Rangarajan, P. V. Allen, C. J. Archer, M.
Blocksome, T. A. Budnik, S. D. Ellis, M. P. Good, T. M. Gooding, T. A.
Inglett, K. T. Kaliszewski, B. L. Knudson, C. Lappi, G. S. Leckband, S. Lee,
M. G. Megerian, S.]. Miller, M. B. Mundy, R. G. Musselman, T. E. Musta, M.
T. Nelson, C. FE. Obert, J. L. Van Qosten, J. P. Orbeck, J. J. Parker, R. J. Poole,
H. L. Rodakowski, D. D. Reed, J. J. Scheel, E. W. Sell, R. M. Shok, K. M. Solie,
G. G. Stewart, W. M. Stockdell, A. T. Tauferner, J. Thomas, R. H. Sharrar,
S. Schwartz, D. L. Satterfield, J. D. Chauvin, E. Shmueli, R. G. Archambault,
A. R. Martin, M. P. Mendell, G. Zhang, P. P. Zhao, I. Mani, R. Nair, R. D.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Low-Power, Massively Parallel, Energy-Efficient Supercomputers B 39

Bendale, A. Curioni, Y. Sabharwal, J. Doi, and Y. Negishi, Overview of the
IBM Blue Gene/P project, The Blue Gene Team, including G. Chiu, IBM J.
Res. Dev., 52(1/2), 199-220, 2008.

. R. A. Haring, M. Ohmacht, T. W. Fox, M. K. Gschwind, D. L. Satterfield, K.

Sugavanam, P. W. Coteus, P. Heidelberger, M. A. Blumrich, R. W. Wisniewski,
A. Gara, G. L.-T. Chiu, P. A. Boyle, N. H. Christ, and C. Kim, The IBM Blue
Gene/Q compute chip, IEEE Micro, 32(2), 48—60, 2012.

. Blue Gene/Q: Sequoia and Mira, in Contemporary HPC Architectures, ed.

J. S. Vetter, Taylor and Francis, Boca Raton, FL, April 2013.

. J. Tschanz, S. Narendra, Y. Ye, B. Bloechel, S. Borkar, and V. De, Dynamic-sleep

transistor and body bias for active leakage power control of microprocessors,
IEEE Int. Solid-State Circuits Conf. (ISSCC), 102103, February 2003.

. K. Rajamani, C. Lefurgy, S. Ghiasi, J. Rubio, H. Hanson, and T. Keller, Power

management solutions for computer systems and datacenters, Tutorial,
International Symposium on High-Performance Computer Architecture,
February 2008.

G. Baccarani, M. R. Wordeman, and R. H. Dennard, Generalized scaling
theory and its application to a 1/4 micrometer MOSFET design, IEEE Trans.
Electron Devices, ED-31, 452-462, April 1984.

E. J. Nowak, Maintaining the benefits of CMOS scaling when scaling bogs
down, IBM J. Res. Dev., 46, 169-180, March/May 2002.

R. H. Dennard, J. Cai, and A. Kumar, A perspective on today’s scaling chal-
lenges and possible future directions, Solid-State Electron., 51, 518-525, April
2007.

M. Horowitz and W. Dally, How scaling will change processor architecture,
IEEE Int. Solid-State Circuits Conf. (ISSCC), 132-133, February 2004.

J. Meindl, Low power microelectronics: Retrospect and prospect, Proc. IEEE,
83, 619-635, April 1995.

T. Sakurai and A. R. Newton, Alpha-power law MOSFET model and its
applications to CMOS inverter delay and other formulas, IEEE J. Solid-State
Circuits, 25, 584-594, April 1990.

V. J. Reddi, S. Kanev, W. Kim, S. Campanoni, M. D. Smith, G.-Y. Wei,
and D. Brooks, Voltage noise in production processors, IEEE Micro, 20-26,
January/February 2011.

G. Patounakis, Y. W. Li, and K. L. Shepard, A fully integrated on-chip DC-
DC conversion and power management system, IEEE J. Solid-State Circuits,
39, 443-451, March 2004.

G. Wang, K. Cheng, H. Ho,]. Faltermeier, W. Kong, H. Kim, J. Cai, C. Tanner,
K. McStay, K. Balasubramanyam, C. Pei, L. Ninomiya, X. Li, K. Winstel, D.
Dobuzinsky, M. Naeem, R. Zhang, R. Deschner, M. J. Brodsky, S. Allen, J.
Yates, Y. Feng, P. Marchetti, C. Noris, D. Casarotto, J. Benedict, A. Kniffin,
D. Parise, B. Khan, J. Barth, P. Parries, T. Kirihata, J. Norum, and S. S. Iyer,
A 0.127 um? high performance 65nm SOI-based embedded DRAM for on-
processor applications, IEDM Tech. Dig., 1-4, December 2006.

W. K. Luk and R. H. Dennard, Gated diode amplifiers, IEEE Trans. Circuits
Syst. 1I Express Briefs, 52(5), 266270, May 2005.

40 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

S.J. Koester, A. M. Young, R. R. Yu, S. Purushothaman, K.-N. Chen, D. C. La
Tulipe, Jr., N. Rana, L. Shi, M. R. Wordeman, and E. J. Sprogis, Wafer-level
3D integration technology, IBM J. Res. Dev., 52, 583-597, 2008.

P. S. Andry, C. K. Tsang, B. C. Webb, E. J. Sprogis, S. L. Wright, B. Dang,
and D. G. Manzer, Fabrication and characterization of robust through-
silicon vias for silicon-carrier applications, IBM J. Res. Dev., 52, 571-581,
2008.

R. Palmer, J. Poulton, W.J. Dally, J. Eyles, A. M. Fuller, T. Greer, M. Horowitz,
M. Kellam, F. Quan, and F. Zarkeshvari, A 14mW 6.25Gb/s transceiver in
90nm CMOS for serial chip-to-chip communications, IEEE Int. Solid-State
Circuits Conf. (ISSCC), 440-441, February 2007.

Y. Liu, B. Kim, T. O. Dickson, J. F. Bulzacchelli, and D. J. Friedman, A 10 Gb/s
compact low-power serial I/O with DFE-IIR equalization in 65nm CMOS,
IEEE Int. Solid-State Circuits Conf. (ISSCC), 182-183, February 2009.

Y. Hidaka, W. Gai, T. Horie, J. H. Jiang, Y. Koyanagi, and H. Osone, A
4-channel 10.3Gb/s backplane transceiver macro with 35dB equalizer and
sign-based zero-forcing adaptive control, IEEE Int. Solid-State Circuits Conf.
(ISSCC), 188-189, February 2009.

J. E. Bulzacchelli, T. O. Dickson, Z. T. Deniz, H. A. Ainspan, B. D. Parker, M. P.
Beakes, S. V. Rylov, and D. J. Friedman, A 78mW 11.1Gb/s 5-tap DFE receiver
with digitally calibrated current-integrating summers in 65nm CMOS, IEEE
Int. Solid-State Circuits Conf. (ISSCC), 368—-369, February 2009.

D. A. B. Miller, Rationale and challenges for optical interconnects to elec-
tronic chips, Proc. IEEE, 88, 728—749, June 2000.

Joint Electron Devices Engineering Council home page. http://www.jedec.
org/.

American Society of Heating, Refrigerating, and Air-Conditioning Engineers
(ASHRAE) home page. http://www.ashrae.org/.

The Green500 List, November 2007-2013. http://www.green500.org/lists.
php.

The TOP500 List, November 2004—November 2013. http://www.top500.
org/.

J. Dongarra, P. Luszczek, and A. Petitet, The LINPACK benchmark: Past,
present and future, Concurr. Comput., 15(9), 803-820, 2003.

R. G. Hintz, and P. Tate, Control data STAR-100 processor design, COMP-
CON, IEEE, pp. 1-4, September 1972.

R. M. Russell, The Cray-1 computer system, Commun. ACM, 21(1), 63-72,
January 1978.

IBM to build world’s first cell broadband engine based supercomputer, IBM
Press announcement, September 6, 2006, http://www.ibm.com/press/us/
en/pressrelease/20210.wss.

S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Fi-
nan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote, N.
Borkar, S. Borkar, An 80- Tile Sub-100-W TeraFLOPS Processor in 65-nm

36.

37.

38.

39.

40.

41.

42.

43.

44,

Low-Power, Massively Parallel, Energy-Efficient Supercomputers W 41

CMOS, IEEE Journal of Solid-State Circuits, 43(1), 29-41, Jan. 2008,
http://dx.doi.org/10.1109/JSSC.2007.910957

J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kriiger, A. E. Lefohn,
and T. Purcell. A survey of general-purpose computation on graphics hard-
ware, Comput. Graph. Forum, 26(1), 80-113, 2007.

J. Balfour, W. J. Dally, D. Black-Schaffer, V. Parikh, and J.-S. Park, An energy-
efficient processor architecture for embedded systems, IEEE Comput. Arch.
Lett., 7(1), 2932, 2008.

W. J. Dally, J. Balfour, D. Black-Schaftfer, J. Chen, R. C. Harting, V. Parikh,
J.-S. Park, and D. Sheffield, Efficient embedded computing, IEEE Comput.,
27-32, July 2008.

J. E. Moreira, G. Almasi, C. Archer, R. Bellofatto, P. Bergner, J. R. Brunheroto,
M. Brutman, J. G. Castanos, P. G. Crumley, M. Gupta, T. Inglett, D. Lieber,
D. Limpert, P. McCarthy, M. Megerian, M. Mendell, M. Mundy, D. Reed,
R. K. Sahoo, A. Sanomiya, R. Shok, B. Smith, and G. G. Stewart, Blue Gene/L
programming and operating environment, IBM J. Res. Dev., 49(2/3), 367—
376, 2005.

F. H. Streitz, J. N. Glosli, M. V. Patel, B. Chan, R. K. Yates, B. R.
de Supinski, J. Sexton, and J. A. Gunnels. 100+ TFlop solidification
simulations on Blue Gene/L, Gordon Bell Prize, Supercomputing 2005.
http://sc05.supercomputing.org/schedule/pdf/pap307.pdf.

J. Glosli, K. Caspersen, D. Richards, R. Rudd, E Streitz (Lawrence Liv-
ermore National Laboratory), and J. Gunnels (IBM, Inc.), Extending
stability beyond CPU-millennium: Micron-scale atomistic simulation of
Kelvin-Helmholtz instability, in Proceedings of the 2007 ACM/IEEE confer-
ence on Supercomputing (SC ’07). ACM, New York, NY, USA, Article 58.
http://doi.acm.org/10.1145/1362622.1362700

E. Gygi, E. W. Draeger, M. Schulz, B. R. De Supinski, J. A. Gunnels,
V. Austel, J. C. Sexton, F. Franchetti, S. Kral, C. Ueberhuber, and]J.
Lorenz, Large-scale electronic structure calculations of high-Z metals on
the Blue Gene/L platform, in Proceedings of the 2006 ACM/IEEE confer-
ence on Supercomputing (SC ’06). ACM, New York, NY, USA, Article 45.
http://doi.acm.org/10.1145/1188455.1188502

P. M. Vranas, G. Bhanot, M. Blumrich, D. Chen, A. Gara, P. Heidel-
berger, V. Salapura, and J. C. Sexton, The Blue Gene/L supercomputer and
quantum chromodynamics, in Proceedings of the 2006 ACM/IEEE confer-
ence on Supercomputing (SC ’06). ACM, New York, NY, USA, Article 50.
http://doi.acm.org/10.1145/1188455.1188507.

C. Bekas, A. Curioni, and I. Fedulova, Low cost high perfor-
mance uncertainty quantification, Proceedings of the 2nd Workshop
on High Performance Computational Finance, ACM, New York, 2009;
http://doi.acm.org/10.1145/1645413.1645421.

CHAPTER 2

Compiler-Driven Energy
Efficiency

Mahmut Kandemir and Shekhar Srikantaiah

CONTENTS

2.1 Introduction
2.1.1 Compiling for Performance versus Energy
2.1.2 Avenues for Energy-Aware Compiling
2.2 Energy-Aware I/O Optimizations
2.2.1 Modifying Application Code
2.2.1.1 Static Compilation Framework
2.2.1.2 Dynamic Compilation Framework
2.2.2 Modifying Disk Layout of Data
2.2.2.1 Abstractions for Disk Layout
Optimization
2.2.2.2 Disk Layout Detection Algorithm
2.2.2.3 Example
2.3 Energy-Aware NoC Optimizations
2.3.1 History-Based Dynamic Link Voltage Scaling
2.3.2 Static Analysis-Based Link Voltage Scaling
2.3.2.1 Interprocess Communication Graph
2.3.2.2 Determining Scaling Factors and Channel
Voltages
References

2.1 INTRODUCTION

43
44
45
46
46
48
56
66

66
68
70
72
74
75
76

80
83

Conserving energy at the cost of minimal performance degradation
is an important goal in high-performance computing systems. Energy

43

44 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

conservation can be achieved in the hardware by various mechanisms, like
dynamic voltage and frequency scaling [1], state transitions among various
power states, or temporarily turning off some resources when they are not
being used. Hardware enhancements for energy optimization have been
reasonably well studied in the past. However, energy optimizations can-
not leverage these hardware mechanisms without adequate support from
the system software. Software like the compiler, operating system, and run-
time systems can act as enablers for these energy-conserving mechanisms to
be used effectively. Without these enablers, hardware optimizations alone
cannot accrue the predicted energy benefits. In particular, the compiler is
capable of automatically analyzing program behavior, data access patterns,
and resource requirements of complex application programs.

An energy-aware compiler can reshape a program either explicitly, by
inserting instructions to turn off resources that are not used, or implicitly,
by increasing the idle periods between two usages of the resource. A com-
piler framework is the ideal platform for performing such energy-aware
transformations automatically. For example, the efficacy of previously pro-
posed energy optimization techniques like dynamic disk speed modulation
(dynamic rotations per minute, DRPM) [2] depend on the availability of
idle disk usage periods. If we execute unmodified code or code optimized for
high performance, it has been observed [3] that the opportunity for finding
such idle periods is diminished. Energy-aware compiler optimization such
as described in Reference 4 can be used to increase the idle periods, thereby
facilitating energy conservation. In this light, it is important to understand
the nuances of compiling for high performance versus compiling for energy
conservation.

2.1.1 Compiling for Performance versus Energy

High-performance systems make extensive use of optimizing compilers.
Most optimizing compilers are focused on improving the performance
of applications. In some ways, optimizing the performance of a program
reduces the total amount of “work done” and thereby reduces its energy
consumption. But, this is not always true. Energy-aware compiler optimiza-
tions are generally harder than and significantly different from performance
optimizations because all parts of the program execution contribute to its
overall energy consumption. In performance optimizations, only the crit-
ical path of a program execution needs to be optimized, whereas a part

Compiler-Driven Energy Efficiency W 45

of the program not on the critical path, like speculative execution or I/O
(input/output), prefetches may contribute significantly to the energy con-
sumption of the program. Therefore, it is crucial to give a fresh thought
to compiling high-performance applications with both performance and
energy as first-order metrics for optimization.

2.1.2 Avenues for Energy-Aware Compiling

Looking ahead into future high-performance computing systems, it is
evident that they will be characterized not only by their raw performance
but also by diverse communication capabilities and power/energy manage-
ment. In particular, two trends are going to be responsible for the increasing
energy demands of future high-performance applications.

The first trend is the enormous increase in data-intensive applications.
Peta-scale high-performance computing has enabled scientists to tackle very
large and computationally challenging problems, such as those found in the
scientific computing domain. This in turn helps advancement of scientific
discovery at a faster pace. However, this is also leading to a tremendous
increase in the amount of data used by these programs. The amount of data
is doubling every 18-24 months as a result. All these data must be stored,
organized, and processed in real time to be made useful. Therefore, the I/O
subsystem is turning out to be a major energy consumer in these systems.
Add to it the mechanical nature of disks, which leads to higher amounts
of energy consumption. Solid-state disks (SSDs) are being introduced to
ameliorate this problem. However, there are other issues with SSDs, like
reliability, that need to be addressed before their widespread use. There-
fore, disks are guaranteed to constitute high performance in the future for
another decade or so.

The second trend is the simultaneous increase in both on-chip com-
munication (in the case of chip multiprocessors, CMPs) and off-chip com-
munication with massively parallel applications parallelized for modern
peta-scale computing platforms. In the future, with many cores on chip, it
has been forecast that the on-chip communication will be in the form of
a network on a chip (NoC). Power consumed by these NoCs and off-chip
communication fabric is raising major concerns that need to be addressed
to make them feasible. Fortunately, compilers with the knowledge of syn-
chronization and data sharing among application threads are best suited
for performing optimizations to reduce both on-chip and off-chip com-
munication.

46 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

A considerable fraction of the energy consumed in modern high-
performance systems can be attributed to two major components in
addition to others in high-performance systems:

o The I/O subsystem performing I/O on terabytes of data is a major
consumer of energy.

e On-chip communication (CMPs) and off-chip communication are
increasing, with higher levels of parallelism being targeted, leading
to increased energy consumption.

Recent advances in energy-efficient compilation for high-performance
computing systems have been focused on these two aspects. This chap-
ter elaborates on compiler-directed energy optimizations in both the I/O
subsystem and the NoCs.

2.2 ENERGY-AWARE I/O OPTIMIZATIONS

Disk systems of the large, high-performance machines are known to con-

tribute to a significant fraction of the overall power budget. Motivated by
this observation, recent studies (e.g., [5], [3]) specifically focused on the
disk system and proposed energy-saving strategies. These efforts are either
hardware based (e.g., reducing disk speed if the associated latency can be
tolerated by the application) or software based (e.g., restructuring code for
taking best advantage of available low-power capabilities provided by the
disk system). In particular, from the compiler’s perspective, there are two
major parameters that can be tuned for conserving energy:

e The code structure of the application program, and

e The disk layout of data.

Both approaches have been investigated recently. A detailed description of
the techniques are discussed next.

2.2.1 Modifying Application Code

There are a number of compilation techniques used to statically analyze
program sections and discover disk reads/writes that may be responsible
for causing higher energy consumption or to discover opportunities to

Compiler-Driven Energy Efficiency B 47

reduce energy consumption. Son et al. proposed several compiler-based
code transformation techniques to conserve disk energy consumption.
First, they studied a compiler technique that inserts explicit disk power
management calls in source codes of scientific applications [3]. The idea is
that a compiler can extract how disks are traversed during execution time
using the application source code along with the file-level striping infor-
mation. By inserting explicit power management calls (e.g., spin_up and
spin_down) in the application code, one can eliminate (to a large extent)
the performance penalty that would normally be incurred by reactive disk
power management schemes. Second, they revisited conventional loop dis-
tribution and iteration space tiling techniques from an energy perspective.
To achieve the best energy savings without slowing performance much, they
showed that both code and underlying disk layout must be considered at
the same time. In another paper [6], the same authors described a compiler
approach to reduce disk power consumption in the presence of parallel
disk systems. To increase disk idleness, the proposed technique schedules
the code fragments assigned to a number of processors according to the
disk access patterns extracted by an optimizing compiler, which captures
both intraprocessor and interprocessor disk reuses.

Modern high-performance applications are becoming increasingly dy-
namic in terms of their computation patterns as well as data access patterns.
Due to the complexities of systems and applications and their high energy
consumptions, it is very important to address research issues and develop
dynamic techniques to scale I/O in the right proportions. Compiler opti-
mizations are no exceptions to this. Recent research has also studied incor-
porating a dynamic compilation framework, including a set of powerful
1I/0 optimizations designed to minimize execution cycles and energy con-
sumption. The designed framework generates results that are competitive
with hand-optimized codes in terms of energy consumption. Before delving
into the details of each of these frameworks, it is important to emphasize
that some of the techniques are dependent on profiling programs to collect
program characteristics. Such profile-based techniques are more applica-
ble in high-performance computing systems where application character-
istics are dominated by input-independent behavior more than the input-
dependent ones. Moreover, most of the techniques described here try to
avoid collecting input-dependent behavior from profiles to the extent pos-
sible. We now discuss both a static compilation framework and a dynamic
compilation framework for modifying application code in an energy-aware
manner.

43 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

fori=0to N — 1 {
for j=0to M — 1 {
ol ..

}

}

FIGURE 2.1 Example of code fragment.

2.2.1.1 Static Compilation Framework

As previously mentioned, a compiler can effectively determine at compile
time (statically) many important I/O system parameters, like disk speeds,
data layouts, and disk data prefetching distance of applications. One such
integrated static compilation framework has been proposed [4].

Consider the example code fragment shown in Figure 2.1. The code
fragment given in this figure accesses a two-dimensional disk-resident array,
named Vj, using a loop nest constructed from two loops. For illustrative
purposes, V; is assumed to be striped over four disks with a stripe size
of S (see Figure 2.2), and all four disks in question are assumed to be
running at 12,000 RPM. As depicted in Figure 2.3a if we do not apply any
prefetching (P F;), every access to the first data element in each block incurs
an access R; to the disk system. In this example, we assume that it takes Tj
cycles to complete a disk access when the rotational speed of disks is 12,000
RPM. After T; cycles elapse, the requested data block D; is ready; thus, the
computation on that block can proceed.

Since most scientificapplications are amenable to static analysis of access
patterns, they can be extracted and reshaped by an optimizing compiler.
We can use the software prefetching algorithm proposed by Brown et al. [7]
to hide disk I/O stall time and reduce overall execution latency. The code
fragment after applying I/O prefetching is given in Figure 2.4. Software
prefetching generates a prolog, a steady state, and an epilog from each
original loop nest. The prefetch distance d (i.e., the number of iterations
ahead of which the disk I/O needs to be initiated to hide I/O latency), can

be calculated as
T,
d= { d w , (2.1)
s+ Tpf

where T is the estimated I/O latency (in cycles) to prefetch one block,
T,s is the overhead (again in terms of cycles) of executing a prefetch

Compiler-Driven Energy Efficiency B 49

> 12K RPM

FIGURE 2.2 Disk layout of V;.

Ry Dy R, D, R; Dj
(a) ' N /N N VY /N /N T Tlme
: : ASSSSRARRASRRRNREN ASSSASRRRRSRSRNNRN ASSSSRSSRSRRSASRNS
i 1 Tyq) T,))) J)
| | / N 7 ’ 4 4
! ! ’ ’ 4 [e
1 1 / / 4 [.
| | ’ B // / // //
| [} /v ;s .
| (] s ’,7 e
/ 7’
! PE D}/ PF, D, PF; Dy /27
(b) : 7R * LY 7 LY 7N = "
! Time
I ' I
1 | I 1
: VT ! | | |
| | 1 I I
| | 1 1 I
| | 1 I I
| | 1 I I
| | 1 I I
\) 1 | 1
1 1 1
' PF, D' PF, D,, PF; Dy ,
(C) N v | | |
S e X < g Time
1
1 2Td I
I

I/Oaccess wwww Computation

FIGURE2.3 ComparisonofI/O timings. (a) Original code without prefetch-
ing. (b) Prefetching to high-speed disks. (c) Prefetching to low-speed disks.
Ty is the disk I/O time for a single block data.

50 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

fori=0to N —1{
PF (&V;[i][0]); /* prolog */

for jj=0to M — 1 — d, step b; { /* steady-state */
PF (&Vi[i][j +4d]);
for j=jjto jj+ b1 {
Wl
}
}
for j=M-d to M — 1 { /* epilog */
VLG
}
}

FIGURE 2.4 Code with prefetching; d is the prefetch distance.

instruction, and s is the number of cycles in the shortest path through
the loop body. Once the prefetch distance d is calculated, we can then stripe
mine the loop nest to make explicit the point at which the prefetch instruc-
tion is to be inserted. The result of this transformation for the example is
given in Figure 2.3. In this example, d iterations of j loop are assumed to be
required to hide I/O latency, and b1 is the strip size used for stripe mining.

Up to this point, we discussed software prefetching as a technique that
can be used to hide disk I/O latency, specifically hiding Tj, as proposed in
the literature. However, if we examine the components of disk I/O time,
we can see that T; is composed of seek time, rotational latency, transfer
time, and controller overhead. Since in modern disk drives the controller
overhead is negligible compared to the other three values, we can see that
Ts is almost directly proportional to the disk rotation speed. However,
it has been shown by prior research that the disk power consumption is
quadratically proportional to the disk rotational speed [2]. This suggests
that one can take an approach to conserve disk energy by storing array data
in low-speed disks, such as a disk running at less than 12,000 RPM (in
this example), and by eliminating the increased I/O latency using software
prefetching with an increased prefetch distance. That is, one can save disk
energy by increasing prefetch distance and reducing disk speed at the same
time.

Compiler-Driven Energy Efficiency B 51

A
1 1
- Ty
Power
(a) . .
| ’ ’ ’ ’ ’ ’ e .7 Tlme
1 / — . -
| /I I/ , 4 , // - . -
[e s R
I P L2 -
| ¢ r r |
- Ty W 1 1 1
1
1
Power
(b) |
! ! ! h Time
1 1 1 :
]]] \
]]] \
| | | \
))) \
|4—2T 1 1 1 |
| d_’! ! ! 1
o E-:- - |
(© |
Time

FIGURE 2.5 Comparison of disk power states. (a) Original code without
prefetching. (b) Prefetching to high-speed disks. (c) Prefetching to low-
speed disks. T; is the disk I/O time for a single block data.

Figures 2.4 and 2.5 show how prefetching to high-speed disks and low-
speed disks affects I/O timing and disk power consumption. In this ex-
ample, the rotational speed of the low-speed disks is assumed to be 6,000
RPM (i.e., half of the maximum speed possible). Consequently, the time
it takes to complete a disk access is doubled, i.e., it is now 27T;. One can
see from Figures 2.4b and 2.4c that we can hide the latency of low-speed
disks by issuing the prefetch early enough. Specifically, since the I/O latency
is doubled from Tj to 2Ty, the prefetch distance d is also doubled based
on Equation 2.1. On the other hand, the energy consumption profiles af-
ter applying prefetching with different prefetch distances are depicted in
Figure 2.5. Figure 2.5a shows the power profile throughout the program
execution time when no prefetching is employed. Note that it has been as-
sumed that the disk drive can be placed in either active mode when servicing
I/O request or idle mode when the disk is not used. Therefore, the disk is
in the active mode during T; when there is a request being processed. For
the remaining time, the disk is placed into the idle mode. Figures 2.5b and
2.5c show how the prefetching affects the power consumption profile of a
disk. If we apply prefetching using high-speed disks, we can conserve disk

52 MW The Green Computing Book: Tackling Energy Efficiency at Large Scale

energy consumption by the amount of reduced execution time. In this case,
the energy savings come from the reductions in the total disk idle time. In
comparison, as shown in Figure 2.5¢, if the data are stored in low-speed
disks and we apply prefetching, we can reduce disk energy consumption
further by cutting the energy consumption in the active periods as well.

It should be noted that we may not be able to take advantage of low-
speed disks for all disk-resident arrays because using low-speed disks entails
longer prefetch distances, which may not be very appropriate for aloop nest
whose iteration count is not sufficient for hiding such a long I/O latency.
Therefore, one needs to be careful when selecting the disk speeds to employ.
Also, since we focus on large scientific programs that consist of multiple loop
nests, it is possible that the determined disk speed for a particular array in
oneloop nest may not be appropriate for another loop nest that manipulates
the same array (by accessing the same set of disks). Consequently, selecting
prefetching distance and disk speeds depends on the disk layout of data
as well as the data access patterns exhibited by the application code being
optimized. Because of this, these parameters should be considered together.
We now describe an integrated compiler framework that determines these
parameters together.

Before describing the algorithm, let us first define a few important math-
ematical concepts. An array-based, loop-intensive program P that consists
of s loop nests can be represented as

P: (‘ChLZ’--- ;ﬁs);

where £; (i = 1,2,...,s) is the ith loop nest in program P. A loop nest
L; can further be in the following form:!

L;: for iy =1; to uy, step by
for iy = I, to u,, step b,
for iy = Iy to uy, step by
{loop body}

can be represented as

Li=forle[L;i, Ui, stepb (ar(I),ax(D),...,an(D)),

UIf £; is not perfectly nested, one can use techniques such as code sinking [8] to make it perfectly nested.

Compiler-Driven Energy Efficiency B 53

where 1 is the iteration vector; I = (I, 0 ..., 1)T and U =
(uy,ty, ... ,ug) T are the lower and upper bound vectors, respectively; b=
(by, by, ..., bp)7T is the loop step vector; and aj(f) (j=12,...,m)isthe
jtharrayreference in the body ofloop nest £;. While executing, loop nest £;
isassumed to access n arrays, V;, Vs, . .. , V. Let Vrepresent a set comprised
of these n arrays. The array element accessed by a j(f) (j =12,...,m)
can be represented as V; [1_5(?)] i=12,...,n, j=12,...,m), where
Vi is the name of the array, and function E maps iteration vector Ttoa
vector of subscripts for array V;. Specifically, F (1), which maps k loop it-
erators into d array indices, where k is the depth of the loop nest and d is
the dimensionality of the array, can be defined as

E(I) = MI +3,

where M isad x k matrix (called the access matrix), 1 is k-element iteration
vector, and o is an offset vector [9].

Letusalso assume that the multispeed disks provide ! different rotational
speeds: RPM = (1,2,...,1), where 1 represents the lowest disk speed and
I corresponds to the highest disk speed available. Last, we define the disk
layout for each array V; using a triplet of the following form:

(start_disk, stripe_factor, stripe_size),

where start_disk is the first disk where the file striping starts from,
stripe_factor is the number of disks being used for striping, and stripe_size is
the unit size of each file stripe residing on each disk. The compiler approach
determines a prefetch distance for each array access in the application code,
a rotational speed for each disk in the storage system, and a data layout for
each disk-resident array manipulated by the application.

To exploit low-speed disks using prefetching to save energy, the prefetch-
ing algorithm described in Reference 4 needs to analyze the data locality
exhibited by each loop nest £; in program P. To extract the spatial reuse
vector space, we simply replace the last row in M with zeros to create a
reduced access matrix My and solve for nullspace of Mg, which gives us
span(Ms). After determining the temporal/spatial reuse vector spaces, we
next choose the set of innermost loop iterators that can exploit reuse. This
is called localized iteration space [9]. This space captures only those loops
for which data reuse can result in data locality. To translate the obtained
reuses to locality, we need to take into account the loop iteration count
and available memory capacity. Since the loop bounds are assumed to be

54 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

known at the compile time (if not, we make use of available profile data),
one can determine the set of innermost loops whose accessed data fit in
the main memory capacity. Data locality is then captured by intersecting
the reuse vector space with the localized iteration space, where both are
represented by vector space notation. These steps to analyze reuse and data
locality exhibited in the given programs are fundamentally unaltered from
those developed in the context of conventional I/O prefetching [7]. How-
ever, to support prefetching to multispeed disks for reducing disk power
consumption, we need to be careful in selecting prefetch distance for every
disk-resident array reference, as discussed in detail in the following material.

Using the obtained vector space representation of data locality exhibited
by each loop £;, we next determine prefetch distance (d value in Equa-
tion 2.1) for each array reference (V; [13 (7)] made by the loop body of nest
L;. Note that, once the d value is calculated and reference V; [I3 (f)] is found
to have spatial locality on the ith loop, the ith loop is strip mined, where
1 <i < kand k is the depth of loop nest. Generally, prefetches are software
pipelined around this ith loop that changes the value of the array-indexing
function V;[F (I)]. This chosen loop is called the pipeline loop. As men-
tioned in the previous section, if we put the data in low-speed disks, the
prefetch distance linearly increases with respect to disk I/O time (i.e., the Tj
value in Equation 2.1), while power consumption is quadratically reduced
by the amount of disk speed scaling [2]. Therefore, we need to tune the
prefetch distance based on the disk speed, as explained next.

In the first step of the energy-aware prefetching algorithm, the disk
speeds that will provide the maximum energy savings for each array in
the application code are determined. In processing an array reference, we
consider all possible disk speeds (RPM levels) and select the one that brings
the maximum energy savings without performance penalty. It needs to be
noted that we may not always select the minimum RPM level for a given
array access because there may not be a sufficient number of iterations in
the loop nest where this array reference appears.” Therefore, at the end
of the first step of this approach, the preferred disk speed for each array
reference is known. However, if a disk-resident array can be accessed from
within multiple loop nests, the disk speed for that array is set to the highest
speed among all the preferable speeds for all the references to that array.
The algorithm that selects the most suitable disk speeds to be used for each
array is given in Figure 2.6. The for-each loop in this algorithm goes over

2 An alternate approach would be inserting the prefetch call for a given loop nest in one of the preceding
loop nests, but this makes code generation extremely difficult.

Compiler-Driven Energy Efficiency B 55

INPUT:
Input program, P = (Ly, L5, ..., L);
Available disk speeds, RPM = (1,2,...,1);
OUTPUT:
Determined RPM-group(i), where 1 <i <1I;

T, = the number of cycles for P F instruction;
for each Vi € V' // for each array;
G [Vk] =05 /] possible disk speeds for each array;

/] repeat for each loop nest ;.
foreach £; € P {
s; = number of cycles need to execute the loop body of £;;
for j =1tol {// for each RP M available
/] repeat for all array reference in £;
/] assume that a; (7) accesses array element Vi [13 (7)].
for each array reference a; (7) {
calculate I/O latency, T;(j), when RP M is j;
/I determine prefetch distance, d;, at jth RP M.
dj =124
iTpf
if (d; > total number of iterations for the pipeline loop)
GIVil=G[Vi]U{j}
}
}
}

/l RPM-group(l) generated by adding maximum value from set G[V;].
for each array V; {

I ={x|x € G[V;] and MAX(G[V;]) };

RPM-group(!) = RPM-group(l) U {V; };

}

FIGURE 2.6 Disk speed detection algorithm.

the loop nests in the application and the references in them and determines
the required disk speed. The for-loop at the end of the algorithm, on the
other hand, selects the required RPM level for each array (each V;). Note
that, at the end of this first step, this approach also determines the prefetch

56 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

distances for all array references in addition to determining the preferable
disk speeds for disk-resident arrays as explained previously.

In the next step, the disk layouts of the arrays in the application are
determined. To do this, we first form what we call the RPM groups. An RPM
group holds the arrays that require the same RPM level. Each RPM group
is also attached a weight, which captures the sum of the number of accesses
to the elements of the arrays in that RPM group. The number of disks that
will be assigned to each RPM group is then determined by distributing the
available disks (actually I/O nodes) across the RPM groups based on their
weights in a proportional manner. More specifically, an RPM group with
a larger weight is assigned more disks than an RPM group with a lower
weight. The reason is that, by assigning more disks to the RPM group with
a larger weight, one can exploit the aggregated bandwidth and parallelism
presented by multiple disks better. After an RPM group is assigned its disks,
the arrays in that group are striped over those disks using conventional
striping. The algorithm for determining the disk layouts of arrays is given
in Figure 2.7.

The last step of this approach is to restructure the application code to
insert prefetch instructions. Since the prefetch distances for all array ref-
erences have already been determined by the first step explained, the third
step uses this information and restructures the application code accordingly
based on the strip-mining-based approach proposed by Brown et al. [7].
Figure 2.8 shows the pseudocode for the algorithm that modifies the appli-
cation code. The overall view of our approach to energy-aware prefetching
is depicted in Figure 2.9.

2.2.1.2 Dynamic Compilation Framework

Reference 6 presents an infrastructure that contains a dynamic optimizing
compiler/linker, a high-level I/O library (called HLIOL), a minidatabase sys-
tem (a metadata manager), and a layout manager that together manage a par-
allel, hierarchical storage system.’ The framework provides I/O-optimized
access to data sets regardless of the type of media they currently reside on,
what their storage layouts are, or where the media are located. Where/how
the data sets are stored and in what type of media they are stored are hidden
from the user. This allows the user applications to access a data set the same
way regardless of its current location and storage layout. The compiler, the

3 An entire hierarchy of a storage system of a parallel machine, which includes local disks with compu-
tation nodes, shared disks in the storage system, disk caches, remote disks, as well as the archival tape
system as part of the “parallel hierarchical storage system,” is considered.

Compiler-Driven Energy Efficiency W 57

INPUT:
Input program, P = (Ly, L5, ..., Ls);
Determined RPM-group(i), where 1 <1 <1
OUTPUT:
Determined data layout for each array;

tot_disks = total number of disks available;

init_disk = 0;

weight[V;]: the number of accesses made to V; within P;
weight[V]: the number of accesses made to all arrays within P;

/! determine stripe_factor for V; with same disk speed
/] based on the sum of weight[V;] in RPM-group(i).
fori =1tol {// for each RPM-group
for all V; € RPM-group(i)
sum += weight[V;];
stripe_factor(V;) = tot_disks x rwesi?;ﬂ)/ﬂ;
tot_disks —= stripe_factor(V;);

}

/I determine start_disk for each array V;
// based on the determined stripe_factor for each array.
fori=1tol{

start_disk (V;) = init_disk;

init_disk += stripe_factor (V;);

FIGURE 2.7 Data layout detection algorithm.

HLIOL, the minidatabase, and the layout manager cooperate to maintain
this uniform storage system view.

Figure 2.10 illustrates the major components of the dynamic compila-
tion framework for I/O-intensive parallel applications. The storage system is
assumed to be a parallel, hierarchical storage architecture that has typically
a disk-based layer such as NAS (network-attached storage), SAN (storage-
area network), or may even have an active disk-based system. A tertiary
storage (tape system) that serves as the next level in the storage hierarchy is

58 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

INPUT:
Aloop nest L: for I € [i, ﬁ], stepI; (al(f), - ,am(f))
L=yh...)T
U= TR TR L
OUTPUT:
Transformed loop nest £'; for I'e [i’, f]’](al(f’), ... ,am(f/))

// assume that Tp e (I, L, ..., Ir)Tis the selected pipeline loop
for each I, selected for V; {
add a new conﬁtrolling looE denoted by I, (:[l;, u’p]) to the
loop nest I such that I’ = (I,..., 11, I;,..., IALE
// calculate new loop bounds for I1, and I,.
Upi) = Up) o |
» = loop step needed to strip-mine I, loop;
add b, into th_’e loop step vector, b
such that ' = (b, ... ,b;,bp, ... by);
} Lpsupl = I, I, +b), 15
emit “for I’ € [i’, f]’], step b (7
/I insert prefetch instruction.
for all array references being prefetched
emit “PE(V;[F[I'])”;
/I copy loop body from original loop body.
emit “al(f/), e ,am(f/))”;

. «wy »
emit “)”;

FIGURE 2.8 Code restructuring algorithm.

also assumed. In this storage architecture, the most critical issue is to sched-
ule and coordinate accesses to data and manage the data flow between the
different components. It is also assumed that this storage system is used by
parallel applications.

2.2.1.2.1 HLIOL: A High-Level I/O Library

The main goal of this dynamic compilation framework is to identify and im-
plement various I/O optimizations dynamically using the features provided

Compiler-Driven Energy Efficiency B 59

System parameters
— Memory capacity
— Block size
- I/0O latency
RPM-groups # Of.dlSkS
Original available
Code
Prefetch
L r
Distances
Transformed Disk
Code S Layouts
Y -

FIGURE 2.9 The three steps in a energy-aware data prefetching compiler
framework.

inthe HLIOL. The HLIOL's capabilities include an interface that facilities the
propagation of I/O access patterns and hints for run-time optimizations.
Furthermore, to take advantage of the past access patterns from the ap-
plication, the HLIOL makes use of a minidatabase (called the metadata
manager) that maintains information about the I/O access patterns as well
as relationships among data sets. The approach identifies and takes advan-
tage of so-called data set locality, which indicates which data sets tend to be
accessed together. The metadata stored in the minidatabase contains such
information and is periodically updated during the course of execution.
The goal of the minidatabase is to learn and store access patterns at various

Mini
Database
(Metadata
Manager)

Parallel,
Hierarchical
Storage System

A Dynamic
Application Compiler/Linker HILL I

FIGURE 2.10 High-level view of the dynamic compilation approach.

Layout
Manager

60 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

levels and maintain I/O performance statistics. It does not perform I/O.
Since the proposed analyses for dynamic compilation are oriented toward
exploiting the I/O optimizations supported by the HLIOL, we first explain
the HLIOL and briefly discuss its functionality and user interface.

The HLIOL allows an application to access data located in the storage
hierarchy via a simple interface expressed in terms of data sets (and arbitrary
rectilinear regions of data sets). The main difference between the HLIOL
and the previous array-oriented run-time I/O libraries (e.g., Passion [10,11]
and Panda [12]) is that the HLIOL maintains the same abstraction (data set
name) across an entire storage hierarchy, and that it accommodates storage
hierarchy-specific dynamic I/O optimizations.

The routines in the HLIOL can be divided into four major groups
based on their functionality: initialization/finalization routines, data ac-
cess routines, data movement routines, and hint-related routines/queries.
Each routine takes a processor ID as one of its input parameters and is
invoked by each participating processor. This enables the HLIOL to see the
global picture (which includes the I/O access pattern of each processor)
in its entirety. Data access routines manage the data flow between storage
devices and memory. An arbitrary rectilinear portion of a data set can be
read or written using these routines. Using a read routine, for example, the
HLIOL can bring a rectangular portion of a data set from tape (or disk) to
memory. Data movement routines are used to transfer data between stor-
age devices other than memory. These provide a powerful abstraction by
expressing the data movement between any storage device pair as a simple
copy operation by working on arbitrary rectilinear portions of data sets.
All these routines also have their asynchronous counterparts that return
the control to the application code immediately (but perform the specified
operation in the background). Queries, on the other hand, are used by the
HLIOL to extract specific information from the minidatabase about the
data sets, such as their current locations in the storage hierarchy, the sizes
of their subfiles, and so on.

The HLIOL contains a large set of I/O optimizations (implemented
as library routines) that can be incorporated into the application in an
on-demand fashion using dynamic linking. However, if a desired I/O opti-
mization (for the best I/O performance and energy savings) is not available
in the HLIOL, the dynamic compiler described in Reference 13 generates
the optimized version by making use of the already-available routines (in
the HLIOL).

Compiler-Driven Energy Efficiency W 61

r—— - - - -=- - - - —- — = A
| Steering Dynamic |
Data Access I Unit > Compiler |
Pattern I Compilation |
| Request }» Suggestions to

| | Layout Manager

Performance » Dynamic |
Perfor‘mjcmce —p - Linking Linker

Statistics | Request I

FIGURE 2.11 Components of the dynamic compilation framework.

2.2.1.2.2 Details of the Dynamic Compilation Framework

The dynamic compiler has four major components as depicted in
Figure 2.11: (1) dynamic compiler; (2) dynamic linker; (3) performance
tracer; and (4) steering unit. The performance tracer is responsible for
collecting both I/O access pattern information and performance/energy
statistics. The I/O access pattern information includes access directions for
data arrays (e.g., row-wise vs. column-wise accesses), whether the data set
is accessed in the read-write mode or mostly in the read-only mode, which
data sets are accessed with temporal affinity, how frequently the data sets
are accessed, and similar information that indicates how different data sets
are manipulated by the application. The performance statistics include the
number of accesses to different storage units (e.g., tapes, disks), misses in
disk/file caches, and the time spent in I/O and the energy consumption in
different storage elements.

After collecting this information from the metadata manager, the per-
formance tracer passes it to the steering unit. The main responsibility of
the steering unit is to decide whether any dynamic linking or compilation
needs to be performed and, if so, select the most appropriate libraries or
optimizations to be invoked. As shown in Figure 2.11, the dynamic compiler
and linker are invoked by the steering unit.

Table 2.1 lists the I/O optimizations that can be supported by a dynamic
compilation framework. The second column briefly describes each opti-
mization, and the third column gives the condition(s) under which each
optimization is to be invoked dynamically at run time. We discuss further
two of these optimizations in detail, namely, collective I/O and subfiling,
and discuss what type of dynamic compiler support needs to be employed
for them.

62 MW The Green Computing Book: Tackling Energy Efficiency at Large Scale

TABLE 2.1

Optimization Rules Incorporated

Optimization
Collective I/O (CIO)

Multi-CIO (MCIO)

Sequential prefetch
(SP)

Strided prefetch
(STD)

Replacement policy
selection (POL)

Setting striping unit
(SSU)

Data migration
(DM)
Data purging (DP)

Prestaging (PRE)

Subfiling (SUB)

Brief Explanation
Distributing the 1/O requests
of different processors among
them so that each processor
accesses as many consecutive
data as possible
A version of collective I/O that
considers multiple data sets

Bringing consecutive data into
higher levels of storage hierar-
chy before it is needed; over-
lap I/O time and computation
time to hide I/O latency

Same as sequential prefetching
except that data are brought in
fixed strides

Selecting the replacement pol-
icy to be used in the higher
levels of storage hierarchy
(LRU/MRU)

Using a striping unit such that
as many storage devices (e.g.,
disks) as possible will be uti-
lized

Migrating data from higher
levels of storage hierarchy
(e.g., disks) to lower levels of
storage hierarchy (e.g., tapes)
Removing data from the stor-
age hierarchy; useful for tem-
poral files whose lifetime is
over

Fetching data from tape sub-
system to disk subsystem be-
fore it is required

Dividing large array into sub-
arrays to reduce transfer la-
tency between different levels
of the storage hierarchy

Invoked If
Access pattern of the data is
different from its storage pat-
tern, and multiple processors
access the data

Data are accessed within the
same computation data sets at
the same time scope (e.g., a
loop nest)

Access pattern is sequential

Access pattern is strided

Access size can be captured in
cache and is suitable for LRU
and MRU (Least Recently Used
and Most Recently Used)
Current stripe unit is not per-
forming well

A particular data set will not be
accessed for a long time (but
not dead yet)

A particular data set has
reached its last use

An access to the tape data is
predicted

A small subregion of a file is
accessed with high temporal
locality

Compiler-Driven Energy Efficiency B 63

In collective I/O, small disk requests are merged into fewer larger re-
quests to minimize the number of times the disks are accessed. While it
can be used for both read and write operations, we describe it here only
for the read operations. In two-phase I/O [10], a client-side collective I/O
implementation, the processors first communicate with each other so that
each processor knows the total data that need to be read from the disk
system. In the second step, they decide which data each processor needs to
read so that the number of disk accesses is minimized. In the next step, the
processors perform disk accesses (in parallel). In the last step, they engage
in interprocessor communication so that each data item is transferred to
its original requester. As an example, consider the access and storage pat-
terns shown in the lower portion of Figure 2.12. Since the access pattern
and the storage layout shown are different from each other, allowing each
processor to perform its own I/O would lead to numerous I/O requests,
each for a small number of array elements. Instead, in two-phase I/O, the
processors read the data based on the storage pattern, and this maximizes
I/O performance and reduces I/O energy in most cases. After this, they
perform interprocessor communication so that the original access pattern
is achieved. It needs to be noted that collective I/O, where applicable, can
be beneficial from the energy consumption viewpoint since it can reduce
the number of disk accesses. While it is true that collective I/O also causes
some extra interprocessor data communication, the energy incurred by
these communications is normally very small compared to the energy gains
achieved on the disk system.

The dynamic compilation analysis for collective I/O has four compo-
nents: (1) determining I/O access pattern to the data; (2) determining stor-
age pattern (layout) of the data; (3) comparing access and storage patterns
to decide whether to apply collective I/O or not; and (4) modifying the code
dynamically if necessary. The access pattern information is obtained from
the performance tracer, which keeps track of the dynamic I/O access pat-
terns. The storage pattern indicates how the data are stored in the storage
system and is maintained by the metadata manager. The steering unit either
links the appropriate library routine (in the HLIOL) that implements col-
lective I/O (if such a library routine is available) or dynamically recompiles
the application code (that is, the application code is compiled to implement
collective I/O using the existing I/O support provided by the HLIOL). This
dynamic compilation is confined to the relevant part(s) of the code, that is,
typically the loop nest (or a set of related loop nests) that accesses the data
in question. Therefore, the energy spent during dynamic compilation is not

64 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

Column-wise Column-major
access pattern storage layout

Parallel
and :> Independent

/0

and ,—> Collective
/0

Column-wise Row-major
access pattern storage layout

FIGURE 2.12 An example that shows how the steering unit decides whether
to apply collective I/O or not.

expected to be excessive. An example of a decision mechanism employed
by the steering unit is depicted in Figure 2.12 for two scenarios.

It is also possible that the steering unit may decide a “storage layout
(pattern) change” for the data set in question. This may be required in cases
where the desired modification to the application code may not preserve the
original semantics of the application (hence, it is not legal). In such cases,
the steering unit advises the layout manager (see Figures 2.10 and 2.11)
to change the storage layout of the data. It should be noted that the lay-
out manager can receive such requests from multiple applications running
concurrently on the same storage system, and since a given data set can be
accessed by multiple applications, its layout should be modified only if it
is going to be beneficial globally (i.e., from multiple applications’ perspec-
tive). In other words, the steering unit just makes a suggestion (considering
only one application), and the layout manager is free to obey it or not.

It should be emphasized that applying I/O optimizations such as col-
lective I/O in a dynamic compilation/linking-based setting brings some
unique benefits. For example, in many cases, the data access patterns can-
not be extracted statically. Consequently, a static compiler either cannot
apply collective I/O (as it does not know the access pattern) or can apply it
conservatively, which means reduced energy savings. Also, in some cases,
the same data can be shared by multiple applications. It is possible that,
between two successive accesses by the same application to the same data
set, the layout of data could be modified. In such a case, we need to change

Compiler-Driven Energy Efficiency B 65

the I/O access strategy of the application on the fly to take advantage of the
new storage layout. Dynamic compilation and linking allow us to adapt the
I/O access behavior to the current status (layout, location) of the data.

The second optimization for which we discuss the necessary dynamic
compilation support is subfiling [14]. In many I/O-intensive applications,
such as terrain imaging, document imaging, and visualization, although the
data sets manipulated are very large, at a given time, only small portions
(regions of interest) of the data sets are used. Unfortunately, most cur-
rent solutions to large-scale data movement across the storage hierarchies
proposed by hierarchical storage management systems [15—17] retrieve the
entire file that contains the data set in question. This also increases the
energy consumption significantly. In fact, this limitation forces the appli-
cation programmers/users to break their data sets into small, individually
addressable objects, thereby cluttering the storage space and making file
management very difficult. Instead, subfiling moves the minimum amount
of data between storage devices when satisfying a given program’s I/O re-
quirements. This is achieved by breaking up the large data sets into uniform,
small-size chunks, each of which is stored as a subfile in the storage hierar-
chy. Therefore, subfiling is expected to bring energy benefits in both tape
and disk accesses. Then, an important job of the dynamic compilation
framework is to determine the optimal chunk size and restructure the code
on the fly based on it. The data access pattern information gives us the type
and volume of data reuse. For example, if the accesses are localized (clus-
tered) in small regions of the data set, the chunk size should be kept small;
otherwise, we can use a large chunk size. It should also be observed that
using subfiling in conjunction with dynamic compilation brings an impor-
tant advantage over the static compilation-directed subfiling. If we do not
use dynamic compilation, then we are forced to select a specific chunk size
(most probably based on the profile data), generate code customized for
that size, and use that size throughout the execution. In comparison, with
the dynamic compilation support, we can change the chunk size during the
course of execution, thus better adapting to the dynamic changes in the I/O
access patterns.

While dynamic compilation has the potential for improving the per-
formance of I/O-intensive applications and reducing their energy con-
sumptions, it also comes with its own costs that need to be accounted
for. Therefore, we should be selective in applying I/O optimizations. How-
ever, an overly selective compiler will not work well either as it can miss
many optimization opportunities. It is therefore important to maintain cost

66 MW The Green Computing Book: Tackling Energy Efficiency at Large Scale

information within the metadata manager. This cost information consists
of the time/energy overhead incurred for each I/O optimization for the last
couple of invocations. When the next time the same I/O optimization is
needed, the steering unit obtains this cost information from the metadata
manager (through the performance tracer) and uses it in deciding whether
the optimization in question should really be applied.

2.2.2 Modifying Disk Layout of Data

Reference 18 presents an algorithm for determining energy-aware disk
layouts of array data. The goal of this profile-driven algorithm is to in-
crease disk idleness and improve the effectiveness of the underlying disk
power management mechanism supported by the hardware.

2.2.2.1 Abstractions for Disk Layout Optimization
2.2.2.1.1 Disk Layout Abstraction

File striping is a technique that divides a large amount of data into small
portions and stores these portions on separate disks in a round-robin fash-
ion [19]. This permits multiple processes to access different portions of
the data concurrently without much disk contention. While striping can be
performed manually, many file systems today provide automatic support
for it, as discussed in the following material. The disk layout of an array can
be represented using a triplet of the form

(start_disk, stripe_factor, stripe_size).

The first component, start_disk, in this triplet indicates the disk
from which the array is started to get striped. The second component,
stripe_factor, gives the number of disks used to stripe the data, and the
third component, stripe_size, gives the stripe (unit) size used. Several cur-
rent file systems and I/O libraries for high-performance computing provide
application programming interface (APIs) to convey the disk layout infor-
mation when the file is created.

For example, in PVES (Parallel Virtual File System) [20], one can change
the default striping parameters by setting base (the first I/O node to
be used), pcount (stripe factor), and ssize (stripe size) fields of the
pvfs_filestat structure. Then, the striping information defined by the
user via this pvfs_filestat structure is passed to the pvfs_open() call’s
parameter. Two example disk layouts for two-dimensional disk-resident ar-
rays are depicted in Figure 2.13. The first layout (i.e., the one for array U) is

Compiler-Driven Energy Efficiency W 67

SR e R IeTit
BRI

0

&

Q

LTI

R R R R R]

f———"

R R R AR R AR R AR R AR R AR

N

AR R AR RARARRARARAR KRR AR, 2

5 = w —_

2S

FIGURE 2.13 Two different examples of disk layouts. Left: (dy,6,S) and
Right: (dy, 3,2S5).

(do, 6, S), whereas the second layout (i.e., the one for array V) is (dy, 3,25).
Since a triplet is used for representing disk layout, we can determine the
three layout parameters for each disk-resident array that needs to be created
by a given application program. It needs to be noted, however that this has
to be done in a coordinated fashion by considering all the disk-resident
arrays in the application. This is because the different disk-resident arrays
can potentially share the same set of disks, and determining their layouts
in an independent fashion can lead to unpredictable results (e.g., due to
irregular disk access patterns) at run time as far as saving disk power is
concerned.

2.2.2.1.2 Power Management Abstraction

Figure 2.14 depicts the transitions between the different states supported
by the disks assumed in this study. The labels attached to the arcs in this
figure indicate how the transitions are triggered. Each disk is assumed to be
equipped with timer-based power management capability. In this mecha-
nism, when the current access to a disk is completed, the disk transitions
to the idle state. If it remains in the idle state for a certain amount of time,
it is spun down. The disk is said to be placed into the low-power operation
mode. The disk transitions back to the active mode by spinning up when
a new request to it is made. Note that this model represents one of the
simplest mechanisms that can be supported by a server disk that allows

68 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

Spin-Down

Termination
of Access

Seek

FIGURE 2.14 Different disk states and transitions among them.

power management. While there are other approaches (e.g., [2]), the im-
portant point to emphasize here is that, since spinning down and spinning
up take both extra time and energy, they need to be minimized. There-
fore, one would prefer, from both performance and power consumption
angles, a few long idle periods over numerous short idle periods. The goal
of the profile-driven approach proposed in Reference 18 is to increase the
duration ofidle periods, thereby increasing the chances for this power man-
agement scheme to be applicable and successful. The proposed approach
achieves this by setting the layout parameters for each disk-resident array
manipulated by the application code.

2.2.2.2 Disk Layout Detection Algorithm
2.2.2.2.1 High-Level View

Considering energy consumption alone may not be a wise choice since per-
formance of the application is also important and affected significantly by
the disk layouts chosen for its arrays. After all, if there was no performance
concern, one could potentially work with a single disk, thereby placing all
the remaining disks in the system into the low-power operation mode. How-
ever, such an approach would hardly be acceptable from the performance
perspective. Therefore, the objective is to strike a balance between energy
consumption and performance; that is, one would like to save as much en-
ergy as possible without significantly impacting original execution cycles,
(i.e., execution cycles that would be taken by a pure performance-oriented
approach that does not employ any power-saving strategy).

Compiler-Driven Energy Efficiency B 69

Trace
Analyzer
(Layout
Optimizer)

Trace
Generator
(Profiler)

Disk
Layouts

Instrumented
Program

Array Access
Sequence

FIGURE 2.15 The connection between profiling and layout optimization.

An important property of the disk layout detection algorithm outlined
in Reference 18 is that it is profile driven (as shown in Figure 2.15). The
application code is first instrumented and then profiled using a typical input
set. The inserted instrumentation code records information on each disk
access issued by the application program. At the end of this profiling, an
array access sequence is obtained, which is of the form (A, A, ..., A,,). Each
array access A; in this sequence has the form (X, a, t), where X is the ID of
the disk-resident array, a is the offset of the accessed array element within
the array, and t is the time stamp. The time stamp of an array access is the
time since the start of the program after deducting the I/O time spent in the
disk accesses. As a simple example, assume a disk access is issued 300 ms
after the program starts its execution, and during the first 300 ms of the
program execution, disk I/O takes 100 ms total. Then, the time stamp for
this array access is calculated as 300 ms — 100 ms = 200 ms. We say that two
array accesses A; = (X,ay,t;) and A; = (Y, a,, 1) conflict with each other
if they access the same disk and the difference between their time stamps
is less than the disk response time (denoted by R). Further, the conflicts
due to accessing the same array (i.e., X = Y) are called the intraarray
conflicts, and the conflicts due to accessing different arrays (i.e., X # Y) are
referred to as the interarray conflicts. Note that, if two array accesses conflict
with each other, one of them has to be delayed, which causes the program
execution to slow. Based on this discussion, the goal can be rephrased as
one of reducing energy consumption on the disk system while minimizing
the number of intraarray and interarray conflicts as much as possible.

The approach described in Reference 18 determines the three compo-
nents of the disk layout of each array in the application: stripe factor, stripe
size, and start disk. These three parameters are actually interrelated. That
is, electing a value for one of them restricts the potential search space for
the other two parameters. Ideally, one would want an algorithm that would
try all potential values for all these three parameters of the layout and select
the one that generates the best trade-off between energy consumption and
performance. However, such an approach is not feasible in general. This

70 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

L1: fori = 0 to 2047 L2: fori = 0to 1023 L3: fori = 0 to 4095

X[L
WX+ 1024].. WZ[1 +256]..; WX
LY WZE+512]. 0 L

FIGURE 2.16 An example of code fragment.

is mainly because the search space of potential solutions can be very large.
First, in a system with a large number of disks, we have a lot of candidates for
the start disk and stripe factor for a given array. Second, one can have many
choices for the stripe size, depending on the capabilities of the underlying file
system. Third, to reach optimal results, one needs to try all potential layout
combinations for all disk-resident arrays. All these factors make an exhaus-
tive search infeasible in practice except for cases with a few disks and a few
arrays. Consequently, the profile-driven approach is essentially a fast heuris-
tic that generates not optimal but close-to-optimal results for most cases.

The proposed approach determines a single component of a disk layout
at a time. More specifically, it first determines the stripe factor for all arrays
and then the stripe size for all arrays. Then, based on these, it determines
the start disk for all arrays. The reason that one has to first determine
the stripe factor and the stripe size is that these two parameters affect the
magnitude of the intraarray conflicts. Once the stripe factor and the stripe
size for each array are determined independently, the part of the algorithm
that determines the start disk for arrays is executed. This part positions the
arrays on the disk system in such a fashion that the number of interarray
conflicts is minimized as much as possible.

2.2.2.3 Example

To illustrate how the approach works in practice, we study it by applying it
to an example of code fragment. Figure 2.16 presents an example of code
fragment. In this example, we set the value of the T parameter to 1, and we
use a single file per disk-resident array (1-to-1 mapping). For illustration
purposes, let us assume that the underlying I/O system has six disks, the
response time for a disk is 5 ms, and each loop iteration (of loops L1, L2,
and L3 shown in the figure) takes 10 ms. By analyzing the disk access trace
of this program, the approach determines that array X must be stored in at
least two disks, and that array Z must be stored in at least three disks. If we
stored X in a single disk, the two accesses to X in each iteration of loop L1
would conflict with each other. Specifically, the access to X[i + 1,024] had

Compiler-Driven Energy Efficiency B 71

to wait for the access to X[i] to complete. Similarly, if array Z were stored
in fewer than three disks, the three accesses to Z in each iteration of loop
L2 would conflict with one another. We can determine the stripe factors for
arrays X, Y, and Z as 2, 1, and 3, respectively, since we want to minimize the
number of disks used for storing each array without increasing the number
of intraarray conflicts (so that energy can be conserved without impacting
performance too much).

Stripe size for each array is determined after determining the stripe
factor for that array. The number of intraarray conflicts for each array with
each possible stripe size is analyzed. Let us assume, again for illustration
purposes, that the underlying disk architecture and file system support
four stripe sizes: 256B, 512B, 1024B, and 2048B. For array X in loop L1, the
number of intraarray conflicts with the stripe sizes 256B, 512B, 1024B, and
2048B, are 2,048, 2,048, 0, and 1,024, respectively. The algorithm selects the
stripe size with the minimum number of intraarray conflicts (1024B). The
stripe size for array Y does not need to be considered since its stripe factor
is one, that is, Y is stored in only a single disk. The number of intraarray
conflicts for array Z with stripe sizes 256B, 512B, 1024B, and 2048B are
0, 1,024, 2,048, and 3,072, respectively. Therefore, a stripe size of 256B is
selected for array Z.

To determine the start disk for each array, the number of interarray
conflicts between each pair of disk stripes is counted. The start disk for
each array is then determined, one array after another. In the example code
fragment, we have three arrays: X, Y, and Z. We first determine the start
disk for array X. This step is trivial since we can pick any disk, say disk
0, as the start disk for array X. And then, we determine the start disk for
array Y. At this step, we try all possible start disks for Y and select one that
minimizes the interarray conflicts between X and Y. Finally, we determine
the start disk for array Z. At this step, we need to select the start disk for
array Z such that the total number of interarray conflicts between X and
Z and that between Y and Z are minimized. Figure 2.17 gives the final disk
layouts determined by this approach for this example, while Figure 2.18
gives another possible disk layout. It is to be emphasized that both these
layouts have the same disk conflicts. However, by comparing disk power
states? presented in Figure 2.19, we observe that the disk layouts determined
by this approach exhibit much better idle periods. Specifically, it is seen that
this algorithm uses three disks to store all the arrays used in the program so

4 A power-state diagram shows the states of the disks over time.

72 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

Start | Stripe | Stripe
Array | Disk | Factor | Size
X 0 2 1024
Y 2 1 2048
Z 0 3 256

Disk-0i| X[0.1023] || X[2048.3071] || Z[0.255] || Z[768.1023] | E
.- - - - - _ - - ___________—_ - _ __ ____—_—_— I
Disk-1 ir| X[1024.2047) || X[3072.4095] || z[256.511] | Z[1024.1279) | i
e———— - - -______-_ - - ____— - -— - - - W e s e W M W Y 0 e 0 0 0 /4 |
Disk-2 Er| Y[0..2047] || zi512.7671 || Z[1280.1535] | E
;'___:
Disk-3 1 '
D |
I'__I
Disk-4 | '
[|
B SEGRECECLES

FIGURE 2.17 Disk layout determined by [18].

that the other three disks in the system can remain in the low-power mode
throughout the entire execution, and this can lead to significant energy
savings at run time. Further, in Figure 2.19, a total of six reactivations
is observed (i.e., switching a disk from the low-power mode to the active
mode), whereas in Figure 2.19, a total of thirteen reactivations are observed.
Note that reactivating a disk incurs both performance and energy penalties.

2.3 ENERGY-AWARE NOC OPTIMIZATIONS

Network-on-chip architectures emerged as an alternate solution to long
point-to-point buses in complex multicore processor designs that are go-

ing to fuel the future high-performance systems. They have clear advantages
over the point-to-point buses from the scalability, maintenance, reliability,
and flexibility viewpoints [21-23]. In particular, they address the signal
integrity and cost problems associated with long wires. However, prior
research [24,25] showed that NoC power consumption can be a signif-
icant portion of the total chip power, making it an important target for
both hardware designers and software writers. In particular, scaling volt-
age/frequency of communication channels in an NoC can lead to quadratic

Compiler-Driven Energy Efficiency B 73

Start | Stripe | Stripe
Array | Disk | Factor | Size
X 0 4 1024
Y 4 2 1024
Z 0 6 256

ool o] [dows]
o[omworn] [gmeon]
owal o | [zoae]
ol orraow | [zwiom]
ol oo | []
s Somioor | [amoss]

Disk

ms 10240 ms 20480 ms 30720 ms 40960 ms 51200 ms 61440 ms 71680 ms

|] Active [__] Power-down

0 ms 10240 ms 20480 ms 30720 ms 40960 ms 51200 ms 61440 ms 71680 ms

|] Active [__] Power-down |

FIGURE 2.19 Disk power states for 2.17 and 2.18.

