MICROSOFT

WINDOWS
COMMUNIC

A

F L1 12

FOUNDATION

-1
\ -’ 1 M

Step by Step

John Sharp

contentemaster

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2007 by John Sharp

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Control Number: 2006939802

Printed and bound in the United States of America.

123456789 QWE 210987

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor-
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Active Directory, Internet Explorer, MSDN, SQL Server, Visual Basic,
Visual C#, Visual C++, Visual Studio, Windows, Windows CardSpace, Windows Server, Windows
Vista, and WinFX are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries. Other product and company names mentioned herein may be the
trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Ben Ryan

Project Editor: Valerie Woolley

Editorial and Production: Custom Editorial Productions, Inc.

Technical Reviewer: Jon Flanders; Technical review services provided by Content Master, a member of
CM Group, Ltd.

Body Part No. X13-24119

Contents at a Glance

Acknowledgments Xi
INErodUCtioN Xiii

O 00 N o U1l A W N B

=
o

Programmatically Controlling the Configuration
and Communicationsoi ittt i

11 Implementing OneWay and Asynchronous Operations
12 Implementing a WCF Service for Good Performance
13 Routing Messagesc.oiuiiinineeneenennenneneennnnnns
14 Using a Callback Contract to Publish and Subscribe to Events
15 Managing Identity with Windows CardSpace

16 Integrating with ASP.NET Clients and Enterprise
Services ComponeNnts.oiin it i i e

Introducing Windows Communication Foundation
Hostinga WCF Serviceoiuiiiiiiiniiniiniinnnnnnn.
Making Applications and Services Robust
Protecting an Enterprise WCF Service
Protecting a WCF Service over the Internet
Maintaining Service Contracts and Data Contracts
Maintaining State and Sequencing Operations
Supporting Transactionsouiiiiiiiniinennennnnnn

Implementing Reliable Sessions,

Table of Contents

Acknowledgments Xi
INErodUCtioN Xiii
1 Introducing Windows Communication Foundation
What Is Windows Communication Foundation? 1
The Early Days of Personal Computer Applications........................ 1
Inter-Process Communications Technologies 2
The Web and Web Services. ... 3
Using XML as a Common Data Format.......................... 3
Sending and Receiving Web Service Requests............................ 4
Handling Security and Privacy in a Global Environment.................... 5
The Purpose of Windows Communication Foundation 6
Building @a WCF Servicet e 7
Defining Contractst 12
Implementing the Service 14
Configuring, Deploying, and Testing the WCF Service 18
Building a WCF Client. e 24
Service-Oriented Architectures and Windows Communication Foundation. 28
UMY e e e e e 30
2 HostingaWCF Service.ouiiiiiniit ittt i 31
How Does a WCF Service Work? e 31
Service ENdpoints oo 32
Processing a Client Request.t 33
Hosting a WCF Service in a User Application.............. ... oo, 35
Using the ServiceHost Class. ... 35
Building a Windows Presentation Foundation Application to Host a
WCF Serviceo o 38
Reconfiguring the Service to Use Multiple Endpoints. 44

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vi Table of Contents

Understanding Bindings 47
The WCF Predefined Bindings 47
Configuring Bindings.............. . 50

Hosting a WCF Service in a Windows Service 52

SUMIMIAIY o e e e 57

3 Making Applications and Services Robust

CLR Exceptionsand SOAP Faultst e 60
Throwing and Catchinga SOAP Fault....... i, 60
Using Strongly-Typed Faults 65
Reporting Unanticipated Exceptions., 73

Managing Exceptions in Service Host Applications 76
ServiceHost States and Transitions. 76
Handling Faults in a Host Application., 77
Handling Unexpected Messages in a Host Application 78

SUMMIAIY oo e 80

4 Protecting an Enterprise WCF Service..........................

What IS SECUIItY?. . .\ e e e 81
Authentication and Authorization in a Windows Environment. 83
Transport and Message Level Security, 84

Implementing Security in a Windows Domain 86
Protecting a TCP Service at the Message Leveloo.in. 86
Protecting an HTTP Service at the Transport Level 93
Protecting an HTTP Service at the Message Level. 100
Authenticating Windows Users 102
AUthOriZING USerst 108
Using Impersonation to Access Resourcesccvui.... 114

SUMIMIAIY e e e e 116

5 Protecting a WCF Service over the Internet.....................

Authenticating Users and Services in an Internet Environment 118
Authenticating and Authorizing Users by Using the SQL Membership
Provider and the SQL Role Provider 118
Authenticating and Authorizing Users by Using Certificates. 132
Authenticating a Service by Using a Certificate. 142

SUMMATY . .o 148

Table of Contents

6 Maintaining Service Contracts and Data Contracts................
Modifying a Service Contractuuuui e 150
Selectively Protecting Operations. o .. 150
Versioning @ ServiCettt 156
Making Breaking and Nonbreaking Changes to a Service Contract. 163
Modifying a Data Contractuuur e 165
Data Contract and Data Member Attributes. 166
Data Contract Compatibility 176
SUMMANY . 179
7 Maintaining State and Sequencing Operations
Managing State in @ WCF Service.t 182
Service Instance Context Modes. 193
Maintaining State with the PerCall Instance Context Mode............... 198
Selectively Controlling Service Instance Deactivation.................... 204
Sequencing Operationsina WCF Service. ...t 206
SUMMAIY . 211
8 Supporting Transactionsttt inennennenn.
Using Transactions in the ShoppingCartService Service....................... 214
Implementing OLE Transactions 214
Implementing WS-AtomicTransaction Transactions. 229
Designing a WCF Service to Support Transactions 231
Transactions and Service Instance Context Modes 231
Transactions and Messagingvuuiiini e 232
Transactions and Multi-Threading 232
Long-Running Transactions. ittt 233
UMY o e 233
9 Implementing Reliable Sessions
Using Reliable Sessions. 235
Implementing Reliable Sessions with WCF 236
Detecting and Handling Replay Attacks o i i, 245
Configuring Replay Detection with WCF., 246

SUMMANY . 251

viii Table of Contents

10 Programmatically Controlling the Configuration

and Communications. i e
The WCF Service Model 253
Servicesand Channels............. 254
Behaviors 255
Composing Channels into Bindings., 256
INSPecting MESSages . ..o vttt 261
Controlling Client Communications ..., 265
Connecting to a Service Programmatically 265
Sending Messages Programmatically oL 271
UMY ot e e e e e e e e 274
11 Implementing OneWay and Asynchronous Operations............
Implementing OneWay Operations.c.uuiiiiiiiiieeennann.. 276
The Effects of a OneWay Operation 276
OneWay Operations and Timeoutst 277
Recommendations for Using OneWay Methods 285
Invoking and Implementing Operations Asynchronously 286
Invoking an Operation Asynchronously in a Client Application........... 286
Implementing an Operation Asynchronously in a WCF Service........... 287
UsiNg Message QUEUESottt e et et e e e et e e 296
SUMMATY oo 301
12 Implementing a WCF Service for Good Performance..............
Using Service Throttling to Control ResourceUse 304
Configuring Service Throttling............ 305
Transmitting Data by Using MTOM e 311
Sending Large Binary Data Objects to a Client Application 314
Streaming Data froma WCF Service........ .. 318
Enabling Streaming in a WCF Service and Client Application............. 319
Designing Operations to Support Streaming.....................oo.... 319
Security Implications of Streaming. L. 320
SUMMAIY oo e 320
13 Routing Messages.iiiniinin it i
How the WCF Service Runtime Dispatches Operations 322
ChannelDispatcher and EndpointDispatcher Objects Revisited 322

EndpointDispatcher Objects and Filters, 324

Table of Contents

Routing Messages to Other Services 325
WCF and the WS-Addressing Specification 337
The WS-Referral Specification and Dynamic Routing 339
SUMMIAIY oo 340
14 Using a Callback Contract to Publish and Subscribe to Events
Implementing and Invoking a Client Callback 342
Defining a Callback Contract.......... i, 342
Implementing an Operation in a Callback Contract 343
Invoking an Operation in a Callback Contract 345
Reentrancy and Threading in a Callback Operation 346
Implementing a Duplex Channel 347
Using a Callback Contract to Implement Events 347
Delivery Models for Publishing and Subscribing 358
SUMIMIAIY e 359
15 Managing Identity with Windows CardSpace
Using Windows CardSpace to Access a WCF Service 362
Implementing Claims-Based Security. 362
Using a Third-Party Identity Provider. i, 375
Claims-Based Authentication in a Federated Environment 377
SUMIMIAIY oo 380
16 Integrating with ASP.NET Clients and Enterprise
Services Components.ttt i e e
Creating a WCF Service that Supports an ASPNET Client 381
Exposing a COM+ Application as a WCF Service.o it 390
UMY e e 402
INdEX . ot e e e 403

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Acknowledgments

Before I started work on this book, my wife used to think I was slightly mad. After my usual
bout of late nights, gallons of hot sweet tea, and the occasional burst of interesting vocabulary
(I had to initially explain that the term “WCF” is not an expletive, no matter how loudly I
shout it), she has now reformed her opinion of me and knows I am quite insane. That said, I
wouldn’t swap the experience of writing books for anything in my professional life—there are
much harder ways to earn a living, and [thank all at Content Master for allowing me to spend
a significant amount of my time doing it.

Writing a book is a team effort. However, although you don’t actually meet many people face
to face, you work closely with so many people electronically that you feel they are old friends.
Certainly the team of professionals I have had the pleasure of working with at Microsoft Press
has been superb and I would like to thank them all, especially editor Valerie Woolley, who has
guided me through the authoring process and put up with me making change after change to
the titles of chapters, and Julie Hotchkiss, who worked patiently behind the scenes liasing
with the editing staff and the technical reviewers. I must also make special mention of Jon
Flanders, who has done sterling work reviewing each chapter, setting me straight when I did
not make sense or when I was just plain wrong!

As ever, I must acknowledge the support given to me by my family: to Diana, who supplied the
gallons of tea and now understands what WCF is even if she didn’t want to know before; to
James, who suddenly grew taller than me while I was writing Chapter 4; and to Francesca,
who thinks I am an unfashionably dressed, sad geek.

And finally, “Up the Gills!” (If they don’t get promoted soon I shall have to switch my alle-
giance to Forest Green Rovers.)

John Sharp

Xi

Introduction

Microsoft Windows Communication Foundation (WCF), alongside Windows Workflow
Foundation (WF) and Windows Presentation Foundation (WPF), is intended to become the
primary framework for building the next wave of business applications for the Microsoft Win-
dows operating system. WCF enables you to build powerful service-oriented systems, based
on connected services and applications. You can use WCEF to create new services, as well as
augment and interoperate with the functionality available through many existing services cre-
ated by using other technologies. When designing distributed applications in the past, you
frequently had to choose a specific technology, such as Web services, COM+, Microsoft Mes-
sage Queue, or .NET Framework Remoting. This choice often had a fundamental impact on
the architecture of your solutions. WCF provides a consistent model for using a variety of tech-
nologies, enabling you to design and architect your solutions without being restricted by a
specific connectivity mechanism.

Who This Book Is For

This book will show you how to build connected applications and services by using WCF. If
you are involved in designing, building, or deploying applications for the Microsoft Windows
operating system, then sooner or later you are going to have to become familiar with WCF.
This book will give you the initial boost you need to quickly learn many of the techniques
required to create systems based on WCEF. Its approach is pragmatic, covering the concepts
and details necessary to enable you to build connected solutions.

To get the most from this book, you should meet the following profile:

® You should be an architect, designer, or developer who will be creating solutions for the
Microsoft Windows family of operating systems.

B You should have experience developing applications by using Visual Studio 2005 and
CH.

® You should have a basic understanding of concepts such as transactions, Web services,
and message queuing.

Finding Your Best Starting Point in This Book

This book is designed to help you build skills in a number of essential areas. It assumes that
you are new to WCF and takes you step by step through the fundamental concepts of WCF

feature by feature. It is recommended that you follow the chapters in sequence and perform

each of the exercises, as the techniques and ideas that you see in one chapter are extended by
those in subsequent chapters. However, if you have specific requirements or are only inter-

xiii

xiv

Introduction

ested in certain aspects of WCF, you can use the table below to find your best route through

this book.
If you are Follow these steps
New to Web services and distributed 1. Install the code samples as described in the
applications and need to gain a basic “Code Samples” section of this Introduction.
understanding of WCF. 2. Work through Chapters 1 to 5 sequentially and
perform the exercises.
3. Complete Chapters 6 to 16 as your level of
experience and interest dictates.
New to Web services and distributed 1. Install the code samples as described in the
applications and need to learn how to “Code Samples” section of this Introduction.
use WCF to implement solutions using 2. Work through Chapters 1 to 9 sequentially and
common Web services featurgs such as perform the exercises.
sessions, transactions, and reliable
messaging. 3. Complete Chapt.ers 10 to .16 as your level of
experience and interest dictates.
Familiar with Web services and 1. Install the code samples as described in the
distributed applications, and need to “Code Samples” section of this Introduction.
learn about WCF quickly, including its 2. Skim the first chapter to get an overview of
advanced features. WCF, but perform the exercises.
3. Read Chapter 2 and perform the exercises.
Skim Chapter 3.
5. Read Chapters 4 and 5 and complete the
exercises.
6. Skim Chapters 6 to 9, performing the exercises
that interest you.
7. Complete the remaining chapters and exercises.
Familiar with security concepts but 1. Install the code samples as described in the
need to understand how to use the “Code Samples” section of this Introduction.
security features that WCF provides. 2. Skim the first three chapters.
3. Read Chapters 4 and 5 and perform the
exercises.
4. Skim Chapters 6 to 14.
5. Read Chapter 15 and complete the exercises.
6. Skim Chapter 16.
Referencing the book after working 1. Use the index or the Table of Contents to find
through the exercises. information about particular subjects.
2. Read the Summary sections at the end of each

chapter to find a brief review of the concepts
and techniques presented in the chapter.

Introduction Xv

Conventions and Features in This Book

This book presents information using conventions designed to make the information read-
able and easy to follow. Before you start, read the following list, which explains conventions
you'll see throughout the book and points out helpful features that you might want to use.

Conventions
m Each exercise is a series of tasks. Each task is presented as a series of numbered steps (1,
2, and so on). A bullet (m) indicates an exercise that has only one step.

m Notes labeled “tip” provide additional information or alternative methods for complet-
ing a step successfully.

m Notes labeled “important” alert you to information you need to check before
continuing.

m Text that you type appears in bold.

B A plus sign (+) between two key names means that you must press those keys at the

same time. For example, “Press Alt+Tab” means that you hold down the Alt key while
you press the Tab key.

System Requirements

You'll need the following hardware and software to complete the practice exercises in this
book:

B Microsoft Windows XP with Service Pack 2, Microsoft Windows Server 2003 with Ser-
vice Pack 1, or Microsoft Windows Vista.

B Microsoft Visual Studio 2005 Standard Edition or Microsoft Visual Studio 2005 Profes-
sional Edition, including SQL Server 2005 Express.

Note You can perform all the exercises in this book using Visual Studio 2005 Standard
Edition, except for the final set of exercises in Chapter 2, which creates a Windows Service
and requires Visual Studio 2005 Professional Edition. However, this project is not

required in any subsequent chapters, so you can omit this exercise if you have only Visual
Studio 2005 Standard Edition.

® 600-MHz Pentium or compatible processor (1-GHz Pentium recommended).
m 192 MB RAM (256 MB or more recommended).

m Video (800 x 600 or higher resolution) monitor with at least 256 colors (1024 x 768
High Color 16-bit recommended).

Xvi Introduction
m CD-ROM or DVD-ROM drive.
m Microsoft mouse or compatible pointing device.

Some of the exercises require that you have installed Internet Information Services (IIS) and
Message Queuing (MSMQ).

You will also need to have the following additional software installed on your computer. This
software is available on the companion CD supplied with this book. Installation and configu-
ration instructions are provided later in the Introduction:

® Microsoft .NET Framework 3.0.
Note If you are using Windows Vista, the .NET Framework 3.0 is automatically
installed as part of the operating system. You do not need to install it again.

Visual Studio 2005 Extensions for .NET Framework 3.0.

Microsoft SQL Server AdventureWorks database.

Microsoft Enterprise Library (January 2006 version recommended).

Microsoft Windows XP Service Pack 2 Support Tools (only required if you are using
Microsoft Windows XP).

You will additionally require the Microsoft Windows Software Development Kit for Windows
Vista and .NET Framework 3.0 Runtime Components. You can download this software from
the Microsoft Download Center site at http;//www.microsoft.com/downloads/ details.aspx?Fam-
ilyld=C2B1E300-F358-4523-B479-F53D234CDCCF&displaylang=en.

of the Microsoft Windows Software Development Kit include this tool. A copy of it is provided
on the companion CD.

@ \ Important The exercises in Chapter 5 use a tool called FindPrivateKey.exe. Not all releases

Introduction Xvii

Code Samples

The companion CD inside this book contains the code samples that you'll use as you perform
the exercises. By using the code samples, you won’t waste time creating files that aren’t rele-
vant to the exercise. The files and the step-by-step instructions in the lessons also let you learn
by doing, which is an easy and effective way to acquire and remember new skills.

Installing the Code Samples

Follow these steps to install the code samples and required software on your computer so that
you can use them with the exercises:

1.

Remove the companion CD from the package inside this book and insert it into your
CD-ROM drive.

Note An end user license agreement should open automatically. If this agreement
does not appear, open My Computer on the desktop or Start menu, double-click the
icon for your CD-ROM drive, and then double-click StartCD.exe.

Review the end user license agreement. If you accept the terms, select the accept option,
and then click Next.

A menu will appear with options related to the book.
Click Install Code Samples.
Follow the instructions that appear.

The code samples are installed to the following location on your computer if you are
using Windows XP:

My Documents\Microsoft Press\WCF Step By Step

The code samples are installed to the following location on your computer if you are
using Windows Vista:

Documents\Microsoft Press\WCF Step By Step

Installing and Configuring the Microsoft .NET Framework 3.0
(Windows XP only)

The exercises and samples in this book have been tested against the RTM version of the .NET
Framework 3.0. If you have previously installed an earlier version of the NET Framework 3.0,
you must uninstall it and use the software provided on the companion CD. Follow these
instructions to install the Microsoft .NET Framework 3.0:

1.

Using Windows Explorer, move to the \Software folder on the companion CD.

xviii Introduction

2.

4.

@
@

Double-click the file dotnetfx3.exe. If the Open File - Security Warning dialog appears,
click Run.

Note A 64-bit version of the .NET Framework 3.0 is available in the file
dotnextfx3_x64.exe.

In the Welcome to Setup page, read the license agreement. If you agree with the license
terms, click I have read and ACCEPT the terms of the License Agreement, and then click
Install.

Installation continues in the background.

When the Setup Complete page appears, click Exit.

Important You should download and install the Microsoft Windows SDK before
installing the Visual Studio 2005 Extensions for .NET Framework 3.0.

Important If your copy of the Windows SDK does not include the FindPrivateKey
utility, copy the file FindPrivateKeye.exe from the \Software\FindPrivateKey folder on the
companion CD to the bin folder under the Microsoft Windows SDK installation folder
(C:\Program Files\Microsoft SDKs\Windows\v6.0\Bin).

Installing the Visual Studio 2005 Extensions for .NET Framework 3.0

The exercises and samples in this book have been tested against the November 2006 Cus-
tomer Technical Preview version of the Visual Studio 2005 Extensions for .NET Framework
3.0. Follow these instructions to install this software:

1.
2.

Using Windows Explorer, move to the \Software folder on the companion CD.

Double-click the file vsextwfx.exe. If the Open File - Security Warning dialog appears,
click Run.

In the Welcome to the Visual Studio 2005 extensions for .NET Framework 3.0 (WCF
WPTF) November 2006 CTP Setup Wizard page, click Next.

In the License Agreement page, read the license agreement. If you agree with the license
terms, click T Accept, and then click Next.

In the Confirm Installation page, click Next.
When the Installation Complete page appears, click Close.

Close the Internet Explorer window displaying the release notes.

Introduction Xix

Installing and Configuring the Microsoft Enterprise Library

The exercises and samples in this book have been developed and tested using the January
2006 release of the Microsoft Enterprise Library. Follow these steps to install the Enterprise
Library:

1.
2.

Using Windows Explorer, move to the \Software folder on the companion CD.

Double-click the file Enterprise Library January 2006.exe. If the Open File — Security
Warning dialog appears, click Run.

In the Welcome to the Enterprise Library for NET Framework 2.0 - January 2006
Installation Wizard page, click Next.

In the License Agreement page, read the license agreement. If you agree with the license
terms, click I accept the license agreement, and then click Next.

In the User Information page, enter your full name and organization, and then click
Next.

In the Destination Folder page, click Browse, change the Destination Folder to C:\Pro-
gram Files\Microsoft Enterprise Library\, and then click OK. Select the Compile Enter-
prise Library check box, and then click Next.

Note The exercise instructions throughout this book assume you have installed the
Enterprise Library in the C:\Program Files\Microsoft Enterprise Library\ folder.

In the Installation Configuration page, accept the default values, and then click Next.
In the Ready to Install the Application page, click Next.

While the Enterprise Library installs, you will see a console window appear as the instal-
lation program compiles and builds the library.

When the Enterprise Library for NET Framework 2.0 - January 2006 has been success-
fully installed page appears, click Finish.

Installing and Configuring the AdventureWorks Database

The exercises and examples in this book make use of the AdventureWorks sample database. If
you don’t already have this database installed on your computer, a copy of the database instal-
lation program is supplied on the companion CD. Follow these steps to install and configure
the database:

1.
2.

Using Windows Explorer, move to the \Software folder on the companion CD.

Double-click the file AdventureWorksDB.msi. If the Open File - Security Warning dia-
log appears, click Run.

XX

Introduction

10.

11.

In the Welcome to the InstallShield Wizard for AdventureWorksDB page, click Next.

In the License Agreement page, read the license agreement. If you agree with the license
terms, click T accept the terms in the license agreement, and then click Next.

In the Destination Folder page, accept the default location, and then click Next.
In the Ready to Install the Program page, click Install.
When the InstallShield Wizard Completed page appears, click Finish.

The InstallShield Wizard only copies the database files on to your computer. You must
attach the database files to SQL Server to make the database available, as described in
the following steps.

On the Windows Start menu, point to All Programs, point to Accessories, and then click
Command Prompt.

In the Command Prompt window, move to the \Setup folder on the companion CD, and
then type the following command:
osql -E -S .\SQLEXPRESS -i attach.sql

This command should complete without any errors (it will display a series of prompts,
“1>2> 1> 2> 3> 4> 5> 1>7),

Note The script attach.sql contains a CREATE DATABASE statement that assumes that
you have installed the AdventureWorks database in the default location on the C: drive
(C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data). If you have installed it
elsewhere, you will need to create a copy of this file, update the paths it contains, and
run this updated script instead. For example, if you are using the 64-bit version of Win-
dows Vista, the database will be installed in the C:\Program Files (x86)\Microsoft SQL
Server\MSSQL.1\MSSQL\Data folder by default.

By default, IIS uses the ASP.NET account when executing Web services. Follow these
steps to grant the ASPNET account access to the AdventureWorks database.

Copy the file aspnet.sql in the \Setup folder on the companion CD to your My Docu-
ments folder if you are using Windows XP, or to your Documents folder if you are using
Windows Vista.

Using Notepad, edit the file aspnet.sql in your My Documents (or Documents) folder.

If you are using Windows XP, replace the four occurrences of the text
YOUR_COMPUTER with the name of your computer.

If you are using Windows Vista, replace the four occurrences of the text
[YOUR_COMPUTER\ASPNET] with the text [NT AUTHORITYANETWORK SERVICE]
(including the square brackets and spaces).

Save the file and close Notepad when you have finished.

12.

13.

Introduction xxi

In the Command Prompt window, move to your My Documents (or Documents) folder
and type the following command:

osql -E -S .\SQLEXPRESS -i aspnet.sql
This command should complete without any errors (it will display a series of prompts,
“1>2>1>2>1>2>1>2> 1> 2> 1>7).

Close the Command Prompt window.

Installing the Microsoft Windows XP Service Pack 2 Support Tools
(Windows XP only)

Some exercises make use of the httpcfg utility. If you are using Windows XP, you need to
install the Support Tools. If you are using Windows Vista this is not necessary, as Vista pro-
vides its own utility called netsh. Follow these steps to install the Microsoft Windows XP Ser-
vice Pack 2 Support Tools:

1.
2.

b

® N W

Using Windows Explorer, move to the \Software folder on the companion CD.

Double-click the file WindowsXP-KB838079-SupportTools-ENU.exe. If the Open File -
Security Warning dialog appears, click Run.

In the Welcome to the Windows Support Tools Setup Wizard page, click Next.

In the End User License Agreement page, read the license agreement. If you agree with
the license terms, click I Agree, and then click Next.

In the User Information page, enter your name and organization, and then click Next.
On the Select An Installation Type page, select Complete, and then click Next.
On the Destination Directory page, accept the default folder, and then click Install Now.

When the Completing the Windows Support Tools Setup Wizard page appears, click
Finish.

Granting Access to Your Documents Folder

The practice files and exercises are installed under your My Documents (or Documents)
folder. Some of the exercises require IIS to be able to run services installed with the practice
files. TIS executes Web services using the ASPNET account under Windows XP, or the NET-
WORK SERVICE account under Windows Vista. This account must be able to read the con-
tents of the folder holding the files for the service, as well as the parent folder hierarchy.
Follow these steps to grant the ASPNET or NETWORK SERVICE account access to your My
Documents folder.

xxii Introduction
If you are using Windows XP, perform the following steps:

1. Using Windows Explorer, move to the Documents and Settings folder, and then move to
your folder. Right-click your My Documents folder, and then click Sharing and Security.

2. In the My Documents Properties window, click the Security tab.

Q Tip If the Security tab is not present, close the My Documents Properties window. In
the Tools menu of Windows Explorer, click Folder Options. In the Folder Options dialog
box, click the View tab. Scroll to the bottom of the tree-view in the Advanced Settings

list, uncheck Use simple file sharing, and then click OK. Right-click your My Documents
folder, and then click Sharing and Security. The Security tab should now appear.

3. Click Add.
4. In the Select Users or Groups dialog box, type ASPNET, and then click OK.

In My Documents Properties window, accept the default permissions, and then click
OK.

If you are using Windows Vista, perform the following steps:

1. Using Windows Explorer, move to the Documents and Settings folder, and then move to
your folder. Right-click your Documents folder, and then click Share.

2. In the “Choose people on your network to share with” window, type
NETWORK SERVICE in the text box, and then click Add.

Click Share.

4. In the “Your folder is shared” window, click Done.

Using the Code Samples

Each chapter in this book explains when and how to use any code samples for that chapter.
When it’s time to use a code sample, the book will list the instructions for how to open the
files. The chapters are built around scenarios that simulate real programming projects, so you
can easily apply the skills you learn to your own work.

For those of you who like to know all the details, following is a list of the code sample Visual
Studio projects and solutions, grouped by the folders where you can find them.

@ Important Many of the exercises require administrative access to your computer. Make
sure you perform the exercises using an account that has this level of access.

Introduction xxiii

Solution Folder

Description

Chapter 1

ProductsService

This solution gets you started. Creating the ProductsService
project leads you through the process of building a simple WCF
service hosted by IIS. The service enables you to query and
update product information in the AdventureWorks database.

The ProductsClient project is a console-based WCF client appli-
cation that connects to the ProductsService service. You use this
project for testing the WCF service.

Chapter 2

ProductsServiceHost

This solution contains Windows Presentation Foundation appli-
cation that provides a host environment for the ProductsService
service. You use this application to manually start and stop the
service.

You configure the ProductsClient application to connect to the
service hosted by this application by using a TCP endpoint.

WindowsProductService

This solution contains a Windows Service that hosts the Prod-
uctsService service. You can start and stop the service from the
Services applet in the Windows Control Panel.

You reconfigure the ProductsClient application to connect to
this service by using an endpoint based on the Named Pipe
transport.

This exercise requires Visual Studio 2005 Professional Edition.

Chapter 3

ProductsServiceFault

The ProductsService service in this solution traps exceptions and
reports them back to the client application as Simple Object
Access Protocol (SOAP) faults. It defines fault contracts and
specifies faults that each operation can throw.

You modify the ProductsClient application to catch the SOAP
faults thrown by the service.

Chapter 4

ProductsService

When building this solution, you see how to configure security
for the ProductsService service and the ProductsClient applica-
tion. The techniques you use are appropriate for WCF client
applications and services running inside the same organization
over a corporate intranet. You learn how to:

B Apply message level security over a TCP binding.

B Implement transport level security over an HTTP binding.
B Implement message level security over an HTTP binding.
|

Implement user authentication by using Windows creden-
tials.

Implement user authorization by using declarative and
imperative .NET Framework security.

xxiv Introduction

Solution Folder

Description

Chapter 5

ProductsService

When creating this solution, you see how to configure security
for the ProductsService service and the ProductsClient applica-
tion using techniques that are appropriate to the Internet. You
learn how to:

B Implement authentication and authorization by using the
SQL Server Role Provider.

B Authenticate and authorize users by using certificates
rather than usernames and passwords.

B Reconfigure the service to authenticate itself to the client
application by using a certificate.

Chapter 6

ProductsService

In this solution, you modify the service contract in the Prod-
uctsService and run the ProductsClient application to under-
stand which modifications constitute breaking changes and
which don't.

ProductsServiceV2

When creating this solution, you update the ProductsService
service and modify the data contract defining the data struc-
tures one of its operations returns. You also use the solution to
examine how to implement data contract compatibility with cli-
ent applications that use an older version of the data contract.

Chapter 7

ShoppingCartService This solution contains a new service that implements shopping
cart functionality and a client application that exercises this
functionality. You use this solution to understand how to imple-
ment services based on sessions and how to maintain state
information between operation calls.

Chapter 8

ShoppingCartService This solution contains a version of the ShoppingCartService ser-
vice that uses transactions to maintain database integrity.
You modify the client application to initiate a transaction and
control the outcome of the transaction.

Chapter 9

ShoppingCartService You configure the ShoppingCartService service and client appli-

cation in this solution to implement reliable messaging. You run
the client application and use the WCF Service Trace Viewer util-
ity to examine the messages passing between the client applica-
tion and service.

You then add a custom binding to the ShoppingCartService ser-
vice that enables you to configure replay detection and test it by
using the client application.

Introduction XXV

Solution Folder Description
Chapter 10
ShoppingCartService This solution contains an implementation of the ShoppingCart-

Service service that programmatically creates a custom binding
rather than using one of the WCF predefined bindings. When

building this solution, you also create a custom service behavior
that enables you to inspect request messages sent to the service
and response messages that it sends back to client applications.

ProductsServiceV2

This solution contains a copy of the ProductsService service from
Chapter 6. The client application connects to the service by cre-
ating a binding and a channel programmatically rather than
using a generated proxy class.

SimpleProductsService

This solution contains a stripped down version of the Prod-
uctsService service. The client application connects to the ser-
vice by creating a binding and a channel and then manually
creates and sends a SOAP message to the service. It receives the
response also as a SOAP message.

Chapter 11

OneWay

This solution contains a new service called AdventureWorksAd-
min. The AdventureWorksAdmin service exposes an operation
that can take significant time to run, and you see how to imple-
ment this operation as a OneWay operation.

You also use this solution to understand the circumstances
under which a OneWay operation call can block a client applica-
tion and how to resolve this blocking.

Async

This solution contains a version of the AdventureWorksAdmin
service that implements an operation that can execute asyn-
chronously.

You also modify the client application in this solution to invoke
the operation asynchronously.

MSMQ

This version of the solution contains an implementation of the
AdventureWorksAdmin service that uses a message queue to
receive messages from client applications. You run the client
application and service at different times and verify that mes-
sages sent by the client application are queued and received
when the service runs.

