MATLAB®

A Practical Introduction to Programming
and Problem Solving

Third Edition

Stormy Attaway

Department of Mechanical Engineerng,
Boston University

Amsterdam ¢ Boston ¢ Heidelberg » London ¢ New York ¢ Oxford
Paris » San Diego ¢ San Francisco ¢ Singapore ¢ Sydney ¢ Tokyo

Butterworth-Heinemann is an imprint of Elsevier

Butterworth-Heinemann is an imprint of Elsevier
The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB
225 Wyman Street, Waltham, MA 02451, USA

First published 2009
Second edition 2012
Third edition 2013

Copyright © 2013 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about the
Publisher’s permissions policies and our arrangement with organizations such as the Copyright Clearance Center
and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions

This book and the individual contributions contained in it are protected under copyright by the Publisher (other
than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any
information, methods, compounds, or experiments described herein. In using such information or methods
they should be mindful of their own safety and the safety of others, including parties for whom they have

a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability
for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or
from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

MATLAB® is a trademark of TheMathWorks, Inc., and is used with permission. TheMathWorks does not warrant
the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related
products does not constitute endorsement or sponsorship by TheMathWorks of a particular pedagogical approach
or particular use of the MATLAB® software.

MATLAB® and Handle Graphics® are registered trademarks of TheMathWorks, Inc.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication Data
A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-405876-7

For information on all Butterworth-Heinemann publications
visit our website at store.elsevier.com

Printed and bound in the United States
13141516 10987654321

qa Working together
| | A8 (o grow libraries in
aseviek | Book 8 developing countries

www.elsevier.com e www.bookaid.org

http://www.elsevier.com/permissions
http://store.elsevier.com

This book is dedicated to my husband, Ted de Winter.

Preface

MOTIVATION

The purpose of this book is to teach basic programming concepts and skills
needed for basic problem solving, all using MATLAB® as the vehicle. MATLAB is
a powerful software package that has built-in functions to accomplish a diverse
range of tasks, from mathematical operations to three-dimensional imaging.
Additionally, MATLAB has a complete set of programming constructs that
allows users to customize programs to their own specifications.

There are many books that introduce MATLAB. There are two basic flavors of
these books: those that demonstrate the use of the built-in functions in
MATLAB, with a chapter or two on some programming concepts, and those
that cover only the programming constructs without mentioning many of the
built-in functions that make MATLAB efficient to use. Someone who learns
just the built-in functions will be well prepared to use MATLAB, but would
not understand basic programming concepts. That person would not be able
to then learn a language such as C++ or Java without taking another intro-
ductory course, or reading another book, on the programming concepts.
Conversely, anyone who learns only programming concepts first (using any
language) would tend to write highly inefficient code using control statements
to solve problems, not realizing that in many cases these are not necessary in
MATLAB.

Instead, this book takes a hybrid approach, introducing both the programming
and the efficient uses. The challenge for students is that it is nearly impossible to
predict whether they will, in fact, need to know programming concepts later on
or whether a software package such as MATLAB will suffice for their careers.
Therefore, the best approach for beginning students is to give them both: the
programming concepts and the efficient built-in functions. As MATLAB is very
easy to use, it is a perfect platform for this approach to teaching programming
and problem solving.

xi

As programming concepts are critically important to this book, emphasis is not
placed on the time-saving features that evolve with every new MATLAB release.
For example, in most versions of MATLAB, statistics on variables are available
readily in the Workspace Window. This is not shown in any detail in the book,
as whether this feature is available depends on the version of the software and
because of the desire to explain the concepts in the book.

MODIFICATIONS IN THE THIRD EDITION
The changes in the Third Edition of this book include the following.

New section at the end of every chapter, “Explore Other Interesting
Features”, which lists related language constructs, functions, and tools that
readers may wish to investigate.
Expanded coverage of:
image processing, including the use of different data types in image
matrices
plot functions, including those that use logarithmic scales
graphical user interfaces.
Use of MATLAB Version R2012b.
Modified and new “Practice” problems.
Modified, new, and some more challenging end-of-chapter exercises.
Reorganization of some material, principally:
separate chapter (Chapter 2) on vectors and matrices, which includes
some functions and operators on vectors and matrices, and prepares for
vectorizing code
matrix multiplication covered much earlier (in Chapter 2)
vectorized code covered in the loop chapter in order to compare the use
of loops with arrays and vectorized code.
Use of randi instead of round(rand).
Use of true/false instead of logical(1)/logical(0).
Expanded coverage of elementary math functions, including mod, sqrt,
nthroot, log, log2, and log10, as well as more trigonometric functions.
New Appendix with complete list of functions covered in the book.
New Appendix with list of Toolboxes that readers may wish to investigate.

KEY FEATURES

Side-by-Side Programming Concepts and Built-in
Functions

The most important, and unique, feature of this book is that it teaches
programming concepts and the use of the built-in functions in MATLAB side-
by-side. It starts with basic programming concepts, such as variables,

assignments, input/output, selection and loop statements. Then, throughout
the rest of the book many times a problem will be introduced and then solved
using the “programming concept” and also using the “efficient method”. This
will not be done in every case to the point that it becomes tedious, but just
enough to get the ideas across.

Systematic Approach

Another key feature is that the book takes a very systematic, step-by-step
approach, building on concepts throughout the book. It is very tempting in
a MATLAB text to show built-in functions or features early on with a note that
says “we’ll do this later”. This book does not do that; functions are covered
before they are used in examples. Additionally, basic programming concepts
will be explained carefully and systematically. Very basic concepts, such as
looping to calculate a sum, counting in a conditional loop, and error-checking,
are not found in many texts, but are covered here.

File Input/Output

Many applications in engineering and the sciences involve manipulating large
data sets that are stored in external files. Most MATLAB texts at least mention
the save and load functions, and, in some cases, also some of the lower-level
file input/output functions. As file input and output are so fundamental to so
many applications, this book will cover several low-level file input/output
functions, as well as reading from and writing to spreadsheet files. Later
chapters will also deal with audio and image files. These file input/output
concepts are introduced gradually: first load and save in Chapter 3, then lower-
level functions in Chapter 9, and, finally, sound and images in Chapter 13.

User-Defined Functions

User-defined functions are a very important programming concept, and yet
many times the nuances and differences between concepts, such as types of
functions and function calls versus function headers, can be very confusing to
beginner programmers. Therefore, these concepts are introduced gradually.
First, arguably the easiest type of functions to understand, those that calculate
and return one single value, are demonstrated in Chapter 3. Later, functions
that return no values and functions that return multiple values are introduced
in Chapter 6. Finally, advanced function features are shown in Chapter 10.

Advanced Programming Concepts

In addition to the basics, some advanced programming concepts, such as string
manipulation, data structures (e.g., structures and cell arrays), recursion,
anonymous functions, and variable number of arguments to functions, are

covered. Sorting, searching, and indexing are also addressed. All of these are
again approached systematically; for example, cell arrays are covered before
they are used in file input functions and as labels on pie charts.

Problem-Solving Tools

In addition to the programming concepts, some basic mathematics necessary
for solving many problems will be introduced. These will include statistical
functions, solving sets of linear algebraic equations, and fitting curves to data.
The use of complex numbers and some calculus (integration and differentia-
tion) will also be introduced. The basic math will be explained and the built-in
functions in MATLAB to perform these tasks will be described.

Plots, Imaging, and Graphical User Interfaces

Simple two-dimensional plots are introduced very early in the book (Chapter 3)
so that plot examples can be used throughout. A separate chapter, Chapter 11,
shows more plot types, and demonstrates customizing plots and how the
graphics properties are handled in MATLAB. This chapter makes use of strings
and cell arrays to customize labels. Also, there is an introduction to image
processing and the basics necessary to understand programming graphical user
interfaces (GUIs) in Chapter 13.

Vectorized Code

Efficient uses of the capabilities of the built-in operators and functions in
MATLAB are demonstrated throughout the book. In order to emphasize the
importance of using MATLAB efficiently, the concepts and built-in functions
necessary for writing vectorized code are treated very early in Chapter 2.
Techniques such as preallocating vectors and using logical vectors are then
covered in Chapter 5 as alternatives to selection statements and looping
through vectors and matrices. Methods of determining how efficient the code is
are also covered.

LAYOUT OF TEXT

This text is divided into two parts: the first part covers programming constructs
and demonstrates the programming method versus efficient use of built-in
functions to solve problems. The second part covers tools that are used for basic
problem solving, including plotting, image processing, and mathematical
techniques to solve systems of linear algebraic equations, fit curves to data, and
perform basic statistical analyses. The first six chapters cover the very basics in
MATLAB and in programming, and are all prerequisites for the rest of the book.
After that, many chapters in the problem-solving section can be introduced,

when desired, to produce a customized flow of topics in the book. This is true
to an extent, although the order of the chapters has been chosen carefully to
ensure that the coverage is systematic.

The individual chapters are described here, as well as which topics are required
for each chapter.

PART 1: INTRODUCTION TO PROGRAMMING
USING MATLAB

Chapter 1: Introduction to MATLAB begins by covering the MATLAB Desktop
Environment. Variables, assignment statements, and types are introduced.
Mathematical and relational expressions and the operators used in them are
covered, as are characters, random numbers, and the use of built-in functions
and the Help browser.

Chapter 2: Vectors and Matrices introduces creating and manipulating vectors
and matrices. Array operations and matrix operations (such as matrix multi-
plication) are explained. The use of vectors and matrices as function arguments,
and functions that are written specifically for vectors and matrices are covered.
Logical vectors and other concepts useful in vectorizing code are emphasized in
this chapter.

Chapter 3: Introduction to MATLAB Programming introduces the idea of
algorithms and scripts. This includes simple input and output, and com-
menting. Scripts are then used to create and customize simple plots, and to do
file input and output. Finally, the concept of a user-defined function is intro-
duced with only the type of function that calculates and returns a single value.

Chapter 4: Selection Statements introduces the use of logical expressions in if
statements, with else and elseif clauses. The switch statement is also demon-
strated, as is the concept of choosing from a menu. Also, functions that return
logical true or false are covered.

Chapter 5: Loop Statements and Vectorizing Code introduces the concepts of
counted (for) and conditional (while) loops. Many common uses, such as
summing and counting, are covered. Nested loops are also introduced. Some
more sophisticated uses of loops, such as error-checking and combining loops
and selection statements, are also covered. Finally, vectorizing code, by using
built-in functions and operators on vectors and matrices instead of looping
through them, is demonstrated. Tips for writing efficient code are emphasized
and tools for analyzing code are introduced.

The concepts in the first five chapters are assumed throughout the rest of the
book.

Chapter 6: MATLAB Programs covers more on scripts and user-defined
functions. User-defined functions that return more than one value and also that
do not return anything are introduced. The concept of a program in MATLAB
which consists of a script that calls user-defined functions is demonstrated with
examples. A longer, menu-driven program is shown as a reference, but could be
omitted. Subfunctions and scope of variables are also introduced, as are some
debugging techniques.

The concept of a program is used throughout the rest of the book.

Chapter 7: String Manipulation covers many built-in string manipulation
functions, as well as converting between string and number types. Several
examples include using custom strings in plot labels and input prompts.

Chapter 8: Data Structures: Cell Arrays and Structures introduces two main
data structures — cell arrays and structures. Once structures are covered, more
complicated data structures, such as nested structures and vectors of structures,
are also introduced. Cell arrays are used in several applications in later chapters,
such as file input in Chapter 9, variable number of function arguments in
Chapter 10, and plot labels in Chapter 11, and are therefore considered
important and are covered first. The rest of the chapter on structures can be
omitted, although the use of structure variables to store object properties is
shown in Chapter 11.

Chapter 9: Advanced File Input and Output covers lower-level file input/
output statements that require opening and closing the file. Functions that can
read the entire file at once, as well as those that require reading one line at
a time, are introduced, and examples that demonstrate the differences in their
use are shown. Additionally, techniques for reading from and writing to
spreadsheet files and also .mat files that store MATLAB variables are introduced.
Cell arrays and string functions are used extensively in this chapter.

Chapter 10: Advanced Functions covers more advanced features of and types
of functions, such as anonymous functions, nested functions, and recursive
functions. Function handles, and their use with both anonymous functions and
function functions are introduced. The concept of having a variable number of
input and/or output arguments to a function is introduced; this is implemented
using cell arrays. String functions are also used in several examples in this
chapter. The section on recursive functions is at the end and may be omitted.

PART 2: ADVANCED TOPICS FOR PROBLEM
SOLVING WITH MATLAB

Chapter 11: Advanced Plotting Techniques continues with more on the plot
functions introduced in Chapter 3. Different two-dimensional plot types, such

as logarithmic scale plots, pie charts, and histograms are introduced, as is
customizing plots using cell arrays and string functions. Three-dimensional
plot functions, as well as some functions that create the coordinates for spec-
ified objects, are demonstrated. The notion of Handle Graphics is covered, and
some graphics properties, such as line width and color, are introduced. Core
graphics objects and their use by higher-level plotting functions are demon-
strated. Applications that involve reading data from files and then plotting use
both cell arrays and string functions.

Chapter 12: Basic Statistics, Sets, Sorting, and Indexing starts with some of
the built-in statistical and set operations in MATLAB. As some of these require
a sorted data set, methods of sorting are described. Finally, the concepts of
indexing into a vector and searching a vector are introduced. Sorting a vector of
structures and indexing into a vector of structures are described, but these
sections can be omitted. A recursive binary search function is in the end and
may be omitted.

Chapter 13: Sights and Sounds briefly discusses sound files and introduces
image processing. An introduction to programming GUIs is also given,
including the creation of a button group and embedding images in a GUL
Nested functions are used in the GUI examples.

Chapter 14: Advanced Mathematics covers four basic topics: curve fitting,
complex numbers, solving systems of linear algebraic equations, and inte-
gration and differentiation in calculus. Matrix solutions using the
Gauss—Jordan and Gauss—Jordan elimination methods are described. This
section includes the mathematical techniques and also the MATLAB functions
that implement them. Finally, some of the symbolic math toolbox functions
are shown, including those that solve equations. This method returns a struc-
ture as a result.

PEDAGOGICAL FEATURES

There are several pedagogical tools that are used throughout this book that are
intended to make it easier to learn the material.

First, the book takes a conversational tone with sections called “Quick Ques-
tion!”. These are designed to stimulate thought about the material that has just
been covered. The question is posed, and then the answer is given. It will be
most beneficial to the reader to try to think about the question before reading
the answer! In any case, they should not be skipped over, as the answers often
contain very useful information.

“Practice” problems are given throughout the chapters. These are very simple
problems that drill the material just covered.

“Explore Other Interesting Features”: this section has been added to the end of
every chapter in this third edition. This book is not intended to be a complete
reference book, and cannot possibly cover all of the built-in functions and tools
available in MATLAB; however, in every chapter there will be a list of functions
and/or commands that are related to the chapter topics, which readers may
wish to investigate.

When some problems are introduced, they are solved using both “The
Programming Concept” and “The Efficient Method”. This facilitates under-
standing the built-in functions and operators in MATLAB, as well as the
underlying programming concepts. “The Efficient Method” highlights methods
that will save time for the programmer, and, in many cases, are also faster to
execute in MATLAB.

Additionally, to aid the reader:

identifier names are shown in italic

MATLAB function names are shown in bold
reserved words are shown in bold and underline
key important terms are shown in bold and italic.

The end-of-chapter “Summary” contains, where applicable, several sections:

Common Pitfalls: a list of common mistakes that are made, and how to
avoid them.

Programming Style Guidelines: in order to encourage “good” programs,
that others can actually understand, the programming chapters will have
guidelines that will make programs easier to read and understand, and
therefore easier to work with and modify.

Key Terms: a list of the key terms covered in the chapter, in sequence.
MATLAB Reserved Words: a list of the reserved key words in MATLAB.
Throughout the text, these are shown in bold, underlined type.

MATLAB Functions and Commands: a list of the MATLAB built-in
functions and commands covered in the chapter, in the order covered.
Throughout the text, these are shown in bold type.

MATLAB Operators: a list of the MATLAB operators covered in the chapter,
in the order covered.

Exercises: a comprehensive set of exercises, ranging from the rote to more
engaging applications.

ADDITIONAL BOOK RESOURCES

A companion website with additional teaching resources is available for faculty
using this book as a text for their course(s). Please visit www.textbooks.elsevier.
com/9780750687621 to register for access to:

http://www.textbooks.elsevier.com/9780750687621
http://www.textbooks.elsevier.com/9780750687621

instructor solutions manual for end-of-chapter problems
instructor solutions manual for “Practice” problems
electronic figures from the text for creation of lecture slides
downloadable M-files for all examples in the text.

Other book-related resources will also be posted there from time to time.

Acknowledgments

I am indebted to many, many family members, colleagues, mentors, and
students.

Throughout the last 26 years of coordinating and teaching the basic compu-
tation courses for the College of Engineering at Boston University, I have been
blessed with many fabulous students, as well as graduate teaching fellows and
undergraduate teaching assistants (TAs). There have been hundreds of TAs over
the years — too many to name individually — but I thank them all for their
support. In particular, the following TAs were very helpful in reviewing drafts of
the original manuscript and subsequent editions, and suggesting examples:
Edy Tan, Megan Smith, Brandon Phillips, Carly Sherwood, Ashmita Randhawa,
Mike Green, Kevin Ryan, Brian Hsu, Paul Vermilion, Jake Herrmann, Ben
Duong, and Alan Morse. Kevin Ryan wrote the MATLAB scripts that were used to
produce the cover illustrations.

A number of colleagues have been very encouraging throughout the years. In
particular, I would like to thank my former and current department chairmen
Tom Bifano and Ron Roy for their support and motivation, and Tom for his
graphical user interface example suggestions. I am also indebted to my mentors
at Boston University, Bill Henneman of the Computer Science Department and
Merrill Ebner of the Department of Manufacturing Engineering, as well as Bob
Cannon from the University of South Carolina.

I would like to thank all of the reviewers of the proposal and drafts of this
book. Their comments have been extremely helpful and I hope I have incor-
porated their suggestions to their satisfaction. They include: Pedro J.N. Silva,
Departamento de Biologia Vegetal, Faculdade de Ciéncias da Universidade de
Lisboa; Dr. Dileepan Joseph, Professor, University of Alberta; Dr. Joseph
Goddard, Professor, UC San Diego; Dr. Geoffrey Shiflett, University of
Southern California; Dr. Steve Brown, University of Delaware; Dr. Jackie
Horton, Senior Lecturer, University of Vermont; Dr. Robert Whitman, Senior
Lecturer, University of Denver; Dr. Lauren Black, Assistant Professor, Tufts
University; Dr. Chris Fietkiewicz, Professor, Case Western Reserve University;
Dr. Philip Wong, Professor, Portland State University; Dr. Mark Lyon,

XXi

m Acknowledgments

Professor, University of New Hampshire; and Dr. Cheryl Schlittler, Professor,
University of Colorado, Colorado Springs.

Also, I thank those at Elsevier who helped to make this book possible,
including: Joseph Hayton, Publisher; Stephen Merken, Acquisitions Editor; Jeff
Freeland, Editorial Project Manager; Lisa Jones, Project Manager; and Tim Pitts,
a Publisher at Elsevier in the United Kingdom.

Much of the work on this edition was done in Scotland on the Isle of Skye and
in Balquhidder and in Esquel, Argentina. Many thanks to the folks at Mon-
achyle Mhor and Patagonia River Guides, and to Donald and Dinah Rankin for
their hospitality!

Finally, thanks go to all of my family, especially my parents Roy Attaway and
Jane Conklin, both of whom encouraged me at an early age to read and to
write. Thanks also to my husband Ted de Winter for his encouragement and
good-natured taking care of the weekend chores while I worked on this
project!

The photo used in the image processing section was taken by Ron Roy.

CHAPTER 1

Introduction to MATLAB

prompt
programs

script files
toolstrip
variable
assignment statement
assignment operator
user

initializing
incrementing
decrementing
identifier names
reserved words
keywords
mnemonic

types

classes

double precision
floating point
unsigned

range

characters

strings

casting

type casting
saturation arithmetic
default

continuation operator
ellipsis

unary

operand

binary

scientific notation
exponential notation
precedence
associativity

nested parentheses
inner parentheses
help topics

call a function
arguments
returning values

logarithm

common logarithm
natural logarithm
constants

random numbers
seed

pseudorandom

open interval

global stream
character encoding
character set
relational expression
Boolean expression
logical expression
relational operators
logical operators
scalars

short-circuit operators
truth table
commutative

CONTENTS

1.1 Getting into
MATLAB........ 4

1.2 The MATLAB
Desktop Envi-
ronment

1.3 Variables and
Assignment
Statements....6

1.4 Numerical
Expressions

1.5 Characters and
Encoding21

1.6 Relational
Expressions

MATLAB® is a very powerful software package that has many built-in tools for
solving problems and developing graphical illustrations. The simplest method
for using the MATLAB product is interactively; an expression is entered by the
user and MATLAB responds immediately with a result. It is also possible to

MATLAB®. http://dx.doi.org/10.1016/B978-0-12-405876-7.00001-8
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-405876-7.00001-8

‘ CHAPTER 1: Introduction to MATLAB

write scripts and programs in MATLAB, which are essentially groups of
commands that are executed sequentially.

This chapter will focus on the basics, including many operators and built-in
functions that can be used in interactive expressions.

1.1 GETTING INTO MATLAB

MATLAB is a mathematical and graphical software package with numerical,
graphical, and programming capabilities. It has built-in functions to
perform many operations, and there are toolboxes that can be added to
augment these functions (e.g., for signal processing). There are versions
available for different hardware platforms, in both professional and student
editions.

When the MATLAB software is started, a window opens in which the main part
is the Command Window (see Figure 1.1). In the Command Window, you
should see:

>>

‘SHORTCUTS

(= | New Variable Analyze Code P
98 O e & H3 2 (& Ha @ grcmen
- {1 Open Variable ~ £ Run and Time :>°°'“'
sr:; New Open i |Compare Impnﬂm Save C) enr e . Layout (-7 SetPath Help = Request Support
B VARIABLE CODE
<a = (& 3 [I/ » Users » sa » Desktop » MATLAB Examples i3
Current Folder OBl Command Window Bl Workspace ®
i >> res = 9 - 2; Name s -
¥ Unix Executable File >> num = res; e v
M experd.dat >> num = num + 1; i i
M xypoints.dat >> xi= 1:4; " 4
>> y = sin(x);
v JPEG image fi >> = f
[% snowyporchJPG =
¥ MATLAB Function
) calcarea.m
¥ MATLAB Script
#) circlescript.m
#] plotonepoint.m
(=) T
Command Hi... ®
res = 9 - 2
num = res;
num = num 4
x = 1:4; |4
y = sin(x);|v
— - = —mnm|

FIGURE 1.1 MATLAB command window

1.2 The MATLAB Desktop Environment _

The >> is called the prompt. In the Student edition, the prompt instead is:

EDU>>

In the Command Window, MATLAB can be used interactively. At the prompt,
any MATLAB command or expression can be entered, and MATLAB will
respond immediately with the result.

It is also possible to write programs in MATLAB that are contained in script files
or M-files. Programs will be introduced in Chapter 3.

The following commands can serve as an introduction to MATLAB and allow
you to get help:

demo will bring up MATLAB examples in the Help Browser, which has
examples of some of the features of MATLAB

help will explain any function; help help will explain how help works
lookfor searches through the help for a specific word or phrase (note: this
can take a long time)

doc will bring up a documentation page in the Help Browser.

To exit from MATLAB, either type quit or exit at the prompt, or click on
MATLAB, then Quit MATLAB from the menu.

1.2 THE MATLAB DESKTOP ENVIRONMENT

In addition to the Command Window, there are several other windows that
can be opened and may be opened by default. What is described here is the
default layout for these windows in Version R2012b, although there are other
possible configurations. Different versions of MATLAB may show other
configurations by default, and the layout can always be customized. Therefore,
the main features will be described briefly here.

To the left of the Command Window is the Current Folder Window. The
folder that is set as the Current Folder is where files will be saved. This window
shows the files that are stored in the Current Folder. These can be grouped in
many ways, for example, by type, and sorted, for example, by name. If a file is
selected, information about that file is shown on the bottom.

To the right of the Command Window are the Workspace Window on top and
the Command History Window on the bottom. The Command History
Window shows commands that have been entered, not just in the current
session (in the current Command Window), but previously as well. The
Workspace Window will be described in the next section.

This default configuration can be altered by clicking the down arrow at the
top right corner of each window. This will show a menu of options

‘ CHAPTER 1: Introduction to MATLAB

(different for each window), including, for example, closing that particular
window and undocking that window. Once undocked, bringing up the
menu and then clicking on the curled arrow pointing to the lower right will
dock the window again. To make any of these windows the active window,
click the mouse in it. By default, the active window is the Command
Window.

Beginning with Version 2012b, the look and feel of the Desktop Environ-
ment has been completely changed. Instead of menus and toolbars, the
Desktop now has a toolstrip. By default, three tabs are shown (“HOME”,
“PLOTS”, and “APPS”), although others, including “SHORTCUTS”, can be
added.

Under the “HOME” tab there are many useful features, which are divided into
functional sections—“FILE”, “VARIABLE”, “CODE”, “ENVIRONMENT”, and
“RESOURCES” (these labels can be seen on the very bottom of the gray
toolstrip area). For example, under “ENVIRONMENT”, hitting the down arrow
under Layout allows for customization of the windows within the Desktop
Environment. Other toolstrip features will be introduced in later chapters
when the relevant material is explained.

1.3 VARIABLES AND ASSIGNMENT STATEMENTS

To store a value in a MATLAB session, or in a program, a variable is used. The
Workspace Window shows variables that have been created and their values.
One easy way to create a variable is to use an assignment statement. The format
of an assignment statement is

variablename = expression

The variable is always on the left, followed by the = symbol, which is the
assignment operator (unlike in mathematics, the single equal sign does not
mean equality), followed by an expression. The expression is evaluated and
then that value is stored in the variable. Here is an example and how it would
appear in the Command Window:

>> mynum = 6
mynum =

6
>>

Here, the user (the person working in MATLAB) typed “mynum = 6" at the
prompt, and MATLAB stored the integer 6 in the variable called mynum, and
then displayed the result followed by the prompt again. As the equal sign is
the assignment operator, and does not mean equality, the statement should be
read as “mynum gets the value of 6” (not “mynum equals 6").

1.3 Variables and Assignment Statements

Note that the variable name must always be on the left, and the expression on
the right. An error will occur if these are reversed.

>> 6 = mynum
6 = mynum

Error: The expression to the left of the equals sign is not
a valid target for an assignment.
>>

Putting a semicolon at the end of a statement suppresses the output. For
example,

>> res = 9 — 2;
>>

This would assign the result of the expression on the right side, the value 7, to

the variable res; it just does not show that result. Instead, another prompt

appears immediately. However, at this point in the Workspace Window both

the variables mynum and res and their values can be seen. Note

In the remainder of the
text, the prompt that
appears after the result
will not be shown.

The spaces in a statement or expression do not affect the result, but make it
easier to read. The following statement, which has no spaces, would accom-
plish exactly the same result as the previous statement:

>> res = 9-2;

MATLAB uses a default variable named ans if an expression is typed at the
prompt and it is not assigned to a variable. For example, the result of the
expression 6 + 3 is stored in the variable ans:

> 6+ 3
ans =
9

This default variable is reused any time only an expression is typed at the
prompt.

A shortcut for retyping commands is to hit the up arrow 1 , which will go back
to the previously typed command(s). For example, if you decided to assign the
result of the expression 6 + 3 to a variable named result instead of using the
default variable ans, you could hit the up arrow and then the left arrow to
modify the command rather than retyping the entire statement:

>> result = 6 + 3
result =
9

This is very useful, especially if a long expression is entered and it contains an
error, and it is desired to go back to correct it.

n CHAPTER 1: Introduction to MATLAB

To change a variable, another assignment statement can be used, which assigns
the value of a different expression to it. Consider, for example, the following
sequence of statements:

>> mynum = 3
mynum =

3
>> mynum = 4 + 2
mynum =

6
>> mynum = mynum + 1
mynum =

7

In the first assignment statement, the value 3 is assigned to the variable
mynum. In the next assignment statement, mynum is changed to have the value
of the expression 4 + 2, or 6. In the third assignment statement, mynum is
changed again, to the result of the expression mynum + 1. Since, at that time,
mynum had the value 6, the value of the expression was 6 + 1, or 7.

At that point, if the expression mynum + 3 is entered, the default variable ans is
used as the result of this expression is not assigned to a variable. Thus, the
value of ans becomes 10, but mynum is unchanged (it is still 7). Note that just
typing the name of a variable will display its value (of course, the value can
also be seen in the Workspace Window).

>> mynum + 3
ans =
10

>> mynum
mynum =
7

1.3.1 Initializing, Incrementing, and Decrementing

Frequently, values of variables change, as shown previously. Putting the first or

initial value in a variable is called initializing the variable.

Adding to a variable is called incrementing. For example, the statement
mynum = mynum + 1

increments the variable mynum by 1.

QUICK QUESTION!

How can 1 be subtracted from the value of a variable called This is called decrementing the variable.
num?

Answer
num = num — 1;

1.3 Variables and Assignment Statements _

1.3.2 Variable names

Variable names are examples of identifier names. We will see other examples of
identifier names, such as function names, in future chapters. The rules for
identifier names are as follows.

The name must begin with a letter of the alphabet. After that, the name can
contain letters, digits, and the underscore character (e.g., value_1), but it
cannot have a space.

There is a limit to the length of the name; the built-in function
namelengthmax tells what this maximum length is (any extra characters
are truncated).

MATLARB is case-sensitive, which means that there is a difference between
upper- and lowercase letters. So, variables called mynum, MYNUM, and
Mpynum are all different (although this would be confusing and should not
be done).

Although underscore characters are valid in a name, their use can cause
problems with some programs that interact with MATLAB, so some
programmers use mixed case instead (e.g., partWeights instead of part_weights).
There are certain words called reserved words, or keywords, that cannot be
used as variable names.

Names of built-in functions (described in the next section) can, but should
not, be used as variable names.

Additionally, variable names should always be mnemonic, which means that
they should make some sense. For example, if the variable is storing the
radius of a circle, a name such as radius would make sense; x probably
wouldn't.

The following commands relate to variables:

who shows variables that have been defined in this Command Window
(this just shows the names of the variables)

whos shows variables that have been defined in this Command Window
(this shows more information on the variables, similar to what is in the
Workspace Window)

clear clears out all variables so they no longer exist

clear variablename clears out a particular variable

clear variablenamel variablename?2 ... clears out a list of variables (note:
separate the names with spaces).

If nothing appears when who or whos is entered, that means there aren’t any
variables! For example, in the beginning of a MATLAB session, variables could
be created and then selectively cleared (remember that the semicolon
suppresses output).

CHAPTER 1: Introduction to MATLAB

>> who

>> mynum = 3;

>> mynum + 5;

>> who

Your variables are:
ans mynum

>> clear mynum

>> who

Your variables are:
ans

These changes can also be seen in the Workspace Window.

1.3.3 Types

Every variable has a type associated with it. MATLAB supports many types,
which are called classes. (Essentially, a class is a combination of a type and the
operations that can be performed on values of that type, but, for simplicity, we
will use these terms interchangeably for now.)

For example, there are types to store different kinds of numbers. For float or
real numbers, or, in other words, numbers with a decimal place (e.g., 5.3),
there are two basic types: single and double. The name of the type double is
short for double precision; it stores larger numbers than the single type.
MATLAB uses a floating point representation for these numbers.

There are many integer types, such as int8, intl6, int32, and int64. The
numbers in the names represent the number of bits used to store values of that
type. For example, the type int8 uses eight bits altogether to store the integer
and its sign. As one bit is used for the sign, this means that seven bits are used
to store actual numbers (Os or 1s). There are also unsigned integer types uint8,
uintl6, uint32, and uint64. For these types, the sign is not stored, meaning
that the integer can only be positive (or 0).

The range of a type, which indicates the smallest and largest numbers that can
be stored in the type, can be calculated. For example, the type uint8 stores 2/8
or 256 integers, ranging from 0 to 255. The range of values that can be stored
in int8, however, is from —128 to +127. The range can be found for any type
by passing the name of the type as a string (which means in single quotes) to
the functions intmin and intmax. For example,

>> intmin('int8")

ans =

-128
>> intmax('int8")

ans =
127

The larger the number in the type name, the larger the number that can be stored
init. We will, for the most part, use the type int32 when an integer type is required.

1.3 Variables and Assignment Statements

The type char is used to store either single characters (e.g., ') or strings, which
are sequences of characters (e.g., ‘cat’). Both characters and strings are enclosed
in single quotes.

The type logical is used to store true/false values.

Variables that have been created in the Command Window can be seen in
the Workspace Window. In that window, for every variable, the variable
name, value, and class (which is, essentially, its type) can be seen. Other
attributes of variables can also be seen in the Workspace Window. Which
attributes are visible by default depends on the version of MATLAB.
However, when the Workspace Window is chosen, clicking on the down
arrow allows the user to choose which attributes will be displayed by
modifying Choose Columns.

By default, numbers are stored as the type double in MATLAB. There are,
however, many functions that convert values from one type to another. The
names of these functions are the same as the names of the types shown in
this section. These names can be used as functions to convert a value to that
type. This is called casting the value to a different type, or type casting. For
example, to convert a value from the type double, which is the default, to the
type int32, the function int32 would be used. Entering the assignment
statement

>> val = 6 + 3;

would result in the number 9 being stored in the variable val, with the default
type of double, which can be seen in the Workspace Window. Subsequently,
the assignment statement

>> val = int32(val);

would change the type of the variable to int32, but would not change its value.
Here is another example using two different variables.

>> num =6 + 3;
>> numi = int32(num) ;

>> whos
Name Size Bytes Class Attributes
num 1x1 8 double
numi 1x1 4 int32

Note that whos shows the type (class) of the variables, as well as the number
of bytes used to store the value of a variable. One byte is equivalent to eight
bits, so the type int32 uses four bytes. The function class can also be used to
see the type of a variable:

>> class(num)
ans =
double

CHAPTER 1: Introduction to MATLAB

One reason for using an integer type for a variable is to save space in
memory.

QUICK QUESTION!

What would happen if you go beyond the range for a particular lowest value in the range, its value would be —128. This is
type? For example, the largest integer that can be stored in an example of what is called saturation arithmetic

i is 127 hi 1d h: if 1 ;

-1nt8 is , SO W e_it would happen if we type cast a larger SS 1nt8(200)

integer to the type int8?

ans =
Answer Z;S7Zt8(-130)
The value would be the largest in the range, in this case 127. If, 128

instead, we use a negative number that is smaller than the

PRACTICE 1.1

Calculate the range of integers that can be stored in the types int16 and uint16. Use intmin
and intmax to verify your results.

Enter an assignment statement and view the type of the variable in the Workspace Window.
Then, change its type and view it again. View it also using whos.

1.4 NUMERICAL EXPRESSIONS

Expressions can be created using values, variables that have already been
created, operators, built-in functions, and parentheses. For numbers, these can
include operators, such as multiplication, and functions, such as trigonometric
functions. An example of such an expression is:

>> 2 * sin(l1.4)
ans =
1.9709

1.4.1 The Format Function and Ellipsis
The default in MATLAB is to display numbers that have decimal points with
four decimal places, as shown in the previous example. (The default means if
you do not specify otherwise, this is what you get.) The format command can
be used to specify the output format of expressions.

There are many options, including making the format short (the default) or
long. For example, changing the format to long will result in 15 decimal
places. This will remain in effect until the format is changed back to short, as
demonstrated in the following:

1.4 Numerical Expressions

>> format long

>> 2 * sin(1.4)

ans =
1.970899459976920

>> format short
>> 2 * sin(1.4)
ans =

1.9709

The format command can also be used to control the spacing between the
MATLAB command or expression and the result; it can be either loose (the
default) or compact.

>> format Tloose
>> 5*33
ans =

165

>> format compact
>> 5*33
ans =
165
>>

Particularly long expressions can be continued on the next line by typing three
(or more) periods, which is the continuation operator, or the ellipsis. To do this,
type part of the expression followed by an ellipsis, then hit the Enter key and
continue typing the expression on the next line.

>> 34+ 55 - 624+ 4 - 5.
+ 22 -1

ans =
16

1.4.2 Operators

There are, in general, two kinds of operators: unary operators, which operate
on a single value, or operand, and binary operators, which operate on two
values or operands. The symbol “-”, for example, is both the unary operator for
negation and the binary operator for subtraction.

Here are some of the common operators that can be used with numerical
expressions:

+ addition

- negation, subtraction

multiplication

division (divided by e.g. 10/5 is 2)
division (divided into e.g. 5\10 is 2)
exponentiation (e.g. 572 is 25)

>~ ~ %

CHAPTER 1: Introduction to MATLAB

In addition to displaying numbers with decimal points, numbers can
also be shown using scientific or exponential notation. This uses e for the
exponent of 10 raised to a power. For example, 2 * 1074 could be written
two ways:
>> 2 * 10M4
ans =
20000

>> 2ed
ans =
20000

1.4.2.1 Operator Precedence Rules

Some operators have precedence over others. For example, in the expression
4 + 5 * 3, the multiplication takes precedence over the addition, so, first 5 is
multiplied by 3, then 4 is added to the result. Using parentheses can change
the precedence in an expression:

>> 4+ 5 *3
ans =
19

>> (44 5) * 3
ans =
27

Within a given precedence level, the expressions are evaluated from left to right
(this is called associativity).

Nested parentheses are parentheses inside of others; the expression in the inner
parentheses is evaluated first. For example, in the expression 5- (6*(4+2)), first
the addition is performed, then the multiplication, and, finally, the subtrac-
tion, to result in -31. Parentheses can also be used simply to make an
expression clearer. For example, in the expression ((4+(3*5))-1), the paren-
theses are not necessary, but are used to show the order in which the parts of
the expression will be evaluated.

For the operators that have been covered thus far, the following is the prece-
dence (from the highest to the lowest):

() parentheses
" exponentiation
negation
*, /, \ all multiplication and division
+, - addition and subtraction

1.4 Numerical Expressions

PRACTICE 1.2

Think about what the results would be for the following expressions, and then type them in to
verify your answers:

1\2

10-6/2
5%4/2%3

1.4.3 Built-in Functions and Help

There are many built-in functions in MATLAB. The help command can be used
to identify MATLAB functions, and also how to use them. For example, typing
help at the prompt in the Command Window will show a list of help topics
that are groups of related functions. This is a very long list; the most
elementary help topics appear at the beginning. Also, if you have any Tool-
boxes installed, these will be listed.

For example, one of the elementary help topics is listed as matlab\elfun; it
includes the elementary math functions. Another of the first help topics is
matlab\ops, which shows the operators that can be used in expressions.

To see a list of the functions contained within a particular help topic, type help
followed by the name of the topic. For example,

>> help elfun

will show a list of the elementary math functions. It is a very long list, and it is
broken into trigonometric (for which the default is radians, but there are
equivalent functions that instead use degrees), exponential, complex, and
rounding and remainder functions.

To find out what a particular function does and how to call it, type help and
then the name of the function. For example, the following will give
a description of the sin function.

>> help sin

Note that clicking on the fx to the left of the prompt in the Command Window
also allows one to browse through the functions in the help topics. Choosing
the Help button under Resources to bring up the Documentation page for
MATLAB is another method for finding functions by category.

To call a function, the name of the function is given followed by the argu-
ment(s) that are passed to the function in parentheses. Most functions then

CHAPTER 1: Introduction to MATLAB

return value(s). For example, to find the absolute value of —4, the following
expression would be entered:

>> abs(-4)

which is a call to the function abs. The number in the parentheses, the -4, is
the argument. The value 4 would then be returned as a result.

QUICK QUESTION!

What would happen if you use the name of a function, for ~Answer
example, sin, as a variable name? This is allowed in MATLAB, but then sin could not be used as
the built-in function until the variable is cleared. For example,

S sin(3.1) examine the following sequence:

ans =
0.0416
>> sin = 45
sin =
45
>> sin(3.1)
Subscript indices must either be real positive integers or Togicals.
>> who
Your variables are:
ans sin
>> clear sin
>> who
Your variables are:
ans
>> sin(3.1)
ans =
0.0416

In addition to the trigonometric functions, the elfun help topic also has some
rounding and remainder functions that are very useful. Some of these include
fix, floor, ceil, round, mod, rem, and sign.

Both the rem and mod functions return the remainder from a division; for
example, 5 goes into 13 twice with a remainder of 3, so the result of this
expression is 3:

>> rem(13,5)
ans =
3

1.4 Numerical Expressions
QUICK QUESTION!

What would happen if you reversed the order of the arguments the arguments are passed does not matter, but for the rem
by mistake, and typed the following: function the order does matter. The rem function divides the
second argument into the first. In this case, the second argu-
rem(5,13)) . . .
ment, 13, goes into 5 zero times with a remainder of 5, so 5
Answer would be returned as a result.
The rem function is an example of a function that has two
arguments passed to it. In some cases, the order in which

Another function in the elfun help topic is the sign function, which returns 1 if
the argument is positive, O if it is 0, and —1 if it is negative. For example,

>> sign(-5)
ans =

-1
>> sign(3)

ans =
1

PRACTICE 1.3

Use the help function to find out what the rounding functions fix, floor, ceil, and round do.
Experiment with them by passing different values to the functions, including some negative,
some positive, and some with fractions less than 0.5 and some greater. It is very important
when testing functions that you test thoroughly by trying different kinds of arguments!

MATLAB has the exponentiation operator #, and also the function sqrt to
compute square roots and nthroot to find the nth root of a number. For
example, the following expression finds the third root of 64:

>> nthroot(64,3)
ans =
4

For the case in which x = b7, y is the logarithm of x to base b, or, in other words,
y =logp(x). Frequently used bases include b = 10 (called the common logarithm),
b = 2 (used in many computing applications), and b = e (the constant e, which
equals 2.7183); this is called the natural logarithm. For example,

100 = 102502 = log;,(100)
32 = 2°s05 = log,(32)

MATLAB has built-in functions to return logarithms:

log(x) returns the natural logarithm
log2(x) returns the base 2 logarithm
log10(x) returns the base 10 logarithm.

CHAPTER 1: Introduction to MATLAB

MATLAB also has a built-in function exp(n), which returns the constant e".

MATLAB has many built-in trigonometric functions for sine, cosine, tangent,
and so forth. For example, sin is the sine function in radians. The inverse, or
arcsine function in radians is asin, the hyperbolic sine function in radians is
sinh, and the inverse hyperbolic sine function is asinh. There are also func-
tions that use degrees rather than radians: sind and asind. Similar variations
exist for the other trigonometric functions.

1.4.4 Constants

Variables are used to store values that might change, or for which the values
are not known ahead of time. Most languages also have the capacity to store
constants, which are values that are known ahead of time and cannot possibly
change. An example of a constant value would be pi, or v, which is 3.14159...
In MATLAB, there are functions that return some of these constant values,
some of which include:

pi 3.14159...
i V-1

j V-1

inf infinity o

NaN stands for “not a number,” such as the result of 0/0.

QUICK QUESTION!

There is no built-in constant for e (2.718), so how can that >> exp(l)
value be obtained in MATLAB? ans =
2.71
Answer 83
Use the exponential function exp; e or e! is equivalent to Note: don't confuse the value e with the e used in MATLAB to
exp(1). specify an exponent for scientific notation.

1.4.5 Random Numbers

When a program is being written to work with data, and the data are not yet
available, it is often useful to test the program first by initializing the data
variables to random numbers. Random numbers are also useful in simulations.
There are several built-in functions in MATLAB that generate random numbers,
some of which will be illustrated in this section.

Random number generators or functions are not truly random. Basically,
the way it works is that the process starts with one number, which is

1.4 Numerical Expressions

called the seed. Frequently, the initial seed is either a predetermined value
or it is obtained from the built-in clock in the computer. Then, based on
this seed, a process determines the next “random number”. Using that
number as the seed the next time, another random number is generated,

and so forth. These are actually called pseudorandom — they are not
truly random because there is a process that determines the next value each
time.

The function rand can be used to generate uniformly distributed random real
numbers; calling it generates one random real number in the open interval
(0,1), which means that the endpoints of the range are not included. There are
no arguments passed to the rand function in its simplest form. Here are two
examples of calling the rand function:

>> rand
ans =
0.8147

>> rand
ans =
0.9058

The seed for the rand function will always be the same each time MATLAB is
started, unless the initial seed is changed. Many of the random functions and
random number generators have been updated in recent versions of MATLAB;
as a result, the terms ‘seed’ and ‘state’ previously used in random functions
should no longer be used. The rng function sets the initial seed. There are
several ways in which it can be called:

>> rng('shuffle')
>> rng(intseed)
>> rng('default')

With ‘shuffle’, the rng function uses the current date and time that are returned

from the built-in clock function to set the seed, so the seed will always be

different. An integer can also be passed to be the seed. The ‘default’ option will

set the seed to the default value used when MATLAB starts up. The rng

function can also be called with no arguments, which will return the current

state of the random number generator: Note
>> state_rng = rng; % gets state The words after the %
>> randone = rand are comments and are
randone = ignored by MATLAB.

0.1270
>> rng(state_rng); % restores the state

>> randtwo = rand %z same as randone
randtwo =

0.1270

m CHAPTER 1: Introduction to MATLAB

The random number generator is initialized when MATLAB starts, which
generates what is called the global stream of random numbers. All of the
random functions get their values from this stream.

As rand returns a real number in the open interval (0, 1), multiplying the
result by an integer N would return a random real number in the open interval
(0, N). For example, multiplying by 10 returns a real number in the open
interval (0, 10), so the expression

rand*10
would return a result in the open interval (0, 10).

To generate a random real number in the range from low to high, first create the
variables low and high. Then, use the expression rand*(high-low)+1ow. For
example, the sequence

>> low = 3;
>> high = 5;
>> rand*(high-Tow)+Tow

would generate a random real number in the open interval (3, 5).

The function randn is used to generate normally distributed random real
numbers.

1.4.5.1 Generating Random Integers
As the rand function returns a real number, this can be rounded to produce
a random integer. For example,

>> round(rand*10)

would generate one random integer in the range from 0 to 10 inclusive
(rand*10 would generate a random real number in the open interval (0, 10);
rounding that will return an integer). However, these integers would not be
evenly distributed in the range. A better method is to use the function randj,
which, in its simplest form, randi(imax), returns a random integer in the
range from 1 to imax, inclusive. For example, randi(4) returns a random
integer in the range from 1 to 4. A range can also be passed; for example,
randi([imin, imax]) returns a random integer in the inclusive range from
imin to imax:
>> randi([3, 6])

ans =
4

1.5 Characters and Encoding

PRACTICE 1.4

Generate a random

real number in the range (0,1)

real number in the range (0, 100)

real number in the range (20, 35)

integer in the inclusive range from 1 to 100
integer in the inclusive range from 20 to 35.

1.5 CHARACTERS AND ENCODING

A character in MATLARB is represented using single quotes (e.g., ‘a’ or x). The
quotes are necessary to denote a character; without them, a letter would be
interpreted as a variable name. Characters are put in an order using what
is called a character encoding. In the character encoding, all characters in the
computer’s character set are placed in a sequence and given equivalent integer
values. The character set includes all letters of the alphabet, digits, and
punctuation marks; basically, all of the keys on a keyboard are characters.
Special characters, such as the Enter key, are also included. So, X, ‘!’, and ‘3’
are all characters. With quotes, ‘3" is a character, not a number.

The most common character encoding is the American Standard Code for
Information Interchange, or ASCII. Standard ASCII has 128 characters, which
have equivalent integer values from 0 to 127. The first 32 (integer values
0 through 31) are nonprinting characters. The letters of the alphabet are in
order, which means ‘a’ comes before ‘b’, then ‘c’, and so forth.

The numeric functions can be used to convert a character to its equivalent
numerical value (e.g., double will convert to a double value, and int32 will
convert to an integer value using 32 bits). For example, to convert the character
‘a’ to its numerical equivalent, the following statement could be used:

>> numequiv = double('a")
numequiv =
97

This stores the double value 97 in the variable numequiv, which shows that the
character ‘a’ is the 98th character in the character encoding (as the equivalent
numbers begin at 0). It doesn’t matter which number type is used to convert
‘a’; for example,

>> numequiv = int32('a’')

would also store the integer value 97 in the variable numequiv. The only
difference between these will be the type of the resulting variable (double in
the first case, int32 in the second).

m CHAPTER 1: Introduction to MATLAB

The function char does the reverse; it converts from any number to the
equivalent character:

>> char(97)
ans =
Note a
Quotes are not shown
when the character is
displayed.

As the letters of the alphabet are in order, the character ‘b’ has the equivalent
value of 98, ‘'c’ is 99, and so on. Math can be done on characters. For example,
to get the next character in the character encoding, 1 can be added either to the
integer or the character:

>> numequiv = double('a');

>> char(numequiv + 1)
ans =

Notice the difference in the formatting (the indentation) when a number is
displayed versus a character:

>> var = 3
var =

3
>> var =
var =
3

[
w

MATLAB also handles strings, which are sequences of characters in single
quotes. For example, using the double function on a string will show the
equivalent numerical value of all characters in the string;

>> double('abcd")

ans =
97 98 99 100

To shift the characters of a string “up” in the character encoding, an integer value
can be added to a string. For example, the following expression will shift by one:

>> char('abcd'+ 1)
ans =
bcde

PRACTICE 1.5

Find the numerical equivalent of the character 'x'.
Find the character equivalent of 107.

1.6 Relational Expressions ﬂ

1.6 RELATIONAL EXPRESSIONS

Expressions that are conceptually either true or false are called relational expres-
sions; they are also sometimes called Boolean expressions or logical expressions.
These expressions can use both relational operators, which relate two expressions
of compatible types, and logical operators, which operate on logical operands.

The relational operators in MATLAB are:

Operator Meaning

> greater than

< less than

>= greater than or equals
<= less than or equals
== equality

~= inequality

All of these concepts should be familiar, although the actual operators used
may be different from those used in other programming languages, or in
mathematics classes. In particular, it is important to note that the operator for
equality is two consecutive equal signs, not a single equal sign (as the single
equal sign is already used as the assignment operator).

For numerical operands, the use of these operators is straightforward. For
example, 3 <5 means “3 less than 5", which is, conceptually, a true expression.
In MATLAB, as in many programming languages, “true” is represented by the
logical value 1, and “false” is represented by the logical value 0. So, the
expression 3 < 5 actually displays in the Command Window the value 1
(logical) in MATLAB. Displaying the result of expressions like this in the
Command Window demonstrates the values of the expressions.

>> 3 <5
ans =
1

>> 2> 9
ans =

0
>> class(ans)
ans =
logical

The type of the result is logical, not double. MATLAB also has built-in true and
false. In other words, true is equivalent to logical(1) and false is equivalent to
logical(0). (In some versions of MATLAB, the value shown for the result of these

m CHAPTER 1: Introduction to MATLAB

expressions is true or false in the Workspace Window.) Although these are logical
values, mathematical operations could be performed on the resulting 1 or 0.

>> 5 <7
ans =

1
>> ans + 3
ans =

4

Comparing characters (e.g., ‘a’ < ‘c’) is also possible. Characters are compared
using their ASCII equivalent values in the character encoding. So, ‘a’ < ‘c’ is
a true expression because the character ‘a’ comes before the character ‘c’.

>> 'at < e
ans =

1

The logical operators are:

Operator Meaning
I or

&& and

~ not

All logical operators operate on logical or Boolean operands. The not operator
is a unary operator; the others are binary. The not operator will take a logical
expression, which is true or false, and give the opposite value. For example,
~(3<5) is false as (3 <5) is true. The or operator has two logical expressions
as operands. The result is true if either or both of the operands are true, and
false only if both operands are false. The and operator also operates on two
logical operands. The result of an and expression is true only if both operands
are true; it is false if either or both are false. The or/and operators shown here
are used for scalars or single values. Other or/and operators will be explained
in Chapter 2.

The || and && operators in MATLAB are examples of operators that are known
as short-circuit operators. What this means is that if the result of the expression
can be determined based on the first part, then the second part will not even
be evaluated. For example, in the expression:

2< 4| 'a'"= "¢’

the first part, 2 < 4, is true so the entire expression is true; the second part ‘a’ == ‘c
would not be evaluated.

In addition to these logical operators, MATLAB also has a function xor, which
is the exclusive or function. It returns logical true if one (and only one) of the

1.6 Relational Expressions ﬂ

arguments is true. For example, in the following only the first argument is

true, so the result is true:

>> xor(3 < 5, 'a' > 'c')
ans =
1

In this example, both arguments are true so the result is false:

>> xor(3 < 5, 'a'" < 'c")
ans =
0

Given the logical values of true and false in variables x and y, the truth
table (see Table 1.1) shows how the logical operators work for all combi-
nations. Note that the logical operators are commutative (e.g., x || y is the

same as y || x).

Truth Table for Logical Operators

X y ~X x|y X && y xor(x,y)
true true false true true false
true false false true false true
false false true false false false

As with the numerical operators, it is important to know the operator prece-
dence rules. Table 1.2 shows the rules for the operators that have been covered

thus far in the order of precedence.

Operator Precedence Rules

Operators Precedence
parentheses: () highest
power 7

unary: negation (-), not(~)

multiplication, division *, /,\

addition, subtraction +, -

relational <, <=, >, >=, ==, ~=

and &&

or ||

assignment = lowest

m CHAPTER 1: Introduction to MATLAB
QUICK QUESTION!

Assume that there is a variable x that has been initialized. true or false, which means that the expression will have
What would be the value of the expression a value of either 1 or 0. Then, the rest of the expression will

be evaluated, which will be either 1 < 5 or 0 < 5. Both of these

expressions are true. So, the value of x does not matter: the
if the value of x is 4? What if the value of xis 7? expression 3 < x < 5 would be true regardless of the value
of the variable x. This is a logical error; it would not enforce
the desired range. If we wanted an expression that
was logical true only if x was in the range from 3 to 5,
we could write 3 < x && x < 5 (note that parentheses
are not necessary).

3 <x<5b

Answer

The value of this expression will always be logical true, or 1,
regardless of the value of the variable x. Expressions are eval-
uated from left to right. So, first the expression 3 < x will be
evaluated. There are only two possibilities: this will be either

PRACTICE 1.6

Think about what would be produced by the following expressions, and then type them in to verify
YOUI answers.
3 =054 2

bt < 'a' + 1

10 > 5 + 2

(10 > 5) + 2
'c'="'d" - 18&& 2<4
'¢''=1'd" -1]2>4
xor('c' == "'d" -1, 2> 4)
xor('c' = 'd" -1, 2 < 4)
10 >5 > 72

m Explore Other Interesting Features

This section lists some features and functions in MATLAB, related to those
explained in this chapter, that you may wish to explore on your own.

m Workspace Window: there are many other aspects of the Workspace
Window to explore. To try this, create some variables. Make the
Workspace Window the active window by clicking the mouse in it. From
there, you can choose which attributes of variables to make visible by
choosing Choose Columns from the menu. Also, if you double-click on
a variable in the Workspace Window, this brings up a Variable Editor
window that allows you to modify the variable.

m Click on the fx next to the prompt in the Command Window, and under
MATLAB choose Mathematics, then Elementary Math, then Exponents
and Logarithms to see more functions in this category.

m Use help to learn about the path function and related directory
functions.

The pow2 function.

Functions related to type casting: cast, typecast.

Find the accuracy of the floating point representation for single and
double precision using the eps function. |

Summary

Common Pitfalls

It is common when learning to program to make simple spelling mistakes
and to confuse the necessary punctuation. Examples are given here of very
common errors. Some of these include:

Putting a space in a variable name
Confusing the format of an assignment statement as

expression = variablename
rather than
variablename = expression

The variable name must always be on the left

m Using a built-in function name as a variable name, and then trying to
use the function
Confusing the two division operators / and \
Forgetting the operator precedence rules
Confusing the order of arguments passed to functions; for example, to
find the remainder of dividing 3 into 10 using rem(3,10) instead of
rem(10,3)
Not using different types of arguments when testing functions
Forgetting to use parentheses to pass an argument to a function (e.g., “fix
2.3” instead of “fix(2.3)”) — MATLAB returns the ASCII equivalent for
each character when this mistake is made (what happens is that it is
interpreted as the function of a string, “fix("2.3")")
Confusing && and ||
Confusing || and xor
Putting a space in two-character operators (e.g., typing “< =
ne=r)

m Using = instead of == for equality.

”

instead of

m CHAPTER 1: Introduction to MATLAB

Programming Style Guidelines
Following these guidelines will make your code much easier to read and
understand, and therefore easier to work with and modify.

m Use mnemonic variable names (names that make sense; for example,
radius instead of xyz).

m Although variables named result and RESULT are different, avoid this as
it would be confusing.
Do not use names of built-in functions as variable names.
Store results in named variables (rather than using ans) if they are to be
used later.
Make sure variable names have fewer characters than namelengthmax.
If different sets of random numbers are desired, set the seed for the
random functions using rng. |

MATLAB Functions and Commands

demo int64 fix asinh
help uint8 floor sind
lookfor uint16 ceil asind
doc uint32 round pi
quit uint64 mod i

exit intmin rem j
namelengthmax intmax sign inf
who char sgrt NaN
whos logical nthroot rand
clear true log mg
single false log2 clock
double class log10 randn
int8 format exp randi
int16 sin asin xor
int32 abs sinh

MATLAB Operators

assignment = multiplication * greater than > inequality ~=
ellipsis, or continuation ... divided by / less than < or for scalars ||
addition + divided into \ greater than or equals >= and for scalars &&
negation - exponentiation /A less than or equals <= not ~

subtraction — parentheses () equality ==

Create a variable to store the atomic weight of copper (63.55).

Create a variable myage and store your age in it. Subtract two from the value of the
variable. Add one to the value of the variable. Observe the Workspace Window and
Command History Window as you do this.

. Use the built-in function namelengthmax to find out the maximum number of
characters that you can have in an identifier name under your version of
MATLAB.

Create two variables to store a weight in pounds and ounces. Use who and whos
to see the variables. Clear one of them and then use who and whos again.

Use intmin and intmax to determine the range of values that can be stored in the
types uint32 and uint64.

Store a number with a decimal place in a double variable (the default). Convert the
variable to the type int32 and store the result in a new variable.

Create a table (in a word processor or spreadsheet, not in MATLAB) showing
the range for all of the integer types. Calculate the minimum and maximum
values yourself, and then use the intmin and intmax functions to verify your
results.

Explore the format command in more detail. Use help format to find options.
Experiment with format bank to display dollar values.

. Find a format option that would result in the following output format:

>> 5/16 + 2/7
ans =
67/112

Think about what the results would be for the following expressions, and then type
them in to verify your answers.

25/ 5 *5
4 +3 2
(4 4+ 3) ~2
3\V12 +5
4 —2 *3

As the world becomes more “flat”, it is increasingly important for engineers and
scientists to be able to work with colleagues in other parts of the world. Correct
conversion of data from one system of units to another (e.g,, from the metric system
to the US system or vice versa) is critically important.

Create a variable pounds to store a weight in pounds. Convert this to kilograms and
assign the result to a variable kilos. The conversion factor is 1 kilogram = 2.2
pounds.

Create a variable ftemp to store a temperature in degrees Fahrenheit (F). Convert
this to degrees Celsius (C) and store the result in a variable ctemp. The conversion
factor is C = (F — 32) * 5/9.

dairo
Highlight

dairo
Highlight

dairo
Highlight

m CHAPTER 1: Introduction to MATLAB

15.

16.

22.

23.

Find another quantity to convert from one system of units to another.

The function sin calculates and returns the sine of an angle in radians, and the
function sind retums the sine of an angle in degrees. Verify that calling the sind
function and passing 90 degrees to it results in 1. What argument would you pass
to sin to obtain the result of 1?

The combined resistance Ry of three resistors Ry, Ry, and Rg in parallel is given by

1
T 1
R Ry Rj

Rr =

Create variables for the three resistors and store values in each, and then calculate
the combined resistance.
Use help elfun or experiment to answer the following questions.

Is fix(3.5) the same as floor(3.5)?

Is fix(3.4) the same as fix(-3.4)?

Is fix(3.2) the same as floor(3.2)?

Is fix(-3.2) the same as floor(-3.2)?

Is fix(-3.2) the same as ceil(-3.2)?
For what range of values is the function round equivalent to the function
floor?
For what range of values is the function round equivalent to the function
ceil?
Use help to determine the difference between the rem and mod functions.
Find MATLAB expressions for the following

V19

312
tan(m)

Generate a random

real number in the range (0, 20)

real number in the range (20, 50)

integer in the inclusive range from 1 to 10

integer in the inclusive range from 0 to 10

integer in the inclusive range from 50 to 100.
Get into a new Command Window and type rand to get a random real number.
Make a note of the number. Then exit MATLAB and repeat this, again making
a note of the random number; it should be the same as before. Finally, exit MAT-
LAB and again get into a new Command Window. This time, change the seed
before generating a random number; it should be different.
In the ASCII character encoding, the letters of the alphabet are, in order: ‘a’ comes
before ‘b’ and also ‘A’ comes before ‘B’. However, which comes first — lower or
uppercase letters?
Shift the string ‘xyz’ up in the character encoding by two characters.

dairo
Highlight

dairo
Highlight

dairo
Highlight

dairo
Highlight

28.

29.

30.

What would be the result of the following expressions?

bt >='c' — 1
3=2+1
(3==2) +1
xor(5 < 6, 8 > 4)

Create two variables x and y and store numbers in them. Write an expression that
would be true if the value of xis greater than 5 or if the value of yis less than 10,
but not if both of those are true.

Use the equality operator to verify that 3*1075 is equal to 3eb.

Use the equality operator to verify the value of 1og10(10000).

Are there equivalents to intmin and intmax for real number types? Use help to
find out.

A vector can be represented by its rectangular coordinates x and y or by its polar
coordinates 1 and 6. The relationship between them is given by the equations:

X =1r * cos(0)
y =r * sin(0)

Assign values for the polar coordinates to variables r and theta. Then, using these
values, assign the corresponding rectangular coordinates to variables x and y.

In special relativity, the Lorentz factor is a number that describes the effect of
speed on various physical properties when the speed is significant relative to the
speed of light. Mathematically, the Lorentz factor is given as:

1

2
Use 3 x 10°® m/s for the speed of light, ¢ Create variables for ¢ and the speed vand
from them a variable lorentz for the Lorentz factor.

A company manufactures a part for which there is a desired weight. There is

a tolerance of N percent, meaning that the range between minus and plus N% of
the desired weight is acceptable. Create a variable that stores a weight, and
another variable for N (e.g.,, set it to two). Create variables that store the minimum
and maximum values in the acceptable range of weights for this part.

An environmental engineer has determined that the cost C of a containment tank
will be based on the radius r of the tank:

32430

C = ——+428ar
I

Create a variable for the radius, and then for the cost.

A chemical plant releases an amount A of pollutant into a stream. The maximum
concentration C of the pollutant at a point which is a distance x from the plant is:

dairo
Highlight

dairo
Highlight

dairo
Highlight

m CHAPTER 1: Introduction to MATLAB

Create variables for the values of A and x, and then for C. Assume that the distance
X is in meters. Experiment with different values for x.
The geometric mean g of n numbers x; is defined as the n'® root of the product of x;:

g = VX1XX3...Xp

(This is useful, e.g,, in finding the average rate of return for an investment, which is
something you'd do in engineering economics.) If an investment returns 15% the
first year, 50% the second, and 30% the third year, the average rate of return would
be (1.15*1.50*%1.30)%%). Compute this.

Vectors and Matrices

vectors
matrices

T0W vector
column vector
scalar

elements

array

array operations
colon operator
iterate

transpose
subscripted indexing
unwinding a matrix
linear indexing
column major order
columnwise

vector of variables
empty vector
deleting elements

three-dimensional matrices

CHAPTER 2

array operations
array multiplication
array division

matrix multiplication
inner dimensions
outer dimensions

dot product or inner
product

cross product or outer
product

CONTENTS

2.1 Vectors and
Matrices....... 33

2.2 Vectors and
Matrices as
Function
Arguments..50

2.3 Scalar and
Array
Operations
on Vectors and
Matrices....... 54

2.4 Matrix

step value cumulative sum logical vector o
. . . . Multiplication
concatenating cumulative product logical indexing 57
index running sum Zero crossings)
) . 2.5 Logical
subscript nesting calls

Vectors......... 59

2.6 Applications:
The diff and
meshgrid
Functions.....64

index vector scalar multiplication

MATLAB® is short for matrix laboratory. Everything in MATLAB is written to
work with vectors and matrices. This chapter will introduce vectors and
matrices. Operations on vectors and matrices, and built-in functions that can
be used to simplify code will also be explained. The matrix operations and
functions described in this chapter will form the basis for vectorized coding,
which will be explained in Chapter 5.

2.1 VECTORS AND MATRICES

Vectors and matrices are used to store sets of values, all of which are the same
type. A matrix can be visualized as a table of values. The dimensions of
a matrix are r x ¢, where r is the number of rows and c is the number of 33

MATLAB®. http://dx.doi.org/10.1016/B978-0-12-405876-7.00002-X
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-405876-7.00002-X

m CHAPTER 2: Vectors and Matrices

columns. This is pronounced “r by ¢”. A vector can be either a row vector or
a column vector. If a vector has n elements, a row vector would have the
dimensions 1 x n and a column vector would have the dimensions n x 1. A
scalar (one value) has the dimensions 1 x 1. Therefore, vectors and scalars are
actually just special cases of matrices.

Here are some diagrams showing, from left to right, a scalar, a column vector,
a row vector, and a matrix:

3 | 5 | 88 | 3 [11 | 9 6 3
[5 | 7 5 | 7 | 2
4

The scalar is 1 x 1, the column vector is 3 x 1 (three rows by one column), the
row vector is 1 x 4 (one row by four columns), and the matrix is 2 x 3 (two
rows by three columns). All of the values stored in these matrices are stored in
what are called elements.

MATLAB is written to work with matrices; the name MATLAB is short for
matrix laboratory. As MATLAB is written to work with matrices, it is very easy
to create vector and matrix variables, and there are many operations and
functions that can be used on vectors and matrices.

A vector in MATLAB is equivalent to what is called a one-dimensional array in
other languages. A matrix is equivalent to a two-dimensional array. Usually,
even in MATLAB, some operations that can be performed on either vectors or
matrices are referred to as array operations. The term array is also frequently
used to mean generically either a vector or a matrix.

In mathematics, the general form of an m x n matrix A is written as:

a1 di2 t Ain
dz1 dp2 v A4 . .

A= : :) : =a; i=1,...m; j=1,...,n
dm1 AAm2 " Amn

2.1.1 Creating Row Vectors

There are several ways to create row vector variables. The most direct way is to
put the values that you want in the vector in square brackets, separated by
either spaces or commas. For example, both of these assignment statements
create the same vector v:

> v=1[1 2 3 4]
v =
1 2 3 4

>> v =1[1,2,3,4]
v =
1 2 3 4

2.1 Vectors and Matrices ﬂ

Both of these create a row vector variable that has four elements; each value is
stored in a separate element in the vector.

2.1.1.1 The Colon Operator and Linspace Function

If, as in the preceding examples, the values in the vector are regularly spaced,
the colon operator can be used to iterate through these values. For example, 1:5
results in all of the integers from 1 to 5 inclusive:

>> vec = 1:5
vec =
1 2 3 4 5

Note that, in this case, the brackets [| are not necessary to define the
vector.

With the colon operator, a step value can also be specified by using another
colon, in the form (first:step:last). For example, to create a vector with all
integers from 1 to 9 in steps of 2:

>> nv=1:2:9
nv =
1 3 5 7 9

QUICK QUESTION!

What happens if adding the step value would go beyond the Answer

range specified by the last, for example This would create a vector containing 1, 3, and 5. Adding 2 to
1:2:6 the 5 would go beyond 6, so the vector stops at 5; the result
o would be

1 3 5
QUICK QUESTION!

How can you use the colon operator to generate the vector Answer
shown below? 9g=251

9 7 3 3 1 The step value can be a negative number, so the resulting
sequence is in descending order (from highest to lowest).

The linspace function creates a linearly spaced vector; linspace(x,y,n)
creates a vector with n values in the inclusive range from x to y. If n is
omitted, the default is 100 points. For example, the following creates

m CHAPTER 2: Vectors and Matrices

a vector with five values linearly spaced between 3 and 15, including the 3
and 15:

>> 1s = linspace(3,15,5)
1s =
3 6 9 12 15

Similarly, the logspace function creates a logarithmically spaced vector; log-
space(x,y,n) creates a vector with n values in the inclusive range from 10/x to
107y. If n is omitted, the default is 50 points. For example:

>> logspace(1,5,5)
ans =
10 100 1000 10000 100000

Vector variables can also be created using existing variables. For example,
a new vector is created here consisting, first of all, of the values from nv fol-
lowed by all values from Is:

>> newvec = [nv Is]
newvec =
1 3 5 7 9 3 6 9 12 15

Putting two vectors together like this to create a new one is called concate-
nating the vectors.

2.1.1.2 Referring to and Modifying Elements

The elements in a vector are numbered sequentially; each element number is
called the index, or subscript. In MATLAB, the indices start at 1. Normally,
diagrams of vectors and matrices show the indices. For example, for the
variable newvec created earlier the indices 1—10 of the elements are shown
above the vector:

newvec
1 23456789 10
[1]3]5]7[9]3]6]9]12]15]

A particular element in a vector is accessed using the name of the vector
variable and the index or subscript in parentheses. For example, the fifth
element in the vector newvec is a 9.

>> newvec(5)
ans =
9

The expression newvec(5) would be pronounced “newvec sub 5”, where sub is
short for subscript. A subset of a vector, which would be a vector itself, can also

2.1 Vectors and Matrices

be obtained using the colon operator. For example, the following statement
would get the fourth through sixth elements of the vector newvec, and store the
result in a vector variable b:

>> b = newvec(4:6)
b =
7 9 3

Any vector can be used for the indices into another vector, not just one created
using the colon operator. The indices do not need to be sequential. For
example, the following would get the first, tenth, and fifth elements of the
vector newvec:

>> newvec([1 10 5])
ans =
1 15 9

The vector [1 10 5] is called an index vector; it specifies the indices in the
original vector that are being referenced.

The value stored in a vector element can be changed by specifying the index or
subscript. For example, to change the second element from the preceding
vector b to now store the value 11 instead of 9:

>> b(2) =11
b =
7 11 3

By referring to an index that does not yet exist, a vector can also be extended.
For example, the following creates a vector that has three elements. By then
assigning a value to the fourth element, the vector is extended to have four
elements.

>> rv = [35511]
rv =

3 55 11
>> rv(4) =2
rv =
3 55 11 2

If there is a gap between the end of the vector and the specified element, Os are
filled in. For example, the following extends the variable rv again:

>> rv(6) = 13
rv =
3 55 11 2 0 13

As we will see later, this is actually not very efficient because it can take
extra time.

CHAPTER 2: Vectors and Matrices

PRACTICE 2.1

Think about what would be produced by the following sequence of statements and expressions,
and then type them in to verify your answers:

pvec = 3:2:10
pvec(2) = 15
pvec(7) = 33

pvec([2:4 71)
linspace(5,11,3)
logspace(2,4,3)

2.1.2 Creating Column Vectors
One way to create a column vector is to explicitly put the values in square
brackets, separated by semicolons (rather than commas or spaces):

>> ¢ =[1;2; 3; 4]
c =

W N =

There is no direct way to use the colon operator to get a column vector.
However, any row vector created using any method can be transposed to result
in a column vector. In general, the transpose of a matrix is a new matrix in
which the rows and columns are interchanged. For vectors, transposing a row
vector results in a column vector, and transposing a column vector results in
a row vector. In MATLAB, the apostrophe is built in as the transpose operator.

>> r=1:3;

> c=r'

c =

2.1.3 Creating Matrix Variables

Creating a matrix variable is simply a generalization of creating row and
column vector variables. That is, the values within a row are separated by
either spaces or commas, and the different rows are separated by semi-
colons. For example, the matrix variable mat is created by explicitly entering
values:

2.1 Vectors and Matrices a

>> mat = 1[4 3 1; 2 5 6]
mat =

4 3 1

2 5

There must always be the same number of values in each row. If you attempt to
create a matrix in which there are different numbers of values in the rows, the
result will be an error message, such as in the following:

>> mat = [3 5 7; 1 2]
Error using vertcat
Dimensions of matrices being concatenated are not consistent.

Iterators can be used for the values in the rows using the colon operator. For
example:

>> mat = [2:4; 3:5]
mat =

2 3

3 4 5

The separate rows in a matrix can also be specified by hitting the Enter key
after each row instead of typing a semicolon when entering the matrix values,
as in:

>> newmat = [2 6 88

33 5 2]

newmat =
2 6 88
33 5 2

Matrices of random numbers can be created using the rand function. If a single
value n is passed to rand, an n x n matrix will be created, or passing two
arguments will specify the number of rows and columns:

>> rand(2)

ans =
0.2311 0.4860
0.6068 0.8913

>> rand(1,3)
ans =
0.7621 0.4565 0.0185

Matrices of random integers can be generated using randi; after the range is
passed, the dimensions of the matrix are passed (again, using one value n for
an n x n matrix, or two values for the dimensions):

m CHAPTER 2: Vectors and Matrices

>> randi([5, 101, 2)
ans =

8 10

9 5

>> randi([10, 301, 2, 3)
ans =

21 10 13

19 17 26

Note that the range can be specified for randi, but not for rand (the format for
calling these functions is different).

MATLAB also has several functions that create special matrices. For example,
the zeros function creates a matrix of all zeros and the ones function creates
a matrix of all ones. Like rand, either one argument can be passed (which will
be both the number of rows and columns) or two arguments (first the number
of rows and then the number of columns).

>> zeros(3)

ans =
0 0 0
0 0 0
0 0 0

>> ones(2,4)

ans =
1 1 1 1
1 1 1 1

Note that there is no twos function, or tens, or fifty-threes — just zeros and
ones!

2.1.3.1 Referring to and Modifying Matrix Elements

To refer to matrix elements, the row and then the column subscripts are given
in parentheses (always the row first and then the column). For example, this
creates a matrix variable mat and then refers to the value in the second row,
third column of mat:

>> mat
mat =
2 3
3 4 5

[2:4; 3:5]

>> mat(2,3)
ans =
5

2.1 Vectors and Matrices

This is called subscripted indexing; it uses the row and column subscripts. It is
also possible to refer to a subset of a matrix. For example, this refers to the first
and second rows, second and third columns:
>> mat(1:2,2:3)
ans =
3
4 5

Using just one colon by itself for the row subscript means all rows, regardless
of how many, and using a colon for the column subscript means all columns.
For example, this refers to all columns within the first row or, in other words,
the entire first row:

>> mat(l,:)
ans =
2 3 4

This refers to the entire second column:

>> mat(:, 2)
ans =

3

4

If a single index is used with a matrix, MATLAB unwinds the matrix column by
column. For example, for the matrix intmat created here, the first two elements
are from the first column and the last two are from the second column:

>> intmat = [100 77; 28 14]

intmat =

100 77

28 14
>> intmat(1)
ans =

100
>> intmat(2)
ans =

28
>> intmat(3)
ans =

77
>> intmat(4)
ans =

14

This is called linear indexing. It is usually much better style when working with
matrices to use subscripted indexing.

MATLAB stores matrices in memory in column major order, or columnwise,
which is why linear indexing refers to the elements in order by columns.

m CHAPTER 2: Vectors and Matrices

An individual element in a matrix can be modified by assigning a new value
to it.

>> mat = [2:4; 3:5];
>> mat(1,2) = 11
mat =

2 11

3 4 5

An entire row or column could also be changed. For example, the following
replaces the entire second row with values from a vector obtained using the
colon operator.

>> mat(2,:) = 5:7
mat =
2 11 4
5 6 7

Notice that as the entire row is being modified, a row vector with the correct
length must be assigned. Any subset of a matrix can be modified as long as
what is being assigned has the same number of rows and columns as the
subset being modified.

To extend a matrix an individual element could not be added as that would
mean there would no longer be the same number of values in every row.
However, an entire row or column could be added. For example, the following
would add a fourth column to the matrix:

>> mat(:,4) = [9 2]’

mat =
2 11 4 9
5 6 7 2

Just as we saw with vectors, if there is a gap between the current matrix and the
row or column being added, MATLAB will fill in with zeros.

>> mat(4,:) = 2:2:8
mat =

DO o N
N O O
o O~
0 o Mo

2.1.4 Dimensions

The length and size functions in MATLAB are used to find dimensions of
vectors and matrices. The length function returns the number of elements in
a vector. The size function returns the number of rows and columns in a vector
or matrix. For example, the following vector vec has four elements so its length
is 4. It is a row vector, so the size is 1 x 4.

2.1 Vectors and Matrices a

>> vec = -2:1
vec =

-2 -1 0 1
>> length(vec)
ans =

4
>> size(vec)
ans =

1 4

To create the following matrix variable mat, iterators are used on the two rows
and then the matrix is transposed so that it has three rows and two columns
or, in other words, the size is 3 x 2.

>> mat = [1:3; 5:7]"'
mat =
1 5

3 7

The size function returns the number of rows and then the number of
columns, so to capture these values in separate variables we put a vector of
two variables on the left of the assignment. The variable r stores the first
value returned, which is the number of rows, and ¢ stores the number of
columns.

>> [r, c¢] = size(mat)
r o=

(@]
Nl w

Note that this example demonstrates very important and unique concepts in
MATLAB: the ability to have a function return multiple values and the ability
to have a vector of variables on the left side of an assignment in which to store
the values.

If called as just an expression, the size function will return both values in
a vector:

>> size(mat)
ans =
3 2

For a matrix, the length function will return either the number of rows or the
number of columns, whichever is largest (in this case the number of rows, 3).

>> length(mat)
ans =
3

dairo
Highlight

m CHAPTER 2: Vectors and Matrices

QUICK QUESTION!

How could you create a matrix of zeros with the same size as
another matrix?

Answer
For a matrix variable mat, the following expression would
accomplish this:

zeros(size(mat))

The size function returns the size of the matrix, which is then
passed to the zeros function, which then returns a matrix of
zeros with the same size as mat. It is not necessary in this
case to store the values retumed from the size function in
variables.

MATLAB also has a function numel, which returns the total number of
elements in any array (vector or matrix):

>> vec = 9:-2:1
vec =
9 7 5
>> numel (vec)
ans =
5
>> mat = [3:2:7; 9 33 11]
mat =
3 5 7
9 33 11
>> numel(mat)
ans =
6

For vectors, this is equivalent to the length of the vector. For matrices, it is the
product of the number of rows and columns.

Itis important to note that in programming applications, it is better to not assume
that the dimensions of a vector or matrix are known. Instead, to be general,
use either the length or numel function to determine the number of elements in a
vector, and use size (and store the result in two variables) for a matrix.

MATLAB also has a built-in expression, end, that can be used to refer to the last
element in a vector; for example, v(end) is equivalent to v(length(v)). For
matrices, it can refer to the last row or column. So, for example, using end for
the row index would refer to the last row.

In this case, the element referred to is in the first column of the last row:

>> mat = [1:3; 4:6]'

mat =
1 4
2 5
3 6
>> mat(end, 1)
ans =

3

2.1 Vectors and Matrices ﬂ

Using end for the column index would refer to a value in the last column (e.g.,
the last column of the second row):

>> mat(2,end)
ans =
5

This can only be used as an index.

2.1.4.1 Changing Dimensions

In addition to the transpose operator, MATLAB has several built-in functions
that change the dimensions or configuration of matrices, including reshape,
fliplr, flipud, and rot90.

The reshape function changes the dimensions of a matrix. The following
matrix variable mat is 3 x 4 or, in other words, it has 12 elements (each in the
range from 1 to 100).

>> mat = randi(100, 3, 4)
14 61 2 94
21 28 75 47
20 20 45 42

These 12 values could instead be arranged as a 2 x 6 matrix, 6x2,4x3, 1 x 12,
or 12 x 1. The reshape function iterates through the matrix columnwise. For
example, when reshaping mat into a 2 x 6 matrix, the values from the first
column in the original matrix (14, 21, and 20) are used first, then the values
from the second column (61, 28, 20), and so forth.

>> reshape(mat,2,6)

ans =
14 20 28 2 45 47
21 61 20 75 94 42

Note that in these examples mat is unchanged; instead, the results are stored in
the default variable ans each time.

The fliplr function “flips” the matrix from left to right (in other words, the left-
most column, the first column, becomes the last column and so forth), and
the flipud function flips up to down.

>> mat

mat =
14 61 2 94
21 28 75 47
20 20 45 42

>> fliplr(mat)

ans =
94 2 61 14
47 75 28 21
42 45 20 20

n CHAPTER 2: Vectors and Matrices

>> mat

mat =
14 61 2 94
21 28 75 47
20 20 45 42

>> flipud(mat)

ans =
20 20 45 42
21 28 75 47
14 61 2 94

The rot90 function rotates the matrix counterclockwise 90 degrees, so, for
example, the value in the top right corner becomes instead the top left corner
and the last column becomes the first row.

>> mat
mat =
14 61 2 94
21 28 75 47
20 20 45 42
>> rot90(mat)
ans =
94 47 42
2 75 45
61 28 20
14 21 20

QUICK QUESTION!

Is there a rot180 function? Is there a rot90 function (to rotate If a negative number is passed for n, the rotation would be in

clockwise)? the opposite direction, that is, clockwise.
Answer >> mat
Not exactly, but a second argument can be passed to the mat =
rot90 function which is an integer n; the function will rotate 14 61 2 94
90*n degrees. The integer can be positive or negative. For 21 28 75 47
example, if 2 is passed, the function will rotate the matrix 20 20 45 42
180 degrees (so, it would be the same as rotating the result >> rot90(mat, -1)
of rot90 another 90 degrees). ans =
20 21 14
i 20 28 61
14 61 2 94 45 s 2

21 28 75 47 42 4 o

20 20 45 42
>> rot90(mat,2)
ans =
42 45 20 20
47 75 28 21
94 2 61 14

2.1 Vectors and Matrices

The function repmat can be used to create a matrix; repmat(mat,m,n) creates
a larger matrix that consists of an m x n matrix of copies of mat. For example,
here is a 2 x 2 random matrix:

>> intmat = randi(100,2)

intmat =
50 34
96 59

Replicating this matrix six times as a 3 x 2 matrix would produce copies of
intmat in this form:

intmat | intmat

intmat | intmat

intmat | intmat

>> repmat(intmat,3,2)

ans =
50 34 50 34
96 59 96 59
50 34 50 34
96 59 96 59
50 34 50 34
96 59 96 59

2.1.5 Empty Vectors
An empty vector (a vector that stores no values) can be created using empty
square brackets:

>> evec =[]
evec =
[]
>> length(evec)
ans =
0 Note

. . There is a difference
Values can then be added to an empty vector by concatenating, or adding, petween having an

values to the existing vector. The following statement takes what is currently in gmpty vector variable
evec, which is nothing, and adds a 4 to it. and not having the

>> evec = [evec 4] variable at all.

evec =
4

m CHAPTER 2:

Vectors and Matrices

The following statement takes what is currently in evec, which is 4, and adds an
11 to it.

>> evec = [evec 11]
evec =
4 11

This can be continued as many times as desired to build a vector up from
nothing. Sometimes this is necessary, although, generally, it is not a good idea
if it can be avoided because it can be quite time consuming,

Empty vectors can also be used to delete elements from vectors. For
example, to remove the third element from a vector, the empty vector is
assigned to it:

>> vec = 4:8
vec =
4 5 6 7 8
>> vec(3) =[]
vec =
4 5 7 8

The elements in this vector are now numbered 1 through 4.

Subsets of a vector could also be removed. For example:
>> vec = 3:10

vec =

3 4 5 6 7 8 9 10
>> vec(2:4) = []
vec =

3 7 8 9 10

Individual elements cannot be removed from matrices, as matrices always
have to have the same number of elements in every row.
>> mat = [7 9 8; 4 6 5]
mat =
7 9
4 6 5
>> mat(1,2) = [];
Subscripted assignment dimension mismatch.

However, entire rows or columns could be removed from a matrix. For
example, to remove the second column:

>> mat(:,2) =[]
mat =
7

2.1 Vectors and Matrices a

Also, if linear indexing is used with a matrix to delete an element, the matrix
will be reshaped into a row vector.

>> mat = [7 9 8; 46 5]

mat =
7 9
4 6 5
>> mat(3) =[]
mat =
7 4 6 8 5

PRACTICE 2.2

Think about what would be produced by the following sequence of statements and expressions,
and then type them in to verify your answers.

mat = [1:3; 44 9 2; 5:-1:3]
mat(3,2)

mat(2,:)

size(mat)

mat(:,4) = [8;11;33]

numel (mat)

v =mat(3,:)

v(v(2))

v(l) =[]

reshape(mat,2,6)

2.1.6 Three-Dimensional Matrices

The matrices that have been shown so far have been two-dimensional; these
matrices have rows and columns. Matrices in MATLAB are not limited to two
dimensions, however. In fact, in Chapter 13 we will see image applications in
which three-dimensional matrices are used. For a three-dimensional matrix,
imagine a two-dimensional matrix as being flat on a page, and then the third
dimension consists of more pages on top of that one (so they are stacked on
top of each other).

Here is an example of creating a three-dimensional matrix. First, two two-
dimensional matrices layerone and layertwo are created; it is important that
they have the same dimensions (in this case, 3 x 5). Then, these are made into
“layers” in a three-dimensional matrix mat. Note that we end up with a matrix
that has two layers, each of which is 3 x 5. The resulting three-dimensional
matrix has dimensions 3 x 5 x 2.

m CHAPTER 2: Vectors and Matrices

>> layerone = reshape(1:15,3,5)

layerone =
1 4 7 10 13
2 5 8 11 14
3 6 9 12 15
>> layertwo = fliplr(flipud(layerone))
lTayertwo =
15 12 9 6 3
14 11 8 5
13 10 7 4 1
>> mat(:,:,1) = layerone
mat =
1 4 7 10 13
2 5 8 11 14
3 6 9 12 15
>> mat(:,:,2) = layertwo
mat(:,:,1) =
1 4 7 10 13
2 5 11 14
3 6 9 12 15
mat(:,:,2) =
15 12 9 6 3
14 11 5
13 10 7 4 1
>> size(mat)
ans =
3 5 2

Three-dimensional matrices can also be created using the zeros, ones, and
rand functions by specifying three dimensions to begin with. For example,
zeros(2,4,3) will create a 2 x 4 x 3 matrix of all Os.

Unless specified otherwise, in the remainder of this book “matrices” will be
assumed to be two-dimensional.

2.2 VECTORS AND MATRICES AS FUNCTION
ARGUMENTS

In MATLAB an entire vector or matrix can be passed as an argument to
a function; the function will be evaluated on every element. This means that
the result will be the same size as the input argument.

For example, let us find the sine in radians of every element of a vector vec.
The sin function will automatically return the sine of each individual
element and the result will be a vector with the same length as the input
vector.

2.2 Vectors and Matrices as Function Arguments a

>> vec = -2:1

vec =
-2 -1 0 1

>> sinvec = sin(vec)

sinvec =
-0.9093 -0.8415 0 0.8415

For a matrix, the resulting matrix will have the same size as the input argument
matrix. For example, the sign function will find the sign of each element in
a matrix:

>> mat = [0 4 -3; -1 0 2]

mat =
0 4 -3
-1 0 2
>> sign(mat)
ans =
1 -
-1 0

Functions such as sin and sign can have either scalars or arrays (vectors
or matrices) passed to them. There are a number of functions that are
written specifically to operate on vectors or on columns of matrices;
these include the functions min, max, sum, prod, cumsum, and cumprod.
These functions will be demonstrated first with vectors and then with
matrices.

For example, assume that we have the following vector variables:

>> vecl = 1:5;
>> vec2 = [3 58 2];

The function min will return the minimum value from a vector, and the
function max will return the maximum value.

>> min(vecl)
ans =

1
>> max(vec?2)
ans =

8

The function sum will sum all of the elements in a vector. For example, for
vecl it will return 14-2+3+44+5 or 15:

>> sum(vecl)
ans =
15

m CHAPTER 2: Vectors and Matrices

The function prod will return the product of all of the elements in a vector; for
example, for vec2 it will return 3*5*8*2 or 240:

>> prod(vec?)
ans =
240

The functions cumsum and cumprod return the cumulative sum or
cumulative product, respectively. A cumulative, or running sum, stores the sum
so far at each step as it adds the elements from the vector. For example,
for vecl, it would store the first element, 1, then 3 (1+42), then 6 (1+2+3),
then 10 (14+243+4), then, finally, 15 (1+2+344+5). The result is a vector-
that has as many elements as the input argument vector that is passed to it:

>> cumsum(vecl)

ans =
1 3 6 10 15
>> cumsum(vec?Z)
ans =
3 8 16 18

The cumprod function stores the cumulative products as it multiplies the
elements in the vector together; again, the resulting vector will have the same
length as the input vector:

>> cumprod(vecl)
ans =
1 2 6 24 120

For matrices, all of these functions operate on every individual column. If a matrix
has dimensions r x ¢, the result for the min, max, sum, and prod functions will be
a 1 x ¢ row vector, as they return the minimum, maximum, sum, or product,
respectively, for every column. For example, assume the following matrix:

>> mat = randi([1 20], 3, 5)

mat =
3 16 1 14 8
9 20 17 16 14
19 14 19 15 4

The following are the results for the max and sum functions:

>> max(mat)

ans =

19 20 19 16 14
>> sum(mat)
ans =

31 50 37 45 26

2.2 Vectors and Matrices as Function Arguments ﬂ

To find a function for every row, instead of every column, one method would

be to transpose the matrix.

>> max(mat')
ans =
16 20 19
>> sum(mat")
ans =
42 76 71

As columns are the default, they are considered to be the first dimension.
Specifying the second dimension as an argument to one of these functions will
result in the function operating rowwise. The syntax is slightly different; for the
sum and prod functions, this is the second argument, whereas for the min and
max functions it must be the third argument and the second argument must

be an empty vector:

>> max(mat,[]1,2)
ans =

16

20

19
>> sum(mat,?2)
ans =

42

76

71

Note the difference in the format of the output with these two methods
(transposing results in row vectors whereas specifying the second dimension

results in column vectors).

QUICK QUESTION!

As these functions operate columnwise, how can we get an

>> max(max(mat))

overall result for the matrix? For example, how would we ans =

determine the overall maximum in the matrix?

Answer

20

We would have to get the maximum from the row vector of
column maxima, in other words nest the calls to the max
function:

m CHAPTER 2: Vectors and Matrices

For the cumsum and cumprod functions, again they return the cumulative
sum or product of every column. The resulting matrix will have the same
dimensions as the input matrix:

>> mat
mat =
3 16 1 14 8
9 20 17 16 14
19 14 19 15 4
>> cumsum(mat)
ans =
3 16 1 14 8

12 36 18 30 22
31 50 37 45 26

2.3 SCALAR AND ARRAY OPERATIONS
ON VECTORS AND MATRICES

Numerical operations can be done on entire vectors or matrices. For example,
let's say that we want to multiply every element of a vector v by 3.

In MATLAB, we can simply multiply v by 3 and store the result back in v in an
assignment statement:

>> v [37 2 1];
>> v = v*3
v =
9 21 6 3

As another example, we can divide every element by 2:

> v=1[3721];
>> v/2
ans =
1.5000 3.5000 1.0000 0.5000

To multiply every element in a matrix by 2:

>> mat = [4:6; 3:-1:1]

mat =
4 5 6
3 2 1
>> mat * 2
ans =
10 12
6 4 2

This operation is referred to as scalar multiplication. We are multiplying every
element in a vector or matrix by a scalar (or dividing every element in a vector
or a matrix by a scalar).

2.3 Scalar and Array Operations on Vectors and Matrices ﬂ

QUICK QUESTION!

There is no tens function to create a matrix of all tens, so how >> ones(1,5) * 10
could we accomplish that? ans =
10 10 10 10 10
>> zeros(2) + 10
ans =
10 10
10 10

Answer
We can either use the ones function and multiply by ten, or
the zeros function and add ten:

Array operations are operations that are performed on vectors or matrices term
by term or element by element. This means that the two arrays (vectors or
matrices) must be the same size to begin with. The following examples
demonstrate the array addition and subtraction operators.

>> vl = 2:5
vl =
2 3 4 5
>> vZ2=1[3311 5 1]
v2 =
33 11 5 1
>> vl + v2
ans =
35 14 9 6
>> mata = [5:8; 9:-2:3]
mata =
5 6 7 8
9 7 5 3
>> matb = reshape(1:8,2,4)
matb =
1 3 5 7
2 4 6
>> mata - math
ans =
3
7 3 -1 -5

However, for any operation that is based on multiplication (which means
multiplication, division, and exponentiation), a dot must be placed in front of
the operator for array operations. For example, for the exponentiation oper-
ator .~ must be used when working with vectors and matrices, rather than just
the ~ operator. Squaring a vector, for example, means multiplying each
element by itself so the .~ operator must be used.

m CHAPTER 2: Vectors and Matrices

>ov=1[3721];

> v N2

Error using *

Inputs must be a scalar and a square matrix.

To compute elementwise POWER, use POWER (.”) instead.

> v o.h 2
ans =
9 49 4 1
Similarly, the operator .* must be used for array multiplication and ./ or .\ for
array division. The following examples demonstrate array multiplication and
array division.

>> vl = 2:5
vl =
2 3 4 5
>> v2 = [3311 5 1]
v2 =
33 11 5 1
>> vl . *v2
ans =
66 33 20 5
>> mata = [5:8; 9:-2:3]
mata =
5 6 7 8
9 7 5 3
>> matb = reshape(1:8, 2,4)
math =
1 3 5 7
2 4 6

>> mata ./ matb

ans =
5.0000 2.0000 1.4000 1.1429
4.5000 1.7500 0.8333 0.3750

The operators .A, .*, ./, and .\ are called array operators and are used when
multiplying or dividing vectors or matrices of the same size term by term. Note
that matrix multiplication is a very different operation, and will be covered in
the next section.

PRACTICE 2.3
Create a vector variable and subtract 3 from every element in it.
Create a matrix variable and divide every element by 3.
Create a matrix variable and square every element.

2.4 Matrix Multiplication

2.4 MATRIX MULTIPLICATION

Matrix multiplication does not mean multiplying term by term; it is not an
array operation. Matrix multiplication has a very specific meaning. First of all,
to multiply a matrix A by a matrix B to result in a matrix C, the number of
columns of A must be the same as the number of rows of B. If the matrix A has
dimensions m x n, that means that matrix B must have dimensions n x
something; we'll call it p.

We say that the inner dimensions (the ns) must be the same. The resulting
matrix C has the same number of rows as A and the same number of columns
as B (i.e., the outer dimensions m x p). In mathematical notation,

[A]mxn [B]nxp = [C}mxp
This only defines the size of C, not how to find the elements of C.

The elements of the matrix C are defined as the sum of products of corre-
sponding elements in the rows of A and columns of B, or, in other words

n
G Y by,
k=1

In the following example, A is 2 x 3 and B is 3 x 4; the inner dimensions are
both 3, so performing the matrix multiplication A*B is possible (note that B*A
would not be possible). C will have as its size the outer dimensions 2 x 4. The
elements in C are obtained using the summation just described. The first row
of C is obtained using the first row of A and in succession the columns of B.
For example, C(1,1) is 3*1 +8*4+0*0 or 35. C(1,2) is 3*2+8*5-+0*2 or 46.

A B C
[380]*31??;_35461719
1 2 5 0 2 3 0 9 22 20 5
In MATLAB, the * operator will perform this matrix multiplication:

> A=1[380;125];

> B=1[1231;4512;02301];
>> C = A*B
C =

35 46 17 19
9 22 20 5

PRACTICE 2.4

When two matrices have the same dimensions and are square, both array and matrix multiplication
can be performed on them. For the following two matrices perform A.*B, A*B, and B*A by hand and
then verify the results in MATLAB.

A B

s3] [5 3]

m CHAPTER 2: Vectors and Matrices

2.4.1 Matrix Multiplication for Vectors

As vectors are just special cases of matrices, the matrix operations described
previously (addition, subtraction, scalar multiplication, multiplication, trans-
pose) also work on vectors, as long as the dimensions are correct.

For vectors, we have already seen that the transpose of a row vector is a column
vector, and the transpose of a column vector is a row vector.

To multiply vectors, they must have the same number of elements, but one
must be a row vector and the other a column vector. For example, for
a column vector ¢ and row vector r:

5
c = r=1[623 4]

W

Note thatris 1 x4, and cis 4 x 1, so

[1‘]1 x4[c]4x1 = [Sh x1

or, in other words, a scalar:
5

(623 4] = 6"542"3 437441 = 61

3
7
1
whereas [c] 4 x 1 [f] 1 x 4 = [M] 4 x 4, OF in other words a 4 x 4 matrix:

30 10 15 20
18 6 9 12
42 14 21 28
6 2 3 4

5
6234 =
1

In MATLAB, these operations are accomplished using the * operator, which is

the matrix multiplication operator. First, the column vector ¢ and row vector r
are created.

30 10 15 20
18 6 9 12
42 14 21 28

6 2 3 4

There are also operations specific to vectors: the dot product and cross product.
The dot product, or inner product, of two vectors a and b is written as a + b and
is defined as

n
a;by +a;by +asbs +... +azby, = Zaibi
i=1
where both a and b have n elements, and a; and b; represent elements in the
vectors. In other words, this is like matrix multiplication when multiplying
a row vector a by a column vector b; the result is a scalar. This can be
accomplished using the * operator and transposing the second vector, or by
using the dot function in MATLAB:

>> vecl = [4 2 5 1];
>> vec2 = [3 61 2];
>> vecl*vec?'
ans =

31
>> dot(vecl,vecZ)
ans =

31

The cross product or outer product a x b of two vectors a and b is defined only
when both a and b have three elements. It can be defined as a matrix multi-
plication of a matrix composed from the elements from a in a particular
manner shown here and the column vector b.

0 —as as bl
axb =| as 0 -a ba
—ay ap 0 b3

= [aobs —asby,a3b; —a;bs,a;by —asbq]

MATLAB has a built-in function cross to accomplish this.