74 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

savings in power but only linear degradation in performance and has been
identified as one of the promising mechanisms for saving NoC energy.’

Most of the existing power-related studies targeting NoCs are hardware-
based efforts. In these studies, a hardware circuit is typically employed
to identify channel idleness or variance among channel workloads. The
collected information is used for channel shutdown or voltage/frequency
scaling. Essentially, similar information on past behavior of NoC message
activity can be collected at the granularity of iterations by seeking help from
the compiler. While such a compiler-directed technique can reduce power
consumption, in a certain class of applications that are amenable to static
analysis, one can potentially achieve better results by exploiting compile
time information about communication channel utilization and critical
execution paths to statically determine channel voltages. In this section, we
describe both a history-based compiler scheme and a static communication
pattern analysis-based compiler-directed scheme for dynamic link voltage
scaling of NoCs to reduce energy consumption.

2.3.1 History-Based Dynamic Link Voltage Scaling

Reference 26 investigated automated compiler support in reducing power
consumption of an NoC-based two-dimensional mesh architecture that
uses a static (deterministic) routing algorithm. In this approach, NoC is ex-
posed to the compiler through an interface. The goal is to let the compiler
modify the application source code and manage power consumption of the
communication links through voltage scaling. This approach is based on the
observation that the same communication patterns across the nodes of the
NoC tend to repeat themselves across the successive iterations of a loop nest.
The approach takes advantage of this observation by collecting link usage
statistics during the execution of the first few iterations of a given loop nest
and computing the allowable delays (slacks) for each communication trans-
action and the communication bandwidths of the links that are not fully
utilized. This information is subsequently utilized in selecting the most ap-
propriate voltage levels for the communication links (and the correspond-
ing frequencies) in executing the remaining iterations of the loop nest [27].
In other words, this compiler-run-time hybrid approach divides the ex-
ecution of each loop nest that encloses communication among the mesh
nodes into two parts. In the first part (called the startup phase), statistics

>For reasons related to signal integrity and reliability, channel voltage and channel frequency should be
scaled together.

Compiler-Driven Energy Efficiency W 75

//On processor 1 //On processor 2
fori=0toN { fori=0toN{
send(2, A [i] [0..102:%< send(1, B [i][0..256]);

receive(2, buffer); receive(l, buffer);

}/On processor 1 }/On processor 2
fori=0to N { fori=0toN{
send(2, A [][0..256]); send(1, B [{][0..256]);
short computation% long computation(...)

receive(2, buffer); receive(l, buffer);

} }

FIGURE 2.20 Two examples of scenarios.

on link usage at run time are gathered through a hardware-supported in-
terface, and in the second part (called the stable phase), this collected in-
formation is used to reduce the link voltage levels as much as possible
without affecting communication latency. This approach is similar to run-
time-system-based approaches to dynamic voltage scaling [28] but works
with the knowledge of the source as the compiler has knowledge of such
information. Similar power-aware run-time systems [29-31] utilize DVFS
to transparently and automatically adapt CPU voltage and frequency to
reduce power consumption in high-performance computing systems.

2.3.2 Static Analysis-Based Link Voltage Scaling

Two example scenarios where a static analysis-based link voltage scheme can
be useful are shown in Figure 2.20. In the first scenario in Figure 2.20a, pro-
cessors in a pair in different NoC nodes communicate with each other using
nonblocking send and blocking receive operations. Note that the amounts
of data sent between them are different. Consequently, the communication
from processor 2 to processor 1 can be performed more slowly than that
from processor 1 to processor 2. Therefore, one can potentially scale down
the voltage and frequency on the communication channel from proces-
sor 2 to processor 1, thereby reducing power. To prevent any performance
penalty, the scaling factor should be determined based on the difference
between the magnitudes of the communication volumes. In the second
scenario in Figure 2.20b, processors in a pair first send data to each other
and subsequently perform some computation. Let us assume that, while
the data volumes in the two communications are the same, the amount of
computation performed by processor 2 is much larger than that performed

76 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

Input iti

- Critical
Parallel Building IPCG Pathrll\rl:zysis
Code e

+ Process and connection mapping
» NoC parameters

I?Ut[;lu i Code Sealing Factor
araje Modification for each

Code Connection
I

FIGURE 2.21 High-level view.

by processor 1. As a result, one can scale down the voltage/frequency on
the communication channel from processor 1 to processor 2. These two
scenarios illustrate that the opportunities to scale down voltages can come
from the differences between the communication volumes on channels or
from the differences between the computation volumes on NoC nodes;
both of these variances can be exploited through voltage scaling to reduce
NoC power consumption without significantly affecting performance.

Figure 2.21 shows the high-level view of the approach proposed in Ref-
erence 32. It assumes that the input application code has already been
parallelized (either manually or through a compiler) for message-passing
communication, and interprocessor communications have been optimized
using known techniques, such as message vectorization and message coa-
lescing [33]. Itis also assumed that the process-to-node mapping has already
been performed. The input code is first analyzed to build a graph called the
interprocess communication graph (IPCG), which captures the communi-
cation behavior of the parallel application at hand. Then, applying critical
path analysis to the IPCG, we can obtain a suitable scaling factor and a
voltage level for each communication channel. After that, application code
is modified by inserting explicit power management calls.

2.3.2.1 Interprocess Communication Graph
An IPCG is a weighted directed graph that is defined for a given message-
passing parallel program P as:

G(P) = (V(P), E(P),, B)s

Compiler-Driven Energy Efficiency B 77

where V(P) is the set of vertices, E (P) C V(P) x V(P) is the set of edges,
and « and B are the weight functions for the edges. Vertex set V(P) can be
expanded as:

V(P)= X(P)UB(P)US(P)U D(P) U R(P),
where X(P), B(P), S(P), D(P), and R(P) are defined as follows:

X(P) = A vertex x € X(P) corresponds to a loop in P, and x represents
the entry point of this loop.

B(P) = A vertex b € B(P) corresponds to a loop in P, and b represents
the back-jump point of this loop.

S(P) = A vertexs € S(P) corresponds to a send instruction in P, and s
represents the point at which the message is sent.

D(P) = A vertex d € D(P) corresponds to a send instruction in P, and
d represents the point at which the message is delivered to its
destination.

R(P) = A vertex r € R(P) corresponds to a receive instruction in P,
and r represents the point at which the message is used by the
application.

Note that an interprocess communication in our NoC involves three
stages. In the first stage, the sender invokes the send instruction, which
copies the message into the buffer of the sender node. The sender process is
blocked if this buffer is occupied. Our IPCG captures this using the vertices
in S(P). In the second stage, the NoC transfers the message to the receiver
(the destination node). This stage completes when all the bits of this message
have been delivered to the receiver and stored in a temporary buffer. In the
third stage, the receiver invokes a receive instruction to read the contents
of the message in the buffer. There may be a gap between the point when a
message is delivered to the receiver node and the point when this message is
actually accessed by the receiver process. To capture this, our IPCG denotes
these two points using different vertices. Specifically, the vertices in D(P)
represent the point when a message is delivered to the receiver node, and
the vertices in R(P) represent the point when a message is accessed by the
receiver process.

We refer to both message send and message receive instructions as corm-
munication instructions, both communication instructions and back-jumps

78 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

as instructions, and both instructions and loops as execution units. We use
the term execution unit v, where v € V(P), to refer to the execution unit in
program P that corresponds to vertex v. Further, we use b(x) € B(P) tode-
note the back-jump instruction ofloop x; d(s) € D(P),wheres € S(P),to
denote the delivery point of sending instruction s; ¥ (v), where v € V(P),
to denote the ID of the process to which execution unit v belongs. Further,
we write x = v (where x € X(P) and v € V(P)) if and only if loop
x directly encloses execution unit v. More specifically, if v € BU S U R,
instruction v is in the body of loop x, and it is not enclosed by any other
loop nested within loop x. If v € X, loop v is nested within loop x, and
there is no other nested loop between loop x and v. In particular, if vertex
v is not enclosed by any loop, we write ¢ = v. E(P) is the edge set of
IPCG G(P). The edges of an IPCG can be classified into seven categories;
therefore, we have

E(P) = E1(P)U Ey(P)U E3(P) U E4(P) U Es(P) U Es(P) U E;(P),
where E;(P) through E;(P) are defined as follows:

E1(P) ={(s,d(s))|s € S(P)}. An edge (s,d(s)) € E (P) is referred to as
a communication edge.

Ey(P) € X(P) x V(P). An edge (x,v) isin E,(P) if x = v and v is the
first execution unit in the body of loop x.

E3(P) € V(P) x V(P). An edge (u,v) is in E3(P) if both u and v are
directly enclosed by the same loop x (i.e., Ix € X(P) : x = u,v)
and v is executed immediately after u at each iteration of loop x.

E4(P) = {(b(x),x)|x € X(P)}. An edge (b(x),x) € E4(P) is referred to
as the back-jump edge.

Es(P) € D(P)xS(P).Anedge (d(s),s)isin E5(P)ifs and s are directly
enclosed by the same loop, and s’ is the first send instruction that
is executed after s at each loop iteration. Edge (d(s), s’) indicates
that send instruction s’ is blocked by send instruction s, which
is executed at same loop iteration. Such an edge is referred to as
an intraiteration blocking edge.

E¢(P) € D(P) x S(P). An edge (d(s),s’) isin E¢(P) if s and s’ are di-
rectly enclosed by the same loop, and s and s” are the last and first
send instructions in each loop iteration, respectively. Note that,

Compiler-Driven Energy Efficiency B 79

if this loop contains only one send instruction, we have s = s’.
Edge (d(s),s’) indicates that send instruction s’ is blocked by
send instruction s, which is executed by a previous loop iter-
ation. Such an edge is referred to as an interiteration blocking
edge.

E;(P) € D(P) x R(P).Anedge (d(s),r) is in E;(P) if the messages sent
by send instruction s are received by receive instruction r.

Each edge in E(P) represents a communication task, while each edge
in E;(P) U E3(P) represents a computation task. Therefore, the edges in
E{(P) U E,(P) U E3(P) are referred to as the task edges. For a task edge
(u,v), a(u,v) and B(u,v) represent, respectively, the compiler-estimated
lower and upper bounds of the length of task (u,v) (i.e., the time it takes
to complete this task). The length of a computation task (u,v) is deter-
mined by the sum of the latencies of the instructions between the start
points of execution units u and v. The values of «(u,v) and 8(u,v) can
be obtained either by profiling or through a static analysis-based approach
such as the one proposed in Reference 34. In comparison, the length of a
communication task u, d(u) is determined as follows:

audw) =" and plud(u) = 2,

A A
where I,,,,, and [, are the minimum and maximum sizes of the messages
sent by instruction u, respectively; and A is the maximum available data
rate of a communication channel in NoC. On the other hand, the edges in
E4(P)U E5(P)U E¢(P) U E7(P) do not represent any real task. They are
simply introduced to enforce the timing constraints among instructions;
hence, they are referred to as the control edges. Consequently, for a control
edge (u,v), we have a(u,v) = B(u,v) = 0.

An edge (u,v) indicates that the execution unit v is executed after ex-
ecution unit u. Further, an edge (1,v) € E4(P) U Eq(P) indicates that u
and v are executed in different loop iterations. So, we refer to the edges in
set E4(P) U E4(P) as the interiteration edges. On the other hand, an edge
(u,v) € E4(P)U Ex(P) specifies that u and v are executed within the same
loop iteration. Therefore, we call the edges not in set E4(P) U E¢(P) the
intraiteration edges. Note that the graph obtained by eliminating the inter-
iteration edges from G (P) is acyclic. Therefore, the intraiteration edges in
G (P) determine a partial order among the vertices.

80 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

2.3.2.2 Determining Scaling Factors and Channel Voltages
2.3.2.2.1 Representative Iterations

For a given parallel group H = {x1,x2,..., X}, let us use t; ; to represent
the earliest time that the jth iteration of loop x; can be started, and we
have ;o = 0 (i =0, 1,...,n). Let us further assume that q is the minimum
number such that there exists a constant R > 1 such that

fg+R —tg =hgtR —hg = - =bogir — g = T. (2.2)

The start time of the (g + mR + k)™ iteration of loop x;, where 0 < k < R
and m > 0, can be computed as #; ;4 + mT. Therefore, R can be thought
of as the reoccurring period of the timing behavior of parallel group H.
The timing behavior of the parallel group H during its entire execution
time can be represented by the behavior it exhibits during the period from
the g iteration through the (g + R — 1) iteration. Therefore, we refer
to these iterations as the representative iterations. Representative iterations
are important because we use them for determining scaling factors.

2.3.2.2.2 Algorithm

Figure 2.22 shows the algorithm for determining the scaling factors for the
connections used by a given parallel group H. For an application containing
multiple parallel groups, we analyze these parallel groups individually. The
algorithm takes L (H), the LCG for the given parallel group H, as input.
It computes k[, j], the scaling factor for the communication channels in
the connection from process i to process j, such that the overall percentage
performance degradation due to voltage/frequency scaling does not exceed
8, where § is a user-specified constant, as compared to the performance
achieved by operatingall the communication channelsin NoC at the highest
available voltage/frequency level.

In the first phase, the algorithm computes t, [, j], the earliest time v; at
the j' iteration can be reached, assuming all the tasks are finished in their
shortest times. The values of #,[i, j|s are the minimum values that satisfy
the following expressions:

Vi :t,[i,0] =0, (2.3)
V(k,i) € E* i ty[i, j] = talk, j1 + a(k, i), (2.4)
V(k,i) € E™ : tu[i, j] = to[k, j — 1], (2.5)

Compiler-Driven Energy Efficiency W 81

Global Variables:

L(H) — the LCG of parallel group H;

V — the set of vertices in LCG L(H). The vertices in V has been sorted in the
partial order determined by the intra-iteration edges, i.e., forall v;,v; € V,
we have i < j if (v;,v;) is an intra-iteration edge.

to[i, j1, i, j] — the best and the worst start times of vertex v; in the ;" h jteration.

ki, j] — the scaling factor for connection [[7, j]|;

0 < k[i, j] < 1; particularly; k[i, j] = 1ifi = j.
q,Q,T—Vie H:T=t[i,Q] —tli,q]

// Initialization
setall t,[4,], tg[i, j], and t[i, j] to 0; setallk[i, jltol; Q=0; T=-1

// Phase 1: Computing t, [i, j],q, Q,and T
repeat{
fori =1to|V]|
for each intra- 1terati0n edge (vi,v;) where ty [j, Q] < to[i, Q] + (v, v})
0 tn[] Q] te[i, Q] + a(vi,v;);
for each 1nter iteration control edge (v;,v;) where ty [j, Q] < to[i, Q — 1]
), Q) = tali, Q — 1];
forq=Q—1to0
if(VV,‘,'V}'GH tyli, Q1 — to[i,q] # to[j, Q1 — t[j,q]) {
= to[i, Q] — t,[i,q] where v; € H;
break; // the values of T, Q, and g have been determined.

)
}until (Q > Q*or T > 0);
if(T = —1) {terminate with failure;}

/] Phase 2: Computing i, j|
forr =qto Q{foreachv; € V{t[i,r] =to[i,r]; } }
forr =qtoQ{
fori =1to|V]|
for each intra-iteration edge (vi, v;) where tg[j,r] < tg[i,r] + B(vi,v;)
tglj,r] =tgli,r] + Bvi,vj);
for each inter-iteration control edge (v;, v;) where tg[j,r + 1] < tgi,r]
tgljor + 1] = tgli,r];

// Phase 3: Computing t[i, j] and Determining k[i, j]
for all connection [[7, j]] { gli, j] =05 }
repeat {
for each connection [[7, j]] where g[i, j] = 0 {
k' = kli, j1; // back up kli, j]
decrease k[i, j] to the next scaling level;
forr =qto Q{foreachv; € V{t[i,r] =t[i,r]; } }
forr =qtoQ{
fori =1to|V|
for each intra-iteration edge (v;,v;)
where t[j,r] < t[i,r] +a(vz, i)/ kY (vi), 1//(1/))]
t[]>r] =t[i,r] +a(Vi Vj /k[l[/('l/) ‘P(V; I
for each inter-iteration control edge (v;,v;) where t[j,r + 1] < t[i,r]
tlj,r + 1] =tli,r];

if(v; € H : t[i, Q] — t[i,q] > max{(14+8) T, 15[Q,i] — tzlq,i]}) {

kli, j] = k'; // restore k[i, j] to its previous value.
gli, j] = 1;// this connection cannot be scaled any further.

} until g[4, j] = 1 for all connection [[7, jII;
FIGURE 2.22 Algorithm for critical path analysis. This algorithm takes

L(H), the LCG of parallel group H as input; it outputs k[i, j], the scaling
factor for the communication channels used by each connection [[i,j]].

82 MW The Green Computing Book: Tackling Energy Efficiency at Large Scale

where E T is the set of intraiteration edges, and E ~ is the set of interiteration
edges. One can observe from the algorithm shown in Figure 2.22 that the
first phase contains a repeat-until loop. At the Q™ iteration of this loop, we
use Expression 2.4 to compute #,[i, Q] for each vertex v; in the LCG. After
that, we check if there exist a constant g (0 < g < Q) and a constant T
such that, for all v; € H, we have t,[i, Q] — t,[i,q] = T. Note that the g
through (Q — 1) iterations are the representative iterations. If we cannot
find such a g and T, we use Expression 2.5 to compute the initial values of
ty [i, Q + 1] for the next iteration. We repeat this procedure until we find
a suitable g and T'. To limit compilation time, the algorithm terminates if
it cannot not find suitable g and Q values within the first Q* iterations.
The computational complexity for each iteration of this phase is O(m +n),
where m and n are the number of the edges and the vertices in the LCG
under consideration, respectively. Therefore, the computational complexity
of this phase is O(Q*(m + n)).

In the second phase of the algorithm, the worst-case execution time
for the representative iterations is computed assuming that each task takes
the longest time to complete and all the communication channels work at
the highest data rate. The worst-case start time for each vertex in V' is the
minimum value of #4[1, j] that satisfies the following expressions:

Vi:tgli,q] = tyli,q], (2.6)
V(k,i)eE+:t,3[i,j]Zt,g[k,j]+,3(k,i), (2.7)
V(k,i) € E™ 2 tgli, j] > tglk, j — 1], (2.8)

The worst execution time for the representative iterations of loop v; € H
can be computed as #5[i, Q] — t3[i,q]. The computational complexity for
this phase is O((m + n)(Q — q)), where m and n are the number of the
edges and the vertices in the LCG under consideration, respectively, and
the values of g and Q are as determined in the previous phase.

In the third phase, we try to maximize the scaling factor k[, j] (0 <
k[i, j] < 1) for each communication channel exercised by connection [[i,j]]
under the following constraints:

Vi:tli,q] = t,li,q], (2.9)
V(k,i) € ET s t[i, j] = tlk, j1 + Bk, i)/ k[(vi), ¥ (vi)], (2.10)
Viki) e E~: tliy] > tlk, j — 1], (2.11)
Vvi € H : t[i, Q] < t[i,q] + max{(1 +8) T, t5(i, Q] — tg[i,q]} (2.12)

Compiler-Driven Energy Efficiency B 83

In this phase, we assume all the tasks are finished in their longest time.
Expression 2.12 means that, for a loop whose worst-case overall execution
time for the representative iterations does not exceed (1 + §)T, we can
tolerate a percentage performance degradation up to 8. On the other hand,
for a loop whose worst-case overall execution time for the representative
iterations is already longer than (1 + §)T, we do not allow any further
performance degradation. As a result, the overall performance degrada-
tion due to scaling the voltage/frequency of communication channels is
within §.

One can observe from Figure 2.22 that the phase 3 of algorithm con-
tains a “repeat-until” loop. At each iteration of this loop, we select a con-
nection and reduce the data rate of the communication channels in this
connection by one level. After that, we estimate the execution time for
each loop. If the estimated performance degradation exceeds the limit set
by Expression 2.12, the data rate of the selected connection cannot be re-
duced. We repeat this procedure until there is no connection whose data
rate can be further reduced. Note that, at each step, instead of scaling down
the voltage/frequency of the selected connection aggressively, we reduce
its voltage/frequency by only one level. This approach allows us to scale
down the speeds of more connections. The computational complexity of
this phase is O (v¢(m + n)(Q — q)), where c is the number of connections
used, v is the number of available frequency/voltage levels for a communi-
cation channel, m is the number of edges, n is the number of the vertices
in the LCG under consideration, and the values of g and Q are as deter-
mined in phase 1. Therefore, the overall complexity of the algorithm is

O((m+n)(v(Q —q) + Q"))

REFERENCES

1. C. Hsu and U. Kremer. The design, implementation, and evaluation
of a compiler algorithm for CPU energy reduction. In Proceedings of the
ACM SIGPLAN Conference on Programming Languages Design and Imple-
mentation, 2003.

2. Sudhanva Gurumurthi, Anand Sivasubramaniam, Mahmut Kandemir, and
Hubertus Franke. DRPM: Dynamic speed control for power management
in server class disks. SIGARCH Computer Architecture News, 31(2):169-181,
2003.

3. S. W. Son, M. Kandemir, and A. Choudhary. Software-directed disk power
management for scientific applications. In Proceedings of the 19th Inter-
national Parallel and Distributed Processing Symposium, Denver, CO, April
2005.

84 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

10.

11.

12.

13.

14.

15.

16.

. Seung Woo Son and Mahmut Kandemir. Energy-aware data prefetching

for multi-speed disks. In Proceedings of the 3rd Conference on Computing
Frontiers, pages 105—114, Ischia, Italy, May 2006.

. E. Pinheiro and R. Bianchini. Energy conservation techniques for disk array-

based servers. In Proceedings of the 17th International Conference on Super-
computing, pages 66—78, June 2004.

. Seung Woo Son, Guangyu Chen, Mahmut Kandemir, and Alok Choudhary.

Exposing disk layout to compiler for reducing energy consumption of par-
allel disk based systems. In Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 174-185, Chicago, IL,
June 2005.

. A. D. Brown, T. C. Mowry, and O. Krieger. Compiler-based I/O prefetch-

ing for out-of-core applications. ACM Transactions on Computer Systems,
19(2):111-170, May 2001.

. M. Wolfe. High Performance Compilers for Parallel Computing. Addison-

Wesley, Boston, 1996.

. Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm.

In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 30—44, Toronto, Canada, June 1991.
Alok Choudhary, Rajesh Bordawekar, Michael Harry, Rakesh Krishnaiyer,
Ravi Ponnusamy, Tarvinder Singh, and Rajeev Thakur. Passion: Parallel and
Scalable Software for Input-Output. Technical report, Syracuse University,
Syracuse, NY, 1994.

Rajeev Thakur, Alok Choudhary, Rajesh Bordawekar, Sachin More, and
Sivaramakrishna Kuditipudi. Passion: Optimized I/O for parallel applica-
tions. IEEE Computer, 29(6):70-78, 1996.

K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-directed
collective I/O in panda. In Supercomputing *95: Proceedings of the ACM/IEEE
Conference on Supercomputing, page 57, San Diego, CA, December
1995.

Seung Woo Son, Guangyu Chen, Mahmut T. Kandemir, and Alok N.
Choudhary. Dynamic compilation for reducing energy consumption of I/O-
intensive applications. In LCPC, pages 450—457, Hawthorne, NY, October
2005.

Gokhan Memik Mahmut, Mahmut T. Kandemir, Alok Choudhary, and Va-
lerie E. Taylor. April: A run-time library for tape-resident data. In Proceed-
ings of the 17th IEEE Symposium on Mass Storage Systems, College Park, MD,
March 2000.

L. T. Chen, R. Drach, M. Keating, S. Louis, D. Rotem, and A. Shoshani.
Efficient organization and access of multi-dimensional datasets on tertiary
storage systems. Information Systems Journal, 20(2):155-183, 1995.

Ling Tony Chen, Doron Rotem, Arie Shoshani, Bob Drach, Meridith Keat-
ing, and Steve Louis. Optimizing tertiary storage organization and access
for spatio-temporal datasets. In Fourth NASA Goddard Conference on Mass
Storage Systems and Technologies, College Park, pages 165-183, 1995.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Compiler-Driven Energy Efficiency B 85

R. A. Coyne, H. Hulen, and R. Watson. The high performance storage
system. In Supercomputing *93: Proceedings of the ACM/IEEE Conference on
Supercomputing, Portland, OR pages 83-92, November 1993.

S. W. Son, G. Chen, and M. Kandemir. Disk layout optimization for reduc-
ing energy consumption. In ICS ’05: Proceedings of the 19th Annual Interna-
tional Conference on Supercomputing, pages 274-283, Cambridge, MA, June
2005.

J. M. May. Parallel I/O for High Performance Computing. Morgan-Kaufman,
Burlington, MA, 2001.

R. B. Ross, P. H. Carns, W. B. Ligon III, and R. Latham. Using the Parallel
Virtual File System, Technical report, Clemson University, July 2002.

L. Benini and G. De Micheli. Networks on chips: A new SoC paradigm. IEEE
Computer, 35(1):70-78, 2002.

William J. Dally and Brian Towles. Route packets, not wires: On-chip in-
teconnection networks. In Proceedings of the 38th Conference on Design Au-
tomation, Las Vegas, NV, June 2001.

Jingcao Huand Radu Marculescu. Energy- and performance-aware mapping
for regular NOC architectures. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 24(4):551-562, April 2005.

V. Soteriou and L.-S. Peh. Design space exploration of power-aware on/off
interconnection networks. In Proceedings of the 22nd International Conference
on Computer Design, Asheville, NC, October 2004.

Vassos Soteriou, Noel Eisley, and Li-Shiuan Peh. Software-directed power-
aware interconnection networks. In Proceedings of Conference on Compilers,
Architecture and Synthesis for Embedded Systems, San Francisco, CA, Septem-
ber 2005.

Guangyu Chen, Feihui Li, and Mahmut Kandemir. Reducing energy con-
sumption of on-chip networks through a hybrid compiler-runtime approach.
In PACT °07: Proceedings of the 16th International Conference on Parallel
Architecture and Compilation Techniques, Brasov, Romania pages 163-174,
September 2007.

V. Freeh, N. Kappiah, D. K. Lowenthal, and T. Bletscha. Just-in-time dynamic
voltage scaling: Exploiting inter-node slack to save energy in MPI programs.
In Proceedings of the ACM/IEEE SC 2005 Conference, Seattle, WA November
2003.

Sai Prashanth Muralidhara and Mahmut Kandemir. Communication based
proactive link power management. In HiPEAC ’09: Proceedings of the 4th
International Conference on High Performance Embedded Architectures and
Compilers, Paphos, Cyprus pages 198-215, January 2009.

C. Hsu and W. Feng. Effective dynamic voltage scaling through CPU-
boundedness detection. In Lecture Notes in Computer Science, February
2005.

C.Hsuand W. Feng. A feasibility analysis of power awareness in commodity-
based high-performance clusters. In Proceedings of the 7th IEEE International
Conference on Cluster Computing (CLUSTER’05), Boston, 2005.

86 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

31.

32.

33.

34.

C.Hsuand W. Feng. A power-aware run-time system for high-performance
computing. In Proceedings of the ACM/IEEE SC, Seattle, Washington, 2005.
Guangyu Chen, Feihui Li, Mahmut Kandemir, and Mary Jane Irwin. Reduc-
ing NOC energy consumption through compiler-directed channel voltage
scaling. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN Conference on
Programming Language Design and Implementation, Ottawa, Canada pages
193-203, June 2006.

Chau-Wen Tseng. An optimizing Fortran D compiler for MIMD distributed-
memory machines. PhD thesis, Department of Computer Science, Rice Uni-
versity, Houston, TX, January 1993.

Michael E. Wolf, Dror E. Maydan, and Ding-Kai Chen. Combining loop
transformations considering caches and scheduling. In Proceedings of the
International Symposium on Microarchitecture, Paris, France, December 1996.

CHAPTER 3

An Adaptive Run-Time
System for Improving
Energy Efficiency

Chung-Hsing Hsu, Wu-chun Feng,
and Stephen W. Poole

CONTENTS

3.1 Introduction

3.2 Related Work

3.3 An Adaptive Run-Time System

3.4 Evaluation Methodology and Setup
3.4.1 Evaluation Methodology
3.4.2 Systems under Test

3.5 Experimental Results
3.5.1 Uniprocessor Platform
3.5.2 Cluster Platform
3.5.3 Run-Time versus Compiler-Based Approach

3.6 Conclusion

Acknowledgments

References

3.1 INTRODUCTION

87
89
93
97
97
99
102
102
102
107
108
109
109

The notion of energy-efficient computing is not new, particularly in the

areas of embedded systems and mobile computing [1-16], for which com-

puting devices are powered by batteries of limited energy capacity, and

reducing energy consumption is critical in extending battery life. Laptops,

87

88 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

for example, use simple energy-reduction algorithms to improve their en-
ergy efficiency. That is, if a laptop user is reading a document for an ex-
tended period of time while running on battery energy, the laptop would
automatically scale down the frequency and supply voltage of its CPU (cen-
tral processing unit) (i.e., processor) to reduce energy consumption. The
commodity technology that enables the scaling of frequency and voltage
for CPUs is called dynamic voltage and frequency scaling (DVFS). AMD
refers to its DVFS mechanism as PowerNow!, while Intel refers to it as
SpeedStep.

In contrast, the notion of energy-efficient computing is new to the high-
performance computing (HPC) community. Why the distinction? First,
the computational characteristics found in embedded systems and mobile
computing differ markedly from those found in HPC. The use of mobile
devices (e.g., laptop) tends to be fairly interactive. As a result, energy-
reduction algorithms based on CPU utilization work well on these systems.
Unfortunately, with these algorithms laptops fail miserably with respect
to HPC applications as the CPU utilization of HPC applications remains
very high throughout the entire execution [17]. Second, energy efficiency is
needed for different reasons. In embedded and mobile computing, energy
efficiency is needed to extend battery life, whereas in HPC, it is needed to
reduce the operational costs of powering and cooling HPC systems as well
as to reduce their environmental and societal impacts (such as becoming
more carbon neutral).

Even more worrisome is the issue of reliability in large-scale HPC sys-
tems due to energy inefficiency. Many large-scale HPC systems already
consume more power than the cities they are in. Given that the rate at
which they are adding computing resources far exceeds the available and
planned power capacities, these systems would run out of power capacity
very quickly. In addition, as large-scale HPC systems continue to increase in
size, the amount of heat generated (and hence, temperature) continues to
rise and endangers the system’s operation. As a rule of thumb, for every 10°C
(18°F) increase in temperature, the failure rate of a system doubles [18].

There are two main approaches to address the energy efficiency of a
HPC system. The first approach relies on the invention of new hardware
that can perform the same computation with less energy. The second ap-
proach utilizes software-based optimization. Software-based optimization
exploits the different levels of impact each software execution pattern has
on energy and performance and alters the execution pattern or hardware
configuration to achieve energy-efficient computing. Chapter 2 discussed

An Adaptive Run-Time System for Improving Energy Efficiency B 89

how the software execution pattern can be changed, via code transforma-
tions, to reduce energy consumption. In this chapter, we focus on how the
hardware configuration can be adapted, through DVFS, to enhance energy
efficiency. Chapter 4 will add dynamic concurrency control as another type
of hardware configuration to improve energy efficiency.

Specifically, we describe in this chapter an energy-reduction algorithm
called the B-adaptation algorithm, its implementation in the run-time sys-
tem, and its evaluation on commodity HPC platforms, both uniprocessor
and multiprocessor. The end result is a run-time system that transparently
and automatically adapts CPU voltage and frequency to reduce energy usage
while minimizing the impact on performance.

The rest of the chapter is organized as follows: In Section 3.2, we
overview different software-based approaches that leverage DVFS. Then
in Section 3.3, we present the S-adaptation algorithm, its design and devel-
opment as a run-time system. Our evaluation strategy for the algorithm and
corresponding findings are detailed in Sections 3.4 and 3.5, respectively.
Finally, we conclude the chapter in Section 3.6.

3.2 RELATED WORK

Several case studies have demonstrated DVEFS as a feasible technology to
improve the energy efficiency of HPC systems [19-22]. In these studies,
it was shown that many HPC applications have the so-called energy-time

trade-off, meaning that a decrease in energy usage is possible, but it comes
at the cost of increased execution time. Not every energy-time trade-off
is desirable, as some offer little energy savings and large time penalties.
However, many applications show a savings that is equal to or better than
the penalty (e.g., 20% less energy with 5% more time), and some are much
better than that. System software can exploit this energy-time trade-off to
simultaneously address the performance requirement as well as create a
general energy-aware solution.

With this knowledge that DVES can indeed be effective in HPC, the
next step is to develop various approaches that leverage DVFS. Such
approaches include off-line techniques through manual tuning [19-24]
and compiler analysis [25-31]. They also include online techniques
through dynamic compilation [32-35], MPI (message-passing inter-
face) library-based extensions [36—42], and ubiquitous run-time sys-
tems [18, 43—46]. All these approaches determine when to scale down
the frequency and supply voltage of the CPUs and do so either

90 MW The Green Computing Book: Tackling Energy Efficiency at Large Scale

150%

| ExeTime M SysEnergy |
122%

120%

106%

100% 100%

90%

60%

30%

0%

2.0GHz/1.5V 1.6GHz/1.3V 1.2GHz/1.1V

FIGURE 3.1 The performance-power profiles of tomcatv.

off-line or online and target different scenarios, such as during memory
access, communication, load imbalance, or their combination.

Manual DVFS tuning often involves profiling of the execution behavior
of a program (or its structures) at all possible frequency-voltage settings.
It can be as simple as recording the execution time of the program at each
available CPU frequency and then using the profile to select the lowest
frequency that satisfies the performance constraint to execute the program.
Feasibility studies [19-22] fall into this category.

However, this approach is very coarse grained. For example,
Figure 3.1 shows the profile for three frequency-voltage combinations on
the SPEC (standard performance evaluation cooperation) tomcatv bench-
mark. With a 5% performance slowdown constraint in place, the figure
indicates that no DVES setting exists that simultaneously reduces energy
consumption and meets the 5% slowdown constraint. The 1.6-GHz/1.3-V
and 1.2-GHz/1.1-V settings produce 6% and 22% performance slowdowns,
respectively.

A more sophisticated approach is to look into the program structure of
the code and profile each interesting program substructure for its execution
behavior. For tomcatv, whose program structure is shown in Figure 3.2,
this means profiling the execution times of loop nests L1 to L9 at each
CPU frequency as tomcatv executes these nested loops in sequence. The
tomcatv benchmark spends most of its execution time executing loops L2
to L8 iteratively, with the number of iterations controlled by the variable

An Adaptive Run-Time System for Improving Energy Efficiency W 91

Entry .IEII' Exit

FIGURE 3.2 The program structure of SPEC benchmark tomcatv.

ITACT in the code. Freeh et al. [23] used this approach to select the CPU
frequency to run for each loop nest and MPI call.

Figure 3.3 shows the execution times of the most time-consuming loops
(i.e., L2,15,L7, and L8) in tomcatv. For readability, we normalize all loop
execution times with respect to the execution time of the entire benchmark
running at 2.0 GHz.! The figure indicates that with a 5% performance
slowdown constraint, there exist many scheduling options. For example,
we can execute loop L2 at 1.6 GHz, resulting in a 3% slowdown, or we can
execute loops L5, L7, and L8 at 1.2 GHz.

Although the approach for manual DVES tuning is straightforward, it
can be quite tedious, especially as the number of valid frequency-voltage
settings increases, and the program structure becomes more complex. Con-
sequently, automated profiling and subsequent profile analysis are desired.
Hsu and Kremer [26] proposed such an implementation based on compiler
techniques. In their implementation, compiler techniques such as control-
flow-graph analysis are also used to deal with the time overhead caused by
setting the CPU frequency and voltage as each such setting takes on the
order of milliseconds. For tomcatv, their software chooses to slow down
loops L6, L7, and L8 to 1.2 GHz. The interested reader can find more details
about this oft-line compiler-based approach in Reference 47.

The problems with off-line approaches are threefold. First, they are all
essentially profile based and generally require the source code to be modi-
fied. As a result, these approaches are not completely transparent to the end
user. Second, because the profile information can be influenced by program
input, these approaches are input dependent. Third, as noted in Reference
18, the instrumentation of source code may alter the instruction execution
pattern and therefore may produce profiles that are considerably differ-
ent from the execution behavior of the original code. So, in theory, while
these approaches might provide maximal benefit relative to performance
and energy, they offer little practical use to end-user applications. As a re-
sult, there exists a need for a more transparent and self-adapting run-time
approach.

That is, at the 2.0-GHz/1.5-V setting, 32% of the execution time is spent in loop L2, 24% in L5, 18%
in L7, 18% in L8, and 8% in the remaining loops.

92 MW The Green Computing Book: Tackling Energy Efficiency at Large Scale

50%

OL2 ALs @17 ELs] 44%

40%
35%
32%

30%
25%

2

=
x

20% 18% 18% 19% 18%

10%

7

2.0GHz/1.5V 1.6GHz/1.3V 1.2GHz/1.0V

0%

FIGURE 3.3 The execution-time profile of tomcatv.

The current approaches toward an adaptive run-time system for energy
awareness fall into three categories. The first category is dynamic compila-
tion. A dynamic compiler compiles, modifies, and optimizes a program’s
instruction sequence as it runs. Thus, dynamic compilation avoids some
of the profiling problems off-line approaches have. In addition, similar to
off-line approaches, the dynamic compiler adapts naturally to program
phase changes. On the other hand, a dynamic compiler consumes energy
and affects performance. For most HPC systems, especially those running
scientific applications, it is rare to see a dynamic compiler being used.

The second category is MPI library-based extensions. For example, Lim
et al. [40] extended the MPI run-time system by intercepting MPI calls to
identify communication-bound phases in MPI programs and then scale
down the voltage and frequency of the CPUs during these phases. While
this approach strives to save energy for a broad class of HPC applications,
not all HPC applications are MPI based. Therefore, there exists a need for
a ubiquitous run-time approach for all kinds of HPC applications.

The current approaches toward a ubiquitous run-time system for en-
ergy awareness are based primarily on CPU utilization (e.g., cpuspeed on
laptops). For cpuspeed, when CPU utilization is below some threshold,
the CPU voltage and frequency are lowered to conserve energy. When the
CPU utilization exceeds some threshold, the CPU voltage and frequency
are raised to improve performance. Although this simple approach is both

An Adaptive Run-Time System for Improving Energy Efficiency ® 93

application and input independent, it is only effective for interactive appli-
cations (e.g., Microsoft Office) and depends critically on the choice of the
threshold values [5]. For scientific applications, its effectiveness is abysmal
as such applications do not have an abundance of CPU idle time [17].
Other, more sophisticated, approaches based on CPU utilization, such
as those in Reference 48, only provide loose control over DVFS-induced
performance slowdown (e.g., 37% slowdown with only 12% system energy
savings for the SPEC go benchmark) because the CPU utilization ratio by
itself does not provide enough timing information. Therefore, we conclude
that there exists a need for an energy-aware run-time system that has tight
performance slowdown control and can deliver considerable energy savings.

3.3 AN ADAPTIVE RUN-TIME SYSTEM

Leveraging the DVFS mechanism, we present an automatically adapting,

energy-reduction algorithm that is transparent to end-user applications
and can deliver considerable energy savings with tight control over DVFS-
induced performance slowdown. Performance slowdown in this chapter
is defined as the increase in relative execution time with respect to the
execution time when the program is running at the peak CPU speed. A user
can specify the maximum allowed performance slowdown § (e.g., § = 5%),
and our algorithm will schedule CPU frequencies and voltages in such a
way that the actual performance slowdown does not exceed §.

Our energy-reduction algorithm, which we call the B-adaptation algo-
rithm for reasons that become apparent later in the chapter, is an interval-
based scheduling algorithm; that is, scheduling decisions are made at
the beginning of time intervals of the same length (e.g., every second).
Interval-based algorithms are generally easy to implement because they
make use of existing “alarm clock” functionality found in the operating
system. By default, our energy-reduction algorithm (and its software real-
ization as part of the run-time system) sets the interval length to be 1 s.
However, the algorithm allows a user to change this value per program
execution. The value is denoted as I hereafter.

In contrast to previous approaches, we want to ensure that our energy-
reduction algorithm does not require any application-specific information
a priori (e.g., profiling information), and more generally, that it is trans-
parent to end-user applications. Therefore, it must implicitly gather such
information, for example, by monitoring the intensity level of off-chip ac-
cesses during each interval to make good scheduling decisions. Intuitively,

94 MW The Green Computing Book: Tackling Energy Efficiency at Large Scale

when off-chip access requests are intensive, it indicates that program ex-
ecution is in a non-CPU-intensive phase, hence implying that this phase
can be executed at a lower CPU frequency (and voltage) without affecting
program performance.

While conceptually simple, this type of algorithm must overcome the
following obstacle to be effective: The quantification of the intensity level of
off-chip accesses needs to have a direct correlation between CPU frequency
changes and execution-time impact; otherwise, the tight control of DVFS-
induced performance slowdown will be difficult to achieve. For example,
one might think that the high cache-miss rate is a suitable indicator of pro-
gram execution in a non-CPU-intensive phase. But, unless we can predict
how the execution time will be lengthened for every CPU frequency that
may execute this non-CPU-intensive phase, the information of the high
cache-miss rate will not help selecting an appropriate CPU frequency to
maintain tight control of DVFS-induced performance slowdown. There-
fore, we need a model that can associate the intensity level of off-chip accesses
with respect to total execution time.

To overcome the problem, we propose a model that is based on the
MIPS (millions of instructions per second) rate, which can correlate the
execution-time impact with CPU frequency changes:

T oy~ mips() P\7fp 1)t

(3.1)

The leftmost term TT]({"% represents the execution-time impact of running
at CPU frequency f in terms of the relative execution time with respect
to running at the peak CPU frequency fy,x. The rightmost term ﬂ(% —
1) + 1 introduces a parameter, called 8, that quantifies the intensity level
of on-chip accesses (and indirectly, off-chip accesses). By definition, § =
1 indicates that execution time doubles when the CPU speed is halved,
whereas f = 0 means that execution time remains unchanged no matter
what CPU speed will be used. Finally, the middle term % provides
a way to describe the observed execution-time impact and is used to adjust
the value of .

Ideally, if we knew the value of 8 a priori, we could use Equation 3.1
to select an appropriate CPU frequency to execute in the current interval
such that the DVFS-induced performance slowdown is tightly constrained.
(The selection of this CPU frequency is presented later in the chapter.)

But, because we want to ensure that our energy-reduction algorithm does

An Adaptive Run-Time System for Improving Energy Efficiency B 95

not require any application-specific information a priori, 8 is not known
a priori. Therefore, the challenge for our automatically adapting, energy-
reduction algorithm lies in the “on-the-fly” estimation of 8 at run time and
hence leads us to name our algorithm the 8-adaptation algorithm.

To estimate S at run time, we use a regression method over Equation 3.1
and leverage the fact that most DVFS-enabled microprocessors support a
limited set of CPU frequencies to perform the regression. That is, given
n CPU frequencies { f,-- -, fu}, we derive a particular 8 value that will
minimize the least-squared error:

mips fmax) (fmax o 1> 1
mlnlz; mips(f;) - fi

By equating the first differential of Equation 3.2 to zero, we can derive S as
a function of the MIPS rates and CPU frequencies as follows:

n M — mips(fmax) _
Zi-t (f 1) (mips(/,) 1)
2
S (B - 1)

Once we calculate the value of 8 using Equation 3.3, we can plug the value
into Equation 3.1 and calculate thelowest CPU frequency f whose predicted
performance slowdown 8(Lusx _ 1) does not exceed the maximum possible
performance slowdown 8. Mathematically, this establishes the following
relationship: § = B (% — 1). By solving this equation for f, we determine
the desired frequency f* at which the CPU should run:

e) »

2

(3.2)

B = (3.3)

Combining the aforesaid theory results in the B-adaptation algorithm
shown in Figure 3.4. In essence, this energy-reduction algorithm wakes up
every I seconds. The algorithm then calculates the value of 8 using the most
up-to-date information on the MIPS rate based on Equation 3.3. Once is
derived, the algorithm computes the CPU frequency f*, based on Equation
3.4, for the interval. Since a DVEFS-enabled microprocessor only supports
a limited set of frequencies, the computed frequency f* may need to be
emulated in some cases. (The emulation scheme is shown in Figure 3.5.
The ratio r denotes the percentage of time to execute at frequency f;.) This
sequence of steps is repeated at the beginning of each subsequent interval
until the program executes to completion.

96 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

Hardware:
n frequencies { f1,- -+ , fu}
Parameters:

I: the time-interval size (default 1 sec).
d8: slowdown constraint (default 5%).

Algorithm:

Initialize mips(f;),i = 1, - - , n, by executing
the program at f; for I seconds.
Repeat

1. Compute coefficient §.
fmux i (fmax)
= (1) (Rt - 1)
2
Do (‘ﬂ}_ - 1)
2. Compute the desired frequency f*.

x) fmax
fm= max<fm’”’1+6/ﬂ>

/3:

3. Execute the current interval at f*.
4. Update mips(f*).

Until the program is completed.

FIGURE 3.4 The B-adaptation algorithm.

To extend the B-adaptation algorithm from the uniprocessor environ-

ment that was implicitly assumed previously to a multiprocessor environ-
ment, we simply replicate the algorithm onto each processor and run each
local copy asynchronously. We adopt this strategy for the following rea-
sons: First, the intensity level of off-chip accesses is a per processor metric.
Second, a coordination-based, energy-reduction algorithm would need ex-
tra communication and, likely, synchronization—both of which add to
the time and energy overhead of running the algorithm. As we will see in
Section 3.5.2, the f-adaptation algorithm running asynchronously on each
processor is quite effective in saving energy while minimizing the impact

on performance.

An Adaptive Run-Time System for Improving Energy Efficiency B 97

3. Perform the following steps:
(a) Figure out f; and fi;.
fi<f < fin
(b) Compute the ratio r.

r = (1 +8/ﬂ)/fmax - l/fj-i-l
1/fi = 1/fin

(c) Runr - I seconds at frequency f;.

(d) Run (1 —r) - I seconds at frequency
fi+1-

FIGURE 3.5 Step 3 of B-adaptation algorithm.

In summary, the B-adaptation algorithm is an interval-based, energy-
reduction algorithm that is parameterized by two user-tunable variables:
the maximum performance slowdown constraint § and the interval length
I, the default values of which are 5% and 1 s, respectively. To facilitate an
empirical evaluation of the effectiveness of this algorithm, we implement it
in the run-time system, thus creating an energy-aware run-time system. We
then test the system on uniprocessor and multiprocessor platforms using
appropriate benchmark suites, as discussed in Section 3.4.

3.4 EVALUATION METHODOLOGY AND SETUP

In this section, we describe the evaluation methodology and experimental

setup that we used to evaluate the effectiveness of the §-adaptation algo-
rithm.

3.4.1 Evaluation Methodology

To measure the execution time of a program, we use the global time query
functions provided by the operating system. In this chapter, the execution
time is referred to as the wall clock time of program during execution.
The energy consumption of a program execution is often measured viaa
power meter. In our experiments, the power meter is connected to a power
strip that passes electrical energy from the wall power outlet to the system
under test, as shown in Figure 3.6. The power meter periodically samples

98 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

Profiling System
Computer under
Test
Digital Wall
Power Meter _| Power Strip |— Power

Outlet

FIGURE 3.6 The experimental setup.

the instantaneous system wattage, and the fotal system energy consumption
is then calculated as the integration of these wattages over time. Specifically,
we use a Yokogawa WT210 power meter whose sampling rate is 20 ps per
sample. The aforementioned integration of wattages is done by the power
meter internally.

Unfortunately, evaluating DVFS scheduling algorithms based on total
system energy savings can be misleading since DVFS only affects CPU
energy consumption. Because the percentage of CPU energy consumption,
relative to the total system energy usage, can vary widely from platform to
platform, the evaluation results become platform dependent.

For example, consider two DVES scheduling algorithms, each of which is
able to reduce the total system energy by 9%. Intuitively, the two algorithms
might be considered equally effective. However, what if one algorithm were
evaluated on a HPC server where the CPU accounts for 30% of the total
system energy usage while the other algorithm was evaluated on a high-
performance laptop computer where the percentage increases to 60%? Back-
of-the-envelope calculations® show that the former algorithm reduces CPU
energy by 30%, and the latter algorithm reduces CPU energy by 15%.
Clearly, the former algorithm is more effective than the latter algorithm.
This example illustrates that using the platform-dependent, total system
energy savings prohibits us from comparing DVES algorithms evaluated
on different platforms fairly. Therefore, we evaluate the effectiveness of the
B-adaptation algorithm based on CPU energy savings.

Unfortunately, direct measurements of CPU energy consumption
present technical challenges. A common but intrusive method is to place a
shunt resistor in series with the CPU and its input power supply. The power
meter is connected to this shunt resistor to measure the energy used by the

2For the first algorithm, the CPU energy savings is calculated as 9%/30% = 30%; for the second
algorithm, the savings is 9%/60% = 15%.

An Adaptive Run-Time System for Improving Energy Efficiency H 99

CPU [49]. However, intrusive methods based on shunt resistors are argued
to be less appropriate because shunt resistors interfere with operation of
the system under test and unsuitable when there are large variations in cur-
rent [50]. As a result, we use a nonintrusive method to estimate the CPU
energy consumption.

The nonintrusive method we use leverages a first-order power model
for the CPU [51] and divides the system wattage into two parts:

P (fV)=C-V? - f+ Ppe 3.5
ys (V) f b (3.5)

the CPU power

The first term in the system wattage Py, equation represents the CPU power
consumption and depends on the current voltage V and CPU frequency
f.? The second term Py, is independent of voltage and frequency and
captures the power consumption of system components that are not driven
by CPU clock signals.

To estimate the CPU energy consumption for a given application-input
pair, we perform a least-squared regression on Equation 3.5 with observa-
tion data derived from executing the application-input pair at each possible
frequency-voltage combination. This simple approach turns out to be quite
accurate when using the R-squared metric. The R-squared metric indicates
the relative predictive power of a model; its range is between zero and one,
inclusive. The closer the R-squared metric is to one, the more predictive that
Equation 3.5 is. For all the benchmarks that we ran in this book chapter, R-
squared is very close to one. Therefore, we adopt this unintrusive approach
to estimate CPU energy consumption to derive CPU energy savings that
the B-adaptation algorithm can deliver.

3.4.2 Systems under Test

In this section, we detail the hardware and software that we used for the
performance evaluation of the 8-adaptation algorithm in our energy-aware
run-time system. We begin by presenting the configurations of the unipro-
cessor and multiprocessor hardware platforms under test. Then, we describe
the systems software on these platforms, followed by information about our
implementation of the B-adaptation algorithm. Finally, we list the set of
sequential and parallel benchmarks that we used for the evaluation of the
algorithm.

3The constant C in C - V2 - f denotes the switched capacitance that caused the energy to be consumed.
C is application and input dependent.

100 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

FIGURE 3.7 Celestica A8440.

The tested uniprocessor platform is based on an Asus K8V Deluxe moth-
erboard that is bundled with an AMD Athlon64 3200+ processor (with 1-
MB L2 cache) and 1-GB DDR-400 main memory. The tested multiprocessor
platforms include a cluster of four of the Athlon64-based compute nodes
connected via Gigabit Ethernet and another four-node quad-CPU cluster
based on the Celestica A8440 server (Figure 3.7). server with four AMD
Opteron 846 processors (and also 1-MB L2 cache per processor) and 4-GB
DDR-333 main memory. This Opteron-based cluster is also connected via
Gigabit Ethernet.

In our experiments, both Athlon64 3200+ and Opteron 846 processors
can execute from 800 MHz at 0.9 V to 2 GHz at 1.5 V. Table 3.1 lists the
four operating points (i.e., frequency-voltage pairs) that the f-adaptation
algorithm can set. In theory, an Athlon64 3200+ processor can support
clock frequencies from 800 MHz to 2 GHz at an increment of 200 MHz. So,
why are only four operating points used? It turns out that the set of CPU

TABLE 3.1 Operating Points of
Our Tested Computer Systems

f (GHz) v
0.8 0.9
1.6 1.3
1.8 1.4

2.0 1.5

An Adaptive Run-Time System for Improving Energy Efficiency W 101

Round-Trip Latency

10000

y = 4980.8x + 1776.6
R? = 0.9934

8000

/
6000 /
4000 /

Microseconds

2000

T T
0 0.2 0.4 0.6 0.8 1 1.2 1.4
GHz Difference

FIGURE 3.8 The latency of each operating point change.

frequencies with direct transitions to each other in an Athlon64 3200+
processor is restricted. Since the time overhead for a direct transition is
already on the order of milliseconds (as shown in Figure 3.8), we restrict
ourselves to use only a subset of supported CPU frequencies that have direct
transitions to each other. For other frequencies, we emulate them using the
algorithm in Figure 3.5.

The operating system on the tested hardware platforms is SuSE Linux
2.6.7. This Linux distribution comes with GNU compilers 3.3.3, a DVES
interface called cpufreq, and a DVFS kernel module called powernow-k8.
The cpufreq interface allows the §-adaptation algorithm to set the CPU
to a desired operating point by writing the target frequency to a particular
/sys file. We did not use the powernow-k8 kernel module in the distri-
bution; instead, we used a version of powernow-k8 that is freely down-
loadable from the AMD website and allows us to specify Table 3.1 in the
module.

Our prototype implementation of the S-adaptation algorithm has less
than 500 lines of C code. The use of the implementation is similar to the use
of a Unix time command. The implementation will fork two threads, one
for the execution of the target program (as specified on the command line)
and the other for the execution of the f-adaptation algorithm. Thus, our
performance evaluation includes the time and energy overhead of running
the S-adaptation algorithm in addition to the normal program execution.
In practice, the overhead is negligible as the algorithm is lightweighted.

102 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

With respect to the benchmarks, we used the SPEC CFP95 and CPU2000
benchmarks for the uniprocessor platform and the NAS-MPI benchmarks,
version 3.2, for the multiprocessor platforms. With the exception of SPEC
CPU2000 benchmarks, all the other benchmarks were compiled using the
GNU compiler 3.3.3 with optimization level -03. The CPU2000 bench-
marks were compiled using the Intel compiler 8.1 with the optimization
level -xW -ip -03. We used the Intel compiler, instead of the GNU com-
piler, because CPU2000 contains several FORTRAN-90 codes that the GNU
3.3.3 compiler does not support. For the MPI benchmarks, LAM/MPI ver-
sion 7.0.6 was used to run the benchmarks.

3.5 EXPERIMENTAL RESULTS

This section presents a performance evaluation of the S-adaptation algo-
rithm as a run-time system. As noted, we evaluated the algorithm in both
uniprocessor and multiprocessor environments. We also compared the per-

formance of the algorithm against a compiler-based approach.

3.5.1 Uniprocessor Platform

In this section, we present experimental results of our energy-aware run-
time system on an Athlon64-based computer using the SPEC CPU200
benchmark suite. Figure 3.9 shows the actual performance slowdown and
the CPU energy savings delivered by the system. The §-adaptation algo-
rithm reduces the CPU energy consumption by 12% (on average) with only
4% actual performance slowdown for SPEC CFP2000. For SPEC CINT2000,
the two numbers are 9.5% and 4.8%, respectively. Given that the aver-
age B values for CFP2000 and CINT2000 are 0.66 and 0.83, respectively,
CINT2000 is more CPU bound than CFP2000 and therefore has fewer op-
portunities for energy savings due to the correspondingly fewer off-chip
accesses.

3.5.2 Cluster Platform

In this section, we present experimental results on two clusters: an
Athlon64-based cluster and an Opteron-based cluster.

For the Athlon64-based cluster, Figure 3.10a shows the average 8 value
for each of the eight NAS-MPI benchmarks as well as the associated R-
squared metric for the class B workload. (Recall that the larger the g, the
more CPU bound the benchmark is.) The 8 value of the benchmarks spans

An Adaptive Run-Time System for Improving Energy Efficiency H 103

CFP2000
25%

| [Slowdown [Savings

20%

15%

10%

5% - I
7 7 ,
4 / g
o L2 / A ,
. . , > X e o o > P
S P PFTFES PSS PSS
R R
CINT2000
25%
Slowdown [Savings
20%
15%
10%

FIGURE 3.9 The actual performance slowdown and CPU energy savings of
CPU2000 benchmarks using our run-time system.

104 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

NAS/NPB3.2-MPI, B.4
1.20

Edbeta @ R-Squared

1.00

0.80 A

0.60

0.40

0.20 A

0.00 -
MG SP

NAS/NPB3.2-MPI, B.4

25%

EdSlowdown [Savings

h ;
BT CcG

EP FT IS LU MG SpP

20%

15%

10%

5%

0% -

FIGURE 3.10 NAS-MPI for class Bworkload on the Athlon64-based cluster.

An Adaptive Run-Time System for Improving Energy Efficiency B 105

NAS/NPB3.2-MPI, C.4
20%

1 Slowdown [Savings

15%

10%

5%

0%

IS LU MG Sp
(b)

FIGURE3.11 NAS-MPI for class C workload on the Athlon64-based cluster.

from 0.33 (IS benchmark) to 1.00 (CG and EP benchmarks) with an aver-
age value around 0.57. Compared to the SPEC CPU2000 benchmarks, the
NAS-MPI benchmarks are generally less CPU bound, which means more
opportunities that can be exploited by the run-time system for CPU energy
reduction under the same performance slowdown constraint §.

Figure 3.10b shows the actual performance slowdown and CPU energy
savings of NAS-MPI for the class B workload. On average, the -adaptation
algorithm saves 14% CPU energy at 5% performance slowdown. For the
class C workload (with larger problem sizes than the class B workload),
the average savings is about 12% at 4% slowdown, as shown in Figure 3.11.
Note that the result of the FT benchmark is not presented here. This
is because the execution of the benchmark had unusually high I/O (in-
put/output) activities due to the lack of memory, which we do not feel is
representative for typical HPC applications.

For the Opteron-based cluster, Figure 3.12 shows that the 8-adaptation
algorithm was able to save CPU energy ranging from 8% to 25%, with an
average savings of 18%. The average performance slowdown was 3%. Note
that for the MG benchmark, the performance is in fact improved when
running at a lower clock speed.

Finally, we want to make a few comments regarding the opportunities
that DVFS can exploit. First, a CPU-bound benchmark is not necessar-
ily more power hungry. For example, Figure 3.13 shows the CPU power
consumption of NAS-MPI for both class B and C workloads. According to

106 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

NAS/NPB3.2-MP], C.16

30%

Slowdown [Savings

20%

10%

0%

SP

FIGURE 3.12 NAS-MPI for class C workload on the Opteron-based cluster.

NAS/NPB3.2-MPI

280
OB4 EC4
z
= 260 -
S
3
[=7
=]
2
S 240
@)
]
z
o
[a W}
S 220
~
@)
200

BT CG EP FT IS LU MG SP

FIGURE 3.13 CPU power consumption of NAS-MPI.

An Adaptive Run-Time System for Improving Energy Efficiency B 107

Figure 3.10, EP is a CPU-bound benchmark. However, Figure 3.13 shows
that EP is comparably less power hungry than other NAS-MPI benchmarks.
The most power-hungry NAS-MPI benchmark for class B workload is BT.

Second, MPI point-to-point communication operations may not be
good places to lower the CPU frequency. Given that the latency for setting
to another operation point is 1.67 ms or more, it is on the same order of
magnitude as the latency for a single MPI point-to-point operation. On our
Opteron-based cluster, the typical latency for a single MPI point-to-point
operation is less than 1.25 ms for message sizes no greater than 64 KB on
a gigabit network. This latency will be shorter on faster networks such as
InfiniBand, Myrinet, and Quadrics.

3.5.3 Run-Time versus Compiler-Based Approach

In this section, we compare the performance of the -adaptation algorithm
(running in our energy-aware run-time system) with the compiler-based
approach presented in Reference 26 for the SPEC CFP95 benchmarks.
Although the CFP95 benchmarks have been retired, they allow us to
compare the results of the B-adaptation algorithm to previous case
studies [17,26].

Figure 3.14 shows a comparison of the actual performance slowdown
between the run-time approach (denoted as beta) and the compiler-based
approach (denoted as hsu) for the maximum performance slowdown of
5%. Here, we see that the actual performance slowdown induced by the

Actual Performance Slowdown
12%

beta Mhsu

10%

8%

6% -

4% -

2%

0%_ T T T T T T T T T

FIGURE3.14 Theactual performance slowdown of the f-adaptive run-time
approach versus a compiler-based approach.

108 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

compiler approach is poorly regulated. In contrast, the §-adaptation al-
gorithm, which is the foundation of our energy-aware run-time system,
regulates the actual performance slowdown much better.

Further investigation reveals that the benchmarks that cause the com-
piler approach to induce unacceptable performance slowdown (i.e., mgrid,
turb3d, and apsi) have CPU-bound execution behavior. This implies that
the B-adaptation algorithm for our system will perform more effectively
on CPU-bound programs than the compiler approach. Empirical results
from a laptop computer [17] corroborated that conclusion.

We believe that the effectiveness of our run-time approach is due to
the validity of Equation (3.1). If we apply the least-squared regression on
the equation using the overall execution time at various CPU frequencies
for CFP95, we will see that R-squared is close to one for every CFP95
benchmark. In other words, Equation (3.1) provides a good model for
relating the execution time impact with CPU frequency changes.

On the other hand, the ineffectiveness of the compiler approach may be
due to the skewed profile information. When the CFP95 benchmarks were
run on our HPC servers, the intensity of off-chip accesses in each program
construct dropped significantly due to the larger caches in server processors.
Asaresult, program constructs became less distinguishable by the compiler
approach, which magnified the instrumentation-altered performance skew
and made the compiler difficult to find a definite “winner.”

Relative to CPU energy reduction, previous studies (e.g., [17, 26])
reported an average CPU energy reduction of 20% using the compiler
approach on a laptop computer. In contrast, the average CPU energy sav-
ings for our uniprocessor HPC server platform using our automatically
adapting software is about 11%. The gap between the two energy-saving
values is due to the difference in L2 cache size. For the laptop, the L2 cache
size is only 256 KB, whereas the L2 cache size for the HPC server is four
times larger at 1 MB. Consequently, the intensity of off-chip accesses for
the laptop is significantly higher than for the HPC server, thus providing
substantially more opportunities for energy savings for the laptop.

3.6 CONCLUSION

Power awareness has increasingly become an important issue in HPC. In

HPC, ignoring power consumption as a design constraint results in a system
with high operational costs for power and cooling and can detrimentally
impact reliability, which translates into lost productivity.

An Adaptive Run-Time System for Improving Energy Efficiency B 109

To address these issues, we described an energy-aware solution that
works on any commodity platform that supports DVFS. Specifically, we
presented an energy-reduction algorithm called the B-adaptation algo-
rithm and a prototype implementation of the algorithm as an energy-
aware run-time system. The system transparently and automatically adapts
CPU voltage and frequency to reduce power consumption (and energy
usage) while minimizing impact on performance. The performance evalu-
ation on both uniprocessor and multiprocessor platforms showed that the
system achieves its design goal. That is, the system can save CPU energy
consumption by as much as 20% for sequential benchmarks and 25% for
parallel benchmarks that we tested, at a cost of 3-5% performance degra-
dation. Moreover, the performance degradation was tightly controlled by
our run-time system for all the benchmarks.

ACKNOWLEDGMENTS

This work was partially supported by the Extreme Scale Systems Center
at Oak Ridge National Laboratory. The submitted manuscript was au-

thored by a contractor of the U.S. government under contract no.
DE-AC05-000R22725. Accordingly, the U.S. government retains a nonex-
clusive, royalty-free license to publish or reproduce the published form of
this contribution, or allow others to do so, for U.S. government purposes.

REFERENCES

1. K. Flautner, S. Reinhardt, and T. Mudge. Automatic performance-setting for
dynamic voltage scaling. In International Conference on Mobile Computing
and Networking, July 2001.

2. J. Flinn and M. Satyabarayanan. Energy-aware adaptation for mobile ap-
plications. In ACM Symposium on Operating Systems Principles, December
1999.

3. K. Govil, E. Chan, and H. Wasserman. Comparing algorithms for dynamic
speed-setting of a low-power CPU. In International Conference on Mobile
Computing and Networking, November 1995.

4. F. Gruian. Hard real-time scheduling for low-energy using stochastic data
and DVS processors. In International Symposium on Low Power Electronics
and Design, August 2001.

5. D. Grunwald, P. Levis, K. Farkas, C. Morrey III, and M. Neufeld. Policies
for dynamic clock scheduling. In USENIX Symposium on Operating System
Design and Implementation, October 2000.