Chapter 12

Throttling

This solution contains the ShoppingCartService service and a
multi-threaded client application that establishes a number of
concurrent sessions with the service. You use this service and cli-
ent application to test the way in which you can configure WCF
to conserve resources during periods of heavy load.

xXxvi Introduction

Solution Folder

Description

MTOM

This solution contains the ShoppingCartPhotoService that
retrieves images of products from the AdventureWorks database.
The client application displays these images in a WPF form. The
service encodes the binary data constituting the image by using
the Message Transmission Optimization Mechanism (MTOM).

Streaming

This solution contains a version of the ShoppingCartPhotoSer-
vice that uses streaming to send the image data to the client
application rather than MTOM.

Chapter 13

Load-Balancing Router

This solution contains a WCF service that acts as a load-balanc-
ing router for two instances of the ShoppingCartService service.
The client application connects to the router, which transpar-
ently redirects requests to one instance or the other of the Shop-
pingCartService service.

Chapter 14

ProductsServiceV3

This solution contains a version of the ProductsService service
that implements a callback contract. The service uses this call-
back contract to enable a client application to register an inter-
est in an event and provide a reference to a method that the
service can invoke when that event occurs.

Chapter 15

ShoppingCartService The ShoppingCartService service in this solution implements
claims-based security. The client application uses Windows
CardSpace to manage user credentials and send claims informa-
tion to the service. The service uses verified claims to authorize
access to users.

Chapter 16

ASPNETService This solution contains an ASPNET Web service and client appli-
cation. You examine the Web Services Description Language
(WSDL) description of ASPNET Web service to implement a WCF
Web service that can support the ASPNET client application.

WCFService This is a WCF Web service that implements the same WSDL

interface as the ASPNET Web service. You reconfigure the
ASPNET client application to connect to this service, but you do
not modify any code in the client application.

ProductsServiceHost

This is the host application for the WCFService. You use this
application to start and stop the service.

Products

This solution contains a COM+ application that you configure to
appear to client applications as a WCF service.

ProductsClient

This solution contains a test client application that connects to
the Products COM+ application by using WCF.

Introduction XxXvii

In addition to these projects, all of the projects have solutions available for the practice exer-
cises. The solutions for each project are included in the folder for each chapter and are labeled
Solution.

Uninstalling the Code Samples

Follow these steps to remove the code samples from your computer.

1
2
3.
4

In Control Panel, open Add Or Remove Programs.
From the list of Currently Installed Programs, select WCF Step By Step.
Click Remove.

Follow the instructions that appear to remove the code samples.

Online Companion Content

The online companion content page has content and links related to this book, including a
link to the Microsoft Press Technology Updates Web page. The online companion content
page for this book can be found at

http://www.microsoft.com/mspress/companion,/0-7356-2336-8/

‘ Note Code samples for this book are on the companion CD.

Support for This Book

Every effort has been made to ensure the accuracy of this book and the contents of the com-
panion CD. As corrections or changes are collected, they will be added to a Microsoft Knowl-
edge Base article.

Microsoft Press provides support for books and companion CDs at the following Web site:

http://www.microsoft.com/learning/support/books,/ .

xxviii Introduction

Questions and Comments

If you have comments, questions, or ideas regarding the book or the companion CD, or ques-
tions that are not answered by visiting the sites above, please send them to Microsoft Press via
e-mail to:

mspinput@microsoft.com.
Or via postal mail to:

Microsoft Press

Attn: Microsoft Windows Communication Foundation Step by Step Editor
One Microsoft Way

Redmond, WA

98052-6399.

Please note that Microsoft software product support is not offered through the above
addresses.

Chapter 1

Introducing Windows
Communication Foundation

After completing this chapter, you will be able to:

Explain the purpose of Windows Communication Foundation (WCF).

Use the .NET Framework 3.0 and Visual Studio 2005 to build a WCF service.
Deploy a WCF service to Microsoft Internet Information Services (IIS).

Build a client console application to test the WCF service.

Describe the principles underpinning a Service-Oriented Architecture (SOA) and how
WOCEF facilitates building applications and services for an SOA.

This chapter provides you with an introduction to WCF and shows you how to create, deploy,
and access a simple WCF service. This is very much a “scene-setting” chapter. During its
course, you will meet many of the features of WCF. In subsequent chapters, you will expand
your knowledge of the various topics presented here.

What Is Windows Communication Foundation?

[assume that you are reading this book because you want to know how to build distributed
applications by using WCF. But what actually is WCF, and why should you use it anyway? To
answer these questions, it is helpful to take a few steps back into the past.

The Early Days of Personal Computer Applications

In the early days of the personal computer, most business solutions comprised integrated suites
of applications, typically consisting of word processing software, a spreadsheet program, and a
database package (much like Microsoft Office does these days). A skilled user could store busi-
ness data in the database, analyze this data using the spreadsheet program, and maybe create
reports and other documents integrating the data and the analyses by using the word processor.
More often than not, these applications would all be located on the same computer, and the data
and file formats they used would be proprietary to the application suite. This was the classic
desktop business platform; it was single-user, usually with very limited scope for multi-tasking.

As personal computers became cheaper and more widely adopted as business tools, the next
challenge was to enable multiple users to share the business data stored on them. This was
not actually a new challenge, as multi-user databases had been available for some time, but
they ran predominantly on mainframe computers rather than PCs. However, networking solu-

1

2 Chapter 1 Introducing Windows Communication Foundation

tions and network operating systems (NOS) soon started to appear for the PC platform,
enabling departments in an organization to connect their PCs together and share resources.
Database management system vendors produced versions of their software for the networked
PC environment, adapted from the mainframe environment, enabling networked PC solu-
tions to share their business data more easily.

Inter-Process Communications Technologies

A networked platform is actually only part of the story. Although networking solutions
enabled PCs to be able to communicate with each other and share resources such as printers
and disks, applications needed to be able to send and receive data and coordinate their
actions with other applications running at the same time on other computers. Many common
inter-process communications mechanisms were available, such as named pipes and sockets.
These mechanisms were very low-level and using them required a good understanding of
how networks work. The same is true today. For example, building applications that use sock-
ets to send and receive data can be a challenging occupation; ostensibly the process is quite
simple, but factors such as coordinating access (you don’t want two applications to both try
and read from the same socket at the same time) can complicate matters. As computers and
networks evolved, so did the variety and capabilities of the inter-process communications
mechanisms. For example, Microsoft developed the Component Object Model, or COM, as
the mechanism for communicating between applications and components running on the
Windows platform. Developers can use COM to create reusable software components, link
components together to build applications, and take advantage of Windows services.
Microsoft itself uses COM to make elements of its own applications available as services for
integration into custom solutions.

Microsoft originally designed COM to enable communications between components and
applications running on the same computer. COM was followed by DCOM (distributed
COM), enabling applications to access components running on other computers over a net-
work. DCOM was itself followed by COM+. COM+ incorporated features such as integration
with Microsoft Transaction Server, enabling applications to group operations on components
together into transactions so that the results of these operations could either be made perma-
nent (committed) if they were all successful, or automatically undone (rolled back) if some
sort of error occurred. COM+ provided additional capabilities, such as automatic resource
management (for example, if a component connects to a database, you can ensure that the
connection is closed when the application finishes using the component), and asynchronous
operations (useful if an application makes a request to a component that can take a long time
to fulfill; the application can continue processing, and the component can alert the applica-
tion by sending it a message when the operation has completed). COM+ was followed in turn
by the NET Framework, which further extended the features available and renamed the tech-
nology as Enterprise Services. The NET Framework also provided several new technologies
for building networked components. One example was Remoting, which enabled a client

Chapter 1 Introducing Windows Communication Foundation 3

application to access a remote object hosted by a remote server application as though it was
running locally, inside the client application.

The Web and Web Services

Technologies such as COM, DCOM, COM+, Enterprise Services, and .NET Framework Remot-
ing all work well when applications and components are running within the same local area
network inside an organization. They are also specific to the Microsoft Windows family of
operating systems.

While Microsoft was developing COM and DCOM, the World Wide Web appeared. The
World Wide Web is based on the Internet, which has been around for several decades. The
World Wide Web provides an infrastructure that enables developers to build applications that
can combine components and other elements located almost anywhere in the world, running
on computers of varying architectures, and executing using a bewildering array of operating
systems (not just Windows). The first generation of “Web applications” was quite simple, con-
sisting of static Web pages that users could download and view using a Web browser applica-
tion running on their local computer. The second generation provided elements of
programmability, initially through the use of components, or applets, that could be down-
loaded from Web sites and executed locally in the users’ Web browser. These have been fol-
lowed by the third generation—Web services. A Web service is an application or component
that executes on the computer hosting the Web site rather than the user’s computer. A Web
service can receive requests from applications running on the user’s computer, perform oper-
ations on the computer hosting the Web service, and send a response back to the application
running on the user’s computer. A Web service can also invoke operations in other Web ser-
vices, hosted elsewhere on the Internet. These are global, distributed applications.

You can build Web services that execute on Windows by using Visual Studio 2005 and the .NET
Framework. You can create Web services for other platforms by using other technologies, such as
Java and the Java Web Services Developers Pack. However, Web services are not specific to any
particular language or operating system. To establish Web services as a global mechanism for
building distributed applications, developers had to agree on several points, including a com-
mon format for data, a protocol for sending and receiving requests, and handling security. All of
these features had to be independent of the platform being used to create and host Web services.

Using XML as a Common Data Format

Different types of computers can store the same values by using different internal representa-
tions—computers based on a “big-endian” 32-bit processor use a different format for numeric
data than a computer based on a “small-endian” 32-bit processor for example. So, to share
data successfully between applications running on different computers, developers had to
agree on a common format for that data that was independent of the architecture of the com-
puter they were using. To cut a long story short, the currently accepted universal data format
is eXtensible Markup Language, or XML. XML is text-based and human-readable (just), and

4 Chapter 1 Introducing Windows Communication Foundation

lets you define a grammar for describing just about any type of data that you need to handle.
In case you have not seen XML data before, here is an example:

<Person>
<Forename>John</Forename>
<Surname>Sharp</Surname>
<Age>42</Age>

</Person>

More Info For detailed information about XML and how you can use it, visit the XML.org
Web site at http.//www.xml.org.

Without trying too hard, you can probably guess what this data actually means. An applica-
tion that needs to send information about a person to another application could format the
data in this way, and the receiving application should be able to parse the data and make
sense of it. However, there is more than one way to represent this information by using XML.
You could also structure it like this:

<Person Forename="John" Surname="Sharp" Age="42" />

There are many other variations possible as well. How does an application know how to for-
mat data so that another application can read it correctly? The answer is that both applica-
tions have to agree on a layout. This layout is referred to as the XML schema for the data. Now,
this is neither the time nor the place to become embroiled in a discussion of how XML sche-
mas work. Just accept that an application can use an XML schema to convey information
about how the data it is emitting is structured, and the application receiving the data can use
this schema to help parse the data and make sense of it.

So, by adopting XML and schemas as a common data format, applications running on differ-
ent computers can at least understand the data that they are using.

More Info If you want to know more about XML schemas and how they work, visit the
World Wide Web Consortium (W3C) Web site at http,//www.w3.org.

Sending and Receiving Web Service Requests

Using XML and XML schemas to format data enables Web services and users’ (or client)
applications to pass data back and forth in an unambiguous manner. However, client applica-
tions and Web services still need to agree on a protocol when sending and receiving requests.
Additionally, a client application needs to be able to know what messages it can send to a Web
service and what responses it can expect to receive.

Chapter 1 Introducing Windows Communication Foundation 5

To curtail another long story, Web services and client applications communicate with each
other by using the Simple Object Access Protocol, or SOAP. The SOAP specification defines a
number of things. The most important are the following:

m The format of a SOAP message
m How data should be encoded
m How to send messages

m How to handle replies to these messages

A Web service can advertise the messages that a client application can send it, and the
responses the client application will receive, by publishing a Web Services Description Lan-
guage (WSDL) document. A WSDL document is a piece of XML that conforms to a standard
XML schema and that describes the messages the Web service can accept and the structure of
the responses it will send back. A client application can use this information to determine how
to communicate with the Web service.

More Info If you want detailed information about SOAP, visit the World Wide Web Con-
sortium page at http.//www.w3.org/TR/soap. If you want further information about WSDL, visit
the page at http.//www.w3.org/TR/wsdl.

Handling Security and Privacy in a Global Environment

Security is concerned with identifying users and services and then authorizing their access to
resources. In a distributed environment, maintaining security is vitally important. In an iso-
lated, non-networked, desktop environment, you could physically secure a PC to prevent an
unauthorized user from typing on its keyboard or viewing its screen. When you connect com-
puters together over a network, this is no longer sufficient; you now have to ensure that users
accessing shared resources, data, and components running on a computer over a network
have the appropriate access rights. Companies developing operating systems, such as
Microsoft with Windows, incorporate many security features into their own platforms. Typi-
cally, these features include maintaining a list of users and the credentials that they use to
identify these users, such as their passwords. These solutions can work well in an environ-
ment where it is possible to maintain such a list, such as within a single organization, but
clearly it is not feasible to record identity and credential information for all computers and
users accessing your services across the World Wide Web if you wish to make your services
available outside of your enterprise.

Alot of research has been performed in understanding the challenges of maintaining security
in a global environment, and many solutions have been proposed. To communicate in a
secure manner, Web services and client applications need to agree on the form of security that
they will use and how they will identify and verify each other. The Organization for the
Advancement of Structured Information Standards (OASIS) is a consortium of organizations
that have proposed a number of standard mechanisms for implementing security, such as

6 Chapter 1 Introducing Windows Communication Foundation

using username/password pairs, X509 certificates, and Kerberos tokens. If you are creating
Web services that provide access to privileged information, you should consider using one of
these mechanisms to authenticate users.

More Info For detailed information about the OASIS security standards, visit the OASIS
Web Service Security site at http.//www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wss.

Privacy is closely related to security, and equally important, especially when you start to com-
municate with services on the World Wide Web. You don't want other users to be able to inter-
cept and read the messages flowing between your applications and Web services. To this end,
Web services and client applications must also agree on a mechanism to ensure the privacy of
their conversations. Typically, this means encrypting the messages that they exchange. As
with security, there are several mechanisms available for encrypting messages, the most com-
mon of which relies on using public and private keys.

More Info For a good overview and introduction to public key cryptography, visit the
Wikipedia Web site at http.//en.wikipedia.org/wiki/Public-key_cryptography.

Incorporating security and privacy into a Web service and client application can be a non-triv-
ial task. To make life easier for developers building Web services using the Microsoft NET
Framework, Microsoft introduced the Web Services Enhancements (WSE) package. WSE is a
fully supported add-on to Microsoft Visual Studio, designed to help you create Web services
that retain compatibility with the evolving Web service standards. It provides you with wiz-
ards and other tools that you can use to generate much of the code necessary to help protect
Web services and client applications and can simplify the configuration and deployment of
Web services.

The Purpose of Windows Communication Foundation

So, by using Visual Studio, the NET Framework, and WSE, you can quickly build Web ser-
vices and client applications that can communicate and interoperate with Web services and
client applications running on other operating systems. So why do we need WCE? Well, as
you have already seen, Web services are just one technology that you can use to create distrib-
uted applications for Windows. Others already mentioned include Enterprise Services and
NET Framework Remoting. Another example is Microsoft Message Queue (MSMQ). If you
are building a distributed application for Windows, which technology should you use, and
how difficult would it be to switch later if you need to? The purpose of WCEF is to provide a
unified programming model for many of these technologies, enabling you to build applica-
tions that are as independent as possible from the underlying mechanism being used to con-
nect services and applications together (note that WCF applies as much to services operating
in non-Web environments as it does to the World Wide Web). It is actually very difficult, if not
impossible, to completely divorce the programmatic structure of an application or service

Chapter 1 Introducing Windows Communication Foundation 7

from its communications infrastructure, but WCF lets you come very close to achieving this
aim much of the time. Additionally, using WCF enables you to maintain backwards compati-
bility with many of the preceding technologies. For example, a WCF client application can
easily communicate with a Web service that you created by using WSE.

To summarize, if you are considering building distributed applications and services for
Microsoft Windows, you should use WCF.

Building a WCF Service

Visual Studio 2005 provides the ideal environment for building WCEF services and applica-
tions. The Visual Studio Development Tools for the NET Framework 3.0 include a project
template that you can use for creating a WCF service. You will use this template to create a sim-
ple service that exposes methods for querying and maintaining information stored in a data-
base. The database used is the sample AdventureWorks database. The Introduction to this
book contains instructions for installing this database. The AdventureWorks company manu-
factures bicycles and accessories. The database contains details of the products that they sell,
sales information, details of customers, and employee data. In the exercises in this chapter,
you will build a WCEF service that provides operations enabling a user to:

List the products sold by AdventureWorks

Obtain the details of a specific product

Query the current stock level of a product
m Modify the stock level of a product

Figure 1-1 shows the tables in the AdventureWorks database used by the exercises in this chap-
ter, and how these tables are related.

Product (Production) ProductInventory (Production)
9 Producti ? Froductin

Name: @ LocationID

Producthumber Shelf

MakeFlag Ein

FinishedGondsFlag Quantity

Color rowguid
SafetystackLevel ModifiedDate

ReorderPoint

StandardCost

ListPrice

Size
SizeUnitMeasureCode
WeightUnkMeasLreCode:
Weight
DaysTaMarufackure
Productiine

Class

Style
ProductSubcategoryID
ProductModellD
SellstartDate
SelEndDate
DiscontinuedDate
roveguid

ModifiedDate

Figure 1-1 Tables holding product information in the AdventureWorks database.

@

Chapter 1 Introducing Windows Communication Foundation

To simplify the code that you need to write to access the database, but also to ensure that exer-
cises are as realistic as possible, you will make use of the Data Access Application Block
(DAAB). This is part of the Microsoft Enterprise Library. The purpose of the Enterprise
Library is to simplify enterprise application development by providing a library of classes that
you can use for performing the common tasks frequently required by professional applica-
tions. The DAAB contains classes that enable you to query and maintain information stored in
a database. You can use the DAAB to write generic code that is independent of the underlying
database technology—the DAAB hides the specific details of the database by using an applica-
tion configuration file. Therefore, before using the DAAB in an application, you must create a
configuration file for the application, which is what you will do first.

More Info For additional information about using the Enterprise Library, please visit the
Microsoft Patterns and Practices Web site at http.//msdn.microsoft.com/practices/quidetype/

AppBlocks/default.asp.

Preliminary exercise—Configure the Data Access Application Block

1.

On the Windows Start menu, point to All Programs, point to Microsoft Patterns &
Practices, point to Enterprise Library, and then click Enterprise Library Configuration.

In the Enterprise Configuration console, in the File menu, click New Application.

The Application Configuration node appears in the tree view in the left pane of the
console.

Right-click the Application Configuration node, point to New, and then click Data
Access Application Block.

The Data Access Application Block node and several child nodes appear in the tree-view
in the left pane of the console.

In the tree-view in the left pane, select the Connection String node. In the right pane,
change the Name property to AdventureWorksConnection. This is the name that you will
use to refer to the connection in your applications. Verify that the ProviderName property
is set to System.Data.SqlClient—this is the provider used to connect to Microsoft SQL
Server.

In the tree view in the left pane, select the Database node. In the right pane, change the
Value property to AdventureWorks. This is the name of the sample database.

‘ Important Be sure to change the Value property and not the Name property.

Q

Chapter 1 Introducing Windows Communication Foundation 9

= Enterprise Librany Configuration®

Ele Action Help

DERg
= % Enterprise Libvary Corfiguration B General
= [&pplication Canfiguiation Name Database
= B Data Access Application Block Valus AdventureWorks

= () Connection Strings
= b AdventurewlorksCannection

7" Server
£ Integrated Secuity
Custom Provider Mappings

Name
Gets or sets the name of the node.

Configuration Errars

Name | Froperty | Description | Path

Feady

In the tree view in the left pane, select the Server node. In the right-hand pane, change
the Value property to the name of the SQL Server instance you are using.

Tip If you are using a local instance of SQL Server 2005 Express Edition, you can
leave the Value property of the Server node at its default setting.

In the tree view in the left pane, select the Integrated Security node. In the right pane,
verify that the Value property is set to SSPL

Note If you are not using integrated security, you will need to change this value and
specify a username and password when you access SQL Server. However, it is highly
recommended that you use integrated security when connecting to SQL Server.

In the Action menu, click Validate. Verify that no messages are reported in the Configu-
ration Errors pane at the bottom of the console.

In the File menu, click Save Application. Save the application configuration file as
Web.config in your C:\Documents and Settings\YourName\My Documents\ folder.
Replace YourName in this path with your Windows user name.

Close the Enterprise Library Configuration console.

Use the .NET Framework 3.0 and Visual Studio 2005 to create a WCF service project

1.
2.

Start Visual Studio 2005.
On the File menu, point to New and then click Project.

In the New Project dialog box, expand the Visual C# node in the Project types tree, and
then click NET Framework 3.0.

In the Templates pane, select the WCF Service Library template.

Chapter 1 Introducing Windows Communication Foundation

Visual Studio 2005 actually provides two templates for creating a WCF service; the WCF
Service Library template that you are using here, and the WCF Service template that is
available when you create a new Web site (because of the similarity in the names, T will
refer to this one as the WCF Service Web site template to avoid confusion). If you are cre-
ating a WCF service that is always going to be deployed by using IIS, then you could use
the WCF Service Web site template. In the case of the service you are about to build,
although you will initially deploy it to IIS, you will reuse it in a variety of other scenarios,
so you will create it by using the WCF Service Library template. It is also instructive to
understand the tasks involved in deploying a WCEF service to IIS in case you ever need
to perform them yourself, and using the WCF Service Library template gives you this
opportunity!

You will get some practice at using the WCF Service Web site template in Chapter 5,
“Protecting a WCF Service over the Internet.”

In the Name field, type ProductsService.

In the Location field, type C:\Documents and Settings\YourName\My Docu-
ments\Microsoft Press\WCF Step By Step\Chapter 1 if you are using Windows XP, or
C:\Users\YourName\Documents\Mirosoft Press\WCF Step By Step\Chapter 1 if
you are using Windows Vista. To save space throughout the rest of this book, I will sim-
ply refer to the path “C:\Documents and Settings\YourName\My Documents” or
“C:\Users\YourName\Documents as your “\My Documents” folder.

New Project Elrg‘

Brojsct bypes: Templates: ==
visual Basic visual Studio installed templates
= visual C# -
Windaws windows Application (WPF) C%AML Browser Application (WPF)
HET Framework 3.0 = vice Library £ Custom Contral Library (WPF)
Smart Device
Database My Templates
Starter Kits
Visual 1# isearch Cnline Templates. ..
visual CH+
Other Project Types
A project ko define and implement & WCF service library.
Plame:! | Productsservice |
Location: | Cripacuments and SetingsiStudsntiMy DorumentsiMicrassft Prass\WCF Shep By ShepiChapt | [prowse... |
Solition Wame: | Productsservics | [create drectory for soldtion

7. Ensure that the Create directory for solution check box is selected, and then click OK.

Visual Studio 2005 creates the new project.

Note From here on, | will assume that you understand how to create a new project
by using Visual Studio 2005, and so | will simply ask you to create a new project,
although | will specify the template and any specific project names you should use.

Chapter 1 Introducing Windows Communication Foundation 11

8. Using Solution Explorer, rename the Class].cs file as ProductsService.cs.

In the Project menu, click Add Reference. In the Add Reference dialog box, click the
Browse tab, and add references to the following assemblies required by the DAAB. You

can find these assemblies in the C:\Program Files\Microsoft Enterprise Library\bin
folder:

Q Microsoft. Practices.EnterpriseLibrary.Data.dll
Q Microsoft. Practices. EnterpriseLibrary. Common.dll
Q Microsoft. Practices.ObjectBuilder.dll

10. In the code view window displaying ProductsService.cs, add the following statements to
the top of the file:

using Microsoft.Practices.EnterpriseLibrary.Data;
using System.Data;

11. In the Project menu, click Add Existing Item. In the Add Existing Item dialog box, move
to your \My Documents folder, and add the Web.conlfig file that you created earlier.

Tip Select All Files in the Files of type list box to see the Web.config file listed in the
dialog box.

At this point, it is worth examining the code and comments that the WCF Service template con-
tains. At the top of the ProductsService.cs file, apart from the statements you have just added,
you will find the usual using statements referencing the System, System.Collections.Generic, and
System.Text namespaces, followed by two additional statements referencing the System.Service-
Model and System.Runtime.Serialization namespaces, as shown in Figure 1-2.

The System.ServiceModel namespace contains the classes used by WCEF for defining services
and their operations. You will see many of the classes and types in this namespace as you
progress through this book. WCF uses the classes in the System.Runtime.Serialization
namespace to convert objects into a stream of data for transmitting over the network (a pro-
cess known as serialization) and to convert a stream of data received from the network back
into objects (deserialization). You will learn a little about how WCEF serializes and deserializes
objects later in this chapter and look at serialization and deserialization in more depth as you
progress through this book. In Solution Explorer, in the References folder, you will see refer-
ences to the System.ServiceModel and System.Runtime.Serialization assemblies, which contain
the code that implement the classes in these namespaces. You should also notice a reference
to the System.IdentityModel assembly. This assembly contains namespaces and types that you-
can use to manage security and identity information, helping to protect a WCF service. You
will learn more about security and protecting services in Chapter 4, “Protecting an Enterprise
WCEF Service,” and Chapter 5.

12 Chapter 1 Introducing Windows Communication Foundation

#% ProductsService - Microsoft Yisual Studio

File Edt Wew Project Buld Dsbug Data Tools Window Communty Help

R RA=N" - B NCE RN - Ol b pebug - fny CPU - =
T b e | 5 £] SRR
5| - Classl.cs| Start Page -]
g~][D ENET=EEY
S | Qusing System: = (5] solution ProductsService! (1 prafect)
using System.Collections.Generiec; = | & E ProductsService
using System. Text: =] Properties
using System.ServiceModel; :‘:I References
L uzing System.Runtime.Serialization: = =

a/x

HOW TO HOST THE WCF SERVICE IN THIS LIERARY IN ANOTHER PR

¥ou will need to do the following things: clsolution Explorer [Class View
1) idd = Host project to your solution s e
a. Right click on your solution
b. Select idd ClassL.cs Fie Propetties -
. Select New Project IN=]
d. Choose an appropriate Host project type [e.g. ©
z) idd & nev source file to your Host project B Advanced A
a. Right click on your Host project Buid Action Campile
b emiecs han Copy to Output Din Do not copy 3
. Select New Item Custom Tool
da. Select "Code File” Custorm Tol Narne: >
3 Pagte the contents of the "MyServiceHost" class bel | | Advanced
4 Mdd an "ipplication Configuration File" to your Hos g
< | >

Creating project ProductsService'... project creation successful,

Figure 1-2 Visual Studio 2005, showing the code generated for a WCF service project.

Returning to the code view window displaying the ProductsService.cs class, you will find
instructions on how to write an application that can host a WCF service. Feel free to read these
instructions, but we will cover this process in more depth in Chapter 2, “Hosting a WCF Ser-
vice.” Below these instructions are more comments describing the structure of a WCF service.
Again, feel free to examine these comments, but we are going to cover these concepts in detail,
and expand upon them considerably, in the exercises throughout this book. Finally, towards
the end of the file, you will see that the template defines a namespace for the ProductsService
WCEF service and includes some sample code for this service.

Defining Contracts

The structure of a WCF service enables you to adopt a “contract-first” approach to develop-
ment. When performing contract-first development, you define the interfaces, or contracts,
that the service will implement and then build a service that conforms to these contracts. This
is not a new technique; COM developers have been using a very similar strategy for the last
decade or so. The point behind using contract-first development is that it enables you to con-
centrate on the design of your service. If necessary, it can quickly be reviewed to ensure that it
does not introduce any dependencies on specific hardware or software before you perform
too much development; remember that in many cases client applications might not be built
using WCF, or even be running on Windows.

In the following exercises, you will define the data and service contracts for the ProductsSer-
vice WCF service. The data contract specifies the details of products that the WCF service can
pass to operations. The service contract defines the operations that the WCF service will
implement.

Chapter 1 Introducing Windows Communication Foundation 13

Define the data contract for the WCF service

1.

Comment out the sample code and namespace in the ProductsService.cs file, as you are
going to write your own code.

Add the following namespace to the end of the file:

namespace Products
{
}

Add the Product class shown below to the Products namespace:

// Data contract describing the details of a product
[DataContract]
public class Product

{
[DataMember]
public string Name;

[DataMember]
public string ProductNumber;

[DataMember]
public string Color;

[DataMember]
public decimal ListPrice;

}
The DataContract attribute identifies the class as defining a type that can be serialized
and deserialized as an XML stream by WCEF. All types that you pass to WCF operations

or return from WCF operations must be serializable by WCF. You can apply the Data-
Contract attribute to classes, structures, and enumerations.

You mark each member of the type with the DataMember attribute; any members not
tagged in this way will not be serialized.

Note You can use any other types that already have a data contract defined for
them as the types of data members inside a data contract. You can also use any seri-
alizable type. This includes types such as string, int, and decimal, as well as many of the
more complex types such as the Collection classes.

Define the service contract for the WCF service

1.

Add the IProductsService interface shown below to the Products namespace, underneath
the Product class:

// Service contract describing the operations provided by the WCF service
[ServiceContract]
public interface IProductsService

{

// Get the product number of every product

14 Chapter 1 Introducing Windows Communication Foundation

[OperationContract]
List<string> ListProducts(Q);

// Get the details of a single product
[OperationContract]
Product GetProduct(string productNumber);

// Get the current stock Tevel for a product
[OperationContract]
int CurrentStockLevel(string productNumber);

// Change the stock level for a product

[OperationContract]

bool ChangeStockLevel(string productNumber, int newStockLevel, string shelf, int bin);
}

Note that a service contract should be defined by using an interface rather than a class, as this
enables you to separate the definition of the contract from its implementation. You use the Ser-
viceContract attribute to mark the interface as a service contract (the WCF runtime relies on the
interface being tagged with this attribute when it is generating metadata for client applications
that wish to use this service). Each method that you want to expose should be tagged with the
OperationContract attribute. It is also worth noting that you can use generic types, such as
List<>, as parameters or return values in a WCF service contract. As long as the types you use
are serializable by WCEF, that is all that matters. You will learn much more about service con-
tracts as you proceed through this book.

Implementing the Service

Now that you have specified the structure of the data passed to the WCF service by using a
data contract and defined the shape of the WCF service by using a service contract, the next
step is to write the code that actually implements the service contract. As with any interface,
you must implement every method defined by the service contract in the WCF service. Note
that if you define additional methods in the WCF service that are not in the service contract,
then these methods will not be visible to client applications using the service.

Implement the WCF service

1. Add the following class to the Products namespace, underneath the IProductService ser-
vice contract:
// WCF service class that implements the service contract
public class ProductsServiceImpl : IProductsService
{
}
Notice that a class that provides a WCF service should indicate that it implements a ser-
vice contract, in this case, IProductService, by using standard C# inheritance notation.

2. Add the ListProducts method to the ProductsServiceImpl class:

Q

Chapter 1 Introducing Windows Communication Foundation

public List<string> ListProducts()

{

// Read the configuration information for connecting to

// the AdventureWorks database

Database dbAdventureWorks =
DatabaseFactory.CreateDatabase("AdventureWorksConnection");

// Retrieve the details of all products by using a DataReader
string queryString = @"SELECT ProductNumber
FROM Production.Product";
IDataReader productsReader =
dbAdventureWorks .ExecuteReader (CommandType.Text, queryString);

// Create and populate a Tist of products

List<string> productsList = new List<string>Q);

while (productsReader.Read())

{
string productNumber = productsReader.GetString(0);
productsList.Add(productNumber);

}

//Return the 1ist of products
return productsList;

15

Tip This code is available in the file ListProducts.txt in the Microsoft Press\WCF Step

By Step\Chapter 1 folder under your \My Documents folder.

This code uses the DatabaseFactory.CreateDatabase method of the DAAB to obtain the
connection parameters referenced by the AdventureWorksConnection settings that you

defined earlier. The ExecuteReader method uses this information to connect to the data-

base and perform its query. When the ListProduct method completes, the DAAB auto-

matically disconnects from the database.