>> vecl = [4 2 5];
>> vec? = [3 6 1];
>> cross(vecl,vec?)
ans =

-28 11 18

2.5 LOGICAL VECTORS

Logical vectors use relational expressions that result in true/false values.

2.5.1 Relational Expressions with Vectors and Matrices

Relational operators can be used with vectors and matrices. For example, let's
say that there is a vector vec, and we want to compare every element in the
vector to 5 to determine whether it is greater than 5 or not. The result would be
a vector (with the same length as the original) with logical true or false values.

2.5 Logical Vectors ﬂ

m CHAPTER 2: Vectors and Matrices

>> vec =[59 346 11];
>> isg = vec > 5
isg =
0 1 0 0 1 1

Note that this creates a vector consisting of all logical true or false values.
Although the result is a vector of ones and zeros, and numerical operations can
be done on the vector isg, its type is logical rather than double.

>> doubres = isg + 5

doubres =
5 6 5 5 6 6
>> whos
Name Size Bytes Class
doubres 1x6 48 double array
isg 1x6 6 logical array
vec 1x6 48 double array

To determine how many of the elements in the vector vec were greater than 5,
the sum function could be used on the resulting vector isg:

>> sum(isg)
ans =
3

What we have done is to create a logical vector isg. This logical vector can be
used to index into the original vector. For example, if only the elements from
the vector that are greater than 5 are desired:

>> vec(isg)
ans =
9 6 11

This is called logical indexing. Only the elements from vec for which the cor-
responding element in the logical vector isg is logical true are returned.

QUICK QUESTION!

Why doesn'’t the following work? [0100 1 1] by default is a vector of double values. Only
> vec= (59346 113 e 1 o1 0 on b e o e o vt
>>v=1[010011]; P g ‘

>> vec(v) >> v = logical(v);
Subscript indices must either be real >> vec(v)
positive integers or logicals. ans =
9 6 11
Answer

The difference between the vector in this example and isg is
that isg is a vector of logicals (logical 1s and 0s), whereas

To create a vector or matrix of all logical 1s or Os, the functions true and false
can be used.

>> false(2)

ans =
0 0
0 0
>> true(l,5)
ans =
1 1 1 1 1

The functions true and false and are faster and manage memory more
efficiently than using logical with zeros or ones.

2.5.2 Logical Built-in Functions

There are built-in functions in MATLAB, which are useful in conjunction with
logical vectors or matrices; two of these are the functions any and all. The
function any returns logical true if any element in a vector represents true, and
false if not. The function all returns logical true only if all elements represent
true. Here are some examples.

>> any(isg)
ans =
1
>> all(true(1,3))
ans =
1

For the following variable vec2, some, but not all, elements are true; conse-
quently, any returns true but all returns false.

>> vec2 = logical([1 1 0 1])

vec? =

1 1 0 1
>> any(vec?)
ans =

1
>> all(vec?)
ans =

0

The function find returns the indices of a vector that meet given
criteria. For example, to find all of the elements in a vector that are greater
than 5:

2.5 Logical Vectors a

m CHAPTER 2: Vectors and Matrices

>> vec=1[536772]

vec =
5 3 6 7 2
>> find(vec > 5)
ans =
3 4

For matrices, the find function will use linear indexing when returning the
indices that meet the specified criteria. For example:

>> mata = randi(10,2,4)

mata =
5 6 7 8
9 7 5 3
>> find(mata == 5)
ans =
1
6

For both vectors and matrices, an empty vector will be returned if no elements
match the criterion. For example,

>> find(mata == 11)
ans =
Empty matrix: 0-by-1

The function isequal is useful in comparing arrays. In MATLAB, using the
equality operator with arrays will return 1 or O for each element; the all
function could then be used on the resulting array to determine whether all
elements were equal or not. The built-in function isequal also accomplishes
this:

>> vecl = [1 3 -4 2 99];

>> vec2 = [1 2 -4 3 99];
>> vecl == vec?
ans =
1 0 1 0 1
>> all(vecl == vec?)
ans =
0
>> isequal(vecl,vec?)
ans =
0

However, one difference is that if the two arrays are not the same dimensions,
the isequal function will return logical 0, whereas using the equality operator
will result in an error message.

2.5 Logical Vectors ﬂ
QUICK QUESTION!

If we have a vector vec that erroneously stores negative >> vec(neg) = []
values, how can we eliminate those negative values? vec =
11 33 2 8 25

Answer
One method is to determine where they are and delete these Alternatively, we can just use a logical vector rather than find:
elements: >> vec = [11 -5 33 2 8 -4 25];

>> vec = [11 -5 33 2 8 -4 25]; >> vec(vec < 0) = []

>> neg = find(vec < 0) vec =

neg = 11 33 2 8 25

2 6

PRACTICE 2.5

Modify the result seen in the previous Quick Question!. Instead of deleting the “bad” elements,
retain only the “good” ones. (Hint: do it two ways, using find and using a logical vector with
the expression vec >= 0.)

MATLAB also has or and and operators that work elementwise for arrays:

Operator Meaning
| elementwise or for arrays
& elementwise and for arrays

These operators will compare any two vectors or matrices, as long as they are
the same size, element by element, and return a vector or matrix of the same
size of logical 1s and 0s. The operators || and && are only used with scalars, not
matrices. For example:

>> vl = logical([1 01 1]);

>> v2 = logical ([0 0 1 0]);
>> vl & v2
ans =

0 0 1 0
>> vl | v2
ans =

1 0 1 1
>> vl && v2

Operands to the || and && operators must be convertible to logical
scalar values.

m CHAPTER 2: Vectors and Matrices

As with the numerical operators, it is important to know the operator prece-
dence rules. Table 2.1 shows the rules for the operators that have been covered
so far, in the order of precedence.

Operator Precedence Rules

Operators

parentheses: ()
transpose and power:
unary: negation (-),

addition, subtraction +, -

relational <, <=, >, >=, ==,

element-wise and &
element-wise or |
and && (scalars)
or | (scalars)
assignment =

not (~)
multiplication, division *,/,\,

Precedence

Highest

A

R

~=

Lowest

2.6 APPLICATIONS: THE DIFF AND MESHGRID

FUNCTIONS

Two functions that can be useful in working with applications of vectors and
matrices include diff and meshgrid. The function diff returns the differences
between consecutive elements in a vector. For example,

>> diff([4 7 15 32])
ans =
3 8 17

>> diff([4 7 2 32])
ans =
3 -5 30

For a vector v with a length of n, the length of diff(v) will be n — 1. For
a matrix, the diff function will operate on each column.

>> mat = randi(20, 2,3)

mat =
17 3 13
19 19

>> diff(mat)

ans =

2 16 -11

2.6 Applications: The diff and meshgrid Functions a

As an example, a vector that stores a signal can contain both positive and
negative values. (For simplicity, we will assume no zeros, however.) For many
applications it is useful to find the zero crossings, or where the signal goes from
being positive to negative or vice versa. This can be accomplished using the
functions sign, diff, and find.

>> vec = [0.2 -0.1 -0.2 -0.1 0.1 0.3 -0.2];
>> sv = sign(vec)
sV =

1 -1 -1 -1 1 1 -1
>> dsv = diff(sv)
dsv =

-2 0 0 ya 0 -2

>> find(dsv ~= 0)
ans =
1 4 6

This shows that the signal crossings are between elements 1 and 2, 4 and 5,
and 6 and 7.

The meshgrid function can specify the x and y coordinates of points
in images, or can be used to calculate functions on two variables x and y.
It receives as input arguments two vectors, and returns as output
arguments two matrices that specify separately x and y values. For example,
the x and y coordinates of a 2 x 3 image would be specified by the
coordinates:

(1,1) (2,1) (3,1)
(1,2) (2,2) (3,2)

The matrices that separately specify the coordinates are created by
the meshgrid function, where x iterates from 1 to 3 and vy iterates from
1 to 2:

>> [x y] = meshgrid(1:3,1:2)

1 2 3
1 2 3
y =
1 1
2 2

As another example, let’s say we want to evaluate a function f of two variables
x and y:

f(x,y) = 2% + vy

m CHAPTER 2: Vectors and Matrices

where x ranges from 1 to 4 and y ranges from 1 to 3. We can accomplish this
by creating x and y matrices using meshgrid, and then the expression to
calculate f uses scalar multiplication and array addition.

>> [x y] = meshgrid(1:4,1:3)

1 2 3 4
1 2 3 4
1 2 3 4
1 1 1 1
2 2 2 2
3 3 3 3

3 5 7 9
8 10
5 7 9 11

m Explore Other Interesting Features

m There are many functions that create special matrices (e.g., hilb for
a Hilbert matrix, magic, and pascal).

m The gallery function, which can return many different types of test
matrices for problems.
The ndims function to find the number of dimensions of an argument.
The shiftdim function.
The circshift function. How can you get it to shift a row vector, resulting
in another row vector?
How to reshape a three-dimensional matrix.
Passing three-dimensional matrices to functions. For example, if you
pass a 3 x 5 x 2 matrix to the sum function, what would be the size of
the result? |

H Summary

Common Pitfalls

Attempting to create a matrix that does not have the same number of
values in each row.

Confusing matrix multiplication and array multiplication. Array
operations, including multiplication, division, and exponentiation, are
performed term by term (so the arrays must have the same size); the
operators are .*, ./, .\, and .A. For matrix multiplication to be possible,
the inner dimensions must agree and the operator is *.

Attempting to use an array of double 1s and Os to index into an array
(must be logical, instead).

Forgetting that for array operations based on multiplication the dot
must be used in the operator. In other words, for multiplying, dividing
by, dividing into, or raising to an exponent term by term, the operators
are .*, ./, .\, and A,

Attempting to use || or && with arrays. Always use | and & when working
with arrays; || and && are only used with scalars.

Programming Style Guidelines

If possible, try not to extend vectors or matrices, as it is not very
efficient.

Do not use just a single index when referring to elements in a matrix;
instead, use both the row and column subscripts (use subscripted
indexing rather than linear indexing).

To be general, never assume that the dimensions of any array (vector or
matrix) are known. Instead, use the function length or numel to
determine the number of elements in a vector, and the function size for
a matrix:

len = length(vec);
[r, c] = size(mat);

Use true instead of logical(1) and false instead of logical(0), especially
when creating vectors or matrices. |

MATLAB Functions and Commands

linspace end max any
logspace reshape sum all

zeros fliplr prod find

ones flipud cumsum isequal
length rot90 cumprod diff

size repmat dot meshgrid
numel min Cross

MATLAB Operators

colon : matrix multiplication *
transpose ’ elementwise or for matrices |
array operators A, .5, ./, \ elementwise and for matrices &

m CHAPTER 2: Vectors and Matrices

10.

12.

Using the colon operator, create the following row vectors:

2 3 4 5 6 7
1.1000 1.3000 1.5000 1.7000
8 6 4 2

Give the MATLAB expression that would create a vector (in a variable called vec)
of 50 elements that range, equally spaced, from 0 to 2:

Write an expression using linspace that will result in the same as 2: 0.2: 3.
Using the colon operator and also the linspace function, create the following row
Vectors:

-5 -4 -3 -2 -1
5 7 9
8 6 4

Create a variable myend which stores a random integer in the inclusive range from
5 to0 9. Using the colon operator create a vector that iterates from 1 to myend in
steps of 3.
Using the colon operator and the transpose operator, create a column vector that
has the values —1 to 1 in steps of 0.5.
Write an expression that refers to only the odd-numbered elements in a vector,
regardless of the length of the vector. Test your expression on vectors that have
both an odd and an even number of elements.
Find an efficient way to generate the following matrix:

mat =

8 9 10
12 10 8 6

Then, give expressions that will, for the matrix mat,

refer to the element in the first row, third column

refer to the entire second row

refer to the first two columns.
Generate a 2 x 4 matrix variable mat. Verify that the number of elements is the
product of the number of rows and columns.
Generate a 2 x 4 matrix variable mat. Replace the first row with 1:4. Replace the
third column (you decide with which values).
Generate a 2 x 3 matrix of random

real numbers, each in the range (0, 1)

real numbers, each in the range (0, 10)

integers, each in the inclusive range from 5 to 20.
Create a variable rows that is a random integer in the inclusive range from 1 to 5.
Create a variable cols that is a random integer in the inclusive range from 1 to b.
Create a matrix of all zeros with the dimensions given by the values of rows and
cols.

dairo
Highlight

dairo
Highlight

dairo
Highlight

dairo
Highlight

17.

The built-in function clock retums a vector that contains six elements: the first
three are the current date (year, month, day) and the last three represent the
current time in hours, minutes, and seconds. The seconds is a real number, but all
others are integers. Store the result from clock in a variable called myc. Then, store
the first three elements from this variable in a variable today and the last three
elements in a variable now. Use the fix function on the vector variable now to get
just the integer part of the current time.

Create a matrix variable mat. Find as many expressions as you can that would refer
to the last element in the matrix, without assuming that you know how many
elements or rows or columns it has (i.e., make your expressions general).

Create a vector variable vec. Find as many expressions as you can that would refer
to the last element in the vector, without assuming that you know how many
elements it has (i.e., make your expressions general).

Create a 2 x 3 matrix variable mat. Pass this matrix variable to each of the following
functions and make sure you understand the result: fliplr, flipud, and rot90. In
how many different ways can you reshape it?

Create a 3 x 5 matrix of random real numbers. Delete the third row.

Create a three-dimensional matrix and get its size.

Create a three-dimensional matrix with dimensions 2 x 4 x 3 in which the first
“layer” is all Os, the second is all 1s, and the third is all bs.

Create a vector x which consists of 20 equally spaced points in the range from —
to +7. Create a y vector which is sin(x).

Create a 3 x 5 matrix of random integers, each in the inclusive range from —5 to 5.
Get the sign of every element.

Create a 4 x 6 matrix of random integers, each in the inclusive range from —5 to 5;
store it in a variable. Create another matrix that stores for each element the
absolute value of the corresponding element in the original matrix.

Find thesum 3+ 5+ 7 + 9 + 11.

Find the sum of the first n terms of the harmonic series where n is an integer
greater than one.

1

11
145+

1
§+i+6+...

Find the sum of the first five terms of the geometric series

(LN
2 4 816 7

Find the following sum by first creating vectors for the numerators and
denominators:
+

+5+

= w
w3

N o1
<o)

Create a matrix and find the product of each row and column using prod.

dairo
Highlight

CHAPTER 2: Vectors and Matrices

Create a 1 x 6 vector of random integers, each in the inclusive range from 1 to 20.
Use built-in functions to find the minimum and maximum values in the vector. Also
create a vector of cumulative sums using cumsum.
Write a relational expression for a vector variable that will verify that the last
value in a vector created by cumsum is the same as the result returned by
sum.
Create a vector of five random integers, each in the inclusive range from —10 to 10.
Perform each of the following:

subtract 3 from each element

count how many are positive

get the absolute value of each element

find the maximum.
Create a 3 x 5 matrix. Perform each of the following:

Find the maximum value in each column.

Find the maximum value in each row.

Find the maximum value in the entire matrix.
The value of ©%/6 can be approximated by the sum of the series

1 1 1

1+§+§+ﬁ+””

where this shows the first four terms of the series. Create variables to test this.
At a university, students fill out evaluation forms on which the scale is 1—5. One is
supposed to be the best and 5 the worst. However, on the form, the scale was
reversed so that 1 was the worst and 5 the best. All of the computer programs that
deal with these data expect it to be the other way. So, the data need to be
“reversed”. For example, if a vector of evaluation results is:

>> evals = [5 3 2 5 5 4 1 2]

itshouldreallybe [1 3 4 1 1 2 5 47.

A vector v stores, for several employees of the Green Fuel Cells Corporation, the
hours they've worked one week followed for each by the hourly pay rate. For
example, if the variable stores

>> v

v =

33.0000 10.5000 40.0000 18.0000 20.0000 7.5000
that means the first employee worked 33 hours at $10.50 per hour, the second
worked 40 hours at $18 an hour, and so on. Write code that will separate this into
two vectors: one that stores the hours worked and another that stores the hourly
rates. Then, use the array multiplication operator to create a vector, storing in the
new vector the total pay for every employee.
A company is calibrating some measuring instrumentation and has measured the
radius and height of one cylinder 10 separate times; they are in vector variables r
and h. Find the volume from each trial, which is given by =r’h. Also use logical
indexing first to make sure that all measurements were valid (> 0).

For the following matrices A, B, and C:

213
A:{ég] B=|1 56 o:{ifﬂ
360

give the result of 3*A
give the result of A*C
Are there any other matrix multiplications that can be performed? If so, list
them.
For the following vectors and matrices A, B, and C:

A:B ; ‘01} B=[1 4] czm

Perform the following operations, if possible. If not, just say it can't be done!
A*B
B*C
C*B

The matrix variable rainmat stores the total rainfall in inches for some districts for

the years 2010—2013. Each row has the rainfall amounts for a given district. For
example, if rainmat has the value:

>> rainmat

ans =

25 33 29 42

53 44 40 56
etc.

district 1 had 25 inches in 2010, 33in 2011, etc. Write expression(s) that will find the
number of the district that had the highest total rainfall for the entire four-year period.
Generate a vector of 20 random integers, each in the range from 50 to 100. Create
a variable evens that stores all of the even numbers from the vector and a variable
odds that stores the odd numbers.

Assume that the function diff does not exist. Write your own expression(s) to
accomplish the same thing for a vector.

Evaluate the function f of two variables x and y, where x ranges from 1 to 2 and y
ranges from 1 to 5.

f(x,y) =3* —y

Create a vector variable vec; it can have any length. Then, write assignment
statements that would store the first half of the vector in one variable and the
second half in another. Make sure that your assignment statements are general,
and work whether vec has an even or odd number of elements. (Hint: use

a rounding function, such as fix.)

Exercises

CHAPTER 2: Vectors and Matrices

Some operations are easier to do if a matrix (in particular, if it is really large) is parti-
tioned into blocks. Partitioning into blocks also allows utilization of grid computing or
parallel computing, where the operations are spread over a grid of computers.

1 -3 2 4

oo l2 5 0 1. iy . An Ap

For example, if A = 9 1 5 _g|/ttcan be partitioned into [Ay Ay
-1 3 1 2

1 -3 2 4 -2 1 5 -3
WhereAM:{Z 5],A12:{0 1}A21:[_1 3]'A22:{1 2]'

2 1 =3 0
. . |1 4 2 -1 s Bi1 Bpp
If B is the same size, B = 0 -1 5 -2/ Partition it into [By Byl
1 0 3 2

Create the matrices A and B, and partition them in MATLAB. Show that matrix
addition, matrix subtraction, and scalar multiplication can be performed block-by-
block, and concatenated for the overall result.

For matrix multiplication using the blocks

AxB — {All Alz] {Bll Blz} _ [AMBMJrAlzBm A Big + ApBy

Ay Ap | | Ba Bz ApBit + ApByy AnBip + A By

Perform this in MATLAB for the given matrices.

CHAPTER 3

Introduction to MATLAB Programming

computer program
scripts

algorithm

modular program
top-down design
external file

default input device
prompting

default output device
execute/run

high level languages
machine language
executable

compiler

source code

object code
interpreter
documentation

comments

block comment
comment blocks
input/output (I/0)
user

empty string
error message
formatting

format string
place holder
conversion characters
newline character
field width
leading blanks
trailing zeros

plot symbols
markers

line types

toggle

modes

writing to a file
appending to a file
reading from a file
user-defined functions
function call
argument

control

return value
function header
output arguments
input arguments
function body
function definition
local variables
scope of variables
base workspace

CONTENTS

3.1 Algorithms ..74

3.2 MATLAB
Scripts.......... 75

3.3 Input and
Output 78

3.4 Scripts with
Input and
Output 86

3.5 Scripts to
Produce and
Customize
Simple Plots 87

3.6 Introduction to
File Input/
Output (Load
and Save).....93

3.7 User-Defined
Functions That
Return a Single
Value............ 97

3.8 Commands
and
Functions...106

We have now used the MATLAB® product interactively in the Command
Window. That is sufficient when all one needs is a simple calculation.
However, in many cases, quite a few steps are required before the final result
can be obtained. In those cases, it is more convenient to group statements
together in what is called a computer program.

In this chapter, we will introduce the simplest MATLAB programs, which are
called scripts. Examples of scripts that customize simple plots will illustrate the
concept. Input will be introduced, both from files and from the user. Output 73

MATLAB®. http://dx.doi.org/10.1016/B978-0-12-405876-7.00003-1
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-405876-7.00003-1

CHAPTER 3: Introduction to MATLAB Programming

to files and to the screen will also be introduced. Finally, user-defined func-
tions that calculate and return a single value will be described. These topics
serve as an introduction to programming, which will be expanded on in
Chapter 6.

3.1 ALGORITHMS

Before writing any computer program, it is useful to first outline the steps that
will be necessary. An algorithm is the sequence of steps needed to solve
a problem. In a modular approach to programming, the problem solution is
broken down into separate steps, and then each step is further refined until the
resulting steps are small enough to be manageable tasks. This is called the
top-down design approach.

As a simple example, consider the problem of calculating the area of a circle.
First, it is necessary to determine what information is needed to solve the
problem, which, in this case, is the radius of the circle. Next, given the radius
of the circle, the area of the circle would be calculated. Finally, once the area
has been calculated, it has to be displayed in some way. The basic algorithm
then is three steps:

get the input—the radius
calculate the result—the area
display the output.

Even with an algorithm this simple, it is possible to further refine each of the
steps. When a program is written to implement this algorithm, the steps would
be as follows.

Where does the input come from? Two possible choices would be from an
external file or from the user (the person who is running the program) who
enters the number by typing it from the keyboard. For every system, one of
these will be the default input device (which means, if not specified
otherwise, this is where the input comes from!). If the user is supposed to
enter the radius, the user has to be told to type in the radius (and in what
units). Telling the user what to enter is called prompting. So, the input step
actually becomes two steps: prompt the user to enter a radius and then read
it into the program.

To calculate the area, the formula is needed. In this case, the area of the
circle is 7w multiplied by the square of the radius. So, that means the value
of the constant for 7t is needed in the program.

Where does the output go? Two possibilities are (1) to an external file or
(2) to the screen. Depending on the system, one of these will be the default
output device. When displaying the output from the program, it should
always be as informative as possible. In other words, instead of just

printing the area (just the number), it should be printed in a nice sentence
format. Also, to make the output even more clear, the input should be
printed. For example, the output might be the sentence “For a circle with
a radius of 1 inch, the area is 3.1416 inches squared”.

For most programs, the basic algorithm consists of the three steps that have
been outlined:

Get the input(s)
Calculate the result(s)
Display the result(s).

As can be seen here, even the simplest problem solutions can then be refined
further. This is top-down design.

3.2 MATLAB SCRIPTS

Once a problem has been analyzed, and the algorithm for its solution has
been written and refined, the solution to the problem is then written in
a particular programming language. A computer program is a sequence of
instructions, in a given language, that accomplishes a task. To execute, or run,
a program is to have the computer actually follow these instructions
sequentially.

High-level languages have English-like commands and functions, such as
“print this” or “if x < 5 do something”. The computer, however, can only
interpret commands written in its machine language. Programs that are written
in high-level languages must therefore be translated into machine language
before the computer can actually execute the sequence of instructions in the
program. A program that does this translation from a high-level language to an
executable file is called a compiler. The original program is called the source
code, and the resulting executable program is called the object code. Compilers
translate from the source code to object code; this is then executed as a sepa-
rate step.

By contrast, an interpreter goes through the code line-by-line, translating and
executing each command as it goes. MATLAB uses what are called either
script files, or M-files (the reason for this is that the extension on the
filename is .m). These script files are interpreted, rather than compiled.
Therefore, the correct terminology is that these are scripts and not programs.
However, the terms are somewhat loosely used by many people, and the
documentation in MATLAB itself refers to scripts as programs. In this book,
we will reserve the use of the word “program” to mean a set of scripts and
functions, as described briefly in Section 3.7 and then in more detail in
Chapter 6.

3.2 MATLAB Scripts

CHAPTER 3: Introduction to MATLAB Programming

A script is a sequence of MATLAB instructions that is stored in an M-file and
saved. The contents of a script can be displayed in the Command Window
using the type command. The script can be executed, or run, by simply
entering the name of the file (without the .m extension).

Before creating a script, make sure the Current Folder (called “Current Direc-
tory” in earlier versions) is set to the folder in which you want to save your
files.

The steps involved in creating a script depend on the version of MATLAB. In
the most recent versions the easiest method is to click on “New Script” under
the HOME tab. Alternatively, you can click on the down arrow under “New”
and then choose Script (see Figure 3.1)

In earlier versions, one would click on File, then New, then Script (or, in even
earlier versions, M-file). A new window will appear called the Editor (which
can be docked). In the latest versions of MATLAB, this window has three tabs:
“EDITOR”, “PUBLISH”, and “VIEW”. Next, simply type the sequence of
statements (note that line numbers will appear on the left).

When finished, save the file by choosing the Save down arrow under the
EDITOR tab or, in earlier versions of MATLAB, by choosing File and then Save.
Make sure that the extension of .m is on the filename (this should be the
default). The rules for file names are the same as for variables (they must start
with a letter; after that there can be letters, digits, or the underscore). For
example, we will now create a script called script1.m that calculates the area of
a circle. It assigns a value for the radius, and then calculates the area based on
that radius.

GELiulloghl
E}L C:}, 5 [y Find Fes &‘ ﬂﬁ £z, New Variable | Analyze Code E —_—

r {1 Open Variable + {57 Run and Time
New New Open ||Compare Import Save - Layout [l Set Path
Data

SHORTCUTS

HOME

Script v v {77 Clear v 7 Clear Commands v
FILE VARIABLE CODE ENVIRONMENT
P> E0O0O Editor - untitled
Current F =
|] Name

r Unix Exe = - S @ .

M ex; ° 5 D k}P [2] Run Section

M xy| FILE | EDIT | NAVIGATE Breakpoints Run Runand Runand @Aﬂvm
P JPEG imé — = = - - Time Advance

% sn¢ BREAKPOINTS RUN
" MATLAB/ "5 ntitled

) cal 1 =
" MATLA

) cir

Epl

FIGURE 3.1 Toolstrip and editor

In this text, scripts will be displayed in a box with the name of the M-file on
top.

scriptl.m

radius = 5
area = pi * (radius”2)

There are two ways to view a script once it has been written: either open the
Editor Window to view it or use the type command, as shown here, to display
it in the Command Window. The type command shows the contents of the file
named scriptl.m; notice that the .m is not included:

>> type scriptl
radius = 5
area = pi * (radius”2)

To actually run or execute the script from the Command Window, the name of
the file is entered at the prompt (again, without the .m). When executed, the
results of the two assignment statements are displayed, as the output was not
suppressed for either statement.

>> scriptl
radius =
5
area =
78.5398

Once the script has been executed you may find that you want to make
changes to it (especially if there are errors!). To edit an existing file, there are
several methods to open it. The easiest are:

within the Current Folder Window, double-click on the name of the file in
the list of files
choosing the Open down arrow will show a list of Recent Files.

3.2.1 Documentation

It is very important that all scripts be documented well, so that people can
understand what the script does and how it accomplishes its task. One way
of documenting a script is to put comments in it. In MATLAB, a comment is
anything from a % to the end of that particular line. Comments are
completely ignored when the script is executed. To put in a comment,
simply type the % symbol at the beginning of a line, or select the comment
lines and then click on the Edit down arrow and click on the % symbol, and
the Editor will put in the % symbols at the beginning of those lines for the
comments.

3.2 MATLAB Scripts

CHAPTER 3: Introduction to MATLAB Programming

For example, the previous script to calculate the area of a circle could be
modified to have comments:

circlescript.m

% This script calculates the area of a circle

% First the radius is assigned

radius = 5

% The area is calculated based on the radius
area = pi * (radius”?2)

The first comment at the beginning of the script describes what the script does;
this is sometimes called a block comment. Then, throughout the script,
comments describe different parts of the script (not usually a comment for
every line, however!). Comments don't affect what a script does, so the output
from this script would be the same as for the previous version.

The help command in MATLAB works with scripts as well as with built-in
functions. The first block of comments (defined as contiguous lines at the
beginning) will be displayed. For example, for circlescript:

>> help circlescript
This script calculates the area of a circle

The reason that a blank line was inserted in the script between the first two
comments is that otherwise both would have been interpreted as one
contiguous comment, and both lines would have been displayed with help.
The very first comment line is called the “H1 line”; it is what the function
lookfor searches through.

PRACTICE 3.1

Write a script to calculate the circumference of a circle (C = 2 = 1). Comment the script.

Longer comments, called comment blocks, consist of everything in between
%{and %}, which must be alone on separate lines. For example:

%4
this is a really
Really
REALLY
Tong comment

DD}

3.3 INPUT AND OUTPUT

The previous script would be much more useful if it were more general; for
example, if the value of the radius could be read from an external source rather

than being assigned in the script. Also, it would be better to have the script
print the output in a nice, informative way. Statements that accomplish these
tasks are called input/output statements, or I/O for short. Although, for
simplicity, examples of input and output statements will be shown here in the
Command Window, these statements will make the most sense in scripts.

3.3.1 Input Function

Input statements read in values from the default or standard input device. In
most systems, the default input device is the keyboard, so the input statement
reads in values that have been entered by the user, or the person who is
running the script. To let the user know what he or she is supposed to enter,
the script must first prompt the user for the specified values.

The simplest input function in MATLAB is called input. The input function is
used in an assignment statement. To call it, a string is passed that is the prompt
that will appear on the screen, and whatever the user types will be stored in the
variable named on the left of the assignment statement. For ease of reading the
prompt, itis useful to put a colon and then a space after the prompt. For example,

>> rad = input('Enter the radius: ')

Enter the radius: 5
rad =
5

If character or string input is desired, ‘s’ must be added as a second argument
to the input function:

>> letter = input('Enter a char: ','s")
Enter a char: g

letter =

g

If the user enters only spaces or tabs before hitting the Enter key, they are
ignored and an empty string is stored in the variable:

>> mychar = input('Enter a character: ', 's')
Enter a character:
mychar =

However, if blank spaces are entered before other characters, they are included in
the string. In the next example, the user hit the space bar four times before
entering “go”. The length function returns the number of characters in the string.

>> mystr = input('Enter a string: ', 's')
Enter a string: go
mystr =
go
>> length(mystr)
ans =

6

3.3 Input and Output

Note

Although normally the
quotes are not shown
around a character or
string, in this case they
are shown to demon-
strate that there is
nothing inside of the
string.

m CHAPTER 3: Introduction to MATLAB Programming

QUICK QUESTION!

What would be the result if the user enters blank spaces after >> length(mychar)

other characters? For example, the user here entered “xyz " ans =

(four blank spaces): 7
>> mychar = input('Enter chars: ', 's') The length can be seen in the Command Window by using the
Enter chars: xyz mouse to highlight the value of the variable; the xyz and four
mychar = spaces will be highlighted.
Xyz

Answer

The space characters would be stored in the string variable. It is
difficult to see above, but is clear from the length of the string.

It is also possible for the user to type quotation marks around the
string rather than including the second argument ‘s’ in the call to the input
function.

>> name = input('Enter your name: ')
Enter your name: 'Stormy'’

name =

Stormy

However, this assumes that the user would know to do this so it is better to
signify that character input is desired in the input function itself. Also, if the ‘s’
is specified and the user enters quotation marks, these would become part of
the string.

>> name = input('Enter your name: ','s")
Enter your name: 'Stormy'
name =
"Stormy’
>> length(name)
ans =
8

Note what happens if string input has not been specified, but the user enters
a letter rather than a number.

>> num = input('Enter a number: ')
Enter a number: t
Error using input
Undefined function or variable 't'.

Enter a number: 3
num =
3

MATLAB gave an error message and repeated the prompt. However, if t is the
name of a variable, MATLAB will take its value as the input.

>> t=11;
>> num = input('Enter a number: ')
Enter a number: t
num =
11

Separate input statements are necessary if more than one input is desired. For
example,

>> X =
>y

")
")

input('Enter the x coordinate:
input('Enter the y coordinate:

Normally in a script the results from input statements are suppressed with
a semicolon at the end of the assignment statements.

PRACTICE 3.2

Create a script that would prompt the user for a length, and then use ‘f’ for feet or ‘m’ for meters,
and store both inputs in variables. For example, when executed it would look like this (assuming
the user enters 12.3 and then m):

Enter the length: 12.3

Is that f(eet)or m(eters)?: m

3.3.2 Output Statements: disp and fprintf

Output statements display strings and/or the results of expressions,
and can allow for formatting, or customizing how they are displayed.
The simplest output function in MATLAB is disp, which is used to display
the result of an expression or a string without assigning any value to
the default variable ans. However, disp does not allow formatting. For
example,

>> disp('Hello")
Hello

>> disp(4r3)
64

Formatted output can be printed to the screen using the fprintf function. For
example,

>> fprintf('The value is %d, for surel\n',4"3)
The value is 64, for sure!
>>

3.3 Input and Output m

m CHAPTER 3: Introduction to MATLAB Programming

To the fprintf function, first a string (called the format string) is passed that
contains any text to be printed, as well as formatting information for the expres-
sions to be printed. In this example, the %d is an example of format information.

The %d is sometimes called a place holder because it specifies where the value
of the expression that is after the string is to be printed. The character in the
place holder is called the conversion character, and it specifies the type of value
that is being printed. There are others, but what follows is a list of the simple
place holders:

%d integer (it stands for decimal integer)
%f float (real number)
%c single character
Note %s string
Don't confuse the % in
the place holder with
the symbol used to

The character ‘\n’ at the end of the string is a special character called the
newline character; what happens when it is printed is that the output that

designate a comment. follows moves down to the next line.

QUICK QUESTION!

What do you think would happen if the newline character is Note that with the disp function, however, the prompt will

omitted from the end of an fprintf statement? always appear on the next line:
Answer >> disp('Hi")

Without it, the next prompt would end up on the same line as Hi

the output. It is still a prompt, and so an expression can be >>

entered, but it looks messy as shown here. .) :
¥ Also, note that an ellipsis can be used after a string but not in

>> fprintf('The value is %d, surely!’,.. the middle.
4r3)

The value is 64, surely!>> 5 4+ 3

ans =

8
QUICK QUESTION!

How can you get a blank line in the output? This also points out that the newline character can be
Answer anywhere in the string; when it is printed, the output moves
Have two newline characters in a row. down to the next line.

>> fprintf('The value is %d,\n\nOK!\n' 473)
The value is 64,

0K!

3.3 Input and Output m

Note that the newline character can also be used in the prompt in the input
statement; for example:

>> x=1input('Enter the \nx coordinate: ');
Enter the
x coordinate: 4

However, that is the only formatting character allowed in the prompt in input.

To print two values, there would be two place holders in the format string, and
two expressions after the format string. The expressions fill in for the place
holders in sequence.

>> fprintf('The int is %Zd and the char is Zc\n', ...
33 -2, 'x")
The int is 31 and the char is x

A field width can also be included in the place holder in fprintf, which Note

specifies how many characters total are to be used in printing. For example, If the field width is
%5d would indicate a field width of 5 for printing an integer and %10s wider than necessary,
would indicate a field width of 10 for a string. For floats, the number of leading blanks are
decimal places can also be specified; for example, %6.2f means a field width ~ printed, and if more
of 6 (including the decimal point and the two decimal places) with decimal places are

2 decimal places. For floats, just the number of decimal places can also be specified than neces-
specified; for example, %.3f indicates 3 decimal places, regardless of the field ~Sary. trailing zeros are
width. printed.

>> fprintf('The int is %3d and the float is 46.2f\n', 5, 4.9)

The int is 5 and the float is 4.90

QUICK QUESTION!

What do you think would happen if you tried to print 1234.5678 If the field width is not large enough to print the number, the
in a field width of 3 with 2 decimal places? field width will be increased. Basically, to cut the number off
S> Fprintf('93.2f\n", 1234.5678) would give a misleading result, but rounding the decimal pla-
ces does not change the number by much.
Answer
It would print the entire 1234, but round the decimals to two
places, that is

1234.57

m CHAPTER 3: Introduction to MATLAB Programming

QUICK QUESTION!

What would happen if you use the %d conversion character, Note that if you want exponential notation, this is not the
but you're trying to print a real number? correct way to get it; instead, there are conversion characters

Answer

that can be used. Use the help browser to see this option, as
well as many others!

MATLAB will show the result using exponential notation

>> fprintf('%Zd\n',1234567.89)

1.234568e+006

There are many other options for the format string. For example, the value
being printed can be left-justified within the field width using a minus sign.
The following example shows the difference between printing the integer 3
using %5d and using %-5d. The x’s below are used to show the spacing.

>> fprintf('The integer is xx%5dxx and xx%-5dxx\n',3,3)
The integer is xx 3xx and xx3 XX

Also, strings can be truncated by specifying “decimal places”:

>> fprintf('The string is %s or %.2s\n', 'street', 'street')
The string is street or st

There are several special characters that can be printed in the format string in
addition to the newline character. To print a slash, two slashes in a row are
used, and also to print a single quote, two single quotes in a row are used.
Additionally, ‘\t' is the tab character.

>> fprintf('Try this out: tab\t quote '' slash \\ \n')
Try this out: tab quote ' slash \

3.3.2.1 Printing Vectors and Matrices

For a vector, if a conversion character and the newline character are in the
format string, it will print in a column regardless of whether the vector itself is
a row vector or a column vector.

>> vec = 2:5;

>> fprintf('%Zd\n', vec)
2

3

4

5

Without the newline character, it would print in a row, but the next prompt
would appear on the same line:

>> fprintf('%Zd', vec)
2345>>

However, in a script, a separate newline character could be printed to avoid
this problem. It is also much better to separate the numbers with spaces.

printvec.m

% This demonstrates printing a vector

vec = 2:5;
fprintf('%d ",vec)
fprintf('\n")

>> printvec
2345
>>

If the number of elements in the vector is known, that many conversion
characters can be specified and then the newline:

>> fprintf('%d Zd %d %Zd\n', vec)
2345

This is not very general, however, and is therefore not preferable.

For matrices, MATLAB unwinds the matrix column by column. For example,
consider the following 2 x 3 matrix:

>> mat =[5 9 8; 4 1 107
mat =
5 9 8
1 10

Specifying one conversion character and then the newline character will print
the elements from the matrix in one column. The first values printed are from
the first column, then the second column, and so on.

>> fprintf('%d\n', mat)

= 00— O &~ O

0

If three of the %d conversion characters are specified, the fprintf will print
three numbers across on each line of output, but again the matrix is unwound
column—by-column. It again prints first the two numbers from the first
column (across on the first row of output), then the first value from the
second column, and so on.

>> fprintf('%d %d %Zd\n', mat)
549
1810

3.3 Input and Output ﬂ

m CHAPTER 3: Introduction to MATLAB Programming

If the transpose of the matrix is printed, however, using the three %d conver-
sion characters, the matrix is printed as it appears when created.

>> fprintf('4d %d %Zd\n', mat') % Note the transpose
598
4110

For vectors and matrices, even though formatting cannot be specified, the disp
function may be easier to use in general than fprintf because it displays the
result in a straightforward manner. For example,

>> mat = [15 11 14; 7 10 13]
mat =

15 11 14

7 10 13

>> disp(mat)
15 11 14

7 10 13
>> vec = 2:5
vec =
2 3 4 5

>> disp(vec)
2 3 4 5

Note that when loops are covered in Chapter 5, formatting the output of
matrices will be easier. For now, however, disp works well.

3.4 SCRIPTS WITH INPUT AND OUTPUT

Putting all of this together now, we can implement the algorithm from the
beginning of this chapter. The following script calculates and prints the area of
a circle. It first prompts the user for a radius, reads in the radius, and then
calculates and prints the area of the circle based on this radius.

circlelO.m

% This script calculates the area of a circle
% 1t prompts the user for the radius

% Prompt the user for the radius and calculate
% the area based on that radius

fprintf('Note: the units will be inches.\n')
radius = input('Please enter the radius: ');
area = pi * (radius”2);

% Print all variables in a sentence format
fprintf('For a circle with a radius of %.2f inches,\n', radius)
fprintf('the area is %.2f inches squared\n',area)

3.5 Scripts to Produce and Customize Simple Plots

Executing the script produces the following output:

>> circlel0

Note: the units will be inches.

Please enter the radius: 3.9

For a circle with a radius of 3.90 inches,
the area is 47.78 inches squared

Note that the output from the first two assignment statements (including the
input) is suppressed by putting semicolons at the end. That is usually done in
scripts, so that the exact format of what is displayed by the program is
controlled by the fprintf functions.

PRACTICE 3.3

Wrrite a script to prompt the user separately for a character and a number, and print the character in
a field width of 3 and the number left-justified in a field width of 8 with 3 decimal places. Test this
by entering numbers with varying widths.

3.5 SCRIPTS TO PRODUCE AND CUSTOMIZE
SIMPLE PLOTS

MATLAB has many graphing capabilities. Customizing plots is often desired, and
this is easiest to accomplish by creating a script rather than typing one command at
a time in the Command Window. For that reason, simple plots and how to
customize them will be introduced in this chapter on MATLAB programming.

The help topics that contain graph functions include graph2d and graph3d.
Typing help graph2d would display some of the two-dimensional graph
functions, as well as functions to manipulate the axes and to put labels and
titles on the graphs. The Search Documentation under MATLAB Graphics also
has a section “2-D and 3-D Plots”.

3.5.1 The Plot Function

For now, we'll start with a very simple graph of one point using the plot function.

The following script, plotonepoint, plots one point. To do this, first values are
given for the x and y coordinates of the point in separate variables. The point is
plotted using a red star (‘*’). The plot is then customized by specifying the
minimum and maximum values on first the x and then y axes. Labels are then
put on the x-axis, the y-axis, and the graph itself using the functions xlabel,
ylabel, and title. (Note: there are no default labels for the axes.)

All of this can be done from the Command Window, but it is much easier to
use a script. The following shows the contents of the script plotonepoint that

CHAPTER 3: Introduction to MATLAB Programming

accomplishes this. The x coordinate represents the time of day (e.g., 11 a.m.)
and the y coordinate represents the temperature (e.g., in degrees Fahrenheit) at
that time.

plotonepoint.m

% This is a really simple plot of just one point!
% Create coordinate variables and plot a red '*'

x =11;

y = 48;

plot(x,y,"'r*")

% Change the axes and label them axis([9 12 35 55])
xlabel('Time")

ylabel('Temperature')

% Put a title on the plot
title('Time and Temp"')

In the call to the axis function, one vector is passed. The first two values are the
minimum and maximum for the x-axis, and the last two are the minimum and
maximum for the y-axis. Executing this script brings up a Figure Window with
the plot (see Figure 3.2).

To be more general, the script could prompt the user for the time and temperature,
rather than just assigning values. Then, the axis function could be used based on
whatever the values of x and y are, as in the following example:

axis([x-2 x+2 y-10 y+101)

In addition, although they are the x and y coordinates of a point, variables
named time and temp might be more mnemonic than x and y.

Time and Temp
55 - . :

Temperature
B (&)
[$)] o

IS
o
.

¥g 95 10 105 11 115 12

Time
FIGURE 3.2 Plot of one data point

3.5 Scripts to Produce and Customize Simple Plots m

PRACTICE 3.4

Modify the script plotonepoint to prompt the user for the time and temperature, and set the axes
based on these values.

To plot more than one point, x and y vectors are created to store the values of
the (x,y) points. For example, to plot the points

(1,1)
(2,5)
(3,3)
(4,9)
(5,11)
(6,8)

first an x vector is created that has the x values (as they range from 1 to 6 in
steps of 1, the colon operator can be used) and then a y vector is created with
the y values. The following will create (in the Command Window) x and y
vectors and then plot them (see Figure 3.3).

>> x = 1:6;

>> y=1[153911 8];

>> plot(x,y)

Note that the points are plotted with straight lines drawn in between. Also, the
axes are set up according to the data; for example, the x values range from 1 to 6
and the y values from 1 to 11, so that is how the axes are set up.

Also, note that in this case the x values are the indices of the y vector (the y
vector has six values in it, so the indices iterate from 1 to 6). When this is the
case it is not necessary to create the x vector. For example,

>> plot(y)

will plot exactly the same figure without using an x vector.

11
10t 1
9. i

N W b OO N
L

1
1 15 2 25 3 35 4 45 5 55 6
FIGURE 3.3 Plot of data points from vectors

m CHAPTER 3: Introduction to MATLAB Programming

3.5.1.1 Customizing a Plot: Color, Line Types, Marker Types
Plots can be done in the Command Window, as shown here, if they are really
simple. However, many times it is desired to customize the plot with labels,
titles, and so on, so it makes more sense to do this in a script. Using the help
function for plot will show the many options such as the line types and colors.
In the previous script plotonepoint, the string ‘r*’ specified a red star for the
point type. The LineSpec, or line specification, can specify up to three different
properties in a string, including the color, line type, and the symbol or marker
used for the data points.

The possible colors are:

b blue
cyan
green
black
magenta
red
white
y yellow

= S5 3 QO

Either the single character listed above or the full name of the color can be used in
the string to specify the color. The plot symbols, or markers, that can be used are:

circle
diamond
hexagram
pentagram
plus

point

square

star

down triangle
left triangle
right triangle
up triangle

X x-mark

* v - 4+ T T A o

> VA<

Line types can also be specified by the following:

-- dashed
-. dash dot
dotted
- solid
If no line type is specified, a solid line is drawn between the points, as seen in
the last example.

3.5.2 Simple Related Plot Functions

Other functions that are useful in customizing plots include clf, figure, hold,
legend, and grid. Brief descriptions of these functions are given here; use help
to find out more about them.

3.5 Scripts to Produce and Customize Simple Plots

c1f clears the Figure Window by removing everything from it.

figure creates a new, empty Figure Window when called without any
arguments. Callingitasfigure(n) where nis an integer is a way of creatingand
maintaining multiple Figure Windows, and of referring to each individually.

hold is a toggle that freezes the current graph in the Figure Window, so that
new plots will be superimposed on the current one. Just hold by itself is
atoggle, so calling this function once turns the hold on, and then the next time
turns it off. Alternatively, the commands hold on and hold off can be used.

Tegend displays strings passed to it in a legend box in the Figure Window in
order of the plots in the Figure Window

grid displays grid lines on a graph. Called by itself, it is a toggle that turns
the grid lines on and off. Alternatively, the commands grid on and grid off
can be used.

Also, there are many plot types. We will see more in Chapter 11, but another
simple plot type is a bar chart.

For example, the following script creates two separate Figure Windows. First, it
clears the Figure Window. Then, it creates an x vector and two different y
vectors (y1 and y2). In the first Figure Window, it plots the y1 values using
a bar chart. In the second Figure Window, it plots the y1 values as black lines,
puts hold on so that the next graph will be superimposed, and plots the y2
values as black circles. It also puts a legend on this graph and uses a grid.
Labels and titles are omitted in this case as it is generic data.

plot2figs.m

% This creates 2 different plots, in 2 different
% Figure Windows, to demonstrate some plot features

clf

x = 1:5; % Not necessary

yl =1[2 11 6 9 3];

y2 =1[4586 2];

% Put a bar chart in Figure 1

figure(l)

bar(x,yl)

% Put plots using different y values on one plot
% with a Tegend

figure(2)
plot(x,yl,'k")
hold on
plot(x,y2,'ko")
grid on

legend('yl",'y2")

m CHAPTER 3: Introduction to MATLAB Programming

Running this script will produce two separate Figure Windows. If there are no
other active Figure Windows, the first, which is the bar chart, will be in the one
titled “Figure 1” in MATLAB. The second will be in “Figure 2”. See Figure 3.4
for both plots.

Note that the first and last points are on the axes, which makes them difficult
to see. That is why the axis function is used frequently, as it creates space
around the points so that they are all visible.

PRACTICE 3.5

Modify the plotZfigs script using the axis function so that all points are easily seen.

The ability to pass a vector to a function and have the function evaluate every
element of the vector can be very useful in creating plots. For example, the
following script displays graphically the difference between the sin and cos
functions:

sinncos.m

% This script plots sin(x) and cos(x) in the same Figure Window
% for values of x ranging from 0 to 2*pi

clf

x = 0: 2*pi/40: 2*pi;

y = sin(x);

plot(x,y,'ro")

hold on

y = cos(x);

plot(x,y,"'b+")
legend('sin', 'cos")
xlabel('x")

ylabel('sin(x) or cos(x)"')
title('sin and cos on one graph')

The script creates an x vector; iterating through all of the values from 0 to 2*7
in steps of 2*7/40 gives enough points to get a good graph. It then finds the
sine of each x value, and plots these points using red circles. The command
hold on freezes this in the Figure Window so the next plot will be super-
imposed. Next, it finds the cosine of each x value and plots these points using
blue plus symbols (+). The legend function creates a legend; the first string is
paired with the first plot and the second string with the second plot. Running
this script produces the plot seen in Figure 3.5.

Note that instead of using hold on, both functions could have been plotted
using one call to the plot function:

plot(x,sin(x),'ro",x,cos(x), " "b+")

3.6 Introduction to File Input/Output (Load and Save) ﬂ

PR —

[pp—

ittt heledatats Rl Suledatats Al

N -

W ke
B N TR SES

2
5 1

1 2
FIGURE 3.4 (a) Bar chart produced by script. (b) Plot produced by script, with a grid and legend

3 4

sin and cos on one graph

PRACTICE 3.6 . 2 % ﬂ
Write a script that plots exp(x) and log(x) for values of x ranging 08 + o ° .
from 0 to 3.5. 06} o+ o + 1
= 04} o+ o +
\g 02 -OO ++ OO ++
3.6 INTRODUCTION TO FILE S 9% ¥ © * ©
Ra S | +] + o
INPUT/OUTPUT (LOAD AND SAVE) £ 02 . o . o
04l
In many cases, input to a script will come from 06| ++ OO ++ OO
a data file that has been created by another source. 08l *, 2 ~
Also, it is useful to be able to store output in an » ‘ Lt % o .
external file that can be manipulated and/or printed 0 1 2 3 4 5 6 7
X

later. In this section, the simplest methods used to
read from an external data file and also to write to an
external data file will be demonstrated.

FIGURE 3.5 Plot of sin and cos in one figure window
with a legend

There are basically three different operations, or modes on files. Files can be:

read from
written to
appended to.

Writing to a file means writing to a file from the beginning. Appending to
a file is also writing, but starting at the end of the file rather than the

m CHAPTER 3: Introduction to MATLAB Programming

beginning. In other words, appending to a file means adding to what was
already there.

There are many different file types, which use different filename extensions.
For now, we will keep it simple and just work with .dat or .txt files when
working with data, or text, files. There are several methods for reading from
files and writing to files; we will, for now, use the load function to read and the
save function to write to files. More file types and functions for manipulating
them will be discussed in Chapter 9.

3.6.1 Writing Data to a File
The save command can be used to write data from a matrix to a data file, or to
append to a data file. The format is:

save filename matrixvariablename —ascii

The “-ascii” qualifier is used when creating a text or data file. For example, the
following creates a matrix and then saves the values from the matrix variable
to a data file called “testfile.dat”:

>> mymat = rand(2,3)

mymat =
0.4565 0.8214 0.6154
0.0185 0.4447 0.7919

>> save testfile.dat mymat -ascii

This creates a file called “testfile.dat” that stores the numbers:

0.4565 0.8214 0.6154
0.0185 0.4447 0.7919

The type command can be used to display the contents of the file; note that
scientific notation is used:

>> type testfile.dat

4.5646767e-001 8.2140716e-001 6.1543235e-001
1.8503643e-002 4.4470336e-001 7.9193704e-001

Note that if the file already exists, the save command will overwrite the file;
save always writes from the beginning of a file.

3.6.2 Appending Data to a Data File
Once a text file exists, data can be appended to it. The format is the same as the
preceding, with the addition of the qualifier “-append”. For example, the

3.6 Introduction to File Input/Output (Load and Save) ﬂ

following creates a new random matrix and appends it to the file that was just Note
created: Although technically

any size matrix could be

>> mat2 = rand(3,3) appended to this data

wmat = file, to be able t d it
0.9218 0.4057 0.4103 e (.) ¢ abe o_rea '
0.7382 0.9355 0.8936 back into a matrix later
0.1763 0.9169 0.0579 there would have to be

>> save testfile.dat matZ2 -ascii -append the same number of

values on every row (or,

This results in the file “testfile.dat” containing the following: in other words. the

0.4565 0.8214 0.6154 same number of
0.0185 0.4447 0.7919 columns).
0.9218 0.4057 0.4103

0.7382 0.9355 0.8936

0.1763 0.9169 0.0579

PRACTICE 3.7

Prompt the user for the number of rows and columns of a matrix, create a matrix with that many
rows and columns of random integers, and write it to a file.

3.6.3 Reading From a File

Reading from a fileis accomplished using load. Once a file has been created (as in
the preceding), it can be read into a matrix variable. If the file is a data file, the
load command will read from the file “filename.ext” (e.g., the extension might
be .dat) and create a matrix with the same name as the file. For example, if the
data file “testfile.dat” had been created as shown in the previous section, this
would read from it, and store the result in a matrix variable called testfile:

>> clear

>> load testfile.dat

>> who

Your variables are:

testfile

>> testfile

testfile =
0.4565 0.8214 0.6154
0.0185 0.4447 0.7919
0.9218 0.4057 0.4103
0.7382 0.9355 0.8936
0.1763 0.9169 0.0579

The load command works only if there are the same number of values in each
line so that the data can be stored in a matrix, and the save command only
writes from a matrix to a file. If this is not the case, lower-level file I/O
functions must be used; these will be discussed in Chapter 9.

m CHAPTER 3: Introduction to MATLAB Programming

3.6.3.1 Example: Load from a File and Plot the Data

As an example, a file called “timetemp.dat” stores two lines of data. The first
line is the time of day and the second line is the recorded temperature at each
of those times. The first value of 0 for the time represents midnight. For
example, the contents of the file might be:

0 3 6 9 12 15 18 21
55.5 52.4 52.6 55.7 75.6 /7.7 70.3 66.6

The following script loads the data from the file into a matrix called time-
temp. It then separates the matrix into vectors for the time and temperature,
and then plots the data using black star (*) symbols.

timetempprob.m

% This reads time and temperature data for an afternoon
% from a file and plots the data

load timetemp.dat

% The times are in the first row, temps in the second row
time = timetemp(1l,:);
temp = timetemp(2,:);

% Plot the data and label the plot
plot(time,temp, "k*")

xlabel('Time")
ylabel('Temperature')
title('Temperatures one afternoon')

Running the script produces the plot seen in Figure 3.6.

Note that it is difficult to see the point at time O as it falls on the y-axis. The
axis function could be used to change the axes from the defaults shown here.

80 Temperatures one afternoon

£l

75 *

70 *

65

Temperature

60

55 *

50 : : : :
0 5 10 15 20 25
Time
FIGURE 3.6 Plot of temperature data from a file

3.7 User-Defined Functions That Return a Single Value

To create the data file, the Editor in MATLAB can ABC Corporation Sales: 2013
be used; it is not necessary to create a matrix and 3
save it to a file. Instead, just enter the numbers in
a new script file, and Save As “timetemp.dat”, 2.6

2.8

making sure that the Current Folder is set. B 2.4
5
= 22
=
PRACTICE 3.8 g 2
The sales (in billions) for two separate divisions of the ABC S 1.8 o

Corporation for each of the four quarters of 2013 are stored 16 *
in a file called “salesfigs.dat”: 1'4
. [e]

1.2 1.41.81.3

1.2 : ' ' : :
2.22.51.7 2.9 1 15 2 25 3 35 4

First, create this file (just type the numbers in the Quarter
Editor, and Save As “salesfigs.dat”). FIGURE 3.7 Plot of sales data from file
Then, write a script that will

load the data from the file into a matrix

separate this matrix into 2 vectors

create the plot seen in Figure 3.7 (which uses black

circles and stars as the plot symbols).

QUICK QUESTION!

Sometimes files are not in the format that is desired. For >> load expresults.dat
example, a file “expresults.dat” has been created that has >> expresults

some experimental results, but the order of the values is expresults =

reversed in the file: 4.0000 53.4000

3.0000 44.3000

i iii 2.0000 50.0000
5 50.0 1.0000 55.5000
1 55.5 >> correctorder = flipud(expresults)
correctorder =
How could we create a new file that reverses the order? 1.0000 55 5000
Answer 2.0000 50.0000
We can load from this file into a matrix, use the flipud func- 3.0000 44.3000
tion to “flip” the matrix up to down, and then save this matrix 4.0000 53.4000
to a new file: >> save neworder.dat correctorder — ascii

3.7 USER-DEFINED FUNCTIONS THAT RETURN
A SINGLE VALUE

We have already seen the use of many functions in MATLAB. We have used
many built-in functions, such as sin, fix, abs, and double. In this section,

m CHAPTER 3: Introduction to MATLAB Programming

user-defined functions will be introduced. These are functions that the
programmer defines, and then uses, in either the Command Window or in
a script.

There are several different types of functions. For now, we will concentrate on
the kind of function that calculates and returns a single result. Other types of
functions will be introduced in Chapter 6.

First, let us review some of what we already know about functions, including
the use of built-in functions. Although, by now, the use of these functions is
straightforward, explanations will be given in some detail here in order to
compare and contrast to the use of user-defined functions.

The length function is an example of a built-in function that calculates a single
value; it returns the length of a vector. As an example,

length(vec)

is an expression that represents the number of elements in the vector vec. This
expression could be used in the Command Window or in a script. Typically,
the value returned from this expression might be assigned to a variable:

>> vec = 1:3:10;
>> lv = length(vec)
Tv =

4

Alternatively, the length of the vector could be printed:

>> fprintf('The length of the vector is %Zd\n', length(vec))
The length of the vector is 4

The function call to the length function consists of the name of the function,
followed by the argument in parentheses. The function receives as input the
argument, and returns a result. What happens when the call to the function is
encountered is that control is passed to the function itself (in other words, the
function begins executing). The argument(s) are also passed to the function.

The function executes its statements and does whatever it does (the actual
contents of the built-in functions are not generally known or seen by the user)
to determine the number of elements in the vector. As the function is calculating
a single value, this result is then returned and it becomes the value of the
expression. Control is also passed back to the expression that called it in the first
place, which then continues (e.g., in the first example the value would then be
assigned to the variable v and in the second example the value was printed).

3.7.1 Function Definitions
There are different ways to organize scripts and functions, but, for now, every
function that we write will be stored in a separate M-file, which is why they are

3.7 User-Defined Functions That Return a Single Value a

commonly called “M-file functions”. Although to type in functions in the
Editor it is possible to choose the New down arrow and then Function, it will
be easier for now to type in the function by choosing New Script (this ignores
the defaults that are provided when you choose Function).

A function in MATLAB that returns a single result consists of the following.

The function header (the first line), comprised of:

the reserved word function

the name of the output argument followed by the assignment operator
(=), as the function returns a result
the name of the function (important—this should be the same as the
name of the M-file in which this function is stored to avoid confusion)
the input arguments in parentheses, which correspond to the arguments
that are passed to the function in the function call.

A comment that describes what the function does (this is printed when

help is used).

The body of the function, which includes all statements and eventually
must put a value in the output argument.

end at the end of the function (note that this is not necessary in many cases
in current versions of MATLAB, but it is considered good style anyway).

The general form of a function definition for a function that calculates and

returns one value looks like this:

functionname.m

function outputargument = functionname(input arguments)
% Comment describing the function

Statements here; these must include putting a value in the output
argument

end % of the function

For example, the following is a function called calcarea that calculates and

returns the area of a circle; it is stored in a file called calcarea.m.

calcarea.m

function area = calcarea(rad)

% calcarea calculates the area of a circle
% Format of call: calcarea(radius)

% Returns the area

area = pi * rad * rad;
end

A radius of a circle is passed to the function to the input argument rad; the
function calculates the area of this circle and stores it in the output argument area.

m CHAPTER 3: Introduction to MATLAB Programming

Note

Many of the functions in
MATLAB are imple-
mented as M-file func-
tions; these can also be
displayed using type.

In the function header, we have the reserved word function, then the output
argument area followed by the assignment operator =, then the name of the
function (the same as the name of the M-file), and then the input argument rad,
which is the radius. As there is an output argument in the function header,
somewhere in the body of the function we must put a value in this output argu-
ment. This is how a value is returned from the function. In this case, the function is
simple and all we have to do is assign to the output argument area the value of the
built-in constant pi multiplied by the square of the input argument rad.

The function can be displayed in the Command Window using the type
command.

>> type calcarea

function area = calcarea(rad)

% calcarea calculates the area of a circle
% Format of call: calcarea(radius)

% Returns the area

area = pi * rad * rad;
end

3.7.2 Calling a Function
The following is an example of a call to this function in which the value
returned is stored in the default variable ans:

>> calcarea(4)
ans =
50.2655

Technically, calling the function is done with the name of the file in which the
function resides. To avoid confusion, it is easiest to give the function the same
name as the filename, so that is how it will be presented in this book. In this
example, the function name is calcarea and the name of the file is calcarea.m.
The result returned from this function can also be stored in a variable in an
assignment statement; the name could be the same as the name of the output
argument in the function itself, but that is not necessary. So, for example,
either of these assignments would be fine:

>> area = calcarea(b)
area =
78.5398

>> myarea = calcarea(6)
myarea =
113.0973

The output could also be suppressed when calling the function:

>> mya = calcarea(5.2);

3.7 User-Defined Functions That Return a Single Value gtk

Note
The value returned from the calcarea function could also be printed using The printing is not done
either disp or fprintf: in the function itself;

>> disp(calcarea(4)) rather, the function

50.2655 returns the area and
>> fprintf('The area is %.1f\n', calcarea(4)) then an output state-
The area is 50.3 ment can print or

display it.
QUICK QUESTION!
Could we pass a vector of radii to the calcarea function? calcareaii.m
Answer function area = calcareaii(rad)
This function was written assuming that the argument was % calcareaii returns the area of a circle
a scalar, so calling it with a vector instead would produce an % The input argument can be a vector
eITOr message: % of radii

% Format: calcareaii(radiiVector)
>> calcarea(1:3)

Error using *

. . . area = pi * rad .* rad;
Inner matrix dimensions must agree.

end

Error in calcarea (line 6)

>> 1 17(1:
area = pi * rad * rad; calcareaii(1:3)

ans =
This is because the * was used for multiplication in the func- 3.1416 12.5664 28.2743
tion, but .* must be used when multiplying vectors term by
term. Changing this in the function would allow either scalars >> calcareaii(4)
or vectors to be passed to this function: ans =

50.2655

Note that the .* operator is only necessary when multiplying
the radius vector by itself. Multiplying by pi is scalar multi-
plication, so the .* operator is not needed there. We could have
also used:

area = pi * rad ." 2;

Using help with either of these functions displays the contiguous block of
comments under the function header (the block comment). It is useful to put
the format of the call to the function in this block comment:

>> help calcarea
calcarea calculates the area of a circle
Format of call: calcarea(radius)
Returns the area

Many organizations have standards regarding what information should be
included in the block comment in a function. These can include:

name of the function
description of what the function does

m CHAPTER 3: Introduction to MATLAB Programming

format of the function call

description of input arguments
description of output argument
description of variables used in function
programmer name and date written
information on revisions.

Although this is excellent programming style, for the most part in this book
these will be omitted simply to save space. Also, documentation in MATLAB
suggests that the name of the function should be in all uppercase letters in the
beginning of the block comment. However, this can be somewhat misleading
in that MATLAB is case-sensitive and typically lowercase letters are used for the
actual function name.

3.7.3 Calling a User-defined Function From a Script

Now, we will modify our script that prompts the user for the radius and
calculates the area of a circle to call our function calcarea to calculate the area
of the circle rather than doing this in the script.

circleCallFn.m

% This script calculates the area of a circle

% 1t prompts the user for the radius

radius = input('Please enter the radius: ');

% 1t then calls our function to calculate the

% area and then prints the result

area = calcarea(radius);

fprintf('For a circle with a radius of %.2f,"',radius)
fprintf(' the area is %.2f\n',area)

Running this will produce the following:

>> circleCallfn
Please enter the radius: 5
For a circle with a radius of 5.00, the area is 78.54

3.7.3.1 Simple Programs

In this book, a script that calls function(s) is what we will call a MATLAB
program. In the previous example, the program consisted of the script circle-
CallFn and the function it calls, calcarea. The general form of a simple program,
consisting of a script that calls a function to calculate and return a value, looks
like the diagram shown in Figure 3.8.

Itis also possible for a function to call another (whether built-in or user-defined).

3.7 User-Defined Functions That Return a Single Value g{ix}

fn.m
. function out = fn(in)
script.m / out = value based on in
Get input end
CallTn W/'
result

® Print result

FIGURE 3.8 General form of a simple program

3.7.4 Passing Multiple Arguments
In many cases it is necessary to pass more than one argument to a function. For
example, the volume of a cone is given by

1
V = —7r’h
3

where r is the radius of the circular base and h is the height of the cone.
Therefore, a function that calculates the volume of a cone needs both the
radius and the height:

conevol.m

function outarg = conevol(radius, height)
% conevol calculates the volume of a cone
% Format of call: conevol(radius, height)
% Returns the volume

outarg = (pi/3) * radius .~ 2 .* height;
end

As the function has two input arguments in the function header, two values
must be passed to the function when it is called. The order makes a difference.
The first value that is passed to the function is stored in the first input argu-
ment (in this case, radius) and the second argument in the function call is
passed to the second input argument in the function header.

This is very important: the arguments in the function call must correspond
one-to-one with the input arguments in the function header.

Here is an example of calling this function. The result returned from the
function is simply stored in the default variable ans.

>> conevol(4,6.1)
ans =
102.2065

In the next example, the result is instead printed with a format of two decimal
places.

>> fprintf('The cone volume is %.2f\n',conevol(3, 5.5))
The cone volume is 51.84

m CHAPTER 3: Introduction to MATLAB Programming

Note that by using the array exponentiation and multiplication operators, it
would be possible to pass arrays for the input arguments, as long as the
dimensions are the same.

QUICK QUESTION!

Nothing is technically wrong with the following function, but ~Answer
what about it does not make sense? Why pass the third argument if it is not used?

fun.m

out = a*b;
end

function out = fun(a,b,c)

PRACTICE 3.9

Write a script that will prompt the user for the radius and height, call the function conevol to calcu-
late the cone volume, and print the result in a nice sentence format. So, the program will consist of
a script and the conevol function that it calls.

PRACTICE 3.10

For a project, we need some material to form a rectangle. Write a function calcrectarea that will
receive the length and width of a rectangle in inches as input arguments, and will return the
area of the rectangle. For example, the function could be called as shown, in which the result is
stored in a variable and then the amount of material required is printed, rounded up to the nearest
square inch.

>> ra = calcrectarea(3.1, 4.4)

ra =

13.6400

>> fprintf('We need %d sq in.\n', ...
ceil(ra))
We need 14 sq in.

3.7.5 Functions with Local Variables

The functions discussed thus far have been very simple. However, in many
cases the calculations in a function are more complicated, and may require the
use of extra variables within the function; these are called local variables.

For example, a closed cylinder is being constructed of a material that costs
a certain dollar amount per square foot. We will write a function that will
calculate and return the cost of the material, rounded up to the nearest square

3.7 User-Defined Functions That Return a Single Value {1

foot, for a cylinder with a given radius and a given height. The total surface
area for the closed cylinder is
SA = 27rh+2nr?

For a cylinder with a radius of 32 inches, height of 73 inches, and cost per
square foot of the material of $4.50, the calculation would be given by the
following algorithm.

Calculate the surface area SA = 2 * 7t * 32 * 73 + 2 * 7t * 32 * 32 inches
squared.

Convert the SA from square inches to square feet = SA/144.

Calculate the total cost = SA in square feet * cost per square foot.

The function includes local variables to store the intermediate results.

cylcost.m

function outcost = cylcost(radius, height, cost)

% cylcost calculates the cost of constructing a closed
% cylinder

% Format of call: cylcost(radius, height, cost)

% Returns the total cost

% The radius and height are in inches
% The cost is per square foot

% Calculate surface area in square inches
surf_area = 2 * pi * radius .* height + 2 * pi * radius .» 2;

% Convert surface area in square feet and round up
surf_areasf = ceil(surf_area/144);

% Calculate cost
outcost = surf_areasf .* cost;
end

The following shows examples of calling the function:

>> cylcost(32,73,4.50)
ans =
661.5000

>> fprintf('The cost would be $%.2f\n", cylcost(32,73,4.50))
The cost would be $661.50

3.7.6 Introduction to Scope

Itis important to understand the scope of variables, which is where they are valid.
More will be described in Chapter 6, but, basically, variables used in a script are
also known in the Command Window and vice versa. All variables used in
a function, however, are local to that function. Both the Command Window and
scripts use a common workspace, the base workspace. Functions, however, have
their own workspaces. This means that when a script is executed, the variables

m CHAPTER 3: Introduction to MATLAB Programming

can subsequently be seen in the Workspace Window and can be used from the
Command Window. This is not the case with functions, however.

3.8 COMMANDS AND FUNCTIONS

Some of the commands that we have used (e.g., format, type, save, and load)
are just shortcuts for function calls. If all of the arguments to be passed to
a function are strings, and the function does not return any values, it can be
used as a command. For example, the following produce the same results:

>> type scriptl

radius = 5
area = pi * (radius”2)

>> type('scriptl')

radius = 5
area = pi * (radius”2)

Using load as a command creates a variable with the same name as the file. If
a different variable name is desired, it is easiest to use the functional form of
load. For example,

>> type pointcoords.dat

3.3 1.2
4 5.3
>> points = Toad('pointcoords.dat")
points =
3.3000 1.2000
4.0000 5.3000

m Explore Other Interesting Features

Note that this chapter serves as an introduction to several topics, most

of which will be covered in more detail in future chapters. Before getting

to those chapters, the following are some things you may wish to
explore.

m The help command can be used to see short explanations of built-in
functions. At the end of this, a doc page link is also listed. These
documentation pages frequently have much more information and
useful examples. They can also be reached by typing “doc fnname”,
where fnname is the name of the function.

m Look at formatSpec on the doc page on the fprintf function for more
ways in which expressions can be formatted (e.g., padding numbers with
zeros and printing the sign of a number).

m Use the Search Documentation to find the conversion characters used to
print other types, such as unsigned integers and exponential notation. M

Summary ey}

H Summary

Common Pitfalls

Spelling a variable name different ways in different places in a script or
function.

Forgetting to add the second ‘s’ argument to the input function when
character input is desired.

Not using the correct conversion character when printing.

Confusing fprintf and disp. Remember that only fprintf can format.

Programming Style Guidelines

Especially for longer scripts and functions, start by writing an algorithm.
Use comments to document scripts and functions, as follows:
a block of contiguous comments at the top to describe a script
a block of contiguous comments under the function header for
functions
comments throughout any M-file (script or function) to describe
each section.
Make sure that the “H1” comment line has useful information.
Use your organization’s standard style guidelines for block comments.
Use mnemonic identifier names (names that make sense, e.g., radius
instead of xyz) for variable names and for file names.
Make all output easy to read and informative.
Put a newline character at the end of every string printed by fprintf so
that the next output or the prompt appears on the line below.
Put informative labels on the x and y axes, and a title on all plots.
Keep functions short — typically no longer than one page in length.
Suppress the output from all assignment statements in functions and
scripts.
Functions that return a value do not normally print the value; it should
simply be returned by the function.
Use the array operators .*, ./, .\, and .A in functions so that the input
arguments can be arrays and not just scalars. |

MATLAB Reserved Words

function end

MATLAB Functions and Commands

type xlabel clf grid
input ylabel figure bar
disp title hold load
forintf axis legend save

plot

m CHAPTER 3: Introduction to MATLAB Programming

MATLAB Operators

comment % comment block %f{, %}

Write a simple script that will calculate the volume of a hollow sphere,

(-1

where 13 is the inner radius and 1, is the outer radius. Assign a value to a variable for
the inner radius, and also assign a value to another variable for the outer radius.
Then, using these variables, assign the volume to a third variable. Include
comments in the script.

The atomic weight is the weight of a mole of atoms of a chemical element. For
example, the atomic weight of oxygen is 15.9994 and the atomic weight of hydrogen
is 1.0079. Write a script that will calculate the molecular weight of hydrogen peroxide,
which consists of two atoms of hydrogen and two atoms of oxygen. Include
comments in the script. Use help to view the comment in your script.

Write an input statement that will prompt the user for the name of a chemical
element as a string. Then, find the length of the string.

The input function can be used to enter a vector, such as:

>> vec = input('Enter a vector: ')
Enter a vector: 4 : 7
vec =

4 5 6 7

Experiment with this and find out how the user can enter a matrix.
Write an input statement that will prompt the user for a real number and store it in
a variable. Then, use the fprintf function to print the value of this variable using
two decimal places.
Experiment, in the Command Window, with using the fprintf function for real
numbers. Make a note of what happens for each. Use fprintf to print the real
number 12345.6789

without specifying any field width

in a field width of 10 with 4 decimal places

in a field width of 10 with 2 decimal places

in a field width of 6 with 4 decimal places

in a field width of 2 with 4 decimal places.
Experiment, in the Command Window, with using the fprintf function for integers.
Make a note of what happens for each. Use fprintf to print the integer 12345

without specifying any field width

in a field width of 5

in a field width of 8

in a field width of 3.
In the metric system, fluid flow is measured in cubic meters per second (m®/s).
A cubic foot per second (ft%/s) is equivalent to 0.028 m®/s. Write a script titled
flowrate that will prompt the user for flow in cubic meters per second and will
print the equivalent flow rate in cubic feet per second. Here is an example of
running the script. Your script must produce output in exactly the same format as
this:

>> flowrate

Enter the flow in m”*3/s: 15.2

A flow rate of 15.200 meters per sec
is equivalent to 542.857 feet per sec

Write a script called echostring that will prompt the user for a string and will echo
print the string in quotes:

>> echostring
Enter your string: hi there
Your string was: 'hi there'

If the lengths of two sides of a triangle and the angle between them are known, the
length of the third side can be calculated. Given the lengths of two sides (b and c)
of a triangle, and the angle between them « in degrees, the third side a is calcu-
lated as follows:

a>=Db*+ c?—2b c cos(e)

Write a script thirdside that will prompt the user and read in values for b, ¢, and
o. (in degrees), and then calculate and print the value of a with three decimal
places. The format of the output from the script should look exactly like this:

>> thirdside

Enter the first side: 2.2

Enter the second side: 4.4

Enter the angle between them: 50

The third side is 3.429

For more practice, write a function to calculate the third side, so the script will call
this function.

Write a script that will prompt the user for a character, and will print it twice; once
left-justified in a field width of b, and again right-justified in a field width of 3.
Write a script Iumin that will calculate and print the luminosity L of a star in Watts.
The luminosity L is given by L = 4 7 d? b, where d is the distance from the sun in
meters and b is the brightness in Watts/meters?. Here is an example of executing
the script:

Exercises (k]

CHAPTER 3: Introduction to MATLAB Programming

>> Tumin

This script will calculate the Tuminosity of a star.

When prompted, enter the star's distance from the sun
in meters, and its brightness in W/meters squared.

Enter the distance: 1.26el?2
Enter the brightness: 2e-17
The luminosity of this star is 399007399.75 watts

In engineering mechanics, a vector is a set of numbers that indicate both
magnitude and direction. Units such as velocity and force are vector quantities. An
example of a vector could be <2.34, 4.244, 5.323> meters/second. This vector
describes the velocity of a particle at a certain point in three-dimensional space,
<x,y,z>. In solving problems related to vectors, it's handy to know the unit vector
of a certain measurement. A unit vector is a vector that has a certain direction, but
a magnitude of 1. The equation for a unit vector in three-dimensional space is:

4o xy2)

Write a script that prompts the user for x, y, and z values, and then calculates the
unit vector.
Write a script that assigns values for the x coordinate and the y coordinate of
a point, and then plots this using a green +.
Plot sin(x) for x values ranging from 0 to 7t (in separate Figure Windows):

using 10 points in this range

using 100 points in this range.
Atmospheric properties, such as temperature, air density, and air pressure, are
important in aviation. Create a file that stores temperatures in degrees Kelvin at
various altitudes. The altitudes are in the first column and the temperatures in the
second. For example, it may look like this:

1000 288
2000 281
3000 269

Write a script that will load this data into a matrix, separate it into vectors, and then
plot the data with appropriate axis labels and a title.

Generate a random integer n, create a vector of the integers 1 through n in steps of
2, square them, and plot the squares.

Create a 3 x 6 matrix of random integers, each in the range from 50 to 100. Write
this to a file called randfile.dat. Then, create a new matrix of random integers, but
this time make it a 2 x 6 matrix of random integers, each in the range from 50 to
100. Append this matrix to the original file. Then, read the file in (which will be to
a variable called randfile) just to make sure that worked!

In hydrology, hyetographs are used to display rainfall intensity during a storm. The
intensity could be the amount of rain per hour, recorded every hour for a 24-hour
period. Create your own data file to store the intensity in inches per hour every
hour for 24 hours. Use a bar chart to display the intensities.

A part is being turned on a lathe. The diameter of the part is supposed to be 20,000
mm. The diameter is measured every 10 minutes, and the results are stored in a file
called partdiam.dat. Create a data file to simulate this. The file will store the time in
minutes and the diameter at each time. Plot the data.

A file “floatnums.dat” has been created for use in an experiment. However, it
contains float (real) numbers and what is desired instead is integers. Also, the file is
not exactly in the correct format; the values are stored columnwise rather than
rowwise. For example, if the file contains the following:

90.5792 27.8498 97.0593
12.6987 54.6882 95.7167
91.3376 95.7507 48.5376
63.2359 96.4889 80.0280

9.7540 15.7613 14.1886

what is really desired is:

91 13 91 63 10
28 55 96 96 16
97 96 49 80 14

Create the data file in the specified format. Write a script that would read from the
file floatnums.dat into a matrix, round the numbers, and write the matrix in the
desired format to a new file called intnums.dat.

Create a file called “testtan.dat” comprised of two lines with three real numbers on
each line (some negative, some positive, in the —1 to 3 range). The file can be
created from the Editor or saved from a matrix. Then, load the file into a matrix and
calculate the tangent of every element in the resulting matrix.

A file called “hightemp.dat” was created some time ago, which stores, on every
line, a year followed by the high temperature at a specific site for each month of
that year. For example, the file might look like this:

89 42 49 55 72 63 68 77 82 76 67
90 45 50 56 59 62 68 75 77 75 66
91 44 43 60 60 60 65 69 74 70 70
etc.

As can be seen, only two digits were used for the year (which was common in the
last century). Write a script that will read this file into a matrix, create a new matrix
which stores the years correctly as 19xx, and then write this to a new file called
“y2ktemp.dat”. (Hint: add 1900 to the entire first column of the matrix.) Such a file,
for example, would look like this:

1989 42 49 55 72 63 68 77 82 76 67
1990 45 50 56 59 62 68 75 77 75 66
1991 44 43 60 60 60 65 69 74 70 70
etc.

Exercises

111

CHAPTER 3: Introduction to MATLAB Programming

Write a function calcrectarea that will calculate and return the area of a rectangle.
Pass the length and width to the function as input arguments.
Write a function perim that receives the radius r of a circle, and calculates and
returns the perimeter P of the circle (P = 2 7t 1). Here are examples of using the
function:
>> perimeter = perim(5.3)
perimeter =
33.3009

>> fprintf('The perimeter is %.1f\n', perim(4))
The perimeter is 25.1
>> help perim

Calculates the perimeter of a circle

Renewable energy sources, such as biomass, are gaining increasing attention.
Biomass energy units include megawatt hours (MWh) and gigajoules (GJ). One
MWh is equivalent to 3.6 GJ. For example, 1 cubic meter of wood chips produces
1 MWh.

Write a function mwh_to_gj that will convert from MWh to GJ.

The velocity of an aircraft is typically given in either miles/hour or meters/second. Write
a function that will receive one input argument, the velocity of an airplane in miles per
hour, and will return the velocity in meters per second. The relevant conversion factors
are: 1 hour = 3600 seconds, 1 mile = 5280 feet, and 1 foot = 0.3048 meters.

List some differences between a script and a function.

The velocity of a moving fluid can be found from the difference between the total
and static pressures P; and P, For water, this is given by

V = 1.016y/P; — Ps

Write a function that will receive as input arguments the total and static pressures,
and will return the velocity of the water.

Write a fives function that will receive two arguments for the number of rows and
columns, and will return a matrix with that size of all fives.

Write a function isdivby4 that will receive an integer input argument, and will
return logical 1 for true if the input argument is divisible by 4 or logical false if it
is not.

Write a function isint that will receive a number input argument innum, and will
return 1 for true if this number is an integer or 0 for false if not. Use the fact that
innum should be equal to int32(innum) if it is an integer. Unfortunately, owing to
round-off errors, it should be noted that it is possible to get logical 1 for true if the
input argument is close to an integer. Therefore, the output may not be what you
might expect, as shown here.

Exercises ik}

>> isint(4)
ans =
1
>> 1sint(4.9999)
ans =
0
>> 1s1nt(4.9999999999999999999999999999)
ans =
1

A Pythagorean triple is a set of positive integers (a, b, ¢) such that a® + b? = %
Write a function ispythag that will receive three positive integers (a, b, ¢ — in that
order) and will return logical 1 for true if they form a Pythagorean triple or 0 for
false if not.

A function can return a vector as a result. Write a function vecout that will
receive one integer argument and will retum a vector that increments from the
value of the input argument to its value plus b, using the colon operator. For
example,

>> vecout(4)
ans =
4 5 6 7 8 9

Write a function repvec that receives a vector and the number of times each
element is to be duplicated. The function should then return the resulting vector.
Do this problem using built-in functions only. Here are some examples of calling
the function:

>> repvec(b:-1:1,2)
ans =
5 5 4 4 3 3 2 2 1 1
>> repvec([0 1 01,3)
ans =
0 0 0 1 1 1 0 0 0

Write a function that is called pickone, which will receive one input argument x,
which is a vector, and will return one random element from the vector. For
example,

>> disp(pickone(-2:0))

-1

>> help pickone

pickone(x) returns a random element from vector x

The cost of manufacturing n units (where n is an integer) of a particular product at
a factory is given by the equation:

C(n) = 5n% — 44n + 11

CHAPTER 3: Introduction to MATLAB Programming

Write a script mfgcost that will:
prompt the user for the number of units n
call a function costn that will calculate and return the cost of manufacturing n
units
print the result (the format must be exactly as shown below).
Next, write the function costn, which simply receives the value of n as an input
argument, and calculates and retumns the cost of manufacturing n units.
Here is an example of executing the script:

>> mfgcost
Enter the number of units: 100
The cost for 100 units will be $45611.00

The conversion depends on the temperature and other factors, but an approxi-
mation is that 1 inch of rain is equivalent to 13 inches of snow. Write a script
that prompts the user for the number of inches of rain, calls a function to
retum the equivalent amount of snow, and prints this result. Write the function,
as welll

The volume V of a regular tetrahedron is given by
_ 1 3
V= E\/ﬁ s

where s is the length of the sides of the equilateral triangles that form the faces of
the tetrahedron. Write a program to calculate such a volume. The program will
consist of one script and one function. The function will receive one input argu-
ment, which is the length of the sides, and will return the volume of the tetrahe-
dron. The script will prompt the user for the length of the sides, call the function to
calculate the volume, and print the result in a nice sentence format. For simplicity,
we will ignore units.
Many mathematical models in engineering use the exponential function. The
general form of the exponential decay function is:

y(t) = Ae™"
where A is the initial value at t = 0 and 7 is the time constant for the function. Write
a script to study the effect of the time constant. To simplify the equation, set A
equal to 1. Prompt the user for two different values for the time constant, and for
beginning and ending values for the range of a t vector. Then, calculate two
different y vectors using the above equation and the two time constants, and graph
both exponential functions on the same graph within the range the user specified.
Use a function to calculate y. Make one plot red. Be sure to label the graph and
both axes. What happens to the decay rate as the time constant gets larger?
An exponential decaying sinusoid has very interesting properties. In fluid
dynamics, for example, the following equation models the wave pattermns of
a particular liquid when the liquid is perturbed by an external force:

y(x) = Fe~sin(bx)
where F'is the magnitude of the external impulse force, and a and b are constants

associated with the visocity and density, respectively. The following data have
been collected for the following types of fluids:

Exercises

Fluid a value b value 1300 __ Company Costs and Sales
Ethyl Alcohol 0.246 0.806 o Costs
Water 0.250 1.000 1200 © o+ Sales |1
Qil 0.643 1.213

11006 © l

Write a script that prompts the user for a value for F.

Then, create an x-vector (you decide on the values) and
then a y-vector using the above equation (write 900 | g
a function for this). Plot this, which models the wave

1000 + 4

pattern of a fluid when perturbed. Do this for the three 8907 .
different fluids; plot using the values above and 700 |
compare them. .

A file called costssales.dat stores for a company some 600 15 2 25 3 35 4 a5 5
cost and sales figures for the last n quarters (n is not Quarter
defined ahead of time). The costs are in the first
) FIGURE 3.9 Plot of cost and sales data
column and the sales are in the second column. For
example, if five quarters were represented, there
would be five lines in the file, and it might look like this:

1100 800
1233 650
1111 1001
1222 1300
999 1221

Write a script called salescosts that will read the data from this file into a matrix.
When the script is executed it will do three things. First, it will print how many
quarters were represented in the file, such as:

>> salescosts
There were 5 quarters in the file

Next, it will plot the costs using black circles and sales using black stars (*) in

a Figure Window with a legend (using default axes), as seen in Figure 3.9.
Finally, the script will write the data to a new file called newfile.dat in a different
order. The sales will be the first row and the costs will be the second row. For
example, if the file is as shown above, the resulting file will store the following:

800 650 1001 1300 1221
1100 1233 1111 1222 999

It should not be assumed that the number of lines in the file is known.

CHAPTER 4

Selection Statements

CONTENTS

selection statements action nesting statements 4.1 The if
branching statements temporary variable cascading if-else Statement..117
condition error-checking “is” functions 4.2 The if-else

Statement..121

4.3 Nested if-else
Statements 123

In the scripts and functions we've seen thus far, every statement was executed 4.4 The switch

in sequence. That is not always desirable, and in this chapter we’ll see how to Statement..129
make choices as to whether statements are executed or not, and how to choose 4.5 The menu
between or among statements. The statements that accomplish this are called Function131

selection or branching statements. 4.6 The “is” Func-

The MATLAB® software has two basic statements that allow us to make tions 1n
choices: the if statement and the switch statement. The if statement has MATLAB....133
optional else and elseif clauses for branching. The if statement uses expres-

sions that are logically true or false. These expressions use relational and

logical operators. MATLAB also has a menu function that presents choices to

the user; this will be covered at the end of this chapter.

4.1 THE IF STATEMENT

The if statement chooses whether another statement, or group of statements, is
executed or not. The general form of the if statement is:

if condition
action
end

A condition is a relational expression that is conceptually, or logically, true or
false. The action is a statement, or a group of statements, that will be executed
if the condition is true. When the if statement is executed, first the condition is 117

MATLAB®. http://dx.doi.org/10.1016/B978-0-12-405876-7.00004-3
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-405876-7.00004-3

CHAPTER 4: Selection Statements

evaluated. If the value of the condition is true, the action will be executed; if
not, the action will not be executed. The action can be any number of state-
ments until the reserved word end; the action is naturally bracketed by the
reserved words if and end. (Note that this is different from the end that is used
as an index into a vector or matrix.) The action is usually indented to make it
easier to see.

For example, the following if statement checks to see whether the value of
a variable is negative. If it is, the value is changed to a zero; otherwise, nothing
is changed.

if num < 0
num = 0
end

If statements can be entered in the Command Window, although they
generally make more sense in scripts or functions. In the Command Window,
the if line would be entered, followed by the Enter key, the action, the Enter
key, and, finally, end and Enter. The results will follow immediately. For
example, the preceding if statement is shown twice here.

>> num = -4;
>> 1f num < 0
num = 0
end
num =
0

>> num = 5;
>> if num < 0
num = 0
end
>>

Note that the output from the assignment is not suppressed, so the result of
the action will be shown if the action is executed. The first time the value of the
variable is negative so the action is executed and the variable is modified, but,
in the second case, the variable is positive so the action is skipped.

This may be used, for example, to make sure that the square root function is
not used on a negative number. The following script prompts the user for
a number and prints the square root. If the user enters a negative number the if
statement changes it to zero before taking the square root.

sgrtifexamp.m

% Prompt the user for a number and print its sqrt
num = input('Please enter a number: ');

% 1f the user entered a negative number, change it
if num < 0O
num = 0;
end
fprintf('The sqrt of %.1f is %.1f\n',num,sqrt(num))

Here are two examples of running this script:

>> sqrtifexamp
Please enter a number: -4.2
The sqrt of 0.0 is 0.0

>> sqrtifexamp
Please enter a number: 1.44
The sqrt of 1.4 is 1.2

Note that in the script the output from the assignment statement is
suppressed. In this case, the action of the if statement was a single assignment
statement. The action can be any number of valid statements. For example, we
may wish to print a note to the user to say that the number entered was being
changed. Also, instead of changing it to zero we will use the absolute value of
the negative number entered by the user.

sqrtifexampii.m

% Prompt the user for a number and print its sqrt
num = input('Please enter a number: ');

% If the user entered a negative number, tell
% the user and change it
if num < 0O
disp('OK, we''11l use the absolute value')
num = abs(num);
end
fprintf('The sqrt of %.1f is %.1f\n',num,sqrt(num))

>> sqrtifexampii

Please enter a number: -25

0K, we'll use the absolute value
The sqrt of 25.0 is 5.0

Note that, as seen in this example, two single quotes in the disp statement are
used to print one single quote.

PRACTICE 4.1

Write an if statement that would print “Hey, you get overtime!” if the value of a variable hours is
greater than 40. Test the if statement for values of hours less than, equal to, and greater than 40.
Will it be easier to do this in the Command Window or in a script?

4.1 The if Statement

119

CHAPTER 4: Selection Statements
QUICK QUESTION!

Assume that we want to create a vector of increasing integer
values from myminto mymax. We will write a function createvec
that receives two input arguments, mymin and mymax, and
returns a vector with values from mymin to mymax in steps of
one. First, we would make sure that the value of mymin is less
than the value of mymax. If not, we would need to exchange
their values before creating the vector. How would we accom-
plish this?

Answer
To exchange values, a third variable — a temporary variable —
is required. For example, let's say that we have two variables,
a and b, storing the values:

a = 3;

5 = 5g
To exchange values, we could not just assign the value of b to
a, as follows:

a = b;

createvec.m

If that were done, then the value of a (the 3), is lost! Instead, we
need to assign the value of a first to a temporary variable so
that the value is not lost. The algorithm would be:

B assign the value of a to temp
B assign the value of b to a
m assign the value of temp to b.

>> temp = a;
>> a=0>
3 =

5
>> b = temp
b:

3

Now, for the function. An if statement is used to determine
whether or not the exchange is necessary.

function outvec =

% Format of call:
% Returns a vector

% If the "minimum"
if mymin > mymax
temp = mymin;
mymin = mymax;
mymax = temp;
end

outvec = mymin:mymax;
end

createvec(mymin, mymax)

% createvec creates a vector that iterates from a
% specified minimum to a maximum
createvec(minimum, maximum)

isn't smaller than the "maximum",
% exchange the values using a temporary variable

% Use the colon operator to create the vector

Examples of calling the function are:

>> createvec(4,6)
ans =
4 5 6

>> createvec(/,3)
ans =
3 4 5 6 7

4.2 The if-else Statement bAl

4.1.1 Representing Logical True and False

It has been stated that conceptually true expressions have the logical value of
1 and expressions that are conceptually false have the logical value of 0.
Representing the concepts of logical true and false in MATLAB is slightly
different: the concept of false is represented by the value of 0, but the concept
of true can be represented by any nonzero value (not just 1). This can lead to
some strange logical expressions. For example:

>> all(1:3)
ans =
1

Also, consider the following if statement:

>> if 5
disp('Yes, this is truel')
end
Yes, this is truel

As 5 is a nonzero value, the condition is true. Therefore, when this logical
expression is evaluated, it will be true, so the disp function will be executed
and “Yes, this is true” is displayed. Of course, this is a pretty bizarre if
statement — one that hopefully would never be encountered!

However, a simple mistake in an expression can lead to a similar result. For
example, let's say that the user is prompted for a choice of ‘Y’ or ‘N’ for a yes/
no question.

letter = input('Choice (Y/N): ","'s');
In a script we might want to execute a particular action if the user responded
with ‘Y. Most scripts would allow the user to enter either lowercase or

uppercase; for example, either ‘y’ or ‘Y’ to indicate “yes”. The proper expression
that would return true if the value of letter was 'y’ or ‘Y’ would be

letter == 'y' || letter == "Y'
However, if by mistake this was written as:
letter == 'y' || 'Y’ %“Note: incorrect!!

this expression would ALWAYS be true, regardless of the value of the variable
letter. This isbecause 'Y ' isa nonzero value, so it is a true expression. The first part
of the expression may be false, but as the second expression is true the entire
expression would be true, regardless of the value of the variable letter.

4.2 THE IF-ELSE STATEMENT

The if statement chooses whether or not an action is executed. Choosing
between two actions, or choosing from among several actions, is accom-
plished using if-else, nested if-else, and switch statements.

m CHAPTER 4: Selection Statements

The if-else statement is used to choose between two statements or sets of
statements. The general form is:

if condition
actionl
else
action?
end

First, the condition is evaluated. If it is true, then the set of statements
designated as “action1” is executed, and that is the end of the if-else statement.
If, instead, the condition is false, the second set of statements designated as
“action2” is executed, and that is the end of the if-else statement. The first set
of statements (“action1”) is called the action of the if clause; it is what will be
executed if the expression is true. The second set of statements (“action2”) is
called the action of the else clause; it is what will be executed if the expression
is false. One of these actions, and only one, will be executed — which one
depends on the value of the condition.

For example, to determine and print whether or not a random number in the
range from O to 1 is less than 0.5, an if-else statement could be used:

if rand < 0.5

disp('It was less than .5!")
else

disp('It was not less than .5!")
end

PRACTICE 4.2

Write a script printsindegorrad that:

will prompt the user for an angle

will prompt the user for (r)adians or (d)egrees, with radians as the default

if the user enters ‘d’, the sind function will be used to get the sine of the angle in degrees;
otherwise, the sin function will be used — which sine function to use will be based solely on
whether the user entered a ‘d’ or not (a ‘d’ means degrees, so sind is used; otherwise, for any
other character the default of radians is assumed, so sin is used)

will print the result.

Here are examples of running the script:

>> printsindegorrad

Enter the angle: 45

(r)adians (the default) or (d)egrees: d
The sin is 0.71

>> printsindegorrad

Enter the angle: pi

(r)adians (the default) or (d)egrees: r
The sin is 0.00

4.3 Nested if-else Statements vz}

One application of an if-else statement is to check for errors in the
inputs to a script (this is called error-checking). For example, an earlier
script prompted the user for a radius and then used that to calculate the
area of a circle. However, it did not check to make sure that the radius was
valid (e.g., a positive number). Here is a modified script that checks the
radius:

checkradius.m

% This script calculates the area of a circle
% 1t error-checks the user's radius
radius = input('Please enter the radius: ');
if radius <=0
fprintf('Sorry; %.2f is not a valid radius\n',radius)

else
area = calcarea(radius);
fprintf('For a circle with a radius of %.2f,",radius)
fprintf(' the area is %.2f\n',area)

end

Examples of running this script when the user enters invalid and then valid
radii are shown as follows:

>> checkradius
Please enter the radius: -4
Sorry; -4.00 is not a valid radius

>> checkradius
Please enter the radius: 5.5
For a circle with a radius of 5.50, the area is 95.03

The if-else statement in this example chooses between two actions:
printing an error message, or using the radius to calculate the area and then
printing out the result. Note that the action of the if clause is a single
statement, whereas the action of the else clause is a group of three
statements.

4.3 NESTED IF-ELSE STATEMENTS

The if-else statement is used to choose between two actions. To choose
from among more than two actions the if-else statements can be nested,
meaning one statement inside of another. For example, consider imple-
menting the following continuous mathematical function y = f(x):

m CHAPTER 4: Selection Statements

y=1 1if x < -1
y =x%if -1 < x <2
y=4 if x > 2

The value of y is based on the value of x, which could be in one of three
possible ranges. Choosing which range could be accomplished with three
separate if statements, as follows:

if x < -1
y =1;

end

if x >= -1 && x <=2
y = X*2;

end

if x > 2
y = 4;

end

Note that the && in the expression of the second if statement is necessary.
Writing the expression as —1<=x<=2 would be incorrect; recall from Chapter
1 that that expression would always be true, regardless of the value of the
variable x.

As the three possibilities are mutually exclusive, the value of y can be deter-
mined by using three separate if statements. However, this is not very efficient
code: all three logical expressions must be evaluated, regardless of the range in
which x falls. For example, if x is less than —1, the first expression is true and 1
would be assigned to y. However, the two expressions in the next two if
statements are still evaluated. Instead of writing it this way, the statements can
be nested so that the entire if-else statement ends when an expression is found
to be true:

if x < -1
y =1;
else
% 1f we are here, x must be >= -1
% Use an if-else statement to choose
% between the two remaining ranges

if x <=2
y = X*2;
else

% No need to check
% If we are here, x must be > 2
y = 4;
end
end

4.3 Nested if-else Statements VA3

By using a nested if-else to choose from among the three possibilities, not all
conditions must be tested as they were in the previous example. In this case, if
x is less than —1, the statement to assign 1 to y is executed and the if-else
statement is completed so no other conditions are tested. If, however, x is not
less than —1, then the else clause is executed. If the else clause is executed,
then we already know that x is greater than or equal to —1 so that part does not
need to be tested.

Instead, there are only two remaining possibilities: either x is less than or
equal to 2 or it is greater than 2. An if-else statement is used to
choose between those two possibilities. So, the action of the else clause was
another if-else statement. Although it is long, all of the above code is one if-
else statement, a nested if-else statement. The actions are indented to show
the structure of the statement. Nesting if-else statements in this way can be
used to choose from among 3, 4, 5, 6, ... the possibilities are practically
endless!

This is actually an example of a particular kind of nested if-else called
a cascading if-else statement. This is a type of nested if-else statement in which
the conditions and actions cascade in a stair-like pattern.