110 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

J. Lorch and A. Smith. Improving dynamic voltage algorithms with PACE.
In International Joint Conference on Measurement and Modeling of Computer
Systems, June 2001.

. B. Mochocki, X. Hu, and G. Quan. A unified approach to variable voltage

scheduling for nonideal DVS processors. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 23(9):1370-1377, September
2004.

. T. Pering, T. Burd, and R. Brodersen. Voltage scheduling in the][pARM mi-

croprocessor system. In International Symposium on Low Power Electronics
and Design, July 2000.

. N. Pettis, L. Cai, and Y.-H. Lu. Dynamic power management for streaming

data. In International Symposium on Low Power Electronics and Design,
August 2004.

P. Pillai and K. Shin. Real-time dynamic voltage scaling for low-power
embedded operating systems. In USENIX Symposium on Operating System
Design and Implementation, October 2001.

J. Pouwelse, K. Langendoen, and H. Sips. Dynamic voltage scaling on a low-
power microprocessor. In International Conference on Mobile Computing
and Networking, July 2001.

Y. Shin, K. Choi, and T. Sakurai. Power optimization of real-time embed-
ded systems on variable speed processors. In International Conference on
Computer-Aided Design, November 2000.

T. Simunic, L. Benini, and G. De Micheli. Dynamic power management
of portable systems. In International Conference on Mobile Computing and
Networking, August 2000.

M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced
CPU energy. In USENIX Symposium on Operating System Design and Im-
plementation, November 1994.

R. Xu, C. Xi, R. Melhem, and D. Mossé. Practical PACE for embedded
systems. In International Conference on Embedded Software, September
2004.

H. Zeng, X. Fan, C. Ellis, A. Lebeck, and A. Vahdat. ECOSystem: Managing
energy as a first class operating system resource. In International Conference
on Architectural Support for Programming Languages and Operating Systems,
October 2002.

C. Hsu and W. Feng. Effective dynamic voltage scaling through CPU-
boundedness detection. In Workshop on Power-Aware Computer Systems,
December 2004.

C.Hsuand W. Feng. A power-aware run-time system for high-performance
computing. In International Conference for High Performance Computing,
Networking, Storage and Analysis, November 2005.

X. Feng, R. Ge, and K.W. Cameron. Power and energy profiling of scientific
applications on distributed systems. In International Symposium on Parallel
and Distributed Processing, April 2005.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

An Adaptive Run-Time System for Improving Energy Efficiency W 111

V.W. Freeh, D.K. Lowenthal, F. Pan, N. Kappiah, and R. Springer. Explor-
ing the energy-time tradeoff in MPI programs on a power-scalable cluster.
In International Symposium on Parallel and Distributed Processing, April
2005.

C.Hsuand W. Feng. A feasibility analysis of power awareness in commodity-
based high-performance clusters. In IEEE International Conference on Clus-
ter Computing, September 2005.

E Pan, V.W. Freeh, and D.M. Smith. Exploring the energy-time trade-off in
high-performance computing. In Workshop on High-Performance, Power-
Aware Computing, April 2005.

V.W. Freeh, D.K. Lowenthal, E Pan, and N. Kappiah. Using multiple en-
ergy gears in MPI programs on a power-scalable cluster. In ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, June
2005.

R. Ge, X. Feng, and K.W. Cameron. Improvement of power-performance ef-
ficiency for high-end computing. In Workshop on High-Performance, Power-
Aware Computing, April 2005.

M.A. Ghodrat and T. Givargis. Efficient dynamic voltage/frequency
scaling through algorithmic loop transformation. In International Con-
ference on Hardware-Software Codesign and System Synthesis, October
2009.

C. Hsu and U. Kremer. The design, implementation, and evaluation of
a compiler algorithm for CPU energy reduction. In ACM SIGPLAN
Conference on Programming Languages Design and Implementation, June
2003.

A. Rangasamy, R. Nagpal, and Y.N. Srikant. Compiler-directed frequency
and voltage scaling for a multiple clock domain microarchitecture. In In-
ternational Conference on Computing Frontiers, May 2008.

J. Shirako, M. Yoshida, N. Oshiyama, Y. Wada, H. Nakano, H. Shikano,
K. Kimura, and H. Kasahara. Performance evaluation of compiler controlled
power saving scheme. In International Workshop on Advanced Low Power
Systems, September 2005.

K. Shyam and R. Govindarajan. Compiler-directed dynamic voltage scaling
using program phases. In International Conference on High Performance
Computing, December 2007.

E Xie, M. Martonosi, and S. Malik. Compile time dynamic voltage scal-
ing settings: Opportunities and limits. In ACM SIGPLAN Conference on
Programming Languages Design and Implementation, June 2003.

H.Yi, J. Chen, and X. Yang. Compiler-directed energy-time tradeoft in MPI
programs on DVS-enabled parallel systems. In International Symposium on
Parallel and Distributed Processing and Applications, December 2006.

Q. Shi, T. Chen, X. Liang, and J. Huang. Dynamic compilation frame-
work with DVS for reducing energy consumption in embedded proces-
sors. In International Conference on Embedded Software and Systems, August
2008.

112 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

S.W. Son, G. Chen, M. Kandemir, and A. Choudhary. Dynamic compi-
lation for reducing energy consumption of I/O-intensive applications. In
International Workshop on Languages and Compilers for Parallel Computing,
October 2005.

Q. Wu, M. Martonosi, D.W. Clark, V.J. Reddit, D. Connors, Y. Wu, J. Lee,
and D. Brooks. A dynamic compilation framework for controlling micro-
processor energy and performance. In International Symposium on Microar-
chitecture, November 2005.

L. Xiang, J. Huang, W. Sheng, and T. Chen. The design and implementation
of the DVS based dynamic compiler for power reduction. In International
Symposium on Advanced Parallel Processing Technologies, November 2007.
M. Etinski, J. Corbalan, J. Labarta, M. Valero, and A. Veidenbaum. Power-
aware load balancing of large scale MPI applications. In Workshop on High-
Performance, Power-Aware Computing, May 2009.

V.W. Freeh, N. Kappiah, D.K. Lowenthal, and T.K. Bletsch. Just-in-time
dynamic voltage scaling: Exploiting inter-node slack to save energy in MPI
programs. Journal of Parallel and Distributed Computing, 68(9):1175-1185,
September 2008.

Y. Hotta, M. Sato, H. Kimura, S. Matsuoka, T. Boku, and D. Takahashi.
Profile-based optimization of power performance by using dynamic voltage
scaling on a PC cluster. In Workshop on High-Performance, Power-Aware
Computing, April 2006.

N. Kappiah, V.W. Freeh, and D.K. Lowenthal. Just in time dynamic volt-
age scaling: Exploiting inter-node slack to save energy in MPI programs.
In International Conference for High Performance Computing, Networking,
Storage and Analysis, November 2005.

M.Y. Lim, V.W. Freeh, and D.K. Lowenthal. Adaptive, transparent frequency
and voltage scaling of communication phases in MPI programs. In Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis, November 2006.

B. Rountree, D.K. Lowenthal, B.R. de Supinski, M. Schulz, V.W. Freeh, and
T. Bletsch. Adagio: making DVS practical for complex HPC applications.
In International Conference on Supercomputing, June 20009.

W. Yang and C. Yang. Exploiting energy saving opportunity of barrier
operation in MPI programs. In Asia International Conference on Modelling
and Simulation, May 2008.

R. Ge, X. Feng, W. Feng, and K.W. Cameron. CPU MISER: A performance-
directed, run-time system for power-aware clusters. In International Con-
ference on Parallel Processing, September 2007.

S. Huang and W. Feng. Energy-efficient cluster computing via accurate
workload characterization. In International Symposium on Cluster Comput-
ing and the Grid, May 20009.

K. Malkowski, G. Link, P. Raghavan, and M.J. Irwin. Load miss
prediction—exploiting power performance trade-offs. In Workshop on
High-Performance, Power-Aware Computing, March 2007.

46

47.

48.

49.

50.

51.

An Adaptive Run-Time System for Improving Energy Efficiency B 113

. K. Malkowski, P. Raghavan, M. Kandemir, and M.]. Irwin. Phase-aware
adaptive hardware selection for power-efficient scientific computations.
In International Symposium on Low Power Electronics and Design, August
2007.

C.Hsuand U. Kremer. Compiler support for dynamic frequency and voltage
scaling. In J. Henkel and S. Parameswaran, editors, Designing Embedded
Processors: A Low Power Perspective. Kluwer Academic Press, Dordrecht,
Netherland 2007.

A. Varma, B. Ganesh, M. Sen, S. Choudhary, L. Srinivasan, and B. Jacob.
A control-theoretic approach to dynamic voltage scaling. In International
Conference on Compilers, Architectures, and Synthesis for Embedded Systems,
October 2003.

J. Seng and D. Tullsen. The effect of compiler optimizations on Pentium
4 power consumption. In Workshop on Interaction between Compilers and
Computer Architectures, February 2003.

A. Milenkovic, M. Milenkovic, E. Jovanov, and D. Hite. An environment for
runtime power monitoring of wireless sensor network platforms. In IEEE
Southeastern Symposium on System Theory, March 2005.

T. Mudge. Power: A first class design constraint for future architectures.
IEEE Computer, 34(4):52-58, April 2001.

CHAPTER 4

Energy-Efficient

Multithreading through

Run-Time Adaptation

Matthew Curtis-Maury and Dimitrious S.
Nikolopoulus

CONTENTS
4.1 Introduction 116
4.2 Run-Time Systems for Power-Performance Adaptation: An
Overview 117
4.2.1 Dynamic Voltage and Frequency Scaling 117
4.2.2 Dynamic Concurrency Throttling 119
4.3 Scalability Prediction 121
4.3.1 Static Scalability Prediction Models 121
4.3.2 Dynamic Scalability Prediction Models 123
43.2.1 Baseline Prediction Model 124
4.3.2.2 Model Extensions 125
4.3.2.3 Oft-line Model Training 126
4.3.2.4 Event Selection Process 127
4.3.2.5 Predicting Across Multiple Dimensions 128
4.3.2.6 Selecting Sample Configurations 128
4.3.3 Evaluation 129
4.4 Multidimensional Power-Performance Adaptation 131
4.4.1 Scalability Analysis of Parallel Applications 131
4.4.2 Run-Time Support for Energy-Efficient
Multithreading 135
4.4.3 Integrating DCT with DVFES 137

115

116 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

4.4.4 FEvaluation 138
4.4.4.1 Single-Dimension Adaptation 139

4.4.4.2 Multidimensional Adaptation 142

4.4.4.3 Prediction versus Search Approaches 143

4.5 Conclusions 144
References 145

4.1 INTRODUCTION

Processor vendors have given up power-inefficient single-core designs in
favor of designs with many simple and power-efficient cores. Parallelism
can improve power efficiency and assist the system designer in trading

off power with performance. The conventional wisdom holds that with
more concurrency, performance improves, but the processor consumes
more power. Conversely, with less concurrency, performance drops, but
the processor consumes less power.

There are certain cases where inherent workload characteristics (e.g.,
limited algorithmic concurrency, fine-grain parallel tasks, and synchro-
nization) and architectural properties (e.g., capacity limitations of shared
resources) limit the scalability and the maximum degree of exploitable
concurrency in an application, resulting in an observed performance loss
through the use of more concurrency. Therefore, throttling concurrency has
the potential to both improve performance and reduce power consumption
simultaneously.

Dynamic concurrency throttling (DCT) and dynamic voltage and fre-
quency scaling (DVES) are two software-controlled mechanisms, or knobs,
for run-time power-performance adaptation on systems with multicore
processors. Earlier research, including our own significantly improved
understanding of performance and power implications of DVES [15, 23]
and DCT [4, 5] in isolation. This chapter reviews the aforementioned re-
search and explores methods to synthesize DVFS and DCT techniques in an
integrated power-performance adaptation framework. In particular, this
chapter explores methods to integrate power-performance adaptation in
thread-based parallel programming models.

Synthesizing two power-performance adaptation knobs in software is
nontrivial because the search space for adaptation can grow to unman-
ageable proportions. An M-core processor with L voltage/frequency levels
presents a power-performance adaptation search space of size O(L - M). If
we assume that processor cores are heterogeneous or cores are homogeneous
but performance is sensitive to the placement of threads to cores (this is

Energy-Efficient Multithreading through Run-Time Adaptation W 117

the case in NUMA (nonuniform memory access) and NUCA (nonuniform
cache access) systems, for example), the search space grows to O(L - 2M).
Furthermore, if we assume that a program executes through multiple phases
with distinct optimal concurrency and placement of threads to cores, the
search space grows linearly with the number of phases in the program,
and complex interactions between program phases need to be taken into
account. Software cannot reasonably search this space efficiently at run
time, even on processors with a modest number of cores and power states.
The problem becomes even more pronounced in the context of emerging
many-core architectures, such as Intel’s 80-core prototype [32] and 48-core
Single-Chip Cloud Computer [13].

We present a software framework for multidimensional, software-
controlled and performance-constrained adaptation of OpenMP (Open
Multi-Processing) programs on multicore systems. Its key component, a
dynamic multidimensional performance predictor, statistically analyzes
samples of hardware event rates collected from performance monitors and
predicts the performance impact of setting DCT and DVEFS levels to any of
the values available on the system, either combined or in isolation. The sta-
tistical analysis uses a rigorous regression model, trained from samples of
the power-performance adaptation search space collected from real work-
loads. The model has low cost, is independent of the application to which
it is applied, and is independent of input. These properties enable the use
of the model at run time as a dynamic optimization tool. We demonstrate
these capabilities through experiments, showing that the presented frame-
work enables reduction of power consumption, energy, and execution time
simultaneously, while outperforming both static and dynamic search-based
power-performance adaptation frameworks.

The rest of this chapter is organized as follows: Section 4.2 discusses
background and related work on power-performance adaptation in run-
time systems. Section 4.3 introduces and evaluates the proposed dynamic,
phase-aware performance predictor. Section 4.4 presents an implemen-
tation of multidimensional (DCT, DVFES) power-performance adaptation
that uses the performance predictor. Section 4.5 presents our conclusions.

4.2 RUN-TIME SYSTEMS FOR POWER-PERFORMANCE
ADAPTATION: AN OVERVIEW

4.2.1 Dynamic Voltage and Frequency Scaling

Most run-time systems for energy-aware program execution use DVFS to
reduce processor power consumption while simultaneously attempting to

118 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

control losses in performance. Algorithms for DVES exploit processor idle
time using three approaches. The first quantifies memory boundedness to
apply DVES during execution phases with high memory latency [8,14,34].
The second exploits the slack that threads in parallel programs incur when
arriving at barriers, either by slowing the first thread to arrive at a bar-
rier [17] or by enabling DVFS once a subset of threads has reached the
barrier [25]. The third exploits idle periods during communication be-
tween nodes in a cluster to apply DVES [24] since the processor is not the
bottleneck in these scenarios. In addition, some research has considered
combinations of these approaches when applying DVES [9].

Hsu and Feng [14] modeled the effects of DVES on performance as
measured in MIPS (million instructions per second), using regression to
derive an application-specific coefficient for the observed performance loss
when using a lower DVES level. This coefficient can then be used to pre-
dict the performance when the program runs at other DVEFS levels. The
authors selected the lowest DVES level that maintained a given maximum
performance loss, thereby maximizing energy savings under a given per-
formance constraint. Similar to their work, we used regression to model
the performance impact of applying various levels of DVES; however, we
used multiple hardware events to derive a prediction model rather than a
single-performance metric.

Geetal. [11] compared three strategies for identification of the optimal
DVES level. Specifically, they performed evaluations using (1) CPUSPEED,
a system monitor available in Linux Fedora Core that selects the DVFS
level based on past CPU (central processing unit) usage; (2) command line
control based on a user-estimated DVFSlevel; and (3) callstoa DVFSlibrary
to set the level from within the application. Over a variety of benchmarks
and microbenchmarks, the authors found that all approaches were able to
save considerable energy, with program-internal control performing the
best after extensive optimization.

Isci et al. [15] presented a similar analysis of DVES. They further found
that to meet a given power budget on a CMP (chip multiprocess), DVFS
must be applied adaptively based on changes in execution properties to
maximize energy savings and performance. The authors also presented an
approach to scale DVES per core independently to meet energy constraints
in multiprogram workloads. To optimize throughput and fairness, they
utilized performance predictions at different DVES levels; however, they
applied the same static scaling of performance at different DVES levels
regardless of program properties (e.g., memory boundedness), leading to

Energy-Efficient Multithreading through Run-Time Adaptation B 119

errors in predicted performance. We improved on their work through the
use of several application characteristics in our prediction models.

Springer et al. [29] combined DVES with the deactivation of nodes
within a cluster to reduce energy consumption and stay within a specified
energy budget. The authors used regression-based prediction of perfor-
mance under different combinations of DVFS level and number of active
nodes, called schedules. Once predictions are made for all schedules, the sin-
gle schedule that minimizes execution time while not violating the energy
constraint is selected for use. Their method requires a relatively large num-
ber of sample executions to train the predictor for any given application.

Sasaki et al. [27] implemented a method for performance prediction at
variouslevels of DVES. Their model is based on multiplelinear regression on
performance counters collected at run time: They identified the level with
the lowest power consumption that met a specified performance require-
ment and used that for each phase in a program. The model they presented
closely followed our prediction model for both concurrency throttling and
DVES, which was presented previously [6]. Furthermore, our prediction
model can predict the collective effects of applying both DCT and DVFS
(see Section 4.4).

Other related work has focused on deriving an analytical model of DVES.
Ge and Cameron [10] developed a model of speedup achieved by increas-
ing CPU frequency on processors with DVFES. Their model also predicts
the effects of increasing the number of cluster nodes used in conjunction
with DVES, although it requires execution samples on all possible numbers
of nodes in parallel runs and on all possible processor frequencies in a se-
quential run. Their analytical model provides considerable insight into the
architecture.

4.2.2 Dynamic Concurrency Throttling

Concurrency throttling enables adaptive execution of multithreaded pro-
grams in multiprogramming environments. Anderson et al. [1] presented
scheduler activations, a technique that lets applications schedule their own
threads onto processors and modifies the operating system to allocate pro-
cessors to applications on demand. In scheduler activations, applications
notify the kernel to request more or fewer processors at run time. Sim-
ilarly, Tucker and Gupta [31] proposed a scheme to give the operating
system a mechanism to control the number of processors allocated to each
application under multiprogramming, with the application adjusting its

120 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

concurrency as a result. Hall and Martonosi [12] proposed an approach
to identify limited scalability within phases of a parallel application, which
they attributed to poor parallelism and false sharing between processors,
with the goal of improving the throughput of multiprogram workloads.
None of these approaches leaves processors intentionally idle for perfor-
mance gains or power savings. They rather reallocate processors between
applications to improve system throughput.

Stand-alone programs can benefit from concurrency throttling across
phases with different scaling and execution time characteristics. For
example, it has been observed that simultaneous multithreading (SMT) as
implemented on intel hyperthreaded processors tends to perform poorly
with parallel scientific applications due to interference between threads in
the cache and on other shared execution resources [16,35]. To address this
issue, Zhang et al. [35] developed a loop scheduler that decides the number
of threads to use per processor by sampling each possibility in an iterative
loop execution scheme.

Adaptive serialization was explored by Voss and Eigenmann [33]; the
authors attempted to identify parallel regions that will scale poorly when
parallelized and then execute those regions sequentially. They performed
identification of poorly scaling regions in two ways. First, if loop length is
below some threshold, the loop is serialized because the benefits of parallel
execution will be unlikely to outweigh parallelization overhead. Second,
they made a prediction of sequential performance based on observed scala-
bility properties of the machine and loop execution times recorded off-line.
If the target parallel loop is expected to incur performance loss through par-
allelization, then it is serialized. Our concurrency throttling approach has
the advantage that we do not limit possible concurrency levels to two op-
tions. We allow any number of threads between one and the maximum to
be used as well.

Jung et al. [16] presented a concurrency throttling method that uses
both serialization and SMT disabling. In this work, the authors presented
approaches for static and dynamic serialization of parallel regions. Fur-
ther, they compared two strategies for identification of the optimal num-
ber of threads to use per SMT processor. In the first strategy, the two
possible configurations—using one or two threads per processor—were
simply tested via iterative execution. In the second, they used execution
metrics collected while running the program with one thread per proces-
sor to predict performance when the program ran with two threads per
processor.

Energy-Efficient Multithreading through Run-Time Adaptation B 121

Recent work by Li and Martinez [22] considered applying concurrency
throttling and DVES on single CMPs simultaneously, using search algo-
rithms to explore the optimization space. This research had the same ob-
jectives as our work; however, the suggested solutions differ significantly.
First, our approach isimplemented on a real system, rather than a simulated
one, verifying that our technique works in practice with all system over-
heads considered. Second, we utilize performance prediction rather than
empirical search methods of the configuration space to reduce the number
of test executions necessary to perform adaptation. Finally, our approach
targets multiprocessor systems with multicore processors where the com-
bined energy consumption of processors plays a more significant role than
in the uniprocessor multicore systems simulated in the other work [22].

Suleman et al. [30] investigated the potential of concurrency throt-
tling to improve both performance and power consumption of parallel
applications in shared memory environments [30]. In their work, the au-
thors introduced a technique called feedback-driven threading that seeks the
optimal number of threads in the face of limited application scalability. The
authors considered only bus contention and frequent synchronization as
detrimental to parallel scalability, although they acknowledged that other
factors—such as cache contention—are likely to be important as well. In
our work, we consider any architectural factor that can be captured using
a hardware event rates to predict application scalability. Further, we ex-
periment with real systems as opposed to the simulated systems used by
Suleman et al. [30].

Programmers have long had the ability to specify concurrency levels
manually; however, few run-time systems provide the functionality to man-
age these decisions automatically from within. We present a complete im-
plementation of a run-time system that implements automatic concurrency
throttling based on performance predictions of each configuration with the
goal of simultaneously improving performance and power consumption in
OpenMP applications.

4.3 SCALABILITY PREDICTION
4.3.1 Static Scalability Prediction Models

Performance prediction is a mature research area; therefore, we focus our
attention on work most relevant to our performance prediction model for
multicore systems. Performance prediction of parallel programs has been

122 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

studied in great depth, but the majority of research targets off-line predic-
tion. The work most closely related to ours is that of performance predic-
tion for microarchitectural exploration, where the performance of different
hardware configurations is predicted through the analysis of quantitative
architectural properties, such as reorder buffer size and cache size, as well as
application characteristics. The similarities arise from the fact that we are
also predicting the effects of architectural changes—specifically the num-
ber of processors, cores, and CPU frequency—however, we perform our
prediction online, during program execution.

Minimizing design space exploration time for processor development
has spurred much research on predicting the performance effects of
altering various microarchitectural parameters because of the consider-
able design time reduction that such predictions can provide. Lee and
Brooks [20] employed a regression-based prediction strategy with inputs of
architectural and application-specific properties. Their goal was to reduce
simulation time by limiting the number of required simulations and pre-
dicting the performance of unsimulated configurations based on statistical
inference of the effects of varying architectural parameters.

In addition to regression analysis, related research on performance pre-
diction uses machine learning through artificial neural networks (ANNs).
Singh et al. [28] predicted the performance of two different HPC (high-
performance computing) applications with performance variations thatare
poorly understood on a specific architecture with varying inputs and num-
ber of processors. Their prediction model uses multilayer neural networks.
They performed training by specifying the input size and the observed
execution time to create a function of input size that predicts future queries
on how execution time will change with input size. Their approach predicts
the performance of the studied applications with an average error as low
as 2%; however, all training is application specific; therefore, it can not be
reused for new applications or applied for online prediction.

Lee et al. [21] compared the effectiveness of piecewise polynomial
regression and ANNS for predicting performance of applications with vary-
ing input parameters. Their findings suggest that prediction accuracy was
comparable between the two approaches, but each approach was advan-
tageous in different contexts. They reported that the training process was
significantly simplified through the use of ANNs. However, they also found
that a linear regression model similar to the one that we propose reduced
the end-user burden during model specification while still achieving high
accuracy.

Energy-Efficient Multithreading through Run-Time Adaptation B 123

Carrington et al. [3] demonstrated a framework for predicting the per-
formance of scientific applications in LINPACK and an ocean-modeling
application. Their automated approach relies on a convolution method
representing a computational mapping of an application signature onto a
machine profile. Simple benchmark probes create machine profiles, and
a separate tool generates application signatures. They require generat-
ing several traces but deliver predictions with error rates between 4.6%
and 8.4%, depending on the sampling rates of the underlying traces and
platform.

4.3.2 Dynamic Scalability Prediction Models

We present online performance predictors that estimate performance in
response to changing DCT and DVFS levels. We refer to each combination
of frequency and concurrency configuration available on the system as a
hardware configuration, or simply a configuration. The predictors use input
from execution samples collected at run time on specific configurations to
predict the performance on other, untested configurations. We estimate
performance for each phase in terms of useful instructions per second, or
uIPC, which is the IPC computed after omitting instructions used for par-
allelization or synchronization. By using the uIPC prediction, we exploit
opportunities to save power by scaling memory-bound phases of compu-
tation. Through this scaling, we aim at reducing contention and exploiting
slack due to memory or parallelization stalls. The input from the sample
configurations consists of the useful IPC (4IPC;) and a set of n hardware
event rates e(;_,) observed for the particular phase on the sample config-
uration s. Each event rate e; ;) is calculated as the number of occurrences
of event i divided by the number of cycles elapsed during the execution of
the phase with configuration s. The model predicts uIPC on a given target
configuration ¢, which we call uIPC;. We refer to this model as DPAPP for
dynamic phase-aware performance predictor.

Our model for performance prediction differs from previous work in
several aspects. The approach works at run time during the execution of an
application, and this property limits the computational overhead associated
with prediction. To the best of our knowledge, no prior work has consid-
ered online performance predictors on shared-memory architectures using
run-time input other than execution time. Furthermore, our model adds
knowledge to the predictor by accounting for the effects of events in a mul-
tiplicative way on the baseline IPC of the sample configuration, rather than

124 MW The Green Computing Book: Tackling Energy Efficiency at Large Scale

an additive way that is often assumed. This means that events are mod-
eled to affect the resulting IPC by some percentage rather than by a fixed
amount.

4.3.2.1 Baseline Prediction Model

Our prediction model uses uIPC; to estimate the effect of the observed event
rates that produce the resulting value of uIPC,. The event rates capture
the utilization of particular hardware resources that represent scalability
bottlenecks, thereby providing insight into the likely impact of hardware
utilization and contention on scalability. Although the model can include
multiple sample configurations, we begin by describing the simplest case of
asingle sample and build up the model from there. We model the scalability
of ulPC; as a linear function:

ulPC; = ulPC; - ay(e(1.ns)) + € (4.1)

Equation 4.1, reflects the dependence of the function «; and the con-
stant term €, on the particular target configuration. We model each target
configuration ¢ through coefficients that capture the varying effects of hard-
ware utilization at different degrees of concurrency, mappings of threads to
cores, and DVES levels. In effect, «() scales up or down the observed uIPC;
on the sample configuration based on the observed values of the event rates
on the same configuration to estimate the actual uIPC, on any of the tar-
get configurations. The observed event rates determine how much to scale
ulPC;, as a linear combination of the sample configuration event rates as

n
ar(ens) = Y (X - €is) + Vi) + 2 (4.2)
i=1

The model’s intuition is that changes in event rates indicate varying
resource utilization and contention, resulting in either positive or negative
effects on uIPC,. The model represents these effects through positive or
negative coefficients. While the relationship between event rates and uIPC
may not be strictly linear, a simple linear model works well in practice
[5,18,26]. We estimate the specific coefficients through multivariate linear
regression (Section 4.3.2.3). By using an empirical model, we simplify the
model retraining required for new architectures since we automatically infer
the model from a set of training samples rather than through a detailed

Energy-Efficient Multithreading through Run-Time Adaptation B 125

architectural description. We combine Equations 4.1 and 4.2 to derive the
following equation for uIPC on a particular target configuration ¢ as

ulPC, = ulPC, - > ((is) - €(is) + uIPC, - i + € (4.3)
i=1
Therefore, estimating the value of uIPC; is equivalent to the proper
approximation of the coefficients x(;;), the constant term €;, and y;. The
y; variable is the sum of a collection of terms from «, that represent a
coefficient for uIPC; itself and is independent of the values of (e ,s))-
This coefficient is defined as >\, (y(1,i)) + 2

4.3.2.2 Model Extensions

While the baseline prediction model can be effective for DCT [5], we refine
it to improve model accuracy and extend it to predict performance with
multidimensional input. Our first extension models uI P C; asalinear com-
bination of multiple sample configurations from the configuration space.
In the context of DVFS and DCT, each sample configuration uses a different
number of threads bound to different execution units—cores, processors,
or hardware threads—in the machine, at potentially different voltage and
frequency levels. Each sample configuration provides some additional in-
sight into execution on other, untested configurations. The use of multiple
samples allows the model to “learn” more about each program phase’s
execution properties that determine performance on alternative configu-
rations. The actual selection of samples can be statistical (e.g., uniform) or
empirical (i.e., using some architectural insight such as the number of cores
per processor or the number of cores sharing an L2 cache). Equation 4.4
presents the model extended to two samples, with an additional term X to
capture interaction between samples that we describe next.

ulPC; = ulPCsi-apsnen.nsy) +ul PCo - drs2)(€(1.n,s2))
+ Ai(e.ns)) + € (4.4)

Using multiple samples allows us to analyze the relationship between
each configuration. We include an interaction term for the product of two
events in the linear model to capture the relationship statistically. For sim-
plicity, we only consider possible interactions between the same event across
multiple configurations, including the product of uIPC on each sample
configuration. Our model considers the interplay between multiple config-
urations. Specifically, we define the interaction term for a model using two

126 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

samples as

Mleams) = Y (i) - €isn) - €6s2)
i=1
+ u@rrcy - ul PCsy - ul PCor + 14 (4.5)

The interaction term A, linearly combines the products of each event
across configurations, as well as that of uIPC. In Equation 4.5, it is the target
configuration-specific coefficient for each event pair, and ¢ is the event rate
independent term in the model.

On architectures with large and complex configuration spaces, we may
need to use additional sample configurations. We can extend our model to
an arbitrary collection of samples S of size |S]|, as

IS]
ulPCy = (uIPC; - api(eq.ni)) + helens) + & (4.6)
i=1
Using more samples not only generally increases model accuracy but
also increases sampling overhead. We address the selection of S in terms of
specific configurations as well as its size in Section 4.3.2.6.
We generalize the term A, further to account for the interaction between
events across |S| samples as

n [S|-1 |S]

Mleans) =D (OO (i - € - €ik))

i=1 j=1 k=j+1

ISI—1 |S]
+ D 0 (jkirc) - uIPC; - ulPCY)) + 1 (4.7)
j=1 k=j+1

To further improve model accuracy, we apply variance stabilization in
the form of a square-root transformation of the data to reduce correlation
between residuals and fitted values, following Lee and Brooks [20]. That
is, we take the square root of each term, as well as the response variable,
before applying the model. This process results in a more accurate model by
reducing model error for the largest and smallest fitted values and causing
residuals to more closely follow a normal distribution.

4.3.2.3 Off-line Model Training
We use multivariate linear regression on phases from a set of training bench-
marks to approximate coefficients in our model. We record uIPC and a

Energy-Efficient Multithreading through Run-Time Adaptation W 127

predefined collection of event rates while executing each training bench-
mark’s phases on all configurations. We use multiple linear regression on
these values to learn patterns in the effects of sample configuration event
rates on the resulting uIPC of the target configuration, with each phase’s
data serving as a training point. Specifically, uIPC, the product of IPC
and each event rate, and the interaction terms on the sample configura-
tions serve as independent variables. uIPC on each target configuration
serves as the dependent variable, in accordance with the equations pre-
sented. We develop a model separately for each target configuration, deriv-
ing sets of coefficients independently. We select the set of training bench-
marks to include variation in properties such as scalability and memory
boundedness.

Testing all sample and target configurations off-line for training pur-
poses may become time consuming on architectures with many processing
elements and multiple layers of parallelism. To combat this, we prune the
target configuration space, using insight on the target system architecture.
Specifically, we eliminate symmetric cases in thread binding as well as un-
balanced bindings of threads. On emerging architectures that feature hun-
dreds of cores, it may become necessary to further reduce the search space
during model training to limit off-line overhead, for example, by uniform
sampling of the configuration space used for training. At current multicore
system scales, the training process for a fully automated system using our
model takes on the order of hours and scales up linearly with the number
of configurations.

4.3.2.4 Event Selection Process

The model requires feedback from hardware event rates to predict perfor-
mance across configurations accurately. Therefore, we must identify specific
event rates that result in high prediction accuracy. Unfortunately, the spe-
cific events that reflect the performance impact of power knob settings
more accurately are not always obvious and depend on the target hardware
platform and on workload characteristics. To select the events to use with
our model, we use correlation analysis to determine which event rates on
the sample configuration are most strongly correlated with the target IPCs.
We generate a sorted list of events from higher to lower correlation and
select the top n events from the sorted list. We determine the number of
events to use, 7, based on how many event registers are available on the
target processor architecture. The event selection process is statistical and
automated and therefore portable across systems.

128 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

4.3.2.5 Predicting Across Multiple Dimensions

We apply our model to predict the performance effects of DCT and DVFS
independently or across simultaneous changes in the settings of both power
knobs. To predict for simultaneous changes, we collect samples at points
along the two-dimensional space by varying the configuration along each
prediction dimension. While we could predict along one dimension at a
time by selecting the optimal configuration in each dimension sequentially,
predicting along both dimensions simultaneously avoids blind spots in the
predictions. The first strategy only predicts along the second dimension
at the decided optimal level of the first dimension, whereas the second
strategy is more likely to find the globally optimal configuration along both
dimensions since it considers all combinations on both dimensions. We
can generalize the model to predict performance in configuration spaces
of higher dimensionality and prune the space through uniform or other
sampling schemes that reduce training overhead. Since we predict along two
dimensions at most for the purposes of power-performance adaptation, we
do not discuss generalization of our model further.

4.3.2.6 Selecting Sample Configurations

Every configuration used as a sample provides additional insight on what
the performance will be on a different configuration. Although in principle
we can uniformly sample configurations to reduce training and run-time
search overhead, some configurations reveal specific architectural bottle-
necks to scalability and performance. That s, certain configurations provide
further insight into utilization of critical resources such as shared caches
and memory bandwidth; therefore, they are stronger predictors than oth-
ers. We consider architectural properties while selecting the configurations
to best serve the prediction model.

When predicting along a single dimension (i.e., concurrency or DVES
level), we use a single sample configuration at the maximum concurrency
or frequency available [5]. When predicting along multiple dimensions,
our experimental evidence suggests that effective samples are drawn by
sampling at points along each dimension. In more detail, we first sample
at the maximum concurrency and frequency and then select additional
samples, guided by architectural intuition, to improve coverage along each
dimension. Each additional sample tests new points along all dimensions.
For example, along the concurrency dimension of a four-core system, the
first sample uses all four cores at full frequency, and the second sample
uses two cores at a different frequency level (thereby providing insight

Energy-Efficient Multithreading through Run-Time Adaptation B 129

into changes of both the concurrency and frequency dimensions). This
technique allows us to limit the number of samples while providing input
along each dimension.

4.3.3 Evaluation

In our evaluation, we use a system with two Intel Xeon E5320 quad-core
processors. Each core operates at a maximum frequency of 1.86 GHz, and
software can reduce this frequency to 1.60 GHz. The system contains 4 GB
of memory and runs Linux kernel version 2.6.22. We use seven benchmarks
from the NAS suite compiled at class size B (BTC [block tri-diagonal solver],
CG [conjugate gradient], FT [discrete 3D Fast Fourier Transform], IS [inte-
ger sort), MG [multi-grid on a series of meshes], SP [scalar penta-diagonal
solver], and UA [unstructured adaptive mesh]).

Since different mappings of a set of threads to cores may yield signif-
icant performance variation, we differentiate between configurations that
use the same number of cores but different topologies. On our experimen-
tal platform, each of the two processors has two dies, and each die has two
cores and an L2 cache bank accessible by both cores on the die. We differen-
tiate between three potential mappings of threads to cores on this system:
(1) two threads running in the same die and sharing a common 4 MB L2
cache bank; (2) two threads placed on different dies on the same processor,
with private L2 cache banks, using only half of the available memory band-
width due to their placement on a single processor; and (3) two threads
placed on different processors with private L2 cache banks and the full
processor memory bandwidth available to them. We specify each hardware
configuration using (X, Y [, Z]) to denote execution with X processors, Y
cores per processor, and DVES level Z. We use the notation 2s to indicate
a shared cache and 2 p to indicate a private cache.

We select a single benchmark to train the model, trading potentially
higher prediction accuracy for less training time. Specifically, we use NAS-
UA to perform training. UA has over 50 parallel execution phases and widely
varying execution characteristics on a per phase basis, including IPC, scal-
ability, locality, and granularity. We select sample configurations for each
model to maximize the amount of information available to the model. For
the DVES model, we select a single sample at maximum frequency within
any given mapping of threads to cores. We select two samples for DCT:
(1,3) and (2,4). Finally, for the unified DVFS-DCT model, we select three
samples: (1,2p,2), (2,25,1), and (2,4,2). These sample configurations are
selected as outlined in Section 4.3.2.6 to provide data along each dimension

130 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

Prediction Accuracy

[——
“ r ~-DVES |
o { f/ —— Hybrid

PR /4

e ol

2 wl]f

Sk

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

% Error

FIGURE 4.1 Cumulative distribution functions of prediction accuracy of
the three prediction models.

of adaptation. In all cases, we make predictions for all nonsampled config-
urations.

Using many events can benefit the model; however, current architectures
severely limit the number of events that can be recorded simultaneously,
while event multiplexing has significant overhead and questionable accu-
racy. We set the number of events used in our model to the maximum
number of events that the hardware can monitor simultaneously without
multiplexing. On our experimental CMP platform, only two event registers
are available, and one must always be used to collect uIPC, which is manda-
tory in our model. The statistically selected auxiliary event with the highest
correlation with target IPC in the training data is L1 data cache accesses. We
derive the model coefficients off-line using linear regression on samples of
event rates and u/PC on each configuration from the training benchmark.

Figure 4.1 shows the percentage of predicted samples for each model
with error less than a particular threshold indicated on the x-axis. The
results demonstrate high accuracy of the model in all three cases. In partic-
ular, the DVES model yields a median error of 3.0% (4.2% mean), the DCT
model a median error of 7.3% (11.2% mean), and the unified model a me-
dian error of 6.1% (9.5% mean). We note that prediction is performed with
input from one, two, or three sample configurations for all remaining con-
figurations. The higher accuracy of predicting DVFS than DCT indicates
that DVFS has simple, mostly linear, effects on performance that our model

Energy-Efficient Multithreading through Run-Time Adaptation B 131

captures. DCT, on the other hand, has more complex and often nonlinear
performance effects due to irregular, nonmonotonic scalability patterns in
many parallel execution phases. Of the 20 possible configurations, the uni-
fied model correctly identifies the single best configuration in 35% of cases.
The model incorrectly selects one of the ten worst configurations in only
7% of cases.

4.4 MULTIDIMENSIONAL POWER-PERFORMANCE
ADAPTATION

We consider the synergistic integration of DVFS and DCT. We describe a
methodology for dynamically adapting the execution of parallel applica-
tions on shared-memory multicore systems to reduce power consumption
while sustaining or improving performance. We also present a run-time

system called ACTOR that adapts program execution to enforce concur-
rency and voltage-/frequency-level decisions without a priori knowledge
of application characteristics. ACTOR uses the DPAPP model for scalabil-
ity prediction presented in the previous section. We evaluate the complete
framework (ACTOR, DPAPP) in the context of simultaneous DVFS and
DCT optimization on a real multiprocessor with multicore processors.

4.4.1 Scalability Analysis of Parallel Applications

To motivate DCT, we briefly analyze the scalability of a parallel benchmark
suite on our experimental platform (see Section 4.3.3 for the specifications
of this platform). To conduct this evaluation, we execute each benchmark
under all nonsymmetric configurations on the experimental hardware and
record execution time and energy consumption. Figure 4.2 presents the re-
sults. Our hardware testbed has ten possible nonsymmetric configurations.
In all experiments, we measure full system energy per run using a Watts
Up Pro power meter. We also compute average power consumption from
execution time and total energy consumption.

The results show that, in principle, parallel benchmarks do not scale
perfectly on the target hardware. In particular, only one benchmark achieves
best performance when using all eight cores. We observe three patterns of
scalability in our experiments. First are those benchmarks that manage
reasonable speedup through the utilization of additional cores (BT, FT, and
UA). Second are benchmarks that incur nonnegligible performance loss
when using more cores (IS and MG). Third are benchmarks that neither
gain nor lose performance from higher concurrency (CG and SP). Despite
poor utilization of additional cores, energy consumption generally increases

132 B The Green Computing Book: Tackling Energy Efficiency at Large Scale

BT |- Time —+— Energy

700 120000
600 - -+ 100000
- 200 480000 ~
2 400 1 g
Q =+ 60000
E 300 + g
= £+ 45}
200 4 40000
100 + -+ 20000
= % 2 &% S = @ 2 == =
Configuration
CG | [Time —— Energy
250 50000
40000
o) =
\9,-;, - 30000 <
@ 20
E - 20000 &
= m
- 10000
-0
Configuration
FT | [Time —— Energy |
120 25000
100 7 - 20000
—~ 80 —
§ 15000 &
~ >
o 60 b5
£ - 10000 &
=404 &5
20 - - 5000
0 -0
2 R 8 @ % 2 3 & & %
2 2 3 4 2 4 3 3 a9 dJd
Configuration

FIGURE 4.2 Execution time (bars) and energy consumption (lines) of the
benchmarks across all configurations. The configurations with the best
performance and energy for each benchmark are marked with stripes and
a large diamond, respectively. (continued)

Energy-Efficient Multithreading through Run-Time Adaptation B 133

1S |-Time —+ Energy
20
15
o
[
N
~ 10 -
£
[_4
5_
0_
= 2 a = =) = 7 o D =)
Configuration
MG |-Time —+ Energy

Time (sec)
Energy (J)

Configuration
sp |-Time —‘—Energy|
700 120000
600 + W + 100000
2 500 T 80000 ~
é - 60000 %ﬁ
= L 40000 &
- 20000
-0
Configuration

FIGURE 4.2 (continued). Execution time (bars) and energy consumption
(lines) of the benchmarks across all configurations. The configurations
with the best performance and energy for each benchmark are marked
with stripes and a large diamond, respectively. (continued)

134 B The Green Computing Book: Tackling Energy Efficiency at Large Scale

UA | [Time —— Energy
120000
- 100000
o - 80000
& 2
E - 60000 &8
Q
5 <)
= - 40000 ™
- 20000
-0
= ® a4 ® ¥ 9 Z® ‘a9 @« 9
Configuration

FIGURE 4.2 (continued). Execution time (bars) and energy consumption
(lines) of the benchmarks across all configurations. The configurations
with the best performance and energy for each benchmark are marked
with stripes and a large diamond, respectively.

with more cores. It is predominantly the second category of benchmarks
(negative scalability) that motivates the use of DCT to throttle concurrency
to more efficient levels, although in many cases the third category (flat
scalability) can also be optimized by reducing power consumption while
sustaining performance.

The most energy-efficient configuration coincides with the most
performance-efficient configuration for four of the seven benchmarks (BT,
CG, FT, and IS). For three benchmarks (MG, SP, and UA), the user can
use fewer than the performance-optimal number of cores to achieve sub-
stantial energy savings, with a marginal performance loss. We also observe
that for a given number of threads, performance can be very sensitive to
the mapping of threads to cores (e.g., BT, FT, and SP when executed with
two or four threads). Even if performance is insensitive to the mapping of
threads to cores, power can be sensitive to the mapping of threads to cores.
In MG, for example, placing two threads on two dies on the same processor
is imperceptibly less performance efficient but significantly more energy
efficient than placing the two threads on different processors.

We attribute poor scalability of several benchmarks to memory con-
tention atalllevels of the memory hierarchy. Two cores sharing a cache rarely
benefit from this sharing. They suffer instead from destructive interference,
which manifests as more conflict misses between threads. It is also inter-
esting to note the substantial performance benefit seen through execution

Energy-Efficient Multithreading through Run-Time Adaptation B 135

with two threads per processor and private cache space for each thread.
Additional threads increase the demand for memory bandwidth and pro-
duce contention on the shared front-side bus. These issues combine to limit
scalability most in applications that are memory bound and have primary
or secondary working sets that are too large to fit in the cache. The results
demonstrate opportunities to use fewer threads to improve performance
and energy consumption.

4.4.2 Run-Time Support for Energy-Efficient Multithreading

In this section, we present a phase-aware concurrency throttling algorithm
on our hardware testbed. We further demonstrate an adaptive run-time
system that responds to observed program behavior to adapt execution,
called ACTOR (for adaptive concurrency throttling optimization run-time
system). We then evaluate the potential of the algorithm for reducing power
and energy. Section 4.4.3 describes the way in which ACTOR is extended
to simultaneously adapt DCT and DVES.

Scientific codes are dominated by iterative execution of phases. ACTOR
exploits this property to sample hardware event rates in the first few phase
traversals and set the concurrency of each phase to the predicted optimal
operating point for the rest of phase traversals. ACTOR strives to sample and
adapt early during execution of the program. Live search of the optimization
space for operating points of concurrency can also be performed by timing
phases at different configurations and running search heuristics such as
greedy hill-climbing [5,22] or simulated annealing [19]. However, as the
number of feasible hardware configurations increases with the introduction
of more cores per processor, direct search methods may spend significant
portions of the execution time sampling suboptimal configurations rather
than actually optimizing the program. This disadvantage becomes apparent
in codes that traverse dominant parallel phases only a few times.

Even if direct search methods are used for off-line autotuning by repeti-
tive executions of the entire program [2], searching the optimization space
for any input on any feasible configuration of processing units may be pro-
hibitive. ACTOR prunes the search space for concurrency optimization to a
constant number of samples. The DPAPP-based concurrency throttling al-
gorithm takes as a parameter the list of sample configurations. The number
of samples S corresponds to the number of times each phase needs to be
executed before deriving a prediction for the optimal operating point and
is used to control sampling overhead. In our prototype implementation of
DCT, we use a sample rate of S = 2.

136 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

Library calls

Actor

values Decision

HEC management

HEC collection

FIGURE 4.3 The structure of the ACTOR run-time system including inter-
face to hardware event counters (HECs).

The structure of the ACTOR system is shown in Figure 4.3. The con-
troller is dynamic, in the sense that it adapts the program as it executes, with
no prior knowledge of program characteristics. ACTOR requires simple,
formulaic code instrumentation and estimates optimal operating points of
concurrency using samples of critical hardware event rates from live execu-
tions of program phases. Specifically, the library controls the first S phase
traversals to execute on the desired sample configurations and collect event
rates. At the end of the sampling period, collected event rates are used by
DPAPP to predict the uIPC of each phase on nonsampled configurations.
Once predictions for a phase are obtained, all subsequent traversals of this
phase are executed at the predicted optimal configuration. ACTOR enforces
configuration decisions through the Linux processor affinity system call,
sched_setaf finity(), and multithreading library-specific calls for chang-
ing concurrency levels, such as omp _set_num_threads() in OpenMP. The
overhead of using ACTOR in terms of the time spent executing library code
is approximately 500,000 cycles per program phase (250 us on a 2-GHz
processor), which is negligible for realistic applications.

Certain assumptions are necessary to implement concurrency throttling
in our system, and we outline those in the following discussion. First, we
rely on the capability of the run-time system to change the number of
threads used to execute a phase of parallel code at run time. This capability
is available in OpenMP, at the granularity of parallel loops and parallel
regions. However, changing the number of threads at run time may not be
possible in some applications due to (1) data initialization that depends on
the number of threads used or (2) alternative control paths during parallel

Energy-Efficient Multithreading through Run-Time Adaptation W 137

execution, the choice of which depends on the thread ID. Second, the phases
ofan application must be executed at least S times to complete the sampling
stage. Finally, the workload of each phase between executions must remain
relatively stable. In practice, this is the case in most regular and irregular
scientific codes.

While we have specifically designed ACTOR for use with iterative scien-
tific applications, our approach applies to other categories of applications
as well. The basic principle of ACTOR can be applied with any defini-
tion of a program phase where concurrency can be dynamically adjusted.
For example, in noniterative, synchronization-intensive, or heterogeneous
multithreaded codes, if an existing phase identification technique can be
employed to identify repetitive behavior where concurrency is modifiable,
ACTOR can be applied for DCT. For server workloads, the application may
be treated as one phase, and a limited timeframe can be monitored to decide
concurrency for the application.

Energy savings using DCT come through two paths: first, by reduc-
ing execution time since energy consumption is reduced proportionally in
this case; and second, through the deactivation of processing units, which
reduces power consumption. The power consumption of a processing unit
depends on utilization of its functional units since clock gating limits the
power dissipation of functional units when they are idle. Furthermore, a
processor can be transitioned to alow-power mode when it is not in use. For
example, on Intel Pentium 4 processors, the hlt instruction transitions the
processor to alow-power mode, where power consumption is reduced from
approximately 9 W when idle to 2 W when halted. Recent Intel processors
possess multiple C states in which the processor can enter increasingly deep
levels of sleep to conserve additional power, at the cost of increased latency
to return to operational mode. While we do not manually control the tran-
sitioning between power states of the processors from within the run-time
system, the operating system does so when the processor remains idle for a
configurable time period. We have experimentally verified that in Linux 2.6
kernels, the operating system transitions processors to the halted state and
keeps them in this state during approximately 90% of the time they are idle.

4.4.3 Integrating DCT with DVFS

We extend the ACTOR framework to dynamically adjust multiple power-
performance knobs [7]. The advantage of a hybrid adaptation approach
is that it enables the system to capitalize on the benefits of each knob’s
benefits.

138 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

Multidimensional power-performance adaptation within ACTOR oper-
ates in the same way as DCT adaptation alone. Just as with DCT adaptation,
ACTOR controls the first few traversals of each program phase to run on
predetermined configurations, characterized by the number of threads, the
placement of threads on cores, and the DVES level. ACTOR monitors exe-
cution properties to serve as input to the DPAPP prediction model. Once
predictions are made, ACTOR controls the execution of each phase to use
the configuration selected by the DPAPP predictor. Program control of
multidimensional adaptation requires no additional instrumentation be-
yond that already present for DCT. The run-time library is extended also
to control DVES at a per phase granularity.

To perform multidimensional adaptation, we assume that we can set
each processor of the system to execute at a voltage/frequency level cho-
sen from a predetermined set through a privileged instruction. We assume
global voltage and frequency scaling for each processor as a whole, as op-
posed to per core, since this is the only option available on our experimental
hardware and to better support parallel codes by avoiding load imbalance
when setting the frequency of individual cores independently during paral-
lel execution phases. Our modeling methodology does not preclude and can
be generalized to per core DVES schemes. We conduct physical experimen-
tation, using hardware timers and power meters to measure performance
and energy, respectively.

When adapting DCT, the library can compare configurations simply
using the predicted uIPC. However, when considering DVES alone or in
hybrid approaches, the model needs adjustment to ensure valid perfor-
mance comparisons. A problem arises because at lower frequencies each
cycle lasts longer, which causes higher IPCs to occur at lower frequencies
while the program actually runs slower. For this reason, the predictor cal-
culates IPC before making comparisons and takes into consideration the
frequency levels.

4.4.4 Evaluation

In this section, we evaluate the use of the presented prediction models in
conjunction with run-time adaptation of multithreaded scientific codes.
We begin by evaluating the use of only DVFES or DCT. We then analyze two
schemes for adapting both DVFS and DCT, first applying them sequentially
and then in a unified manner. Finally, we compare prediction-based adap-
tation against empirical search in identifying optimal configurations, using

Energy-Efficient Multithreading through Run-Time Adaptation B 139

both an exhaustive search and a binary search. Figure 4.4 presents the results
of adaptation through these various mechanisms for each benchmark, and
Figure 4.5 shows geometric means of normalized energy and execution time.

We compare various adaptation strategies against “static executions”
that use a single configuration through the entire run. We specifically com-
pare adaptation strategies to static executions using full concurrency and
frequency (static) and to the best performing of all static executions (static
optimal). We derive the static optimalex post facto: We cannot know the
static optimal online without exhaustive off-line execution of each appli-
cation on all configurations and for each input. We use static optimal as
a practically unrealistic baseline for comparison with other strategies. The
static optimal is not necessarily the overall optimal, as each phase may
have its own optimal configuration. We do not consider this possibility as
its identification requires exponential time, making it unrealistic even for
off-line use.

4.4.4.1 Single-Dimension Adaptation

In this analysis, we make adaptation decisions by selecting the configuration
with the highest predicted performance. The results of applying DVES sup-
port the intuition that DVES is generally unable to improve performance.
The literature includes corner cases of memory-bound phases where this
assumption is violated, and scaling down frequency can marginally improve
execution time [11], but these phases are rare exceptions. Our experiments
reveal no benefit in terms of performance or energy from adapting to the
DVES level with the highest predicted performance. Without tolerating
some loss in performance, DVES alone is not generally able to significantly
benefit energy consumption. We can attribute this result to some extent to
our system having only two voltage/frequency levels, with the lower level
not substantially more power efficient than the higher level (1.6 vs. 1.86
GHz).

Using DCT with the prediction model provides substantial benefits
in execution time (9.5% mean savings), power consumption (3.7% mean
savings), and energy consumption (13.1% mean savings) compared to static
execution with all cores active. Despite the positive result, mispredictions
for two benchmarks result in an observed increase in execution time: FT
by 11.6% and SP by 4.2%. However, SP still manages energy savings of
2.5% because of reduced power consumed by the fewer active cores, while
FT increases energy by only 1.0% and is the only benchmark not to have
energy consumption reduced through DCT. In contrast, the largest benefit

140 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

BT | B Time —— Energy
240 51000
O— —+
230 + 50000
g T 49000 2
E 220 2
& T 48000 =
210 +
T 47000
200 - f 46000
Static St Opt Exh Binary DVFS DCT Seq Unified
Execution Strategy
CG | [Time —— Energy
210 42000
F S
H &
= %)
Static St Opt Exh Binary DVFS DCT Seq Unified
Execution Strategy
FT | [Time —— Energy
100
80 +
T 60t =
k) &
53 =
g 404 5
= &
20 +
0 Il

Static St Opt

Execution Strategy

FIGURE 4.4 Results of adaptation through various techniques. The group
of bars left of the divider represent static configurations, and those right of
the divider are the adaptive strategies. The adaptive configurations with the
best performance and energy for each benchmark are marked with stripes
and a large diamond, respectively. (continued)

Energy-Efficient Multithreading through Run-Time Adaptation B 141

IS | [Time —— Energy
20 4000
15 + T 3000
9 =
& =
‘g 10 + -+ 2000 &
[
= s
5T - 1000
0 n
Static St Opt Exh Binary DVFS DCT Seq Unified
Execution Strategy
MG | [Time —— Energy
34 7000
- 6500
3 S
b -+ 6000 8
g g
= i
T 5500
- 5000
Static St Opt Exh Binary DVFS DCT Seq Unified
Execution Strategy
SP | [Time —— Energy |
510 105000
- 100000
fg 460 + =
2 >
g - 95000 %0
= <)
H 410 + H
- 90000
360 - t t t t - 85000

T T
Exh Binary DVFS DCT Seq Unified
Execution Strategy

Static St Opt

FIGURE 4.4 (continued). Results of adaptation through various techniques.
The group of bars left of the divider represent static configurations, and
those right of the divider are the adaptive strategies. The adaptive config-
urations with the best performance and energy for each benchmark are
marked with stripes and a large diamond, respectively. and that with the
lowest energy consumption with a star.

142 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

Geometric Mean| [Time —— Energy

110

—_
(=3
(=}
|
T

90 +
80 +

70 +

Normalized Energy

Normalized Exec. Time

60 +

Static St Opt Exh Binary DVFS DCT Seq Unified
Execution Strategy

50 -

FIGURE 4.5 Geometric means of the benefits of adaptation through vari-
ous strategies. The adaptive configurations with the best performance and
energy for each benchmark are marked with stripes and a large diamond,
respectively.

occurs with IS, which sees a 40.7% reduction in energy consumption. When
compared to the static optimal execution, DCT is within 8.1% of mean
performance and even surpasses that performance with CG (by 2.0%) due
to phase awareness.

4.4.4.2 Multidimensional Adaptation

We combine the two power-performance knobs in multiple ways. First, we
consider applying the two knobs sequentially. We first apply DCT and then
DVES on the active cores in each phase, as DCT has a clear advantage over
DVFES in reducing power while improving performance on our experimen-
tal platform. Since we make decisions to maximize predicted IPC and our
platform has only two DVES levels with a small frequency difference, DVFS
adds very little benefit to DCT alone, and no reduction in execution time
compared to DCT alone occurs. However, DVES reduces power and energy
consumption by 2.3% and 2.0%, respectively, beyond DCT on average, by
identifying several phases to reduce frequency without a negative impact
on performance.

Second, we apply the unified prediction approach. The major advan-
tage of the unified prediction approach is that it eliminates blind spots in
the configuration space during the prediction process. Whereas sequential
application of DVFES and DCT will only evaluate DVES options on the de-
cided DCT level, the unified approach considers all possible values of each
parameter in a single step. Furthermore, the unified scheme uses the same

Energy-Efficient Multithreading through Run-Time Adaptation B 143

number of execution samples as the sequential approach; however, it uses all
samples for both DVFS and DCT instead of dividing them between the two.
It is able to exploit its higher accuracy to identify more effective DCT levels
and finds opportunities to apply DVES that do not harm performance.

Because of its advantages over the sequential approach, the unified
scheme improves performance by 2.2% and reduces energy by 1.9% (geo-
metric mean improvements over the sequential approach). When compared
to the default execution using maximum concurrency and frequency, the
advantages of unified adaptation become even clearer. Specifically, we see
an 11.8% speedup and a 5.9% reduction in power consumption, resulting
in an overall reduction in energy consumption of 17.0% (geometric mean
improvements over static execution). In fact, all benchmarks exhibit better
performance with the exception of FT, which slows by a mere 0.3%. Simi-
larly, all benchmarks benefit from reduced energy consumption. Even when
compared to the oracle-derived executions on the static optimal configura-
tion for each benchmark, unified adaptation achieves energy consumption
within 4.2% and performance within 7.0% (geometric means). In one case,
BT, unified adaptation achieves better performance (by 2.0%) than the static
optimal due to identification of improved configurations in several isolated
phases. This indicates that prediction models are both viable and effective
in addressing the multidimensional program adaptation problem.

4.4.4.3 Prediction versus Search Approaches

We also evaluate two empirical search approaches to identify optimal DVFS
and DCT configurations. The first of these performs an exhaustive search of
the configuration space before making a decision while measuring execu-
tion time of phases with each configuration. This approach does not require
off-line training; therefore, the programmer can use it with minimal ef-
fort. However, the online overhead of testing many possible configurations
stands to reduce the potential benefit of adaptation considerably, which is
what occurs in practice. The exhaustive search method reduces execution
time by 3.5%, power by 4.0%, and energy by 7.3%, well below the savings
of prediction-based techniques. Exhaustive search is superior to prediction
schemes in SP only. SP executes 400 workload-invariant iterations.

For purposes of comparison, we also consider a heuristic search
approach, based on a binary search of the configuration space, similar
to the approach evaluated by Li and Martinez [22]. Our implementation
of a binary search begins by executing at full concurrency and frequency.
It proceeds with sequential binary searches of the concurrency and DVES

144 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

dimensions. During the searches, if a sample is tested with worse per-
formance than the first sample, concurrency or DVFS is increased in the
next-tested sample. This approach has considerably reduced overhead com-
pared to exhaustive search because many configurations need not be tested,
resulting in 7.6% better performance and 4.1% lower energy consump-
tion (geometric mean improvements over exhaustive search). Compared
to static execution, performance isimproved by 11.1% and energy by 11.4%.
This suggests that a heuristic search can be effective in the context of adapt-
ing DCT and DVES at run time. However, it still falls short of the static
optimal configuration by 7.7% for performance and 9.8% for energy.

Comparing the unified prediction model to a binary search provides
further insight into the merits of each approach. A binary search achieves
performance that is 0.7% worse than the unified prediction approach while
consuming 5.6% more energy (geometric mean differences). A binary
search suffers from blind spots that prevent identification of effective con-
figurations at low concurrency or DVES levels. At these levels, the processor
consumes less power. The unified prediction model identifies such levels
and can therefore reduce power further (by 5.5% on average). A binary
search does achieve better performance than the unified model in three
of six cases (CG, FT, and SP); however, energy consumption is higher in
all but one case (SP). In particular, a binary search performs poorly for
MG and IS, which contain too few iterations to amortize the search over-
head, in contrast to BT and SP, for which a binary search excels since these
benchmarks execute 200 and 400 iterations, respectively. As future systems
increase in parallelism and number of DVEFS levels available, we expect the
relative benefit of prediction-based adaptation schemes to grow.

4.5 CONCLUSIONS

The number of cores in a single processor is increasing at a nearly expo-

nential rate. By putting additional simple cores in a single chip, processor
designers hope to stabilize power consumption while improving perfor-
mance. Unfortunately, even in the highly specialized HPC domain, software
cannot easily achieve strong scaling to many cores on a single chip. Our ex-
periments demonstrated that HPC applications observe performance losses
beyond even modest concurrency levels on an eight-core system. Given this
observation, we strive for economizing on the number of cores activated
on chip to reduce power consumption while sustaining, or even improving,
application performance.

Energy-Efficient Multithreading through Run-Time Adaptation B 145

In this chapter, we presented a model to predict the performance
effects of applying multiple energy-saving techniques simultaneously. The
model applies statistical analysis of hardware event rates to estimate how
voltage/frequency scaling or DCT influence performance in workload ex-
ecution phases and across system configurations. Over a range of bench-
marks, our model achieved a low median error of 6.1% in prediction in
response to simultaneous tuning of DVES and DCT. The high prediction
accuracy allows for the successful identification of efficient operating points
and phase-aware adaptation in HPC applications.

We applied our model to adapt program execution by regulating con-
currency as well as DVES levels. Our results indicated that while DVFS
on its own is not ideal for the HPC domain where performance is criti-
cal, DCT is a promising alternative. Specifically, DCT alone achieved 9.5%
performance improvement and 3.7% power reduction on a CMP-based sys-
tem. Further, we found that combining the two approaches in a synergistic
fashion could simultaneously improve performance and energy efficiency
relative to either approach in isolation. Specifically, a unified adaptation
model achieved performance improvements of 11.8%, power savings of
5.9%, and energy savings of 17.0% compared to using all cores at full
frequency. The unified model outperformed techniques that apply DCT
and DVES sequentially instead of simultaneously. We also compared our
prediction model to methods using exhaustive or binary search of system
configurations by measuring execution time while testing configurations.
We found that while a binary search outperformed an exhaustive search,
it was not superior to the prediction-based approach due to overhead and
blind spots. As we scale to more cores and DVEFS levels, the overhead of
search-based approaches is likely to increase, thus widening the advantage
of prediction. Given that the performance of prediction-based methods can
effectively approximate the performance of an oracle, we conclude that they
are a viable alternative for future-generation systems with many cores and
fine-grain power control capabilities.

REFERENCES

1. T. Anderson, B. Bershad, E. Lazowska, and H. Levy. Scheduler Activations:
Effective Kernel Support for the User-Level Management of Parallelism.
ACM Transactions on Computer Systems, 10(1):53-79, February 1992.

2. K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,
D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and Katherine

146 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

10.

11.

12.

13.

A. Yelick. The Landscape of Parallel Computing Research: A View from Berke-
ley. Technical report ucb/eecs-2006-183, EECS Department, University of
California at Berkeley, December 2006.

. L. Carrington, A. Snavely, X. Gao, and N. Wolter. A Performance Predic-

tion Framework for Scientific Applications. In Workshop on Performance
Modeling—ICCS, Melbourne, Australia, June 2003.

. K. Chakraborty, P. Wells, and G. Sohi. A Case for an Over-provisioned Mul-

ticore System: Energy Efficient Processing of Multithreaded Programs. Tech-
nical Report TR-1607, Department of Computer Sciences, University of
Wisconsin—Madison, 2007.

. M. Curtis-Maury, E. Blagojevic, C. D. Antonopoulos, and D. S. Nikolopoulos.

Prediction-Based Power-Performance Adaptation of Multithreaded Scien-
tific Codes. IEEE Transactions on Parallel and Distributed Systems, 19(10):
1396-1410, October 2008.

. M. Curtis-Maury, J. Dzierwa, C. Antonopoulos, and D. Nikolopoulos.