The code invokes the ExecuteReader method of the DAAB Database object to run a SQL

query that returns a list of product numbers from the database. The data is returned as

a DataReader object. The code then iterates through this list, retrieving each product
number and storing them in a generic List<string> collection. The ListProducts method
returns this List<string> object when the method completes.

Important For the sake of clarity, this method does not include any exception han-
dling. In the real world, you should check for exceptions and handle them accordingly.
For more information, see Chapter 3, “Making Applications and Services Robust.

Add the GetProduct method to the ProductsServiceImpl class:

public Product GetProduct(string productNumber)

{

Database dbAdventureWorks =
DatabaseFactory.CreateDatabase("AdventureWorksConnection");

16 Chapter 1 Introducing Windows Communication Foundation

// Retrieve the details of the selected product by using a DataReader
string queryString = @"'SELECT ProductNumber, Name, Color, ListPrice
FROM Production.Product
WHERE ProductNumber = '" + productNumber + "'";
IDataReader productsReader =
dbAdventureWorks.ExecuteReader(CommandType.Text, queryString);

// Create and populate a product
Product product = new Product();
if (productsReader.Read())

{
product.ProductNumber = productsReader.GetString(0);
product.Name = productsReader.GetString(1l);
if (productsReader.IsDBNul1(2))
{
product.Color = "N/A";
}
else
{
product.Color = productsReader.GetString(2);
}
product.ListPrice = productsReader.GetDecimal(3);
}

//Return the product
return product;

Q Tip This code is available in the file GetProduct.txt in the Microsoft Press\WCF Step
By Step\Chapter 1 folder under your \My Documents folder.

This method uses a technique very similar to that of the ListProducts method to connect
to the database and retrieve the details of the specified product. The important point to
pick up from this method is that it returns a Product object—you defined this type by
using a data contract in the previous exercise.

4. Add the CurrentStockLevel method to the ProductsServiceImpl class:

public int CurrentStockLevel(string productNumber)
{
Database dbAdventureWorks =
DatabaseFactory.CreateDatabase("AdventureWorksConnection");

// Obtain the current stock level of the selected product
// The stock level can be found by summing the quantity of the product
// available in all bins in the ProductInventory table
// The ProductID value has to be retrieved from the Product table
string queryString = @"SELECT SUM(Quantity)
FROM Production.ProductInventory
WHERE ProductID =
(SELECT ProductID
FROM Production.Product

Chapter 1 Introducing Windows Communication Foundation 17
WHERE ProductNumber = '" + productNumber +
meyn.
int stockLevel =
(int)dbAdventureWorks.ExecuteScalar(CommandType.Text, queryString);

//Return the current stock level
return stockLevel;

Tip This code is available in the file CurrentStockLevel.txt in the Microsoft Press\WCF
Step By Step\Chapter 1 folder under your \My Documents folder.

Products are stored in one or more numbered bins in the warehouse, and each bin is on
anamed shelf. This method sums the current volume of the specified product held in all
the bins on all the shelves where it is stored.

Add the ChangeStockLevel method to the ProductsServiceImpl class:

public bool ChangeStockLevel(string productNumber, int newStockLevel, string shelf, in
t bin)
{
Database dbAdventureWorks =
DatabaseFactory.CreateDatabase("AdventureWorksConnection");

// Modify the current stock Tevel of the selected product
// The ProductID value has to be retrieved from the Product table
string updateString = @"UPDATE Production.ProductInventory
SET Quantity = Quantity + " + newStockLevel +
"WHERE Shelf = '" + shelf + "'" +
"AND Bin = " + bin +
@"AND ProductID =
(SELECT ProductID
FROM Production.Product
WHERE ProductNumber = '" + productNumber +
"
int numRowsChanged =
(int)dbAdventureWorks.ExecuteNonQuery(CommandType.Text, updateString);

// If no rows were updated, return false to indicate that the input
// parameters did not identify a valid product and Tocation

// Otherwise return true to indicate success

return (numRowsChanged != 0);

Tip This code is available in the file ChangeStockLevel.txt in the Microsoft Press\WCF
Step By Step\Chapter 1 folder under your \My Documents folder.

This method updates the quantity in stock for the specified product, in the specified bin,
on the specified shelf. If this product is not actually located in this bin and shelf, the
method returns false to indicate a possible user error (the user has probably just speci-
fied a wrong bin and shelf combination), otherwise it returns true.

18 Chapter 1 Introducing Windows Communication Foundation

@ Important If you are an experienced database developer, you will probably be
about to e-mail me telling me that using string concatenation to build SQL queries is

bad practice. This approach renders your service vulnerable to SQL Injection attacks.

However, this is intentional, and you will address this issue in Chapter 6, “Maintaining

Data Contracts and Service Contracts,” so for the time being, grit your teeth and bear
with me.

On the other hand, if this is the sort of code that you usually write when accessing a
database, and have never heard of a SQL Injection attack, then pay special attention
when you reach Chapter 6.

6. Build the project, and correct any syntax errors if necessary.

Configuring, Deploying, and Testing the WCF Service

You must host a WCF service in an application in order to run it and make it accessible to cli-
ents. You have several options available for hosting a WCF service, including creating a cus-
tom host application, building a Windows service application, and using IIS. In the following
exercises, you will configure the ProductsService WCF service as a Web service hosted by IIS.
You will then verify that you have configured and deployed it correctly by performing a simple
test with Internet Explorer.

Note As mentioned earlier, if you use the WCF Service Web site template for building a
WCF service, then the service will automatically be deployed to IS (or the Visual Studio
Development Web Server, depending on the options that you select). The exercises in this

section give you a feel for some of the tasks that Visual Studio 2005 performs when using
this template, and how it varies from using the WCF Service Library template.

IIS expects the assemblies containing the code for Web services and Web applications to be
located in the bin folder of the Web site. Therefore, to configure a WCF service as a Web ser-
vice that can be hosted by IIS, you must ensure that the project assemblies are built in the bin
folder of the project rather than the bin\Debug or bin\Release folders. You must also add a
service definition file. This is a file that specifies the name of the class that IIS will execute, and
the name of the assembly holding this class. Finally, you must edit the Web.config file and add
endpoint information for the Web service. IIS uses this information to specity binding infor-
mation for the Web service indicating how a client should communicate with the service, and
the contract that the Web service implements.

Configure the WCF service

1. On the Project menu, click ProductsService properties to display the Property pages for
the project.

2. Click the Build tab. In the Output section of the page, change the Output path property
to bin.

Chapter 1 Introducing Windows Communication Foundation 19

On the File menu, click Save AllL
On the Project menu, click Add New Item.

In the Add New Item dialog box, select the Text File template. Change the name of the
file to ProductsService.svc, and then click Add. This is the service definition file for the
Web service.

Important The service definition file must have the same name as the Web service,
and have the .svc suffix.

Add the following code to the ProductsService.svc file displayed in the code view
window:

<%@ServiceHost Service="Products.ProductsServiceImpl" %>
<%@Assembly Name="ProductsService" %>

The Service attribute of the ServiceHost directive specifies the namespace (Products) and
the class (ProductsServiceImpl) that implements the service. The Assembly directive spec-
ifies the name of the assembly (ProductsService) containing this namespace and class.

Edit the Web.config file for the project. Currently, this file just contains a <Configura-
tion> section containing the information generated by the Enterprise Library Configura-
tion tool for connecting to the database. Edit the file, and add the following sections
shown in bold:

<?xm1 version="1.0" encoding="utf-8" ?>
<configuration>
<configSections>
<section name="dataConfiguration" type="Microsoft.Practices.EnterpriseLibrary.
Data.Configuration.DatabaseSettings, Microsoft.Practices.EnterpriseLibrary.Data, Versi
on=2.0.0.0, Culture=neutral, PublicKeyToken=null" />
</configSections>
<dataConfiguration defaultDatabase="AdventureWorksConnection" />
<connectionStrings>
<add name="AdventureWorksConnection" connectionString="Database=
AdventureWorks;Server=(1ocal)\SQLEXPRESS;Integrated Security=SSPI;"
providerName="System.Data.SqlClient" />
</connectionStrings> <system.serviceModel>
<services>
<service name="Products.ProductsServiceImpl'>
<endpoint address=""
binding="basicHttpBinding"
contract="Products.IProductsService" />
</service>
</services>
</system.serviceModel>
</configuration>

The <serviceModel> section of the Web.contfig file contains the configuration informa-
tion for a WCF Web service. The <services> section contains the details for each service

20 Chapter 1 Introducing Windows Communication Foundation

8.

implemented. The name attribute of the <service> element specifies the namespace and
class that implement the service..

The <endpoint> element provides the details of the service that client applications
require in order to communicate with the service. An endpoint comprises three pieces of
information: an address, a binding, and a contract. The address is the location that the
application hosting the service uses to advertise the service. In the case of I1S, the address
element actually is ignored as IIS will use a URL containing the name of the virtual direc-
tory holding the service and the name of the .svc file as the endpoint (in this case, http:/
/localhost/ProductsService/ProductsService.svc). The binding element specifies items such
as the transport mechanism used to access the Web service, and the protocol to use,
amongst other items. You can specify one of a number of standard bindings built into
WCEF that implement pre-configured binding information. In this case, the service uses
the basicHttpBinding binding, which is compatible with many existing Web service cli-
ent applications built using technologies other than WCEF. You will learn much more
about bindings as you progress through this book. Finally, the contract element indicates
the contract that the service implements.

Build the solution.

You can now deploy the service to IIS by creating a virtual folder. You must also ensure that
the account used to run the code for the Web service, the local ASPNET account on your com-
puter by default, has sufficient rights to access the contents of this folder.

Note Windows Vista and Windows XP use different versions of IIS, with different user inter-
faces. There are two versions of the next exercise. Please follow the instructions appropriate

to your operating system.

Deploy the WCF service to IIS (Windows Vista only)

1.

In the Windows Control Panel, click System and Maintenance, click Administrative
Tools, and then double-click Internet Information Services (I11S) Manager.

The Internet Information Services (IIS) Manager starts.

In the Internet Information Services (IIS) Manager, expand the node corresponding to
your computer in the tree-view, and then expand Web sites.

Right-click Default Web Site, and then click Add Application.
The Add Application dialog box appears.

In the Add Application dialog box, in the Alias text box type ProductsService.

« »

Click the browse button (with the ellipses “...”) adjacent to the Physical path text box. In
the Browse for Folder dialog box, select the folder Microsoft Press\WCF Step By
Step\Chapter 1\ProductsService\ProductsService under your \My Documents folder,
click then click OK.

7.

Chapter 1 Introducing Windows Communication Foundation 21

In the Add Application dialog box, click OK.

The ProductsService Web application should appear under the Default Web site node in
the Internet Information Services (IIS) Manager.

Close the Internet Information Services (IIS) Manager.

Deploy the WCF service to 1IS (Windows XP only)

1.
2.

On the Windows Start menu, click Run.
In the Run dialog box, type inetmgr, and then click OK.
The Internet Information Services console starts.

In the Internet Information Services console, expand the node corresponding to your
computer in the tree-view, and then expand Web sites.

Right-click Default Web Site, point to New, and then click Virtual Directory.
The Virtual Directory Creation Wizard starts.

In the Welcome to the Virtual Directory Creation Wizard page, click Next.

In the Virtual Directory Alias page, type ProductsService, and then click Next.

In the Web Site Content Directory page, click Browse, select the folder Microsoft
Press\WCEF Step By Step\Chapter 1\ProductsService\ProductsService under your \My
Documents folder, click OK, and then click Next.

In the Access Permissions page, accept the default values, and then click Next.

In the You have successfully completed the Virtual Directory Creation Wizard page, click
Finish.

The ProductsService virtual directory should appear under the Default Web site node in
the Internet Information Services console:

% Internet Information Services @@@

File Action View Help
= o @\ X 2

1'% Internet Information Services Name Path Status
= &) LON-DEY-0L local computer) |2 hin
= (1 web sites (3 obi
o Default web Site 3 Properties

+ {8 IsHelp

- (9] ProductsService. cs

2 g Sk [8] ProducsService.csprol
(9] ProductsService.sve

+ (1] aspnet_client [8] b cont

" B . eb.config

[images

+ [_private

+ [_wti_enf

+ [_vti_log

+ [_vtipwt

+ (0 _wti_seript

+ [_wtitxt

+ & Default SMTP Virtual Server

Chapter 1 Introducing Windows Communication Foundation

10. Close the Internet Information Services console.

You can now verify that you have correctly configured and deployed the service. The simplest
way to check this is to use Internet Explorer to browse to the Web service.

Test the WCF service deployment
1. On the Windows Start menu, click Internet Explorer.

2. In the Address bar, type the address http://localhost/ProductsService/
ProductsService.svc, and then click Go.

You should see a page like this:

2A Service - Microsoft Internet Explorer.

File Edt View Favorites Tools Help o
Q- ©- B @ 6P

Address @jhttp :{ focalhost/ProductsServiceiPraductsService sve aGn Links

ervice

This is a windows® Communication Foundation service.

Metadata publishing for this service is currently disabled.

If you have access to the service, you can enable metadata publishing by completing the fellowing steps to modify your web or
application configuration file:

1. Create the following service behavior configuration, or add the <serviceMetadata> element to an existing service bshavior
configuration:
<behaviors>
<serviceBehaviorss
<behavior nawe="MyServiceTypeBehaviors” >
<serviceMetadata hrtpGetEnsbled="true” />
</behaviors
</serviceBehaviors:>
</behaviorss>

2. Add the behavior configuration to the service:

<service nawe="MyNamespace.MyServiceTyps" behaviorConfiguration="MyServiceTypeBehaviors" >

Nots: the service name must match the configuration name for the service implsmentation.

3. Add the follawing endpoint to your ssrvice canfiguration: 3
< >
& Done % Local intranet

Client applications require access to the metadata of a service so that they can determine
the operations the service implements. For security reasons, WCF disables metadata
publishing from services. You can obtain metadata information directly from the assem-
bly holding the service contract, but this approach might not always be convenient. For
example, if you are building a client application running on a computer that is different
from that hosting the service, you might not have access to the service contract assembly.
In the following steps, you will enable metadata publishing for the service. This will
enable developers to obtain the metadata for the service by querying the service.

3. Return to Visual Studio 2005, and edit the Web.config file for the ProductsService
project. Make the changes shown in bold to the <system.serviceModel> section this file,
and then save your changes:
<system.serviceModel>

<services>
<service name="Products.ProductsServiceImpl"

Chapter 1 Introducing Windows Communication Foundation 23

behaviorConfiguration="ProductsBehavior">
<endpoint address=""
binding="basicHttpBinding"
contract="Products.IProductsService" />
</service>
</services>
<behaviors>
<serviceBehaviors>
<behavior name="ProductsBehavior'">
<serviceMetadata httpGetEnabled="true" />
</behavior>
</serviceBehaviors>
</behaviors>
</system.serviceModel>

These changes add a behavior called ProductsBehavior to the service. A service behavior
extends the functionality of a service (you will learn a lot more about behaviors through-
out this book). The definition of the ProductsBehavior behavior enables metadata pub-
lishing by setting the httpGetEnabled attribute of the <serviceMetadata> element to true.

Return to Internet Explorer and click Go again. The service will now display a different

page:

a2 ProductsServicelmpl Service - Microsoft Internet Explorer E|E|E‘

File Edit View Favorites Tools Help

OBaEk - Q - d @ ﬂ /,_7 Search ‘:E‘Favnntas & - 57 -

address | &) hitpajlocslhost {ProductsService ProductsServics. sve ~|E) e
ProductsServiceImpl Service

“fou have created a service,

the command line with the follawing syntax:

sveutil.exe http://lon-dev-01/Productsiervice/ProductsService . sve 2wsdl

use the generated client class to call the Service, For example:
c#
class Test
{
static void Main()
{

ProductsServiceClient client = new ProductsServiceClient();
/4 Use the 'client' warisble to call operations on the service.

/¢ Blways close the client.
client.Close() :

}

To test this service, you will need to create a client and use it to call the service, You can do this using the sveutil.exe taol from

This will generate a configuration file and a cade file that contains the client class. Add the two files ta your dlient application and

1

Links >
~

& pone % Localintranet

This page describes how you can obtain the metadata describing the service and use this

information to help build a client application.

In the address bar, change the address to http://localhost/ProductsService/

ProductsService.svc?wsdl, and then click Go:

24 Chapter 1 Introducing Windows Communication Foundation

a http://localhost/ProductsService/ProductsService. svc?wsdl - Microsoft Internet Explorer,

File Edit View Favorites Tools Help iy
) \ﬂ \j N D search 5 Favorites & - 2

€ < Bl Q| pA{ B e =

e |] hip: flocahhost/ProductsSersiueiProductsService. svcrasd v ks 2

<7uml version="1.0" encading="utf-g" 7>
- «wsdl definitions name="ProductsServicelmpl" targetNamespace="http:/ /tempuri.org/"
wmilns: wsdl="http:/ /schemas.xmlsoap.org/wsdl/"
wmilns: soap="http://schemas.xmlsoap.org/wsdl/soap/" wmins: wsu="http:/ /docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd"
wmins: soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmins:ths="http:/ /tempuri.org/" F
wmilns: wsa="http:/ /schemas.xmlsoap.org/ws/2004/08/addressing”
wrmlns: wsp="http:/ /schemas.xmlsoap.org/ws/2004/09/policy"
wmilns: wsap="http:/ fschemas.xmlsoap.org/ws/2004/08/addressing/policy”
wrmlns: xsd="http:/ /www.w3.0rg/2001/XMLSchema"
wrmlns: msc="http:/ /schemas.microsoft.com/ws /2005712 /wsdl/contract”
wmlns: wsaw="http:/ /www.w3.0rg/2006/05/addressing /wsdl"
wmins: soapl2="http://schemas.xmlsoap.org/wsdl/soap12/"
wrmlns: wsalo="http:/ /www.w3.0rg/2005/08/addressing"
wrmlns: wsk="http://schemas.xmlsoap.org/ws /2004 /09 /mex">
- awsdltypess
- «redischema targetNamespace="http:/ /tempuri.org/Imports">
<wsdiimport schemalocation="http:/ flon-dev-01/ProductsService /ProductsService.svc?
xsd=xsd0" namespace="http://tempuri.org/" />
<wzsdiimport schemalocation="http:/ flon-dev-01/ProductsService/ProductsService.svc?
xsd=xsd1" namespace="http://schemas.microsoft.com/2003/10/Serialization/" />
<wsdiimport schemalocation="http:/ flon-dev-01/ProductsService /ProductsService.svc?
xsd=xsd2"
namespace="http://schemas.microsoft.com/2003/10/Serialization/Arrays" />
<wzsdiimport schemalocation="http:/ flon-dev-01/ProductsService/ProductsService.svc?
xsd=xsd3" namespace="http://schemas.datacontract.org/2004/07/Products” /=
</usdischema

& Done % Local intranet

E3

The service displays a page containing the metadata description of the service. You can
see that this is XML. Visual Studio 2005 can query the service and use this information
to generate a proxy class when building a WCF client application.

6. Close Internet Explorer.

Building a WCF Client

You can use the tools provided by WCF and Visual Studio 2005 to build a simple client appli-
cation to test the WCF service. In the following exercises, you will build a console client appli-
cation that invokes each of the operations defined by the service, and verify that the service
operates as expected.

Build a console client application

1. In Visual Studio 2005, in Solution Explorer, right-click the ProductsService solution,
point to Add, and then click New Project.

2. Inthe Add New Project window, select the Windows project type, click the Console
Application template, set the name of the project to ProductsClient, and save it in the
default folder for the solution. Click OK.

Chapter 1 Introducing Windows Communication Foundation 25

Add New Project |2|E‘
Project types: Terplates: 5| @
Visual Basic visual Studio installed templates

=) Wisual C#

Windows ication (7] Class Libwary
KET Frameuwork 3.0 [l windows Control Library Wb Corkral Library
Smart Device (2% Console Application A windaws Service
Database [Empty Project ACrystal Reports Application
Starter Kits
Visual J# My Templates
Wisual C++
Other Project Types |5earch Orline Templates. ..

A project For creating an application with a Windows user interface

Name: | Productsclient |

Lacation: | CA\Doruments and SsttingslStudsntiy Doruments|Microsoft FrassiwCr Step By Stepichapt v | [Browse... |

3. Make sure you have selected the ProductsClient project in Solution Explorer. On the

Project menu, click Add Reference, and add a reference to the System.ServiceModel assem-
bly.

4. On the Project menu, click Add Service Reference. In the Add Service Reference dialog
box, type http://localhost/ProductsService/ProductsService.svc?wsdl for the service
URL, type ProductsService for the service reference name, and then click OK.

Add Service Reference f'5_<|

Enter the service URI and reference name and click OK to add all the available
SErvices.

Service URI:
|http:,l’,l’locaIhost,l’ProductsService,l’ProductsService.svc?wsdl | [Browse ...

Service reference name:

|Pr0ductsService |

oK |[Cancel]

This action queries the ProductsService service, retrieves the metadata, and generates a
proxy class using this metadata. The client can use this proxy class to invoke the opera-
tions exposed by the ProductsService service. You can view the code for the proxy class
by expanding the Service References folder in Solution Explorer, expanding the Prod-
uctsService.map folder, and double-clicking the ProductsService.cs file. Be careful not to
change any of the code in this file.

5. In Solution Explorer, double-click the app.contfig file for the ProductsClient project to dis-
play this file in the code view window. This is the WCEF client configuration file, and it was
generated at the same time as the proxy class. It contains the settings the client uses to
connect to the WCF service. Examine the <client> section towards the bottom of the file:
<client>

<endpoint address="http://Ton-dev-01/ProductsService/ProductsService.svc"
binding="basicHttpBinding" bindingConfiguration=

26

&

Chapter 1 Introducing Windows Communication Foundation

"BasicHttpBinding_IProductsService"
contract="ProductsClient.ProductsService.IProductsService"
name="BasicHttpBinding_IProductsService" />

</client>

Note Your file will contain the name of your computer in the endpoint address,
rather than lon-dev-01.

The endpoint mirrors that of the ProductsService service, specifying the URL of the ser-
vice, and the same binding and contract information. The main difference is the addition
of the name attribute, enabling you to refer to the endpoint in your code (which you will
do later in this exercise). Also, you can see that the file customizes the settings used by
the basicHttpBinding binding. If you scroll back through the file, you can see the defini-
tion of this customized binding. Many of the predefined bindings available with WCF
have a number of optional parameters that you can modify in this way. Do not change
anything in this file.

Display the Program.cs file for the ProductsClient project in the code view window. Add
the following statements to the top of the file:

using System.ServiceModel;
using ProductsClient.ProductsService;

You should always add a reference to the System.ServiceModel assembly and namespace
to a WCF client application, as they provide the methods needed to communicate with
a WCEF service. The ProductsClient.ProductsService namespace contains the proxy class
for the ProductsService WCF service.

In the Main method, add the following statements:

// Create a proxy object and connect to the service
ProductsServiceClient proxy =
new ProductsServiceClient("BasicHttpBinding_IProductsService");

The ProductsServiceClient class is the name of the proxy type generated earlier. This code
creates a new instance of the proxy and connects to the ProductsService service. The
parameter to the constructor, BasicHttpBinding_IProductsService, specifies the name of
the endpoint in the app.config file to which the client will connect.

Add the following code to the Main method:

// Test the operations in the service

// Obtain a Tlist of all products
Console.WriteLine("Test 1: List all products");
string[] productNumbers = proxy.ListProducts();
foreach (string productNumber in productNumbers)
{

Console.WriteLine("Number: + productNumber);

}

Console.WriteLine(Q);

10.

11.

Chapter 1 Introducing Windows Communication Foundation 27

This block of code tests the ListProducts method. This method should return an array of
strings containing the product number of every product in the database. The foreach
statement iterates through the list and displays them.

Add the following code to the Main method:

// Fetch the details for a specific product
Console.WriteLine("Test 2: Display the details of a product™);
Product product = proxy.GetProduct("WB-H098");
Console.WriteLine("Number: " + product.ProductNumber);
Console.WriteLine("Name: " + product.Name);
Console.WriteLine("Color: + product.Color);
Console.WriteLine("Price: + product.ListPrice);
Console.WriteLine(Q);

This section of code tests the GetProduct method. The GetProduct method returns the
details for the specified product (in this case, product WB-H098) as a Product object.
Remember that the definition of the Product type was specified in a data contract for the
WCEF service. The code defining this type in the client application was generated from
the metadata for the service and can be found in the ProductsService.cs file, in the Prod-
uctsService.map folder, under Service References in Solution Explorer.

Add the following code to the Main method:

// Query the stock level of this product

Console.WriteLine("Test 3: Display the stock Tevel of a product");
int numInStock = proxy.CurrentStockLevel("WB-H098");
Console.WriteLine("Current stock level: " + numInStock);
Console.WriteLine(Q);

This block of code tests the CurrentStockLevel method. The value returned should be
the total number of product WB-H098 held in the warehouse (the stock might be held
in several bins, located on several shelves).

Add the following code to the Main method:

// Modify the stock level of this product
Console.WriteLine("Test 4: Modify the stock level of a product™);
if (proxy.ChangeStockLevel("WB-H098", 100, "N/A", 0))

{
numInStock = proxy.CurrentStockLevel("WB-H098");
Console.WriteLine("Stock changed. Current stock level: "™ + numInStock);
}
else
{
Console.WriteLine("Stock Tevel update failed");
}

Console.WriteLine(Q);

This code tests the ChangeStockLevel method. Product WB-H098 is located on shelf "N/
A" in bin 0, and this code adds another 100 to the volume in stock. The code then calls
the CurrentStockLevel method again, which should return the new stock level for this
product.

28 Chapter 1 Introducing Windows Communication Foundation

12. Complete the Main method by adding the following code:

// Disconnect from the service
proxy.Close();

Console.WriteLine("Press ENTER to finish");
Console.ReadLine();

You disconnect from a service by calling the Close method of the proxy. You should not
attempt to call further methods by using the proxy without connecting again.

13. Save the project, and build the solution.

The final step is to run the client application and verify that the service operates as expected.

Run the client application

1. In Solution Explorer, right-click the ProductsClient project, and then click Set as Startup
Project.

2. On the Debug menu, click Start Without Debugging.

A console window opens. A list of product numbers should appear first, followed by the
details of product WB-H098 (a water bottle), the current stock level (252), and the stock
level after adding another 100 (352):

INDOWSisystem32\cmd. exe

Lest 3: Display the stock level of a product
Current stock leve

lost 4: Modify the stock level of a praduct
Stock changed. Current stock level:

[Press ENTER to finish

3. Press Enter to terminate the program and return to Visual Studio 2005.

Service-Oriented Architectures and Windows
Communication Foundation

You have seen how, by using WCEF, you can quickly build services that you can integrate into
enterprise solutions. Apart from writing entirely new functionality, you can use WCF to imple-
ment services that wrap existing applications, and connect them together in ways that were
previously difficult to achieve. WCF can act as the “glue” for combining applications and com-
ponents together. Additionally, WCF can make use of standard protocols, data formats, and
communications mechanisms, enabling interoperability with services developed by using
other technologies. WCF is an ideal platform for implementing a Service-Oriented Architec-
ture, or SOA.

Chapter 1 Introducing Windows Communication Foundation 29

An SOA consists of a set of resources on a network that are made available as independent ser-
vices, and that can be accessed without requiring any knowledge of how they are imple-
mented. You can combine the services in an SOA to create an enterprise application. I don’t
want to go into the full theory of SOA, but the main benefits are that it enables you to create
complex solutions that are independent of any specific platform and location. This means
that you can quickly replace or upgrade a service or move a service to a different site (possibly
running on faster hardware), and as long as the service exposes the same interfaces as before,
you can continue to use it without needing to modify any code. However, SOA is not a magic
wand that will instantly solve all of your distributed application architecture problems. To suc-
cessfully design and implement an SOA, you should be aware of what has become known as
the “Four Tenets of Service Orientation.” These are:

1. Boundaries are explicit. Applications and services communicate by sending messages to
each other. You should not make any assumptions about how a service processes a
request or how a client application handles any response to a request. Following this
principle can help to remove dependencies between services and client applications.
Additionally, sending and receiving messages has an associated cost in terms of commu-
nications. You should design the operations that services implement with this in mind,
and ensure that clients call services only when necessary.

2. Servicesare autonomous. If you are building an application based on services, you might
not have control over every service you are using, especially Web services hosted outside
of your organization. The location of a Web service might change, or a service might be
temporarily taken off-line for maintenance or other reasons. You should design your
solutions to be loosely coupled, so that they can tolerate these changes and continue
running even if one or more services are unavailable.

3. Services share schemas and contracts, not classes or types. Services publish information
about the operations that they implement and the structure of the data that they expect
to send and receive. Clients use this information when communicating with the service.
You should design contracts and schemas to define the interfaces that your services
expose. This can reduce the dependencies that clients have on a particular version of
your services. Services can change and evolve over time, and a new version of a service
might appear superseding a previous version. If a service is updated, it should maintain
compatibility with existing clients by continuing to implement existing contracts and
send messages that conform to existing schemas. If you need to modify a service and
provide additional functionality, you can add contracts and schemas that extend the
original capabilities of the service while retaining the existing contracts and schemas.
Older client applications should continue to work unchanged.

4. Compatibility is based on policy. The schemas and contracts exposed by a service define
the “shape” of the service but not the nonfunctional requirements that a client attempt-
ing to access the service must fulfill. For example, a service might have security require-
ments that state that clients must connect to it in a particular manner and send and
receive messages by encrypting data in a specific way. This is an example of policy. The

30 Chapter 1 Introducing Windows Communication Foundation

policy requirements of a service cannot be specified by using contracts and should not
require additional coding on the part of the client or the service—these requirements
might change over time and so should be decoupled from the implementation of the ser-
vice and clients. You should design services so that their policy requirements are inde-
pendent of any implementation, and you should enforce clients to abide by any policies
required by the service. Additionally, all services and client applications must agree on
how to specify this policy information (typically by using some sort of configuration
file). This is the purpose of the WS-Policy framework, published by the World Wide Web
Consortium, and widely adopted by Web service developers.

More Info For further information about the WS-Policy framework, visit the World Wide
Web Consortium Web site at http.//www.w3.org/Submission/WS-Policy/.

This sounds like a lot to have to think about when creating services, but WCF has been
designed with these principles in mind. As you progress through the rest of this book, you will
meet many of the features WCF provides to help you build services that conform to SOA best
practice.

Summary

This chapter has introduced you to WCF. You have learned the purpose of WCF and seen how
to use it to create a simple Web service by adopting a contract-first approach to design. You
have deployed the WCF Web service to IIS and seen how to create a client application that can
access the service. Finally, you have learned the basic principles of SOA and should under-
stand that using WCF can help you to build services for an SOA quickly and easily.

Chapter 2

Hosting a WCF Service

After completing this chapter, you will be able to:

m Describe how a WCF service runs.
m Explain the different ways you can host a WCF service.

m Build a Windows Presentation Foundation application and a Windows service that
host a WCF service.

m Describe the different bindings available for communicating with a WCF service.
m Use multiple bindings with a WCF service.

In the previous chapter, you saw how to create a WCEF service, and how to deploy a WCF ser-
vice to IIS and access it from a client application. This chapter describes in more detail how a
WCEF service works and explains some of the other options you have for hosting a WCF ser-
vice. In this chapter, you will build and configure host applications that process service
requests and control the state of a WCF service. You will also learn more about how bindings
work in WCF, and how the WCF runtime uses bindings to implement the nonfunctional fea-
tures of a service.

How Does a WCF Service Work?

Functionally, a WCEF service is just an object that exposes a set of operations that client appli-
cations can invoke. When building a service, you describe the operations for a service by using
a service contract and then create a class that implements this contract. To execute the service,
you have to provide a runtime environment for this object and then make the object available
to client applications. The runtime environment for an object implementing a service is pro-
vided by a host application. You have already seen that you can use IIS to provide such a run-
time environment. You can also create your own application to act as a host.