Not all nested if-else statements are cascading. For example, consider the
following (which assumes that a variable x has been initialized):
if x >=0
if x < 4
disp('a")
else
disp('b")
end
else
disp('c")
end

4.3.1 The elseif Clause

THE PROGRAMMING CONCEPT

In some programming languages, choosing from multiple options means using nested if-else
statements. However, MATLAB has another method of accomplishing this using the elseif
clause.

m CHAPTER 4: Selection Statements
THE EFFICIENT METHOD

To choose from among more than two actions, the elseif clause is used. For example, if there
are n choices (where n > 3 in this example), the following general form would be used:

if conditionl

actionl
elseif condition2
action?
elseif condition3
action3
% etc: there can be many of these
else
actionn % the nth action

end

The actions of the if, elseif and else clauses are naturally bracketed by the reserved words if,
elseif else, and end.

For example, the previous example could be written using the elseif clause, rather than nesting
if-else statements:

if x < -1
y =1;
elseif x <=2
y = x"2;
else
y = 4;
end

Note that in this example we only need one end. So, there are three ways of accomplishing the
original task: using three separate if statements, using nested if-else statements, and using an
if statement with elseif clauses, which is the simplest.

This could be implemented in a function that receives a value of x and returns the correspond-
ing value of y:

calcy.m
function y = calcy(x)
% calcy calculates y as a function of x
% Format of call: calcy(x)
5y =1 if x < -1
%y = x"2 if -l <= x <=2
%y =4 if x> 2
if x < -1
y =1;
elseif x <=2
y = x"2;
else
y = 4;
end
end

4.3 Nested if-else Statements vy}

>> x=1.1;
>> y = calcy(x)
y =

1.2100

QUICK QUESTION!

How could you write a function to determine whether an input Note that there is no need to check for the last case: if
argument is a scalar, a vector, or a matrix? the input argument isn't a scalar or a vector, it must be

a matrix!
Answer

To do this, the size function can be used to find the dimensions Examples of calling this function are:
of the input argument. If both the number of rows and columns
is equal to 1, then the input argument is a scalar. If, however,
only one dimension is 1, the input argument is a vector (either
a row or column vector). If neither dimension is 1, the input
argument is a matrix. These three options can be tested using
a nested if-else statement. In this example, the word ‘scalar’,
‘vector’, or ‘matrix’ is returmned from the function.

>> findargtype(33)
ans =
scalar

>> disp(findargtype(2:5))
vector

>> findargtype(zeros(2,3))
ans =
findargtype.m matrix

function outtype = findargtype(inputarg)

% findargtype determines whether the input
% argument is a scalar, vector, or matrix
% Format of call: findargtype(inputArgument)
% Returns a string

[r c] = size(inputarg);
if r—128 c—

outtype = 'scalar';
lseii P =1 || ¢ =

outtype = 'vector';
else

outtype = 'matrix’';

end
end

m CHAPTER 4: Selection Statements

PRACTICE 4.3

Modify the function findargtype to return either ‘scalar’, ‘Tow vector’, ‘column vector’, or ‘matrix’,
depending on the input argument.

PRACTICE 4.4

Modify the original function findargtype to use three separate if statements instead of a nested
if-else statement.

Another example demonstrates choosing from more than just a few options.
The following function receives an integer quiz grade, which should be in the
range from O to 10. The function then returns a corresponding letter grade,
according to the following scheme: a 9 or 10 is an ‘A’, an 8 isa ‘B, a 7 isa ‘'C,
a 6 is a ‘D', and anything below that is an F'. As the possibilities are mutually
exclusive, we could implement the grading scheme using separate if state-
ments. However, it is more efficient to have one if-else statement with
multiple elseif clauses. Also, the function returns the letter ‘X’ if the quiz grade
is not valid. The function assumes that the input is an integer.

letgrade.m

function grade = letgrade(quiz)

% letgrade returns the letter grade corresponding
% to the integer quiz grade argument

% Format of call: Tetgrade(integerQuiz)

% Returns a character

% First, error-check
if quiz < 0 || quiz > 10
grade = 'X"';

% If here, it is valid so figure out the
% corresponding Tletter grade
elseif quiz == 9 || quiz == 10

grade = 'A";
elseif quiz == 8

grade = 'B';
elseif quiz ==

grade = 'C";
elseif quiz ==

grade = 'D";
else

grade = 'F';
end

end

4.4 The switch Statement VA

Three examples of calling this function are:

>> quiz = 8;

>> lettergrade = letgrade(quiz)
lettergrade =

B

>> quiz = 4;

>> letgrade(quiz)

ans =

F

>> 1g = letgrade(22)
1g =
X

In the part of this if statement that chooses the appropriate letter
grade to return, all of the logical expressions are testing the value of
the variable quiz to see if it is equal to several possible values, in sequence (first
9 or 10, then 8, then 7, etc.). This part can be replaced by a switch statement.

4.4 THE SWITCH STATEMENT

A switch statement can often be used in place of a nested if-else or an if
statement with many elseif clauses. Switch statements are used when
an expression is tested to see whether it is equal to one of several possible
values.

The general form of the switch statement is:

switch switch_expression
case caseexpl
actionl
case caseexp?
action2
case caseexp3d
action3
% etc: there can be many of these
otherwise
actionn
end

The switch statement starts with the reserved word switch, and ends with
the reserved word end. The switch_expression is compared, in sequence, to the
case expressions (caseexpl, caseexp2, etc.). If the value of the switch_expression
matches caseexpl, for example, then actionl is executed and the switch
statement ends. If the value matches caseexp3, then action3 is executed,
and in general if the value matches caseexpi where i can be any integer
from 1 to n, then actioni is executed. If the value of the switch_expression
does not match any of the case expressions, the action after the word

CHAPTER 4: Selection Statements

otherwise is executed (the nth action, actionn) if there is an otherwise (if
not, no action is executed). It is not necessary to have an otherwise clause,
although it is frequently useful. The switch_expression must be either a scalar
or a string.

For the previous example, the switch statement can be used as follows:

switchletgrade.m

function grade = switchletgrade(quiz)

% switchletgrade returns the Tetter grade corresponding
% to the integer quiz grade argument using switch

% Format of call: switchletgrade(integerQuiz)

% Returns a character

% First, error-check
if quiz < 0 | quiz > 10
grade = "'X';
else
% 1f here, it is valid so figure out the
% corresponding letter grade using a switch
switch quiz

case 10
grade = 'A";
case 9
grade = 'A"';
case 8
grade = 'B';
case 7/
grade = 'C";
case 6
grade = 'D";
otherwise
grade = 'F';
end
end
end
Note Here are two examples of calling this function:
It is assumed that the
. >> quiz = 22;
user will enter an . .
) >> 1g = switchletgrade(quiz)
integer value. If the 1g =

user does not, either an X

error message will be

>> switchletgrade(9)
ans =

A

printed or an incorrect
result will be returned.
Methods for remedying
this will be discussed in
Chapter 5.

4.5 The menu Function &}l

As the same action of printing ‘A’ is desired for more than one grade, these can
be combined as follows:

switch quiz
case {10,9}

grade = 'A';
case 8
grade = 'B"';
% etc.

The curly braces around the case expressions 10 and 9 are necessary.

In this example, we error-checked first using an if-else statement. Then, if the
grade was in the valid range, a switch statement was used to find the corre-
sponding letter grade.

Sometimes the otherwise clause is used for the error message rather than first
using an if-else statement. For example, if the user is supposed to enter only
a 1, 3, or 5, the script might be organized as follows:

switcherror.m

% Example of otherwise for error message
choice = input('Enter a 1, 3, or 5: ");

switch choice
case 1
disp('It''s a onell")
case 3
disp('It''s a threell")
case 5
disp('It''s a fivell")
otherwise
disp('Follow directions next time!!")
end

In this example, actions are taken if the user correctly enters one of the valid
options. If the user does not, the otherwise clause handles printing an error
message. Note the use of two single quotes within the string to print one quote.

>> switcherror
Enter a 1, 3, or 5: 4
Follow directions next time!!

Note that the order of the case expressions does not matter, except that this is
the order in which they will be evaluated.

4.5 THE MENU FUNCTION

MATLAB has a built-in function called menu that will display a Figure
Window with pushbuttons for the options. The first string passed to the menu

m CHAPTER 4: Selection Statements

)u.. 20X

Pick a pizza

Cheese

Shroom

Sausage

FIGURE 4.1 Menu
figure window

function is the heading (an instruction), and the rest are labels that appear on
the pushbuttons. The function returns the number of the button that is
pushed. For example,

>> mypick = menu('Pick a pizza', 'Cheese', 'Shroom', 'Sausage');

will display the Figure Window seen in Figure 4.1 and store the result of the
user’s button push in the variable mypick.

There are three buttons, the equivalent values of which are 1, 2, and 3. For
example, if the user pushes the “Sausage” button, mypick would have the
value 3:

>> mypick
mypick =
3

Note that the strings ‘Cheese’, ‘Shroom’, and ‘Sausage’ are just labels on the
buttons. The actual value of the button push in this example would be 1, 2, or
3, so that is what would be stored in the variable mypick.

A script that uses this menu function would then use either an if-else state-
ment or a switch statement to take an appropriate action based on the button
pushed. For example, the following script simply prints which pizza to order,
using a switch statement.

pickpizza.m

%This script asks the user for a type of pizza
% and prints which type to order using a switch

mypick = menu('Pick a pizza','Cheese','Shroom', 'Sausage');
switch mypick
case 1
disp('Order a cheese pizza')
case 2
disp('Order a mushroom pizza')
case 3
disp('Order a sausage pizza')
otherwise
disp('No pizza for us today')

end

This is an example of running this script and clicking on the “Sausage” button:

>> pickpizza
Order a sausage pizza

4.6 The “is” Functions in MATLAB geEX]

QUICK QUESTION!

How could the otherwise action get executed in this switch returned from the menu function will be 0, which will cause

statement? e otherwise clause to be executed. This could also have

tat t? the oth i 1 tob ted. Thi 1d also hi

I eyTeT been accomplished using a case 0 label instead of
otherwise.

If the user clicks on the red “X” on the top of the menu box to
close it instead of on one of the three buttons, the value

Instead of using a switch statement in this script, an alternative method would
be to use an if-else statement with elseif clauses.

pickpizzaifelse.m

%This script asks the user for a type of pizza
% and prints which type to order using if-else
mypick = menu('Pick a pizza','Cheese', 'Shroom','Sausage');
if mypick ==

disp('Order a cheese pizza')
elseif mypick ==

disp('Order a mushroom pizza")
elseif mypick ==

disp('Order a sausage pizza')
else

disp('No pizza for us today"')
end

PRACTICE 4.5

Write a function that will receive one number as an input argument. It will use the menu function
to display ‘Choose a function’ and will have buttons labeled ‘fix’, ‘floor’, and ‘abs’. Using a switch
statement, the function will then calculate and return the requested function (e.g, if ‘abs’ is chosen,
the function will return the absolute value of the input argument). Choose a fourth function to
return if the user clicks on the red ‘X' instead of pushing a button.

4.6 THE “IS” FUNCTIONS IN MATLAB

There are a lot of functions that are built into MATLAB that test whether or
not something is true; these functions have names that begin with the word
“is”. For example, we have already seen the use of the isequal function to
compare arrays for equality. As another example, the function called isletter
returns logical 1 if the character argument is a letter of the alphabet or O if it
is not:

m CHAPTER 4: Selection Statements

>> isletter('h')

ans =
1
>> isletter('4"')
ans =
0

The isletter function will return logical true or false so it can be used in
a condition in an if statement. For example, here is code that would prompt
the user for a character, and then print whether or not it is a letter:

mychar = input('Please enter a char: ','s');
if isletter(mychar)
disp('Is a letter')
else
disp('Not a letter")
end

When used in an if statement, it is not necessary to test the value to see
whether the result from isletter is equal to 1 or O; this is redundant. In other
words, in the condition of the if statement,

isletter(mychar)
and
isletter(mychar) ==

would produce the same results.

QUICK QUESTION!

How can we write our own function myisletter to accomplish ~ Answer

the same result as isletter?

The function would compare the character's position within
the character encoding.

myisletter.m

%
%
%
%

function outlog = myisletter(inchar)

myisletter returns true if the input argument
is a letter of the alphabet or false if not
Format of call: myisletter(inputCharacter)
Returns logical 1 or O

outlog = inchar >=

end

a' && inchar <= 'z’
|| inchar >= 'A" && inchar <= "'Z';

Note that it is necessary to check for both lowercase

and uppercase letters.

4.6 The “is” Functions in MATLAB ki

The function isempty returns logical true if a variable is empty, logical false if it
has a value, or an error message if the variable does not exist. Therefore, it can be
used to determine whether a variable has a value yet or not. For example,

>> clear
>> isempty(evec)
Undefined function or variable 'evec'.

>> evec = [];
>> isempty(evec)
ans =

1

>> evec = [evec 5];
>> isempty(evec)
ans =

0

The isempty function will also determine whether or not a string variable is
empty. For example, this can be used to determine whether the user entered
a string in an input function:

>> istr = input('Please enter a string: ','s');
Please enter a string:
>> isempty(istr)
ans =
1

PRACTICE 4.6

Prompt the user for a string, and then print either the string that the user entered or an error
message if the user did not enter anything.

The function iskeyword will determine whether or not a string is the name of
a keyword in MATLAB, and therefore something that cannot be used as an
identifier name. By itself (with no arguments), it will return the list of all
keywords. Note that the names of functions like “sin” are not keywords, so
their values can be overwritten if used as an identifier name.

>> iskeyword('sin')

ans =
0
>> iskeyword('switch')
ans =
1
>> iskeyword
ans =
"break’
'case’
'catch’

% etc.

CHAPTER 4: Selection Statements

There are many other “is” functions; the complete list can be found in the Help
browser.

m Explore Other Interesting Features

There are many other “is” functions. As more concepts are covered in the
book, more and more of these functions will be introduced. Others you
may want to explore now include isvarname, and functions that will tell
you whether an argument is a particular type or not (ischar, isfloat,
isinteger, islogical, isnumeric, isstr, isreal).

There are “is” functions to determine the type of an array: isvector,
isrow, iscolumn.

The try/catch functions are a particular type of if-else used to find and
avoid potential errors. They may be a bit complicated to understand at
this point, but keep them in mind for the future! |

B Summary
Common Pitfalls

Using = instead of == for equality in conditions.

Putting a space in the keyword elseif.

Not using quotes when comparing a string variable to a string,
such as

letter ==y

instead of

letter == "'y

Not spelling out an entire logical expression. An example is typing
radius || height <=0

instead of

radius <= 0 || height <= 0

or typing
lTetter == "y' || 'Y’
instead of
Tetter == "y’ || Tetter == "Y'

Note that these are logically incorrect, but would not result in error
messages. Note also that the expression “letter=="y' | 'Y"'" will always
be true, regardless of the value of the variable letter, as 'Y' is a nonzero
value and therefore a true expression.

Summary eEY}

m Writing conditions that are more complicated than necessary, such as
if (x < b) ==

instead of just
if (x <5)

(The “==1" is redundant.)
m Using an if statement instead of an if-else statement for error-checking;
for example,

if error occurs

print error message
end
continue rest of code

instead of

if error occurs

print error message
else

continue rest of code
end

In the first example, the error message would be printed but then the
program would continue anyway.

Programming Style Guidelines

m Use indentation to show the structure of a script or function. In
particular, the actions in an if statement should be indented.

m When the else clause isn’t needed, use an if statement rather than an
if-else statement. The following is an example:

if unit == "1
len = len * 2.54;

else
len = len; % this does nothing so skip it!

end

Instead, just use:
if unit = "'
len = Ten * 2.54;

end

= Do not put unnecessary conditions on else or elseif clauses. For
example, the following prints one thing if the value of a variable number
is equal to 5, and something else if it is not.

if number ==
disp('It is a 5')
elseif number ~=5
disp('It is not a 5")
end

m CHAPTER 4: Selection Statements

The second condition, however, is not necessary. Either the value is 5 or
not, so just the else would handle this:

if number ==

disp('It is a 5")
else

disp('It is not a 5")
end

When using the menu function, ensure that the program handles the
situation when the user clicks on the red ‘X’ on the menu box rather than
pushing one of the buttons. |

MATLAB Reserved Words

if else
switch elseif
case otherwise

MATLAB Functions and Commands

menu isletter
isempty iskeyword

Write a script that tests whether the user can follow instructions. It prompts the
user to enter an ‘x’. If the user enters anything other than an ‘x’, it prints an error
message; otherwise, the script does nothing.

Write a function nexthour that receives one integer argument, which is an hour
of the day, and retums the next hour. This assumes a 12-hour clock; so, for
example, the next hour after 12 would be 1. Here are two examples of calling this
function.

>> fprintf('The next hour will be %d.\n',nexthour(3))
The next hour will be 4.
>> fprintf('The next hour will be Zd.\n',nexthour(12))
The next hour will be 1.

Write a script to calculate the volume of a pyramid, which is 1/3 * base * height,
where the base is length * width. Prompt the user to enter values for the length,
width, and height, and then calculate the volume of the pyramid. When the user
enters each value, he or she will then also be prompted for either ‘i’ for inches or ‘c’
for centimeters. (Note that 2.54 cm = 1 inch.) The script should print the volume

in cubic inches with three decimal places. As an example, the output format
will be:

This program will calculate the volume of a pyramid.
Enter the length of the base: 50

Is that i or c? i

Enter the width of the base: 6

Is that i or c? ¢

Enter the height: 4

Is that i or c? i

The volume of the pyramid is xxx.xxx cubic inches.

The systolic and diastolic blood pressure readings are found when the heart is
pumping and the heart is at rest, respectively. A biomedical experiment is being
conducted only on participants whose blood pressure is optimal. This is defined as
a systolic blood pressure less than 120 and a diastolic blood pressure less than 80.
Write a script that will prompt for the systolic and diastolic blood pressures of
a person, and will print whether or not that person is a candidate for this
experiment.
The Pythagorean theorem states that for a right triangle, the relationship between
the length of the hypotenuse ¢ and the lengths of the other sides a and b is
given by:

c? = a? +b?
Write a script that will prompt the user for the lengths a and ¢, call a function findb
to calculate and return the length of b, and print the result. Note that any values of
a or cthat are less than or equal to zero would not make sense, so the script should
print an error message if the user enters any invalid value. Here is the function
findb:

findb.m

function b = findb(a,c)

% Calculates b from a and c
b = sqrt(cr2 - ar2);

end

2
The eccentricity of an ellipse is defined as /1 — (g)

where a is the semimajor axis and b is the semiminor axis of the ellipse. A script

prompts the user for the values of a and b. As division by 0 is not possible, the script
prints an error message if the value of a is 0 (it ignores any other errors, however). If
aisnot 0, the script calls a function to calculate and retumns the eccentricity, and then

the script prints the result. Write the script and the function.

d,d
The area A of a thombus is defined as A = 172 where d; and d, are the lengths

of the two diagonals. Write a script rhomb that first prompts the user for the lengths

Exercises

139

m CHAPTER 4: Selection Statements

of the two diagonals. If either is a negative number or zero, the script prints an error
message. Otherwise, if they are both positive, it calls a function rhombarea to returmn
the area of the thombus, and prints the result. Write the function, also! The lengths
of the diagonals, which you can assume are in inches, are passed to the rhombarea
function.

Simplify this statement:

if number > 100
number = 100;
else
number = number;
end

Simplify this statement:

if val >= 10
disp('Hello")
elseif val < 10
disp('Hi")

end
Write a function createvecMToN that will create and return a vector of integers
from mto n (where mis the first input argument and n is the second), regardless of
whether m is less than n or greater than n. If mis equal to n, the “vector” will just
be 1 x 1 or a scalar.
The continuity equation in fluid dynamics for steady fluid flow through a stream
tube equates the product of the density, velocity, and area at two points that have
varying cross-sectional areas. For incompressible flow, the densities are constant
so the equation is A1V1 = AyV5 . If the areas and V; are known, V; can be found as
% V1. Therefore, whether the velocity at the second point increases or decreases
depends on the areas at the two points. Write a script that will prompt the user for
the two areas in square feet, and will print whether the velocity at the second point
will increase, decrease, or remain the same as at the first point.
In chemistry, the pH of an aqueous solution is a measure of its acidity. The pH scale
ranges from 0 to 14, inclusive. A solution with a pH of 7 is said to be neutral,
a solution with a pH greater than 7 is basic, and a solution with a pH less than 7 is
acidic Write a script that will prompt the user for the pH of a solution, and will print
whether it is neutral, basic, or acidic. If the user enters an invalid pH, an error
message will be printed.
Write a function flipvec that will receive one input argument. If the input argument
is a row vector, the function will reverse the order and return a new row vector. If
the input argument is a column vector, the function will reverse the order and
return a new column vector. If the input argument is a matrix or a scalar, the
function will return the input argument unchanged.

Exercises uCil

In a script, the user is supposed to enter either a 'y’ or ‘'n’ in response to a prompt.
The user’s input is read into a character variable called “letter”. The script will print
“OK, continuing” if the user enters either a 'y’ or 'Y’, or it will print “OK, halting” if
the user enters a ‘n’ or ‘N’ or “Error” if the user enters anything else. Put this
statement in the script first:

letter = input('Enter your answer: ', 's');

Write the script using a single nested if-else statement (elseif clause is
permitted).

Write the script from the previous exercise using a switch statement
instead.

In aerodynamics, the Mach number is a critical quantity. It is defined as the ratio of
the speed of an object (e.g., an aircraft) to the speed of sound. If the Mach number
is less than 1, the flow is subsonic; if the Mach number is equal to 1, the flow is
transonic; if the Mach number is greater than 1, the flow is supersonic. Write

a script that will prompt the user for the speed of an aircraft and the speed of sound
at the aircraft’s current altitude, and will print whether the condition is subsonic,
transonic, or Supersonic.

Write a script that will prompt the user for a temperature in degrees Celsius, and
then an ‘I’ for Fahrenheit or ‘'K’ for Kelvin. The script will print the corresponding
temperature in the scale specified by the user. For example, the output might
look like this:

Enter the temp in degrees C: 29.3
Do you want K or F? F
The temp in degrees F is 84.7

The format of the output should be exactly as specified above. The conversions are:

9
F76C+32

K = C+273.16

Write a script that will generate one random integer and will print whether
the random integer is an even or an odd number. (Hint: an even number is
divisible by 2, whereas an odd number is not; so check the remainder after
dividing by 2.)

Amino acids are the fundamental compounds that make up proteins. Viruses, such
as influenza and HIV, have genomes which code for proteins that have pathogenic
results. Human bodies recognize foreign proteins by binding them to other mole-
cules so that they can be recognized and killed. Write a script that determines
whether an amino acid is going to bind to a certain molecule. It is known that the
first region (1—5) of the molecule binds strongly to amino acids A, C, I, L, Y, and E,

m CHAPTER 4: Selection Statements

and weakly to W, S, M, G, and K. It is also known that the second region (6—10)
binds strongly to H, D, W, K, L, and A, and weakly to [, E, P, C, and T. The script
prompts the user for two things: the region number and a character for the amino
acid. The script should then determine whether the amino acid and the molecule
results in a “strong” or “weak” binding.

In fluid dynamics, the Reynolds number Re is a dimensionless number used to
determine the nature of a fluid flow. For an internal flow (e.g., water flow through
a pipe), the flow can be categorized as follows:

Re < 2300 Laminar Region
2300 < Re < 4000 Transition Region
Re > 4000 Turbulent Region

Write a script that will prompt the user for the Reynolds number of a flow and will
print the region the flow is in. Would it be a good idea to write the selection
statements using switch? Why or why not?

Global temperature changes have resulted in new patterns of storms in

many parts of the world. Tracking wind speeds and a variety of categories of
storms is important in understanding the ramifications of these temperature
variations. Programs that work with storm data will use selection statements
to determine the severity of storms and also to make decisions based on

the data.

Whether a storm is a tropical depression, tropical storm, or hurricane is determined
by the average sustained wind speed. In miles per hour, a storm is a tropical
depression if the winds are less than 38 mph. It is a tropical storm if the winds are
between 39 and 73 mph, and it is a hurricane if the wind speeds are > 74 mph.
Write a script that will prompt the user for the wind speed of the storm and will
print which type of storm it is.

Clouds are generally classified as high, middle, or low level. The height of the cloud
is the determining factor, but the ranges vary depending on the temperature. For
example, in tropical regions the classifications may be based on the following
height ranges (given in feet):

low 0—6500
middle 6500—20,000
high > 20,000

Write a script that will prompt the user for the height of the cloud in feet and print
the classification.

The Beaufort Wind Scale is used to characterize the strength of winds. The scale
uses integer values and goes from a force of 0, which is no wind, up to 12, which is

Exercises %]

a hurricane. The following script first generates a random force value. Then, it
prints a message regarding what type of wind that force represents, using
a switch statement. You are to re-write this switch statement as one nested

if-else statement that accomplishes exactly the same thing. You may use else
and/or elseif clauses.

ranforce = randi([0, 121);

switch ranforce
case 0
disp('There is no wind")
case {1,2,3,4,5,6}
disp('There is a breeze')

case {7,8,9}

disp('This is a gale')
case {10,11}

disp('It is a storm')
case 12

disp('Hello, Hurricane!")
end

Re-write the following nested if-else statement as a switch statement that
accomplishes exactly the same result for all possible values. Assume that val is
an integer variable that has been initialized, and that “ok”, “xx”, “yy”, “tt”, and
“mid" are functions. Write the switch statement in the most succinct way.

if val > b
if val <7
ok(val)
elseif val < 9
xx(val)
else
yy(val)
end
else
if val < 3
yy(val)
elseif val == 3
tt(val)
else
mid(val)
end
end

m CHAPTER 4:

Selection Statements

Rewrite the following switch statement as one nested if-else statement (elseif
clauses may be used). Assume that there is a variable letter and that it has been
initialized.

switch Tetter

[l

case 'x
disp('Hello")
case {'y"', 'Y'}
disp('Yes")
case 'Q'
disp('Quit")
otherwise
disp('Error")

end

Rewrite the following nested if-else statement as a switch statement that
accomplishes exactly the same thing. Assume that num is an integer variable that
has been initialized and that there are functions f1, 12, 13, and 4. Do not use any if
or if-else statements in the actions in the switch statement, only calls to the four
functions.

if num < -2 || num > 4
f1(num)
else
if num <= 2
if num >= 0
f2(num)
else
f3(num)
end
else
f4(num)
end
end

”ou

Write a script areaMenu that will print a list consisting of “cylinder”, “circle”, and
“rectangle”. It prompts the user to choose one, and then prompts the user for the
appropriate quantities (e.g., the radius of the circle) and then prints its area. If the
user enters an invalid choice, the script simply prints an error message. The script
should use a nested if-else statement to accomplish this. Here are two examples
of running it (units are assumed to be inches).

>> areaMenu

Menu
1. Cylinder
2. Circle

3. Rectangle

Please choose one: 2
Enter the radius of the circle: 4.1
The area is 52.81

>> areaMenu

Menu
1. Cylinder
2. Circle

3. Rectangle

Please choose one: 3
Enter the length: 4
Enter the width: 6
The area is 24.00

Modify the areaMenu script to use a switch statement to decide which area to
calculate.

Modify the areaMenu script (either version) to use the built-in menu function
instead of printing the menu choices.

Write a script that prompts the user for a value of a variable x. Then, it uses the menu
function to present choices between ‘sin(x)’, ‘cos(x)’, and ‘tan(x)’. The script will print
whichever function of xthe user chooses. Use an if-else statement to accomplish this.
Modify the previous script to use a switch statement instead.

Write a function that will receive one number as an input argument. It will use the
menu function that will display ‘Choose a function’ and will have buttons labeled
‘ceil’, ‘round’, and ‘sign’. Using a switch statement, the function will then
calculate and return the requested function (e.g., if ‘Tound’ is chosen, the function
will return the rounded value of the input argument).

Modify the function in Exercise 32 to use a nested if-else statement instead.
Write a script that will prompt the user for a string and then print whether it was
empty or not.

Write a function called makemat that will receive two row vectors as input
arguments; from them create and returm a matrix with two rows. You may not
assume that the length of the vectors is known. Also, the vectors may be of
different lengths. If that is the case, add 0's to the end of one vector first to make it
as long as the other. For example, a call to the function might be:

>>makemat(1:4, 2:7)
ans =

nNo
[CalEE
~l

Exercises

145

CHAPTER b5

Loop Statements and Vectorizing Code

CONTENTS

looping statements echo printing infinite loop 5.1 The for
counted loops running sum e Loop........... 148
conditional loops running product sentinel 5.2 Nested for
action preallocate counting Loops. 155
vectorized code nested loop error-checking 5.3 while
iterate outer loop Loops......... 162
loop or iterator variable inner loop 5.4 Loops with
Vectors and
Matric_es_:
Consider the problem of calculating the area of a circle with a radius of Vectonzmgl?z

0.3 cm. A MATLAB® program is certainly not needed to do that; you'd use
your calculator instead and punch in 7w * 0.32. However, if a table of circle
areas is desired, for radii ranging from 0.1 cm to 100 cm in steps of 0.05
(e.g., 0.1, 0.15, 0.2, etc.), it would be very tedious to use a calculator and
write it all down. One of the great uses of programming languages and
software packages, such as MATLAB, is the ability to repeat a process such
as this.

5.5 Timing....... 181

This chapter will cover statements in MATLAB that allow other statement(s) to
be repeated. The statements that do this are called looping statements, or loops.
There are two basic kinds of loops in programming: counted loops and
conditional loops. A counted loop is a loop that repeats statements a specified
number of times (so, ahead of time it is known how many times the state-
ments are to be repeated). In a counted loop, for example, you might say
“repeat these statements 10 times”. A conditional loop also repeats statements,
but ahead of time it is not known how many times the statements will need to
be repeated. With a conditional loop, for example, you might say “repeat these
statements until this condition becomes false”. The statement(s) that are
repeated in any loop are called the action of the loop.

147

MATLAB®. http://dx.doi.org/10.1016/B978-0-12-405876-7.00005-5
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-405876-7.00005-5

m CHAPTER 5: Loop Statements and Vectorizing Code

There are two different loop statements in MATLAB: the for statement and the
while statement. In practice, the for statement is used as the counted loop, and
the while is usually used as the conditional loop. To keep it simple, that is
how they will be presented here.

In many programming languages, looping through the elements in a vector or
matrix is a very fundamental concept. In MATLAB, however, as it is written to
work with vectors and matrices, looping through elements is usually not
necessary. Instead, “vectorized code” is used, which means replacing the loops
through matrices with the use of built-in functions and operators. Both
methods will be described in this chapter. The earlier sections will focus on
“the programming concepts”, using loops. These will be contrasted with “the
efficient methods”, using vectorized code. Loops are still relevant and necessary
in MATLAB in other contexts, just not normally when working with vectors or
matrices.

5.1 THE FOR LOOP

The for statement, or the for loop, is used when it is necessary to repeat
statement(s) in a script or function, and when it is known ahead of time how
many times the statements will be repeated. The statements that are repeated
are called the action of the loop. For example, it may be known that the action
of the loop will be repeated five times. The terminology used is that we iterate
through the action of the loop five times.

The variable that is used to iterate through values is called a loop variable, or
an iterator variable. For example, the variable might iterate through the
integers 1 through 5 (e.g., 1, 2, 3, 4, and then 5). Although, in general,
variable names should be mnemonic, it is common in many languages for an
iterator variable to be given the name i (and if more than one iterator vari-
able is needed, i, j, k, I, etc.). This is historical and is because of the way
integer variables were named in Fortran. However, in MATLAB both i and j
are built in functions that return the value v/—1, so using either as a loop
variable will override that value. If that is not an issue, then it is okay to use i
as a loop variable.

The general form of the for loop is:

for loopvar = range
action
end

where loopvar is the loop variable, “range” is the range of values through
which the loop variable is to iterate, and the action of the loop consists of all
statements up to the end. Just like with if statements, the action is indented

to make it easier to see. The range can be specified using any vector, but
normally the easiest way to specify the range of values is to use the colon
operator.

As an example, we will print a column of numbers from 1 to 5.

THE PROGRAMMING CONCEPT

The loop could be entered in the Command Window, although, like if and switch statements,
loops will make more sense in scripts and functions. In the Command Window, the results
would appear after the for loop:

>> for 1 = 1:5
fprintf('Zd\n',i)
end

S N R R

What the for statement accomplished was to print the value of i and then the newline char-
acter for every value of 1, from 1 through b in steps of 1. The first thing that happens is that i
is initialized to have the value 1. Then, the action of the loop is executed, which is the
fprintf statement that prints the value of i (1), and then the newline character to move
the cursor down. Then, i is incremented to have the value of 2. Next, the action of the
loop is executed, which prints 2 and the newline. Then, i is incremented to 3 and that is
printed; then, 1 is incremented to 4 and that is printed; and then, finally, i is incremented
to 5 and that is printed. The final value of i is b; this value can be used once the loop
has finished.

THE EFFICIENT METHOD

Of course, disp could also be used to print a column vector, to achieve the same result:

>> disp([1:5]1")
1

o1 B~ W N

5.1 The for Loop

149

m CHAPTER 5: Loop Statements and Vectorizing Code

QUICK QUESTION!

How could you print this column of integers (using the Answer

programming method):

0
50
100
150
200

In a loop, you could print these values starting at 0, increment-
ing by 50 and ending at 200. Each is printed using a field width
of 3.

>> for 1 = 0:50:200
fprintf('%3d\n', 1)
end

5.1.1 for Loops that Do Not Use the Iterator Variable

in the Action

In the previous example, the value of the loop variable was used in the action
of the for loop: it was printed. It is not always necessary to actually use the
value of the loop variable, however. Sometimes the variable is simply used to
iterate, or repeat, an action a specified number of times. For example,

for i = 1:3
fprintf('I will not chew gum\n')
end

produces the output:

I will not chew gum
I will not chew gum
I will not chew gum

The variable i is necessary to repeat the action three times, even though the
value of i is not used in the action of the loop.

QUICK QUESTION!

What would be the result of the following for loop? Answer

for 1 = 4:2:8

fprintf('I will not chew gum\n')

end

Exactly the same output as above! It doesn't matter that the
loop variable iterates through the values 4, then 6, then 8
instead of 1, 2, 3. As the loop variable is not used in the action,
this is just another way of specifying that the action should be
repeated three times. Of course, using 1:3 makes more sense!

PRACTICE 5.1

Write a for loop that will print a column of five *'s.

5.1.2 Input in a for Loop

The following script repeats the process of prompting the user for a number,
and echo printing the number (which means simply printing it back out). A for
loop specifies how many times this is to occur. This is another example in
which the loop variable is not used in the action, but, instead, just specifies
how many times to repeat the action.

forecho.m

% This script loops to repeat the action of
% prompting the user for a number and echo-printing it

for iv = 1:3
inputnum = input('Enter a number: ');
fprintf('You entered %.1f\n",inputnum)
end

>> forecho

Enter a number: 33
You entered 33.0
Enter a number: 1.1
You entered 1.1
Enter a number: 55
You entered 55.0

In this example, the loop variable iv iterates through the wvalues 1
through 3, so the action is repeated three times. The action consists of
prompting the user for a number and echo printing it with one decimal
place.

5.1.3 Finding Sums and Products

A very common application of a for loop is to calculate sums and products.
For example, instead of just echo printing the numbers that the user enters, we
could calculate the sum of the numbers. In order to do this, we need to add
each value to a running sum. A running sum keeps changing, as we keep
adding to it. First, the sum has to be initialized to 0.

As an example, we will write a function sumnnums that will sum the n numbers
entered by the user; n is an integer argument that is passed to the function. In
a function to calculate the sum, we need a loop or iterator variable i and also
a variable to store the running sum. In this case we will use the output
argument runsum as the running sum. Every time through the loop, the next
value that the user enters is added to the value of runsum. This function will
return the end result, which is the sum of all of the numbers, stored in the
output argument runsum.

5.1 The for Loop

151

m CHAPTER 5: Loop Statements and Vectorizing Code

sumnnums . m

function runsum = sumnnums(n)

% sumnnums returns the sum of the n numbers
% entered by the user

% Format of call: sumnnums(n)

runsum = 0;

for i = 1l:n
inputnum = input('Enter a number: ');
runsum = runsum -+ inputnum;

end

end

Here is an example in which 3 is passed to be the value of the input argument
n; the function calculates and returns the sum of the numbers the user enters,
4+4+3.2+41.1, or 8.3:

>> sum_of_nums = sumnnums(3)
Enter a number: 4
Enter a number: 3.2
Enter a number: 1.1
sum_of_nums =

8.3000

Another very common application of a for loop is to find a running product.
With a product, the running product must be initialized to 1 (as opposed to
a running sum, which is initialized to 0).

PRACTICE 5.2

Write a function prodnnums that is similar to the sumnnums function, but will calculate the
product of the numbers entered by the user.

5.1.4 Preallocating Vectors

When numbers are entered by the user, it is often necessary to store them in
a vector. There are two basic methods that could be used to accomplish this.
One method is to start with an empty vector and extend the vector by adding
each number to it as the numbers are entered by the user. Extending a vector,
however, is very inefficient. What happens is that every time a vector is
extended a new “chunk” of memory must be found that is large enough for the
new vector, and all of the values must be copied from the original location in
memory to the new one. This can take a long time.

A better method is to preallocate the vector to the correct size and then change
the value of each element to store the numbers that the user enters. This method
involves referring to each index in the output vector, and placing each number into
the next element in the output vector. This method is far superior, if it is known
ahead of time how many elements the vector will have. One common method is
to use the zeros function to preallocate the vector to the correct length.

5.1 The for Loop LX]

The following is a function that accomplishes this and returns the resulting
vector. The function receives an input argument n and repeats the process n
times. As it is known that the resulting vector will have n elements, the vector
can be preallocated.

forinputvec.m

function numvec = forinputvec(n)

% forinputvec returns a vector of length n

% It prompts the user and puts n numbers into a vector
% Format: forinputvec(n)

numvec = zeros(1l,n);

for iv = 1l:n
inputnum = input('Enter a number: ');
numvec(iv) = inputnum;

end

end

Next is an example of calling this function and storing the resulting vector in
a variable called myvec.

>> myvec = forinputvec(3)
Enter a number: 44
Enter a number: 2.3
Enter a number: 11

myvec =
44,0000 2.3000 11.0000

It is very important to notice that the loop variable iv is used as the index into
the vector.

QUICK QUESTION!

If you need to just print the sum or average of the numbers that ~Answer
the user enters, would you need to store them in a vector No. You could just add each to a running sum as you read
variable? them in a loop.

QUICK QUESTION!

What if you wanted to calculate how many of the numbers that many were greater than the average (or, alternatively, you
the user entered were greater than the average? could go back and ask the user to enter them again!!).

Answer
Yes, then you would need to store them in a vector because
you would have to go back through them to count how

m CHAPTER 5: Loop Statements and Vectorizing Code

5.1.5 for Loop Example: Subplot

A function that is very useful with all types of plots is subplot, which creates
a matrix of plots in the current Figure Window. Three arguments are passed to
it in the form subplot(r,c,n), where r and ¢ are the dimensions of the matrix
and n is the number of the particular plot within this matrix. The plots are
numbered rowwise, starting in the upper left corner. In many cases, it is useful
to create a subplot in a for loop so the loop variable can iterate through the
integers 1 through n.

When the subplot function is called in a loop, the first two arguments will
always be the same as they give the dimensions of the matrix. The third
argument will iterate through the numbers assigned to the elements of the
matrix. When the subplot function is called, it makes the specified element the
“active” plot; then, any plot function can be used complete with formatting,
such as axis labeling and titles within that element.

For example, the following subplot shows the difference, in one Figure
Window, between using 20 points and 40 points to plot sin(x) between 0 and
2 * 1. The subplot function creates a 1 x 2 row vector of plots in the Figure
Window, so that the two plots are shown side by side. The loop variable i
iterates through the values 1 and then 2.

The first time through the loop, when i has the value 1, 20 * 1 or 20 points are
used, and the value of the third argument to the subplot function is 1. The second
time through theloop, 40 points are used and the third argument to subplotis 2.
The resulting Figure Window with both plots is shown in Figure 5.1.

sin plot sin plot
1——°" - 1 x :
o o °
0.8f 08F ° o
o o
o
0.6f 0.6fr0
o
o o
0.4f 0.4f o
o
021 ° 02§ °
= =
= 0 = 0o o o
(2] ° (2] °
-0.2 -0.2f o
o
-0.4 -04f o
o o
06 -0.6} ° 6
° o
-0.8 ° -0.8} °o
o
o
1 L0 -1 Y-
2 4 0 2 4 6
X

FIGURE 5.1 Subplot to demonstrate a plot using 20 points and 40 points

subplotex.m

% Demonstrates subplot using a for Toop

for i = 1:2
x = linspace(0,2*pi,20%1);
y = sin(x);

subplot(1l,2,i)

plot(x,y,"ko")

xlabel('x")

ylabel('sin(x)")

title('sin plot")
end

Note that once string manipulating functions have been covered in Chapter 7,
it will be possible to have customized titles (e.g., showing the number of
points).

5.2 NESTED FOR LOOPS

The action of a loop can be any valid statement(s). When the action of a loop
is another loop, this is called a nested loop.

The general form of a nested for loop is as follows:
for loopvarone = rangeone « outer loop
% actionone includes the inner Tloop

for Toopvartwo = rangetwo — inner Toop
actiontwo
end
end

The first for loop is called the outer loop; the second for loop is called the inner
loop. The action of the outer loop consists (in part; there could be other
statements) of the entire inner loop.

As an example, a nested for loop will be demonstrated in a script that
will print a box of stars (*). Variables in the script will specify how many
rows and columns to print. For example, if rows has the value 3 and columns
has the value 5, a 3 x 5 box would be printed. As lines of output are
controlled by printing the newline character, the basic algorithm is as
follows.

For every row of output:
print the required number of stars
move the cursor down to the next line (print \n’).

5.2 Nested for Loops

155

m CHAPTER 5: Loop Statements and Vectorizing Code

printstars.m

% Prints a box of stars
% How many will be specified by two variables
% for the number of rows and columns

rows = 3;
columns = b5;
% loop over the rows
for i=l:rows
% for every row Toop to print *'s and then one \n
for j=l:columns
fprintf('*")
end
fprintf('\n")
end

Executing the script displays the output:

>> printstars
*kKkkK

*kkxk

*kkxk

The variable rows specifies the number of rows to print and the variable columns
specifies how many stars to print in each row. There are two loop variables: i is the
loop variable over the rows and j is the loop variable over the columns. As the
number of rows is known and the number of columns is known (given by the
variables rows and columns), for loops are used. There is one for loop to loop over
the rows and another to print the required number of stars for every row.

The values of the loop variables are not used within the loops, but are used
simply to iterate the correct number of times. The first for loop specifies that
the action will be repeated rows times. The action of this loop is to print stars
and then the newline character. Specifically, the action is to loop to print
columns stars (e.g., five stars) across on one line. Then, the newline character
is printed after all five stars to move the cursor down to the next line.

In this case, the outer loop is over the rows, and the inner loop is over the
columns. The outer loop must be over the rows because the script is printing
a certain number of rows of output. For each row, a loop is necessary to print
the required number of stars; this is the inner for loop.

When this script is executed, first the outer loop variable i is initialized to 1.
Then, the action is executed. The action consists of the inner loop and then
printing the newline character. So, while the outer loop variable has the value 1,
the inner loop variable j iterates through all of its values. As the value of
columns is 5, the inner loop will print a single star five times. Then, the newline
character is printed and then the outer loop variable i is incremented to 2. The

5.2 Nested for Loops

action of the outer loop is then executed again, meaning the inner loop will
print five stars and then the newline character will be printed. This continues,
and, in all, the action of the outer loop will be executed rows times.

Notice that the action of the outer loop consists of two statements (the for
loop and an fprintf statement). The action of the inner loop, however, is only

a single fprintf statement.

The fprintf statement to print the newline character must be separate from the
other fprintf statement that prints the star character. If we simply had

fprintf('*\n")

as the action of the inner loop, this would print a long column of 15 stars, not

a3 x5 box.

QUICK QUESTION!

How could this script be modified to print a triangle of stars
instead of a box such as the following:

*
*x

* kK

Answer

In this case, the number of stars to print in each row is the
same as the row number (e.g., one star is printed in row 1,
two stars in row 2, and so on). The inner for loop does not
loop to columns, but to the value of the row loop variable (so
we do not need the variable columns):

printtristars.m

% Prints a triangle of stars
% How many will be specified by a variable
% for the number of rows
rows = 3;
for i=l:rows
% inner Toop just iterates tothevalue of i
for j=1:i
fprintf('*")
end
fprintf('\n')
end

In the previous examples, the loop variables were just used to specify the
number of times the action is to be repeated. In the next example, the actual

values of the loop variables will be printed.

printloopvars.m

% Displays the loop variables
for 1 = 1:3
for j = 1:2
fprintf('i=%d, j=%d\n',i,Jj)
end
fprintf('\n")

end

Executing this script would print the values of both i and j on one line every
time the action of the inner loop is executed. The action of the outer loop

157

m CHAPTER 5: Loop Statements and Vectorizing Code

consists of the inner loop and printing a newline character, so there is
a separation between the actions of the outer loop:

>> printloopvars

i=1, j=1
i=1, j=2
i=2, j=1
i=2, j=2
i=3, j=1
i=3, j=2

Now, instead of just printing the loop variables, we can use them to
produce a multiplication table, by multiplying the values of the loop
variables.

The following function multtable calculates and returns a matrix which is
a multiplication table. Two arguments are passed to the function, which are
the number of rows and columns for this matrix.

multtable.m

function outmat = multtable(rows, columns)
% multtable returns a matrix which is a

% multiplication table

% Format: multtable(nRows, nColumns)

% Preallocate the matrix
outmat = zeros(rows,columns);
for i = l:rows
for j = l:columns
outmat(i,j) =1 * j;
end
end
end

In the following example of calling this function, the resulting matrix has three
rows and five columns:

>> multtable(3,5)

ans =
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15

Note that this is a function that returns a matrix. It preallocates the matrix to
zeros and then replaces each element. As the number of rows and columns are
known, for loops are used. The outer loop loops over the rows and the inner
loop loops over the columns. The action of the nested loop calculates i * j for

all values of i and j. Just like with vectors, it is again important to notice that the loop
variables are used as the indices into the matrix.

When i has the value 1, j iterates through the values 1 through 5, so first
we are calculating 1*1, then 1*2, then 1*3, then 1*4, and, finally, 1*5.
These are the values in the first row (first in element (1,1), then (1,2),
then (1,3), then (1,4), and finally (1,5)). Then, when i has the value 2,
the elements in the second row of the output matrix are calculated, as j
again iterates through the values from 1 through 5. Finally, when i has the
value 3, the values in the third row are calculated (3*1, 3*2, 3*3, 3*4,
and 3*5).

This function could be used in a script that prompts the user for the number of
rows and columns, calls this function to return a multiplication table, and
writes the resulting matrix to a file:

createmulttab.m

% Prompt the user for rows and columns and
% create a multiplication table to store in
% a file "mymulttable.dat"

num_rows = input('Enter the number of rows: ');
num_cols = input('Enter the number of columns: ');
multmatrix = multtable(num_rows, num_cols);

save mymulttable.dat multmatrix -ascii

The following is an example of running this script, and then loading from the
file into a matrix in order to verify that the file was created:

>> createmulttab
Enter the number of rows: 6
Enter the number of columns: 4

>> Toad mymulttable.dat
>> mymulttable
mymulttable =

1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16
5 10 15 20
6 12 18 24

PRACTICE 5.3

For each of the following (they are separate), determine what would be printed. Then, check your
answers by trying them in MATLAB.

5.2 Nested for Loops

)

m CHAPTER 5: Loop Statements and Vectorizing Code

mat = [7 11 3; 3:51;
[r, c] = size(mat);
for i = 1:r
fprintf('The sum is %d\n', sum(mat(i,:)))

for i = 1:2
fprintf('%d: ', 1)
for j = 1:4
fprintf('%2d ", Jj)
end
fprintf('\n")
end

5.2.1 Combining Nested for Loops and if Statements

The statements inside of a nested loop can be any valid statements, including
any selection statement. For example, there could be an if or if-else statement
as the action, or part of the action, in a loop.

As an example, assume there is a file called “datavals.dat” containing results
recorded from an experiment. However, some were recorded erroneously.
The numbers are all supposed to be positive. The following script reads
from this file into a matrix. It prints the sum from each row of only the
positive numbers. We will assume that the file contains integers, but will
not assume how many lines are in the file or how many numbers per line
(although we will assume that there are the same number of integers on
every line).

sumonlypos.m

% Sums only positive numbers from file

% Reads from the file into a matrix and then

% calculates and prints the sum of only the
% positive numbers from each row

load datavals.dat
[r c] = size(datavals);

for row = 1:r
runsum = 0;
for col = 1:c
if datavals(row,col) >= 0
runsum = runsum + datavals(row,col);
end
end
fprintf('The sum for row %d is %d\n',row,runsum)
end

5.2 Nested for Loops ik

For example, if the file contains:

33 -11 2
4 5 9
22 5 -7
2 11 3

the output from the program would look like this:

>> sumonlypos

The sum for row 1 is 35
The sum for row 2 is 18
The sum for row 3 is 27
The sum for row 4 is 16

The file is loaded and the data are stored in a matrix variable. The script finds
the dimensions of the matrix and then loops through all of the elements in the
matrix by using a nested loop; the outer loop iterates through the rows and the
inner loop iterates through the columns. This is important; as an action is
desired for every row, the outer loop has to be over the rows. For each element
an if-else statement determines whether the element is positive or not. It only
adds the positive values to the row sum. As the sum is found for each row, the
sumrow variable is initialized to O for every row, meaning inside of the outer
loop.

QUICK QUESTION!

Would it matter if the order of the loops was reversed in this Answer
example, so that the outer loop iterates over the columns Yes, as we want a sum for every row, the outer loop must be
and the inner loop over the rows? over the rows.

QUICK QUESTION!

What would you have to change in order to calculate and print elements in the matrix would still be referenced as
the sum of only the positive numbers from each column datavals(row,col). The row index is always given first, then
instead of each row? the column index — regardless of the order of the loops.

Answer
You would reverse the two loops and change the sentence to
say “The sum of column..."”. That is all that would change. The

m CHAPTER b:

Loop Statements and Vectorizing Code

PRACTICE 5.4

Write a function mymatmin that finds the minimum value in each column of a matrix argument
and retuns a vector of the column minimums. An example of calling the function follows:

>> mat = randi(20,3,4)

mat =
15 19 17 5
6 14 13 13
9 5 3 13

>> mymatmin(mat)
ans =
6 5 3 5

QUICK QUESTION!

Would the function mymatmin in the Practice 5.4 problem also time (for the rows if it is a row vector or for the columns if it
work for a vector argument? is a column vector).

Answer

Yes, it should, as a vector is just a subset of a matrix. In this
case, one of the loop actions would be executed only one

5.3 WHILE LOOPS

The while statement is used as the conditional loop in MATLAB; it is used to
repeat an action when ahead of time it is not known how many times the action
will be repeated. The general form of the while statement is:

while condition
action
end

The action, which consists of any number of statement(s), is executed as long
as the condition is true.

The way it works is that first the condition is evaluated. If it is logically true,
the action is executed. So, to begin with, the while statement is just like an if
statement. However, at that point the condition is evaluated again. If it is still
true, the action is executed again. Then, the condition is evaluated again. If it is
still true, the action is executed again. Then, the condition is...eventually, this
has to stop! Eventually, something in the action has to change something in
the condition so it becomes false. The condition must eventually become false
to avoid an infinite loop. (If this happens, Ctrl-C will exit the loop.)

As an example of a conditional loop, we will write a function that will find the
first factorial that is greater than the input argument high. For an integer n, the
factorial of n, written as n!, is defined as n! =1 * 2 *3 *4 * ... * n. To
calculate a factorial, a for loop would be used. However, in this case, we do
not know the value of n, so we have to keep calculating the next factorial until
a level is reached, which means using a while loop.

The basic algorithm is to have two variables: one that iterates through the
values 1,2, 3, and so on; and one that stores the factorial of the iterator at each
step. We start with 1 and 1 factorial, which is 1. Then, we check the factorial. If
it is not greater than high, the iterator variable will then increment to 2 and
find its factorial (2). If this is not greater than high, the iterator will then
increment to 3 and the function will find its factorial (6). This continues until
we get to the first factorial that is greater than high.

So, the process of incrementing a variable and finding its factorial is repeated
until we get to the first value greater than high. This is implemented using
a while loop:

factgthigh.m

function facgt = factgthigh(high)
% factgthigh returns the first factorial > input
% Format: factgthigh(inputInteger)
i=0;
fac=1;
while fac <= high

i=i+1;

fac = fac * 1;
end
facgt = fac;
end

An example of calling the function, passing 5000 for the value of the input
argument high, follows:

>> factgthigh(5000)
ans =
5040

The iterator variable i is initialized to 0, and the running product variable fac,
which will store the factorial of each value of i, is initialized to 1. The first time
the while loop is executed, the condition is true: 1 is less than or equal to
5000. So, the action of the loop is executed, which is to increment i to 1 and
fac becomes 1 (1 * 1).

After the execution of the action of the loop, the condition is evaluated again.
As it will still be true, the action is executed: i is incremented to 2 and fac will

5.3 while Loops

163

m CHAPTER 5: Loop Statements and Vectorizing Code

get the value 2 (1*2). The value 2 is still <5000, so the action will be executed
again: i will be incremented to 3 and fac will get the value 6 (2 * 3). This
continues, until the first value of fac is found that is >5000. As soon as fac gets
to this value, the condition will be false and the while loop will end. At
that point the factorial is assigned to the output argument, which returns the
value.

The reason that i is initialized to O rather than 1 is that the first time the loop
action is executed, i becomes 1 and fac becomes 1, so we have 1 and 1!, which
is 1.

5.3.1 Multiple Conditions in a while Loop

In the factgthigh function, the condition in the while loop consisted of one
expression, which tested whether or not the variable fac was less than or equal
to the variable high. In many cases, however, the condition will be more
complicated than that and could use either the or operator || or the and
operator &&. For example, it may be that it is desired to stay in a while loop as
long as a variable x is in a particular range:

while x >= 0 && x <= 100

As another example, continuing the action of a loop may be desired as long as
at least one of two variables is in a specified range:

while x < 50 | | y < 100

5.3.2 Reading From a File Using a while Loop
The following example illustrates reading from a data file using a while loop.
Data from an experiment has been recorded in a file called “experd.dat”. The

First Data Set
11 T ® T T T

Weight (Pounds)

w », OO0 O N © © O
T
1

RN

1.5 2 25 3 35 4
Reading #

FIGURE 5.2 Plot of some (but not all) data from a file

5.3 while Loops @)

file has some weights followed by a —99 and then more weights, all on the
same line. The only data values that we are interested in, however, are those
before —99. The —99 is an example of a sentinel, which is a marker in between
data sets.

The algorithm for the script is:

read the data from the file into a vector

create a new vector variable newvec that only has the data values up to but
not including the —99

plot the new vector values, using black circles.

For example, if the file contains the following:
3.1 11 5.2 8.9 -99 4.4 62
the plot produced would look like Figure 5.2.

For simplicity, we will assume that the file format is as specified. Using load
will create a vector with the name experd, which contains the values from
the file.

THE PROGRAMMING CONCEPT

Using the programming method, we would loop through the vector until the —99 is
found, creating the new vector by storing each element from experd in the vector
newvec.

findvalwhile.m

% Reads data from a file, but only plots the numbers
% up to a flag of -99. Uses a while Toop.

load experd.dat

i=1;

while experd(i) ~= -99
newvec(i) = experd(i);
i=1+ 1;

end

plot(newvec, 'ko")

xlabel('Reading #")

ylabel ('Weight(pounds)")

title('First Data Set')

Note that this extends the vector newvec every time the action of the loop is executed.

m CHAPTER 5: Loop Statements and Vectorizing Code

THE EFFICIENT METHOD

Using the find function, we can locate the index of the element that stores the —99. Then, the
new vector comprises all of the original vector from the first element to the index before the
index of the element that stores the —99.

findval.m

% Reads data from a file, but only plots the numbers
% up to a flag of -99.Uses find and the colon operator

load experd.dat

where = find(experd == -99);
newvec = experd(l:where-1);

plot(newvec, 'ko"')
xlabel('Reading #')
ylabel('Weight(pounds)")
title('First Data Set')

5.3.3 Input in a while Loop

Sometimes a while loop is used to process input from the user as long as the
user is entering data in a correct format. The following script repeats the
process of prompting the user, reading in a positive number, and echo printing
it, as long as the user correctly enters positive numbers when prompted. As
soon as the user types in a negative number the script will print “OK” and end.

whileposnum.m

% Prompts the user and echo prints the numbers entered
% until the user enters a negative number

inputnum=input('Enter a positive number: ');
while inputnum >= 0
fprintf('You entered a %d.\n\n',inputnum)
inputnum = input('Enter a positive number: ');
end
fprintf('0K!\n")

When the script is executed, the input/output might look like this:

>> whileposnum
Enter a positive number: 6
You entered a 6.

Enter a positive number: -2
oK!

Note that the prompt is repeated in the script: once before the loop and then
again at the end of the action. This is done so that every time the condition is
evaluated, there is a new value of inputnum to check. If the user enters
a negative number the first time, no values would be echo printed:

5.3 while Loops @iy

>> whileposnum Note
Enter a positive number: -33 This example illustrates
oK! a very important feature

of while loops: it is
possible that the action
will not be executed at
>> whileposnum all if the value of the

Enter a positive number: a condition is false the
Error using input
Undefined function or variable

As we have seen previously, MATLAB will give an error message if a character is
entered rather than a number.

first time it is evaluated.

a

Error in whileposnum (line 4)
inputnum=input('Enter a positive number: ');

Enter a positive number: -4
0K!

However, if the character is actually the name of a variable, it will use the value
of that variable as the input. For example:

>> a=b;

>> whileposnum

Enter a positive number: a
You entered a 5.

Enter a positive number: -4
oK!

If it is desired to store all of the positive numbers that the user enters, we
would store them one at a time in a vector. However, as we do not know
ahead of time how many elements we will need, we cannot preallocate to the
correct size. The two methods of extending a vector one element at a time are
shown here. We can start with an empty vector and concatenate each value to
the vector, or we can increment an index.

numvec = [];
inputnum=input('Enter a positive number: ');
while inputnum >= 0

numvec = [numvec inputnum];

inputnum = input('Enter a positive number: ');
end

% OR:

i=20;
inputnum=input('Enter a positive number: ');
while inputnum >= 0

i=1+1;

numvec(i) = inputnum;

inputnum = input('Enter a positive number: ');
end

Keep in mind that this is inefficient and should be avoided if the vector can be
preallocated.

m CHAPTER 5: Loop Statements and Vectorizing Code

5.3.4 Counting in a while Loop

Although while loops are used when the number of times the action will be

repeated is not known ahead of time, it is often useful to know how many times

the action was, in fact, repeated. In that case, it is necessary to count the number

of times the action is executed. The following variation on the previous script

counts the number of positive numbers that the user successfully enters.
countposnum.m

% Prompts the user for positive numbers and echo prints as
% long as the user enters positive numbers
% Counts the positive numbers entered by the user
counter=0;
inputnum=input('Enter a positive number: ');
while inputnum >= 0
fprintf('You entered a %d.\n\n',inputnum)
counter = counter + 1;
inputnum = input('Enter a positive number: ');
end
fprintf('Thanks, you entered %d positive numbers.\n',counter)

The script initializes a variable counter to 0. Then, in the while loop action,
every time the user successfully enters a number, the script increments the
counter variable. At the end of the script it prints the number of positive
numbers that were entered.

>> countposnum
Enter a positive number: 4
You entered a 4.

Enter a positive number: 11
You entered a 11.

Enter a positive number: -4
Thanks, you entered 2 positive numbers.

PRACTICE 5.5

Write a script avenegnum that will repeat the process of prompting the user for negative numbers,
until the user enters a zero or positive number, as just shown. Instead of echo printing them,
however, the script will print the average (of just the negative numbers). If no negative numbers
are entered, the script will print an error message instead of the average. Use the programming
method. Examples of executing this script follow:

>> avenegnum
Enter a negative number: 5
No negative numbers to average.

>> avenegnum

Enter a negative number: -8
Enter a negative number: -3
Enter a negative number: -4
Enter a negative number: 6
The average was -5.00

5.3 while Loops @}

5.3.5 Error-Checking User Input in a while Loop

In most applications, when the user is prompted to enter something, there is
a valid range of values. If the user enters an incorrect value, rather than having
the program carry on with an incorrect value, or just printing an error message,
the program should repeat the prompt. The program should keep prompting
the user, reading the value, and checking it until the user enters a value that is
in the correct range. This is a very common application of a conditional loop:
looping until the user correctly enters a value in a program. This is called error-
checking.

For example, the following script prompts the user to enter a positive number,
and loops to print an error-message and repeat the prompt until the user
finally enters a positive number.

readonenum.m

% Loop until the user enters a positive number

inputnum=input('Enter a positive number: ');
while inputnum < 0
inputnum = input('Invalid! Enter a positive number: ');
end
fprintf('Thanks, you entered a %.1f \n',inputnum)

An example of running this script follows:

>> readonenum
Enter a positive number: -5

Invalid! Enter a positive number: -2.2 Note
Invalid! Enter a positive number: c MATLAB itself catches
Error using input the character input and

Undefined function or variable
Error in readonenum (line 5)
inputnum = input('Invalid! Enter a positive number: ');
Invalid! Enter a positive number: 44

Thanks, you entered a 44.0

QUICK QUESTION!

How could we vary the previous example so that the script positive number is entered. By putting the error-check in a for
asks the user to enter positive numbers n times, where nis loop that repeats n times, the user is forced eventually to enter
an integer defined to be 3? three positive numbers, as shown in the following.

¢ prints an error

message, and repeats
the prompt when the ¢
was entered.

Answer
Every time the user enters a value, the script checks and in
a while loop keeps telling the user that it's invalid until a valid

Continued

CHAPTER 5: Loop Statements and Vectorizing Code

QUICK QUESTION! Continued

readnnums.m

% Loop until the user enters n positive numbers
= 33
fprintf('Please enter %d positive numbers\n\n',n)
for i=l:n
inputnum=input('Enter a positive number: ');
while inputnum < 0
inputnum = input('Invalid! Enter a positive number: ');
end
fprintf('Thanks, you entered a %.1f \n',inputnum)
end

>> readnnums
Please enter 3 positive numbers

Enter a positive number: 5.2
Thanks, you entered a 5.2

Enter a positive number: 6

Thanks, you entered a 6.0

Enter a positive number: -7.7
Invalid! Enter a positive number: 5
Thanks, you entered a 5.0

5.3.5.1 Error-Checking for Integers

As MATLAB uses the type double by default for all values, to check to make
sure that the user has entered an integer, the program has to convert the input
value to an integer type (e.g., int32) and then check to see whether that is
equal to the original input. The following examples illustrate the concept.

If the value of the variable num is a real number, converting it to the type int32
will round it, so the result is not the same as the original value.

>> num = 3.3;
>> inum = int32(num)
inum =

>> num == inum
ans =
0

If, however, the value of the variable num is an integer, converting it to an
integer type will not change the value.

5.3 while Loops VAl

>> num = 4;
>> inum = int32(num)
inum =
4
>> num == inum
ans =
1

The following script uses this idea to error-check for integer data; it loops until
the user correctly enters an integer.

readoneint.m

% Error-check until the user enters an integer

inputnum = input('Enter an integer: ');

num2 = int32(inputnum);

while num2 ~= inputnum
inputnum = input('Invalid! Enter an integer: ");
num2 = int32(inputnum);

end

fprintf('Thanks, you entered a %d \n',inputnum)

Examples of running this script are:

>> readoneint

Enter an integer: 9.5

Invalid! Enter an integer: 3.6
Invalid! Enter an integer: -11
Thanks, you entered a -11

>> readoneint
Enter an integer: 5
Thanks, you entered a b5

Putting these ideas together, the following script loops until the user correctly
enters a positive integer. There are two parts to the condition, as the value
must be positive and must be an integer.

readoneposint.m

% Error checks until the user enters a positive integer

inputnum = input('Enter a positive integer: ');

num2 = int32(inputnum);

while numZ2 ~= inputnum || num2 < 0
inputnum = input('Invalid! Enter a positive integer: ");
num2 = int32(inputnum);

end

fprintf('Thanks, you entered a %d \n',inputnum)

>> readoneposint

Enter a positive integer: 5.5
Invalid! Enter a positive integer: -4
Invalid! Enter a positive integer: 11
Thanks, you entered a 11

CHAPTER 5: Loop Statements and Vectorizing Code

PRACTICE 5.6

Modify the script readoneposint to read n positive integers instead of just one.

5.4 LOOPS WITH VECTORS AND MATRICES:
VECTORIZING

In most programming languages when performing an operation on a vector,

aforloop is used to loop through the entire vector, using the loop variable as the

index into the vector. In general, in MATLAB, assuming there is a vector variable

vec, the indices range from 1 to the length of the vector, and the for statement

loops through all of the elements performing the same operation on each one:
for i = 1l:length(vec)

% do something with vec(i)
end

In fact, this is one reason to store values in a vector. Typically, values in
a vector represent “the same thing”, so, typically, in a program the same
operation would be performed on every element.

Similarly, for an operation on a matrix, a nested loop would be required, and the
loop variables over the rows and columns are used as the subscripts into the matrix.
In general, assuming a matrix variable mat, we use size to return separately the
number of rows and columns, and use these variables in the for loops. If an action
is desired for every row in the matrix, the nested for loop would look like this:
[r, c] = size(mat);
for row = 1:r
for col = 1:c
% do something with mat(row,col)
end
end

If, instead, an action is desired for every column in the matrix, the outer loop
would be over the columns. (Note, however, that the reference to a matrix
element always refers to the row index first and then the column index.)
[r, c] = size(mat);
for col = 1:c
for row = 1l:r
% do something with mat(row,col)
end
end

Typically, this is not necessary in MATLAB! Although for loops are very useful for
many other applications in MATLAB, they are not typically used for operations on
vectors or matrices; instead, the efficient method is to use built-in functions and/or
operators. This is called vectorized code. The use of loops and selection statements
with vectors and matrices is a basic programming concept with many other
languages, and so both “the programming concept” and “the efficient method” are
highlighted in this section and, to some extent, throughout the rest of this book.

5.4 Loops with Vectors and Matrices: Vectorizing

5.4.1 Vectorizing Sums and Products

For example, let’s say that we want to perform a scalar multiplication — in this
case multiplying every element of a vector v by 3 — and store the result back in
v, where v is initialized as follows:

>ov=1[3721];

THE PROGRAMMING CONCEPT

To accomplish this, we can loop through all of the elements in the vector and multiply each element
by 3. In the following, the output is suppressed in the loop, and then the resulting vector is shown:

>> for i = 1:length(v)
v(i) = v(i) * 3;

THE EFFICIENT METHOD

>> v=v *3

How could we calculate the factorial of n, n! =1 *2 *3 *4 * .. *n?

THE PROGRAMMING CONCEPT

The basic algorithm is to initialize a running product to 1 and multiply the running product by
every integer from 1 to n. This is implemented in a function:

myfact.m

function runprod = myfact(n)
% myfact returns n!
% Format of call: myfact(n)

runprod = 1;
for i = 1:n
runprod = runprod * i;
end
end

Any positive integer argument could be passed to this function, and it will calculate the factorial of
that number. For example, if 5 is passed, the function will calculate and return 1*2*3*4*5, or 120:

>> myfact(5)
ans =
120

CHAPTER 5: Loop Statements and Vectorizing Code

THE EFFICIENT METHOD

MATLAB has a built-in function, factorial, that will find the factorial of an integer n. The prod
function could also be used to find the product of the vector 1:5.

>> factorial(5)
ans =

120
>> prod(1:5)
ans =

120

QUICK QUESTION!

MATLAB has a cumsum function that will retum a vector
of all of the running sums of an input vector. However,
many other languages do not, so how could we write
our own?

Answer

Essentially, there are two programming methods that could be
used to simulate the cumsum function. One method is to start
with an empty vector and extend the vector by adding each
running sum to it as the running sums are calculated. A better
method is to preallocate the vector to the correct size and then
change the value of each element to be successive running
sums.

PRACTICE 5.7

myveccumsum.m

function outvec = myveccumsum(vec)

% myveccumsum imitates cumsum for a vector
% 1t preallocates the output vector

% Format: myveccumsum(vector)

outvec = zeros(size(vec));
runsum 0;
for i = 1:length(vec)
runsum = runsum + vec(i);
outvec(i) = runsum;

end
end

An example of calling the function follows:

>> myveccumsum([5 9 4])
ans =
5 14 18

Write a function that imitates the cumprod function. Use the method of preallocating the output

vector.

5.4 Loops with Vectors and Matrices: Vectorizing ¥4

QUICK QUESTION!

How would we sum each individual column of a matrix?

matcolsum.m

Answer

The programming method would require a nested loop in which
the outer loop is over the columns. The function will sum each
column and return a row vector containing the results.

function outsum = matcolsum(mat)

% Format: matcolsum(matrix)

[row, col] = size(mat);

outsum = zeros(l,col);

% has to be over the columns
for i = 1:col

runsum = 0;
for j = l:row

end

outsum(i) = runsum;
end
end

% matcolsum finds the sum of every column in a matrix
% Returns a vector of the column sums

% Preallocate the vector to the number of columns

% Every column is being summed so the outer loop

% Initialize the running sum to 0 for every column

runsum = runsum + mat(j,i);

Note that the output argument will be a row vector containing
the same number of columns as the input argument matrix.
Also, as the function is calculating a sum for each column,
the runsum variable must be initialized to 0 for every column,
S0 it is initialized inside of the outer loop.

>> mat = [3:5; 2 5 7]

mat =

3 4 5

2 5 7
>> matcolsum(mat)
ans =

5 9 12

Of course, the built-in sum function in MATLAB would
accomplish the same thing, as we have already seen.

CHAPTER 5: Loop Statements and Vectorizing Code

PRACTICE 5.8

Modify the function matcolsum. Create a function matrowsum to calculate and return a vector of all
of the row sums instead of column sums. For example, calling it and passing the mat variable from
the previous Quick Question would result in the following:

>> matrowsum(mat)
ans =
12 14

5.4.2 Vectorizing Loops with Selection Statements
In many applications, it is useful to determine whether numbers in a matrix
are positive, zero, or negative.

THE PROGRAMMING CONCEPT

A function signum follows that will accomplish this:

signum.m

function outmat = signum(mat)
% signum imitates the sign function
% Format: signum(matrix)

[r, c] = size(mat);
for i = 1:r
for j = 1l:c
if mat(i,j) > 0
outmat(i,j) =1
elseif mat(i,j) ==
outmat(i,j) = 0;
else
outmat(i,j) = -1;

0

end
end
end
end

Here is an example of using this function:

>> mat = [0 4 -3; -1 0 2]
mat =

0 4 =3

=1 0 2

>> signum(mat)

ans =
0 1 =1
=1 0

5.4 Loops with Vectors and Matrices: Vectorizing

THE EFFICIENT METHOD

Close inspection reveals that the function accomplishes the same task as the built-in sign
function!

>> sign(mat)

ans =
0 1 =1
=1

Another example of a common application on a vector is to find the minimum
and/or maximum value in the vector.

THE PROGRAMMING CONCEPT

For instance, the algorithm to find the minimum value in a vector is as follows.

m The working minimum (the minimum that has been found so far) is the first element in
the vector to begin with.
m Loop through the rest of the vector (from the second element to the end).
If any element is less than the working minimum, then that element is the
new working minimum.

The following function implements this algorithm and retums the minimum value
found in the vector.

myminvec.m

function outmin = myminvec(vec) Note

% myminvec returns theminimumvalue ina vector
% Format: myminvec(vector)

outmin = vec(1l);
for i = 2:1ength(vec)
if vec(i) < outmin
outmin = vec(i);
end
end
end

>> vec = [3 899 -1];
>> myminvec(vec)
ans =

=1
>> vec = [3 899 11];
>> myminvec(vec)

ans =
3

An if statement is used
in the loop rather than
an if-else statement. If
the value of the next
element in the vector is
less than outmin, then
the value of outmin is
changed; otherwise, no
action is necessary.

CHAPTER 5: Loop Statements and Vectorizing Code

THE EFFICIENT METHOD

Use the min function:

>> vec = [5 9 4];
>> min(vec)
ans =

4
QUICK QUESTION!

Determine what the following function accomplishes: Answer

XXX .M The output produced by this function is the same as the any
function for a vector. It initializes the output argument to false.
It then loops through the vector and, if any element is nonzero,
changes the output argument to true. It loops until either
logresult = false; a nonzero value is found or it has gone through all elements.
i=1;
while i <=1length(vec) && Togresult==false

if vec(i) ~=0
logresult = true;

function logresult = xxx(vec)
% QQ for you - what does this do?

end
i=1i4+1;
end
end
QUICK QUESTION!
Determine what the following function accomplishes. Answer
yyy.m The output produced by this function is the same as the all

) function.
function Togresult = yyy(mat)

% QQ for you - what does this do?

count = 0;
[r, c] = size(mat);
for i = 1:r
for j = 1:c
if mat(i,j) ~=0
count = count + 1;
end
end
end
logresult = count == numel(mat);
end

5.4 Loops with Vectors and Matrices: Vectorizing V&)

As another example, we will write a function that will receive a vector and an
integer as input arguments, and will return a logical vector that stores logical
true only for elements of the vector that are greater than the integer and false
for the other elements.

THE PROGRAMMING CONCEPT

The function receives two input arguments: the vector, and an integer n with
which to compare. It loops through every element in the input vector, and

stores in the result vector either true or false depending on whether vec(i) > n is
true or false.

testvecgtn.m

function outvec = testvecgtn(vec,n)

% testvecgtn tests whether elements in vector
% are greater than n or not

% Format: testvecgtn(vector, n)

% Preallocate the vector to logical false
outvec = false(size(vec));
for i = 1:1ength(vec)
% If an element is > n, change to true
if vec(i) > n
outvec(i) = true;
end
end
end

Note that as the vector was preallocated to false, the else clause is not necessary.

THE EFFICIENT METHOD

As we have seen, the relational operator > will automatically create a logical vector.

testvecgtnii.m

function outvec = testvecgtnii(vec,n)

% testvecgtnii tests whether elements in vector
% are greater than n or not with no Toop

% Format: testvecgtnii(vector, n)

outvec = vec > n;
end

m CHAPTER 5: Loop Statements and Vectorizing Code

PRACTICE 5.9

Call the function testvecgtnii, passing a vector and a value for n. Count how many values in the
vector were greater than n.

5.4.3 Tips for Writing Efficient Code
To be able to write efficient code in MATLAB, including vectorizing, there are
several important features to keep in mind:

scalar and array operations
logical vectors

built-in functions
preallocation of vectors.

There are many functions in MATLAB that can be utilized instead of code that
uses loops and selection statements. These functions have been demonstrated
already, but it is worth repeating them to emphasize their utility:

sum and prod — find the sum or product of every element in a vector or
column in a matrix

cumsum and cumprod — return a vector or matrix of the cumulative
(running) sums or products

min and max — find the minimum or maximum value in a vector or in
every column of a matrix

any, all, find — work with logical expressions

“is” functions, such as isletter and isequal — return logical values.

In almost all cases, code that is faster to write by the programmer is also faster
for MATLAB to execute. So, “efficient code” means that it is efficient both for
the programmer and for MATLAB.

PRACTICE 5.10
Vectorize the following (re-write the code efficiently):
i=0;
for inc = 0: 0.5: 3
i=1+1;
myvec(i) = sqrt(inc);
end

[r c] = size(mat);
newmat = zeros(r,c);
for i =1:r
for j = 1:c
newmat(i,j) = sign(mat(i,j));
end
end

5.5 Timing k!

MATLAB has a built-in function checkcode that can detect potential problems
within scripts and functions. Consider, for example, the following script that
extends a vector within a loop:

badcode.m
for j = 1:4

vec(j) =]
end

The function checkcode will flag this, as well as the good programming
practice of suppressing output within scripts:

>> checkcode('badcode ")

L 2 (C5-7): The variable 'vec' appears to change size on every
loop iteration (within a script). Consider preallocating for
speed.

L 2 (C12): Terminate statement with semicolon to suppress output
(within a script).

The same information is shown in Code Analyzer Reports, which can be
produced within MATLAB for one file (script or function) or for all code files
within a folder. Clicking on the down arrow for the Current Folder, and then
choosing Reports and then Code Analyzer Report will check the code for all
files within the Current Folder. When viewing a file within the Editor, click
on the down arrow and then Show Code Analyzer Report for a report on
just that one file.

5.5 TIMING

MATLAB has built-in functions that determine how long it takes code to

execute. One set of related functions is tic/toc. These functions are

placed around code, and will print the time it took for the code to

execute. Essentially, the function tic turns a timer on, and then toc eva-

luates the timer and prints the result. Here is a script that illustrates these

functions. Note

When using timing
functions such as tic/

fortictoc.m

tic toc, be aware that other
mys um =0 processes running in
for i = 1:20000000

Mysum = mysum + i the background (e.g.,
end ’ any web browser) will
toc affect the speed of your

code.
>> fortictoc

Elapsed time is 0.087294 seconds.

m CHAPTER 5: Loop Statements and Vectorizing Code

Here is an example of a script that demonstrates how much preallocating
a vector speeds up the code.

tictocprealloc.m

% This shows the timing difference between
% preallocating a vector vs. not

clear
disp('No preallocation')
tic
for i = 1:10000
x(i) = sqrt(i);
end
toc

disp('Preallocation')

tic

y = zeros(1,10000);

for i = 1:10000
y(i) = sqrt(i);

end

toc

>> tictocprealloc

No preallocation

Elapsed time is 0.005070 seconds.
Preallocation

Elapsed time is 0.000273 seconds.

QUICK QUESTION!

Preallocation can speed up code, but to preallocate it is neces-
sary to know the desired size. What if you do not know the
eventual size of a vector (or matrix)? Does that mean that
you have to extend it rather than preallocating?

Answer
If you know the maximum size that it could possibly be, you
can preallocate to a size that is larger than necessary and

then delete the “unused” elements. To do that, you would
have to count the number of elements that are actually used.
For example, if you have a vector vec that has been preallo-
cated and a variable count that stores the number of elements
that were actually used, this will trim the unnecessary
elements:

vec = vec(l:count)

MATLAB also has a Profiler that will generate detailed reports on execution
time of codes. In newer versions of MATLAB, from the Editor click on Run and
Time; this will bring up a report in the Profile Viewer. Choose the function
name to see a very detailed report, including a Code Analyzer Report. From the
Command Window this can be accessed using profile on and profile off, and

profile viewer.

Summary ek}

>> profile on

>> tictocprealloc

No preallocation

Elapsed time is 0.047721 seconds.
Preallocation

Elapsed time is 0.040621 seconds.
>> profile viewer

>> profile off

m Explore Other Interesting Features

m Explore what happens when you use a matrix rather than a vector to
specify the range in a for loop. For example,

for i = mat
disp(i)
end
Take a guess before you investigate!
Try the pause function in loops.
Investigate the vectorize function.
The tic and toc functions are in the timefun help topic. Type help
timefun to investigate some of the other timing functions. |

H Summary

Common Pitfalls

m Forgetting to initialize a running sum or count variable to 0.

m Forgetting to initialize a running product variable to 1.

m In cases where loops are necessary, not realizing that if an action is
required for every row in a matrix, the outer loop must be over the rows
(and if an action is required for every column, the outer loop must be
over the columns).

m Not realizing that it is possible that the action of a while loop will never
be executed.

Not error-checking input into a program.
Vectorize code whenever possible. If it is not necessary to use loops in
MATLAB, don't!

m Forgetting that subplot numbers the plots rowwise rather than
columnwise.

m Not realizing that the subplot function just creates a matrix within the
Figure Window. Each part of this matrix must then be filled with a plot,
using any type of plot function.

m CHAPTER 5: Loop Statements and Vectorizing Code

Programming Style Guidelines

Use loops for repetition only when necessary:

for statements as counted loops

while statements as conditional loops.

Do not use i or j for iterator variable names if the use of the built-in
constants i and j is desired.

Indent the action of loops.

If the loop variable is just being used to specify how many times the
action of the loop is to be executed, use the colon operator 1:n where n
is the number of times the action is to be executed.

Preallocate vectors and matrices whenever possible (when the size is
known ahead of time).

When data are read in a loop, only store them in an array if it will be
necessary to access the individual data values again. |

MATLAB Reserved Words

for
while
end

MATLAB Functions and Commands

subplot profile checkcode
factorial tic / toc

Write a for loop that will print the column of real numbers from 1.5 to 3.1 in steps of
0.2.

In the Command Window, write a for loop that will iterate through the integers
from 32 to 255. For each, show the corresponding character from the character
encoding.

Create an x vector that has integers 1 through 10, and set a y vector equal to x. Plot
this straight line. Now, add noise to the data points by creating a new yZ2 vector
that stores the values of y plus or minus 0.25. Plot the straight line and also these
noisy points.

Write a script beautyofmath that produces the following output. The script should
iterate from 1 to 9 to produce the expressions on the left, perform the specified

operation to get the results shown on the right, and print exactly in the format
shown here.

>> beautyofmath

1x8+1=09

12 x 8 + 2 =298

123 x 8 + 3 = 987

1234 x 8 + 4 = 9876

12345 x 8 + 5 = 98765

123456 x 8 + 6 = 987654
1234567 x 8 + 7 = 9876543
12345678 x 8 + 8 = 98765432
123456789 x 8 + 9 = 987654321

Prompt the user for an integer n and print “I love this stuff!” n times.

When would it matter if a for loop contained for i = 1:4 versus

for i =[35 2 6], and when would it not matter?

Write a function sumstepsZ that calculates and returns the sum of 1 to nin steps of
2, where n is an argument passed to the function. For example, if 11 is passed,
itwillretumn 14+ 3 4+ 5+ 7 + 9 + 11. Do this using a for loop. Calling the function
will look like this:

>> sumsteps2(11)
ans =
36

Write a function prodbyZ that will receive a value of a positive integer n and will
calculate and return the product of the odd integers from 1 to n (or from 1 to n-1if
nis even). Use a for loop.
Write a script that will:
generate a random integer in the inclusive range from 2 to 5
loop that many times to
prompt the user for a number
print the sum of the numbers entered so far with one decimal place.
Sales (in millions) from two different divisions of a company for the four quarters of
2012 are stored in vector variables, such as the following:

divl = [4.2 3.8 3.7 3.81;
divz = [2.5 2.7 3.1 3.3];

Using subplot, show side-by-side the sales figures for the two divisions. In one
graph, compare the two divisions.

Write a script that will load data from a file into a matrix. Create the data file first,
and make sure that there is the same number of values on every line in the file so
that it can be loaded into a matrix. Using a for loop, it will then create a subplot for
every row in the matrix and will plot the numbers from each row element in the
Figure Window.

Exercises

185

m CHAPTER 5: Loop Statements and Vectorizing Code

With a matrix, when would:

your outer loop be over the rows

your outer loop be over the columns

it not matter which is the outer and which is the inner loop?
Write a script that will print the following multiplication table:

1

2 4

36 9

4 8 12 16

5 10 15 20 25

Execute this script and be amazed by the results! You can try more points to get
a clearer picture, but it may take a while to run.

clear

clf

X = rand;
y = rand;
plot(x,y)

hold on
for it = 1:10000
choic = round(rand*2);

if choic == 0
X = x/2;
y =y/2;
elseif choic ==
x = (x+1)/2;
y =y/2;
else
= (x+0.5)/2;
= (y+1)/2;
end
plot(x,y)
hold on

end

A machine cuts N pieces of a pipe. After each cut, each piece of pipe is weighed
and its length is measured; these two values are then stored in a file called pipe dat
(first the weight and then the length on each line of the file). Ignoring units, the
weight is supposed to be between 2.1 and 2.3, inclusive, and the length is
supposed to be between 10.3 and 10.4, inclusive. The following is just the begin-
ning of what will be a long script to work with these data. For now, the script will
just count how many 1ejects there are. A reject is any piece of pipe that has an

invalid weight and/or length. As a simple example, if N is 3 (meaning three lines in
the file) and the file stores:

2.14 10.30
2.32 10.36
2.20 10.35

there is only one 1eject — the second one, as it weighs too much. The script would
print:

There were 1 rejects.

There are many applications of signal processing. Voltages, currents, and sounds
are all examples of signals that are studied in a diverse range of disciplines, such as
biomedical engineering, acoustics, and telecommunications. Sampling discrete
data points from a continuous signal is an important concept.

A sound engineer has recorded a sound signal from a microphone. The sound
signal was “sampled”, meaning that values at discrete intervals were recorded
(rather than a continuous sound signal). The units of each data sample are volts.
The microphone was not on at all times, however, so the data samples that are
below a certain threshold are considered to be data values that were samples
when the microphone was not on and therefore not valid data samples. The sound
engineer would like to know the average voltage of the sound signal. Write a script
that will ask the user for the threshold and the number of data samples, and then
for the individual data samples. The program will then print the average and

a count of the VALID data samples, or an error message if there were no valid data
samples. An example of what the input and output would look like in the
Command Window is shown as follows.

Please enter the threshold below which samples will be
considered to be invalid: 3.0
Please enter the number of data samples to enter: 6

ease enter a data sample: 0.4
data sample:
data sample:

ease enter 5.5
5.0

data sample: 6.2
0.3
5

a

a
ease enter a
ease enter a
ease enter a data sample: 0.
ease enter a data sample: 5.4

The average of the 4 valid data samples is 5.53 volts.

Trace this to figure out what the result will be and then type it into MATLAB to
verify the results.

Exercises uktyj

Note

In the absence of valid
data samples, the
program would print an
error message instead
of the last line shown.

CHAPTER 5: Loop Statements and Vectorizing Code

count = 0;

number = 8;

while number > 3
number = number - 2;
fprintf('number is %d\n', number)
count = count + 1;

end

fprintf('count is %d\n', count)

Trace this to figure out what the result will be and then type it into MATLAB to
verify the results.

count = 0;

number = 8;

while number > 3
fprintf('number is %d\n', number)
number = number - 2;
count = count + 1;

end

fprintf('count is %d\n', count)

The inverse of the mathematical constant e can be approximated as follows:

n
(1))
e n

Write a script that will loop through values of n until the difference between the
approximation and the actual value is less than 0.0001. The script should then print
out the built-in value of e and the approximation to four decimal places, and also
print the value of n required for such accuracy.

Write a script (e.g., called findmine) that will prompt the user for minimum and
maximum integers, and then another integer which is the user’s choice in the
range from the minimum to the maximum. The script will then generate random
integers in the range from the minimum to the maximum until a match for the
user's choice is generated. The script will print how many random integers had to
be generated until a match for the user’s choice was found. For example, running
this script might result in this output:

>> findmine

Please enter your minimum value: -2
Please enter your maximum value: 3

Now enter your choice in this range: 0
It took 3 tries to generate your number

Write a script echoletters that will prompt the user for letters of the alphabet and
echo print them until the user enters a character that is not a letter of the alphabet.
At that point, the script will print the nonletter and a count of how many letters

were entered. Here are examples of running this script:

Exercises Mt

>> echoletters

Enter a letter: T
Thanks, you entered a T
Enter a letter: a
Thanks, you entered a a
Enter a letter: 8

8 is not a letter

You entered 2 letters

>> echoletters

Enter a letter: !

I is not a letter

You entered 0 letters

A blizzard is a massive snowstorm. Definitions vary, but, for our purposes, we will
assume that a blizzard is characterized by both winds of 30 mph or higher and
blowing snow that leads to visibility of 0.5 miles or less, sustained for at least 4
hours. Data from a storm one day has been stored in a file stormtrack.dat. There
are 24 lines in the file — one for each hour of the day. Each line in the file has the
wind speed and visibility at a location. Create a sample data file. Read this
data from the file and determine whether blizzard conditions were met during
this day or not.

Given the following loop:

while x < 10
action
end

For what values of the variable x would the action of the loop be skipped

entirely?

If the variable x is initialized to have the value of 5 before the loop, what would

the action have to include in order for this to not be an infinite loop?
In thermodynamics, the Carnot efficiency is the maximum possible efficiency of
a heat engine operating between two reservoirs at different temperatures. The
Carnot efficiency is given as

n = 1*%

where Ty and Ty are the absolute temperatures at the cold and hot reservoirs,
respectively. Write a script that will prompt the user for the two reservoir
temperatures in Kelvin and print the corresponding Carmnot efficiency to three
decimal places. The script should error-check the user's input as absolute
temperature cannot be < 0. The script should also swap the temperature values if
Ty is less than T¢.

m CHAPTER 5: Loop Statements and Vectorizing Code

Write a script that will use the menu function to present the user with choices for
functions “fix”, “floor”, and “ceil”. Error-check by looping to display the menu until
the user pushes one of the buttons (an error could occur if the user clicks on the
“X" on the menu box, rather than pushing one of the buttons). Then, generate

a random number and print the result of the user’s function choice of that number
(e.g. fix(b)).

Write a script called prtemps that will prompt the user for a maximum Celsius
value in the range from —16 to 20; error-check to make sure it's in that range.
Then, print a table showing degrees Fahrenheit and degrees Celsius until this
maximum is reached. The first value that exceeds the maximum should not

be printed. The table should start at 0 degrees Fahrenheit and increment by

5 degrees Fahrenheit until the max (in Celsius) is reached. Both temperatures
should be printed with a field width of 6 and one decimal place. The formula is
C =5/9 (F-32).

Write a for loop that will print the elements from a vector variable in
sentence format, regardless of the length of the vector. For example, if this is
the vector:

>> vec = [b.5 11 3.45];
this would be the result:

Element 1 is 5.50.
Element 2 is 11.00.
Element 3 is 3.45.

Write a function that will receive a matrix as an input argument, and will calculate
and return the overall average of all numbers in the matrix. Use loops, not
built-in functions, to calculate the average.

Create a 3 x 5 matrix. Perform each of the following using loops (with if statements
if necessary):

find the maximum value in each column

find the maximum value in each row

find the maximum value in the entire matrix.

Create a vector of b random integers, each in the inclusive range from —10 to 10.
Perform each of the following using loops (with if statements if necessary):
subtract 3 from each element
count how many are positive
get the absolute value of each element
find the maximum.

The following code was written by somebody who does not know how to use
MATLAB efficiently. Rewrite this as a single statement that will accomplish exactly
the same thing for a matrix variable mat (e.g., vectorize this code):

Exercises ekl

[r c] =size(mat);
for i = 1:r
for j = 1l:c
mat(i,j) = mat(i,j) * 2;
end
end

Vectorize this code! Write one assignment statement that will accomplish exactly
the same thing as the given code (assume that the variable vec has been
initialized):
result = 0;
for i = 1:lTength(vec)
result = result + vec(i);
end

Vectorize this code! Write one assignment statement that will accomplish exactly
the same thing as the given code (assume that the variable vec has been initialized):

newv = zeros(size(vec));
myprod = 1;
for i = 1:length(vec)
myprod = myprod * vec(i);
newv(i) = myprod;
end
newv % Note: this is just to display the value

Vectorize this code; write one assignment statement that will accomplish the same
thing:

myvar = 0;

[r c] = size(mat);

for i = 1:r
for j = 1:c
myvar = myvar + mat(i,j);
end
end
myvar % Note just to display the contents of myvar

Vectorize this code:

n = 3;
x = zeros(n);
y = x

for i = 1:n
x(:,1) = 1;
y(i,:) = 1;

end

m CHAPTER 5: Loop Statements and Vectorizing Code

The following MATLAB code creates a vector v, which consists of the indices of all
of the elements in a vector x that are greater than 0:

v=1_[1
for i = 1:Tength(x)
if x(i) >0
v=1>[v 1i];
end
end

Write one assignment statement that will accomplish exactly the same thing using
find.

Write a script that will prompt the user for a quiz grade and error-check until the
user enters a valid quiz grade. The script will then echo print the grade. For this
case, valid grades are in the range from 0 to 10 in steps of 0.5. Do this by creating
a vector of valid grades and then use any or all in the condition in the while
loop.

Which is faster: using false or using logical(0) to preallocate a matrix to all
logical zeros? Write a script to test this.

Which is faster: using a switch statement or using a nested if-else? Write a script
to test this.

The wind chill factor (WCF) measures how cold it feels with a given air tempera-
ture T (in degrees Fahrenheit) and wind speed V (in miles per hour). One formula
for WCF is

WCF = 35.7+ 0.6 T — 35.7 <v0-16) 4043 T(vo-le)

Write a function to receive the temperature and wind speed as input arguments,
and return the WCF. Using loops, print a table showing wind chill factors for
temperatures ranging from —20 to 55 in steps of b, and wind speeds ranging from
0 to b5 in steps of 5. Call the function to calculate each wind chill factor.

Instead of printing the WCF's in the previous problem, create a matrix of WCFs and
write them to a file. Use the programming method using nested loops.

Vectorize the solution to Exercise 41 using meshgrid.

The function pascal(n) retums an n x n matrix made from Pascal's triangle.
Investigate this built-in function and then write your own.

Write a script that will prompt the user for N integers, and then write the positive
numbers (> 0) to an ASCII file called pos.dat and the negative numbers to an ASCIL
file called negdat. Error-check to make sure that the user enters N integers.
Write a script to add two 30-digit numbers and print the result. This is not as easy
as it might sound at first because integer types may not be able to store a value this
large. One way to handle large integers is to store them in vectors, where each
element in the vector stores a digit of the integer. Your script should initialize two
30-digit integers, storing each in a vector, and then add these integers, also storing

the result in a vector. Create the original numbers using the randi function. Hint:
add two numbers on paper first and pay attention to what you do!
Write a “Guess My Number Game” program. The program generates a random
integer in a specified range and the user (the player) has to guess the number. The
program allows the user to play as many times as he/she would like; at the
conclusion of each game, the program asks whether the player wants to play
again.
The basic algorithm is as follows.
The program starts by printing instructions on the screen.
For every game:
the program generates a new random integer in the range from MIN to MAX.
Treat MIN and MAX like constants; start by initializing them to 1 and 100
loop to prompt the player for a guess until the player correctly guesses the
integer
for each guess, the program prints whether the player's guess was too low,
too high, or correct.
At the conclusion (when the integer has been guessed):
print the total number of guesses for that game.
print a message regarding how well the player did in that game (e.g., the
player took way too long to guess the number, the player was awesome,
etc.); to do this, you will have to decide on ranges for your messages and
give a rationale for your decision in a comment in the program.
After all games have been played, print a summary showing the average
number of guesses.

A CD changer allows you to load more than one CD. Many of these have
random buttons, which allow you to play random tracks from a specified CD or
play random tracks from random CDs. You are to simulate a play list from such
a CD changer using the randi function. The CD changer that we are going to
simulate can load three different CDs. You are to assume that three CDs have
been loaded. To begin with, the program should “decide” how many tracks
there are on each of the three CDs by generating random integers in the
range from MIN to MAX. You decide on the values of MIN and MAX. (Look at
some CD. How many tracks do they have? What's a reasonable range?). The
program will print the number of tracks on each CD. Next, the program will ask
the user for his or her favorite track; the user must specify which track and
which CD it's on. Next, the program will generate a “playlist” of the N random
tracks that it will play, where N is an integer. For each of the N songs, the
program will first randomly pick one of the three CDs and then randomly pick
one of the tracks from that CD. Finally, the program will print whether the
user's favorite track was played or not. The output from the program will look
something like this depending on the random integers generated and the
user’s input:

Exercises

193

m CHAPTER 5: Loop Statements and Vectorizing Code

There are 15 tracks on CD 1.
There are 22 tracks on CD 2.
There are 13 tracks on CD 3.

What's
Please
Sorry,
Please
Please
Sorry,
Please
Sorry,
Please

Play

CD
o]
o]
Cb
cD
CD
CD
CD
CD
CD

=W = =W N W W N

List:
Track
Track
Track
Track
Track
Track
Track
Track
Track
Track

enter the track number:

your favorite track?

enter the number of the CD: 4
that's not a valid CD.

enter the number of the CD: 1
enter the track number:
that's not a valid track on CD 1.
enter the track number:
that's not a valid track on CD 1.

17

Xyz

11

20
11

15
12
6

Sorry, your favorite track was not played.

48. Write your own code to perform matrix multiplication. Recall that to multiply two
matrices, the inner dimensions must be the same.

[A]mxn [B]nxp = [C]mxp

Every element in the resulting matrix C is obtained by:

n
Cj]' = Zalkbkj.
k=1

S0, three nested loops are required.

CHAPTER 6

MATLAB Programs

CONTENTS

6.1 More Types of
User-Defined

functions that return
more than one value

menu-driven program
variable scope

syntax errors
run-time errors

Functions...195

. .2 MATLAB
functions that do not base workspace logical errors 6 Program
return any values local variable tracing Organization
side effects main function breakpoints 000 e 204

call-by-value
modular programs
main program

global variable
persistent variable
declaring variables

breakpoint alley
function stubs
code cells

6.3 Application:
Menu-Driven
Modular
Program.....209

primary function bug)
subfunction debugging 6.4 gggi?éﬂe 215
6.5 Debugging
Techniques
.................... 220

Chapter 3 introduced scripts and user-defined functions. In that chapter, we
saw how to write script files, which are sequences of statements that are
stored in M-files and then executed. We also saw how to write user-defined
functions, also stored in M-files, that calculate and return a single value. In
this chapter, we will expand on these concepts and introduce other kinds of
user-defined functions. We will show how MATLAB® programs consist of
combinations of scripts and user-defined functions. The mechanisms for
interactions of variables in M-files and the Command Window will be
explored. Finally, techniques for finding and fixing mistakes in programs will
be reviewed.

6.1 MORE TYPES OF USER-DEFINED FUNCTIONS

We have already seen how to write a user-defined function, stored in an M-file,
that calculates and returns one value. This is just one type of function. It is also

MATLAB®. http://dx.doi.org/10.1016/B978-0-12-405876-7.00006-7
Copyright © 2013 Elsevier Inc. All rights reserved.