Online Power-Performance Adaptation of Multithreaded Programs us-
ing Hardware Event-Based Prediction. In Proceedings of the 20th ACM
International Conference on Supercomputing, Queensland, Australia, June
2006.

. M. Curtis-Maury, A. Shah, E. Blagojevic, D. Nikolopoulos, B. R. de Supin-

ski, and M. Schulz. Prediction Models for Multi-Dimensional Power-
Performance Adaptation on Many Cores. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques, Toronto,
Canada, October 2008.

. V. Freeh, D. Lowenthal, E Pan, and N. Kappiah. Using Multiple Energy

Gears in MPI Programs on a Power-Scalable Cluster. In Proceedings of the
2005 ACM SIGPLAN Symposium on Principles and Practices of Parallel Pro-
gramming (PPoPP’05), Chicago, IL, June 2005.

. V. Freeh, E Pan, D. Lowenthal, N. Kappiah, R. Springer, B. Rountree, and

M. Femal. Analyzing the Energy-Time Tradeoff in High-Performance Com-
puting Applications. Transactions on Parallel and Distributed Systems, 5(11),
835-848, June 2007.

R. Ge and K. W. Cameron. Power-Aware Speedup. In Proceedings of the
21st IEEE International Parallel and Distributed Processing Symposium, Long
Beach, CA, March 2007.

R. Ge, X. Feng, and K. Cameron. Performance-Contrained Distributed
DVES Scheduling for Scientific Applications on Power-Aware Clusters. In
Proceedings of the 17th IEEE/ACM High-Performance Computing, Network-
ing, and Storage Conference (SC’05), Seattle, WA, November 2005.

M. Hall and M. Martonosi. Adaptive Parallelism in Compiler-Parallelized
Code. In Proceedings of the 2nd DUIF Computer Workshop, Stanford, CA,
August 1997.

J. Howard et al. A 48-Core IA-32 Message-Passing Processor with DVFS
in 45nm CMOS. In Proceedings of the International Solid State Circuits
Conference, pp. 108—109, San Francisco, CA, 2010.

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

Energy-Efficient Multithreading through Run-Time Adaptation B 147

. C. Hsu and W. Feng. A Power-Aware Run-Time System for High-
Performance Computing. In Proceedings of the the ACM/IEEE Interna-
tional Conference on High-Performance Computing, Networking, and Storage
(Supercomputing), Seattle, WA, September 2005.

C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, and M. Martonosi. An Analy-
sis of Multi-Core Global Power Management Policies: Maximizing Perfor-
mance for a Given Power Budget. In Proceedings of the 39th International
Symposium on Microarchitecture, Orlando, FL, December 2006.

C.Jung, D. Lim, J. Lee, and S. Han. Adaptive Execution Techniques for SMT
Multiprocessor Architectures. In Proceedings of the Tenth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, Chicago, IL,
June 2005.

N. Kappiah, V. Freeh, and D. Lowenthal. Just in Time Dynamic Voltage
Scaling: Exploiting Inter-Node Slack to Save Energy in MPI Programs. In
Proceedings of IEEE/ACM Supercomputing’2005: High Performance Comput-
ing, Networking Storage, and Analysis Conference, Seattle, WA, November
2005.

T. S. Karkhanis and J. E. Smith. A First-Order Superscalar Processor Model.
In Proceedings of the 31st International Symposium on Computer Architecture,
Munich, Germany, June 2004.

S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by Simulated An-
nealing. Science, 220(4598):671-680, 1983.

B. Lee and D. Brooks. Accurate and Efficient Regression Modelling for
Microarchitectural Performance and Power Prediction. In Proceedings of
the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems, San Josp, CA, June 2006.

B. Lee, D. Brooks, B. R. de Supinski, M. Schulz, K. Singh, and S. A. McKee.
Methods of Inference and Learning for Performance Modeling of Parallel
Applications. In Proceedings of the International Symposium on Principles
and Practices of Parallel Programming, San Jose, CA, March 2007.

J. Li and J. Martinez. Dynamic Power-Performance Adaptation of Parallel
Computation on Chip Multiprocessors. In Proceedings of the 12th Interna-
tional Symposium on High-Performance Computer Architecture, Austin, TX,
February 2006.

Y. Li, B. C. Lee, D. Brooks, Z. Hu, and K. Skadron. CMP Design Space
Exploration Subject to Physical Constraints. In Proceedings of the IEEE In-
ternational Symposium on High Performance Computer Architecture, Austin,
TX, February 2006.

M. Lim, V. Freeh, and D. Lowenthal. Transparent Frequency and Voltage
Scaling of Communication Phases in MPI Programs. In Proceedings of
IEEE/ACM Supercomputing, Tampa, FL, November 2006.

C. Liu, A. Sivasubramaniam, M. Kandemir, and M. Irwin. Exploiting Bar-
riers to Optimize Power Consumption on CMPs. In Proceedings of the 19th
International Parallel and Distributed Processing Symposium, Denver, CO,
April 2005.

148 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

T. Moseley, J. Kim, D. Connors, and D. Grunwald. Methods for Mod-
elling Resource Contention on Simultaneous Multithreaded Processors.
In Proceedings of the 2005 International Conference on Computer Design,
pp- 373-380, San Jose, CA, October 2005.

H. Sasaki, Y. Ikeda, M. Kondo, and H. Nakamura. An Intra-Task DVFS
Technique Based on Statistical Analysis of Hardware Events. In Proceedings
of the International Conference on Computing Frontiers, Ischia, Italy, May
2007.

K. Singh, E. Ipek, S. A. McKee, B. R. de Supinski, M. Schulz, and R. Caru-
ana. Predicting Parallel Application Performance via Machine Learning Ap-
proaches. Concurrency and Computation: Practice and Experience, 19(17):
2219-2235, May 2007.

R. Springer, D. Lowenthal, B. Rountree, and V. Freeh. Minimizing Execution
Time in MPI Programs on an Energy-Constrained, Power-Scalable Cluster.
In Proceedings of the 11th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, New York, March 2006.

M. A. Suleman, M. K. Qureshi, and Y. N. Patt. Feedback-Driven Thread-
ing: Power-Efficient and High-Performance Execution of Multi-threaded
Workloads on CMPs. In Proceedings of the International Symposium on
Architectural Support for Programming Languages and Operating Systems,
Seattle, WA, March 2008.

A. Tucker and A. Gupta. Process Control and Scheduling Issues for Multi-
programmed Shared-Memory Multiprocessors. In Proceedings of the 12th
ACM Symposium on Operating Systems Principles (SOSP’89), pp. 159-166,
Litchfield Park, AZ, December 1989.

S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan,
P.Iyer, A. Singh, T. Jacob, S. Jain S. Venkataraman, Y. Hoskote, and N. Borkar.
An 80-Tile 1.28 TFLOPS Network-on-Chip in 65nm CMOS. In Proceedings
of the International Solid State Circuits Conference, pp. 5-7, San Francisco,
CA, 2007.

M. Voss and R. Eigenmann. Reducing Parallel Overheads through Dynamic
Serialization. In Proceedings of the 13th International Parallel Processing Sym-
posium and Symposium on Parallel and Distributed Processing (IPPS/SPDP),
pp- 88-92, San Juan, Puerto Rico, April 1999.

A. Weissel and F. Bellosa. Process Cruise Control: Event-Driven Clock Scal-
ing for Dynamic Power Management. In Proceedings of the 2002 International
Conference on Compilers, Architecture and Synthesis for Embedded Systems,
pp- 238-246, Grenoble, France, October 2002.

Y. Zhang, M. Burcea, V. Cheng, R. Ho, V. Cheng, and M. Voss. An Adap-
tive OpenMP Loop Scheduler for Hyperthreaded SMPs. In Proceedings of
PDCS-2004: International Conference on Parallel and Distributed Computing
Systems, San Francisco, September 2004.

CHAPTER 5

Exploring Trade-Offs
between Energy Savings
and Reliability in
Storage Systems

Ali R. Butt, Puranjoy Bhattacharjee, Guanying Wang,

and Chris Gniady

CONTENTS
5.1 Introduction 150
5.2 Reliability versus Energy Efficiency of Storage Systems 151
5.3 Current State of the Art 154
5.3.1 Reliability Improvement Techniques 155
5.3.1.1 Redundant Array of Inexpensive Disks 155
5.3.1.2 Latent Sector Errors 155
5.3.1.3 Interleaved Parity Check 156
5.3.1.4 Disk Scrubbing 156
5.3.1.5 Intradisk Redundancy 157
5.3.1.6 Idle Read after Write 157
5.3.1.7 Fine-Tuning Intradisk Redundancy and
Accelerated Scrubbing 158
5.3.1.8 Staggered Scrubbing 158
5.3.2 Energy Management Techniques 159
5.3.2.1 High-Energy Consumption of Disk Arrays 160
5.3.2.2 Energy Conservation via Disk Block
Migration 161

149

150 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

5.3.2.3 Energy Conservation in Remote

Replication Scenarios 162

5.3.2.4 Energy Conservation via Novel Storage
Technologies 163
5.4 ERP: Balancing Reliability and Energy Efficiency 164
5.4.1 Efficiencyand Reliability Metrics 165
5.4.1.1 Choice of ERP Metric 166
5.5 Applying ERP 167
5.5.1 Methodology 167
5.5.2 Evaluation 168
5.6 Extending ERP 173
5.7 Summary 176
References 176

5.1 INTRODUCTION

Digital data are increasingly playing a central role in our lives. Be it family

photographs and music, scientific observations and experimentation re-
sults, or corporate and government data, digital storage has emerged as the
reliable and cost-efficient means for providing high data availability and
fast access. However, with improvements in storage media densities that
increase disk capacities, the chances of data loss are increasing. Further-
more, employment of a large number of devices to store massive amounts
of data increases the probability that some disk failures will occur. Recent
works [1-5] have identified many reasons for dataloss, such as crash failures
that result in disks that become completely inaccessible and latent sector
errors (LSEs) by which portions of stored data are corrupted but the disks
remain accessible. As users increasingly store valuable, irreplaceable data on
computers, the reliability requirements are becoming more stringent. This
is evident by the user reaction and uproar to even small data-loss incidents
at industry leaders such as at Google [6—8] or Facebook [9]. The emerg-
ing cloud computing paradigm [10-14], which decouples users from the
system-level details of storage management, is often wrongly interpreted by
the users as a failure-proof storage system. Consequently, cloud designers
are faced with the extreme challenge of providing near-flawless reliability
for the stored data [6-9], and they naturally turn to using a high degree of
redundancy in the system to guard against the unexpected.

Exploring Trade-Offs between Energy Savings and Reliability W 151

Employing a large number of storage devices, as is the current trend in
realizing large-capacity storage systems, not only leads to an increase in the
number of failures in the system [1,2,4, 15] but also results in significant
energy consumption [15-18] (accounting for as much as 27% of a data
center’s total energy consumption [17]).

Recent research has shown that the use of energy conservation tech-
niques has both financial and environmental impacts [19-21]. Conse-
quently, many organizations employ active energy management. In fact,
it was recently observed at the NSF (National Science Foundation) Science
of Power Management Workshop [22] that researchers and IT (informa-
tion technology) practitioners now expect the periodic operating budgets,
especially cost of energy for running large disk farms, to exceed even the
initial procurement expenses [23]. Consequently, organizations are faced
with the two challenges of providing high reliability and reducing energy
consumption of the storage systems. However, addressing these challenges
can be conflicting and entail careful consideration for optimum system
reliability, performance, and energy efficiency [24].

Given the focus and need for improving both energy efficiency and
data reliability, this chapter explores the interactions between the reliability
and energy management tasks and novel storage system organization that
maximizes energy efficiency and reliability.

The rest of the chapter is organized as follows. In Section 5.2, we look
into the problem of reliability and energy efficiency trade-off for disks.
In Section 5.3, we discuss the state of the art in techniques to improve
reliability and energy efficiency in disks and provide a thorough survey
of these techniques. Next, we discuss the concept of the energy-reliability
product (ERP) in Section 5.4, followed by Section 5.5, where we examine
the application of ERP. In Section 5.6, we discuss ways to extend the concept
of ERP to other domains. Finally, Section 5.7 concludes the chapter.

5.2 RELIABILITY VERSUS ENERGY EFFICIENCY
OF STORAGE SYSTEMS

Reconciling the apparently conflicting goals of improving reliability and
energy efficiency of storage systems entails innovation. We now discuss the
motivation for providing tools and technologies that can achieve this goal
and the resulting challenges.

Increasing disk reliability reduces opportunities for saving energy
and vice versa. A large body of research has explored disk reliability and its

152 B The Green Computing Book: Tackling Energy Efficiency at Large Scale

performance implications [1-5,25-29]. One of the commonly used mech-
anisms for improving data reliability is RAID (redundant array of inexpen-
sive disks) [25], which provides protection against total disk failures. RAID
was designed to provide high performance and reliability; subsequently,
it has high energy consumption [15-18]. The higher energy consumption
arises from data and parity bits being striped across the disks in the system,
which results in all disks being active when performing I/O (input/output)
operations. While RAID provides protection against device failure, it does
not prevent all errors. Most recent disk failures are due to portions (sec-
tors) of a disk going bad [2,4]. Such sectors may not be read and discovered
to be corrupted in time when they can be fixed, leading to eventual data
loss.

To fend against such intradisk failures, a number of techniques, such as
disk scrubbing [3,28] and checking already written data [30], are being em-
ployed. These reliability-improving techniques either periodically examine
the contents of the disks for latent sector failures or perform checking reads
to ensure that data have been written successfully, so that proactive ac-
tion can be taken to avoid data loss and exposing the failures to the end
user. To minimize performance impact, reliability-improving techniques
typically run as background jobs that utilize the periods when the disk is
idle to perform data integrity checks. The use of disk idle periods for im-
proving reliability (e.g., for scrubbing), conflicts with energy-saving mech-
anisms [31-46] that want to turn the disks off during these periods and
thus preclude improving reliability. Subsequently, the energy consump-
tion of such systems further increases as depicted in Figure 5.1. This raises
the question of whether the energy management and reliability-improving
mechanisms can coexist.

A Reconcile? A
\
- | -
gl | 1 ARE
2 2 Improve I . . E E
& |& T | Spin-down disks =]
g A reliability in s X 5 ¢
= g . . ! in idle periods = B
I idle periods | 2 ®
Z| |8 | 5| |5
8 ! 3
3 \ 3
~ | 2
v v

FIGURE 5.1 The impact of improving storage system reliability and energy efficiency
on each other.

Exploring Trade-Offs between Energy Savings and Reliability W 153

Another aspect of the issue is that large data centers employ remote-
site replication to provide backup in the face of geographically localized
disasters. However, such replication is often treated as an add-on and is not
taken into consideration in the data center’s local storage system design.
Therefore, each data center still uses high-reliability systems that consume
a significant amount of energy while providing only marginal reliability
improvements.

Energy management in large-scale data storage systems is crucial. En-
ergy management in large data storage systems has been receiving extensive
research focus [19-21,33-36,43—47] as the storage energy consumption in-
creasingly accounts for a higher fraction of the total energy consumption.
Given these facts and trends, researchers have started to address disk energy
conservation in data-intensive servers [33,46,48-51]. One approach is to
exploit the fact that server workloads exhibit wide variations in intensity
over time. Along these lines, Carrera et al. [48] and Gurumurthi et al. [49]
considered multispeed disks. These works showed that significant energy
savings can be accrued by adjusting the disk rotational speeds according
to the load imposed on the disks. Carrera et al. also showed that a com-
bination of laptop and SCSI (small computer system interface) disks can
be even more beneficial in terms of energy, but only for overprovisioned
servers. Alternatively, the disk idle times can be increased, so that the disk
remains in a low-power mode longer [50, 51]. In contrast, Colarelli and
Grunwald [33] proposed the massive array of idle disks (MAID), in which
data are copied to “cache disks” to increase idle times at the regular (non-
cache) disks. More recently, Pinheiro and Bianchini [46] demonstrated
that relying on file popularity and migration, as in their popular data con-
centration (PDC) technique, produces more robust energy savings than
in the MAID approach. Their idea was to migrate the popular data to
a subset of the disks, so that other disks would become idle for longer
periods. However, their approach may change the reliability behavior of
the system by loading some disks more than others, which entails further
investigation.

Energy-reliability trade-offs in storage systems have not been
explored. Despite the advances in energy management and stor-
age reliability, there has been little research investigating their in-
teraction. A quick literature review revealed a large body of work
on either energy management or storage reliability technologies [1-
5, 15, 18, 21, 25-29, 31-46, 48-82], but few asked the questions of

154 MW The Green Computing Book: Tackling Energy Efficiency at Large Scale

how reliability improvement techniques impact energy, or conversely,
how energy consumption can be reduced while still achieving high
reliability.

In this chapter, we aim to explore the design space of providing energy-
efficient and reliable storage systems. It is clear that both energy efficiency
and reliability have to be considered as an integrated approach to provide
an energy-efficient and reliable storage system. To help us evaluate the inte-
grated mechanisms that simultaneously optimize energy consumption and
reliability, we explore the similarities between energy-performance opti-
mization and energy-reliability optimization to study energy efficiency in
the presence of reliability improvement techniques.

Energy management and performance are conflicting optimizations
since shutting the disk down will introduce additional delays, potentially
degrading the performance. To provide a balanced design, researchers rely
on the energy-delay product (EDP) [83]. The lowest EDP indicates both
low energy consumption and low delay, therefore maximizing overall sys-
tem efficiency. Similarly, as EDP is used to capture the effect of energy
savings on performance, we present the concept of the energy-reliability
product (ERP) to capture the combined performance of energy-saving
and reliability-improving approaches. This metric can provide a unified
mechanism for evaluating both energy efficiency and data reliability in
the system. The challenge lies in quantifying reliability and understand-
ing the meaning of ERP. There are many possible alternatives (e.g., user-
specified expected reliability or energy-savings level). However, we argue
that ERP is necessary in evaluating different combinations of energy man-
agement and reliability scenarios. We need a metric that will allow us to
quantitatively compare two different designs, just as EDP assists in com-
paring different designs with respect to energy and performance. We argue
that ERP is that metric, and we show its applicability using some intuitive
examples.

5.3 CURRENT STATE OF THE ART

Extensive research studies have been performed individually on energy
management and reliability. However, research effort that takes both areas
into consideration has been lacking. In the following, we briefly review the

current state of the art in each individual area.

Exploring Trade-Offs between Energy Savings and Reliability B 155

5.3.1 Reliability Improvement Techniques

Failures and errors in storage systems can eventually lead to data loss. To
avoid this, all modern systems employ some form of reliability-improving
techniques, ranging from simple inter- and intradisk replication to large-
scale RAID [25] systems with intradisk redundancy. The goal is to increase
mean time to data loss (MTTDL), a metric used for measuring reliability.

5.3.1.1 Redundant Array of Inexpensive Disks

RAID [25] stores error-coded data across multiple disks to recover from en-
tire disk failures. In essence, RAID employs some form of error coding, e.g.,
parity bit, erasure coding, etc., to introduce redundancy. The redundant
data is then striped across multiple disks. Depending on the level of redun-
dancy, RAID systems can be designed to avoid single or double disk failures
simultaneously (RAID 6). Thus, RAID systems almost always involve an
increased number of disks than actually needed to store data to remain
active. Consequently, RAID systems will have higher energy consumption
than those without it.

5.3.1.2 Latent Sector Errors
Disk failure and replacement rates in the field have been found to differ
from the mean time to failure (MTTF) specified by drive manufacturers.
Schroeder and Gibson [1] analyzed field-gathered disk replacement data
from a number of large production systems and showed that accepted
techniques of modeling LSEs need refinement to better reflect the realities
ofhow often and at what age disks are replaced. They noted that there is not
much difference in replacement rates between different types of disk drives.
This indicated a higher influence of operating conditions, rather than that
of component-specific factors, on replacement rates. For older systems,
specified MTTFs underestimated replacement rates by as much as a factor
of 30. The authors also observed increasing failure rates with age rather
than a significant infant mortality indicating the effect of early-onset wear
and tear. In addition, they found that disk failures were clustered together
in space and time on the disk. This showed that multiple LSEs are probably
caused by a single event, such as a scratch, rather than by normal wear and
tear over a period of time.

These observations motivated the need for refinement in the techniques
used to model disk failures. Statistical characteristics of disk failures used
to be modeled by a Poisson distribution and hence implied the following:

156 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

(1) Disk failures are independent; and (2) the time between failures is ex-
ponentially distributed. However, the findings of the mentioned suggested
study that failures are not independent.

5.3.1.3 Interleaved Parity Check

Dholakia et al. [26] proposed a new redundancy scheme for high reliability
in RAID storage systems. While the implementation of parity in RAID pro-
tects against disk failures, the scheme the authors proposed protects against
media-related unrecoverable errors. This had become more important in
the light of the recent industry trend to use high-capacity but low-reliability
drives instead of opting for higher-reliability drives that are more expensive.
Their solution was to use a scheme based on interleaved parity check (IPC)
where contiguous sectors are arranged logically in a matrix; the sectors in
a column are used to obtain the parity sector. The “interleave” comprises
the data sectors in the column and the parity sector. Thus, n data sectors
combined with m = interleaving depth parity sectors form a segment of
length I. Dholakia et al. compared the IPC scheme with schemes based
on Reed-Solomon codes [84] and single-parity check codes. Their analysis
showed that, in case of correlated errors, the IPC scheme provides for high
improvement in reliability.

They also compared various redundancy schemes on independent and
correlated models of disk failure and compared the reliability of the various
schemes. They found that MTTDL scales inversely with the size of the
system; that is, for an increase in the system size by a certain factor, MTTDL
decreases by the same factor. Analytical and simulation results showed that
the performance penalty of using IPC is minimal, thus making a RAID-5
system enhanced with IPC comparable to a RAID-6 system.

5.3.1.4 Disk Scrubbing

With the rise in LSEs in modern high-capacity disks [2], the redundancy
provided by RAID can be compromised due to data corruption. This is
especially bad in the case of infrequently accessed data, which can become
corrupted due to intradisk errors. The errors remain undetected until some
disk crashes and RAID fails to recover the data.

To avoid data loss due to intradisk errors, disk scrubbing [4, 28] is em-
ployed in conjunction with RAID to discover latent errors in time. Scrub-
bing is done periodically with a fixed interval between two consecutive cy-
cles, referred to as the scrubbing period. Scrubbing reduces the probability

Exploring Trade-Offs between Energy Savings and Reliability B 157

of data loss by reading the whole disk periodically and detecting errors that
will not otherwise be found by standard data accesses. A detected error can
then be fixed using RAID. Thus, a disk failure in any part of the disk can
be discovered as soon as it is scrubbed, and actions can be carried out to
recover the corrupted copies from RAID before data loss can happen. The
practical scrubbing period—the interval between two consecutive scrub-
bing cycles—is usually between 1 day and 2 weeks [4].

5.3.1.5 Intradisk Redundancy

In contrast to scrubbing, intradisk redundancy [27] keeps multiple copies
of data on a disk to enable recovery from LSEs. This approach does away
with periodic scrubbing but may introduce overhead when writing data.
Such overheads, however, can be hidden from the end user by appropriately
designing the I/O subsystem.

Iliadis and Hu [85] showed that, in light of the fact that the rate at
which unrecoverable media errors occur is higher than the manufacturer
specifications, there is a need to change the intradisk redundancy schemes.
Reliability improvements afforded by intradisk redundancy schemes were
found to be adversely affected by the higher number of unrecoverable er-
rors. They proposed revised parameters and showed that the same level of
reliability as that of a system without any errors could be achieved with a
scheme that incorporates their parameters.

Parameters for intradisk redundancy schemes, such as / and m, are cho-
sen to improve storage efficiency, performance, and reliability. Iliadis and
Hu showed that doubling the interleaving depth and the segment length
provided the same reliability as that of one without unrecoverable errors.
The authors looked into the effect of distribution of length of error bursts.
They found that the reliability achieved is dependent on the tail of the distri-
bution, and thus an accurate modeling of the distribution is required. The
performance degradation is a modest 2% decrease in saturation throughput
for a RAID-5 system enhanced with an intradisk redundancy scheme com-
pared with that of plain RAID-5. Their system proved to be a good choice
for achieving high reliability without having to incur the higher expense
associated with a RAID-6 array.

5.3.1.6 Idle Read after Write
IRAW (idle read after write) [30] avoids the need for multiple data copies
on disks by keeping the data in a disk cache until they has been written

158 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

and verified. The intuition behind IRAW is that most LSEs occur shortly
after writing, and thus by keeping a copy of data in memory for a short
period of time, most of the latent errors can be avoided. The challenge is
to perform the write verification without affecting I/O performance. This
approach can achieve at least as high reliability as scrubbing but may impose
performance overheads.

5.3.1.7 Fine-Tuning Intradisk Redundancy and Accelerated Scrub-
bing
Schroeder et al. [86] have recently provided parameters for a Pareto distri-
bution that fit the data on LSEs very well. The information is leveraged to
propose two new intradisk redundancy schemes called MDS+SPC (max-
imum distance separable erasure encoding scheme + single-parity check)
and CDP (column diagonal parity). The authors evaluated their redun-
dancy schemes against many of the aforementioned schemes in isolation,
specifically SPC, MDC, and IPC. CDP was found to increase reliability by as
much as 30% compared to SPC and achieved higher reliability compared to
IPC; however, the latter result could be attributed to different assumptions
about the modeling of LSEs. In addition, they also proposed a new scrub-
bing policy called accelerated scrubbing. The key insight is that LSEs are
localized; therefore, the next few sectors (or the rest of the disk) are scrubbed
at a higher (accelerated) rate than normal whenever an error is detected.
Thus, accelerated scrubbing enabled faster detection of subsequent errors.
Schroeder etal. looked into the length and spacing of error bursts and the
spacing between errors and provided parameters for a Pareto distribution
fitting these statistical properties. This is a major contribution in that these
values can be used by other researchers who want to model LSEs for their
work. In addition, they investigated the location of the errors on the drive
and found that errors are clearly concentrated on the first part of the drive
rather than on the remainder of the drive—“between 20% and 50% of
all errors are located in the first 10% of the drive’s logical sector space.” In
addition, there arebumpsin the distribution of errors on the disk, indicating
the usage pattern might influence the concentration of errors. They also
looked at how close in time errors occur and observed that disks experience
all LSEs in their lifetime within the same 2-week period.

5.3.1.8 Staggered Scrubbing
Oprea and Juels [87] proposed staggered scrubbing, where the disk is di-
vided into multiple regions, each consisting of multiple segments. The first

Exploring Trade-Offs between Energy Savings and Reliability B 159

segment from each region is read in a round-robin fashion, then the second
segment and so on. The process starts all over again after the whole disk
has been scanned. This approach enabled a faster disk scan. Since errors
have been found to be localized, this policy increased the chances of finding
one of them quickly. This method does not incur any significant I/O over-
head, while higher reliability is achieved without changing the scrubbing
frequency.

Oprea and Jules proposed a new metric, mean latent error time (MLET),
which measures the “average fraction of the total drive operation time
during which ithas undetected LSEs.” Thus, alower MLET means the system
is less susceptible to data loss. The authors showed that staggered scrubbing
improves the mean time to error detection by up to 40%, and MLET by
up to 30% compared to fixed-rate sequential strategy. They stressed that it
is not possible to come up with a one-size-fits-all scrubbing strategy, and
there is a need for adaptive scrubbing strategies that take into account a
wider search space.

From this discussion, we observe disk reliability is an area of active
research. Various techniques have been proposed over the years to ensure
the reliability of disks, but the problem is compounded by the fact that
multiple disks are often used together, and that too to ensure reliability
against single-disk failures. Thus, the problem of disk reliability is far from
solved.

5.3.2 Energy Management Techniques

Energy management in typical enterprises ranges from encouraging users
to power down their computers once theyleave work to dynamic approaches
that detect when devices are not in use and move them into low-power
modes. However, after each shutdown, subsequent disk I/Os will require
a disk spin-up that consumes energy. For this reason, a break-even time is
defined as the smallest time interval for which a disk must stay off to justify
the extra energy spent in spinning the disk up and down. Also, spin-ups
can result in multisecond delays in response and reduce performance and
energy efficiency.

The challenge is in identifying idle intervals that would benefit energy
efficiency. The most popular approach shuts down the device after a period
of inactivity [37,38], as shown in Figure 5.2. More aggressive dynamic pre-
dictor shuts down the device much earlier than the time-out mechanisms
have been investigated [39,40]. To improve accuracy, energy management

160 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

Last I/O performed New request
\ /
Busy I/O Idle Wake-up | Busy I/O
\ f‘ Device is off :‘A User :
Time-out Time-out Delayed
started expired

FIGURE 5.2 Anatomy of an idle period.

can be relegated to programmers since they have a better idea of what the
application, and potentially the users, are doing at a given time [41, 42].
Finally, power-aware RAID (PARAID) [52] takes into account the power
consumption of RAID systems. However, PARAID does not consider in-
tradisk reliability improvement techniques and their energy impact and is
orthogonal to the presented work.

5.3.2.1 High-Energy Consumption of Disk Arrays

To store large amounts of data, data servers typically employ large disk
arrays. Data from the Transaction Processing Council (TPC) [88] illus-
trates how large disk arrays may have to be designed for high performance.
For example, IBM reports TPC-H [89] results for a server configuration
with sixteen 2-GHz AMD Opteron processors and three hundred thirty
six 15,000-rpm SCSI disks. Even when the goal is a low price/performance
ratio, disk arrays can be large. For example, Hewlett-Packard reports TPC-
C [90] results for a server with one 2.4-GHz Intel Xeon processor with thirty
five 15,000-rpm SCSI disks.

In these large systems, disk energy consumption can be a serious prob-
lem given that high performance is paramount, and high-performance
disks consume significant amounts of energy, even when compared to mi-
croprocessors, memories, or power supply losses. For instance, in the two
examples we mentioned, the energy consumption of the disk array was
more than four times higher than that of the processors.

This disk energy problem will worsen in the future, as an increasing
number of high-performance disks will be needed to match the perfor-
mance of each microprocessor. Furthermore, as energy conservation tech-
niques for servers [19-21,47] start to be applied in practice, the disk fraction
of the total energy consumption will be even more significant.

A recent paper by Sehgal et al. [91] looked into the behavior of file
systems under different workloads. They found, unsurprisingly, significant
variations in the amount of work done in unit time and unit energy for

Exploring Trade-Offs between Energy Savings and Reliability W 161

different scenarios. Careful tuning of file system parameters yielded signif-
icant energy improvements, ranging from 5.4% to 840% over the default
configurations. The key insight is that busy servers with predictable work-
load patterns can take advantage of this fact to ensure careful examination
of file system parameters before they start. In addition, the authors experi-
mented with different file systems for different workloads and found thatno
single file system works well in all cases. Thus, it serves as yet another moti-
vation for looking into the choice of file system and associated parameters.

Another observation reported by Sehgal et al. was a strong linear re-
lationship between the power efficiency and performance of a file system.
The authors suggested that the potential power savings from tuning file sys-
tem parameters is so large that it warrants costly interventions, such as file
system reformat, which involves data migration. The authors also reported
a guideline based on the results of their experiments for the choice of file
system and parameters for different working conditions, for example, using
balanced trees as the addressing mechanism when the average file size is in
hundreds of kilobytes and using extent-based balanced trees with delayed
allocation for files of the order of gigabytes and terabytes.

5.3.2.2 Energy Conservation via Disk Block Migration

Given current trends, researchers have started to address disk energy con-
servation in data-intensive servers [33,46,48-51]. One approach exploits
the fact that server workloads exhibit wide variation in I/O intensity, which
in turn can be leveraged to conserve energy. Along these lines, Carrera et
al. [48] and Gurumurthi et al. [49] considered multispeed disks. These pa-
pers showed that significant energy savings could be accrued by adjusting
the disk rotational speeds according to the load imposed on the disks. Car-
rera et al. also showed that a combination of laptop and SCSI disks can
be even more beneficial in terms of energy, but only for overprovisioned
servers.

Another approach increases disk idle times, so that disks can be sent
to low-power modes and be kept there for longer periods of time. Zhu et
al. [50] considered storage cache replacement techniques that selectively
keep blocks from certain disks in the main memory cache to increase their
idle times. Recently, Zhu et al. [51] studied a more elegant energy-aware
storage cache replacement policy in which dynamically adjusted memory
partitions were used for caching data from different disks. These studies did
not involve data movement, which could provide further energy savings.

162 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

In contrast, Colarelli and Grunwald [33] proposed MAID, in which data
are copied to “cache disks” to increase idle times at the regular (noncache)
disks. More recently, Pinheiro and Bianchini [46] demonstrated that relying
on file popularity and migration, as in their PDC technique, produces more
robust energy savings than in the MAID approach. Their idea was to migrate
the popular data to a subset of the disks, so that other disks would become
idle for longer periods. However, their approach has two limitations: (1) It
is based on file access behavior; and (2) it may take a relatively long time to
categorize popular data as such.

Given these limitations, their system would not work well for servers
that do not access entire files at a time. In particular, database servers access
data with block granularity and exhibit widely different popularities for
different blocks. This paper addresses these limitations by using a program
counter (PC)-based approach to determine the popularity of disk blocks
and migrates them around to offload some of the disks.

Verma et al. [92] chose a few volumes from each disk that constituted its
working volume, and only the working volume was replicated. This resulted
in a storage virtualization layer optimization that did not involve expensive
data migration across physical volumes. The key insight is that the working
set in a storage system constitutes a small and stable workload that can be
efficiently replicated. Thus, all disk accesses can be effectively routed to a
small number of disks, while the other disks and volumes can remain idle.

The authors described proportional power savings of around 35% by
using their solution in a prototype experimental setup. They achieved higher
savings of around 59% using an aggressive estimate of disk I/O per second
(I0PS).

5.3.2.3 Energy Conservation in Remote Replication Scenarios
Replication of data in data centers ensures reliability; however, to provide
disaster recovery guarantees, they need to be replicated in a remote location.
In addition to the cost of running a remote data center, significant costs
are incurred during communication between the two. Goda and Kitsure-
gawa [93] looked into the problem of how to achieve power-aware remote
replication.

The key insight here is that remote centers often serve as a store for
various copies of data rather than as a primary storage place. Hence, small
penalties are acceptable if the energy savings are large enough. The changes
to the primary storage are transferred as logs to the remote center, and it

Exploring Trade-Offs between Energy Savings and Reliability B 163

applies the logs to the replicas, similar to databases. The authors achieved
energy savings by delaying the application of the transferred database log.
This allows the disks used to store the data volumes in the remote site
to remain idle for a longer duration, thereby leading to significant energy
savings. In addition, the authors used eager log compaction to reduce the
amount of log that needs to be applied and thus improve log application
throughput. Log compaction is achieved by log folding, a strategy of coa-
lescing a series of log updates in a window of time to a single log update
indicating the final result of the series of updates. They also sorted the logs in
the window to improve the sequentiality of disk accesses. They were able to
do this becase database logs store physical references to target records. With
small penalties of possible service breakdown time, the authors managed
to achieve 80-85% energy savings on the remote center.

5.3.2.4 Energy Conservation via Novel Storage Technologies
A growing trend in designing storage systems is introduction of solid-
state storage devices [58,94-97], which can provide both performance and
energy benefits. However, solid-state disks that are constructed using flash
memory have several limitations that can limit performance, lifetime, and
energy efficiency of the device. An erase before update combined with
random small-size writes can significantly degrade performance resulting
in performance level below mechanical drives. A limited number of writes to
flash storage can limit the lifetime of the device. In addition, I/O-intensive
workloads may encounter device failures after exhausting its maximum
number of write-erase cycles. While individual devices are more energy
efficient than mechanical hard drives, the lower capacity of the solid-state
drives requires several devices just to match the capacity of one mechanical
drive. As a result, the energy benefits may be unclear and require a detailed
study. Finally, the simple spinning-disk-based reliability-energy model may
not hold for such devices; thus, solid-state storage requires a detailed study
to identify the key trade-offs between energy efficiency and reliability.
One such recent work was by Andersen et al. [98], who coupled low-
power embedded CPUs to local flash storage. This setup allows for provid-
ing fast and efficient yet low-power access to a large, random-access storage
system that serves accesses to predominantly small files, as in a key-value
lookup system. In fact, the authors designed a key-value store using their
setup to show that it is practical to use embedded flash-memory-enabled
CPUs. The authors observed that CPU power consumption grows super-
linearly with speed on one hand; on the other hand, dynamic power scaling

164 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

on traditional systems is inefficient. In such a scenario, their choice of low-
power embedded CPUs provides the best of both worlds. Flash consumes
much less power than traditional disk drives, is a lot cheaper than compa-
rable DRAM (dynamic random access memory), and is particularly useful
for random access because it does not incur disk-spinning delay. Thus, cou-
pling them provided the authors with a best-case choice of components to
construct a key-value store.

However, the authors conceded that their design of the key-value store
was tailored to the peculiarities of a flash-based system. Thus, while flash
has been proven to be a viable low-cost alternative to traditional disks,
widespread adoption of the same is still a challenge.

Yet another novel architecture has been proposed by Zhu et al. [15], who
utilized multiple disks that at different speeds to reduce the overall energy
consumption. The intuition here is that different data sets are accessed at
different frequencies. Thus, by keeping data with similar access patterns on
one disk, only the currently accessed disk needs to stay on. Other disks can
remain in standby state. Their technique, called hibernator, uses a coarse-
grained algorithm to determine the workload. It transparently determines
the speed settings for the disks and migrates data to the disks with the
proper speeds. To ensure service guarantees are met, it can boost the disk
speeds if performance goals are at risk. This approach provides for energy
savings by creating opportunities for disks to stay off, while ensuring that
the data being accessed can be serviced without performance degradation.

The authors evaluated their technique using trace-driven simulations
with traces of real file systems and online transaction processing (OLTP)
workloads. They also used a hybrid system comprised of a real database
server and a storage server. They compared hibernator against various other
previously proposed schemes for disk energy management. The authors
found that hibernator provided significant energy savings of around 65%,
which is 6.5 to 26 times better than previous solutions.

5.4 ERP: BALANCING RELIABILITY

AND ENERGY EFFICIENCY
We face two alternatives for utilizing disk idle time. On one hand, the idle
period provides opportunities for spinning down the disk and saving en-

ergy; on the other hand, it can provide time for techniques to improve
reliability without performance penalties. While advanced techniques exist
for both, we initially focus on how basic energy savings (e.g., time-out based

Exploring Trade-Offs between Energy Savings and Reliability B 165

[I Scrubbing | Saved !
! BaseEnergy ' Energy ' Energy !
- T ele T ele T

Read/Write Scrubbing Idle

> -
- L

Reliabililty
Improvement

-
-

: Base :
|

|
| Reliability | |

FIGURE 5.3 Disk activity in the system.

shutdown) and reliability-improving approaches (e.g., disk scrubbing)
(Section 5.3), can coexist. The goal is to evaluate basic mechanisms for idle
time allocation between energy management and reliability mechanisms to
achieve a balance between energy consumption and reliability.

Figure 5.3 shows an example of a time distribution for some workload.
The time spent in performing I/O requests is independent of the scrubbing
or energy-saving mechanisms. Energy consumed for satisfying I/O requests
is dictated by the application behavior in the system. During busy periods,
the reliability of the disk drive is not affected and corresponds to the basic
disk reliability [27]. However, when the disk is idle, part of the idle time can
be used to improve reliability and part to save energy. The key observation
here is that if more of the idle time is allotted to disk scrubbing, the expected
MTTDL will increase, which in turn decreases the probability of failures
and thus improves reliability. However, less time will be available for spin-
ning the disk down, and additional energy will be consumed to perform
scrubbing, thus decreasing energy efficiency. Spending more energy will
increase reliability; however, the goal is to minimize energy consumption
while maximizing reliability.

5.4.1 Efficiency and Reliability Metrics

System designers are concerned with both power and energy when design-
ing large data centers. Power levels of the running machines dictate the
cooling and energy delivery infrastructure. Energy associated with the ex-
ecution of the application directly translates into monetary costs required
to purchase a given amount of energy. However, reducing the power and
energy usage of an application usually translates to degradation in perfor-
mance. Therefore, system researchers have always been concerned in evalu-
ating the energy versus performance trade-off. The trade-off originated in
circuit design since CMOS (complementary metal-oxide semiconductor)
circuits are able to reduce energy consumption at a cost of performance.
Subsequently, computer architects proposed the EDP, as a natural metric to

166 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

simultaneously capture the impact of energy and performance [83] and, in
turn, characterize the energy-performance design space with the intent to
identify the design with the best combination of energy and performance
efficiency.

EDP was further augmented into an energy delay squared product,
ED’P, that was argued to be independent of voltage in evaluating energy
efficiency of dynamic voltage and frequency scaling of processors [99].
However, we have to be careful in applying EDP or ED?P to interval-based
energy efficiency mechanisms. While each interval may result in optimal
energy efficiency, the overall application execution may not [100]. There-
fore, it is critical to carefully consider each metric and explore the effect
on overall energy efficiency. Similarly, on designing an ERP, it is critical to
explore the design issues before applying it carelessly to every situation.

5.4.1.1 Choice of ERP Metric
We can draw an analogy to energy-performance optimizations, where en-
ergy savings are increased at a cost of decrease in performance. The popular
metric to combine both performance impactand energy savings is expressed
as an EDP. Consequently, researchers are faced with the task of minimizing
a single value, the corresponding EDP [83], to improve overall system effi-
ciency. To provide a similar metric for evaluating energy and reliability, we
propose the ERP to capture the impact of energy and reliability improving
techniques on each other. We focus on the amount of additional energy
consumed due to scrubbing and the increase in reliability it generates. We
do not include the base energy consumption or reliability since it is inde-
pendent of energy management or reliability mechanisms. The ERP can
also be expressed in terms of energy savings generated in the system and
the increase in reliability due to scrubbing.

Since reliability cannot be simply measured, we define the ERP in terms
of MTTDL as follows:

ERP = Energy savings * Reliability improvement
= AEnergy * AMTTDL, (5.1)

where AEnergy is the energy saved, and AMTTDL is the corresponding
improvement in reliability. Recently, detailed models [26, 27] have been
developed that show how MTTDL is affected by varying scrubbing period

Exploring Trade-Offs between Energy Savings and Reliability B 167

TABLE 5.1 Western Digital
WD2500JD Specifications

State

Read/write power 10.6 W
Seek power 13.25W
Idle power 10W
Standby power 1.8 W
Spin-up energy 148.5]
Shutdown energy 6.4]
State Transition

Spin-up time 9s
Shutdown time 4s

when disk scrubbing is employed. Based on these models, under typical
workload and scrubbing periods, the MTTDL increases with decreasing
scrubbing period. Thus, Equation 5.1 can be simplified to

= ERP AEnergy 1/Scrubbing Period (5.2)

This leaves us with the objective to maximize ERP through idle time allo-
cation that achieves the best combination of energy savings and reliability.

5.5 APPLYING ERP

In this section, we discuss the evaluation of ERP as a suitable metric for cap-

turing the energy and reliability constraints. In the following, we describe
the experimental setup and present our evaluation using typical desktop
applications.

5.5.1 Methodology

Table 5.1 shows the specifications of the disk that we used in our simulation.
The Western Digital WD2500]D disk has a spin-up time of about 9 s from
a sleep state, which is common in high-speed commodity disks. Similarly,
the other numbers mentioned are also typical for such disks.

Table 5.2 shows six desktop applications that are popular in enterprise
environments: Mozilla web browser, Mplayer music player, Impress presen-
tation software, Writer word processor, Calc spreadsheet, and Xemacs text
editor. These applications were chosen because they have been used in pre-
vious studies and are well studied [31, 82]. Mozilla is a web browser with

168 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

TABLE 5.2 Traces Collected for the Studied Applications

Trace Number of Referenced (MB)
Application Length (h) Reads Writes Reads Writes
Mozilla 45.97 13,005 2,483 66.4 19.4
Mplayer 3.03 7,980 0 323 0
Impress 66.76 13,907 1,453 92.5 40.1
Writer 54.19 7,019 137 43.8 1.2
Calc 53.93 5,907 93 36.2 0.4
Xemacs 92.04 23,404 1,062 162.8 9.4

which a user spends time reading page content and following links. In this
case, I/O behavior depends on the content of the page and user behavior.
Impress, Writer, and Calc are part of the Open Office suite of applications,
and all three are interactive applications with both user-driven I/O behav-
ior and periodic automated I/O behavior (i.e., autosaves). Writer is a word
processor used to compose documents and perform quick proofreading
corrections. Impress is intended for creation and editing of presentations.
Calc is a spreadsheet. Xemacs is primarily used to edit one or more text files
of various size. Finally, Mplayer is a media player that is generally active only
when a user watches a media clip. Detailed traces of user-interactive sessions
for each application were obtained by a strace-based tracing tool [101] over
a number of days. Finally, the table also shows trace length and the details
of I/O activity. I/Os satisfied by the buffer cache were not counted since
they do not cause disk activity.

5.5.2 Evaluation

To better illustrate the role of ERP, Figure 5.4 presents corresponding energy
savings as well as improvement in reliability for two of the applications [24].
For each of the studied applications, the energy consumed and the time
it would take for a scrubbing cycle to complete are simulated. Next, the
scrubbing period to estimate the improvement in reliability is used, and
finally Equation 5.2 is used to determine the ERP for each measurement.
For each application, an increasing portion of an idle period is dedicated to
scrubbing (0% to 100%), and the resulting changes in reliability and energy
as well as the ERP are plotted. The reason for using such simple mechanisms
is to understand the meaning of the value conveyed by ERP. This allows us
to reason about the impact of ERP and to observe whether ERP follows the
intuition about energy savings and reliability improvements.

Exploring Trade-Offs between Energy Savings and Reliability B 169

100%4 T T
80% - 1
8
=
< 60% 1
o
Q
N
=
E 4onp 1
Z
20% —6— ERP I
—~A— Energy saving
—+— Reliability imprv.
Oﬂuf 1 1 1 1
0% 20% 40% 60% 80% 100%
Fraction of each idle period used for scrubbing
100%4 T = T T
80% - 1
5
=2
g 60% - R
o
S
e
£ a0% -
Z
20% 1 —6— ERP I
—4A— Energy saving
—+— Reliability imprv.
OOU 1 1 1 1
0% 20% 40% 60% 80% 100%

Fraction of each idle period used for scrubbing

FIGURE 5.4 Normalized energy savings and associated improvements in
reliability under varying fractions of idle periods. (continued)

170 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

100%4 t T 2 T T
80% - 1
8
El
;u 60% [8
k=]
3
=
g 40% 1
Z
9% .
20% —OE&— ERP
—~A— Energy saving
—+— Reliability imprv.
00 1 1 1 1 (;
% 20% 40% 60% 80% 100%
Fraction of each idle period used for scrubbing
100%4 T T T T
80% - 1
w)
%
=
g 60% b
o
i
e
E 0w -
Z
20% 1 —O— ERP I
—A— Energy saving
—+— Reliability imprv.
Onu 1 1 1 1

% 20% 40% 60% 80% 100%

Fraction of each idle period used for scrubbing

FIGURE 5.4 (continued). Normalized energy savings and associated im-
provements in reliability under varying fractions of idle periods. (contin-
ued)

Exploring Trade-Offs between Energy Savings and Reliability W 171

100%4; T T T T
80% - k
w3
)
=
K 60% - 1
o
S
w
E 40%| .
S
Z
20% 1 —O©— ERP |
—4A— Energy saving
—+— Reliability imprv.
00\1 1 1 1 1
0% 20% 40% 60% 80% 100%
Fraction of each idle period used for scrubbing
100%4% T T T T
80% - b
g
5 60%F 1
o
3
e
E 40% 1
S
Z
20% - —O— ERP 1
—&A— Energy saving
—+— Reliability imprv.
On(k 1 1 1 1 3
0% 20% 40% 60% 80% 100%

Fraction of each idle period used for scrubbing

FIGURE 5.4 (continued). Normalized energy savings and associated im-
provements in reliability under varying fractions of idle periods.

172 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

Figure 5.4 also includes an ERP of the mechanism that tries to balance
both energy and reliability by utilizing all idle periods that are smaller than
the break-even time for scrubbing. This does not affect the energy savings
but improves reliability. Observe that the peak ERP points to a distribution
of idle periods that can provide an efficient combination of energy savings
and reliability. These results show that ERPis capable of capturing the trade-
off point where energy savings can be realized without impacting reliability
and vice versa.

Next, the authors looked [24] into various alternate schemes for allocat-
ing idle periods. In the first scheme, they adopted a two-phase approach. In
the first phase, all idle periods are dedicated for scrubbing. This phase con-
tinues until the entire disk is scrubbed once. Then, the second phase starts;
all idle periods are used exclusively for energy savings, and no scrubbing is
done. In this case, the scrubbing period equals the trace length.

The “Two-Phase” column of Table 5.3 shows the energy consumed and
the associated reliability improvement for each of the studied applications.
The numbers are normalized against those of the previous experiments.
The results show that although this scheme saves energy, the reliability
improvement is very small, with an ERP of less than 24.8% averaged across
all applications. This approach is not advisable for two reasons: (1) the
scrubbing cycle is significantly large and the resulting MTTDL is very small;
and (2) in the energy-saving phase, all idle periods that are smaller than
the break-even time are wasted, as they neither provide energy savings nor
contribute to improving reliability.

In the second scheme, periods smaller than break-even time are used
for scrubbing—avoiding loss in energy savings—and longer periods for

TABLE 5.3 Energy Savings and Improvement in Reliability Achieved under Different
Idle-Period Allocations

Two-Phase Scrubbing Only in Alternate
Allocation (%) Small Idle Periods (%) Allocation (%)
Application Energy Reliability Energy Reliability Energy Reliability

Savings Improvement Savings Improvement Savings Improvement

Mozilla 96.2 5.1 99.9 0.7 54.3 35.5
Mplayer 42.6 84.4 99.9 0.0 99.9 0.0
Impress 97.5 2.6 99.9 0.4 41.6 71.3
Writer 96.8 3.2 99.9 0.3 46.8 60.9
Calc 96.8 4.1 99.9 0.6 30.2 43.8

Xemacs 98.1 2.4 99.9 0.1 70.9 74.5

Exploring Trade-Offs between Energy Savings and Reliability W 173

spinning off the disks. Table 5.3 also shows the result for this approach.
Once again, although energy savings are maximized (*~100%), the scrub-
bing period increases significantly, thus resulting in negligible (< 0.7%)
reliability improvement and an ERP & 0%.

In the third scheme, scrubbing the disk and spinning down the disk
are alternated on each idle period. All idle periods smaller than the break-
even time are once again used only for scrubbing. The “Alternate” column
of Table 5.3 shows the results. Overall, this scheme achieves good energy
savings (average 47.7%) while improving reliability (average 57.3%). The
average ERP of 76.4% (179.5% for Xemacs) suggests that this is a viable
approach compared to the first two.

Finally, the reliability impact of the commonly used time-out-based
approach for energy management was also investigated. A timer with a
fixed time-out interval is started whenever the disk is idle, and the disk is
spun down when the timer expires. Scrubbing is only done during the time-
out interval, that is, the time between the disk becoming idle and being shut
down.

Figure 5.5 shows the resulting energy savings and reliability improve-
ments for the studied applications under various time-out intervals. Note
that for this case, the energy comparison is done against a simple time-out
scheme without scrubbing. It is observed that such an approach, while pro-
viding almost 100% of the possible energy savings, does not provide enough
opportunity for scrubbing, thus achieving little reliability improvement.
The problem with simply using a longer time-out is that the resulting relia-
bility improvement depends on the idle period distribution. For example, if
there are a large number of idle periods, the longer time-out would provide
desired higher reliability at a cost of energy savings. On the other hand, if we
imagine a scenario where there is only one very long busy period followed
by one long idle period, the one time-out interval spent on scrubbing is not
sufficient for significantly improving reliability.

5.6 EXTENDING ERP

In an initial exploration [24], it has been shown that the ERP function can
identify trade-off points that provide for improving disk reliability with
minimal impact on energy savings. Nonetheless, it is clear that further study

is needed to broadly understand the implication of ERP and its impact on
designing both energy-efficient and reliable systems. Once the implications
are clear, further research is needed in more dynamic energy-reliability

174 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

1.004 0.04
Looz - mmmm Energy-saving 10.035
- —— Reliability-improvement | | 003 £
-%D T 4 0.025 g
= L : =
5 0998 {oo2 =
09?0996 - 40015 3
£ 0.994 - 0.01 E
0.992 - 0.005
0‘99 1 1 1 1 1 0

51525 51525 51525 51525 51525 51525
Mozilla Mplayer Writer Impress Calc Xemacs

Timeout in Seconds

FIGURE 5.5 Normalized energy savings (gray) and improvement in reli-
ability (white) achieved under a time-out-based approach with different
time-outs.

management techniques. Different workload characteristics of the appli-
cations affect the portion of time dedicated to one of either the energy
or reliability improvement techniques. Therefore, adaptive techniques are
needed that dynamically monitor system characteristics and provide online
energy-reliability balancing mechanisms. The analysis and identification of
such use cases remain a focus of ongoing research.

Another problem with such analysis is the relative weight of the reliability
and energyina unification metric. Should energybe aharder constraint thus
justifying an E°RP or vice versa an ER?P metric for reliability? Moreover, the
energy-reliability relationship is explored in terms of distribution of disk
idle times. A more traditional relationship between the two also exists; that
is, more power dissipation can lead to thermal stress on the disk, causing it
to fail. For now, ithas been assumed that the systems are properly cooled and
remain within acceptable working thermal limits; thus, we do not capture
this. However, the impact of such factors also needs to be explored.

Alternatives to scrubbing, such as intradisk redundancy [27] and
IRAW [30], require modifying the reliability-measuring approach discussed
so far. Finally, the simple disk model that has been used so far can be ex-
tended to handle advanced multispeed disks or sophisticated controls such
as varying disk speeds [49]. Although a single disk with multiple speeds
is currently impractical, an advanced model may help capture disk arrays
with heterogeneous disks. In addition, while this work focuses on disks, it
can be extended to other components within a computing system.

Nontraditional temperature range operation: Recent trends suggest
that the system components can be pushed to operate beyond suggested

Exploring Trade-Offs between Energy Savings and Reliability W 175

temperature ranges, affecting reliability but ultimately saving energy that
otherwise would be spent on cooling. While such trends are already becom-
ing a reality, the exact trade-offs are unknown. There is a need to explore
the relationships between component costs, their reliability, and potential
energy savings that result in reducing component reliability. One potential
goal is to minimize the overall cost of doing business, while the other is to
look at the energy savings versus reliability, the ERP. While costs are im-
portant, they may be affected by many other issues and change daily. The
ERP presents a more stable metric that, once optimized, would result in a
clearer scenario for decisions about system operation and maintenance.

Solid-state and mechanical disk hybrid setups: A growing trend in
designing storage systems is the introduction of solid-state storage de-
vices [58,94-97], which can provide performance benefits. The simple
spinning-disk-based reliability-energy model may not hold for such de-
vices; thus, a hybrid setup with both solid-state and mechanical storage has
to be studied in detail to identify the key trade-offs.

Disk clusters: Large storage systems, such as those employed in modern
data centers, often comprise hundreds to thousands of disks. Thus, even
with very reliable disks, some disks are always failing in such systems. For
instance, a disk crash every 5 to 10 min is a common occurrence. A well-
established strategy to avoid data loss in face of such crashes is RAID [25]; a
combination of redundant disks and error coding of data are employed to
withstand multiple disk failures [102]. As discussed, LSEs are quickly be-
coming a predominant cause of data loss in modern disks. To guard against
such errors, a number of techniques have been proposed to detect the errors
early and to avoid data loss by performing active recovery using redundancy
available through RAID. As discussed, scrubbing [3,28] and IRAW [30] are
commonly employed for this purpose. It has been argued [27] that intradisk
redundancy is better than disk scrubbing against data loss. We aim to study
how these techniques impact energy consumption in storage systems.

Reproducible data: Stored data can be classified into two categories:
(1) nonreproducible data, which once lost, cannot be (easily) reconstructed,
such as, observation data from experiments such as LHC [103]; and (2) re-
producible data, which can be regenerated if needed. We argue that while
nonreproducible data have stringent reliability requirements, reproducible
data offer interesting trade-offs. For example, if the cost of ensuring reli-
ability of a data item exceeds that of reproducing it, then a better option
would be to reproduce the data on loss and vice versa. ERP can help in
investigating the trade-offs provided by the utilization of geographically

176 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

distributed data redundancy in improving energy and data reliability at the
local data center.

The relationship between ERP and the monetary costs should be under-
stood, and we hope further research into ERP will illuminate this relation-
ship. The metric potentially will provide data center planners with a tool
to maximize the utility, while existing data center managers can reevaluate
their current operating procedures to improve center efficiency.

5.7 SUMMARY

In this chapter, we explored the interactions between reliability and energy
management in disks. We argued that similar to the way the EDP metric

is used for capturing the effect of energy management on system perfor-
mance, we should consider an ERP to evaluate the combination of reliability
and energy efficiency of storage systems. Using trace-driven simulations of
several enterprise applications, we have shown that ERP can help identify
efficient distribution of disk idle time to energy and reliability management.
In this study, we relied on simpler techniques for both energy and reliability
management, but the evaluation techniques using ERP can guide the design
of more advanced energy-reliability management.

REFERENCES

1. Bianca Schroeder and Garth A. Gibson. Disk failures in the real world:
What does an MTTF of 1,000,000 hours mean to you? In FAST, February
14-16, 2007 San Jose, CA.

2. Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso. Failure
trends in a large disk drive population. In FAST, February 14-16, 2007 San
Jose, CA.

3. Hannu H. Kari. Latent Sector Faults and Reliability of Disk Arrays. PhD
thesis, Helsinki University of Technology, 1997.

4. Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar Pasupathy,
and Jiri Schindler. An analysis of latent sector errors in disk drives. In
SIGMETRICS, June 2007 San Diego, CA.

5. Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, Garth R. Goodson, and Bianca Schroeder. An analysis of
data corruption in the storage stack. Trans. Storage, 4(3):1-28, 2008.

6. Google Analytics loses a weeks e-commerce data. http://www.blogstorm.
co.uk/google-analytics-loses-a-weeks-e-commerce-data/, 2008.

7. Some Gmail accounts were cleaned out. http://blogs.zdnet.com/
Google/?p=432, 2006.

8. Datalossat Google Reader. http://www.techcrunch.com/2007/06/11/data-
loss-at-google-reader/, 2007.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

Exploring Trade-Offs between Energy Savings and Reliability W 177

. Facebook dataloss fiasco. http://www.sophos.com/blogs/gc/g/2008/12/01/

facebook-data-loss-fiasco/, 2008.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data process-
ing on large clusters. Comm. ACM, 51(1):107-113, 2008.

Hadoop: Open source implementation of MapReduce. http://lucene.
apache.org/hadoop/, 2009.

Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis
Fetterly. Dryad: Distributed data-parallel programs from sequential build-
ing blocks. In EuroSys, March 2007 Lisbon, Portugal.

Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar,
and Andrew Goldberg. Quincy: Fair scheduling for distributed computing
clusters. In SOSP, October 2009 Big Sky, MT.

Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and
Andrew Tomkins. Pig Latin: A not-so-foreign language for data processing.
In SIGMOD, June 2008 Vancouver, Canada.

Qingbo Zhu, Zhifeng Chen, Lin Tan, Yuanyuan Zhou, Kimberly Keeton,
and John Wilkes. Hibernator: Helping disk arrays sleep through the winter.
In SOSP, October 2005 Brighton, England.

Partha Ranganathan. A science of power management. Invited talk at NSF
workshop on the science of power management, April 2009.

Xiaodong Li, Zhenmin Li, Pin Zhou, Yuanyuan Zhou, Sarita V. Adve, and
Sanjeev Kumar. Performance-directed energy management for storage
systems. IEEE Micro, 24(6):38—49, 2004.

Eduardo Pinheiro, Ricardo Bianchini, and Cezary Dubnicki. Exploiting
redundancy to conserve energy in storage systems. SIGMETRICS Perform.
Eval. Rev., 34(1):15-26, 2006.

Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thackar, Amin M. Vahdat,
and Ronald P. Boyle. Managing energy and server resources in hosting
centers. In SOSP, October 2001 Banff, Canada.

Mootaz Elnozahy, Michael Kistler, and Ramakrishnan Rajamony. Energy
conservation policies for web servers. In USITS, March 2003 Seattle, WA.
Eduardo Pinheiro, Ricardo Bianchini, Enrique V. Carrera, and Taliver
Heath. Load balancing and unbalancing for power and performance in
cluster-based systems. In Workshop on Compilers and Operating Systems
for Low Power, September 2001 Barcelona, Spain.

NSF science of power management workshop. http://scipm.cs.vt.edu.
Daniel A. Reed. Invited talk at NSF workshop on the science of power
management, April 2009 Arlington, VA.

Guanying Wang, Ali R. Butt, and Chris Gniady. On the impact of
disk scrubbing on energy savings. In USENIX OSDI HotPower Workshop,
December 2008 San Diego, CA.

David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant
arrays of inexpensive disks (RAID). In SIGMOD, 1988.

Ajay Dholakia, Evangelos Eleftheriou, Xiao-Yu Hu, Ilias Iliadis, Jai Menon,
and K. K. Rao. A new intra-disk redundancy scheme for high-reliability

178 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

RAID storage systems in the presence of unrecoverable errors. Trans.
Storage, 4(1):1-42, 2008.

Ilias Iliadis, Robert Haas, Xiao-Yu Hu, and Evangelos Eleftheriou. Disk
scrubbing versus intra-disk redundancy for high-reliability RAID storage
systems. In SIGMETRICS, October 2008 Annapolis, MD.

Thomas J. E. Schwarz, Qin Xin, Ethan L. Miller, Darrell D. E. Long, Andy
Hospodor, and Spencer Ng. Disk scrubbing in large archival storage sys-
tems. In MASCOTS, October 2004 Volendam, The Netherlands.
Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and Arkady Kanevsky.
Are disks the dominant contributor for storage failures? A comprehensive
study of storage subsystem failure characteristics. Trans. Storage, 4(3):1-25,
2008.

Alma Riska and Erik Riedel. Idle read after write: IRAW. In ATC, June
2008 Boston, MA.

Chris Gniady, Ali R. Butt, Y. Charlie Hu, and Yung-Hsiang Lu. Program
counter-based prediction techniques for dynamic power management.
Trans. Computers, 55(6):641-658, 2006.

Yung-Hsiang Lu, Eui-Young Chung, Tajana Simunic, Luca Benini, and
Giovanni De Micheli. Quantitative comparison of power management
algorithms. In DATE, 2000.

Dennis Colarelli and Dirk Grunwald. Massive arrays of idle disks for storage
archives. In Supercomputing, November 2002 Chicago, IL.

Nagapramod Mandagere, Jim Diehl, and David Du. GreenStor:
Application-aided energy-efficient storage. In MSST, September 2007 San
Diego, CA.

Mark W. Storer, Kevin M. Greenan, Ethan L. Miller, and Kaladhar Voru-
ganti. Pergamum: Replacing tape with energy efficient, reliable, disk-based
archival storage. In FAST, February 2008 San Jose, CA.

Peter Bodik, Michael Paul Armbrust, Kevin Canini, Armando Fox, Michael
Jordan, and David A. Patterson. A case for adaptive datacenters to conserve
energy and improve reliability. Technical report, EECS Department, Uni-
versity of California, Berkeley, 2008.

Fred Douglis, Padmanabhan Krishnan, and Brian Bershad. Adaptive disk
spin-down policies for mobile computers. In USENIX Symposium on
Mobile and Location-Independent Computing, 1995.

David P. Helmbold, Darrell D. E. Long, and Bruce Sherrod. A dynamic
disk spin-down technique for mobile computing. In Mobile Computing
and Networking, 38 pages 130-142, November 1996.

Eui-Young Chung, Luca Benini, and Giovanni De Micheli. Dynamic power
management using adaptive learning tree. In ICCAD, November 1999 San
Jose, CA.

Chi-Hong Hwang and Allen CH Wu. A predictive system shutdown
method for energy saving of event driven computation. ACM Trans. Design
Automation Electron. Syst., 5(2):226-241, 2000.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Exploring Trade-Offs between Energy Savings and Reliability W 179

Andreas Weissel, Bjoern Beutel, and Frank Bellosa. Cooperative /O—a
novel I/O semantics for energy-aware applications. In OSDI, October 2002
Hollywood, CA.

Carla Schlatter Ellis. The case for higher-level power management. In
HOTOS, page 162, 1999.

Hogil Kim, Yuho Jin, and Eun Jung Kim. Power management in RAID server
disk system using multiple idle states. Technical report, TAMU Computer
Science and Engineering, 2004 College Station, TX.