A host application has to perform a number of tasks, including:

m Starting and stopping the service
m Listening for requests from a client application and directing them to the service
m Sending any responses from the service back to the client applications

To understand more about how a host application works, it is helpful to look in more detail at
service endpoints and the way in which the WCF runtime uses the binding information spec-
ified in endpoints to enable client applications to connect to the service.

31

32 Chapter 2 Hosting a WCF Service

Service Endpoints

Ahost application makes a service available to client applications by providing an endpoint to
which clients can send requests. An endpoint contains three pieces of information:

1.

The address of the service. The form of a service address depends on several factors,
including the transport protocol being used. Different transport mechanisms use differ-
ent address spaces. For example, in Chapter 1, “Introducing Windows Communication
Foundation,” you deployed a service to IIS using the address http://localhost/Prod-
uctsService/ProductsService.svc. This address specifies the virtual directory and the service
definition (.svc) file. If you build your own custom host application, you can use a differ-
ent transport mechanism, and you must specify an address that is appropriate to your
chosen transport mechanism.

The binding supported by the service. The binding for a service describes how a client
can connect to the service and the format of the data expected by the service. A binding
can include the following information:

Qa

The transport protocol. This must conform to the requirements of the service
address. For example, if you are using IIS to host the service, you should specify
the HTTP or HTTPS transport protocol. WCF also has built-in support for the TCP
protocol, named-pipes, and message queues. You will see examples of addresses
specified by using some of these transport schemes later in this chapter.

The encoding format of messages. In many cases, request and response messages
will be transmitted in XML format, encoded as ordinary text. However, in some
cases you might need to transmit data using a binary encoding, especially if you are
transmitting images or handling streams. You will learn more about using an
appropriate encoding for messages in Chapter 12, “Implementing a WCF Service
for Good Performance.”

The security requirements of the service. You can implement security at the trans-
port level and at the message level, although different transport protocols have
their own limitations and requirements. You will learn more about specifying the
security requirements for a service in Chapter 4, “Protecting an Enterprise WCF
Service,” and in Chapter 5, “Protecting a WCF Service over the Internet.”

The transactional requirements of the service. A service typically provides access to
one or more resources. Client applications update these resources by sending
requests to the service. If a client makes multiple requests of a service that result in
multiple updates, it can be important to ensure that all of these updates are made
permanent. In the event of a failure, the service should undo all of these updates.
This is the definition of a transaction. You will learn more bout building WCF ser-
vices that support transactions in Chapter 8, “Supporting Transactions.”

The reliability of communications with the service. Clients usually connect to ser-
vices across a network. Networks are notoriously unreliable and can fail at any

Chapter 2 Hosting a WCF Service 33

time. If a client application is performing a conversation (an ordered exchange of
several messages) with a service, information about the reliability of the service is
important. For example, the service should try and ensure that it receives all mes-
sages sent by the client and receives them in the order that the client sent them. A
service can ensure the integrity of conversations by implementing a reliable mes-
saging protocol. You will learn more about reliable messaging in Chapter 9, “Imple-
menting Reliable Sessions.”

3. The contract implemented by the service. A WCF service contract is an interface stored
in a NET Framework assembly and annotated with the [ServiceContract] attribute. The
service contract describes the operations implemented by the service by tagging them
with the [OperationContract] attribute. Any data passed to and from operations must be
serializable. A service can define data contracts describing the structure of complex data
and how this data should be serialized. The service can publish the description of its ser-
vice contract, which a client application can use to ascertain the operations that the ser-
vice implements and send messages that are correctly formatted.

Processing a Client Request

A service can respond to requests from multiple client applications simultaneously. To achieve
this feat, the application hosting the service must be able to accept multiple incoming requests
and direct service responses back to the appropriate client. Additionally, the host application
must ensure that messages being sent between the client and service conform to the security,
reliability, and transactional requirements of the binding being used. Fortunately, you don’t
have to write this functionality yourself. The WCF runtime environment provides a collection
of channel objects that can perform this processing for you.

A channel is responsible for handling one aspect of message processing, as specified by the
bindings of a service. For example, a transport channel manages communications by using a
specific transport protocol, and a transaction channel controls the transactional integrity of a
conversation. The WCF runtime provides built-in channels for each of the supported trans-
port protocols. The WCF runtime also provides channels that handle the different ways that
WCF can encode data, manage security, implement reliability, and perform transactions. The
WCEF runtime composes channels into a channel stack. All messages passing between the cli-
entand the service go through each channel in the channel stack. Each channel in the channel
stack transforms the message in some way, and the output from one channel is passed as
input to the next. The channel stack operates in two directions—messages received from cli-
ents across the network proceed up the channel stack to the service, and response messages
sent back from the service traverse the channel stack in the opposite direction back to the net-
work and then to the client. If a channel cannot process a message, it reports an error, an error
message is sent back to the client, and the message is not processed any further.

34

Chapter 2 Hosting a WCF Service

Note There is an order to the channels in the channel stack. A transport channel always
resides at the bottom of the stack and is the first channel to receive data from the network.
On top of the transport channel will be an encoding channel. These two channels are man-
datory. The remaining channels in a stack are optional.

When you start a service running, the WCF runtime uses the endpoint information specified
as part of the service configuration and creates a listener object for each address specified for
the service. When an incoming request is received, the WCF runtime constructs a channel
stack by using the bindings specified for the address and routes the incoming data from the
client through the stack. If a message successfully traverses all the channels in the channel
stack, the transformed request is passed to an instance of the service for processing.

Note The channel model used by WCF makes the WCF framework very flexible. If you
need to add a new transport protocol or implement an additional piece of functionality, you
can write your own channel to perform the processing required and link it into the channel
stack by adding it to the binding description of the service. However, this task is beyond the
scope of this book.

The WCF runtime creates an InstanceContext object to control the interaction between the
channel stack and the service instance. You can modify the way in which the WCF runtime
instantiates the service through the InstanceContext object by specifying the [ServiceBehavior]
attribute of the class implementing the service contract. The ServiceBehavior attribute has a
property called InstanceContextMode, which can take the values shown in Table 2-1.

Table 2-1 InstanceContextMode Values

Value Description

InstanceContextMode.PerCall A new instance of the service will be created every time a
client calls an operation. When the call completes, the service
instance is recycled.

InstanceContextMode.PerSession If the service implements sessions, a new instance of the
service will be created at the start of the session and recycled
when the session completes. A client can call the service
several times during a session. However, the service instance
cannot be used across more than one session. For more
information about using sessions, see Chapter 7,
“Maintaining State and Sequencing Operations.”

InstanceContextMode.Single Only one instance of the service is created and is shared by all
clients and all sessions. The instance is created when the first
client attempts to access it.

You can specify the InstanceContextMode property for a service like this:

Chapter 2 Hosting a WCF Service 35

[ServiceBehavior (InstanceContextMode=InstanceContextMode.PerSession)]
public class ProductsServiceImpl : IProductsService

{
3

A 'WCEF client application can communicate with a WCF service by using a proxy class. You
can generate this proxy class by using Visual Studio 2005 (as you did in Chapter 1) or by
using the svcutil utility from the command line. This proxy class implements a channel stack
on the client side. You configure this channel stack in the same way that you do for a service,
by using bindings. All responses received from a service pass through the channels in this
stack. To communicate successfully, the client and the service should use an equivalent chan-
nel stack containing a compatible set of bindings.

Hosting a WCF Service in a User Application

Apart from using an IIS Web service to host a WCF service, you have at least three further
options. You can create an ordinary application that the user runs to start and stop the WCF
service, or you can host the WCF service in a Windows service so that the WCF service is avail-
able as long as Windows is running. The third option, if you are using IIS version 7.0, is to use
Windows Activation Services, or WAS. Using WAS, you can configure and host a WCF service
without needing to run the World Wide Web Publishing Service. However, IIS 7.0 is not avail-
able for Windows XP, and we will not consider using WAS any further in this book.

More Info For detailed information about IS 7.0, visit the IS 7.0 Feature Reference Web
site at http.//technet2.microsoft.com/WindowsServer/en/Library/582b556d-d404-4150-aa07-
c5¢0c750b6¢81033.mspx?mfr=true.

Using the ServiceHost Class

The discussion so far in this chapter has described the tasks that a host application for a WCF
service must perform. You can achieve most of these tasks by using the ServiceHost class, avail-
able in the System.ServiceModel namespace. A ServiceHost object can instantiate a service object
from an assembly holding the service class, configure the endpoints of the service by using
bindings provided in a configuration file or in code, apply any security settings required by
the service, and create listener objects for each address that you specify.

When you create a ServiceHost object, you specify the type of the class implementing the ser-
vice. You can specify the addresses that the ServiceHost object should listen to for requests, like
this:

ServiceHost productsServiceHost = new
ServiceHost(typeof(ProductsServiceImpl),
new Uri("http://Tocalhost:8000/ProductsService/ProductsService.svc"),
new Uri("tcp.net://localhost:8080/TcpProductsService™);

36

&

Chapter 2 Hosting a WCF Service

This example uses the ProductsService service that you created in Chapter 1, and specifies two
addresses: the first uses the HTTP transport, and the second uses TCP. Strictly speaking, the
addresses that you specify in the ServiceHost constructor are base addresses. A base address is
just the initial part of the address. If you provide an application configuration file that con-
tains further address information, this information will be combined with the base addresses
you specify here to generate the real addresses. For example, if you use the following code to
instantiate the ServiceHost object:

ServiceHost productsServiceHost = new
ServiceHost(typeof(ProductsServiceImpl),
new Uri("http://Tocalhost:8000/ProductsService™));

and the application configuration contains an endpoint definition like this:

<endpoint address="ProductsService.svc" binding="basicHttpBinding" name="ProductsServiceHttp
Endpoint" contract="Products.IProductsService" />

the WCF runtime will combine the two elements together to generate an address of
“http://localhost:8000/ProductsService/ProductsService.sve.” This is a very powerful feature
that enables an administrator to direct a service to use a particular address on a specified site,
but that also provides the developer with full control over the selection of the site hosting the
service.

If you omit the base address information in the ServiceHost constructor, like this:

ServiceHost productsServiceHost = new
ServiceHost(typeof(ProductsServiceImpl));

the WCF runtime will just use the address information specified in the application configura-
tion file, and automatically listen for requests on all configured endpoints. This gives the
administrator complete control over the addresses and transports used by the service. For
convenience, in the examples in this book, you will adopt this approach and specify the com-
plete address information in the application configuration file wherever possible. However,
when building your own enterprise applications, you might prefer to provide the base
addresses for service endpoints programmatically.

Note There is one minor side effect of specifying complete addresses in the application
configuration file; if you are building a host application and you wish to enable metadata
publishing, you must provide the URL for the service to use to publish its metadata in the
HttpGetUrl or HttpsGetUrl properties of the serviceMetadata element of the service behavior.

After you have created the ServiceHost object, you can start listening for requests by using the
Open method, like this:

productsServiceHost.0Open();

Chapter 2 Hosting a WCF Service 37

Opening a ServiceHost object causes the WCF runtime to examine the binding configuration

for each endpoint of the service and start listening on each endpoint address. Opening a ser-
vice can take some time. An overloaded version of the Open method is available that takes a

TimeSpan object and that throws an exception if the Open method does not complete within
the specified time. Additionally, the ServiceHost class supports the NET Framework asynchro-
nous mode of operations through the BeginOpen and EndOpen methods implementing the
[AsynResult design pattern.

More Info The IAsyncResult design pattern is commonly used throughout the .NET
Framework, and is not peculiar to WCF. For details, see the topic "Asynchronous Program-
ming Design Patterns” in the .NET Framework Developer’s guide, available in the Microsoft
Visual Studio 2005 Documentation, and also online at http.//msdn2.microsoft.com/en-us/
library/ms228969.aspx.

You stop a service by calling the Close method of the ServiceHost object. The Close method
stops the WCF runtime listening for more requests and gracefully shuts the service down; any
work in progress is allowed to complete. As with the Open method, you can close a service
asynchronously by using the BeginClose and EndClose methods.

The ServiceHost class also provides events that you can use to track the state of a ServiceHost
object. Table 2-2 summarizes these events.

Table 2-2 ServiceHost Events

Event Description

Opening The ServiceHost object is opening the service and is
processing the binding information for each endpoint so
that it can start listening.

Opened The ServiceHost object has successfully opened the
service, which is now ready to accept client requests.

Closing The ServiceHost is executing the close method and
waiting for all current service requests to complete
processing.

Closed The service has shut down. No listeners are active, and

clients cannot send requests.

Faulted The service has encountered an unrecoverable error. You
can examine the ServiceHost object to try and determine
the cause of the fault, but clients can no longer use the
service. You must close the service and open it again
before clients can connect.

38 Chapter 2 Hosting a WCF Service

Building a Windows Presentation Foundation Application to Host a
WCF Service

Let’s look at how to use the ServiceHost class to host a WCF application inside an ordinary
application. You should have the NET Framework 3.0 and the Microsoft Visual Studio Devel-
opment Tools for .NET Framework 3.0 installed on your computer, so it makes sense to build
a Windows Presentation Foundation (WPF) application.

Create a new Windows application to host the WCF service

1.

Using Visual Studio 2005, create a new project. Select the NET Framework 3.0 project
types under Visual C#, and use the Windows Application (WPF) template. Name the
project ProductsServiceHost and save it in the Microsoft Press\WCF Step By Step\Chap-
ter 2 folder under your \My Projects folder.

In Solution Explorer, rename the Window1.xaml file as HostController.xaml.

Open the App.xaml file. In the pane displaying the XAML description of the form,
change the StartupUri attribute of the Application element to HostController.xaml, as
shown in bold below:

<AppTication x:Class="ProductsServiceHost.App"
xmIns="http://schemas.microsoft.com/winfx/2006/xam1/presentation”
xmIns:x="http://schemas.microsoft.com/winfx/2006/xam1"
StartupUri="HostController.xaml"
>
<AppTlication.Resources>

</AppTlication.Resources>
</Application>

Open the HostController.xaml file. In the pane displaying the XAML description of the
form, change the class name to ProductsServiceHost. HostController, and add the code
highlighted in bold below to the form:

<Window x:Class="ProductsServiceHost.HostController"
xmIns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmIns:x="http://schemas.microsoft.com/winfx/2006/xam1"
Title="ProductsServiceHost" Height="300" Width="300"
>
<Grid>
<Button Height="23" HorizontalAlignment="Left" Margin="51,60,0,0" Name="start"
VerticalAlignment="Top" Width="75" Click="onStartClick">Start</Button>
<Button Height="23" HorizontalAlignment="Right" Margin="0,60,56,0" Name="stop"
VerticalAlignment="Top" Width="75" IsEnabled="False" Click="onStopClick">Stop</Button>
<Label Height="23" HorizontalAlignment="Left" Margin="51.37,0,0,108" Name=
"Tabel1l" VerticalAlignment="Bottom" Width="87.63">Service Status:</Label>
<TextBox IsReadOnly="True" Margin="133,0,59,107" Name="status" Text="Service
Stopped" Height="26" VerticalAlignment="Bottom"></TextBox>
</Grid>
</Window>

Chapter 2 Hosting a WCF Service 39

This code in the <Window> element changes the class reference to refer to the new name
of the form.

The code in the <Grid> element adds two buttons, a label, and a text box to the form. The
two buttons will enable a user to start and stop the WCF service, and the label and text
box display a message indicating the current state of the WCF service (running or
stopped). If you examine the Click attribute of the Start button, you can see that it
invokes a method called onClickStart. Similarly, the Click attribute of the Stop button
invokes a method called onClickStop. You will write the code that implements these
methods in the next exercise.

Click the Design tab to refresh the display of the ProductsServiceHost form. Verify that
your form looks like the following image:

']

M ProducisServiceHost: CIEX

Service Status: | Service Stopped

1]

The Stop button is initially disabled. You will write code to enable it when the service has
started.

In Solution Explorer, expand the HostController.xaml node and double-click the file
HostController.xaml.cs . The C# code behind the form is displayed in the code view win-
dow. Change all occurrences of Windowl in this file to HostController, to match the
class named in the XAML description of the form, as shown below:

namespace ProductsServiceHost

{
/// <summary>
/// Interaction logic for HostController.xaml
/// </summary>

public partial class HostController : Window

{
pubTlic HostController()
{
InitializeComponent();
}
}

40

Chapter 2 Hosting a WCF Service

You have now created a simple form that will act as the user interface for the service host. The
next step is to add the code that actually starts and stops the service.

Add logic to start and stop the WCF service

1.

In the ProductsServiceHost project, expand the References folder in Solution Explorer.
Notice that the project already contains a reference for the System.ServiceModel assembly
required by WCF applications and services.

Add a reference to the ProductsService.dll assembly, located in the Microsoft Press\WCF
Step By Step\Chapter 2\ProductsService\ folder under your \My Projects folder. This
assembly contains the code that defines the service contract and implements the Prod-
uctsService service. It is a copy of the assembly you created in Chapter 1.

In the code view window displaying the C# code behind the HostController form, add
the following using statements to the list at the top of the file:

using System.ServiceModel;
using Products;

Add the following variable to the HostController class:
private ServiceHost productsServiceHost;
You will use this variable to control the ProductsService service.

In the HostController class, add the following method immediately after the HostControl-
ler() constructor:

void onStartClick(object sender, EventArgs e)

{
productsServiceHost = new ServiceHost(typeof(ProductsServiceImpl));
productsServiceHost.0pen();
stop.IsEnabled = true;
start.IsEnabled = false;
status.Text = "Service Running";
}

This method is called when the user clicks the Start button on the form. The first line cre-
ates a new ServiceHost object. The parameter to the ServiceHost constructor is the type
that implements the data contract for the service. The ServiceHost object will retrieve the
endpoint containing the binding information containing the address from the applica-
tion configuration file. The second line of this method starts the service host listening to
this endpoint by calling the Open method. The remaining statements in this method
enable the Stop button on the form, disable the Start button, and modify the status dis-
played on the form.

Add the following method to the HostController class:

void onStopClick(object sender, EventArgs e)
{
productsServiceHost.Close();
stop.IsEnabled = false;

Chapter 2 Hosting a WCF Service 41

start.IsEnabled = true;
status.Text = "Service Stopped”;

}
This method is called when the user clicks the Stop button on the form. The Close
method of the ServiceHost object stops it listening for more requests. The other state-

ments re-enable the Start button, disable the Stop button, and update the service status
displayed on the form.

7. Build the solution.

The final step is to provide a configuration file that specifies the binding information for the
WCEF service. You can reuse the existing configuration file from the original Web service,and
rename it as an application configuration file.

Configure the Windows host application

1.

In the Project menu, click Add Existing Item. Move to the Microsoft Press\WCF Step By
Step\Chapter 2\Config\ folder under your \My Documents folder, and select the
Web.config file. This is a copy of the Web.config file you used for the ProductsService
Web service in Chapter 1.

Tip By default, the Add Existing Item dialog box for a C# project only displays
files with a .cs suffix. To display configuration file, select All Files in the Files of type drop-
down list box.

In Solution Explorer, rename the Web.conlfig file as App.config.

Open the App.config file, and add the address shown below in bold to the endpoint:

<system.serviceModel>
<services>
<service behaviorConfiguration="ProductsBehavior"
name="Products.ProductsServiceImpl">
<endpoint

address="http://localhost:8000/ProductsService/ProductsService.svc"
binding="basicHttpBinding"
contract="Products.IProductsService" />

</service>

</;ervices>
</system.serviceModel>
The address used here specifies port 8000. The default port for the HTTP protocol (port
80) is used by IIS. Attempting to create a new ServiceHost object listening to an address
on port 80 will result in an exception unless you stop IIS first.

Also notice that the address still appears to reference the ProductsService.svc service def-
inition file. However, you have not added this file to the service host application. In fact,
a service definition file is only really required by IIS, and is optional if you are creating

42

Chapter 2 Hosting a WCF Service

your own custom host application, as the information required to identify the assembly
containing the class that implements the service is specified in the ServiceHost construc-
tor. The address that you specify following the scheme, machine, and port (“Prod-
uctsService/ProductsService.svc” in this example) is really just a logical identifier that
the WCEF service uses to advertise the service to clients, and to which clients can connect.
As long as it is valid syntax for a Web URL this part of the address can be almost any-
thing. For consistency, when using the http scheme, it is worthwhile retaining the ser-
vice definition file element as part of the address in case you revert back to using IIS to
host the service.

Note This only applies to endpoints that use the HTTP and HTTPS transports. If you
use a different mechanism, such as TCP, avoid referencing what looks like a filename in
addresses.

Build the solution again. This action will generate the ProductsService.exe.config config-
uration file from the App.config file.

You can reuse the client application that you created for testing the ProductsService Web ser-
vice in Chapter 1 (a copy is supplied for this exercise) with one small change—you must mod-
ify the address of the service in the application configuration file.

Test the Windows host application

1.

In Solution Explorer, right-click the ProductsServiceHost solution, point to Add, and
then click Existing Project.

Move to the Microsoft Press\WCEF Step By Step\Chapter 2\ProductsClient\ folder
under your \My Documents folder, and select the ProductsClient project file.

In the ProductsClient project in Solution Explorer, right-click the App.config file and
click Edit WCF Configuration.

The WCEF Service Configuration Editor starts. This editor provides a graphical means of
editing a configuration file for a WCF service and client application. You can still edit the
configuration file manually if you prefer, but using this tool can reduce the scope for
many of the common configuration errors.

In the WCF Service Configuration Editor, in the tree view in the Configuration pane in
the left pane, select the BasicHttpBinding IProductsService endpoint in the Endpoints
folder under the Client folder. It should look like this, although the name of your com-
puter in the Address field will probably be different:

5.

Chapter 2 Hosting a WCF Service 43

B {c:\documents and settingskstudentimy, documentskmicrosoft pressiwef step by stepichapter 2productsclie... (= |[B]B€]

Ele Help
Configuration Client Endpeint
(] Services General ||d5r\t|ly Headers
=2 Client = -
3 Metadata E (Configuration)
22 Erelpints Name BasicHutpBinding_IProductsService
M BasicHttpBinding IProductsSarvics | | [(General]
1 Bindings Address http://lon-dev-01 /P vice/P ice.sve
(1 Disrusstics BehaviorConfiguration
(1 Adwarced Binding basicHttpBinding
BindingCanfiguration BasicHutpBinding_IProductsService
Contract ProductsClient.P vice. IP
Tasks ®
Delete Endpoint
Create a New Service.
Create a New Client..
Address
Specifies the addiess of the endpaint

In the Client Endpoint pane on the right side of the window, change the Address property
to http://localhost:8000/ ProductsService/ProductsService.svc.

Note Remember that this is a URL, or a logical address. Unlike the IIS implementa-
tion, there is not actually a physical file called ProductService.svc in this version of the
ProductsService service. The service host just happens to be listening on an endpoint
with an address that looks like a filename.

On the File menu, click Save, and then exit the WCF Service Configuration Editor.

Note When you return to Visual Studio 2005, if you had the App.config file open in
a code view window, Visual Studio 2005 will detect that the contents of the file have
changed and alert you with a message box displaying, “The file has been modified
outside the source editor. Do you want to reload it?” Click Yes, otherwise you risk losing
the changes you have made by using the WCF Service Configuration Editor.

In Solution Explorer, double-click the Program.cs file in the ProductsClient project. Add
the statements shown in bold to the Main method of the Program class:

static void Main(string[] args)

{
Console.WriteLine("Press ENTER when the service has started");
Console.ReadLine();
// Create a proxy object and connect to the service
ProductsServiceClient proxy = new
ProductsServiceClient("BasicHttpBinding_IProductsService");
}

These statements wait for the user to press the Enter key before creating the proxy object
that connects to the service. This will give you time to start the service running.

44 Chapter 2 Hosting a WCF Service

8.
9.

10.

11.
12.

13.

14.

Build the solution.

In Solution Explorer, right-click the ProductsServiceHost solution, and then click Set
StartUp Projects.

In the Property Pages dialog box, click Multiple startup projects, set the Action for the
ProductsClient and the ProductsServiceHost projects to Start, and then click OK.

On the Debug menu, click Start Without Debugging to start both projects running,.

In the ProductsServiceHost form, click Start, and wait for the Service Status text box to
change to Service Running.

In the console window running the ProductsClient application, press Enter. The appli-
cation should run exactly as before, displaying a list of product numbers, displaying the
details of product WB-H098, and then displaying and updating the stock level for this
product.

Press Enter again to close the ProductsClient application. Close the ProductsServiceHost
form.

Reconfiguring the Service to Use Multiple Endpoints

The HTTP protocol is a good choice to use as a transport for connecting to Web services. How-
ever, when accessing a service deployed within an organization, the TCP protocol can prove to
be more efficient. If you want to maintain connectivity and network performance inside and
outside an organization, you should consider providing multiple endpoints: one for external
clients accessing the service by using HTTP, and another for internal clients accessing the ser-
vice by using TCP. This is what you will do in the next set of exercises.

Add a TCP endpoint to the WCF service

1.

In Solution Explorer, in the ProductsServiceHost project, right-click the App.config file
for the ProductsServiceHost project, and then click Edit WCF Configuration.

In the WCEF Service Configuration Editor, in the Configuration pane, expand the Prod-
ucts.ProductServicelmpl folder in the Services folder, and then expand the Endpoints
folder. The existing endpoint is listed, with the name (Empty Name).

Click the (Empty Name) endpoint. In the Service Endpoint pane, set the Name property
to ProductsServiceHttpEndpoint.

In the Configuration pane, right-click the Endpoints folder, and then click New Service
Endpoint.

5.

Chapter 2 Hosting a WCF Service 45

In the Service Endpoint pane, set the properties of the endpoint using the values in the
following table:

Property Value

Name ProductsServiceTcpEndpoint

Address net.tcp://localhost:8080/TcpProductsService

Binding netTcpBinding

Contract Products.IProductsService

Tip If you click the ellipses button in the Contract field, you can search for the
assembly containing the contract by using the Contract Type Browser. When you select
an assembly, the Contract Type Browser will display all the contracts available in the
assembly.

Save the updated configuration, and then exit the WCF Service Configuration Editor.

Examine the App.config file by opening it in the code view window. Notice that the new
endpoint has been added to the service, as follows:

<services>
<service behaviorConfiguration="ProductsBehavior" name="Products.ProductsService
Impl">
<endpoint address="" binding="basicHttpBinding" name="ProductsServiceHttpEndpo
int" contract="Products.IProductsService" />
<endpoint address="net.tcp://localhost:8080/TcpProductsService"
binding="netTcpBinding" bindingConfiguration="" name="ProductsServiceTcpEndpoint"
contract="Products.IProductsService" />
</service>
</services>

When the host application instantiates the ServiceHost object, it automatically creates an
endpoint for each entry in the configuration file.

Reconfigure the client to connect to the TCP endpoint

1. In Solution Explorer, edit the app.config file for the ProductsClient project by using the
WCEF Service Configuration Editor.

2. In the WCEF Service Configuration Editor, in the Client folder, right-click the Endpoints
folder, and then click New Client Endpoint.

3. In the Client Endpoint pane, set the properties of the endpoint using the values in the
following table:

Property Value

Name NetTcpBinding_IProductsService

Address net.tcp://localhost:8080/TcpProductsService

46 Chapter 2 Hosting a WCF Service

Property Value

Binding netTcpBinding

Contract ProductsClient.ProductsService.lProductsService
Note The type defining the contract is part of the proxy code generated for the
client in Chapter 1. This type was compiled into the client executable assembly,

ProductsClient.exe, located in the bin\Debug folder underneath the client project folder.

4. Save the client configuration file and exit the WCF Service Configuration Editor.

Examine the app.config file by opening it in the code view window. Notice that the new
endpoint has been added to the client, as follows:

<client>
<endpoint
address="http://Tocalhost:8000/ProductsService/ProductsService.svc"
binding="basicHttpBinding"
bindingConfiguration="BasicHttpBinding_IProductsService"
contract="ProductsClient.ProductsService.IProductsService"
name="BasicHttpBinding_IProductsService" />
<endpoint
address="net.tcp://localhost:8080/TcpProductsService"
binding="netTcpBinding" bindingConfiguration=""
contract="ProductsClient.ProductsService.IProductsService"
name="NetTcpBinding_IProductsService" />
</client>

6. Edit the Program.cs file in the ProductsClient project. In the Main method, modify the
statement that instantiates the proxy object to use the TCP endpoint, as follows:

// Create a proxy object and connect to the service
ProductsServiceClient proxy = new
ProductsServiceClient("NetTcpBinding_IProductsService");

7. Build the solution.
Test the new endpoint
1. On the Debug menu, click Start Without Debugging to start both projects running.

2. In the ProductsServiceHost form, click Start, and wait for the Service Status text box to
change to Service Running.

Note If you are running Windows Firewall, a Windows Security Alert will appear. In
the alert, click Unblock to allow the service to open the TCP port.

3. In the console window running the ProductsClient application, press Enter. The appli-
cation should run exactly as before. This time, however, the client is connecting to the
service by using the TCP protocol.

Chapter 2 Hosting a WCF Service 47

4. Press Enter again to close the ProductsClient application. Close the ProductsServiceHost
form.

Understanding Bindings

By now, you should appreciate that bindings are an important part of the framework provided
by WCEF. A binding consists of one or more binding elements. A binding element handles one
particular non-functional aspect of a service, such as whether it supports transactions or how
the service implements security. You compose binding elements together in various combina-
tions to create a binding. Every binding should have a single binding element describing the
transport protocol, and a binding should also contain a binding element that handles mes-
sage encoding. You can add further binding elements to provide or enforce further features in
a service. A binding element corresponds to a channel. Remember that when a host opens a
service, the WCF runtime uses each binding element in the binding to create the channel
stack. A client also creates channel stack when it connects to the service by opening a proxy
object. To ensure that a client application can communicate successfully with a service, it
should use a binding that provides binding elements that match those implemented by the
service.

The WCF Predefined Bindings

The WCEF library contains a number of classes in the System.ServiceModel. Channels namespace
that implement binding elements. Examples include the BinaryMessageEncodingBinaryEle-
ment class that performs binary encoding and decoding for XML messages, the Asymmetric-
SecurityBindingElement class that enables you to enforce security by performing asymmetric
encryption, the HttpsTransportBindingElement that uses the HTTPS transport protocol for
transmitting messages, and the ReliableSessionBindingElement that you can use to implement
reliable messaging. Most binding elements also provide properties that enable you to modify
the way in which the binding elements work. For example, the AsymmetricSecurityBindingEle-
ment class has a property called DefaultAlgorithmSuite that you can use to specify the message
encryption algorithm to use. WCF also enables you to define your own custom binding ele-
ments if none of the predefined binding elements meets your requirements. (Creating custom
binding elements is beyond the scope of this book.)

The composability of binding elements into bindings provides a great deal of flexibility, but
clearly not all combinations of binding elements make sense. Additionally, if you are building
solutions for a global environment, it is worth remembering that not all client applications
and services in a distributed solution will necessarily have been developed by using WCF; you
should use bindings that are interoperable with services and applications developed by using
other technologies.

48

Chapter 2 Hosting a WCF Service

The WS-* Specifications

As described in Chapter 1, many specifications and protocols have been defined, aimed
at ensuring interoperability between Web services. Examples include the WS-Security
specification defining how Web services can communicate in a secure manner, WS-
Transactions for specifying how to implement transactions across a disparate collection
of Web services, and WS-ReliableMessaging that describes a protocol that allows mes-
sages to be delivered reliably between distributed applications in the presence of soft-
ware component, system, or network failures. Collectively, these specifications are
known as the WS-* specifications. To ensure interoperability, you should create Web ser-
vices that conform to these specifications.