195

http://dx.doi.org/10.1016/B978-0-12-405876-7.00006-7

m CHAPTER 6: MATLAB Programs

possible for a function to return multiple values and it is possible for a func-
tion to return nothing. We will categorize functions as follows:

functions that calculate and return one value

functions that calculate and return more than one value

functions that just accomplish a task, such as printing, without returning
any values.

Thus, although many functions calculate and return values, some do not.
Instead, some functions just accomplish a task. Categorizing the functions as
above is somewhat arbitrary, but there are differences between these three
types of functions, including the format of the function headers and also the
way in which the functions are called. Regardless of what kind of function it is,
all functions must be defined, and all function definitions consist of the header
and the body. Also, the function must be called for it to be utilized.

In general, any function in MATLAB consists of the following:

The function header (the first line); this has:
the reserved word function
the name(s) of the output argument(s), followed by the assignment
operator =, if the function returns values
the name of the function (important: this should be the same as the
name of the M-file in which this function is stored to avoid confusion)
the input arguments in parentheses, if there are any (separated by
commas if there is more than one).
A comment that describes what the function does (this is printed if help is
used).
The body of the function, which includes all statements, including putting
values in all output arguments if there are any.
end at the end of the function.

6.1.1 Functions that Return more than One Value
Functions that return one value have one output argument, as we saw previ-
ously. Functions that return more than one value must, instead, have more than
one output argument in the function header in square brackets. That means that
in the body of the function, values must be put in all output arguments listed in
the function header. The general form of a function definition for a function
that calculates and returns more than one value looks like this:

functionname.m

function [output arguments] = functionname(input arguments)
% Comment describing the function

Statements here; these must include putting values in all of the
output arguments Tisted in the header

end

6.1 More Types of User-Defined Functions ¥

In the vector of output arguments, the output argument names are by con-
vention separated by commas.

In more recent versions of MATLAB, choosing New, then Function brings up
a template in the Editor that can then be filled in:

function [output_args] = untitled (input_args)
% UNTITLED Summary of this function goes here
% Detailed explanation goes here

end
If this is not desired, it may be easier to start with New Script.

For example, here is a function that calculates two values, both the area and
the circumference of a circle; this is stored in a file called areacirc.m:

areacirc.m

function [area, circum] = areacirc(rad)
% areacirc returns the area and

% the circumference of a circle

% Format: areacirc(radius)

area = pi * rad .* rad;
circum = 2 * pi * rad;
end

As this function is calculating two values, there are two output arguments in the
function header (area and circum), which are placed in square brackets | |.
Therefore, somewhere in the body of the function, values have to be put in both.

As the function is returning two values, it is important to capture and store
these values in separate variables when the function is called. In this case, the
first value returned, the area of the circle, is stored in a variable a and the
second value returned is stored in a variable c:

>> [a, c] = areacirc(4)
3 =
50.2655

25.1327

If this is not done, only the first value returned is retained — in this case, the
area:

>> disp(areacirc(4))
50.2655

Note that in capturing the values the order matters. In this example, the
function first returns the area and then the circumference of the circle. The
order in which values are assigned to the output arguments within the func-
tion, however, does not matter.

m CHAPTER 6: MATLAB Programs
QUICK QUESTION!

What would happen if a vector of radii was passed to the

LGEIE >> [a, c] = areacirc(1:4)

Answer a =

As the .* operator is used in the function to multiply rad by 3.1416 12.5664 28.2743 50.2655
itself, a vector can be passed to the input argument rad. There- c =

fore, the results will also be vectors, so the variables on the left 6.2832 12.5664 18.8496 25.1327

side of the assignment operator would become vectors of areas
and circumferences.

QUICK QUESTION!

What if you want only the second value that is returned? >> [~, ¢] = areacirc(1:4)

c =
Answer

. : : . 6.2832 12.5664 18.8496 25.1327
Function outputs can be ignored using the tilde:

The help function shows the comment listed under the function header:

>> help areacirc
This function calculates the area and
the circumference of a circle
Format: areacirc(radius)

The areacirc function could be called from the Command Window as shown
here, or from a script. Here is a script that will prompt the user for the radius of
just one circle, call the areacirc function to calculate and return the area and
circumference of the circle, and print the results:

calcareacirc.m

5 This script prompts the user for the radius of a circle,
» calls a function to calculate and return both the area

» and the circumference, and prints the results

5 1t ignores units and error-checking for simplicity

radius = input('Please enter the radius of the circle:");

[area, circ] = areacirc(radius);

fprintf('For a circle with a radius of %.1f,\n', radius)

fprintf('the area is %.1f and the circumference is %.1f\n",
area, circ)

>> calcareacirc

Please enter the radius of the circle: 5.2
For a circle with a radius of 5.2,

the area is 84.9 and the circumference is 32.7

6.1 More Types of User-Defined Functions k)

PRACTICE 6.1

Write a function perimarea that calculates and returns the perimeter and area of a rectangle. Pass
the length and width of the rectangle as input arguments. For example, this function might be
called from the following script:

calcareaperim.m

% Prompt the user for the length and width of a rectangle,
% call a function to calculate and return the perimeter

% and area, and print the result

% For simplicity it ignores units and error-checking

length = input('Please enter the length of the rectangle:');
width = input('Please enter the width of the rectangle:');
[perim, areal = perimarea(length, width);

fprintf('For a rectangle with a length of %.1f and a ', length)
fprintf('width of %.1f,\nthe perimeter is %.1f,"', width, perim)
fprintf('and the area is %.1f\n', area)

As another example, consider a function that calculates and returns three
output arguments. The function will receive one input argument representing
a total number of seconds, and returns the number of hours, minutes, and
remaining seconds that it represents. For example, 7515 total seconds is
2 hours, 5 minutes, and 15 seconds because 7515 = 3600 * 2 + 60 * 5 + 15.

The algorithm is as follows.

Divide the total seconds by 3600, which is the number of seconds in an
hour. For example, 7515/3600 is 2.0875. The integer part is the number of
hours (e.g., 2).

The remainder of the total seconds divided by 3600 is the remaining
number of seconds; it is useful to store this in a local variable.

The number of minutes is the remaining number of seconds divided by 60
(again, the integer part).

The number of seconds is the remainder of the previous division.

breaktime.m

function [hours, minutes, secs] = breaktime(totseconds)
% breaktime breaks a total number of seconds into

% hours, minutes, and remaining seconds

% Format: breaktime(totalSeconds)

hours = floor(totseconds/3600);
remsecs = rem(totseconds, 3600);
minutes = floor(remsecs/60);
secs = rem(remsecs,60);

end

m CHAPTER 6: MATLAB Programs

An example of calling this function is:

>> [h, m, s] = breaktime(7515)

h =
2

m =
5

s =
15

As before, it is important to store all values that the function returns in
separate variables.

6.1.2 Functions that Accomplish a Task Without
Returning Values

Many functions do not calculate values, but rather accomplish a task, such as
printing formatted output. As these functions do not return any values, there
are no output arguments in the function header.

The general form of a function definition for a function that does not return any
values looks like this:

functionname.m

function functionname(input arguments)
% Comment describing the function

Statements here
end

Note what is missing in the function header: there are no output arguments
and no assignment operator.

For example, the following function just prints the number arguments passed
to it in a sentence format:

printem.m

function printem (a,b)
% printem prints two numbers in a sentence format
% Format: printem (numl, num2)

fprintf('The first number is %.1f and the second is %.1f\n',a,b)
end

As this function performs no calculations, there are no output arguments in
the function header and no assignment operator (=). An example of a call to
the printem function is:

>> printem(3.3, 2)
The first number is 3.3 and the second is 2.0

6.1 More Types of User-Defined Functions a

Note that as the function does not return a value, it cannot be called from an
assignment statement. Any attempt to do this would result in an error, such as
the following:

>> x = printem(3, 5) % Error!!
Error using printem
Too many output arguments.

We can therefore think of the call to a function that does not return values as
a statement by itself, in that the function call cannot be imbedded in another
statement, such as an assignment statement or an output statement.

The tasks that are accomplished by functions that do not return any values
(e.g., output from an fprintf statement or a plot) are sometimes referred to as
side effects. Some standards for commenting functions include putting the side
effects in the block comment.

PRACTICE 6.2

Write a function that receives a vector as an input argument and prints the individual elements
from the vector in a sentence format.

>> printvecelems([5.9 33 117)
Element 1 is 5.9
Element 2 is 33.0
Element 3 is 11.0

6.1.3 Functions that Return Values Versus Printing

A function that calculates and returns values (through the output arguments)
does not normally also print them; that is left to the calling script or function.
It is good programming practice to separate these tasks.

If a function just prints a value, rather than returning it, the value cannot be
used later in other calculations. For example, here is a function that just prints
the circumference of a circle:

calccircuml.m

function calccircuml(radius)

% calccircuml displays the circumference of a circle
% but does not return the value

% Format: calccircuml (radius)

disp(2 * pi * radius)
end

Calling this function prints the circumference, but there is no way to store the
value so that it can be used in subsequent calculations:

>> calccircuml(3.3)
20.7345

m CHAPTER 6: MATLAB Programs

As no value is returned by the function, attempting to store the value in
a variable would be an error:

>> ¢ = calccircuml(3.3)
Error using calccircuml
Too many output arguments.

By contrast, the following function calculates and returns the circumference so
that it can be stored and used in other calculations. For example, if the circle is
the base of a cylinder and we wish to calculate the surface area of the cylinder,
we would need to multiply the result from the calccircum2 function by the
height of the cylinder.

calccircum2.m

function circle_circum = calccircum? (radius)
% calccircum?2 calculates and returns the

% circumference of a circle

% Format: calccircum2(radius)

circle_circum = 2 * pi * radius;
end

>> circumference = calccircum2(3.3)
circumference =
20.7345

>> height = 4;
>> surf_area = circumference * height
surf_area =

82.9380

6.1.4 Passing Arguments to Functions

In all function examples presented thus far, at least one argument was passed
in the function call to be the value(s) of the corresponding input argument(s)
in the function header. The call-by-value method is the term for this method
of passing the values of the arguments to the input arguments in the
functions.

In some cases, however, it is not necessary to pass any arguments to the
function. Consider, for example, a function that simply prints a random real
number with two decimal places:

printrand.m

function printrand()
% printrand prints one random number
% Format: printrand or printrand()

fprintf('The random # is %.2f\n',rand)
end

6.1 More Types of User-Defined Functions a

Here is an example of calling this function:

>> printrand()
The random # is 0.94

As nothing is passed to the function, there are no arguments in the parentheses
in the function call and none in the function header, either. The parentheses
are not even needed in either the function or the function call, either. The
following works as well:

printrandnp.m

function printrandnp
% printrandnp prints one random number
% Format: printrandnp or printrandnp()

fprintf('The random # is %.2f\n',rand)
end

>> printrandnp
The random # is 0.52

In fact, the function can be called with or without empty parentheses, whether
or not there are empty parentheses in the function header.

This was an example of a function that did not receive any input argu-
ments nor did it return any output arguments; it simply accomplished
a task.

The following is another example of a function that does not receive any input
arguments, but, in this case, it does return a value. The function prompts the
user for a string and returns the value entered.

stringprompt.m

function outstr = stringprompt
% stringprompt prompts for a string and returns it
% Format stringprompt or stringprompt()

disp('When prompted, enter a string of any length.")
outstr = input('Enter the string here: ', 's');
end

>> mystring = stringprompt
When prompted, enter a string of any length.
Enter the string here: Hi there

mystring =
Hi there

PRACTICE 6.3

Write a function that will prompt the user for a string of at least one character, loop to error-check to
make sure that the string has at least one character, and return the string.

m CHAPTER 6: MATLAB Programs
QUICK QUESTION!

It is important that the number of arguments in the call to a func-
tion must be the same as the number of input arguments in the
function header, even if that number is zero. Also, if a function
returns more than one value, itisimportant to “capture” all values
by having an equivalent number of variables in a vector on the
left side of an assignment statement. Although it is not an error
if there aren't enough variables, some of the values retumed
will be lost. The following question is posed to highlight this.

Given the following function header (note that this is just the

Answer

The first proposed function call, (a), is valid. There are three
arguments that are passed to the three input arguments in
the function header, the name of the function is qq1, and there
are two variables in the assignment statement to store the two
values returned from the function. Function call (b) is valid,
although only the first value returned from the function would
be stored in answer;, the second value would be lost. Function
call (c) is invalid because the name of the function is given

incorrectly. Function call (d) is invalid because only two argu-
ments are passed to the function, but there are three input
arguments in the function header.

function header, not the entire function definition):
function [outa, outb] = qql(x,y, z)

Which of the following proposed calls to this function would be
valid?

a) [varl,var2] = qql(a, b, c);

b) answer = qql(3,y,q);

c) [a,b]l = myfun(x,y, z);

d) [outa, outb] = qql(x, z);

6.2 MATLAB PROGRAM ORGANIZATION

Typically, a MATLAB program consists of a script that calls functions to do the
actual work.

6.2.1 Modular Programs

A modular program is a program in which the solution is broken down into
modules, and each is implemented as a function. The script that calls these
functions is typically called the main program.

To demonstrate the concept, we will use the very simple example of calculating
the area of a circle. In Section 6.3 a much longer and more realistic example
will be given. For this example, there are three steps in the algorithm to
calculate the area of a circle:

get the input (the radius)

calculate the area

display the results.
In a modular program, there would be one main script (or possibly a function
instead) that calls three separate functions to accomplish these tasks:

6.2 MATLAB Program Organization a

a function to prompt the user and read in the radius
a function to calculate and return the area of the circle
a function to display the results.

As scripts and functions are stored in M-files, there would therefore be four
separate M-files altogether for this program; one M-file script and three M-file
functions, as follows:

calcandprintarea.m

% This is the main script to calculate the
% area of a circle

% 1t calls 3 functions to accomplish this
radius = readradius;

area = calcarea(radius);
printarea(radius,area)

readradius.m

function radius = readradius

% readradius prompts the user and reads the radius
% Ignores error-checking for now for simplicity

% Format: readradius or readradius()

disp('When prompted, please enter the radius in inches.')
radius = input('Enter the radius: ');
end

calcarea.m

function area = calcarea(rad)
% calcarea returns the area of a circle
% Format: calcarea(radius)

area = pi * rad .* rad;
end

printarea.m

function printarea(rad,area)
% printarea prints the radius and area
% Format: printarea(radius, area)

fprintf('For a circle with a radius of %.2f inches,\n',rad)
fprintf('the area is %.2f inches squared.\n',area)
end

When the program is executed, the following steps will take place:

the script calcandprintarea begins executing
calcandprintarea calls the readradius function
readradius executes and returns the radius
calcandprintarea resumes executing and calls the calcarea function, passing
the radius to it
calcarea executes and returns the area

m CHAPTER 6: MATLAB Programs

calcandprintarea resumes executing and calls the printarea function, passing
both the radius and the area to it

printarea executes and prints
the script finishes executing

Running the program would be accomplished by typing the name of the
script; this would call the other functions:

>> calcandprintarea

When prompted, please enter the radius in inches.
Enter the radius: 5.3

For a circle with a radius of 5.30 inches,

the area is 88.25 inches squared.

Note how the function calls and the function headers match up. For example:

readradius function —

function call: radius = readradius;
function header: function radius = readradius

In the function call, no arguments are passed so there are no input arguments
in the function header. The function returns one output argument so that is
stored in one variable.

calcarea function —

function call: area = calcarea(radius);
function header: function area = calcarea(rad)

In the function call, one argument is passed in parentheses so there is one
input argument in the function header. The function returns one output
argument so that is stored in one variable.

printarea function —

function call: printarea(radius,area)
function header: function printarea(rad,area)

In the function call, there are two arguments passed, so there are two input

arguments in the function header. The function does not return anything, so
the call to the function is a statement by itself; it is not in an assignment or
output statement.

PRACTICE 6.4

Modify the readradius function to error-check the user's input to make sure that the radius is valid.
The function should ensure that the radius is a positive number by looping to print an error
message until the user enters a valid radius.

6.2.2 Subfunctions
Thus far, every function has been stored in a separate M-file. However, it is
possible to have more than one function in a given M-file. For example, if one
function calls another, the first (calling) function would be the primary
function and the function that is called is a subfunction. These functions would
both be stored in the same M-file, first the primary function and then the
subfunction. The name of the M-file would be the same as the name of the
primary function, to avoid confusion.

6.2 MATLAB Program Organization

To demonstrate this, a program that is similar to the previous one, but

calculates and prints the area of a rectangle, is shown here. The script, or main
program, first calls a function that reads the length and width of the rectangle,
and then calls a function to print the results. This function calls a subfunction

to

calculate the area.

rectarea.m

% This program calculates & prints the area of a rectangle

% Call a fn to prompt the user & read the length and width

[Tength, width] = readlenwid;
% Call a fn to calculate and print the area
printrectarea(length, width)

readlenwid.m

function [1,w] = readlenwid
% readlenwid reads & returns the Tength and width
% Format: readlenwid or readlenwid()

1 = input('Please enter the length:");
w = input('Please enter the width:");
end

printrectarea.m

function printrectarea(len, wid)
% printrectarea prints the rectangle area
% Format: printrectarea(length, width)

% Call a subfunction to calculate the area
area = calcrectarea(len,wid);

fprintf('For a rectangle with a length of %.2f\n',len)
fprintf('and a width of %.2f, the area is %.2f\n', ...

wid, area);
end

function area = calcrectarea(len, wid)

% calcrectarea returns the rectangle area
% Format: calcrectarea(length, width)
area = len * wid;

end

m CHAPTER 6: MATLAB Programs

An example of running this program follows:

>> rectarea

Please enter the Tength: 6

Please enter the width: 3

For a rectangle with a length of 6.00
and a width of 3.00, the area is 18.00

Note how the function calls and function headers match up. For example:

readlenwid function —

function call: [length, width] = readlenwid;
function header: function [1,w] = readlenwid

In the function call, no arguments are passed so there are no input arguments
in the function header. The function returns two output arguments so there is
a vector with two variables on the left side of the assignment statement in
which the function is called.

printrectarea function —

function call: printrectarea(length, width)
function header: function printrectarea(len, wid)

In the function call, there are two arguments passed, so there are two input

arguments in the function header. The function does not return anything, so
the call to the function is a statement by itself; it is not in an assignment or
output statement.

calcrectarea subfunction —

function call: area = calcrectarea(len,wid);
function header: function area = calcrectarea(len, wid)

In the function call, two arguments are passed in parentheses so there are two
input arguments in the function header. The function returns one output
argument so that is stored in one variable.

The help command can be used with the script rectarea, the function read-
lenwid, and with the primary function, printrectarea. To view the first comment
in the subfunction, as it is contained within the printrectarea.m file, the oper-
ator > is used to specify both the primary and subfunctions:

>> help rectarea
This program calculates & prints the area of a rectangle

>> help printrectarea
printrectarea prints the rectangle area
Format: printrectarea(length, width)

>> help printrectarea>calcrectarea
calcrectarea returns the rectangle area
Format: calcrectarea(length, width)

6.3 Application: Menu-Driven Modular Program a

PRACTICE 6.5

For a right triangle with sides a, b, and ¢ where ¢ is the hypotenuse and 6 is the angle between
sides a and ¢ the lengths of sides a and b are given by:

a=c * cos(0)
b=c* sin(0)

Write a script righttri that calls a function to prompt the user and read in values for the hypot-
enuse and the angle (in radians), and then calls a function to calculate and return the lengths of
sides a and b, and a function to print out all values in a sentence format. For simplicity, ignore
units. Here is an example of running the script; the output format should be exactly as shown
here:

>> righttri

Enter the hypotenuse: 5

Enter the angle: .7854

For a right triangle with hypotenuse 5.0
and an angle 0.79 between side a & the hypotenuse,
side a is 3.54 and side b is 3.54

For extra practice, do this using two different program organizations:

one script that calls three separate functions
one script that calls two functions; the function that calculates the lengths of the sides will be
a subfunction to the function that prints.

6.3 APPLICATION: MENU-DRIVEN MODULAR
PROGRAM

Many longer, more involved programs that have interaction with the user are
menu-driven, which means that the program prints a menu of choices and then
continues to loop to print the menu of choices until the user chooses to end
the program. A modular menu-driven program would typically have

a function that presents the menu and gets the user’s choice, as well as
functions to implement the action for each choice. These functions may have
subfunctions. Also, the functions would error-check all user input.

As an example of such a menu-driven program, we will write a program to
explore the constant e.

The constant e, called the natural exponential base, is used extensively in
mathematics and engineering. There are many diverse applications of this
constant. The value of the constant e is approximately 2.7183... Raising e to

CHAPTER 6: MATLAB Programs

the power of x, or €%, is so common that this is called the exponential function.
In MATLAB, as we have seen, there is a function for this, exp.

One way to determine the value of e is by finding a limit.

1 n
e = lim (1 +—>
n—o n

As the value of n increases toward infinity, the result of this expression
approaches the value of e.

An approximation for the exponential function can be found using what is
called a Maclaurin series:

K1 a2 3
=1+ T + 2 + 3 + ...
We will write a program to investigate the value of ¢ and the exponential
function. It will be menu-driven. The menu options will be:

print an explanation of e

prompt the user for a value of n and then find an approximate value for e
using the expression (1 + 1/n)"

prompt the user for a value for x; print the value of exp(x) using the built-in
function and find an approximate value for ¢* using the Maclaurin series
just given

exit the program.

The algorithm for the script main program follows.

Call a function eoption to display the menu and return the user’s choice.
Loop until the user chooses to exit the program. If the user has not chosen
to exit, the action of the loop is:
depending on the user’s choice, do one of the following:
call a function explaine to print an explanation of e
call a function limite that will prompt the user for n and calculate an
approximate value for e
prompt the user for x and call a function expfn that will print both an
approximate value for ¢* and the value of the built-in exp(x); note
that because any value for x is acceptable, the program does not need
to error-check this value.
Call the function eoption to display the menu and return the user’s
choice again.

6.3 Application: Menu-Driven Modular Program

The algorithm for the eoption function follows.

Use the menu function to display the four choices.

Error-check (an error would occur if the user clicks on the “X” on the menu
box rather than pushing one of the four buttons) by looping to display the
menu until the user pushes one of the buttons.

Return the integer value corresponding to the button push.

The algorithm for the explaine function is:

print an explanation of ¢, the exp function, and how to find approximate
values.

The algorithm for the limite function is:

call a subfunction askforn to prompt the user for an integer n
calculate and print the approximate value of e using n.

The algorithm for the subfunction askforn is:

prompt the user for a positive integer for n

loop to print an error message and reprompt until the user enters a positive
integer

return the positive integer n.

The algorithm for the expfn function is:

receive the value of x as an input argument

print the value of exp(x)

assign an arbitrary value for the number of terms n (an alternative method
would be to prompt the user for this)

call a subfunction appex to find an approximate value of exp(x) using

a series with n terms

print this approximate value.

The algorithm for the appex subfunction is:

receive x and n as input arguments

initialize a variable for the running sum of the terms in the series (to 1 for
the first term) and for a running product that will be the factorials in the
denominators

loop to add the n terms to the running sum

return the resulting sum.

The entire program consists of the following M-file script and four M-file
functions:

eapplication.m

% This script explores e and the exponential function

% Call a function to display a menu and get a choice
choice = eoption;

% Choice 4 is to exit the program
while choice ~= 4
switch choice
case 1
% Explain e
explaine;
case 2
% Approximate e using a limit
lTimite;
case 3
% Approximate exp(x) and compare to exp
x = input('Please enter a value for x:');
expfn(x);
end
% Display menu again and get user's choice
choice = eoption;
end

eoption.m

function choice = eoption

% eoption prints the menu of options and error-checks
% until the user pushes one of the buttons

% Format: eoption or eoption()

choice = menu('Choose an e option', 'Explanation',
"Limit', 'Exponential function', 'Exit Program');

% 1f the user closes the menu box rather than

% pushing one of the buttons, choice will be 0

while choice ==
disp('Error-please choose one of the options.')
choice = menu('Choose an e option', 'Explanation', ...

"Limit', 'Exponential function', 'Exit Program');
end
end

explaine.m

function explaine
% explaine explains a little bit about e
% Format: explaine or explaine()

fprintf('The constant e is called the natural"')
fprintf('exponential base.\n")

fprintf('It is used extensively in mathematics and')
fprintf('engineering.\n")

fprintf('The value of the constant e is ~ 2.7183\n")
fprintf('Raising e to the power of x is so common that')
fprintf('this is called the exponential function.\n")
fprintf('An approximation for e is found using a limit.\n")
fprintf('An approximation for the exponential function')
fprintf('can be found using a series.\n")

end

6.3 Application

lTimite.m

: Menu-Driven Modular Program m

function Timite
% limite returns an approximate of e using a 1imit
% Format: 1imite or limite()

% Call a subfunction to prompt user for n

n = askforn;

fprintf('An approximation of e with n = %d is %.2f\n",
n, (1 +1/n) ~n)

end

function outn = askforn

% askforn prompts the user for n

% Format askforn or askforn()

% It error-checks to make sure n is a positive integer

inputnum = input('Enter a positive integer for n:');

numZ = int32(inputnum);

while numZ ~= inputnum || num2 < 0
inputnum = input('Invalid! Enter a positive integer:');
numZ = int32(Cinputnum);

end

outn = inputnum;

end

expfn.m

function expfn(x)

% expfn compares the built-in function exp(x)
% and a series approximation and prints

% Format expfn(x)

fprintf('Value of built-in exp(x) is %.2f\n',exp(x))

% n is arbitrary number of terms

n=10;

fprintf('Approximate exp(x) is %.2f\n', appex(x,n))
end

function outval = appex(x,n)

% appex approximates e to the x power using terms up to
% x to the nth power

% Format appex(x,n)

% Initialize the running sum in the output argument
% outval to 1 (for the first term)
outval = 1;

for i = 1:n

outval = outval + (x*i)/factorial(i);
end
end

CHAPTER 6: MATLAB Programs

- menu (2] 5)X)

Choose an e option
Explanation

Limit

Exponential function

Exit Program

k)

FIGURE 6.1 Menu
Figure Window for
eapplication program

Running the script will bring up the menu seen in Figure 6.1.

Then, what happens will depend on which button(s) the user pushes. Every
time the user pushes a button, the appropriate function will be called and then
this menu will appear again. This will continue until the user pushes the
button "Exit Program’. Examples will be given of running the script, with
different sequences of button pushes.

In

In

the following example, the user:

closed the menu window that caused the error message and brought up
a new menu

chose 'Explanation’

chose "Exit Program’.

>> eapplication

Error - please choose one of the options.

The constant e is called the natural exponential base.

It is used extensively in mathematics and engineering.

The value of the constant e is ~ 2.7183

Raising e to the power of x is so common that this is
called the exponential function.

An approximation for e is found using a limit.

An approximation for the exponential function can be found
using a series.

the following example, the user:
chose "Limit’
when prompted for n, entered two invalid values before finally entering

a valid positive integer
chose "Exit Program’.

>> eapplication

Enter a positive integer for n: -4
Invalid! Enter a positive integer: 5.5
Invalid! Enter a positive integer: 10

An approximation of e with n =10 is 2.59

To see the difference in the approximate value for e as n increases, the user kept
choosing ‘Limit’, and entering larger and larger values each time in the
following example:

>> eapplication

Enter a positive integer for n: 4

An approximation of e with n =4 is 2.44
Enter a positive integer for n: 10

An approximation of e with n =10 is 2.59
Enter a positive integer for n: 30

An approximation of e with n = 30 is 2.67
Enter a positive integer for n: 100

An approximation of e with n = 100 is 2.70

In the following example, the user:

chose 'Exponential function’
when prompted, entered 4.6 for x
chose "Exponential function” again

when prompted, entered —2.3 for x

chose "Exit Program’.

>> eapplication

Please enter a value for x: 4.6
Value of built-in exp(x) is 99.48
Approximate exp(x) is 98.71
Please enter a value for x: -2.3
Value of built-in exp(x) is 0.10
Approximate exp(x) is 0.10

6.4 VARIABLE SCOPE

The scope of any variable is the workspace in which it is valid. The workspace
created in the Command Window is called the base workspace.

As we have seen before, if a variable is defined in any function it is a local
variable to that function, which means that it is only known and used within
that function. Local variables only exist while the function is executing; they
cease to exist when the function stops executing. For example, in the following
function that calculates the sum of the elements in a vector, there is a local

loop variable i.

mysum.m

function runsum = mysum(vec)
% mysum returns the sum of a vector
% Format: mysum(vector)

runsum = 0;
for i=1l:length(vec)
runsum = runsum + vec(i);
end
end

Running this function does not add any variables to the base workspace, as

demonstrated in the following:

>> clear

>> who

>> disp(mysum([5 9 1]))
15

>> who

>>

6.4 Variable Scope a

CHAPTER 6: MATLAB Programs

Note

This, however, is very
poor programming
style. It is much better
to pass the vector vecto
a function.

In addition, variables that are defined in the Command Window cannot be
used in a function (unless passed as arguments to the function).

However, scripts (as opposed to functions) do interact with the variables that
are defined in the Command Window. For example, the previous function is

changed to be a script mysumscript.

mysumscript.m

% This script sums a vector

vec = 1:5;
runsum = 0;
for i = 1:length(vec)

runsum = runsum + vec(i);
end
disp(runsum)

The variables defined in the script do become part of the base workspace:

>> clear
>> who
>> mysumscript
15
>> who
Your variables are:
i runsum vec

Variables that are defined in the Command Window can be used in a script,
but cannot be used in a function. For example, the vector vec could be defined in
the Command Window (instead of in the script), but then used in the script:

mysumscriptii.m

% This script sums a vector from the Command Window

runsum = 0;
for i = 1:Tength(vec)
runsum = runsum -+ vec(i);
end
disp(runsum)

>> clear

>> vec = 1:7;

>> who

Your variables are:
vec

>> mysumscriptii
28

>> who

Your variables are:

i runsum vec

Because variables created in scripts and in the Command Window both use
the base workspace, many programmers begin scripts with a clear command
to eliminate variables that may have already been created elsewhere (either in
the Command Window or in another script).

Instead of a program consisting of a script that calls other functions to do the
work, in some cases programmers will write a main function to call the other
functions. So, the program consists of all functions rather than one script and
the rest functions. The reason for this is again because both scripts and the
Command Window use the base workspace. By using only functions in

a program, no variables are added to the base workspace.

It is possible, in MATLAB, as well in other languages, to have global variables
that can be shared by functions without passing them. Although there are
some cases in which using global variables is efficient, it is generally regarded
as poor programming style and therefore will not be explained further here.

6.4.1 Persistent Variables

Normally, when a function stops executing, the local variables from that
function are cleared. That means that every time a function is called, memory
is allocated and used while the function is executing, but released when it
ends. With variables that are declared as persistent variables, however, the value
is not cleared, so the next time the function is called, the variable still exists
and retains its former value.

The following program demonstrates this. The script calls a function funcl,
which initializes a variable count to 0, increments it, and then prints the value.
Every time this function is called, the variable is created, initialized to O,
changed to 1, and then cleared when the function exits. The script then calls
a function func2, which first declares a persistent variable count. If the variable
has not yet been initialized, which will be the case the first time the function is
called, it is initialized to 0. Then, like the first function, the variable is incre-
mented and the value is printed. With the second function, however, the
variable remains with its value when the function exits, so the next time the
function is called the variable is incremented again.

persistex.m

% This script demonstrates persistent variables

% The first function has a variable "count"

fprintf('This is what happens with a "normal" variable:\n")
funcl

funcl

% The second function has a persistent variable "count"
fprintf('\nThis is what happens with a persistent variable:\n')
func?

func2

6.4 Variable Scope

CHAPTER 6: MATLAB Programs

funcl.m

function funcl
% funcl increments a normal variable "count"
% Format funcl or funcl()

count = 0;

count = count + 1;

fprintf('The value of count is %d\n',count)
end

func2.m

function func?
% func2 increments a persistent variable "count"
% Format func2 or func2()

persistent count % Declare the variable
if isempty(count)
count = 0;
end
count = count + 1;
fprintf('The value of count is %d\n',count)
end

The line
persistent count

declares the variable count, which allocates space for it but does not initialize it.
The if statement then initializes it (the first time the function is called). In
many languages, variables always have to be declared before they can be used;
in MATLAB, this is true only for persistent variables.

The functions can be called from the script or from the Command Window, as
shown. For example, the functions are called first from the script. With the
persistent variable, the value of count is incremented. Then, funcl is called
from the Command Window and func?2 is also called from the Command
Window. Since the value of the persistent variable had the value 2, this time it
is incremented to 3.

>> persistex

This is what happens with a "normal" variable:
The value of count is 1

The value of count is 1

This is what happens with a persistent variable:
The value of count is 1
The value of count is 2

>> funcl
The value of count is 1

>> func?
The value of count is 3

As can be seen from this, every time the function funcl is called, whether from
persistex or from the Command Window, the value of 1 is printed. However,
with func2 the variable count is incremented every time it is called. It is first
called in this example from persistex twice, so count is 1 and then 2. Then, when
called from the Command Window, it is incremented to 3 (so it is counting
how many times the function is called).

The way to restart a persistent variable is to use the clear function. The command

>> clear functions

will reinitialize all persistent variables (see help clear for more options).

PRACTICE 6.6

The following function posnum prompts the user to enter a positive number and loops to error-
check. It returns the positive number entered by the user. It calls a subfunction in the loop to print
an error message. The subfunction has a persistent variable to count the number of times an error
has occurred. Here is an example of calling the function:

>> enteredvalue = posnum
Enter a positive number: -5
Error ## 1 ... Follow instructions!
Does -5.00 Took Tike a positive number to you?
Enter a positive number: -33
Error ## 2 ... Follow instructions!
Does -33.00 Took Tlike a positive number to you?
Enter a positive number: 6
enteredvalue =
6

Fill in the subfunction below to accomplish this.

posnum.m

function num = posnum

% Prompt user and error-check until the
% user enters a positive number

% Format posnum or posnum()

num = input('Enter a positive number:');
while num < 0

errorsubfn(num)

num = input('Enter a positive number:');
end
end

function errorsubfn(num)
% Fill this in

end

Of course, the numbering of the error messages will continue if the function is executed again
without clearing it first.

6.4 Variable Scope a

m CHAPTER 6: MATLAB Programs

6.5 DEBUGGING TECHNIQUES

Any error in a computer program is called a bug. This term is thought to date
back to the 1940s, when a problem with an early computer was found to have
been caused by a moth in the computer’s circuitry! The process of finding
errors in a program, and correcting them, is still called debugging.

As we have seen, the checkcode function can be used to help find mistakes or
potential problems in script and function files.

6.5.1 Types of Errors
There are several different kinds of errors that can occur in a program, which
fall into the categories of syntax errors, runtime errors, and logical errors.

Syntax errors are mistakes in using the language. Examples of syntax errors are
missing a comma or a quotation mark, or misspelling a word. MATLAB itself
will flag syntax errors and give an error message. For example, the following
string is missing the end quote:

>> mystr = 'how are you;
mystr = 'how are you;

|
Error: A MATLAB string constant is not terminated properly.

If this type of error is typed in a script or function using the Editor, the Editor
will flag it.

Another common mistake is to spell a variable name incorrectly; MATLAB will
also catch this error. Newer versions of MATLAB will typically be able to
correct this for you, as in the following:

>> value = 5;
>> newvalue = valu + 3;
Undefined function or variable 'valu'.

Did you mean:
>> newvalue = value + 3;

Runtime, or execution-time, errors are found when a script or function is
executing. With most languages, an example of a runtime error would be
attempting to divide by zero. However, in MATLAB, this will return the
constant Inf. Another example would be attempting to refer to an element in
an array that does not exist.

runtimeEx.m

% This script shows an execution-time error
vec = 3:5;

for i = 1:4
disp(vec(i))
end

6.5 Debugging Techniques a

The previous script initializes a vector with three elements, but then attempts
to refer to a fourth. Running it prints the three elements in the vector, and then
an error message is generated when it attempts to refer to the fourth element.
Note that MATLAB gives an explanation of the error and it gives the line
number in the script in which the error occurred.
>> runtimekx
3
4

5
Attempted toaccess vec(4); index out of bounds because numel (vec)=3.

Error in runtimeEx (line 6)
disp(vec(i))

Logical errors are more difficult to locate because they do not result in any
error message. A logical error is a mistake in reasoning by the programmer, but
it is not a mistake in the programming language. An example of a logical error
would be dividing by 2.54 instead of multiplying to convert inches to centi-
meters. The results printed or returned would be incorrect, but this might not
be obvious.

All programs should be robust and should, wherever possible, anticipate
potential errors and guard against them. For example, whenever there is input
into a program, the program should error-check and make sure that the input
is in the correct range of values. Also, before dividing, any denominator
should be checked to make sure that it is not zero.

Despite the best precautions, there are bound to be errors in programs.

6.5.2 Tracing

Many times, when a program has loops and/or selection statements, and is not
running properly, it is useful in the debugging process to know exactly which
statements have been executed. For example, the following is a function that
attempts to display “In middle of range” if the argument passed to it is in the
range from 3 to 6, and “Out of range” otherwise.

testifelse.m

function testifelse(x)
% testifelse will test the debugger
% Format: testifelse(Number)

if 3 <4 x<6

disp('In middle of range')
else

disp('Out of range')
end

end

m CHAPTER 6: MATLAB Programs

However, it seems to print “In middle of range” for all values of x:

>> testifelse(4)
In middle of range

>> testifelse(7)
In middle of range

>> testifelse(-2)
In middle of range

One way of following the flow of the function, or tracing it, is to use the echo
function. The echo function, which is a toggle, will display every statement as
it is executed, as well as results from the code. For scripts, just echo can be
typed, but for functions, the name of the function must be specified. For
example, the general form is:

echo functionname on/off

For the testifelse function, it can be called as:

>> echo testifelse on
>> testifelse(-2)
% This function will test the debugger
if 3<x<6
disp('In middle of range')
In middle of range
end

We can see from this result that the action of the if clause was executed.

6.5.3 Editor/Debugger
MATLAB has many useful functions for debugging, and debugging can also be
done through its Editor, which is more properly called the Editor/Debugger.

Typing help debug at the prompt in the Command Window will show some
of the debugging functions. Also, in the Help Documentation, typing
“debugging” in the Search Documentation will display basic information
about the debugging processes.

It can be seen in the previous example that the action of the if clause was
executed and it printed “In middle of range”, but just from that it cannot be
determined why this happened. There are several ways to set breakpoints in
a file (script or function) so that the variables or expressions can be examined.
These can be done from the Editor/Debugger or commands can be typed from
the Command Window. For example, the following dbstop command will set
a breakpoint in the sixth line of this function (which is the action of the if
clause), which allows the values of variables and/or expressions to be exam-
ined at that point in the execution. The function dbcont can be used to
continue the execution, and dbquit can be used to quit the debug mode. Note
that the prompt becomes K>> in debug mode.

6.5 Debugging Techniques a

>> dbstop testifelse 6
>> testifelse(-2)

5 disp('In middle of range')
K>> x
X =
-2

K>> 3 < x
ans =

0
K>>3 < x< 6
ans =

1
K>> dbcont
In middle of range
end
>>

By typing the expressions 3 < x and then 3 < x < 6 we can determine that the
expression 3 < x will return either 0 or 1. Both 0 and 1 are less than 6, so the
expression will always be true, regardless of the value of x! Once in the debug
mode, instead of using dbcont to continue the execution, dbstep can be used
to step through the rest of the code one line at a time.

Breakpoints can also be set and cleared through the Editor. When a file is open
in the Editor, in between the line numbers on the left and the lines of code is
a thin gray strip which is the breakpoint alley. In this, there are underscore
marks next to the executable lines of code (as opposed to comments, for
example). Clicking the mouse in the alley next to a line will create a break-
point at that line (and then clicking on the red dot that indicates a breakpoint
will clear it).

PRACTICE 6.7

The following script is bad code in several ways. Use checkcode first to check it for potential
problems, and then use the techniques described in this section to set breakpoints and check
values of variables.

debugthis.m

for i = 1:5
i=3;
disp(i)

end
for j = 2:4

vec(j) =]
end

m CHAPTER 6: MATLAB Programs

6.5.4 Function Stubs

Another common debugging technique that is used when there is a script main
program that calls many functions is to use function stubs. A function stub is
a place holder, used so that the script will work even though that particular
function hasn’t been written yet. For example, a programmer might start with
a script main program, which consists of calls to three function that accom-
plish all of the tasks.

mainscript.m

% This program gets values for x and y, and
% calculates and prints z

[x, y] = getvals;
z = calcz(x,y);
printall(x,y,z)

The three functions have not yet been written, however, so function stubs
are put in place so that the script can be executed and tested. The function
stubs consist of the proper function headers, followed by a simulation of
what the function will eventually do. For example, the first two functions
put arbitrary values in for the output arguments and the last function
prints.

getvals.m

function [x, y] = getvals
x = 33;

y =11;

end

calcz.m

function z = calcz(x,y)
z =2.2;
end

printall.m

function printall(x,y,z)
disp(x)

disp(y)

disp(z)

end

Then, the functions can be written and debugged one at a time. It is much
easier to write a working program using this method than to attempt to write
everything at once — then, when errors occur, it is not always easy to determine
where the problem is!

6.5 Debugging Techniques a

6.5.5 Code Cells and Publishing Code

Function stubs allow one to develop code and debug code one function at
a time. Similarly, within scripts, one can accomplish this by breaking the code
into sections, called code cells. With code cells, you can run one cell at a time
and you can also publish the code in an HTML format with plots embedded
and with formatted equations.

To break code into cells, create comment lines that begin with two % symbols;
these become the cell titles. For example, a script from Chapter 3 that plots sin
and cos has been modified to have two cells: one that creates vectors for sin(x)
and cos(x) and plots them, and a second that adds a legend, title, and axis
labels to the plot.

sinncosCells.m

% This script plots sin(x) and cos(x) in the same Figure
% Window for values of x ranging from 0 to 2pi

%% Create vectors and plot
clf

x = 0: 2*pi/40: 2*pi;

y = sin(x);

plot(x,y,'ro")

hold on

y = cos(x);

plot(x,y, 'b+")

%% Add legends, axis Tlabels, and title
legend('sin', 'cos')

xlabel('x")

ylabel('sin(x) or cos(x)")

title('sin and cos on one graph')

When viewing this script in the Editor, the individual cells can be chosen

by clicking the mouse anywhere within the cell. This will highlight the cell
with a background color. Then, from the Editor tab, you can choose “Run
Section” to run just that one code cell and remain within that cell, or you
can choose “Run and Advance” to run that code cell and then advance to the
next.

By choosing the “Publish” tab and then “Publish”, the code is published by
default in HTML document. For the sinncosCells script, this creates a docu-
ment in which there is a table of contents (consisting of the two cell titles),
the first code block which plots, followed by the actual plot, and then the
second code block that annotates the Figure Window, followed by the
modified plot.

m CHAPTER 6: MATLAB Programs

m Explore Other Interesting Features

From the Command Window, type help debug to find out more about
the debugging, and help dbstop, in particular, to find out more options
for stopping code. Breakpoints can be set at specified locations in a file,
only when certain condition(s) apply, and when errors occur.
Investigate the dbstatus function.

Explore the use of the functions mlock and munlock to block functions
from being cleared using clear.

It is also possible to create code cells in functions. Investigate this. M

B Summary

Common Pitfalls

Not matching up arguments in a function call with the input arguments
in a function header.

Not having enough variables in an assignment statement to store all of
the values returned by a function through the output arguments.
Attempting to call a function that does not return a value from an
assignment statement or from an output statement.

Not using the same name for the function and the file in which it is
stored.

Not thoroughly testing functions for all possible inputs and outputs.
Forgetting that persistent variables are updated every time the function
in which they are declared is called — whether from a script or from the
Command Window.

Programming Style Guidelines

If a function is calculating one or more values, return these value(s)
from the function by assigning them to output variable(s).

Give the function and the file in which it is stored the same name.
Function headers and function calls must correspond. The number of
arguments passed to a function must be the same as the number of
input arguments in the function header. If the function returns values,
the number of variables in the left side of an assignment statement
should match the number of output arguments returned by the
function.

If arguments are passed to a function in the function call, do not
replace these values by using input or an assignment in the function
itself.

Functions that calculate and return value(s) will not normally also print
them.

Functions should not normally be longer than one page.

Exercises

m Do not declare variables in the Command Window and then use them
in a script, or vice versa.

m DPass all values to be used in functions to input arguments in the
functions.

= When writing large programs with many functions, start with the main
program script and use function stubs, filling in one function at a time
while debugging. |

MATLAB Reserved Words

global persistent

MATLAB Functions and Commands

echo dbquit
dbstop dbstep
dbcont

MATLAB Operator

> path for subfunction %% code cell title

Write a function that will receive as an input argument a number of kilometers (K).
The function will convert the kilometers to miles and to US nautical miles, and return
both results. The conversions are 1K = 0.621 miles and 1 US nautical mile = 1.852 K.
A vector can be represented by its rectangular coordinates x and vy, or by its polar
coordinates r and 0. For positive values of x and y, the conversions from rectangular
to polar coordinates in the range from 0 to 2 ware r = v/x2 + y2 and 6 = arctan(y/x).
The function for arctan is atan. Write a function recpol to receive as input argu-
ments the rectangular coordinates and return the corresponding polar coordinates.
Write a function to calculate the volume and surface area of a hollow cylinder. It
receives as input arguments the radius of the cylinder base and the height of the
cylinder. The volume is given by = 12 h and the surface area is 2 = r h.

Satellite navigation systems have become ubiquitous. Navigation systems based in
space such as the Global Positioning System (GPS) can send data to handheld
personal devices. The coordinate systems that are used to represent locations
present this data in several formats.

The geographic coordinate system is used to represent any location on Earth as
a combination of latitude and longitude values. These values are angles that can

m CHAPTER 6: MATLAB Programs

be written in the decimal degrees (DD) form or the degrees, minutes, seconds
(DMS) form just like time. For example, 24.5° is equivalent to 24°30°0". Write

a script that will prompt the user for an angle in DD form and will print in
sentence format the same angle in DMS form. The script should error-check for
invalid user input. The angle conversion is to be done by calling a separate
function in the script.

Write a function that prints the area and circumference of a circle for a given
radius. Only the radius is passed to the function. The function does not return any
values. The area is given by m 1? and the circumference is 2 « 1.

Write a function that will receive an integer n and a character as input arguments,
and will print the character n times.

Write a function that will receive a matrix as an input argument and print it in

a table format.

Write a function that receives a matrix as an input argument and prints a random
row from the matrix.

Write a function that receives a count as an input argument, and prints the value
of the count in a sentence that would read “It happened 1 time.” if the value
of the count is 1 or “It happened xx times.” if the value of count (xx) is greater
than 1.

Write a function that receives an x vector, a minimum value, and a maximum value,
and plots sin(x) from the specified minimum to the specified maximum.

Write a function that will print an explanation of temperature conversions. The
function does not receive any input arguments; it simply prints.

Write a function that prompts the user for a value of an integer n and returns the
value of n. No input arguments are passed to this function. Emror-check to make
sure that an integer is entered.

Write a function that prompts the user for a value of an integer n and retums

a vector of values from 1 to n. The function should error-check to make sure that
the user enters an integer. No input arguments are passed to this function.

Write a script that will ask the user to choose his or her favorite science class, and
print a message regarding that course. It will call a function to display a menu of
choices (using the menu function); this function will error-check to make sure that
the user pushes one of the buttons. The function will returmn the number corre-
sponding to the user's choice. The script will then print a message.

Write a script that will prompt the user for the original and final lengths of
a thin rod of material as it is stretched or compressed, and calculates the
strain as:

AX / X

where Ax is the change in the length (X - Xg), Xr is the final length, and x is the
original length. The script loops to read the original and final lengths, and for
each set calls a function that calculates the strain, and then calls a function that
prints the result.

Write a script that will:

call a function to prompt the user for an angle in degrees

call a function to calculate and return the angle in radians (note: 7t radians = 180°)

call a function to print the result.
Also, write all of the functions. Note that the solution to this problem involves four
M-files: one which acts as a main program (the script) and three for the functions.
Modify the program in Exercise 16 so that the function to calculate the angle is
a subfunction to the function that prints.
The lump sum S to be paid when interest on a loan is compounded annually is
given by S = P(1 + i)™ where Pis the principal invested, i is the interest rate,
and n is the number of years. Write a program that will plot the amount S as it
increases through the years from 1 to n. The main script will call a function to
prompt the user for the number of years (and error-check to make sure that the
user enters a positive integer). The script will then call a function that will plot S
for years 1 through n. It will use 0.05 for the interest rate and $10,000 for P.
Write a program to write a length conversion chart to a file. It will print lengths in
feet, from 1 to an integer specified by the user, in one column and the corre-
sponding length in meters (1 foot = 0.3048 m) in a second column. The main script
will call one function that prompts the user for the maximum length in feet; this
function must error-check to make sure that the user enters a valid positive integer.
The script then calls a function to write the lengths to a file.
A bar is a unit of pressure. Polyethylene water pipes are manufactured in
pressure grades, which indicate the amount of pressure in bars that the pipe can
support for water at a standard temperature. The following script printpressures
prints some common pressure grades, as well as the equivalent pressure in atm
(atmospheres) and psi (pounds per square inch). The conversions are:

1 bar = 0.9869atm = 14.504 psi

The script calls a function to convert from bars to atm and psi, and calls
another function to print the results; write these functions. Assume that the bar
values are integers.

printpressures.m

% prints common water pipe pressure grades
commonbar = [4 6 10];
for bar = commonbar
[atm, psi] = convertbar(bar);
print_press(bar,atm,psi)
end

The script circscript loops n times to prompt the user for the circumference of

a circle (where n is a random integer). Error-checking is ignored to focus on
functions in this program. For each, it calls one function to calculate the radius and
area of that circle, and then calls another function to print these values. The

m CHAPTER 6: MATLAB Programs

formulas are r = ¢/(2w) and a = 7 r* where 1 is the radius, ¢ is the circumference,
and a is the area. Write the two functions.

circscript.m

n = randi(4);

for i = 1:n
circ = input('Enter the circumference of the circle:');
[rad, areal] = radarea(circ);
dispra(rad,area)

end

E
The resistance R in ohms of a conductor is given by R = 7 where E is the potential

in volts and I is the current in amperes. Write a script that will:
call a function to prompt the user for the potential and the current
call a function that will print the resistance; this will call a subfunction to
calculate and return the resistance.
Write the functions as well.
The power in watts is given by P = EI. Modify the program in Exercise 22 to
calculate and print both the resistance and the power. Modify the subfunction so
that it calculates and returns both values.
The distance between any two points (x1,y1) and (X2,y2) is given by:

distance = \/(X1 — %)%+ (y1 — 12)*

The area of a triangle is:

area = \/sx(s—a)*(s—Db) x (s —¢)

where a, b, and ¢ are the lengths of the sides of the triangle, and s is equal to half
the sum of the lengths of the three sides of the triangle. Write a script that will
prompt the user to enter the coordinates of three points that determine a triangle
(e.g., the x and y coordinates of each point). The script will then calculate and print
the area of the triangle. It will call one function to calculate the area of the triangle.
This function will call a subfunction that calculates the length of the side formed by
any two points (the distance between them).
Write a program to write a temperature conversion chart to a file. The main script
will:

call a function that explains what the program will do

call a function to prompt the user for the minimum and maximum temperatures

in degrees Fahrenheit, and return both values; this function checks to make

sure that the minimum is less than the maximum, and calls a subfunction to

swap the values if not

call a function to write temperatures to a file — the temperature in degrees

F from the minimum to the maximum in one column and the corresponding

temperature in degrees Celsius in another column; the conversion is
C=(F— 32 *5/9.
Modify the function funcZ from Section 6.4.1 that has a persistent variable count.
Instead of having the function print the value of count, the value should be returned.
Write a function perZ that receives one number as an input argument. The function
has a persistent variable that sums the values passed to it. Here are the first two
times the function is called:

>> per2(4)
ans =
4

>> per2(6)
ans =
10

What would be the output from the following program? Think about it, write down
your answer, and then type it in to verify.

testscope.m

answer = 5;

fprintf('Answer is %d\n',answer)
pracfn

pracfn

fprintf('Answer is %d\n',answer)
printstuff

fprintf('Answer is %d\n',answer)

pracfn.m

function pracfn
persistent count
if isempty(count)
count = 0;
end
count = count + 1;
fprintf('This function has been called %d times.\n',count)
end

printstuff.m

function printstuff

answer = 33;

fprintf('Answer is %d\n',answer)
pracfn

fprintf('Answer is %d\n',answer)
end

m CHAPTER 6:

MATLAB Programs

Assume a matrix variable mat, as in the following example:
mat =

2 4 4 0
The following for loop

[r, c] = size(mat);
for i = 1:r

sumprint(mat(i,:))
end

prints this result:
The sum is now 15
The sum is now 25
The sum is now 37

Write the function sumprint.
The following script land calls functions to:

prompt the user for a land area in acres

calculate and return the area in hectares and in square miles

print the results.
One acre is 0.4047 hectares. One square mile is 640 acres. Assume that the last
function, that prints, exists — you do not have to do anything for that function. You
are to write the entire function that calculates and returns the area in
hectares and in square miles, and write just a function stub for the function that
prompts the user and reads. Do not write the actual contents of this function;
just write a stub!

land.m

inacres = askacres;
[sgmil, hectares] = convacres(inacres);
dispareas(inacres, sgmil, hectares) % Assume this exists

The following script priftlens loops to:
call a function to prompt the user for a length in feet
call a function to convert the length to inches (1 foot = 12 inches)
call a function to print both.
prtftlens.m

for i = 1:3
lTenf = Tenprompt();
Teni = convertFtToIn(lenf);
printLens(lenf, Tleni)

end

Don't write the functions, just write function stubs.

For a prism that has as its base an n-sided polygon and height h, the volume V, and
surface area A are given by:

V=2p82 cot™ A =252 c0t” 4 nsh
4 n 2 n

where S is the length of the sides of the polygons. Write a script that calls

a function getprism that prompts the user for the number of sides n, the height h,
and the length of the sides S, and retumns these three values. It then calls a function
calc_v_a that calculates and returns the volume and surface area, and then finally
a function printv_a that prints the results. Write the script and function stubs.
Write a menu-driven program to convert a time in seconds to other units (minutes,
hours, and so on). The main script will loop to continue until the user chooses to
exit. Each time in the loop, the script will generate a random time in seconds, call
a function to present a menu of options, and print the converted time. The
conversions must be made by individual functions (e.g., one to convert from
seconds to minutes). All user-entries must be error-checked.

Write a menu-driven program to investigate the constant 7. Model it after the
program that explores the constant e Pi () is the ratio of a circle’s circumference
1o its diameter. Many mathematicians have found ways to approximate 7. For
example, Machin's formula is:

T_ 4 arctan 1 — arctan L
4 5 239
Leibniz found that 7 can be approximated by:

4 4 4 4 4 4
T=173tsTrtg Tt

This is called a sum of a series. There are six terms shown in this series. The first
term is 4, the second term is —4/3, the third term is 4/5, and so forth. For example,
the menu-driven program might have the following options:

print the result from Machin's formula

print the approximation using Leibniz’ formula, allowing the user to specify

how many terms to use

print the approximation using Leibniz' formula, looping until a “good”

approximation is found

exit the program.
Write a program to calculate the position of a projectile at a given time t. For the
gravitational constant g and an initial velocity vy and angle of departure 6y the
position is given by x and y coordinates as follows:

. 1
X =woos(l)t Yy =w sm(ﬁo)t—zgtz

The program should initialize the variables for the initial velocity, time, and angle of
departure. It should then call a function to find the x and y coordinates, and then
another function to print the results.

CHAPTER 7

String Manipulation

CONTENTS

string leading blanks string concatenation 7.1 Creating String
substring trailing blanks delimiter Variables ...235
control characters vectors of characters token 7.2 Operations on

Strings 238

7.3 The “ig”
Functions for

A string in the MATLAB® software consists of any number of characters and is Strings 252
contained in single quotes. Actually, strings are vectors in which every element 7 4 Converting
is a single character, which means that many of the vector operations and Between

functions that we have already seen work with strings. String and
Number
MATLAB also has many built-in functions that are written specifically to manip- Types......... 252

ulate strings. In some cases strings contain numbers, and it is useful to convert
from strings to numbers and vice versa; MATLAB has functions to do this as well.

white space characters empty string

There are many applications for using strings, even in fields that are predom-
inantly numerical. For example, when data files consist of combinations of
numbers and characters, it is often necessary to read each line from the file as
a string, break the string into pieces, and convert the parts that contain numbers
to number variables that can be used in computations. In this chapter the string
manipulation techniques necessary for this will be introduced, and applica-
tions in file input/output will be demonstrated in Chapter 9.

7.1 CREATING STRING VARIABLES

A string consists of any number of characters (including, possibly, none).
The following are examples of strings:

e
'cat'
'"Hello there'

g 235

MATLAB®. http://dx.doi.org/10.1016/B978-0-12-405876-7.00007-9
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-405876-7.00007-9

m CHAPTER 7: String Manipulation

Note

There is a difference
between an empty
string, which has

a length of 0, and

a string consisting of
a blank space, which
has a length of 1.

A substring is a subset or part of a string. For example, ‘there’ is a substring
within the string ‘Hello there’.

Characters include letters of the alphabet, digits, punctuation marks, white
space, and control characters. Control characters are characters that cannot be
printed, but accomplish a task (e.g., a backspace or tab). White space characters
include the space, tab, newline (which moves the cursor down to the next
line), and carriage return (which moves the cursor to the beginning of the
current line). Leading blanks are blank spaces at the beginning of a string, for
example, " hello’, and trailing blanks are blank spaces at the end of a string.

There are several ways that string variables can be created. One is by using an
assignment statement:

>> word = 'cat';

Another method is to read into a string variable. Recall that to read into
a string variable using the input function, the second argument ‘s’ must be
included:

>> strvar = input('Enter a string: ', 's')
Enter a string: xyzabc

strvar =

xyzabc

If leading or trailing blanks are typed by the user, these will be stored in
the string. For example, in the following the user entered 4 blanks and then “xyz":

>> s = input('Enter a string: ','s’')
Enter a string: Xyz
g =

Xyz

7.1.1 Strings as Vectors
Strings are treated as vectors of characters or, in other words, a vector in which
every element is a single character, so many vector operations can be per-

formed. For example, the number of characters in a string can be found using
the length function:

>> length('cat')
ans =
3

>> length(' ')
ans =
1

>> length('")
ans =
0

7.1 Creating String Variables

Expressions can refer to an individual element (a character within the string),
or a subset of a string, or a transpose of a string:

>> mystr = 'Hi';
>> mystr(1)

ans =

H

>> mystr'’
ans =

H

i

>> sent = 'Hello there';

>> length(sent) Note _
ans = A blank space in

11 a string is a valid char-
>> sent(4:8) acter within the string.
ans =
1o th

A character matrix can be created that consists of strings in every row. The
following is created as a column vector of strings, but the end result is that it is
a matrix in which every element is a character:

>> wordmat = ['Hello'; "Howdy']
wordmat =

Hello

Howdy

>> size(wordmat)
ans =

This created a 2 x 5 matrix of characters.

With a character matrix we can refer to an individual element (a single char-
acter) or an individual row (one of the strings):

>> wordmat(2,4)
ans =
d

>> wordmat(1,:)
ans =
Hello

As rows within a matrix must always be the same length, the shorter strings
must be padded with blanks so that all strings have the same length; other-
wise, an error will occur.

CHAPTER 7: String Manipulation

>> greetmat = ['Hello'; 'Goodbye']
Error using vertcat
Dimensions of matrices being concatenated are not consistent.

>> greetmat = ['Hello '; 'Goodbye']
greetmat =
Hello
Goodhye
>> size(greetmat)
ans =
2 7

PRACTICE 7.1

Prompt the user for a string. Print the length of the string and also the first and last characters in the
string. Make sure that this works regardless of what the user enters.

7.2 OPERATIONS ON STRINGS

MATLAB has many built-in functions that work with strings. Some of the
string manipulation functions that perform the most common operations will
be described here.

7.2.1 Concatenation

String concatenation means to join strings together. Of course, as strings are
just vectors of characters, the method of concatenating vectors also works for
strings. For example, to create one long string from two strings, it is possible to
join them by putting them in square brackets:

>> first = 'Bird';
>> last = 'house';
>> [first Tast]

ans =

Birdhouse

Note that the variable names (or strings) must be separated by a blank space in
the brackets, but there is no space in between the strings when they are
concatenated.

The function strcat concatenates horizontally, meaning that it creates one
longer string from the inputs.

>> first = 'Bird’';

>> last = 'house';
>> strcat(first, last)
ans =

Birdhouse

7.2 Operations on Strings a

If there are leading or trailing blanks in the strings, there is a difference
between these two methods of concatenating. The method of using the square
brackets will concatenate all of the characters in the strings, including all
leading and trailing blanks.

>> strl = '"Xxx '
>> str2 = ' yyy';
>> [strl str2]

ans =

XXX yyy

>> length(ans)
ans =
12

The strcat function, however, will remove trailing blanks (but not leading
blanks) from strings before concatenating. Note that in these examples,
thetrailingblanks from str1 are removed, but the leading blanks from str2 are not:

>> strcat(strl,str2)
ans =
XXX Yyy

>> length(ans)
ans =
9

>> strcat(str2,strl)
ans =
YYYXXX

>> length(ans)
ans =
9

We have seen already that the char function can be used to convert from an
ASCII code to a character. The char function can also be used to concatenate
vertically, meaning that it will create a column vector of strings (or, in other
words, create a matrix of characters). When using the char function to create
a matrix, it will automatically pad the strings in the rows with trailing blanks
as necessary so that they are all the same length.

>> clear greetmat

>> greetmat = char('Hello', '"Goodbye")
greetmat =

Hello

Goodbye

>> size(greetmat)
ans =
2 7

m CHAPTER 7: String Manipulation

PRACTICE 7.2

Create a variable that stores the word ‘northeast’. From this, create two separate variables vI and
vZ that store ‘north’ and ‘east’. Then, create a matrix consisting of the values of v and vZin sepa-
rate rows.

7.2.2 Creating Customized Strings
There are several built-in functions that create customized strings, including
blanks and sprintf.

The blanks function will create a string consisting of n blank characters (which
are kind of hard to see!). However, in MATLAB, if the mouse is moved to
highlight the result in ans, the blanks can be seen.

>> blanks(4)
ans =

>> length(ans)
ans =
4

It is usually most useful to use this function when concatenating strings, and
a number of blank spaces is desired in between. For example, this will insert
five blank spaces in between the words:

>> [first blanks(5) last]

ans =
Bird house

Displaying the transpose of the string resulting from the blanks function can also be
used to move the cursor down. In the Command Window it would look like this:

>> disp(blanks(4)")

>>

This is useful in a script or function to create space in output, and is essentially
equivalent to printing the newline character four times.

The sprintf function works exactly like the fprintf function, but instead of
printing it creates a string. Here are several examples in which the output is not
suppressed so the value of the string variable is shown:

>> sentl = sprintf('The value of pi is Z.2f", pi)

sentl =

The value of pi is 3.14

>> sentZ2 = sprintf('Some numbers: %5d, %2d', 33, 6)
sent? =
Some numbers: 33, 6

>> length(sent?2)
ans =
23

7.2 Operations on Strings a

In the following example, however, the output of the assignment is suppressed
so the string is created including a random integer and stored in the string
variable. Then, some exclamation points are concatenated to that string.

>> phrase = sprintf('A random integer is Zd', ...
randi([5,101));

>> strcat(phrase, '!l!l'")

ans =

A random integer is 7!!!

All of the formatting options that can be used in the fprintf function can also
be used in the sprintf function.

7.2.2.1 Applications of Customized Strings: Prompts, Labels,
and Arguments to Functions

One very useful application of the sprintf function is to create customized
strings, including formatting and/or numbers that are not known ahead of
time (e.g., entered by the user or calculated). These customized strings can
then be passed to other functions, for example, for plot titles or axis labels. For
example, assume that a file “expnoanddata.dat” stores an experiment number,
followed by the experiment data. In this case the experiment number is “123",
and then the rest of the file consists of the actual data.

123 4.4 5.6 2.5 7.2 4.6 5.3

The following script would load these data and plot them with a title that
includes the experiment number.

plotexpno.m

% This script loads a file that stores an experiment number
% followed by the actual data. It plots the data and puts
% the experiment # in the plot title

load expnoanddata.dat

experNo = expnoanddata(l);

data = expnoanddata(2:end);

plot(data,'ko")

xlabel('Sample #')

ylabel('Weight')

title(sprintf('Data from experiment %d', experNo))

The script loads all numbers from the file into a row vector. It then separates
the vector; it stores the first element, which is the experiment number, in
a variable experNo, and the rest of the vector in a variable data (the rest being
from the second element to the end). It then plots the data, using sprintf to
create the title, which includes the experiment number, as seen in Figure 7.1.

m CHAPTER 7: String Manipulation

Data from experiment 123

75
71 °]
6.5 -
6 L 4
551} ° :
5t 4
451 ° E
41]
35¢ .
3t i

Weight

25 L L L & L L L L L
1 15 2 25 3 35 4 45 5 55 6
Sample #

FIGURE 7.1 Customized title in plot using sprintf

PRACTICE 7.3

In aloop, create and print strings with file names “file1.dat”, “file2.dat”, and so on for file numbers 1
through 5.

QUICK QUESTION!

How could we use the sprintf function to customize prompts for the input function?

Answer

For example, if it is desired to have the contents of a string variable printed in a prompt, sprintf can be used:

>> username

input('Please enter your name: ', 's');

Please enter your name: Bart

>> prompt = sprintf('%s, Enter your id #: ',username);
>> id_no input(prompt)

Bart, Enter your id #: 177

id_no
177

Another way of accomplishing this (in a script or function) would be:

fprintf('%s, Enter your id #: ',username);
id_no = input('');

Note that the calls to the sprintf and fprintf functions are identical except that
the fprintf prints (so there is no need for a prompt in the input function),
whereas the sprintf creates a string that can then be displayed by the input
function. In this case using sprintf seems cleaner than using fprintf and then
having an empty string for the prompt in input.

As another example, the following program prompts the user for endpoints (x;, y1)
and (xy, y,) of a line segment, and calculates the midpoint of the line segment,
which is the point (X, Ym). The coordinates of the midpoint are found by:

7.2 Operations on Strings a

1

M1:5@1+ﬁ) Ym = 5(y1 tY2)

N =

The script midpoint calls a function entercoords to separately prompt the user for
the x and y coordinates of the two endpoints, calls a function findmid twice to
calculate separately the x and y coordinates of the midpoint, and then prints
this midpoint. When the program is executed, the output looks like this:

>> midpoint

Enter the x coord of the first endpoint: 2

Enter the y coord of the first endpoint: 4

Enter the x coord of the second endpoint: 3

Enter the y coord of the second endpoint: 8

The midpoint is (2.5, 6.0)
In this example, the word ‘first’ or ‘second’ is passed to the entercoords function
so that it can use whichever word is passed in the prompt. The prompt is
customized using sprintf.

midpoint.m

% This program finds the midpoint of a Tine segment
[x1, yl]1 = entercoords('first');
[x2, y2] = entercoords('second');

midx = findmid(x1,x2);
midy findmid(yl,y2);

fprintf('The midpoint is (%.1f, %.1f)\n',midx,midy)

entercoords.m

function [xpt, ypt]l = entercoords(word)

% entercoords reads in & returns the coordinates of
% the specified endpoint of a line segment

% Format: entercoords(word) where word is 'first'

% or 'second'

prompt = sprintf('Enter the x coord of the %s endpoint:
word) ;
xpt = input(prompt);

prompt = sprintf('Enter the y coord of the %s endpoint:
word);

ypt = input(prompt);

end

findmid.m

function mid = findmid(ptl,pt2)

% findmid calculates a coordinate (x or y) of the
% midpoint of a line segment

% Format: findmid(coordl, coord?)

mid = 0.5 * (ptl + pt2);
end

m CHAPTER 7: String Manipulation

Note

The deblank function
only removes trailing
blanks from a string, not
leading blanks.

7.2.3 Removing White Space Characters
MATLAB has functions that will remove trailing blanks from the end of a string
and/or leading blanks from the beginning of a string.

The deblank function will remove blank spaces from the end of a string. For
example, if some strings are padded in a character matrix so that all are the
same length, it is frequently desired to then remove those extra blank spaces to
use the string in its original form.

>> names = char('Sue’,
names =

Sue

Cathy

Xavier

"Cathy', 'Xavier'")

>> namel = names(1,:)
namel =
Sue
>> length(namel)
ans =
6
>> namel = deblank(namel);
>> length(namel)
ans =
3

The strtrim function will remove both leading and trailing blanks from a
string, but not blanks in the middle of the string. In the following example,
the three blanks in the beginning and four blanks in the end are removed,
but not the two blanks in the middle. Highlighting the result in the Command
Window with the mouse would show the blank spaces.

>> strvar = [blanks(3) 'xx' blanks(Z2) 'yy' blanks(4)]
strvar =

XX Yy
>> length(strvar)
ans =

13

>> strtrim(strvar)
ans =
XX Yy
>> length(ans)
ans =

6

7.2.4 Changing Case
MATLAB has two functions that convert strings to all uppercase letters, or
lowercase, called upper and lower.

>> mystring = 'AbCDEfgh';

>> lower(mystring)
ans =
abcdefgh

>> upper(ans)
ans =
ABCDEFGH

PRACTICE 7.4

7.2 Operations on Strings a

Assume that these expressions are typed sequentially in the Command Window. Think about it, write
down what you think the results will be, and then verify your answers by actually typing them.

Instr = '1234567890";

mystr = ' abc xy';

newstr = strtrim(mystr)

length(newstr)
upper(newstr(l1:3))

sprintf('Number is %4.1f', 3.3)

7.2.5 Comparing Strings

There are several functions that compare strings and return logical true if they are
equivalent or logical false if not. The function strcmp compares strings, character
by character. It returns logical true if the strings are completely identical (which
infers that they must also be of the same length), or logical false if the strings are
not the same length or any corresponding characters are not identical. Note that for
strings these functions are used to determine whether strings are equal to each other
or not, not the equality operator ==. Here are some examples of these comparisons:

>> wordl = 'cat';
>> word2 = 'car';

>> word3 = 'cathedral';

>> word4 = 'CAR';
>> stremp(wordl,word3)
ans =

0

>> stremp(wordl,wordl)
ans =
1

>> stremp(word?2,word4)
ans =
0

The function strncmp compares only the first n characters in strings and
ignores the rest. The first two arguments are the strings to compare, and the

third argument is the number of characters to compare (the value of n).

>> strncmp(wordl,word3, 3)

ans =
1

m CHAPTER 7: String Manipulation
QUICK QUESTION!

How can we compare strings, ignoring whether the characters ~Answer
in the string are uppercase or lowercase? See the following Programming Concept and Efficient Method.

THE PROGRAMMING CONCEPT

Ignoring the case when comparing strings can be done by changing all characters in the strings
to either upper- or lowercase, for example, in MATLAB, using the upper or lower function:

>> stremp(upper(wordZ2), upper(word4))
ans =

| '_l

THE EFFICIENT METHOD

The function strempi compares the strings but ignores the case of the characters.

>> strcmpi(word2,word4)
ans =
1

There is also a function strncmpi, which compares n characters, ignoring the case.

7.2.6 Finding, Replacing, and Separating Strings
There are functions that find and replace strings, or parts of strings, within
other strings and functions that separate strings into substrings.

The function strfind receives two strings as input arguments. The general form is
strfind(string, substring); it finds all occurrences of the substring within the string
and returns the subscripts of the beginning of the occurrences. The substring can
consist of one character or any number of characters. If there is more than one
occurrence of the substring within the string, strfind returns a vector with all
indices. Note that what is returned is the index of the beginning of the substring,

>> strfind('abcde', 'd')

ans =
4
>> strfind('abcde', 'bc')
ans =
2
>> strfind('abcdeabcdedd', 'd')
ans =

4 9 11 12

7.2 Operations on Strings

If there are no occurrences, the empty vector is returned.

>> strfind('abcdeabcde', 'ef")
ans =

(]

QUICK QUESTION!

How can you find how many blanks there are in a string If it is desired to get rid of any leading and trailing blanks first

(e.g., ‘how are you')? (in case there are any), the strtrim function would be used
Answer frst

The strfind function will return an index for every occurrence >> phrase = ' Well, hello there! 0

of a substring within a string, so the result is a vector of >> length(strfind(strtrim(phrase),' "))
indices. The length of this vector of indices would be the ans =

number of occurrences. For example, the following finds the 2

number of blank spaces in the variable phrase

>> phrase= "Hello, and how are you doing?"';
>>length(strfind(phrase, ' "))
ans =

5

Let's expand this and write a script that creates a vector of strings that are
phrases. The output is not suppressed so that the strings can be seen when the
script is executed. It loops through this vector and passes each string to
a function countblanks. This function counts the number of blank spaces in the
string, not including any leading or trailing blanks.

phraseblanks.m

% This script creates a column vector of phrases
% 1t loops to call a function to count the number

% of blanks in each one and prints that

phrasemat = char('Hello and how are you?',
'"Hi there everyone!', 'How is it going?', 'Whazzup?')
[r c] = size(phrasemat);

for i =1:r
% Pass each row (each string) to countblanks function
howmany = countblanks(phrasemat(i,:));
fprintf('Phrase %d had %d blanks\n',i,howmany)

end

countblanks.m

function num = countblanks(phrase)
% countblanks returns the # of blanks in a trimmed string

% Format: countblanks(string)

num = Tength(strfind(strtrim(phrase), ' '));
end

m CHAPTER 7: String Manipulation

For example, running this script would result in:

>> phraseblanks
phrasemat =

Hello and how are you?
Hi there everyone!

How is it going?
Whazzup?

Phrase 1 had 4 blanks
Phrase 2 had 2 blanks
Phrase 3 had 3 blanks
Phrase 4 had 0 blanks
The function strrep finds all occurrences of a substring within a string and replaces
them with a new substring. The order of the arguments matters. The format is:
strrep(string, oldsubstring, newsubstring)
The following replaces all occurrences of the substring ‘e’ with the substring ‘x":
>> strrep('abcdeabcde', 'e', 'x")
ans =
abcdxabcdx
All strings can be any length and the lengths of the old and new substrings do
not have to be the same. If the old substring is not found, nothing is changed
in the original string.

In addition to the string functions that find and replace, there is a
function that separates a string into two substrings. The strtok function breaks
a string into two pieces; it can be called several ways. The function receives one
string as an input argument. It looks for the first delimiter, which is a character
or set of characters that act as a separator within the string.

By default, the delimiter is any white space character. The function returns a token
that is the beginning of the string, up to (but not including) the first delimiter. It
also returns the rest of the string, which includes the delimiter. Assigning the
returned values to a vector of two variables will capture both of these. The format is:

[token, rest] = strtok(string)
where token and rest are variable names. For example:

>> sentencel = 'Hello there';
>> [word, rest] = strtok(sentencel)
word =
Hello
rest =
there

>> length(word)

ans =
5

>> length(rest)

ans =

6

7.2 Operations on Strings a

Note that the rest of the string includes the blank space delimiter.
Alternate delimiters can be defined. The format

[token, rest] = strtok(string, delimeters)

returns a token that is the beginning of the string, up to the first character
contained within the delimiters string, and also the rest of the string. In the
following example, the delimiter is the character T'.

>> [word, rest] = strtok(sentencel,'l")
word =

He

rest =

110 there

Leading delimiter characters are ignored, whether it is the default white space
or a specified delimiter. For example, the leading blanks are ignored here:

>> [firstpart, lastpart] = strtok(' materials science')

firstpart =

materials

lastpart =

science
QUICK QUESTION!
What do you think strtok returns if the delimiter is not in the >> [first, rest] = strtok('ABCDE")
string? first =
ABCDE

Answer

The first result returned will be the entire string, and the

second will be the empty string. PEst =

Empty string: 1-by-0

PRACTICE 7.5

Think about what would be returned by the following sequence of expressions and statements, and
then type them into MATLAB to verify your results.

dept = 'Electrical’;

strfind(dept,'e')

strfind(lower(dept),'e")

phone_no = '703-987-1234";
[area_code, rest] = strtok(phone_no,"'-")

rest = rest(2:end)

strempi('Hi", "HI")

m CHAPTER 7: String Manipulation

QUICK QUESTION!

The function date returns the current date as a string (e.g,
‘10-Dec-2012"). How could we write a function to return the
day, month, and year as separate output arguments?

separatedate.m

Answer

We could use strrep to replace the ‘-’ characters with blanks and
then use strtok with the blank as the default delimiter to break up
the string (twice); or, more simply, we could just use strtok and
specify the ‘-’ character as the delimiter.

% month, and year

todayyr = todayyr(2:end);
end

function [todayday, todaymo, todayyr] = separatedate
% separatedate separates the current date into day,

% Format: separatedate or separatedate()

[todayday, rest] = strtok(date,'-');

[todaymo, todayyr] = strtok(rest,'-');

As we need to separate the string into three parts, we need to use
the strtok function twice. The first time the string is separated
into ‘10" and ‘-Dec-2012" using strtok. Then, the second string
is separated into ‘Dec’ and ‘-2012" using strtok. (As leading
delimiters are ignored the second ‘-’ is found as the delimiter in
‘-Dec-2012")) Finally, we need to remove the ‘-’ from the string
‘-2012"; this can be done by just indexing from the second char-
acter to the end of the string.

An example of calling this function follows:

>> [d, m, y] = separatedate
d =

10

m =

Dec

y =

2012

Note that no input arguments are passed to the separatedate
function; instead, the date function retumns the current date as
a string. Also, note that all three output arguments are strings.

7.2.7 Evaluating a String

The function eval is used to evaluate a string. If the string contains a call to
a function, then that function call is executed. For example, in the following, the
string ‘plot(x)’ is evaluated to be a call to the plot function, and it produces the
plot shown in Figure 7.2.

>> x = [2 6 8 3];
>> eval('plot(x)")

The eval function is used frequently when input is used to create a customized
string. In the following example, the user chooses what type of plot to use for some
quiz grades. The string that the user enters (in this case, ‘bar’) is concatenated with
the string ‘(x)’ to create the string ‘bar(x)’; this is then evaluated as a call to the bar
function as seen in Figure 7.3. The name of the plot type is also used in the title.

7.2 Operations on Strings a

>> x =1[9 7 10 9];

>> whatplot = input('What type of plot?: ', 's');
What type of plot?: bar

>> eval([whatplot '(x)'])

>> title(whatplot)

>> xlabel('Student #')

>> ylabel('Quiz Grade')

2 L L
1 1.5 2 2.5 3 3.5 4
FIGURE 7.2 Plot type passed to the eval function

bar

Quiz Grade
O =~ N W d O O N 00 © O

Student #

FIGURE 7.3 Plot type entered by the user

m CHAPTER 7: String Manipulation

Note

These are different from
the functions such as
char and double that
convert characters to
ASCII equivalents and
vice versa.

PRACTICE 7.6

Create an x vector. Prompt the user for ‘sin’, ‘cos’, or ‘tan’, and create a string with that function of
x (e.g., 'sin(x)’ or ‘cos(x)’). Use eval to create a y vector using the specified function.

The eval function is very powerful, but it is usually more efficient to avoid
using it.

7.3 THE “IS” FUNCTIONS FOR STRINGS

There are several “is” functions for strings, which return logical true or false.
The function isletter returns logical true for every character in a string if the
character is a letter of the alphabet or false if not. The function isspace
returns logical true for every character that is a white space character.

>> isletter('EK1Z7")

ans =
1 1 0 0 0

>> isspace('a b')
ans =
0 1 0

The ischar function will return logical true if the vector argument is a character
vector (in other words a string), or logical false if not.

>> vec = '"EKIZ7';
>> ischar(vec)
ans =

1
>> vec = 3:5;
>> ischar(vec)
ans =

0

7.4 CONVERTING BETWEEN STRING
AND NUMBER TYPES

MATLAB has several functions that convert numbers to strings in which each
character element is a separate digit and vice versa.

To convert numbers to strings MATLAB has the functions int2str for integers
and num?2str for real numbers (which also works with integers). The function
int2str would convert, for example, the integer 38 to the string ‘38'.

>> num = 38;
num =
38

>> sl = int2str(num)
sl =
38
>> length(num)
ans =
1
>> length(sl)
ans =
2

>> str2 = num2str(3.456789)

str2 =
3.4568

>> length(str2)
ans =
6

>> str3 = numZstr(3.456789, 3)

str3 =
3.46

>> str = num2str(3.456789, '%6.2f")

str =
3.46

>> num = strZnum('123.456")

num =
123.4560

7.4 Converting Between String and Number Types a

The variable num is a scalar that stores one number, whereas s1 is a string that
stores two characters, ‘3’ and ‘8'.

Even though the result of the first two assignments is “38”, note that the
indentation in the Command Window is different for the number and the string.

The num2str function, which converts real numbers, can be called in several
ways. If only the real number is passed to the num2str function, it will create
a string that has four decimal places, which is the default in MATLAB for
displaying real numbers. The precision can also be specified (which is the
number of digits), and format strings can also be passed, as shown in the
following:

Note that in the last example, MATLAB removed the leading blanks from the
string.

The function str2num does the reverse; it takes a string in which a number is
stored and converts it to the type double:

m CHAPTER 7: String Manipulation

If there is a string in which there are numbers separated by blanks, the
str2num function will convert this to a vector of numbers (of the default type

double). For example,

>> mystr =

66 2 111°;

>> numvec = strZnum(mystr)

numvec =
66 2 111
>> sum(numvec)
ans =
179

The str2double function is a better function to use in general than str2num,
but it can only be used when a scalar is passed; it would not work, for
example, for the variable mystr above.

PRACTICE 7.7

Think about what would be returned by the following sequence of expressions and statements, and
then type them into MATLAB to verify your results.

vec = 'yes or no';
isspace(vec)

all(isletter(vec) ~= isspace(vec))

ischar(vec)

nums = [33 1.57;
num2str(nums)

nv = num2str(nums)

sum(nums)

QUICK QUESTION!

Let's say that we have a string that consists of an angle fol-
lowed by either ‘d’ for degrees or ‘1’ for radians. For example,
it may be a string entered by the user:

degrad=1input('Enter angleandd/r: ', "s');
Enter angle and d/r: 54r

How could we separate the string into the angle and the char-
acter, and then get the sine of that angle using either sin or
sind, as appropriate (sin for radians or sind for degrees)?

Answer
First, we could separate this string into its two parts:

>> angle = degrad(l:end-1)
angle =

54

>> dorr = degrad(end)

dorr =

i§

Continued

7.4 Converting Between String and Number Types a
QUICK QUESTION! Continued

Then, using an if-else statement, we would decide whether to use the sin or sind function, based on the value of
the variable dorr. Let's assume that the value is T' so we want to use sin. The variable angle is a string so the
following would not work:

>> sin(angle)
Undefined function 'sin' for input arguments of type 'char'.

Instead, we could either use str2double to convert the string to a number. A complete script to accomplish this is
shown here.

angleDorR.m

% Prompt the user for angle and 'd' for degrees
% or 'r' for radians; print the sine of the angle
% Read in the response as a string and then
% separate the angle and character
degrad=1input('Enter angleandd/r: "', 's');
angle = degrad(l:end-1);
dorr = degrad(end);
% Error-check tomake sure user enters 'd' or 'r'
while dorr ~= 'd' && dorr ~= 'r'

disp('Error! Enterdor rwiththeangle.")

degrad=1input('Enter angleandd/r: "', 's');

angle = degrad(l:end-1);

dorr = degrad(end);
end
% Convert angle to number
anglenum = str2double(angle);
fprintf('The sine of %.1f ', anglenum)

% Choose sin or sind function
if dorr == 'd'

fprintf('degrees is %.3f.\n', sind(anglenum))

else

fprintf('radians is %.3f.\n', sin(anglenum))
end
>> angleDorR >> angleDorR
Enter angle and d/r: 3.1r Enter angle and d/r: 53t
The sine of 3.1 radians is 0.042. Error! Enter d or r with the angle.

Enter angle and d/r: 53d
The sine of 53.0 degrees is 0.799.

E CHAPTER 7: String Manipulation

m Explore Other Interesting Features

In many of the search and replace functions, search patterns can be
specified which use regular expressions. Use help to find out about these
patterns.

Explore the sscanf function, which reads data from a string.

Explore the strjust function, which justifies a string.

Explore the mat2str function to convert from a matrix to a string.
Explore the isstrprop function, which examines string properties.
Investigate why the string compare functions are used to compare
strings, rather than the equality operator. |

H Summary
Common Pitfalls

Putting arguments to strfind in incorrect order.

Trying to use == to compare strings for equality instead of the strcmp
function (and its variations).

Confusing sprintf and fprintf. The syntax is the same, but sprintf creates
a string whereas fprintf prints.

Trying to create a vector of strings with varying lengths (the easiest way is
to use char, which will pad with extra blanks automatically).
Forgetting that when using strtok, the second argument returned

(the “rest” of the string) contains the delimiter.

When breaking a string into pieces, forgetting to convert the

numbers in the strings to actual numbers that can then be used in
calculations.

Programming Style Guidelines

Trim trailing blanks from strings that have been stored in matrices
before using.

Make sure the correct string comparison function is used, for example,
strcmpi if ignoring case is desired. |

MATLAB Functions and Commands

strcat lower strrep ischar
blanks strcmp strtok int2str
sprintf strncmp date num2str
deblank strempi eval str2num
strtrim strncmpi isletter str2double

upper strfind isspace

Write a function ranlowlet that will return a random lowercase letter of the alphabet. Do
not build in the ASCII equivalents of any characters; rather, use built-in functions to
determine them (e.g., youmay know that the ASCII equivalent of ‘a’ is 97, but donot use
97 in your function; use a built-in function that would retumn that value instead).

A filename is supposed to be in the form filename ext. Write a function that will
determine whether or not a string is in the form of a name followed by a dot fol-
lowed by a three-character extension.The function should return 1 for logical true
if it is in that form or O for false if not.

The following script calls a function getstr that prompts the user for a string, error-
checking until the user enters something (the error would occur if the user just hits
the Enter key without any other characters first). The script then prints the length
of the string. Write the getstr function.

thestring = getstr();
fprintf('Thank you, your string is %d characters Tong\n', ...
length(thestring))

Write a script that will, in a loop, prompt the user for four course numbers. Each
will be a string of length 5 of the form ‘CS101'. These strings are to be stored in
a character matrix.

Write a function that will receive two strings as input arguments and will return
a character matrix with the two strings in separate rows. Rather than using the
char function to accomplish this, the function should pad with extra blanks as
necessary and create the matrix using square brackets.

Write a function that will generate two random integers, each in the inclusive range
from 10 to 30. It will then return a string consisting of the two integers joined together
(e.g., if the random integers are 11 and 29, the string that is returned will be ‘1129’).
Write a script that will create x and y vectors. Then, it will ask the user for a color
(‘red’, 'blue’, or ‘green’) and for a plot style (circle or star). It will then create a string
pstr that contains the color and plot style, so that the call to the plot function
would be: plot(x,y,pstr). For example, if the user enters ‘blue’ and *', the variable
pstr would contain ‘b*’.

Assume that you have the following function and that it has not yet been called.

strfunc.m

function strfunc(instr)
persistent mystr

if isempty(mystr)

mystr = "'";
end
mystr = strcat(instr,mystr);
fprintf('The string is %s\n',mystr)
end

Exercises

ﬁ CHAPTER 7: String Manipulation

What would be the result of the following sequential expressions?

strfunc('hi')
strfunc('hello")

Explain, in words, what the following function accomplishes (not step by step, but
what the end result is).

dostr.m

function out = dostr(inp)
persistent str

[w, r] = strtok(inp);

str = strcat(str,w);

out = str;

end

Write a function that will receive a name and department as separate strings, and
will create and retum a code consisting of the first two letters of the name and the
last two letters of the department. The code should be uppercase letters. For
example:

>> namedept('Robert', '"Mechanical')
ans =
ROAL

Write a function “createUniqueName” that will create a series of unique names.
When the function is called, a string is passed as an input argument. The function
adds an integer to the end of the string and returns the resulting string. Every time
the function is called, the integer that it adds is incremented. Here are some
examples of calling the function:

>> createUniqueName('hello")

ans =

hellol

>> varname = createUniqueName('variable")
varname =

variable?

What does the blanks function retumm when a 0 is passed to it? A negative
number? Write a function myblanks that does exactly the same thing as the
blanks function, using the programming method. Here are some examples of
calling it:

>> fprintf('Here is the result:%s!\n', myblanks(0))
Here is the result:!

>> fprintf('Here is the result:%s!\n', myblanks(7))
Here is the result: !

Write a function that will prompt the user separately for a filename and extension,
and will create and return a string with the form ‘filename.ext’.

Write a function that will receive one input argument, which is an integer n. The
function will prompt the user for a number in the range from 1 to n (the actual value
of n should be printed in the prompt) and retumn the user's input. The function
should error-check to make sure that the user's input is in the correct range.
Write a script that will generate a random integer, ask the user for a field width, and
print the random integer with the specified field width. The script will use sprintf
to create a string such as ‘The # is %4d\n’ (if, e.g., the user entered 4 for the field
width), which is then passed to the fprintf function. To print (or create a string
using sprintf) either the % or \ character, there must be two of them in a row.
The functions that label the x and y axes and title on a plot expect string argu-
ments. These arguments can be string variables. Write a script that will prompt the
user for an integer n, create an x vector with integer values from 1 tonand ay
vector which is x*2, and then plot with a title that says “x"2 with n values” where
the number is actually in the title.

Write a function called plotsin that will demonstrate graphically the difference in
plotting the sin function with a different number of points in the range from 0 to
2 . The function will receive two arguments, which are the number of points to
use in two different plots of the sin function. For example, the following call to the
function:

>> plotsin(5,30)

will result in Figure 7.4 in which the first plot has 5 points altogether in the range
from 0 to 2 m, inclusive, and the second has 30.
If the strings passed to strfind are the same length, what are the only two possible
results that could be returned?
Write a function nchars that will create a string of n characters, without using any
loops or selection statements.

>>nchars('*', 6)

ans =
r—
; 5 points 1 . . 3.0 pointls . .
0.5] 05
0 i 0
051] -05
1 -1 !

FIGURE 7.4 Subplot with sin

m CHAPTER 7: String Manipulation

Write a function that will receive two input arguments: a character matrix that is

a column vector of strings and a string. It will loop to look for the string within the
character matrix. The function will return the row number in which the string is found if
it is in the character matrix or the empty vector if not. Use the programming method.
Write a function rid_multiple_blanks that will receive a string as an input argu-
ment. The string contains a sentence that has multiple blank spaces in between
some of the words. The function will return the string with only one blank in
between words. For example:

>> mystr = 'Hello and how are you?';
>> rid_multiple_blanks(mystr)
ans =

Hello and how are you?

Words in a string variable are separated by right slashes (/) instead of blank spaces.
Write a function slashtoblank that will receive a string in this form and will return
a string in which the words are separated by blank spaces. This should be general
and work regardless of the value of the argument. No loops are allowed in this
function; the built-in string function(s) must be used.

Assembly language instructions are frequently in the form of a word that repre-
sents the operator and then the operands separated by a comma. For example, the
string ‘ADD n,m'’ is an instruction to add n+m. Write a function assembly_add that
will receive a string in this form and will retum the sum of n+m. For example:

>> assembly_add('ADD 10,11")
ans =
21

Two variables store strings that consist of a letter of the alphabet, a blank space,
and a number (in the form ‘R 14.3"). Write a script that would initialize two such
variables. Then, use string manipulating functions to extract the numbers from the
strings and add them together.

Cryptography, or encryption, is the process of converting plaintext (e.g., a sentence
or paragraph) into something that should be unintelligible, called the ciphertext.
The reverse process is code-breaking, or cryptanalysis, which relies on searching
the encrypted message for weaknesses and deciphering it from that point. Modem
security systems are heavily reliant on these processes.

In cryptography, the intended message sometimes consists of the first letter of
every word in a string. Write a function crypt that will receive a string with the
encrypted message and return the message.

>> estring = 'The early songbird tweets';
>> m = crypt(estring)
m =

Test

Using the functions char and double, one can shift words. For example, one can
convert from lowercase to uppercase by subtracting 32 from the character codes:

' '

>> orig = 'ape';
>> new = char(double(orig)-32)
new =

APE

>> char(double(new)+32)

ans =

ape

We've “encrypted” a string by altering the character codes. Figure out the original
string. Try adding and subtracting different values (do this in a loop) until you
decipher it:

Jmkyvihmxsyx$}ixC

Load files named file1.dat, fileZ.dat, and so on in a loop. To test this, create just two
files with these names in your Current Folder first.
Either in a script or in the Command Window, create a string variable that stores
a string in which numbers are separated by the character ‘X’ (e.g., '12x3x45x2").
Create a vector of the numbers, and then get the sum (e.g., for the example given it
would be 62, but the solution should be general).
Create the following two variables:

>> varl = 123;

>> var2 = '123';

Then, add 1 to each of the variables. What is the difference?

The built-in clock function retums a vector with six elements representing the year,
month, day, hours, minutes, and seconds. The first five elements are integers
whereas the last is a double value, but calling it with fix will convert all to integers.
The built-in date function returns the day, month, and year as a string. For example:

>> fix(clock)
ans =
2013 4 25 14 25 49
>> date
ans =
25-Apr-2013

Write a script that will call both of these built-in functions, and then compare
results to make sure that the year is the same. The script will have to convert one
from a string to a number or the other from a number to a string in order to
compare.

Write the beautyofmath script described in Chapter 5, Exercise 4, as a string
problem.

m CHAPTER 7: String Manipulation

Find out how to pass a vector of integers to int2str or real numbers to numa2str.
Write a script that will first initialize a string variable that will store x and y coor-
dinates of a point in the form ‘x 3.1 y 6.4". Then, use string manipulating functions
to extract the coordinates and plot them.

Modify the script in Exercise 33 to be more general: the string could store the
coordinates in any order (e.g., it could store 'y 6.4 x 3.1").

Write a function wordscramble that will receive a word in a string as an input
argument. It will then randomly scramble the letters and return the result. Here is
an example of calling the function:

>> wordscramble('fantastic')
ans =
safntcait

Write a function readthem that prompts the user for a string consisting of
a number immediately followed by a letter of the alphabet. The function error-
checks to make sure that the first part of the string is actually a number and to
make sure that the last character is actually a letter of the alphabet. The function
retums the number and letter as separate output arguments. Note that if a string
‘S’ is not a number, str2num(S) returns the empty vector. An example of calling
the function follows:

>> [num, let] = readthem

Please enter a number immediately followed

by a Tetter of the alphabet

Enter a # and a letter: 3.3&

Error! Enter a # and a letter: xyz4.5t

Error! Enter a # and a letter: 3.21f

num =

w

.2100
let
{

Massive amounts of temperature data have been accumulated and stored in files.
To be able to comb through these data and gain insights into global temperature
variations, it is often useful to visualize the information.

A file called avehighs.dat stores for three locations the average high temperatures
for each month for a year (rounded to integers). There are three lines in the file;
each stores the location number followed by the 12 temperatures (this format may
be assumed). For example, the file might store:

432 33 37 42 45 53 72 82 79 66 55 46 41
777 29 33 41 46 52 66 77 88 68 55 48 39
567 55 62 68 72 75 79 83 89 85 80 77 65

Write a script that will read these data in and plot the temperatures for the three
locations separately in one Figure Window. A for loop must be used to accomplish
this. For example, if the data are as shown above, the Figure Window would appear
as Figure 7.5. The axis labels and titles should be as shown.

Ave High Temps

80 |

70t

60

50 t

40}

30

Location 432

©)

(@]
D

2 4 6 8 10 12
Month

Ave High Temps

80

70

60

50

40}

30

Location 777

@)

o

o

C

2 4 6 8 10 12
Month

FIGURE 7.5 Subplot to display data from file using a for loop

Ave High Temps

80

70

60 |

50

40 +

30

Location 567

2 4 6 8 10 12
Month

CHAPTER 8

Data Structures: Cell Arrays and Structures

CONTENTS

data structures database comma-separated list 8.1 Cell

cell array record vector of structures Arrays........ 266
structures content indexing nested structure 8.2 Structures..271
fields cell indexing

Data structures are variables that store more than one value. For it to make
sense to store more than one value in a variable, the values should somehow
be logically related. There are many different kinds of data structures. We have
already been working with one kind, arrays (e.g., vectors and matrices). An
array is a data structure in which all of the values are logically related in that
they are of the same type and represent, in some sense, “the same thing”. So
far, that has been true for the vectors and matrices that we have used. We use
vectors and matrices when we want to be able to loop through them
(or, essentially, have this done for us using vectorized code).

A cell array is a kind of data structure that stores values of different types. Cell
arrays can be vectors or matrices; the different values are referred to as the
elements of the array. One very common use of a cell array is to store strings of
different lengths. Cell arrays actually store pointers to the stored data.

Structures are data structures that group together values that are logically
related, but are not the same thing and not necessarily the same type. The
different values are stored in separate fields of the structure.

One use of structures is to set up a database of information. For example,
a professor might want to store for every student in a class the student’s name,
university identification (ID) number, grades on all assignments and quizzes,
and so forth. In many programming languages and database programs the
terminology is that within a database file there would be one record of
information for each student; each separate piece of information (name, quiz 265

MATLAB®. http://dx.doi.org/10.1016/B978-0-12-405876-7.00008-0
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-405876-7.00008-0

n CHAPTER 8: Data Structures: Cell Arrays and Structures

score, and so on) would be called a field of the record. In the MATLAB®
software these records are called structs.

Both cell arrays and structures can be used to store values that are different
types in a single variable. The main difference between them is that cell arrays
are indexed, and can therefore be used with loops or vectorized code. Struc-
tures, however, are not indexed; the values are referenced using the names of
the fields, which can be more mnemonic than indexing.

8.1 CELL ARRAYS

One type of data structure, which MATLAB has but is not found in many
programming languages, is a cell array. A cell array in MATLAB is an array, but,
unlike the vectors and matrices we have used so far, elements in cell arrays are
cells that can store different types of values.