Xiaodong Li, Zhenmin Li, Yuanyuan Zhou, and Sarita Adve. Performance
directed energy management for main memory and disks. Trans. Storage,
1(3):346-380, 2005.

Timothy Bisson, Scott A. Brandt, and Darrell D.E. Long. A hybrid disk-
aware spin-down algorithm with I/O subsystem support. In IPCCC.
Eduardo Pinheiro and Ricardo Bianchini. Energy conservation techniques
for disk array-based servers. In ICS, June 2004 Saint-Melo, France.
Ricardo Bianchini and Ramakrishnan Rajamony. Power and energy man-
agement for server systems. Technical report, Department of Computer
Science, Rutgers University, New Brunswick, NJ, 2003.

Enrique V. Carrera, Eduardo Pinheiro, and Ricardo Bianchini. Conserving
disk energy in network servers. In ICS, June 2003 San Francisco, CA.
Sudhanva Gurumurthi, Anand Sivasubramaniam, Mahmut Kandemir, and
Hubertus Franke. DRPM: Dynamic speed control for power management
in server class disks. SIGARCH Comp. Arch. News, 31(2):169-181, 2003.
Qingbo Zhu, Francis M. David, Christo F. Devaraj, Zhenmin Li, Yuanyuan
Zhou, and Pei Cao. Reducing energy consumption of disk storage using
power-aware cache management. In HPCA, June 2004 Madrid, Spain.
Qingbo Zhu, Asim Shankar, and Yuanyuan Zhou. PB-LRU: A self-tuning
power aware storage cache replacement algorithm for conserving disk en-
ergy. In ICS, June 2004 Saint-Melo, France.

Charles Weddle, Mathew Oldham, Jin Qian, An-I Andy Wang, Peter Reiher,
and Geoff Kuenning. PARAID: A gear-shifting power-aware RAID. In
FAST, February 2007 San Jose, CA.

Dong Li and Jun Wang. EERAID: Energy efficient redundant and inex-
pensive disk array. In ACM EW11, 2004.

Xiaoyu Yao and Jun Wang. RIMAC: a novel redundancy-based hierarchical
cache architecture for energy efficient, high performance storage systems.
SIGOPS Oper. Syst. Rev., 40(4):249-262, 2006.

Kevin M. Greenan, Darrell D. E. Long, Ethan L. Miller, Thomas J. E.
Schwarz, and Jay J. Wylie. A spin-up saved is energy earned: Achieving
power-efficient, erasure-coded storage. In HotDep, 2008.

Hyo J. Lee, Kyu H. Lee, and Sam H. Noh. Augmenting RAID with an SSD
for energy relief. In HotPower, December 2008 San Diego, CA.

Euiseong Seo, Seon-Yeong Park, and Bhuvan Urgaonkar. Empirical analysis
on energy efficiency of Flash-based SSDs. In HotPower, December 2008
San Diego, CA.

180 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh Elnikety,
and Antony Rowstron. Migrating server storage to SSDs: Analysis of trade-
offs. In EuroSys, March 2009 Nuremberg, Germany.

Yan Zhang, Sudhanva Gurumurthi, and Mircea R Stan. SODA: Sensitivity
based optimization of disk architecture. In DAC Conference, June 2007 San
Francisco, CA.

Sriram Sankar, Sudhanva Gurumurthi, and Mircea R. Stan. Sensitivity
based power management of enterprise storage systems. In MASCOTS,
September 2008 Baltimore, MD.

Sriram Sankar, Sudhanva Gurumurthi, and Mircea R. Stan. Intra-disk
parallelism: An idea whose time has come. SIGARCH Comp. Arch. News,
36(3):303-314, 2008.

Nikolai Joukov and Josef Sipek. GreenFS: Making enterprise computers
greener by protecting them better. In Eurosys, pages 69—80, March 2008
Glasgow, Scotland.

Edmund B. Nightingale and Jason Flinn. Energy-efficiency and storage
flexibility in the Blue file system. In OSDI, December 2004 San Francisco,
CA.

RuGang Xu. Conquest: Combining battery-backed RAM and threshold-
based storage scheme to conserve power. WIP Report in SOSP 2003,
2003.

Hai Huang, Wanda Hung, and Kang G. Shin. FS2: Dynamic datareplication
in free disk space for improving disk performance and energy consump-
tion. SIGOPS Oper. Syst. Rev., 39(5):263-276, 2005.

Lanyue Lu and Peter Varman. Workload decomposition for power efficient
storage systems. In HotPower, December 2008 San Diego, CA.
Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. Write
off-loading: Practical power management for enterprise storage. Trans.
Storage, 4(3):1-23, 2008.

Dushyanth Narayanan, Austin Donnelly, Eno Thereska, Sameh Elnikety,
and Antony Rowstron. Everest: Scaling down peak loads through I/O
off-loading. In OSDI, December 2008 San Diego, CA.

Le Cai and Yung-Hsiang Lu. Power reduction of multiple disks using
dynamic cache resizing and speed control. In ISLPED, October 2006
Tegernsee, Germany.

Feng Chen and Xiaodong Zhang. Caching for bursts (C-Burst): Let hard
disks sleep well and work energetically. In ISLPED, August 2008 Banglore,
India.

Seung Woo Son and Mahmut Kandemir. A prefetching algorithm for multi
speed disks. Trans. High-Performance Embedded Arch. and Compilers I,
pages 317-340, 2007 Springer Berlin Heidelberg.

Qingbo Zhu and Yuanyuan Zhou. Power-aware storage cache manage-
ment. Trans. Comput., 54(5):587-602, 2005.

Athanasios E. Papathanasiou and Michael L. Scott. Energy efficient
prefetching and caching. In ATC, June 2004 Boston, MA.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.
89.

90.

Exploring Trade-Offs between Energy Savings and Reliability W 181

Timothy Bisson, Scott A. Brandt, and Darrell D.E. Long. NVCache: In-
creasing the effectiveness of disk spin-down algorithms with caching. In
MASCOTS, April 2006 Monterrey, CA.

Feng Chen, Song Jiang, and Xiaodong Zhang. SmartSaver: Turning Flash
drive into a disk energy saver for mobile computers. In ISLPED, October
2006 Tegernsee Germany.

Tao Li and Lizy Kurian John. Run-time modeling and estimation of op-
erating system power consumption. SIGMETRICS Perform. Eval. Rev.,
31(1):160-171, 2003.

Seung Woo Son, Guangyu Chen, Ozcan Ozturk, Mahmut Kandemir, and
Alok Choudhary. Compiler-directed energy optimization for parallel disk
based systems. Trans. Parallel Distrib. Syst., 18(9):1241-1257, 2007.
Youngjae Kim, S. Gurumurthi, and A. Sivasubramaniam. Understanding
the performance-temperature interactions in disk I/O of server workloads.
In HPCA, February 2006 Austin, TX.

Medha Bhadkambkar, Jorge Guerra, Luis Useche, Sam Burnett, Jason Liptak,
Raju Rangaswami, and Vagelis Hristidis. BORG: Block-reORGanization
for self-optimizing storage systems. In FAST, February 2009 San Francisco,
CA.

Jeffrey P. Rybczynski, Darrell D. E. Long, and Ahmed Amer. Expecting the
unexpected: Adaptation for predictive energy conservation. In StorageSS,
2005.

Fred Douglis, P. Krishnan, and Brian Marsh. Thwarting the power-hungry
disk. In WTEC, 1994.

Igor Crk and Chris Gniady. Context-aware mechanisms for reducing in-
teractive delays of energy management in disks. In ATC, June 2008 Boston,
MA.

Ricardo Gonzalez and Mark Horowitz. Energy dissipation in general
purpose microprocessors. IEEE J. Solid-State Circuits, 31(9):1277-1284,
1996.

Irving S. Reed and Gus Solomon. Polynomial codes over certain finite
fields. J. Soc. Indust. Appl. Math., 8(2):300-304, 1960.

Ilias Iliadis and Xiao-Yu Hu. Reliability assurance of RAID storage systems
for a wide range of latent sector errors. In NAS’ 08, June 12-14, 2008
Chongging, China.

Bianca Schroeder, Sotirios Damouras, and Phillipa Gill. Understanding
latent sector errors and how to protect against them. In FAST, February
2010 San Jose, CA.

Alina Oprea and Ari Juels. A clean-slate look at disk scrubbing. In FAST,
February 2010 San Jose, CA.

TPC. Transaction Processing Council. home page. http://www.tpc.org.
TPC-H benchmark specification. Technical report, http://www.tpc.org/
tpch, December 2007.

W. Kohler, A. Shar, and F. Raab. Overview of TPC benchmark C: The order-
entry benchmark. Technical report, 1991.

182 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

Priya Sehgal, Vasily Tarasov, and Erez Zadok. Evaluating performance and
energy in file system server workloads. In FAST, February 2010 San Jose,
CA.

Akshat Verma, Ricardo Koller, Luis Useche, and Raju Rangaswami.
SRCMap: Energy proportional storage using dynamic consolidation. In
FAST, 2010.

Kazuo Goda and Masaru Kitsuregawa. Power-aware remote replication
for enterprise-level disaster recovery systems. In ATC, pages 255-260, June
2008 Boston, MA.

Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark
Manasse, and Rina Panigrahy. Design tradeoffs for SSD performance. In
ATC, pages 57-70, June 2008 Boston, MA.

Adam Leventhal. Flash storage memory. Commun. ACM, 51(7):47-51,
June 2008 Annapolis, MD.

Feng Chen, David A. Koufaty, and Xiaodong Zhang. Understanding in-
trinsic characteristics and system implications of flash memory based solid
state drives. In SIGMETRICS, pages 181-192, June 2009 Seattle, WA.

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M.
Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, and C. H. Lam.
Phase-change random access memory: A scalable technology. IBM]. Res.
Dev., 52(4):465-479, 2008.

David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee,
Lawrence Tan, and Vijay Vasudeva. FAWN: A fast array of wimpy nodes.
In SOSP, pages 1-14, 2009.

Alain]. Martin, Mika Nystrom, and Paul 1. Pénzes. ET2: A metric for
time and energy efficiency of computation. Power Aware Comput., pages
293-315, 2002 Springer, US.

Yiannakis Sazeides, Rakesh Kumar, Dean M. Tullsen, and Theofanis Con-
stantinou. The danger of interval-based power efficiency metrics: When
worst is best. Comp. Arch. Lett., 4, 2005, doi: 10.1109/L=CA.2005.2.

Ali R. Butt, Chris Gniady, and Y. Charlie Hu. The performance impact of
kernel prefetching on buffer cache replacement algorithms. Trans. Com-
puters, 56(7):889-908, 2007.

James S. Plank. The RAID-6 liberation codes. In FAST, February 2008 San
Jose, CA.

Lyndon Evans and Philip Bryant. LHC machine. JINST, 3(S08001), 2008.

CHAPTER 6

Cross-Layer Power
Management

Zhikui Wang and Parthasarathy Ranganathan

CONTENTS

6.1 Introduction
6.1.1 Multiple Levels of Power Management
6.1.2 Cooling Management
6.1.3 Power Capping: Another Element of Cross-Layer
Power Management
6.2 Principles of Coordinated Federated Management
6.2.1 High-Level Problem Formulation: Constrained
Optimization
6.2.2 Understanding the System: Interaction between the
Knobs and Metrics
6.2.2.1 Power Consumption as a Function of
Workload and Server Power
Management
6.2.2.2 Application Performance Model
6.2.2.3 Server Temperature Model
6.2.3 Understanding the Systems: Temporal and Spatial
Variance
6.2.4 High-Level Principles of Architecture Design
6.3 Cross-Layer Power Management Architectures
6.3.1 Coordinated Server-Level Power Management:
Power Efficiency and Power Capping
6.3.2 Multilayer Power Management Solution
6.3.3 SLA Power Management
6.3.4 Unified Power and Cooling Management

184
185
187

188
190

190

192

192
196
197

198
200
203

203
205
208
209

183

184 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

6.4 Cross-Layer Power Management Solution

Designs 210
6.4.1 Feedback Control and Case Studies 210
6.4.1.1 An Adaptive Power Efficiency Control
Algorithm 210
6.4.1.2 An Adaptive Server-Capping Algorithm 212
6.4.1.3 Group Power Capper 216
6.4.2 Optimization and Case Studies 217
6.4.2.1 Optimization Problem for Power
Management 217
6.4.2.2 Constrained Optimization 221
6.4.3 Case Study: Evaluation of the Integrated
Management Solutions 221
6.4.3.1 Utilization Trace-Based Simulation 221
6.4.3.2 Basic Results: Uncoordinated versus
Coordinated Control 224
6.5 Concluding Comments 226
Acknowledgment 227
References 227

6.1 INTRODUCTION

Power delivery, electricity consumption, and heat management are becom-
ing critical in data center environments that happen at multiple layers: in
individual servers, across a collection of servers such asa blade enclosure ora

server rack, at the entire data center level, or even across multiple geograph-
ically distributed data centers. In addition, at each of these layers, power
control can be done at the hardware, the firmware, the operating system
(OS), or the application level. A key challenge arises when these multiple
controllers interfere with one another due to lack of adequate coordina-
tion. Such interference can compromise both the management objectives
and the system performance. This chapter addresses the cross-layer active
power management problem. We discuss the challenges and summarize the
key principles to consider for coordinated power control. We then present
a few examples that illustrate the problem formulation, the models, the ar-
chitectures, the algorithms and policies, and the benefits of the cross-layer
power management solutions.

Cross-Layer Power Management B 185

6.1.1 Multiple Levels of Power Management

Power management is a multifaceted problem. As a result, a multitude of
solutions has been proposed to address the power management problem in
data centers. In the following, we examine how we can create taxonomy of
these solutions across different dimensions.

First, many physical actuators are available for dynamic power manage-
ment. Given that the processors usually contribute to most of the varying
power consumption of servers, dynamic processor frequency throttling and
dynamic voltage and frequency scaling (DVES) are among the most popular
actuators for tuning the power consumption of servers. The power con-
sumption of the other server components, such as memory, storage, and
networking, may be tuned through active tuning at run time. In some cases,
when dynamic control of the status of a single component may not signifi-
cantly vary the total server power consumption, the server may be set into
different system power states, so the power consumption of the multiple
components may be changed. An example of support for such system states
can be found in the Advanced Configuration and Power Interface (ACPI)
standard [1], which defines multiple active/idle states.

Ideally, a system would show good “proportionality” [2] between the
active and idle states with power consumption tracking the resource usage.
Servers today are still not power proportional with a significant amount of
idle power consumption. Consequently, turning the entire server off is often
considered one actuator when considering optimizations to save power.

Irrespective of the specific methods used for power management, a com-
mon characteristic across all these actuators is that the capacity of the servers
varies with the dynamic tuning of the actuators. Since the servers are usually
shared by multiple applications, tuning the states of the components may
affect the capacity available for all the applications. In that context, power
can be deemed as a type of “resource” to be dynamically allocated to the
applications, although the relation between the actual power consumption
and the capacity available to the applications could be complicated.

Second, the power of the servers can be tuned through active workload
management. Traditionally, the workloads running on the servers may be
controlled through mechanisms such as admission control and load balanc-
ing. More recently, workloads can be moved across different servers through
virtual machine (VM) migration. Different from the dynamic provisioning
of power as a resource supply, active workload management varies the power
resource demand of the servers that can meet the performance requirement
of the workloads.

186 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

Third, the power management problems may be formulated with differ-
ent objectives, for instance, tracking, capping, or optimization. Solutions
focused on average power target reduction of the electricity consumed by
minimizing the power needed to achieve application performance targets.
These are typically tracking problems in which the consumed power needs
to track the resource demands of the applications. Solutions concerning
peak power, on the other hand, address the provisioning of power in data
centers. These are capping problems, which ensure that the system does not
violate a given power budget. Controlling power in most systems involves
changing the capacity of the servers and the application performance as
well. This leads to the potential performance loss with power management.
When the utility function is defined as a function of the capacity of the
servers, the power consumption by the servers, and the performance of the
applications, the power management problem becomes an optimization
problem that addresses the trade-offs between the costs and benefits of both
the capacity provisioning and the performance guarantees.

Finally, the implementation of the power management solutions can
happen at different levels of abstraction: the chip level, the server level,
the cluster level, the data center level, and even across data centers. Power
management can be implemented in hardware or as software or firmware.
The level at which a solution is implemented depends on several factors,
including the availability of the actuators, the availability of sensors corre-
sponding to the metrics being optimized, and the operational granularity
of the solution. Typically, the software solutions have more high-level ap-
plication information available, whereas the hardware solutions have more
access to low-level hardware information. Other differences among power
management solutions pertain to the nature of the metrics being opti-
mized. For example, depending on the level at which the solution operates,
power management can optimize a local metric or a global metric. Simi-
larly, power management can be implemented either as a local algorithm
or as distributed algorithms for global optimization.

The previous discussion points to four key high-level dimensions to
reason about the diversity of power management solutions: (1) actua-
tors to vary the power performance point of the system, (2) actuators to
control workload management (and correspondingly the power demand),
(3) objectives of the power management solutions, and (4) the scope of the
solutions.

While the solutions individually address aspects of the power manage-
ment problems in isolation, deploying them together has the potential for

Cross-Layer Power Management B 187

synergistic interactions and can better address the dynamic and diverse na-
ture of workloads and systems in future enterprises. The need for federation,
the full or partial overlap in the objective functions and the use of the same
or interrelated knobs for power control across the different solutions, often
at different time granularities, makes this a hard problem. In the absence of
such coordination, the individual solutions are likely to interfere with one
another in unpredictable, and potentially dangerous, ways.

As one example of potential conflict, the same power control knob may
be utilized for multiple purposes. For instance, power states (or P states), as
defined in the ACPI standard, can be utilized for both capping and track-
ing. If uncoordinated, the controllers for either objective can potentially
overwrite the other’s outputs on the P states, leading to bad application
performance, power budget violations, or eventually thermal failover.

As a second illustrative example, if workload consolidation and power-
capping controllers are uncoordinated, more workload than allowed by the
power budget may be moved to the servers. If the power-capping controller
throttles the performance to enforce the power budget, the throttled per-
formance in turn can lead to reduced utilization, which can trigger the
workload consolidation controller to pack even more workloads onto the
server, which leads to a vicious cycle and system instability.

6.1.2 Cooling Management

Traditionally, the power consumption of servers, or more generally the
computing systems for information technology (IT), including the servers,
storage systems, and networking equipment, have been extensively studied
since such power consumption is closely related to application performance.
However, the IT power is only one component of the total power consumed
by a data center. The other significant component is the facility power con-
sumed by the cooling equipment, such as cooling fans, computer room
air conditioners (CRACs), chillers, cooling towers, and the power delivery
facility such as UPSs (uninterruptible power supplies) and power delivery
units (PDUs). Studies showed that for every 1 W of power used to operate
servers, traditionally an additional 0.5-1 W of power is consumed by the
cooling and power delivery equipment that extracts the heat from or sup-
plies power to the data center [3, 4]. This effect is characterized by a metric
proposed by the GreenGrid [5], called the PUE, the power usage effective-
ness. PUE is defined as the total power entering a data center divided by the
power used to run the computer infrastructure within it. In the previous

188 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

example, the PUE would be 1.5 to 2. The yearly electricity costs for cooling
large data centers can thus reach millions of dollars.

There have been several studies to optimize for cooling that reduced
the cooling power consumption while maintaining the thermal safety of
the systems in data centers (typically through temperature thresholds for
servers) (6, 7]. In this context, the main trade-off is the cooling capacity
provisioned by the facility and the thermal performance of the servers. This
trade-off is quite complicated and further adds to the complexity with mul-
tiple power controllers discussed in the previous section. Furthermore, in a
data center with a raised-floor open environment, the server temperatures
can be modulated in the traditional mechanical cooling system by (1) the
fans inside the servers, (2) the perforated tiles on the floor that are located
in front of server racks, (3) blower speeds and supply/return air tempera-
tures of the CRAC units that provide cooling air to servers, (4) chilled water
pumps and controllers within the chillers, and (5) cooling towers that pro-
vide chilled water to the entire data center. Thus, the cooling management
problem itself is another federated control problem since the actuators may
be located at the levels of individual servers, racks, zones of servers, or en-
tire data centers, with inputs from, and control of, diverse sources, such
as server temperature; airflow rate, pressure, and temperature; and water
pressure, temperature, and flow rate. Control architectures have to be care-
fully designed to optimize the overall cooling efficiency of data centers while
meeting the thermal requirements of the servers and other equipment.

Power and cooling management have traditionally been separated on
servers and data centers, although they are closely related to each other. The
power consumption of the servers dynamically varies with the workload
and fluctuates considerably over both short-term and long-term time scales.
Moreover, active power management varies the power consumption and,
correspondingly, the cooling demand of IT systems. Without coordination
with cooling control, active IT power control can possibly create new “hot
spots” and reduce the overall cooling efficiency of a data center. Recent
work has started exploring the increased benefits possible from cooling-
aware workload management [8—13].

6.1.3 Power Capping: Another Element of Cross-Layer Power
Management

Another dimension to consider in the problem of cross-layer power man-

agement is power capping [14, 15]. The power consumption of a server, a

group of servers, or the entire data center may need to be capped due to

Cross-Layer Power Management B 189

140

120 1

100

-20 L L L L
0 7 14 21 28

Day

FIGURE 6.1 Hourly locational marginal pricing in northwestern Pennsyl-
vania in March 2010. (Source: http://www.jpm.com.)

a multitude of reasons. In the case of electrical power capping, the power
budget can correspond to the “capacity of the fuse” in the power supplies
during operation or the power capacity available from the power grid for
the entire data center. In the case of thermal power capping, the power bud-
get can be enforced due to the limited heat extraction capacity of the server
cooling fans or the limited cooling capacity of the air conditioners. Recently,
there has been an increasing amount of interest in the smart grid and its
impact on IT in general and data centers in particular [16]. The benefits
of using a smart grid infrastructure includes a reduction in CO,-emitting
power plant construction, a more efficient and reliable electricity grid, and
better customer pricing for electricity. However, the main actuators used
by the smart grid include mechanisms such as time-of-use (TOU) pricing,
critical peak pricing (CPP), real-time pricing (RTP), and peak time rebates.
As an example, Figure 6.1 shows the hourly locational marginal price in a
smart grid in northwestern Pennsylvania, where the energy price was de-
cided through bidding that represented the availability of the power and the
demand for the power. The price can vary significantly over time. To take
advantage of the possible savings, power capping is required for any power
management system. This leads to the introduction of power budgets at the
data center level.

190 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

This chapter focuses on the control and management architecture that
addresses the potential conflict of multiple interacting controllers. As is
evident from the previous discussion, the combinatorial space of the mul-
tiple dimensions of power management solutions can be quite large. This
chapter is not targeted at providing a single solution that addresses this en-
tire space. Instead, we focus on the principles and approaches for federating
cross-layer power management, followed by some examples of the archi-
tectures and the control algorithms as well as a discussion of the benefits.

6.2 PRINCIPLES OF COORDINATED FEDERATED
MANAGEMENT

Several open questions exist for the design of a coordinated solution. How
should the overall architecture be designed for individual controllers to in-
teract with each other to ensure (1) correctness (no excessive power budget
violations), (2) stability (no large oscillations), and (3) efficiency (opti-
mal trade-off between power and performance)? How do we combine the
individual tracking, capping, and optimization solutions? How do we ad-

dress the lack of visibility into other controllers and minimize the need
to exchange global information? Furthermore, given such a coordinated
scenario, there are several implications for the design of the solution. Are
all solutions equally important? Do the policies and mechanisms at the
individual levels need to be revisited in the context of their interactions
with other controllers? How sensitive are the answers to the nature of the
applications and systems considered?

6.2.1 High-Level Problem Formulation: Constrained Optimization

Power management can be formulated as a traditional optimization prob-
lem that coordinates the supply of computing resource, power, and cooling
capacity and the demand from the workload and servers themselves. Mul-
tiple objectives need to be considered for energy management in data cen-
ters, including, but not limited to, energy minimization, application perfor-
mance guarantees, temperature tracking for the safety of electronic compo-
nents, power capping, and the overall minimization of the total cost of own-
ership (TCO). The management problem can be formulated as an optimal
control problem with constraints. The object is to minimize the total en-
ergy consumption of both the IT components, such as servers, networking,

Cross-Layer Power Management B 191

and storage, denoted as Pg,,.r,and the facility components, such as CRACs,
pumps, and chillers, denoted by Pr iy :

t
min { PServers(T) + PFacility(r)df (61)

Most of the other objectives can be represented as constraints. First,
the capacity of the servers needs to satisfy the resource demand of the
applications running on the servers to preserve application performance.
It can be assumed that a resource utilization threshold is defined for each
server, and utilization under this threshold would guarantee application
performance. This means

UtilServers(t) =< UtilThresholds(t) (62)

Second, for the safety of electronic components such as processors,
memory DIMMs (dual in-line memory modules), and disks, the thermal
conditions of the servers, usually represented by the server temperatures,
need to be maintained below the specified thresholds:

TServers(t) = TThresholds (63)

Third, as motivated by requirements from the smart grid or any of
the other power-capping requirements detailed previously, the total power
consumption needs to be maintained below a predetermined or specified
on-the-fly budget:

Pservers (t) + PFacility(t) = PBudget(t) (64)

The problem defined by Equations 6.1-6.4 is a high-level generalized
description of the power management solution. However, there are still a
few things to consider about this general definition.

e The metrics, including the utilization and the temperatures of the
servers, are functions of time due to the time-varying workload de-
mand and dynamic thermal environments in data centers.

e Both the power consumption and the cost of energy are time sensi-
tive, for which the integration function is needed in the cost func-
tion, Equation 6.1. Note that a more comprehensive cost function
can be defined (i.e., one that incorporates the time-varying energy
cost).

192 B The Green Computing Book: Tackling Energy Efficiency at Large Scale

e The application performance requirement can be defined as a utility
function, which can then also be integrated into the cost function.

e The power budget can be time varying as well, as in the case when the
power needs to be clipped due to limited capacity available from the
grid.

6.2.2 Understanding the System: Interaction between the Knobs and
Metrics

Multiple variables and constraints are introduced in the power management

problem. Given the many power management knobs that are available, the

relationship between the power management actions and the variables of

interest can be quite complicated. In this section, a few such examples are

provided.

6.2.2.1 Power Consumption as a Function of Workload and Server
Power Management

Linear models have been widely used to characterize the power consump-
tion of servers, as in the model in Equation 6.5. This model captures the
relation between the power consumption and the utilization as the result
of workload management. Given that the processors are dominant in both
the power consumption and the power variance of the servers, the CPU
(central processing unit) utilization is taken as the representative server
utilization.

Pserver (t) = af(t)UtilServer(t) + bf(t) (65)

It is worthwhile to note that the model of Equation 6.5 is already a sim-
plification. In practice, this model can be nonlinear due to factors such
as power leakage and can include dependence variables to show the effect
of specific server configurations and workload types. Moreover, the power
consumption is only linear in the case that the slope a s and the intercept
b ¢ are constant. The two parameters (ay and b ¢) can be affected by server
power tuning activities such as dynamic voltage or frequency scaling and
server on/off. When considering all the possible actuations that can be ap-
plied to the server, including workload management, dynamic frequency
scaling, dynamic voltage/frequency scaling, and turning servers on/off, the
behavior of the server can be much more complicated.

Cross-Layer Power Management B 193

[
(=1
(=]

100

——Demand = 100
Demand = 75

—*—Demand = 50
Demand = 25

o
(=)

@
(=]

~
(=}

Power Consumption (%)
[o} ~
(=} o

Power Consumption (%)

(2

(=]
(o2}
(=}

04 20 40 60 80 T00 507 15 D) 25
Utilization (%) Frequency (GHz)
(a) (b)

FIGURE 6.2 Power models for Server A with six P states: (a) linear function
representing the relationship between the power consumption and the CPU
utilization; (b) nonlinear function representing the relationship between
the power consumption and the frequency.

To illustrate this further, Figure 6.2 shows the power models of an exam-
ple server, called Server A, with AMD processors that have six P states (PO,
P1, ..., P5) operating at core voltages/frequencies of 1.35/2.6, 1.30/2.4,
1.25/2.2,1.2/2.0,1.15/1.8, 1.10/1.0 V/GHz, respectively. The linear (curve-
fitting) models between the power consumption and the utilization are
shown in Figure 6.2a for different P states, where the utilization is defined
as the ratio between the CPU capacity consumed by the workload and the
maximum capacity available at a certain P state. Figure 6.2b shows the
server power consumption as a function of processor frequency, converted
from the data shown in Figure 6.2a. (The conversion was done based on
the assumption that the highest throughput of the application supported
by the server is proportional to the capacity of the cores, represented by
their operational frequencies.) For a given workload demand (represented
by the CPU capacity required to serve the workload when the CPU runs at
the highest frequency), the server power consumption is a nonlinear con-
vex function of the frequency. This nonlinearity is in part because when
the core frequencyisincreased due to changes of the P state, the voltage of the
processor is also increased, while the power is a quadratic function of the
voltage.

As another example, Figure 6.3 shows a different server, called Server
B, that has Intel processors supporting two P states, PO and P1, operating

194 MW The Green Computing Book: Tackling Energy Efficiency at Large Scale

100 100
P0/QO —— Demand = 100

ol ™ P1/Q1 95 Demand = 75
S P1/Q2 9 —%—Demand = 50
= ——P1/Q3 = Demand = 25
£ 9N —=—p1/Q4 g 9%
g P1/Q5 g
g 851 ——P1/Q6 § 85
3 P1/Q7 S
5 8ofl ——P1/Q8 1 %80

75 — 75

pe—————————
7% 20 40 60 80 100 70 05 1 15 2 25 3

Utilization (%) Frequency (GHz)

(@) (b)

FIGURE 6.3 Power models for Server B with two P states and eight more
frequency-throttling states: (a) the linear models representing the relation-
ship between the power consumption and the CPU utilization; (b) nonlin-
ear functions representing the relationship between the power consumption
and the frequency.

at core frequencies of 3.0 and 2.0 GHz, respectively. Different from the
previous server, a set of so-called Q states is defined for power management
purposes. Q0 and Q1 are the same as PO and P1. Seven more Q states
(Q2, Q3, ..., Q8) are defined, corresponding to the scenarios where the
processor is slowed by stopping the clock for a fraction of the time varying
between 87.5% and 12.5% at step size of 12.5%. The modulation through Q
states (other than Q0 and Q1) has a similar effect to frequency throttling on
the power consumption and capacity available. For instance, Q3 of Server
B is equivalent to a core “frequency” status of 1.75 GHz (= 2.0*87.5%)
in terms of the processing capacity. By doing so, finer granularity can be
provided for power tuning, and the tunable range can be extended from
that achieved using only P states. Different from Server A, the power curves
as functions of utilization are clustered together for the frequency-scaling
states Q2 to Q8 because the actual operational frequencies are close to each
other, while the voltage is not varied when the actual frequency is throttled.
Figure 6.3b shows the more complicated power-frequency relationship of
Server B compared to that of Server A. Take the example of a workload
demand of 50% corresponding to a CPU demand of the workload that
is 50% utilized when the CPU runs at PO. When the frequency is below
1.5 GHz, the CPU is always fully utilized, and the power consumption is

Cross-Layer Power Management B 195

100 BT 100
P2 PO

%0 P3 % Qo/P0
g P4 s Q1/P1
é 60 é 60 Q2
E P5 24
3 40 2 40
& &

20 20 ~

0

0
50 60 70 80 90 100 70 75 8 8 9 95 100

Peak Power Consumption (%) Peak Power Consumption (%)

(a) Server A (b) Server B

FIGURE 6.4 Throughput/power performance at different power status.

actually a linear function of the equivalent frequency. The power is even a
constant when the frequency varies between 1.5 and 2 GHz. This nonlinear
relationship between the power and the “virtual frequency” exists with the
server whenever the server power state is varied between the Q states Q2 to
Q8 (and the workload is constant). Careful consideration has to be taken
when the two mechanisms, frequency scaling (or frequency throttling) and
voltage and frequency scaling, are utilized for active power management since
they result in very different server performance characteristics.

As argued previously, power should be deemed as one resource to be
allocated. One interesting question then is how the computing performance
of the server is varied along with the power. As one example, consider
the throughput of the application, which in most cases is approximately
proportional to the computing capacity of the processors. Figure 6.4 shows
the relationship for the two servers between the highest possible application
throughput and the peak power consumption when the frequency is tuned.
These relationships are both nonlinear and concave. We define the metric
for power efficiency n = W, which means the capacity loss per
unit of power (as a resource) reduction, or the capacity gain per unit of
power resource increment. The nonlinearity shown in Figure 6.4a implies
that the power efficiency of the servers varies along with its operational
state. When the total power consumption of the servers has to be reduced,
more power resource can be taken away from the servers running at the
higher frequency (or the lower efficiency) so that less of the computing
capacity is compromised. On the other hand, when a power resource is
available for the servers, more power can be allocated to the servers running

196 MW The Green Computing Book: Tackling Energy Efficiency at Large Scale

at the lower frequency that holds higher efficiency. Figure 6.4b shows the
bimodal behavior of Server B again. The power efficiency of the server when
operating at the states Q2 to Q8 is constant and significantly different from
that of Q0 and Q1.

6.2.2.2 Application Performance Model

Although some application performance metrics (e.g., throughput) can be
proportional to the computing capacity of the servers, other metrics (i.e.,
the end-to-end response time) can be more complicated. This section shows
one example that has been discussed previously [17, 18].

Modern Internet and e-business applications are usually structured in
multiple logical tiers. Each tier provides certain functionality to the preced-
ing tier and uses the functionality provided by its successor to carry out its
part of the overall request processing. Consider a general M-tier applica-
tion. Assume that each tier # runs on a separate VM V,,, (im=1, ..., M).
Further, assume that the CPU is the single bottleneck resource and that the
CPU is the only resource to be dynamically allocated among the VMs. The
end-to-end response time of a multitier application can then be calculated
by aggregating the resident times over all resources (e.g., CPU, disk, net-
work) across all tiers (e.g., web, application, and database tier). According
to M/G/1/PS queue theory, the total resident time, or the mean response
time (MRT), of all the requests served in all the tiers can be approximated
as follows:

N N N

1 > net BumAn

MRT = — § n=1 + § Uty (6.6)
A m=1 Em - ZnNzl ,Bnmkn n

In the model of Equation 6.6, the MRT is broken down into two parts:
the resident time on CPU resources represented by the first term and the
resident time on non-CPU resources represented in the second term. The
workload is assumed to have N transaction types, such as login, browsing,
and bidding. Unlike workload models that assume a stationary transaction
mix (and correspondingly use an aggregate request rate to characterize the
workload), the model of Equation 6.6 defines the intensity of the workload
as a vector (Aq, ..., Ay), where A, is the average request rate of trans-
action type n during one time period. The parameter f,,, represents the
average CPU demand of transaction type at tier m, «,, defines the service
time of non-CPU resources of transaction type #, and E,, means the CPU

Cross-Layer Power Management B 197

entitlement that is allocated to the virtual server at tier m. The model in
Equation 6.6 can be extended to model the performance of the application
when power is under active control. For instance, dynamic frequency scal-
ing varies the processor capacity. However, that may not change the CPU
demand B, of the application requests.

6.2.2.3 Server Temperature Model

Server temperatures, or more precisely the component temperatures of the
servers, are the main metrics for server thermal performance. For a server
cooled by fans, the dynamic thermal model for CPU temperature Tcpy, the
dominant temperature sensor in most servers, can be derived by leveraging
heat transfer theory for thermal resistance and energy balance via a lumped
capacitance method [19],

d TCPU C2

Ci it T RO (Tambiens — Tepu (¢)) + Q(1) (6.7)

where Tampicn: is the ambient temperature. The variable Q represents the
heat transferred per unit of time between the CPU and the ambient air.
The heat can be approximated using CPU power consumption, which is
modeled similar to server power as

Pepy (t) = cp(t)Utilcpy(t) + dg(t) (6.8)

The variable R in Equation 6.7 is the thermal resistance between the
CPU temperature sensor and the ambient temperature sensor, which can
be approximated as

Gs

v
J

R(t) = +C4 (6.9)
where v is the volumetric airflow rate through the heat sink. The parameter
ng is determined by the shape of the thermal resistance curve as a function
of the airflow rate. It is primarily related to heat-sink design and the level
of turbulence in the flow, which is a function of air velocity through the
heat sink. The parameters Cy (k = 1,2, 3,4) are constants related to the
fluid and material properties of the air, the CPU package, and the heat
sink.

198 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

Note that the models of Equations 6.6—6.9 capture the interaction among
the thermal condition of servers, the workloads, the local server cooling,
and the data-center-level cooling, represented by the CPU temperature, the
CPU utilization, the thermal resistance, and the ambient cooling air tem-
perature, respectively. From the dynamic control point of view, the CPU
temperature is a first-order linear function of both the heat transferred
and the ambient temperature. This relation has been widely utilized pre-
viously to model electronic component temperatures. However, when the
fan speed is actively tuned, the time constant of the first-order system can
vary significantly along with the fan speed. This complicated nonlinear and
time-varying behavior of the thermal system makes it challenging to design
efficientand robust dynamic controllers. It is worthwhile to note that the fan
power, as a function of the fan speed, is dependent on the heat transferred,
or the power consumed by the processors, and the CPU temperatures. In
other words, when the total power of the fans and the servers has to be
capped, it is not trivial to allocate the power budget between the fans and
the servers to maximize energy efficiency.

6.2.3 Understanding the Systems: Temporal and Spatial Variance

As a few examples, the models in Equations 6.1-6.9 demonstrate the
comprehensive relationship among power management actions (through
resource provisioning and demand shaping) and the application or server
performance, such as the temperatures and the end-to-end response times.
The discussion in this section summarizes the general temporal and spatial
properties of the systems that need to be considered for development of
control and optimization architectures and algorithms.

e Temporal behavior of applications
Workloads for Internet and enterprise applications are bursty. They
show time-varying intensities at both the aggregate level and at the
individual request level and typically exhibit patterns corresponding
to different time granularities from hours, days, weeks, to months.

e Time-varying energy price
As discussed, the price of energy can change significantly over time,
in different time scales of minutes, hours, days, or seasons, depending
on the source of power and the demand on power.

e Time granularities of actuators
Due to physical limitations, and possible capacity and performance
overheads, the power-tuning actuators can work at very different time

Cross-Layer Power Management B 199

scales as well. DVES can be enforced frequently, sometimes even at the
granularity of a few nanoseconds. Their performance overhead is low,
and these solutions can be implemented at the hardware, firmware, or
software level. Admission control and load balancing can be executed
atvery fine granularities (e.g., per request), while VM is typically done
at longer time granularities due to its effect on the delay, computing
capacity, and networking bandwidth consumption. Turning on/off
servers can take much longer, and this actuator may not be invoked
frequently due to the capacity loss of the servers and the effect on the
application performance.

Time properties of metrics

The SLOs are defined against certain time scales. For instance, the
MRT values are sensitive to the time periods for averaging, and an
MRT threshold is always defined against the time period. As another
example, power budget violations may be monitored at the granular-
ities of microseconds, seconds, minutes, or even hours, depending on
the objectives of the power capping. Similar leeway exists with the tem-
perature threshold, defined in the specification of the components.

Time constants of the systems

The time constants represent the responsiveness of the systems to
changes/disturbances applied to the systems. The power consump-
tion of the server components changes almost immediately following
workload changes or tuning off the power states. The end-to-end re-
sponse time can have a much larger time constant due to the queuing
processes along the travel path of the request. CPU temperatures can
take a few seconds to track the changes in the workload but take longer
to respond to the changes in fan speeds due to the relatively slower
thermal processes in the heat sink. At the data center level, the in-
take air temperatures of the racks take tens of minutes to converge on
changes in CRAC operation conditions.

Scope variability across actuators and optimizations

Server power tuning affects all the VMs and the applications hosted on
the server, while workload management changes the power consump-
tion of the servers hosting the workload and the performance of the ap-
plications sharing the servers with the workload. Temperature thresh-
olds can be defined per component, per server, per rack of servers, per
thermal zones, or per data center (e.g., the threshold of the returned air

200 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

temperatures of the CRACs). The performance metrics of the applica-
tions are typically defined per application. A few performance metrics
may be introduced for multiple applications (e.g., for performance
differentiation purposes). Electrical power capping can be enforced
per component, per server, per rack, per multiple racks that are served
by one PDU, or the whole data center. Finally, energy minimization
can be done against the constraints of a single application up to the
workloads across multiple geographically distributed data centers. Itis
worthwhile to emphasize that, due to the interaction among the actua-
tors, metrics, and the optimizations, most actuators can be utilized for
multiple objectives. For instance, P-state tuning can be used for both
power efficiency and power capping, and workload management can
help with power efficiency, power capping, and temperature control.

e Heterogeneity

In addition to temporal variance and variability in scope of influ-
ence, heterogeneity of workloads and systems needs to be considered.
Especially, different applications have very different behavior, and
the performance requirements can vary by workload type. Similarly,
servers are heterogeneous in terms of capacity, power performance,
and energy efficiency. For cooling management, the cooling efficiency
in the data center is location dependent due to physical design issues
such as layout of the racks as well as workload distribution.

6.2.4 High-Level Principles of Architecture Design

When designing an architectural framework for cross-layer power manage-
ment, it is worthwhile considering the physical and functional topologies
already present in the data center. For example, the physical IT infrastruc-
ture is typically hierarchical: The data center is composed of rows (aisles) of
racks, each rack hosts a number of servers, and each server runs a set of VMs
(in a virtualized environment). Inside the servers, there are layers, such as
the hardware, the firmware, the hypervisor, the VMs, and the applications,
typically visualized as a stack. The servers can be grouped together for dif-
ferent purposes. As one typical example, the VMs can only be migrated
in a domain of the servers with shared storage. In another example, the
networking structure in a data center can apply constraints to the scope of
the actuation, such as VM migration, as well.

Other types of architecture also exist in the data center. Each applica-
tion can span multiple physical servers. For instance, a typical multitier

Cross-Layer Power Management B 201

application has a web tier, an application tier, and a database tier; each
tier can be hosted in multiple physical or virtual servers. The cooling
infrastructure of a data center is not exactly hierarchical. Inside a typi-
cal open and air-cooled data center with raised floor, the cool air can be
provided by the CRAC units to zones of the data center and is then sent to the
racks through local cooling actuators (e.g., perforated tiles), and the cooling
airis then pulled through the individual servers by the cooling fans inside the
servers. However, the cooling capacity of the data center may be provisioned
by multiple resources; for example, it can come from a water economizer
or outside-air cooling or some energy storage systems. The networking and
storage systems have different, often more complicated, topologies.

Given the diverse topologies of physical and logical infrastructure in the
data center, there is no single architectural approach that works best for
power management at the data center level. However, there are still a few
principles that may be generally applicable.

e Federation
Federation is needed in the presence of the temporal and spatial vari-
ances. Multiple controllers are needed to address the individual pieces
of the problems; however, they are also required to coordinate with
each other.

e Formal optimization
Optimization is necessary to address the multiple objects, the multiple
constraints, and the interactions among the actuators, metrics, and
subproblems. However, a single gigantic optimization process is not
reasonable due to the temporal and spatial variation discussed in
the previous section. Such a process is infeasible because of both the
complicated behavior of the systems themselves (e.g., nonlinearity,
discontinuity, the large parameter space) and the unavailability of
models that are accurate enough. In addition, even the most detailed
models still have the potential for inaccuracies, not all the dynamics of
areal-time environment can be captured in mathematical models, and
the parameters of the models can vary with time. As one set of critical
inputs to the models, the capacity, power, and cooling demands for the
servers are usually not predictable due to bursty workload behaviors.
The computing capacity overhead of the optimization process can
sometimes be significant as well. On the other hand, optimization may
be applied for some subproblems (i.e., VM migration and capacity

202 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

planning when reasonably accurate models and metrics are available),
and the inaccuracy of the decisions may be compensated by other
lower-layer controllers.

e Feedback control

Feedback control techniques are very helpful to deal with (1) complex
systems that may not be captured by mathematical models, (2) dis-
turbance to systems that are not under control, and (3) unpredictable
workload variance. However, to apply a control-theoretic approach
to power management, the problem will often need to be formulated
as a tracking problem, with one or more metrics to be driven to some
reference values at the steady states or some reference trajectories. One
application of feedback control is to manage the end-to-end response
time of the application when the response time is to be maintained at
a given reference level upon changes of the workload. The reference
level can be the response time threshold defined in SLA or derived
through higher-level cost optimization.

e Hierarchical control

Hierarchical control can be one natural choice to deal with some
problems. For instance, to meet the power budget of the data center,
the budget can be enforced by clipping the group power consump-
tion of a cluster of servers, grouped based on PDU connections. The
power budget of each group is then enforced by capping the power
consumption of the servers. Hierarchical control can be implemented
in cooling management as well. For instance, the CRAC units provide
cool air to the zones of the data center, which is then redistributed to
the racks through perforated tiles. In that case, the “zonal” cooling
controller responds to the “aggregate” local cooling demand. For more
complicated cases, a common guiding principle is to enable coordi-
nation, wherever possible, by connecting the actuation at one layer
to the inputs at another layer. This allows the feedback controller to
react to (and learn from) interactions across controllers (e.g., through
the changes of its reference value) the same way as it would react to
disturbances.

e Minimal interfaces
An important principle in cross-layer power management is to min-
imize the number of explicit changes in the individual controllers
for coordination. This avoids the performance issues around global

Cross-Layer Power Management B 203

information exchange or the availability issues around a centralized
arbitration model.

e Formal rigor, flexibility, and extensibility

Stability and performance have to be guaranteed for the feedback
controllers, especially in the face of changing workload demand and
interacting controllers. In addition, a cross-layer power management
solution needs to be flexible, allow different deployment scenarios,
and work well with the dynamic nature of enterprise data centers.
Changes of workload behavior, system models, controller policies,
time constants, and the like are all to be accommodated. Finally, the
architecture should easily be extended to other classes of controllers
and other specific implementations.

6.3 CROSS-LAYER POWER MANAGEMENT ARCHITECTURES

In this section, we discuss how the broad principles discussed can be ap-
plied in the context of specific cross-layer power management solutions. We

present four examples: (1) coordinated power capping and power efficiency
controllers (ECs) in a set of servers; (2) a cross-layer power management so-
lution that includes server-level and data-center-level power management,
including VM power management with capping and ECs; (3) unified power
and application SLA management; and (4) unified power and cooling man-
agement.

6.3.1 Coordinated Server-Level Power Management: Power Effi-
ciency and Power Capping

As the first case, Figure 6.5 represents the control system architecture for
a group of servers for the purposes of server-level power efficiency and
power-capping management. It introduces three controllers to the servers:
an EC that adapts the power consumption of the individual server to track
the demand of the workload, a server capper (SC) that throttles the power
consumption of the individual server, and a group capper (GPC) that throt-
tles the total power consumption of the group of servers. To improve the
power efficiency of the server, it is considered as a “container” that should be
used at a desired fraction of its available capacity, or “utilization,” notated
as the reference (refUtil). Regulating resource utilization at its reference
drives the EC to dynamically “resize the container” by varying the proces-
sor voltage/frequency through P-states tuning. This allows the power con-
sumed to adapt to the resource demand the workload places on the server

204 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

|

1

1

[}

|

, refUtl Efficiency | Vol/Freq srvUtil

: t

Controller

: Min ﬂ. Server Lperf:_,

! Freq '

1srvCap Server '
- Capper Freq srvPow |

! |

\ 1

| 1

| 1

1 Server 1

1

1
c b grpPow !
rpCap ! Grou
g_:. Cappepr mgtCap srvPow_1 srvPow_2 srvPow_m i
1
1
1
: srvCap_1 srvCap_2 srvCap_m :
' |
!]
1
: Server Server Server :
1 Capper Capper Capper :
1
1
! 1
' Efficiency Efficiency Efficiency !
: Controller Controller remt Controller :
1
I :
i Server 1 Server 2 Server m '
:Group :
L 1
(b) Group power capping

FIGURE 6.5 A group of servers with active power efficiency control and
power capping.

in real time. The target utilization is set up for performance. It is usually
lower for the workloads with bursty demand than for workloads with less
variance.

The group power capping is enforced through two controllers. At the
group level, the GPC collects the power consumption of the individual
servers (srvPow) and the total power consumption of the group (grpPow),
based on which it distributes the group power budget (grpCap) to the
group members (srvCap). At the server level, the SC measures the per server
power consumption (srvPow), compares it to its power budget (srvCap),

Cross-Layer Power Management B 205

and drives the server power consumption to the budget level by changing
the processor voltage/frequency through P-states or Q-states tuning.

The two-layer control design for power capping provides a peak power
management architecture that is easy to implement, reliable, and dis-
tributed. The SC can be implemented in the local servers. The GPC can
be located at different levels, for instance, the blade enclosures, the racks,
or even the data center. The two controllers work in different time scales.
The control intervals of the SC can be seconds. The GPC needs to commu-
nicate with the individual servers. It runs at lower frequency (e.g., in tens
of seconds).

The EC runs in the individual servers. Among the three controllers, it
runs at the shortest time scale (e.g., 100 ms), so that it can track bursty
workload demands. Both the EC and the SC tune the operational volt-
age/frequency of the processors. To avoid confliction, the lower one of the
two frequency outputs from the two controllers is finally actuated. This
implies that, when the server power is below the server budget, the EC is
dominant. But, if the server power goes above the budget, the SC will throt-
tle the power consumed even if the utilization is above the reference, which
can potentially compromise the application performance.

6.3.2 Multilayer Power Management Solution

In this section, we discuss one case with multiple layers of power con-
trollers and more power management actuators besides that of frequency
scaling/throttling. The individual controllers are representative in data cen-
ters currently that have many blade enclosures and servers. Most of the
controllers are now available commercially.

Figure 6.6 shows the architecture with five controllers that are repre-
sentative for their diversity: An EC optimizes per server average power
consumption; a local power capper (LPC) implements thermal power cap-
ping; as in the previous section, an enclosure power capper (EPC) and a
group power capper (GPC) implement (thermal) power capping at the
blade enclosure and rack or data center levels, respectively; a global con-
troller seeks to reduce the average power consumed across a collection of
machines by consolidating workloads and turning unused machines off.
There are power budgets in the server, enclosure, or group levels that can
be provided by system designers or data center operators based on thermal
budget constraints or determined by high-level power managers.

206 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

Enclosure
budget

pow_enc

FIGURE 6.6 One architecture for integrated power management.

Figure 6.6 represents one example of a set of cascaded controllers for both
power efficiency and power capping. The innermost level is the EC, acting
similarly to the EC in Figure 6.5. It regulates the CPU resource utilization
at its reference by varying the voltage/frequency of the processors. The
LPC caps power at the blade/server level and is implemented as a controller
nested around the EC. A key aspect of the design is that the target utilization
level 7. is used as the actuator for the LPC (rather than P-state tuning). In
the event of a power budget violation, the controller increases the r,. r input
to the EC, which in turn responds by going to lower P states, enabling the
power budget to be met. Working in a reactive way, this approach may lead
to transient budget violations, but the controller bounds the time on such
violations. As discussed, this is acceptable in a thermal power capper. An
optional electrical power capper (CAP) can be implemented in parallel to
the EC as shown in the figure and can respond to the electric power budget
violation immediately.

The EPC implements enclosure-level power capping. For each control
epoch, the EPC controller monitors the total power consumption of the

Cross-Layer Power Management B 207

blade enclosure and compares it with an enclosure-level power budget.
Based on the comparison, the controller assigns power budgets for the next
epoch to all the individual blades in the enclosure. The LPC controller
in each blade uses the minimum of the power budget recommended by
the EPC and its own local power budget as its input reference. The actual
division of the total enclosure power budget to individual blades is policy
driven, and different policies (e.g., fair share, FIFO [first in, first out],
random, priority based, history based) can be implemented. Essentially,
the communication between the layers happens through the power budget
settings and the measurement of the consumed power.

The group-level power capping, implemented by the GPC, works fairly
similarly, butat either the rack level or the data center level and with different
time constants. The actual power consumption of the group is compared
to the group power budget, based on which the power budgets are assigned
to all the next-level servers and blade enclosures. As before, within the EPC
and the LPC, the lower of the GPC’s recommendation and the local budget
values is chosen.

The last element of the architecture is the global controller (GC). Differ-
ent from the previous controllers that tune the power status of the servers
or change the power budget references, the global controller is to distribute
the workloads through ways such as load balancing and VM migration.
It reshuffles the distribution of the workloads, consolidates the workloads
onto fewer servers when the demand is low, and turns off idle servers so
that a minimum amount of power will be consumed by the servers while
still meeting the performance requirement of the applications. When the
demand increases, the global controller will redistribute the workload and
turn on servers if needed.

The global controller is not cascaded with the other controllers as the
power-capping controllers do. It manipulates the resource demand (such
that the power demand also is manipulated) on the servers based on histor-
ical data of the workload and the servers while the other controllers tune the
computing and power resource supply. The GC controller works in longer
time intervals so that the demands can be satisfied through the lower-layer
controllers. On the other hand, the GC controller has to be aware of the
constraints the lower-layer controllers will apply. For instance, when en-
forced by the power-capping controllers, the local power budgets of the
groups or the individual servers clip the capacity available to the servers as
well. These budgets have to be respected by the GC controller when the de-
cision on workload distribution is made. Otherwise, more workloads than

208 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

Performance
Targets

Application Application . Application
Controller 1 Controller 2 Controller M
Resource
Utilization
\J Y
Efficiency Efficiency . Efficiency
Controller 1 Controller 2 Controller N
A4 \J Y
|App1| |APPM| |App1| |App2| |App2| |AppM|
VM VM VM VM VM VM
Physical Server 1 Physical Server 1 Physical Server N

FIGURE 6.7 Performance-driven resource allocation.

allowed by the budgets can be migrated onto the servers, which will result
in additional performance loss.

6.3.3 SLA Power Management

In the previous two cases, we did not explicitly consider end-to-end per-
formance metrics such as the response time of the applications. As shown
in the performance model of Equation 6.6, the response time of an ap-
plication with multiple tiers can be tuned through the utilization of the
VMs that host the tiers of the application, defined as the ratio between
resource consumption i Bnmin and resource entitlement E . Figure 6.7

n=1
represents one such architecture that extends the power efficiency control

to application performance management. The application controller (for
each application) sets up the utilization targets of the VMs that host the
individual components of the application, driven by the performance target
of the application itself. The utilization targets of the individual VMs can be
tuned through feedback control techniques or feed-forward control based
on the performance models (e.g., the model shown in Equation 6.6) and
real-time measurement of the workload parameters, such as the intensities
and resource consumption of the application. The EC (for each physical
server) sizes the physical server through dynamic tuning of the processor
frequency to minimize the power consumption while meeting the aggregate

Cross-Layer Power Management B 209

resource demand of all the VMs running on the server. The EC in this case
is also responsible for allocating the CPU shares available to the VMs to
meet the individual resource demand. If the aggregate demand exceeds the
maximum capacity of the server, the EC needs to do arbitration to allocate
the CPU shares based on some fairness criteria or predefined policies such
as priorities of the applications.

6.3.4 Unified Power and Cooling Management

The three cases discussed in the previous sections did not consider the ther-
modynamics of the servers and the data centers yet as described in the exam-
ples in Equations 6.7—6.9. Compared with the server power consumption
or utilization metrics, the temperatures of the servers are relatively slower
to respond to the changes in the workload, tuning of the power states of
the servers, or changes to the cooling actuators, such as the server fans. The
dynamics of the server temperatures are more complicated than the other
metrics. However, the architectures discussed in the previous sections can
still be extended to accommodate the thermodynamics and the thermal
requirement of the servers, which is represented by the temperature thresh-
olds. As one example, we describe how one could extend the architectures
shown in Figures 6.6 and 6.7 for power management of a group of servers,
each with its own cooling fans; a set of blade enclosures, each with a set of
blades and cooling fans; and a set of applications, each with multiple tiers
running on multiple VMs that can span multiple blades or servers. The key
components include the following:

e An application controller for each application that decides the re-
source demand of the VMs that host the individual tiers of the appli-
cations

o An EC for each blade or server that minimizes the power consumption
of the blade or server while meeting the demand of the VMs running
on the blade or server

e A fan controller for each server or each blade enclosure that tunes
the fan speeds dynamically to maintain the server or blade temper-
atures below their thresholds while minimizing the total fan power
consumption

o A server LPC for each server that maintains the total power consump-
tion of both the server and its cooling fans below a given threshold
through DVES

210 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

e Ablade LPC for each blade that maintains the power consumption of
the blade below a given power budget through DVES

e An EPC for each enclosure that maintains the total power consump-
tion of the enclosure (including the enclosure itself, the blades, and
the cooling fans) below a given power budget through setting of the
power budgets for the individual blades

o A GPC for the group of the servers and enclosures that keeps the total
power consumption of the group below a given threshold through
setting of the power budgets of the servers and the enclosures

o A GC for the group that migrates VMs to consolidate workloads and
turns servers on/off when needed.

6.4 CROSS-LAYER POWER MANAGEMENT SOLUTION
DESIGNS

The power management architectures define the interactions between the

subsystems that are located at differentlayers and are under active control or
optimization. We discuss the management objectives, the control actuators,
the metrics to be observed, and the possible inputs/changes/disturbances
to the individual subsystems. Many techniques are available to achieve the
management objectives. In this section, we discuss two types of techniques
often utilized to address the complicated management tasks, especially dur-
ing the operation of the systems: feedback control and optimization. To
ground the discussion, we focus on the first two architectures of the pre-
vious section. We end this section with a discussion of evaluation studies
showing the benefits and learnings from these approaches.

6.4.1 Feedback Control and Case Studies
6.4.1.1 An Adaptive Power Efficiency Control Algorithm
In the architecture shown in Figure 6.5, the power consumption of the
servers is minimized while the total power consumption of the group is
capped below a threshold. There are feedback loops shown in the figures
for both the power EC and the power cappers. In this section, we give a few
examples that show how to apply feedback control techniques in the design
of the controllers.

Figure 6.8 describes an adaptive feedback algorithm for the server EC.
The controller runs in discrete times from interval to interval. Each interval
starts with data sampling (e.g., measuring the CPU utilization, which is

Cross-Layer Power Management B 211

At the beginning of the j,;control interval,

1) Poll the average CPU utilization in the previous interval
util(j — 1);

2) Calculate the new operation frequency as following
FG) = f(j = 1) — ALl = (refUtil — util(j — 1))
f(]) = min(fmax» max(fmin) f(]))) (8.1)

3) Quantize f (j)to the P - state operation frequency fo(j);

4) Enforce the new P - state if fo(j)! = fo(j —1).

FIGURE 6.8 An adaptive power efficiency controller.

defined as the ratio between the CPU consumption and the allocation).
The CPU allocation is constant in the previous interval; however, the CPU
consumption can be bursty due to the changes of the workload. In reality,
the CPU consumption (or the CPU utilization) can be sampled more fre-
quently, and the average is taken for the controller. Equation 8.1 in Figure 6.8
implements a feedback controller for the new CPU operational frequency.
Itis an integral controller for which the change of the operational frequency
is proportional to the utilization error (i.e., the deviation of the utilization
from its reference). When the workload demand or the utilization reference
is varied, the integral operation pushes the disturbed utilization to converge
to its reference by tuning the operational frequency of the processors so that
the exact amount of the capacity is provisioned to meet the demand of the
workload.

The integral controller defined in Equation 8.1 in Figure 6.8 has a self-
tuningintegral gain thatis proportional to the resource demand represented
by the utilized capacity, that is, fo(j — 1)util(j — 1), when the variable
fao (j — 1) represents the operational frequency in the previous interval.
The variable gain implies that the controller can respond faster to the error
when the demand is relatively higher. On the other hand, the controller will
reduce the frequency slowly when the workload demand is reduced and
leave capacity space for a sharp increase in the workload.

The feedback control and the adaptive gain help the controller to adapt
the power consumption of the servers to the varying workload demand.
However, it will cause oscillation and performance loss if the gain param-
eters are not carefully designed. Mathematical analysis showed that the
system under control is locally stable under the condition that A€(0, 2).

212 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

A sufficient condition can also be derived that the system is globally stable
it A € (0, %) A sketch of the proof for global stability can be found in
Reference 20.

“Windup” of the output can happen to the integral controller if the
actuator is capped in reality but the output of the controller is not. For in-
stance, when the demand is low and the capacity is still more than enough
to meet the demand even if the frequency is pushed to the lowest one, the
utilization error will always be positive, pushing the outputs of the con-
troller lower and lower. When the demand is increased and more capacity
is needed, it will take the controller a long time to pull back its output and
cause significant performance loss due to the sluggish response. Step 2 of
the algorithm implements the simple “antiwindup” mechanism for the in-
tegrator: The output of the controller is further capped in the range defined
by the highest and lowest operational frequencies of the processors.

The processor operational frequency is assumed to be continuous in
Equation 8.1 in Figure 6.8. However, the actual running frequency is dis-
crete. In step 3, the output of the controller is quantized to the discrete
frequency of the P states through rounding up or down to the closed one.
Even though the actual utilization can oscillate between two values due to
the quantization and feedback control, the average value should converge
to the reference in a time period that is longer than the control interval.

6.4.1.2 An Adaptive Server-Capping Algorithm

The nonlinear relationship between frequency and power consumption im-
poses challenges for the design of the server power-capping algorithms. Fig-
ure 6.9 shows one such example on the power consumption and throughput
for Server B when the server is under control of a proportional-integral-
derivative (PID) power capping algorithm. The processor frequency is
throttled to tune the power consumption based on the error between the
power consumption and the power cap. The power budget (or cap) is varied
between 70% and 100% of the maximum power. The workload demand is
high enough so that the server is always fully utilized. Figure 6.9a implies
that the average power consumption is kept below the budget for all the
budget levels. However, when the power budget is set at 82%, as in point
(2) of Figure 6.9b, the actual throughput was much lower than the ideal
one. This deteriorated efficiency is caused by the nonlinearity between the
frequency and the power, as illustrated in Figure 6.4. More specifically, the
gain from the frequency to the power consumption (when the demand is
very high) varies across the operational regions. Thus, it is challenging to

Cross-Layer Power Management B 213

100 100
— Power cap —Idea case
95 |[=8~ Power —6— Dynamic capping
80
90 3
g .
585 £
g E]
[Rl
80 =]
75 20
70 n Y 0 - v - v v
70 75 80 85 90 95 100 70 75 80 85 90 95 100
Power Cap (%) Power Cap (%)
(a) Power capping (b) Performance loss

----- (1) Power cap=75% |]
| —— (2) Power cap=82%
(3) Power cap=95%

=

QState

500
Time

(c) Oscillation of the closed-loop system

FIGURE 6.9 Power and application performance of Server B under control
of a PID controller.

find one controller gain that can stabilize the closed-loop system in the
entire operational range. Figure 6.9¢ provides more insight. For the power
budgets of 95% and 75%, corresponding to points (1) and (3) in Figure
6.9b, the power state in the steady state was tuned between two adjacent
power states alternatively, Q0 and Q1 for the case with the 95% budget or
Q5 and Q6 for the case with the 75% budget. However, when the budget
was set to 82%, the power state oscillated between QO and Q6, although the
equilibrium should be between Q0 and Q1. In other words, the controller
was too aggressive at those points. Pushing the power states to those with
lower performance (i.e., Q4 and Q5) compromised the processing capa-

bility of the server, although the mean power could still be kept below the
budget.

214 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

At the beginning of the k;j,control interval,

1) Polls the average power consumption in the previous interval
strvPow(k — 1);

2) Runs the integral control:
err(k) = (srvCap — srvPow(k — 1))/(MaxPow — MinPow)
qv(k) =qv(k — 1)+ Ky xerr(j)
if(qv(k) > 100) gv(k) = 100; if(qv(k) <0) gv(k) =0

3) Maps gv (k) to that of the expected Q — state
if(qv < qv_TH)ind QState(k) = floor(Gain_L % qv + nqStates);
elseind QState(k) = floor(Gain_H * (qv_TH — 100));

4) Enforce the new Q - state if ind QState(k)! = ind QState(k — 1).

FIGURE 6.10 An adaptive power-capping controller.

Is it possible to reduce the controller gains to damp the oscillation? The
answer is yes. However, the transient performance can be compromised if
the gain is too low. As can be seen from the initial transient processes when
the budget was set to each of the three levels, the controller responded
quickly to the change of the budget to 95%; the setting time was much
longer for the change of the budget to 75%. This implies that reducing
the controller gains further deteriorates the transient processes when the
budget is relative higher. This is the trade-off between stability and respon-
siveness to be addressed for any feedback controller design. In these cases,
the nonlinearity of the systems makes the configuration more challenging
than usual.