The designers of WCF have provided a selection of predefined bindings in the WCF library, in
the System.ServiceModel namespace. You have already used two of them: BasicHttpBinding
and NetTcpBinding. Some of these bindings are aimed at clients and services primarily run-
ning on the Windows platform, but others (mainly the Web services bindings) are compatible
with the WS-* specifications and the WS-I Basic Profile 1.1. Table 2-3 describes the bindings

available in the WCEF library:

Table 2-3 WCF Predefined Bindings

Binding

Description

BasicHttpBinding

This binding conforms to the WS-I Basic Profile 1.1. It can use the
HTTP and HTTPS transport protocols and encodes messages as
XML text. Use this binding to maintain compatibility with client
applications previously developed to access ASMX-based Web
services.

WSHttpBinding

This binding conforms to the WS-* specifications that support
distributed transactions, and secure, reliable sessions. It supports
the HTTP and HTTPS transport protocols. Messages can be
encoded as XML text or by using the Message Transmission
Optimization Mechanism (MTOM). MTOM is an efficient encoding
mechanism for transporting messages that contain binary data.
You will learn more about MTOM in Chapter 12.

WSDualHttpBinding

This binding is similar to WSHttpBinding, but it is suitable for
handling duplex communications. Duplex messaging enables a cli-
ent and service to perform two-way communication without
requiring any form of synchronization (the more common pattern
of communication is the request/reply model where a client sends
a request and waits for a reply from the service). You will learn
more about using duplex messaging in Chapter 14, "Using a
Callback Contract to Publish and Subscribe to Events.” Using this
binding, messages can be encoded as XML Text or by using MTOM.
However, this binding only supports the HTTP transport protocol,
not HTTPS.

Chapter 2 Hosting a WCF Service 49

Table 2-3 WCF Predefined Bindings

Binding

Description

WSFederationBinding

This binding supports the WS-Federation specification. This
specification enables Web services operating in different security
realms to agree on a common mechanism for identifying users. A
collection of cooperating Web services acting in this way is called
a federation. An end-user that successfully connects any member
of the federation has effectively logged into all of the members.
WS-Federation defines several models for providing federated
security, based on the WS-Trust, WS-Security, and
WS-SecureConversation specifications. You will learn more about
federation in Chapter 15, “Managing Identity with Windows Card-
Space.”

NetTcpBinding

This binding uses the TCP transport protocol to transmit messages
using a binary encoding. It offers higher performance than the
bindings based on the HTTP protocols but less interoperability.

It supports transactions, reliable sessions, and secure communica-
tions. It is ideally suited for use in a local area network, and
between computers using the Windows operating system.

NetPeerTcpBinding

This binding supports peer-to-peer communications between
applications using the TCP protocol. This binding supports secure
communications and reliable, ordered delivery of messages.
Messages are transmitted by using a binary encoding. Using peer-
to-peer communications is outside the scope of this book, but for
more information see the “Peer to Peer Networking” section in the
Windows SDK Documentation.

NetNamedPipeBinding

This binding uses named pipes to implement high-performance
communication between processes running on the same
computer. This binding supports secure, reliable sessions and
transactions. You cannot use this binding to connect to a service
across a network.

NetMsmq@Binding

This binding uses Microsoft Message Queue (MSMQ) as the
transport to transmit messages between a client application and
service both implemented by using WCF. This binding enables
temporal isolation; messages are stored in a message queue, so the
client and the service do not both have to be running at the same
time. This binding supports secure, reliable sessions and
transactions. Messages use a binary encoding.

MsmgqIntegrationBinding

This binding enables you to build a WCF application that sends or
receives messages from an MSMQ message queue. It is intended
for use with existing applications that use MSMQ message queues
(the NetMsmqBinding binding uses MSMQ as a transport between
a WCF client and service).

50 Chapter 2 Hosting a WCF Service

The WS-I Basic Profile

When you implement a Web service, you should endeavor to maintain interoperability
with other Web services, regardless of the technology you are using. When you create a
Web service, you make use of a number of technical standards, such as XML, WSDL,
SOAP, and WS-Security. Each of these specifications is a standard in its own right. New
versions of these standards are continually emerging and will inevitably become
adopted in the future. This poses a challenge. For example, if you create a Web service
that exposes its interface by using WSDL 2, and a client application is using WSDL 1.1,
will the client application still work? If you factor in the possibility that various applica-
tions could potentially support different versions, or subsets of the various standards,
then interoperability, which is one of the most important value propositions of Web ser-
vices, becomes difficult to achieve. This is where the WS-I Basic Profile comes in.

WS-I, or the Web Services Interoperability organization, defines a specific list of stan-
dards, versions, and additional rules that Web services and their clients should adopt to
maintain interoperability. WS-I groups these items together into what is referred to as a
profile. The current WS-I profile is called the WS-1 Basic Profile 1.1. Web services that
conform to the WS-I Basic Profile 1.1 should automatically be compatible with client
applications and other Web services that also conform to the WS-I Basic Profile 1.1,
regardless of how the Web services and client applications are implemented or the tech-
nologies used.

For a full list of the standards in WS-I Basic Profile 1.1, see the WS-I Basic Profile page at
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24. html.

Configuring Bindings

You can programmatically instantiate a binding and use it to create an endpoint for a service
by using the AddServiceEndpoint method of the ServiceHost class. Similarly, you can write
code to add a binding in a client application (you will see examples of these in Chapter 10,
“Programmatically Controlling the Configuration and Communications”). However, as you
have already seen, it is common to use a configuration file to specify the binding configuration
information for a client and service. You can also set the properties for a binding in this way.
As an example, examine the app.contig file for the ProductsClient application:

<?xml version="1.0" encoding="utf-8" 7>
<configuration>
<system.serviceModel>
<bindings>
<basicHttpBinding>
<binding
name="BasicHttpBinding_IProductsService"
closeTimeout="00:01:00"
openTimeout="00:01:00"

Chapter 2 Hosting a WCF Service 51

receiveTimeout="00:10:00"
sendTimeout="00:01:00"
allowCookies="false"
bypassProxyOnLocal="false"
hostNameComparisonMode="StrongWildcard"
maxBufferSize="65536"
maxBufferPool1Size="524288"
maxReceivedMessageSize="65536"
messageEncoding="Text"
textEncoding="utf-8"
transferMode="Buffered"
useDefaultWebProxy="true">
<readerQuotas maxDepth="32"
maxStringContentLength="8192"
maxArraylLength="16384"
maxBytesPerRead="4096"
maxNameTabTeCharCount="16384" />
<security mode="None">
<transport
clientCredentialType="None"
proxyCredentialType="None"
realm="" />
<message
clientCredentialType="UserName"
algorithmSuite="Default" />
</security>
</binding>
</basicHttpBinding>
</bindings>
<client>
<endpoint
address="http://lon-dev-01/ProductsService/ProductsService.svc"
binding="basicHttpBinding"
bindingConfiguration="BasicHttpBinding_IProductsService"
contract="ProductsClient.ProductsService.IProductsService"
name="BasicHttpBinding_IProductsService" />
</client>
</system.serviceModel>
</configuration>

To recap from earlier, the <client> section specifies the endpoints for the client application.
Each endpoint indicates the binding to use. The <bindings> section of the configuration file
sets the properties of each binding—this section is optional if you are happy to use the default
values for a binding. The example shown above explicitly sets the value for every property of
the basicHttpBinding used by the client endpoint. You can find a full list of the properties for
each binding in the “Bindings” section of the “Windows Communication Foundation Config-
uration Schema” topic in the Windows SDK Documentation provided with the Windows
SDK.

52

Chapter 2 Hosting a WCF Service

Hosting a WCF Service in a Windows Service

@

Hosting a WCEF Service in a user application relies on the user starting and stopping the ser-
vice and not logging off. A better solution is to host a WCF service in a Windows service. This
way, you can configure the Windows service to run automatically when Windows starts, but
an administrator can still stop and restart the service if required.

Important The exercises in this section require that you have Administrator access to your
computer. If you do not have this level of access, you will not be able to install, start, and
stop Windows services.

In the exercises in this section, you will create a Windows service to act as a host for the Prod-
uctsService service. This service will limit requests only to client applications running on the
same computer, and so you will configure it to use the named pipe transport listening to a
fixed address.

More Info The exercises in this section assume you are familiar with how Windows ser-
vices function, and that you understand how to use Windows Service Visual Studio template
to create a new service. Windows services are distinct from WCF services, and a detailed dis-
cussion of how they work is outside the scope of this book. For further information about
creating Windows services see the "Windows Service Applications” section in the Visual Stu-
dio 2005 Help documentation.

Create a new Windows service to host a WCF service

1. Using Visual Studio 2005, create a new project. Select the Windows project types, and
use the Windows Service template. Name the project WindowsProductsService and save
it in the Microsoft Press\WCF Step By Step\Chapter 2 folder under your \My Projects
folder.

2. Using Solution Explorer, change the name of the Servicel.cs to ServiceHostControl-
ler.cs.

Add a reference to the System.ServiceModel assembly.

4. Add a reference to the ProductsService.dll assembly, located in the Microsoft Press\WCF
Step By Step\Chapter 2\ProductsService folder under your \My Projects folder.

5. In the Project menu, click Add Existing Item and add the Web.config file located in the
Microsoft Press\WCF Step By Step\Chapter 2\Config folder under your \My Projects
folder to the project.

6. Rename the Web.conlfig file as App.config.

7. Edit the App.config file and remove the <system.serviceModel> section. The file should
look like this:

Chapter 2 Hosting a WCF Service 53

<?xml version="1.0" encoding="utf-8" 7>
<configuration>
<configSections>
<section name="dataConfiguration" type="Microsoft.Practices.EnterpriseLibrary.
Data.Configuration.DatabaseSettings, Microsoft.Practices.EnterpriseLibrary.Data,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=null" />
</configSections>
<dataConfiguration defaultDatabase="AdventureWorksConnection" />
<connectionStrings>
<add name="AdventureWorksConnection" connectionString="Database=AdventureWorks
;Server=(Tocal)\SQLEXPRESS;Integrated Security=SSPI;"
providerName="System.Data.SqlClient" />
</connectionStrings>
</configuration>
In the earlier exercises, you provided a URI and used the configuration file to associate the
URI with a binding. You have just removed this configuration information. In the next exer-
cise, you will bind the service to an endpoint by using code; the Windows service will use a
named pipe for its endpoint because you want to restrict access to local client applications

only.

Add logic to start and stop the Windows service

1. Open the ServiceHostController.cs file. In the design view window, click the link to
switch to the code view.

2. In the code view window, add the following using statements to the list at the top of the
file:

using System.ServiceModel;
using Products;

3. Add the following variable to the ServiceHostController class:
private ServiceHost productsServiceHost;
You will use this variable to control the ProductsService service.
4. Add the following statements shown in bold to the ServiceHostController constructor:

public ServiceHostController()

{

InitializeComponent();
// The name of the service that appears in the Registry

this.ServiceName = "Products Service";
// Allow an administrator to stop (and restart) the service
this.CanStop = true;
// Report Start and Stop events to the Windows event log
this.AutolLog = true;

}

5. Add the code shown in bold to the OnStart method of the ServiceHostController class,
replacing the TODO comment in this method:

54

Chapter 2 Hosting a WCF Service

protected override void OnStart(string[] args)

{ productsServiceHost = new ServiceHost(typeof(ProductsServiceImpl));

}

This statement creates a new instance of the ProductsService service, but remember that
the App.config file does not specify an address or binding. You will supply the endpoint
information for the service in the next step.

Add the statements shown below in bold to the OnStart method, after creating the prod-
uctsServiceHost object:

protected override void OnStart(string[] args)

{
productsServiceHost = new ServiceHost(typeof(ProductsServiceImpl));
NetNamedPipeBinding binding = new NetNamedPipeBinding();
productsServiceHost.AddServiceEndpoint(typeof (IProductsService),
binding, "net.pipe://localhost/ProductsServicePipe");
productsServiceHost.Open();
}

The first statement creates a NetNamedPipeBinding object. The second statement creates
anew endpoint using this binding. It associates the binding with the “//localhost/Prod-
uctsServicePipe” named pipe and specifies that the service listening to the pipe imple-
ments the IProductsService service contract. The code then opens the service and waits
for clients to connect.

Add the code shown in bold to the OnStop method of the ServiceHostController class,
replacing the TODO comment in this method:

protected override void OnStop()

{ productsServiceHost.Close();

}

This statement closes the service when the service is shut down. Remember that WCF
closes services gracefully, so the Close method can take some time to perform.

In the next exercise, you will add an installer for the Windows service. You will configure the
service to run using the LocalSystem account. If you want to select a different account, ensure
that the account you specify has access to the tables in the AdventureWorks database.

Create the service installer

1.

In Solution Explorer, double-click the ServiceHostController.cs file to display the class
in the design view window.

Right-click the design view, and then click Add Installer.

The service installer is created and displays the serviceProcessIinstallerl and
servicelnstallerl components in the design view window.

Click the servicelnstallerl component. In the Properties window, set the ServiceName
property to ProductsService, and set the StartType property to Automatic.

4.

5.

Chapter 2 Hosting a WCF Service 55

In the design view window, click the serviceProcessInstallerl component. In the Prop-
erties window, set the Account property to LocalSystem.

Build the solution.

The next stage is to install the service and start it running.

Install the Windows service

1.

On the Windows Start menu, point to All Programs, point to Microsoft Visual Studio
2005, point to Visual Studio Tools, and then click Visual Studio 2005 Command
Prompt.

In the Visual Studio 2005 Command Prompt window, move to the folder Microsoft
Press\WCF Step By Step\Chapter 2\WindowsProductService\WindowsProductSer-
vice\bin\Debug under your \My Documents folder.

Run the following command to install the WindowsProductsService service:
installutil WindowsProductsService.exe

The installutil utility outputs messages indicating the progress of the installation pro-
cess. Verify that the service is installed successfully, without reporting any errors.

Using the Windows Control Panel, click Performance and Maintenance, click Adminis-
trative Tools, and double-click the Services applet.

Note If you are using Windows Vista, use click System and Maintenance in the Con-
trol Panel rather than Performance and Maintenance.

In the Services window, verify that the ProductsService service is present and configured
using the property values specified by the service installer:

% Services E@@
File Action View Help
= = (@] @
1985 Services (Localy Marme: [Description [status [Startup Type [Logonas | ~
klocation .., Collectsan... Started Manual Local System
i k Provisionin... Manages ... Manusl Local System
SBANT LM Security Sup... Pravidess... Manual Local System
“Performance Logs a... Collacts pe... Marusl Metwark 5.,
8 Plug and Play Enablesac... Started Automatic Local System
BnPortable Media Seri... Retrievest... Manusl Local System
&4 Print Spocler Loads files ... Started Automatic Local System
L% Aut c Lo
Sfsprotected Storage. Provides pr.. Started Automatic Local System
#8005 RSWP Provides n... Marual Local System
YRemote Access Aut.,. Createsa... Manual Local System
WaRemote Access Con... Createsa... Stated Manual Local System
Y Remote Desktop He... Manages a... Manual Local System
WaRemote Procedure ... Providesth... Started Automatic Metwork 5.
YRemote Procedure ... Managest... Manual Metwork ...
aRemote Registry Ensblesre... Started Automatic Local Service
R ble Storage Manual Local System
sRouting and Remot... Offers raut... Disabled Local System >
Extended J, Standard

5. Start the service.

56

Chapter 2 Hosting a WCF Service

In the final exercise, you will use another copy of the ProductsClient application to test the
Windows service. You will reconfigure the ProductsClient application to connect to the Win-
dows service and verify that the service functions correctly.

Test the Windows service

1.

8.
9.

Return to Visual Studio editing the WindowsProductsService solution. Add the Prod-
uctsClient project in the Microsoft Press\WCF Step By Step\Chapter 2\ProductsClient\
folder under your \My Documents folder, to the WindowsProductsService solution.

Edit the app.contfig file for the ProductsClient project by using the WCF Service Config-
uration Editor. In the Client folder, right-click the Endpoints node, and then click New
Client Endpoint. Add a new client endpoint with the following property values:

Property Value

Name NetNamedPipeBinding_IProductsService
Address net.pipe://localhost/ProductsServicePipe
Binding netNamedPipeBinding

Contract ProductsClient.ProductsService.lProductsService

Save the client configuration file and exit the WCF Service Configuration Editor.

Edit the Program.cs file. In the Main method, modify the statement that instantiates the
proxy object to use the named pipe endpoint, as follows:

// Create a proxy object and connect to the service
ProductsServiceClient proxy = new
ProductsServiceClient("NetNamedPipeBinding_IProductsService");

Build the solution.

In Solution Explorer, right-click the ProductsClient project and then click Set as StartUp
Project.

On the Debug menu, click Start Without Debugging to start the client application run-
ning. Press Enter in the client console window.

The ProductsClient application should run exactly as before. This time, however, the cli-
ent is communicating with the WCF service running in the Windows service by using a
named pipe.

Press Enter to close the ProductsClient application.

Return to the Services applet and stop the ProductsService service.

If you want to verify that the client application uses the Windows service and not some other
instance of the ProductsService service that might be running (such as the Web service), try
running the client after stopping the Windows service. It should fail with an EndpointNot-
FoundException stating that there is no endpoint listening at the address net.pipe;//local-
host/ProductsServicePipe.

Chapter 2 Hosting a WCF Service 57

Q Tip You can uninstall the WindowsProductsService service by executing the command
installutil /u WindowsProductsService.exe in a Visual Studio 2005 Command Prompt Window, in
the bin\Debug folder for the WindowsProductsService project.

Summary

This chapter has shown you how to create an application that hosts a WCF service. You have
seen the different types of application that you can use for this purpose, and you have built a
WPF application and a Windows service. You have also learned a lot more about how WCF
uses bindings to specify the transport protocol, encoding mechanism, and other non-func-
tional aspects of a service such as reliability, security, and support for transactions. You have
been introduced to the predefined bindings available in the WCF library. You have learned
how to add multiple bindings to a service by using multiple endpoints. You have seen how to
specify binding information by using a configuration file and how to specify a binding and
endpoint for a service by using code.

Chapter 3

Making Applications and Services
Robust

After completing this chapter, you will be able to:

m Explain how the WCF runtime can convert common language runtime exceptions
into SOAP fault messages to transmit exception information from a WCF service.

m Use the FaultContract attribute in a service to define strongly-typed exceptions as
SOAP faults.

m Catch and handle SOAP faults in a client application.

m Describe how to configure a WCF service to propagate information about unantici-
pated exceptions to client applications for debugging purposes.

m Describe how to detect the Faulted state in a WCF service host application and how
to recover from this state.

m Explain how to detect and log unrecognized messages sent to a service.

Detecting and handling exceptions is an important part of any professional application. In a
complex desktop application, many different situations can raise an exception, ranging from
events such as unexpected or malformed user input, and programming errors, to failure of
one or more hardware components in the computer running the application. In a distributed
environment, the scope for exceptions is far greater, due to the nature of networks, and the
fact that, in some cases, neither the application nor the development or administrative staff
have control over how the network functions or its maintenance (Who is responsible for mak-
ing sure that the Internet works?). If you factor in the possibility that your application might
also access services written by some third party, who may modity or replace the service with
a newer version (possibly untested!), or who may decide to remove the service altogether,
then you might begin to wonder whether your distributed applications will ever be able to
work reliably.

In this chapter, you will learn about how to handle exceptions in client applications and ser-
vices developed by using WCF. You will learn how to specify the exceptions that a WCF ser-
vice can raise and how to propagate information about exceptions from a WCF service to a
WCEF client. You will also learn about the states that a service can be in, how to determine
when a host application switches from one state to another, and how to recover a service that
has failed. Finally, you will see how to detect unrecognized messages sent to a service by client
applications.

59

60

Chapter 3 Making Applications and Services Robust

CLR Exceptions and SOAP Faults

AWCEF service is a managed application that runs by using the NET Framework common lan-
guage runtime, or CLR. One important feature of the CLR is the protection that it provides
when an error occurs; the CLR can detect many system-level errors and raise an exception if
it detects any of them. A managed application can endeavor to catch these exceptions and
either attempt some form of recovery or at least fail in a graceful manner, reporting the reason
for the exception and providing information that can help a developer to understand the
cause of the exception and take steps to rectify the situation in the future.

CLR exceptions are specific to the .NET Framework. WCF is intended to build client applica-
tions and services that are interoperable with other environments. For example, a Java client
application would not understand the format of a CLR exception raised by a WCF service or
how to handle it. Part of the SOAP specification describes how to format and send errors in
SOAP messages, by using SOAP faults. The SOAP specification includes a schema for format-
ting SOAP faults as XML text and encapsulating them in a SOAP message. A SOAP fault must
specify an error code and a text description of the fault (called the “reason”), and it can
include other optional pieces of information. Interoperable services built by using the WCF
should convert NET Framework exceptions into SOAP faults and follow the SOAP specifica-
tion for reporting these faults to client applications.

More Info For a detailed description of the format and contents of a SOAP fault, see the
World Wide Web Consortium Web site at http.//www.w3.org/TR/soapl2-partl/#soapfault.

Throwing and Catching a SOAP Fault

The WCE library provides the FaultException class in the System.ServiceModel namespace. If a
WCE service throws a FaultException object, the WCF runtime generates a SOAP fault message
that is sent back to the client application.

In the first set of exercises in this chapter, you will add code to the WCF ProductsService ser-
vice that detects selected problems when accessing the AdventureWorks database and uses the
FaultException class to report these issues back to the client application.

Add code to the WCF service to throw a SOAP fault

1. Using Visual Studio 2005, open the solution file ProductsServiceFault.sln located in the
Microsoft Press\WCF Step By Step\Chapter 3\ProductsServiceFault folder under your
\My Documents folder.

This solution contains three projects: a copy of the ProductsService service that you cre-
ated in Chapter 1, “Introducing Windows Communication Foundation,” a copy of the
ProductsServiceHost application that acts as a host for this service that you created in
Chapter 2, “Hosting a WCF Service,” and a copy of the ProductsClient application that
connects to the service, also from Chapter 2.

Chapter 3 Making Applications and Services Robust 61

In the ProductsService project, open the file ProductsService.cs to display the code for
the service in the code view window.

Locate the ListProducts method in the ProductsServiceImpl class. You should recall from
Chapter 1, that this method uses the Data Access Application Block to connect to the
AdventureWorks database and retrieve the product number of every product in the Pro-
duction.Product table. The product numbers are stored in a list, which is returned to the
client application.

Modify the statement that reads the configuration information for connecting to the
database and trap any exceptions that can occur when connecting to the database, like
this (shown in bold):

// Read the configuration information for connecting to the AdventureWorks database
Database dbAdventureWorks;
try
{
dbAdventureWorks =
DatabaseFactory.CreateDatabase("'AdventureWorksConnection");
}
catch(Exception e)
{
throw new FaultException(
"Exception reading configuration information for the
AdventureWorks database: " +
e.Message, new FaultCode(''CreateDatabase™));
H
// Retrieve the details of all products by using a DataReader

If an exception occurs, this code creates a new System.ServiceModel. FaultException object
with the details of the exception and throws it. The operation will stop running and will
instead generate a SOAP fault, which is sent back to the client. The FaultCode object iden-
tifies the fault. The constructor used in this example simply specifies a name for the fault
code.

Note If you don't create a FaultCode object, the WCF runtime will automatically gen-
erate a FaultCode object itself, with the name “Sender” and add it to the SOAP fault
sent back to the client.

Modify the statements that retrieve the details of products by using a DataReader object,
as follows:

// Retrieve the details of all products by using a DataReader
IDataReader productsReader;
try
{

string queryString = @"SELECT ProductNumber

FROM Production.Product";
productsReader =
dbAdventureWorks .ExecuteReader (CommandType.Text, queryString);

62

Chapter 3 Making Applications and Services Robust

}
catch (Exception e)
{
throw new FaultException(
"Exception querying the AdventureWorks database: " +
e.Message, new FaultCode("'ExecuteReader'));
}

// Create and populate a Tist of products

If an exception occurs while running the ExecuteReader method, the service generates
a SOAP fault containing the corresponding message and fault code.

Modify the statements that create and populate the list of products, as shown below:

// Create and populate a Tist of products
List<string> productsList = new List<string>(); try

{
while (productsReader.Read())
{
string productNumber = productsReader.GetString(0);
productsList.Add(productNumber) ;
}
}
catch (Exception e)
{
throw new FaultException("Exception reading product numbers: " +
e.Message, new FaultCode(''Read/GetString"));
}

//Return the 1ist of products
return productsList;

Again, if an exception occurs in this block of code, the service generates a SOAP fault and
returns it to the client.

Add code to the WCF client application to catch a SOAP fault

1.

In the ProductsClient project, open the file Program.cs to display the code for the client
application in the code view window.

In the Main method, add a try/catch block around the code that tests the operations in
the WCEF service, as shown below in bold:

// Test the operations in the service try
{
// Obtain a Tist of all products
// Fetch the details for a specific product

// Query the stock level of this product

// Modify the stock level of this product

Chapter 3 Making Applications and Services Robust 63

// Disconnect from the service
proxy.Close(); }
catch (FaultException e)
{
Console.WriteLine("{0}: {1}", e.Code.Name, e.Reason);

}
Console.WriteLine("Press ENTER to finish™);
Console.ReadLine();

If any of the operations generate a SOAP fault, the WCF runtime on the client creates a
FaultException object. The catch handler for the FaultException object displays the fault
code and reason.

Test the FaultException handler

1.

In the ProductsServiceHost project, edit the App.config file. The <connectionStrings>
section of this file contains the information used by the DAAB to connect to the Adven-
tureWorks database.

In the <add> element of the <connectionStrings> section, change the connectionString
attribute to refer to the Junk database, as follows (do not change any other parts of the
connectString attribute):

<connectionStrings>

<add name=.. connectionString="Database=Junk;..
</connectionStrings>

providerName=.. />

Build and run the solution.
The ProductsServiceHost form and the ProductsClient console should both start.
In the ProductsServiceHost form, click Start.

If a Windows Security Alert message box appears, click Unblock. (The ProductsService-
Host application uses TCP port 8000 as the address for the WCF service.)

When the service status in the ProductsServiceHost form displays “Service Running,”
press Enter in the ProductsClient console.

After a short delay, the ProductsClient console reports an exception when performing
test 1 (your message might vary if you are attempting to connect to the database as a dif-
ferent user):

64

Chapter 3 Making Applications and Services Robust

10.
11.
12.

INDOWS\system32\cmd. exe
ENTER when the service arted

Test 1: List all products
[ExecuteReader: ption guerying the AdventureWorks database: Cannot open datab)
lase "Junk" requ d by the login. The login faile

Login failed fo. > LON-DEU-@1\Student’ .
Press ENTER to fil

The ProductsService service failed when attempting to fetch the product numbers from
the Junk database by running the ExecuteReader method—the SOAP fault code is “Exe-
cuteReader.”

Press Enter to close the ProductsClient console.
Click Stop in the ProductsServiceHost form, and then close the form.

In the App.contfig file for the ProductsServiceHost application, change the database back
to AdventureWorks in the connectionString attribute.

In the <add> element of the <connectionStrings> section, change the name attribute to
namex, like this:

<connectionStrings>
<add namex="AdventureWorksConnection" .. />
</connectionStrings>

Build and run the solution again.
In the ProductsServiceHost form, click Start.

When the service status in the ProductsServiceHost form displays “Service Running,”
press Enter in the ProductsClient console.

The ProductsClient console reports a different exception when performing test 1:

AWINDOWSisystem32\emd. exe

ENTER when the service has started

all products
Exception reading configuration information for the AdventureVor
recognized attribute ’namex’. Note that attribut nane.‘ case—]|

e. \Documents and Settings:Student\My DocumentsMicrosof MCF 8|
itep By Step’\Chapter 3\PlI](ll.lct.»selUlceFdlllt\PludllCtgselUlce“u;t\bln\nebug\?lI](ll.lct
ceHost.exe.config line 8)
s ENTER to finish

Chapter 3 Making Applications and Services Robust 65

This time, the ProductsService service failed when reading the configuration file by run-
ning the CreateDatabase method—the SOAP fault code is “CreateDatabase.” The Create-
Database method expected to find the name attribute but instead found namex, which it
did not understand.

13. Press Enter to close the ProductsClient console.

14. Click Stop in the ProductsServiceHost form and then close the form.

‘ Note Do not change the namex attribute back to name just yet.

Using Strongly-Typed Faults

Throwing a FaultException is very simple but is actually not as useful as it first appears. A cli-
ent application has to examine the FaultException object that it catches in order to determine
the cause of the error, so it is not very easy to predict what exceptions could possibly occur
when invoking a WCF service. All a developer can really do is write a very generalized catch
handler with very limited scope for recovering from specific exceptions. It is analogous to
using the System.Exception type to throw and handle exceptions in regular .NET Framework
applications. A better solution is to use strongly typed SOAP faults.

In Chapter 1, you saw that a service contract for a WCF service contains a series of operation
contracts defining the methods, or operations, that the service implements. A service contract
can additionally include information about any faults that might occur when executing an
operation. If an operation in a WCF service detects an exception, it can generate a specific
SOAP fault message that it can send back to the client application. The SOAP fault message
should contain sufficient detail to enable the user, or an administrator, to understand the rea-
son for the exception and if possible take any necessary corrective action. A client application
can use the fault information in the service contract to anticipate faults and provide specific
handlers that can catch and process each different fault. These are strongly typed faults.

You specify the possible faults that can occur by using FaultContract attributes in a service con-
tract. This is what you will do in the next set of exercises.

Note You can only apply the FaultContract attribute to operations that return a response.
You cannot use them with one-way operations. You will learn more about one-way opera-
tions in Chapter 11, “Implementing OneWay and Asynchronous Operation.”

Use the FaultContract attribute to specify the SOAP faults an operation can throw

1. In the ProductsServiceFault solution, in the ProductsService project, open the Prod-
uctsService.cs file.

2. In the ProductsServics.cs file, add the following classes:

66

Chapter 3 Making Applications and Services Robust

// Classes for passing fault information back to client applications
[DataContract]
public class ConfigFault

{
[DataMember]
public string ConfigOperation;

[DataMember]
public string ConfigReason;

[DataMember]
public string ConfigMessage;

}

[DataContract]
public class DatabaseFault

{
[DataMember]
public string DbOperation;

[DataMember]
public string DbReason;

[DataMember]

public string DbMessage;
3
These classes define types that you will use for passing the details of SOAP faults as
exceptions from a service back to a client. Note that, although both classes have a similar
shape, you can pass almost any type of information in a SOAP fault; the key point is that
the type and its members must be serializable. These two classes use the DataContract
and DataMember attributes to specify how they should be serialized.

Locate the IProductsService interface.
This interface defines the service contract for the ProductsService.

In the IProductsService interface, modify the definition of the ListProducts operation as
follows:

[ServiceContract]
public interface IProductsService

{
// Get the product number of every product
[FaultContract(typeof(ConfigFault))]
[FaultContract(typeof(DatabaseFault))]
[OperationContract]
List<string> ListProducts(Q);

}

The FaultContract attributes indicate that the ListProducts method can generate SOAP
faults, which a client application should be prepared to handle. The type parameter to
the FaultContract attribute specifies the information that the SOAP fault will contain. In

Chapter 3 Making Applications and Services Robust 67

this case, the ListProducts operation can generate two types of SOAP faults: one based
on the ConfigFault type, and the other based on the DatabaseFault type.

Add code to the WCF service to throw strongly typed faults

1. IntheProductsServices.cs file, locate the ListProducts method in the ProductsServiceImpl
class.

2. Replace the code in the first catch block, as follows:

catch(Exception e)
{

ConfigFault cf = new ConfigFault();

cf.ConfigOperation = "CreateDatabase";

cf.ConfigReason = "Exception reading configuration information for the
AdventureWorks database.";

cf.ConfigMessage = e.Message;

throw new FaultException<ConfigFault>(cf);

3

This block creates and populates a ConfigFault object with the details of the exception.
The throw statement creates a new FaultException object based on this ConfigFault object.
Note that in this case, the code makes use of the generic FaultException class; the type
parameter specifies a serializable type with the type-specific details of the exception. At
runtime, WCF uses the information in this object to create a SOAP fault message. The
FaultException constructor is overloaded, and you can optionally specify a reason mes-
sage and a fault code, as well as the ConfigFault object.