8.1.1 Creating Cell Arrays

There are several ways to create cell arrays. For example, we will create a cell
array in which one element will store an integer, one element will store
a character, one element will store a vector, and one element will store a string.
Just like with the arrays we have seen so far, this could be a 1 x 4 row vector,
a4 x 1 column vector, or a 2 x 2 matrix. Some of the syntax for creating vectors
and matrices is the same as before in that values within rows are separated by
spaces or commas, and rows are separated by semicolons. However, for cell
arrays, curly braces are used rather than square brackets. For example, the
following creates a row vector cell array with four different types of values:

>> cellrowvec = (23, 'a', 1:2:9, 'hello'}
cellrowvec =
[23] 'a' [1x5 doublel] "hello’

To create a column vector cell array, the values are instead separated by
semicolons:

>> cellcolvec = {23; 'a'; 1:2:9; 'hello'}
cellcolvec =
[23]
'a
[1x5 double]
"hello"

This method creates a 2 x 2 cell array matrix:

>> cellmat = {23 'a'; 1:2:9 'hello'}
cellmat =

L 23] 'a'

[1x5 doublel] "hello'

The type of cell arrays is cell.

>> class(cellmat)
ans =
cell

Another method of creating a cell array is to simply assign values to specific
array elements and build it up element by element. However, as explained
before, extending an array element by element is a very inefficient and time-
consuming method.

It is much more efficient, if the size is known ahead of time, to preallocate the
array. For cell arrays, this is done with the cell function. For example, to
preallocate a variable mycellmat to be a 2 x 2 cell array, the cell function would
be called as follows:

>> mycellmat = cell(2,2)
mycellmat =

] L]

L] L]

Note that this is a function call, so the arguments to the function are in
parentheses; a matrix is created in which all of the elements are empty vectors.
Then, each element can be replaced by the desired value.

How to refer to each element to accomplish this will be explained next.

8.1.2 Referring to and Displaying Cell Array Elements
and Attributes

Just like with the other vectors we have seen so far, we can refer to individual
elements of cell arrays. However, with cell arrays, there are two different ways
to do this. The elements in cell arrays are cells. These cells can contain different
types of values. With cell arrays, you can refer to the cells or to the contents of
the cells.

Using curly braces for the subscripts will reference the contents of a cell; this is
called content indexing. For example, this refers to the contents of the second
element of the cell array cellrowvec; ans will have the type char:

> cellrowvec({?2}
ans =
a

Row and column subscripts are used to refer to the contents of an element in
a matrix (again using curly braces):

>> cellmat{1,1}
ans =
23

8.1 Cell Arrays

m CHAPTER 8: Data Structures: Cell Arrays and Structures

Values can be assigned to cell array elements. For example, after preallocating
the variable mycellmat in the previous section, the elements can be initialized:

>> mycellmat{1,1} = 23

mycellmat =
[23] []
L] (]

Using parentheses for the subscripts references the cells; this is called cell
indexing. For example, this refers to the second cell in the cell array cellrowvec;
ans will be a 1x1 cell array:

>> cellcolvec(2)
ans =

a
>> class(ans)
ans =

cell

When an element of a cell array is itself a data structure, only the type of the
element is displayed when the cells are shown. For example, in the previous
cell arrays, the vector is shown just as “1 x 5 double” (this is a high-level view
of the cell array). This is what will be displayed with cell indexing; content
indexing would display its contents:

>> cellmat(2,1)
ans =
[1x5 doublel]

>> cellmat{2,1}
ans =
1 3 5 7 9

As this results in a vector, parentheses can be used to refer to its elements. For
example, the fourth element of the vector is shown:

>> cellmat{2,1}(4)
ans =
7

Note that the index into the cell array is given in curly braces; parentheses are
then used to refer to an element of the vector.

One can also refer to subsets of cell arrays, such as in the following:

>> cellcolvec{2:3)
ans =

Note, however, that MATLAB stored cellcolvec{2} in the default variable ans and
then replaced that with the value of cellcolvec{3}. Using content indexing returns
them as a comma-separated list. However, they could be stored in two separate
variables by having a vector of variables on the left side of an assignment:

>> [cl, c2] = cellcolvec{2:3}

cl =

a

c2 =
1 3 5 7 9

Using cell indexing, the two cells would be put in a new cell array (in this case,
in ans):

>> cellcolvec(2:3)

ans =

a
[1x5 double]

There are several methods for displaying cell arrays. The celldisp function
displays the contents of all elements of the cell array:
>> celldisp(cellrowvec)

cellrowvec{l} =
23

cellrowvec{?2}
a

cellrowvec{3}
1 3 5 7 9

cellrowveci{4}
hello

The function cellplot puts a graphical display of the cell array into a Figure
Window; however, it is a high-level view and basically just displays the same
information as typing the name of the variable (so, for instance, it would not
show the contents of the vector in the previous example). In other words, it
shows the cells, not their contents.

Many of the functions and operations on arrays that we have already seen also
work with cell arrays. For example, here are some related to dimensioning:

>> length(cellrowvec)
ans =
4

>> size(cellcolvec)
ans =
4 1

>> cellrowvec{end}
ans =
hello

8.1 Cell Arrays a

CHAPTER 8: Data Structures: Cell Arrays and Structures

To delete an element from a vector cell array, use cell indexing:

>> cellrowvec
mycell =

[23] "a' [1x5 double] "hello’

>> cellrowvec(2) = []
cellrowvec =

[23] [1x5 double] "hello"

For a matrix, an entire row or column can be deleted using cell indexing:

>> cellmat
mycellmat =
[23] '3’
[1x5 double] "hello'
>> cellmat(1,:) =[]
mycellmat =
[1x5 double] "hello'

8.1.3 Storing Strings in Cell Arrays

One useful application of a cell array is to store strings of different lengths. As
cell arrays can store different types of values, strings of different lengths can be
stored in the elements.

>> names = {'Sue', 'Cathy', 'Xavier'}
names =

'Sue’ 'Cathy' 'Xavier'

This is extremely useful because, unlike vectors of strings created using
char, these strings do not have extra trailing blanks. The length of each
string can be displayed using a for loop to loop through the elements of
the cell array:

>> for i = 1:length(names)
disp(length(names{i}))
end
3

5

6
It is possible to convert from a cell array of strings to a character array and vice
versa. MATLAB has several functions that facilitate this. For example, the

function cellstr converts from a character array padded with blanks to a cell
array in which the trailing blanks have been removed.

>> greetmat = char('Hello', '"Goodbye');

>> cellgreets = cellstr(greetmat)
cellgreets =

'Hello'

'Goodbye’

The char function can convert from a cell array to a character matrix:

>> names = {'Sue', 'Cathy', 'Xavier'};
>> cnames = char(names)
cnames =

Sue
Cathy
Xavier

>> size(cnames)
ans =
3 6

The function iscellstr will return logical true if a cell array is a cell array of all
strings or logical false if not.

>> iscellstr(names)
ans =
1

>> iscellstr(cellcolvec)
ans =
0

We will see several examples that utilize cell arrays containing strings of
varying lengths in later chapters, including advanced file input functions and
customizing plots.

PRACTICE 8.1

Write an expression that would display a random element from a cell array (without assuming that
the number of elements in the cell array is known). Create two different cell arrays and try the
expression on them to make sure that it is correct.

For more practice, write a function that will receive one cell array as an input argument and will
display a random element from it.

8.2 STRUCTURES

Structures are data structures that group together values that are logically
related in what are called fields of the structure. An advantage of structures is
that the fields are named, which helps to make it clear what values are stored
in the structure. However, structure variables are not arrays. They do not have
elements that are indexed, so it is not possible to loop through the values in
a structure or to use vectorized code.

8.2 Structures

CHAPTER 8: Data Structures: Cell Arrays and Structures

8.2.1 Creating and Modifying Structure Variables
Creating structure variables can be accomplished by simply storing values in
fields using assignment statements or by using the struct function.

In our first example, assume that the local Computer Super Mart wants to store
information on the software packages that it sells. For each one, they will store

the following:

item number
cost to the store
price to the customer

character code indicating the type of software.

An individual structure variable for a given software package might look like

this:

package
item_no cost price code
| 123 | 19.99 [30.95 | g |

The name of the structure variable is package; it has four fields: item_no, cost,

Note price, and code.
Some programmers use
names that begin with
an uppercase letter for
structure variables

One way to initialize a structure variable is to use the struct function. The
names of the fields are passed as strings; each one is followed by the value for
that field (so, pairs of field names and values are passed to struct).

(e.g., Package) to make >> package = struct('item_no',123, 'cost"',19.99,...
them easily 'price',39.95, 'code’, 'g")
distinguishable.
package =
item_no: 123

cost: 19.9900
price: 39.9500
code: 'g

Note that in the Workspace Window, the variable package is listed as a 1 x 1

struct; the type of the variable is struct.

>> class(package)
ans =
struct

MATLARB, as it is written to work with arrays, assumes the array format. Just like
a single number is treated as a 1 x 1 double, a single structure is treated as
a 1 x 1 struct. Later in this chapter we will see how to work more generally with

vectors of structs.

An alternative method of creating this structure, which is not as efficient,
involves using the dot operator to refer to fields within the structure. The name
of the structure variable is followed by a dot, or period, and then the name of
the field within that structure. Assignment statements can be used to assign
values to the fields.

>> package.item_no = 123;
>> package.cost = 19.99;
>> package.price = 39.95;
>> package.code = 'g';

By using the dot operator in the first assignment statement, a structure variable
is created with the field item_no. The next three assignment statements add
more fields to the structure variable. Again, extending the structure in this
manner is not as efficient as using struct.

Adding a field to a structure later is accomplished as shown here, by using an
assignment statement.

An entire structure variable can be assigned to another. This would make
sense, for example, if the two structures had some values in common. Here, for
example, the values from one structure are copied into another and then two
fields are selectively changed, referring to them using the dot operator.

>> newpack = package;
>> newpack.item_no = 111;
>> newpack.price = 34.95
newpack =
item_no: 111
cost: 19.9900
price: 34.9500

code: 'g'

To print from a structure, the disp function will display either the entire
structure or an individual field.

>> disp(package)
item_no: 123
cost: 19.9900
price: 39.9500
code: 'g'

>> disp(package.cost)
19.9900

However, using fprintf only individual fields can be printed; the entire
structure cannot be printed without referring to all fields individually.

>> fprintf('%d Zc\n', package.item_no, package.code)
123 g

8.2 Structures

CHAPTER 8: Data Structures: Cell Arrays and Structures

The function rmfield removes a field from a structure. It returns a new structure
with the field removed, but does not modify the original structure (unless the
returned structure is assigned to that variable). For example, the following
would remove the code field from the newpack structure, but store the resulting
structure in the default variable ans. The value of newpack remains unchanged.

>> rmfield(newpack, 'code')
ans =
item_no: 111
cost: 19.9900
price: 34.9500

>> newpack
newpack =
item_no: 111
cost: 19.9000
price: 34.9500
code: 'g

To change the value of newpack, the structure that results from calling rmfield
must be assigned to newpack.

>> newpack = rmfield(newpack, ‘'code')
newpack =
item_no: 111
cost: 19.9000
price: 34.9500

PRACTICE 8.2

A silicon wafer manufacturer stores, for every part in its inventory, a part number, quantity in the
factory, and the cost for each.

onepart
part_no quantity costper
[123 | 4] 3395]

Create this structure variable using struct. Print the cost in the form $xx.xx.

8.2.2 Passing Structures to Functions

An entire structure can be passed to a function or individual fields can be
passed. For example, here are two different versions of a function that calcu-
lates the profit on a software package. The profit is defined as the price minus
the cost.

In the first version, the entire structure variable is passed to the function, so the
function must use the dot operator to refer to the price and cost fields of the
input argument.

8.2 Structures

calcprof.m

function profit = calcprof(packstruct)

% calcprofit calculates the profit for a

% software package

% Format: calcprof(structure w/ price & cost fields)

profit = packstruct.price - packstruct.cost;
end

>> calcprof(package)
ans =
19.9600

In the second version, just the price and cost fields are passed to the function
using the dot operator in the function call. These are passed to two scalar input
arguments in the function header, so there is no reference to a structure variable
in the function itself, and the dot operator is not needed in the function.

calcprof2.m

function profit = calcprofZ2(oneprice, onecost)
% Calculates the profit for a software package
% Format: calcprof2(price, cost)

profit = oneprice - onecost;
end

>> calcprofZ(package.price, package.cost)
ans =
19.9600

It is important, as always with functions, to make sure that the arguments in
the function call correspond one-to-one with the input arguments in the
function header. In the case of calcprof, a structure variable is passed to an
input argument, which is a structure. For the second function calcprof2, two
individual fields, which are double values, are passed to two double input
arguments.

8.2.3 Related Structure Functions

There are several functions that can be used with structures in MATLAB. The
function isstruct will return logical 1 for true if the variable argument is a structure
variable or 0 if not. The isfield function returns logical true if a fieldname (as
a string) is a field in the structure argument or logical false if not.

>> isstruct(package)
ans =
1

>> isfield(package, 'cost’)
ans =
1

CHAPTER 8: Data Structures: Cell Arrays and Structures

The fieldnames function will return the names of the fields that are contained
in a structure variable.

>> pack_fields = fieldnames (package)
pack_fields =
"item_no’
‘cost’
'price’
‘code’
As the names of the fields are of varying lengths, the fieldnames function
returns a cell array with the names of the fields.

Curly braces are used to refer to the elements, as pack_fields is a cell array. For
example, we can refer to the length of one of the field names:

>> length(pack_fields{Z2})
ans =
4

QUICK QUESTION!

How can we ask the user for a field in a structure and either name to the structure variable and dot, and then passing the
print its value or an error if it is not actually a field? entire string to eval, the expression would be evaluated as
the actual field in the structure. The following is the code for

Answer
the variable package:

The isfield function can be used to determine whether or not
it is a field of the structure. Then, by concatenating that field

inputfield = input('Which field would you Tike to see: ",'s"');

if isfield(package, inputfield)

fprintf('The value of the %s field is: ', inputfield)
disp(eval(['package."' inputfield]))
else
fprintf('Error: %s is not a valid field\n', inputfield)
end
that would produce this output (assuming the package Which field would you Tike to see: code
variable was initialized as shown previously): The value of the code field is: g

PRACTICE 8.3

Modify the code from the preceding Quick Question! to use sprintf

8.2.4 Vectors of Structures

In many applications, including database applications, information would
normally be stored in a vector of structures, rather than in individual structure
variables. For example, if the Computer Super Mart is storing information on
all of the software packages that it sells, it would likely be in a vector of
structures such as the following:

packages
item_no cost price code
123 19.99 39.95 g
456 5.99 49.99 I
587 11.11 33.33 w

In this example, packages is a vector that has three elements. It is shown as
a column vector. Each element is a structure consisting of four fields: item_no,
cost, price, and code. It may look like a matrix, which has rows and columns,
but it is, instead, a vector of structures.

This vector of structures can be created several ways. One method is to create
a structure variable, as shown earlier, to store information on one software
package.

This can then be expanded to be a vector of structures.
>> packages = struct('item_no',123, 'cost',19.99,...
'price’,39.95, 'code’, 'g");
>> packages(2) = struct('item_no',456, 'cost', 5.99,...
'price',49.99, 'code','1");
>> packages(3) = struct('item_no',587, 'cost',11.11,...
'price',33.33, 'code’, 'w');
The first assignment statement shown here creates the first structure in the
structure vector, the next one creates the second structure, and so on. This
actually creates a 1 x 3 row vector.

Alternatively, the first structure could be treated as a vector to begin with, for
example
>> packages(1l) = struct('item_no',123, 'cost',19.99,...
'price’',39.95, 'code’,'g');
>> packages(2) = struct('item_no',456, 'cost', 5.99,...
'price',49.99, 'code','1");
>> packages(3) = struct('item_no',587, 'cost',11.11,...
'price’,33.33, 'code’, 'w');
Both of these methods, however, involve extending the vector. As we have
already seen, preallocating any vector in MATLAB is more efficient than
extending it. There are several methods of preallocating the vector. By starting
with the last element, MATLAB would create a vector with that many elements.

8.2 Structures

CHAPTER 8:

Data Structures: Cell Arrays and Structures

Then, the elements from 1 through end-1 could be initialized. For example, for
a vector of structures that has three elements, start with the third element.

>> packages(3) = struct('item_no',587, 'cost',11.11,...
'price',33.33, 'code’, 'w');

>> packages(l) = struct('item_no',123, 'cost',19.99,..
'price',39.95, 'code’, 'g");

>> packages(Z) = struct('item_no',456, 'cost', 5.99,..
'price',49.99, 'code','1");

Another method is to create one element with the values from one structure,
and use repmat to replicate it to the desired size. The remaining elements can
then be modified. The following creates one structure and then replicates this
into a 1 x 3 matrix.

>> packages = repmat(struct('item_no"',123, 'cost',19.99,...
'price',39.95, 'code’, 'g'),1,3);

>> packages(2) = struct('item_no', 456, 'cost', 5.99,..
'price',49.99, 'code’,'1");

>> packages(3) = struct('item_no',587, 'cost',11.11,...
'price',33.33, 'code’, 'w');

Typing the name of the variable will display only the size of the structure
vector and the names of the fields:

>> packages
packages =
1x3 struct array with fields:
item_no
cost
price
code

The variable packages is now a vector of structures, so each element in the vector
is a structure. To display one element in the vector (one structure), an index
into the vector would be specified. For example, to refer to the second element:

>> packages(2)

ans =
item_no: 456
cost: 5.9900
price: 49.9900
code: '1'

To refer to a field, it is necessary to refer to the particular structure, and then
the field within it. This means using an index into the vector to refer to the
structure, and then the dot operator to refer to a field. For example:

>> packages(1).code
ans =
g

Thus, there are essentially three levels to this data structure. The variable
packages is the highest level, which is a vector of structures. Each of its elements
is an individual structure. The fields within these individual structures are the
lowest level. The following loop displays each element in the packages vector.

>> for i = 1:length(packages)
disp(packages(i))
end

item_no: 123
cost: 19.9900
price: 39.9500

code: 'g
item_no: 456
cost: 5.9900
price: 49.9900
code: '1'
item_no: 587

cost: 11.1100
price: 33.3300
code: 'w

To refer to a particular field for all structures, in most programming languages
it would be necessary to loop through all elements in the vector and use the
dot operator to refer to the field for each element. However, this is not the case
in MATLAB.

THE PROGRAMMING CONCEPT

For example, to print all of the costs, a for loop could be used:

>> for 1=1:3
fprintf('%Zf\n',packages(i).cost)
end

19.990000

5.990000

11.110000

THE EFFICIENT METHOD

However, fprintf would do this automatically in MATLAB:

>> fprintf('%Zf\n',packages.cost)
19.990000

5.990000

11.110000

8.2 Structures

m CHAPTER 8: Data Structures: Cell Arrays and Structures

Using the dot operator in this manner to refer to all values of a field would
result in the values being stored successively in the default variable ans as this
method results in a comma-separated list:

>> packages.cost
ans =
19.9900

ans =
5.9900

ans =
11.1100

However, the values can all be stored in a vector:

>> pc = [packages.cost]
pc =
19.9900 5.9900 11.1100
Using this method, MATLAB allows the use of functions on all of the same
fields within a vector of structures. For example, to sum all three cost fields, the
vector of cost fields is passed to the sum function:

>> sum([packages.cost])
ans =
37.0900

For vectors of structures, the entire vector (e.g., packages) could be passed to
a function, or just one element (e.g., packages(1)) which would be a structure,
or a field within one of the structures (e.g., packages(2).price).

The following is an example of a function that receives the entire vector of
structures as an input argument and prints all of it in a nice table format.

printpackages.m

function printpackages(packstruct)

% printpackages prints a table showing all

% values from a vector of 'packages' structures
% Format: printpackages(package structure)

fprintf('\nitem # Cost Price Code\n\n")

no_packs = length(packstruct);

for i = l:no_packs

fprintf('%6d %6.2f %6.2f %3c\n', ..

packstruct(i).item_no, ...
packstruct(i).cost, ...
packstruct(i).price, ...
packstruct(i).code)

end

end

The function loops through all of the elements of the vector, each of which is
a structure, and uses the dot operator to refer to and print each field. An
example of calling the function follows:

>> printpackages(packages)
Item # Cost Price Code

123 19.99 39.95 g
456 5.99 49.99 1
587 11.11 33.33 W

PRACTICE 8.4

A silicon wafer manufacturer stores, for every part in its inventory, a part number, how many are in
the factory, and the cost for each. First, create a vector of structs called parts so that when
displayed it has the following values:

>> parts

parts =

1x3 struct array with fields:
partno
quantity
costper

>> parts(1)

ans =
partno: 123
quantity: 4
costper: 33
>> parts(2)
ans =
partno: 142
quantity: 1

costper: 150
>> parts(3)

ans =
partno: 106
quantity: 20

costper: 7.5000

Next, write general code that will, for any values and any number of structures in the variable parts,
print the part number and the total cost (quantity of the parts multiplied by the cost of each) in
a column format.

For example, if the variable parts stores the previous values, the result would be:
123 132.00
142 150.00
106 150.00

8.2 Structures m

m CHAPTER 8: Data Structures: Cell Arrays and Structures

The previous example involved a vector of structs. In the next example,
a somewhat more complicated data structure will be introduced: a vector of
structs in which some fields are vectors themselves. The example is a database
of information that a professor might store for her/his class. This will be
implemented as a vector of structures. The vector will store all of the class
information.

Every element in the vector will be a structure, representing all information
about one particular student. For every student, the professor wants to store
(for now, this would be expanded later):

name (a string)
university ID number
quiz scores (a vector of four quiz scores).

The vector variable, called student, might look like the following:

student
name id_no quiz
1 2 3 4
1| C, Joe 999 10.0 9.5 0.0 10.0

N

Hernandez, Pete 784 10.0 | 10.0 9.0 10.0
Brownnose, Violet 332 7.5 6.0 8.5 7.5

W

Each element in the vector is a struct with three fields (name, id_no, quiz). The
quiz field is a vector of quiz grades. The name field is a string.

This data structure could be defined as follows.

>> student(3) = struct('name', 'Brownnose, Violet',...
'id_no',332, 'quiz', [7.5 6 8.5 7.5]);

>> student(1l) = struct('name', 'C, Joe',..
'id_no',999, 'quiz', [10 9.5 0 10]);

>> student(2) = struct('name', 'Hernandez, Pete',...
"id_no',784,'quiz', [10 10 9 10]);

Once the data structure has been initialized, in MATLAB we could refer to
different parts of it. The variable student is the entire array; MATLAB just shows
the names of the fields.

>> student

student =

1x3 struct array with fields:
name
id_no
quiz

8.2 Structures a

To see the actual values, one would have to refer to individual structures and/
or fields.

>> student(1)
ans =
name: 'C, Joe'
id_no: 999
quiz: [10 9.5000 0 101

>> student(1).quiz
ans =
10.0000 9.5000 0 10.0000

>> student(1).quiz(2)
ans =
9.5000

>> student(3).name(1)
ans =
B

With a more complicated data structure like this it is important to be able to
understand different parts of the variable. The following are examples of
expressions that refer to different parts of this data structure:

student is the entire data structure, which is a vector of structs
student(1) is an element from the vector, which is an individual struct
student(1).quiz is the quiz field from the structure, which is a vector of
double values

student(1).quiz(2) is an individual double quiz grade
student(3).name(1) is the first letter of the third student’s name.

One example of using this data structure would be to calculate and print the
quiz average for each student. The following function accomplishes this. The
student structure, as defined before, is passed to this function. The algorithm
for the function is:

print column headings

loop through the individual students; for each:
sum the quiz grades
calculate the average
print the student’s name and quiz average.

With the programming method, a second (nested) loop would be required to
find the running sum of the quiz grades. However, as we have seen, the sum

m CHAPTER 8: Data Structures: Cell Arrays and Structures

function can be used to sum the vector of all quiz grades for each student. The
function is defined as follows:

printAves.m

function printAves(student)

% This function prints the average quiz grade
% for each student in the vector of structs

% Format: printAves(student array)

fprintf('%-20s %-10s\n', 'Name', 'Average')
for i = 1:length(student)

gsum = sum([student(i).quiz]l);

no_quizzes = length(student(i).quiz);

ave = gsum / no_quizzes;

fprintf('%-20s %.1f\n', student(i).name, ave);
end

Here is an example of calling the function:

>> printAves(student)

Name Average
C, Joe 7.4
Hernandez, Pete 9.8
Brownnose, Violet 7.4

8.2.56 Nested Structures

A nested structure is a structure in which at least one member is itself
a structure. For example, a structure for a line segment might consist of fields
representing the two points at the ends of the line segment. Each of these
points would be represented as a structure consisting of the x and y coor-

dinates.
lineseg
endpoint1 endpoint2
X y X y
L2 [4] 1] 6 |

This shows a structure variable called lineseg that has two fields for the
endpoints of the line segment, endpointl and endpoint2. Each of these is
a structure consisting of two fields for the x and y coordinates of the individual
points, x and .

One method of defining this is to nest calls to the struct function:

>> lineseg = struct('endpointl',struct('x",2,'y"',4), ...
'endpoint2',struct('x"',1,"'y",6))

This method is the most efficient.

Another method would be to create structure variables first for the points, and
then use these for the fields in the struct function (instead of using another
struct function).

>> pointone = struct('x"', 5, 'y', 11);
>> pointtwo = struct('x"', 7, 'y', 9);
>> lineseg = struct('endpointl', pointone,..

"endpoint2', pointtwo):

A third method, the least efficient, would be to build the nested structure one
field at a time. As this is a nested structure with one structure inside of another,
the dot operator must be used twice here to get to the actual x and y
coordinates.

>> lineseg.endpointl.x =
>> lineseg.endpointl.y
>> lineseg.endpointZ.x
>> lineseg.endpointZ.y

B

I
Oy~ AN

s

Once the nested structure has been created, we can refer to different parts of
the variable lineseg. Just typing the name of the variable shows only that it is
a structure consisting of two fields, endpointl and endpoint2, each of which is
a structure.

>> lineseg

lineseg =
endpointl: [1x1 struct]
endpoint2: [1x1 struct]

Typing the name of one of the nested structures will display the field names
and values within that structure:

>> lineseg.endpointl
ans =
X: 2
y: 4
Using the dot operator twice will refer to an individual coordinate, such as in

the following example:

>> lineseg.endpointl.x
ans =
2

8.2 Structures a

ﬂ CHAPTER 8: Data Structures: Cell Arrays and Structures

QUICK QUESTION!

How could we write a function strpoint that retumns a string
‘(x,y)" containing the x and y coordinates? For example, it
might be called separately to create strings for the two
endpoints and then printed as shown here:

>> fprintf('The line segment consists of %s and Zs\n',
strpoint(lineseg.endpointl), ...
strpoint(lineseg.endpointZ2))

The Tine segment consists of (2, 4) and (1, 6)

strpoint.m

Answer
As an endpoint structure is passed to
an input argument in the function,

function ptstr = strpoint(ptstruct)
% strpoint receives a struct containing x and y

the dot operator is used within the function % coordinates and returns a string '(x,y)'
to refer to the x and y coordinates. % Format: strpoint(structure with x and y fields)

The sprintf function is used to create ptstr = sprintf('(%d, %d)', ptstruct.x, ptstruct.y);
the string that is returned. end

8.2.6 Vectors of Nested Structures

Combining vectors and nested structures, it is possible to have a vector of
structures in which some fields are structures themselves. Here is an example
in which a company manufactures cylinders from different materials for
industrial use. Information on them is stored in a data structure in a program.
The variable cyls is a vector of structures, each of which has fields code,
dimensions, and weight. The dimensions field is a structure itself consisting of
fields rad and height for the radius and height of each cylinder.

cyls
code dimensions weight
rad height
1 X 3 6 7
2 a 4 2 5
3 c 3 6 9

The following is an example of initializing the data structure by
preallocating:

)

>> ¢cyls(3) = struct('code', 'c', 'dimensions',...
struct('rad', 3, 'height', 6), 'weight', 9);
>> cyls(1) = struct('code', 'x', 'dimensions',...
struct('rad', 3, 'height', 6), 'weight', 7);
>> cyls(2) = struct('code', 'a', 'dimensions',...

struct('rad', 4, 'height', 2), 'weight', 5);

There are several layers in this variable. For example:

cyls is the entire data structure, which is a vector of structs

cyls(1) is an individual element from the vector, which is a struct
cyls(2).code is the code field from the struct cyls(2); it is a character
cyls(3).dimensions is the dimensions field from the struct cyls(3); it is

a struct itself

cyls(1).dimensions.rad is the rad field from the struct cyls(1).dimensions; it

is a double number.

printcylvols.m

For these cylinders, one desired calculation may be the volume of each cylinder,
which is defined as 7 * r? * h, where 1 is the radius and h is the height. The
following function printcylvols prints the volume of each cylinder, along with its
code for identification purposes. It calls a subfunction to calculate each volume.

function printcylvols(cyls)

% printcylvols prints the volumes of each cylinder
% in a specialized structure

% Format: printcylvols(cylinder structure)

% 1t calls a subfunction to calculate each volume

for i = 1:1ength(cyls)
vol = cylvol(cyls(i).dimensions);

fprintf('Cylinder %c has a volume of %.1f in”3\n'

cyls(i).code, vol);
end
end

function cvol = cylvol(dims)
% cylvol calculates the volume of a cylinder

% Format: cylvol(dimensions struct w/ fields 'rad',

cvol = pi * dims.rad » 2 * dims.height;
end

"height")

The following is an example of calling this function.

>> printcylvols(cyls)

Cylinder x has a volume of 169.6 in”3
Cylinder a has a volume of 100.5 in~3
Cylinder ¢ has a volume of 169.6 in”3

8.2 Structures

CHAPTER 8: Data Structures: Cell Arrays and Structures

Note that the entire data structure, cyls, is passed to the function. The function
loops through every element, each of which is a structure. It prints the code
field for each, which is given by cyls(i).code. To calculate the volume of each
cylinder, only the radius and height are needed, so rather than passing the
entire structure to the subfunction cylvol (which would be cyis(i)), only the
dimensions field is passed (cyls(i).dimensions). The function then receives
the dimensions structure as an input argument, and uses the dot operator to
refer to the rad and height fields within it.

PRACTICE 8.5

Modify the function cylvol to calculate the surface area of the cylinder in addition to the volume
@pir®+2pirh).

m Explore Other Interesting Features

m Explore the built-in functions cell2struct, which converts a cell array
into a vector of structs, and struct2cell, which converts a struct to a cell
array.

m Find the functions that convert from cell arrays to number arrays and
vice versa.

Explore the orderfields function.

Cell arrays and vectors of structures are the main data structures that are
typically used in MATLAB. However, MATLAB supports object-oriented
programming; as a result, it has built-in classes and allows you to create
your own classes. Using classes, you can create other types of data
structures (such as linked lists). Some of the terminology and ideas
(including objects, handles, and call-back functions) will be introduced
in later chapters in this book in the context of more sophisticated
plotting techniques and programming graphical user interfaces. For
example, there is a class in MATLAB named Map. Using it, you can
create your own Map objects, which essentially give you an alternate way
of indexing into an array (e.g., you can use strings instead of indices
1,2,3, etc.).

m Explore the functions deal (which assigns values to variables) and
orderfields, which puts structure fields in alphabetical order. |

H Summary

Common Pitfalls
m Confusing the use of parentheses (cell indexing) versus curly braces
(content indexing) for a cell array.

Forgetting to index into a vector using parentheses or referring to a field
of a structure using the dot operator.

Programming Style Guidelines

Use arrays when values are the same type and represent in some sense
the same thing.

Use cell arrays or structures when the values are logically related, but not
the same type or the same thing.

Use cell arrays, rather than character matrices, when storing strings of
different lengths.

Use cell arrays, rather than structures, when it is desired to loop through
the values or to vectorize the code.

Use structures, rather than cell arrays, when it is desired to use names for
the different values rather than indices. |

MATLAB Functions and Commands

cell iscellstr isfield
celldisp struct fieldnames
cellplot rmfield

cellstr isstruct

MATLAB Operators

cell arrays { }
dot operator for structs.

Create the following cell array:
>> ca = {'abc', 11, 3:2:9, zeros(2)]

Use the reshape function to make it a 2 x 2 matrix. Then, write an expression that
would refer to just the last column of this cell array.

Create a 2 x 2 cell array using the cell function and then put values in the indi-
vidual elements. Then, insert a row in the middle so that the cell array is now 3 x 2.
Create a row vector cell array to store the string ‘xyz', the number 33.3, the vector
2:6, and the logical expression ‘a’ < ‘c’. Use the transpose operator to make this
a column vector, and use reshape to make it a 2 x 2 matrix. Use celldisp to
display all elements.

Create a cell array that stores phrases, such as:

exclaimcell = {'Bravo', 'Fantastic job'};

Pick a random phrase to print.

m CHAPTER 8: Data Structures: Cell Arrays and Structures

Create three cell array variables that store people’s names, verbs, and nouns. For

example:

names = {'Harry', 'Xavier', 'Sue'};
verbs = {'loves', 'eats'};

nouns = {'baseballs', 'rocks', 'sushi'};

Write a script that will initialize these cell arrays and then print sentences using
one random element from each cell array (e.g., ‘Xavier eats sushi’).

Write a script that will prompt the user for strings and read them in, store them in
a cell array (in a loop), and then print them out.

Write a function convsirs that will receive a cell array of strings and a character ‘u’
or ‘1. If the character is ‘u’ it will return a new cell array with all of the strings in
uppercase. If the character is ‘1" it will return a new cell array with all of the strings
in lowercase. If the character is neither ‘u’ nor ‘1, or if the cell array does not
contain all strings, the cell array that is returned will be identical to the input cell
array.

Write a function buildstr that will receive a character and a positive integer n. It will
create and return a cell array with strings of increasing lengths, from 1 to the
integer n. It will build the strings with successive characters in the ASCII encoding.
>> buildstr('a',4)

ans =

! ‘ab' "abc' "abcd'

Write a script that will create and display a cell array; it will loop to store strings of
lengths 1, 2, 3, and 4. The script will prompt the user for the strings. It will error-
check, and print an error message and repeat the prompt if the user enters a string
with an incorrect length.

Write a script that will loop three times, each time prompting the user for a vector,
and will store the vectors in elements in a cell array. It will then loop to print the
lengths of the vectors in the cell array.

Create a cell array variable that would store for a student his or her name,
university ID number, and grade point average (GPA). Print this information.
Create a structure variable that would store for a student his or her name,
university ID number, and GPA. Print this information.

A complex number is a number of the form a + ib, where a is called the real part,
b is called the imaginary part, and i = v/—1. Write a script that prompts the user
separately to enter values for the real and imaginary parts, and stores them in

a structure variable. It then prints the complex number in the form a + ib. The script
should just print the value of a, then the string '+ i’, and then the value of b. For
example, if the script is named compnumstruct, running it would result in:

a

>> compnumstruct

Enter the real part: 2.1

Enter the imaginary part: 3.3
The complex number is 2.1 + i3.3

Create a data structure to store information about the elements in the periodic
table of elements. For every element, store the name, atomic number, chemical
symbol, class, atomic weight, and a seven-element vector for the number of
electrons in each shell. Create a structure variable to store the information (e.g., for
lithium):

Lithium 3 Li alkali_metal 6.94 2 1 00 0 0 0

Write a function separatethem that will receive one input argument which is
a structure containing fields named length and width, and will return the two
values separately. Here is an example of calling the function:

>> myrectangle = struct('length',33, 'width',2);
>> [1 w] = separatethem(myrectangle)
'\ =

33

2

Modify the script from Exercise 13 to call a function to prompt the user for the real
and imaginary parts of the complex number, and also call a function to print the
complex number.
In chemistry, the pH of an aqueous solution is a measure of its acidity. A solution
with a pH of 7 is said to be neutral, a solution with a pH greater than 7 is basic, and
a solution with a pH less than 7 is acidic. Create a vector of structures with various
solutions and their pH values. Write a function that will determine acidity. Add
another field to every structure for this.
A script stores information on potential subjects for an experiment in a vector of
structures called subjects. The following shows an example of what the contents
might be:
>> subjects(1)
ans =
name: 'Joey'

sub_id: 111

height: 6.7000

weight: 222.2000

For this particular experiment, the only subjects who are eligible are those whose
height or weight is lower than the average height or weight of all subjects. The
script will print the names of those who are eligible. Create a vector with sample
data in a script and then write the code to accomplish this. Don't assume that the
length of the vector is known; the code should be general.

A manufacturer is testing a new machine that mills parts. Several trial runs are
made for each part and the resulting parts that are created are weighed. A file
stores, for every part, the part identification number, the ideal weight for the
part, and also the weights from five trial runs of milling this part. Create a file in
this format. Write a script that will read this information and store it in a vector

m CHAPTER 8: Data Structures: Cell Arrays and Structures

of structures. For every part print whether the average of the trial weights was
less than, greater than, or equal to the ideal weight.

Quiz data for a class are stored in a file. Each line in the file has the student ID number
(which is an integer) followed by the quiz scores for that student. For example, if there
are four students and three quizzes for each, the file might look like this:

44 7 7.5 8
33 5.56 6.5
37 8 8 8
24 6 7 8

First, create the data file and then store the data in a script in a vector of structures.
Each element in the vector will be a structure that has two members: the integer
student ID number and a vector of quiz scores. To accomplish this, first use the
load function to read all information from the file into a matrix. Then, using nested
loops, copy the data into a vector of structures as specified. Then, the script will
calculate and print the quiz average for each student.

Create a nested struct to store a person’s name, address, and telephone number.
The struct should have three fields for the name, address, and telephone number.
The address fields and telephone number fields will be structs.

Design a nested structure to store information on constellations for a rocket design
company. Each structure should store the constellation’s name and information on
the stars in the constellation. The structure for the star information should include
the star's name, core temperature, distance from the sun, and whether it is a binary
star or not. Create variables and sample data for your data structure.

Write a script that creates a vector of line segments (where each is a nested
structure as shown in this chapter). Initialize the vector using any method. Print
a table showing the values, such as shown in the following:

Line From To

1 (3, 5) 4, 7)

fa (5, 6) (2, 10)
etc.

Given a vector of structures defined by the following statements:

kit(2).sub.id = 123;
kit(2).sub.wt = 4.4;
kit(2).sub.code = 'a';
kit(2).name = 'xyz';
kit(2).lens
(
(
(

=[4771;
kit(l).name = 'rst';
kit(l).lens = 5:6;

kit(l).sub.id = 33;

kit(l).sub.wt = 11.11;

kit(1l).sub.code = 'q';

which of the following expressions are valid? If the expression is valid, give its
value. If it is not valid, explain why.

>> kit(l).sub

>> kit(2).lens(1)

>> kit(1l).code

>> kit(2).sub.id == kit(1).sub.id

>> strfind(kit(l).name, 's')

Create a vector of structures expernments that stores information on subjects
used in an experiment. Each struct has four fields: num, name, weights, and
height. The field num is an integer, name is a string, weights is a vector with two
values (both of which are double values), and height is a struct with fields feet
and inches (both of which are integers). The following is an example of what the
format might look like.

experiments
num name weights height
1 2 feet inches

33 | Joe 200.34 | 20245 | 5 6
11 | Sally 111.45 | 111.11 7 2

—

\V]

Write a function printhts that will receive a vector in this format, and will print the
name and height of each subject in inches (1 foot = 12 inches). This function calls
another function, howhigh, that receives a height struct and returns the total
height in inches. This function could also be called separately.

A team of engineers is designing a bridge to span the Podunk River. As part of the
design process, the local flooding data must be analyzed. The following informa-
tion on each storm that has been recorded in the past 40 years is stored in a file:
a code for the location of the source of the data, the amount of rainfall (in inches),
and the duration of the storm (in hours) — in that order. For example, the file might
look like this:

321 2.4 1.5
111 3.3 12.1
etc.

Create a data file. Write the first part of the program: design a data structure to

store the storm data from the file, and also the intensity of each storm. The intensity
is the rainfall amount divided by the duration. Write a function to read the data

m CHAPTER 8: Data Structures: Cell Arrays and Structures

from the file (use load), copy from the matrix into a vector of structs, and then
calculate the intensities. Write another function to print all of the information in
a neatly organized table.

Add a function to the program to calculate the average intensity of the storms.
Add a function to the program to print all of the information given on the most
intense storm. Use a subfunction for this function that will return the index of the
most intense storm

To remain competitive, every manufacturing enterprise must maintain strict quality
control measures. Extensive testing of new machines and products must be
incorporated into the design cycle. Once manufactured, rigorous testing for
imperfections and documentation is an important part of the feedback loop to the
next design cycle.

Quality control involves keeping statistics on the quality of products. A company
tracks its products and any failures that occur. For every imperfect part, a record is
kept that includes the part number, a character code, a string that describes the
failure, and the cost of both labor and material to fix the part. Create a vector of
structures to store sample data for this company. Print the information from the
data structure in an easy-to-read format.

Create a data structure to store information on the planets in our solar system. For
every planet, store its name, distance from the sun, and whether it is an inner
planet or an outer planet.

CHAPTER 9

Advanced File Input and Output

CONTENTS

file input and output open the file permission strings 9.1 %QIW?/%LGVGI
_ . . ile
file types close the file end of file Functions.. 296
lower-level file I/O functions file identifier o
9.2 Writing and
Reading
Spreadsheet
Files 310
This chapter extends the input and output (I/O) concepts that were introduced .
. 9.3 Using
in Chapter 3. In that chapter, we saw how to read values entered by the user MAT-files for
using the input function, and also the output functions disp and fprintf Variables ...311

that display information in windows on the screen. For file input and output
(file 1/O), we used the load and save functions that can read from a data file
into a matrix, and write from a matrix to a data file. We also saw that there are
three different modes or operations that can be performed on files: reading
from files, writing to files (writing to the beginning of a file), and appending to
files (writing to the end of a file).

There are many different file types, which use different filename extensions.
Thus far, using load and save, we have worked with files in the ASCII format
that typically use either the extension .dat or .txt. The load command works
only if there is the same number of values in each line and the values are the
same type, so that the data can be stored in a matrix, and the save command
only writes from a matrix to a file. If the data to be written or file to be read is
in a different format, lower-level file 1/O functions must be used.

The MATLAB® software has functions that can read and write data from
different file types, such as spreadsheets. For example, it can read from and
write to Excel spreadsheets that have filename extensions such as .xIs or .xlsx.
MATLAB also has its own binary file type that uses the extension .mat. These
are usually called MAT-files, and can be used to store variables that have been
created in MATLAB. Beginning with MATLAB 2012b, choosing “Import Data”

295

MATLAB®. http://dx.doi.org/10.1016/B978-0-12-405876-7.00009-2
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-405876-7.00009-2

“ CHAPTER 9: Advanced File Input and Output

under the Home tab activates the Import Tool, which allows one to import
data from a variety of file formats.

In this chapter, we will introduce the programmatic methods using the lower-
level file input and output functions, as well as some functions that work with
different file types.

9.1 LOWER-LEVEL FILE I/0 FUNCTIONS

When reading from a data file, the load function works as long as the
data in the file are “regular” — in other words the same kind of data on
every line and in the same format on every line — so that they can be read
into a matrix. However, data files are not always set up in this manner.
When it is not possible to use load, MATLAB has what are called lower-
level file input functions that can be used. The file must be opened first,
which involves finding or creating the file and positioning an indicator at
the beginning of the file. This indicator then moves through the file as it
is being read from. When the reading has been completed, the file must
be closed.

Similarly, the save function can write or append matrices to a file, but if the
output is not a simple matrix, there are lower-level functions that write to files.
Again, the file must be opened first and closed when the writing has been
completed.

In general, the steps involved are:

open the file
read from the file, write to the file, or append to the file
close the file.

First, the steps involved in opening and closing the file will be described.
Several functions that perform the middle step of reading from or writing to
the file will be described subsequently.

9.1.1 Opening and Closing a File

Files are opened with the fopen function. By default, the fopen function
opens a file for reading. If another mode is desired, a “permission string” is
used to specify which, for example, writing or appending. The fopen func-
tion returns —1 if it is not successful in opening the file or an integer value
that becomes the file identifier if it is successful. This file identifier is then
used to refer to the file when calling other file I/O functions. The general
form is

fid = fopen('filename', 'permission string');

9.1 Lower-Level File I/O Functions

where fid is a variable that stores the file identifier (it can be named anything)
and the permission strings include:

r reading (this is the default)
w writing
a appending

After the fopen is attempted, the value returned should be tested to make sure
that the file was opened successfully. For example, if attempting to open for
reading and the file does not exist, the fopen will not be successful. As the
fopen function returns —1 if the file was not found, this can be tested to decide
whether to print an error message or to carry on and use the file. For example,
if it is desired to read from a file “samp.dat”:

fid = fopen('samp.dat'):

if fid == -1

disp('File open not successful')
else

% Carry on and use the file!
end

Files should be closed when the program has finished reading from or writing
or appending to them. The function that accomplishes this is the fclose
function, which returns 0 if the file close was successful or —1 if not. Individual
files can be closed by specifying the file identifier or, if more than one file is
open, all open files can be closed by passing the string ‘all’ to the fclose
function. The general forms are:

closeresult = fclose(fid);

closeresult = fclose('all');

The result from the fclose function should also be checked with an if-else
statement to make sure it was successful, and a message should be printed (if
the close was not successful, that might mean that the file was corrupted and
the user would want to know that). So, the outline of the code will be:

fid = fopen('filename', 'permission string');
if fid = -1

disp('File open not successful')
else

% do something with the filel!

closeresult = fclose(fid);
if closeresult ==

disp('File close successful')
else

disp('File close not successful')

end
end

m CHAPTER 9: Advanced File Input and Output

9.1.2 Reading From Files

There are several lower-level functions that read from files. The function fscanf
reads formatted data into a matrix, using conversion formats such as %d for
integers, %s for strings, and %f for floats (double values). The textscan
function reads text data from a file and stores the data in a cell array; it also
uses conversion formats. The fgetl and fgets functions both read strings from
a file one line at a time; the difference is that the fgets keeps the newline
character if there is one at the end of the line, whereas the fgetl function gets
rid of it. All of these functions require first opening the file and then closing it
when finished.

As the fgetl and fgets functions read one line at a time, these functions are
typically inside some form of a loop. The fscanf and textscan functions can
read the entire data file into one data structure. In terms of level, these two
functions are somewhat in between the load function and the lower-level
functions, such as fgetl. The file must be opened using fopen first,
and should be closed using fclose after the data has been read. However, no
loop is required; they will read in the entire file automatically into a data
structure.

We will concentrate first on the fgetl function, which reads strings from a file
one line at a time. The fgetl function affords more control over how the data
are read than other input functions. The fgetl function reads one line of data
from a file into a string; string functions can then be used to manipulate the
data. As fgetl only reads one line, it is normally placed in a loop that keeps
going until the end of file is reached. The function feof returns logical true if
the end of the file has been reached. The function call feof(fid) would return
logical true if the end of the file has been reached for the file identified by fid,
or logical false if not. A general algorithm for reading from a file into strings
would be:

attempt to open the file:
check to ensure the file open was successful
if opened, loop until the end of the file is reached:
for each line in the file:
read it into a string
manipulate the data
attempt to close the file
check to make sure the file close was successful.

9.1 Lower-Level File I/O Functions a

The following is the generic code to accomplish these tasks:

fid = fopen('filename');
if fid == -1
disp('File open not successful')
else
while feof(fid) == 0
% Read one line into a string variable
aline = fgetl(fid);
% Use string functions to extract numbers, strings,
% etc. from the line
% Do something with the data!
end
closeresult = fclose(fid);
if closeresult ==
disp('File close successful')
else
disp('File close not successful')
end
end

The permission string could be included in the call to the fopen function. For
example:

fid = fopen('filename', 'r');

but the ‘I’ is not necessary as reading is the default. The condition on the while
loop can be interpreted as saying “while the file end-of-file is false”. Another
way to write this is:

while ~feof(fid)
which can be interpreted similarly as “while we're not at the end of the file”.

For example, assume that there is a data file “subjexp.dat”, which has on each
line a number followed by a space followed by a character code. The type
function can be used to display the contents of this file (as the file does not have
the default extension .m, the extension on the filename must be included).

> type subjexp.dat
a

QO

>
5
2
3
4
1

=W N W
@

o

The load function would not be able to read this into a matrix as it contains
both numbers and text. Instead, the fgetl function can be used to read each

m CHAPTER 9:

Advanced File Input and Output

line as a string, and then string functions are used to separate the numbers
and characters. For example, the following just reads each line and prints the
number with two decimal places and then the rest of the string:

fileex.m

% Reads from a file one Tine at a time using fgetl
» Each line has a number and a character
5 The script separates and prints them

% Open the file and check for success
fid = fopen('subjexp.dat');
if fid = -1
disp('File open not successful')
else
while feof(fid) == 0
aline = fgetl(fid);
% Separate each line into the number and character
% code and convert to a number before printing

[num, charcode] = strtok(aline);
fprintf('%.2f %s\n', str2double(num), charcode)
end

% Check the file close for success
closeresult = fclose(fid);
if closeresult ==

disp('File close successful')
else

disp('File close not successful')

end
end

The following is an example of executing this script:

>> fileex
5.30
2.20
3.30
4.40
1.10 b

File close successful

v v T @

In this example, every time the loop action is executed, the fgetl function reads
one line into a string variable. The string function strtok is then used to store the
number and the character in separate variables, both of which are string variables
(the second variable actually stores the blank space and the letter). If it is desired
to perform calculations using the number, the function str2double would be
used to convert the number stored in the string variable into a double variable.

9.1 Lower-Level File I/O Functions a

PRACTICE 9.1

Modify the script fileex to sum the numbers from the file. Create your own file in this format first.

Instead of using the fgetl function to read one line at a time, once a file has
been opened the fscanf function can be used to read from this file directly into
a matrix. However, the matrix must be manipulated somewhat to get it back
into the original form from the file. The format of using the function is:

mat = fscanf(fid, 'format', [dimensions])

The fscanf reads into the matrix variable mat columnwise from the file iden-
tified by fid. The ‘format’ includes conversion characters much like those used
in the fprintf function. The ‘format’ specifies the format of every line in the file,
which means that the lines must be formatted consistently. The dimensions
specify the desired dimensions of mat; if the number of values in the file is not
known, inf can be used for the second dimension. For example, the following
would read in the same file just specified; each line contains a number, fol-
lowed by a space, and then a character.

>> fid = fopen('subjexp.dat'):

>> mat = fscanf(fid, '%f %c',[2, inf])
mat =

5.3000 2.2000 3.3000 4.4000 1.1000
97.0000 98.0000 97.0000 97.0000 98.0000

>> fclose(fid);

The fopen opens the file for reading. The fscanf then reads from each line one
double and one character, and places each pair in separate columns in the
matrix (in other words every line in the file becomes a column in the matrix).
Note that the space in the format string is important: '%f %c' specifies that
there is a float, a space, and a character. The dimensions specify that the matrix
is to have two rows by however many columns are necessary (equal to the
number of lines in the file). As matrices store values that are all the same type,
the characters are stored as their ASCII equivalents in the character encoding
(e.g., ‘@’ is 97).

Once this matrix has been created, it may be more useful to separate the rows
into vector variables and to convert the second back to characters, which can
be accomplished as follows:

>> nums = mat(1l,:);

>> charcodes = char(mat(2,:))
charcodes =
abaab

m CHAPTER 9: Advanced File Input and Output

Of course, the results from fopen and fclose should be checked but were

omitted here for simplicity.

PRACTICE 9.2

Write a script to read in this file using fscanf and sum the numbers.

Instead of using the dimensions [2, inf] in the fscanf function,
could we use [inf ,2]?

Why is the space in the conversion string '%f %c ' important?
Would the following also work?

>> mat = fscanf(fid, '%f%c',[2, inf])

Answer

No, that would not work. The conversion string '%f %c'
specifies that there is a real number, then a space, then a char-
acter. Without the space in the conversion string, it would
specify a real number immediately followed by a character
(which would be the space in the file). Then, the next time it
would be attempting to read the next real number, but the
file position indicator would be pointing to the character on
the first line; the error would cause the fscanf function to
halt. The end result follows:

QUICK QUESTION!

Answer

No, [inf 2] would not work. Because fscanf reads each row
from the file into a column in the matrix, the number of rows
in the resulting matrix is known but the number of columns
is not.

QUICK QUESTION!

>> fid = fopen('subjexp.dat');
>> mat = fscanf(fid, 'Zf%c',[2, inf])
mat =

5.3000

32.0000

The 32 is the numerical equivalent of the space character * ',
as seen here.

>> double(' ")
ans =
32

Another option for reading from a file is to use the textscan function. The
textscan function reads text data from a file and stores the data in
column vectors in a cell array. The textscan function is called, in its simplest

form, as

cellarray = textscan(fid,

"format');

9.1 Lower-Level File I/O Functions a

where the ‘format’ includes conversion characters much like those used in
the fprintf function. The ‘format’ essentially describes the format of columns
in the data file, which will then be read into column vectors. For example, to
read the file ‘subjexp.dat’ we could do the following (again, for simplicity,
omitting the error-check of fopen and fclose):

>> fid = fopen('subjexp.dat'):
>> subjdata = textscan(fid, '%f %c');
>> fclose(fid)

The format string '%f %c' specifies that on each line there is a double value
followed by a space followed by a character. This creates a 1 x 2 cell array
variable called subjdata. The first element in this cell array is a column
vector of doubles (the first column from the file); the second element
is a column vector of characters (the second column from the file),
as shown here:

>> subjdata
subjdata =

[5x1 doublel] [5x1 char]
>> subjdata{l}

ans =
5.3000
2.2000
3.3000
4.4000
1.1000

>> subjdatai{?}

ans =

a

b

a

a

b

To refer to individual values from the vector, it is necessary to index into
the cell array using curly braces and then index into the vector using
parentheses. For example, to refer to the third number in the first element
of the cell array:

>> subjdata{l}(3)
ans =

3.3000

m CHAPTER 9: Advanced File Input and Output

A script that reads in these data and echo prints them is shown here:

textscanex.m

% Reads data from a file using textscan
fid = fopen('subjexp.dat');
if fid == -1
disp('File open not successful')
else
% Reads numbers and characters into separate elements
% in a cell array
subjdata = textscan(fid, '%f %c');
len = length(subjdata{l});
for i= 1:len
fprintf('%.1f %c\n',subjdataf{l}(i),subjdata{2}(i))
end

closeresult = fclose(fid);
if closeresult ==

disp('File close successful')
else

disp('File close not successful')

end
end

Executing this script produces the following results:

>> textscanex
a

=AW N o
— s W N W
0 o

o

File close successful

PRACTICE 9.3

Modify the script textscanex to calculate the average of the column of numbers.

9.1.2.1 Comparison of Input File Functions

To compare the use of these input file functions, consider the example of a file
called “xypoints.dat” that stores the x and y coordinates of some data points in
the following format:

>> type xypoints.dat
x2.3y4.56
x7.7y11.11
x12.5y5.5

9.1 Lower-Level File I/O Functions a

What we want is to be able to store the x and y coordinates in vectors so that
we can plot the points. The lines in this file store combinations of characters
and numbers, so the load function cannot be used. It is necessary to separate
the characters from the numbers so that we can create the vectors. The

following is the outline of the script to accomplish this:

filelnpCompare.m

fid = fopen('xypoints.dat');

if fid == -1
disp('File open not successful')
else
% Create x and y vectors for the data points

% Plot the points
plot(x,y, " 'k*")
xTabel('x")
ylabel('y")

% Close the file
closeresult = fclose(fid);
if closeresult ==
disp('File close successful")
else
disp('File close not successful')

end
end

% This part will be filled in using different methods

We will now complete the middle part of this script using four different

methods: fgetl, fscanf (two ways), and textscan.

To use the fgetl function, it is necessary to loop until the end-of-file is reached,
reading each line as a string, and parsing the string into the various compo-
nents and converting the strings containing the actual x and y coordinates to

numbers. This would be accomplished as follows:

% using fgetl
x =[1];
y = 1[1;
while feof(fid) == 0
aline = fgetl(fid);
aline = aline(2:end);
[xstr, rest] = strtok(aline,'y');
x = [x str2double(xstr)]l;
ystr = rest(2:end);
y = [y str2double(ystr)];
end

m CHAPTER 9: Advanced File Input and Output

To instead use the fscanf function, we need to specify the format of every line
in the file as a character, a number, a character, a number, and the newline
character. As the matrix that will be created will store every line from the file in
a separate column, the dimensions will be 4 x n, where n is the number of lines
in the file (and as we do not know that, inf is specified instead). The x char-
acters will be in the first row of the matrix (the ASCII equivalent of X’ in each
element), the x coordinates will be in the second row, the ASCII equivalent of
'y will be in the third row, and the fourth row will store the y coordinates. The
code would be:

% using fscanf

mat = fscanf(fid, '%c%f%ckf\n', [4, inf]l);
mat(2,:);
mat(4,:);

X
Y

Note that the newline character in the format string is necessary. The data file
itself was created by typing in the MATLAB Editor/Debugger, and to move
down to the next line the Enter key was used, which is equivalent to the
newline character. It is an actual character that is at the end of every line in the
file. It is important to note that if the fscanf function is looking for a number,
it will skip over whitespace characters including blank spaces and newline
characters. However, if it is looking for a character, it would read a whitespace
character including the newline.

In this case, after reading in x2.3y4.56’ from the first line of the file, if we had
as the format string ‘%c%f%c%f’ (without the ‘\n’), it would then attempt to
read again using ‘%c%f%c%f ’, but the next character it would read for the first
‘%c” would be the newline character, and then it would find the X" on the
second line for the ‘%f’" — not what is intended! (The difference between this
and the previous example is that before we read a number followed by
a character on each line. Thus, when looking for the next number it would skip
over the newline character.)

As we know that every line in the file contains the letter X" and ‘y’, not just any
random characters, we can build that into the format string:

% using fscanf method 2

mat = fscanf(fid, 'x%fy%f\n', [2, inf]l);
mat(l,:);
mat(2,:);

X
N

In this case the characters x’ and ‘y’ are not read into the matrix, so the matrix
only has the x coordinates (in the first row) and the y coordinates (in the
second row).

9.1 Lower-Level File I/O Functions

Finally, to use the textscan function, we could put ‘%c’ in the format string
for the X’ and ‘y’' characters, or build those in as with fscanf. If we build
those in, the format string essentially specifies that there are four columns in
the file, but it will only read the columns with the numbers into column
vectors in the cell array xpdat. The reason that the newline character is
not necessary is that with textscan, the format string specifies what the
columns look like in the file, whereas, with fscanf, it specifies the format of
every line in the file. Thus, it is a slightly different way of viewing the file
format.

% using textscan

xydat = textscan(fid, 'x%fy%f');
x = xydat{l};
y = xydat{2};

To summarize, we have now seen four methods of reading from a file. The
function load will work only if the values in the file are all the same type and there
are the same number on every line in the file, so that they can be read into a matrix.
If this is not the case, lower-level functions must be used. To use these, the file must
be opened first and then closed when the reading has been completed.

The fscanf function will read into a matrix, converting the characters to
their ASCII equivalents. The textscan function will instead read into a cell
array that stores each column from the file into separate column vectors
of the cell array. Finally, the fgetl function can be used in a loop to
read each line from the file as a separate string; string manipulating
functions must then be used to break the string into pieces and convert to
numbers.

QUICK QUESTION!

If a data file is in the following format, which file input func- Answer
tion(s) could be used to read it in? Any of the file input functions could be used, but as the file
consists of only numbers and four on each line, the load func-

48 25 23 23 : 1d be th ,
12 45 1 31 tion would be the easiest.
31 39 42 40

9.1.3 Writing to Files

There are several lower-level functions that can write to files. Like the other
low-level functions, the file must be opened first for writing (or appending)
and should be closed once the writing has been completed.

m CHAPTER 9: Advanced File Input and Output

Note

When writing to the
screen, the value
returned by fprintf is
not seen, but could be
stored in a variable.

We will concentrate on the fprintf function, which can be used to write to
a file and also to append to a file. To write one line at a time to a file, the
fprintf function can be used. We have, of course, been using fprintf to write
to the screen. The screen is the default output device, so if a file identifier is
not specified, the output goes to the screen; otherwise, it goes to the spec-
ified file. The default file identifier number is 1 for the screen. The general
form is:

fprintf(fid, 'format', variable(s));

The fprintf function actually returns the number of bytes that was written to
the file, so if it is not desired to see that number, the output should be sup-
pressed with a semicolon as shown here.

The following is an example of writing to a file named “tryit.txt":

>> fid = fopen('tryit.txt', 'w');

>> for 1 =1:3
fprintf(fid, 'The loop variable is %Zd\n', 1i);
end

>> fclose(fid);

The permission string in the call to the fopen function specifies that the file
is opened for writing to it. Just like when reading from a file, the results
from fopen and fclose should really be checked to make sure they were
successful. The fopen function attempts to open the file for writing. If the
file already exists, the contents are erased so it is as if the file had not existed.
If the file does not currently exist (which would be the norm), a new file is
created. The fopen could fail, for example, if there isn't space to create this
new file.

To see what was written to the file we could then open it (for reading) and
loop to read each line using fgetl:

>> fid = fopen('tryit.txt');

>> while ~feof(fid)
aline = fgetl(fid);
disp(aline)
end
The loop variable is 1
The loop variable is 2
The loop variable is 3
>> fclose(fid);

Of course, we could also just display the contents using type.

9.1 Lower-Level File I/O Functions a

Here is another example in which a matrix is written to a file. First, a 2 x 4 matrix
is created and then it is written to a file using the format string '%d %d\n",
which means that each column from the matrix will be written as a separate
line in the file.

>> mat = [20 14 19 12; 8 12 17 5]
mat =

20 14 19 12
8 12 17 5

>> fid = fopen('randmat.dat"', 'w');
>> fprintf(fid, '%Zd Zd\n',mat):
>> fclose(fid);

As this is a matrix, the load function can be used to read it in.

>> load randmat.dat

>> randmat
randmat =
20 8
14 12
19 17
12 5
>> randmat'
ans =

20 14 19 12
8 12 17 5

Transposing the matrix will display in the form of the original matrix. If this is
desired to begin with, the matrix variable mat can be transposed before using
fprintf to write to the file. (Of course, it would be much simpler in this case to
just use save instead!)

PRACTICE 9.4

Create a 3 x 5matrix of random integers, each in the range from 1 to 100. Write the sum of each row
to a file called “myrandsums.dat” using fprintf Confirm that the file was created correctly.

9.1.4 Appending to Files
The fprintf function can also be used to append to an existing file. The
permission string is ‘a’, so the general form of the fopen would be:

fid = fopen('filename', 'a');

CHAPTER 9: Advanced File Input and Output

Then, using fprintf (typically in a loop), we would write to the file starting at
the end of the file. The file would then be closed using fclose. What is written
to the end of the file doesn’t have to be in the same format as what is already
in the file when appending.

9.2 WRITING AND READING SPREADSHEET FILES

MATLAB has functions xIswrite and xlIsread that will write to and read from
Excel spreadsheet files that have extensions such as “xls". (Note that this works
under Windows environments provided that Excel is loaded. Under other
environments, problems may be encountered if Excel cannot be loaded as
a COM server.) For example, the following will create a 5 x 3 matrix of random
integers, and then write it to a spreadsheet file “ranexcel.xls” that has five rows
and three columns:

>> ranmat = randi(100,5,3)

ranmat =
96 77 62
24 46 80
61 2 93
49 83 74
90 45 18

>> xlswrite('ranexcel',ranmat)

The xlsread function will read from a spreadsheet file. For example, use the
following to read from the file “ranexcel xls”:

>> ssnums = xIsread('ranexcel ')

ssnums =
96 77 62
24 46 80
61 2 93
49 83 74
90 45 18

In both cases the ‘xls’ extension on the filename is the default, so it can be
omitted.

These are shown in their most basic forms, when the matrix and/or spreadsheet
contains just numbers and the entire spreadsheet is read or matrix is written. There
are many qualifiers that can be used for these functions, however. For example, the
following would read from the spreadsheet file “texttest.xls” that contains:

a 123 Cindy

b 333 Suzanne
c 432 David

d 987 Burt

9.3 Using MAT-files for Variables a

>> [nums, txt] = xlsread('texttest.xls')

nums =
123
333
432
987
txt =
'a' " '"Cindy'
'b' " "Suzanne'
'c' v 'David’
'd’ " 'Burt'

This reads the numbers into a double vector variable nums and the text into
a cell array xt (the xlIsread function always returns the numbers first and then
the text). The cell array is 4 x 3. It has three columns as the file had three
columns, but as the middle column had numbers (which were extracted and
stored in the vector nums), the middle column in the cell array txt consists of
empty strings.

A loop could then be used to echo print the values from the spreadsheet in the
original format:

>> for i = 1:length(nums)
fprintf('%c %4d %s\n', txt{i,1}, ...
nums (i), txt{1,3})
end

a 123 Cindy

b 333 Suzanne

c 432 David

d 987 Burt

These are just examples; MATLAB has many other functions that read from and
write to different file formats.

9.3 USING MAT-FILES FOR VARIABLES

In addition to the functions that manipulate data files, MATLAB has functions
that allow reading variables from and saving variables to files. These files are
called MAT-files (because the extension on the filename is .mat), and they
store the names and contents of variables. Variables can be written to MAT-
files, appended to them, and read from them.

Note that MAT-files are very different from the data files that we have worked
with so far. Rather than just storing data, MAT-files store the variable names in
addition to their values. These files are typically used only within MATLAB;
they are not used to share data with other programs.

CHAPTER 9: Advanced File Input and Output

9.3.1 Writing Variables to a File

The save command can be used to write variables to a MAT-file or to append
variables to a MAT-file. By default, the save function writes to a MAT-file. It can
either save the entire current workspace (all variables that have been created)
or a subset of the workspace (including, e.g., just one variable). The save
function will save the MAT-file in the Current Folder, so it is important to set
that correctly first.

To save all workspace variables in a file, the command is:

save filename

The “.mat’ extension is added to the filename automatically. The contents of
the file can be displayed using who with the ‘-file’ qualifier:

who —file filename

For example, in the following session in the Command Window, three vari-
ables are created; these are then displayed using who. Then, the variables are
saved to a file named “sess1.mat”. The who function is then used to display
the variables stored in that file.

>> mymat = rand(3,5);

>> x = 1:6;

>> ¥y = X."2;

>> who

Your variables are:
mymat X y

>> save sessl

>> who -file sessl
Your variables are:
mymat X N

To save just one variable to a file, the format is

save filename variablename

For example, just the matrix variable mymat is saved to a file called sess2:

>> save sessZ mymat
>> who -file sessZ
Your variables are:
mymat

9.3.2 Appending Variables to a MAT-file

Appending to a file adds to what has already been saved in a file, and is
accomplished using the —append option. For example, assuming that the
variable mymat has already been stored in the file “sess2.mat” as just shown,
this would append the variable x to the file:

>> save -append sessZ X
>> who -file sessZ

Your variables are:
mymat X

Without specifying variable(s), just save —append would add all variables
from the base workspace to the file. When this happens, if the variable is not in
the file, it is appended. If there is a variable with the same name in the file, it is
replaced by the current value from the base workspace.

9.3.3 Reading from a MAT-file

The load function can be used to read from different types of files. As with
the save function, by default the file will be assumed to be a MAT-file, and
load can load all variables from the file or only a subset. For example, in
a new Command Window session in which no variables have yet been
created, the load function could load from the files created in the previous
section:

>> who

>> load sess?

>> who

Your variables are:
mymat X

A subset of the variables in a file can be loaded by specifying them in the form:

load filename variable 1ist

m Explore Other Interesting Features

= Reading from and writing to binary files using the functions fread, fwrite,
fseek, and frewind. Note that to open a file to both read from it and write
to it, the plus sign must be added to the permission string (e.g., ‘t+').
Use help load to find some example MAT-files in MATLAB.
The dlmread function reads from an ASCII-delimited file into a matrix;
also investigate the dlmwrite function.
The Import Tool to import files from a variety of file formats.
In the MATLAB Product Help, enter “Supported File Formats” to find
a table of the file formats that are supported, and the functions that read
from them and write to them. |

H Summary

Common Pitfalls
m Misspelling a filename, which causes a file open to be unsuccessful.
m Using a lower-level file I/O function, when load or save could be used.

CHAPTER 9: Advanced

File Input and Output

Forgetting that fscanf reads columnwise into a matrix, so every line in
the file is read into a column in the resulting matrix.

Forgetting that fscanf converts characters to their ASCII equivalents.
Forgetting that textscan reads into a cell array (so curly braces are
necessary to index).

Forgetting to use the permission string ‘a’ for appending to a file (which
means the data already in the file would be lost if ‘W’ was used!).

Programming Style Guidelines

Use load when the file contains the same kind of data on every line and
in the same format on every line.

Always close files that were opened.

Always check to make sure that files were opened and closed
successfully.

Make sure that all data are read from a file (e.g., use a conditional
loop to loop until the end of the file is reached rather than using

a for loop).

Be careful to use the correct formatting string when using fscanf or
textscan.

Store groups of related variables in separate MAT-files. |

MATLAB Functions and Commands

fopen fgetl xlswrite
fclose fgets xlsread
fscanf feof

textscan forintf

Write a script that will prompt the user for the name of a file from which to read.
Loop to error-check until the user enters a valid filename that can be opened. (Note
that this would be part of a longer program that would actually do something with
the file, but for this problem all you have to do is to error-check until the user enters
a valid filename that can be read from.)

Write a script that will read from a file x and y data points in the following format:

x 0yl
x 1.3y 2.2
The format of every line in the file is the letter ‘x’, a space, the x value, space, the

letter 'y, space, and the y value. First, create the data file with 10 lines in this format.
Do this by using the Editor/Debugger, then File Save As xypts.dat. The script will

attempt to open the data file and error-check to make sure it was opened. If so, it
uses a for loop and fgetl to read each line as a string. In the loop, it creates x and y
vectors for the data points. After the loop, it plots these points and attempts to close
the file. The script should print whether or not the file was closed successfully.
Modify the script from the previous problem. Assume that the data file is in exactly
that format, but do not assume that the number of lines in the file is known. Instead
of using a for loop, loop until the end of the file is reached. The number of points,
however, should be in the plot title.

Medical organizations store a lot of very personal information on their patients.
There is an acute need for improved methods of storing, sharing, and encrypting all
of these medical records. Being able to read from and write to the data files is just
the first step.

For a biomedical experiment, the names and weights of some patients have been
stored in a file patwts.dat. For example, the file might look like this:

Darby George 166.2
Helen Dee 143.5
Giovanni Lupa 192.4
Cat Donovan 215.1

Create this data file first. Then, write a script readpatwts that will first attempt to
open the file. If the file open is not successful, an error message should be
printed. If it is successful, the script will read the data into strings, one line at
a time. Print for each person the name in the form ‘last,first’ followed by the
weight. Also, calculate and print the average weight. Finally, print whether or
not the file close was successful. For example, the result of running the script
would look like this:

>> readpatwts
George,Darby 166.2
Dee,Helen 143.5
Lupa,Giovanni 192.4
Donovan,Cat 215.1

The ave weight is 179.30
File close successful

Create a data file to store blood donor information for a biomedical research
company. For every donor, store the person’s name, blood type, Rh factor, and
blood pressure information. The blood type is either A, B, AB, or O. The Rh factor is
+ or —. The blood pressure consists of two readings: systolic and diastolic (both are
double numbers). Write a script to read from your file into a data structure and
print the information from the file.

A data file called “mathfile.dat” stores three characters on each line: an
operand (a single digit number), an operator (a one-character operator, such as

CHAPTER 9: Advanced File Input and Output

+, -, /, \, *, *), and then another operand (a single-digit number). For
example, it might look like this:

>> type mathfile.dat

5+2

8-1

3+3
You are to write a script that will use fgetl to read from the file, one line at a time,
perform the specified operation, and print the result.
Assume that a file named testread.dat stores the following:

110x0.123y5.6728.45
120x0.543y6.77211.56

Assume that the following are typed sequentially. What would the values be?

tstid = fopen('testread.dat")
fileline = fgetl(tstid)

[beg, endline] = strtok(fileline,'y")
lTength(beg)

feof(tstid)

Create a data file to store information on hurricanes. Each line in the file should have
the name of the hurricane, its speed in miles per hour, and the diameter of its eye in
miles. Then, write a script to read this information from the file and create a vector of
structures to store it. Print the name and area of the eye for each hurricane.
Create a file “parts_inv.dat” that stores on each line a part number, cost, and
quantity in inventory, in the following format:

123 5.99 52

Use fscanf to read this information, and print the total dollar amount of inventory
(the sum of the cost multiplied by the quantity for each part).

Students from a class took an exam for which there were two versions, marked either
A or B on the front cover (half of the students had version A, half had version B). The
exam results are stored in a file called “exams.dat”, which has, on each line, the
version of the exam (the letter ‘A’ or ‘B’) followed by a space followed by the integer
exam grade. Write a script that will read this information from the file using fscanf and
separate the exam scores into two vectors: one for Version A, and one for Version B.
Then, the grades from the vectors will be printed in the following format (using disp).

A exam grades:

99 80 76
B exam grades:
85 82 100

Note that no loops or selection statements are necessary!

Create a file which stores on each line a letter, a space, and a real number. For
example, it might look like this:

e 5.4
f 3.3
c 2.2

Write a script that uses textscan to read from this file. It will print the sum of the
numbers in the file. The script should error-check the file open and close, and print
eITOT messages as necessary.

Write a script to read in division codes and sales for a company from a file that has
the following format:

A 4.2
B 3.9

Print the division with the highest sales.
A data file is created as a char matrix and then saved to a file, for example,

>> cmat = char('hello', 'ciao', 'goodbye')
cmat =

hello

ciao

goodbye

>> save stringsfile.dat cmat —ascii

Can the load function be used to read this in? What about textscan?

Create a file of strings as in Exercise 13, but create the file by opening a new file,
type in strings, and then save it as a data file. Can the load function be used to
read this in? What about textscan?

Create a file phonenos.dat of telephone numbers in the following form:

6012425932
Read the telephone numbers from the file and print them in the form:
601-242-5932

Use load to read the telephone numbers.

Create the file phonenos.dat as in Exercise 15. Use textscan to read the telephone
numbers and then print them in the above format.

Create the file phonenos.dat as in Exercise 15. Use fgetl to read the telephone
numbers in a loop, and then print them in the above format.

Modify any of the previous scripts to write the telephone numbers in the new
format to a new file.

The wind chill factor (WCF) measures how cold it feels with a given air tempera-
ture (T, in degrees Fahrenheit) and wind speed (V, in miles per hour). One formula
for the WCF follows:

WCF =357 + 06T — 35.7 (V%) + 043 T (v 919)

Exercises

CHAPTER 9: Advanced File Input and Output

Create a table showing WCF's for temperatures ranging from —20 to 55 in steps of
five, and wind speeds ranging from 0 to bb in steps of five. Write this to a file
wcftable.dat.

Write a script that will loop to prompt the user for n circle radii. The script will call
a function to calculate the area of each circle and will write the results in sentence
form to a file.

Create a data file that has points in a three-dimensional space stored in the
following format:

x 2.2y 5.32z1.8

Do this by creating x, y, and z vectors, and then use fprintf to create the file in the
specified format.
A file stores sales data (in millions) by quarters. For example, the format may look
like this:

2012Q1 4.5

2012Q2 5.2

Create the described file and then append the next quarter’s data to it.
Create a file that has some college department names and enrollments. For
example, it might look like this:

Aerospace 201
Mechanical 66

Write a script that will read the information from this file and create a new file that
has just the first four characters from the department names, followed by the
enrollments. The new file will be in this form:

Aero 201
Mech 66

An engineering corporation has a data file “vendorcust.dat”, which has names of
its vendors and customers for various products, along with a title line. The format
is that every line has the vendor name and then the customer name, separated by
one space. For example, it might look like this (although you cannot assume the
length):

>> type vendorcust.dat

Vendor Customer

Acme XYZ

Tulip2you Flowers4dme

Flowers4me Acme

XYZ Cartesian

The “Acme” company wants a little more zing in their name, however, so they've
changed it to “Zowie"”; now this data file has to be modified. Write a script that will
read in from the “vendorcust.dat” file and replace all occurrences of “Acme” with
“Zowie”, writing this to a new file called “newvc.dat”.

A software package writes data to a file in a format that includes curly braces
around each line and commas separating the values. For example, a data file
mm.dat might look like this:

{33, 2, 11}

{45, 9, 3}
Use the fgetl function in a loop to read this data in. Create a matrix that stores just
the numbers and write the matrix to a new file. Assume that each line in the
original file contains the same number of numbers.
Create a spreadsheet that has on each line an integer student identification
number followed by three quiz grades for that student. Read that information from
the spreadsheet into a matrix and print the average quiz score for each student.
The xlswrite function can write the contents of a cell array to a spreadsheet. A
manufacturer stores information on the weights of some parts in a cell array. Each
row stores the part identifier code followed by weights of some sample parts. To
simulate this, create the following cell array:

>> parts = {"A22', 4.41 4.44 4.39 4.39
'729', 8.88 8.95 8.84 8.92}

then write this to a spreadsheet file.

A spreadsheet, popdata.xls, stores the population every 20 years for a small town
that underwent a boom and then a decline. Create this spreadsheet (include the
header row) and then read the headers into a cell array and the numbers into

a matrix. Plot the data using the header strings on the axis labels.

Year Population
1920 4021

1940 8053
1960 14994
1980 9942
2000 3385

Create a multiplication table and write it to a spreadsheet.
Read numbers from any spreadsheet file and write the variable to a MAT-file.
Clear out any variables that you have in your Command Window. Create a matrix
variable and two vector variables.

Make sure that you have your Current Folder set.

Store all variables to a MAT-file.

Store just the two vector variables in a different MAT-file.

Verify the contents of your files using who.
Create a set of random matrix variables with descriptive names (e.g., ranZbyZint,
ran3by3double, etc.) for use when testing matrix functions. Store all of these in
a MAT-file.

m CHAPTER 9: Advanced File Input and Output

Environmental engineers are trying to determine whether the underground aquifers
in a region are being drained by a new spring water company in the area. Well depth
data have been collected every year at several locations in the area. Create a data file
that stores on each line the year, an alphanumeric code representing the location,
and the measured well depth that year. Write a script that will read the data from the
file and determine whether or not the average well depth has been lowered.

A file “namedept.dat” stores first names and departments for some employees of
a car dealership (separated by the pound sign). For example, the file might store:

Bill#Parts
JoeffService
Bob#tSales
Mack#Sales
Jil1{#Service
MeredithffParts

A script is being written to read the information from the file into a vector variable
(“employees”) of structures; each structure has fields for the name and department.
In order to be efficient, the vector is preallocated to have 50 elements (although this
should later be reduced to the actual number of elements used). You are to write
the script to read each line from the file using fgetl, and put the information from
each line into a structure that is stored in the vector.
Write a menu-driven program that will read in an employee database for
a company from a file and do specified operations on the data. The file stores the
following information for each employee:
name
department
birth date
date hired
annual salary
office telephone extension.
You are to decide exactly how this information is to be stored in the file. Design the
layout of the file and then create a sample data file in this format to use when testing
your program. The format of the file is up to you. However, space is critical. Do not
use any more characters in your file than you have to! Your program is to read the
information from the file into a data structure and then display a menu of options for
operations to be done on the data. You may not assume in your program that you
know the length of the data file. The menu options are:
Print all of the information in an easy-to-read format to a new file
Print the information for a particular department
Calculate the total payroll for the company (the sum of the salaries)
Find out how many employees have been with the company for N years
(e.g., N might be 10)
Exit the program.

CHAPTER 10

Advanced Functions

nested functions
recursive functions

anonymous functions
function handle
function function
variable number of
arguments

general (inductive)
case

base case

infinite recursion

outer function
inner function
recursion

Functions were introduced in Chapter 3 and then expanded on in Chapter 6.
In this chapter, several advanced features of functions and types of functions
will be described. Anonymous functions are simple one-line functions that are
called using their function handle. Other uses of function handles will also be
demonstrated, including function functions. All of the functions that we have
seen so far have had a well-defined number of input and output arguments,
but we will see that it is possible to have a variable number of arguments.
Nested functions are also introduced, which are functions contained within
other functions. Finally, recursive functions are functions that call themselves.
A recursive function can return a value or may simply accomplish a task such
as printing.

10.1 ANONYMOUS FUNCTIONS

An anonymous function is a very simple, one-line function. The advantage of
an anonymous function is that it does not have to be stored in an M-file. This
can greatly simplify programs, as often calculations are very simple and the use
of anonymous functions reduces the number of M-files necessary for
a program. Anonymous functions can be created in the Command Window or
in any script or user-defined function. The syntax for an anonymous function
follows:

fnhandlevar = @ (arguments) functionbody;

MATLAB®. http://dx.doi.org/10.1016/B978-0-12-405876-7.00010-9
Copyright © 2013 Elsevier Inc. All rights reserved.

CONTENTS

10.1 Anonymous
Functions

10.2 Uses of
Function
Handles ...323

10.3 Variable
Numbers of

Arguments
.................. 326

10.4 Nested
Functions

10.5 Recursive
Functions

321

http://dx.doi.org/10.1016/B978-0-12-405876-7.00010-9

m CHAPTER 10: Advanced Functions

where fnhandlevar stores the function handle; it is essentially a way of referring
to the function. The handle is returned by the @ operator and then this handle
is assigned to the variable fnhandlevar on the left. The arguments, in paren-
theses, correspond to the argument(s) that are passed to the function, just like
any other kind of function. The functionbody is the body of the function,
which is any valid MATLAB® expression. For example, here is an anonymous
function that calculates and returns the area of a circle:

>> cirarea = @ (radius) pi * radius .~ 2;

The function handle variable name is cirarea. There is one input argument,
radius. The body of the function is the expression pi * radius .» 2. The .~ array
operator is used so that a vector of radii can be passed to the function.

The function is then called using the handle and passing argument(s) to it; in
this case, the radius or vector of radii. The function call using the function
handle looks just like a function call using a function name:

>> cirarea(4)
ans =

50.2655

>> areas = cirarea(1:4)
areas =

3.1416 12.5664 28.2743 50.2655

The type of cirarea can be found using the class function:

>> class(cirarea)
ans =
function_handle

Unlike functions stored in M-files, if no argument is passed to an anonymous
function, the parentheses must still be in the function definition and in the
function call. For example, the following is an anonymous function that prints
a random real number with two decimal places, as well as a call to this
function:

>> prtran = @ () fprintf('%.2f\n',rand);
>> prtran()
0.95

Typing just the name of the function handle will display its contents, which is
the function definition.

>> prtran
prtran =

@ () fprintf('%.2f\n",rand)

This is why parentheses must be used to call the function, even though no
arguments are passed.

10.2 Uses of Function Handles a

An anonymous function can be saved to a MAT-file and then it can be loaded
when needed.

>> cirarea = @ (radius) pi * radius .~ 2;
>> save anonfns cirarea

>> clear

>> load anonfns

>> who

Your variables are:

cirarea

>> cirarea
cirarea =
@ (radius) pi * radius .~ 2

Other anonymous functions could be appended to this MAT-file. Even though
an advantage of anonymous functions is that they do not have to be saved in
individual M-files, it is frequently useful to save groups of related anonymous
functions in a single MAT-file. Anonymous functions that are used frequently
can be saved in a MAT-file and then loaded from this MAT-file in every
MATLAB Command Window.

PRACTICE 10.1

Create your own anonymous functions to perform some temperature conversions. Store these
anonymous functions in a file called “tempconverters.mat”.

10.2 USES OF FUNCTION HANDLES

Function handles can also be created for functions other than anonymous
functions, both built-in and user-defined functions. For example, the following
would create a function handle for the built-in factorial function:

>> facth = @factorial;

The @ operator gets the handle of the function, which is then stored in
a variable facth.

The handle could then be used to call the function, just like the handle for the
anonymous functions, as in:

>> facth(b)
ans =
120

Using the function handle to call the function instead of using the name of the
function does not in itself demonstrate why this is useful, so an obvious
question would be why function handles are necessary for functions other
than anonymous functions.

m CHAPTER 10: Advanced Functions

10.2.1 Function Functions

One reason for using function handles is to be able to pass functions to other
functions — these are called function functions. For example, let’s say we have
a function that creates an x vector. The y vector is created by evaluating
a function at each of the x points, and then these points are plotted.

—
X

=
(=

=-02¢t
04+t
06
087}

1

087
0.6
047
027

ol

-1

fnfnexamp.m

x =1:.25:6;
y = funh(x);
plot(x,y,"ko")
xlabel('x")
ylabel ("fn(x)")

end

function fnfnexamp(funh)

% fnfnexamp receives the handle of a function

% and plots that function of x (which is 1:.25:6)
% Format: fnfnexamp(function handle)

title(func2str(funh))

What we want to do is pass a function to be the value of the input argument funh,
such as sin, cos, or tan. Simply passing the name of the function does not work:

>> fnfnexamp(sin)
Error using sin

Not enough input arguments.

Instead, we have to pass the handle of the function:

>> fnfnexamp(@sin)

sin
OWUC') T
o
o
[e]
(o]
o
(o)
o
° (o)
(o)
))))) .om Q)
1 156 2 25 3 35 4 45 5 55
X

FIGURE 10.1 Plot of sin created by passing handle
of function to plot

which creates the y vector as sin(x) and then brings
up the plot as seen in Figure 10.1. The function
func2str converts a function handle to a string; this
is used for the title.

Passing the handle to the cos function instead
would graph cosine instead of sine:

>> fnfnexamp(@cos)

We could also pass the handle of any user-defined
or anonymous function to the fnfnexamp function.
Note that if a variable stores a function handle,
just the name of the variable would be passed (not
the @ operator). For example, for our anonymous
function defined previously,

>> fnfnexamp(cirarea)

10.2 Uses of Function Handles a

The function func2str will return the definition of an anonymous function as
a string that could also be used as a title. For example:

>> cirarea = @ (radius) pi * radius .~ 2;

>> fnname = funcZstr(cirarea)

fnname =
@(radius)pi*radius.”2

There is also a built-in function str2func that will convert a string to a function
handle. A string containing the name of a function could be passed as an input
argument, and then converted to a function handle.

fnstrfn.m

function fnstrfn(funstr)

% fnstrfn receives the name of a function as a string
% it converts this to a function handle and

% then plots the function of x (which is 1:.25:6)
% Format: fnstrfn(function name as string)

x =1:.25:6;

funh = str2func(funstr);

y = funh(x);

plot(x,y,'ko")

xlabel('x")

ylabel('fn(x)")

title(funstr)

end

This would be called by passing a string to the function, and would create the
same plot as in Figure 10.1:

>> fnstrfn('sin')

PRACTICE 10.2

Write a function that will receive as input arguments an x vector 1
and a function handle, and will create a vector y that is the function 0.8
of x (whichever function handle is passed), and will also plot the 0.6
data from the xand y vectors with the function name in the title. '
0.4
0.2
MATLAB has some built-in function functions. 0
One built-in function function is fplot, which 02
plots a function between limits that are specified. ™
The form of the call to fplot is: -0.4
fplot(fnhandle, [xmin, xmax]) 0.6
. . -0.8
For example, to pass the sin function to fplot one
would pass its handle (see Figure 10.2 for the result). 13 D) _'1 0 1 5 3

>> fplot(@sin, [-pi, pi]) FIGURE 10.2 Plot of sin created using fplot

m CHAPTER 10: Advanced Functions

The fplot function is a nice shortcut — it is not necessary to create x and y
vectors, and it plots a continuous curve rather than discrete points.

QUICK QUESTION!

Could you pass an anonymous function to the fplot function? Note that in this case the @ operator is not used in
the call to fplot, as cirarea already stores the function

ST handle.

Yes, as in:

>> cirarea = @ (radius) pi * radius .~ 2;
>> fplot(cirarea, [1, 51)
>> title(func2str(cirarea))

The function function feval will evaluate a function handle and execute the
function for the specified argument. For example, the following is equivalent
to sin(3.2):
>> feval(@sin, 3.2)
ans =
-0.0584

Another built-in function function is fzero, which finds a zero of a function
near a specified value. For example:
>> fzero(@cos,4)
ans =
4.7124

10.3 VARIABLE NUMBERS OF ARGUMENTS

The functions that we've written thus far have contained a fixed number of
input arguments and a fixed number of output arguments. For example, in the
following function that we have defined previously, there is one input argu-
ment and there are two output arguments:

areacirc.m

function [area, circum] = areacirc(rad)
% areacirc returns the area and

% the circumference of a circle

% Format: areacirc(radius)

area = pi * rad .* rad;
circum = 2 * pi * rad;
end

10.3 Variable Numbers of Arguments

However, this is not always the case. It is possible to have a variable number
of arguments, both input and output arguments. A built-in cell array var-
argin can be used to store a variable number of input arguments and
a built-in cell array varargout can be used to store a variable number of
output arguments. These are cell arrays because the arguments could be
different types, and only cell arrays can store different kinds of values in the
various elements. The function nargin returns the number of input argu-
ments that were passed to the function, and the function nargout deter-
mines how many output arguments are expected to be returned from
a function.

10.3.1 Variable Number of Input Arguments

For example, the following function areafori has a variable number of input
arguments, either one or two. The name of the function stands for “area, feet
or inches”. If only one argument is passed to the function it represents the
radius in feet. If two arguments are passed the second can be a character 1’
indicating that the result should be in inches (for any other character, the
default of feet is assumed). One foot = 12 inches. The function uses the built-
in cell array varargin, which stores any number of input arguments. The
function nargin returns the number of input arguments that were passed to
the function. In this case, the radius is the first argument passed so it is stored
in the first element in varargin. If a second argument is passed (if nargin is 2),
it is a character that specifies the units.

areafori.m

function area = areafori(varargin)

% areafori returns the area of a circle in feet

% The radius is passed, and potentially the unit of

% inches is also passed, in which case the result will be
% given in inches instead of feet

% Format: areafori(radius) or areafori(radius,'i")

n = nargin; % number of input arguments
radius = varargin{l}; % Given in feet by default
if n==

unit = varargin{2};

% if inches is specified, convert the radius

if unit = "'
radius = radius * 12; Note
end Curly braces are used to
end refer to the elements in
area = pi * radius .~ 2; the cell array varargin.

end

m CHAPTER 10: Advanced Functions

Some examples of calling this function follow:
>> areafori(3)

ans =
28.2743

>> areafori(l1,'i")
ans =

452.3893

In this case, it was assumed that the radius will always be passed to the
function. The function header can therefore be modified to indicate that the
radius will be passed, and then a variable number of remaining input argu-
ments (either none or one):

areaforiz2.m

function area = areaforiZ2(radius, varargin)

% areafori2 returns the area of a circle in feet

% The radius is passed, and potentially the unit of

% inches is also passed, in which case the result will be
% given in inches instead of feet

% Format: areafori2(radius) or areafori2(radius,'i")

n = nargin; % number of input arguments
if n==
unit = varargin{l};
% if inches is specified, convert the radius
if unit == "1
radius = radius * 12;

end
end
area = pi * radius .~ 2;
end

>> areafori2(3)
ans =
28.2743
>> areafori2(1,'i")
ans =
452.3893

Note that nargin returns the total number of input arguments, not just the
number of arguments in the cell array varargin.

10.3 Variable Numbers of Arguments a

There are basically two formats for the function header with a variable number
of input arguments. For a function with one output argument, the options are:

function outarg = fnname(varargin)
function outarg = fnname(input arguments, varargin)

Either some input arguments are built into the function header and varargin
stores anything else that is passed, or all of the input arguments go into
varargin.

PRACTICE 10.3

The sum of a geometric series is given by:
T+r+r2 44+ 4+ 40

Write a function called geomser that will receive a value for r and calculate and return the sum of
the geometric series. If a second argument is passed to the function, it is the value of n; otherwise,
the function generates a random integer for n (in the range from 5 to 30). Note that loops are not
necessary to accomplish this. The following examples of calls to this function illustrate what the
result should be:

>> g = geomser(2,4) % 1 + 2"1 + 2"2 + 2"3 + 24

31

>> geomser(1) % 1 + 11 + 1"2 + 1"3 + ... ?
ans =
12

Note that in the last example, a random integer was generated for n (which must have been 11).
Use the following header for the function, and fill in the rest:

function sgs = geomser(r, varargin)

10.3.2 Variable Number of Output Arguments

A variable number of output arguments can also be specified. For example,
one input argument is passed to the following function typesize. The function
will always return a character specifying whether the input argument was
a scalar ('s’), vector (‘v'), or matrix (‘'m’). This character is returned through the
output argument arrtype.

Additionally, if the input argument was a vector, the function returns the
length of the vector, and if the input argument was a matrix, the function
returns the number of rows and the number of columns of the matrix. The
output argument varargout is used, which is a cell array. So, for a vector the
length is returned through varargout, and for a matrix both the number of
rows and columns are returned through varargout.

m CHAPTER 10: Advanced Functions

typesize.m

function [arrtype, varargout] = typesize(inputval)
% typesize returns a character 's' for scalar, 'v
% for vector, or 'm'" for matrix input argument

% also returns length of a vector or dimensions of matrix
% Format: typesize(inputArgument)

[r, ¢] =size(inputval);

if r==1 && c==
arrtype = 's';

elseif r==1 | c==
arrtype = 'v';
varargout{1l} = Tength(inputval);

else
arrtype = 'm';
varargout{l} = r;
varargout{2} = c;

end

end

>> typesize(5)
ans =
S

>> [arrtype, len] = typesize(4:6)
arrtype =
v
len =
3

>> [arrtype, r, c] = typesize([4:6;3:5])

arrtype =
m
r o=
2
c =
3

In the examples shown here, the user must actually know the type of the argu-
ment in order to determine how many variables to have on the left-hand side of
the assignment statement. An error will result if there are too many variables.

>> [arrtype, r, c] = typesize(4:6)

Error in typesize (line 7)

[r, ¢ 1 = size(Cinputval);

OQutput argument "varargout{2}" (and maybe others) not assigned
during call to “\path\typesize.m>typesize".

10.3 Variable Numbers of Arguments a

The function nargout can be called to determine how many output arguments
were used to call a function. For example, in the function mysize below, a matrix is
passed to the function. The function behaves like the built-in function size in that
it returns the number of rows and columns. However, if three variables are used to
store the result of calling this function, it also returns the total number of elements:

mysize.m

function [row, col, varargout] = mysize(mat)
% mysize returns dimensions of input argument
% and possibly also total # of elements

% Format: mysize(inputArgument)

[row, col] = size(mat);

if nargout ==

varargout{l} = row*col;
end
end

>> [r, c] = mysize(eye(3))

>> [r, c, elem] = mysize(eye(3))

3
c =
Note
elem = The function nargout
9 does not return the

number of output argu-
ments in the function
header, but the number
of output arguments
expected from the

In the first call to the mysize function, the value of nargout was 2, so the
function only returned the output arguments row and col. In the second call, as
there were three variables on the left of the assignment statement, the value of
nargout was 3; thus, the function also returned the total number of elements.

There are basically two formats for the function header with a variable number ~function (meaning that

of output arguments: the number of variables
in the vector in the left

side of the assignment
function [output args, varargout] = fnname(input args) statement when calling

function varargout = fnname(input args)

Either some output arguments are built into the function header, and var- the function).
argout stores anything else that is returned or all go into varargout. The
function is called as follows:

[variables] = fnname(input args);

m CHAPTER 10: Advanced Functions

QUICK QUESTION!

A temperature in degrees Celsius is passed to a function called
converttemp. How could we write this function so that it
converts this temperature to degrees Fahrenheit, and possibly
also to degrees Kelvin, depending on the number of output
arguments? The conversions are:

9
F= §C+32
K =C+273.15

converttemp.m

Here are possible calls to the function:

>> df = converttemp(17)
df =
62.6000
>> [df, dk] = converttemp(17)
df =
62.6000
dk =
290.1500

Answer

We could write the function two different ways: one with only
varargout in the function header, and one that has an output
argument for the degrees F and also varargout in the function
header.

function [degreesF, varargout]
% to degrees F and maybe also K
degreesF = 9/5*degreesC + 32;

n = nargout;

if n ==

end
end

% converttemp converts temperature in degrees C

% Format: converttemp(C temperature)

varargout{l} = degreesC + 273.15;

converttemp(degreesC)

converttempii.m

function varargout = converttempii(degreesC)

% converttempii converts temperature in degrees C
% to degrees F and maybe also K

% Format: converttempii(C temperature)

varargout{l} = 9/5*degreesC + 32;

n = nargout;
it ==

varargout{2} = degreesC + 273.15;
end

end

10.4 Nested Functions a

10.4 NESTED FUNCTIONS

Just as loops can be nested, meaning one inside of another, functions can be
nested. The terminology for nested functions is that an outer function can have
within it inner functions. When functions are nested, every function must have
an end statement (much like loops). The general format of a nested function is
as follows:

outer function header
body of outer function

inner function header
body of inner function
end % inner function

more body of outer function

end % outer function

The inner function can be in any part of the body of the outer function so
there may be parts of the body of the outer function before and after the inner
function. There can be multiple inner functions.

The scope of any variable is the workspace of the outermost function in which
it is defined and used. That means that a variable defined in the outer function
could be used in an inner function (without passing it). A variable defined in
the inner function could be used in the outer function, but if it is not used in
the outer function the scope is just the inner function.

For example, the following function calculates and returns the volume of
a cube. Three arguments are passed to it, the length and width of the base of
the cube, and also the height. The outer function calls a nested function that
calculates and returns the area of the base of the cube.

nestedvolume.m

function outvol = nestedvolume(len, wid, ht)

% nestedvolume receives the lenght, width, and

% height of a cube and returns the volume; it calls
% a nested function that returns the area of the base
% Format: nestedvolume(length,width,height)

outvol = base * ht;

Note
function outbase = base It is not necessary to
% returns the area of the base pass the length and
outbase = len * wid; width to the inner
end % base function function, as the scope of

these variables includes
end % nestedvolume function

the inner function.

m CHAPTER 10: Advanced Functions

An example of calling this function follows:

>> v = nestedvolume(3,5,7)
v =
105

Output arguments are different from variables. The scope of an output argu-
ment is just the nested function; it cannot be used in the outer function. In this
example, outbase can only be used in the base function; its value, for example,
could not be printed from nestedvolume. Examples of nested functions will be
seen in the section on graphical user interfaces.