Figure 6.10 provides one detailed control algorithm for capping the
power consumption of Server B through some linearization mechanisms.
One integral controller was applied as in step 2, where the output was
clipped in the range [0, 100], which was then mapped to the index of the
final Q states in step 3. This output value was then enforced in step 4
if it was different from the current power state. The critical design of the
algorithm is the piecewise linear transformation from the controller output
qv to the operating frequency, represented by the index of the power states
indQState. As shown in Figure 6.11a, the controller output was no longer
mapped uniformly to the frequency. It was multiplied by the multiplier
Gain_L when it was below a threshold gv_TH. Otherwise, it was multiplied
by a lower value Gain_H. The relationship between the controller output
and the power consumption without the transformation is represented

Cross-Layer Power Management B 215

100 -
— Linearized model »°
95 t|--- Model before el
1) linearization et
7 g
o H
=5 S
-)
1) [+
E &
0 20 40 60 80 100 0 20 40 60 80 100
Controller Output: qv Controller Output: qv

(@) (b)

FIGURE 6.11 Nonlinear mapping and linearization for Server B: (a) non-
linear mapping from controller output to the frequency; (b) linearized
relationship between controller output and power consumption.

by the dashed dot line in Figure 6.11b, demonstrating much larger gain
when the output was closer to the high end. With the piecewise linear
transformation, the relationship between the controller output and the
peak power consumption was linearized, as shown by the dashed line. Note
that the actual variables were quantized to those of the power states.

Note also that in the integral controller defined in step 2, the error
was normalized by the maximum tunable power range of the server, the
difference between the highest and lower power consumption of the server
when it was active. This normalization helps the controller to adapt to the
servers with different power specifications. It is also worthwhile to note that
the integral controllers, instead of the general PID controllers, were utilized
for both power efficiency control and power capping. This is mainly because
the server utilization and power consumption of the server can respond to
the changes of the workload and the reference values almost immediately
(compared with the control intervals). The negligible time constants in both
cases imply that the integral controller was able to provide good enough
robustness and fast enough responsiveness to the closed-loop systems.

To evaluate the algorithm in Figure 6.10, the same experiments as those
for Figure 6.9 were repeated with the results shown in Figure 6.12. Again,
the power consumption was maintained below the budget. Moreover, the
maximum throughput was achieved for all the budget levels. The time
series in Figure 6.12c demonstrates that the adaptive algorithm eliminated
the oscillation shown in Figure 6.9c¢ for the case with the power cap of 82%.

216 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

100 100
— Power cap

95 | | —e— Power 80 ®)
- % g @
g = 60
5 8 iy
] Sh
£ g 40

80 lﬁ"‘

20 @
75 ——Idea case
—6— Improved capping
70 0
70 80 90 100 70 80 90 100
Power Cap (%) Power Cap (%)
(a) Power capping (b) Performance conservation

8
6
jo3
2 af _
8 ==*="(1) Power cap=75%
(2) Power cap=82%
2F (3) Power cap=95%
FR | I O R 'Jf_”__\f
0 1 1 L
0 100 200 300 400 500
Time

(c) Stability and responsiveness

FIGURE 6.12 Convergence of adaptive power-capping control.

Furthermore, the transient processes show that the controller responded to
the changes quickly for all the three different budget levels.

6.4.1.3 Group Power Capper

The goal of the GC is to distribute the group power budget to the individual
servers by setting up their power budgets, which are then enforced by the
SCs. Many policies are available for redistribution of the budget. Figure
6.13 describes one proportional sharing policy, that is, the group power
budget is allocated to the individual servers proportionally to their power
consumptions.

Although simple, the algorithm in Figure 6.13 still holds reasonable
properties. Itis easy to find that, at equilibrium, the budgets of the servers are
proportionally utilized; the budget of a server is increased when it consumes
more power if the power consumptions of the other servers are unchanged.

Cross-Layer Power Management B 217

At the beginning of each I, control interval,

1) For each server m, poll the average power consumption in the
previous interval srvPow,,(I — 1);

2) Poll the total power consumption of the group grpPow(l - 1);

3) Distribute the group power budget to the servers proportionally

srvPow,,(I—1)

SrVCapm(i) = mgrp(:ap

FIGURE 6.13 A group capping controller.

In the special case when the budget of a server is depleted, the higher budget
is allocated to the server than in the previous interval if there were extra
budget available. However, it is not always guaranteed that the budgets of
the individual servers are enforced by the SCs. For instance, overshoots
could happen since the power capping in the servers is defined as a tracking
problem and implemented as an integral controller. Implementation of the
policies needs to be taken care of in these exceptional cases.

6.4.2 Optimization and Case Studies

In this section, we consider the global controller of Section 6.3.2 and discuss
the problem definition and a few issues to be addressed in the implemen-
tation.

6.4.2.1 Optimization Problem for Power Management

The goal of the global controller is to consolidate the workloads (through
VM migration) and turn on/off the idle servers if needed to minimize the
total power consumption of the servers while maintaining the performance
of the applications and the constraints on the power budgets in the group
level, the server level, and the blade level. Figure 6.14 presents one formu-
lation of the constrained optimization problem that can be solved by the
global controller in each epoch.

Figure 6.14 is a standard constraint-based optimization problem as dis-
cussed elsewhere. In this formulation, it is assumed that there are a total
of m servers and blades and n VMs hosting the application components.
The decision variable is an m-by-n matrix X that maps n VMs to m servers
or blades, the elements of which take integer values of 0 or 1 as defined in
Equation 14.8 in the figure. The objective is to minimize the total power

218 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

m
min) pow; (14.1)
i=1
n
s.t. ri = ZIX,']‘U]‘(I +ay) <7, i=12,...m (14.2)
]=
pow; < CAP_LOC;,i = 1,2,...,m (14.3)
m
Z Mg pow; < CAP.ENCy, q =1, 2, ..., | (14.4)
i=1
>~ pow; < CAP_GRP (14.5)
i=1
n
Z Xij = N,i= 1, 2, ey M (14.6)
S
2 > am | Xij — X{;| < OHpm (14.7)
1=]:
X

e , (14.8)

1, if VM j is on server i
0, otherwise

i=1,2,..,m, j=1,2,..,n
n
r; = min(1.0, Z X,']'Uj(l +ayv), i=12,...m (14.9)
i=1
pow; = { cori +do, if Z'];l Xij>1

; 14.10
0, otherwise ()

FIGURE 6.14 Constraianed optimization problem for the global controller.

consumption of all the servers or blades (Equation 14.1 in the figure), con-
sidering the constraints of the server utilization (Equation 14.2) as well as
local-, enclosure-, and group-level power budget constraints (Equations
14.3, 14.4, and 14.5 in Figure 6.14).

A few issues have to be addressed to solve this optimization problem.

Inputs to define the current system architecture are needed. The vari-
ables m, n, and | define the number of the blades and servers, VMs, and
enclosures. It is assumed that all the blades and servers belong to one group.

The relation between the blades and the enclosures is represented by the
matrix M. That is,

M. — { 1, if blade i belongs to enclosure q =121 (6.10)

"0, otherwise

Cross-Layer Power Management B 219

The matrix X ?j defines the mapping between the VMs and the blades/servers
at the beginning of the global controller control interval that is needed as
the inputs of the global controller.

The inputs to the controller in every interval also include the mean
resource utilization values of the individual VMs, U;, j = 1,2, ... ,n.These
can be taken as the prediction for the resource demand of the workloads in
the next global controller interval. In reality, the utilization of the VMs can
be time varying due to both the varying workload demand and active server
power management. The utilization inputs to the global controller need to
be converted to values that are comparable to each other. For example,
two servers with 100% utilization are not comparable if one of them is at
the highest power state and the other is at a lowest power state; the latter
is a potential candidate for consolidation, while the former is not. This
problem can be addressed by having the global controller consider the real
utilization, that is, the utilization when the power state is set to that with the
highest frequency, instead of the apparent utilization. Simple models can
be used to translate apparent utilization to real utilization when the power
state is known, and the capacity is assumed proportional to the operational
frequency of the processors. By doing so, the aggregate utilization of the
servers can be estimated by adding all the utilization values of the VMs as
in Equation 14.9 in Figure 6.14. Note that the utilization levels are capped
by 100%, and capacity loss can happen when the server is overloaded.
For heterogeneous servers, the utilization values need to be the absolute
capacity demands of the workload that are comparable between servers
with different configurations.

As another set of inputs to the global controller, the power consumption
values of the servers can be estimated using the power models at Py, the
power state with the highest frequency (Equation 14.10 in Figure 6.14). If
no VM is hosted by the server, the power consumption is zero since it is
expected to be turned off. In a more practical case, some servers can always
be left idle but running as a “buffer” against sharp changes of the workload
demand. The size of this buffer, however, will have to be carefully chosen.

Both the resource demand measurement and power estimation are done
based on the average utilization of the workloads in the past global con-
troller control interval with the assumption that the processors work with
the highest frequencies, ignoring the local power management. By doing
so0, we can simplify the problem definition. On the other side, this is rea-
sonable since the global controller varies the aggregate resource demand on
the servers in a relatively longer time period. This leaves the local resource

220 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

management to be done by the local controllers to meet the demand of
the individual workloads in much shorter time scales. In most cases, the
utilization threshold 7 is far below 100%, leaving capacity available for the
bursty workload in the shorter time intervals. In some cases, given the satu-
rating nature of resource utilization metrics, the throttled performance can
be misinterpreted by the global controller as extra space for consolidation.
Feedback mechanisms need to be introduced to prevent the vicious cycle.

However, the global controller does need to be aware of the approxi-
mate budget caps at the local levels. Otherwise, a conventional design can
aggressively pack workloads onto a server, which in turn can compromise
the statistical load variations that the LPC, EPC, and GPC expect, leading
to more aggressive performance throttling. This problem can be addressed
by having the global controller (1) be aware of the approximate power bud-
gets at the various levels and use them as constraints in its optimization
and (2) be aware of power budget violations at individual levels and use
them to vary the aggressiveness of consolidation. Obtaining information
on the former is fairly straightforward; either machine specifications or
approximate estimates can be used. For the latter, the individual capping
controllers are required to expose information on their power budget vi-
olations externally. This is still reasonable and can be done by extending
current Common Information Module (CIM) models exposed through
Distributed Management Task Force (DMTF) interfaces. An alternate ap-
proach is to determine a proxy for the power budget violations using P
states and performance violations, but this approach is likely to have more
hysteresis compared to using CIM interfaces.

Overhead has to be considered when a VM is hosted on a server or mi-
grated from one server to another. In problem formulation as in Figure 6.14,
the virtualization overhead is modeled proportional to the total utilization
of the VMs, represented by the weight factor oy in Equation 14.9 in Figure
6.14. VM migration can consume CPU, memory, and network bandwidth.
This overhead is represented by the factor s as in Equation 14.7 in Figure
6.14. Note that it is not intuitive to model the migration overhead since
it may be related to application-level performance, such as delay, and the
migration process has only transient effect on the application. In the case
when a); = 1, the constraint (Equation 14.7 in Figure 6.14) sets a limit on
the number of migrations allowed in every global controller control inter-
val. Equation 14.6 in Figure 6.14 enforces the constraint on the maximum
number of VMs that can run on each server. Other similar constraints can
be assumed for other limited resources, such as memory.

Cross-Layer Power Management B 221

6.4.2.2 Constrained Optimization

The problem defined in Figure 6.14 is a 0—1 integer optimization problem.
The objective is neither concave nor convex as a function of the decision
variable. It also is not continuous. Most of the constraints are nonlinear. For
this complicated problem, conventional convex optimization approaches
may not be applicable. Heuristic algorithms (e.g., simulated annealing
algorithms and genetic algorithms) can be used to obtain suboptimal
solutions.

One of the many challenges with the optimization is the approach used
to address the constraints. First, the problem may not be feasible. Second,
even if the problem is feasible, it takes time to find the feasible solution at
each iteration of the searching algorithms, given the very large spanning
space of the decision variables. To alleviate the problems with the feasibility,
the constraints can be addressed by introducing penalties to the objective
functions that can speed up the optimization process significantly. On the
other hand, addressing the constraints in such a soft way should not affect
the final results much since the inputs to the global controllers, including
the workload demand and the power models, are only estimated or approx-
imated, and the performance and budget constraints will be enforced by
the local or feedback controllers in real time.

Another challenge with the optimization problem is the potential con-
flict between the constraints. For instance, enforcing the budget constraint
will result in workload consolidation, which can lead to very high utiliza-
tion of the servers and even performance loss due to full utilization of the
servers. Setting different weights for the penalty functions corresponding
to the priorities of the constraints can address this issue.

6.4.3 Case Study: Evaluation of the Integrated Management Solu-
tions

6.4.3.1 Utilization Trace-Based Simulation

Ideally, the coordinated management architectures at the data center level
should be evaluated in a real implementation. However, it could be difficult
to do so for several reasons: (1) It is difficult to obtain access to a data center
or a sufficiently large collection of machines. (2) Such a collection needs
to be fully populated with relatively new servers with support for multiple
power states. (3) All the individual controllers need to be set up and tuned.
In addition to the effort needed, this allows only implementations specific
to the idiosyncrasies of the systems considered. (4) It is difficult to set up the

222 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

test bed with complex enterprise applications and exercise them to model
real-world usage in real data centers. The alternate approach of using full-
system simulation (e.g., M5, Simics, GEMS) suffers from the third and
fourth drawbacks; also, simulation speeds and complexities of modeling
clusters make this impractical. Given these challenges, several studies took
recourse to trace-driven simulation for data center environments.

This approach uses real-world traces from actual enterprise deploy-
ments to drive individual server simulations. High-level models like those
discussed previously are used to correlate resource utilization and the
impact of changing specific actuators to system metrics like power and
performance. This approach enables the workload behavior and system
characteristics to be modeled expediently while allowing detailed evalua-
tion of trade-offs at the policy and system parameter levels.

Asone example, we show a set of evaluation results through trace-driven
simulation for the architecture presented in Figure 6.6. Multiple metrics
were used for the evaluation, including the aggregate power savings, the
performance loss, and the power budget violations at the server, enclosure,
and group levels. In the simulator, no queuing process was assumed when
the aggregate demand of the workloads running on a server exceeded the
capacity of the server. So, when the workload demand was increased, or the
capacity of the server was reduced due to power capping, performance loss
could happen as the excessive demand was not carried over.

The advantage of the trace-based simulation methodology is that it al-
lows people to use actual utilization traces from real-world enterprises.
Specifically, 180 traces were used that represent individual server utiliza-
tion from nine different enterprise sites for several classes of individual
and multitier workloads (database servers, web servers, e-commerce, re-
mote desktop infrastructures, etc). To better study the variability in work-
loads, four mixes were defined: one incorporating all 180 workloads (180)
and others focusing on specific mixes of 60 workloads (60L, 60M, 60H)
with low, median, and high intensity of CPU loads. Most of the workload
traces, as is common with most real-world deployments, showed relatively
low utilization (15-50% in most cases). To better illustrate more resource-
intensive workloads, “synthetic” workloads (60HH, 60HHH), which had
much higher intensities than the real trace-based workloads, were created
that stacked multiple workloads from the real-world traces to create higher
utilization.

In this example, we studied two different kinds of enterprise systems: a
low-power blade server, Blade A, and an entry-level 2U server, Server B with

Cross-Layer Power Management B 223

100 Power Model of Blade A 100 Power Model of Server B

< OH—po 1 90
E 80 [p4 1 .80
: :
S &~
5 70
2
o
[

i M 0

50 ' s ; : 50 ' ' : :

0 20 40 60 80 100 0 20 40 60 80 100
Utilization (%) Utilization (%)

(a) (b)

FIGURE 6.15 Power models for Server A and Server B for the evaluation of
the integrated management solution.

performance-power models shown in Figure 6.15. The processor of Blade A
had five P states, with frequencies of 1 GHz, 833 MHz, 700 MHz, 600 MHz,
and 533 MHz. The processor of Server B had six P states, with frequencies
of 2.6 GHz, 2.4 GHz, 2.2 GHz, 2.0 GHz, 1.8 GHz, and 1.0GHz. It was
assumed that the baseline was virtualized. For VM migration, a precopied
migration process was assumed, and the migration overhead was taken as
10% performance loss during the migration process.

A cluster of 180 servers was assumed to host the 180 workload. This was
organized as six 20-blade enclosures and 60 individual servers. For the 60
workload evaluations, we assumed a cluster of 60 servers: two 20-blade
enclosures and 20 individual servers. By making these mixes, we could have
a cluster with both blades and individual servers that were representative
of the data centers today.

The power budget levels had significant effects on the metrics. Three
different kinds of power budget values were studied: (1) 20-15-10, repre-
senting group, enclosure, and local power budget caps that were respectively
20%, 15%, and 10% off from their maximum possible power consumption;
(2)25-20-15, representing caps that were 25%, 20%, and 15% off their maxi-
mum possible power consumption; and (3) 30-25-20 representing caps that
were 30%, 25%, and 20% off their maximum. Note that the budgets were
relative numbers with respect to the peak power consumption. With more
stringent power budgets, the performance is expected to be compromised
more significantly.

224 MW The Green Computing Book: Tackling Energy Efficiency at Large Scale

Besides the server models, the power models, and the budget levels,
sensitivity analysis can be done with the alternative architecture. The sen-
sitivity of the architecture was studied through a few alternatives, for
instance, the control intervals. In the baseline, the control intervals of
EC/LPC/EPC/GPC/GC were set to 1/5/25/50/500, respectively. Other al-
ternatives include variants of the models with different idle power, P-state
groups, coordination architectures, policies, and so on. But, in this chapter,
we only discuss the basic results in the next section. Additional results are
available [20].

6.4.3.2 Basic Results: Uncoordinated versus Coordinated Control
In the set of principal simulations, we used a system in which no controllers
for power management were turned on as the baseline and compared
two distinct solutions: (1) the coordinated architecture, as in Figure 6.6;
(2) an uncoordinated solution, in which the individual power management
solutions for power efficiency, power capping, and power optimization
worked independently of one another. Figure 6.16 shows the results for
both the coordinated and the uncoordinated solutions compared against
the baseline results. Four configurations are included, representing two
types of systems (Server A and Server B) and two sets of workloads (180
and 60HH). For each configuration, we present a family of four bars: three
bars for power budget violations at the group, enclosure, and local levels
and one bar for performance degradation. To visually illustrate the negative
ramifications of budget violations and performance loss, we show these as
negative numbers. Note that some of the bars are not visible since the bud-
get violations were very low or even zero when compared with the baseline.
For instance, the violations at the GC level were all zero, which means that
the group power budgets were well maintained.

The top left graph in Figure 6.16 shows the results for the base 180
server configuration for Blade A. Compared to the baseline, the coordi-
nated solution achieved a 64% reduction in power consumed (not graphed),
translating to savings in electricity costs, with negligible (3%) performance
degradation and (5%) power budget violations. Recall that this configu-
ration had additional savings of 10%, 15%, and 20% in the peak power
budgets at the local, enclosure, and group levels, respectively, which trans-
late to capital savings for the cooling equipment. In comparison, the unco-
ordinated solution resulted in greater performance loss (12%) and higher
power budget violations (7%).

Cross-Layer Power Management B 225

Coordinated Uncoordinated Coordinated Uncoordinated
BladeA/180 BladeA/180 ServerB/180 ServerB/180
u t;l T o = T - T =] |
s e
o
2
ks
;E -15
=x
=25 -
Coordinated Uncoordinated Coordinated Uncoordinated
BladeA/60HH BladeA/60HH ServerB/60HH ServerB/60HH
T T T T T = 1
] g 3
. 5 > 5 i
L
k=
:; -15
x
-25 -

Violates(GM) B Violates(EM) & Violates(SM) El Perf-loss

FIGURE 6.16 A comparison of an uncoordinated deployment and the co-
ordinated solution for four different configurations. All results are normal-
ized to a baseline where no controllers for power management are turned
on. The two figures correspond to the two types of workload combina-
tion. There are four bars for each server/workload combination. The three
left bars show violations in group, enclosure, and server power budgets.
Some of them are invisible since the violation is zero; the last bar shows
performance loss. In general, the uncoordinated architecture has higher
performance degradation and power budget violations.

Figure 6.16 also illustrates the sensitivity to different system models. As
discussed, Server B had six P states relatively uniformly clustered, but with
a smaller range in power, compared to the five nonuniformly clustered,
but higher-range, P states of Blade A. This typically manifested itself in
reduced absolute power savings results for Server B compared to Blade A.
It indicates that the range of power control was likely more important than
the granularity of control for these configurations.

As discussed, in addition to the 180-workload configuration, we studied
other workload sets with different levels of activity. The benefits from coor-
dination were qualitatively similar for all classes of workloads. However, as
one would expect, the actual power savings for the low-utilization workload

226 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

relative to the baseline was higher than that for the high-utilization work-
load, while the relative improvements over the uncoordinated solution were
higher with higher utilizations.

6.5 CONCLUDING COMMENTS

In this chapter, we discussed how, given the growing challenge from power

and cooling, future data centers will likely deploy multiple power man-
agement solutions at the same time, and federation of these solutions is
desirable. It therefore becomes important to consider a solution that coor-
dinates different power solutions across the various axes of the taxonomy.
This chapter tried to address the key questions that arise in the context of
such a cross-layer power management architecture. How should individ-
ual controllers interact with each other to ensure correctness, stability, and
efficiency? In particular, how do we federate the individual controllers to
be aware of one another but without requiring global knowledge of all the
properties at each of the individual controllers? Furthermore, given the dy-
namism in future enterprise environments, how do we design the solution
to respond to changes in the number and nature of controllers participat-
ing in the overall architecture and to changes in the nature of systems and
applications deployed?

This work raised an additional set of interesting questions that we did
not consider. Specifically, these questions pertain to the implications of
such a unified solution on the design and deployment of individual power
management solutions. Are all solutions equally important? Does the coor-
dinated architecture allow for functionality of one controller to be simpli-
fied, or even subsumed in another controller, to enable an overall simpler
design? Do the policies and mechanisms at the individual level need to be
revisited in the context of their interactions with other controllers? How
sensitive are the answers to these questions to the nature of applications
and systems considered?

In addition, it is important to consider mechanisms for information ex-
change and policy brokering in the context of such a federated cross-layer
power management solution. Specifically, aggregation and coordination
of data across the infrastructure layers are required for integrated opera-
tion. To enable this, we need a corresponding solution to loosely couple
different management algorithms and facilitate monitoring and manage-
ment coordination in data centers. One solution that we have considered is

Cross-Layer Power Management B 227

comprised of registry and proxy mechanisms that provide unified monitor-
ing and actuation across platform and virtualization domains and coordi-
nators that provide policy execution for better VM placement and run-time
management, including a formal approach to ensure system stability from
inefficient management actions. The work [21] presents more details on
this approach.

This area, however, is still nascent, and we believe that the next few years
will see much more progress in this field. Although this chapter focused on
power management, it is representative of a broad class of problems typified
by “intersecting control loops.” We expect the principles and discussion
outlined in this chapter to generalize to the broader resource management
domain. Overall, as the complexity of management continues to increase,
with multiple players at multiple levels optimizing for multiple objectives,
approacheslike the ones discussed in this chapter that focus on coordination
across these multiple levels are likely to be a critical part of future enterprise
architectures.

ACKNOWLEDGMENT
We would like to thank Ramya Raghavendra, Xiaoyun Zhu, VanishTalwar,

Cullen Bash, Niraj Tolia, and Manish Marwah for their contributions to
part of the content in this chapter.

REFERENCES

1. ACPI: Advanced configuration and power interface home page.
http://www.acpi.info.

2. L. A. Barroso and U. Holzle. The case for energy-proportional computing.
IEEE Computer, 40(12):33-37, 2007.

3. C. D. Patel, C. E. Bash, R. Sharma, M. Beitelmam, and R. J. Friedrich.
Smart cooling of data centers. In Proceedings of IPACK 03, Kauai, Hawaii,
July 2003.

4. S. Greenberg, E. Mills, B. Tschudi, P. Rumsey, and B. Myatt. Best practices
for data centers: Results from benchmarking 22 data centers. In Proceedings
of the 2006 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific
Grove, CA, August 2006.

5. The Green Grid home page. http://www.thegreengrid.com.

6. C. E. Bash, C. D. Patel, and R. K. Sharma. Dynamic thermal management
of air cooled data centers. In Proceedings of ITHERM, pages 445—452, San
Diego, CA, May 2006.

228 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

T. Heath, A. P. Centeno, P. George, L. Ramos, Y. Jaluria, and R. Bianchini.
Mercury and freon: Temperature emulation and management for server
systems. In Proceedings of ASPLOS, pages 106—116, San Jose, CA, October
2006.

. C. Patel, R. Sharma, C. Bash, and S. Graupner. Energy aware grid: Global

workload placement based on energy efficiency. In Proceedings of IMECE
2003, Washington, DC, November 2003.

. J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making scheduling cool:

Temperature-aware workload placement in data centers. In Proceedings of the
Annual Conference on USENIX Annual Technical Conference, pages 61-75,
April 2005.

C. Bash and G. Forman. Cool job allocation: Measuring the power sav-
ings of placing jobs at cooling-efficient locations in the data center. In
USENIX Annual Technical Conference, pages 363—368, Santa Clara, CA, June
2007.

R. Ayoub, S. Shari, and T. S. Rosing. Gentlecool: Cooling aware proactive
workload scheduling in multi-machine systems. In Proceedings of DATE
2010, Dresden, Germany, March 2010.

Q. Tang, S. K. S. Gupta, and G. Varsamopoulos. Thermalaware task
scheduling for data centers through minimizing heat recirculation. In Pro-
ceedings of the 2007 IEEE International Conference on Cluster Computing
(CLUSTER °07), pages 129—-138, Austin, TX, September 2007.

L. Wang, A. J. Younge, T. R. Furlani, G. von Laszewski,]. Dayal, and X. He.
Towards thermal aware workload scheduling in a data center. In Proceedings
of the 10th International Symposium on Pervasive Systems, Algorithms and
Networks (I-SPAN 2009), Kao-Hsiung, Taiwan, December 2009.

P. Ranganathan, P. Leech, D. E. Irwin, and J. S. Chase. Ensemble-level power
management for dense blade servers. In 33rd International Symposium on
Computer Architecture (ISCA 2006), pages 66—77, Boston, June 2006.

C. Lefurgy, X. Wang, and M. Ware. Power capping: A prelude to power
shifting. Cluster Computing, 11(2):183-195, 2008.

A. Qureshi, H. Balakrishnan, J. Guttag, B. Maggs, and R. Weber. Cutting the
electric bill for Internet-scale systems. In Proceedings of SIGCOMM 2009,
pages 123—134, Barcelona, August 2009.

C. Stewart, T. Kelly, and A. Zhang. Exploiting nonstationarity for perfor-
mance prediction. In Eurosys 2007, Lisbon, March 2007.

Z. Wang, Y. Chen, D. Gmach, S. Singhal, B. J. Watson, W. Rivera, X. Zhu,
and C. D. Hyser. AppRAISE: Application-Level Performance Management
in Virtualized Server Environments. In IEEE Transactions on Network and
Service Management, 6(4):240-254, December 20009.

N. Tolia, Z. Wang, P. Ranganathan, C. Bash, M. Marwah, and X. Zhu. Unified
power and cooling management in server enclosures. In Proceedings of the
ASME/Pacific Rim Electronic Packaging Technical Conference and Exhibition
(InterPACK ’09), San Francisco, July 2009.

Cross-Layer Power Management B 229

20. R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu. No power

21.

struggles: Coordinated multi-level power management for the data center.
In Proceedings of ASPLOS, pages 48-59, Seattle, WA, March 2008.
S.Kumar, V. Talwar, P. Ranganathan, R. Nathuji, and K. Schwan. M-channels
and M-brokers: Coordinated management in virtualized systems. In Work-
shop on Managed Multi-Core Systems (MMCS), Boston, MA, June 2008.

CHAPTER 7

Energy-Efficient
Virtualized Systems

Ripal Nathuji and Karsten Schwan

CONTENTS

7.1 Introduction 232

7.2 Virtualization and Power Management 233
7.2.1 Benefitsof Virtualized Data Center Deployments 233
7.2.2 Virtualization Architectural Overview 235

7.2.3 Power Management Requirements for Virtualized
Systems 237
7.3 Platform Enhancements for Energy-Aware VM Management 238
7.3.1 Coordinated VM Power Management with

VirtualPower 239
7.3.1.1 VirtualPower Architectural Overview 239
7.3.1.2 Experimental Results 244
7.3.2 Paravirtualized Management Interfaces for Platform
Power Budgeting 247
7.3.2.1 QoS Feedback with Congestion Pricing 247
7.3.2.2 Experimental Results 250
7.4 Power Management Mechanisms for Distributed Virtualized
Platforms 253

7.4.1 System Managers for Distributed Power Budgeting ~ 253
7.4.2 Coordinating Data Center Management with VPM

Tokens 255

7.42.1 Types of VPM Tokens 255

7.4.2.2 Managing Power with Budget Tokens 257

7.4.3 Experimental Results 257

7.5 Related Work 259

231

232 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

7.6 Conclusions and Future Challenges 261
References 263

7.1 INTRODUCTION

The semiconductor industry has shifted toward multicore system architec-

tures to continue harnessing the resources made available by Moore’s law,
while avoiding the power and thermal bottlenecks associated with high-
performance single-processor architectures. The effects of this transition
are already apparent in data center environments, where commodity servers
often consist of dual-package configurations that allow on the order of ten
processors to be provisioned on a single platform. The increasing density of
computational elements is accompanied with pressure on other platform
components, such as memory and I/O (input/output). The net result is the
profileration of dense server platform and rack configurations. Although
these systems offer significant advantages for scale-up workloads, many
enterprise applications are not able to fully exploit such architectures. The
reasons for this include the inability for the associated software to scale
to a larger number of processors, as well as the varying loads exhibited
by web service applications. Unmitigated, the inability for applications to
consistently and effectively make use of multicore server platforms can re-
sult in stranded data center resources, which can equate to significant cost
inefficiencies. What is needed, then, is a means to manage resources in a
fluid fashion, thereby achieving an elastic data center where servers make
up a fungible resource pool that can dynamically be provisioned to appli-
cations in an on-demand manner. It is becoming increasingly clear that
virtualization technologies can help meet this goal.

System virtualization enables workloads to be easily consolidated onto,
and migrated between, physical servers. This can enable, for example, the
consolidation of scale-out applications onto multicore servers, as well as the
redeployment of workloads as a function of load. Based on these manage-
ment capabilities, virtualization has quickly become a fundamental under-
lying technology for data centers. For example, emerging cloud systems such
as Amazon’s Elastic Compute Cloud (EC2) [1] and Microsoft’s Windows
Azure Platform [2] leverage virtualization to improve the manageability of
hosted applications, as well as for the security and isolation benefits that
they provide [3]. Indeed, a system virtualization layer is often a de facto
component of the stack in modern enterprise deployments.

Energy-Efficient Virtualized Systems B 233

While the presence of a virtualization layer helps disassociate applica-
tions from the physical resources on which they run, there remain challenges
and opportunities in extending virtualization architectures for improved
system management. Specifically, given the critical importance of active
energy management in data centers, it is important to investigate how ad-
ditional interfaces and mechanisms can be introduced to better manage
power in virtualized systems.

Realizing the importance of energy management and virtualization, in
this chapter we discuss the nexus of these two problem domains. We begin
by providing a brief overview of how virtualization is an essential tech-
nology for enabling dynamic resource provisioning across physical server
boundaries, serving as a first step towards realizing resource fungibility.
We describe how current virtualization systems remain lacking when at-
tempting to perform active power management while still supporting the
quality-of-service (QoS) requirements of virtual machines (VMs). Based
on these discussions, we then describe avenues for extending existing virtu-
alization architectures to better support energy efficiency while managing
systems in a VM-aware manner. To illustrate the benefits of such strategies,
we highlight examples of these approaches based on our own research. Fi-
nally, we conclude with an outline of related work in the field of resource
management of VMs, as well as thoughts on future challenges and opportu-
nities for improving the energy efficiency and manageability of virtualized
data centers.

7.2 VIRTUALIZATION AND POWER MANAGEMENT

In this section, we discuss the role of virtualization in modern data centers
and provide an architectural overview of the virtualization technologies
widely deployed today. We then describe how the addition of virtualization
to server environments affects the power management strategies developed
for native, nonvirtualized servers. Specifically, we highlight how, without

additional support, simply carrying forward methods from nonvirtualized
systems does not achieve desired management goals. Finally, we identify
opportunities and directions for extending virtualization technologies to
overcome these limitations.

7.2.1 Benefits of Virtualized Data Center Deployments

To more easily motivate the role of virtualization in large-scale data centers,
we begin by discussing the benefits that virtualization provides over manag-
ing physical infrastructures. In nonvirtualized environments, the decision

234 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

e TS

0.4 /\ /\\
0.2 T& / ‘"l‘._rrl" —o— Application A

—&— Application B

Normalized Resource Requirement

0o+—+—F—7—F 7777777777 T T T T T T T T
SE222232232332 22322322222
EEFEEErEEFELELLE R EEE

Time of Day

FIGURE 7.1 Example of resource requirements with diurnal load behavior.

of mapping workloads to physical servers is predominantly a static opti-
mization. For example, an administrator may allocate resources to an ap-
plication based on the capacity required to meet a service-level agreement
(SLA) for an application at peak load. Whenever the application experi-
ences reduced load, or can be allocated fewer resources while still meeting
SLAs, resources that were reserved for it go unused. Given that data centers
typically host multiple applications simultaneously, this type of “resource
siloing” can result in significant underutilized capacity. Specifically, provi-
sioning in this manner requires sufficient computational resources to meet
the sum of peak loads across the applications hosted by the data center.

To illustrate the potential resource inefficiency of silos, Figure 7.1 pro-
vides an example of applications with varying resource demands deployed
in a data center. Both applications exhibit diurnal resource usage character-
istics based on load requirements. However, they are out of phase with each
other, with one application experiencing high demand during the day, the
other at night. With the resource silos that occur from traditional physical
infrastructures, each application will be provisioned with a separate pool
of resources that allow it to meet peak load. This results in 40% of data
center capacity being left unused at any given point in time because in re-
ality neither application uses all of its resources at the same time. Even if
the idle resources can be placed into very low power states [4], the costs
of the hardware, as well as the costs associated with the power and cooling
infrastructures they require, are not recovered with productive compu-
tations. Instead, if one can provision resources equal to the peak of sum
resource usages between the two applications, we can reduce the overall

Energy-Efficient Virtualized Systems B 235

capacity required by 40%. To do this, however, we must have a means of
treating data center capacity as a fungible pool of resources that can be
dynamically allocated to applications at run time based on demand.

Attaining true resource fungibility at data center scale is a challenging
problem. Virtualization technologies provide a significant first step toward
realizing this vision. Specifically, virtualization allows data center manage-
ment systems to dynamically adapt resource allocations to guest VMs and
move workloads between physical servers when necessary [5]. While simi-
lar functionality can be achieved without virtualization support, doing so
requires substantial changes to existing application and operating system
software. Therefore, by incorporating virtualization into data centers, we
start to achieve the agility necessary for resource fungibility while preserving
compatibility and support for existing software stacks.

Observing the expanding demand for virtualization, multiple solutions
have been developed and received significant adoption, including the open
source Xen system [6], VMware’s ESX hypervisor [7], and Microsoft’s
Hyper-V software [8]. We next present the relevant architectural compo-
nents of virtualization solutions that we assume in our discussions in the
remainder of this chapter.

7.2.2 Virtualization Architectural Overview

In this chapter, we concern ourselves with type 1 hypervisors that run
directly on server hardware, making use of hardware extensions to enable
efficient processor virtualization. This is in contrast to type 2 hypervisors,
which are hosted on top of an existing operating system environment, ex-
amples of which include Microsoft Virtual PC [9] and QEMU [10]. By
executing directly on the physical platform, type 1 hypervisors have the
benefit of precisely controlling resources and managing low-level hard-
ware, including power management states. Both Xen and Hyper-V adopt a
lightweight hypervisor that performs scheduling and memory management
but delegates higher-level operations for VM-level management, including
creation, destruction, migration, and resource reprovisioning, to a man-
agement partition. The management partition is itself a VM, albeit with
privileges that allow it to perform the required functionality.

Guest VMs that are hosted on top of hypervisors can be separated into
those that are paravirtualized with modifications made explicitly for execu-
tion in virtualized systems and those that are not modified for virtualized
execution. While supporting the latter is required to enable any guest op-
erating system and application stack to execute on a virtualized server,

236 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

Management Guest VM
partition partition

Paravirtualized Paravirtualized
driver driver

(back end) (front end)

[Hypervisor }

Physical platform hardware

FIGURE 7.2 Illustration of key virtualization architectural components.

introducing paravirtualization can have significant benefits. A clear exam-
ple of this can be found in the context of device virtualization. Without
paravirtualization support, device virtualization can exhibit poor perfor-
mance due to emulation overheads. To help remove such bottlenecks, virtu-
alization systems often employ paravirtualized drivers, where a front-end
component executing in the guest VM communicates with a back-end
component running in the management partition. This communication is
performed over a virtual bus abstraction (e.g., XenBus in Xen and VMBus
for Hyper-V). While there will always be need for supporting legacy guests
that do not incorporate these types of changes, paravirtualization intro-
duces interesting avenues for improving interactions between VMs and the
management partition.

Figure 7.2 provides an illustrative overview of the key components of vir-
tualization solutions outlined. As described, a hypervisor that runs directly
on hardware is coupled with a management partition. The combination of
hypervisor and management partition supports the execution of guest VMs,
including, where applicable, providing paravirtualized service components
to match up with synthetic devices used by VMs. What is missing from
this picture, however, is what infrastructure support is necessary for effec-
tive power management of virtualized systems. To address this question,
we next consider fundamental power management goals in nonvirtualized
systems and how the introduction of virtualization might place additional
requirements on the system to continue to meet them.

Energy-Efficient Virtualized Systems B 237

7.2.3 Power Management Requirements for Virtualized Systems

Managing energy in server environments is often geared toward one of two
goals. The first is to optimize the active power consumption of physical
servers while maintaining acceptable QoS for the hosted application, with
atypical approach being to reduce processor voltage/frequency states based
on processor utilizations. The second goal for server power management
is to treat power as a constraint via server power budgets. Such power
capping can be used to provision additional physical servers within the
limited power capacity of a data center [11]. The trade-off here is based on
the same sum-of-peak versus peak-of-sum provisioning that was discussed
in Section 7.2.1 in the context of stranded resources. Here, the goal is to
prevent stranding of power [12] by provisioning power based on an average
or typical power consumption instead of the peak usage per server. This
type of power overcommitting can be performed safely as long as there
are power-capping mechanisms available to enforce power consumption
limits when necessary. Both of these goals affect both platform-level and
distributed management policies.

At the platform level, whether optimizing power consumption during
the execution of an application or enforcing power caps on a server, the
system must carefully balance the requirements of the application with
the performance/power characteristics of underlying power management
states. For example, considering dynamic voltage and frequency scaling
(DVES) of processors, policies may carefully toggle processor performance
states to optimize energy consumption while meeting QoS in terms of real-
time execution constraints [13, 14]. In the case of physical servers, there
is an implicit assignment of a single application to a platform, thereby al-
lowing policies that are tuned for the application and hardware to drive
the underlying power management performed by the operating system. In
virtualized systems, however, there is no direct way to map this type of
application-specific policy feedback since each physical server hosts multi-
ple, possibly heterogeneous, applications with varying power/performance
trade-offs. Moreover, as previously mentioned, the management of physical
hardware states is controlled by the hypervisor and management partition,
further preventing guest VMs from directly toggling power states. What is
required, then, is the extension of virtualization infrastructures to better en-
able guest VMs to interoperate with the virtualization stack to perform power
management decisions. In Section 7.3, we provide examples of these types of
virtualization enhancements based on our own previous work. Specifically,

238 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

we discuss the inclusion of VM feedback, either through the virtualization
of legacy power management interfaces or through paravirtualized man-
agement interfaces.

Managing power across distributed servers requires coordination across
the many localized management entities on different platforms. Consider
power capping as a concrete example; power caps typically need to be
enforced at some aggregate level (e.g., rack or blade chassis [15]), but the
joint budget is often controlled by allocating platform-level budgets that are
then enforced by local controllers [16]. For efficient distribution of power
resources, this requires some level of interaction and coordination between
servers so that, for example, when one system is not using its allocated power
capacity, that capacity can be provisioned to others. In the case of virtualized
servers, each physical server hosts a set of VMs, adding an additional level of
hierarchy to the system. Hence, where before distributed policies may have
intelligently managed resources between physical machines, there must now
be some additional level of awareness that allows for management across
both physical platforms and the virtual instances they host. Realizing this
goal requires coordination across the virtualization layers controlling each of
the distributed physical platforms. We demonstrate these ideas, and the
benefits they can provide, in the context of VM aware power budgeting for
distributed servers in Section 7.4.

7.3 PLATFORM ENHANCEMENTS FOR ENERGY-AWARE VM
MANAGEMENT

The increasing emphasis on energy efficiency has resulted in the deploy-
ment of power management policies that are tuned for specific workloads
or classes of applications. For example, operating systems, including Linux
and Microsoft Windows, incorporate utilization-driven policies that man-
age processor voltage/frequency states. The parameters that govern the be-

havior of these policies can be fine-tuned for individual applications to
improve power savings while meeting performance requirements. The ex-
istence and deployment of these policies help meet application-specific
QoS constraints when performing active power management. Therefore, it
is highly desirable to continue leveraging these policies under virtualized
execution.

Efforts toward performing power management using VM-based poli-
cies must simultaneously meet constraints of isolation and independence.
Isolation refers to the fact that power management actions performed on

Energy-Efficient Virtualized Systems B 239

behalf of one VM should not adversely affect another, cohosted, appli-
cation. Similarly, any attempt to make use of VM-specific policies must
maintain the independent manageability expected by guests. To meet these
design requirements, we pursue an approach where VM management poli-
cies convey power/performance trade-offs to the management partition.
The information is then used as feedback to authoratitive policies in the
management partition, which eventually modify resource allocations and
power states of physical resources. In this section, we describe two examples
that illustrate this idea. First, we consider leveraging existing power man-
agement interfaces through the VirtualPower [17] system to obtain VM
input. We then relax the constraints around relying on legacy interfaces
by considering the integration of paravirtualized feedback for QoS-aware
server power budgeting [18].

7.3.1 Coordinated VM Power Management with VirtualPower
7.3.1.1 VirtualPower Architectural Overview

The VirtualPower system is based on three major architectural components.
These consist of VirtualPower management (VPM) states, VPM channels,
and VPM mechanisms. We describe each of these three in turn to provide
an architectural overview of VirtualPower.

7.3.1.1.1 VPM States

Typically, platforms expose hardware-supported power management states
to system software and applications via ACPI [19]. VirtualPower exploits
this existing legacy interface to convey a set of “soft” power management
modes, known as VPM states, to VMs. In this manner, VPM states allow
the VirtualPower system to add a level of indirection between guest power
management policies attempting to modify physical power states and the
actual physical system configuration. An added benefit of VPM states is that
they provide a consistent view of manageability to guest VMs. Observing
that data centers are often comprised of heterogeneous servers with dif-
ferent power manageability characteristics [20], VPM states allow VMs to
remain agnostic of these underlying changes as they are migrated between
heterogeneous hardware.

The inclusion of VPM states allows VirtualPower to enable guest-level
power management policies while meeting the desired qualities of isola-
tion and independence mentioned. Specifically, modifications made to the
value of VPM states do not themselves directly affect changes to physical

240 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

performance states. For example, a VM policy change to a locally exposed
processor frequency (e.g., P-state in ACPI) only affects the soft state as-
sociated with the corresponding guest, with no visible changes to other
hosted operating systems. For this reason, independence is achieved as well
because actuations made by the guest are not observable by other VMs.
Hence, there is no creation of dependencies between individual VM poli-
cies that might require making guest policies aware of each other. Of course,
as described thus far, VM-level policies simply make changes to exposed
VPM states without actually modifying system behavior. To affect system
changes, VirtualPower communicates changes made by VM policies to the
management partition using VPM channels.

7.3.1.1.2 VPM Channels

As described in Section 7.2.2, explicit communications between guest VMs
and the management partition are usually performed over a virtual bus
abstraction such as VMBus for Hyper-V. In the case of VirtualPower, how-
ever, the policy component in the guest is not aware that it is running in
a virtualized context and actuates VPM states using standard mechanisms
such as writes to model-specific registers (MSRs). When the policies per-
form these privileged operations, a fault occurs transferring control to the
hypervisor. With VirtualPower, the hypervisor infers when these faults oc-
cur due to power management actions made by guest policies. Based on
this knowledge, the hypervisor constructs a VPM event object that includes
information such as the current time stamp, the VPM state that the guest
attempted to set, and the physical performance state being used by the sys-
tem for the VM when the event was detected. These events are stored in
cyclic buffers by the hypervisor until they are retrieved by policies running
in the management partition. Specifically, the management partition can
use hypercalls to both poll for and acquire outstanding VPM events. In
addition, the hypervisor makes available an event channel that the man-
agement partition can subscribe to if it wishes to be notified when events
occur. The combination of fault-generated VPM events and event noti-
fication interfaces in effect provides a communication medium between
VM-based policies and the management partition that we refer to as VPM
channels.

7.3.1.1.3 VPM Mechanisms

The combination of VPM states and VPM channels allows the management
partition to ascertain power/performance trade-offs from the perspective

Energy-Efficient Virtualized Systems W 241

100%

95%

90%

85%

80%

75%

Normalized Power Consumption

70%

High performance both ~ Frequency scaling one Frequency and voltage
cores core scaling both cores

FIGURE 7.3 Limited hardware power savings resulting from dependencies
between managed VMs on a dual-core processor.

of each guest VM that is hosted on a server platform. The set of actions
that policies in the management partition, VPM rules, can subsequently
perform to affect application performance and power consumption are
termed VPM mechanisms. The first mechanism that can be considered is
of course the use of underlying hardware states. When using these states,
however, the management partition must make sure that it does not vio-
late the isolation principles provided by VPM states. VirtualPower enables
this by implementing the notion of shadow VPM states. Shadow VPM
states consist of the actual configuration that the hypervisor will use when
provisioning virtual resources at a VM-specified VM state. Taking proces-
sor voltage/frequency states as an example, the management partition may
determine that each soft VPM state should result in a distinct hardware-
supported frequency state to be set on the physical processor on which
a virtual processor is running. Isolation is guaranteed here since physical
states are modified as virtual processors are context switched. Note that the
second requirement identified, independence, still exists since guest poli-
cies may still operate in an independent manner. However, there may exist
dependencies that effect power savings that the management partiton VPM
rules may take into account when utilizing VPM mechanisms. For exam-
ple, a limitation of depending exclusively on hardware management states
that motivates the inclusion of additional VPM mechanisms is indicated in
Figure 7.3.

The power consumption of a processor is proportional to the product
of frequency and voltage squared. Therefore, voltage scaling is required to

242 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

obtain significant power savings. However, often there may be fewer volt-
age rails than available processors, and the effective voltage is limited by
the fastest running processor. When the shadow VPM states assigned to
the virtual processor of distinct VMs are different, the ability of VPM rules
to utilize hardware states for power savings may be limited. As illustrated
in Figure 7.3, frequency scaling one processor on a dual-core package in-
dependently of another provides nearly 5% in system-level power savings.
However, scaling both processors enables voltage scaling as well, dramat-
ically increasing platform power reduction by nearly 20%. Based on this
observation, VirtualPower extends additional VPM mechanisms for VPM
rules to utilize. One of these, soft scaling, utilizes resource scheduling to
reduce the effective performance experienced by a virtual resource by re-
ducing the amount of physical resource it obtains.

Using processors as an example again, VPM rules can “cap” a virtual
processor such that the hypervisor imposes utilization limits on it [18].
Soft scaling can provide power benefits because it duty cycles the underly-
ing hardware, allowing it to enter lower-power idle states. Indeed, with the
increased emphasis on idle power management, soft scaling can help hard-
ware attain energy-saving states that improve power consumption beyond
the hardware capabilities available. As an illustrative example, Figure 7.4
compares scaling the performance of a virtual processor by duty cycling
the processor during VM execution using hardware throttle states versus
hypervisor scheduling. We observe that at lower performance states, the

100% —I\.\.\.\
95%

90%

[
85% Hardware scaling

(T-states)

80% —— Soft scaling (virtual
processor capping)

Normalized Power Consumption

75% T T T T T T T 1
100% 87% 75% 62% 50% 37% 25% 12%
CPU Performance Cap

FIGURE 7.4 Power benefits of low-power hardware states achieved through
the soft-scaling VPM mechanism.

Energy-Efficient Virtualized Systems B 243

Management Guest VM
partition partition
Power
VPM Rules management
policy
~ @@
VPM States

-

VPM Channels

VPM Mechanisms l

X

Hypervisor

FIGURE 7.5 Overview of the VirtualPower management architecture.

higher time constants used by soft scaling enable low-power C states [19]
on the processor, which provide a better power profile than hardware-
based throttling. In general, we find that soft scaling can be an effective and
flexible mechanism that can be exploited by VPM rules when hardware
mechanisms either are limited or dependencies between VMs render them
unproductive. A final VPM mechanism that should be mentioned is the
use of consolidation. Here, consolidation may be the collocation of virtual
resources within a physical platform, as well as the more common use of
VM migration. In either case, the consolidation of virtual resources, possi-
bly in conjunction with soft scaling, enables idle states that VPM rules can
use to reduce power consumption.

7.3.1.1.4 Summary

Figure 7.5 illustrates the overall VirtualPower architecture based on the
components described in this section. The system exposes a set of soft
VPM states to each guest. The internal guest policies actuate on these vir-
tualized performance states based on the application-specific performance
criteria and the actual experienced levels of QoS. Information regarding
these actuations are conveyed to VPM rules in the management partition.
Finally, the VPM rules utilize the information to appropriately exercise
VPM mechanisms, which in return affect system power consumption and
the performance experienced by VMs, thereby completeting the feedback
loop. An interesting artifact of this design is that the feedback signals back

244 MW The Green Computing Book: Tackling Energy Efficiency at Large Scale

to the guest VMs are implicit since the guest policies are not paravirtu-
alized and do not communicate directly with the management partition.
However, under the assumption that they are driven by application per-
formance, actions performed by VPM rules affect guest policies. We next
present some illustrative experimental results that demonstrate the efficacy
of the VirtualPower system.

7.3.1.2 Experimental Results

As a first set of experiments, we exercised a VirtualPower-enabled system
with VMs running a simple CPU-bound transactional workload. We con-
sidered varying performance requirements for this application, where the
SLA may be relaxed at times. For example, for transaction-oriented back-
end systems, the overall response time of transactions may be dominated
by queuing delays when a transient large batch of requests arrives. This can
allow the system to trade off power consumption for processing through-
put. Similarly, a transaction-oriented service may guarantee results within
some time frame, allowing it to experience periods of reduced performance
aslong as some minimal prescribed processing rate is maintained. Based on
this application model, we implemented VM policies that monitor active
transaction processing rates and, based on a comparison to a reference SLA
rate, modify VPM states. Figure 7.6 contains the power consumption of a
multicore platform hosting transactional VMs.

Figure 7.6a illustrates the power implications that a VirtualPower
enabled system can have using VM input when a single VM is deployed
in the platform. Specifically, we see that when the application requires less-
than-peak processing rates, the VPM rules in the management partition can
make use of VPM mechanisms to reduce power consumption of the server.
Without the VPM events communicated via the VPM channel, however, the
policies could not determine the workload-specific trade-offs. Even if one
were to implement utilization-based DVEFS policies in the management
partitition, as previously mentioned, the transactional workload is CPU
bound. Hence, without the workload-specific insights obtained via feed-
back from VM policies, such a policy would conservatively have to maintain
peak performance. Instead, we observed power reductions of up to approx-
imately 30% based on VM input with VirtualPower. Figure 7.6b, consider,
the case of two VMs executing transactional applications that are consoli-
dated onto the platform. We observe that as the performance requirements
are reduced for one, or both, VMs, the system is able to effectively manage

Energy-Efficient Virtualized Systems W 245
100% +0—0—0—0—0ﬁ
95%

85% /‘

80%

0
=]
X

75%

70%
N = —&— Default
65% —l— Virtual power

Normalized Power Consumption

60%

T T T
0.2 0.4 0.6 0.8 1

Normalized Required Transaction Processing Rate

100%
S 95%
2 90%
2 85%
S 80%
=
2 75%
o
% 70%
2 65%
<
E 60%
Z 55%
50% T T T 1
1.0/1.0 0.8/0.8 0.8/0.33 0.33/0.33
Normalized Application Transaction Processing Requirements
(Vm1/vm2)

FIGURE 7.6 Reducing power consumption based on VM-specific policies
with VirtualPower.

power consumption using a combination of VPM mechanisms, including
both hard and soft scaling.

A second set of results highlights the ability of VirtualPower-enabled
power management to address applications that have SLAs based on metrics
with rich semantics. We modified the Nutch search engine application [21]
to incorporate a quality model for the responses it generates to queries.
Specifically, we extended the application to use a quality-of-information
(Qol) metric that is associated with each search response. The modified
server responds to requests by attempting to meet the quality requirements
specified by a query within a latency bound. If the latency period is reached,

246 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

0.95

0.9

0.85 1

Normalized Qol

0.8 W Qol-SLA

M Qoi

0.75 -

350% Client Type

30%

25%

20%

15%

Power Savings

10%

5%

0% -

T
Client Type

FIGURE 7.7 Managing power with Qol performance metrics.

the server responds with the results it was able to collect up to that point.
The Qol of a response is then calculated as a function of the number of
results required in the response and the number the server was actually
able to return. We exercise the server with different client types that have
varying Qol and latency requirements. The VirtualPower system manages
the platform based on input from guest VM policies that attempt to manage
virtualized management states as a function of measured and desired Qol.
The ensuing results are summarized in Figure 7.7.

We observe in Figure 7.7a that, across all of the client types, the
VirtualPower-enabled system is able to meet, or exceed, the Qol pre-
scribed by the SLA. At the same time, the system is able to reduce power

Energy-Efficient Virtualized Systems B 247

consumption by up to 30%. These power savings are attained while meeting
SLAs, in spite of the fact that the management partition is completely un-
aware of the application QoS semantics of the hosted applications. These
results help demonstrate the benefits of leveraging power management
policies that execute VMs in a transparent manner by virtualizing exist-
ing management interfaces. Next, we consider the use of paravirtualized
communications between the management partition and VMs for power
management.

7.3.2 Paravirtualized Management Interfaces
for Platform Power Budgeting

As previously mentioned, power capping in server environments is a com-
mon tool used to more aggressively provision servers within a given power
capacity [11]. The ability to limit power consumption may also be used to
manage thermal characteristics within a data center [22]. Power-capping
mechanisms can be integrated into hardware [15, 16]. However, for vir-
tualized systems, a key drawback of these approaches is that they throttle
resources uniformly across the platform, affecting the performance of all
VMs that are hosted on the platform equally. To demonstrate the use of
paravirtualized communications for more effective power management of
virtualized servers, we briefly consider an alternative approach by which
software techniques utilize soft scaling to reduce power consumption in a
QoS-aware manner.

7.3.2.1 QoS Feedback with Congestion Pricing

Enforcing power budgeting requires the system to limit the amount of
active resources in the system or the performance levels at which they run.
For example, the hardware and soft-scaling VPM mechanisms described
can be used to limit power consumption. For simplicity, we limit ourselves
to soft scaling in the following discussions. One method to enforce budgets
using soft scaling is for the system to monitor power consumption from
the hardware and use it as feedback to determine a system-wide resource
cap 7cqp that meets the specified power limit. This can be performed using
a simple PI-, PD-, or PID-based controller (for instance [16, 18] or more
sophisticated controllers. In general, some feedback control can be imple-
mented to determine a system-wide cap that can, for example, be divided
by the number of VMs to determine resource allotments for each workload,
enforced via soft scaling. However, as previously mentioned, our goal is to
support QoS-aware resource provisioning under power budgets.

248 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

Supporting differentiated services under power budgets requires some
method to account for VM-specific QoS trade-offs. One method of achiev-
ing this would be to allow guests to specify some type of utility function that
describes the trade-off between resource allocations and the costs associ-
ated with them (e.g., power). While this lends itself to centralized solutions
that can optimize a system based on knowledge of the individual appli-
cations, a distributed solution provides better scalability and removes the
requirement for explicit utility functions that may be difficult to realize
in practice. Instead, we consider the use of paravirtualized interfaces that
allow guest VMs to provide more meaningful feedback than what can be
expressed through legacy interfaces such as ACPI. In particular, based on
previous work, we employ a decentralized framework that uses congestion
pricing [23-25] asa feedback mechanism for power budgeting of virtualized
servers.

Congestion pricing allows the governing policies in the management
partition to signal application VMs when the system is resource constrained
using the notion of shadow prices. Applications then react to fluctuations in
prices by altering the amount of resources they request. Here, the shadow
price p; is driven by the “costs” associated with provisioning a VM with
some resource allocation r; (e.g., based on soft scaling). Therefore, p; is
proportional to the resources allocated to the guest as well as the contri-
bution to system congestion caused by the allocation. The guest provides
feedback to the management partition by changing its bid B; on the amount
of resources it desires. In particular, the resource bid by a guest is a function
of the shadow price p; as well as the willingness of the guest to pay w;.
The willingness to pay value is VM specific and reflects the QoS priorities
of the application that is running in the guest. Hence, the combination of
shadow prices and resource bids makes up the paravirtualized communica-
tions between the management partition and guest VMs, while the values
of w; drive the bidding policies of each VM. The key to coordinating be-
tween the system resource manager in the management partition and the
independent VM policies, then, is how the shadow prices are calculated in
the system.

The system resource manager uses the set of bids received from guests
to periodically update resource allocations and redefine shadow prices. As
part of this, the manager calculates the “fair” virtual processor cap (e.g.,
soft scaling) F in the system based on the r.,, provided by a power budget
controller implemented using a feedback loop as described. A fundamental
constraint of the resource manager is that it must assign a cap of at least

Energy-Efficient Virtualized Systems B 249

F to a VM unless B; < F, in which case a cap as low as the VM bid is
sufficient. If a set of VMs is provided caps below F, it frees up resources
to overprovision guests that are bidding above F. Therefore, at any given
time, there are two types of costs in the system: an overage cost C,,., based
on guests that obtain a cap less than F and an opportunity cost C,,, based
on VMs that have bids B; greater than the received cap r;. These costs are
summarized by Equations 7.1 and 7.2.

Cover = Y F—ri (Vr; <F) (7.1)
Copp = ZB,'—T,‘ (Vri < B,’) (7.2)

The resource manager uses an algorithm to update allocations based on
VM bids B; and then calculates current shadow prices using Coyer and Cypp.
In particular, based on F, the resource manager calculates the sum of all
bids above F, B,,.r, and all other bids, B,,,.4.r. These are then used to derive
cap values as described in Algorithm 1. The algorithm uses the fair cap if
either Byyer OF Byuger is zero. Otherwise, it distributes the system-level cap
Tcap to overprovision performance-sensitive VMs that have bid over F up
to their respective bids while meeting at least the bid for all other VMs.

Algorithm 1 QoS-Aware VM Resource Allocations under Power Budgets
1: if ((Bypger == 0) OR (B,,.; == 0)) then
22 Setcapto F V VMs
3: else

4. if Byyder allows By, to be met within 7,4, then

5

6

VY VMs with B; > F, set cap to bid
V VMs with B; < F, set cap to bid. Distribute remaining cap
under 74, to these VMs in proportion to B;

7. else
8: VY VMs with B; < F, set cap to bid
9: V VMs with B; > F, set cap to F. Distribute remaining cap under
Tcap to these VMs in proportion to B;
10: endif
11: end if

Once determined, the resource manager uses the new virtual processor
caps r; to calculate costs and new shadow prices p;. The shadow prices are
communicated to VM agents using paravirtualized interfaces, after which
the VM policies respond with new bids B;. Specifically, shadow prices for

250 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

Management . - »
partition uest partition
Power
budget Application
0S Manager
System X o Q &
resource cap Paravirtualized interface
Shadow prices
Measured Power budget P >BEcdl
ower
P T pIigs Resource bids | ontroller |Willingness
manager to pay
Set resource)
caps Hypervisor

Physical platform hardware ‘

FIGURE 7.8 QoS-aware platform power-budgeting architecture with par-
avirtualized VM feedback.

VMs with r; greater than F are set to k,yer Cover7'i, and all others are charged
KoppCoppTi> where Koy and k,,, are configurable parameters in the system.
In terms of bid responses, since the w; of a guest reflects its current QoS
trade-offs, the goal of a VM during constrained periods is to place bids in a
manner such that the shadow price p; it is charged is approximately equal
to its w;. One method to achieve this is again to use a simple PID-based
feedback controller in each guest that is driven by the error signal (w; — p;)
to adjust bids B;. Overall, we achieve a control system that distributes
control decisions across the management partition and guest VMs based on
paravirtualized communications. Figure 7.8 summarizes the overall system.
We next present some experimental results based on an implementation of
this design.

7.3.2.2 Experimental Results

Figure 7.9 illustrates the use of soft scaling as a mechanism to cap power
consumption of a server. In the experiment, the platform moves from an
initial unconstrained state through phases where power is constrained to
98% and 94%. The figure provides the power samples at each 1-s interval,
as well as a data curve based on averaging power values across a 5-s sliding
window. We observe that, as expected with a feedback approach, the power
deviates from the budget slightly at times. However, the controller is suc-
cessfully able to converge to the power budget as it is changed, and adhere
to it, thus validating the use of feedback control with soft scaling for power
budgeting.

Energy-Efficient Virtualized Systems W 251

100% 3%

98%

96%

94%

4 X 1s (sample)
X — 5s (average)

92% T T 1

Normalized Power Consumption

Time (s)

FIGURE 7.9 Efficacy of soft scaling for power budgeting.

Our power-budgeting system implements power budgets by varying
resource allocations to VMs based on their conveyed QoS requirements.
In Figure 7.10, we illustrate how the system manages resources as the QoS
requirements of VMs, via the willingess-to-pay values (w;), are varied. In
the experiment, VM1 starts out with a higher value of w; than VM2, and
after some time, the VMs change their QoS so that the equivalent values are
swapped. The results illustrate the ability of the resource manager to react
to and improve capping based on relative workload demands. For example,
during its demanding period, the system is able to provision VM1 with
additional resources compared to a fair allocation since VM2 expresses a
reduced QoS requirement through its resource bids. Similarly, VM2 expe-
riences an improved allocation when the QoS requirements are reversed.
An interesting observation from the figure is that the total allocation r,, is
greater in the first half of the experiment compared to the second half. This
results from the fact that VM2 consumes more power than VM1 for the
same allocation. The system is able to account for this difference through
its use of feedback control and reduces r.,, based on the current workload
mix and allocations.

Finally, Figure 7.11 illustrates the ability of utilizing a richer paravirtu-
alized interface for differentiated service under power budgets. In the ex-
periment, we have four VMs with varying levels of QoS requirements: low,
medium, and high. As we move from an unenforced power budget down
through high, medium, and low limits, we observe that the application

252 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

0.9
0.8 ‘i ;
0.7)|

0.6
0.5 \7/\/‘ —— VM1

—i— VM2

Normalized Resource Allocation

0.4‘ T T T T T T 1
0 20 40 60 80 100 120 140

Time (s)

FIGURE 7.10 Trading off resources with varying QoS requirements over
time.

1.4

1.2
8 —e— VM1 (High QoS
g 1 requirements)
=
< 08 —8— VM2 (Mid QoS
.% Y.\-\. requirements)
g 06
;_é \ —A— VM3 (Mid QoS
5 04 requirements)
Z T~

0.2 —>*— VM4 (Low QoS

requirements)
0 T T T 1

None High Medium Low
Enforced Power Budget

FIGURE 7.11 Support for differentiated services using paravirtualized QoS
feedback.

Energy-Efficient Virtualized Systems B 253

performance experienced by the VMs correlates to the tier of QoS they
require. An interesting result in the figure is that the high-priority VM1 ac-
tually experiences improved performance as budgets are introduced. This
can be attributed to performance interference effects between VMs [26,27],
where there is a performance penalty of running consolidated with other
VMs on shared multicore resources. As other VMs are capped, these ef-
fects diminish improving performance. Overall, these results illustrate the
types of management that can be enabled when virtualization infrastruc-
tures are extended to incorprate richer paravirtualized interfaces for power
management.

7.4 POWER MANAGEMENT MECHANISMS FOR
DISTRIBUTED VIRTUALIZED PLATFORMS

In Section 7.3, we discussed the benefits of extending virtualization tech-
nologies for improved platform-level management. In large-scale systems,

however, management goals are often based on metrics that encapsulate
multiple servers. Hence, achieving these goals requires coordinating across
separate virtualized platforms. In this section, we take the specific con-
text of power budgeting to illustrate the need for coordinating hypervisors
running across machines based on our VPM tokens system [28].