3. Replace the code in the second catch block, as follows:

catch (Exception e)

{
DatabaseFault df = new DatabaseFault();
df.DbOperation = "ExecuteReader";
df.DbReason = "Exception querying the AdventureWorks database.";
df.DbMessage = e.Message;
throw new FaultException<DatabaseFault>(df);
}

This block of code is similar to the previous catch handler, except that it creates a Data-
baseFault object and throws a FaultException based on this object. The rationale behind
using a different type for the exception is that the kinds of exceptions that could arise
when accessing a database are fundamentally different from the exceptions that could
occur when reading configuration information. Although not shown in this example, the
information returned by a database access exception could be quite different from the
information returned by a configuration exception.

4. Replace the code in the third catch block, as follows:

catch (Exception e)

{
DatabaseFault df = new DatabaseFault();
df.DbOperation = "Read/GetString";
df.DbReason = "Exception reading product numbers.";

68

Chapter 3 Making Applications and Services Robust

5.

df.DbMessage = e.Message;

throw new FaultException<DatabaseFault>(df);
}
This catch handler also uses the DatabaseFault type because the exceptions that could
occur in the corresponding try block are most likely to arise from the Read method
(fetching the next row of data from the database) or from the GetString method (extract-
ing the data from the current row).

Build the solution.

You can now modify the client application to handle the exceptions thrown by the service.
However, first you must regenerate the proxy class that the client uses to communicate with
the service.

Regenerate the proxy class for the WCF client application

1.

Open a Visual Studio 2005 Command Prompt window and move to the folder
\Microsoft Press\WCF Step By Step\Chapter 3\ProductsServiceFault\ProductsSer-
vice\bin folder under your \My Documents folder.

Run the following command:
svcutil ProductsService.d11

This command runs the svcutil utility to extract the definition of the ProductsService
and the other types from the assembly. It generates the following files:

0 Products.xsd. This is an XML schema file that describe the structure of the Config-
Fault, Databasefault, and Products types. The svcutil utility uses the information
specified in the data contracts for these types to generate this file. Part of this file,
displaying the ConfigFault type, is shown below:

<xs:complexType name="ConfigFault">
<Xs:sequence>

<xs:element minOccurs="0" name="ConfigMessage" nillable="true" type=
xs:string" />

<xs:element minOccurs="0" name="ConfigOperation" nillable="true" type=
xs:string" />

<xs:element minOccurs="0" name="ConfigReason" nillable="true" type=
xs:string" />
</Xs:sequence>
</xs:complexType>
<xs:element name="ConfigFault" nillable="true" type="tns:ConfigFault" />
<xs:complexType name="DatabaseFault">
<Xs:sequence>

<xs:element minOccurs="0" name="DbMessage" nillable="true" type="xs:string" />

<xs:element minOccurs="0" name="DbOperation" nillable="true" type=
"xs:string" />

<xs:element minOccurs="0" name="DbReason" nillable="true" type="xs:string" />
</Xs:sequence>

Chapter 3 Making Applications and Services Robust 69

</xs:complexType>

Tempuri.org.xsd. This is another XML schema file. This schema describes the mes-
sages that a client can send to, or receive from, the ProductsService service. You will
see later (in the WSDL file for the service), that each operation in the service is
defined by a pair of messages: the first message in the pair specifies the message
that the client must send to invoke the operation, and the second message speci-
fies the response sent back by the service. This file references the data contract in
the Products.xsd file to obtain the description of the Products type used by
response message of the GetProduct operation. Part of this file, defining the mes-
sages for the ListProducts and GetProduct operations, is shown below:

<xs:element name="ListProducts">
<xs:complexType>
<xs:sequence />
</xs:complexType>
</xs:element>
<xs:element name="ListProductsResponse'>
<xs:complexType>
<Xs:sequence>
<xs:element minOccurs="0" name="ListProductsResult" nillable="true" xmlns:q
1="http://schemas.microsoft.com/2003/10/Serialization/
Arrays" type="ql:ArrayOfstring" />
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="GetProduct">
<xs:complexType>
<Xs:sequence>
<xs:element minOccurs="0" name="productNumber" nillable="true" type="xs:str
ing" />
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="GetProductResponse">
<xs:complexType>
<Xs:sequence>
<xs:element minOccurs="0" name="GetProductResult" nillable="true" xmlns:q2=
"http://schemas.datacontract.org/2004/07/Products" type="q2:Product" />
</Xs:sequence>
</xs:complexType>
</Xs:element>

Note The name of this file and the namespace of the types in this file are dictated by
the ServiceContract attribute of the interface implemented by the service. The name
Tempuri.org is the default namespace. You can change it by specifying the Namespace
parameter in the ServiceContract attribute, like this:

[ServiceContract (Namespace="Adventure-Works.com")]

70

Chapter 3

a

Making Applications and Services Robust

Schemas.microsoft.com.2003.10.Serialization. Arrays.xsd. This file is another XML
schema that describes how to represent an array of strings in a SOAP message. The
ListProducts operation references this information in the ListProductsResponse
message. The value returned by the ListProducts operation is a list of product
numbers. Product numbers are held as strings, and the NET Framework generic
List<> type is serialized as an array when transmitted as part of a SOAP message.

Schemas.microsoft.com.2003.10.Serialization.xsd. This XML schema file describes
how to represent the primitive types (such as float, int, decimal, and string) in a
SOAP message, as well as some other builtin types frequently used when sending
SOAP messages.

Tempuri.org.wsdl. This file contains the WSDL description of the service, describ-
ing how the messages and data contracts are used to implement the operations
that a client application can invoke. It references the XML schema files to define
the data and messages that implement operations. Notice that the definition of the
ListProducts operation includes the two fault messages that you defined earlier:

<wsd1:operation name="ListProducts">

<wsd1:input wsaw:Action="http://tempuri.org/IProductsService/
ListProducts"”" message="tns:IProductsService_ListProducts_InputMessage" />

<wsd1:output wsaw:Action="http://tempuri.org/IProductsService/
ListProductsResponse"” message="tns:IProductsService_ListProducts_OutputMessage" /
>

<wsd1:fault wsaw:Action="http://tempuri.org/IProductsService/
ListProductsConfigFaultFault" name="ConfigFaultFault" message=
"tns:IProductsService_ListProducts_ConfigFaultFault_FaultMessage" />

<wsd1:fault wsaw:Action="http://tempuri.org/IProductsService/
ListProductsDatabaseFaultFault" name="DatabaseFaultFault" message=
"tns:IProductsService_ListProducts_DatabaseFaultFault_FaultMessage" />
</wsd1:operation>

3. You can use the WSDL file and the XML schemas to generate the proxy class. In the
Visual Studio 2005 Command Prompt window, run the following command:

svcutil /namespace:*,ProductsClient.ProductsService tempuri.org.wsdl *.xsd

This command runs the svcutil utility again, but this time it uses the information in the
WSDL file and all the schema files (*.xsd) to generate a C# source file containing a class
that can act as a proxy object for the service. The namespace parameter specifies the C#
namespace generated for the class (the namespace shown here has been selected to be
the same as that generated by Visual Studio 2005 in the exercises in Chapter 1, to mini-
mize the changes required to the client application). The svcutil utility creates two files:

Q

Q

Products.cs. This is the source code for the proxy class.

Output.config. This is an example application configuration file that the client
application could use to configure the proxy to communicate with the service. By

Chapter 3 Making Applications and Services Robust 71

default, the configuration file generates an endpoint definition with the basicHttp-
Binding binding.

Note You can also use the svcutil utility to generate a proxy directly from a Web ser-
vice endpoint rather than generating the metadata from an assembly. This is what
Visual Studio 2005 does when you use the Add Service Reference command in the
Project menu.

4. InVisual Studio 2005, in the ProductsClient project, delete the Service References folder
and its contents.

5. In the Project menu, click Add Existing Item, and add the file Products.cs that you have
just created, from the Microsoft Press\WCF Step By Step\Chapter 3\ProductsService-
Fault\ProductsService\bin folder, located under your \My Documents folder.

Add code to the WCF client application to catch a strongly typed fault

1. In the ProductsClient project, open the Program.cs file to display it in the code view win-
dow.

2. Add the following catch handlers shown in bold after the try block in the Main method
(leave the existing FaultException handler in place as well):

catch(FaultException<ConfigFault> cf)

{

Console.WriteLine("ConfigFault {0}: {1}\n{2}",
cf.Detail.ConfigOperation, cf.Detail.ConfigMessage,
cf.Detail.ConfigReason);

}
catch (FaultException<DatabaseFault> df)
{
Console.WriteLine("DatabaseFault {0}: {1}\n{2}", df.Detail.DbOperation,
df.Detail.DbMessage, df.Detail.DbReason);
}
catch (FaultException e)
{
Console.WriteLine("{0}: {1}", e.Code.Name, e.Reason);
}

These two handlers catch the ConfigFault and DatabaseFault exceptions. Notice that the
fields containing the exception information that are populated by the ProductsService
(ConfigOperation, ConfigMessage, ConfigReason, DbOperation, DbMessage, and DbReason)
are located in the Detail field of the exception object.

@ Important You must place these two exception handlers before the non-generic
FaultException handler. The non-generic handler would attempt to catch these excep-

tions if it occurred first, and the compiler would not let you build the solution.

3. Build and run the solution without debugging.

72

Chapter 3 Making Applications and Services Robust

4.

10.
11.

12.

13.

14.

When the ProductsServiceHost form appears, click Start to run the service.
When the service has started, in the client application console window press Enter.

The application configuration file for the service host application still contains the
attribute namex rather than name in the <add> element of the <connectionStrings> sec-
tion. The service throws a ConfigException, which is serialized as a SOAP fault. The cli-
ent application catches this fault and displays the details.

Press Enter to close the client application. Stop the service and close the ProductsSer-
viceHost form.

Edit the App.config file for the ProductsServiceHost project. Set the namex attribute in
the <add> element in the <connectString> section back to name, and save the file.

Edit the ProductsService.cs file in the ProductsService project. In the ListProducts
method in the ProductsServiceImpl class, modify the statement that reads the product
number from the productsReader data reader object to try and extract the information
from column 1 rather than column 0, as follows:

while (productsReader.Read())

{
string productNumber = productsReader.GetString(1);
productsList.Add(productNumber) ;

}

Build and run the solution without debugging.
When the ProductsServiceHost form appears, click Start to run the service.
When the service has started, in the client application console window press Enter.

The application configuration file for the service host application is now correct, but the
code that you just modified attempts to access the second column in the data reader
object, when the query only returns a single column. This “mistake” causes the service
to generate a SOAP fault containing a DatabaseException with details of the Read/Get-
string failure.

Press Enter to close the client application. Stop the service and close the ProductsSer-
viceHost form.

Edit the ProductsService.cs file in the ProductsService project. In the ListProducts
method in the ProductsServiceImpl class, correct the statement that reads the product
number from the productsReader data reader object to extract the information from col-
umn 0, as follows:

while (productsReader.Read())

{
string productNumber = productsReader.GetString(0);
productsList.Add(productNumber) ;

}

Build and run the solution without debugging.

Chapter 3 Making Applications and Services Robust 73

15. In the ProductsServiceHost form, start the service. Press Enter in the client application
console window. Verify that the code now runs without any exceptions. Close the client
console window and the ProductsServiceHost form when you have finished.

Reporting Unanticipated Exceptions

Specifying the possible exceptions that a service can throw when performing an operation is
an important part of the contract for a service. If you use strongly typed exceptions, you must
specify every exception that an operation can throw in the service contract. If a service throws
a strongly typed exception that is not specified in the service contract, the details of the excep-
tion are not propagated to the client—the exception does not form part of the WSDL descrip-
tion of the operation used to generate the client proxy. There will inevitably be situations
where it is difficult to anticipate the exceptions that an operation could throw. In these cases,
you should catch the exception in the service, and if you need to send it to the client, raise an
ordinary (non-generic) FaultException as you did in the first set of exercises in this chapter.

While you are developing a WCF service, it can be useful to send information about all excep-
tions that occur in the service, anticipated or not, to the client application for debugging pur-
poses. You will see how you can achieve this in the next set of exercises.

Modify the WCF service to throw an unanticipated exception

1. In the ProductsServiceFault solution, in the ProductsService project, edit the Prod-
uctsService.cs file.

2. Add the following statement as the first line of code in the ListProducts method in the
IProductsImpl class:

public List<string> ListProducts()

{
inti=0,j=0, k=1/73;

This statement will generate a DivideByZeroException. Note that the method does not
trap this exception, and it is not mentioned in the service contract.

Build and run the solution without debugging.

4. In the ProductsServiceHost form, click Start. In the client application console window,
press Enter to connect to the service and invoke the ListProducts operation.

The service throws the DivideByZero exception. However, the details of the exception
are not forwarded to the client application. Instead, the WCF runtime generates a very
nondescript SOAP fault that is caught by the DefaultException handler in the client:

74

Chapter 3 Making Applications and Services Robust

WINDOWS\system32\emd. exe
139 ENTER when the service has started

Test 1: List all products
r: The server was unable to process the request due to an internal error.
r. either turn on IncludeExceptionDetaillnF|
bhute or from the {serviceDebug> conf igural
r to send the exception information bhack to

racing as + the Hicrosoft .NET Framework 3.8 S$DK docun|
lentation and inspect the server trace logs.
[Press ENTER to finish

This lack of detail is actually a security feature. If the service provided a complete descrip-
tion of the exception to the client, then, depending on the information provided, a mali-
cious user could glean potentially useful information about the structure of the service
and its internal workings.

Close the client console window. Stop the service, and close the ProductsServiceHost
form.

In the next exercise you will configure the host server to provide detailed information about
unanticipated exceptions.

Configure the WCF service to send details of exceptions

1.
2.

In the ProductsServiceHost project, edit the App.config file.

In the <serviceBehaviors> section of the App.config file, remove the <serviceMetadataBe-
havior> element from the <behavior> section and replace it with the <serviceDebug>
behavior, like this:
<behaviors>
<serviceBehaviors>
<behavior name="ProductsBehavior">
<serviceDebug includeExceptionDetailInFaults="true"/>
</behavior>

</serviceBehaviors>
</behaviors>

Setting the includeExceptionDetaillnFaults attribute to true causes WCF to transmit the
full details of exceptions when it generates SOAP faults for unanticipated errors.

Build and run the solution with debugging.

In the ProductsServiceHost form, click Start. In the client application console window,
press Enter.

The service throws the DivideByZero exception. This time, the client is sent specific
information about the exception and reports it:

Chapter 3 Making Applications and Services Robust 75

INDOWS\system32\cmd. exe

NTER when the service has started

List all products
Re r: Attenpted to divide hy zero.
[Press ENTER to finish

5. Close the client console window. Stop the service, and close the ProductsServiceHost
form.

6. In the ProductsService project, edit the ProductsService.cs file.

7. Inthe ListProducts method, remove the line of code that causes the DivideByZeroExcep-
tion.

8. In the App.config file for the ProductsServiceHost project, set the includeExceptionDetail-
InFauts attribute of the <serviceDebug> element to false.

9. Build and run the solution without debugging.

10. In the ProductsServiceHost form, start the service. Press Enter in the client application
console window. Verify that the code runs without any exceptions. Close the client con-
sole window and the ProductsServiceHost form when you have finished.

The previous exercise used the application configuration file to specify the serviceDebug
behavior for the service. You can perform the same task by using the ServiceBehavior
attribute of the class that implements the service, like this:
[ServiceBehavior(IncludeExceptionDetailInFaults=true)]

public class ProductsServiceImpl : IProductsService

{

3

However, it is recommended that you enable this behavior only by using the application con-
figuration file. There are a couple of good reasons for this:

B You can turn the behavior on and off in the configuration file without rebuilding the
application. You should not deploy an application to a production environment with
this behavior enabled, and it is very easy to forget that you have enabled this behavior if
you use the ServiceBehavior attribute in code.

m Ifyou enable this behavior in code, you cannot disable it by using the application config-
uration file. Rather more confusingly, if you disable this behavior in code, you can enable
it in the application configuration file. The general rule is that if the IncludeException-
DetaillnFaults behavior is enabled either in code or in the application configuration file,

76

Chapter 3 Making Applications and Services Robust

it will work. It has to be disabled in both places to turn it off. Keep life simple by only
specifying this behavior in one place—the application configuration file.

Managing Exceptions in Service Host Applications

In Chapter 2, you saw how to create a host application for a WCF service and use this applica-
tion to control the lifecycle of the service. A service host application uses a ServiceHost object to
instantiate and manage a WCF service. The ServiceHost class implements a finite-state machine.
A ServiceHost object can be in one of a small number of states, and there are well-defined rules
that determine how the WCF runtime transitions a ServiceHost object from one state to another.
Some of these transitions occur as the result of specific method calls, while others are caused by
exceptions in the service, in the communications infrastructure, or in the objects implementing
the channel stack. A service host application should be prepared to handle these transitions and
attempt recovery to ensure that the service is available whenever possible.

ServiceHost States and Transitions

When you instantiate a ServiceHost object, it starts in the Created state. In this state, you can
configure the object; you can use the AddServiceEndpoint method to cause the ServiceHost
object to listen for requests on a particular endpoint for example. A ServiceHost object in this
state is not ready to accept requests from client applications.

You start a ServiceHost object listening for requests by using the Open method (or the Begi-
nOpen method if you are using the asynchronous programming model). The ServiceHost
object moves to the Opening state while it creates the channel stacks specified by the bind-
ings for each endpoint and starts the service. If an exception occurs at this point, the object
transitions to the Faulted state. If the ServiceHost object successtully opens the communica-
tion channels for the service, it moves to the Opened state. Only in this state can the object
accept requests from client applications and direct them to the service.

You stop a ServiceHost object listening for client requests by using the Close (or BeginClose)
method. The ServiceHost object enters the Closing state. Currently running requests are
allowed to complete, but clients can no longer send new requests to the service. When all out-
standing requests have finished, the ServiceHost object moves to the Closed state. You can also
stop a service by using the Abort method. This method closes the service immediately without
waiting for the service to finish processing client requests. Stopping or aborting the service
disposes the service object hosted by the ServiceHost object and reclaims any resources it was
using. To start the service, you must recreate the ServiceHost object with a new instance of the
service and then execute the Open method to reconstruct the channel stacks and start listen-
ing for requests again.

A ServiceHost object enters the Faulted state either when it fails to open correctly or if it detects
an unrecoverable error in a channel used by the ServiceHost object to communicate with cli-
ents (for example, if some sort of protocol error occurs).When a ServiceHost object is in the
Faulted state, you can examine the properties of the object to try and ascertain the cause of
the failure, but you cannot send requests to the service. To recover the service, you should use

Chapter 3 Making Applications and Services Robust 77

the Abort method to close the service, recreate the ServiceHost object, and then execute the
Open method again. Figure 3-1 summarizes the state transitions for a ServiceHost object, and
the methods and conditions that cause the object to move between states.

new()
— Created

new()

A

Open()
BeginOpen()

Opening | —»
Error
detected

. —
bort(TEndCIose()

v

Closed()
Abort()
BeginClosed()

Figure 3-1 State transition diagram for a ServiceHost object.

Q Tip You can determine the current state of a ServiceHost object by examining the value of
its State property.

Handling Faults in a Host Application

When a ServiceHost object moves from one state to another, it can trigger an event. These
events were described in Table 2-2 in Chapter 2. From an error-handling perspective, the most
important of these is the Faulted event, which occurs when a ServiceHost object enters the
Faulted state. You should subscribe to this event, and provide a method that attempts to
determine the cause, and then abort and restart the service, like this:

// ServiceHost object for hosting a WCF service
ServiceHost productsServiceHost;
productsServiceHost = new ServiceHost(..);

// Subscribe to the Faulted event of the productsServiceHost object
productsServiceHost.Faulted += new EventHandler(faultHandler);

// FaultHandler method

// Runs when productsServiceHost enters the Faulted state
void faultHandler(object sender, EventArgs e)

{

// Examine the properties of the productsServiceHost object

78 Chapter 3 Making Applications and Services Robust

// and log the reasons for the fault
// Abort the service
productsServiceHost.Abort();

// Recreate the ServiceHost object
productsServiceHost = new ServiceHost(.);

// Start the service
productsServiceHost.Open();

Note You can use the Close method rather than Abort in the fault handler, but a service
in the Faulted state will not be able to continue processing requests. Using the Abort
method to close the service can reduce the time required in the FaultHandler method to
restart the service.

Handling Unexpected Messages in a Host Application

One other exceptional circumstance that can arise in a host application is an unexpected mes-
sage from a client. Client applications built using the WCF library typically communicate with
the service by using a proxy object, generated by using the svcutil utility. The proxy object pro-
vides a strongly typed interface to the service that specifies the operations the client can
request (and therefore the messages that the client sends). It is unlikely that a WCF client
using correctly generated proxy object will send an unexpected message. However, remember
that a WCEF service is simply a service that accepts SOAP messages, and developers building
client applications can use whatever means they see fit for sending these messages. Develop-
ers building Java client applications will typically use Java-specific tools and libraries for con-
structing and sending SOAP messages. WCF also provides a low-level mechanism that enables
developers to open a channel to a service, create SOAP messages, and then send them to the
service, as shown in this fragment of code:

// Create a binding and endpoint to communicate with the ProductsService

BasicHttpBinding binding = new BasicHttpBinding(Q);

EndpointAddress address = new EndpointAddress(
"http://Tocalhost:8000/ProductsService/ProductsService.svc");

ChannelFactory<IRequestChannel> factory = new
ChannelFactory<IRequestChannel>(binding, address);

// Connect to the ProductsService service
IRequestChannel channel = factory.CreateChannel();
channel.0pen(Q);

// Send a ListProducts request to the service

Message request = Message.CreateMessage(MessageVersion.Soapll,
"http://tempuri.org/IProductsService/ListProducts™);

Message reply = channel.Request(request);

Chapter 3 Making Applications and Services Robust 79

// Process the reply
// (should be a SOAP message with a 1list of product numbers)

// Release resources and close the connection
reply.Close();

channel.Close();

factory.Close();

Don’tworry too much about the details of this block of code—you will learn more about using
Message and Channel objects in Chapter 10, “Programmatically Controlling the Configuration
and Communications.” The key statement is the line that creates the message sent to the Prod-
uctsService service:

Message request = Message.CreateMessage(MessageVersion.Soapll,
"http://tempuri.org/IProductsService/ListProducts™);

The second parameter to the CreateMessage method specifies the action that identifies the
message sent to the service. If you recall the earlier discussion in this chapter describing the
use of the sveutil utility to generate the client proxy, one of the files generated contained the
WSDL description of the service. The WSDL description includes the definitions of each of
the operations exposed by the service, and the messages that an application sends to invoke
these operations. Here is part of the WSDL describing the ListProducts operation:

<wsd1:operation name="ListProducts">
<wsd1:input wsaw:Action="http://tempuri.org/IProductsService/
ListProducts" message="tns:IProductsService_ListProducts_InputMessage" />

</wsd1:operation>

When the service receives a message identified by the action http://tempuri.org/
IProductsService/ListProducts, it performs the ListProducts operation. If a client application
sends a message specifying an action that the service does not recognize, the service host
application raises the UnknownMessageReceived event. The host application can catch this
event and record the unrecognized message, like this:

// ServiceHost object for hosting a WCF service
ServiceHost productsServiceHost;
productsServiceHost = new ServiceHost(..);

// Subscribe to the UnknownMessageReceived event of the

// productsServiceHost object

productsServiceHost.UnknownMessageReceived += new
EventHandler<UnknownMessageReceivedEventArgs>(unknownMessage) ;

// UnknownMessageReceived event handler
void unknownMessage(object sender, UnknownMessageReceivedEventArgs e)
{

// Log the unknown message

// Display a message to the administrator

MessageBox.Show("A client attempted to send the message " +

80

Chapter 3 Making Applications and Services Robust

e.Message.Headers.Action;

}

There could be a perfectly innocent explanation for a client sending a message such as this, or
it could be part of a more concerted attack by a malicious user trying to probe a service and
gather information about the operations it supports; remember that by default, WCF Web ser-
vices do not publish their metadata, so an attacker might not have access to the WSDL
description of a service.

One other possibility is that a WCF client application is using an out-of-date proxy object for
sending messages to the service. If a developer modifies the service contract for a WCF ser-
vice, she might change the messages that the service sends and receives. If any client applica-
tions that use the service are not updated, they might send messages that the service no longer
understands. Therefore, if you update a service, you should ensure that you retain backwards
compatibility with existing clients. The same issues can arise with data contracts. You will
learn more about how to update data contracts for a WCF service safely in Chapter 6, “Main-
taining Data Contracts and Service Contracts.”

Summary

In this chapter, you have seen how to use FaultException classes to send information about
exceptions back to client applications as SOAP faults. You have seen how to use the FaultCon-
tract attribute to specify the faults that a service can send and how to catch these faults in a cli-
ent application. You have also learned how to propagate information about unanticipated
exceptions from a service to a client for debugging purposes. You should understand how to
make a service host application robust by tracking the states of a service, recovering from
faults, and handling unexpected messages sent by client applications.

Chapter 4
Protecting an Enterprise
WCEF Service

After completing this chapter, you will be able to:

m Describe the different aspects of security that you should consider when implement-
ing a WCF service.

m Explain how to provide privacy and integrity of messages at the message level and
at the transport level when communicating between a client application and a WCF
service.

m Explain how to configure a WCF service to authenticate users when running in a
Windows environment and how a client application can provide a user's credentials
to a WCF service for authentication.

m Describe how to define and use roles to authorize access to operations in a WCF
service.

m Summarize how a WCF service can use impersonation to provide fine-grained access
control over resources to authorized users.

Security is a fundamentally important aspect of any system, especially when a system com-
prises distributed applications and services. Security is also a very broad topic. For this reason,
you are going to consider how to implement security in several different scenarios, spread
across three chapters. This chapter concentrates on managing security within a single organi-
zation. In this environment, there is usually an inherent degree of trust between the comput-
ers running client applications and those hosting services. Users running applications are
frequently members of the same, well-defined security domain. Services have access to the
information in this security domain and can use it to authenticate users directly. In Chapter 5,
“Protecting a WCF Service over the Internet,” you will look at how to enforce security when cli-
ent applications and services run in different security domains separated by an insecure net-
work, where it is not possible, or even desirable, to directly authenticate users. In Chapter 15,
“Managing Identity with Windows CardSpace,” you will see how to implement an identity
meta-system to help authenticate users in a federated environment.

What Is Security?

Security is concerned with protecting users running client applications, services, and the mes-
sages that pass between them. Security encompasses a range of issues. The most common
aspects of security that most developers are familiar with include user authentication, where

81

Chapter 4 Protecting an Enterprise WCF Service

a user attempts to prove their identity, and authorization, where a service decides which
resources a User can access based on their identity. However, in a distributed environment,
security has many other facets. These include:

® Maintaining confidentiality of communications between a client application and a ser-
vice. Itis possible for applications to eavesdrop on the data being transmitted across the
network. For example, take a look at the number of software and hardware network ana-
lyzers available—many administrators use them for tracking connectivity and bandwidth
problems in a network, but an unscrupulous user could also track the packets passing
over the network for malicious purposes. The information in these packets could
include private financial data or confidential personal information that should not be
common knowledge even to other members of the same organization. Typically, you
achieve confidentiality by encrypting messages.

m Preventing tampering or corruption of messages. In an environment where message con-
fidentiality is assured, it is still possible for a malicious user to intercept messages and
corrupt them before sending them to their final destination. You can use techniques
such as message hashing to generate a digital signature for the file, which a service can
use to help detect corrupt or modified messages.

m Ensuring verifiable delivery of messages. Even if a malicious user cannot decipher inter-
cepted messages, the possibility of interception means that messages could either be
diverted and not delivered at all or delivered repeatedly (known as a “replay attack”).
Several schemes are available that can help detect replay attacks, including using a time-
stamp within a message (if the timestamp is outside reasonable limits when the service
receives the message, it can discard it) and assigning unique identifiers to messages (if
the service receives two messages with the same identifier, then it knows that there is a
problem!). Similarly, using a reliable message protocol can help to ensure that messages
are either delivered to the destination within a reasonable time or that the sender will be
alerted if they are not. You will learn more about reliable messaging in Chapter 9, “Imple-
menting Reliable Sessions.”

m Preventing impersonation of services. Although not so common inside an enterprise as it
is when using the Internet, it is possible for one service to impersonate another to obtain
confidential data from a user. This phenomenon is sometimes known as “spoofing.” The
user running the client application thinks they are communicating with the real service
but are actually sending their details and other information to an entirely different service
that happens to respond in a similar manner. This means that it can be as important for
a client application to authenticate the service and verify that it is genuine as it is for a ser-
vice to authenticate the user running the client application. You will look at how you can
implement this form of two-way authentication by using certificates in Chapter 5.

Itis worth remembering that there is no such thing as absolute security. Hackers and fraudsters
can invariably devise new and interesting ways to intercept, compromise, or otherwise disrupt
the message flow. The important point is to be aware of the threats and have a plan for introduc-

Chapter 4 Protecting an Enterprise WCF Service 83

ing countermeasures that can reduce their effects. Fortunately, WCF provides a highly extensi-
ble model that can adapt and evolve to meet many current security issues and (hopefully)
counter new threats as they appear. The WCF implementation of security is also relatively unob-
trusive. By careful design and configuration, you can separate many of the security-related
aspects of a client application and service from the business logic, enabling you to modify or
extend the security of your system without requiring that you rewrite large chunks of code.

Authentication and Authorization in a Windows Environment

To authenticate a user, a service must provide a means of enabling a user to identify herself
and then prove that identity. Inside a single organization, it is common to maintain a single
database of users and their means of identification. In a Windows environment, this typically
means using Active Directory. In a single organization, it is not unreasonable to expect that all
services and client applications have access to the same Active Directory database, and this
database defines the security domain for the system. A service can be configured to use infor-
mation held in the Active Directory database to authenticate users. When the user runs an
application that accesses the service, the application can prompt the user for their username
and password and transmit this information to the service. The service can query Active Direc-
tory to verify that the username is valid and the password is correct.

Note Many of the discussions on this chapter that refer to Active Directory also apply to
Windows computers that are not actually part of a domain but that maintain their own local
users and groups database. The exercises in this chapter have been tested on a stand-alone
computer running Microsoft Windows XP and Windows Vista.

In a Windows domain, a service can also identify users by using the Kerberos protocol, and a
WCF client application can verify the identity of a service by using the same protocol. How-
ever, Kerberos is only available if you have access to a Windows Server domain controller.
This chapter does not describe how to configure a WCF service and client application to
perform Kerberos authentication. For a brief summary of how Kerberos authentication works,
see the Kerberos V5 Authentication page on the Microsoft Web site at
http.//technet2.microsoft.com/WindowsServer/f/?en/library
/d55683e8-1258-4555-93cb-77138d33beab1033.mspx.

This approach works regardless of where the user is actually running the client application; it
could be executing on a computer in the user’s bedroom connecting to the service across an
Intranet link, for example. However, a user located in the office might already be logged on to
an organization's security domain, so prompting them for the username and password again
becomes cumbersome (why should they need to keep on logging in?). Fortunately, the Win-
dows operating system provides support for this very common scenario. When a user suc-
cessfully logs in to a security domain, the details of the user’s credentials are cached in the
user’s login process. When the user runs an application that requires authentication with a
service, Windows can provide these details to the application, which can then forward them
to the service. This mechanism is known as Windows Integrated Security.

84

Chapter 4 Protecting an Enterprise WCF Service

Note In a very large organization, the security domain might span several Active Directory
databases managed independently by administrators in different parts of the organization. It
is possible to configure trust relationships between these separate domains, effectively pre-
senting them as a single security domain.

After a service has verified the identity of the user running the client application, it must then
determine whether the user has the appropriate authority to invoke the specified operations.
Typically, administrators assign users to roles, and the service developer can indicate which
roles are allowed to access which operations. WCF can utilize NET Framework declarative
security to associate roles with operations. WCF can use a role provider to determine to which
roles a user belongs. The .NET Framework provides three role providers that you can use for
storing role information. These role providers are:

m Windows Token Role Provider, which uses roles based on Active Directory groups.
m SQL Role Provider, which uses roles stored in a SQL Server database.

m Authorization Store Role Provider, which uses roles defined by using the Microsoft
Authorization Manager tool. This tool enables you to store role information in Active
Directory or in XML files.