10.5 RECURSIVE FUNCTIONS

Recursion is when something is defined in terms of itself. In programming,
a recursive function is a function that calls itself. Recursion is used very
commonly in programming, although many simple examples (including
some shown in this section) are actually not very efficient and can be replaced
by iterative methods (loops, or vectorized code in MATLAB). Nontrivial
examples go beyond the scope of this book, so the concept of recursion is
simply introduced here.

The first example will be of a factorial. Normally, the factorial of an integer n is
defined iteratively:

ntl =1*2>*3* ..%n
For example, 4! =1 * 2 * 3 * 4, or 24.
Another, recursive, definition is:

nl =n * (n-1)! general case

11 =1 base case

This definition is recursive because a factorial is defined in terms of another
factorial. There are two parts to any recursive definition: the general (or
inductive) case, and the base case. We say that, in general, the factorial of n is
defined as n multiplied by the factorial of (n—1), but the base case is that the
factorial of 1 is just 1. The base case stops the recursion.

For example:

31 =3 * 2!
2l =2 * 1!

10.5 Recursive Functions a

The way this works is that 3! is defined in terms of another factorial, as 3 *
2!. This expression cannot yet be evaluated because first we have to find out
the value of 2!. So, in trying to evaluate the expression 3 * 2!, we are
interrupted by the recursive definition. According to the definition, 2! is 2 *
1!. Again, the expression 2 * 1! cannot yet be evaluated because first we have
to find the value of 1!. According to the definition, 1! is 1. As we now know
what 1! is, we can continue with the expression that was just being evalu-
ated; now we know that 2 * 1!is 2 * 1, or 2. Thus, we can now finish the
previous expression that was being evaluated; now we know that 3 * 2!is 3 *
2, or 6.

This is the way that recursion always works. With recursion, the expressions are
put on hold with the interruption of the general case of the recursive defini-
tion. This keeps happening until the base case of the recursive definition
applies. This finally stops the recursion, and then the expressions that were put
on hold are evaluated in the reverse order. In this case, first the evaluation of
2 * 1! was completed, and then 3 * 2!.

There must always be a base case to end the recursion, and the base case
must be reached at some point. Otherwise, infinite recursion would occur
(theoretically — although MATLAB will stop the recursion eventually).

We have already seen the built-in function factorial in MATLAB to calculate
factorials, and we have seen how to implement the iterative definition using
a running product. Now we will instead write a recursive function called fact. The
function will receive an integer n, which we will for simplicity assume is a positive
integer, and will calculate n! using the recursive definition given previously.

fact.m

function facn = fact(n)
% fact recursively finds n!
% Format: fact(n)

if n==
facn = 1;
else
facn = n * fact(n-1);
end
end

The function calculates one value, using an if-else statement to choose
between the base and general cases. If the value passed to the function is 1, the
function returns 1 as 1! is equal to 1. Otherwise, the general case applies.
According to the definition, the factorial of n, which is what this function is
calculating, is defined as n multiplied by the factorial of (n—1). So, the
function assigns n * fact(n-1) to the output argument.

m CHAPTER 10: Advanced Functions

How does this work? Exactly the way the example was sketched previously
for 3!. Let's trace what would happen if the integer 3 is passed to the
function:

fact(3) tries to assign 3 * fact(2)
fact(2) tries to assign 2 * fact(1l)
fact(1l) assigns 1

fact(2) assigns 2
fact(3) assigns 6

When the function is first called, 3 is not equal to 1, so the statement
facn = n * fact(n-1);

is executed. This will attempt to assign the value of 3 * fact(2) to facn, but this
expression cannot be evaluated yet and therefore a value cannot be assigned
yet because first the value of fact(2) must be found.

Thus, the assignment statement has been interrupted by a recursive call to
the fact function. The call to the function fact(2) results in an attempt to assign
2 * fact(1), but, again, this expression cannot yet be evaluated. Next, the call to
the function fact(1) results in a complete execution of an assignment state-
ment as it assigns just 1. Once the base case has been reached, the assignment
statements that were interrupted can be evaluated, in the reverse order.

Calling this function yields the same result as the built-in factorial function, as
follows:

>> fact(h)
ans =
120

>> factorial(5)
ans =
120

The recursive factorial function is a very common example of a recursive
function. It is somewhat of a lame example, however, as recursion is not
necessary to find a factorial. A for loop can be used just as well in program-
ming (or, of course, the built-in function in MATLAB).

Another, better, example is of a recursive function that does not return
anything, but simply prints. The following function prtwords receives a sen-
tence, and prints the words in the sentence in reverse order. The algorithm for
the prtwords function follows:

receive a sentence as an input argument
use strtok to break the sentence into the first word and the rest of the
sentence

10.5 Recursive Functions

if the rest of the sentence is not empty (in other words if there is more
to it), recursively call the prtwords function and pass to it the rest of the
sentence

print the word.

The function definition follows:

prtwords.m

function prtwords(sent)

% prtwords recusively prints the words in a string
% in reverse order

% Format: prtwords(string)

[word, rest] = strtok(sent);

if ~isempty(rest)
prtwords(rest);

end

disp(word)

end

Here is an example of calling the function, passing the sentence “what does
this do”:

>> prtwords('what does this do')
do

this

does

what

An outline of what happens when the function is called follows:

The function receives 'what does this do'
It breaks it into word = 'what', rest = 'does this do'
Since "rest" is not empty, calls prtwords, passing "rest"

The function receives 'does this do'
It breaks it into word = 'does', rest = 'this do'
Since "rest" is not empty, calls prtwords, passing "rest"

The function receives 'this do'

It breaks it into word = 'this', rest = 'do’
Since "rest" isnot empty, calls prtwords, passing "rest"
The function receives 'do'
It breaks it into word = 'do', rest = "'
"rest" is empty so no recursive call
Print 'do'
Print 'this'

Print 'does'
Print 'what'

m CHAPTER 10: Advanced Functions

In this example, the base case is when the rest of the string is empty, in other
words the end of the original sentence has been reached. Every time the
function is called the execution of the function is interrupted by a recursive call
to the function until the base case is reached. When the base case is reached,
the entire function can be executed, including printing the word (in the base
case, the word ‘do’).

Once that execution of the function is completed, the program returns to the
previous version of the function in which the word was ‘this,” and finishes
the execution by printing the word ‘this.” This continues; the versions of the
function are finished in the reverse order, so the program ends up printing
the words from the sentence in the reverse order.

PRACTICE 10.4

For the following function

recurfn.m
function outvar = recurfn(num)
% Format: recurfn(number)
if num < 0
outvar = 2;
else
outvar = 4 + recurfn(num-1);
end
end

what would be returned by the call to the function recurfn(3.5)? Think about it, and then type
in the function and test it.

m Explore Other Interesting Features

= Other function functions and ordinary differential equation (ODE)
solvers can be found using help funfun.

m The function function bsxfun. Look at the example in the
documentation page of subtracting the column mean from every
element in each column of a matrix.

m The ODE solvers include ode45 (which is used most often), ode23, and
several others. Error tolerances can be set with the odeset function.
Investigate the use of the functions narginchk and nargoutchk.

The function nargin can be used not just when using varargin, but also
for error-checking for the correct number of input arguments into
a function. Explore examples of this. |

H Summary

Common Pitfalls

Trying to pass just the name of a function to a function function;
instead, the function handle must be passed.

Thinking that nargin is the number of elements in varargin (it may be,
but not necessarily; nargin is the total number of input arguments).
Forgetting the base case for a recursive function.

Programming Style Guidelines

Use anonymous functions whenever the function body consists of just
a simple expression.

Store related anonymous functions together in one MAT-file

If some inputs and/or outputs will always be passed to/from a function,
use standard input arguments/output arguments for them. Use varargin
and varargout only when it is not known ahead of time whether other
input/output arguments will be needed.

Use iteration or vectorized code instead of recursion when possible. l

MATLAB Reserved Words

end (for functions)

MATLAB Functions and Commands

func2str varargin
str2func varargout
fplot nargin
feval nargout
fzero

MATLAB Operators

function handle @

The velocity of sound in air is 49.02 v/T feet per second where T'is the air
temperature in degrees Rankine. Write an anonymous function that will calculate
this. One argument, the air temperature in degrees R, will be passed to the function
and it will return the velocity of sound.

m CHAPTER 10: Advanced Functions

The hyperbolic sine for an argument X is defined as:
hyperbolicsine(x) = (e* - e™*)/ 2

Write an anonymous function to implement this. Compare yours with the built-in
function sinh.

Create a set of anonymous functions to do length conversions and store them in
a file named lenconv.mat. Call each a descriptive name, such as cmtoinch to
convert from centimeters to inches.

In the Face Centered Cubic crystal structure of some metals, the cube edge length
L is related to the atomic radius R by the equation L = 2R+/2. Write an anonymous
function that will calculate L given R.

Write an anonymous function to convert from fluid ounces to milliliters. The
conversion is one fluid ounce is equivalent to 29.57 milliliters.

Write an anonymous function to implement the following quadratic: 3x?-2x+5.
Then, use fplot to plot the function in the range from —6 to 6.

Write a function that will receive data in the form of x and y vectors, and a handle
to a plot function and will produce the plot. For example, a call to the function
would look like wsfn(x,y,@bar).

Write a function plot2fnhand that will receive two function handles as input
arguments, and will display in two Figure Windows plots of these functions, with
the function names in the titles. The function will create an x vector that ranges
from 1 to n (where n is a random integer in the inclusive range from 4 to 10). For
example, if the function is called as follows

>> plot2fnhand(@sqrt, @exp)

and the random integer is b, the first Figure Window would display the sqrt
function of x = 1:5 and the second Figure Window would display exp(x) for x = 1:5.
Use feval as an alternative way to accomplish the following function calls:

abs(-4)
size(zeros(4))

Use feval twice for this one!
There is a built-in function function called cellfun that evaluates a function for
every element of a cell array. Create a cell array, then call the cellfun function,
passing the handle of the length function and the cell array to determine the
length of every element in the cell array.
Assume that the vector of structures “Parts” has been created and initialized as follows:
Parts
partNo radii
1 2 3 4

1] 123 |2.05]|2.1|2.07|2.11

2| 456 | 3.5 |3.6|345| 3.8

Given this function:
partsfn.m

function out = flle2fn(fhan,vec)
out = fhan(vec);
end

What would be displayed by the following?

for i = 1:length(Parts)
disp(partsfn(@min, Parts(i).radii))
disp(partsfn(@max, Parts(i).radii))
end

Write a function that will print a random integer. If no arguments are passed to
the function, it will print an integer in the inclusive range from 1 to 100. If one
argument is passed, it is the max and the integer will be in the inclusive range from
1 to max. If two arguments are passed, they represent the min and max, and it will
print an integer in the inclusive range from min to max.

Write a function numbers that will create a matrix in which every element stores
the same number n. Either two or three arguments will be passed to the function.
The first argument will always be the number n. If there are two arguments, the
second will be the size of the resulting square (n x n) matrix. If there are three
arguments, the second and third will be the number of rows and columns of the
resulting matrix.

The overall electrical resistance of n resistors in parallel is given as:

Re— (Lolyly 1)
"= \B "R, R TR,

Write a function Req that will receive a variable number of resistance values and
will return the equivalent electrical resistance of the resistor network.

The velocity of sound in air is 49.02 /T feet per second where Tis the air
temperature in degrees Rankine. Write a function to implement this. If just one
argument is passed to the function, it is assumed to be the air temperature in
degrees Rankine. If, however, two arguments are passed, the two arguments would
be first an air temperature and then a character 'f' for Fahrenheit or ‘c’ for Celsius
(so this would then have to be converted to Rankine). Note that degrees R =
degrees F + 459.67. Degrees F = 9/6 degrees C + 32.

A script ftocmenu uses the menu function to ask the user to choose between
output to the screen and to a file. The output is a list of temperature conversions,
converting from Fahrenheit to Celsius for values of F ranging from 32 to 62 in steps
of 10. If the user chooses File, the script opens a file for writing, calls a function
tempcon that writes the results to a file (passing the file identifier), and closes the
file. Otherwise, it calls the function tempcon, passing no arguments, which writes
to the screen. In either case, the function tempcon is called by the script. If the file

m CHAPTER 10: Advanced Functions

identifier is passed to this function it writes to the file; otherwise, if no arguments
are passed it writes to the screen. The function tempcon calls a subfunction that
converts one temperature in degrees F to C using the formula: C = (F-32) * 5/9.
Here is an example of executing the script; in this case, the user chooses the
Screen button:

>> ftocmenu
32F is 0.0C
42F is 5.6C
52F is 11.1C
62F is 16.7C

ftocmenu.m

choice = menu('Choose output mode','Screen','File');
if choice == 2
fid = fopen('yourfilename.dat','w');
tempcon(fid)
fclose(fid);
else
tempcon

end

Write the function tempcon and its subfunction.

Write a function that will receive the radius rof a sphere. It will calculate and return
the volume of the sphere (4/3 = 1°). If the function call expects two output
arguments, the function will also return the surface area of the sphere (4 =).

A basic unit of data storage is the byte (B). One B is equivalent to eight bits. A
nibble is equivalent to four bits. Write a function that will receive the number of
bytes and will return the number of bits. If two output arguments are expected, it
will also return the number of nibbles.

In quantum mechanics, Planck's constant, written as h, is defined as h = 6.626 *
10~%* joule-seconds. The Dirac constant hbar is given in terms of Planck’s

h . .)
constant: hbar = o Write a function planck that will return Planck’s constant. If

two output arguments are expected, it will also return the Dirac constant.

Most lap swimming pools have lanes that are either 25 yards long or 25 meters
long; there’s not much of a difference. A function “convyards” is to be written to
help swimmers calculate how far they swam. The function receives as input the
number of yards. It calculates and returns the equivalent number of meters, and, if
(and only if) two output arguments are expected, it also returns the equivalent
number of miles. The relevant conversion factors are:

1 meter = 1.0936133 yards
1 mile = 1760 yards

Write a function unwind that will receive a matrix as an input argument. It will
return a row vector created columnwise from the elements in the matrix. If the
number of expected output arguments is two, it will also return this as a column
vector.

The built-in function date returns a string containing the day, month, and year.
Write a function (using the date function) that will always return the current day. If
the function call expects two output arguments, it will also return the month. If the
function call expects three output arguments, it will also return the year.

Write a function that will receive a variable number of input arguments: the length
and width of a rectangle, and possibly also the height of a box that has this
rectangle as its base. The function should return the rectangle area if just the
length and width are passed, or also the volume if the height is also passed.
Write a function to calculate the volume of a cone. The volume V is V = AH where
A is the area of the circular base (A = mr? where 1 is the radius) and H is the height.
Use a nested function to calculate A.

The two real roots of a quadratic equation ax? + bx + ¢ = 0 (where a is nonzero)
are given by

-b++D
2%a

where the discriminant D = b? — 4*a*c. Write a function to calculate and retumn the
roots of a quadratic equation. Pass the values of a, b, and ¢ to the function. Use
a nested function to calculate the discriminant.

A recursive definition of 8" where a is an integer and n is a non-negative integer
follows:

a' =1 if n==
=a*a" ifn>0

Write a recursive function called mypower, which receives a and n and retums the
value of " by implementing the previous definition. Note that the program should
not use * operator anywhere; this is to be done recursively instead! Test the
function.

What does this function do?

function outvar = mystery(x,y)
ify==
outvar = x;

else
outvar = x + mystery(x,y-1);
end

Give one word to describe what this function does with its two arguments.

The Fibonacci numbers is a sequence of numbers 0, 1, 1, 2, 3, b, 8, 13, 21, 34...
The sequence starts with 0 and 1. All other Fibonacci numbers are obtained by

m CHAPTER 10: Advanced Functions

adding the previous two Fibonacci numbers. The higher up in the sequence that
you go, the closer the fraction of one Fibonacci number divided by the previous
is to the golden ratio. The Fibonacci numbers can be seen in an astonishing
number of examples in nature, for example, the arrangement of petals on

a sunflower.

The Fibonacci numbers is a sequence of numbers Fj:

01 1 2 3 5 8 13 21 34

where Fgis 0, F1is 1, Fpis 1, F3is 2, and so on. A recursive definition is:

Fo = 0
Flo= 1
Fo = Fnoz 4 Foop ifn>1

Write a recursive function to implement this definition. The function will
receive one integer argument n, and it will return one integer value that is the
n'® Fibonacci number. Note that in this definition there is one general case
but two base cases. Then, test the function by printing the first 20 Fibonacci
numbers.

Use fgets to read strings from a file and recursively print them backwards.
Combinatorial coefficients can be defined recursively as follows:

ifm==0orm==

Cln,m) =1
=C(n-1,m-1) +C(n-1, m) otherwise

Write a recursive function to implement this definition.

CHAPTER 11

Advanced Plotting Techniques

histogram animation object-oriented
stem plot plot properties programming
pie chart object parent/children
area plot object handle core objects
bin graphics primitives text box

In Chapter 3, we introduced the use of the function plot in the MATLAB®
software to get simple, two-dimensional (2D) plots of x and y points repre-
sented by two vectors, x and y. We have also seen some functions that allow
customization of these plots. In this chapter we will explore other types of
plots, ways of customizing plots, and some applications that combine plotting
with functions and file input. Additionally, animation, three-dimensional
(3D) plots, and graphics properties will be introduced.

In the latest versions of MATLAB, the PLOTS tab can be used to very easily create
advanced plots. The method is to create the variables in which the data are stored
and then select the PLOTS tab. The plot functions that can be used are then
highlighted; simply clicking the mouse on one will plot the data using that
function and open up the Figure Window with that plot. For example, by creating
x and y variables, and highlighting them in the Workspace Window, the 2D plot
types will become visible. If, instead, %, y, and z variables are highlighted, the 3D
plot types will become available. These are extremely fast methods for users to
create plots in MATLAB. However, as this text focuses on programming concepts,
the programmatic methodologies will be explained in this chapter.

11.1 PLOT FUNCTIONS

So far, we have used plot to create 2D plots and bar to create bar charts. We have
seen how to clear the Figure Window using clf, and how to create and number

MATLAB®. http://dx.doi.org/10.1016/B978-0-12-405876-7.00011-0
Copyright © 2013 Elsevier Inc. All rights reserved.

11.1

11.2

11.3
11.4

116

11.6

11.7

CONTENTS

Plot
Functions 347

Animation

3D Plots ...355

Customizing
Plots......... 359

Handle
Graphics

and Plot
Properties 360

Plot
Applications
.................. 372

Saving and
Printing
Plots.......... 377

347

http://dx.doi.org/10.1016/B978-0-12-405876-7.00011-0

m CHAPTER 11: Advanced Plotting Techniques

Figure Windows using figure. Labeling plots has been accomplished using xla-
bel, ylabel, title, and legend, and we have also seen how to customize the strings
passed to these functions using sprintf. The axis function changes the axes from
the defaults that would be taken from the data in the x and y vectors to the values
specified. Finally, the grid and hold toggle functions print grids or not, or
lock the current graph in the Figure Window so that the next plot will be
superimposed.

Another function that is very useful with all types of plots is subplot, which
creates a matrix of plots in the current Figure Window, as we have seen in
Chapter 5. The sprintf function is used frequently to create customized axis
labels and titles within the matrix of plots.

The plot function uses linear scales for both the x and y axes. There are several
functions that instead use logarithmic scales for one or both axes: the function
loglog uses logarithmic scales for both the x and y axes, the function semilogy
uses a linear scale for the x-axis and a logarithmic scale for the y-axis, and the
function semilogx uses a logarithmic scale for the x-axis and a linear scale for the
y-axis. The following example uses subplot to show the difference, for example,
between using the plot and semilogy functions, as seen in Figure 11.1.

>> subplot(1,2,1)

>> plot(logspace(1,10))

>> title('plot’)

>> subplot(1,2,2)

>> semilogy(logspace(1,10))
>> title('semilogy')

QUICK QUESTION!

What are some different options for plotting more than one graph? superimposed (using hold on), in a matrix in one Figure-
Answer: There are several methods, depending on Window (using subplot), or in multiple Figure Windows
whether you want them in one Figure Window (using figure(n)).

Besides plot and bar, there are many other plot types, such as histograms, stem
plots, pie charts, and area plots, as well as other functions that customize graphs.

Described in this section are some of the other plotting functions. The functions
bar, barh, area, and stem essentially display the same data as the plot function,
but in different forms. The bar function draws a bar chart (as we have seen
before), barh draws a horizontal bar chart, area draws the plot as a continuous
curve and fills in under the curve that is created, and stem draws a stem plot.

11.1 Plot Functions a

x102 plot 1010 semilogy

109} 3
108} 3
107 | 3
106 F E
109 ¢ E
104}]

103 F E

N Wb OO N © © O

N

102 k p

. ; . .
% 20 40 60 109 20 40 60

FIGURE 11.1 plot versus semilogy

For example, the following script creates a Figure Window that uses a 2 x 2

subplot to demonstrate four plot types using the same data points (see

Figure 11.2). Notice how the axes are set by default. Note

The third argument in

subplottypes.m
the call to the subplot

% Subplot to show plot types function is a single
year = 2013:2017; index into the matrix
pop =[0.9 1.4 1.7 1.3 1.8]; created in the

subplot(2,2,1)
plot(year,pop)
title('plot")
xlabel('Year")
ylabel('Population (mil)"')
subplot(2,2,2)
bar(year,pop)

title('bar")
xlabel('Year")
ylabel('Population (mil)")
subplot(2,2,3)
area(year,pop)
title('area")
xlabel('Year")
ylabel('Population (mil)")
subplot(2,2,4)
stem(year,pop)
title('stem")
xlabel('Year")
ylabel('Population (mil)")

Figure Window; the
numbering is rowwise
(in contrast to the
normal columnwise
unwinding that
MATLAB uses for
matrices).

m CHAPTER 11: Advanced Plotting Techniques

QUICK QUESTION!

Could we produce this subplot using a loop? string ‘(x,y)’ and passed to the eval function to evaluate the

function.
Answer

Yes, we can store the names of the plots in a cell array. These
names are put in the titles, and also concatenated with the

loopsubplot.m

% Demonstrates evaluating plot type names in order to
% use the plot functions and put the names in titles

year = 2013:2017;
pop = [0.9 1.4 1.7 1.3 1.87;
titles = {'plot', 'bar', 'area', 'stem'};
for i = 1:4
subplot(2,2,1)
eval ([titles{i} '(year,pop)'l)
title(titles{il)
xlabel('Year")
ylabel('Population (mil)")
end

plot bar
18 2 T T T T T
__1er ~
E g
5 5
g ot 3
Q. Q
0 g
o 1k
0.8 L :
2012 2014 2016 2018 2013 2014 20152016 2017
Year Year
area stem
2 2 T T
° Q
=15 =15f g
£ E
c
k) 5
g 5 17 1
g g
& o5 o 05 A
0 0
2013 2014 2015 2016 2017 2012 2014 2016 2017
Year Year

FIGURE 11.2 Subplot to display plot, bar, area, and stem plots

11.1 Plot Functions

Group
FIGURE 11.3 Data from a matrix in a bar chart

For a matrix, the bar and barh functions will group together the values in each
row. For example:

>> groupages = [8 19 43 25; 35 44 30 45]

groupages =
8 19 43 25
35 44 30 45

>> bar(groupages)
>> xlabel('Group")
>> ylabel('Ages')

produces the plot shown in Figure 11.3.

Note that MATLAB groups together the values in the first row and then in the
second row. It cycles through colors to distinguish the bars. The ‘stacked’
option will stack rather than group the values, so the “y” value represented by
the top of the bar is the sum of the values from that row (shown in

Figure 11.4).

>> bar(groupages, 'stacked')
>> xlabel('Group")
>> ylabel('Ages"')

m CHAPTER 11: Advanced Plotting Techniques

Ages

Group
FIGURE 11.4 Stacked bar chart of matrix data

PRACTICE 11.1

Create a file that has two lines with n numbers in each. Use load to read this into a matrix. Then,
use subplot to show the barh and stacked bar charts side by side. Put labels ‘Groups’ for the two
groups and ‘Values' for the data values on the axes (note the difference between the x and y labels
for these two plot types).

A histogram is a particular type of bar chart that shows the frequency of
occurrence of values within a vector. Histograms use what are called bins to
collect values that are in given ranges. MATLAB has a function to create
a histogram, hist. Calling the function with the form hist(vec) by default takes
the values in the vector vec and puts them into 10 bins (or hist(vec,n) will put
them into n bins) and plots this, as shown in Figure 11.5.

>> quizzes = [10 8 5 10 10 6 9 7 8 10 1 8];
>> hist(quizzes)

>> xlabel('Grade')

>> ylabel('#')

>> title('Quiz Grades"')

In this example, the numbers range from 1 to 10 in the vector, and there are 10
bins in the range from 1 to 10. The heights of the bins represent the number of
values that fall within that particular bin. The hist function can also be used to
return a vector showing how many of the values from the original vector fall
into each of the bins:

>> ¢ = hist(quizzes)

1 0 0 0 1 1 1 3 1 4

11.1 Plot Functions a

Quiz Grades

FIGURE 11.5 Histogram of data

The bins in a histogram are not necessarily all of the same width. Histograms
are used for statistical analyses on data; more statistics will be covered in
Chapter 12.

MATLAB has a function, pie, that will create a pie chart. Calling the function
with the form pie(vec) draws a pie chart using the percentage of each element
of vec of the whole (the sum). It shows these starting from the top of the circle
and going around counterclockwise. For example, the first value in the vector
[1114831],11 is 30% of the sum, 14 is 38% of the sum, and so forth, as
shown in Figure 11.6.

>> pie([11 14 8 3 1)

3%

22%

38% B
FIGURE 11.6 Pie chart showing percentages FIGURE 11.7 Pie chart with labels from a cell array

m CHAPTER 11: Advanced Plotting Techniques

A cell array of labels can also be passed to the pie function; these labels will
appear instead of the percentages (shown in Figure 11.7).

>> pie([11 14 8 3 1], {'A",'B','C",'D", "F'})

PRACTICE 11.2

A chemistry professor teaches three classes. These are the course numbers and enrollments:

CH 101 111
CH 105 52
CH 555 12

Use subplot to show this information using pie charts: the pie chart on the right should show
the percentage of students in each course, and on the left the course numbers. Put appropriate
titles on them.

11.2 ANIMATION

In this section we will examine a couple of ways to animate a plot. These are
visuals, so the results can’t really be shown here; it is necessary to type these
into MATLAB to see the results.

We'll start by animating a plot of sin(x) with the vectors:

>> x = -2%pi : 1/100 : 2*pi;
>> y = sin(x);

This results in enough points that we'll be able to see the result using the built-
in comet function, which shows the plot by first showing the point
(x(1),y(1)), and then moving on to the point (x(2),y(2)), and so on, leaving
a trail (like a comet!) of all of the previous points.

>> comet(x,y)
The end result looks similar to the result of plot(x,y).

Another way of animating is to use the built-in function movie, which displays
recorded movie frames. The frames are captured in a loop using the built-in
function getframe, and are stored in a matrix. For example, the following
script again animates the sin function. The axis function is used so that
MATLAB will use the same set of axes for all frames, and using the min and
max functions on the data vectors x and y will allow us to see all points. It
displays the “movie” once in the for loop, and then again when the movie
function is called.

sinmovie.m

% Shows a movie of the sin function
clear

X = -2*pi: 1/5 : 2*pi;
y = sin(x);
n lTength(x);

for i = 1:n
plot(x(i),y(i),"'r*")
axis([min(x)-1 max(x)+1 min(y)-1 max(y)+11)
M(i) = getframe;

end

movie(M)

11.3 3D PLOTS

MATLAB has functions that will display 3D plots. Many of these functions
have the same name as the corresponding 2D plot function with a ‘3" at the
end. For example, the 3D line plot function is called plot3. Other functions

include bar3, bar3h, pie3, comet3, and stem3.

Vectors representing x, y, and z coordinates are passed to the plot3 and stem3
functions. These functions show the points in 3D space. Clicking on the rotate
3D icon and then in the plot allows the user to rotate to see the plot from
different angles. Also, using the grid function makes it easier to visualize, as
shown in Figure 11.8. The function zlabel is used to label the z axis.

3D Plot

10, ‘ : i

! " ' :

H 1 N

8l ! - : :

v 64 i
“ * ' '

B ' RN

1 T

FIGURE 11.8 Three-dimensional plot with a grid

11.3 3D Plots a

m CHAPTER 11: Advanced Plotting Techniques

>> x = 1:5;

>> y=1[0 -2 4 11 3];
>> z = 2:2:10;

>> plot3(x,y,z, "k*")
>> grid

>> xlabel('x")
>> ylabel('y")
>> zlabel('z")
>> title('3D Plot")

For the bar3 and bar3h functions, y and z vectors are passed and the function
shows 3D bars as shown, for example, for bar3 in Figure 11.9.

>> y = 1:6;

>> z=[3311 59 22 30];
>> bar3(y,z)

>> xlabel('x")

>> ylabel('y")

>> zlabel('z")

>> title('3D Bar')

A matrix can also be passed—for example, a 5 x 5 spiral matrix (which
“spirals” the integers 1 to 25 or more generally from 1 to n? for spiral(n)) as
shown in Figure 11.10.

3D Spiral

X

FIGURE 11.10 Three-dimensional (3D) plot of a spiral
FIGURE 11.9 Three-dimensional (3D) bar chart matrix

11.3 3D Plots

>> mat = spiral(5) 10% 259
mat =

21 22 23 24 25

20 7 8 9 10

19 6 1 2 11

18 5 4 3 12

17 16 15 14 13

>> bar3(mat)
>> title('3D Spiral')
>> xlabel('x") 50%

>> ylabel('y') FIGURE 11.11 Three-dimensional pie chart
>> zlabel('z")

Similarly, the pie3 function shows data from a vector as a 3D
pie, as shown in Figure 11.11.

>> pie3([3 10 5 2])

Displaying the result of an animated plot in three dimensions is interesting.
For example, try the following using the comet3 function:

>> t = 0:0.001:12%pi;

>> comet3(cos(t), sin(t), t)
Other interesting 3D plot types include mesh and surf. The mesh function
draws a wireframe mesh of 3D points, whereas the surf function creates
a surface plot by using color to display the parametric surfaces defined by the
points. MATLAB has several functions that will create the matrices used for the
(xy,z) coordinates for specified shapes (e.g., sphere and cylinder).

For example, passing an integer n to the sphere function creates n+1 x n+1 x, y,
and z matrices, which can then be passed to the mesh function (Figure 11.12) or
the surf function (Figure 11.13).

>> [x,y,z] = sphere(15);
>> size(x)
ans =
16 16
>> mesh(x,y,z)
>> title('Mesh of sphere')

Additionally, the colorbar function displays a colorbar to the right of the plot,
showing the range of colors.

Note that more options for colors will be described in Chapter 13.

>> [x,y,z] = sphere(15);
>> surf(x,y,z)

>> title('Surf of sphere')
>> colorbar

m CHAPTER 11: Advanced Plotting Techniques

Mesh of sphere

FIGURE 11.12 Mesh plot of sphere

The meshgrid function can be used to create (x,y) points for which z = f(x,y); then
the x,y, and z matrices can be passed to mesh or surf. For example, the following
creates a surface plot of the function cos(x) + sin(y), as seen in Figure 11.14.

>> [x, y] = meshgrid(-2*pi: 0.1: 2*pi);
>> z = cos(x) + sin(y);

>> surf(x,y,z)

>> title('cos(x) + sin(y)")

>> xlabel('x")

>> ylabel('y")

>> zlabel('z")

Surf of sphere

PPTIONS

'
'
'
1
IS
Oy
|

FIGURE 11.13 Surf plot of sphere

cos(x)+sin(y)

FIGURE 11.14 Use of meshgrid for f(x,y) points

11.4 CUSTOMIZING PLOTS

11.4 Customizing Plots a

There are many ways to customize figures in the Figure Window. Clicking on the
Plot Tools icon will bring up the Property Editor and Plot Browser, with many
options for modifying the current plot. Additionally, there are plot properties that
can be modified from the defaults in the plot functions. Using the help facility with
the function name will show all of the options for that particular plot function.

For example, the bar and barh functions by default put a “width” of 0.8 between
bars. When called as bar(x,y), the width of 0.8 is used. If, instead, a third argument
is passed, it is the width—for example, barh(x,y,width). The following script uses
subplot to show variations on the width. A width of 0.6 results in more space
between the bars. A width of 1 makes the bars touch each other, and with a width
greater than 1, the bars actually overlap. The results are shown in Figure 11.15.

barwidths.m

% Subplot to show varying bar widths

year = 2013:2017;
pop = [0.9 1.4 1.7 1.3 1.81;

for i = 1:4
subplot(1l,4,1)
% width will be 0.6, 0.8, 1, 1.2
barh(year,pop,0.4+i*.2)
title(sprintf('Width = %.1f"',0.4+1*.2))
xlabel ('Population (mil)")
ylabel('Year")

end

2016

2014

Width = 0.6

2017

2016

2015

2014

2013

m CHAPTER 11: Advanced Plotting Techniques

Width = 0.8

2017

2016

2015

2014

2013

Width = 1.0

Year

Width = 1.2

2017

2016

2015

2014

2013

0o 1 2 o 1 2 0o 1 2 0o 1 2
Population (mil) Population (mil) Population (mil) Population (mil)

FIGURE 11.15 Subplot demonstrates varying widths in a bar chart

PRACTICE 11.3

Use help area to find out how to change the base level on an area chart (from the default of 0).

As another example of customizing plots, pieces of a pie chart can be “exploded”
from the rest. In this case, two vectors are passed to the pie function: first the data
vector, then a logical vector; the elements for which the logical vector is true will
be exploded from (separated from) the pie chart. A third argument, a cell array of
labels, can also be passed. The result is seen in Figure 11.16.

>> gradenums = [11 14 8 3 1];
>> letgrades = {'A','B','C','D","F'};
>> which = gradenums == max(gradenums)
which =

0 1 0 0 0

>> pie(gradenums,which, letgrades)
>> title(strcat('Largest Fraction of Grades:
letgrades(which)))

'

11.5 HANDLE GRAPHICS AND PLOT PROPERTIES

MATLAB uses what it calls Handle Graphics® in all of its figures. All figures
consist of objects, each of which is assigned an object handle. The object handle
is a unique real number that is used to refer to the object.

Objects include graphics primitives such as lines and
text, as well as the axes used to orient the objects. The
objects are organized hierarchically, and there are
properties associated with each object. This is the basis
of object-oriented programming: objects are organized
hierarchically (e.g., a parent comes before its children in
the hierarchy) and this hierarchy has ramifications in
terms of the properties; generally children inherit
properties from the parents.

The hierarchy in MATLAB, as seen in the Help,
“Organization of Graphics Objects,” can be summa-
rized as follows:

Figure Parent
|
Axes |
!
Core Objects Plot Objects Children

In other words, the Figure Window includes Axes,
which are used to orient Core objects (primitives such
as line, rectangle, text, and patch) and Plot objects
(which are used to produce the different plot types
such as bar charts and area plots).

11.5.1 Plot Objects and Properties

11.5 Handle Graphics and Plot Properties

Largest Fraction of Grades
F

D

B
FIGURE 11.16 Exploding pie chart

The various plot functions return a handle for the plot object, which can then
be stored in a variable. In the following, the plot function plots a sin function
in a Figure Window (as shown in Figure 11.17) and returns a real number,
which is the object handle. (Don't try to make sense of the actual number
used for the handle!) This handle will remain valid as long as the object

exists.

>> x = -2*pi: 1/5 :
>> y = sin(x);
>> hl = plot(x,y)
hl =

159.0142
>> xlabel('x")
>> ylabel('sin(x)")

2*%pi;

Note

The Figure Window
should not be closed, as
that would make the
object handle invalid as
the object wouldn't
exist anymore!

m CHAPTER 11:

Advanced Plotting Techniques

Object properties can be displayed using the get function and passing the
handle of the plot object, as shown in the following. This shows properties
such as the Color, LineStyle, LineWidth, and so on (and many you will not

understand — don't worry about it!).

>> get(hl)
DisplayName:
Annotation:
Color:
LineStyle:
LineWidth:
Marker:
MarkerSize:
MarkertEdgeColor:
MarkerFaceColor:
XData:
YData:
/Data:
BeingDeleted:
ButtonDownFcn:
Children:
Clipping:
Createfcn:
Deletefcn:
BusyAction:
HandleVisibility:
HitTest:
Interruptible:
Selected:
SelectionHighlight:
Tag:
Type:
UIContextMenu:
UserData:
Visible:
Parent:
XDataMode:
XDataSource:
YDataSource:
Z/DataSource:

By assigning the result of get to a variable, a structure is created in which the
property names are the names of the fields. For example:

[1x1 hg.Annotation]
[0 0 1]

0.5000

'none’

6

'auto'

'none’

[1x63 double]
[1x63 double]
[1x0 double]
"off!

L]

[0x1 double]
Yon'

[1]

[]

"queue’

“on'

'on
Yon'
'off!'
“on'

'Tine'
[]

[1]

“on'
158.0131
'manual’

>> plotprop = get(hl);

>> plotprop.LineWidth

ans =
0.5000

11.5 Handle Graphics and Plot Properties m

0.8+

0.6

04r

0.2t

sin(x)
o

FIGURE 11.17 Plot of sin function with default properties

A particular property can also be returned directly with get. For example, to
determine the line width:

>> get(hl, '"LineWidth")
ans =
0.5000

The objects, their properties, what the properties mean, and valid values can be
found in the MATLAB Help Documentation. Search for Lineseries Properties to
see a list of the property names and a brief explanation of each.

For example, the Color property is a vector that stores the color of the line as
three separate values for the Red, Green, and Blue intensities, in that order.
Each value is in the range from 0 (which means none of that color) to 1. In the
example above, the Color was [0 0 1], which means no red, no green, but full
blue; in other words the line drawn for the sin function was blue. More
examples of possible values for the Color vector include:

[1 0 0] is red

[0 1 0] is green

[0 0 1] is blue

[1 1 1] is white

[0 0 0] is black

[0.5 0.5 0.5] is a shade of gray

All of the properties listed by get can be changed, using the set function. The
set function is called in the format:

set(objhandle, 'PropertyName', property value)

m CHAPTER 11: Advanced Plotting Techniques

For example, to change the line width from the default of 0.5 to 2.5:
>> set(hl, 'LineWidth',2.5)

As long as the Figure Window is still open and this object handle is still valid,
the width of the line will be increased.

The properties can also be set in the original function call. For example, the
following will set the line width to 2.5 to begin with, as seen in Figure 11.18.

>> hl = plot(x,y, 'LineWidth', 2.5);
>> xlabel('x")
>> ylabel('sin(x)")

PRACTICE 11.4

Create x and y vectors, and use the plot function to plot the data points represented by these
vectors. Store the handle in a variable and do not close the Figure Window! Use get to inspect
the properties, and then set to change the line width and color. Next, put markers for the points
and change the marker size and edge color.

In addition to handles for objects, the built-in functions gca and gcf return the
handles for the current axes and figure, respectively (the function names stand
for “get current axes” and “get current figure”).

11.5.2 Core Objects

Core Objects in MATLAB are the very basic graphics primitives. A description

can be found under the MATLAB help. Under the Contents tab, click on
Handle Graphics Objects, and then Core
Graphics Objects. The core objects include:

0.8] line
06 i text
rectangle

0.4 1 patch

0.2] image.

or 1 These are all built-in functions; help can
-02 i be used to find out how each function is
-0.4 1 used.
-06 1 A line is a core graphics object, which is
-0.8 1 what is used by the plot function. The
-1 - . following is an example of creating a line

object, setting some properties, and saving
FIGURE 11.18 Plot of sin function with increased line width the handle in a variable hl:

11.5 Handle Graphics and Plot Properties ﬂ

>> x = -2%pi: 1/5 : 2%pi;
>> ¥y = sin(x);
>> hl = Tine(x,y, 'LineWidth', 6, 'Color', [0.5 0.5 0.5])
hl =
159.0405

As seen in Figure 11.19, this draws a reasonably thick gray line for the sin
function. As before, the handle will be valid as long as the Figure Window is
not closed. Some of the properties of this object are:

>> get(hl)
Color = [0.5 0.5 0.5]
LineStyle = -

LineWidth = [6]
Marker = none
MarkerSize = [6]
MarkertdgeColor = auto
MarkerFaceColor = none
XData = [(1 by 63) double array]
YData = [(1 by 63) double array]
/Data []

etc.

As another example, the following uses the line function to draw a circle. First,
a white Figure Window is created. The x and y data points are generated, and
then the line function is used, specifying a dotted red line with a line width of
4. The axis function is used to make the axes square, so the result looks like
a circle, but then removes the axes from the Figure Window (using axis square
and axis off, respectively). The result is shown in Figure 11.20.

0.8
0.6

0.4+

-

0.2

-y
- -~

»
8 il PR

FIGURE 11.19 A line object with modified line width and color ~ FIGURE 11.20 Use of line to draw a circle

m CHAPTER 11: Advanced Plotting Techniques

>>
>>
>>
>>
>>

>>
>>

figure('Color',[1 1 1])

pts = 0:0.1:2%pi;

xcir = cos(pts);

ycir = sin(pts);

line(xcir, ycir, 'LineStyle',':"', ..
"LineWidth',4, '"Color','r")

axis square

axis off

The text graphics function allows text to be printed in a Figure Window,
including special characters that are printed using \specchar, where “spec-
char” is the actual name of the special character. The format of a call to the text
function is

text(x,y, 'text string')

where x and y are the coordinates on the graph of the lower left corner of the
text box in which the text string appears. The special characters include letters
of the Greek alphabet, arrows, and characters frequently used in equations. For
example, Figure 11.21 displays the Greek symbol for pi and a right arrow
within the text box.

>>
>>
>>
>>

X = -4:0.2:4;
Yy = sin(x);
hp = line(x,y,'LineWidth',3);

thand = text(2,0,'Sin(\pi)\rightarrow")

Using get will display properties of the text box, such as the following:

>>

get(thand)

BackgroundColor = none

Color = [0 0 0]

EdgeColor = none

Editing = off

Extent = [1.95862 -0.0670554 0.901149 0.1107871]

FontAngle = normal

FontName = Helvetica

FontSize = [10]

FontUnits = points

FontWeight = normal

HorizontalAlignment = Teft

LineStyle = -

LineWidth = [0.5]

Margin = [2]

Position = [2 0 0]

Rotation = [0]

String = Sin(\pi)\rightarrow

Units = data

Interpreter = tex

VerticalAlignment = middle
etc.

11.5 Handle Graphics and Plot Properties

Although the Position specified was (2,0), the Extent is the actual extent of the
text box, which cannot be seen as the BackgroundColor and EdgeColor are not
specified. These can be changed using set. For example, the following produces
the result seen in Figure 11.22.

>> set(thand, 'BackgroundColor',[0.8 0.8 0.8],...
"EdgeColor',[1 0 07)

When the Units property has the value of “data,” which is the default as shown
before, the Extent of the text box is given by a vector [x y width height],
where x and y are the coordinates of the bottom left corner of the text box
and the width and height use units specified by the x and y axes (in other
words dependent on the actual data).

The gtext function allows you to move your mouse to a particular location in
a Figure Window, indicating where a string should be displayed. As the mouse
is moved into the Figure Window, cross hairs indicate a location; clicking on
the mouse will display the text in a box with the lower left corner at that
location. The gtext function uses the text function in conjunction with ginput,
which allows you to click the mouse at various locations within the
Figure Window and store the x and y coordinates of these points.

Another core graphics object is rectangle, which can have curvature added to it
(!1). Just calling the function rectangle without any arguments brings up
a Figure Window (shown in Figure 11.23), which, at first glance, doesn’t seem
to have anything in it:

>> recthand = rectangle;

0.8}
0.6+
04+

0.2+

Sin(n)—

-1 L
-4 3 -2 4 0 1 2 3 4 FIGURE 11.22 Text box with a modified edge color and

FIGURE 11.21 A line object with a text box background color

m CHAPTER 11: Advanced Plotting Techniques

09+

0.8+

0.7

06

0.5+

0.4

03

0.2r

0.1+

1 1 1 1 1 1 1

%01 o0z 03 04 05 06 07 08 08 1
FIGURE 11.23 A rectangle object

Using the get function will display the properties, some of which are excerpted
here:

>> get(recthand)

Curvature = [0 0]
FaceColor = none
EdgeColor = [0 0 0]
LineStyle = -
LineWidth = [0.5]
Position = [0 0 1 1]
Type = rectangle

The Position of a rectangle is [x y w h|, where x and y are the coordinates of the
lower left point, w is the width, and h is the height. The default rectangle has
a Position of [0 0 1 1]. The default Curvature is [0 0], which means no
curvature. The values range from [0 0] (no curvature) to [1 1] (ellipse). A more
interesting rectangle object is seen in Figure 11.24.

Note that properties can be set when calling the rectangle function, and also
subsequently using the set function, as follows:

>> rh = rectangle('Position', [0.2, 0.2, 0.5, 0.8],...
"Curvature',[0.5, 0.5]);

>> axis([0 1.2 0 1.2])

>> set(rh, 'Linewidth',3, 'LineStyle', ':")

This creates a curved rectangle and uses dotted lines.

The patch function is used to create a patch graphics object, which is made
from 2D polygons. A simple patch in 2D space, a triangle, is defined by

11.5 Handle Graphics and Plot Properties a

specifying the coordinates of three points as
shown in Figure 11.25; in this case, the color
red is specified for the polygon. | . .

>> x = [010.5]; 08¢
>> y=1[001];
>> patch(x,y,'r") 06} :

Il
.
.
m-us®

A more complicated patch object is defined by :
both the vertices and the faces of the polygons 047
that connect these vertices. One way of calling K
this function is patch(fv), where fv is a struc- 0.2¢ Trreessnneee -
ture variable with fields called vertices and faces.
For example, consider a patch object that % 02 04 06 08 1 19
consists of three connected triangles and has gyyRE 11.24 Rectangle object with curvature

five vertices given by the coordinates:

LT

(1) (0, 0)
(2) (2, 0)
(3) (1, 2)
(4) (1, -2)
(5) (3, 1)

The order in which the points are given is important, as the faces describe how
the vertices are linked. To create these vertices in MATLAB and define faces that
connect them, we use a structure variable and then pass it to the patch
function; the result is shown in Figure 11.26.

0o 01 02 03 04 05 06 07 08 09 1 0 0.5 1 1.5 2 2.5 3
FIGURE 11.25 Simple patch FIGURE 11.26 Patch object

CHAPTER 11: Advanced Plotting Techniques

mypatch.vertices = [...
00
20
12
1 -2
311;
mypatch.faces = [
123
235
12 47;
patchhan = patch(mypatch, 'FaceColor', 'r',...
'EdgeColor','k");

The mypatch.vertices field is a matrix in which each row represents (x,y) coor-
dinates of a particular point or vertex. The field mypatch.faces defines the faces;
for example, the first row in the matrix specifies to draw lines from vertex 1 to
vertex 2 to vertex 3 to form the first face. The face color is set to red and the
edge color to black.

To vary the colors of the faces of the polygons, the FaceColor property is set to
‘flat’, which means that every face has a separate color. The mycolors variable
stores three colors in the rows of the matrix by specifying the red, green, and blue
components for each; the first is blue, the second is cyan (a combination of green
and blue), and the third is yellow (a combination of red and green). The property
FaceVertexCData specifies the color data for the vertices, as seen in Figure 11.27.

>> mycolors = [0 0 1; 01 1; 11 0];
>> patchhan = patch(mypatch, 'FacelVertexCData', ...
mycolors, 'FaceColor', 'flat');

0 0.5 1 1.5 2 2.5 3
FIGURE 11.27 Varying patch colors

The bar function creates the bars using 12
the patch function. For example, the
following would create a very simple 10
bar chart in which both of the bars

would be the default color blue. 8

>> nums = [11 5];

>> bh = bar(nums); 6
By storing the handle in a variable, we
can get the properties. The following 4
gets the properties of the bar chart as
a structure variable, and then stores the 2
handle of the Children (which would
be the patches) in a handle variable 0

patchhan. Then, using the set function,

11.5 Handle Graphics and Plot Properties

1 2

the FaceVertexCData property is set to FIGURE 11.28 Varying bar colors

two colors, as seen in Figure 11.28
(note that the FaceColor property is set
to ‘flat’ by default in this case).

>> bhp = get(bh);

>> patchhan = bhp.Children;

>> mycolors = [0 0 1; 01 17];

>> set(patchhan, 'FacelVertexCData',mycolors)

Patches can also be defined in 3D space. For example:

polyhedron.vertices = [...
000

100

010

0.5 0.5 117;

yhedron.faces = [...

lyh
23
2 4
34
3 47;

pobj = patch(polyhedron, ...
'FaceColor',[0.8, 0.8, 0.8],...
"EdgeColor', 'black');

CHAPTER 11: Advanced Plotting Techniques

The Figure Window initially shows only two faces. Using the rotate icon,
the figure can be rotated so the other edges can be seen as shown in
Figure 11.29.

11.6 PLOT APPLICATIONS

In this section, we will show some examples that integrate plots and many of
the other concepts covered to this point in the book. For example, we will have
a function that receives an x vector, a function handle of a function used to
create the y vector, and a cell array of plot types as strings that will generate the
plots, and we will also show examples of reading data from a file and plotting
them.

11.6.1 Plotting From a Function

The following function generates a Figure Window (seen in Figure 11.30)
that shows different types of plots for the same data. The data are passed
as input arguments (as an x vector and the handle of a function to create
the y vector) to the function, as is a cell array with the plot type names.
The function generates the Figure Window using the cell array with the
plot type names. It creates a function handle for each using the str2func
function.

el
0.8
0.6 1
N 08
0.4
06
0.2 04
2
0 T T
T
Y b2 0.4 0.6 08 i
X 4

FIGURE 11.29 Rotated patch object

plotxywithcell.m

function plotxywithcell(x, fnhan, rca)

% plotxywithcell receives an x vector, the handl
% of a function (used to create a y vector), and
% a cell array with plot type names; it creates
% a subplot to show all of these plot types

% Format: plotxywithcell(x,fn handle, cell array

lenrca = length(rca);

y = fnhan(x);

for i = 1l:lenrca
subplot(l,lenrca,i)
funh = str2func(rcafil});
funh(x,y)
title(upper(rcafil}))
xlabel('x")
ylabel(func2str(fnhan))

end

end

e

)

For example, the function could be called as follows:

>> anfn =@ (x) x .~ 3;

>> x = 1:2:9;

>> rca = {'bar', 'area', 'plot'};
>> plotxywithcell(x, anfn, rca)

11.6 Plot Applications

The function is general and works for any number of plot types stored in the

cell array.
BAR AREA
800 800 800
700 + 700 - 700
600 600 600
500 - 500 - 500
© ™
X x
% 400¢ 400} % 400
® ®
300 + 300 - 300
200 200 + 200 -
100 - 100 | 100 ¢
0 0
13 579 2 4 6 8
X X

FIGURE 11.30 Subplot showing different file types with their names as titles

PLOT

10

CHAPTER 11: Advanced Plotting Techniques

11.6.2 Plotting File Data
[t is often necessary to read data from a file and plot them. Normally, this entails
knowing the format of the file. For example, let us assume that a company has two
divisions, A and B. Assume that the file “ab13.dat” contains four lines, with the
sales figures (in millions) for the two divisions for each quarter of the year 2013.
For example, the file might look like this (and the format will be exactly like this):
A5.2B6.4
A3.2B5.5

A4.4B4.3
A4 .5B2.2

The following script reads in the data and plots the data as bar charts in one
Figure Window. The script prints an error message if the file open is not successful
orif the file close was not successful. The axis command is used to force the x axis
to range from 0 to 3 and the y-axis from 0 to 8, which will result in the axes shown
here. The numbers 1 and 2 would show on the x axis rather than the division
labels A and B by default. The set function changes the XTickLabel property to use
the strings in the cell array as labels on the tick marks on the x axis; gca is used to
return the handle to the axes in the current figure.

plotdivab.m

% Reads sales figures for 2 divisions of a company one
% line at a time as strings, and plots the data

fid = fopen('abl3.dat');

if fid = -1

disp('"File open not successful')
else

for i = 1:4

% Every line is of the form A#B#; this separates
% the characters and converts the #'s to actual
% numbers

aline = fgetl(fid);

aline = aline(2:1ength(aline));

[compa, rest] = strtok(aline,'B');

compa = str2double(compa);

compb = rest(2:1ength(rest));

compb = str2double(compb);

% Data from every line is in a separate subplot
subplot(1,4,17)
bar([compa,compbl)
set(gca, 'XTickLabel', {'A"', 'B'})
axis([0 3 0 8])
ylabel('Sales (millions)')
title(sprintf('Quarter %d',1))
end
closeresult = fclose(fid);
if closeresult ~= 0
disp('File close not successful')
end
end

Running this produces the subplot shown in Figure 11.31.

11.6 Plot Applications

As another example, a data file called “compsales.dat” stores sales figures
(in millions) for divisions in a company. Each line in the file stores the sales

number, followed by an abbreviation of the division name, in this format:

N o w o
O 00 W N

O T > =<

The script that follows uses the textscan function to read this information into
a cell array, and then uses subplot to produce a Figure Window that displays
the information in a bar chart and in a pie chart (shown in Figure 11.32).

compsalesbarpie.m

else

end

% Reads sales figures and plots as a bar chart and a pie chart
fid = fopen('compsales.dat');

if fid = -1
disp('File open not successful"')

% Use textscan to read the numbers and division codes
% into separate elements in a cell array

filecell = textscan(fid,'%f %s');

% plot the bar chart with the division codes on the x ticks
subplot(1l,2,1)

bar(filecell{1})

xlabel('Division")

ylabel('Sales (millions)")

set(gca, 'XTicklabel', filecell{2})

% plot the pie chart with the division codes as Tabels
subplot(l,2,2)

pie(filecell{l}, filecell{2})

title('Sales in millions by division')

closeresult = fclose(fid);
if closeresult ~=20

disp('File close not successful')
end

CHAPTER 11: Advanced Plotting Techniques

Quarter 1 Quarter 2 Quarter 3 Quarter 4
. . 8 — 8 — 8 —

Sales (millions)
EN

Sales (millions)

Sales (millions)

Sales (millions)

A B A B A B
FIGURE 11.31 Subplot with customized x-axis tick labels

6

St 1 Sales in millions by division
Q

41]

Sales (millions)
w

X A P Q
Division
FIGURE 11.32 Bar and pie charts with labels from file data

Explore Other Interesting Features

11.7 SAVING AND PRINTING PLOTS

Once any plot has been created in a Figure Window, there are several options
for saving it, printing it, and copying and pasting it into a report. When the
Figure Window is open, choosing Edit and then Copy Figure will copy the
Figure Window so that it can then be pasted into a word processor. Choosing
File and then Save As allows you to save in different formats, including
common image types, such as .jpg, .tif, and .png. Another option is to save it as
a .fig file, which is a Figure file type used in MATLAB. If the plot was not
created programmatically, or the plot properties have been modified using the
plot tools icon, choosing File and then Generate Code will generate a script
that will re-create the plot.

Choosing File and then Print allows you to print the file on a connected
printer. The print command can also be used in MATLAB programs. The line

print

in a script will print the current Figure Window using default formats. Options
can also be specified (see the Documentation page on print for the options).
Also, by specifying a filename, the plot is saved to a file rather than printed. For
example, the following would save a plot as a .tif file with 400 dots per inch in
a file named ‘plot.tif":

print —dtiff -r400 plot.tif

m Explore Other Interesting Features

There are many built-in plot functions in MATLAB, and many ways to
customize plots. Use the Help facility to find them. Here are some specific
suggestions for functions to investigate.
m Investigate the peaks function, and the use of the resulting matrix as
a test for various plot functions.
m Investigate how to show confidence intervals for functions using the
errorbar function.
Find out how to set limits on axes using xlim, ylim, and zlim.
The plotyy function allows y axes on both the left and the right of the
graph. Find out how to use it, and how to put different labels on the two
y axes.
Investigate how to use the gtext and ginput functions.
Investigate the 3D functions meshc and surfc, which put contour plots
under the mesh and/or surface plots.
m Investigate using the datetick function to use dates to label tick lines.
Note that there are many options! |

CHAPTER 11: Advanced Plotting Techniques

H Summary

Common Pitfalls
m Closing a Figure Window prematurely — the properties can only be set if
the Figure Window is still open!

Programming Style Guidelines

m Always label plots.

m Take care to choose the type of plot in order to highlight the most
relevant information. |

MATLAB Functions and Commands

loglog bar3 line
semilogy bar3h rectangle
semilogx pie3 text
barh comet3 patch
area stem3 get
stem Zlabel set
hist spiral gca
pie mesh gcf
comet surf image
movie sphere gtext
getframe cylinder ginput
plot3 colorbar print

Create a data file containing 10 numbers. Write a script that will load the vector
from the file, and use subplot to do an area plot and a stem plot with these data
in the same Figure Window (note that a loop is not needed). Prompt the user for
a title for each plot.

Write a script that will read x and y data points from a file, and will create an area
plot with those points. The format of every line in the file is the letter X', a space,
the x value, space, the letter ‘y’, space, and the y value. You must assume that the
data file is in exactly that format, but you may not assume that the number of lines
in the file is known. The number of points will be in the plot title. The script loops
until the end of file is reached, using fgetl to read each line as a string. For
example, if the file contains the following lines

x 0yl
x 1.3y 2.2
X 2.2y 6

x 3.4y 7.4
when running the script, the result will be as shown in Figure 11.33.

Exercises

4 data points

0
0 0.5 1 1.5 2 2.5 3
FIGURE 11.33 Area plot produced from x, y data read as strings from a file

Do a quick survey of your friends to find out who prefers cheese pizza, pepperoni,
or mushroom (no other possibilities; everyone must pick one of those three
choices). Draw a pie chart to show the percentage favoring each. Label the pieces
of this pizza pie chart!
The number of faculty members in each department at a certain College of Engi-
neering is:

ME 22

BM 45

CE 23

EE 33
Experiment with at least three different plot types to graphically depict this informa-
tion. Make sure that you have appropriate titles, labels, and legends on your plots.
Which type(s) work best and why?
The weights of the major components for a given aircraft are important considerations
in aircraft design. The components include, at the very least, the wing, tail, fuselage,
and landing gear. Create a data file with values for these weights. Load the data from
your file and create a pie chart to show the percentage weight for each component.
Experiment with the comet function: try the example given when help comet is
entered and then animate your own function using comet.
Experiment with the comet3 function: try the example given when help comet3
is entered and then animate your own function using comet3.
Experiment with the scatter and scatter3 functions.
Use the cylinder function to create x, y, and z matrices and pass them to the surf
function to get a surface plot. Experiment with different arguments to cylinder.
Experiment with contour plots.

m CHAPTER 11: Advanced Plotting Techniques

The electricity generated by wind turbines annually in kilowatt-hours per year is
given in a file. The amount of electricity is determined by, among other factors, the
diameter of the turbine blade (in feet) and the wind velocity in mph. The file stores
on each line the blade diameter, wind velocity, and the approximate electricity
generated for the year. For example,

5 5 406

5 10 3250

5 15 10970

5 20 26000

10 5 1625

10 10 13000

10 15 43875

10 20 104005

Create a file in this format and determine how to display this data graphically.
Create an x vector, and then two different vectors (y and z) based on x. Plot them
with a legend. Use help legend to find out how to position the legend itself on the
graph, and experiment with different locations.

The Wind Chill Factor (WCF) measures how cold it feels with a given air temper-
ature (T, in degrees Fahrenheit) and wind speed (V, in miles per hour). One formula
for the WCF is

WCF = 357 + 06T — 35.7(\/0-16) 4043 T(VO-%)

Experiment with different plot types to display the WCEF for varying wind speeds
and temperatures.

Create an x vector that has 30 linearly spaced points in the range from —2 7 to 2 =,
and then y as sin(x). Do a stem plot of these points, and store the handle in

a variable. Use get to see the properties of the stem plot and then set to change
the face color of the marker.

When an object with an initial temperature T is placed in a substance that has a
temperature S, according to Newton's law of cooling in t minutes it will reach

a temperature T; using the formula Tt =S + (T —S) e ¥, where k is a constant
value that depends on properties of the object. For an initial temperature of 100 and
k = 0.6, graphically display the resulting temperatures from 1 to 10 minutes for two
different surrounding temperatures: 50 and 20. Use the plot function to plot two
different lines for these surrounding temperatures and store the handle in a vari-
able. Note that two function handles are actually retumed and stored in a vector.
Use set to change the line width of one of the lines.

Write a script that will draw the line y=x between x=2 and x=>b5, with a random
line width between 1 and 10.

Write a function plotexvar that will plot data points represented by x and y
vectors, which are passed as input arguments. If a third argument is passed,
it is a line width for the plot, and if a fourth argument is also passed, it is

1 4 Arguments Median Income and Home Prices
T T

. 2011

- 2010

1 2009

T 2008

Year

2007
2006
-04f
2005

2004

!

L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500

-4 -2 0 2 4 6 8 $ (in thousands)
FIGURE 11.34 Varying line width and/or color FIGURE 11.35 Horizontal stacked bar chart of median
incomes and home prices

a color. The plot title will include the total number of arguments passed to the
function. Here is an example of calling the function and the resulting plot in
Figure 11.34:

>> x=-pi:pi/b0:2*pi;
>> y = sin(x);
>> plotexvar(x,y,12,'r")

A file houseafford.dat stores on its three lines years, median incomes, and median
home prices for a city. The dollar amounts are in thousands. For example, it might
look like this:

2004 2005 2006 2007 2008 2009 2010 2011

72 74 74 77 80 83 89 93

250 270 300 310 350 390 410 380
Create a file in this format and then load the information into a matrix. Create
a horizontal stacked bar chart to display the information and give it an appropriate
title. Use the ‘XData' property to put the years on the axis as shown in Figure 11.35.
A file houseafford.dat stores on its three lines years, median incomes, and median
home prices for a city. The dollar amounts are in thousands. For example, it might
look like this:

2004 2005 2006 2007 2008 2009 2010 2011
72 74 74 77 80 83 89 93
250 270 300 310 350 390 410 380

Create a file in this format and then load the information into a matrix. The ratio of
the home price to the income is called the “housing affordability” index. Calculate
this for every year and plot it. The x axis should show the years (e.g., 2004 to 2011).

m CHAPTER 11: Advanced Plotting Techniques

Store the handle of the plot in a variable, and use get to see the properties and set
to change at least one.

The exponential and natural log functions are inverse functions. What does this
mean in terms of the graphs of the functions? Show both functions in one
Figure Window and distinguish between them. Move the legend to the upper left.
Write a function that will plot cos(x) for x values ranging from —pi to pi in steps of
0.1, using black *'s. It will do this three times across in one Figure Window, with
varying line widths (note that even if individual points are plotted rather than

a solid line, the line width property will change the size of these points). If no
arguments are passed to the function, the line widths will be 1, 2, and 3. If,
however, an argument is passed to the function, it is a multiplier for these values
(e.g,, if 3 is passed, the line widths will be 3, 6, and 9). The line widths will be
printed in the titles on the plots.

Create a graph and then use the text function to put some text on it, including
some \specchar commands to increase the font size and to print some Greek letters
and symbols.

Create a rectangle object and use the axis function to change the axes so that
you can see the rectangle easily. Change the Position, Curvature, EdgeColor,
LineStyle, and LineWidth. Experiment with different values for the Curvature.
Write a script that will create the rectangle (shown in Figure 11.36) with a curved
rectangle inside it and text inside that. The axes and dimensions of the

Figure Window should be as shown here (you should approximate locations based
on the axes shown in this figure). The font size for the string is 20. The curvature of
the inner rectangle is [0.5, 0.5].

Write a script that will display rectangles with varying curvatures and line widths,
as shown in Figure 11.37. The script will, in a loop, create a 2 by 2 subplot showing
rectangles. In all, both the x and y axes will go from 0 to 1.4. Also, in all, the lower
left comer of the rectangle will be at (0.2, 0.2), and the length and width will both

25¢
21
151 Stormy
1}t
0.5
0O Ot5 % 1f5 é 2‘.5 C":

FIGURE 11.36 Nested rectangles with text box

iis 1 iis 2
1 1
0.5 0.5
0 0
0 0.5 1 0 0.5 1
iis 3 iis 4
1 1
0.5 0.5
0 0
0 0.5 1 0 0.5 1

FIGURE 11.37 Varying rectangle curvature

be 1. The line width, i, is displayed in the title of each plot. The curvature will be
[0.2, 0.2] in the first plot, then [0.4, 0.4], [0.6,0.6], and, finally, [0.8,0.8].

Write a script that will start with a rounded rectangle. Change both the x and y
axes from the default to go from 0 to 3. In a for loop, change the position vector by
adding 0.1 to all elements 10 times (this will change the location and size of the
rectangle each time). Create a movie consisting of the resulting rectangles. The
final result should look like the plot shown in Figure 11.38.

A hockey rink looks like a rectangle with curvature. Draw a hockey rink, as in
Figure 11.39.

Let’s play hockey!

3r 3
25+t 251
2t 21
1.5¢ 151
1 1t
05} 051L
"o o5 i 75 s 25 3 005 i 15 2 25 5 35 4 458

FIGURE 11.38 Curved rectangles produced in a loop FIGURE 11.39 Hockey rink

m CHAPTER 11: Advanced Plotting Techniques

Write a script that will create a 2D patch object with just three vertices and one
face connecting them. The x and y coordinates of the three vertices will be random
real numbers in the range from 0 to 1. The lines used for the edges should be black
with a width of 3, and the face should be gray. The axes (both x and y) should
go from 0 to 1. For example, depending on what the random numbers are, the
Figure Window might look like Figure 11.40.
Using the patch function, create a black box with unit dimensions (so, there will
be eight vertices and six faces). Set the edge color to white so that when you rotate
the figure you can see the edges.
Fill in the function body for a function plot_figs that will receive as input arguments
an x vector and a y vector, and up to three plot function handles, and will produce
a Figure Window with those plot types of the x and y vectors. If more than three
plot function handles are passed, only the first three are plotted (the rest are
ignored). The names of the plot types are displayed, as shown in the following. You
must use a loop to create the plots in the Figure Window, as in Figure 11.41. Here is
an example of calling the function:

>> x=-2%pi: 0.5 :2%pi;

>> y = cos(x);

>> plot_figs(x,y,@area, @stem, @barh)

function plot_figs(x, y, varargin)

1.
09}
08}
07}
06}
05}
04}
03}
02}
01}

O L L L L L L L L L J
0 01 02 03 04 05 06 07 08 09 1

FIGURE 11.40 Patch object with black edge

area

FIGURE 11.41 Varying plot types

Write a function drawpatch that receives the x and y coordinates of three points as
input arguments. If the points are not all on the same straight line, it draws a patch
using these three points — and if they are all on the same line, it modifies the
coordinates of one of the points and then draws the resulting patch. To test this, it
uses two subfunctions. It calls the subfunction findlin twice to find the slope and
y-intercept of the lines first between point 1 and point 2, and then between point 2
and point 3 (e.g., the values of m and b in the form y = mx+Db). It then calls the
subfunction issamelin to determine whether these are the same line or not. If they
are, it modifies point 3. It then draws a patch with a green color for the face and
a red edge. Both of the subfunctions use structures (for the points and the lines).
For example, the following creates Figure 11.42.

>> drawpatch(2,2,4,4,6,1)

Write a script that will display in one Figure Window the four patches as seen in
Figure 11.43. Create matrices for the vertices, faces, and colors, so that you can
loop to create the subplot.

m CHAPTER 11:

Advanced Plotting Techniques

1.5

1 1
2 2.5 3 3.5 4

FIGURE 11.42 Patch with red edge

FIGURE 11.43 Patch variations on orientation and color

CHAPTER 12

Basic Statistics, Sets, sorting, and Indexing

CONTENTS

mean harmonic mean ascending order 12.1 Statistical
sorting geometric mean descending order Functions 388
index vectors standard deviation selection sort 12.2 Set _
searching variance index vectors Opera1;1ons394
arlthmeth mean mode key
average median sequential search 12.3 Sorting.....397
outlier set operations binary search 12.4 Index

Vectors.....404
12.5 Searching 408

There are a lot of statistical analyses that can be performed on data sets. In the
MATLAB® software, the statistical functions are in the data analysis help topic
called datafun.

In general, we will write a data set of n values as
x = {X1, X2, X3, X4, ..., Xp}
In MATLAB, this will be represented as a row vector called x.

Statistics can be used to characterize properties of a data set. For example,
consider a set of exam grades {33, 75, 77, 82, 83, 85, 85, 91, 100}. What is
a “normal,” “expected,” or “average” exam grade? There are several ways that
this could be interpreted. Perhaps the most common is the mean gravde,
which is found by summing the grades and dividing by the number of them
(the result of that would be 79). Another way of interpreting that would be the
grade found the most often, which would be 85. Also, the value in the middle
of the sorted list, 83, could be used. Another property that is useful to know is
how spread out the data values are within the data set.

This chapter will cover some simple statistics, as well as set operations that can
be performed on data sets. Some statistical functions require that the data set
be sorted, so sorting will also be covered. Using index vectors is a way of 387

MATLAB®. http://dx.doi.org/10.1016/B978-0-12-405876-7.00012-2
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-405876-7.00012-2

CHAPTER 12: Basic Statistics, Sets, Sorting, and Indexing

representing the data in order without physically sorting the data set. Finally,
searching for values within a data set or a database is useful, so some basic
searching techniques will be explained.

12.1 STATISTICAL FUNCTIONS

MATLAB has built-in functions for many statistics; the simplest of which we
have already seen (e.g., min and max to find the minimum or maximum value
in a data set).

Both of these functions also return the index of the smallest or largest value;
if there is more than one occurrence, it returns the first. For example, in
the following data set 10 is the largest value; it is found in three elements in the
vector, but the index returned is the first element in which it is found (which is 2):

>> x=1[9 1010987 3109 85 10];
>> [maxval, maxind] = max(x)
maxval =
10
maxind =
2

For matrices, the min and max functions operate columnwise by default:

>> mat = [9 10 17 5; 19 9 11 14]

mat =

9 10 17 5

19 9 11 14
>> [minval, minind] = min(mat)
minval =

9 9 11 5
minind =

1 2 2 1

These functions can also compare vectors or matrices (with the same dimensions)
and return the minimum (or maximum) values from corresponding elements.
For example, the following iterates through all elements in the two vectors,
comparing corresponding elements, and returning the minimum for each:

>> x=[358211];
>> y=1[264510];
>> min(x,y)
ans =
2 5 4 2 10

Some of the other functions in the datafun help topic that have been
described already include sum, prod, cumsum, cumprod, and hist. Other

12.1 Statistical Functions m

statistical operations, and the functions that perform them in MATLAB, will be
described in the rest of this section.

12.1.1 Mean

The arithmetic mean of a data set is what is usually called the average of the
values or, in other words, the sum of the values divided by the number of

Z?: 1%
n

values in the data set. Mathematically, we would write this as

THE PROGRAMMING CONCEPT

Calculating a mean, or average, would normally be accomplished by looping through the
elements of a vector, adding them together, and then dividing by the number of elements:

mymean.m

function outv = mymean(vec)
% mymean returns the mean of a vector
% Format: mymean(vector)

mysum = 0;
for i=l:length(vec)
mysum = mysum + vec(i);

end
outv = mysum/length(vec);
end
>> x=[9 1010 9 87 3109 85 10];
>> mymean(x)
ans =
8.1667

THE EFFICIENT METHOD

There is a built-in function, mean, in MATLAB to accomplish this:

>> mean(x)
ans =
8.1667

For a matrix, the mean function operates columnwise. To find the mean of each
row, the dimension of 2 is passed as the second argument to the function, as is the

m CHAPTER 12: Basic Statistics, Sets, Sorting, and Indexing

case with the functions sum, prod, cumsum, and cumprod (the [] as a middle
argument is not necessary for these functions like it is for min and max).

>> mat = [8 9 3; 10 2 3; 6 10 9]

mat =
8 9 3
10 fa 3
6 10 9
>> mean(mat)
ans =
8 7 5
>> mean(mat,?Z2)
ans =
6.6667
5.0000
8.3333

Sometimes a value that is much larger or smaller than the rest of the data
(called an outlier) can throw off the mean. For example, in the following all of
the numbers in the data set are in the range from 3 to 10, with the exception of
the 100 in the middle. Because of this outlier, the mean of the values in this
vector is actually larger than any of the other values in the vector.

>> xwithbig = [9 10 10 9 8 100 7 3 10 9 8 5 10];

>> mean(xwithbig)

ans =
15.2308

Typically, an outlier like this represents an error of some kind, perhaps in the
data collection. In order to handle this, sometimes the minimum and
maximum values from a data set are discarded before the mean is computed.
In this example, a logical vector indicating which elements are neither the
largest nor smallest value is used to index into the original data set, resulting in
removing the minimum and the maximum.

>> xwithbig = [9 10 10 9 8 100 7 3 10 9 8 5 10];

>> newx = xwithbig(xwithbig ~= min(xwithbig) & ...
Xwithbig ~= max(xwithbig))

9 10 10 9 8 710 9 8 5 10

Instead of just removing the minimum and maximum values, sometimes the
largest and smallest 1% or 2% of values are removed, especially if the data set
is very large.

There are several other means that can be computed. The harmonic mean of the
n values in a vector or data set x is defined as
n
1 1 1 1

— =t .+
X1 X2 X3 Xn

12.1 Statistical Functions a

The geometric mean of the n values in a vector x is defined as the nth root of the
product of the data set values.

/X KXY K X3 K ...k Xp

Note
Both of these could be implemented as anonymous functions: Statistics Toolbox™ has
functions for these

>> x=[9 1010987 3109 85 10];
means, called harm-

>> harmhand = @ (x) length(x) / sum(1 ./ x);
>> harmhand(x) mean and geomean, as

well as a function trim-

ans =
7.2310 mean, which trims the
>> geomhand = @ (x) nthroot(prod(x), length(x)); highest and lowest n%
>> geomhand(x) of data values, where
ans = the percentage n is
7.7775 specified as an

argument.

12.1.2 Variance and Standard deviation
The standard deviation and variance are ways of determining the spread of the
data. The variance is usually defined in terms of the arithmetic mean as:

S (x; — mean)?
n—1
Sometimes, the denominator is defined as n rather than n—1. The default
definition in MATLAB uses n—1 for the denominator, so we will use that
definition here.

var =

For example, for the vector [8 7 5 4 6], there are n = 5 values so n—1 is 4. Also,
the mean of this data set is 6. The variance would be
(8—6)*4(7—6)*+(5—6)*+ (4 —6)* + (6 — 6)*
4

var =

4+1+1+4+0
2 =
The built-in function to calculate the variance is called var:

2.5

>> xvals = [8 7 5 4 6];
>> myvar = var(xvals)
yvar =

2.5000

The standard deviation is the square root of the variance:
sd = /var

The built-in function in MATLAB for the standard deviation is called std;
the standard deviation can be found either as the sqrt of the variance or using std:

m CHAPTER 12: Basic Statistics, Sets, Sorting, and Indexing

>> shortx = [2 5 1 4];
>> myvar = var(shortx)
myvar =

3.3333
>> sqrt(myvar)
ans =

1.8257

>> std(shortx)
ans =
1.8257

The less spread out the numbers are, the smaller the standard deviation
will be, as it is a way of determining the spread of the data. Likewise, the more
spread out the numbers are, the larger the standard deviation will be. For
example, here are two data sets that have the same number of values and also
the same mean, but the standard deviations are quite different:
>> x1 =1[9 10 9.4 9.6];
>> mean(x1)
ans =
9.5000
>> std(x1)
ans =
0.4163

>> x2 = [2 17 -1.5 20.5];
>> mean(x2)
ans =
9.5000
>> std(x2)
ans =
10.8704

12.1.3 Mode

The mode of a data set is the value that appears most frequently. The built-in
function in MATLAB for this is called mode.

>> x=1[9 1010987 3109 85 10];
>> mode(x)
ans =

10

If there is more than one value with the same (highest) frequency, the smaller
value is the mode. In the following case, as 3 and 8 appear twice in the vector,
the smaller value (3) is the mode:

> x=1[3853418];

>> mode(x)
ans =

12.1 Statistical Functions a

Therefore, if no value appears more frequently than any other, the mode of the
vector will be the same as the minimum.

12.1.4 Median

The median is defined only for a data set that has been sorted first, mean-
ing that the values are in order. The median of a sorted set of n data values is
defined as the value in the middle, if n is odd, or the average of the two values
in the middle if n is even. For example, for the vector [1 4 5 9 12], the middle
value is 5. The function in MATLAB is called median:

>> median([1 4 5 9 12 1)
ans =
5

For the vector [1 4 5 9 12 33], the median is the average of the 5 and 9 in the
middle:

>> median([1 4 5 9 12 33])
ans =
7

If the vector is not in sorted order to begin with, the median function will still
return the correct result (it will sort the vector automatically). For example,
scrambling the order of the values in the first example will still result in
a median value of 5.

>> median([9 4 1 5 12])
ans =
5

PRACTICE 12.1

For the vector [2 4 8 3 8], find the following:

minimum
maximum
arithmetic mean
variance

mode

median.

In MATLAB, find the harmonic mean and the geometric mean for this vector (either using harm-
mean and geomean if you have Statistics Toolbox, or by creating anonymous functions if not).

PRACTICE 12.2

For matrices, the statistical functions will operate on each column. Create a 5 x 4 matrix of random
integers, each in the range from 1 to 30. Write an expression that will find the mode of all numbers
in the matrix (not column-by-column).

m CHAPTER 12: Basic Statistics, Sets, Sorting, and Indexing

12.2 SET OPERATIONS

MATLAB has several built-in functions that perform set operations on vectors.
These include union, intersect, unique, setdiff, and setxor. All of these
functions can be useful when working with data sets. By default, in earlier
versions of MATLAB, all returned vectors were sorted from lowest to highest
(ascending order). Beginning with MATLAB Version 7.14 (R2012a), however,
these set functions provide the option of having the results in sorted order or
in the original order. Additionally, there are two “is” functions that work on
sets: ismember and issorted.

For example, given the following vectors:

>> vl = 6:-1:2

6 5 4 3 2
>> v2 = 1:2:7
v2 =

1 3 5 7

the union function returns a vector that contains all of the values from the two
input argument vectors, without repeating any.

>> union(vl,vZ2)
ans =
1 2 3 4 5 6 7

By default, the result is in sorted order, so passing the arguments in the
reverse order would not affect the result. This is the same as calling the
function as:

>> union(vl,vZ2, 'sorted')

If, instead, the string ‘stable’ is passed to the function, the result would be in
the original order; this means that the order of the arguments would affect the
result.

>> union(vl,vZ2, 'stable')

ans =
6 5 4 3 2 1 7
>> union(v2,vl, 'stable"')
ans =
1 3 5 7 6 4 2

The intersect function instead returns all of the values that can be found in
both of the two input argument vectors.

>> intersect(vl,vZ2)
ans =
3 5

The setdiff function receives two vectors as input arguments, and returns
a vector consisting of all of the values that are contained in the first vector
argument but not the second. Therefore, the result that is returned (not just the
order) will depend on the order of the two input arguments.

>> setdiff(vl,v2)

ans =

2 4 6
>> setdiff(v2,vl)
ans =

1 7

The function setxor receives two vectors as input arguments, and returns a vector
consisting of all of the values from the two vectors that are not in the intersection
of these two vectors. In other words, it is the union of the two vectors obtained
using setdiff when passing the vectors in different orders, as seen before.

>> setxor(vl,vZ2)
ans =
1 2 4 6 7

>> union(setdiff(vl,v2), setdiff(v2,vl))
ans =
1 2 4 6 7

The set function unique returns all of the unique values from a set argument:

>> v3 = [1:5 3:6]
v3 =
1 2 3 4 5 3 4 5 6

>> unique(v3)
ans =
1 2 3 4 5 6

All of these functions — union, intersect, unique, setdiff, and setxor — can be
called with ‘stable’ to have the result returned in the order given by the original
vector(s).

Many of the set functions return vectors that can be used to index into the
original vectors as optional output arguments. However, be careful with this:
the resulting index vectors will be changed in a future version of MATLAB (one
change is that they will be returned as column vectors).

For example, the two vectors v1 and v2 were defined previously as:

>> vl
vl =
6 5 4 3 2

>> vl
v2 =

12.2 Set Operations a

m CHAPTER 12: Basic Statistics, Sets, Sorting, and Indexing

The intersect function returns, in addition to the vector containing the values
in the intersection of v1 and v2, an index vector into v1, and an index vector
into v2 such that outvec is the same as v1(index1) and also v2(index2).

>> [outvec, indexl, index2] = intersect(vl,vZ2)

outvec =

3 5
indexl =

4 2
index2 =

2 3

Using these vectors to index into v1 and v2 will return the values from the
intersection. For example, this expression returns the second and fourth
elements of v1 (it puts them in ascending order):

>> vi(indexl)
ans =
3 5

This returns the second and third elements of v2:

>> v2(index?2)
ans =
3 5

The function ismember receives two vectors as input arguments, and returns
a logical vector that is the same length as the first argument, containing logical
1 for true if the element in the first vector is also in the second, or logical 0 for
false if not. The order of the arguments matters for this function.

>> vl
vl =
6 5 4 3 2
>> ve
v2 =
1 3 5 7

>> ismember(vl,vZ2)
ans =
0 1 0 1 0

>> ismember(vZ2,vl)
ans =
0 1 1 0

Using the result from the ismember function as an index into the first vector
argument will return the same values as the intersect function (although not
necessarily sorted).

>> logv = ismember(vl,v2)

logv =

0 1 0 1 0
>> vi(logv)
ans =

5 3
>> logv = ismember(v2,vl)
logv =

0 1 1 0
>> v2(logv)
ans =

3 5

The issorted function will return logical 1 for true if the argument is sorted in
ascending order (lowest to highest), or logical 0 for false if not.

>> v3 = [1:5 3:6]
v3 =
1 2 3 4 5 3 4 5 6

>> issorted(v3)
ans =
0

>> issorted(v2)
ans =
1

PRACTICE 12.3

Create two vector variables vec! and vecZ that contain five random integers, each in the range
from 1 to 20. Do each of the following operations by hand first and then check in MATLAB
(if you have one of the latest versions, do this with both ‘stable’ and ‘sorted’):

union
intersection
setdiff

setxor

unique (for each).

12.3 SORTING

Sorting is the process of putting a list in order — either descending (highest to
lowest) or ascending (lowest to highest) order. For example, here is a list of n
integers, visualized as a column vector.

12.3 Sorting

m CHAPTER 12: Basic Statistics, Sets, Sorting, and Indexing

85
70
100
95
80
91

» O~ WN =

What is desired is to sort this in ascending order in place — by rearranging this
vector, not creating another. The following is one basic algorithm.

Look through the vector to find the smallest number and then put it in the
first element in the vector. How? By exchanging it with the number
currently in the first element.

Then, scan the rest of the vector (from the second element down) looking
for the next smallest (or the smallest in the rest of the vector). When
found, put it in the first element of the rest of the vector (again, by
exchanging).

Continue doing this for the rest of the vector. Once the next-to-last number
has been placed in the correct location in the vector, the last number, by
default, has been as well.

What is important in each pass through the vector is not knowing what
the smallest value is, but where it is so the elements to be exchanged are
known.

This table shows the progression. The left column shows the original vector.
The second column (from the left) shows that the smallest number, the 70, is
now in the first element in the vector. It was put there by exchanging with what
had been in the first element, 85. This continues element-by-element, until the
vector has been sorted.

85 70 70 70 70 70
70 85 80 80 80 80
100 100 100 85 85 85
95 95 95 95 91 91
80 80 85 100 100 95
91 91 91 91 95 100

This is called the selection sort; it is one of many different sorting algo-
rithms.

mailto:Image of FIGURE 12.1|tif

12.3 Sorting m

THE PROGRAMMING CONCEPT

The following function implements the selection sort to sort a vector:

mysort.m

function outv = mysort(vec)
% mysort sorts a vector using the selection sort
% Format: mysort(vector)

% Loop through the elements in the vector to end-1
for i = 1:length(vec)-1
indlow = i; % stores the index of the smallest
% Find where the smallest number is
% in the rest of the vector
for j=i+1:1ength(vec)
if vec(j) < vec(indlow)
indlow = j;
end
end
% Exchange elements
temp = vec(i);
vec(i) = vec(indlow);
vec(indlow) = temp;

end

outv = vec;

end

>> vec = [85 70 100 95 80 91];

>> vec = mysort(vec)
vec =
70 80 85 91 95 100

THE EFFICIENT METHOD

MATLAB has a built-in function, sort, that will sort a vector in ascending order:

>> vec = [85 70 100 95 80 91];
>> vec = sort(vec)
vec =
70 80 85 91 95 100

Descending order can also be specified. For example,

>> sort(vec, 'descend')
ans =
100 95 91 85 80 70

m CHAPTER 12: Basic Statistics, Sets, Sorting, and Indexing

Sorting a row vector results in another row vector. Sorting a column vector
results in another column vector. Note that if we did not have the ‘descend’
option, fliplr (for a row vector) or flipud (for a column vector) could be used
after sorting.

For matrices, the sort function will by default sort each column. To sort by
rows, the dimension 2 is specified. For example,

>> mat
mat =

4 6 2

8 3 7

9 7 1
>> sort(mat) % sorts by column
ans =

4 3 1

8 6 2

9 7 7
>> sort(mat,2) % sorts by row
ans =

2 4 6

3 7 8

1 7 9

12.3.1 Sorting Vectors of Structures

When working with a vector of structures, it is common to sort based on
a particular field of the structures. For example, recall the vector of structures
used to store information on different software packages that was created in
Chapter 8.

packages
item_no cost price code

1 123 19.99 39.95 g

2 456 5.99 49.99 I

3 587 11.11 33.33 W

Here is a function that sorts this vector of structures in ascending order based
on the price field.

mailto:Image of FIGURE 12.1|tif

mystructsort.m

function outv = mystructsort(structarr)
% mystructsort sorts a vector of structs on the price field
% Format: mystructsort(structure vector)

for i = 1l:length(structarr)-1
indlow = 1i;
for j=i+l:Tength(structarr)
if structarr(j).price < structarr(indlow).price
indlow = j;
end
end
% Exchange elements
temp = structarr(i);
structarr(i) = structarr(indlow);
structarr(indlow) = temp;
end
outv = structarr;
end

Note that only the price field is compared in the sort algorithm, but the entire
structure is exchanged. Consequently, each element in the vector, which is
a structure of information about a particular software package, remains intact.

Recall that we created a function printpackages also in Chapter 8 that prints the
information in a nice table format. Calling the mystructsort function and also
the function to print will demonstrate this:

>> printpackages(packages)
Item # Cost Price Code

123 19.99 39.95 g
456 5.99 49.99 1
587 11.11 33.33 w

>> packByPrice = mystructsort(packages);
>> printpackages(packByPrice)

Item # Cost Price Code

587 11.11 33.33 w
123 19.99 39.95 g
456 5.99 49.99 1

This function only sorts the structures based on the price field. A more general
function is shown in the following, which receives a string that is the name of
the field. The function checks first to make sure that the string that is passed is
a valid field name for the structure. If it is, it sorts based on that field and, if
not, it returns an empty vector.

Strings are created consisting of the name of the vector variable followed by
parentheses containing the element number, the period, and, finally, the name

12.3 Sorting a

m CHAPTER 12: Basic Statistics, Sets, Sorting, and Indexing

of the field. The strings are created using square brackets to concatenate the
pieces of the string and the int2str function is used to convert the element
number to a string. Then, using the eval function, the vector elements are
compared to determine the lowest.

generalPackSort.m

function outv = generalPackSort(inputarg, fname)
% generalPackSort sorts a vector of structs
% based on the field name passed as an input argument

if isfield(inputarg,fname)
for i = 1:1ength(inputarg)-1
indlow = 1;
for j=i+1:length(inputarg)
if eval(['inputarg(' int2str(j) "'").' fnamel) < ...
eval (["inputarg(' int2str(indlow) ')."' fnamel)
indlow = j;
end
end
% Exchange elements
temp = inputarg(i);
inputarg(i) = inputarg(indlow);
inputarg(indlow) = temp;

end

outv = inputarg;
else

outv = [1;
end
end

The following are examples of calling the function:

>> packByPrice = generalPackSort(packages, 'price');
>> printpackages(packByPrice)

Item # Cost Price Code

587 11.11 33.33 w
123 19.99 39.95 g
456 5.99 49.99 1

>> packByCost = generalPackSort(packages, 'cost');
>> printpackages(packByCost)

Item # Cost Price Code

456 5.99 49.99 1
587 11.11 33.33 w
123 19.99 39.95 g

>> packByProfit = generalPackSort(packages, 'profit')
packByProfit =
[]

12.3 Sorting a

QUICK QUESTION!

Is this generalPackSort function truly general? Would it work for
any vector of structures, not just one configured like packages?

Answer
It is fairly general. It will work for any vector of structures.
However, the comparison will only work for numerical or

12.3.2 Sorting Strings

character fields. Thus, as long as the field is a number or char-
acter, this function will work for any vector of structures. If the
field is a vector itself (including a string), it will not work.

For a matrix of strings, the sort function works exactly as shown previously for

numbers. For example:

>> words = char('Hello"',
words =

Hello

Howdy

Hi

Goodbye

Ciao

"Howdy ', 'Hi',

"Goodbye",

'Ciao")

The following sorts column by column using the ASCII equivalents of the
characters. It can be seen from the results that the space character comes before
the letters of the alphabet in the character encoding:

>> sort(words)
ans =

Ce

Giad

Hildb

Hoolo

Howoyye

To sort on the rows instead, the second dimension must be specified.

>> sort(words,?2)
ans =
Hello
Hdowy
Hi
Gbdeooy
Caio

It can be seen here that the uppercase letters come before the lowercase letters.

How could the strings be sorted alphabetically? MATLAB has a function sor-
trows that will do this. The way it works is that it examines the strings column
by column starting from the left. If it can determine which letter comes first, it

m CHAPTER 12: Basic Statistics, Sets, Sorting, and Indexing

picks up the entire string and puts it in the first row. In this example, the first
two strings are placed based on the first character, ‘C’ and ‘G’. For the other
three strings, they all begin with ‘H’ so the next column is examined. In this
case the strings are placed based on the second character, ‘e, ‘', ‘0.

>> sortrows(words)
ans =

Ciao

Goodbye

Hello

Hi

Howdy

The sortrows function sorts each row as a block, or group, and it will also
work on numbers. In this example the rows beginning with 3 and 4 are placed
first. Then, for the rows beginning with 5, the values in the second column (6
and 7) determine the order.

> mat = [57 2; 46 7; 341;562]

mat =
5 7 2
4 6 7
3 4 1
5 6 2
>> sortrows(mat)
ans =
3 4 1
4 6 7
5 6 2
5 7 2

In order to sort a cell array of strings, the sort function can be used. For
example:

>> engcellnames = {'Chemical', 'Mechanical',...

'Biomedical', "Electrical ', 'Industrial'};
>> sort(engcellnames')
ans =

'Biomedical’

'Chemical'’

"Electrical’

'Industrial’
'Mechanical’

12.4 INDEX VECTORS

Using index vectors is an alternative to sorting a vector. With indexing, the
vector is left in its original order. An index vector is used to “point” to the
values in the original vector in the desired order.

12.4 Index Vectors a

For example, here is a vector of exam grades:

grades
1 2 3 4 5 6

‘85‘70‘1OOI9S|80‘ 91‘

In ascending order, the lowest grade is in element 2, the next lowest grade is in
element 5, and so on. The index vector grade_index gives the order for the
vector grades.

grade_index
1 2 3 4 5 6

2] s] 1]e]4] 5]

Note
The elements in the index vector are then used as the indices for the original Tpis is a particular type

vector. To get the grades vector in ascending order, the indices used would f index vector in which
be grades(2), grades(5), and so on. Using the index vector to accomplish ai of the indices of the
this, grades(grade_index(1)) would be the lowest grade, 70, and original vector appear,
grades(grade_index(2)) would be the second-lowest grade. In general, in the desired order.
grades(grade_index(i)) would be the ith lowest grade.

To create these in MATLAB:

>> grades = [85 70 100 95 80 91];
>> grade_index = [2 51 6 4 3];
>> grades(grade_index)
ans =
70 80 85 91 95 100

In general, instead of creating the index vector manually as shown here, the
procedure to initialize the index vector is to use a sort function. The following
is the algorithm:

initialize the values in the index vector to be the indices 1,2, 3, ... to the
length of the original vector

use any sort algorithm, but compare the elements in the original vector
using the index vector to index into it (e.g., using grades(grade_index(i)) as
shown previously)

when the sort algorithm calls for exchanging values, exchange the elements
in the index vector, not in the original vector.

mailto:Image of FIGURE 12.1|tif
mailto:Image of FIGURE 12.1|tif

m CHAPTER 12: Basic Statistics, Sets, Sorting, and Indexing

Here is a function that implements this algorithm:

createind.m

function indvec = createind(vec)
% createind returns an index vector for the
% input vector in ascending order
% Format: createind(inputVector)

% Initialize the index vector
len = length(vec);
indvec = 1:1en;

for i = 1:1en-1
indlow = 1i;
for j=i+l:Ten
% Compare values in the original vector
if vec(indvec(j)) < vec(indvec(indlow))
indlow = j;
end
end
% Exchange elements in the index vector
temp = indvec(i);
indvec(i) = indvec(indlow);
indvec(indlow) = temp;
end
end

For example, for the grades vector just given:
>> clear grade_index

>> grade_index = createind(grades)
grade_index =
2 5 1 6 4 3

>> grades(grade_index)
ans =
70 80 85 91 95 100

12.4.1 Indexing into Vectors of Structures

Often, when the data structure is a vector of structures, it is necessary to iterate
through the vector in order by different fields. For example, for the packages
vector defined previously, it may be necessary to iterate in order by the cost or
by the price fields.

Rather than sorting the entire vector of structures based on these fields,
it may be more efficient to index into the vector based on these fields; so,
for example, to have an index vector based on cost and another based on
price.

12.4 Index Vectors

packages
item_no cost price code cost_ind
1 123 19.99 39.95 g 1 2
2 456 5.99 49.99 I 2 3
3 587 11.11 33.33 w 3 1

price_ind
1 3
2 1
3 2

These index vectors would be created as before, comparing the fields, but
exchanging the entire structures. Once the index vectors have been
created, they can be used to iterate through the packages vector in the desired
order. For example, the function to print the information from packages has
been modified so that, in addition to the vector of structures, the index vector
is also passed and the function iterates using that index vector.

printpackind.m

end
end

fprintf('Item # Cost
no_packs

function printpackind(packstruct, indvec)

% printpackind prints a table showing all

% values from a vector of packages structures
% using an index vector for the order

% Format: printpackind(vector of packages, index vector)

Price Code\n")

= length(packstruct);

for i = l:no_packs
fprintf('%6d %6.2f %6.2f %3c\n', ...

packstruct(indvec(i)).item_no, ...
packstruct(indvec(i)).cost, ...
packstruct(indvec(i)).price, ...
packstruct(indvec(i)).code)

>> printpackind(packages,cost_ind)

Item # Cost

Price

Code

456 5.99 49.99 1

587 11.11 33.33 w

123 19.99 39.95 g
>> printpackind(packages,price_ind)
Item # Cost Price Code

587 11.11 33.33 w

123 19.99 39.95 qg

456 5.99 49.99 1

PRACTICE 12.4

Modify the function createind to create the cost_ind index vector.

mailto:Image of FIGURE 12.1|tif

CHAPTER 12: Basic Statistics, Sets, Sorting, and Indexing

12.5 SEARCHING

Searching means looking for a value (a key) in a list or in a vector. We have
already seen that MATLAB has a function, find, which will return the indices in
an array that meet a criterion. To examine the programming methodologies,
we will, in this section, examine two search algorithms:

sequential search
binary search.

12.5.1 Sequential Search

A sequential search is accomplished by looping through the vector element by
element starting from the beginning, looking for the key. Normally, the index
of the element in which the key is found is what is returned. For example, here
is a function that will search a vector for a key and return the index or the value
0 if the key is not found:

seqgsearch.m

function index = seqgsearch(vec, key)

% seqsearch performs an inefficient sequential search
% through a vector Tooking for a key; returns the

% index

% Format: seqsearch(vector, key)

len = length(vec);
index = 0;
for i = 1:1en
if vec(i) == key
index = 1;
end
end
end

Here are two examples of calling this function:

>> values = [85 70 100 95 80 91];

>> key = 95;
>> seqsearch(values, key)
ans =

4

>> seqgsearch(values, 77)
ans =
0

This example assumes that the key is found only in one element in the vector.
Also, although it works, it is not a very efficient algorithm. If the vector is large,

and the key is found in the beginning, this still loops through the rest of the
vector. An improved version would loop until the key is found or the entire
vector has been searched. In other words, a while loop is used rather than a for
loop; there are two parts to the condition.

smartsegsearch.m

function index = smartseqgsearch(vec, key)

% Smarter sequential search; searches a vector
% for a key but ends when it is found

% Format: smartseqgsearch(vector, key)

len = length(vec);
index = 0;
i=1;

while i < len && vec(i) ~= key
=041
end

if vec(i) == key
index = 1i;

end

end

12.5.2 Binary Search

The binary search assumes that the vector has been sorted first. The algorithm is
similar to the way it works when looking for a name in a phone directory
(which is sorted alphabetically). To find the value of a key:

look at the element in the middle:
if that is the key, the index has been found
if it is not the key, decide whether to search the elements before or after
this location and adjust the range of values in which the search is taking
place and start this process again.

To implement this, we will use variables low and high to specify the range of
values in which to search. To begin, the value of low will be 1, and the value of
high will be the length of the vector. The variable mid will be the index of the
element in the middle of the range from low to high. If the key is not found at
mid, there are two possible ways to adjust the range. If the key is less than the
value at mid, we change high to mid — 1. If the key is greater than the value at
mid, we change low to mid + 1.