7.4.1 System Managers for Distributed Power Budgeting

When considering power capping across an aggregation of distributed plat-
forms, there are two global metrics of interest. First, of course, is the power
consumption of the servers to ensure that the power cap is observed. The
second is a notion of utility achieved across a set of managed nodes. An im-
portant point here is that the facility-level utility metric is distinct from the
application specific QoS discussed in Section 7.3. The former is concerned
with data-center-level trade-offs with regard to application performance
(e.g.,low-priority versus high-priority customersin a cloud scenario), while
the latter is at the level of individual applications. The data center utility
may be a function of application QoS, however. For example, the utility
of a commercial cloud data center may be based on the revenue achieved,
which is a function of meeting the QoS expectations of the hosted customer
applications.

Efficiently managing data center power budgets for native systems en-
tails power allocation based on applications assigned to physical servers and
dynamic management of power based on actual usage. In particular, power

254 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

allocations are assigned to physical machines based on the data center util-
ity trade-offs of applications deployed there. Subsequently, the system may
reallocate power between machines when certain hosts are not using their
power resources and others are constrained. This may even include some
compensation mechanisms allowing servers that underutilize power dur-
ing some period to oversubscribe later. The fundamental difference when
a data center becomes virtualized is that each of these management actions
must be performed at the level of a VM instead of a physical machine. For
example, power allocations to a physical machine are now a function of
the data center utility trade-offs of the hosted VMs, which vary dynam-
ically as workloads are migrated between physical machines. Hence, the
additional level of indirection created by virtualization places a require-
ment of additional system managers to manage across physical and virtual
abstractions. The VPM tokens solution introduces three components for
cluster management: a budget manager, platform managers, and a utility
manager.

The budget manager is a centralized entity that is responsible for im-
posing a power budget on underlying virtualized servers. It decides how
to translate a specified power constraint into a set of allocations based on
the utility of VMs running on physical servers at a given time. Moreover,
it must also account for hardware heterogeneity [20], which may have an
impact on the amount of resources a given platform can make available as a
function of a local cap. To actually enforce a cap, the budget manager com-
municates with individual platform managers, which provide the base-level
support for power management. Specifically, the budget manager conveys
to each platform its relative performance capacity limit. These values are
determined using a proportional allocation approach; the budget manager
allocates capacity to physical servers in proportion to the utility impact of
the VMs that they host.

In our system, the platform manager is comprised of the VirtualPower
platform-level components described in Section 7.3, with extensions. Pre-
viously, a VirtualPower-enabled platform managed power based on VPM
events triggered by guests. Now, the platform manager must also consider
the input provided by the budget manager. It accomplishes this by taking
the capacity allocated to it by the budget manager and mapping that to
local component capacity limits based on the use of VPM mechanisms to
maximize efficiency (e.g., hard and soft scaling). These resource pools are
then allocated to VMs based on their relative utilities, again using a pro-
portional scheme. At any given time, however, a VM may use less than the

Energy-Efficient Virtualized Systems B 255

determined allocation either due to low load or because VPM events dictate
that the platform manager may reduce allocations if necessary. In this case,
the platform manager must also track unused capacity of a VM so that it
may be compensated later. The compensation information correlated with
a VM is carried with it as it migrates around a data center.

A final manager in our system is the utility manager. Given the dynamic
nature of virtualized infrastructures, it is necessary to disassociate utility
information from individual platforms since the set of VMs hosted there
changes frequently. Hence, both budget and platform managers need to be
able to look up the utility information associated with VMs at any given
time. The utility manager serves this role. Having provided a brief overview
of the additional management components we extend to manage across
multiple virtualized servers, we next describe the unifying mechanism that
ties them together, VPM tokens.

7.4.2 Coordinating Data Center Management with VPM Tokens
7.4.2.1 Types of VPM Tokens

VPM tokens act as a means of coordination and currency, similar to the
use of ticket currencies for scheduling [29]. To go along with the set of
system managers, our system incorporates three types of tokens: VM tokens,
compensation tokens, and budget tokens. We next describe each of these
in turn.

VM tokens are used by the utility manager to convey trade-offs between
VMs hosted in the data center. The tokens are sent to platform and budget
managers when they query for utility information. Since both of these
managers utilize proportional allocation schemes, the absolute values of
these tokens do not matter, only their relative weights when compared
across VMs. Hence, when assigning VM token values, the utility manager
observes a simple constraint that the sum of all outstanding assigned tokens
(e.g., not including tokens that were issued for VMs that have since been
turned off) is equal to some constant.

Compensation tokens are used to store and convey information regard-
ing underutilized allocations over time that can subsequently be reclaimed
when there is spare capacity. In general, compensation tokens can be as-
sociated with either physical platforms or VMs, allowing system power
management policies to utilize compensation heuristics at physical and
virtual levels. In the context of compensation tokens for VMs, compensa-
tion tokens can be converted like currency when VMs are migrated across

256 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

heterogeneous platforms. For example, underutilized power accumulated
by a VM on a power-hungy server can be converted into a proportionally
larger resource capacity if the VM is subsequently migrated to more effi-
cient hardware. This allows the system to award VMs for “power-friendly”
behavior over time.

Our third and final token is the budget token. Budget tokens are used
by the budget manager to convey constraint information to distributed
platform managers. One of the benefits of abstracting information in this
manner as opposed to having the budget manager directly specify con-
straints in terms of power is that it can help alleviate the budget manager
from dealing directly with the complexities of heterogeneous hardware. In
particular, instead of using raw power values for budget tokens, the val-
ues used are normalized numbers that convey the performance capacity
to which a platform must limit itself. However, because of this, we require
token conversion models that can be used by both the budget and platform
managers. The benefit, though, is that the budget proportional allocation
algorithm can deal with normalized budget tokens and disassociate itself
from the identification of the conversion trade-offs. In summary, we pro-
vide an overview of the VPM token management architecture in Figure 7.12.
Next, we describe aspects of how budget tokens are calculated and used by
the system.

Utility manager Budget manager

-T <
~

- 1

<
£ Platform manager e]
VM || VM || VM || VM

| P}atformimanage?r @
lge VM || VM | VM | VM
{C)

Virtualized platform Virtualized platform

v
Platform manager e J

VM || VM | VM | VM
e G -VM token

G - Compensation token
e - Budget token

Virtualized platform

FIGURE 7.12 Distributed power-budgeting architecture with VPM tokens.

Energy-Efficient Virtualized Systems B 257

7.4.2.2 Managing Power with Budget Tokens

To support conversion of budget tokens, we define for each platform a
token-to-power conversion function F;(T) that gives a platform’s power
consumption value as a function of a token value T;. The performance
capacity allowable for a platform scales with the token value, and F;(T)
provides the related power value. Based on this definition, the relationship
between a budget being imposed by a manager and the set of N token values
for platforms can be described by Equation 7.3. In general, F;(T) can be
determined based on off-line profiling of hardware or online tuning.

N-1
Pyudger = ¥ Fi(T)) (7.3)
i=0

As mentioned previously, the budget manager communicates with the
platform and utility managers to calculate and distribute appropriate bud-
get tokens to the underlying virtualzed platforms. The budget manager
queries all underlying platform managers for the set of VMs that they are
running and correlates VM token information from them using the utility
manager. These values, along with knowledge of where VMs are running,
allow the budget manager to calculate a per platform aggregate utility value
U;. The budget manager then uses the values to weight the tokens assigned
to platforms using the token conversion function. Finally, each platform
manager uses the platform capacity dictated by the budget token it is sent
to perform weighted resource allocations under the budget, in proportion
to the VM tokens associated with hosted guests. Both managers may also
assign unused power capacity as dictated by the relevant compensation
tokens. Based on the overview provided, we next present representative
experimental results from a VPM token-enabled system.

7.4.3 Experimental Results

We evaluated VPM tokens using a rich experimental setup consisting of
heterogeneous platforms with varying power consumption characteristics.
We deployed a mix of virtualized workloads onto the system, including
batch workloads, transactional applications, and web service applications.
Each of the workload types was assigned VM tokens with different val-
ues. We then exercised the budget manager across a variety of budgets in
Figure 7.13. The figure compares the overall normalized utility achieved
under the power budget with VPM tokens when compared to a default

258 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

1 4
0.9 |
0.8
0s AN
0.5
0.4 \
0.3

m

Normalized Achieved Utility

0.2 VPM tokens
0.1 —l— Default
O T T T T

T T T T 1
100% 95% 90% 85% 80% 75% 70% 65% 60%

Normalized Power Budget

FIGURE 7.13 Data center utility across power budgets with VPM tokens.

policy that uniformally requests platforms to reduce power consumption
by the amount required to achieve the budget.

The data in the figure clearly demonstrate the benefits of coordinating
power management through the virtualization stack using VPM tokens.
Including the additional system managers and VPM tokens allows the sys-
tem to limit utility degradation to within 10% when the budget is reduced as
much as 30%. Moreover, when comparing to the default case, VPM tokens
improved utility by up to 43%. These results emphasize the benefits that can
be achieved when managing power across distributed hypervisors using the
system managers along with budget and VM tokens. To demonstrate the
types of benefits that can be enabled with compensation tokens, we take a
closer look at the power consumption of a web service application as it is
managed over time in Figure 7.14.

Figure 7.14 tracks the power consumed by a web service application
as it transitions between periods of load. In the first high-load phase, the
application is constrained based on its allocation to meet the cluster power
budget. As it transitions to a period of low load, it consumes less than its
allocation and thereby accumulates compensation credits. Subsequently,
the application moves back into a high-load phase but is still constrained
as there is no underutilized capacity in the system. After some time, how-
ever, another application underutilizes its allocated power, allowing the
web service to consume more than what it would normally be allowed to
based on its compensation token. These results further motivate the benefits

Energy-Efficient Virtualized Systems B 259

Low load Heavy load !
Heavy load (accruing (resource | Heavy load

100%

-

1 1
1 1
1 1
(resource capped) 1 compensation) 1 capped) 1 (compensated)
i i
1 1
| |

95%

90% \/ﬂ.ﬂw‘Aanﬂv,Vﬂ,ﬂ\i
85%

T
N

70%

S

Normalized Power Consumption

Time

FIGURE 7.14 Compensation with varying load during power budgeting.

of extending virtualization infrastructures for managing power across dis-
tributed virtualized servers.

7.5 RELATED WORK

The growing deployment and importance of virtualization has placed sig-
nificant emphasis on resource management of virtualized servers across
all dimensions, including memory efficiency, workload performance,
and power consumption. Intelligent memory management is critical for
improving hardware utilization via consolidated VMs and can therefore
dramatically impact data-center-level power efficiency. Many of the un-
derlying memory management approaches used in commercial technolo-
gies, including content-based page sharing, were developed in the context
of the VMware ESX Server [30]. Methods to more aggressively pursue
page-sharing opportunities, including at subpage granularities, have since
been proposed [31]. Other alternatives include removing the need for on-
line scanning of pages to find identical content by integrating appropri-
ate enlightenments [32]. Extending beyond the platform, VM placement
techniques designed to enhance page-sharing opportunities have shown
promise as well [33]. Beyond page sharing, extensions for memory balanc-
ing have been shown to be critical for virtualized systems [34, 35]. These

260 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

examples illustrate the strides that have been taken to extend virtualiza-
tion technologies to be more amenable for memory management. The ap-
proaches outlined in this chapter, along with other contributions, including
VM energy metering support [36], take a similar strategy of integrating im-
proved power management support for virtualization.

Virtualization provides a level of indirection between applications and
physical hardware, enabling flexible and efficient workload management
in data centers. For example, live migration technologies [5] introduce the
ability to adaptively deploy VMs across distributed physical platforms. This
underlying mechanism can be used to consolidate VMs in a manner that
minimizes unused resources, possibly using forecasting techniques [37,38].
Approaches that take into account the overheads of migrations and plan
appropriate sequences to achieve a desired allocation have been developed
to better exploit migration as well [39]. An interesting artifact of cohost-
ing VMs is that it creates opportunities for performance interference be-
tween VMs due to contention on shared resources [40, 41]. Placement
techniques can take this into account and, for example, place workloads to
avoid cache contention [42]. A more general framework that overprovisions
VMs based on performance interference in cloud environments has been
proposed as well [27]. All of these techniques make use of virtualization
to better manage data center resources and have an impact: the evolution
of system virtualization technologies. Similarly, this chapter demonstrates
how power can be managed as a first-class resource in data centers and
advocates for continued refinements to virtualization software for energy
efficiency.

Managing large-scale systems using control theoretic techniques is a
promising direction of research. The use of control theoretic elements for
memory balancing on virtualized servers has been explored [34]. Others
have incorporated feedback control for resource allocation for multitier
applications [43], including management across multiple resource dimen-
sions [44]. The control theoretic techniques presented in this chapter in-
volve just one of many approaches being explored for applying feedback
for managing power and performance in data centers. Other work has con-
sidered the more general problem of coordinating multiple, possibly inde-
pendently designed, feedback controllers to jointly optimize both power
and performance [45,46]. As the integration of these techniques becomes
commonplace, virtualization extensions like those explored in this chapter
can help coordinate across the distributed controllers that will exist in the
system [47].

Energy-Efficient Virtualized Systems W 261

7.6 CONCLUSIONS AND FUTURE CHALLENGES

This chapter has shown ways in which modern virtualization infrastruc-

tures can be extended to permit effective power management for large-scale
data center systems. The first key insight presented in the chapter is the need
for and utility of new interfaces between the virtualization layer controlling
physical hardware and the operating systems running applications in guest
VMs. The purpose of such interfaces is twofold: (1) to inform hypervisors
of the power states acceptable to operating systems and thus to the applica-
tions they run and (2) to provide implicit or explicit feedback to operating
systems about the efficacy of their internal management strategies. Inter-
estingly, both implicit and explicit feedback can be used, implying that ef-
fective power management is possible for guest operating systems whether
or not they are aware of running in virtualized environments. However,
advantages in terms of power efficiency exist for aware versus unaware
systems.

The second insight is that there is a need for new virtualization-level
management abstractions. In terms of power management, support is
needed for multiple tasks. First, there must be abstractions for exchanging
information about and coordinating management actions across multi-
ple data center machines, subsystems, or partitions (sometimes also called
“zones”) because current hardware is constructed to take per platform and
per zone management actions. Without coordination, it is difficult to attain
global goals like the enforcement of power caps on zones or entire data
centers, and individual decisions can lead to undesirable actions, such as
multiple machines being run in lower-power states rather than entirely
idling one machine and fully utilizing the other. This is because typically
idling machines or turning them off saves more power than running them
at lower-power states.

A third insight from this chapter is that virtualization in fact presents
new opportunities for power management, not only in terms of the ability
to coordinate power management across multiple machines but also be-
cause the virtual power states presented to systems and applications need
not be identical to actual power states offered by hardware (which tend
to be limited). Instead, the virtualization layer can use its own innova-
tive mechanisms to create appropriate power states for application use,
including those that hide hardware heterogeneity from systems. The last is
particularly important in large-scale data centers, where multiple genera-
tions of computing hardware coexist in an ever-present rhythm of machine
acquisition, deployment, use, and removal.

262 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

A question of note is the role and importance of virtualization in high-
performance computing, in fact, answering this question gives rise to several
important new directions in research on effective system power manage-
ment. Given impending government mandates or incentives to operate with
high levels of power efficiency, even facilities that have not yet experienced
limitations on power delivery (e.g., those running the U.S. Department
of Energy’s petascale machines) must consider new measures to achieve
power efficiency in operating their new machines. Further, there already ex-
ist many facilities, in both governmental and commercial endeavors, where
limited power supplies threaten or prevent needed equipment upgrades
(e.g., due to increased densities). In addition, with new exascale machines
being planned, dealing with limitations in power delivery has become a
key driver of their design, both at a platform level (resulting in the use of
heterogeneous processors, including accelerators, to attain acceptable levels
of power/performance) and at the system level, resulting in explicit consid-
eration of “entire platform” power consumption, including memory and
the interconnect. Finally, in such settings, virtualization is not only going
to be present, in terms of the hardware support needed for it to operate
efficiently (e.g., Intel’s VT instruction set), but also necessary to facilitate
shared facility use by the many groups of researchers requiring machine
access.

Interesting challenges for future work in power management for virtual-
ized systems are derived from the increasingly heterogeneous nature of indi-
vidual platforms, already ubiquitously present in the mobile space and now
becoming increasingly important for both server and high-performance
systems. Questions arise regarding how to manage platform power and idle
states while still meeting application requirements, how to manage VM
migration when power/performance characteristics of different cores on a
single platform and on different platforms can vary radically, and how to
coordinate across entirely different data center subsystems, like those used
as external interfaces versus for computational tasks versus those used for
I/O or large-scale data analysis, and others.

Other challenges for power management are due to the increasing fun-
gibility of facilities and applications embedded in VMs. Cloud computing
has the potential to substantially increase the degree of dynamics expe-
rienced in data center systems, so that we must also consider the energy
used in dealing with these dynamics (e.g., energy consumed by VM migra-
tion) versus just considering steady-state application power consumption.
In large-scale clouds, operators will not be aware of which applications run

Energy-Efficient Virtualized Systems B 263

on which machines at what times, so that it becomes hard or impossible to
manage machines to continue to meet application goals. As a result, needed
are methods for run-time application recognition and identification with-
out compromising applications’ privacy concerns and without requiring
applications to undergo onerous modification before they can be run in
clouds.

REFERENCES

1. Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2.

2. Microsoft. Microsoft Azure Services Platform. http://www.microsoft.
com/azure.

3. D. G. Murray, G. Milos, and S. Hand. Improving xen security through disag-
gregation. In Proceedings of the International Conference on Virtual Execution
Environments (VEE), 2008.

4. D. Meisner, B. T. Gold, and T. E. Wenisch. Powernap: Eliminating server idle
power. In Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), March 2009.

5. C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, 1. Pratt, and
A. Warfield. Live migration of virtual machines. In Proceedings of the 2nd
ACM/USENIX Symposium on Networked Systems Design and Implementation
(NSDI), May 2005.

6. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
L. Pratt, and A. Warfield. Xen and the art of virtualization. In Proceedings of
the ACM Symposium on Operating Systems Principles (SOSP), 2003.

7. VMware. VMware ESX. http://www.vmware.com/products/esx.

8. Microsoft. Windows Server 2008 R2 Hyper-V. http://www.microsoft.
com/hyperv.

9. Microsoft. Windows Virtual PC. http://www.microsoft.com/windows/virtual-
pe.

10. E Bellard. Qemu, a fast and portable dynamic translator. In Proceedings of
the USENIX Annual Technical Conference, 2005.

11. X. Fan, W.-D. Weber, and L. Barroso. Power provisioning for a warehouse-
sized computer. In Proceedings of the International Symposium on Computer
Architecture (ISCA), June 2007.

12. S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubramaniam, and A. Baldini.
Statistical profiling-based techniques for effective provisioning of power in-
frastructure in consolidated data centers. In Proceedings of the EuroSys Con-
ference, 2009.

13. P. Pillai and K. Shin. Real-time dynamic voltage scaling for low-power em-
bedded operating systems. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP), October 2001.

14. C. Poellabauer, L. Singleton, and K. Schwan. Feedback-based dynamic fre-
quency scaling for memory-bound real-time applications. In Proceedings of

264

15.

16.

17.

18.

19.

20.

21.
22.

23.

24,

25.

26.

27.

28.

B The Green Computing Book: Tackling Energy Efficiency at Large Scale

the 11th Real-Time and Embedded Technology and Applications Symposium
(RTAS), March 2005.

P.Ranganathan, P. Leech, D. Irwin, and J. Chase. Ensemble-level power man-
agement for dense blade servers. In Proceedings of the International Sympo-
sium on Computer Architecture (ISCA), 2006.

C. Lefurgy, X. Wang, and M. Ware. Server-level power control. In Proceedings
of the IEEE International Conference on Autonomic Computing (ICAC), June
2007.

R. Nathuji and K. Schwan. Virtualpower: Coordinated power management
in virtualized enterprise systems. In Proceedings of the 21st ACM Symposium
on Operating Systems Principles (SOSP), October 2007.

Ripal Nathuji, Paul England, Parag Sharma, and Abhishek Singh. Feedback
driven QoS-aware power budgeting for virtualized servers. In Proceedings of
the Workshop on Feedback Control Implementation and Design in Computing
Systems and Networks (FeBID), April 2009.

Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba. Advanced configu-
ration and power interface specification. http://www.acpi.info, September
2004.

R. Nathuji, C. Isci, and E. Gorbatov. Exploiting platform heterogeneity for
power effcient data centers. In Proceedings of the IEEE International Confer-
ence on Autonomic Computing (ICAC), June 2007.

Lucene. Nutch. http://lucene.apache.org/nutch.

J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making scheduling cool:
Temperature-aware workload placement in data centers. In Proceedings of
the USENIX Annual Technical Conference, June 2005.

P. Key, D. McAuley, P. Barham, and K. Laevens. Congestion pricing for conges-
tion avoidance. Technical Report MSR-TR-99-15, Microsoft Research, Febru-
ary 1999.

R. Neugebauer and D. McAuley. Congestion prices as feedback signals: An
approach to QoS management. In Proceedings of the 9th ACM SIGOPS Eu-
ropean Workshop, September 2000.

R. Neugebauer and D. McAuley. Energy is just another resource: Energy
accounting and energy pricing in the nemesis OS. In Proceedings of the 8th
IEEE Workshop on Hot Topics in Operating Systems (HotOS), May 2001.
Younggyun Koh, Rob Knauerhase, Paul Brett, Mic Bowman, Zhihua Wen,
and Calton Pu. An analysis of performance interference effects in virtual
environments. In IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), April 2007.

R.Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: Managing performance
interference effects for QoS-aware clouds. In Proceedings of the EuroSys Con-
ference, 2010.

R. Nathuji and K. Schwan. VPM tokens: Virtual machine-aware power
budgeting in datacenters. In Proceedings of the ACM/IEEE International
Symposium on High Performance Distributed Computing (HPDC), June
2008.

29

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Energy-Efficient Virtualized Systems B 265

. C. Waldspurger and W. Weihl. Lottery scheduling: Flexible proportional-
share resource mangement. In Proceedings of the First Symposium on Oper-
ating System Design and Implementation (OSDI), 1994.

C. Waldspurger. Memory resource management in VMware ESX server. In
Proceedings of the Symposium on Operating Systems Design and Implementa-
tion (OSDI), December 2002.

D. Gupta, S. Lee, M. Vrable, S. Savage, A. Snoeren, G. Varghese, G. Voelker,
and A. Vahdat. Difference engine: Harnessing memory redundancy in virtual
machines. In Proceedings of the Symposium on Operating Systems Design and
Implementation (OSDI), December 2008.

G. Milos, D. Murray, S. Hand, and M. Fetterman. Satori: Enlightened page
sharing. In Proceedings of the USENIX Annual Technical Conference, June
2009.

T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet, and M.
Corner. Memory buddies: Exploiting page sharing for smart colocation in
virtualized data centers. In Proceedings of the International Conference on
Virtual Execution Environments (VEE), March 2009.

J. Heo, X. Zhu, P. Padala, and Z. Wang. Memory overbooking and dynamic
control of xen virtual machines in consolidated environments. In Proceedings
of the IFIP/IEEE Symposium on Integrated Management (IM) Mini-conference,
June 2009.

W. Zhao and Z. Wang. Dynamic memory balancing for virtual machines. In
Proceedings of the International Conference on Virtual Execution Environments
(VEE), March 2009.

J. Stoess, C. Lang, and F. Bellosa. Energy management for hypervisorbased
virtual machines. In Proceedings of the USENIX Annual Technical Conference,
June 2007.

N. Bobroff, A. Kochut, and K. Beaty. Dynamic placement of virtual ma-
chines for managing SLA violations. In Proceedings of the 10th IFIP/IEEE
International Symposium on Integrated Network Management (IM),
2007.

G. Khanna, K. Beaty, G. Kar, and A. Kochut. Application performance
management in virtualized server environments. In Proceedings of the
10th IEEE/IFIP Network Operations and Management Symposium (NOMS),
2006.

F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall. Entropy:
A consolidation manager for clusters. In Proceedings of the International
Conference on Virtual Execution Environments (VEE), 2009.

R. Iyer, R. Illikkal, O. Tickoo, L. Zhao, P. Apparao, and D. Newell. Vm3: Mea-
suring, modeling and managing VM shared resources. Computer Networks,
53(17): 2873-2887, 2009.

Younggyun Koh, Rob Knauerhase, Paul Brett, Mic Bowman, Zhihua Wen,
and Calton Pu. An analysis of performance interference effects in virtual
environments. In IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), April 2007.

266

42,

43.

44,

45.

46.

47.

B The Green Computing Book: Tackling Energy Efficiency at Large Scale

Akshat Verma, Puneet Ahuja, and Anindya Neogi. Power-aware dynamic
placement of hpc applications. In Proceedings of the International Conference
on Supercomputing (ICS), 2008.

P. Padala, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant,
and K. Salem. Adaptive control of virtualized resources in utility computing
environments. In Proceedings of the EuroSys Conference, 2007.

P. Padala, K.-Y. Hou, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, and A.
Merchant. Automated control of multiple virtualized resources. In Proceed-
ings of the EuroSys Conference, 2009.

J. Kephart, H. Chan, R. Das, D. Levine, G. Tesauro, F. Rawson, and C.
Lefurgy. Coordinating multiple autonomic managers to achieve specified
power-performance tradeoffs. In Proceedings of the IEEE International Con-
ference on Autonomic Computing (ICAC), June 2007.

Xiaorui Wang and Yefu Wang. Co-con: Coordinated control of power and
application performance for virtualized server clusters. In Proceedings of the
17th IEEE International Workshop on Quality of Service (IWQoS), Charleston,
SC, July 2009.

R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu. No
“power struggles: Coordinated multi-level power management for the data
center. In Proceedings of the International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), March
2008.

CHAPTER 8

Demand Response for
Computing Centers

Jeffrey S. Chase

CONTENTS
8.1 Introduction 267
8.2 Demand Response in the Emerging Smart Grid 270
8.2.1 Importance of Demand Response for Energy
Efficiency 270
8.2.2 The Role of Renewable Energy 272
8.3 Electricity Pricing: A View to the Future 273
8.3.1 Dispatchable Demand Response 274
8.3.2 Variable Pricing 275
8.3.3 Hybrid-Pricing Models 277
8.4 Demand Response and Demand Elasticity for Computing 279
8.5 Evaluating Demand Response: A Simple Model 283
8.6 Demand Response in Practice 289
8.6.1 Load Factor and Capacity Provisioning 289
8.6.2 Price Variability 291
8.6.3 Energy Proportionality at Facility Scale 292
8.7 Summary and Conclusion 293
References 293

8.1 INTRODUCTION

The term demand response (DR) refers to policies or procedures to influence
the timing or location of power demand in response to signals from the

electricity supplier about energy production cost or availability. DR is an

267

268 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

important element of “smart grid” initiatives to improve the reliability and
efficiency of electrical power grids.

DRisaform of demand-side management, aterm that refers to any means
to manage the balance of electricity supply and demand in an electrical grid
by influencing or modulating electricity demand instead of or in addition to
the conventional approach of modulating supply. DR is complementary to
demand-side energy efficiency, another form of demand-side management.

Effective demand-side management can reduce environmental impact
and operating cost for energy consumers. For example, energy-efficient
computing, the primary focus of this book, influences demand by reducing
theamount of energy consumed to perform a computational task. Advances
in energy efficiency of computing centers reduce their operating costs and
environmental impact in an obvious and direct way: Each unit of energy not
consumed is oneless unit to generate, transmit, and pay for. In particular, the
“negawatts” saved by energy efficiency can substitute directly for megawatts
produced by burning dirty and expensive fossil fuels [1].

DR offers similar benefits in an indirect way. In contrast to energy-
efficient computing, the purpose of DR is not to reduce the amount of
energy consumed for any given computing task. Rather, the purpose of
DR is to reduce the cost for each unit of energy consumed by controlling
when and where that unit is consumed in order to consume it at a time and
place with a low unit cost for energy. DR for computing centers involves
scheduling or placement of computing loads in a way that considers the
availability and cost of the electricity to run those loads. The cost metric may
incorporate electricity prices, environmental impact, or other measures.

The role of DR in “green high-performance computing (HPC)” reflects
aholistic view of computing and the electricity supply grid as an end-to-end
system. In this holistic view, the ultimate measure of energy efficiency is
the value of service delivered per unit of fuel consumed or pollution pro-
duced. The value derives from the benefit that the information technology
(IT) service provides to its users (IT value). Effective DR can enhance en-
ergy efficiency on the supply side, even if it does not reduce the amount
of electricity needed to produce a given unit of IT value. In particular, DR
strategies can enhance end-to-end efficiency by shifting the electricity de-
mand away from dirty electricity generators and onto clean energy or by
using energy opportunistically that might otherwise be wasted. DR strate-
gies are also essential to functioning within supply constraints caused by
power budgets [2,3], brownout events [4], or intermittent generation [5,6]
(e.g., local solar or wind power). Another form of DR is migrating workload

Demand Response for Computing Centers B 269

in an Internet-scale service to exploit price disparities in regional electricity
markets [7].

One challenge of DR is that it often involves trade-offs in the value
of service produced. In general, making computing systems more energy
efficient enables them to produce the same IT value with less energy and
hence lower operating cost. In contrast, DR strategies entail some measur-
able reduction in service quality and therefore may reduce IT value. For
example, a DR strategy might incorporate admission control—the choice
to deny or cancel a request for computing service during a period of high
energy cost. A DR strategy might also defer or throttle a task or migrate
it to a remote provider; any of these choices could reduce the IT value by
increasing response time. Another alternative is to reduce the demand for
computing power by degrading result quality [8,9].

Thus, DR planning for computing facilities and data centers requires a
careful consideration of the impact on I'T value. In general, DR strategies are
most suitable for what we might call delay-tolerant computing. For example,
batch job workloads in HPC environments may be less sensitive to response
time than interactive web services or other data center applications.

Several intersecting trends suggest that effective DR will be an important
design goal for automated load management in computing centers that draw
their electrical power from future smart grids. This chapter addresses the
following questions:

e Howdoes DR enhance energy efficiency on the supply side? Section 8.2
summarizes the role of DR in “greening” the electrical system to reduce
fossil fuel use and carbon emissions.

e How does DR reduce electricity costs for facilities that can shift loads?
Section 8.3 gives an overview of electricity pricing models and trends
that increase the incentives for adaptive load control.

e Are computing facilities and data centers promising targets for DR
strategies? Section 8.4 gives an overview of some factors and trade-
offs that determine their suitability and potential to employ DR.

e What factors influence the potential cost savings from DR in comput-
ing facilities? Whatimpact does DR have on service quality? Section 8.5
develops a simple analytical model to understand the trade-offs inher-
entin DR strategies for batch job scheduling. In particular, itillustrates
the key factors that influence DR effectiveness in computing centers:

270 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

facility load factor (utilization), surplus capacity, facility-scale energy
proportionality, and electricity pricing factors.

e How do other changes to energy practices for computing facilities
interact with DR? Section 8.6 discusses the impact of advances in
facility-scale energy proportionality and dynamic pricing of cloud
computing services.

8.2 DEMAND RESPONSE IN THE EMERGING SMART GRID

DR is motivated by a need to balance electricity supply and demand at all
levels of the power grid. Electrical grids have little or no energy storage

capacity to use as a buffer, so supply must match demand at any point in
time. If generation exceeds demand, then energy is wasted. If generation is
insufficient to match demand, then outages may occur.

Electricity demand is highly dynamic. Fortunately, electrical demand
over a region is predictable with sufficient accuracy and precision to enable
awide range of options for proactive management, including DR strategies.
Theinstalled base of electricity-consuming devices changes relatively slowly,
and their usage patterns are generally driven by a few primary factors, such
as weather, which can be predicted days or hours in advance.

As demand changes, suppliers must modulate generation to match the
demand. DR offers a complementary response option: If demand exceeds
supply, then reduce demand from selected electrical devices to match the
current supply instead of or in addition to increasing supply to meet the de-
mand. DR offers a potential to improve end-to-end efficiency by avoiding
reliance on high-cost generators, which are used primarily during peri-
ods of peak electricity demand (Section 8.2.1). DR is also an important
tool to manage an electricity supply that is itself increasingly dynamic and
difficult to modulate. For example, DR becomes more important as grids
incorporate a larger share of fuel-free renewable electricity sources into the
generation mix (Section 8.2.2).

8.2.1 Importance of Demand Response for Energy Efficiency

To satisfy dynamic demands, electrical suppliers maintain a mix of generat-
ing assets with various properties. As demand increases, suppliers dispatch
their generating resources according to a plan that attempts to minimize
their overall supply costs. Economic dispatch planning may be influenced
by a range of factors, including predictions of how long the demand will last
and the cost of transmission from the candidate generating plant to the load.

Demand Response for Computing Centers B 271

180
Representative Regional Supply Stack: October 2007 o
160 } Source: U.S. FERC State of the Markets Report 2008
140 Inefficient peaking °
N generators at the back of
—§ 120 Fuel-free renewables at the the dispatch stack Y
S front of the dispatch stack o
= (
£ 100 <
% Large generators meet L
o Lo []
O remaining baseload demand °
= 80 ¢ ai
gb ..o L
§ 60
[=]
10 oo o o’ %S %
= 5 .S
Hydro Natural gas 2 -é e
20 Nuclear combined 2 3 g
Eastern coal cycle
0
0 10 20 30 40 50 60 70

Fleet Generating Capacity (Gigawatts)

FIGURE 8.1 A representative supply/dispatch stack for a U.S. region with
65 GW of dispatchable generating capacity. The y-axis shows the marginal
(e.g., fuel) cost of power from each generator, ordered by their priority in
the dispatch stack. The least-efficient generators have the highest marginal
cost and are held in reserve for periods of high demand or constrained
supply. FERC is the Federal Energy Regulatory Commission. PRB is the
Powder River Basin.

Although dispatch planning is complex, the dominating factor is a rank
ordering of generators according to least marginal operating cost. The port-
folio of generating assets is known as the dispatch stack, suggesting a rela-
tively static order of dispatch from preferred plants that run continuously to
higher-cost power plants that are used only when needed. Figure 8.1 illus-
trates a representative dispatch stack [10]. The plants dispatched last are the
generators with the highest operating costs for fuel and emissions. These
standby or peaking generators are used only when demands cannot be met
from other sources. A 2007 Edison Electrical Institute report suggests that
20% of U.S. generating capacity is used less than 10% of the time [11]. Only
42% of generation capacity is used 100% of the time (this base demand level
is known as baseload).

Plants designed as peaking plants are intended to be used rarely, so
they often lack efficiency features that would increase their capital cost.
For example, a typical peaking power plant is a simple gas turbine that is

272 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

significantly less efficient than combined-cycle gas plants that capture waste
heat, as shown in Figure 8.1. The combined-cycle gas plants are cheaper to
operate than simple gas turbines, but they are more expensive to build. The
back of the dispatch stack also includes some of the dirtiest legacy plants.

DR strategies can improve overall efficiency and reliability by limiting
the peak and reducing the use of inefficient standby generation. For that
reason, the U.S. Energy Independence and Security Act of 2007 (EISA)
mandated comprehensive planning and assessment of DR options for the
electrical grid in the United States [12]. The 2009 U.S. National Assessment
of Demand Response Potential [13] suggests that DR strategies have po-
tential to enable a 10-20% reduction in peak electricity demand relative to
current projections, rendering 188 GW of reserve generating capacity un-
needed in 2019. These reductions could allow earlier retirement of legacy
assets and freeup resources and capital for investments in clean energy and
energy efficiency.

8.2.2 The Role of Renewable Energy

Increasingly, the generating mix is being supplemented with the subclass of
“renewable” assets that harvest natural energy flows such as wind and solar,
rather than consuming fuel to generate power. Wind plants now make up
almost half of newly installed capacity in the United States, and fuel-free
renewables are the fastest-growing class of new capacity [10]. They have
high capital cost relative to fossil fuel plants, but once installed they, incur
no costs for fuel or emissions.

Fuel-free renewables increase the importance of automated DR for two
reasons. First, their near-zero operating cost places them at the front of the
dispatch stack: By providing clean energy for free, they increase the relative
(marginal, unburdened) cost of serving loads with fuel-driven generators.
In turn, this effect increases the relative benefit of damping the peak de-
mand. Second, fuel-free power generators are intermittent, and it is not
possible to control their output by modulating an input flow of fuel. These
properties suggest that the burden of modulating the balance must shift to
the demand side as they become more prevalent.

In principle, a computing facility under automated control can mod-
ulate its power demand at a fine time granularity to match a dynamic
power budget. Researchers have begun to speculate how future DR strate-
gies could play a role in accelerating deployment of renewables collocated
with computing centers [5, 6]. These ideas are a first step to developing

Demand Response for Computing Centers B 273

server backbone infrastructure that can continue to function, perhapsin a
degraded mode, if access to fuel-generated power is disrupted.

Another relevant property of fuel-free renewables is that their capital
cost is roughly linear with capacity even in small installations; thus, they
disrupt the economies of scale that motivated large, centralized generators
in the past. Amory Lovins and other leading energy analyists have ar-
gued forcefully that this incremental scalability acts against inherent “disec-
onomies of scale” in centralized electricity generation and distribution [14].
Small-scale deployments distribute capital costs for generating assets, make
use of the fragmented available space (e.g., rooftop solar), and reduce trans-
mission costs and losses. They are also the building blocks of “smart micro-
grids” that can meet local power demands autonomously in the event that
the supply of power from the grid backbone is disrupted [15, 16]. To en-
courage investment in distributed generation, some states have enacted net
metering laws and feed-in tariffs that allow small private renewable energy
systems to provide their surplus power to the grid for credit or payment.

These various factors should continue to drive the future power grid
toward a larger number of distributed, smaller-scale, weakly controlled,
intermittent power sources. In turn, that will add pressure on smart grid
control software to balance the increasingly dynamic supply with the dy-
namic demand. This prospect suggests that DR will become an increasingly
important element of integrated control strategies.

8.3 ELECTRICITY PRICING: A VIEW TO THE FUTURE

DR policy choices are driven by conditions in the power network (e.g.,

congestion, unanticipated demand, changes in supply output, or failure of
assets for generating or transmitting electricity). Therefore, a DR strategy
requires some stream of information about current or anticipated con-
ditions in the power network. This information acts as a feedback signal
from the electricity supplier to the consumer to modulate the consumer’s
demand.

The nature of the feedback signal is defined by the contract between the
electricity supplier and consumer. Some service contracts allow the sup-
plier to modulate demand directly within certain bounds in return for a
lower tariff rate (Section 8.3.1). A more flexible feedback signal is a variable
electricity price that reflects real-time supply-and-demand conditions (Sec-
tion 8.3.2). Electricity contracts with hybrid forms of variable pricing are
common in the electricity market today, reflecting various balances in the

274 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

allocation of cost and risk among suppliers and consumers (Section 8.3.3).
These contracts continue to evolve.

One premise of this chapter is that computing centers will have increas-
ing exposure to variable pricing for power in the future and will increas-
ingly use DR as a tool to manage their costs and risks. For example, given
an adaptive load control algorithm to curtail demand during price spikes,
a consumer may lower overall electricity costs by taking on more of the
supplier’s price risk, in return for a lower average price.

It is also common for electricity contracts to include a charge for the
customer’s peak demand over a billing period in addition to the energy usage
charge. For example, a contract might specify a per kilowatt charge for the
average demand over the 15-minute sampling interval with the maximum
average demand among all sampling intervals in the billing period. For
these contracts, DR strategies can also reduce charges by suppressing the
demand peaks.

8.3.1 Dispatchable Demand Response

One simple form of DR contract is an interruptible tariff, which grants the
supplier (a utility) a right to command the customer to reduce its demand
according to prearranged terms. With direct load control, the utility issues
direct commands to devices on the customer premises (e.g., to modulate
systems for heating, cooling, pumping, or battery charging). Alternatively,
the customer may simply agree to curtail load to a fixed level or by a fixed
amount on command from the provider but retain control over how to
meet the target. Customers enter into these agreements in exchange for
some payment or pricing incentive [17].

In these agreements, the utility manages the control algorithm to initiate
the DR in conjunction with capacity dispatch planning. In essence, the
customer’s DR commitment is a dispatchable resource on an equal footing
with generating plants under the supplier’s control. In 2008, the U.S. Federal
Energy Regulatory Commission issued several regulatory changes to treat
dispatchable DR resources comparably to new generating capacity with
respect to market function and dispatch planning [10].

Dispatchable DR agreements are most suitable when the DR policy
choices made by the utility have negligible impact on the customer. In
some electrical devices, demand may be scheduled or shifted in time for
short periods without impairing the function of the device. For example,
consider a device that has a target running time over specific time intervals,

Demand Response for Computing Centers B 275

such as a system for battery charging. A control algorithm can modulate
the duty cycle over shorter time intervals without missing the target. Other
energy-hungry devices maintain a buffer against a leakage or drain rate;
examples include pumping systems to maintain a water reservoir level,
thermal control in buildings, water heaters, or refrigeration. For these de-
vices, modulating the duty cycle may cause the system to drift from a target
objective, but this drift is acceptable within certain tolerances. These sys-
tems can be made more DR tolerant by extending the buffer in some way,
for example, by increasing the size of the reservoir or by adding insulation
or thermal mass.

In contrast, DR for computing services involves managing service qual-
ity trade-offs that may be dependent on the applications or load conditions
within the center (Section 8.4). It is more suitable to arrangements that
allow the center operator to control these trade-offs. Even so, dispatchable
DR arrangements are already present in the data center market. For ex-
ample, some companies (e.g., EnerNOC, http://www.enernoc.com) act as
third-party curtailment service providers to broker dispatchable demand
reductions and mediate between data center operators and electrical utili-
ties in managing peak loads.

8.3.2 Variable Pricing

A more general alternative to drive DR strategies is to offer variable pricing
that reflects varying supply costs through time to the customer. This ap-
proach gives less control to the utility, but it offers more flexibility to the
customers to manage their own demand.

Variable pricing is a foundation of smart grid technologies. Wholesale
electricity markets with dynamic pricing are currently operating in most
regions of the United States. These competitive wholesale markets, ad-
ministered by regional transmission organizations (RTOs) or independent
system operators (ISOs), serve more than two-thirds of U.S. electricity cus-
tomers [18]. These markets use bidding protocols to set a dynamic price on
electricity for delivery over specific time intervals within a given transmis-
sion region (e.g., on an hourly basis or for spot intervals as short as 5-15
minutes).

While some very large computing centers may purchase electricity in
the wholesale market, effective DR generally requires dynamic pricing
in the retail markets where the vast majority of end users obtain their
power. Retail pricing is decoupled from wholesale prices in most regional

276 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

300
Hourly Retail Real-Time Price (RTP) in $/MWh
Data source: Commonwealth Edison

Thursday
2:00 PM
200 $245
<= Monday Friday
; 8:00 PM 4:00 PM
3 $161 $160
100
0

Week of July 30, 2007

FIGURE 8.2 Real-time prices (RTPs) are affected by diurnal activity cycles
and hot weather. Peak demand and peak prices often occur on weekday
afternoons. Prices during this hot summer week varied by an order of
magnitude.

electricity markets in the United States; in 2009, penetration of dynamic
(real-time) pricing at the retail level was still insignificant [12]. This decou-
pling is largely an artifact of older regulatory regimes that emphasized stable
and predictable electricity pricing for consumers. The regulatory climate is
changing to integrate more demand-side load management into the grid,
including variable-pricing schemes at the retail level [18].

To understand why, consider the effect of fixed-price regimes. Fixed-rate
pricing is easy for customers and offers price stability, but providers bear
the risk of price swings in the wholesale market. To ensure a profit, they
must set the fixed-rate price at a sufficiently high level to balance this risk:
The fixed price must be higher than the demand-weighted average of the
wholesale price, or the retail supplier loses money. Thus, the retail price
must reflect not only the marginal cost of generation but also the risk of
supply constraints and price spikes in a dynamic wholesale market.

One straightforward variable-pricing scheme is to pass the wholesale
price directly to the consumer, such as by deriving the retail price from
the wholesale price according to some preagreed function. This dynamic
pricing is known as retail real-time pricing (RTP). Figure 8.2 shows retail

Demand Response for Computing Centers B 277

prices from an RTP pilot in the state of Illinois: Retail prices fluctuate by
the hour according to market conditions, and customers are notified by
SMS (Short Message Service) or e-mail before the end of the business day
if prices will exceed some user-specified threshold at any time during the
following day. Since RTP customers take the risk of price fluctuations in the
wholesale market, they should see lower average prices. Although they are
exposed to price spikes, they have an opportunity to reduce their costs by
limiting their usage during high-price periods. Even at the residential level,
price-responsive demand reductions have the potential to damp wholesale
price spikes [18], reducing costs for the market as a whole. The number of
retail market suppliers offering RTP options to their customers increased
by two-thirds between 2006 and 2008 [13].

One limiting factor for RTP and other forms of variable pricing is that
they require advanced metering infrastructure (AMI) to monitor customer
usage through time. Standard old-style electricity meters measure cumula-
tive consumption but do not record when the consumption occurred. This
missing information is needed to bill the customer under a variable-pricing
regime. Metering devices that account usage through time had only about
5% penetration in U.S. electricity markets in 2008 [13]. The U.S. govern-
ment has provided various incentives for AMI deployment, beginning with
the Energy Policy Act of 2005 (EPAct).

8.3.3 Hybrid-Pricing Models

Where variable pricing is available, various pricing and contract models
have evolved that combine the stability of fixed pricing with the dynamic
DR incentives of RTP to varying degrees [11]. Variable-pricing schemes
and incentives may incorporate any of several common peak-pricing ele-
ments or blend them to distribute costs and risks between the provider and
consumer.

o Time of use (TOU) is a predictable form of variable pricing with fixed
price levels over specific recurring time periods that are designated in
advance according to a schedule. The price schedule may be a standard
tariff for customers of a given class (e.g., residences) or a negotiated
schedule tailored to specific customers and their demand levels. TOU
pricing is already common for commercial and industrial (C&I) con-
sumers in many regions of the United States. Figure 8.3 shows the price
schedule for a TOU tariff for light commercial customers of Pacific
Gas & Electric during summer 2009. Basic TOU pricing reflects only

278 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

PG&E E-19 Tariff, Time-of-Use (TOU) Pricing
Data source: PG&E Tariff Book

E-19 Partial Peak E-19 Peak
Surcharge $23/MWh Surcharge $75/MWh
200 8:30 AM to Noon Noon to 6:00 PM
6:00-9:00 PM Weekdays
Weekdays
150
A-1 Fixed Rate $117/MWh
/ \
100
E-19 Base Rate $81/MWh
50
0

Summer 2009 Weekly Rate Schedule

FIGURE 8.3 Electricity may be purchased on a tariff plan that varies prices
according to the time of use (TOU) on a regular schedule. TOU pricing
enables the customer to plan usage around scheduled surcharge periods
that coincide with likely demand peaks.

those wholesale price variations that are anticipated at the time the
schedule is set; the supplier bears the risk of any unexpected variation
in the wholesale price and must factor this risk into the TOU price
levels.

o Critical peak pricing (CPP) imposes a surcharge during intervals des-
ignated by the provider as “critical” due to unexpected supply con-
straints. CPP is more dynamic than pure TOU, but the supplier must
call critical periods with a minimum advance notice (e.g., a day ahead
or an hour ahead), and the contract may limit the number of CPP in-
tervals and the CPP price levels. CPP shifts more of the risk of critical
periods to the customer, so it should reduce prices during noncritical
periods.

e Customer baseline load (CBL) contracts specify a fixed price or sched-
ule for a baseline demand level and different pricing for demand that
deviates from the CBL. For example, block, and index-pricing is a
forward futures contract for a block load at an agreed rate, with de-
mand that deviates from the CBL charged or rebated at the dynamic
price.

Demand Response for Computing Centers B 279

It is not yet clear how electricity pricing contracts will evolve and what
forms they will take in the future. However, there is a clear shift toward more
dynamic pricing coupled with incentives for customers that can modulate
electricity demand in response to price signals from the electrical grid.
The remainder of this chapter assumes that electricity contracts incorpo-
rate dynamic pricing for metered usage over specified intervals, and that
the consumer controls how and when to modulate its electricity demand to
respond to these price signals. To abstract from the pricing alternatives, we
may suppose that the customer pays some base rate for electricity together
with a surcharge over specific intervals, with both the amount of the sur-
charge and the surcharge intervals are agreed or announced in advance. It
is possible that future models will include competitive bidding for electrical
power by large customers, but we do not consider that case further. Pricing
factors are discussed in more detail in Section 8.6.2.

8.4 DEMAND RESPONSE AND DEMAND ELASTICITY
FOR COMPUTING

Computing centers—supercomputers, data centers, and other server

ensembles—offer significant DR potential for the following reasons:

o They are large power consumers, and their share of electrical demand
is growing. The analysis by Koomey [19] concluded that their electric-
ity consumption grew at a rate of 16.7% per year worldwide between
2000 and 2005 and by up to 23% per year in some regions. The same
paper estimated a growth rate of 12% per year worldwide between
2005 and 2010. A 2007 EPA (Environmental Protection Agency)
study [20] projected that the U.S. data center sector would require
5 GW of new peak-generating capacity over the 2007-2011 period
under a baseline scenario.

o They have the means to modulate their power demand by controlling
the flow of incoming jobs or requests to servers or by suspending,
resuming, or migrating work that is already in progress. Servers also
have an increasingly rich array of platform-level power actuators un-
der software control, which can select trade-offs of power and per-
formance or cap the power budget at the granularity of individual
servers or server ensembles such as chassis or racks [2]. Recent work
has shown how to combine and extend these elements to modulate

280 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

power usage for systems ranging from virtual machines [14] to
“warehouse-size” data centers [21].

e They increasingly run automated facility-wide policies to schedule
and manage load. These policies can incorporate DR strategies to
modulate power demand.

e Networking offers opportunities to shift computing loads and their
electrical demand from one region to another. DR-aware load place-
ment can address geographic imbalances of electrical supply and de-
mand, even for interactive services that are sensitive to latency and
intolerant of deferring work [7,22].

The technical challenge for DR in computing is then to extend auto-
mated resource management policies to consider electricity cost as an op-
timization objective. These policies include scheduling, admission control,
placement and request routing, and resource control.

Effective DR presumes that demand for electricity by a computing facil-
ity is elastic and price responsive. DR strategies respond to higher prices by
reducing service, typically substituting service at a later time or a different
location. In general, DR for a computing facility compromises service qual-
ity by some observable measure. For example, if a DR strategy substitutes
off-peak energy use for peak-period energy use, it reduces its demand by
deferring work from a peak period to an off-peak period. As a result, any de-
ferred tasks complete later. The degraded service quality is visible through
standard measures of responsiveness (e.g., response time or stretch fac-
tor), even if the facility has sufficient future surplus capacity to defer work
without compromising throughput (see Section 8.5).

A key difficulty is to balance electricity costs against other costs incurred
by the candidate response options (e.g., costs to defer, deny, or migrate a
computing task). The first challenge is to characterize and predict the impact
on service quality. A distinct and perhaps more difficult challenge is to place
a monetary value on the degraded service quality so that its cost may be
compared directly against the savings in the electric bill.

To make this more concrete, let us assume

1. For a given schedule of activity, the facility consumes electricity over
a sequence of discrete time intervals t: electricity(t).

2. The facility incurs a cost for consuming electricity according to a
function that varies with time, such as, a base rate plus a variable
surcharge: rate(t).

Demand Response for Computing Centers W 281

3. For a given schedule of activity, the facility obtains some benefit (IT
value) from the work that it completes in each time step. Let us suppose
that this benefit can be represented in a common currency to compare
it directly with cost: benefit(t).

The DR objective then is to determine a schedule of activity that maxi-
mizes the reward:

Reward = Z(Beneﬁt(t) — Rate(t) x Electricity(t)) (8.1)

t

Consider the common case of a computing facility that serves multiple
workload components (e.g., jobs or virtual machines running on behalf
of different contending users or groups). For example, cloud hosting cen-
ters, enterprise computing centers, and supercomputers execute tasks with
a range of priority levels and urgency ranging from mission critical to dis-
cretionary. Some workloads offer little opportunity for DR; for example,
the IT value of urgent mission-critical tasks is likely to exceed any cost sav-
ings of deferring those tasks. Moreover, any new dynamic control incurs
some risk of disrupting operations in unexpected ways. As another exam-
ple, high-throughput computing environments cannot defer valuable work
unless they maintain adequate reserve capacity to complete the work later.
Section 8.6.1 discusses these practical issues in more detail.

In many cases, such as cloud data centers, the facility is itself a provider
that receives revenue from customers according to various service agree-
ments, which may include penalties for violating a service-level objective
(SLO). Any scheme for arbitrating resources assigns some relative value to
the workloads and uses them to prioritize relative measures to the con-
tending tasks. The difficulty is in mapping these relative measures to an
absolute value for the resources they run on and the power they consume.
That means quantifying the impact of policy decisions on service quality of
each task and the cost of that impact on each component of the workload
(e.g., on each customer).

We can think of this challenge in terms of the contract that the facility
presents to its customers. The contract may be explicit, as in a service-
level agreement (SLA) between a provider and a customer, or it may be
implicit in the definition of the service model for the system. In general, the
contract imposes some performance constraint or SLO on the facility. For
example, the initial contract for Amazon’s Elastic Compute Cloud (EC2)

282 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

suggested that the provider will allocate to each EC2 instance (a virtual
machine) all resources that it requests, up to a specified level encoded in
the attributes of each instance type. This service model of a minimum
resource entitlement (or share) is a defining characteristic of proportional-
share scheduling systems. Alternatively, an SLO may specify constraints on
direct measures of application performance, such as bounds on a response
time quantile or stretch factor.

If the facility’s contract is defined exclusively by such constraints, then
the facility is free to allocate any surplus resource as it sees fit once it satisfies
the constraints. In particular, the facility is free to allow surplus resources
to idle at the discretion of a DR strategy to reduce operating costs. For
contracts that specify a penalty for violating the constraints, the DR strategy
may choose to violate the constraints and pay the penalty if it is outweighed
by other factors [23].

In practice, many computing centers are established by a community
to serve its own needs rather than operated for commercial profit with an
explicit contract. Today, these systems typically operate on a “best-possible”
service model rather than a service constraint. For example, conventional
proportional-share service models are defined to be work conserving: Any
surplus resource is allocated to contending tasks in proportion to their
shares, rather than maintained at the discretion of the provider. This means
that the user of a proportional-share system has an opportunity to obtain
any surplus resources for its own use, competing on a fair footing with other
users. Conventional service models with this property are designed with the
implicit assumption that the computing resource is a form of public good:
Although its use is exclusive, any surplus is free and open for use by the
community. For example, the popular Condor job scheduler was orginally
conceived as a system to “scavenge” these idle resources [24], which would
otherwise be wasted.

DR motivates development of new service models that recognize that
the surplus is not free. It is an open question how to design service models
that allow the provider to balance the operating cost of surplus resources
against the value of using them. In essence, the problem reduces to defining
utility functions that place value (benefit) on service to applications. Several
systems have experimented with utility-driven scheduling policies (e.g.,
[23,25]), some for the explicit purpose of energy management [4, 26]. It
is also intriguing to consider how applications themselves could manage
these cost/benefit trade-offs directly through reflective control, in which
dynamic pricing for cloud service or power is exposed directly to advanced

Demand Response for Computing Centers B 283

applications, which respond by modulating their functions and demands
(8,9].

8.5 EVALUATING DEMAND RESPONSE: A SIMPLE MODEL

Consider a system or facility at a single location, executing a workload.

Deferring work during high-cost periods can reduce overall cost to run
the workload, but it incurs a slowdown. Let us consider a simple model to
illustrate the factors that influence the potential for cost savings from DR,
and the resulting slowdown.

This model focuses primarily on a specific example scenario for DR in
computing centers: shifting of batch job workloads in time to minimize
cost under a time-varying electricity price. The example scenario defers
work to take advantage of lower prices in the future, and thus it presumes
that workloads are delay tolerant up to some bound. Batch job systems are
an attractive target setting for DR because of their flexibility to schedule
load levels through time given the limited need for interactive response.
However, the principles are relevant to other scenarios as well.

To simplify the analysis, suppose that the cost of electricity varies be-
tween two levels, a base price and a peak price, with some given regular
period. Suppose further that the offered workload consists of a continu-
ous stream of arriving jobs that drive the system at a constant load factor.
Figure 8.4 illustrates this scenario. Section 8.6 relates these idealized as-
sumptions to practice.

The model considers a single recurring interval of this schedule, with
parameters normalized to the length of the interval, the base energy price,

Surcharge
eriod |x X : o
8 P : R i
5] y - o
g | EgP
] i gt
Base rate | ! > <3
0 3 @ 0 Time

Time

b
@ (b)

FIGURE 8.4 A simple scenario for the analytical model to illustrate demand
response factors. Electrical power is charged at a base rate, with a surcharge
of y times the base rate for critical periods of x time units of each interval
on a regular schedule. The system’s offered load is an idealized job mix that
drives the system at a constant load factor p with no queuing. The average
job execution time is .

284 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

] 1P==-pc==-=-===--- Peak 1
Surcharge xy | :Surplus capacity1
p (1-x)(1-p) Power(p)
Y | l |
¥y | P
___________ | Idle i
1 x System
$ Load S
L E ystem
Rate Ba'se e 1 Factor Power
X Time 1 Load Factor p 1

(@) (©

FIGURE 8.5 For the idealized scenario in Figure 8.4, the potential cost sav-
ings from demand response is determined by the magnitude y and period
x of on-peak electricity surcharges, the system load factor p and off-peak
surplus capacity, and the system’s energy proportionality. We use a linear
approximation of power as a function of load: Proportionality is charac-
terized by the dynamic range of power consumption from idle i to peak,
which is the slope of the line.

and the system’s peak power draw, as illustrated in Figure 8.5. Four key
factors characterize the potential cost savings and resulting slowdown of DR:

e Price variability. Deferring work reduces cost only when it costs less to
do the work later. The simplified pricing model consists of a constant
base price representing a floor on the price of electricity, with a variable
surcharge y, normalized to the base price, that captures additional
costs due to congestion during peak periods, or other factors (see
Figure 8.5a). The goal of the DR strategy is to schedule work to avoid
these surcharges, subject to various constraints. Higher surcharge rates
increase the potential savings from a DR strategy.

o Surplus capacity. The system can defer work only if it has spare capacity
to run the work later. Without this surplus capacity, deferring work
causes monotonically increasing backlogs and slowdowns for later
jobs. We characterize the load level of the system as a utilization or
load factor p as a share of its peak capacity to do work: 0 < p < 1.!
See Figures 8.4b and 8.5b. DR is an option only when the system is
not saturated: average p < 1.

e Surcharge time. A DR strategy defers work from periods of high sur-
charge to periods of lower (or zero) surcharge. The opportunity for

The load factor p may be viewed as a measure of IT asset efficiency since it represents the utilization
of installed capacity of IT assets [27]. It is analagous to (but distinct from) the load factor as the term
is used in the electricity sector; it is the ratio of average power (or output of work or electricity) to the
peak power (or capacity to do work or generate electricity).

Demand Response for Computing Centers B 285

benefit depends in part on the share x of each interval constituting
the surcharge period during which surcharges apply (see Figures 8.5a
and 8.5b).

e Energy proportionality. Deferring work can reduce cost only if the
system draws less power when it is doing less work. The system power
draw is a function of its instantaneous utilization or load factor p:
power(p). Suppose that the system draws a base power i when it
is idle, where i is given as a share of the system’s peak power. Then,
power (p) ranges between i and the peak, normalized as 1. The energy
proportionality of the system can be characterized by its dynamic range
1 — i [28]. A dynamic range of 100% (i = 0) corresponds to a fully
energy-proportional system.

In this model, the total electricity cost to run the system at full power for
one recurring interval is 1 4+ xy. Consider the case without DR, in which
the system runs at a constant load level p. It executes work xp during each
surcharge period. If the system is perfectly energy proportional (i = 0), then
the base cost for energy during the interval is p, and it incurs a surcharge
of xyp, for a total per interval energy cost of p(1 + xy).

If the system is not fully energy proportional, then it is necessary to
estimate the amount of power the system can save by shifting some or
all of its load over the surcharge period. We consider an idealized model
of energy proportionality in which power is linear with load factor p:
power(p) =i+ p(1 —i). The dynamic range is the slope of the line (see
Figure 8.5¢). For example, if a system consumes 60% of its peak power even
while idling in its lowest-power state (i = 0.6), then its power varies across
40% (1 — i) of its range as p ranges from O to 1, and the slope of the line is
the dynamic range 1 —i = 0.4. The linear model of energy proportionality
was used in early work on energy management for server ensembles [4];
it was also suggested by the recent paper on energy-proportional systems
by Barroso and Holzle [28]. This idealized model roughly approximates
to the behavior of current-generation servers, but it also applies at facility
scale [21,29] (see Section 8.6.3). By this linear model, if the system runs at
utilization p, then we approximate its power draw as i 4+ p(1 —i); thus, the
costto run the system at utilization p for oneintervalis (i+p(1—i))(1+xy).

Now, consider a DR strategy in this idealized setting. If the DR strategy
can defer the xp work to a subinterval in which no surcharge applies, then
it can idle to consume less power during the surcharge period. During each
interval, the system has surplus capacity (1 — p)(1 —x) to complete deferred

286 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

work without incurring a surcharge for the work and without impacting
other work scheduled during the interval. To stay idle when surcharges
apply, the system must shift xp work onto this surplus capacity (refer to
Figure 8.5b). Itis easy to see that the balance condition reduces to p = 1 —x.
If p > 1 — x, then the DR strategy lacks sufficient capacity to idle during
surcharge times: It must run some work even when surcharges apply to
avoid creating a backlog. On the other hand, if p < 1 — x, then the DR
strategy can idle during the surcharge period. In general, the DR strategy can
minimize its costs by shifting MIN (xp, (1 — x)(1 — p)) work and incurs a
surcharge for the unshifted residual.

Consider the impact of the DR strategy on energy cost. We can determine
an upper bound on the energy cost savings from DR as follows: Suppose
that the system has sufficient surplus capacity to shift all of the work xp
out of the surcharge period, that is, p < 1 — x. If the system is perfectly
energy proportional, then it draws zero power while idling (i = 0) during
the surcharge period, so it can eliminate the surcharge and pay only the
base cost p for each interval instead of the cost with surcharge of p(1 4 xy).
Dividing through by p, we have the idealized savings of DR in an energy-
proportional system, measured as a percentage of energy cost:

1
1—
1+xy

(8.2)

In practice, the system is not perfectly energy proportional and con-
sumes some power i even when it is not doing work. This effect reduces
the potential savings: A DR strategy can reduce the surcharge incurred but
cannot eliminate it. Consider the case where the highest savings occurs: the
balance point (p = 1 — x), where the system idles during each surcharge
period and otherwise runs at full power and maximum efficiency. Figure 8.6
depicts this scenario. The system incurs a charge of ix(1 + y) while idling
during each surcharge period; it consumes power i at a cost rate of (1 + y)
for time x. The off-surcharge cost is again just the base cost p: peak power
1 for time 1 — x at the base rate 1. Thus, the best-case idealized savings of
DR under the linear power model, measured as a percentage of energy cost,
becomes

B p+ix(1+y)
(i+p(1—=1)(1+xy)

(8.3)

Demand Response for Computing Centers B 287

4 Completed (no DR) A
Submitted

- 1
Jobs . g
______ "' Completed L
. (w/DR) =

‘ I
2.
2]

> >
Time Time

(@) (b)

FIGURE 8.6 Job throughput and slowdown (a) and system power (b) under
a simple illustrative demand response scenario. Each job completes after
exactly r units of running time. The system has just enough surplus capacity
to idle during surcharge periods and otherwise runs at full power: p = 1—x.
Average throughput is not affected, but jobs incur an average stretch factor

of 1/p.

Figure 8.7 summarizes the interaction of these factors. The figure shows
normalized absolute cost savings: how much of the surcharge xyp can be
avoided. There is no cost to save if p — 0 and no opportunity to shift
load if p — 1. In other cases, the cost and potential savings are linear
with p: The potential savings grow linearly as the system becomes busier
and incurs higher costs but declines linearly when the system has too much
load to allow it to idle during the surcharge period. These two lines bound a
triangle defining the potential savings. Whatever amount of work is shifted,
systems that are more energy proportional (lower i) save more from shifting
that work; thus, systems that are not perfectly energy proportional (i > 0)
obtain savings given by a point in the interior of the triangle rather than on
an upper edge. The peak savings for a perfectly energy-proportional system
is given by a point on the parabola yx(1 — x): For any given x, the peak
savings and top vertex of the triangle occur at the point on the parabola
where p = 1 — x. Thus, the savings of DR are zero if x — 0 (surcharges
never apply) or if x — 1 (surcharges always apply). For any point in the
triangle, the magnitude of the savings grows linearly with y: Savings are
unbounded as y increases.