More Info For detailed information on using Microsoft Authorization Manager to define
and implement roles, see the Authorization Manager page on the Microsoft Web site at http./
/technet2.microsoft.com/WindowsServer/en/library/1b4de9c6-4df9-4b5a-83e9-
fb8d497723781033.mspx?mfr=true.

In this chapter, you will use the Windows Token Role Provider. This provider is ideal for use
inside an enterprise that uses Windows Integrated Security for authentication. In Chapter 5,
you will see how to use the SQL Role Provider as this is more suited to Internet-based services.

Transport and Message Level Security

User identity information has to be transported from a client application to a service. This
information is critical, and so it should be transmitted in as secure a manner as possible. This
normally means encrypting these details. Additionally, after the user has been authenticated,
the contents of messages passing between the client application and service might also
require some form of encryption, depending on the sensitivity of the information in these
messages. There are many ways that client applications and services can achieve this aim, but
the important point is that the client applications and the service must agree on the mecha-
nism that they use, and they must be able to decrypt messages sent by the other. Various stan-
dardization efforts have led to the use of public/private key cryptography being used to this
effect.

Chapter 4 Protecting an Enterprise WCF Service 85

More Info For a good introduction to public key cryptography, visit the Understanding
Public Key Cryptography page on the Microsoft Web site at http.//www.microsoft.com/technet/
prodtechnol/exchange/qguides/E2k3MsgSecGuide/6e75927b-bec3-475b-bf09-
764c8ffc7027.mspx?mfr=true.

When building Web services, you can perform authentication and encryption at two points
when sending and receiving messages: at the transport level and at the message level.

Transport Level Security

Transport level authentication is typically implemented at the operating system level before
the application or service receiving the message even knows that there is a message to receive!
A service can specily the type of credentials it requires, but it is the operating system’s respon-
sibility to ensure that the correct credentials are provided and to validate them.

Many communications protocols can encrypt and decrypt data as it is sent and received. The
most common example of such a protocol is HTTPS, which uses a technology called the
Secure Sockets Layer (SSL) to encrypt and decrypt data by using keys provided in certificates.
When a client application connects to a service by using the HTTPS protocol, the underlying
transport infrastructure for the client application and service can negotiate over the degree of
encryption to perform and exchange a certificate containing keys that they can use to encrypt
and decrypt messages. Because all of this happens at the transport level, it is transparent to
the client application and service; all they have to do is specify that they will communicate
using the HTTPS protocol. However, an administrator has to install and configure the appro-
priate certificates for the service host application. Unsurprisingly, you can also use transport
level security with the TCP protocol (SSL is itself based on TCP). Named pipes also support
transport level security.

More Info In this chapter, you will configure HTTPS for use with a self-hosted WCF ser-
vice. If you are hosting a WCF service in lIS, the configuration process is a little different. You
will learn more about configuring HTTPS with 1IS in Chapter 5.

Message Level Security

Authentication at the message level is the responsibility of the service. The credentials of the
user are included in messages sent to the service, and the service has to verify that they are
valid. Additionally, message level privacy and integrity is also the responsibility of the client
application and service—they encrypt and decrypt messages themselves using an agreed
encryption algorithm and a negotiated set of encryption keys. Standards such as the WS-Secu-
rity specification from OASIS describe the message level security schemes that many Web ser-
vices implementations have adopted, and by following the recommendations of WS-Security
you can help to ensure the interoperability of your client applications and services with those
developed by using technologies other than WCE.

86

Chapter 4 Protecting an Enterprise WCF Service

Transport level security has the advantage over message level security that it can often rely on
hardware support and can be very efficient—encrypting and decrypting data can be a
resource-intensive process, so anything that improves performance is very welcome. Addition-
ally, transport level authentication checks are enforced before the client application actually
starts sending application level messages, so performing authentication at this level detects
authentication failures more quickly and with less network overhead. The primary disadvan-
tage of transport level security is that it operates on a point-to-point basis; by the time the ser-
vice receives a message, it has already been decrypted by the underlying transport
mechanism. In a situation where a service should simply forward a message on to another ser-
vice rather than process it, it has full access to the message contents. The service could modify
the message or extract confidential information before forwarding it. Using message level
encryption can help to mitigate this problem. Message level security provides end-to-end
encryption. A client application and the service acting as the final destination can agree on an
encryption key and an encryption algorithm to use for messages. When a message arrives at
the intermediate service, it is still encrypted. If the intermediate service does not have access
to the encryption key or has no knowledge of the selected encryption algorithm, it cannot eas-
ily decrypt the message.

Implementing message level security sounds like it could add quite a lot of work to the devel-
opment effort required for building a service. However, WCF greatly simplifies matters and
reduces the development effort required by incorporating much of the code required as part
of the standard bindings you can specify when configuring an endpoint for a service. All you
need to do is set the properties of your selected binding appropriately (you will see several
examples throughout this chapter).

Implementing Security in a Windows Domain

In the following exercises, you will see how to use transport and message level security in
some common scenarios that can arise within a single organization. Because it is easier to
demonstrate and explain things this way around, you will start by learning how to implement
message confidentiality by encrypting messages. You will then see how to authenticate users
running in a Windows environment, and finally, how to use the Windows Token Role pro-
vider to authorize access to operations.

Protecting a TCP Service at the Message Level

Message encryption is a very common requirement of most distributed systems; so much so

that the majority of the standard bindings available in the WCF library encrypt messages by

default. For example, the NetTcpBinding binding automatically encrypts data at the transport
level if you have configured SSL over TCP. The NetTcpBinding binding also supports encryp-
tion at the message level, giving you a greater degree of control over the encryption algorithm
used and without requiring you to configure SSL. You will use message level security to imple-
ment message encryption in the first exercise.

Chapter 4 Protecting an Enterprise WCF Service 87

Enable message level encryption for the NetTcpBinding binding for the WCF service

1.

Using Visual Studio 2005, open the solution file ProductsService.sln located in the
Microsoft Press\WCF Step By Step\Chapter 4\ProductsService folder under your \My
Documents folder.

This solution contains three projects: the ProductsService service, the ProductsService-
Host application, and the ProductsClient. These projects are configured to catch and
handle SOAP faults, as described in Chapter 3, “Making Applications and Services
Robust.”

Expand the ProductsServiceHost project in Solution Explorer, right-click the App.config
file, and then click Edit WCF Configuration.

In the WCF Service Configuration Editor, right-click the Bindings folder and then click
New Binding Configuration.

In the Create a New Binding dialog box, select the netTcpBinding binding type and then
click OK.

The WCF Service Configuration Editor generates a binding configuration with the
default settings for the NetTcpBinding binding.

In the right pane of the WCF Service Configuration Editor, change the Name property of
the binding to ProductsService TcpBindingConfig.

Click the Security tab.

Change the Mode property to Message. Change the AlgorithmSuite property to Basic128.
Leave the MessageClientCredential Type property set to Windows.

These settings cause the binding to use message level security. Users will be expected to
provide a valid Windows username and password, and all messages will be encrypted by
using the Advanced Encryption Standard (AES) 128-bit algorithm. This is a widely used
algorithm that is relatively quick to perform but should provide sufficient privacy for
messages inside an organization (if you are sending messages across a public wide area
network such as the Internet, you might prefer to use Basic256, which is the default
value).

Note If you set the Mode to None, then the binding will not encrypt data and any
settings you specify for transport or message level security will be ignored. The Trans-
port mode selects transport level security (SSL) rather than message level security, and
the TransportWithMessageCredential mode uses message level security to provide the
identity of the user for authorization purposes, while performing encryption at the
transport level. Transport level encryption is usually more efficient than message level
encryption, although it requires more configuration on the part of the administrator.

88 Chapter 4 Protecting an Enterprise WCF Service

8. In the left pane of the WCF Service Configuration Editor, expand the Products.Prod-
uctsServicelmpl service in the Services folder, expand the Endpoints folder, and then
click the ProductsServiceTepBinding endpoint.

9. In the right pane, set the BindingConfiguration property to
ProductsServiceTcpBindingConfig.

This action associates the binding configuration with the binding. All messages sent by
using the ProductsServiceTcpBinding will use message level security and will be
encrypted.

10. Save the configuration, and then exit the WCF Service Configuration Editor.

11. In Visual Studio 2005, open the file App.config in the ProductsServiceHost project. In
the <system.serviceModel> section, you should see the new binding configuration, and
the reference to this configuration in the ProductsServiceTcpBinding endpoint, as
follows:

<system.serviceModel>
<bindings>
<netTcpBinding>
<binding name="ProductsServiceTcpBindingConfig">
<security mode="Message'>
<message algorithmSuite="Basicl128" />
</security>
</binding>
</netTcpBinding>
</bindings>
<services>
<service behaviorConfiguration="ProductsBehavior"
name="Products.ProductsServiceImpl">

<endpoint binding="netTcpBinding"
bindingConfiguration="ProductsServiceTcpBindingConfig"
name="ProductsServiceTcpBinding" contract="Products.IProductsService" />
</service>
</services>

</system.serviceModel>

Be careful not to change anything in this file. Close the App.config file when you have fin-
ished examining it.

The service will expect clients that connect to the endpoint for this binding to use the same
message level security settings. You will configure the client next.

Enable message level encryption for the NetTcpBinding binding for the WCF client

1. In the ProductsClient project, edit the app.config file by using the WCF Service Config-
uration Editor.

10.
11.

12.

13.

Chapter 4 Protecting an Enterprise WCF Service 89

In the WCF Service Configuration Editor, right-click the Bindings folder and then click
New Binding Configuration.

Note The client configuration file already contains a binding configuration for the
basicHttpBinding that was generated in Chapter 1, “Introducing Windows Communica-
tion Foundation.” Be careful not to modify this binding configuration by mistake!

In the Create a New Binding dialog box, select the netTcpBinding binding type and then
click OK.

In the right pane of the WCF Service Configuration Editor, change the Name property of
the binding to ProductsClientTcpBindingConfig.

Click the Security tab.

Change the Mode property to Message. Change the AlgorithmSuite property to Basic128.
Leave the MessageClientCredential Type property set to Windows.

Note If you select a different algorithm suite for the client and server, they will not

be able to decipher each other’s communications. This will result in a runtime excep-

tion in the channel stack. If you are curious about this, try setting the AlgorithmSuite to
TripleDes (for example) and examine the exception that occurs when you run the solu-
tion later.

In the left pane of the WCF Service Configuration Editor, click the
NetTcpBinding_IProductsService node in the Endpoints folder, under the Client folder.

In the right pane, set the BindingConfiguration property to ProductsClientTcpBinding
Config.
Save the configuration, and then exit the WCF Service Configuration Editor.

Start the solution without debugging.

In the ProductsServiceHost form, click Start. If a Windows Security Alert dialog box
appears, click Unblock to allow the service to access the TCP port.

In the client console window, press Enter. Verify that the client application runs exactly
as before.

Press Enter to close the client console window. Stop the service and close the Prod-
uctsServiceHost form.

This exercise has shown you how easy it is to configure a WCF service and client application
to secure messages by performing encryption, but how do you actually know that the mes-
sages have been encrypted? To answer this question, you can enable message tracing and then
examine the messages as they flow in and out of the service.

20

Chapter 4 Protecting an Enterprise WCF Service

Configure message tracing for the WCF service

1.

In Visual Studio 2005, edit the App.config file for the ProductsServiceHost project by
using the WCF Service Configuration Editor.

In the WCEF Service Configuration Editor, expand the Diagnostics folder and then click
Message Logging.

In the right pane displaying the message logging settings, set the following properties to
True:

0 LogEntireMessage
0 LogMessagesAtServiceLevel
0 LogMessagesAtTransportLevel

The LogEntireMessage property specifies whether the trace output should include the
body of messages sent and received. Setting this property to True includes the body of
the message. The default value, False, only traces the message header. Setting the LogMes-
sagesAtServiceLevel property to True traces messages as they are presented to the service
and as they are output from the service. If you are using message level security, this trace
will show the unencrypted messages after they have been received and decrypted at the
message level (for incoming messages) or before they are encrypted (for outgoing mes-
sages). Setting the LogMessagesAtTransportLevel property to True traces messages as they
are sent to or received from the transport level. If you are using message level security,
the messages traced at this point will be encrypted, although if you are using transport
level security messages will already have been decrypted (for incoming messages) or not
yet encrypted (for outgoing messages) at this point.

Important Tracing at the message level records messages in their unencrypted
form. You should ensure that you protect the trace files that are generated and only let
authorized users examine this data.

In the left pane, right-click the Sources folder and then click New Source.

All tracing information for WCF is received from one or more trace sources. In this case,
you will use the MessageLogging source, which traces messages. You can also use other
sources. For example, the ServiceModel source traces events that occur in a service, such
as tracking when a service starts listening, receives requests, and sends responses.

In the right pane, set the Name property to System.ServiceModel. MessageLogging. Set the
Trace level property to Verbose.

In the left pane, right-click the Listeners folder, and then click New Listener.

Alistener object is responsible for receiving data from the trace sources, formatting and
filtering them, and then sending them to a destination.

In the right pane, set the Name property to MessageLog.

10.

11.

12.

Chapter 4 Protecting an Enterprise WCF Service 91

In the InitData property, click the ellipses button. In the Save Log As dialog box, move to
the Microsoft Press\WCF Step By Step\Chapter 4 folder under your \My Documents
folder. Set the file name to Products.svclog, and then click Save.

The InitData property specifies the name of the file that the listener will use for saving
trace data. When tracing starts, if this file does not exist, the listener will create it; other-
wise, it will append trace information to the end of any existing data in the file.

In the TraceOutputOptions property, click the dropdown arrow. Clear all items in the list.
The trace output options are useful if you are tracing messages for multiple client appli-
cations and you need to be able to correlate the different request and response messages.
In this example, you will be running a single client application, so this additional infor-
mation is not really necessary.

Verify that the TypeName property is set to System.Diagnostics. XmlWriter. TraceListener.
The listener can output data in several formats. However, you will be using another tool
called the Service Trace Viewer to examine the trace output, and this tool expects the
data to be in XML format.

Click Add at the bottom of the right pane. In the Add Tracing Source dialog box, select
the System.ServiceModel. Messagelogging source, and then click OK.

Save the configuration, and then exit the WCF Service Configuration Editor.

Run the WCF client and service and examine the trace output

1.
2.
3.

Start the solution without debugging.
In the ProductsServiceHost form, click Start.

In the client console window, press Enter. Verify that the client application still runs
correctly.

Press Enter to close the client console window. Stop the service and close the Prod-
uctsServiceHost form.

On the Windows Start menu, point to All Programs, point to Microsoft Windows SDK,
point to Tools, and then click Service Trace Viewer.

In the Service Trace Viewer, on the File menu, click Add.

In the Open dialog box, move to the Microsoft Press\WCF Step By Step\Chapter
H\ProductsService folder under your \My Documents folder, select the file Prod-
ucts.svclog, and then click Open.

In the Service Trace Viewer, in the left pane, click the Message tab. You will see a list of
messages sent and received by the service, identified by their Action values.

‘ Tip Expand the Action column in this pane to see more of the name for each action.

At the top of this list are a number of messages in the http;//schemas.xmlsoap.org/ws/
2005/02/trust namespace. These messages are concerned with sending and verifying

92

Chapter 4 Protecting an Enterprise WCF Service

10.

the user’s identity, and negotiating the encryption mechanism and encryption keys that
the client application and WCF service will use for sending and receiving messages.
These messages are followed by the application messages received and sent by the WCF
service, identified by the http://tempuri.org namespace.

Click the first message with the action http://tempuri.org/IProductsService/ListProducts.
Note that each action occurs twice. This is because you traced each message twice: once
at the message level and once at the transport level.

In the lower right pane, click the Message tab. The window will display the entire SOAP
message. This is the version of the message passed from the transport level to the mes-
sage level. The message has a rather lengthy SOAP header, which you can examine at
your leisure. The interesting part is the SOAP body, at the end of the message. This is the
encrypted ListProducts request received from the client application. The <e:Cipher-
Value> element contains the data for the request, as highlighted in the following image:

IS, Microsoft Service Trace Yiewer- c:\documents and settingsistudent\my documentsimicrosoft presshwef s...

Fle Edt View Activity Help

|55eagch1n: Mone ~ Level: all ~ Filter N

¢ Find What: Look In:

Activity | Project | Message | Graph Group By - (None) Creats Custom Filter Activity - 000000000000

hitp: #/schemas wnmlsoap. orafws/2005/02/tust/RS TRAIs
hittp: //schemas. xmisoap. org/ws/2005/02tust/RETRAs:
hittp: #/schemas wnmlsoap. orafws/2005/02/tust/RS TRAIs
hittp: //schemas. xmisoap. org/ws/2005/02tust/RETRs:
hittp: #/schemas wnmlsoap. orafws/2005/02/tust/RS TRAIs
hittp: //schemas. smisoap. org/ws/2005/02/ust/RETRAs:
hitp:#/schemas. xnmlsoap. oraéws/2005/02/ust/RST /SC1
hittp: //schemas. smisoap. org/ws/2005/02/ust/RET/SCT
hittp:#/schemas. xnmlsoap. oraéws/2005/02/ st /RS TR/SI
hittp: //schemas. xmisoap. org/ws/2005/02tust/RETRASI
hitp://tempuri org/IProductsServics/ListProducts

hittp: /tempuri org/IProductsS ervice/ListProducts

hitp: tempuri org/IProductsServics/ListProductsRespon
hittp: //tempuri org/IProductsS ervice/ListProductsRespon:
hitre /2t nm/:Pmmmqﬁw;mewmmr L

Group By - (Nane) Description Lew &
Action ||| 5 Message Loa Trace Infon—
http:/#schemas smisoap. org/ws/2005/02/ust/RS T Alsst, ;ﬁmmﬁﬂé tﬁg ?EDE :n:m
hitp:#schemas sisoap. arg/ws/ 200502 aust /RS T Assy ~aessage Log Trace nfon

< | >

Fomatted | XML || Message'|

</o:Security> ~
</siHeader> 3
<s:Body u:ld="_0">
<e:EncryptedData Id="_1" Type="http:/ /www.w3.org/2
<e:EncryptionMethod Algorithm="http: //www.w3.0rg,
<KeyInfo xmins="http:/ /www.w3.0rg/2000/09 /xml
<0:5ecurityTokenReference xmins:o="http:/ /docs.o
<o:Reference URI=" #uuid-9aad5001-7ea7-4ccl
</0: SecurityTokenReferances

<e:CipherData=

<e:Ciphervalus= i229pWoSB5flg+Gw19L/05R41

&:CipherDatas
</e:Ency

</s:Body>

|

Activities: 1 Traces: 34

11. 1In the left pane, click the second message with the action http://tempuri.org/IProd-

uctsService/ListProducts. In the right pane, scroll to the end of the Message window. This
is the unencrypted version of the message passed from the message level to the service:

Chapter 4 Protecting an Enterprise WCF Service 93

IS, Microsoft Service Trace Yiewer- c:\documents and settingsistudent\my documentsimicrosoft presshwef s...
File Edit Yiew Activity Help

| i SearchIni Mone ~ Lewel: all ~ Filter N
! Find What: Look In:
Activity | Project | Message | Graph Group By - {None) Create Custom Fiter Activity - D0000000000D
Graup By - {lone) Deseription Lewi ™
s 2 essage Log Trace Infon

essage Log Trace Infon
essage Loa Trace Infon

hitpe//schemas smisoap.orgAws/2005/02/ust /RS T A sat
hitp: //schemas. xmlsoap. org/ws/ 200502/ st /RS T sy

itp: #/schemas.smlsoap. oradws/ 200502/ ust RS TR < *
hitp://schemas misoap. arg/ws/ 200502 st /RS TRAs Famatted | ¥ML | Message |

hitp:/schemas smlsaap. ora/ws/2005/02/ust RS TR Secun .

hitp://schemas misoap. arg/ws/ 200502 st /RS TR A “E :c:‘elft:;r:riznﬁ ri: T udid-9a3d5001-7 "
hittpe //schemas smisoap.orgdws/2005/02/ust/RS TR s </o:SecurityTokenReference=

itpschemas, amisoap.org/ws/ 2005/ 02 st RS TR keyintes .

hitp: #/schemas smlsaap. ora/ws/2005/02/bust /RS T/SC1 e S pharvalus= Ihiz0jDZaKKSGSDCiER:
hitp://schemas misoap. arg/ws/ 200502 st RS T /SC1 +/eiCipherDatas

hitp: #/schemas smlsaap. ora/ws/2005/02/bust RS TRASL </e:EncryptedData>

hitp://schemas misoap. arg/ws/ 200502 st RS TRASH </0:5e o

TETer>
<s:Body u:ld="_0" xmins:u="http://docs.oas|

hitp: tempur org AProductsService/ListProducts

ducts

hitp: tempuri org/IProductsServics/ListProductsRespor </s:Body>
hittp: //tempuri org/IProductsS ervice/ListProductsRespon: </s:EMowians
hitre /2t arn/APIA s S arvine /R tPrdut ¥ </MessagelogTraceRecora—

< > < >

Activities: 1 Traces: 34

12. In the left pane, click the first message with the action http://tempuri.org/IProductsSer-
vice/ListProductsResponse. In the right pane, examine the message body in the Message
window. You can see that this is an unencrypted message containing the list of products
returned in response to the ListProducts request. This message is the output from the
service to the message level and so has not yet been encrypted.

13. In the left pane, click the second message with the action http;//tempuri.org
/IProductsService/ListProductsResponse. In the right pane, scroll to the bottom of the Mes-
sage window and examine the message body. This time you can see that this is the
encrypted response sent by the message level to the transport level for transmission
back to the client.

14. Examine the other messages. When you have finished, close the Service Trace Viewer.

Protecting an HTTP Service at the Transport Level

If you recall, the ProductsServiceHost application exposes two endpoints for clients to con-
nect to: one based on the TCP protocol and the other using HTTP. The HTTP endpoint is con-
figured to use the BasicHttpBinding binding. The BasicHttpBinding binding conforms to the
WS-BasicProfile 1.1 specification and is intended for use with existing legacy Web services
and clients. It is fully interoperable with ASP.NET Web services. By default, this binding pro-
vides minimal security; it does not support message level encryption or authentication, for
example. To implement message confidentiality and remain interoperable with ASPNET Web
services, you should use transport level security. This requires you to configure HTTPS.

Note The BasicHttpBinding binding also supports message level security. Ordinary

ASPNET Web services and client applications do not implement the WS-Security specifica-
tion, and so will not be able to communicate with a service that implements message level
security. However, Microsoft Web Services Enhancements (WSE) does support WS-Security,

94

Chapter 4 Protecting an Enterprise WCF Service

so Web services that you create by using WSE can communicate with a WCF service through
an endpoint based on the BasicHttpBinding binding by using message level security.

Specify transport level security for the BasicHttpBinding binding for the WCF service

1.

9.
10.

In Visual Studio 2005, in the ProductsServiceHost project in Solution Explorer, edit the
App.contfig file by using the WCF Service Configuration Editor.

In the WCF Service Configuration Editor, right-click the Bindings folder and then click
New Binding Configuration.

In the Create a New Binding dialog box, select the basicHttpBinding binding type and
then click OK.

In the right pane of the WCF Service Configuration Editor, change the Name property of
the binding to ProductsServiceBasicHttpBindingConfig.

Click the Security tab. Set the Mode to Transport.

In this mode, message security is provided by using HTTPS. You must configure SSL for
the service by using a certificate. The client authenticates the service by using the ser-
vice’s SSL certificate. The service authenticates the client by using the mechanism spec-
ified by the TransportClientCredentialType property. The default value of None does not
provide any authentication—you will examine some of the other values you can specify
for this property later in this chapter.

In the left pane of the WCEF Service Configuration Editor, expand the ProductsServices-
Impl service in the Services folder, expand the Endpoints folder, and then click the Prod-
uctsServiceHttpEndpoint endpoint.

In the right pane, set the BindingConfiguration property to ProductsServiceBasicHttpBind-
ingConfig.

HTTP Web services that implement transport level security must specify the https
scheme, so change the Address property as follows:

https://localhost:8000/ProductsService/ProductsService.svc
Save the configuration, and exit the WCF Service Configuration Editor.

Rebuild the ProductsServiceHost project.

The next step is to reconfigure and modify the client to connect to the service by using the
endpoint corresponding to the BasicHttpBinding binding.

Specify transport level security for the BasicHttpBinding binding for the WCF client

1.

In the ProductsClient project, edit the app.config file by using the WCF Service Config-
uration Editor.

Chapter 4 Protecting an Enterprise WCF Service 95

2. In the WCF Service Configuration Editor, expand the Bindings folder and then click the
BasicHttpBinding_IProductsService binding,.

3. Intheright pane of the WCF Service Configuration Editor, change the Name property of
the binding to ProductsClientBasicHttpBindingConfig. (This is to make the name of the
binding consistent with the other bindings you have created. The original binding name
was generated by the svcutil utility back in Chapter 1.)

4. Click the Security tab. Change the Mode to Transport.

In the left pane of the WCF Service Configuration Editor, click the
BasicHttpBinding IProductsService endpoint in the Endpoints folder, under the Client
folder.

6. Intheright pane, change the address to use the https scheme as shown below, and verify
that the BindingConfiguration property has changed to ProductsClientBasicHttpBinding-
Config:

https://localhost:8000/ProductsService/ProductsService.svc
7. Save the configuration, and then exit the WCF Service Configuration Editor.

8. InVisual Studio 2005, in Solution Explorer, open the Program.cs file for the ProductsCli-
ent project.

9. Inthe Main method, update the statement that creates the proxy object to connect to the
WCE service by using the endpoint named BasicHttpBinding IProductsService:

ProductsServiceClient proxy = new ProductsServiceClient("BasicHttpBinding_
IProductsService");

10. Rebuild the ProductsClient project.

If you try and run the client and service at this point, the client will fail with a Commu-
nicationException, like this:

:/Documents and Settings/Student/My Documents/Microsoft Press

NTER when the service has started

Te: List all products

An_error occurred vhile making the HTTF request to https://localhost:8066/Froduc

itsService/ProductsService.sve. This could be due to the fact that the server cer

tificate is not configured properly with HITP.8¥S in the HTTPS case. This could
be caused by a mismatch of the security hinding between the client and the

ENTER to finish

This error occurs because you have not yet configured transport security for the HTTPS pro-
tocol. In the next exercise, you will create a certificate for the WCF service, and configure SSL
for the service by using the httpcfg utility.

96

Chapter 4 Protecting an Enterprise WCF Service

Configure the WCF HTTP endpoint with an SSL certificate

1.

10.

On the Windows Start menu, point to All Programs, point to Microsoft Windows SDK,
and then click CMD Shell.

A command prompt window opens, with an environment configured for running the
Windows SDK tools.

In the command prompt window, type the following command:
makecert -sr LocalMachine -ss My -n CN=HTTPS-Server -sky exchange -sk HTTPS-Key

The makecert utility is a useful tool for creating test certificates that you can use for devel-
opment purposes. The command shown here creates a certificate that is stored in the
Personal certificates store for the LocalMachine account. For detailed information about
the options for the makecert utility, see the Windows SDK Documentation installed with
the Windows SDK.

Important Certificates that you create by using the makecert utility should not be
used in a production environment as they are not certified by a verifiable certification
authority. Remember that the service sends this certificate to the client to prove its
identity. The client must be able to trust that this certificate was created by a reliable
source that can verify the veracity of the service. When deploying a production service,
you should obtain your certificates from recognized certification authority, such as
VeriSign or Thawte. Alternatively, you can use Windows Certificate Services, which
enables an enterprise to generate its own certificates.

To use the httpcfg utility to configure SSL for the service, you need to find the thumb-
print of the certificate. The thumbprint is a hexadecimal string that uniquely identifies
the certificate. You can obtain this information by using the Certificates Microsoft Man-
agement Console snap-in.

In the command prompt window, type the following command:
mmc

This command starts the Microsoft Management Console, displaying the default Con-
sole Root window.

In the File menu, click Add/Remove Snap-In.
In the Add/Remove Snap-In dialog box, click Add.

In the Add Standalone Snap-In dialog box, select the Certificates snap-in and then click
Add.

In the Certificates Snap-In dialog box, select Computer account and then click Next.
In the Select Computer dialog box, select Local computer and then click Finish.

In the Add Standalone Snap-In dialog box, click Close.

In the Add/Remove Snap-In dialog box, click OK.

Chapter 4 Protecting an Enterprise WCF Service 97

11. In the Console Root window, expand the Certificates node, expand the Personal folder,
and then click the Certificates folder. The HTTPS-Server certificate that you created by
using the makecert utility should be displayed:

il Consoled - [Console RootiCertificates (Local Computer)\PersonaliCertificates],

Fy Flle Action View Favortes MWindow Help — = x|
= zal 2
(L1 Console Root [1ssued Ta Tssued By | Expiration Date | Intended Purposes
= Certificates (Local Computer) EIHTTPS-Server Roat Agency 12/31/2039 <l
= (13 Personal
{23 Certificates
+ (13 Trusted Root Certification Authal
(13 Enterprise Trust
+ (13 Intermediate Certification Author
+ (13 Trusted Publishers
(13 Unkrusted Certificates
(13 Third-Party Root Certification Au
+ (13 Trusted Peaple
E i e
< | 3 & 2

Personal store contains 1 certificate,

12. Double-click the HTTPS-Server certificate.

13. In the Certificate window, click the Details tab. Scroll to the bottom of the window dis-
playing the details of the certificate. Click the Thumbprint property, and make a note of
the hexadecimal string displayed in the lower window:

Certificate

| General | Details |CertiFicati0n Path |

Shiow: |<AII> v|

Field Yalue L]

E\n‘alid from Tuesday, August 01, 2006 12:..,

E\n‘alid to Saturday, December 31, 2039...

Subject localhost

Elpublic key RS54 (1024 Bits)

Authority ey Identifier KeylD=12 e4 09 2d 06 1d 1d ...

Thumbprint algorithm shal

T Thumbprink |
b

c3 90 &7 a4 49 1c £9 7b 96 72 9a 67 bf 50 18
6a 4b 68 =0 52

Edit Properties. ..] [Copy to File...]

98 Chapter 4 Protecting an Enterprise WCF Service

Q

14.

15.

Tip You might find it useful to simply select the text in the lower window and copy it
to the Windows clipboard.

Click OK, close the Microsoft Management Console window, and return to the com-
mand prompt window.

In the command prompt window, type the command shown below. Replace the hexa-
decimal string following the -h flag with the digits from the certificate thumbprint
(remove all spaces from the thumbprint string first):

httpcfg set ss1 -i 0.0.0.0:8000 -h c390e7a4491cf97b96729167bf50186a4b68e052

If this command is successful, it should report the message “HttpSetServiceConfigura-
tion completed with 0.”

Note Be very careful to specify the correct thumbprint. If you type an invalid thumb-
print, the command still succeeds, but the client will not be able to communicate with
the service as the thumbprint does not refer to a valid certificate.

This command binds the certificate with the thumbprint indicated with the -h flag to
the port indicated by the —i flag. The port is specified as the IP address of the computer
followed by the port. Specifying an IP address of 0.0.0.0 denotes the local computer.

Note Under Windows Vista, use the netsh command to configure SSL rather than
httpcfg., like this: netsh http add sslcert ipport=0.0.0.0:8000 certhash=
€390e7a4491cf97b96729167bf50186a4b68e052 appid={00112233-4455-6677-8899-
AABBCCDDEEFF}. The certhash parameter specifies the thumbprint. The appid param-
eter is a GUID that identifies this binding of the certificate to the port; you can use any
unique GUID.