An example is to search for the key of 91 in the vector

1 2 3 4 5 6
| 70 |80 |85 [o1 | 95 | 100]

12.5 Searching a

mailto:Image of FIGURE 12.1|tif

CHAPTER 12: Basic Statistics, Sets, Sorting, and Indexing

The following table shows what will happen in each iteration of this search

algorithm.
Iteration Low High Mid Found?
1 1 6 3 No
2 4 6 5 No
3 4 4 4 Yes

The key was found in the fourth element of the vector.

Another example: search for the key of 82.

Iteration Low High Mid Found?
1 1 6 3 No

2 1 2 1 No

3 2 2 2 No

4 3 2 This ends it!

Action

Move low to mid + 1
Move high to mid — 1
Done! Index is mid

Action

Move high to mid — 1
Move low to mid + 1
Move low to mid + 1

The value of low cannot be greater than high; this means that the key is not
in the vector. So, the algorithm repeats until either the key is found or until
low > high, which means that the key is not there.

The following function implements this binary search algorithm. The function
receives two arguments: the sorted vector and a key (alternatively, the function
could sort the vector). The values of low and high are initialized to the first and
last indices in the vector. The output argument outind is initialized to 0, which
is the value that the function will return if the key is not found. The function
loops until either low is greater than high, or until the key is found.

binsearch.m

function outind = binsearch(vec, key)

% binsearch searches through a sorted vector
% 1looking for a key using a binary search

% Format: binsearch(sorted vector, key)

Tow = 1;
high = length(vec);
outind = 0;

while lTow <= high && outind ==
mid = floor((low 4 high)/2);
if vec(mid) == key
outind = mid;
elseif key < vec(mid)
high = mid - 1;
else
lTow = mid + 1;
end
end
end

The following are examples of calling this function:
>> vec = randi(30,1,7)

vec =
2

>> svec =
svec =
1

11 25 1 5 7 6
sort(vec)
2 5 6 7 11 25

>> binsearch(svec, 4)

ans =
0

>> binsearch(svec, 25)

ans =
7

The binary search can also be implemented as a recursive function. The
following recursive function implements this binary search algorithm.
The function receives four arguments: a sorted vector, a key to search for, and
the values of low and high (which, to begin with, will be 1 and the length of the
vector). It will return 0 if the key is not in the vector or the index of the
element in which it is found. The base cases in the algorithm are when low >
high, which means the key is not in the vector, or when it is found. Otherwise,
the general case is to adjust the range and call the binary search function again.

rechinsear

ch.m

function o

% Format:
mid = floo

if low > h
outind

elseif vec
outind

elseif key
outind

else
outind

end

end

utind = recbinsearch(vec, key, Tow,

% recbinsearch recursively searches through a vector
% for a key; uses a binary search function
% The min and max of the range are also passed

recbinsearch(vector, key, rangemin,

r((Tow + high)/2);

igh

=0;

(mid) == key

= mid;

vec(mid)
recbinsearch(vec,key,low,mid-1);

o~

= rechinsearch(vec,key,mid+1,high);

high)

rangemax)

Examples of calling this function follow:

>> recbinsearch(svec, 25,1,length(svec))

ans =
7

>> recbinsearch(svec, 4,1,length(svec))

ans =
0

12.5 Searching a

CHAPTER 12: Basic Statistics, Sets, Sorting, and Indexing

m Explore Other Interesting Features

Investigate the corrcoef function, which returns correlation coefficients.
Investigate filtering data, for example, using the filter function.
Investigate the randperm function.

Investigate the index vectors returned by the set functions.

Investigate the use of ‘R2012a’ to see future changes to the set functions,
versus the use of ‘legacy’ to preserve the previous values.

Investigate passing matrices to the set functions, using the ‘rows’
specifier. [|

B Summary
Common Pitfalls

Forgetting that max and min return the index of only the first occurrence
of the maximum or minimum value.

Not realizing that a data set has outliers that can drastically alter the
results obtained from the statistical functions.

When sorting a vector of structures on a field, forgetting that although
only the field in question is compared in the sort algorithm, entire
structures must be interchanged.

Forgetting that a data set must be sorted before using a binary search.

Programming Style Guidelines

Remove the largest and smallest numbers from a large data set before
performing statistical analyses, in order to handle the problem of
outliers.

Use sortrows to sort strings stored in a matrix alphabetically; for cell
arrays, sort can be used.

When it is necessary to iterate through a vector of structures in order
based on several different fields, it may be more efficient to create index
vectors based on these fields rather than sorting the vector of structures
multiple times. n

MATLAB Functions and Commands

mean union ismember
var intersect issorted
std unique sort
mode setdiff sortrows

median setxor

The range of a data set is the difference between the largest value and the
smallest. A data file called tensile.dat stores the tensile strength of some
aluminum samples. Create a file in a matrix form with random values for testing.
Write a script that will load the data and then print the range of the numbers in
the file.

Write a function mymin that will receive any number of arguments, and will return
the minimum. Note that the function is not receiving a vector; rather, all of the
values are separate arguments.

In a marble manufacturing plant, a quality control engineer randomly selects eight
marbles from each of the two production lines and measures the diameter of each
marble in millimeters. For each data set here, determine the mean, median, mode,
and standard deviation using built-in functions.

Prod. Tine A:15.94 15.98 15.94 16.16 15.86 15.86 15.90 15.88
Prod. Tine B:15.96 15.94 16.02 16.10 15.92 16.00 15.96 16.02

Suppose the desired diameter of the marbles is 16 mm. Based on the results you
have, which production line is better in terms of meeting the specification? (Hint:
think in terms of the mean and the standard deviation.)

A batch of 500-ohm resistors is being tested by a quality engineer. A file called
“testresist.dat”stores the resistance of some resistors that have been measured.
The resistances have been stored one per line in the file. Create a data file in this
format. Then, load the information and calculate and print the mean, median,
mode, and standard deviation of the resistances. Also, calculate how many of the
resistors are within 1% of 500 ohms.

Write a function calcvals that will calculate the maximum, minimum, and mean
value of a vector based on how many output arguments are used to call the
function. Examples of function calls are as follows:

>> vec=[4 956 2 7 16 0];
>> [mmax, mmin, mmean]= calcvals(vec)
mmax=

16
mmin=

0
mmean=

6
>> mmax= calcvals(vec)
mmax=

16

Write a script that will do the following. Create two vectors with 20 random inte-
gers in each; in one the integers should range from 1 to 5 and, in the other, from
1 t0 500 (inclusive). For each vector, would you expect the mean and median to be

CHAPTER 12: Basic Statistics, Sets, Sorting, and Indexing

approximately the same? Would you expect the standard deviation of the two
vectors to be approximately the same? Answer these questions and then use the
built-in functions to find the minimum, maximum, mean, median, standard devi-
ation, and mode of each. Do a histogram for each in a subplot. Run the script a few
times to see the variations.

Write a function that will return the mean of the values in a vector, not including the
minimum and maximum values. Assume that the values in the vector are unique. Itis
okay to use the built-in mean function. To test this, create a vector of 10 random
integers, each in the range from 0 to 50, and pass this vector to the function.

A moving average of a data set x = {x1, X2, X3, X4, ..., xn}is defined as a set of
averages of subsets of the original data set. For example, a moving average of every
two terms would be 1/2 *{x14+ Xp, Xo+ X3, X3 4+ X4, ..., Xn-1 + Xn} . Write a func-

tion that will receive a vector as an input argument, and will calculate and return
the moving average of every two elements.

Eliminating or reducing noise is an important aspect of any signal processing. For
example, in image processing noise can blur an image. One method of handling
this is called median filtering.

A median filter on a vector has a size; for example, a size of 3 means calculating the
median of every three values in the vector. The first and last elements are left alone.
Starting from the second element to the next-to-last element, every element of

a vector vec(i) is replaced by the median of [vec(i-1) vec(i) vec(i+1)]. For example, if
the signal vector is

signal =[5 11 426 85 9]
the median filter with a size of 3 is
medianFilter3 = [55 4 4 6 6 8 9]

Write a function to receive the original signal vector and return the median filtered
vector.

Modify the medianfilter3 function so that the size of the filter is also passed as an
input argument.

What is the difference between the mean and the median of a data set if there are
only two values in it?

A student missed one of four exams in a course and the professor decided to use
the “average” of the other three grades for the missed exam grade. Which would be
better for the student: the mean or the median if the three recorded grades were 99,
88, and 95? What if the grades were 99, 70, and 777

A weighted mean is used when there are varying weights for the data values. For

a data set given by x = {x1, X2, X3, X4, ..., X, }and corresponding weights for each
n
. . o XiWi
Xi, W= (Wi, Wz, W3, Wq, ..., Wy}, the weighted mean is %
LW
=1 1

For example, assume that in an economics course there are three quizzes and two
exams, and the exams are weighted twice as much as the quizzes. If the quiz

scores are 95, 70, and 80, and the exam scores are 85 and 90, the weighted mean
would be:

Px14+70%1+80x1+85%x2+90x2 595

1+1+14242 8

Write a function that will receive two vectors as input arguments: one for the data
values and one for the weights, and will return the weighted mean.

The coefficient of variation is useful when comparing data sets that have quite
different means. The formula is CV = (standard deviation/mean) * 100%. A history
course has two different sections; their final exam scores are stored in two separate
rows in a file. For example:

99 100 95 92 98 89 72 95 100 100
83 85 77 62 68 84 91 59 60

Create the data file, read the data into vectors, and then use the CV to compare the
two sections of this course.

Write a function allparts that will read in lists of part numbers for parts produced by
two factories. These are contained in data files called xyparts.dat and gzparts.dat.
The function will return a vector of all parts produced, in sorted order (with no
repeats). For example, if the file xyparts.dat contains

123 145 111 333 456 102
and the file gzparts.dat contains

876 333 102 456 903 111
calling the function would return the following:

>> partslist = allparts
partslist =
102 111 123 145 333 456 876 903

The set functions can be used with cell arrays of strings. Create two cell arrays to
store (as strings) course numbers taken by two students. For example:

sl = {"EC 101", 'CH 100", 'MA 115'};

s2 = {'CH 100', 'MA 112", 'BI 101'};
Use a set function to determine which courses the students have in common.
A vector v is supposed to store unique random numbers. Use set functions to
determine whether or not this is true.
A function generatevec generates a vector of n random integers (where n is a positive
integer), each in the range from 1 to 100, but all of the numbers in the vector must be
different from each other (no repeats). So, it uses rand to generate the vector and then
uses another function alldiff that will return logical 1 for true if all of the numbers in
the vector are different, or logical 0 for false if not in order to check. The generatevec
function keeps looping until it does generate a vector with n non-repeating integers. It

CHAPTER 12: Basic Statistics, Sets, Sorting, and Indexing

also counts how many times it has to generate a vector until one is generated with n
non-repeating integers and returms the vector and the count. Write the alldifffunction.

generatevec.m

function [outvec, count] = generatevec(n)
% Generates a vector of n random integers
% Format of call: generatevec(n)
% Returns a vector of random integers and a count
% of how many tries it took to generate the vector
trialvec = randi(100,1,n);
count = 1;
while ~alldiff(trialvec)
trialvec = randi(100,1,n);
count = count + 1;
end
outvec = trialvec;
end

Write a function that will receive a vector as an input argument, and will print all
of the values from lowest to highest in the vector, until the mean of the numbers
is reached (including the mean). For example, if the input vector has the values
[6 8 2 4 6], the mean is b so the function would print 2 4 5.

Write a function mydsort that sorts a vector in descending order (using a loop, not
the built-in sort function).

In product design, it is useful to gauge how important different features of the
product would be to potential customers. One method of determining which
features are most important is a survey in which people are asked “Is this feature
important to you?” when shown a number of features. The number of potential
customers who responded “Yes” is then tallied. For example, a company con-
ducted such a survey for 10 different features; 200 people took part in the survey.
The data were collected into a file that might look like this:

1 2 3 4 5 6 7 8 9 10
30 83 167 21 45 56 55 129 69 55

A Pareto chart is a bar chart in which the bars are arranged in decreasing
values. The bars on the left in a Pareto chart indicate which are the most
important features. Create a data file, and then a subplot to display the

data with a bar chart organized by question on the left and a Pareto chart on the
right.

Write a function matsort to sort all of the values in a matrix (decide whether the
sorted values are stored by row or by column). It will receive one matrix argument
and return a sorted matrix. Do this without loops, using the built-in functions sort
and reshape. For example:

>> mat
mat =
4 5 2
1 3 6
7 8 4
9 1 5
>> matsort(mat)
ans =
1 4 6
1 4 7
2 5 8
3 5 9

Write a function that will receive two arguments — a vector and a character (either
‘a’ or ‘d’) — and will sort the vector in the order specified by the character
(ascending or descending).

Write a function mymedian that will receive a vector as an input argument, and
will sort the vector and return the median. Any built-in functions may be used,
except the median function. Loops may not be used.

In statistical analyses, quartiles are points that divide an ordered data set into four
groups. The second quartile, Q2, is the median of the data set. It cuts the data set
in half. The first quartile, Q1, cuts the lower half of the data set in half. Q3 cuts the
upper half of the data set in half. The interquartile range is defined as Q3—Q1. Write
a function that will receive a data set as a vector and will return the interquartile
range.

DNA is a double-stranded helical polymer that contains basic genetic information
in the form of pattemns of nucleotide bases. The pattems of the base molecules
A, T, C, and G encode the genetic information. Construct a cell array to store some
DNA sequences as strings; such as

TACGGCAT
ACCGTAC

and then sort these alphabetically. Next, construct a matrix to store some DNA
sequences of the same length and then sort them alphabetically.

A program has a vector of structures that stores information on experimental data
that has been collected. For each experiment, up to 10 data values were obtained.
Each structure stores the number of data values for that experiment, and then the
data values. The program is to calculate and print the average value for each
experiment. Write a script to create some data in this format and print the
averages.

Write a function that will receive a vector and will return two index vectors: one for
ascending order and one for descending order. Check the function by writing

a script that will call the function, and then use the index vectors to print the
original vector in ascending and descending order.

Exercises

CHAPTER 12: Basic Statistics, Sets, Sorting, and Indexing

Median 4.0 Mean 5.4
{2 2
* *
10 g 10 1
% #
8 #* 4 8t * J
6 - 61 g
4 41 * g
* *
2 * g 2 * g
* *
00 2 4 6 8 0O 2 4 6 8

FIGURE 12.1 Plot of median and mean

Write a function myfind that will search for a key in a vector and return the indices
of all occurrences of the key, like the built-in find function. It will receive two
arguments — the vector and the key — and will return a vector of indices (or the
empty vector [] if the key is not found).

The function “plotmedmean” receives a vector of y values for data points (the x
values are the indices 1,2,...), sorts them, and plots them twice in one

Figure Window (as seen in Figure 12.1): on the left showing the median as a line
and on the right the mean (with those values in the titles). You are to write the
function, using the subfunction medmeansub shown as follows to produce some of
both plots. Here is an example of calling the function:

>> plotmedmean([3 8 2 1 9 4 11])

function medmeansub(vec, m)

plot(vec,'r*")

axis([0 Tength(vec)+1 min(vec)-1 max(vec) + 11)
1ine(L0 length(vec)+1], [m m], 'LineWidth',2)
end

mailto:Image of FIGURE 12.1|tif

CHAPTER 13

Sights and Sounds

CONTENTS

sound processing pixels graphical user interfaces 13.1 S(_)und

image processing true color event Files 419
sound wave RGB callback function 13.2 Image
sampling frequency colormap event-driven programming Processing

.................. 421

13.3 Introduction
to Graphical
The MATLAB® product has functions that manipulate audio or sound files, User

and also images. This chapter will start with a brief introduction to some of the Interfaces 431
sound processing functions. Image processing functions will be introduced, and

the two basic methods for representing color in images will be explained.

Finally, this chapter will introduce the topic of graphical user interfaces from

a programming standpoint.

13.1 SOUND FILES

A sound wave is an example of a continuous signal that can be sampled to
result in a discrete signal. In this case, sound waves traveling through the air
are recorded as a set of measurements that can then be used to reconstruct the
original sound signal, as closely as possible. The sampling rate, or sampling
frequency, is the number of samples taken per time unit—for example, per
second. Sound signals are usually measured in Hertz (Hz).

In MATLAB, the discrete sound signal is represented by a vector and the
frequency is measured in Hertz. MATLAB has several MAT-files that store for
various sounds the signal vector in a variable y and the frequency in a variable
Fs. These MAT-files include chirp, gong, laughter, splat, train, and handel.
There is a built-in function, sound, that will send a sound signal to an output
device such as speakers.

419

MATLAB®. http://dx.doi.org/10.1016/B978-0-12-405876-7.00013-4
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-405876-7.00013-4

m CHAPTER 13: Sights and Sounds

The function call

>> sound(y,Fs)

will play the sound represented by the vector y at the frequency Fs. For
example, to hear a gong, load the variables from the MAT-file and then play
the sound using the sound function:

>> load gong

>> sound(y,Fs)

Sound is a wave; the amplitudes are what are stored in the sound signal variable y.
These are supposed to be in the range from —1 to 1. The plot function can be used
to display the data. For example, the following script creates a subplot that
displays the signals from chirp and from train, as shown in Figure 13.1.

chirptrain.m

subplot(2,1,1)
load chirp
plot(y)

title('Chirp")
subplot(2,1,2)
load train
plot(y)

title('Train')

ylabel ("Amplitude")

ylabel ("Amplitude')

% Display the sound signals from chirp and train

The first argument to the sound function can be an n x 2 matrix for stereo
sound. Also, the second argument can be omitted when calling the sound

Chirp

Amplitude

T

,
2000

.
4000

.
6000

Train

.
8000

.
10000

.
12000

Amplitude

-
0

,
2000

:
4000

L
6000

FIGURE 13.1 Amplitudes from chirp and train

.
8000

r
10000

:
12000

14000

13.2 Image Processing a

function, in which case the default sample frequency of 8192 Hz is used. This
is the frequency stored in the built-in sound MAT-files.

>> load train
Fs
Fs =

8192

PRACTICE 13.1

If you have speakers, try loading one of the sound MAT-files and use the sound function to play the
sound. Then, change the frequency; for instance, multiply the variable Fs by 2 and by 0.5, and play
these sounds again.

>> load train

>> sound(y, Fs)

>> sound(y, Fs*2)
>> sound(y, Fs*.5)

13.2 IMAGE PROCESSING

Color images are represented as grids, or matrices, of picture elements (called
pixels). In MATLAB, an image is represented by a matrix in which each element
corresponds to a pixel in the image. Each element that represents a particular
pixel stores the color for that pixel. There are two basic ways that the color can
be represented:

true color, or RGB, in which the three color components are stored (red,
green, and blue, in that order)

index into a colormap, in which the value stored is an integer that refers to
arow in a matrix called a colormap; the colormap stores the red, green, and
blue components in three separate columns.

For an image that has m x n pixels, the true color matrix would be a three-
dimensional (3D) matrix with the size m x n x 3. The first two dimensions
represent the coordinates of the pixel. The third index is the color component:
(:,:,1) is the red, (:,:,2) is the green, and (:,:,3) is the blue.

The indexed representation would, instead, be an m x n matrix of integers, each
of which is an index into a colormap matrix, which is the size p x 3 (where p is
the number of colors available in that particular colormap). Each row in the
colormap has three numbers representing one color: first the red, then the
green, and then the blue component.

13.2.1 Colormaps
Described in this section is the mechanism for utilizing colormaps for images
stored as double matrices.

m CHAPTER 13: Sights and Sounds

When an image is represented using a colormap, there are two matrices:

the colormap matrix, which has dimensions p x 3, where p is the number of
available colors; every row stores three real numbers in the range from 0 to
1, representing the red, green, and blue components of the color

the image matrix, with dimensions m x n; every element is an index into the
colormap, which means that it is an integer in the range 1 to p.

Image matrix Colormap matrix
1 n 123
1 1

S

MATLAB has several built-in colormaps that are named; these can be seen and
can be set using the built-in function colormap. The reference page on color-
map displays them. Calling the function colormap without passing any argu-
ments will return the current colormap, which, by default, is the one named jet.

The following stores the current colormap in a variable map, gets the size of the
matrix (which will be the number of rows in this matrix or, in other words, the
number of colors, by three columns), and displays the first five rows in this
colormap. If the current colormap is the default jet, the following will be the
result:

>> map = colormap;
>> [r, c¢] = size(map)
r o=

64
c =
3
>> map(1:5,:)
ans =
0 0 0.5625
0 0 0.6250
0 0 0.6875
0 0 0.7500
0 0 0.8125

This shows that there are 64 rows or, in other words, 64
colors, in this particular colormap. It also shows that the
first five colors are shades of blue. Note that jet is
actually a function that returns a colormap matrix.
Passing no arguments results in the 64 x 3 matrix shown
here, although the number of desired colors can be
passed as an argument to the jet function.

The format of calling the image function is:
image(mat)

where the matrix mat represents the colors in an m x n
image (m x n pixels in the image). If the matrix has the
size m x n, then each element is an index into the current
colormap.

13.2 Image Processing a

1 2 3 4 5 6 7 8

FIGURE 13.2 Columnwise display of the 64 colors
in the jet colormap

One way to display the colors in the default jet colormap (which has 64
colors) is to create a matrix that stores the values 1 through 64, and pass that
to the image function; the result is shown in Figure 13.2. When the matrix is
passed to the image function, the value in each element in the matrix is used

as an index into the colormap.

For example, the value in cmap(1,2) is 9 so the color displayed in location
(1,2) in the image will be the color represented by the ninth row in the col-
ormap. By using the numbers 1 through 64, we can see all colors in this
colormap. The image shows that the first colors are shades of blue, the last
colors are shades of red, and in between there are shades of aqua, green,

yellow, and orange.

>> cmap = reshape(1l:64, 8,8)

cmap =
1 9 17 25 33 41 49
2 10 18 26 34 42 50
3 11 19 27 35 43 51
4 12 20 28 36 44 52
5 13 21 29 37 45 53
6 14 22 30 38 46 54
7 15 23 31 39 47 55
8 16 24 32 40 48 56

>> image(cmap)

57
58
59
60
61
62
63
64

Another example creates a 5 x 5 matrix of random integers in the range from 1
to the number of colors (stored in a variable r); the resulting image appears in

Figure 13.3.

m CHAPTER 13: Sights and Sounds

5.5
05 1

jet colormap

5 2 25 3 35 4 45 5 55 450
FIGURE 13.3 A 5 x 5 display of random colors from the 500 dsie:

50

100

150

200

250

300

350

400

Rt s ; 2 5 SrEh LG
50 100 150 200 250 300 350 400 450 500

FIGURE 13.4 A 500 x 500 display of random colors

>> mat = randi(r,5)

54 33 13 45 32
2 46 44 25 58
44 28 20 56 53
25 20 35 55 42
54 13 10 38 53

>> image(mat)

Of course, these “images” are rather crude; the elements representing the pixel
colors are quite large blocks. A larger matrix would result in something more
closely resembling an image, as shown in Figure 13.4.

>> mat = randi(r,500);
>> image(mat)

Although MATLAB has built-in colormaps, it is also possible to create others
using any color combinations. For example, the following creates a custom-
ized colormap with just three colors: black, white, and red. This is then set to
be the current colormap by passing the colormap matrix to the colormap
function. Then, a 40 x 40 matrix of random integers in the range from 1 to 3
(as there are just three colors) is created, and that is passed to the image
function; the results are shown in Figure 13.5.

>> mycolormap = [0 0 0; 1 1 1; 1 0 0]
mycolormap =

0 0 0
1 1 1
1 0 0

>> colormap(mycolormap)
>> mat = randi(3,40);
>> image(mat)

1 2
FIGURE 13.5 Random colors from a custom
colormap

13.2 Image Processing a

3 4 5 6

FIGURE 13.6 Shades of red

The numbers in the colormap do not have to be integers; real numbers
represent different shades as seen with the default colormap jet. For example,
the following colormap gives us a way to visualize different shades of red as

shown in Figure 13.6.

>> colors = [0 0 0; 0.2
0.6 0 0; 0.

>> colormap(colors)

>> vec = 1:length(colors);

>> image(vec)

00; 0.400; ..
80 0; 100];

PRACTICE 13.2

Given the following colormap, “draw” the scene shown in Figure 13.7. (Hint: preallocate the image

matrix. The fact that the first color in the colormap is white makes this easier.)

>> mycolors = [111; 010; 00.50; ..
001; 000.5; 0.30017;

5
FIGURE 13.7 Draw this tree with grass and sky

m CHAPTER 13: Sights and Sounds

Pink sphere

FIGURE 13.8 Pink colormap for sphere function

Colormaps are used with many plot functions. Generally, the plots shown
assume the default colormap jet, but the colormap can be modified. For
example, plotting a 3D object using surf or mesh and displaying a colorbar
would normally display the jet colors ranging from blues to reds. The
following is an example of modifying this to use the colormap pink, as shown
in Figure 13.8.

>> [x,y,z] = sphere(20);
>> colormap(pink)

>> surfix,y,z)

>> title('Pink sphere')
>> colorbar

Usually, the image matrices used in conjunction with a colormap are the type
double, as described in this section, and the integers stored in the matrices
range from 1 to p, where p is the number of colors in the current colormap.
However, it is possible for the image matrix to store the data as the type uint8
or uint16. In that case, the integers stored would range from 0 to p—1, and the
image function adjusts appropriately (a 0 maps to the first color, 1 maps to the
second color, and so forth).

13.2.2 True Color Matrices

True color matrices, or RGB matrices, are another way to represent images. True
color matrices are 3D matrices. The first two coordinates are the coordinates of
the pixel. The third index is the color component; (:,:,1) isthered, (:,:,2) is

13.2 Image Processing

0.5

1.5

25
0.5 1 15 2 2.5

FIGURE 13.9 Image from a true color matrix

the green, and (:, :,3) is the blue component. The numbers in the matrix can
be the type uint8, uint16, or double.

In an 8-bit RGB image, each element in the matrix is of the type uint8, which
is an unsigned integer type storing values in the range from 0 to 255. The
minimum value, 0, represents the darkest hue available, so all Os results in
a black pixel. The maximum value, 255, represents the brightest hue. For
example, if the values for a given pixel coordinates px and py are: (px,py,1) is
255, (px,py,2) is 0 and (px,py,3) is 0, then that pixel will be bright red. All
255s results in a white pixel.

The image function displays the information in the 3D matrix as an image. For
example, the following creates a 2 x 2 image, as shown in Figure 13.9. The
matrix is 2 x 2 x 3 where the third dimension is the color. The pixel in location
(1,1) is red, the pixel in location (1,2) is blue, the pixel in location (2,1) is
green, and the pixel in location (2,2) is black. It is necessary to cast the matrix
to the type uint8.

>> mat = zeros(2,2,3);
>> mat(1,1,1) 255;
>> mat(1,2,3) 255;
>> mat(2,1,2) = 255;
>> mat = uint8(mat);
>> image(mat)

The following shows how to separate the red, green, and blue components
from an image matrix. In this case we are using the “image” matrix mat, and
then use subplot to display the original matrix and the red, green, and blue
component matrices, as shown in Figure 13.10.

m CHAPTER 13: Sights and Sounds

0.5

p 25
0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5

FIGURE 13.10 Separating red, green, and blue components

matred = uint8(zeros(2,2,3));
matred(:,:,1) = mat(:,:,1);
matgreen = uint8(zeros(2,2,3));
matgreen(:,:,2) = mat(:,:,2);
matblue = uint8(zeros(2,2,3));
matblue(:,:,3) = mat(:,:,3);
subplot(2,2,1)

image(mat)

subplot(2,2,2)

image(matred)

subplot(2,2,3)

image(matgreen)

subplot(2,2,4)

image(matblue)

Superimposing the images from the three matrices matred, matgreen, and
matblue would be achieved by simply adding the three arrays together. The
following would result in the image from Figure 13.9:

>> image(matred+matgreen+matblue)

The original image found in Figure 13.9 could also be created as a 16-bitimage in
which the range of values would be from 0 to 65535 instead of from 0 to 255.

13.2 Image Processing a

>> clear

>> mat = zeros(2,2,3);
>> mat(1l,1,1) = 65535;
>> mat(1,2,3) 65535;
>> mat(2,1,2) = 65535;
>> mat = uintlé(mat);
>> image(mat)

In an RGB image matrix in which the numbers range from 0 to 1, the default
type is double so it is not necessary to typecast the matrix variable. The
following would also create the image seen in Figure 13.9.

>> clear

>> mat = zeros(2,2,3);
>> mat(l1,1,1) = 1;

>> mat(1,2,3) = 1;

>> mat(2,1,2) = 1;

>> image(mat)

The image function determines the type of the image matrix and adjusts the
colors accordingly when displaying the image.

PRACTICE 13.3

Create the 3 x 3 (x 3) true color matrix shown in Figure 13.11 (the axes are defaults). Use the type
uint8.

13.2.3 Image Files

Images that are stored in various formats, such as JPEG, TIFF, PNG, GIF, and
BMP, can be manipulated in MATLAB. Built-in functions, such as imread and
imwrite, read from and write to various image file formats. Some images are
stored as unsigned 8-bit data (uint8), some as unsigned 16-bit (uint16), and
some are stored as double.

1.5

FIGURE 13.11 Create this true color matrix

m CHAPTER 13: Sights and Sounds

For example, the following reads a JPEG image into a 3D matrix; it can be seen
from the size and class functions that this was stored as a uint8 RGB matrix.

>> porchimage = imread('snowyporch.JPG');
>> size(porchimage)

ans =
2848 4272 3
>> class(porchimage)
ans =
uint8

The image is stored as a true-color matrix and has 2848 x 4272 pixels. The
image function displays the matrix as an image, as shown in Figure 13.12.

The image can be manipulated by modifying the numbers in the image matrix.
For example, multiplying every number by 0.5 will result in a range of values
from 0 to 128 instead of from 0 to 255. As the larger numbers represent
brighter hues, this will have the effect of dimming the hues in the pixels, as
shown in Figure 13.13.

The function imwrite is used to write an image matrix to a file in a specified
format (assuming dimmer is 0.5 * porchimage):

>> imwrite(dimmer, 'dimporch.JPG")

Images can also be stored as an indexed image rather than RGB. In that case,
the colormap is usually stored with the image and will be read in by the
imread function.

500

500 10 1500 2000 2500 3000 3500 400

FIGURE 13.12 Image from a JPEG file displayed using image

13.3 Introduction to Graphical User Interfaces a

500
1000
1500
2000

2500

500 1000 1500 2000 2500 3000 3500 4000

FIGURE 13.13 Image dimmed by manipulating the matrix values

13.3 INTRODUCTION TO GRAPHICAL USER
INTERFACES

Graphical user interfaces, or GUIs, are essentially objects that allow users to
have input using graphical interfaces, such as push buttons, sliders, radio
buttons, toggle buttons, pop-up menus, and so forth. GUIs are an example of
object-oriented programming in which there is a hierarchy. For example, the
parent may be a Figure Window and its children would be graphics objects,
such as push buttons and text boxes.

The parent user interface object can be a figure, uipanel, or uibuttongroup. A
figure is a Figure Window created by the figure function. A uipanel is a means
of grouping together user interface objects (the “ui” stands for user interface).
A uibuttongroup is a means of grouping together buttons (both radio buttons
and toggle buttons).

In MATLAB there are two basic methods for creating GUIs: writing the GUI
program from scratch or using the built-in Graphical User Interface Devel-
opment Environment (GUIDE). GUIDE allows the user to graphically lay out
the GUI and MATLAB generates the code for it automatically. However, to be
able to understand and modify this code, it is important to understand the
underlying programming concepts. Therefore, this section will concentrate on
the programming methodology.

CHAPTER 13: Sights and Sounds

13.3.1 GUI Basics

A Figure Window is the parent of any GUI. Just calling the figure function will
bring up a blank Figure Window. Assigning the handle of this Figure Window
to a variable and then using the get function will show the default properties.
These properties, such as the color of the window, its position on the screen,
and so forth, can be changed using the set function or when calling the figure
function to begin with. For example,

>> f = figure;
brings up a gray figure box near the top of the screen, as seen in Figure 13.14.
Some of its properties are excerpted here:

>> get(f)
Color = [0.8 0.8 0.8]
Colormap = [(64 by 3) double array]
Position = [360 502 560 420]
Units = pixels
Children = []
Visible = on

The position vector specifies [left bottom width height]. The first two
numbers, the left and bottom, are the distance that the lower left corner of the
figure box is from the lower left of the monitor screen (first from the left and
then from the bottom). The last two are the width and height of the figure box
itself. All of these are in the default units of pixels.

The Visible’ property “on” means that the Figure Window can be seen. When
creating a GUI, however, the normal procedure is to create the parent

:

Fle Edk View Insert Tools Desktop Window Help

Ded& kh QaAaM® « 08 =0

FIGURE 13.14 Placement of figure within screen

13.3 Introduction to Graphical User Interfaces a

Figure Window, but make it invisible. Then, all user interface objects are added
to it and properties are set. When everything has been completed the GUI is
made visible.

If the figure just shown is the only Figure Window that has been opened, then it is
the current figure. Using get(gcf) would be equivalent to get(f) in that case.

The figure function numbers Figure Windows sequentially 1, 2, and so forth.
The root object, the screen itself, is designated as Figure 0. Using get(0) will
display the screen properties, such as ‘ScreenSize’ and ‘Units’ (which, by
default, is pixels).

Most user interface objects are created using the uicontrol function. Pairs
of arguments are passed to the uicontrol function, consisting of the name
of a property as a string and then its value. The default is that the object is
created in the current figure; otherwise, a parent can be specified as in
uicontrol(parent,...). The ‘Style’ property defines the type of object, as
a string. For example, ‘text’ is the Style of a static text box, which is normally
used as a label for other objects in the GUI or for instructions.

The following example creates a GUI that just consists of a static text box in
a Figure Window. The figure is first created, but made invisible. The color is white
and it is given a position. Storing the handle of this figure in a variable allows the
function to refer to it later on, to set properties, for example. The uicontrol
function is used to create a text box, position it (the vector specifies the [left bottom
width height] within the Figure Window itself), and put a string in it.

Note that the position is within the Figure Window, not within the screen.
A name is put on the top of the figure. The movegui function moves the GUI
(the figure) to the center of the screen. Finally, when everything has been
completed, the GUI is made visible.

simpleGui.m

function simpleGui
% simpleGui creates a simple GUI with just a static text box
% Format: simpleGui or simpleGui()

% Create the GUI but make it invisible for now while
% it is being initialized
f = figure('Visible', 'off','color','white','Position',...
[300, 400, 450,2501);
htext = uicontrol('Style', "text','Position', ...
[200,50, 100, 257, 'String','My First GUI string');

% Put a name on it and move to the center of the screen
set(f, 'Name','Simple GUI")
movegui(f,'center')

% Now the GUI is made visible
set(f,'Visible','on")
end

CHAPTER 13: Sights and Sounds

The Figure Window shown in Figure 13.15 will

Fie Edt View Insert Toos Desktop Window Help appear in the middle of the screen. The static text
box requires no interaction with the user, so
although this example shows some of the basics, it
does not allow any graphical interface with the user.

13.3.2 Text Boxes, Push Buttons,
and Sliders

Now that we have seen the basic algorithm for
MyIEREHGR string a GUI, we will add user interaction.

In the next example we will allow the user to enter
a string in an editable text box and then the GUI
will print the user’s string in red. In this example
there will be user interaction. First, the user must
type in a string and, once this happens, the user’s
entry in the editable text box will no longer be shown, but, instead, the string
that the user typed will be displayed in a larger red font in a static text box.
When the user’s action (which is called an event) causes a response, what
happens is that a callback function is called or invoked. The callback function is
the part in which the string is read in and then printed in a larger red font. This
is sometimes called event-driven programming: the event triggers an action.

FIGURE 13.15 Simple graphical user interface with
a static text box

The callback function must be in the path; one way to do this is to make it a nested
function within the GUI function. The algorithm for this example is as follows.

Create the Figure Window, but make it invisible.
Make the color of the figure white, put a title on it, and move it to the
center.
Create a static text box with an instruction to enter a string.
Create an editable text box.
The Style of this is ‘edit’.
The callback function must be specified as the user’s entry of a string
necessitates a response (the function handle of the nested function is
used for this).
Make the GUI visible so that the user can see the instruction and type in
a string.
When the string is entered, the callback function callbackfn is called. Note
that in the function header, there are two input arguments, hObject and
eventdata. The input argument hObject refers to the handle of the uicontrol
object that called it; eventdata can store in a structure information about
actions performed by the user (e.g., pressing keys).
The algorithm for the nested function callbackfn is:
make the previous GUI objects invisible

13.3 Introduction to Graphical User Interfaces a

get the string that the user typed (note that either hObject or the function
handle name huitext can be used to refer to the object in which the string
was entered)

create a static text box to print the string in red with a larger font
make this new object visible.

guiWithEditbox.m

function guiWithEditbox

% guiWithEditbox has an editable text box

% and a callback function that prints the user's
% string in red

% Format: gquiWithEditbox or guiWithEditbox()

% Create the GUI but make it invisible for now

f = figure('Visible', 'off','color','white','Position’',...
[360, 500, 800,6001);

% Put a name on it and move it to the center of the screen

set(f,"'Name', 'GUI with editable text')

movegui(f, 'center")

% Create two objects: a box where the user can type and

% edit a string and also a text title for the edit box

hsttext = uicontrol('Style', "text’',...
'BackgroundColor', 'white',...
'Position',[100,425,400,551],...
'String', 'Enter your string here');

huitext = uicontrol('Style','edit’,...
'Position',[100,400,400,401,...
'Callback',@callbackfn);

% Now the GUI is made visible
set(f,'Visible','on")

% Call back function
function callbackfn(hObject,eventdata)
% callbackfn is called by the 'Callback' property
% in the editable text box
set([hsttext huitext],'Visible','off');
% Get the string that the user entered and print
% it in big red letters
printstr = get(huitext,'String');
hstr = uicontrol('Style', "text',...
'BackgroundColor', 'white',...
"Position',[100,400,400,551],...
'String',printstr,...
'"ForegroundColor', 'Red"', 'FontSize',30);
set(hstr,'Visible','on")
end
end

m CHAPTER 13: Sights and Sounds

Fle Edit View Insert Tools Desktop Window Help

Enter your string here

i and how are you?|

FIGURE 13.16 String entered by user in editable text box

When the Figure Window is first made visible, the static text and the editable
text box are shown. In this case, the user entered 'hi and how are you? Note
that to enter the string, the user must first click the mouse in the editable text
box. The string that was entered by the user is shown in Figure 13.16.

After the user enters this string and hits the Enter key, the callback function
is executed; the results are shown in Figure 13.17. The callback function sets

File Edit View Insert Tools Desktop Window Help

hi and how are you?

FIGURE 13.17 The result from the callback function

13.3 Introduction to Graphical User Interfaces

the Visible property to off for both of the original objects by referring to
their handles. As the callback function is a nested function, the handle
variables can be used. It then gets the string and writes it in a new static text

box in red.

Now we'll add a push button to the GUI. This time, the user will enter a string,
but the callback function will be invoked when the push button is pushed.

guilWithPushbutton.m

function guiWithPushbutton
% guiWithPushbutton has an editable text box and a pushbutton
% Format: guiWithPushbutton or guiWithPushbutton()

% Create the GUI but make it invisible for now while

% it is being initialized

f = figure('Visible', 'off','color','white','Position’,...
[360,500,800,6001);

hsttext = uicontrol('Style', 'text', 'BackgroundColor','white',...
"Position',[100,425,400,551],...
'String',"Enter your string here');

huitext = uicontrol('Style','edit','Position',[100,400,400,40]);

set(f, 'Name",'GUI with pushbutton')

movegui(f, 'center")

% Create a pushbutton that says "Push me!!"

hbutton = uicontrol('Style', 'pushbutton','String’',...
"Push mel!!", '"Position',[600,50,150,5017,...
'Callback',@callbackfn);

% Now the GUI is made visible

set(f,'Visible','on")

% Call back function
function callbackfn(hObject,eventdata)
% callbackfn is called by the 'Callback' property
% in the pushbutton
set([hsttext huitext hbutton],'Visible','off');
printstr = get(huitext, 'String');
hstr = uicontrol('Style', "text', 'BackgroundColor’,...
'white', 'Position',[100,400,400,557,...
'String’',printstr,...
'ForegroundColor','Red', 'FontSize',30);
set(hstr,'Visible','on")
end
end

In this case, the user types the string into the edit box. Hitting Enter, however,
does not cause the callback function to be called; instead, the user must push
the button with the mouse. The callback function is associated with the push
button object. So, pushing the button will bring up the string in a larger red
font. The initial configuration with the push button is shown in Figure 13.18.

m CHAPTER 13: Sights and Sounds

) Figure 1: GUI with pushbutton g@@
1

File Edit Yiew Insert Tools Desktop Window Help

Erter your string here

FIGURE 13.18 Graphical user interface with a push button

PRACTICE 13.4

Create a GUI that will convert a length from inches to centimeters. The GUI should have an edit-
able text box in which the user enters a length in inches, and a push button that says “Convert
me!”. Pushing the button causes the GUI to calculate the length in centimeters and display
that. The callback function that accomplishes this should leave all objects visible. That means
that the user can continue converting lengths until the Figure Window is closed. The GUI should
display a default length to begin with (e.g., 1 inch). For example, calling the function might bring up
the Figure Window shown in Figure 13.19.

Then, when the user enters a length (e.g., 5.2 inches) and pushes the button, the Figure Window
will show the new calculated length in centimeters (as seen in Figure 13.20).

Another GUI object that can be created is a slider. The slider object has
a numerical value and can be controlled by either clicking on the arrows to
move the value up or down, or by sliding the bar with the mouse. By default,
the numerical value ranges from 0 to 1, but these values can be modified using
the ‘Min’ and ‘Max’ properties.

The function guiSlider creates in a Figure Window a slider that has a minimum
value of 0 and a maximum value of 5. It uses text boxes to show the minimum
and maximum values, and also the current value of the slider.

13.3 Introduction to Graphical User Interfaces a

guiStlider.m

function guiSlider
% guiSlider is a GUI with a slider
% Format: gquiSlider or guiSTider()

f = figure('Visible', 'off','color','white', 'Position',
[360,500,300,300]);

% Minimum and maximum values for slider
minval = 0;
maxval = b5;

% Create the slider object

sThan = uicontrol('Style','slider"', " 'Position',[80,170,100,50],
'"Min', minval, 'Max', maxval,'Callback', @callbackfn);

% Text boxes to show the minimum and maximum values

hmintext = uicontrol('Style', 'text','BackgroundColor','white"',
'"Position', [40,175,30,30], 'String', numZ2str(minval));

hmaxtext = uicontrol('Style','text"', 'BackgroundColor', 'white',...
"Position', [190,175,30,30]1, 'String', num2str(maxval));

% Text box to show the current value (off for now)

hsttext = uicontrol('Style', 'text', 'BackgroundColor','white',...
"Position',[120,100,40,40],"'Visible"', 'off');

set(f,"'Name','Slider Example")
movegui(f, 'center')
set(f,'Visible','on")

% Call back function displays the current slider value
function callbackfn(hObject,eventdata)
% callbackfn is called by the 'Callback' property
% in the slider

num=get(slhan, 'Value');
set(hsttext, 'Visible','on','String',num2str(num))
end
end

Calling the function brings up the initial configuration shown in Figure 13.21.

Then, when the user interacts by sliding the bar or clicking on an arrow, the
current value of the slider is shown under it, as shown in Figure 13.22.

PRACTICE 13.5

Use the Help browser to find the property that controls the increment value on the slider and
modify the guiSlider function to move in increments of 0.5 when the arrow is used.

It is possible to have a callback function invoked, or called, by multiple
objects. For example, the function guiMultiplierlf has two editable text boxes
for numbers to be multiplied together, as well as a push button that says
“Multiply me!”, as shown in Figure 13.23. Three static text boxes show the

m CHAPTER 13: Sights and Sounds

File Edit View Insert Tools Desktop Window Help File Edit View Insert Tools Desktop Window Help ~
Tl in= 254 em 52 s 1321 om
FIGURE 13.19 Length conversion graphical user FIGURE 13.20 Result from conversion graphical
interface with push button user interface

File Edt View Insert Tools Deskiop Window Help ~ File Edit View Insert Tools Desktop ‘Window Help -

¥R BEER

325

FIGURE 13.21 Graphical user interface with slider FIGURE 13.22 Graphical user interface with slider result
shown
‘%', '=', and the result of the multiplication. The callback function is associated
with both the push button and the second editable text box. The callback
function uses the input argument hObject to determine which object called it;
it displays the result of the multiplication in red if called by the editable text
box, or it displays the result in green if called by the push button.

13.3 Introduction to Graphical User Interfaces a

guiMultiplierIf.m

function guiMultiplierIf

% guiMultiplierIf has 2 edit boxes for numbers and
% multiplies them

% Format: guiMultiplierIforguiMultiplierIf()

f = figure('Visible', 'off','color','white', 'Position',...
[360,500,300,3001);

firstnum=0;

secondnum=0;

hsttext = uicontrol('Style','text', 'BackgroundColor', 'white',...
'"Position',[120,150,40,407,"'String"','X");

hsttext?2 = uicontrol('Style', "text"', 'BackgroundColor','white"',...
"Position',[200,150,40,40],"'String"','=");

hsttext3 = uicontrol('Style', 'text', 'BackgroundColor', 'white',...
"Position',[240,150,40,401,"'Visible',"off");

huitext = uicontrol('Style','edit"','Position',[80,170,40,4017,...
'String',num2str(firstnum));

huitext?2 = uicontrol('Style','edit', 'Position',[160,170,40,407,...

'String',num2str(secondnum),...
'Callback',@callbackfn);

set(f, 'Name','GUI Multiplier")
movegui(f,'center')

hbutton = uicontrol('Style', 'pushbutton’,...
'String','Multiply me!l"',...
'Position',[100,50,100,50], 'Callback',@callbackfn);

set(f,'Visible','on")

function callbackfn(hObject,eventdata)
% callbackfn is called by the 'Callback' property
% in either the second edit box or the pushbutton

firstnum=str2double(get(huitext, 'String'));
secondnum=str2double(get (huitext?2,'String'));
set(hsttext3, 'Visible','on"',...
'String',num2str(firstnum*secondnum))
if hObject == hbutton
set(hsttext3, 'ForegroundColor','g")
else
set(hsttext3, 'ForegroundColor','r")

end
end

GUI functions can also have multiple callback functions. In the example
guiWithTwoPushbuttons there are two buttons that could be pushed
(see Figure 13.24). Each of them has a unique callback function associated
with it. If the top button is pushed, its callback function prints red exclamation
points (as shown in Figure 13.25). If the bottom button is instead pushed, its

callback function prints blue asterisks.

m CHAPTER 13: Sights and Sounds

guilWithTwoPushbuttons.m

function guiWithTwoPushbuttons

% guilWithTwoPushbuttons has two pushbuttons, each
% of which has a separate callback function
% Format: guiWithTwoPushbuttons

% Create the GUI but make it invisible for now while

% 1t is being initialized

f = figure('Visible', 'off','color','white',...
'Position', [360, 500, 400,400]1);

set(f,"'Name','GUI with 2 pushbuttons"')

movegui(f, 'center')

% Create a pushbutton that says "Push mel!!"

hbuttonl = uicontrol('Style', 'pushbutton','String',...
"Push me!!', 'Position',[150,275,100,507, ...
"Callback',@callbackfnl);

% Create a pushbutton that says "No, Push mel!!"
hbutton2 = uicontrol('Style", 'pushbutton','String',...
"No, Push me!!', '"Position',[150,175,100,50], ...

"Callback',@callbackfn2);
% Now the GUI is made visible
set(f,'Visible','on")

% Call back function for first button

function callbackfnl(hObject,eventdata)
% callbackfn is called by the 'Callback' property
% in the first pushbutton

set([hbuttonl hbutton2],'Visible','off");
hstr = uicontrol('Style', "text"',...
'BackgroundColor', 'white', 'Position',...
[150,200,100,1001, 'String',"tititrr ..
'ForegroundColor', 'Red"', 'FontSize',30);
set(hstr,'Visible','on")
end

% Call back function for second button

function callbackfn2(hObject,eventdata)
% callbackfn is called by the 'Callback' property
% in the second pushbutton

set([hbuttonl hbutton2],'Visible','off"');

hstr = uicontrol('Style',"text',...
'BackgroundColor', 'white', ...
'Position',[150,200,100,10017,...
'String', tRRRREN
'ForegroundColor', 'Blue', 'FontSize"',30);

set(hstr,'Visible','on")

end

end

13.3 Introduction to Graphical User Interfaces a

File Edit Yiew Insert Tools Desktop Window Help ~

Multiply me!

FIGURE 13.23 Multiplier graphical user interface

If the first button is pushed, the first callback function is
called, which would produce the result in Figure 13.25.
The result from this GUI could be obtained by using two
separate callback functions, as in guiWithTwoPushButtons
or by having an if statement in one callback function, as
in guiMultiplierIf.

13.3.3 Plots and Images in GUIs

Plots and images can be imbedded in a GUI. In the next
example guiSliderPlot shows a plot of sin(x) from 0 to the
value of a slider bar. The axes are positioned within the
Figure Window using the axes function, and then when
the slider is moved the callback function plots. Note the
use of the ‘Units’ Property. When set to ‘normalized’, the
Figure Window can be resized and all of the objects will
resize accordingly. This is the default for the axes function,
which is why ‘Pixels’ is specified for the ‘Units’. Using
‘normalized’ for the ‘Position” property to begin with will
be demonstrated in a later section.

) Figure 1: GUlwith 2 pushbuttons Q@@
~

File Edit View Insert Tools Desktop Window Help

Push mell

Mo, Push mell

FIGURE 13.24 Graphical user interface with two
push buttons and two callback functions

) Figure 1: GUI with 2 pushbuttons Q@@
~

File Edit View Insert Tools Desktop Window Help

FIGURE 13.25 The result from the first callback
function

m CHAPTER 13: Sights and Sounds

guiSTiderPlot.m

function guiSliderPlot

% guiSliderPlot has a slider

% It plots sin(x) from 0 to the value of the slider
% Format: guisliderPlot

f = figure('Visible', 'off','Position',...
[360, 500, 400,400], 'Color', 'white');

% Minimum and maximum values for slider
minval = 0;
maxval = 4*pi;

% Create the slider object

slhan = uicontrol('Style','slider"', 'Position',[140,280,100,507,...
'Min', minval, 'Max', maxval,'Callback', @callbackfn);

% Text boxes to show the min and max values and slider value

hmintext = uicontrol('Style', "text', 'BackgroundColor"', 'white',...
'Position', [90, 285, 40,151, 'String', num2str(minval));
hmaxtext = uicontrol('Style','text', 'BackgroundColor', 'white',..

'Position', [250, 285, 40,157, 'String', num2str(maxval));
hsttext = uicontrol('Style', 'text','BackgroundColor', 'white',...
'Position', [170,340,40,157,'Visible', "off");
% Create axes handle for plot
axhan = axes('Units','Pixels','Position', [100,50,200,200]);

set(f,"'Name",'STider Example with sin plot')

movegui(f, 'center"')

set([sThan,hmintext,hmaxtext,hsttext,axhan], 'Units', 'normalized")
set(f,'Visible','on")

% Call back function displays the current slider value & plots sin
function callbackfn(hObject,eventdata)
% callbackfn is called by the 'Callback' property
% in the slider
num=get(sThan, 'Value');
set(hsttext, 'Visible','on', 'String',num2str(num))
X = 0:num/50:num;
y = sin(x);
plot(x,y)
xlabel('x")
ylabel('sin(x)")
end
end

Figure 13.26 shows the initial configuration of the window, with the slider bar,
static text boxes to the left and right showing the minimum and maximum
values, and the axes positioned underneath.

13.3 Introduction to Graphical User Interfaces a

After the slider bar is moved, the callback function plots sin(x) from 0 to the
position of the slider bar, as shown in Figure 13.27.

Images can also be placed in GUIs, again using axes to locate the image.
In a variation on the previous example the next example displays an
image and uses a slider to vary the brightness of the image. The result is
shown in Figure 13.28.

guiSliderImage.m

function guiSliderImage

% guiSliderPlot has a slider

% Displays an image; slider dims it
% Format: guisliderImage

f = figure('Visible', 'off','Position',...
[360, 500, 400,400], 'Color', 'white');

% Minimum and maximum values for slider
minval = 0;
maxval = 1;

% Create the slider object

slhan = uicontrol('Style','slider"', 'Position',[140,280,100,507,...
'Min', minval, 'Max', maxval,'Callback', @callbackfn);

% Text boxes to show the min and max values and slider value

hmintext = uicontrol('Style', " "text"', 'BackgroundColor"', 'white',...
'Position', [90, 285, 40,151, 'String', num2str(minval));
hmaxtext = uicontrol('Style', 'text', 'BackgroundColor', 'white',..

'Position', [250, 285, 40,151, 'String', num2str(maxval));
hsttext = uicontrol('Style','text', 'BackgroundColor', 'white',...
'Position', [170,340,40,157,'Visible", 'off"');
% Create axes handle for plot
axhan = axes('Units', 'Pixels','Position', [100,50,200,2001);

set(f,"'Name','STlider Example with image"')

movegui(f, 'center"')
set([sThan,hmintext,hmaxtext,hsttext,axhan],'Units"', 'normalized')
set(f,'Visible','on")

% Call back function displays the current slider value
% and displays image
function callbackfn(hObject,eventdata)

% callbackfn is called by the 'Callback' property

% in the slider num=get(slhan, 'Value');

set(hsttext, 'Visible','on','String' ,num2str(num))

myimagel = imread('snowyporch.JPG');

dimmer = num * myimagel;

image(dimmer)

end
end

m CHAPTER 13: Sights and Sounds

9.0059
4 ‘ ’ ‘ 4 I I » I
0 12.5664 0 12.5664
1 1
08 05
06} =
Z o
04}
05
02}
-1 A
0 5 10
00 0‘.5 ’I] X
FIGURE 13.26 The axes FIGURE 13.27 Plot shown in a graphical user
are positioned in the graphical interface Figure Window

user interface

0.9

500
1000 :

1500

1000 2000 3000 4000
FIGURE 13.28 Graphical user interface with an image and slider for brightness

13.3 Introduction to Graphical User Interfaces

13.3.4 Normalized Units and Button Groups

This section illustrates several features: radio buttons, grouping objects
together (in this case in a button group), and the use of normalized units
when setting the positions.

When the “Units’ property of objects is set to ‘Normalized’, this means that
rather than specifying in pixels the position, it is done as a percentage of the
Figure Window. This allows the Figure Window to be resized. For example, the
function simpleGuiNormalized is a version of the first GUI example that uses
normalized units:

simpleGuiNormalized.m

function simpleGuiNormalized
% simpleGuiNormalized creates a GUI with just a static text box
% Format: simpleGuiNormalized or simpleGuiNormalized()

% Create the GUI but make it invisible for now while
% it is being initialized
f = figure('Visible', 'off','color','white','Units’',...
"Normalized', 'Position', [.25, .5, .35, .31);
htext = uicontrol('Style','text','Units', 'Normalized', ...
'Position', [.45, .2, .2, .11, ..
'String','My First GUI string');

% Put a name on it and move to the center of the screen
set(f,"'Name"', 'Simple GUI Normalized')
movegui(f, 'center")

% Now the GUI is made visible
set(f,'Visible','on")
end

The next GUI presents the user with a choice of colors using two radio buttons,
only one of which can be chosen at any given time. The GUI prints a string to
the right of the radio buttons, in the chosen color.

The function uibuttongroup creates a mechanism for grouping together the
buttons. As only one button can be chosen at a time, there is a type of
callback function called ‘SelectionChangeFcn' that is called when a button is
chosen.

This function gets from the button group which button is chosen with the
‘SelectedObject’ property. It then chooses the color based on this. This prop-
erty is set initially to the empty vector, so that neither button is selected; the
default is that the first button would be selected.

CHAPTER 13: Sights and Sounds

guiWithButtongroup.m

function guiWithButtongroup
% guiWithButtongroup has a button group with 2 radio buttons
% Format: guiWithButtongroup

% Create the GUI but make it invisible for now while

% it is being initialized

f = figure('Visible', 'off','color','white','Position’',...
[360, 500, 400,4001);

% Create a button group

grouph = uibuttongroup('Parent',f,"'Units"', 'Normalized"',...
"Position',[.2 .5 .4 .47, 'Title','Choose Color',...
'SelectionChangefFcn' ,@whattodo);

% Put two radio buttons in the group

toph = uicontrol(grouph, 'Style', 'radiobutton’,...
'String', 'Blue',"Units"', 'Normalized',...
"Position', [.2 .7 .4 .21);

both = uicontrol(grouph, 'Style','radiobutton',...
'String', 'Green','Units', 'Normalized',...
"Position',[.2 .4 .4 .2]1);

% Put a static text box to the right

texth = uicontrol('Style', "text',"'Units', 'Normalized',...
'Position',[.6 .5 .3 .3],'String', 'Hello',...
'"Visible','off', 'BackgroundColor', 'white');

set(grouph, 'SelectedObject',[]) % No button selected yet

set(f,"'Name', 'GUI with button group"')

movegui(f, 'center"')

% Now the GUI is made visible

set(f,'Visible','on")
function whattodo(hObject, eventdata)
% whattodo is called by the 'SelectionChangeFcn' property
% in the button group

which = get(grouph, 'SelectedObject');

if which == toph
set(texth, 'ForegroundColor"', 'blue')
else
set(texth, 'ForegroundColor"', 'green')
end

set(texth,'Visible','on")
end

end

Explore Other Interesting Features a

, ,

File Edit View Insert Tools Desktop Window Help File Edit View Insert Tools Desktop Window Help
Choose Color —————— Choose Color
O Blue @ Bivg Hello
O Green O Green
FIGURE 13.29 Button group with radio buttons FIGURE 13.30 Button group: choice of color for string

Figure 13.29 shows the initial configuration of the GUI: the button group is in
place, as are the buttons (but neither is chosen).

Once a radio button has been chosen, the ‘SelectionChosenFcn’ chooses the
color for the string, which is printed in a static text box on the right, as shown
in Figure 13.30.

m Explore Other Interesting Features

m Several audio file formats are used in industry on different computer
platforms. Audio files with the extension “.au” were developed by Sun
Microsystems; typically, they are used with Java and Unix, whereas
Windows PCs typically use “.wav” files that were developed by Microsoft.
Investigate the MATLAB functions audioread, audioinfo, and audiowrite.

m Investigate the colorcube function, which returns a colormap with
regularly spaced R, G, and B colors.

= Investigate the imfinfo function, which will return information about an
image file in a structure variable.

m Investigate how colormaps work with image matrices of types uint8 and
uint16.

= In addition to true color images and indexed images into a colormap,

a third type of image is an intensity image, which is used frequently for
grayscale images. Investigate how to use the image scale function imagesc.

m The uibuttongroup function is used specifically to group together
buttons; other objects can be grouped together similarly using the
uipanel function. Investigate how this works.

m CHAPTER 13: Sights and Sounds

m When a GUI has a lot of objects, creating a structure to store the handles
can be useful. Investigate the guihandles function, which accomplishes
this.

= Investigate the uitable function. Use it to create a GUI that demonstrates
a matrix operation.

m Beginning with MATLAB Version R2012b, GUIs can be packaged as
apps! Under the Search Documentation under GUI Building, read how
to do this in the category “Packaging GUIs as Apps”. Apps can be shared
with other users. There is also a lot of information on apps (creating
them, downloading them, modifying them, and so forth) under
“Desktop Environment”. |

H Summary

Common Pitfalls

m Confusing true color and colormap images.

m Forgetting that uicontrol object positions are within the Figure Window,
not within the screen.

Programming Style Guidelines
= Make a GUI invisible while it is being created, so that everything
becomes visible at once.

MATLAB Functions and Commands

chirp soundp uipanel

gong colormap uibuttongroup
laughter jet root

splat image uicontrol

train imread movegui
handel imwrite

Load two of the built-in MAT-file sound files (e.g., gong and chirp). Store the
sound vectors in two separate variables. Determine how to concatenate these so
that the sound function will play one immediately followed by the other; fill in the
blank here:

sound(, 8192)

The following function playsound plays one of the built-in sounds. The function

has a cell array that stores the names. When the function is called, an integer is
passed, which is an index into this cell array indicating the sound to be played. The
default is ‘train’, so if the user passes an invalid index, the default is used.

The appropriate MAT-file is loaded. If the user passes a second argument, it is the
frequency at which the sound should be played (otherwise, the default frequency is
used). The function prints what sound is about to be played and at which
frequency, and then actually plays this sound. You are to fill in the rest of the
following function. Here are examples of calling it (you can't hear it here, but the
sound will be played!)

>> playsound(-4)

You are about to hear train at frequency 8192.0

>> playsound(2)

You are about to hear gong at frequency 8192.0

>> playsound(3,8000)

You are about to hear Taughter at frequency 8000.0

playsound.m

function playsound(caind, varargin)

% This function plays a sound from a cell array
% of mat-file names

% Format playsound(index into cell array) or

o

5 playsound(index into cell array, frequency)

o

% Does not return any values

soundarray = {'chirp',"'gong', 'laughter','splat','train'};
if caind < 1 || caind > length(soundarray)
caind = length(soundarray);
end
mysound = soundarray{caind};
eval(['Toad ' mysound])

% Fi11 in the rest

Create a custom colormap for a sphere that consists of the first 25 colors in the
default colormap jet. Display sphere(25) with a colorbar as seen in Figure 13.31.
Write a script that will create the image seen in figure 13.32 using a colormap.
Write a script that will create the same image as in Exercise 4, using a 3D true color
matrix.

A script rancolors displays random colors in the Figure Window, as shown in
Figure 13.33. It starts with a variable nColors which is the number of random colors
to display (e.g., below this is 10). It then creates a colormap variable mycolormap,
which has that many random colors, meaning that all three of the color compo-
nents (red, green, and blue) are random real numbers in the range from 0 to 1. The
script then displays these colors in an image in the Figure Window.

Write a script that will produce the output shown in Figure 13.34. Use eye and
repmat to generate the required matrix efficiently. Also, use axis image to
correct the aspect ratio.

m CHAPTER 13: Sights and Sounds

FIGURE 13.31 Custom blue colormap for a sphere

5
10
15
20
25
30
35
40
45
50

5 10 15 20 25 30 35 40 45 50

FIGURE 13.32 Image displaying four colors using a custom colormap

8. Write a script that will create a colormap that just has two colors: white and black.
The script will then create a 50 x 50 image matrix in which each element is
randomly either white or black. In one Figure Window, display this image on the
left. On the right, display another image matrix in which the colors have been
reversed (all white pixels become black and vice versa). For example, the images
might look like Figure 13.35 (the axes are defaults; note the titles).

Do not use any loops or if statements. For the image matrix that you created, what
would you expect the overall mean of the matrix elements to be?

9. Write a script that will create an “image” matrix mat consisting of random colors
from the colormap jet in each of the pixels. It will then create a new matrix

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
14
1.5

1 2 3 4 6
FIGURE 13.33 Rainbow of random colors

5 7

8

9

10

FIGURE 13.34 Checkerboard

consisting of only the pixels that have blue colors from the original image matrix
(defined as the first 16 colors from jet); all other matrix elements are replaced with
white. Note that white is not a color in jet, so a new colormap must be created that
adds white to the colors in jet. The two matrices are to be displayed side-by-side,

as demonstrated in Figure 13.36.

Write a script that will show shades of green and blue as seen in Figure 13.37.
First, create a colormap that has 30 colors (10 blue, 10 aqua, and then 10 green).
There is no red in any of the colors. The first 10 rows of the colormap have no
green, and the blue component iterates from 0.1 to 1 in steps of 0.1. In the
second 10 rows, both the green and blue components iterate from 0.1 to 1 in

FIGURE 13.35 Reverse black and white pixels

m CHAPTER 13: Sights and Sounds

FIGURE 13.36 Blue extracted from image

1 2 3 4 5 6 7 8 9 10

FIGURE 13.37 Shades of blue, agua, and green

steps of 0.1. In the last 10 rows, there is no blue, but the green component
iterates from 0.1 to 1 in steps of 0.1. Then, display all of the colors from this
colormap in a 3 x 10 image matrix in which the blues are in the first row, aquas in
the second, and greens in the third, as follows (the axes are the defaults). Do not
use loops.

11. A part of an image is represented by an n x n matrix. After performing data
compression and then data reconstruction techniques, the resulting matrix has

values that are close to, but not exactly equal to, the original matrix. For example,
the following 4 x 4 matrix variable orig_im represents a small part of a true color
image, and fin_im represents the matrix after it has undergone data compression
and then reconstruction.

orig_im =
156 44 129 87
18 158 118 102
80 62 138 78
155 150 241 105
fin_im =
153 43 130 92
16 152 118 102
73 66 143 75
152 155 247 114

Write a script that will simulate this by creating a square
matrix of random integers, each in the range from 0 to
255, It will then modify this to create the new matrix by
randomly adding or subtracting a random number (in

a relatively small range, say 0 to 10) from every element
in the original matrix. Then, calculate the average
difference between the two matrices.

A script colorguess plays a guessing game. It creates an
n x n matrix and randomly picks one element in the
matrix. It prompts the user to guess the element
(meaning the row index and column index). Every time
the user guesses, that element is displayed as red. When J . . L ‘
the user correctly guesses the randomly picked element, T2 3 4 5 6 7 8 9 10
that element is displayed in blue and the script ends. FIGURE 13.38 Guessing Game

Here is an example of running the script (the randomly

picked element in this case is (8,4)). Only the last version

of the Figure Window is shown in Figure 13.38.

-

© O N o o » W N

=
o

>> colorguess

Enter the row #: 4
Enter the col #: 5
Enter the row #: 10
Enter the col #: 2
Enter the row #: 8
Enter the col #: 4

It is sometimes difficult for the human eye to perceive the brightness of an object
correctly. For example, in Figure 13.39 the middle of both images is the same color,
and yet, because of the surrounding colors, the one on the left looks lighter than
the one on the right. Write a script to generate a Figure Window similar to this one.

m CHAPTER 13: Sights and Sounds

0.5

0.5

25 25

3.5

35 . . .
1 2 3 1 2 3

FIGURE 13.39 Depiction of brightness perception

Two 3 x 3matrices were created. Use subplot to display both images side by side
(the axes shown here are the defaults). Use the RGB method.

Put a JPEG file in your Current Folder and use imread to load it into a matrix.
Calculate and print the mean separately of the red, green, and blue components in
the matrix, and also the standard deviation for each.

Some image acquisition systems are not very accurate and the result is noisy
images. To see this effect put a JPEG file in your Current Folder and use imread to
load it. Then, create a new image matrix by randomly adding or subtracting a value
n to every element in this matrix. Experiment with different values of n. Create

a script that will use subplot to display both images side by side.

The dynamic range of an image is the range of colors in the image (the minimum
value to the maximum value). Put a JPEG file into your Current Folder. Read the
image into a matrix. Use the built-in functions min and max to determine the
dynamic range and print the range. Note that if the image is a true color image, the
matrix will be 3D; thus, it will be necessary to nest the functions three times to get
the overall minimum and maximum values.

Put a JPEG file into your Current Folder. Type in the following script, using your
own JPEG filename.

I1 = imread('xxx.jpg"');

[r c h] = size(Il);
Inew(:,:,:) = I1(:,c:-1:1,:);
figure(l)

subplot(2,1,1)

image(I1);

subplot(2,1,2)

image(Inew);

Determine what the script does. Put comments into the script to explain it step-
by-step.

Write a function that will create a simple GUI with one static text box near the
middle of the Figure Window. Put your name in the string, and make the
background color of the text box white.

Write a function that will create a GUI with one editable text box near the middle of
the Figure Window. Put your name in the string. The GUI should have a callback
function that prints the user’s string twice, one under the other.

Write a function that creates a GUI to calculate the area of a rectangle. It should
have edit text boxes for the length and width, and a push button that causes the
area to be calculated and printed in a static text box.

Write a function that creates a simple calculator with a GUI. The GUI should have
two editable text boxes in which the user enters numbers. There should be four
push buttons to show the four operations (+, -, *, /). When one of the four

push buttons is pressed the type of operation should be shown in a static text box
between the two editable text boxes and the result of the operation should be
displayed in a static text box. If the user tries to divide by zero display an error
message in a static text box.

Modify any example GUI from the chapter to use normalized units instead of pixels.
Modify any example GUI to use the ‘HorizontalAlignment' property to left-justify
text within an edit text box.

Modify the gui_slider example in the text to include a persistent count variable in
the callback function that counts how many times the slider is moved. This count
should be displayed in a static text box in the upper right comer, as shown in
Figure 13.40.

The wind chill factor (WCF) measures how cold it feels with a given air tempera-
ture T (in degrees Fahrenheit) and wind speed (V, in miles per hour). The formula is
approximately

WCF = 35.7 + 0.6 T — 35.7(V%16) + 0.43 T(V"')

Write a GUI function that will display sliders for the temperature and wind speed.
The GUI will calculate the WCF for the given values and display the result in a text
box. Choose appropriate minimum and maximum values for the two sliders.
Write a GUI function that will demonstrate graphically the difference between a for
loop and a while loop. The function will have two push buttons: one that says ‘for’
and another that says ‘while’. There are two separate callback functions, one
associated with each of the push buttons. The callback function associated with
the 'for’ button prints the integers 1 through 5, using pause(1) to pause for 1
second between each, and then prints ‘Done.” The callback function associated
with the ‘while’ button prints integers beginning with 1 and also pauses between
each. This function, however, also has another push button that says ‘mystery’ on
it. This function continues printing integers until the ‘mystery’ button is pushed
and then it prints ‘Finally!".

Exercises

1.3333

FIGURE 13.40 Slider
with count

m CHAPTER 13: Sights and Sounds

Write a function that will create a GUI in which there is a plot of cos(x). There
should be two editable text boxes in which the user can enter the range for x.
Write a function that will create a GUI in which there is a plot. Use a button group
to allow the user to choose among several functions to plot.

Read the following GUI function and answer the questions below about it.

function bggui

f = figure('Visible', 'off','color','white','Position’',...
[360, 500, 400,4001);

numl = 0;

num2 = 0;

grouph = uibuttongroup('Parent',f,'Units"', "Normalized',...
"Position',[.3 .6 .3 .3], 'Title','Choose’,...
'SelectionChangeFcn' ,@whattodo);

hl = uicontrol(grouph, 'Style', 'radiobutton’,...
'String','Add"', 'Units"', 'Normalized',...
"Position', [.2 .7 .6 .21);

h2 = uicontrol(grouph, 'Style','radiobutton',...

'String', 'Subtract’,'Units',"'Normalized',...
"Position',[.2 .3 .6 .2]1);

nlh = uicontrol('Style','edit',"Units"', "Normalized',...
"Position',[.1 .2 .2 .2]1,'String',num2str(numl),...
'BackgroundColor', 'white');

n2h = uicontrol ('Style','edit','Units"', 'Normalized"',...
'"Position',[.4 .2 .2 .2],'String',num2str(num2),...
'BackgroundColor', 'white');

n3h = uicontrol('Style',"text"','Units"', "Normalized",
"Position',[.7 .1 .2 .2],'String',num2str(0),...
'BackgroundColor','white');

set(grouph, 'SelectedObject',[1)

set(f, 'Name', 'Exam GUI")

movegui(f, 'center")

set(f,'Visible','on")
function whattodo(source, eventdata)
which = get(grouph, 'SelectedObject');
numl = str2num(get(nlh, 'String'));
num2 = str2num(get(n2h, 'String'));
if which == hl

set(n3h,'String', num2str(numl+num2))

else

set(n3h, 'String',num2str(numl-num2))
end
end
end

Describe, very basically, in English what this GUI does.

What calls the nested function whattodo?

Which radio button is chosen initially?

What does the string say on the bottom radio button?
Write a GUI function that will create a rectangle object. The GUI has a slider on
top that ranges from 2 to 10. The value of the slider determines the width of the
rectangle. You will need to create axes for the rectangle. In the callback function,
use cla to clear the children from the current axes so that a thinner rectangle can
be viewed.
Put two different JPEG files into your Current Folder. Read both into matrix
variables. To superimpose the images, if the matrices are the same size, the
elements can simply be added element-by-element. However, if they are not the
same size, one method of handling this is to crop the larger matrix to be the same
size as the smaller, and then add them. Write a script to do this.

In a random walk, every time a “step” is taken, a direction is randomly chosen.
Watching a random walk as it evolves, by viewing it as an image, can be very
entertaining. However, there are actually very practical applications of random
walks; they can be used to simulate diverse events, such as the spread of a forest
fire or the growth of a dendritic crystal.

The following function simulates a “random walk” using a matrix to store the
random walk as it progresses. To begin with all elements are initialized to 1. Then,
the “middle” element is chosen to be the starting point for the random walk; a 2 is
placed in that element. (Note that these numbers will eventually represent colors.)
Then, from this starting point, another element next to the current one is chosen
randomly and the color stored in that element is incremented; this repeats until one
of the edges of the matrix is reached. Every time an element is chosen for the next
element, it is done randomly by either adding or subtracting one to/from each
coordinate (x and y), or leaving it alone. The resulting matrix that is returned is an n
by n matrix.

function walkmat = ranwalk(n)
walkmat = ones(n);
x = floor(n/2);
y = floor(n/2);
color = 2;
walkmat(x,y) = color;
while X ~=1 && X ~=n&& y ~=18&& y ~=n
X =X 4+ randi([-1 11);
y =y + randi([-1 11);
color = color + 1;
walkmat(x,y) = mod(color,65);
end

m CHAPTER 13: Sights and Sounds

20 b

30 b

40

50

60

80

90

FIGURE 13.41 Random walk

You are to write a script that will call this function twice (once passing 8 and once
passing 100) and display the resulting matrices as images side-by-side. Your script
must create a custom colormap that has 65 colors; the first is white and the rest are
from the colormap jet. For example, the result may look like Figure 13.41 (note that
with the 8 x 8 matrix the colors are not likely to get out of the blue range, but with
100 x 100 it cycles through all colors multiple times until an edge is reached).

CHAPTER 14

Advanced Mathematics

curve fitting

complex plane

solution set

CONTENTS

14.1 Fitting

best fit linear algebraic determinant]()Jggesto 462
symbolic mathematics equation Gauss elimination
polynomials square matrix Gauss—Jordan 14.2 1(\31?1%%1:;; 466
degree main diagonal elimination
order diagonal matrix elementary row 143 Matri_x

]] Solutions to
discrete trace operations Systems of
continuous identity matrix echelon form Linear
data sampling banded matrix forward elimination Algebraic
) . . . L. Equations
interpolation tridiagonal matrix back substitution " 473
extrapolation lower triangular matrix back elimination .

. . 14.4 Symbolic
complex number upper triangular matrix reduced row echelon Mathematics
real part symmetric matrix foom 491
imaginary part matrix inverse integration 14.5 Calculus:
purely imaginary matrix augmentation differentiation Integration
complex conjugate coefficients and .
magnitude unknowns J]cDi(l)fIflerentla-

.................. 498

In this chapter, selected advanced mathematical concepts and related built-in

functions in the MATLAB® software are introduced. In many applications

data are sampled, which results in discrete data points. Fitting a curve to the

data is often desired. Curve fitting is finding the curve that best fits the data.

The first section in this chapter first explores fitting simple polynomial curves

to data.

Other topics include complex numbers and a brief introduction to differen-

tiation and integration in calculus. Symbolic mathematics means doing math-

ematics on symbols. Some of the symbolic math functions, all of which are in 461

MATLAB®. http://dx.doi.org/10.1016/B978-0-12-405876-7.00014-6
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-405876-7.00014-6

m CHAPTER 14: Advanced Mathematics

Symbolic Math Toolbox"" in MATLAB, are also introduced. (Note that this is
a Toolbox and, as a result, may not be available universally.)

Solutions to sets of linear algebraic equations are important in many appli-
cations. To solve systems of equations using MATLAB, there are basically two
methods, both of which will be covered in this chapter: using a matrix
representation and using the solve function (which is part of Symbolic Math
Toolbox ™).

14.1 FITTING CURVES TO DATA

MATLAB has several curve fitting functions; Curve Fitting Toolbox " has many
more of these functions. Some of the simplest curves are polynomials of
different degrees, which are described next.

14.1.1 Polynomials
Simple curves are polynomials of different degrees or orders. The degree is the
integer of the highest exponent in the expression. For example:

a straight line is a first order (or degree 1) polynomial of the form ax + b,
or, more explicitly, ax! + b

a quadratic is a second order (or degree 2) polynomial of the form
ax?+bx+c

a cubic (degree 3) is of the form ax’+bx’+cx+d.

MATLAB represents a polynomial as a row vector of coefficients. For example,
the polynomial x* + 2x* — 4x + 3 would be represented by the vector

[1 2 -4 3]. The polynomial 2x* — x? + 5 would be represented by [20 -1 057;
note the zero terms for x> and x'.

The roots function in MATLAB can be used to find the roots of an equation
represented by a polynomial. For example, for the mathematical function:

f(x) = 4x? — 2x* — 8x + 3
to solve the equation f(x) = 0:

>> roots([4 -2 -8 3])
ans =

-1.3660

1.5000

0.3660

The function polyval will evaluate a polynomial p at x; the form is poly-
val(p,x). For example, the polynomial -2x? + x + 4 is evaluated at x = 3, which
yields

2*32 4344, or-11:

> p=[-2147;
>> polyval(p,3)
ans =

-11

The argument x can be a vector:

>> polyval(p,1:3)
ans =
3 -2 -11

14.1.2 Curve Fitting

14.1 Fitting Curves to Data a

Data that we acquire to analyze can be either discrete (e.g., a set of object
weights) or continuous. In many applications, continuous properties are

sampled, such as:

the temperature recorded every hour

the speed of a car recorded every one-tenth of a mile
the mass of a radioactive material recorded every second as it decays
audio from a sound wave as it is converted to a digital audio file.

Sampling provides data in the form of (x,y) points, which could then be
plotted. For example, let’s say the temperature was recorded every hour one
afternoon from 2:00pm to 6:00pm; the vectors might be:

>> x = 2:6;
>> y = 1[65 67 72 71 63];

and then the plot might look like Figure 14.1.

14.1.3 Interpolation and

Extrapolation

In many cases, estimating values other than at the
sampled data points is desired. For example, we
might want to estimate what the temperature was at
2:30pm or at 1:00pm. Interpolation means esti-
mating the values in between recorded data points.
Extrapolation is estimating outside of the bounds of
the recorded data. One way to do this is to fit a curve
to the data and use this for the estimations. Curve
fitting is finding the curve that “best fits” the data.

Simple curves are polynomials of different degrees,
as described previously. Thus, curve fitting involves
finding the best polynomials to fit the data; for
example, for a quadratic polynomial in the form

75 Temperatures one afternoon

70

Temperatures

65 o

60

1 2 3 4 5 6 7
Time

FIGURE 14.1 Plot of temperatures sampled every hour

m CHAPTER 14: Advanced Mathematics

ax? + bx + ¢, it means ﬁnding 75 Temperatures one afternoon
the values of a, b, and c that

yield the best fit. Finding the

best straight line that goes
through data would mean 70
finding the values of a and
b in the equation ax + b.

MATLAB has a function to do
this called polyfit. The func-
tion polyfit finds the coeffi- °
cients of the polynomial of
the specified degree that best 60
fits the data using a least !
squares algorithm. There are
three arguments passed to
the function: the vectors that represent the data and the degree of the desired
polynomial. For example, to fit a straight line (degree 1) through the points
representing temperatures, the call to the polyfit function would be

Temperatures

65 °

2 3 4 5 6 7
Time

FIGURE 14.2 Sampled temperatures with straight line fit

>> polyfit(x,y,1)
ans =
0.0000 67.6000

which says that the best straight line is of the form 0x + 67.6.

However, from the plot (shown in Figure 14.2), it looks like a quadratic would
be a much better fit. The following would create the vectors and then fit
a polynomial of degree 2 through the data points, storing the values in a vector
called coefs.

>> x = 2:6;
>> y=1[65 6772 71 63];
>> coefs = polyfit(x,y,2)
coefs =
-1.8571 14.8571 41.6000

This says that the polyfit function has determined that the best quadratic that
fits these data points is -1.8571x° + 14.8571x + 41.6. So, the variable coefs now
stores a coefficient vector that represents this polynomial.

The function polyval can then be used to evaluate the polynomial at specified
values. For example, we could evaluate at every value in the x vector:

>> curve = polyval(coefs,x)
curve =
63.8857 69.4571 71.3143 69.4571 63.8857

This results in y values for each point in the x vector, and stores them in a vector
called curve. Putting all of this together, the following script called polytemp

14.1 Fitting Curves to Data a

Temperatures one afternoon

75
o
o
o 70
<4
=]
©
2 o
€
5]
= 65 o
o
60
1 2 3 4 5 6 7
Time

FIGURE 14.3 Sampled temperatures with quadratic curve

creates the x and y vectors, fits a second-order polynomial through these points,
and plots both the points and the curve on the same figure. Calling this results
in the plot seen in Figure 14.3. The curve doesn't look very smooth on this plot,
but that is because there are only five points in the x vector.

polytemp.m

% Fits a quadratic curve to temperature data
X = 2:6;

y = [65 67 72 71 6371;

coefs = polyfit(x,y,2);

curve = polyval(coefs,x);
plot(x,y,'ro',x,curve)

xlabel('Time")

ylabel('Temperatures')

title('Temperatures one afternoon')

axis([1 7 60 751)

PRACTICE 14.1

To make the curve smoother, modify the script polytemp to create a new x vector with more
points for plotting the curve. Note that the original x vector for the data points must remain
as is.

To estimate the temperature at different times, polyval can be used for discrete
x points; it does not have to be used with the entire x vector. For example, to
interpolate between the given data points and estimate what the temperature
was at 2:30pm, 2.5 would be used.

>> polyval(coefs,2.5)
ans =
67.1357

m CHAPTER 14: Advanced Mathematics

Degree 1 Degree 2 Degree 3 Also, polyval can be used to extrapolate

b ” " beyond the given data points. For example, to
estimate the temperature at 1:00pm:
o o
o o >> polyval(coefs,1)
70 R 70 R 70 1 ans =
g g 8 54.6000
g ° g ° g The better the curve fit, the more accurate
[} () () .
= = = these interpolated and extrapolated values
65} O {1 e {1 e .
will be.
© © Using the subplot function, we can loop to show
the difference between fitting curves of degrees 1,
ol g0l ol 2,and 3 to some data. For example, the following
2 4 6 2 4 6 2 4 6

Time Time Time script will accomplish this for the temperature
FIGURE 14.4 Subplot to show temperatures with curves of data. (Note that the variable morex stores 100
degrees 1, 2, and 3 points so the graph will be smooth.)

polytempsubplot.m

% Fits curves of degrees 1-3 to temperature

% data and plots in a subplot

X = 2:6;

y = [65 67 72 71 631;

morex = Tinspace(min(x),max(x));

for pd = 1:3
coefs = polyfit(x,y,pd);
curve = polyval(coefs,morex);
subplot(1,3,pd)
plot(x,y,'ro",morex,curve)
xlabel('Time")
ylabel('Temperatures')
title(sprintf('Degree %d',pd))
axis([1l 7 60 751)

Note end

This is the way mathe-
maticians usually write Executing the script
a complex number; in
engineering it is often
written as a + bj, where creates the Figure Window shown in Figure 14.4.

jis v_1.

>> polytempsubplot

14.2 COMPLEX NUMBERS

A complex number is generally written in the form
z = a + bi

where a is called the real part of the number z, b is the imaginary part of z and i

is v/—1.

14.2 Complex Numbers

A complex number is purely imaginary if it is of the form z = bi (in other words,

ifais 0).

We have seen that in MATLAB both i and j are built-in functions that return
v/—1 (s0, they can be thought of as built-in constants). Complex numbers can
be created using i or j, such as “5 + 2i” or “3 — 4j”. The multiplication operator
is not required between the value of the imaginary part and the constant i or j.

Is the value of the expression “3i” the same as “3*"?

Answer

It depends on whether 7 has been used as a variable name or
not. If i has been used as a variable (e.g., an iterator variable in
a for loop), then the expression “3*i" will use the defined value
for the variable and the result will not be a complex number.
The expression “3i" will always be complex. Therefore, it is
a good idea when working with complex numbers to use 1i
or 1j rather than just i or j. The expressions 1i and 1j always

QUICK QUESTION!

result in a complex number, regardless of whether i and j
have been used as variables. So, use “3*1i" or “3i".

>> i =5;
>> 1
i =
5
>> 17
ans =
0 + 1.00001

MATLAB also has a function complex that will return a complex number.
It receives two numbers, the real and imaginary parts in that order, or just one
number, which is the real part (in which case the imaginary part would be 0).
Here are some examples of creating complex numbers in MATLAB:

>> z1 =4 + 27
z1 =
4.0000 + 2.00001

>> 72 = sqrt(-5)
z2 =

0 + 2.23611

>> z3 = complex(3,-3)
z3 =
3.0000 - 3.00001

>> z4 =2+ 3
z4 =
2.0000 + 3.00001

>> zb = (-4) ~ (1/2)
ans =
0.0000 + 2.00001

>> myz = input('Enter a complex
Enter a complex number: 3 + 41
myz =

3.0000 + 4.00001

number: ")

CHAPTER 14: Advanced Mathematics

Note that even when j is used in an expression, i is used in the result. MATLAB
shows the type of the variables created here in the Workspace Window
(or using whos) as double (complex). MATLAB has functions real and imag
that return the real and imaginary parts of complex numbers.

>> real(z1)
ans =
4

>> imag(z3)
ans =
-3

In order to print an imaginary number, the disp function will display both
parts automatically:

>> disp(z1)
4.0000 + 2.00001

The fprintf function will only print the real part unless both parts are printed
separately:

>> fprintf('Zf\n', z1)
4.000000

>> fprintf('Zf + Zfi\n', real(zI1), imag(z1))
4.000000 + 2.0000001

The function isreal returns logical 1 for true if there is no imaginary part of
the argument or logical 0 for false if the argument does have an imaginary
part (even if it is 0). For example,

>> isreal(z1)
ans =
0

>> z6 = complex(3)
z5 =
3

>> isreal(z6)
ans =
0

>> isreal(3.3)
ans =
1

For the preceding variable z6, even though it shows the answer as 3, it is really
stored as 3 + 0i, and that is how it is displayed in the Workspace Window.
Therefore, isreal returns logical false as it is stored as a complex number.

14.2.1 Equality for Complex Numbers
Two complex numbers are equal to each other if both their real parts and
imaginary parts are equal. In MATLAB, the equality operator can be used.

14.2 Complex Numbers a

>> z1 = 72
ans =
0

>> complex(0,4) == sqrt(-16)
ans =
1

14.2.2 Adding and Subtracting Complex Numbers
For two complex numbers z1 = a + bi and z2 = ¢ + di,

z1 + z2=(a +¢c) + (b + d)i

z1 - z2=1(a - c) + (b - d)i

As an example, we will write a function in MATLAB to add two complex
numbers together and return the resulting complex number.

THE PROGRAMMING CONCEPT

In most cases, to add two complex numbers together you would have to separate the real and
imaginary parts, and add them to return your result.

addcomp.m

function outc = addcomp(zl, z2)

% addcomp adds two complex numbers zl and z2 &
% returns the result

% Adds the real and imaginary parts separately
% Format: addcomp(zl,z2)

realpart = real(zl) + real(z2);
imagpart = imag(zl) + imag(z2);
outc = realpart + imagpart * 1i;
end

>> addcomp (3+4i, 2-31)
ans =
5.0000 + 1.0000i

THE EFFICIENT METHOD

MATLAB does this automatically to add two complex numbers together (or subtract).

>> z1 =3 + 41;
>> z2 = 2 - 3i;
>> z1+z2
ans =
5.0000 + 1.0000i

CHAPTER 14: Advanced Mathematics

14.2.3 Multiplying Complex Numbers

For two complex numbers z1 = a + bi and z2 = ¢ + di,

z1 * z2 = (a + bi) * (c + di)

= a*c + a*di + c*bi + bi*di
= a*c + a*di + c*bi - b*d
(a*c - b*d) + (a*d + c*b)i

For example, for the complex numbers

z1 =3 + 41
z2 =1 - 21

the result of the multiplication would be defined mathematically as
z1 * z2 = (3*1 - -8) + (3*-2 + 4*1)i = 11 -2i
This is, of course, automatic in MATLAB:

>> z1*z2
ans =
11.0000 - 2.00001

14.2.4 Complex Conjugate and Absolute Value

The complex conjugate of a complex number z = a + biisz =a — bi. The
magnitude or absolute value of a complex number z is [z] = va? +b%. In
MATLAB, there is a built-in function conj for the complex conjugate, and the
abs function returns the absolute value.

>> z1 = 3 + 41
z1l =
3.0000 + 4.00001

>> conj(z1l)
ans =
3.0000 - 4.0000i

>> abs(z1)
ans =
5

14.2.5 Complex Equations Represented as Polynomials
We have seen that MATLAB represents a polynomial as a row vector of coefficients;
this can be used when the expressions or equations involve complex numbers,
also. For example, the polynomial z% + z - 34 21 would be represented by the vector
[1 1 -3+2i].Theroots function in MATLAB can be used to find the roots of an
equation represented by a polynomial. For example, to solve the equation

ZZ4+z—3+2i=0:

14.2 Complex Numbers

>> roots([1 1 -3+2i])
ans =

-2.3796 + 0.53201
1.3796 - 0.5320i

The polyval function can also be used with this polynomial, for example:

>> ep=[11 -3+27]
cp =
1.0000 1.0000 -3.0000 + 2.00001

>> polyval(cp,3)
ans =
9.0000 + 2.0000i

14.2.6 Polar Form

Any complex number z = a + bi can be thought of as a point (a,b) or vector in
a complex plane in which the horizontal axis is the real part of z, and the
vertical axis is the imaginary part of z. So, a and b are the Cartesian or rect-
angular coordinates. As a vector can be represented by either its rectangular or
polar coordinates, a complex number can also be given by its polar coordi-
nates r and 0, where 1 is the magnitude of the vector and 6 is an angle.

To convert from the polar coordinates to the rectangular coordinates:

a =r cos 6
b rsin 0

To convert from the rectangular to polar coordinates:

r=ld = Va2 112

0 = arctan (b>
a

So, a complex number z = a + bi can be written as r cos 8 + (r sin8)i or
z=r (cos®+1isin0)

Ase® =cos 0 +isin6, a complex number can also be written as z = re’®. In
MATLAB, r can be found using the abs function, while there is a built-in
function, called angle, to find 6.

>> z1 = 3 + 47;
r = abs(zl)
r o=

5

>> theta = angle(z1)
theta =
0.9273

>> r*exp(i*theta)
ans =
3.0000 + 4.0000i

CHAPTER 14: Advanced Mathematics

5
4.8
4.6
4.4
4.2

4 *
3.8
3.6
34
3.2

Complex number

Imaginary part

3 " n " " " " " " "

2 22 24 26 28 3 32 34 36 38 4
Real part

FIGURE 14.5 Plot of complex number

14.2.7 Plotting

Several methods are used commonly for plotting complex data:

plot the real parts versus the imaginary parts using plot

plot only the real parts using plot

plot the real and the imaginary parts in one figure with a legend, using plot
plot the magnitude and angle using polar.

Using the plot function with a single complex number or a vector of complex
numbers will result in plotting the real parts versus the imaginary parts; for
example, plot(z) is the same as plot(real(z), imag(z)). Thus, for the complex
number z1 =3 + 41, this will plot the point (3,4) (using a large asterisk so we
can see it!), as shown in Figure 14.5.

>> z1 = 3 + 47;

>> plot(zl,'*", 'MarkerSize', 12)
>> xlabel('Real part')

>> ylabel('Imaginary part')

>> title('Complex number')

PRACTICE 14.2

Create the following complex variables:

cl = complex(0,2);
c? 3+ 21;
c3 = sqrt(-4);

Then, carry out the following:

get the real and imaginary parts of ¢2
print the value of ¢1 using disp

14.3 Matrix Solutions to Systems of Linear Algebraic Equations

print the value of ¢Z in the form ‘a+bi’

determine whether any of the variables are equal to each other
subtract ¢2 from c1

multiply ¢2 by ¢3

get the complex conjugate and magnitude of ¢2

put ¢! in polar form

plot the real part versus the imaginary part for cZ2.

14.3 MATRIX SOLUTIONS TO SYSTEMS OF LINEAR
ALGEBRAIC EQUATIONS

A linear algebraic equation is an equation of the form

a1X] +aXp +a3xs+....+apXp = b
Solutions to sets of equations in this form are important in many applications.
In the MATLAB® product, to solve systems of equations, there are basically
two methods:

using a matrix representation
using the solve function (which is part of Symbolic Math Toolbox).

In this section, we will first investigate some relevant matrix properties and
then use these to solve linear algebraic equations. The use of symbolic math-
ematics including the solve function will be covered in the next section.

14.3.1 Matrix Properties

In Chapter 2 we saw several common operations on matrices. In this section
we will examine some properties that will be useful in solving equations using
a matrix form. Recall that in mathematics the general form of an m x n matrix
A is written as:

aix di2 o din
a1 dzz -t dan . .

A= =g 1=1,...,m; j=1,...,n
am1 Am2 " Amn

14.3.1.1 Square Matrices

If a matrix has the same number of rows and columns (e.g., if m == n), the
matrix is square. The definitions that follow in this section only apply to
square matrices.

The main diagonal of a square matrix (sometimes called just the diagonal) is
the set of terms a;; for which the row and column indices are the same, so
from the upper left element to the lower right. For example, for the following
matrix the diagonal consists of 1, 6, 11, and 16.

CHAPTER 14: Advanced Mathematics

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

A square matrix is a diagonal matrix if all values that are not on the diagonal are
0. The numbers on the diagonal, however, do not have to be all nonzero —
although frequently they are. Mathematically, this is written as aj; = 0 fori ~=j.
The following is an example of a diagonal matrix:

4 0 O
090
0 0 5

MATLAB has a function diag that will return the diagonal of a matrix as
a column vector; transposing will result in a row vector instead.

>> mymat = reshape(1:16,4,4)"'

mymat =
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
>> diag(mymat)'
ans =
1 6 11 16

The diag function can also be used to take a vector of length n and create an
n x n square diagonal matrix with the values from the vector on the
diagonal:

>> vo=1:4;

>> diag(v)

ans =

o O O =
o O NN O
O W O O
~ O O o

So, the diag function can be used two ways: (i) pass a matrix and it returns
a vector, or (ii) pass a vector and it returns a matrix!

The trace of a square matrix is the sum of all of the elements on the
diagonal. For example, for the diagonal matrix created using v itis 1 + 2 +

3 + 4, or 10.
QUICK QUESTION!
How could we calculate the trace of a square matrix? Answer

See the following Programming Concept and Efficient Method.

14.3 Matrix Solutions to Systems of Linear Algebraic Equations

THE PROGRAMMING CONCEPT

To calculate the trace of a square matrix, only one loop is necessary as the only elements in the
matrix we are referring to have subscripts (i, i). So, once the size has been determined, the loop
variable can iterate from 1 through the number of rows or from 1 through the number of
columns (it doesn't matter which, as they have the same value!). The following function calcu-
lates and returns the trace of a square matrix or an empty vector if the matrix argument is not
square.

mytrace.m

function outsum = mytrace(mymat)

% mytrace calculates the trace of a square matrix
% or an empty vector if the matrix is not square
% Format: mytrace(matrix)

[r, c] = size(mymat);
if r ~=c¢
outsum = [J;

else
outsum = 0;
for i = 1:r
outsum = outsum + mymat(i,i);
end
end
end

>> mymat = reshape(1:16,4,4)"'

mymat =
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
>> mytrace(mymat)
ans =
34

THE EFFICIENT METHOD

In MATLAB, there is a built-in function trace to calculate the trace of a square matrix:

>> trace(mymat)
ans =
34

CHAPTER 14: Advanced Mathematics

A square matrix is an identity matrix called I'if aj; = 1 for i == j and aj; = 0 for
i ~=j. In other words, all of the numbers on the diagonal are 1 and all others

are 0. The following is a 3 x 3 identity matrix:

1 0 0
010
0 0 1

Note that any identity matrix is a special case of a diagonal matrix.

Identity matrices are very important and useful. MATLAB has a built-in
function eye that will create an n x n identity matrix, given the value of n:

>> eye(b)

ans =
1 0
0 1
0 0
0 0
0 0

o O - O O
O = O O O
_ O O O O

Note that i is built into MATLAB as the square root of —1, so another name is

un

used for the function that creates an identity matrix: eye, which sounds like “i”.

(Get it?)

QUICK QUESTION!

What happens if a matrix M is multiplied by an identity matrix
(of the appropriate size)?

Answer

For the size to be appropriate, the dimensions of the identity
matrix would be the same as the number of columns of M.
The result of the multiplication will always be the original
matrix M (thus, it is similar to multiplying a scalar by 1).

>M=1[1231;4512;0230]
M =

>> [r, c] = size(M);
>> M * eye(c)
ans =

Several special cases of matrices are related to diagonal matrices.

A banded matrix is a matrix of all Os, with the exception of the main diagonal
and other diagonals next to (above and below) the main. For example, the
following matrix has Os except for the band of three diagonals; this is
a particular kind of banded matrix called a tridiagonal matrix.

14.3 Matrix Solutions to Systems of Linear Algebraic Equations

1 2 0 O
5 6 7 0
0 10 11 12
0 0 15 16

A lower triangular matrix has all Os above the main diagonal. For example,

1 0 0 O
5 6 0 O
9 10 11 O
13 14 15 16

An upper triangular matrix has all 0s below the main diagonal. For example,

1 2 3 4
0 6 7 8
0 0 11 12
0 0 0 16

It is possible for there to be 0s on the diagonal and in the upper part or lower
part and still be a lower or upper triangular matrix, respectively.

MATLAB has functions triu and tril that will take a matrix and make it into an
upper triangular or lower triangular matrix by replacing the appropriate
elements with 0s. For example, the results from the triu function are shown:

>> mymat

mymat =
1 2 3 4
5 6 7 8

9 10 11 12
13 14 15 16
>> triulmymat)

ans =
1 2 3 4
0 6 7 8
0 0 11 12
0 0 0 16

A square matrix is symmetric if a;; = aj for all i, j. In other words, all of the
values opposite the diagonal from each other must be equal to each other. In
this example, there are three pairs of values opposite the diagonals, all of
which are equal (the 2s, the 9s, and the 4s).