This cost savings from DR comes at the price of a slowdown as work
is deferred to avoid surcharges. The system incurs the maximum average
slowdown if it idles whenever surcharges apply: p < 1 — x. For example,
consider again the balance point p = 1 — x depicted in Figure 8.6. If each

288 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

1 e
(drawing to scale for y = 2)
Maximum savings p=1-x
for x = 0.25
(energy-proportional) ——_ ' .>< Balance point
s o (e.g.,x =0.25,
s 3 4 p =0.75)
8 AN i=01
foiiee] 1-—
g yp(1-p) xyp / (1 =)
$E - (1-p)
g Z i=05
% P
n
Savings for x = 0.25
0 for non-energy-proportional systems
p=0 p=075 p=1

Load Factor p

FIGURE 8.7 For any given surcharge time x and surcharge y, the savings is
given by a shaded triangle. The system can shift all work out of the surcharge
period if p <= 1 — x: Savings grows linearly with the load factor p. At
higher load factors p > 1 — x, the system does not have sufficient spare
capacity to idle during the surcharge period: Savings declines linearly with
the spare capacity. For any x and p, the savings are always proportional
to y: Higher y values make the triangle taller. For any given x, y, and p,
imperfect energy proportionality limits the savings: Higher i values make
the triangle shorter. Savings approach zero as x — 0, x — 1, p — 0,
p — 1,0or y — 0. The figure is drawn for x = 0.25and y = 2.

job requires r units (intervals) of running time to complete, then under the
DR strategy it receives 1 — x units of service in each interval and requires
r/(1—x) = r/p intervals to complete. The additional residence time of each
job drives theload factor to 1 when the system is active during nonsurcharge
periods. The average throughput is unchanged.

This ideal case establishes an upper bound on the slowdown from DR:
the stretch factor 1/ p. If jobs vary in their run time around a mean of r, then
1/p is the average stretch factor; some jobs are slowed less, and some are
slowed more. In the worst case, ajob arrives at the start of a surcharge period
and does not quite complete before the next surcharge period: r =1 — x
(plus €). The job completes in time 1 + x instead of time 1 — x, and the
worst-case stretch factor for short jobs is

14+x

— (8.4)

Demand Response for Computing Centers B 289

The worst-case stretch factor grows without bound as x — 1. However,
the worst case applies only to the shortest jobs. The maximum run time of
a job subject to this worst caseisr = 1 — x,andr — Oasx — 1.

8.6 DEMAND RESPONSE IN PRACTICE

The analytical model is useful to illustrate the key factors that influence

the effectiveness of a DR strategy. A realistic scenario is likely to be more
complicated in several key respects:

e Both the price curves and job properties are more dynamic and often
are not known with certainty in advance. For example, a strategy that
defers work may expose itself to risk that it will face an unexpected
backlog or incur higher costs later.

e The model presumes that the system has the flexibility to suspend,
slow, or migrate jobs as needed to implement the strategy, with zero
cost. In practice, a DR strategy may have a limited set of actuators,
and it must account for their costs.

e The model presumes that the system is unconstrained by the need to
manage varying levels of parallelism in jobs. It does not preclude par-
allel jobs, but it presumes that it can reach any target utilization level
by running some subset of its ready jobs. In practice, certain combi-
nations may be infeasible due to the varying resource requirements
of jobs.

It is an open problem to develop DR strategies that can manage these
factors in practical online scenarios. The benefits of practical DR strategies
will approach those derived from the model, although they may be modestly
less. It is also important to consider realistic values of the parameters to
estimate what these benefits might be in practice.

8.6.1 Load Factor and Capacity Provisioning

The model estimates the cost reductions possible from DR at a given offered
load and a given system capacity: The load factor p is the ratio of load to
capacity. The model shows that DR can reduce costs if p < 1; that is, the
system has surplus capacity.

Recent studies of industry data centers suggested that they have sub-
stantial surplus capacity. A recent McKinsey study suggested that many
industry data centers with mixed workloads are overprovisioned well be-
yond their need to handle expected load surges [27]. The study suggested

290 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

that in many cases structural overprovisioning emerges from organizational
factors rather than technical considerations. It argues that a primary goal
of data center efficiency efforts should be to reduce capacity to match the
load; as a benchmark for these efficiency efforts, it introduces an efficiency
metric called CADE (Corporate Average Data Center Efficiency) that is lin-
ear with capacity utilization. Overprovisioned systems have high potential
for DR, but this benefit has limits; for example, in the model, there can
be no advantage to overprovisioning so that p is below the balance point
p = 1 — x. Steps taken to improve capacity utilization (higher p), such
as through server consolidation using virtual machines, do not reduce the
potential for DR until they reach this level. Also, there is no energy cost to
maintain surplus standby capacity if it is powered off when not in use (see
Section 8.6.3).

Another recent study of a well-managed interactive web service showed
that servers spent a large majority of their time with CPU utilizations be-
low 50% [28]. However, web data centers have limited opportunity to use
their surplus capacity for DR savings by deferring requests. First, most web
activity is interactive and so is relatively inelastic: Requests are short, and it
would disrupt users to defer them. Second, web service request loads tend
to be highly dynamic; studies tend to show regular diurnal request load
peaks on weekday afternoons, and flash crowds may also occur. Both elec-
trical grids and web data centers are provisioned with surplus capacity to
handle these peaks. Unfortunately, the peaks often coincide: Peak demands
on the power grid also tend to occur on weekday afternoons (e.g., when
demand is driven by air-conditioning systems). Despite these limitations,
recent work has shown that distributed web services have substantial op-
portunity to reduce electricity costs by routing requests to take arbitrage
regional disparities in electricity prices, even given the interactive response
constraints [7, 8].

Batch job systems may also have bursty job arrivals, but batch jobs can
often be deferred without disrupting users. This makes batch systems more
attractive candidates for DR, but it also means they may tend to run at
higher load factor p. Because response time is less crucial, batch systems
have less need for surplus capacity to handle peak loads. These systems tend
to be provisioned to sustain the throughput needed to serve a target average
load.

Inamission-critical computing center that runsat full utilization, p = 1,
DR offers no cost savings without compromising throughput. However, the
center can drive p down by investing in surplus capacity. Adding surplus

Demand Response for Computing Centers B 291

capacity improves average response time to users; with DR, it can also
reduce operating costs.

Considering the grid and computing center together as an end-to-end
system reveals that investments in computing capacity can be compared
directly to investments in peaking generation capacity. For example, sup-
pose a large center runs at full capacity (p = 1) to serve a given job load,
and that the power to run the center is drawn from a grid that experiences
a demand spike for 1 h of each day. If the center has 25 racks at 40 kW each,
then adding an additional rack permits idling the entire data center during
the peak hour without impacting throughput: p = 0.96. The center delays
jobs during the idle period but offers better service for the rest of the day.
Idling the center during the demand spike eliminates the need for 1 MW
of peaking generation capacity and any fuel that it consumes.

8.6.2 Price Variability

Prices vary within different locations or regions, according to demand,
proximity to generating capacity, and the availability and cost of transmis-
sion. In 2008, a year of unstable fuel prices, electricity spot prices in the
United States fluctuated between $40/MWh and $160/MWh. These levels
are representative of marginal provider costs (as given in Figure 8.1) but
reflect congestion and pricing factors as well [10].

Unusual market conditions occasionally drive real-time market prices
well above or below the marginal provider costs; the highest prices exceed
the lowest prices by an order of magnitude [11] but may spike above that
level in extreme cases. For example, price spikes to $8,000/MWh have oc-
curred during extreme weather events (northeastern United States in sum-
mer 1999). In California in 2000-2001, electricity suppliers drove wholesale
prices to regulatory cap levels ($1,000/MWh). However, it is dangerous to
infer too much about price variability from these extreme events in freshly
deregulated markets. Indeed, one motivation for DR is that it reduces the
market power of suppliers to drive extreme price spikes by withdrawing
supply, as apparently occurred in California during the 2000-2001 cri-
sis [30,31].

Figures 8.2 and 8.3 are more likely to be representative of pricing con-
ditions encountered in practice. For the E-19 tariff in Figure 8.3, the DR
model parameters are x = 0.25 and y = 0.92 if we consider only the on-
peak periods. The maximum savings is 18%. Considering both on-peak and
partial-peak periods, the parameters are x = 0.54 and y = 0.58; in this
case, y is the time-weighted average surcharge for on-peak and partial-peak

292 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

periods. The maximum savings from DR is 24%), but it can be obtained only
if the center runs at less than half of its capacity: p = 1 —x = 0.46. PG&E’s
residential A-6 tariff for the same season had a higher on-peak surcharge
(y = 1.55) and a potential DR savings of 28% for a facility that is loaded at
an average 75% of capacity. In the RTP example in Figure 8.2, the top 5%
of pricing intervals averages $149/MWh, and the 95% average price is $52.
Taking $52 as the base rate, the average normalized surcharge is y = 1.86
for x = 0.05. A center paying these prices could save 8% even if it is loaded
at an average 95% of capacity. Taking the top 2% of pricing intervals as the
surcharge period, yields y = 2.25, and the maximum savings is 4.3%.

It is important to note that customers can often lower their average
prices by accepting the higher risk of volatility that comes with variable
pricing. Thus, DR may be viewed as a risk-control measure with an indirect
benefit oflowering electricity prices during normal operation while limiting
exposure to the resulting price spikes. For example, the aforementioned
A-6 tariff offers a discount of 41% on the base price of electricity (11 hours
per day), and a 27% average discount on electricity outside peak periods.
The customer obtains these benefits by accepting the surcharge for expected
peak periods. A DR strategy can avoid the surcharges if it can defer electricity
usage during these surcharge periods.

8.6.3 Energy Proportionality at Facility Scale

The model illustrates the importance of energy proportionality for DR
savings. In essence, energy proportionality captures the degree to which a
system can reduce its power draw by shedding load. The idealized model
presumes that the system power is linear with instantaneous facility utiliza-
tion or load factor p. Refer to Figure 8.5c and the discussion in Section 8.5.

We can quantify energy proportionality at the granularity of servers or
other individual components or at the granularity of ensembles or an entire
facility. For example, recent results from the SPECpower benchmark indi-
cated that server systems are increasingly energy proportional, primarily
as a result of advances in CPUs and power supplies. Servers with dynamic
ranges of 70% or higher are common. However, their power profiles in-
creasingly deviate from the linear model, which tends to underestimate
their power draw at CPU utilization levels that are low but nonzero. Also,
for data-intensive workloads, the energy costs of memory, storage, and I/O
may dominate CPU activity [32], and these costs tend to be less energy
proportional than CPUs.

Demand Response for Computing Centers B 293

Inserver ensembles, further improvements are possible by concentrating
load on a minimal subset of servers and stepping down surplus servers to
a low-power state (e.g., [4]). This technique can be combined with various
approaches to active server scaling at the platform level, such as dynamic
voltage scaling. Several commercial products and services offer support
for energy-proportional ensembles using these techniques. Recent studies
suggested that server ensembles can approach full energy proportionality
with active management [21,29]. Related techniques have been applied in
storage ensembles, with some success (e.g., [33]). There has also been some
recent attention to energy-proportional networking for data centers [34].

A large share of power in computer centers and data centers feeds an-
cillary equipment, including cooling and power distribution, rather than
servers. One measure of their relative impact is the ratio of total power
to power for servers and other IT equipment—the ratio known as power
usage effectiveness or PUE. Recent studies have estimated a typical PUE
value of 2.0 [19], suggesting that about half of the energy in today’s data
centers goes to servers. The EPA target for state-of-the-art data centers was
aPUE of 1.2in 2011 [20]. Google reported PUE levels for Google-designed
data centers on a quarterly basis and succeeded in meeting a PUE of 1.2 in
2010. Active server management pushes PUE up, making efficient power
distribution and cooling more important.

In recent years, energy-proportional cooling has received more atten-
tion. For example, temperature-aware workload placement helps reduce
cooling demands for ensembles running below full capacity [35]. Other
“smart cooling” techniques modulate fan speeds, compressor duty cycles,
and other mechanical systems. A recent study suggested that combining
these techniques with active server management can yield facility-level
energy proportionality roughly following the linear model with dynamic
ranges of 70% to 80% [29].

8.7 SUMMARY AND CONCLUSION

REFERENCES

1. Amory Lovins. The negawatt revolution. Across the Board, the Conference
Board Magazine, 27(9), September 1990.

2. Partha Ranganathan, P. Leech, David Irwin, and Jeffrey Chase. Ensemble-
level power management for dense blade servers. In 33rd International
Symposium on Computer Architecture (ISCA), June 2006.

294 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

10.

11.

12.

13.

14.

15.

. Ripal Nathuji and Karsten Schwan. VirtualPower: Coordinated power man-

agement in virtualized enterprise systems. In Proceedings of the ACM Sym-
posium on Operating Systems Principles (SOSP), October 2007.

. Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin M. Vahdat,

and Ronald P. Doyle. Managing energy and server resources in hosting
centers. In Proceedings of the 18th ACM Symposium on Operating System
Principles (SOSP), pages 103—116, October 2001.

. Christopher Stewart and Kai Shen. Some joules are more precious than

others: Managing renewable energy in the datacenter. In Proceedings of
the Workshop on Power-Aware Computing and Systems (HotPower), October
2009.

. Navin Sharma, Sean Barker, David Irwin, and Prashant Shenoy. Blink:

Supply-side power management in data centers. In Proceedings of the Six-
teenth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), March 2011.

. Asfandyar Qureshi, Rick Weber, Hari Balakrishnan, John Guttag, and Bruce

Maggs. Cutting the electric bill for Internet-scale systems. In Proceedings of
the ACM SIGCOMM Conference, October 2009.

. Woongki Baek and Trishul M. Chilimbi. Green: A framework for supporting

energy-conscious programming using controlled approximation. In Pro-
ceedings of the 2010 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’10, pages 198-209, ACM, New York,
2010.

. Azbayer Demberel, Jeffrey Chase, and Shivnath Babu. Reflective control for

an elastic cloud application: An automated experiment workbench. In Pro-
ceedings of the First Workshop on Hot Topics in Cloud Computing (HotCloud),
June 2009.

Federal Energy Regulatory Commission. State of the Markets Report, August
20009.

Steven Brathwait, Dan Hansen, and Michael O’Sheasy. Retail electricity
pricing and rate design in evolving markets, July 2007.

Federal Energy Regulatory Commission. National Action Plan on Demand
Response (Draft), March 2010.

David Kathan, Caroline Daly, Jignasa Gadani, Diane Gruenke, Eric Icart,
Ryan Irwin, Carey Martinez, Kendra Pace, John Rogers, Christina Switzer,
Carol White, and Dean Wight. Assessment of demand response and ad-
vanced metering, September 2009.

Amory B. Lovins, E. Kyle Datta, Thomas Feiler, Karl R. Rabago, Joel N.
Swisher, Andre Lehmann, and Ken Wicker. Swmall Is Profitable: The Hid-
den Economic Benefits of Making Electrical Resources the Right Size. Rocky
Mountain Institute, Boulder, CO, 2002.

M. M. He, E. M. Reutzel, Xiaofan Jiang, R. H. Katz, S. R. Sanders, D. E. Culler,
and K. Lutz. An architecture for local energy generation, distribution, and
sharing. In Energy 2030 Conference, 2008. ENERGY 2008. IEEE, pages 1-6,
2008.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

Demand Response for Computing Centers B 295

H. Farhangi. The path of the smart grid. Power and Energy Magazine, IEEE,
8(1):18 —28, January 2010.

Federal Energy Regulatory Commission Staff Report. National Assessment
of Demand Response Potential, June 2009.

Jon Wellinghoft, David L. Morenoff, James Pederson, and Mary Elizabeth
Tighe. Creating regulatory structures for robust demand response partic-
ipation in organized wholesale electric markets. In ACEEE Summer Study
on Building Efficiency, August 2008.

Jonathan G. Koomey. Worldwide electricity used in data centers. Eviron-
mental Research Letters, 3:034008, September 2008.

United States Environmental Protection Agency (EPA). Report to Congress
on Server and Data Center Energy Efficiency, Public Law 109-431, August
2007.

Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power provi-
sioning for a warehouse-sized computer. In Proceedings of the International
Symposium on Computer Architecture (ISCA), June 2007.

Kien Le, Ozlem Bilgir, Ricardo Bianchini, Margaret Martonosi, and Thu D.
Nguyen. Managing the cost, energy consumption, and carbon footprint
of internet services. In Proceedings of the ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, SIGMET-
RICS 10, pages 357-358, ACM, New York, 2010.

David Irwin, Laura Grit, and Jeff Chase. Balancing risk and reward in a
market-based task service. In Proceedings of the Thirteenth International
Symposium on High Performance Distributed Computing (HPDC-13), June
2004.

M. Litzkow, M. Livny, and M. Mutka. Condor—A hunter of idle work-
stations. In Proceedings of the 8th International Conference on Distributed
Computing Systems, pages 104—111, 1988.

Alvin Auyoung, Laura Grit, Janet Wiener, and John Wilkes. Service contracts
and aggregate utility functions. In Proceedings of the IEEE Symposium on
High Performance Distributed Computing, pages 119-131, 2006.

Michael Cardosa, Madhukar R. Korupolu, and Aameek Singh. Shares and
utilities based power consolidation in virtualized server environments. In
Proceedings of the 11th IFIP/IEEE International Conference on Symposium on
Integrated Network Management, June 2009.

James M. Kaplan, William Forrest, and Noah Kindler. Revolutionizing data
center energy efficiency, July 2008.

Luiz Andre Barroso and Urs Holzle. The case for energy-proportional com-
puting. Computer, 40:33-37, 2007.

Niraj Tolia, Zhikui Wang, Manish Marwah, Cullen Bash, Parthasarathy Ran-
ganathan, and Xiaoyun Zhu. Delivering energy proportionality with non
energy-proportional systems—Optimizing the ensemble. In Proceedings of
the Workshop on Power-Aware Computing and Systems (HotPower), October
2009.

296 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

30.

31.

32.

33.

34.

35.

Kathleen Spees and Lester B. Lave. Demand response and electricity market
efficiency. The Electricity Journal, 20:69-85, April 2007.

Severin Borenstein. The trouble with electricity markets: Understanding cal-
ifornia’s restructuring disaster. Journal of Economic Perspectives, 16(1):191—
211, 2002.

Dimitris Tsirogiannis, Stavros Harizopoulos, and Mehul A. Shah. Analyz-
ing the energy efficiency of a database server. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data, 231-242,
Indianapolis, IN, ACM, New York, 2010.

Qingbo Zhu, Zhifeng Chen, Lin Tan, Yuanyuan Zhou, Kimberly Keeton,
and John Wilkes. Hibernator: helping disk arrays sleep through the win-
ter. In Proceedings of the Twentieth ACM Symposium on Operating Systems
Principles, 177-190, Brighton, United Kingdom, ACM, New York, 2005.
Brandon Heller, Srini Seetharaman, Priya Mahadevan, Yiannis Yiakoumis,
Puneet Sharma, Sujata Banerjee, and Nick McKeown. ElasticTree: saving
energy in data center networks. In Proceedings of the 7th USENIX Conference
on Networked System Design and Implementation, San Jose, CA, 17, USENIX
Association, Berkeley, CA, 2010.

Justin Moore, Jeff Chase, Parthasarathy Ranganathan, and Ratnesh Sharma.
Making scheduling “cool”: Temperature-aware workload Placement in data
centers. In Proceedings of the 2005 USENIX Annual Technical Conference,
pages 61-74, April 2005.

CHAPTER 9

Implications of Recent
Trends in Performance,
Costs, and Energy Use
for Servers

Jonathan G. Koomey, Christian Belady, Michael
Patterson, Anthony Santos, and Klaus-Dieter Lange

CONTENTS

9.1 Introduction 298
9.1.1 Conceptualizing the Problem 298
9.1.2 Implications of These Equations 303
9.1.3 The Focus of This Study 304

9.2 Data and Methods 305
9.2.1 General Issues 305
9.2.2 Performance 307
9.2.3 Energy Use 307
9.2.4 Costs 307

9.3 Results 308
9.3.1 Performance 308
9.3.2 Performance/Watt 309
9.3.3 Performance/Server Cost 309
9.3.4 Watts/Server Cost 309
9.3.5 Watts per Server 310

9.4 Future Work 311

9.5 Conclusions 311

297

298 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

Acknowledgments 312
Appendix: Simple Cost Model for Data Centers 314
References 318

9.1 INTRODUCTION

As data centers have grown in both economic importance and cost, the need

for understanding the underlying drivers of total costs in the data center
has also increased. In particular, the relationships among processing power,
energy use, and purchase costs of information technology (IT) equipment
in these facilities strongly affect the fraction of total costs attributable to IT
equipment (as distinct from facilities/infrastructure equipment like chillers
and power distribution systems).

Anecdotal reports indicated that infrastructure equipment related to
power and cooling may be responsible for about half of total annualized
costs in typical data center facilities [1-4], and that this fraction is growing
over time as IT equipment acquisition costs decline and IT equipment
energy use increases. This finding is surprising to people new to the data
center arena, as they associate these facilities mainly with the IT equipment
they contain.

Unfortunately, there has been little systematic, transparent, and peer-
reviewed work documenting the aggregate trends in IT equipment that are
driving changes in total data center costs. This lack is most keenly felt by
those trying to plan for new facilities. Modeling data center costs at a high
level requires abstracting from anecdotal data to generalize about trends,
but the poor quality of available data and examples has prevented such
generalizations from being useful to the bulk of the data center industry.

This chapter assesses trends in server equipment (the most important
component of IT equipment in data centers) in a way that will be useful
for people trying to understand data center costs at a high level. Drawing
on a previous analysis [5], it summarizes trends in server costs, energy use,
and performance and describes the implications of those trends for the
economics of high-density computing facilities.

9.1.1 Conceptualizing the Problem

One of the most important aggregate parameters affecting the cost of data
centers is the amount of direct power use (watts) associated with $1,000

Implications of Recent Trends in Performance, Costs, and Energy B 299

Annual O&M costs

Other infrastructure

?03 Annualized power-related infrastructure capital costs

£

1S

§ 40% 1 Data center IT from _ér}{llf?lielectrlaty costs

& 30% A Koomey et al. 2007 D e
20% A

Range for Annualized IT capital costs
10% 4 2008-9 servers

0% T T T T T T T T 1
20 40 60 80 100 120 140 160 180 200

IT power (W)/Inflation adjusted IT costs (k 2009 $)

o

FIGURE 9.1 As power per server costs grow, power-related costs grow in
importance. This graph shows annualized costs for a tier 3 data center. The
2008-2009 server data are from Figure 9.2. Capital and operating costs were
derived using equations in the Appendix.

of expenditure on IT equipment hardware (in this case, servers'.) Brill
(2] showed (using anecdotal information) that this parameter has been
increasing rapidly in recent years, which has made cooling and power in-
frastructure costs rival the IT capital costs in some recently constructed data
centers. If this trend continues, the power-related infrastructure costs will
significantly exceed the IT capital costs for new facilities in under a decade,
a finding that has implications for how these facilities are built and how
their costs are allocated within organizations [1-3].2

Figure 9.1 shows how annualized IT capital costs compare to annual
electricity and annualized infrastructure capital costs as a function of power
use/server cost. The figure uses the equations in the Appendix and the
infrastructure cost and electricity price assumptions from Koomey [3] for
a tier 3 data center.> At 100 W per $1,000 of server cost, IT capital costs

In principle, this parameter should be measured for all IT equipment in the data center, not just servers,
but the data, sparse as they are, are most available for servers, so that is what we focus on here.

2Most companies have separate budgets for IT and facilities expenditures, and if a dollar spent on IT
can commit another part of the company to a dollar or more of additional expenditures in a separate
budget, suboptimal behavior will generally be the result.

3Each data center is unique. They vary greatly depending on the reliability they deliver and the types of
computing they support. This example was developed for high-performance computing for financial
applications. It is the best-documented published example of data center costs, which is why we relied
on it for our discussion here. The conceptual points raised in our discussion are not affected by the
specifics of this example, and we believe the concreteness this example lends to the discussion outweighs
any potential pitfalls.

300 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

represent about 40% of total costs, and at 200 W per $1,000, they are
responsible for less than one-third of total costs, which means that for
every $1 spent on IT equipment, a company would be committing to at
least another $2 for electricity use, power and cooling capital costs, and
other costs. These results have implications for assessing and controlling
costs in these facilities, as discussed in the future work section that follows.

Power per server cost (in watts per $1,000) can be decomposed into two
component parts, as shown in Equation 9.1a:

Power Power Performance
= X (9.1a)
Server cost Performance Server cost
or equivalently
Performance
Power Server cost
= (9.2b)
Server cost Performance
Power
where
% = System performance divided by the measured power
use for that server system to deliver that performance
(i.e., performance per watt); and
Performance

= That same performance metric divided by the server
hardware capital cost as configured to achieve that
performance.

This equation explains why measuring power use, performance, and

Server cost

server costs in a consistent fashion is so important: It allows us to under-
stand the underlying drivers of power per server cost in an unambiguous
way. It also shows that whenever performance per server cost is increasing
faster than performance per watt, power use per $1,000 of server costs will
increase.

Consider Figure 9.2, which plots the two components in Equation 9.1b
for 14 servers selected from the available SPEC Power runs (Standard Per-
formance Evaluation Corporation 2013) for servers manufactured circa
2009, including the HP ProLiant DL360 G5 machine analyzed by Koomey
[5]. For comparison, it shows data for the HP ProLiant DL360 G1 machine
from that same report, as well as two lines of constant watts per $1,000 (one
for 25 and one for 100).

Implications of Recent Trends in Performance, Costs, and Energy B 301

140000
100
86

120000 *
&
2 68
g 74 N
2100000 .
2 80 %
o ¢ o 64
2 80000
3 47
o
% 80 ¢
S 60000 * o
— Ad
3 DL360G5 - 51 ¢ 36

1

40000 00 W/k$
;0.4 27 &
<
3 2

20000

25 W/k$
0 34 - DL360G1
T T T

T T T T 1
0 200 400 600 800 1000 1200 1400 1600
Performance/Server Power (ssj_ops/W)

FIGURE 9.2 There are wide ranges of performance per watt and perfor-
mance per server costs in servers available circa 2009. Performance and
power were based on 100% load cases from SPECpower_ssj2008 runs, as
documented in Appendix B of Koomey [5]. Numbers next to each data
point represent watts per thousand 2009 dollars of IT equipment expendi-
ture for each server. DL360 G1 data (circa 2001) added from Koomey [5]
for comparison.

The x-axis plots server performance at maximum load divided by power,
and the y-axis plots server performance at maximum load divided by pur-
chase cost. The graph shows almost a factor of two variation in server perfor-
mance per unit of power and a factor of four variation in server performance
per server purchase cost. Combining these parameters yields a range of from
26 to 100 W per $1,000 of server equipment, as shown in Figure 9.1.

These graphs illustrate the complex and multivariate nature of the deci-
sion problem for data center design. Increasing performance per purchase
cost is a surefire way to reduce the direct cost of delivered computing ser-
vices, but if performance per watt is low, that choice will exact a penalty in
infrastructure capital and electricity costs.

302 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

Consider the following stylized cost calculation for the total costs of a
data center, based on the simple model developed in Koomey [3] and the
equations in the Appendix. The annualized total cost (ATC) of a data center
can be expressed as in Equation 9.2:

ATC = IT + INFy,, + INFonkw + ECy7 + ECrpp + O &M (9.2)
where

IT = annualized IT capital costs (which include the acquisition costs of
servers, network gear, disk arrays, and other IT equipment);

INFy,, = annualized kilowatt-related infrastructure capital costs (like
those for chillers, water distribution, cooling towers, backup power
systems, generators, and anything else whose sizing is dependent on
the amount of power drawn by the IT equipment);

INF o nkw = annualized non-kilowatt-related infrastructure capital costs
(which include building shell, office fittings, and land);

EC;p = annual direct electricity costs for IT equipment;

ECj,y = annual direct electricity costs for infrastructure equipment (in
typical data centers, EC;1r ~ ECy,y); and

O & M = annualized operations and maintenance costs (in our defini-
tions, this term includes both IT and facilities operations costs but
does not include software licenses and application development).

Both annual electricity cost and kilowatt-related infrastructure costs are
directly related to IT expenditures through the ratio of power use per server
cost. In the example in Koomey [3], where the aggregate power use per pur-
chase cost for all IT equipment in the data center in 2009 dollars was about
80 W/$1,000, IT capital costs accounted for 45% of total annualized costs,
electricity use accounted for about 10%, and power-related infrastructure
capital accounted for almost a quarter of the total (see Figure 9.3).

Of course, what we really care about is the cost per delivered computing
cycle. Let us think about this problem in terms of the maximum number
of computations possible for a given data center over the course of a year.

4The subtleties of measuring actual utilization and total computational output are complex ones that
need not enter into our illustration here. Poorly utilized data centers can of course lower their total
costs of computing substantially by increasing utilization levels. Such changes will have a large effect

Implications of Recent Trends in Performance, Costs, and Energy B 303

IT capital costs

Power-related site infrastructure
capital costs

Other operating expenses

i)

Energy costs

Non-power-related site
infrastructure costs F

T
0% 10% 20% 30% 40% 50%
% of Annualized Costs

Total adds to 100%

FIGURE 9.3 Infrastructure capital costs and electricity costs are substantial
for tier 3 data centers. (Based on [3].)

Dividing both sides of Equation 9.2 by the maximum annual computations,

we obtain
ATC _ T+ INFpon oy +INFgy +ECHO& M
Annual Computations Annual Computations '

Equation 9.3 represents in a schematic form the complete decision for
data center design. The designer would like to minimize the total cost for
delivering computations, but achieving this goal is not as simple as choosing
the server with the maximum performance or lowest power use per dollar
of equipment purchase cost. Focusing only on the ratio of IT costs per
computation would result in a significantly more expensive facility than if
the data center were analyzed as a whole system.

9.1.2 Implications of These Equations

These equations, combined with those in the Appendix, can be used to
give quantitative insight about the trade-offs among the different cost
components of data centers. Let us assume Moore’s law drives performance

on computational efficiency because current server power use does not generally scale exactly with
computational output, and there is a large fixed power draw when the server is idle [6].

304 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

per server cost up by a factor of two over a 2-year period (a doubling time
of 2 years). The effect on the power-related components of data center costs
depends on what happens to power use per server costs (and, implicitly, to
performance per watt).

o Ifperformance per watt also doubles during this period, then watts per
$1,000 will remain constant (as per Equation 9.1b) and the overall cost
per computation will be exactly halved (Equation 9.3) because each
of the numerator elements remains constant and the denominator
doubles.

o If performance per watt does not change at all, watts per $1,000 will
double, and the 50% reduction in cost per computation will become
a 32% reduction in total costs (see table in the Appendix for de-
tails). In this case, increased indirect power-related costs offset 36%
(18%/50%) of the cost reductions resulting from increased compute
performance. Another way to say this is that the total cost of building
and operating a data center that delivers the increased performance
would be 36% higher than in the base case.

e To make the increase in indirect costs exactly offset the benefits from
increased server performance, performance per watt would have to
drop to almost half of its initial value at the same time as performance
per server cost is doubling. This change would result in power use per
server cost of more than 300 W/$1,000 in 2009 dollars, almost a factor
of four increase over the base case value (about 80 W per $1,000 in
2009 dollars; from [3].

These effects cut in both directions. If server manufacturers were able to
triple performance per watt as performance per server cost was doubling,
the total cost per computation would be 12% less than if performance
per watt just kept pace with performance per server cost because of the
reduction in power-related costs. Whether investing to make this change
would be economically desirable depends, of course, on the costs to improve
server efficiency at this rate.

9.1.3 The Focus of This Study

To understand the underlying drivers for this complex situation, this
chapter explores trends in power use, server costs, and performance. It
focuses on the following questions:

Implications of Recent Trends in Performance, Costs, and Energy B 305

e What kinds of data would be needed to accurately characterize trends
in performance per watt, performance per server cost, and power use
per server cost?

e Can changes in these parameters be measured in a credible, accurate,
and representative way using publicly available data?

e If so, how have these parameters changed since 2003, and what can
we say about how they are likely to change in the next decade?

9.2 DATA AND METHODS

We developed case studies to characterize historical trends in costs, perfor-
mance, and energy use of servers. One example involved HP’s Superdome
high-end server; the others focused on what the industry calls “volume
servers,” including data from Google, Lawrence Berkeley National Labora-

tory, Intel, and HP. We used consistent performance benchmarks for old
and new servers, even going so far as to run the recent SPEC (Standard
Performance Evaluation Corporation) power benchmark on some older
volume servers. We also used measured data on power use and acquired
real data on costs to develop trends. For more details, see Koomey [5].

9.2.1 General Issues

Our purpose here is to report on peer-reviewed consistent comparisons for
performance, costs, and energy use over time. By peer reviewed, we mean
that a broad section of knowledgeable industry observers (identified by
name in the Acknowledgments section to this chapter) have examined the
assumptions, data, and analysis and found them credible. By consistent, we
mean that measurements of these parameters are conducted in a fashion
that allows for meaningful comparisons over time.

To understand these trends for server equipment, we first need to define
system boundaries. Servers can be analyzed at the CPU (central processing
unit) level, the system level, or the applications level.” The applications level
is closest to the tasks that users are performing, but data at that level are the
hardest to measure and to generalize. Data are abundant at the CPU level,
but CPU measurements are sufficiently removed from actual computing

>The most sophisticated data center operators that have relatively homogeneous computing loads can
analyze servers at the data center level since they can shift loads between servers relatively easily. This
system-level analysis is not relevant for most users (who are more concerned with server-level trends),
so we do not discuss it further here. It is also important for improving equipment utilization, another
topic we do not treat here.

306 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

tasks that they are of limited usefulness. System-level data are in the middle
in terms of both data availability and relevance to actual computing tasks.
In practice, the system-level data are the most likely to be both available
and relevant.

It is important to ensure that any examples used be representative of
IT equipment. There are at least two dimensions in which server hardware
can be representative: configuration and operation. Server systems can be
configured with variations in random access memory (RAM), disk drives,
and network interface cards—examples chosen should be as representative
of typical configurations as possible. Most business servers operate at only
5% to 15% of their maximum computing loads, but there is wide variation
in compute utilization. The ideal examples would be broadly representative
of the ways servers run actual applications.

To allow straightforward comparisons, we use the metric of doubling
time, defined as the number of years it takes for a parameter (performance
per watt, for example) to double. We first calculate the instantaneous growth
rate g as in Equation 9.4:%

IN (1) on

where Y; is some quantity at time ¢, Y, is that quantity at time 0, and ¢ is
the time over which growth occurs, measured in this case in years (from
year 0 to year t).

Instantaneous growth rates assume continuous compounding, which is
necessary when dealing with the rapid growth rates common in computer
technology. An instantaneous growth rate of 69.3% implies a doubling
every year.

We can then calculate the doubling time using Equation 9.5:

. LN (2)
Doubling time = ——— (9.5)
4
®It is more common in most situations to use simple growth rates, calculated as g§ = (%’))) —1, but

this method gives erroneous answers for growth rates higher than about 10% per year. For the high
growth rates common to IT equipment, instantaneous growth rates are more appropriate and accurate
[7]. The instantaneous growth formula is derived from the equation Y; = Ype$”. To convert a simple
annual percentage growth rate P to a continuously compounded instantaneous rate, take the natural
logarithm of (1 + P). We are indebted to Philip Sternberg of IBM for helping to sort out the subtleties
of these growth calculations.

Implications of Recent Trends in Performance, Costs, and Energy B 307

Using the doubling time allows us to compare the trends in servers to
another important parameter popularly reported in this fashion (Moore’s
law), which in its most precise form states that the number of transistors on
a chip doubles roughly every 2 years.” The most widely believed incarnation
of Moore’s law is that performance per microprocessor doubles every 1.5
years, which happens to be true (as documented by Nordhaus 2007), but it is
unclear if this popular belief is based on real data or just a misunderstanding
of what Moore actually said [8].

9.2.2 Performance

How to measure computing performance has been a source of controversy
since the beginning of the computer age, and this chapter will not settle
those issues. Each example we developed relies on different performance
metrics, but in each case, the performance metric remains consistent over
time. It is the time trends that matter for this analysis, not the accuracy of
one metric over another.?

9.2.3 Energy Use

Energy use of IT equipment has been a major focus of research for more
than two decades.” The most common error in assessing energy use for
computers is to rely on the nameplate power use printed on the computer’s
power supply, which is generally two to three times larger than typical power
use for that device in operation.

We relied mainly on measured data for this analysis, some of which came
from SPECpower_ssj2008 [9], available for use since late 2007. As with all
benchmarks, it has limitations, but for now, it is the best-available option
for associating power use with performance. If we did not have SPEC power
runs, we used other measurement methods as available.

9.2.4 Costs

One of the key failings of industry assessments of cost trends in the past
is that costs are almost never reported in a form that is consistent with
the performance and energy use data. We treated that issue by compiling

7This “law” has changed in form over the years [8, 10]. At first, Moore [11] referred to “components” not
transistors and correctly predicted that the number of components would double every year through
atleast 1975. In 1975, Moore correctly predicted that the number of transistors on a chip would double
every 2 years in the future [12].

80f course, one should always prefer benchmarks that closely approximate real-world workloads when

they are available.
For more details, see [13—27], 2003, Piette et al. 1991, Roth et al. 2002.

308 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

industry data on equipment prices for configurations of servers for which
performance and energy use were reported.

Another issue with costs when they are reported is that they are almost
never corrected for inflation. We used the annual implicit deflator for gross
domestic product (GDP) from the Bureau of Economic Analysis [28] and
the assumption of 2% per year inflation from 2008 to 2009 to adjust all
dollar figures to constant 2009 dollars, thus eliminating inflation as a con-
founding variable in our time trends analysis. When cost data were available
by month, we used the monthly GDP deflator data from the Energy Infor-
mation Administration [29] to correct to July 2009 dollars (assuming 2%
average annual inflation expressed as a monthly charge from 2008).

Costs depend on the characteristics of the purchaser, so absolute esti-
mates of the power use per server cost (or other cost-related ratios) are
dependent on the particular context in which the servers were purchased.
In general (but not always), large purchasers obtain more favorable pric-
ing. In this study, we relied in part on costs produced by online stores
for HP, Dell, and IBM. We did not include taxes, shipping costs, software,
or service contracts. Where there was a choice, we used costs for small
and medium businesses (as distinct from costs for individuals or large
corporations).

9.3 RESULTS

Analyzing trends accurately over time requires consistent estimates of

performance, server price, and power use per server, measured over a time
period sufficient to capture major step changes in chip and server system
design. The data also need to be broadly representative of major classes of
server applications for lessons derived from them to be generalizable to the
industry as a whole. While the examples explored here have limitations,
they represent a good first step toward a deeper understanding of trends in
server technology.

Figure 9.4 summarizes these quantitative trends in terms of doubling
times. The key result is that performance per server costs grew faster than
performance per watt in every case analyzed, which explains why watts per
server costs continue to increase, as per Equation 9.1b.

9.3.1 Performance

Performance per server generally doubled every 1.5 years or so. The only
outlier in the performance data was the Google example from 2001 to 2004,
which doubled only every 4 years.

Implications of Recent Trends in Performance, Costs, and Energy B 309

{x IF}

|
ta not available O Performance/Real server cost
— W W/Real server cost
O Performance/W
@ Performance

Google 2001-2004

Google 2004—2008

Superdome 2002-2007

Generic 1U server
2001-2008

DL 380 maximum
2001-2009

ailable
1

DL 380 maximum
2001-2004

DL 380 maximum ata not available
2004-2009

Google 2001-2004 performance/scaled

LBNL 2003 to 2006 wn by a|factor of ten for ease and
curacy of graphing
LBNL 2003 to 2009
T T T
0 2 4 6 8 10 12 14 16

Exact Doubling Time (years)

FIGURE 9.4 Summary of trends for servers, expressed as doubling time in
years. Longer bars mean slower growth. Doubling time calculated using
instantaneous exponential growth rates as described in the text.

9.3.2 Performance/Watt

Performance/watt doubled every 2 to 4 years, again with the exception of
Google servers from 2001 to 2004, which showed much slower growth in
this parameter than the other examples.

9.3.3 Performance/Server Cost

The Google example from 2001 to 2004 was also the outlier for this pa-
rameter. The other examples showed doubling times of about 2 years for
performance/server cost. As described, performance per server cost grew
more rapidly than performance per watt in all cases.

9.3.4 Watts/Server Cost

Doubling times in watts/server cost were much longer for the DL360 case
than for the other examples, but this parameter continued to increase in

310 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

LBNL cluster nodes (max) 2003-2009
LBNL cluster nodes (max) 2003—-2006
DL 360 maximum 2001-2009
DL 380 maximum 2001-2004

DL 380 maximum 2001-2009 {x 100}
Google 2004-2008 DL 380 maximum 20012009
) Google 2001-2004 scaled down by a factor of 10
Generic 1U server 2001-2008 for ease and accuracy of graphing.
Superdome 2002-2007 Volume, mid-range, and hightend

server data from Koomey (2008)
High-end servers 2000-2005
Mid-range servers 2000-2005
Volume servers 2000—2005

T T T T T
0O 2 4 6 8 10 12 14 16 18 20
Doubling time for power used per server (years)

FIGURE 9.5 Doubling times for power used per server (years). For the DL
380 servers, power use per server actually declined from 2004 to 2009,
bringing it back to about the 2001 level by 2009 ([5])

all cases. The DL360 case is interesting because the latest model server
in this time series was optimized for power efficiency (that was the one
available in the SPEC power database). We do not know if the trends de-
rived using these data are representative for the volume server market as a
whole.

9.3.5 Watts per Server

All of the previous examples included estimates of doubling times for power
use/server. These can be compared to the doubling times contained in the
work of Koomey [17] for the server market as a whole (see Figure 9.5).
Power use/server appeared to grow faster in the examples presented than in
the overall server market. For example, Superdome watts/server doubled
in about 2.5 years, which was three times faster than the overall market
for high-end servers according to Koomey [17], and the same conclusion
held for the other examples compared to the market trend for volume
servers.

The market trends included both changes in the power used by consec-
utive generations of individual server models (like the trends we analyzed
in the examples) and shifts in the market share of different server models,
which may explain the lower growth rates and longer doubling times in
power use/server for the aggregate market data. Further research is needed
to validate this inference.

Implications of Recent Trends in Performance, Costs, and Energy W 311

9.4 FUTURE WORK

This analysis was more detailed than any conducted previously, but it is still
largely anecdotal in nature. Each example has relevance to some part of the

server market, but a more comprehensive approach would be required to
accurately understand the aggregate trends. The Superdome server, for ex-
ample, is only one of many high-end server systems, but high-end machines
vary so greatly in their design, construction, and application that more
data are sorely needed to better characterize this market. The same lesson
holds for the other examples, which fall under the category of “volume”
servers.

Future work should therefore include generating more and better server
examples, increasing focus on collecting performance data at the applica-
tions level, encouraging wider use of energy measurements associated with
performance benchmarks, assessing future trends, analyzing underlying
technical trends in servers, encouraging technology demonstrations using
whole-system redesign, broadening data collection to cover disk drives and
network equipment, and assessing the effects of these trends on total data
center costs using simple models. For more details, see Koomey [5].

9.5 CONCLUSIONS

As our economy becomes more dependent on computing networks we will

need to develop an understanding of the deep underlying trends driving
their costs and capabilities. This chapter combined economic data (server
costs) with technological information to create consistent comparisons
and give insights into the key trends affecting total costs in data center
facilities.

Companies that own data centers need to understand the trends
affecting true total costs in their facilities. Minimizing costs of comput-
ing services requires more than maximizing computing performance per
dollar of IT equipment purchased. The direct power used per dollar of IT
equipment cost drives the costs of cooling and electricity, which in recent
years have come to approach (in annualized terms) the cost of purchasing
the IT equipment in many data center facilities.

The data analyzed in this report point to continuing growth in power
used per $1,000 of server cost, which will only increase the importance of
site infrastructure and electricity costs compared to the cost of IT equip-
ment. This trend places a burden on most companies running enterprise

312 B The Green Computing Book: Tackling Energy Efficiency at Large Scale

data centers, which have not yet adjusted their design, construction, and
operations procedures to reflect this new reality. Incentives within many
firms still do not promote minimization of the total costs of delivering
computing services, often because total cost is not even analyzed in these
companies. '°

There are technical solutions that can help reduce the cost of computing
services, but the problem cannot be solved without changing institutional
arrangements and incentives within companies. Split incentives arise when
facilities and IT departments have different budgets, or when people using
the data center are charged solely per square foot, ignoring power use.
Without a simple model of total costs and data assessing underlying trends,
it is impossible for companies to understand the full benefits of fixing
these institutional problems or moving some of their computing demands
to cloud computing providers (which have some inherent advantages in
addressing these issues).

In the data compiled here, performance trends for server systems seemed
to track the popular interpretation of Moore’s law well (it doubled in all
but one case every 1.5 to 2 years). In all cases, performance per server cost
increased more rapidly than performance per watt, which drives power use
per server cost up over time. While there is some evidence that the trend
toward increased power use per server cost has moderated in the past few
years (because of aggressive efforts by chip and server manufacturers to
improve server efficiency), more research will be needed to confirm this
conclusion.

ACKNOWLEDGMENTS

This report was produced with grants from Microsoft Corporation and Intel

Corporation and independent review comments from experts throughout
the industry. All errors and omissions are the responsibility of the authors
alone. The affiliations given below were current when the research was com-
pleted in 2009, but some funders, colleagues, and reviewers have changed
jobs since that time.

107t is important to distinguish here between the large companies that supply IT services from the
companies for which IT is not their core business. Most IT services companies have started down
the path of fixing the misplaced incentives and structural problems that impede the minimization of
total costs (with differing levels of commitment), but the latter group largely has not. In either case,
understanding the trends embodied in the data presented here is critical for improving the design of
these facilities.

Implications of Recent Trends in Performance, Costs, and Energy B 313

We would like to thank Mike Manos and Rob Bernard of Microsoft Cor-
poration and Lorie Wigle of Intel Corporation for their financial support
of this project. We would also like to thank Mark Aggar (Microsoft) and
Scott Shull (Intel) for their technical guidance and Agnies Watson and Lori
Blonn for their patient project management assistance.

We would like to thank James Berry of the Midwest ISO for making the
HP ProLiant DL360 G1 server available to Intel for testing and Mangesh
Tamhankar of Intel Corporation for making Anthony Santos available to
work on SPECpower_ssj2008 runs for this analysis and to share his insights
on server power trends.

In addition, we are grateful to Gary Jung of the Lawrence Berkeley
National Laboratory (LBNL) for making some of his servers available for
testing and for assigning an excellent student, Jared Baldridge, to conduct
the testing.

SPECand the names SPECpower_ssj2008 are trademarks of the Standard
Performance Evaluation Corporation (SPEC). See www.spec.org.

Finally, we would like to thank the technical reviewers for their in-
sights and comments. The reviewers included (in alphabetical order by
company):

AMD: Larry Vertal

AT&T: Michele Blazek

Cisco: Hugh Barrass, Leonid Rabinovich

Dell: Stuart Berke, David Moss, John Pflueger
Ecos Consulting: Chris Calwell

EPA: Andrew Fanara, Katharine Kaplan

Google: Luiz Barroso, Jimmy Clidaris, Bill Weihl
HP: Paul Perez

IBM: Steve Kinney, Joe Prisco, Roger Schmidt
ICF: Arthur Howard, Rebecca Dulff, Cody Taylor
IDC: Lloyd Cohen, Vernon Turner

Intel: Henry Wong, Scott Shull

LBNL: Rich Brown, Bruce Nordman, Dale Sartor, Bill Tschudi, Gary Jung

314 B The Green Computing Book: Tackling Energy Efficiency at Large Scale

Lumina Systems: Max Henrion

McKinsey: William Forrest

MegaWatt Consulting, Inc.: KC Mares

Microsoft: Mark Aggar, Stephen Berard, Richard Russell
Midwest ISO: James Berry

Massachusetts Institute of Technology: Walt Henry
Rocky Mountain Institute: Amory Lovins

Stanford University: Richard Mount, Phil Reese

Sun Microsystems, Greg Papadopoulos, Mark Monroe,
Subodh Bapat

Team HPC: Bret Stouder

Uptime Institute: Ken Brill, John Stanley
Virginia Tech: Kirk W. Cameron, Wu-chun Feng
Yahoo: Christina Page

APPENDIX: SIMPLE COST MODEL FOR DATA CENTERS
The ATC of a data center can be expressed as in Equation 9A.1:

ATC = IT + INFy,, + INF,.;,sw + EC+ O &M (9A.1)
where

IT = annualized IT capital;
INFy,, = annualized kilowatt-related infrastructure capital;
INF,,nkw = annualized non-kilowatt-related infrastructure capital;

EC = annual electricity costs, typically about half for infrastructure and
half for direct IT electricity use; and

O & M = annualized operations and maintenance costs.

Implications of Recent Trends in Performance, Costs, and Energy B 315

To annualize capital costs, we use the capital recovery factor (CRF),
defined as

L
F— M (9A.2)
(1+d)" —1)
where d is the discount rate (7% real), and L is the lifetime of the equipment
(3 years for IT equipment and 15 years for infrastructure equipment).

Of course, what we really care about is the cost per delivered computing
cycle. For simplicity, let us assume 100% equipment utilization. This means
that the maximum number of computations possible for a given data center
over the course of a year is the maximum number of operations per second
times the number of seconds per year.!! Dividing both sides of Equation
9A.1 by maximum annual computations, we obtain

ATC _IT+INFjy+ INFp o jow HEC+O&M
Annual Computations Annual Computations

(9A.3)

Let us assume we will spend $1,000 on IT equipment. That yields annu-
alized costs of $381/year for IT (CRF calculated using a 7% discount rate
over 3 years).

Both power-related terms (INFy,, and EC) can be expressed as a function
of the power use per server cost.

The kilowatt-related infrastructure capital costs can be expressed as

INE $1.000 $ 1K Watts kw $24, 800
= , X X X X
b $1,000 k2009 $ 1000 W kw
x CRF (7% 15 yrs) (9A.4)
where

watts/$1,000 in 2009 = 79.6 in the base case, based on the data for all IT
equipment in a data center found in the work of Koomey et al. (2007),
and

$24,800/kW = the capital cost of tier 3 infrastructure in 2009 dollars
from Koomey [3], based on Uptime Institute data.

"Measuring actual utilization and total computational output is complicated. Most data centers pro-
duce more than one type of computing, and the costs and value of that computing vary by time of day
and sometimes by geography. For the purposes of this simple example, we need not worry about these
complexities, but companies wrestling with assessing total costs surely must.

316 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

The energy costs can be expressed as

$ 1K Watts kw 8766 hours

EC = ¥$1,000 x X X X
$1,000 k2009$ 1000 W year

x LF x PUE x EP (9A.5)
where

LF = load factor, defined as average electricity load divided by peak
load (typically close to 100% for data centers, although climate vari-
ations and other factors can reduce this number to 85-90% in some
cases);

PUE = power utilization effectiveness, also known as the site infras-
tructure energy overhead multiplier; this term characterizes the ratio
of total data center electricity use to the IT electricity use, and it is
typically about 2.0; and

EP = electricity price, which is around $0.07/kWh for large industrial
users in the United States.

The other two terms can be expressed as a fraction of the annualized IT
costs, based on the data in the work of Koomey [3].

INFyomew = IT x 0.19 (9A.6)
O&M = IT x 0.30 (9A.7)

These equations were used to make Figure 9.1.

These equations, combined with Equation 9.1 in the main text, can
be used to give quantitative insight about the trade-offs among the dif-
ferent cost components of data centers. Let us assume Moore’s law drives
performance per server cost up by a factor of two over a 2-year period (a
doubling time of 2 years). The effect on the power-related components of
data center costs depends on what happens to power use per server costs
(and, implicitly, to performance per watt).

Table 9A.1 shows several scenarios for data center costs to illustrate
the interactions among key parameters. Case 1 corresponds to the costs
reported by Koomey [3], which we treat as the base case. Data center facilities
vary a lot, but this source is the most well-documented published data on
total costs for data centers currently known to us, and it is sufficiently well
grounded in current industry practice that relying on it for this schematic
example will not lead us too far astray.

Implications of Recent Trends in Performance, Costs, and Energy B 317

TABLE 9A.1 Schematic Cost Calculation for Data Centers (Based on $1,000 of IT Costs)

Case® 1 (Base) 2 3 4 5
Performance/real 1.00 2.00 2.00 2.00 2.00
server cost (Base = 1.0)

Performance/watt 1.00 2.00 1.00 3.00 0.53
(Base = 1.0)

Watts/$1,000 in 2009 79.6 79.6 159.2 53.1 302.8
Arbitrary number of 1,000 2,000 2,000 2,000 2,000
computations

Annualized Costs (2009 Dollars)®

1T $381 $381 $381 $381 $381
Kilowatt-related $217 $217 $433 $144 $824
infrastructure

Electricity costs $98 $98 $195 $65 $372
Non-kilowatt-related $73 $73 $73 $73 $73
infrastructure

O&M costs $113 $113 $113 $113 $113
Total $882 $882 $1,196 $777 $1,763
Index compared to base 1.000 1.000 1.357 0.881 2.000
case

Annualized cost per $0.88 $0.44 $0.60 $0.39 $0.88
computation

Index compared to base 1.000 0.500 0.678 0.441 1.000

case

(a) Case 1: Base case, circa 2007 for a data center delivering high-
performance computing for financial applications (based on model in
Koomey et al. 2007).

Case 2: Computations per dollar of IT cost double, as does performance
per watt, keeping watts/$1,000 constant.

Case 3: Computations per dollar of IT cost double, and performance per
watt does not change, making watts/$1,000 double.

Case 4: Computations per dollar of IT cost double, and performance per
watt triples, reducing watts/$1,000 to two-thirds of its base case value.
Case 5: Computations per dollar of IT cost double, and performance per
watt declines almost 50% (enough for increased indirect power-related costs
to completely offset the IT-related reduction in costs per computation).
(b) IT capital expenditures assumed to remain constant at $1,000. Elec-
tricity price = $0.07/kWh. Load factor = 100%. PUE = 2.0. Discount rate
= 7% real. Lifetime of IT equipment = 3 years; lifetime of infrastructure
equipment = 15 years.

318 M The Green Computing Book: Tackling Energy Efficiency at Large Scale

The table examines four other cases. For each of these cases, the ratio
of performance to IT costs doubles compared to the base case. We assume
that we always spend $1,000 for IT equipment, which implies that total
performance will go up by a factor of two (in this example, we rely on
arbitrary performance units to simplify the calculations).

For scenario 2, we assume that performance per watt also doubles during
this period, implying that watts per $1,000 will remain constant (as per
Equations 9.1a and 9.1b). For scenario 3, we assume that performance
per watt will remain the same as in the base case, implying that power use
per unit of server cost will double. Scenario 4 assumes that performance per
watt triples over 2 years, implying that watts per $1,000 of I'T cost will reach
two-thirds of its value in the base case. Finally, in scenario 5 we calculate
the performance per watt (relative to the base case) that would result in the
same total cost per computation as in the base case.

REFERENCES

1. Belady, Christian L. 2007, February. In the Data Center, Power and Cool-
ing Costs More than the IT Equipment It Supports. ElectronicsCooling,
pp- 24-27.

2. Brill, Kenneth G. 2007. Data Center Energy Efficiency and Productivity. Santa
Fe, NM: Uptime Institute. http://www.uptimeinstitute.org/.

3. Koomey, Jonathan, Kenneth G. Brill, W. Pitt Turner, John R. Stanley,
and Bruce Taylor. 2007, September. A Simple Model for Determining True
Total Cost of Ownership for Data Centers. Santa Fe, NM: Uptime Institute.
http://www.uptimeinstitute.org.

4. Patel, Chandrakant D., and Amip J. Shah. 2005, June 9. Cost Model for Plan-
ning, Development and Operation of a Data Center. Palo Alto, CA: Hewlett
Packard Laboratories. HPL-2005-107(R.1).

5. Koomey, Jonathan G., Christian Belady, Michael Patterson, Anthony Santos,
and Klaus-Dieter Lange. 2009, August 17. Assessing Trends over Time in
Performance, Costs, and Energy Use for Servers. Oakland, CA: Analytics Press.
http://www.intel.com/pressroom/kits/ecotech.

6. Barroso, Luzi André, and Urs Holzle. 2007. The Case for Energy-
Proportional Computing. IEEE Computer, 40(12), 33-37. http://www.
barroso.org/.

7. Nordhaus, William D. 2007. Two Centuries of Productivity Growth in Com-
puting. The Journal of Economic History, 67(1), 128-159. http://nordhaus.
econ.yale.edu/recent_stuff.html.

8. Mollick, Ethan. 2006, July—September. Establishing Moore’s Law. IEEE An-
nals of the History of Computing, pp. 62-75.

9. Standard Performance Evaluation Corporation. 2013. SPECpower_ssj2008.
http://www.spec.org/power_ssj2008/.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Implications of Recent Trends in Performance, Costs, and Energy B 319

Stokes, Jon. 2008, September 27. Classic.Ars: Understanding Moore’s Law.
http://arstechnica.com/hardware/news/2008/09/moore.ars.

Moore, Gordon E. 1965, April 19. Cramming More Components onto In-
tegrated Circuits. Electronics, pp. 114-117.

Moore, Gordon E. 1975. Progress in Digital Integrated Electronics. IEEE,
IEDM Tech Digest, pp. 11-13. http://www.ieee.org/.

Baer, Walter S., Scott Hassell, and Ben Vollaard. 2002. Electricity Require-
ments for a Digital Society. Santa Monica, CA: RAND. MR-1617-DOE.
http://www.rand.org/publications/MR/MR1617/.

Blazek, Michele, Huimin Chong, Woonsien Loh, and Jonathan Koomey.
2004. A Data Center Revisited: Assessment of the Energy Impacts of Retrofits
and Technology Trends in a High-Density Computing Facility. The ASCE
Journal of Infrastructure Systems, 10(3), 98—104.

Harris, Jeff, J. Roturier, L. K. Norford, and A. Rabl. 1988, November. Technol-
ogy Assessment: Electronic Office Equipment. Berkeley, CA: Lawrence Berkeley
Laboratory. LBL-25558.

Kawamoto, Kaoru, Jonathan Koomey, Bruce Nordman, Richard E. Brown,
Maryann Piette, Michael Ting, and Alan Meier. 2002. Electricity Used by
Office Equipment and Network Equipment in the U.S. Energy—The Inter-
national Journal (also LBNL-45917), 27(3), 255-269.

Koomey, Jonathan. 2008, September 23. Worldwide Electricity Used in Data
Centers. Environmental Research Letters, 3(034008). http://stacks.iop.org/
1748-9326/3/034008.

Koomey, Jonathan, Chris Calwell, Skip Laitner, Jane Thornton,
Richard E. Brown, Joe Eto, Carrie Webber, and Cathy Cullicott. 2002.
Sorry, Wrong Number: The Use and Misuse of Numerical Facts in Anal-
ysis and Media Reporting of Energy Issues. In Annual Review of Energy
and the Environment 2002. Edited by R. H. Socolow, D. Anderson, and
J. Harte. Palo Alto, CA: Annual Reviews (also LBNL-50499), pp. 119—
158.

Koomey, Jonathan, Huimin Chong, Woonsien Loh, Bruce Nordman, and
Michele Blazek. 2004. Network Electricity Use Associated with Wireless
Personal Digital Assistants. The ASCE Journal of Infrastructure Systems (also
LBNL-54105), 10(3), 131-137.

Koomey, Jonathan, Mary Ann Piette, Mike Cramer, and Joe Eto. 1996. Ef-
ficiency Improvements in U.S. Office Equipment: Expected Policy Impacts
and Uncertainties. Energy Policy, 24(12), 1101-1110.

Lovins, Amory, and H. Heede. 1990, September. Electricity-Saving Office
Equipment. Snowmass, CO: Competitek/Rocky Mountain Institute.
Mitchell-Jackson, Jennifer, Jonathan Koomey, Michele Blazek, and Bruce
Nordman. 2002. National and Regional Implications of Internet Data Center
Growth. Resources, Conservation, and Recycling (also LBNL-50534), 36(3),
175-185.

Mitchell-Jackson, Jennifer, Jonathan Koomey, Bruce Nordman, and Michele
Blazek. 2003. Data Center Power Requirements: Measurements from Silicon

320 W The Green Computing Book: Tackling Energy Efficiency at Large Scale

24.

25.

26.

27.

28.

29.

Valley. Energy—The International Journal (also LBNL-48554), 28(8), 837—
850.

Norford, Les, A. Hatcher, Jeffrey Harris, Jacques Roturier, and O. Yu. 1990.
Electricity Use in Information Technologies. In Annual Review of Energy
1990. Edited by J. M. Hollander. Palo Alto, CA: Annual Reviews, pp. 423—
453.

Piette, Maryann, Joe Eto, and Jeff Harris. 1991, September. Office Equipment
Energy Use and Trends. Berkeley, CA: Lawrence Berkeley Laboratory. LBL-
31308.

Roth, Kurt, Fred Goldstein, and Jonathan Kleinman. 2002, January. Energy
Consumption by Office and Telecommunications Equipment in Commercial
Buildings—Volume I: Energy Consumption Baseline. Washington, DC: Pre-
pared by Arthur D. Little for the U.S. Department of Energy. A.D. Little
Reference no. 72895-00. http://www.eere.energy.gov/.

Roth, Kurt, Ratcharit Ponoum, and Fred Goldstein. 2006, March. U.S. Resi-
dential Information Technology Energy Consumption in 2005 and 2010. Cam-
bridge, MA: Prepared by Tiax for the U.S. Department of Energy, Building
Technologies Program. Tiax Reference no. D0295 (Final Report).

BEA. 2013. Implicit price deflators for Gross Domestic Product, [online].
Bureau of Economic Analysis, U.S. Department of Commerce, 2013
[http://www.bea.gov/iTable/index_nipa.cfm]

U.S. DOE. 2013. Short Term Energy Outlook (Table 9a: US Macroeco-
nomic Indicators and Carbon Dioxide Emissions). Washington, DC: Energy
Information Administration, U.S. Department of Energy. November 13.
[http://www.eia.gov/forecasts/steo/data.cfm?type=tables]

Computer Science/Computing

Chapman & Hall/CRC

Computational Science Series

Edited by one of the founders and the lead investigator of the Green500 list,
The Green Computing Book: Tackling Energy Efficiency at Large Scale
explores seminal research in large-scale green computing. It begins with
low-level, hardware-based approaches and then traverses up the software
stack with increasingly higher-level, software-based approaches.

In the first chapter, the IBM Blue Gene team illustrates how to improve the
energy efficiency of a supercomputer by an order of magnitude without
any system performance loss in parallelizable applications. The next few
chapters explain how to enhance the energy efficiency of a large-scale
computing system via compiler-directed energy optimizations, an adaptive
run-time system, and a general prediction performance framework. The
book then explores the interactions between energy management and
reliability and describes a storage system organization that maximizes
energy efficiency and reliability. It also addresses the need for coordinated
power control across different layers and covers demand response policies
in computing centers. The final chapter assesses the impact of servers on
data center costs.

Features

e Focuses on low-power, high-performance designs for large-scale
computing systems and components, such as network on a chip

e Offers innovative software alternatives to the internationally renowned
Green Destiny supercomputer

¢ Presents automated methods for power-performance adaptation in
run-time systems

e Proposes a new metric—the energy-reliability product—for
simultaneously evaluating energy and reliability in storage systems

e Discusses the critical areas of energy management and virtualization
in cloud computing

e Explains how to control power across the hardware, firmware,
operating system, and application levels

e Explores trends in server costs, energy use, and performance at high-
density computing facilities

974-1-4398-1947-

	Front Cover
	Table of Contents
	Preface
	Contributors
	CHAPTER 1: Low-Power, Massively Parallel, Energy-Efficient Supercomputers
	CHAPTER 2: Compiler-Driven Energy Efficiency
	CHAPTER 3: An Adaptive Run-Time System for Improving Energy Efficiency
	CHAPTER 4: Energy-Efficient Multithreading through Run-Time Adaptation
	CHAPTER 5: Exploring Trade-Offs between Energy Savings and Reliability in Storage Systems
	CHAPTER 6: Cross-Layer Power Management
	CHAPTER 7: Energy-Efficient Virtualized Systems
	CHAPTER 9: Implications of Recent Trends in Performance, Costs, and Energy Use for Servers
	Back Cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