L)
[>N

1
2
9

CHAPTER 14: Advanced Mathematics

PRACTICE 14.3

For the following matrices:

Which are equal?
Which are square?
For all square matrices:

Calculate the trace

Which are symmetric?
Which are diagonal?

Which are lower triangular?
Which are upper triangular?

14.3.1.2 Matrix Operations

There are several common operations on matrices, some of which we have
seen already. These include matrix transpose, matrix augmentation, and matrix
inverse.

A matrix transpose interchanges the rows and columns of a matrix. For
a matrix A, its transpose is written A" in mathematics. For example, if

1 2 3
A_[456}

then

In MATLAB, as we have seen, there is a built-in transpose operator, the
apostrophe.

If the result of multiplying a matrix A by another matrix is the identity matrix
I, then the second matrix is the inverse of matrix A. The inverse of a matrix A is
written as A%, so

AAT =1
How to actually compute the inverse A of a matrix by hand is not so easy.
MATLAB, however, has a function inv to compute a matrix inverse. For
example, here a matrix is created, its inverse is found, and then multiplied
by the original matrix to verify that the product is in fact the identity
matrix:

14.3 Matrix Solutions to Systems of Linear Algebraic Equations

> a=1[12;272]
3 =

1 2
2 2
>> ainv = inv(a)
ainv =
-1.0000 1.0000
1.0000 -0.5000
>> a*ainv
ans =

1
1

Matrix augmentation means adding column(s) to the original matrix. For
example, the matrix A

1 3 7
A=12 5 4
9 8 6
might be augmented with a 3 x 3 identity matrix:
1 3 7 1 00
2 5 4 010
9 8 6 0 0 1

Sometimes in mathematics the vertical line is shown to indicate that the
matrix has been augmented. In MATLAB, matrix augmentation can be
accomplished using square brackets to concatenate the two matrices. The
square matrix A is concatenated with an identity matrix which has the same
size as the matrix A:

>> A=1[137;254; 98 6]

A:
1 3 7
2 5
9 8 6
>> [A eye(size(A))]
ans =
1 3 7 1 0 0
5 4 0 1 0
9 8 6 0 0 1

14.3.2 Linear Algebraic Equations

A linear algebraic equation is an equation of the form

a;xX] +axp +a3xs+....+apXy = b

CHAPTER 14: Advanced Mathematics

where the a’s are constant coefficients, the x’s are the unknowns, and b is
a constant. A solution is a sequence of numbers that satisfies the equation. For
example,

4x1 + 5xp — 2x3 = 16

is such an equation in which there are three unknowns: x;, X, and x3. One
solution to this equation is x; = 3, x, = 4, and x3 = 8, as 4*3 + 5*4 — 2*8 is
equal to 16.

A system of linear algebraic equations is a set of equations of the form:

a11X1 +a12X2 +a213X3 + +A1pXp = b;
a1X1 + axpXp +ax33x3 +.... +aypXp = by

a31X1 + a3oXy +as3x3z + ... +aspXn = bz

Am1X1 + am2X2 + am3X3 + + ampXn = bm

This is called an m x n system of equations; there are m equations and n
unknowns.

Because of the way that matrix multiplication works, these equations can be
represented in matrix form as A x = b where A is a matrix of the coefficients, x
is a column vector of the unknowns, and b is a column vector of the constants
from the right side of the equations:

A X = b
aplr a2 a3z o A4 X1 b1
a1 dzz dz3z . Ao X2 by
az1 4z a4z o asg x3 = b3
aml1 Am2 Am3 " Amn Xn b

A solution set is the set of all possible solutions to the system of equations (all
sets of values for the unknowns that satisfy the equations). All systems of
linear equations have either:

no solutions
one solution
infinitely many solutions.

14.3 Matrix Solutions to Systems of Linear Algebraic Equations a

One of the main concepts of the subject of linear algebra is the different
methods of solving (or attempting to!) systems of linear algebraic equations.
MATLAB has many functions that assist in this process.

Once the system of equations has been written in matrix form, what we want
is to solve the equation Ax = b for the unknowns x. To do this, we need to
isolate x on one side of the equation. If we were working with scalars, we
would divide both sides of the equation by A. In fact, with MATLAB we can use
the divided into operator to do this. However, most languages cannot do this
with matrices, so, instead, we multiply both sides of the equation by the
inverse of the coefficient matrix A:

AL A Xx=AT1D

Then, because multiplying a matrix by its inverse results in the identity matrix
I, and because multiplying any matrix by I results in the original matrix, we

have:

I x=A"1b
or

x=A"1b

This means that the column vector of unknowns x is found as the inverse of
matrix A multiplied by the column vector b. So, if we can find the inverse of A,
we can solve for the unknowns in x.

For example, consider the following three equations with three unknowns x;,
Xy, and x3:
4x1 - 2Xp + 1x3 =

1x; + Ixy + 5x3 10
-2X1 + 3xp - Ixz =2

We write this in the form Ax = b, where A is a matrix of the coefficients, x is
a column vector of the unknowns x;, and b is a column vector of the values on
the right side of the equations:

A X
4 -2 1 X1 7
1 1 5 X = 10
-2 3 -1 X3 2

The solution is then x =A™ b. In MATLAB there are two simple ways to solve
this. The built-in function inv can be used to get the inverse of A and then we
multiply this by b, or we can use the divided into operator.

m CHAPTER 14: Advanced Mathematics

1 2 X1
Visualize 2x2 system 2 2 X2

> A=1[4 -21;115; -23 -1];
>> b= 1[7;10:2];
>> x = inv(A)*b
X =
3.0244
2.9512
0.8049
>> x = A\b
X =
3.0244
2.9512
0.8049

14.3.2.1 Solving 2 x 2 Systems of Equations

Although this may seem easy in MATLAB, in general finding solutions to
systems of equations is not. However, 2 x 2 systems are fairly straightforward,
and there are several methods of solution for these systems for which MATLAB
has built-in functions.

Consider the following 2 x 2 system of equations:

X1 + 2xp =2
2X1 + 2X2 6

In MATLAB we can plot these lines using a script; the results are seen in
Figure 14.6.

The intersection of the lines is the point (4, -1). In other words, x; =4 and x,=-1.

This system of equations in matrix form is:

A X b

H

We have already seen that the solution is x=A"! b, so we
can solve this if we can find the inverse of A. One
method of finding the inverse for a 2 x 2 matrix involves
calculating the determinant D.

For a 2 x 2 matrix

a a
A — 11 12
az1 a2

FIGURE 14.6 Visualizing 2 x 2 system of equations as

straight lines

14.3 Matrix Solutions to Systems of Linear Algebraic Equations a

the determinant D is defined as:

ail a2
a1 a4

D = = aj1 axpp —ajpp ay

It is written using vertical lines around the coefficients of the matrix and is
defined as the product of the values on the diagonal minus the product of the
other two numbers.

For a 2 x 2 matrix, the matrix inverse is defined in terms of D as

Aflzl a2 —ad12
D|—ax1 an

The inverse is therefore the result of multiplying the scalar 1/D by every
element in the previous matrix. Note that this is not the matrix A, but is
determined using the elements from A in the following manner: the values on
the diagonal are reversed and the negation operator is used on the other two
values.

Notice that if the determinant D is 0, it will not be possible to find the inverse
of the matrix A.

For our coefficient matrix A = [1 2], D= ’1 2‘ =1*2 — 2*2 or —2

2 2 2 2
SO
Al 1 2—2_L2—2__1 11
T1x2-2%x2|-2 1| —2|-2 1| |1 -
and

X1 _ -1 11 2

x2| 1 —= 6
The unknowns are found by performing this matrix multiplication.
Consequently,

x1=-1%24+1%6=4
xp= 1%2 4 (-1/2) * 6 = -1

This, of course, is the same solution as found by the intersection of the two
lines.

To do this in MATLAB, we would first create the coefficient matrix variable A
and column vector b.

> A=1[12;22];
>> b= [2;6];

CHAPTER 14: Advanced Mathematics

THE PROGRAMMING METHOD

For 2 x 2 matrices, the determinant and inverse are found using simple expressions.

>> deta = A(1,1)*A(2,2) - A(1,2)*A(2,1)

deta =
=2
>> inva = (1/deta)* [A(2,2) -A(1,2); -A(2,1) A(1,1)]
inva =
-1.0000 1.0000
1.0000 -0.5000

THE EFFICIENT METHOD

We have already seen that MATLAB has a built-in function, inv, to find a matrix inverse. It also
has a built-in function det to find a determinant:

>> det(A)
ans =
=2
>> inv(A)
ans =
-1.0000 1.0000
1.0000 -0.5000

PRACTICE 14.4

For the following 2 x 2 system of equations
X1 + 2Xp = 4
- X1 =3

do the following on paper:

m write the equations in matrix form Ax = b
® solve by finding the inverse A" and then x = Al b,

Next, get into MATLAB and check your answers.

14.3.2.2 Gauss, Gauss—Jordan Elimination

For 2 x 2 systems of equations, there are solution methods that are well
defined and simple. However, for larger systems of equations, finding solu-
tions is frequently not as straightforward.

14.3 Matrix Solutions to Systems of Linear Algebraic Equations a

Two related methods of solving systems of linear equations will be described
here: Gauss elimination and Gauss—Jordan elimination. They are both based on
the observation that systems of equations are equivalent if they have the same
solution set. Also, performing simple operations on the rows of a matrix,
called Elementary Row Operations (EROs), results in equivalent systems. These
fall into the following three categories.

Scaling: this changes a row by multiplying it by a nonzero scalar s, and is
written as
Sry — rj
Interchange rows: for example, interchanging rows r; and rj is written as
ry «<—r;
Replacement: replace a row by adding it to (or subtracting from it)
a multiple of another row. For a given row 1, this is written as
ri £sry—or;

Note that when replacing row r;, nothing is multiplied by it. Instead, row rj is
multiplied by a scalar s (which could be a fraction) and that is added to or
subtracted from row r;.

For example, for the matrix:
4 2 3
1 4 0
2 5 3

An example of interchanging rows would be r; < — 13, which would yield:

4 2 3 2 5 3
1 4 0] ne—-r3 |1 4 0
2 5 3 4 2 3

Now, starting with this matrix, an example of scaling would be 2r, — 13,
which means all elements in row 2 are multiplied by 2. This yields:

2 5 3
1 4 0] 2rp—r1)
4 2 3

Now, starting with this matrix, an example of a replacement would be
r3 — 2r, — r13. Element by element, row 3 is replaced by the element in
row 3 minus 2 multiplied by the corresponding element in row 2. This
yields:
2 5 3 2 5 3
2 8 0 I3 — 21 —I3 2 8 0
4 2 3 0 —-14 3

CHAPTER 14: Advanced Mathematics

PRACTICE 14.5

Show the result of each of the following EROs:

e =03

—
=~
w o w

Ip—Y%1—-I

—_
DN
o

o
(o}
DN

o Ip—1y

Both the Gauss and Gauss-Jordan methods begin with the matrix form
Ax = b of a system of equations, and then augment the coefficient matrix A
with the column vector b.

Gauss Elimination
The Gauss elimination method consists of:

creating the augmented matrix [A b]

applying EROs to this augmented matrix to get it into echelon form, which,
for simplicity, is an upper triangular form (called forward elimination)
back-substitution to solve.

For example, for a 2 x 2 system, the augmented matrix would be:
ann a2 b
axn ax b

Then, EROs are applied to get the augmented matrix into an upper triangular
form (that is, the square part of the matrix on the left is in upper triangular

form):
ajy dp b
0 ay b
So, the goal is simply to replace a;; with 0. Here, the primes indicate that the

values (may) have been changed.

Putting this back into the equation form yields

alll all2 x| b/1
0 Ll'22 X2 b2

14.3 Matrix Solutions to Systems of Linear Algebraic Equations

Performing this matrix multiplication for each row results in:
a1l X1+ a'iz X2 =b'y
a'22 Xz = b’
So, the solution is:
Xp =Db'y / a'p
x1 = (b'y - a'1z x2) / a'n

Similarly, for a 3 x 3 system, the augmented matrix is reduced to upper
triangular form:

’

aipr app as b a;; agp

a3 by
a1 daxp a3 by |—| 0 a, a3 b,

’

az1 azy aszz bs 0 0 ay by
(This will be done systematically by first getting a 0 in the a;; position, then
asy, and, finally, as;.) Then, the solution will be:
X3 = b3' / aszz'
xz = (bz" - az3'x3) / az'
X1 = (b1" - aiz'x3 - az'x2) / an’

Note that we find the last unknown, x3, first, then the second unknown, and
then the first unknown. This is why it is called back substitution.

As an example, consider the following 2 x 2 system of equations:
X1 + 2Xp =2
2X1 + 2Xp = 6

As a matrix equation Ax = b, this is:

1 2] [a] [2
2 2| [x| |6
The first step is to augment the coefficient matrix A with b to get an augmented

matrix [A] b]:
1 2 2
2 2 6

For forward elimination, we want to get a 0 in the a,; position. To accomplish
this, we can modify the second line in the matrix by subtracting from it 2 * the
first row.

CHAPTER 14: Advanced Mathematics

The way we would write this ERO follows:

122 [T 2 2
2 2 6| 217200 —2 2

Now, putting it back in matrix equation form:

1 2] [a] _J2
0o -2 x| |2
says that the second equation is now —2x; = 2 so x, = —1. Plugging into the
first equation,
x1+2(-1) = 2,s0x; = 4

This is back substitution.

Gauss—Jordan

The Gauss—Jordan elimination method starts the same way that the Gauss
elimination method does, but then, instead of back-substitution, the elimi-
nation continues. The Gauss—Jordan method consists of:

creating the augmented matrix [A|b]
forward elimination by applying EROs to get an upper triangular form
back elimination to a diagonal form which yields the solution.

For a 2 x 2 system, this method would yield

ain ax bi]_|4n 0 b,
a1 axn b 0 dy, b
and for a 3 x 3 system,

a1l di2 adi3
a ax a3 by |-~ 0 a, 0 b
a a a b . ,

31 432 a3 b3 0 0 ay b
Note that the resulting diagonal form does not include the right-most column.

For example, for the 2 x 2 system from the previous section, forward elimi-
nation yielded the matrix:

1 2 2

0o -2 2

14.3 Matrix Solutions to Systems of Linear Algebraic Equations

Now, to continue with back elimination, we need a 0 in the a;, position:

1 2 2 1 0 4
Iy +1rp—r
o —2 2| "7 o

-2 2
So, the solution is x; = 4; —2x, = 2 or x, = —1.

Here is an example of a 3 x 3 system:

X1+ 3x2 =
2X1 4+ X2 + 3x3 =
4x1 4+ 2x2 + 3X3

w o

In matrix form, the augmented matrix [A|b] is
1 3 0 1
21 3 6
4 2 3 3

For forward substitution (done systematically by first getting a 0 in the ap;
position, then asj, and, finally, as;.):

3 01 1 3 0
2 1 3 6 1'2—21”1—>I2 0 -5 3 4
4 2 3 3 4 2 3 3
1 3 0 1 1 3 0 1
1'3—41'1—>I'3 0 -5 3 4 1"3—21'2—>I'3 0 -5 3 4
0 —-10 3 -1 o 0 -3 -9

For the Gauss method, this would be followed by back substitution. For the
Gauss—Jordan method, this is instead followed by back elimination:

1 3 0 1 1 3 0 1
0 -5 3 4 p+r1—rn|0 -5 0 =5
o 0 -3 -9 o 0 -3 -9

1 0 0o -2
rn+3/5n,—->n|{0 -5 0 -5
o o0 -3 -9

So
X] = -2
-bxp = -5
X2 =1
-3x3 = -9

><3=3

m CHAPTER 14: Advanced Mathematics

Here’s an example of beginning this process using MATLAB:

>> a=1[130;213;423]

1 3 0
2 1 3
4 2 3
>> b=1[16 3]'
b:
1
6
3
>> ab = [a b]
ab =
1 3 0 1
2 1 3 6
4 2 3 3
>> ab(2,:) = ab(2,:) - 2*ab(1,:)
ab =
1 3 0 1
0 -5 3
4 2 3 3

14.3.2.3 Reduced Row Echelon Form

The Gauss—Jordan method results in a diagonal form; for example, for a 3 x 3

system:
ann aip a3z b a, 0 0 b
a1 axp a3 by |—=| 0 ay 0 b
az1 az asz bs 0 0 a3y b

Reduced Row Echelon Form takes this one step further to result in all 1s rather
than the a’s, so that the column of b’s is the solution. All that is necessary to
accomplish this is to scale each row.

an a2 a1z b

—

— o O
S S S
RO <

1 O
as ax a;s by >0 1
0 O

a1 asy asz bz

In other words, we are reducing [A|b] to [I|b"]. MATLAB has a built-in function
to do this, called rref. For example, for the previous example:

>> a=1[130;213;423]:
> b=1[163]";

>> ab = [a b];

>> rref(ab)

ans =

14.4 Symbolic Mathematics a

The solution is found from the last column, so x; = —2, x, = 1, and x3 = 3.
To get this in a column vector in MATLAB:

>> x = ans(:,end)
X =

PRACTICE 14.6

For the following 2 x 2 system of equations
X1 + 2Xp = 4
- X1 =3

perform Gauss, Gauss—Jordan, and RREF by hand.

Finding a Matrix Inverse by Reducing an Augmented Matrix

For a system of equations larger than a 2 x 2 system, one method of finding the
inverse of a matrix A mathematically involves augmenting the matrix with an
identity matrix of the same size, and then reducing it. The algorithm is:

augment the matrix with I, so [A |]
reduce it to the form [I | X]; X will be A™".

For example, in MATLAB we can start with a matrix, augment it with an
identity matrix, and then use the rref function to reduce it.

> a=1[130;213;,423];
>> rref([a eye(size(a))])

ans =
1.0000 0 0 -0.2000 -0.6000 0.6000
0 1.0000 0 0.4000 0.2000 -0.2000
0 0 1.0000 0 0.6667 -0.3333

In MATLAB, the inv function can be used to verify the result.

>> inv(a)

ans =
-0.2000 -0.6000 0.6000
0.4000 0.2000 -0.2000

0 0.6667 -0.3333

14.4 SYMBOLIC MATHEMATICS

Symbolic mathematics means doing mathematics on symbols (not
numbers!). For example, a + a is 2a. The symbolic math functions are in
Symbolic Math Toolbox in MATLAB. Toolboxes contain related functions
and are add-ons to MATLAB. (Therefore, this may or may not be part of your

m CHAPTER 14: Advanced Mathematics

own system.) Symbolic Math Toolbox™ includes an alternative method for
solving equations and is therefore covered in this chapter.

14.4.1 Symbolic Variables and Expressions

MATLAB has a type called sym for symbolic variables and expressions; these
work with strings. For example, to create a symbolic variable a and perform the
addition just described, a symbolic variable would first be created by passing
the string ‘a’ to the sym function:

>> a=sym('a');
>> a+a

ans =

2*a

Symbolic variables can also store expressions. For example, the variables b and
¢ store symbolic expressions:

>> b= sym('x"2");
>> sym('x 4");

All basic mathematical operations can be performed on symbolic variables
and expressions (e.g., add, subtract, multiply, divide, raise to a power, etc.).
The following are examples:

>> ¢/b
ans =
X"2

>> b3
ans =
X"6

>> ¢c*b
ans =
X6

>> b + sym('4*x"2")
ans =
5*x"2

It can be seen from the last example that MATLAB will collect like terms in
these expressions, adding the x> and 4x” to result in 5x°.

The following creates a symbolic expression by passing a string, but the terms
are not collected automatically:

>> sym('z"3 + 2*z"3")
ans =
zZ"3 + 2*%z"3

14.4 Symbolic Mathematics a

If, however, z is a symbolic variable to begin with, quotes are not needed
around the expression, and the terms are automatically collected:

>> z=sym('z");

>> z°3 + 2*z°3

ans =

3*%z73

If using multiple variables as symbolic variable names is desired, the syms
function is a shortcut instead of using sym repeatedly. For example,

>> syms X y z
is equivalent to

>> x = sym('x");
>> vy =sym('y');
>> z=sym('z");

The built-in functions sym2poly and poly2sym convert from symbolic
expressions to polynomial vectors and vice versa. For example:

>> myp = [1 2 -4 3];

>> poly2sym(myp)

ans =

XA3H2*X N2 - 4% X4-3

>> mypoly = [2 0 -1 0 5];
>> poly2sym(mypoly)

ans =

2FXMN-X" 245

>> symZpoly(ans)

ans =
2 0 -1 0 5

14.4.2 Simplification Functions

There are several functions that work with symbolic expressions and simplify
the terms. Not all expressions can be simplified, but the simplify function
does whatever it can to simplify expressions, including gathering like terms.
For example,

>> x = sym('x");

>> myexpr = cos(x)"2 4+ sin(x)"2
myexpr =

oS (x)"24sin(x)"2

>> simplify(myexpr)
ans =
1

m CHAPTER 14: Advanced Mathematics

The functions collect, expand, and factor work with polynomial expressions.
The collect function collects coefficients, such as the following:

>> x = sym('x");

>> collect(x"2 + 4*x"3 + 3*x"2)
ans =

4HxXN24H4% X3

The expand function will multiply out terms, and factor will do the reverse:

>> expand((x+2)*(x-1))
ans =

XN2+X-2

>> factor(ans)

ans =

(x+2)*(x-1)

If the argument is not factorable, the original input argument will be returned

unmodified.

The subs function will substitute a value for a symbolic variable in an

expression. For example,

>> myexp = x*3 + 3*x*2 - 2
myexp =
X"N343*x12-2
>> subs(myexp,3)
ans =
52

If there are multiple variables in the expression, one will be chosen by default
for the substitution (in this case, x), or the variable for which the substitution

is to be made can be specified:

>> syms a b x

>> varexp = a*x"2 + b*x;
>> subs(varexp,3)

ans =

9*a+3*b

>> subs(varexp, 'a',3)
ans =

3*XM24b*X

With symbolic math, MATLAB works by default with rational numbers,
meaning that results are kept in fractional forms. For example, performing the
addition 1/3 + 1/2 would normally result in a double value:

>> 1/3 + 1/2
ans =
0.8333

14.4 Symbolic Mathematics a

However, by making the expression symbolic, the result is symbolic also. Any
numeric function (e.g., double) could change that:

>> sym(1/3 + 1/2)
ans =
5/6
>> double(ans)
ans =

0.8333

The numden function will return separately the numerator and denominator
of a symbolic expression:

>> sym(1/3 + 1/2)
ans =

5/6

>> [n, dJ
n =

numden(ans)

o a o
Il

>> [n, d] = numden((x*3 + x"2)/x)
n =

XN2*(x4+1)

d =

X

14.4.3 Displaying Expressions
The pretty function will display symbolic expressions using exponents. For
example:

>> b = sym('x"2")

b =

X"2

>> pretty(b)
2
X

There are several plot functions in MATLAB with names beginning with “ez”
that perform the necessary conversions from symbolic expressions to numbers
and plot them. For example, the function ezplot will draw a two-dimensional
plot in the x-range from —2 7 to 2 7, with the expression as the title (in pretty
form). The expression

>> ezplot('x*3 + 3*x*2 - 2")

produces the figure that is shown in Figure 14.7.

m CHAPTER 14: Advanced Mathematics

x3+3x%-2

6 4 =2 0 2 4 s

FIGURE 14.7 Plot produced using ezplot

The domain for the ezplot function can also be specified; for example, to
change the x-axis to the range 0 to 7, the minimum and maximum values of
the range are specified as a vector. The result is shown in Figure 14.8.

>> ezplot('cos(x)',[0 pil)

14.4.4 Solving Equations

We've already seen several methods for solving simultaneous linear equations
using a matrix representation. MATLAB can also solve sets of equations using
symbolic math.

cos(x)

FIGURE 14.8 Result from ezplot with custom x-axis

14.4 Symbolic Mathematics

The function solve solves an equation and returns the solution(s) as symbolic
expressions. The solution can be converted to numbers using any numeric
function, such as double:

>> x = sym('x");
>> solve('2*x "2 + x = 6")
ans =

-2

3/2

>> double(ans)
ans =

-2.0000

1.5000

If an expression is passed to the solve function rather than an equation, the
solve function will set the expression equal to 0 and solve the resulting
equation. For example, the following will solve 3x* + x = 0:

>> solve('3*x"2 + x')
ans =
0
-1/3

If there is more than one variable, MATLAB chooses which to solve for. In the
following example, the equation ax” + bx = 0 is solved. There are three
variables. As can be seen from the result, which is given in terms of a and b, the
equation was solved for x. MATLAB has rules built in that specify how to
choose which variable to solve for. For example, x will always be the first
choice if it is in the equation or expression.
>> solve('a*x*2 + b*x')
ans =
0
-b/a

However, it is possible to specify which variable to solve for:
>> solve('a*x*2 + b*x','b")
ans =
-a*x

MATLAB can also solve sets of equations. In this example, the solutions for x,
y, and z are returned as a structure consisting of fields for x, y, and z. The
individual solutions are symbolic expressions stored in fields of the structure.

>> solve('4*x-2*y+z=7", 'X+y+5*z=10", ' -2*x+3*y-2z=2")
ans =

x: [1x1 sym]

y: [1x1 sym]

z: [1x1 sym]

CHAPTER 14: Advanced Mathematics

To refer to the individual solutions, which are in the structure fields, the dot
operator is used.

>> X = ans.x
X =

124/41

>> y = ans.y
y =

121/41

>> z = ans.z
7 =

33/41

The double function can then be used to covert the symbolic expressions to
numbers and store the results from the three unknowns in a vector.

>> double([x y z])
ans =
3.0244 2.9512 0.8049

PRACTICE 14.7

For each of the following expressions, show what the MATLAB result would be. Assume that all
expressions are typed sequentially.

x = sym('x");

a = sym(x"3 - 2*x"2 + 1);

b sym(x"3 + x"2);

res = a+b

p = symZpoly(res)
polyval(p,2)
sym(1/2 + 1/4)

solve('x”2 - 16")

14.5 CALCULUS: INTEGRATION AND
DIFFERENTIATION

MATLAB has functions that perform common calculus operations on
a mathematical function f(x), such as integration and differentiation.

14.5.1 Integration and the Trapezoidal Rule

The integral of a function f(x) between the limits given by x = aand x = b is

written as
/ f(x)dx

a

14.5 Calculus: Integration and Differentiation a

and is defined as the area under the curve f(x) from a to b, as long as the
function is above the x-axis. Numerical integration techniques involve
approximating this.

One simple method of approximating the area under a curve is to draw a straight
line from f(a) to f(b) and calculate the area of the resulting trapezoid as

(b - o)/ @FIO)
2
In MATLARB, this could be implemented as a function.

THE PROGRAMMING CONCEPT

Here is a function to which the function handle and limits a and b are passed:

trapint.m

function int = trapint(fnh, a, b)

% trapint approximates area under a curve f(x)
% from a to b using a trapezoid

% Format: trapint(handle of f, a, b)

int = (b-a) * (fnh(a) + fnh(b))/2;

end

To call it, for example, for the function f(x) = 3x*> — 1, an anonymous function is defined and its
handle is passed to the trapint function.

> f=@ (x) 3 *x .2 - 1;
approxint = trapint(f, 2, 4)
approxint

58

THE EFFICIENT METHOD

MATLAB has a built-in function trapz that will implement the trapezoidal rule. Vectors with the
values of x and y = f(x) are passed to it. For example, using the anonymous function defined

previously:
>> x = [2 4];
>> ¥y = f(x);
>> trapz(x,y)
ans =

58

m CHAPTER 14: Advanced Mathematics

An improvement on this is to divide the range from a to b into n intervals,
apply the trapezoidal rule to each interval, and sum them. For example, for the
preceding if there are two intervals, you would draw a straight line from f(a) to
f((a+b)/2) and then from f((a+b)/2) to f(b).

THE PROGRAMMING CONCEPT

The following is a modification of the previous function to which the function handle, limits, and
the number of intervals are passed:

trapintn.m

function intsum = trapintn(fnh, lowrange,highrange, n)
% trapintn approximates area under a curve f(x) from

% a to b using trapezoids with n intervals
% Format: trapintn(Chandle of f, a, b, n)
intsum = 0;

increm = (highrange - lowrange)/n;
for a = lowrange: increm : highrange - increm
b =a + increm;
intsum = intsum + (b-a) * (fnh(a) + fnh(b))/2;
end
end

For example, this approximates the integral of the previous function f with two intervals:

>> trapintn(f,2,4,2)
ans =
55

THE EFFICIENT METHOD

To use the built-in function trapz to accomplish the same thing, the x vector is created with the
values 2, 3, and 4:

>> X = 2:4;
>> y = f(x)
>> trapz(x,y)
ans =

55

In these examples, straight lines, which are first-order polynomials, were
used. Other methods involve higher-order polynomials. The built-in func-
tion quad uses Simpson’s method. Three arguments are normally passed to

14.5 Calculus: Integration and Differentiation a

it: the handle of the function, and the limits a and b. For example, for the
previous function:

>> quad(f,2,4)
ans =
54

MATLAB has a function polyint, which will find the integral of a polynomial.
For example, for the polynomial 3x* + 4x — 4,which would be represented by
the vector [3 4 -4], the integral is found by:

>> origp = [3 4 -4];
>> intp = polyint(origp)
intp =

1 2 -4 0

which shows that the integral is the polynomial x* + 2x* — 4x.

14.5.2 Differentiation

d
The derivative of a function y = f(x) is written as d_y f(x) or £'(x), and is
x

defined as the rate of change of the dependent variable y with respect to x. The
derivative is the slope of the line tangent to the function at a given point.

MATLAB has a function polyder, which will find the derivative of a poly-
nomial. For example, for the polynomial x* + 2x* — 4x + 3, which would be
represented by the vector [1 2 -4 3], the derivative is found by:

>> origp = [1 2 -4 3];
>> diffp = polyder(origp)
diffp =

3 4 -4

which shows that the derivative is the polynomial 3x? 4 4x — 4. The function
polyval can then be used to find the derivative for certain values of x, such as
forx =1, 2, and 3:

>> polyval(diffp, 1:3)

ans =
3 16 35

The derivative can be written as the limit
. flx+h) —fx)
f'(x) = lim ——F— 12
(x) ho0 h
and can be approximated by a difference equation.

Recall that MATLAB has a built-in function, diff, which returns the differences
between consecutive elements in a vector. For a function y = f(x) where x is
a vector, the values of f' (x) can be approximated as diff(y) divided by diff(x).
For example, the equation x* + 2x* — 4x + 3 can be written as an anonymous

m CHAPTER 14: Advanced Mathematics

function. It can be seen that the approximate derivative is close to the values
found using polyder and polyval.

> f=@ (x) x N3+ 2% x N2 - 4% x4+ 3;

>> x = 0.5 : 3.5
X =
0.5000 1.5000 2.5000 3.5000
>> y = f(x)
y =
1.6250 4.8750 21.1250 56.3750
>> diff(y)
ans =
3.2500 16.2500 35.2500
>> diff(x)
ans =
1 1 1
>> diff(y) ./ diff(x)
ans =
3.2500 16.2500 35.2500

14.5.3 Calculus in Symbolic Math Toolbox

There are several functions in Symbolic Math Toolbox" to perform calculus
operations symbolically (e.g., diff to differentiate and int to integrate). To
learn about the int function, for example, from the Command Window:

>> help sym/int
For instance, to find the indefinite integral of the function f(x) = 3x” — 1:

>> syms X

>> Int(3*x~2 - 1)
ans =

XA3-X

To instead find the definite integral of this function from x = 2 to x = 4:

>> o int(3*xh2 - 1, 2, 4)
ans =
54

Limits can be found using the limit function. For example, for the difference
equation described previously:

>> syms x h
>> f
f =
@ (x) x A3+ 2 .*x."2 -4 *x+3

>> 1imit((f(x+h)-f(x))/h,h,0)
ans =
3FXN2-44-4% X

Explore Other Interesting Features a

To differentiate, instead of the anonymous function we write it
symbolically:

>> syms x f

>> f = X"3 4+ 2*x"2 - 4*x + 3
f =

XAZ42% X2 -4%x43

>> diff(f)

ans =

3*XN2-444*X

PRACTICE 14.8

For the function 3x% — 4x + 2

find the indefinite integral of the function

find the definite integral of the function from x = 2to x =5
approximate the area under the curve fromx = 2tox =5
find its derivative

approximate the derivative for x = 2.

m Explore Other Interesting Features

m Investigate the interp1 function, which does a table look-up to
interpolate or extrapolate.

m Investigate the fminsearch function, which finds local minima for
a function.

= Investigate the fzero function, which attempts to find a zero of
a function near a specified x value.

m Investigate linear algebra functions, such as rank, for the rank of
a matrix, or null, which returns the null space of a matrix.
Investigate the blkdiag function, which will create a block diagonal matrix.
Investigate the functions that return eigenvalues and eigenvectors, such
as eig and eigs.
Investigate the norm function to find a vector or matrix norm.
Investigate the ordinary differential equation (ODE) solve functions, such
as ode23 and ode45, which use the Runge—Kutta integration methods.

m In the Command Window, type “odeexamples” to see some ODE
example codes.

m Investigate some of the other numerical integration functions, such as
integral, integral2 for double integrals, and integral3 for triple integrals.

m Investigate the poly function, which finds the characteristic equation for
a matrix, and the polyeig function, which solves a polynomial
eigenvalue problem of a specified degree. |

m CHAPTER 14: Advanced Mathematics

H Summary

Common Pitfalls

Extrapolating too far away from the data set.

Forgetting that the fprintf function by default only prints the real part of
a complex number.

Forgetting that to augment one matrix with another, the number of rows
must be the same in each.

Programming Style Guidelines

The better the curve fit, the more accurate interpolated and extrapolated
values will be.

When working with symbolic expressions, it is generally easier to make
all variables symbolic variables to begin with. |

MATLAB Functions and Commands

roots triu subs
polyval tril numden
polyfit inv pretty
complex det ezplot
real rref solve
imag sym trapz
isreal syms quad
conj sym2poly polyint
angle poly2sym polyder
polar simplify int

diag collect limit
trace expand

eye factor

Express the following polynomials as row vectors of coefficients:
2x3 - 3x2 £ x + 5
3Ix 4+ x2 4 2x — 4
Find the roots of the equation f(x) = 0 for the following function. Also, create x and
y vectors and plot this function in the range from —3 to 3 to visualize the solution.
f(x) = 3x% - 2x - 5
Evaluate the polynomial expression 3x° + 4x% + 2x - 2atx =4, x =6, and x = 8.

Sometimes the roots of polynomial equations are complex numbers. For example,
create the polynomial row vector variable pol:

>> pol = [3 6 51;

Use the roots function to find the roots. Also, use ezplot(poly2sym(pol)) to see
a plot. Then, change the last number in pol from 5 to —7 and again find the roots
and view the plot.

Write a script that will generate a vector of 10 random integers, each in the
inclusive range from 0 to 100. If the integers are distributed evenly in this range,
then, when arranged in order from lowest to highest, they should fall on a straight
line. To test this fit a straight line through the points, and plot both the points and
the line with a legend.

Write a function that will receive data points in the form of x and y vectors. If the
lengths of the vectors are not the same, then they can't represent data points, so an
error message should be printed. Otherwise, the function will fit a polynomial of
a random degree through the points, and will plot the points and the resulting
curve with a title specifying the degree of the polynomial. The degree of the
polynomial must be less than the number of data points, n, so the function must
generate a random integer in the range from 1 to n—1 for the polynomial degree.
Some data points have been created in which the y values rise to a peak and then
fall again. However, instead of fitting a quadratic curve through these points, what
is desired is to fit two straight lines through these points: one that goes through all
points from the beginning through the point with the largest y value, and another
that starts with the point with the largest y value through the last point. Write

a function fscurve that will receive as input arguments the x and y vectors, and will
plot the original points as red stars (*) and the two lines (with default colors, line
widths, etc.). Figure 14.9 shows the Figure Window resulting from an example of
calling the function.

12
+ original points
first part

10 second part

8

4

6

4

2

0 L L L L L

1 2 3 4 5 6 7

FIGURE 14.9 Two straight lines

m CHAPTER 14: Advanced Mathematics

>y =1[2 4.3 6.5 11.11 8.8 4.4 3.17;
>> x = 1l:length(y);
>> fscurve(x,y)
Do not assume that you know anything about the data except that you may
assume that they do rise to a peak and then fall again.
Create a data file that stores data points (the x values in one column and then the y
values in a second column). Write a script that will:
read the data points
fit a straight line to the points
create a vector diffv that stores for every x value the difference between the
actual y value and the y value predicted by the straight line
find and print the standard deviation of the vector diffv
plot the original data points and the line
print how many of the actual y values were greater than the predicted
print how many of the actual data y values were within 1 (+ or —) of the
predicted y value.

Data on the flow of water in rivers and streams is of great interest to civil engineers,
who design bridges, and to environmental engineers, who are concemed with the
environmental effect of catastrophic events, such as flooding.

The Mystical River's water flow rate on a particular day is shown in the following
table. The time is measured in hours and the water flow rate is measured in cubic
feet per second. Write a script that will fit polynomials of degree 3 and 4 to the
data, and create a subplot for the two polynomials. Also, plot the original data as
black circles in both plots. The titles for the subplots should include the degree of
the fitted polynomial. Include appropriate x and y labels for the plots.

Time 0 3 6 9 12 15 18 21 24
Flow Rate | 800 980 1090 | 1620 | 1920 | 1670 | 1440 | 1380 | 1300

Write a script that accomplishes the following, using vectorized code:
creates an x vector with elements from 1 to 10 in steps of 0.5
creates a y vector that creates a straight line, y = 3x — 2, for every element in
the x vector
modifies the y vector by randomly adding or subtracting 0.5 to every element in
the y vector
fits a straight line through the data points given by x and the modified y vector
plots the (%, modified y) data points as blue *'s and the straight line that was fit
through these points
puts the straight line that was fit through the points as a title of the plot.
Note that the straight line that was fit through the points will be close to, but not
necessarily exactly the same as, the line that was used to create the original points

Exercises

y=3.0x+-1.9

30

FIGURE 14.10 Straight line fit

(as seen in the Figure Window). Write the script so that the format of the

Figure Window is as seen in Figure 14.10. Use the logical vector to randomly add or
subtract 0.5 to create the modified y vector.

Write a function that will receive x and y vectors representing data points. You may
assume that the vectors are the same length and that the values in the x vector are
all positive, although not, necessarily, integers. The function will fit polynomials of
degrees 2 and 3 to these points. It will plot the original data points with black stars
(*) and also the curves (with 100 points each in the range given by the x vector so
that the curves look very smooth). It will also generate one random integer x value
and use the curves to interpolate at that x value. The range of the random integer
must be within the range of the original x vector so that it is interpolating, not
extrapolating (e.g., in the following example the x values range from 0.5 to 5.5 so
the random integer generated is in the range from 1 to 5). The interpolated values
should be plotted with red stars (*) and the mean of the two should be plotted with
a red circle (the axes and the colors for the curves are defaults, however). For
example, the plot in Figure 14.11 was generated by calling the function and
passing x and y vectors (and the random integer was 4).

Write a function that will receive x and y vectors representing data points. The
function will create, in one Figure Window, a plot showing these data points as
circles, and also in the top part a second-order polynomial that best fits these
points and on the bottom a third-order polynomial. The top plot will have a line
width of 3 and will be a gray color. The bottom plot will be blue, and have a line
width of 2. For example, the Figure Window might look like Figure 14.12. The axes
are the defaults. Note that changing the line width also changes the size of the
circles for the data points. You do not need to use a loop.

The following script creates x and y vectors representing data points (you may
assume x iterates from 1 to the number of points, n). It then passes these vectors to

m CHAPTER 14: Advanced Mathematics

05 s s s s s s s s s
0.5 1 1.5 2 25 3 35 4 45 5 55

FIGURE 14.11 Degree 2 and 3 polynomials

a function that produces a Figure Window, as shown in Figure 14.13. Specifically,
the function fits a straight line of the form mx + b to the points, where m is the
slope of the line and b is the y-intercept. It plots these points as black *'s along
with the line, extended to x = 0 so that the y-intercept can be seen. The x-axis
ranges from 0 to n. The y-axis ranges from 0 to the largest y value, in either the
original data points or the straight line that is shown (whichever is larger). The
slope is printed as shown with an arrow. The coordinates of the lower left comer of
this string are the median of the x values from the data, and the y value from the
line. Also, the y-intercept is printed in the title. You are to write the function.

x =1:6;
y [8 7.5 5 3 2.7 21;
plotLineText(x,y)

Second order

0 2 4 6 8 10 12
FIGURE 14.12 Subplot of second- and third-order polynomials with different line properties

The y-intercept is 9.34

slope:-1.3257

N W A OO N O ©

FIGURE 14.13 Y-intercept and slope

The depth of snow in inches has been measured in a very cold location every week
since the snow began accumulating. At this point, the season has changed and it
is getting warmer so the pile of snow is beginning to recede, but it hasn't all gone
away yet. The depths that have been recorded every week are stored in a file called
“snowd.dat”. For example, it might contain the following:

8 20 31 42 55 65 77 88 95 97 89 72 68 53 44

Write a script that will predict in which week the snow will be totally gone by
fitting a quadratic curve through the data points. This will be called the “snow
gone week number” and will be rounded up. For example, if the data are as shown
previously, the snow would be gone by week number 18. The script will produce
a plot in the format shown in Figure 14.14, showing the original data points from

Snow gone week 18
o A\

90
80
70
60
50
40
30
20
10

Depth in inches

0 2 4 6 8 10 12 14 16 18
Weeks
FIGURE 14.14 Prediction of snow melt

CHAPTER 14: Advanced Mathematics

the file and also the curve (from week 1 through the snow-gone week). The snow-
gone week number will also be printed in the title. The x-axis should range from
0 to the snow-gone week number, and the y-axis from 0 to the maximum snow
accumulation.

Store the following complex numbers in variables and print them in the form a + bi.

3—21
V-3

Create the following complex variables:
cl =2 — 4i;
c2 =5+ 3i;
Perform the following operations on them:
add them
multiply them
get the complex conjugate and magnitude of each
put them in polar form.
Represent the expression z° —2z2 + 3 — 5i as a row vector of coefficients and store
this in a variable compoly. Use the roots function to solve z° -2z% + 3 — 5i = 0.
Also, find the value of compoly when z = 2 using polyval.
Determine how to use the polar function to plot the magnitude and angle of
a complex number in polar form.
The real parts and imaginary parts of complex numbers are stored in separate
variables, for example:

>> rp=1[1.136];
>> ip=1[20.34.9];

Determine how to use the complex function to combine these separate parts into
complex numbers, for example:

1.1000 + 2.00001 3.0000 + 0.3000i 6.0000 + 4.90001

Given the following matrices:

3 21 2 100
0 6 2 B=|1] I=1(0 10
1 0 3 3 001

Perform the following MATLAB operations, if they can be done. If not, explain why.

A =

I + A
A x T
trace(A)

Write a function issquare that will receive an array argument, and return logical 1
for true if it is a square matrix, or logical 0 for false if it is not.
What is the value of the trace of an n x n identity matrix?

Write a function myupp that will receive an integer argument n and will retum an n
X n upper triangular matrix of random integers.

When using Gauss elimination to solve a set of algebraic equations, the
solution can be obtained through back substitution when the corresponding
matrix is in its upper triangular form. Write a function istriu that receives

a matrix variable and returns a logical 1 if the matrix is in upper triangular
form or a logical 0 if not. Do this problem two ways: use loops and built-in
functions.

We have seen that a square matrix is symmetric if a;; = a; for all i, j. We say that
a square matrix is skew symmetric if a;; = - a;; for all i, j. Notice that this means
that all of the values on the diagonal must be 0. Write a function that will receive
a square matrix as an input argument, and will return logical 1 for true if the
matrix is skew symmetric or logical 0 for false if not.

Analyzing electric circuits can be accomplished by solving sets of equations.
For a particular circuit, the voltages Vi, Vy, and V3 are found through the
system:

Vi =5

-6Vy + 10V,-3V3 =0

-Vo+51V3 = 0
Put these equations in matrix form and solve in MATLAB.
Re-write the following system of equations in matrix form:

4x1 - Xp + 3x4 =10
-2X1 + 3Xp + X3 -5x4 = -3

X1 + Xp - X3 + 2X4 = 2
3X1 + 2Xxp - 4x3 =4

Set it up in MATLAB and use any method to solve.
For the following 2 x 2 system of equations:
“3X1 + Xp = -4
-6X] + 2Xxp = 4
rewrite the equations, in MATLAB, as equations of straight lines and plot them
to find the intersection
solve for one of the unknowns and then substitute into the other equation to
solve for the other unknown
find the determinant D
How many solutions are there? One? None? Infinite?
For the following 2 x 2 system of equations:
“3X1 + Xp =2
-6X] + 2%xp = 4
rewrite the equations as equations of straight lines and plot them to find the
intersection

CHAPTER 14: Advanced Mathematics

solve for one of the unknowns and then substitute into the other equation to

solve for the other unknown

find the determinant D

How many solutions are there? One? None? Infinite?
For a 2 x 2 system of equations, Cramer’s rule states that the unknowns x are
fractions of determinants. The numerator is found by replacing the column of
coefficients of the unknown by constants b. So:

by ap
by axn

D

ain by
an by
D

X1 and xy =
Use Cramer's rule to solve the following 2 x 2 system of equations:
-3X1 + 2% = -1
4><1 - 2X 2 = - fa
Write a function to implement Cramer’s rule (see previous exercise).
Write a function to return the inverse of a 2 x 2 matrix.
Given the following 2 x 2 system of equations:
3X] + Xp = 2
2)(1 =14
Use all methods presented in the text to solve it and to visualize the solution. Do all
of the math by hand and then also use MATLAB.
For the following set of equations:
2X1 + 2X2 + X3 =72
Xo + 2x3 =1
X1+ X + 3x3 =3
put this in the augmented matrix [A|b]
solve using Gauss
solve using Gauss—Jordan
create the matrix A and vector b in MATLAB; find the inverse and determinant
of A. Solve for x.
Given the following system of equations
X1 - 2X2 + X3 =2
2X1 - bXp + 3x3 = 6
X1 + 2Xp + 2x3 = 4
2X1 + 3X3 =06
write this in matrix form and use either Gauss or Gauss—Jordan to solve it. Check
your answer using MATLAB.
Write a function myrrefinv that will receive a square matrix A as an argument,
and will return the inverse of A. The function cannot use the built-in inv func-
tion; instead, it must augment the matrix with I and use rref to reduce it to the
form [I A™']. Here are examples of calling it:

>>a=1[432;153;123]

4 3 2
1 5 3
1 2 3
>> inv(a)
ans =
0.3000 -0.1667 -0.0333
0 0.3333 -0.3333
-0.1000 -0.1667 0.5667
>> disp(myrrefinv(a))
0.3000 -0.1667 -0.0333
0 0.3333 -0.3333
-0.1000 -0.1667 0.5667

Solve the simultaneous equations x — v = 2 and x? + y = 0 using solve. Plot the
corresponding functions, y = x — 2 and y = —x?, on the same graph with an x
range from —b to b.

For the following set of equations

2X1 + 2Xp + X3 =2
Xp + 2x3 =1
X1 + X2 4+ 3X3 3

write it in symbolic form and solve using the solve function. From the symbolic
solution, create a vector of the numerical (double) equivalents.
For the following system of equations,

4xq - X2+ 3x4 =10
-2X1 + 3X2 + X3 - 5xy
X1 + Xp - X3 + 2X4 =2
3X1 + 2Xp - 4Xx3 4

use the solve function to solve it. Verify the answer using any other method (in
MATLAB!).

Biomedical engineers are developing an insulin pump for diabetics. To do this, it is
important to understand how insulin is cleared from the body after a meal. The
concentration of insulin at any time t is described by the equation

C=2Coe -30t/m

where Cy is the initial concentration of insulin, t is the time in minutes, and m is the
mass of the person in kilograms. Use solve to determine for a person whose mass
is 65 kg how long it will take an initial concentration of 90 to reduce to 10. Use
double to get your result in minutes.

CHAPTER 14: Advanced Mathematics

To analyze electric circuits, it is often necessary to solve simultaneous
equations. To find the voltages Va, Vb, and Vc at nodes a, b, and ¢, the
equations are

2(Va-Vb) 4+ 5(Va-Vc) — et =0
2(Vb — Va) + 2Vb + 3(Vb — Vc) =0
Ve = 2 sin(t)

Find out how to use the solve function to solve for Va, Vb, and Vc so that the
solution will be returned in terms of t.

The reproduction of cells in a bacterial colony is important for many environmental
engineering applications such as wastewater treatments. The formula

Tog(N) = Tog(Ng) + t/T Tog(2)

can be used to simulate this, where Ny is the original population, N is the
population at time t, and T is the time it takes for the population to double. Use
the solve function to determine the following: if Ny = 102, N = 10%, and t = 8
hours, what will be the doubling time T? Use double to get your result in
hours.

Using the symbolic function int, find the indefinite integral of the function 4x* + 3,
and the definite integral of this function from x = —1 to x = 3. Also, approximate
this using the trapz function.

Use the quad function to approximate the area under the curve 4x? + 3 from —1
to 3. First, create an anonymous function and pass its handle to the quad
function.

Use the polyder function to find the derivative of 2x° — x® + 4x — b.

The cost of producing widgets includes an initial setup cost plus an additional cost
for each widget, so the total production cost per widget decreases as the number
of widgets produced increases. The total revenue is a given dollar amount for each
widget sold, so the revenue increases as the number sold increases. The break-
even point is the number of widgets produced and sold for which the total
production cost is equal to the total revenue. The production cost might be $5000
plus $3.55 per widget, and the widgets might sell for $10 each. Write a script that
will find the break-even point using solve, and then plot the production cost and
revenue functions on one graph for 1—1000 widgets. Print the break-even point on
the graph using text.

Examine the motion, or trajectory, of a projectile moving through the air.
Assume that it has an initial height of 0, and neglect the air resistance for
simplicity. The projectile has an initial velocity vg, an angle of departure 6y, and
is subject to the gravity constant g = 9.81m/s?. The position of the projectile is
given by x and y coordinates, where the origin is the initial position of the
projectile at time t = 0. The total horizontal distance that the projectile travels
is called its range (the point at which it hits the ground), and the highest peak
(or vertical distance) is called its apex. Equations for the trajectory can be given

in terms of the time t or in terms of X and y. The position of the projectile at any
time t is given by:

X = Vg cos(fp) t)
y = vpsin(fp)t — % k

For a given initial velocity vg, and angle of departure 6, describe the motion of the
projectile by writing a script to answer the following.

What is the range?

Plot the position of the projectile at suitable x values.

Plot the height versus time.

How long does it take to reach its apex?
Write a graphical user interface function that creates four random points. Radio
buttons are used to choose the order of a polynomial to fit through the points. The
points are plotted along with the chosen curve.

APPENDIX I

MATLAB® Functions (not including those
listed in the “Explore Other Interesting
Features” sections)

abs absolute value

all true if all elements in the input argument are true

angle angle of a complex number

any true if any element in the input argument is true

area filled two-dimensional area plot

asin arcsine in radians

asind arcsine in degrees

asinh inverse hyperbolic sine in radians

axis sets limits on axes for a plot

bar two-dimensional bar chart

bar3 three-dimensional bar chart

bar3h three-dimensional horizontal bar chart

barh two-dimensional horizontal bar chart

blanks creates a string of all blank spaces

ceil rounds toward infinity

cell creates a cell array

celldisp displays contents of a cell array

cellplot displays contents of a cell array in boxes

cellstr converts from a character matrix to a cell array of strings
char creates a character matrix

checkcode displays Code Analyzer results for code files

class returns the type or class of the input argument

clear clears variable(s) from the workspace

clf clears the figure window

clock stores the current date and time in a vector

collect collects like terms in a symbolic math expression
colorbar displays a color scale in a plot

colormap returns the current colormap, or sets a matrix to be the current
colormap

comet animated two-dimensional plot 517

MATLAB® Functions (not including those listed in the “Explore Other Interesting Features” sections)

comet3 three-dimensional animated plot

complex creates a complex number

conj complex conjugate

cross cross product

cumprod cumulative, or running, product of a vector or columns of a matrix
cumsum cumulative, or running, sum of a vector or columns of a matrix
cylinder returns three-dimensional data vectors to create a cylinder

date stores the current date as a string

dbcont continue executing code in debug mode

dbquit quit debug mode

dbstep step through code in debug mode

dbstop set a breakpoint in debug mode

deblank gets rid of trailing blanks in a string

demo shows MATLAB Examples in the Help Browser

det finds the determinant of a matrix

diag returns the diagonal of a matrix, or creates a diagonal matrix

diff finds differences between consecutive elements; used to approximate
derivatives

disp simple display (output)

doc brings up a documentation page

dot dot product

double converts to the type double

echo toggle; displays all statements as they are executed

end ends control statements and functions; refers to last element

eval evaluates a string as a function or command

exit quits out of MATLAB

exp exponential function

expand expands a symbolic math expression

eye creates an identity matrix

ezplot simple plot function that plots a function without need for data vectors
factor factors a symbolic math expression

factorial factorial of an integer n, is 1¥*2*3*...*n

false equivalent to logical(0); creates an array of false values

fclose closes an open file

feof true if the specified file is at the end-of-file

feval evaluates a function handle on a string as a function call

fgetl low-level input function reads one line from a file as a string

fgets same as fgetl, but does not remove newline characters

fieldnames returns the names of fields in a structure as a cell array of strings
figure create or refer to Figure Windows

find returns indices of an array for which a logical expression is true

fix rounds toward zero

fliplr flips columns of a matrix from left to right

MATLAB® Functions (not including those listed in the “Explore Other Interesting Features” sections)

flipud flips rows of a matrix up to down

floor rounds toward negative infinity

fopen low-level file function; opens a file for a specified operation
format many options for formatting displays

fplot plots a function passed as a function handle

fprintf formatted display (output); writes either to a file or to the screen (the
default)

fscanf low-level file input function; reads from a file into a matrix
func2str converts from a function handle to a string

fzero attempts to find a zero of a function, given the function handle
gca handle to the current axes

gcf handle to the current figure

get gets properties of a plot object

getframe gets a movie frame, which is a snapshot of the current plot
ginput gets graphical coordinates from a mouse click

grid plot toggle; turns grid lines on or off

gtext allows the user to place a string on a plot in location of a mouse click
help displays help information for built-in or user-defined functions or scripts
hist plot function: plots a histogram

hold plot toggle; freezes plot in Figure Window so the next will be
superimposed

i constant for the square root of negative one

imag imaginary part of a complex number

image displays an image matrix

imread reads in an image matrix

imwrite writes a matrix in an image format

inf constant for infinity

input prompts the user and reads user’s input

int symbolic math integration

int2str converts from an integer to a string storing the integer

int8 converts a number to an 8-bit signed integer

int16 converts a number to a 16-bit signed integer

int32 converts a number to a 32-bit signed integer

int64 converts a number to a 64-bit signed integer

intersect set intersection

intmax largest value possible in a specified integer type

intmin smallest value possible in a specified integer type

inv inverse of a matrix

iscellstr true if the input argument is a cell array storing only strings
ischar true if the input argument is a string, or character vector
isempty true if the input argument is an empty vector or empty string
isequal true if two array arguments are equal element-by-element
isfield true if a string is the name of a field within a structure

m MATLAB® Functions (not including those listed in the “Explore Other Interesting Features” sections)

iskeyword true if the string input argument is the name of a keyword
isletter true if the input argument is a letter of the alphabet

ismember set function receives two sets; true for every member of first set also
in second

isreal true if input argument is a real number (not complex)

issorted true if the input vector is sorted in ascending order

isspace true if the input argument is a white space character

isstruct true if the input argument is a structure

j constant for the square root of negative one

jet returns all or part of the 64 colors in the jet colormap

legend displays a legend on a plot

length length, or number of elements, in a vector; largest dimension for

a matrix

limit computes limit of a symbolic math expression

line graphics primitive object that creates a line

linspace creates a vector of linearly-spaced values

load inputs a file into a matrix, or reads variables from a .mat file (the default)
log natural logarithm

log10 base 10 logarithm

log2 base 2 logarithm

logical converts numbers to the type logical

loglog plot function that uses logarithmic scales for x and y axes

logspace creates a vector of logarithmically spaced values

lookfor looks for a string in the H1 comment line in files

lower converts letters to lower-case in a string

max the maximum value in a vector or for every column in a matrix

mean the mean (average) of values in a vector or every column in a matrix
median the median (middle) value in a sorted vector or for every column in
a matrix

menu displays a menu of push buttons and returns number of choice
mesh three-dimensional mesh surface plot

meshgrid creates x and y vectors to be used in images or as function
arguments

min the minimum value in a vector or for every column in a matrix

mod modulus after division

mode the maximum value in a vector or for every column in a matrix
movegui moves a Figure Window within the screen

movie plays a movie or sequence of screen shots

namelengthmax the maximum length of identifier names

NaN mathematics constant for “Not a Number”

nargin number of input arguments passed to a function

nargout number of output arguments expected to be returned by a function
nthroot nth root of a number

MATLAB® Functions (not including those listed in the “Explore Other Interesting Features” sections) a

num2str converts a real number to a string containing the number

numden symbolic math function, separates the numerator and denominator
of a fraction

numel total number of elements in a vector or matrix

ones creates a matrix of all ones

patch graphics primitive object that creates a filled in two-dimensional polygon
pi constant for =

pie creates a two-dimensional pie chart

pie3 creates a three-dimensional pie chart

plot simple plot function, plots two-dimensional points; markers, color, etc.,
can be specified

plot3 simple three-dimensional (3D) plot function, plots 3D points

polar plot function for complex numbers, plots the magnitude and angle
poly2sym converts a vector of coefficients of a polynomial to a symbolic
expression

polyder derivative of a polynomial

polyfit fits a polynomial curve of a specified degree to data points

polyint integral of a polynomial

polyval evaluates a polynomial at specified value(s)

pretty displays a symbolic expression using exponents

print prints or saves a figure or image

prod the maximum value in a vector, or for every column in a matrix
profile toggle; the Profiler generates reports on execution time of code

quad integration using Simpson’s method

quit quits MATLAB

rand generates uniformly distributed random real number(s) in the open
interval (0,1)

randi generates random integer(s) in the specified range

randn generates normally distributed random real numbers

real real part of a complex number

rectangle graphics primitive to create a rectangle; curvature can vary

rem remainder after division

repmat replicates a matrix; creates m x n copies of the matrix

reshape changes dimensions of a matrix to any matrix with the same number
of elements

rmfield remove a field from a structure

rng random number generator, sets the seed for random functions and gets the
state

roots roots of a polynomial equation

rot90 rotates a matrix 90 degrees counter-clockwise

round rounds a real number toward the nearest integer

rref puts an augmented matrix in reduced row echelon form

save writes a matrix to a file or saves variables to a .mat file

m MATLAB® Functions (not including those listed in the “Explore Other Interesting Features” sections)

semilogx plot function, uses a scale for logarithmic x and a linear scale for y
semilogy plot function, uses a linear scale for x and a logarithmic scale for y
set sets properties of a plot object

setdiff set function, returns elements that are in one vector, but not in another
setxor set exclusive or, returns the elements that are not in the intersection of
two sets

sign signum, returns —1, 0, or 1

simplify simplifies a symbolic math expression

sin sine in radians

sind sine in degrees

single converts a number to the type single

sinh hyperbolic sine in radians

size returns the dimensions of a matrix

solve symbolic math function to solve an equation or simultaneous equations
sort sorts the elements of a vector (default is ascending order)

sortrows sorts the rows of a matrix; for strings results in an alphabetical sort
sound sends a sound signal (vector of amplitudes) to an output device
sphere returns three-dimensional data vectors to create a sphere

spiral creates a square matrix of integers spiraling from 1 in the middle
sprintf creates a formatted string

sqrt square root

std standard deviation

stem two-dimensional stem plot

stem3 three-dimensional stem plot

str2double converts from a string containing a number to a double number
str2func converts a string to a function handle

str2num converts from a string containing number(s) to a number array
strcat horizontal string concatenation

strcmp string compare, used instead of equality operator for strings

strcmpi string compare, ignoring case

strfind find a substring within a longer string

strncmp string compare the first n characters of strings

strncmpi string compare the first n characters, ignoring case

strrep replace all occurrences of one substring with another within a longer
string

strtok breaks one longer string into two shorter strings, with all characters
retained

strtrim deletes both leading and trailing blanks from a string

struct create a structure by passing pairs of field names and values

subplot creates a matrix of plots in the Figure Window

subs substitutes a value into a symbolic math expression

sum the maximum value in a vector or for every column in a matrix

surf three-dimensional surface plot

MATLAB® Functions (not including those listed in the “Explore Other Interesting Features” sections) a

sym creates a symbolic variable or expression

sym2poly converts a symbolic expression to a vector of coefficients for
a polynomial

syms creates multiple symbolic variables

text graphics primitive object to put a string on a plot

textscan file input function, reads from a file into a cell array of column vectors
tic/toc used to time code

title writes a string as a title on a plot

trace the trace (sum of values on the diagonal) of a matrix

trapz trapezoidal rule to approximate the area under a curve

tril converts a matrix to a lower triangular matrix

triu converts a matrix to an upper triangular matrix

true equivalent to logical(1), creates a matrix of all true values

type display the contents of a file in the Command Window
uibuttongroup groups together button objects

uicontrol basic function to create graphical user interface objects of different
styles

uint16 converts a number to a 16-bit unsigned integer

uint32 converts a number to a 32-bit unsigned integer

uint64 converts a number to a 64-bit unsigned integer

uint8 converts a number to an 8-bit unsigned integer

uipanel groups together graphical user interface objects

union set function, the union of two sets

unique returns all of the unique values within a set (vector)

upper converts all letters to upper-case

var variance

varargin built-in cell array to store input arguments

varargout built-in cell array to store output arguments

who displays variables in the base workspace

whos displays more information on the variables in the base workspace
xlabel puts a string as a label on the x-axis of a plot

xlsread reads from a spreadsheet with filename xls

xlswrite writes to a spreadsheet with filename.xls

xor exclusive or, true if only one argument is true

ylabel puts a string as a label on the y axis of a plot

zeros creates a matrix of all zero values

zlabel puts a string as a label on the z axis of a three-dimensional plot

APPENDIX II

MATLAB® and Simulink Toolboxes

In addition to the many functions included in MATLAB, there are additional
Toolboxes that can be added. These toolboxes have groups of related functions
that can be used for more advanced computations and data processing. The
MathWorks, Inc. also has a family of simulation software called Simulink; it,
too, can be augmented with additional Toolboxes. For more detailed infor-
mation, see the website www.mathworks.com.

Some of the more common Toolboxes include functions for advanced image
processing, control system design, signal processing, curve fitting, parallel
computing, and optimization.

Here is a list of some of these Toolboxes:

Symbolic Math Toolbox (mentioned in this text)
Statistics Toolbox

Curve Fitting Toolbox

Optimization Toolbox

Partial Differential Equation Toolbox
Image Processing Toolbox

Image Acquisition Toolbox

Data Acquisition Toolbox
Instrument Control Toolbox

Signal Processing Toolbox

Control System Toolbox

Parallel Computing Toolbox
Aerospace Toolbox

Neural Network Toolbox

525

http://www.mathworks.com

Index

Note: Page numbers followed by “f”, “t”, and “b” denote figures, tables, and boxes, respectively.

abs, 16 Back elimination, 489
Absolute value, complex number, Back substitution, Gauss elimination,
470 486—487, 489
action, 117—-118 Banded matrix, 476—477
Algorithm, 74—75 bar, 91, 347—348, 350f, 359, 375
all, 61-62 bar3, 355—356
and, 24 barh, 348
angle, 471 bar3h, 356
Animation, plots, 354—355 Base workspace, 215
Anonymous function Bin, 352
function handle, 321—322 Binary operator, 13
saving, 323 Binary search, 409—418
ans, 7—8 blanks, 236
any, 61 Block/group, 404
Appending, 93—95 Boolean expression, 23
area, 348, 350f, 361 Branching statements, 117
Arguments to functions, 98, 103—104, 196, Breakpoints, 222
202—-204 Bug, 220
variable number of, 326—332 Built-in functions, 15—18

Array multiplication, 56
Array operations, 55
array operators, 56
Arrays, 34, 265

ASCII, 21

Assignment operator, 6

Calculus
differentiation, 501—502
integration and trapezoidal rule, 498—501
Assignment statement, 6—12 symbolic mth, >02-515
’ Call back function, 434, 436f, 437

Assqciativity, 14 Call-by-value method, 202
Audio files. See Sound files Call. function. 15—16

Augmented matrix, reduction, Cascading if-else, 125

487 Casting, 11
Av.erage. See mean ceil, 16
Axis, 88, 92, 347—348 cell, 266

axis, 348 527

L

Cell arrays, 266
column vector cell array, 266
creation, 266—267
elements and attributes
cell indexing, 268—270
comma-separated list, 269
content indexing, 267
string storage, 270—271
2x2 matrix, 267
row vector cell array, string storing, 266
celldisp, 269
Cell indexing, 268—270
cellplot, 269
cellstr, 270
char, 10, 22, 239, 252
Character, 21, 235
Character encoding, 21
Character set, 21
char strings, 270—271
char type, 11
chirp, 419—420, 420f
Class, 10
classes, 10
clear, 9
clear command, 217
clf, 9091, 347—348
clock, 19
Close file, 298
Code cells and publishing code, 225—233
collect, 494
Colon operator, 35—36
colormap, 421—-426
Column vector, 33—34, 38
comet, 354
comet3, 357
Command History Window, 5
Command Window, 4, 4f, 23
Comma-separated list, 269, 280
Comment, scripts, 77
Compiler, 75
complex, 466—473
Complex numbers, 466—473
absolute value, 470
addition and subtraction, 469
complex conjugate, 470
equality, 468—469

multiplication, 470

multiplication operator, 467

plotting, 472—473
polar form, 471

polynomial representation, 470—471
real and imaginary parts, 467

Computer program, 73, 75
Concatenation
strings, 238—240
vectors, 36
Condition, 117—118
Conditional loops, 147
conj, 470
Constants, 18
Content indexing, 267—268
Control characters, 236
Conversion character, 82
cos, 92, 93f
Counted loops, 147
Counting, 168
cross, 59
Cross product, vectors, 59

cumprod, 174b, 180, 388—390

cumsum, 180, 388—390
Current Directory, 76
Current Folder, 5, 76
Curve fitting, 463

discrete/continuous data, 463
interpolation and extrapolation, 463

least squares, 464
polyfit, 464
polynomials, 462—463
sample data, 463
cylinder function, 378

Database, 265—266

datafun, 387

Data structures, 265
cell array. See Cell arrays
database, 265—266
structs, 265—266
structures. See Structures

date, 249b

dbcont, 222

dbquit, 222

dbstop, 222
deblank, 244
Debugging
Editor/Debugger, 222—223
error types, 220—221
function stubs, 224
tracing, 221-222
Decrementing, variables, 8
Default input device, 74
Default output device, 74—75
Delimiter, 248
demo, 5
det, 484b
Determinant, matrix, 482
diag, 474
Diagonal matrix, 474
diff, 501—502
Differentiation, calculus, 501—502
Dimensions of matrices, 42—47
disp, 81, 82b, 119—120, 273, 295, 468
Divided into, 13, 481
Division, 13
Documentation, 77—78
dot, 59
Dot operator, 273
Dot product, vectors, 59
double, 10—11, 22, 275, 283, 298, 494, 497—498
Double precision, 10
3D plots, 355—359

echo, 222
Echo printing, 151
Editor/Debugger, 222—223
Elementary row operations (EROs), 485
elements, 34
Elementwise, operators for matrices, 63
elfun, 17
Ellipsis, 13
else, 117, 122—123, 125, 126b—127b
elseif clause, 125—129
logical expressions, 129
Empty string, 79, 237
Empty vector, 47—49
end, 44, 117—118, 148—149, 333
End of file, 298

e (R

Equality, 23

Equal matrices, 477—478

Error-checking

integers, 170—172
while loop, 169—172

Error message, 81

Error, types, 221

eval, 250, 251f, 276b, 350b

eventdata, 434

Excel, spreadsheet file reading and writing,
310—311

Executable file, 75

Execute, 75

exp(x), 18b, 210—211

expand, 494

Exponential notation, 84b

Exponentiation, 13

Extrapolation, 463—466

eye, 476

ezplot, 495, 496f

factor, 494
Factorial, 163
factorial, 163, 323
false, 11, 23—24, 59, 61, 117—118, 121, 134,
162—164, 245, 252, 396, 468
fclose, 297, 298, 302, 308
feof, 298
feof(fid), 298
feval, 326
fgetl, 298, 300—301, 308
fgets, 298
Field, 265, 271
fieldnames, 276
Field width, 83
figure, 90—91, 321, 431, 432f
File
appending data, 94—95
closing, 296—297
data writing, 94
input and output, 93—97, 295
lower-level functions, 95, 295—310
modes, 93
opening, 296—297
reading, 95—97, 298—307

o

File (Continued)
spreadsheet file reading and writing, 310—311
writing, 307—309
File identifier, 296
File input and output
file types, 295
lower-level file I/O functions. See Lower-level file
I/O functions
MAT-files, 311—320
writing and reading spreadsheet files, 310—311
find, 61
fix, 16
fliplr, 45
flipud, 45, 97b
Floating point representation, 10
floor, 16
fopen, 296, 299, 301, 308
for loop, 148—155
input, 151
nested loops, 155—162
not using iterator variable in action, 150
preallocating vectors, 152—153
sums and products, 151—152
vector sums and products, 173—176
format compact, 13
format long, 12
format loose, 13
format short, 12
Format string, 82
Formatting, 81
Forward elimination, 486, 488
fplot, 325
fprintf, 81—83, 85, 157, 240, 242, 256, 273, 295,
301, 308, 310, 468, 504
fscanf, 298, 301, 302b, 314
func2str, 324
Function, 99, 195—196, 200
anonymous function, 321—323
calling, 100—102
function handle, 323—-326
header, 99, 101, 103, 196, 198, 200, 202—203,
206, 208, 275, 329, 331, 434
local variables, 104—105
nested function, 333—334
passing multiple arguments, 103—104
passing no arguments, 202—204

recursive function, 334—344, 411
calling, 337
infinite recursion, 335
return more than one value, 196—200
return nothing, 195—196
return values, 15—16, 73—74, 196, 201—202
user-defined functions, 97—106, 195—204
variable number of arguments
input arguments, 327—329
output arguments, 329—332
function, 98—99, 195—196
Function functions, 324—326
Function handle, 321
function functions, 324—326
Function stubs, 224

Gauss elimination, 484—486
Gauss-Jordan elimination, 486—488
gca, 374
Geometric mean, 391
get, 362
getframe, 354
Global variable, 217
Graphical User Interface Development
Environment (GUIDE), 431
Graphical user interfaces (GUIs), 431—460
callback function, 434—435, 436f, 437,
442, 443f
defined, 431
event, 434
figure placement, 432, 432f
figure, uipanel, and uibuttongroup object,
431
nested function, 434—435
objects
button group, 449—450, 449f
editable text box, 436, 436f
normalized units, 448
push button, 437, 438f
radio button, 449, 449f
slider, 431, 438—439, 440f
static text box, 434, 434f
plot, 443—445
position vector, 432
‘SelectedObject’ property, 448

‘Style’ property, 433
‘Units’ property, 447
‘Visible’ property, 433
Graphics
core objects, 364—372
primitives, 361
properties, 361—364
Greater than, 23
grid, 90—91, 347—348, 355, 355f
GUIs. See Graphical user interfaces

H1 line, 78
Handle Graphics and plot properties
Color property, 363
core objects
BackgroundColor and EdgeColor,
367, 367f
line object, 364, 365f, 366, 367f
patch function, 368—369, 369f
rectangle object, 367, 368f, 369f
specchar, 366
vertices and faces, 371
get, 362
graphics primitives, 361
set, 363
Harmonic mean, 390
help, 5, 15
Help Browser, 5
help debug, 222
Help topics, 15—16, 87, 387—389
hist, 352, 388—389
Histogram, 352
hold, 90—91, 347—348

i, 18
Identifier names, 9, 135
Identity matrix, 476, 478, 491
if statement, 117—121
assignment statement, 119
calling the function, 120
Command Window, 118
logical true and false representation,
121

if-else statement, 121—123, 160
cascading, 125
nested if-else statements, 125—129
imag, 468
image, 423—424, 424f
Image processing, 421—430
colormap
defined, 421
jet, 422, 423f
pixels, 421
true color, 421
matrices, 426—429
Imaginary part, 467
imread, 429
imwrite, 429—430
Incrementing, variables, 8
Indexing, 404—407
cell, 268—270
content, 267—268
linear, 41, 49, 62
row and column, 41
subscripted, 41
vectors of structures, 406—407
Index vectors, 37, 387—388, 404—407
algorithm, 405
vectors of structures, 406—407
Inequality, 23
inf, 18, 28, 301, 306
Infinite loop, 162
Infinite recursion, 335
Initializing, variables, 8
Inner function, 333
Inner loop, 155
Inner parentheses, 14
Inner product, vectors, 59
input, 78—86, 236
Input argument, 99
Input/output statements, 78—86
int, 502
Integer
types, 10, 12
unsigned, 10, 427
interp1, 503
Interpolation, 463—466
Interpreter, 75
intersect, 394, 396

—

int8, intl16, int32, int64, 10 Linear indexing, 41, 49, 62

intmax, 10 Line object, 364, 365f, 366, 367f

intmin, 10 Line types, 90

int2str, 252, 401—402 linspace, 35—36

inv, 478, 481, 484b, 491 load, 94—95, 106, 295—296, 298—300, 305, 307,
is, 133—134 309, 313

iscellstr, 271 Local variable, 104—105, 215

ischar, 252 logical, 11, 23—24, 61, 63, 121, 133, 396, 468
isempty, 135 Logical error, 220—221

isequal, 62, 180 Logical expression, 23—24, 129, 180

isfield, 275 Logical false, 59, 121, 134, 245, 252, 271, 275,
iskeyword, 135 298, 468

isletter, 133, 180, 252 Logical operator, 23—24

ismember, 394, 396 Logical true, 24, 59, 121, 245, 252, 271, 275, 298
isreal, 468 Logical vectors, 60, 180, 360, 390, 396

issorted, 394, 397 lookfor, 5, 78

isspace, 252 Loop statements, 147—148

isstruct, 275 action, 147

Iterator variable, 148, 150 conditional, 147—148, 163, 169

counted, 147—148
for loops, 148—155
j, 18 combining with if statements, 160—162
jet, 422, 423f input, 166—167
loop variable, 148
nested loops, 155—162
defined, 155
inner loop, 155
outer loop, 157—158
not using iterator variable in action, 150

Key words, 9, 135

Leading blanks, 236, 239, 244, 249, 253 preallocating vectors, 152—153
Least squares algorithm, 464 sums and products, 151—152
legend, 90—92, 347348, 472 factorial, 163
length, 42—44, 79, 98 running product, 152
Less than, 23 running sum, 151
limit, 502 vector sums and products, 173—176
line, 364 nested loops and matrices, 172
Linear algebraic equation, 473, 479—480 vectorizing. See Vectorizing
matrix solutions to systems of linear equations while loops, 162—163
augmented matrix reduction, 491 counting, 168
2x2 systems of equations, 482—484 error-checking user input, 169—172
Gauss elimination, 485—488 file reading, 164—166
Gauss-Jordan elimination, 485, 488—490 input, 166—167
overview, 473—491 multiple conditions, 164
Reduced Row Echelon Form, 490—491 lower, 244

symbolic mathematics and solving simultaneous ~ Lower-level file I/O functions, 95, 295—310
linear equations, 495 appending to files, 309—310

file opening and closing, 296—297
reading from files
data and echo prints, 304
generic code, 299
lower-level functions, 298
writing to files, 307—309
Lower triangular matrix, 477

Machine language, 75
magic, 66
Main diagonal, square matrix, 473—474
Main program, 204, 207, 210, 224
Markers, plot, 90
MAT-file
appending to file, 312—313
reading, 313—320
sound files, 419—421
variables, 311—320
writing to file, 312
Matrix, 473—491
array operations, 34, 54—56
augmentation, 479
configuration, 45
dimensions, 42—47
element modification, 40—42
linear algebraic equations
coefficients, 479—480
divided into operator, 481
elementary row operations, 485
Gauss elimination, 485—488
Gauss-Jordan elimination, 485, 488—490
matrix inverse, augmented matrix reduction,
491
reduced row echelon form, 490—491
solution set, 480
solving 2x2 systems of equations, 482—484
matrix multiplication, 57—59
matrix operations, 478—479
multiplication, 57—59
nested loops and matrices, 172
operations, 478—479
printing, 84—86
properties, 473—479
solutions to systems of linear equations,
484—490

square matrices, 473—478
banded matrix, 476—477
diagonal matrix, 474
identity matrix, 476
lower triangular matrix, 477
main diagonal, 473—474
symmetric matrix, 477—478
trace, 474—475
tridiagonal matrix, 476—477
upper triangular matrix, 477

three-dimensional, 49—50

variable creation, 38—42

vector, 33—50

vector operations, 54—56

Matrix addition, 58
Matrix augmentation, 479
Matrix transpose, 478
max, 51, 354, 388
Mean, 389—391
geometric mean, 389
harmonic mean, 390
mean, 389—390
median, 393
menu, 131—-133
Menu-driven program, 209
mesh, 357, 358f
meshgrid, 64—72
M-file, 98—100, 207, 211
min, 51, 52, 180, 354, 388
Mnemonic name, 9
mode, data set, 392—393
Mode, file, 93
Modular programs, 204—206

M-files, 205

program execution, 205—206

program running, 206

movegui, 433
movie, 354
Multiplication, 13

array, 56

matrix, 57—59

namelengthmax, 9
NaN, 18
nargin, 327

D

nargout, 327, 331 Pixel, 421

Natural logarithm, 17 Place holder, 82

Nested functions, 321 Plot

Nested if-else, 125—129 animation, 354

Nested loops applications, 86—87
combining with if statements, 160—162 file data plotting, 87—90
for loop, 155—162 plotting from function, 87—93
matrices, 172 colors, 90

Nested parentheses, 14 complex numbers, 471

Nested structures, 284—286 customization, 87—93

newline character, 82 3D plots, 355—358

not, 24 colorbar function, 357

numden, 495 3D bar chart, 356, 356f

numel, 44 3D pie chart, 357, 357f

numa2str, 252—253 3D space, 355

spiral matrix, 356, 356f

surf plot of sphere, 357, 358f

wireframe mesh, 357, 358f
file data plotting, 374—375
function

axis, 87—90, 88f

Object code, 75
Object handle, 360
Object-oriented children, 361

ones, 40, 61 .

Open file, 296—297 color, line types and marker types, 90
Operand ' 13 data points, vectors, 88, 89f

Operator’s Handle Graphics. See Handle Graphics and plot

properties
labeling plots, 348
line types, 90

Boolean, 23
logical, 23, 25t
precedence rules, 14—15, 25t, 64t

. markers, 90
relauor;gl, 23 matrix, 348
types, matrix of plots, 348

or, 24

otherwise, 129—130
Outer function, 333
Outer loop, 155

Outer product, vectors, 59
Outlier, 390

Output argument, 99

properties, 360—372

script customization, 372—373

simple functions, 90—93

symbols, 90

types, 348
bar, barh, area, and stem functions, 348, 350f
bar chart, 351, 351f

bins, 352

hist function, 352
pascal, 66 histograms, 348, 352, 353f
patch, 368—369, 369f pie charts, 348, 353, 353f
Permission strings, 297 stacked bar chart, 351
Persistent variables, 217—219 stem plots, 348
pi, 205 plot, 87, 90, 250, 347—350, 364
pie, 353—354, 353f, 357f plot3, 355

pie3, 357, 357f polar, 471

Polar coordinates, complex number, 471
polyder, 501

polyfit, 464

Polynomials, 462—463

complex equation representation, 470—471

poly2sym, 493

polyval, 462, 464—466, 471, 501—-502
Preallocate, vector, 152
Precedence rules, 14—15, 25t, 64t
pretty, 495

Primary function, 207

print, 377

prod, 51—-53

Program organization, 204—209
Prompt, 5, 74, 79
Pseudo-random numbers, 18—19

quad, 500—501
quit, 5

rand, 19, 39

randi, 20

randn, 20

Random numbers, 18—21

real, 468

Real part, complex number, 467
rectangle, 361, 367

Rectangle object, 367, 368f, 369f
Recursive function, 334—344
Reduced Row Echelon Form, 490—491
Relational expression, 117—118
Relational operator, 23, 59

rem, 16

repmat, 22, 278

Reserved words, 9

reshape, 45

Return value, 15—16

RGB color, 421

rmfield, 435

roots, 462, 470

rot90, 45—46

round, 16, 17b

Row vector, 33—38

rref, 490—491

Run, 75

Running product, 152
Running sum, 151
Runtime error, 220

Sampling, 463
Saturation arithmetic, 12b
save, 94—95, 295, 312
Scalar, 33—34
Scalar multiplication, 54—55
Scalar operations, 54—55
Scientific notation, 94
Scope, 215—219, 333
Script
documentation, 77
file creation, 75—78
input and output, 86—87
plot customization, 87—93
Script file, 5, 35, 195
Searching, 408—418
binary search, 409—418
recursive function, 411
sequential search, 408—409
SelectionChangeFcn, 447
SelectionChosenFcn, 449—450
Selection sort, 398—399
Selection statements, 117—146
if-else statement, 121—123
if statement, 117—121
logical true and false representation,
121
“is” functions, 133—134
logical operators, 24
logical true and false, 23—24
menu function, 131—133
nested if-else statements, 125—129
cascading if-else statement, 125
elseif clause. See elseif clause
logical expressions, 124
operator precedence rules, 14—15, 25t
relational expressions, 23—32
relational operators, 23
switch statement, 129—131
truth table, 25t

—

Sequential search, 408—409
set, 363
setdiff, 394
Set operations, vectors, 394—397
setxor, 394—395
Side effects, 201
sign, 16
simplify, 493
sin, 15, 18
sind, 18
single, 10
single and double type, 10
size, 42
Slider, 438—439
solve, 462, 473, 497
sort, 400
Sorting, 397—404
algorithm, 398
indexing, 404—407
vectors of structures, 406—407
selection sort, 398—399
sort, 400
strings, 403—404
vectors of structures, 400—403
sortrows, 403—404
sound, 419—421
Sound files
audio file formats, 449
.au files, 449
chirp and train signals, 420, 420f
MAT-files, 419—420
sampling frequency, 419
sound signal, 419
.wav files, 449
Source, 434
Source code, 75
sphere, 357, 358f
spiral, 356, 356f
Spreadsheet files, 310—311
sprintf, 240—243, 242f, 246b
sqrt, 17
Square matrix, 474
Standard deviation, 391—392
Statistical functions
mean
arithmetic mean, 389

geometric mean, 391
harmonic mean, 390
outlier, 390
median, 393
mode, 392—393
variance and standard deviation, 391—392
std, 391
stem, 348, 350f
stem3, 355
Step value, 35
strcat, 238
strcmp, 245
strcmpi, 246b
strfind, 246, 256
str2func, 325
String, 22, 235
number conversions, 252—255
operations
changing case, 244—245
comparing strings, 245—246
concatenation, 238—240
customization, 240—243
evaluating strings, 250—252
finding, replacing, and separating strings,
246—250
whitespace character removal, 244
storing in cell array, 270—271, 403—404
string and number types conversion,
252—255
variable creation, 235—238
strncmp, 245
strncmpi, 246
str2num, 253—254
strrep, 248, 250b
strtok, 248, 249b, 250b, 300—301
strtrim, 244, 247b
struct, 272
Structures, 283
fields, 265
indexing into vectors of structures, 406—407
nested structures, 284—286
dot operator, 285
passing to functions, 274—275
related functions, 275—276
sorting vectors of structures, 400—403

variable creation and modification,
272-274
vectors of structures, 277—284
dot operator, 279
nested structures, 286—294
repmat to preallocate, 278
strcat, 238—239
Subfunction, 207
subplot, 154—155, 348b, 349, 359, 360f,
466, 466f
subs, 494
Subscript, 36—37, 41, 246, 267
Subscripted indexing, 41
Substring, 236
Subtraction, 13
sum, 280, 283—284, 388—389
surf, 357, 358f
switch, 129—131
sym, 492
Symbolic mathematics, 491—498
calculus, 498—515
displaying expressions, 495—496
overview, 491—498
simplification functions, 493—495
solving simultaneous linear equations, 496—498
symbolic variables and expressions, 492—493
Symmetric matrix, 477—478
sym2poly, 493
syms, 493
Syntax error, 220

Temporary variable, 120b
text, 366

textscan, 298, 302, 305, 375
Three-dimensional matrices, 49—50
tic/toc, 181

Timing code, 181—194

title, 87

Token, 248

Toolstrip and editor, 76, 76f
Top-down design, 74

trace, 474—475

Trace, square matrix, 474—475
Tracing, 221-222

Trailing blanks, 236

Trailing zeros, 83

train, 419—420, 420f

Transposition, vectors, 38

Trapezoidal rule, 498—501

trapint, 499b

trapz, 499b, 500b

Tridiagonal matrix, 476—477

tril, 477

triu, 477

true, 11, 23—25, 26b, 59, 61, 121, 162,
178b, 223, 360

True color, 421

True color matrices, 426—429, 427f

Truth table, logical operators, 25t

Two-dimensional plots, 347

type, 10, 76, 94

Type casting, 11

uibuttongroup, 431, 447
uicontrol, 433
uint8, uint16, uint32, uint64, 10
uipanel, 431
Unary operator, 13
union, 394
unique, 433
Unsigned integers, 10
unsigned integer types, 10
Unwind, 41, 85
upper, 244
Upper triangular matrix, 477
User, 6
User-defined functions, 97—106, 195—204
body, 89
end, 89
header, 74
help, 83
M-file, 77
passing arguments to functions, 202—204
returning more than one value, 196—200
returning no values, 200—201
returning one value, 195—196
returning values vs. printing, 201—202

L

“is” functions, 180

var, 391 logical vectors
varargin, 327 any and all functions, 61
varargout, 327, 329 operator precedence rules, 64, 64t
Variable or and and operators, 63
creation, 6 relational operators, 59
decrementing, 8 script algorithm, 165
incrementing, 8 loops and selection statements, 176—180
initializing, 8 meshgrid, 64—72
local, 215 timing, 181—194
MAT-file :
. vectors and matrices
appending to file, 309310 function arguments, 50—54
names, 8

loops, 172—181

persistent, 217—219 .
operations, 54—56

scope, 215—219 e
persistent variables, 217—219 Ve-ctonzlng
structure creation and modification, 394—397 input, 166—167
writing to file, 307—309 logical vectors, 59—64
Variable number of arguments, 326—332 multiple conditions, 164
input arguments, 327—329
output arguments, 329—332
Variance, 391—392 while loops
Vector
column vector creation, 38
element modification, 36—38
empty vector, 47—49
indexing into vectors of structures, 406—407
for loops
preallocating vectors, 152—153
sums and products, 151—152
operations, 235
preallocate, 174b

counting, 168
error-checking user input, 169—172
file reading, 164—166

Whitespace characters, 236, 244

who, 9, 312

whos, 9, 468

Workspace Window, 5—6, 11, 272, 468

printing, 84—86 xlabel, 87, 347—348
row vector creation, 34—38 xlsread, 310

set operations, 394—397 xlswrite, 310
sorting vectors of structures, 400—403 xor, 24—25

strings as, 236—238
structures, 277—284
nested structures, 284—286
types, 33—50
Vectorized code, 172
diff, 64—72
features, MATLAB, 180 zeros, 40, 61

ylabel, 87, 347—348

	MATLAB®
A Practical Introduction to Programming and Problem SolvingThird EditionStormy AttawayDepartment of Mechanical Engin ...
	Copyright
	Dedication
	Preface
	Motivation
	Modifications in the Third Edition
	Key Features
	Side-by-Side Programming Concepts and Built-in Functions
	Systematic Approach
	File Input/Output
	User-Defined Functions
	Advanced Programming Concepts
	Problem-Solving Tools
	Plots, Imaging, and Graphical User Interfaces
	Vectorized Code

	Layout of Text
	Part 1: Introduction to Programming Using MATLAB
	Part 2: Advanced Topics for Problem Solving with MATLAB
	Pedagogical Features
	Additional Book Resources

	Acknowledgments
	1. Introduction to MATLAB
	1.1 Getting into MATLAB
	1.2 The MATLAB Desktop Environment
	1.3 Variables and Assignment Statements
	1.3.1 Initializing, Incrementing, and Decrementing
	1.3.2 Variable names
	1.3.3 Types

	1.4 Numerical Expressions
	1.4.1 The Format Function and Ellipsis
	1.4.2 Operators
	1.4.2.1 Operator Precedence Rules

	1.4.3 Built-in Functions and Help
	1.4.4 Constants
	1.4.5 Random Numbers
	1.4.5.1 Generating Random Integers

	1.5 Characters and Encoding
	1.6 Relational Expressions
	Exercises

	2. Vectors and Matrices
	2.1 Vectors and Matrices
	2.1.1 Creating Row Vectors
	2.1.1.1 The Colon Operator and Linspace Function
	2.1.1.2 Referring to and Modifying Elements

	2.1.2 Creating Column Vectors
	2.1.3 Creating Matrix Variables
	2.1.3.1 Referring to and Modifying Matrix Elements

	2.1.4 Dimensions
	2.1.4.1 Changing Dimensions

	2.1.5 Empty Vectors
	2.1.6 Three-Dimensional Matrices

	2.2 Vectors and Matrices as Function Arguments
	2.3 Scalar and Array Operations on Vectors and Matrices
	2.4 Matrix Multiplication
	2.4.1 Matrix Multiplication for Vectors

	2.5 Logical Vectors
	2.5.1 Relational Expressions with Vectors and Matrices
	2.5.2 Logical Built-in Functions

	2.6 Applications: The diff and meshgrid Functions
	Exercises

	3. Introduction to MATLAB Programming
	3.1 Algorithms
	3.2 MATLAB Scripts
	3.2.1 Documentation

	3.3 Input and Output
	3.3.1 Input Function
	3.3.2 Output Statements: disp and fprintf
	3.3.2.1 Printing Vectors and Matrices

	3.4 Scripts with Input and Output
	3.5 Scripts to Produce and Customize Simple Plots
	3.5.1 The Plot Function
	3.5.1.1 Customizing a Plot: Color, Line Types, Marker Types

	3.5.2 Simple Related Plot Functions

	3.6 Introduction to File Input/Output (Load and Save)
	3.6.1 Writing Data to a File
	3.6.2 Appending Data to a Data File
	3.6.3 Reading From a File
	3.6.3.1 Example: Load from a File and Plot the Data

	3.7. User-Defined Functions That Return a Single Value
	3.7.1 Function Definitions
	3.7.2 Calling a Function
	3.7.3 Calling a User-defined Function From a Script
	3.7.3.1 Simple Programs

	3.7.4 Passing Multiple Arguments
	3.7.5 Functions with Local Variables
	3.7.6 Introduction to Scope

	3.8. Commands and Functions

	4. Selection Statements
	4.1 The if Statement
	4.1.1 Representing Logical True and False

	4.2 The if-else Statement
	4.3 Nested if-else Statements
	4.3.1 The elseif Clause

	4.4. The switch Statement
	4.5. The menu Function
	4.6. The “is” Functions in MATLAB

	5. Loop Statements and Vectorizing Code
	5.1 The for Loop
	5.1.1 for Loops that Do Not Use the Iterator Variable in the Action
	5.1.2 Input in a for Loop
	5.1.3 Finding Sums and Products
	5.1.4 Preallocating Vectors
	5.1.5 for Loop Example: Subplot

	5.2 Nested for Loops
	5.2.1 Combining Nested for Loops and if Statements

	5.3 while Loops
	5.3.1 Multiple Conditions in a while Loop
	5.3.2 Reading From a File Using a while Loop
	5.3.3 Input in a while Loop
	5.3.4 Counting in a while Loop
	5.3.5 Error-Checking User Input in a while Loop
	5.3.5.1 Error-Checking for Integers

	5.4 Loops with Vectors and Matrices: Vectorizing
	5.4.1 Vectorizing Sums and Products
	5.4.2 Vectorizing Loops with Selection Statements
	5.4.3 Tips for Writing Efficient Code

	5.5 Timing

	6. MATLAB Programs
	6.1 More Types of User-Defined Functions
	6.1.1 Functions that Return more than One Value
	6.1.2 Functions that Accomplish a Task Without Returning Values
	6.1.3 Functions that Return Values Versus Printing
	6.1.4 Passing Arguments to Functions

	6.2 MATLAB Program Organization
	6.2.1 Modular Programs
	6.2.2 Subfunctions

	6.3 Application: Menu-Driven Modular Program
	6.4 Variable Scope
	6.4.1 Persistent Variables

	6.5 Debugging Techniques
	6.5.1 Types of Errors
	6.5.2 Tracing
	6.5.3 Editor/Debugger
	6.5.4 Function Stubs
	6.5.5 Code Cells and Publishing Code

	7. String Manipulation
	7.1 Creating String Variables
	7.1.1 Strings as Vectors

	7.2 Operations on Strings
	7.2.1 Concatenation
	7.2.2 Creating Customized Strings
	7.2.2.1 Applications of Customized Strings: Prompts, Labels, and Arguments to Functions

	7.2.3 Removing White Space Characters
	7.2.4 Changing Case
	7.2.5 Comparing Strings
	7.2.6 Finding, Replacing, and Separating Strings
	7.2.7 Evaluating a String

	7.3 The “is” Functions for Strings
	7.4 Converting Between String and Number Types

	8. Data Structures: Cell Arrays and Structures
	8.1 Cell Arrays
	8.1.1 Creating Cell Arrays
	8.1.2 Referring to and Displaying Cell Array Elements and Attributes
	8.1.3 Storing Strings in Cell Arrays

	8.2 Structures
	8.2.1 Creating and Modifying Structure Variables
	8.2.2 Passing Structures to Functions
	8.2.3 Related Structure Functions
	8.2.4 Vectors of Structures
	8.2.5 Nested Structures
	8.2.6 Vectors of Nested Structures

	9. Advanced File Input and Output
	9.1 Lower-Level File I/O Functions
	9.1.1 Opening and Closing a File
	9.1.2 Reading From Files
	9.1.2.1 Comparison of Input File Functions

	9.1.3 Writing to Files
	9.1.4 Appending to Files

	9.2 Writing and Reading Spreadsheet Files
	9.3 Using MAT-files for Variables
	9.3.1 Writing Variables to a File
	9.3.2 Appending Variables to a MAT-file
	9.3.3 Reading from a MAT-file

	10. Advanced Functions
	10.1 Anonymous Functions
	10.2 Uses of Function Handles
	10.2.1 Function Functions

	10.3 Variable Numbers of Arguments
	10.3.1 Variable Number of Input Arguments
	10.3.2 Variable Number of Output Arguments

	10.4 Nested Functions
	10.5 Recursive Functions

	11. Advanced Plotting Techniques
	11.1 Plot Functions
	11.2. Animation
	11.3. 3D Plots
	11.4. Customizing Plots
	11.5. Handle Graphics and Plot Properties
	11.5.1 Plot Objects and Properties
	11.5.2 Core Objects

	11.6. Plot Applications
	11.6.1 Plotting From a Function
	11.6.2 Plotting File Data

	11.7. Saving and Printing Plots

	12. Basic Statistics, Sets, Sorting, and Indexing
	12.1 Statistical Functions
	12.1.1 Mean
	12.1.2 Variance and Standard deviation
	12.1.3 Mode
	12.1.4 Median

	12.2 Set Operations
	12.3 Sorting
	12.3.1 Sorting Vectors of Structures
	12.3.2 Sorting Strings

	12.4 Index Vectors
	12.4.1 Indexing into Vectors of Structures

	12.5 Searching
	12.5.1 Sequential Search
	12.5.2 Binary Search

	13. Sights and Sounds
	13.1 Sound Files
	13.2 Image Processing
	13.2.1 Colormaps
	13.2.2 True Color Matrices
	13.2.3 Image Files

	13.3 Introduction to Graphical User Interfaces
	13.3.1 GUI Basics
	13.3.2 Text Boxes, Push Buttons, and Sliders
	13.3.3 Plots and Images in GUIs
	13.3.4 Normalized Units and Button Groups

	14. Advanced Mathematics
	14.1 Fitting Curves to Data
	14.1.1 Polynomials
	14.1.2 Curve Fitting
	14.1.3 Interpolation and Extrapolation

	14.2 Complex Numbers
	14.2.1 Equality for Complex Numbers
	14.2.2 Adding and Subtracting Complex Numbers
	14.2.3 Multiplying Complex Numbers
	14.2.4 Complex Conjugate and Absolute Value
	14.2.5 Complex Equations Represented as Polynomials
	14.2.6 Polar Form
	14.2.7 Plotting

	14.3 Matrix Solutions to Systems of Linear Algebraic Equations
	14.3.1 Matrix Properties
	14.3.1.1 Square Matrices
	14.3.1.2 Matrix Operations

	14.3.2 Linear Algebraic Equations
	14.3.2.1 Solving 2 x 2 Systems of Equations
	14.3.2.2 Gauss, Gauss–Jordan Elimination
	14.3.2.2 Gauss Elimination
	14.3.2.2 Gauss–Jordan

	14.3.2.3 Reduced Row Echelon Form
	14.3.2.3 Finding a Matrix Inverse by Reducing an Augmented Matrix

	14.4 Symbolic Mathematics
	14.4.1 Symbolic Variables and Expressions
	14.4.2 Simplification Functions
	14.4.3 Displaying Expressions
	14.4.4 Solving Equations

	14.5 Calculus: Integration and Differentiation
	14.5.1 Integration and the Trapezoidal Rule
	14.5.2 Differentiation
	14.5.3 Calculus in Symbolic Math Toolbox

	Appendix I -
MATLAB® Functions (not including those listed in the “Explore Other Interesting Features” sections)
	Appendix II -
MATLAB® and Simulink Toolboxes
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	X
	Y
	Z