Warning When a client application receives a certificate from a server, the WCF
runtime attempts to ascertain that the certificate is valid and that the authority that
issued it is trusted. The WCF runtime will fail this check when using the certificate that
you have just installed. The following exercise shows how to force the WCF runtime to
override this check and allow this certificate to be used. You should never do this in a
production environment! The code is provided as-is, and without further explanation (it
is not the author's work—it was written by developers at Microsoft and is included in
one of the WCF technology samples provided with the Windows SDK). In the real
world, you should go out and buy a valid certificate.

Add code to the WCF client to override certificate validation checking

1.

In Visual Studio 2005, edit the Program.cs file for the ProductsClient project.

2. Add the following using statements to the list at the top of the file:

Chapter 4 Protecting an Enterprise WCF Service 929

using System.Security.Crytography.X509Certificates;
using System.Net;

Add the following class to the ProductsClient namespace, underneath the Program
class:

Note The code for this class is available in the PermissiveCertificatePolicy.cs file in
the Chapter 4 folder, if you don't want to type it in manually.

// WARNING: This code is only needed for test certificates such as those
// created by makecert. It is not recommended for production code.
class PermissiveCertificatePolicy

{
string subjectName;
static PermissiveCertificatePolicy currentPolicy;
PermissiveCertificatePolicy(string subjectName)
{
this.subjectName = subjectName;
ServicePointManager.ServerCertificateValidationCallback +=
new System.Net.Security.RemoteCertificateValidationCallback
(RemoteCertValidate);
}
public static void Enact(string subjectName)
{
currentPolicy = new PermissiveCertificatePolicy(subjectName);
}
bool RemoteCertValidate(object sender, X509Certificate cert,
X509Chain chain, System.Net.Security.SsTPolicyErrors error)
{
if (cert.Subject == subjectName)
{
return true;
}
return false;
}
}

Add the following statement shown in bold to the Main method of the Program class,
immediately before creating the proxy object:

PermissiveCertificatePolicy.Enact("CN=HTTPS-Server");
ProductServiceClient proxy = new ProductServiceClient(..);

Run the WCF client and service

1.
2.

Start the solution without debugging.

In the ProductsServiceHost form, click Start.

100

Chapter 4 Protecting an Enterprise WCF Service
3. In the client console window, press Enter. Verify that the client application runs
correctly.

4. Press Enter to close the client console window. Stop the service and close the Prod-
uctsServiceHost form.

Protecting an HTTP Service at the Message Level

You can configure the BasicHttpBinding binding to provide message level security by selecting
the Message security mode for the binding. In this mode, the service uses SOAP message level
security to encrypt the message. The service must have a certificate installed, and the client
uses the public key from the service’s certificate to perform the encryption. The service can
send the certificate containing its public key at the start of the message exchange, or an
administrator can install the service certificate on the client computer before the client appli-
cation (in which case you must specify how to locate the service certificate in the client certif-
icate store by adding a service behavior using the <serviceCredentials> element to the client
configuration file). You will learn more about this in Chapter 5. Additionally, the only authen-
tication mechanism supported by a WCF service that uses this mode requires that the client
application identifies itself with a certificate—you cannot use authentication mechanisms such
as Windows Integrated Security with this mode.

One other option is to use the TransportWithMessageCredential security mode. This is a
hybrid combination of message level and transport level security. The service uses the HTTPS
protocol and a certificate to provide message integrity and confidentiality. Client authentica-
tion is handled at the message level by using SOAP message security, and the client applica-
tion can provide a username and password to identify the user. You will learn more about this
security mode in Chapter 5.

If you really want to implement message level security for a WCF service with the minimum of
fuss and configuration, you can opt to use the WSHttpBinding binding. The WSHttpBinding
binding conforms to the current WS-* specifications and follows the WS-Security specifica-
tion for encrypting messages and authenticating users by default. The following exercises
demonstrate how to use the WSHttpBinding binding to implement message level security
over HTTP.

Configure the WCF service to use the WSHttpBinding binding

1. In Visual Studio 2005, edit the App.config file for the ProductsServiceHost project by
using the WCF Service Configuration Editor.

2. In the left pane, expand the Products.ProductsServicelmpl node under the Services
folder, right-click Endpoints, and then click New Service Endpoint.

3. Intheright pane, set the properties of the endpoint to the values in the following table.
Leave all other properties with their default value:

4.
5.

Chapter 4 Protecting an Enterprise WCF Service 101

Property Value

Name ProductsServiceWSHttpEndpoint

Address http://localhost:8010/ProductsService/ProductsService.svc
Binding wsHttpBinding

Contract Products.IProductsService

Notice that the scheme used for the address of this endpoint is http, and not https.
Save the changes, and exit the WCF Service Configuration Editor.

Rebuild the ProductsServiceHost project.

Configure the WCF client to use the WSHttpBinding binding

1.

6.

Edit the app.contfig file for the ProductsClient project by using the WCF Service Config-
uration Editor.

In the left pane, right-click Endpoints in the Client folder, and then click New Client
Endpoint.

In the right pane, set the properties of the endpoint to the values in the following table:

Property Value

Name WSHttpBinding_IProductsService

Address http://localhost:8010/ProductsService/ProductsService.svc
Binding wsHttpBinding

Contract ProductsClient.ProductsService.lProductsService

Save the changes, and exit the WCF Service Configuration Editor.

In Visual Studio 2005, edit the Program.cs file in the ProductsClient project. In the Main
method, change the code that creates the proxy object to use the new binding, as follows:

ProductsServiceClient proxy = new
ProductsServiceClient("WSHttpBinding_IProductsService");

Rebuild the ProductsClient project.

Run the WCF client and service and examine the trace output

1.

Using Windows Explorer, delete the existing trace file Products.svclog in the Microsoft
Press\WCF Step By Step\Chapter 4\ProductsService folder under your \My Documents
folder.

In Visual Studio 2005, start the solution without debugging.

In the ProductsServiceHost form, click Start. In the client console window, press Enter.
Verify that the client application still runs correctly. Press Enter to close the client con-
sole window. Stop the service and close the ProductsServiceHost form.

Start the Service Trace Viewer tool, and open the Products.svclog file.

102

Chapter 4 Protecting an Enterprise WCF Service

5. In the Service Trace Viewer, in the left pane, click the Message tab.

6. Click the first message with the action http://tempuri.org/IProductsService/ListProducts.
In the lower right pane, click the Message tab. You can see that the message has been
encrypted—the body element of the message contains encrypted data.

7. In the left pane, click the second message with the action http://tempuri.org/IProd-
uctsService/ListProducts. In the right pane, scroll to the end of the Message window. This
is the unencrypted version of the message passed from the message level to the service.

8. Examine the two ListProductsResponse messages. As with the NetTcpBinding example
earlier in this chapter, you can see the encrypted version of the message being output by
the service to the message level and the encrypted version of the message passing from
the message level to the transport level.

9. C(lose the Service Trace Viewer.

The WSHttpBinding binding uses the 256-bit version of the AES encryption algorithm to
encrypt data by default. You can select a different algorithm by creating a binding behavior and
specifying the algorithm to use in the AlgorithmSuite property of the behavior, as you did when
configuring message level security for the NetTcpBinding binding earlier in this chapter.

Authenticating Windows Users

So far, you have seen how to configure the NetTcpBinding, BasicHttpBinding, and WSHittp-
Binding bindings to support confidentiality and privacy by encrypting messages. However,
transporting messages securely is only useful if a service can verify the identity of the user run-
ning the client application. In the exercises that follow, you will look at how a service can
authenticate a user when the client application and service are both running within the same
Windows domain. In Chapter 5, you will see how to perform authentication when a client and
service are located in different, possibly non-Windows, security domains.

You will start by adding code to the ProductsService service that displays the name of the user
calling the ListProducts operation. You will then be able to see the effect that the authentica-
tion options available in WCF have on the identity passed from a client application to a service.

Note You can configure authentication to be largely transparent to the WCF service. You
will see in the exercises in this section that most of the actual authentication process is per-
formed by the WCF runtime executing the service. All the service needs to do is specify the
type of authentication it requires.

Display the name of the user calling an operation in the WCF service

1. In Visual Studio 2005, add a reference to the System. Windows. Forms assembly to the
ProductsService project.

2. Open the ProductsService.cs file.

Chapter 4 Protecting an Enterprise WCF Service 103
This file contains the code that implements the operations for the ProductsService
service.
Add the following using statements to the list at the top of the file:

using System.Threading;
using System.Windows.Forms;

Locate the ListProducts method in the ProductsServiceImpl class. Add the following state-
ments as the first two lines of the method:

string userName = Thread.CurrentPrincipal.Identity.Name;
MessageBox.Show("Username is " + userName,
"ProductsService Authentication");

The first statement retrieves the name of the Windows user that the current thread is
running on behalf of. The second statement displays the username in a message box.

Edit the Program.cs file in the ProductsClient project. In the Main method, change the
code that creates the proxy object to use the BasicHttpBinding binding, as follows:

ProductsServiceClient proxy = new
ProductsServiceClient("BasicHttpBinding_IProductsService");

Start the solution without debugging.

In the ProductsServiceHost form, click Start. In the client console window, press Enter.

Amessage box appears, displaying the user name sent by the client application. The user
name will appear to be missing. This is not an error. By default, the BasicHttpBinding
binding does not send authentication information about users. All messages are sent as
the anonymous user.

ProductsService Authentication g|

Username is

Click OK, and verify that the client application still runs correctly.

Press Enter to close the client console window. Stop the service and close the Prod-
uctsServiceHost form.

In the next set of exercises, you will revisit the BasicHttpBinding binding and implement user
authentication. Many of the authentication options available for this binding apply to other
bindings as well.

Configure the BasicHttpBinding binding for the WCF service to use Basic authentication

Edit the App.config file in the ProductsServiceHost project by using the WCF Service
Configuration Editor.

104

Chapter 4 Protecting an Enterprise WCF Service

2.

In the left pane, expand the Bindings folder and click the ProductsServiceBasicHttp-
BindingConfig node.

In the right pane, click the Security tab.

Notice that the TransportClientCredentialType property is currently set to None, so the
service is not expecting client applications to provide authentication information about
users, and anyone who can connect to the service can send it messages and invoke
operations.

Set the TransportClientCredential Type property to Basic.

When using Basic authentication, the client application must provide a username and
password, which is transmitted to the service. The WCF runtime executing the service
can use this information to authenticate the user running the client application, and if
the user is valid, it will provide the identity of the user to the service.

Save the configuration, and close the WCF Service Configuration Editor.
Start the solution.
In the ProductsServiceHost form, click Start. In the client console window, press Enter.

The client fails with a MessageSecurityException exception, “The HTTP request is unau-
thorized with client authentication scheme ‘Anonymous’... .” The WCF runtime for the
service was expecting the client application to provide a username and password, which
it has not done.

Close the client console window, stop the service, and close the ProductsServiceHost
form.

Modify the WCF client to supply the user credentials to the service

1.

N VR W

In Visual Studio 2005, edit the app.config file in the ProductsClient project by using the
WCEF Service Configuration Editor.

In the left pane, expand the Bindings folder and click the ProductsClientBasicHttpBind-
ingConfig node.

In the right pane, click the Security tab.

Set the TransportClientCredential Type property to Basic.

Save the configuration, and close the WCF Service Configuration Editor.
Edit the Program.cs file in the ProductsClient project.

In the Main method, add the following statements shown in bold immediately after the
code that creates the proxy object. Replace LON-DEV-01 with the name of your domain
or computer (if you are not currently a member of a domain), replace Student with your
username, and replace Pa$$wOrd with your password:

ProductsServiceClient proxy = new
ProductsServiceClient("BasicHttpBinding_IProductsService");

10.
11.

Chapter 4 Protecting an Enterprise WCF Service 105

proxy.ClientCredentials.UserName.UserName "LON-DEV-01\\Student";
proxy.ClientCredentials.UserName.Password = "Pa$$wOrd";

The ClientCredentials property of a WCF proxy object provides a mechanism for a client
application to provide the credentials to send to the service. The UserName property of
ClientCredentials can hold a username and password. Other properties are available,
such as ClientCertificate, which enable you to supply different types of credentials infor-
mation as required by the service configuration.

Warning This code is for illustrative purposes in this exercise only. In a production
application, you should prompt the user for their name and password. You should
never hard-code these details into an application.

Start the solution without debugging.

In the ProductsServiceHost form, click Start. In the client console window, press Enter.

A message box appears, displaying the user name sent by the client application. This
time, the user name appears as expected, verifying that the operation is executing with
the credentials of the user.

ProductsService Authentication PZ|

Username is LOM-DEY-011Student

Click OK, and verify that the client application still runs correctly.

Press Enter to close the client console window. Stop the service and close the Prod-
uctsServiceHost form.

Using Basic authentication, you can provide the username and password of the user, and the
WCEF runtime executing the service will check that these credentials are valid. If you provide
an invalid username of password, the WCF runtime will reject the request and the client will
receive another MessageSecurityException exception with the message “The HTTP request

was forbidden... .”

Basic authentication is a good solution if the user running the client application is not cur-
rently logged into the security domain used by the service.

Note You can also configure the NetTCPBinding and WSHttpBinding bindings at the mes-
sage level to require Username authentication. This is very similar to Basic authentication at
the transport level as far as client application is concerned, although somewhat different as
far as the service is concerned, as it takes responsibility for authenticating the user itself (typ-
ically using a custom database of usernames and passwords). However, usernames and pass-
words are not encrypted at the message level, so WCF insists that the underlying transport
provide encryption to prevent the credential details being transmitted across an open net-
work as clear text.

106 Chapter 4 Protecting an Enterprise WCF Service

If the user is logged in to the domain, then you can make use of Windows Integrated Security
to provide the user's credentials automatically, rather than prompting the user for them again
(or worse still, hard-coding them in your application!).

Configure the BasicHttpBinding binding for the WCF service and client to use
Windows authentication

1.

S O

10.

11.
12.

Edit the App.config file in the ProductsServiceHost project by using the WCF Service
Configuration Editor.

In the left pane, expand the Bindings folder, and click the ProductsServiceBasicHttp-
BindingConfig node.

In the right pane, click the Security tab.
Set the TransportClientCredential Type property to Windows.
Save the configuration and close the WCF Service Configuration Editor.

In Visual Studio 2005, edit the app.config file in the ProductsClient project by using the
WCEF Service Configuration Editor.

Repeat the process in steps 2 through 5, above and set the TransportClientCredential Type
property of the ProductsClientBasicHttpBindingConfig binding configuration to Win-
dows.

Save the configuration, and close the WCF Service Configuration Editor.
Edit the Program.cs file in the ProductsClient project.

In the Main method, comment out the two statements that add the username and pass-
word to the ClientCredentials property of the proxy object.

Start the solution without debugging.
In the ProductsServiceHost form, click Start. In the client console window, press Enter.

The message box appears displaying your Windows username, which was sent by the
client application. However, rather than you having to supply the username and pass-
word, the WCF runtime executing the client application picked this information up from
the user's process automatically.

Note If you omitted to comment out the lines that populated the ClientCredentials
object, the solution still works; the credentials provided are simply ignored. However,

note the ClientCredentials property has a Windows property that you can use to pro-
vide a domain, username, and password to the service if you want the service to run as
a different Windows user. Any values that you specify in the Windows property override
those retrieved from the user's login process. The usual warnings about hard-coding

usernames and password in your code still apply:

Chapter 4 Protecting an Enterprise WCF Service 107

proxy.ClientCredentials.Windows.ClientCredential.Domain = "LON-DEV-01";
proxy.ClientCredentials.Windows.ClientCredential.UserName = "Administrator";
proxy.ClientCredentials.Windows.ClientCredential.Password = "P@sswOrd";

13. Click OK in the message box, and verify that the client application still runs correctly.

14. Press Enter to close the client console window. Stop the service and close the Prod-
uctsServiceHost form.

When you use Windows Integrated Security, usernames and passwords are not transmitted as
clear text. You can use Windows Integrated Security at the message level with the NetTCP-
Binding and WSHttpBinding bindings without needing to implement encryption at the trans-
port level.

Examine the authentication mechanism used by the NetTcpBinding binding

1. Edit the App.config file in the ProductsServiceHost project by using the WCF Service
Configuration Editor.

2. Inthe left pane, expand the Bindings folder, and click the ProductsServiceBasicTcpBind-
ingConfig node.

In the right pane, click the Security tab.
4. Verify that the MessageClientCredential Type property is set to Windows.

You have been using Windows Integrated Security without realizing it in earlier exer-
cises!

Note The WSHttpBinding binding also defaults to using Windows Integrated
Security.

5. Close the WCF Service Configuration Editor without saving changes.

6. Edit the Program.cs file for the ProductsClient project and modify the statement that cre-
ates the proxy object to use the NetTcpBinding binding, as follows:

ProductsServiceClient proxy = new
ProductsServiceClient("NetTcpBinding_IProductsService");

7. Start the solution without debugging.
8. In the ProductsServiceHost form, click Start. In the client console window, press Enter.

The familiar message box appears, displaying your Windows user name, proving that
the NetTcpBinding automatically picks up your identity from Windows.

9. Click OK, and allow the client application to finish. Press Enter to close the client con-
sole window. Stop the service and close the ProductsServiceHost form.

108 Chapter 4 Protecting an Enterprise WCF Service

Authorizing Users

After a service has established the identity of the user, it can then determine whether the ser-
vice should perform the requested operations for the user. Different operations in a service
could be considered more privileged than others. For example, in the ProductsService service,
you might wish to let any staff who work in the warehouse query the product information in
the AdventureWorks database but limit access to operations such as ChangeStockLevel, which
modify data, to staff members who are stock controllers. WCF can use the features of the NET
Framework to enable a developer to specify which users and roles have the authority to
request operations. You can perform this task declaratively (by using attributes) or impera-
tively (by adding code to the operations).

The authorization mechanism used by WCF requires access to a database defining users and
the roles that they can fulfill. If you are performing authentication by using Active Directory, it
makes sense to use the Active Directory database to hold the roles for each user as well. There-
fore, the first step is to ensure that the WCEF service is configured to retrieve roles from Active
Directory by using the Windows Token Role Provider.

Configure the WCF service to use the Windows Token Role Provider

1. Edit the App.config file in the ProductsServiceHost project by using the WCF Service
Configuration Editor.

2. In the left pane, expand the Advanced folder, expand the Service Behaviors folder and
then click the ProductsBehavior node.

The ProductsBehavior behavior currently contains the serviceDebug element. You added
this behavior to the service in Chapter 3.

In the right pane, click Add.

4. In the Adding Behavior Element Extension Sections dialog box, select serviceAuthoriza-
tion and then click Add.

The serviceAuthorization behavior is added to the list of behaviors.
5. In the left pane, click serviceAuthorization under the ProductsBehavior node.

6. In the right pane, verify that the PrincipalPermissionMode property is set to UseWindows-
Groups.

By default, WCF uses the Windows Token Role Provider to authenticate users, so you
don't actually need to change anything. However, you can configure the serviceBehavior
element to specify a different role provider, such as the SQL Role Provider or the Autho-
rization Store Role Provider mentioned earlier in this chapter. (You will configure the ser-
vice to use the SQL Role Provider in Chapter 5.)

7. Save the configuration and close the WCF Service Configuration Editor.

Chapter 4 Protecting an Enterprise WCF Service 109

The next step is to define the roles that can request the operations in the WCF service. When
using the Windows Token Role Provider, Active Directory groups correspond to roles, so you
define groups in the Active Directory database and add users to these groups.

Note The following exercise assumes you do not have access to the Active Directory data-
base for your organization, so it uses the Windows local users and groups database instead.

The principles are the same, however.

Create groups for warehouse staff and stock controller staff

1.

On the Windows Start menu, right-click My Computer, and then click Manage.
The Computer Management console appears.

In the Computer Management console, under the System Tools node, expand the Local
Users and Groups node, right-click the Groups folder, and then click New Group.

In the New Group dialog box, enter WarehouseStaff for the Group name, and then click
Create.

Still in the New Group dialog box, enter StockControllers for the Group name, and then
click Create.

Click Close to close the New Group dialog box.

The two new groups should appear in the list of groups in right pane of the Computer
Management console.

In the left pane of the Computer Management console, right-click the Users folder and
then click New User.

In the New User dialog box, use the values in the following table to set the properties of
the user and then click Create.

Property Value
User name Fred
Password Pa$$word
Confirm password Pa$$wOrd
User must change password at next logon Unchecked

8. Add another user by specifying the values in the following table, and then click Create

again.
Property Value
User name Bert

Password Pa$$wOrd

110

Chapter 4 Protecting an Enterprise WCF Service

10.

11.

12.
13.

14.
15.

16.
17.
18.

19.
20.

Property Value
Confirm password Pa$$wOrd
User must change password at next logon Unchecked

Click Close the close the New User dialog box.
In the left pane of the Computer Management console, click the Users folder.

The two new users should appear in the list in the right pane of the Computer Manage-
ment console.

In the right pane of the Computer Management console, right-click Bert and then click
Properties.

In the Bert Properties dialog box, click the Member Of tab and then click Add.

In the Select Groups dialog box, type WarehouseStaff in the text box and then click OK.
Bert is added to the WarehouseStaff group.

In the Bert Properties dialog box, click OK.

In the right pane of the Computer Management console, right-click Fred and then click
Properties.

In the Fred Properties dialog box, click the Member Of tab and then click Add.
In the Select Groups dialog box, type WarehouseStaff in the text box and then click OK.

Click Add again. In the Select Groups dialog box, type StockControllers in the text box
and then click OK.

Fred is added to the WarehouseStaff and StockControllers groups—he has two roles.
In the Fred Properties dialog box, click OK.

Close the Computer Management console.

You can now use the groups you have just defined to specify the roles that can request each of
the operations in the ProductsService service. To show how to specify authorization declara-
tively and imperatively, you will use attributes to specify the role for the operations that simply
query the AdventureWorks database, but you will write code to specify the role that can modify
the database.

Specify the roles for the WCF service operations

1.
2.

In Visual Studio 2005, open the ProductsService.cs file in the ProductsService project.
Add the following using statements to the list at the top of the file:

using System.Security;
using System.Security.Permissions;
using System.Security.Principal;

Chapter 4 Protecting an Enterprise WCF Service 111

Locate the ListProducts method in the ProductsServicelmpl class. Add the following
attribute, shown in bold, to this method:
[PrincipalPermission(SecurityAction.Demand, Role="WarehouseStaff')]

public List<string> ListProducts()

{

}

The PrincipalPermission attribute specifies the authorization requirements of the
method. In this case, the SecurityAction.Demand parameter indicates that the method
requires that the user meet the criteria specified by the following parameters. The Role
parameter indicates that the user must be a member of the WarehouseStaff role.

You can identify specific users by using the optional Name parameter. However, if you
specify Name and Role, then the user must match both criteria to be granted access (if
the user is not a member of the specified role, they will not be allowed to execute the
method). If you require users to be granted access to the method if they have a specific
name or are a member of a specific group, you can use the PrincipalPermission attribute
twice, like this:

[PrincipalPermission(SecurityAction.Demand, Role="WarehouseStaff")]

// LON-DEV-01\Student is not a member of the WarehouseStaff group
[PrincipalPermission(SecurityAction.Demand, Name="LON-DEV-01\\Student")]

public List<string> ListProducts()
{

}

You can also specify SecurityAction.Deny as the first parameter to the PrincipalPermission
attribute. If you do this, the specified users and roles will be explicitly denied access to
the method.

Apply the PrincipalPermission attribute with the WarehouseStaff group to the GetProd-
uct and CurrentStockLevel methods, as shown in bold below:

[PrincipalPermission(SecurityAction.Demand, Role="WarehouseStaff")]
public Product GetProduct(string ProductNumber)
{

}

[PrincipalPermission(SecurityAction.Demand, Role="WarehouseStaff")]
public int GetStockLevel(string ProductNumber)
{

}

Locate the ChangeStockLevel method. Add the following code, shown in bold, to the
start of this method:

public bool ChangeStockLevel(..)
{

112 Chapter 4 Protecting an Enterprise WCF Service

// Determine whether the user is a member of the StockControllers role

WindowsPrincipal user = new WindowsPrincipal(
(WindowsIdentity)Thread.CurrentPrincipal.Identity);

if (!(user.IsInRole("StockControllers')))

{
// If the user is not in the StockControllers role,
// throw a SecurityException
throw new SecurityException("Access denied");

}

}

The first statement retrieves the identity information for the user and uses it to create a
WindowsPrincipal object. Note that the identity returned by the current thread must be
cast to a Windowsldentity object. A WindowsPrincipal object is a representation of the
user. It exposes the IsInRole method that this code uses to determine whether the user
is a member of the StockControllers role. The IsinRole method returns true if the user is
a member of the role, false otherwise. If the user is not a member of the role, the code
throws a SecurityException exception with the message “Access Denied.”

@ Warning It is tempting to provide more detail in the SecurityException exception.
This practice is not recommended, as it could provide an attacker with useful informa-
tion that they might be able to use to try and infiltrate your system. Keep the exception
message bland!

Test the authorization for the WCF service
1. Start the solution without debugging.
2. In the ProductsServiceHost form, click Start. In the client console window, press Enter.

Assuming you are not currently logged in to Windows as Fred or Bert, the client appli-
cation stops and reports the message “Access is denied” when attempting to invoke the
ListProducts operation. This is because the authenticated Windows account for the cli-
ent application must be a member of the WarehouseStaff role:

WINDOWSsystem 32vcmd. exe

ENTER when the service has started

ist all products

5 de

nied.
[Press ENTER to finish

3. Press Enter to close the client console window, and then stop the service and close the
ProductsServiceHost form.

10.
11.

Chapter 4 Protecting an Enterprise WCF Service 113

In the ProductsClient project in Solution Explorer, open the Program.cs file.

In the Main method, add the following statements shown in bold immediately after the
statement that creates the proxy object. Replace the value “LON-DEV-01" specified in the
Domain property with the name of your computer:
ProductsServiceClient proxy = new
ProductsServiceClient("NetTcpBinding_IProductsService");
proxy.ClientCredentials.Windows.ClientCredential.Domain = "LON-DEV-01";
proxy.ClientCredentials.Windows.ClientCredential.UserName = "Bert";
proxy.ClientCredentials.Windows.ClientCredential.Password = "Pa$$wOrd";
These statements explicitly set the Windows credentials for the user to those of Bert. The
WCEF runtime on the client will send these credentials to the service, rather than using
those in the user’s login process.

Start the solution again, without debugging.
In the ProductsServiceHost form, click Start. In the client console window, press Enter.

This time, Bert is a member of the WarehouseStaff role and is granted access to the List-
Products, GetProduct, and CurrentStockLevel operations.

When the ListProducts method runs, it displays the message box confirming that the
identity of the authenticated user is Bert. Click OK to continue execution. The first three
tests run successfully, but when the client application attempts to perform test 4, which
requires invoking the ChangeStockLevel operation, Bert has not been granted access to
this method, and so the test fails with the “Access is denied” message:

WINDOWSsystem 32vcmd. exe
TI-R982

r: UB-HB9S

: Display the details of a product
UB-H
ter Bottle — 38 oz.

Test 3: Display the stock level of a product
Current stock level: 23631

Test 4: Modify the stock level of a product
jHodify

Acc: is denied.
[Press ENTER to finish

Press Enter to close the client console window, and then stop the service and close the
ProductsServiceHost form.

Return to the Program.cs file in the code view window.
In the Main method, change the Windows username of the user to Fred, like this:

proxy.ClientCredentials.Windows.ClientCredential.Domain = "LON-DEV-01";
proxy.ClientCredentials.Windows.ClientCredential.UserName = "Fred";
proxy.ClientCredentials.Windows.ClientCredential.Password = "Pa$$wOrd";

114

Using

Chapter 4 Protecting an Enterprise WCF Service

12. Build and start the solution again without debugging.
13. In the ProductsServiceHost form, click Start. In the client console window, press Enter.

Fred is a member of the WarehouseStalff role and the StockControllers role, and so he is
able to invoke all the operations in the ProductsService service.

14. 'When the ListProducts method displays the message box with the name of the authen-
ticated user, verify that the username is Fred and then click OK.

15. The client application performs all four tests successfully. Press Enter to close the client
console window, and then stop the service and close the ProductsServiceHost form.

Impersonation to Access Resources

Authenticating a user establishes the identity of the user to the WCF service, which can then
perform authorization checks to verify that the user should be allowed to perform the
requested operation. The method that implements the operation might require access to
resources on the computer running the WCF service. By default, the service will attempt to
gain access to these resources by using its own credentials. For example, when a method in
the ProductsService service connects to the AdventureWorks database, it does so as the account
running the service. When using Windows authentication, it is possible to specify that the
WCEF service should access resources by using the authenticated identity of the user instead.
So, if Fred has been granted access to the AdventureWorks database, the WCF service can con-
nect to SQL Server as Fred and will have access to all the database resources to which Fred
has been granted access. If the user connects as Bert, the WCF service might be able to use a
different set of resources in the database, depending on Bert’s access rights. The same princi-
ple applies to other resources, such as files, folders, and network shares. Using impersonation
gives an administrator fine-grained control over the ability of a WCF service to read or write
possibly sensitive information and can provide an additional degree of security—just because
the user can connect to the WCF service, they might not be able to perform operations that
retrieve or modify confidential data unless the administrator has explicitly granted the user
access to this data.

You can enable impersonation for an operation by setting the Impersonation property of the
OperationBehavior attribute, like this (shown in bold):

[PrincipalPermission(SecurityAction.Demand, Role="WarehouseStaff")]
[OperationBehavior(Impersonation=ImpersonationLevel.Required)]
public List<string> ListProducts

{
}

Specifying the value ImpersonationLevel.Required enforces impersonation. The client applica-
tion must also agree to this requirement and specify the level of impersonation that the WCF
service application can use (you will see how to do this shortly). You can also specify the
ImpersonationLevel. Allowed, which enables the WCF service to impersonate the user if the cli-

Chapter 4 Protecting an Enterprise WCF Service 115

ent application permits, but executes as the identity running the service application if not, and
ImpersonationLevel. NotAllowed, which disables impersonation.

If you need to specify an impersonation level setting for all operations, you can set the Imper-
sonateCallerForAllOperations attribute of the <serviceBehavior> element of the service behavior
to true in the service configuration file, as shown in bold below:

<?xm1 version="1.0" encoding="utf-8" ?>
<configuration>

<system.serviceModel>

<services>
<service behaviorConfiguration="ProductsBehavior" name="Products.ProductsServiceImpl">

</services>
<behaviors>
<serviceBehaviors>
<behavior name="ProductsBehavior">
<serviceAuthorization principalPermissionMode="UseWindowsGroups"
impersonateCallerForAl10perations="false" />
</behavior>
</serviceBehaviors>
</behaviors>
</system.serviceModel>
</configuration>

You configure the client application to indicate the level of impersonation that the service can
use by defining a behavior for the endpoint and specifying the AllowedImpersonationLevel
property. The following fragments of a client configuration file highlight the pertinent ele-
ments:

<?xml version="1.0" encoding="utf-8" 7>
<configuration>
<system.serviceModel>
<behaviors>
<endpointBehaviors>
<behavior name="ImpersonationBehavior'>
<clientCredentials>
<windows allowedImpersonationLevel="Impersonation" />

</clientCredentials>
</behavior>
</endpointBehaviors>
</behaviors>

<client>

<endpoint
address="http://localhost:8010/ProductsService/ProductsService.svc"
behaviorConfiguration="ImpersonationBehavior"
binding="wsHttpBinding"

116 Chapter 4 Protecting an Enterprise WCF Service

contract="ProductsClient.ProductsService.IProductsService"
name="WSHttpBinding_IProductsService" />
</client>

</system.serviceModel>
</configuration>

You can specify one of the following values for the AllowedImpersonationLevel property:

Impersonate. The service can use the user's identity when accessing local resources on the
computer hosting the service. However, the service cannot access resources on remote
computers.

Delegation. The service can use the user's identity when accessing local resources on the
computer hosting the service and on remote computers. The service can pass the iden-
tity of the user on to remote services, which may authenticate the user and perform oper-
ations impersonating this user.

Identify. The service can use the user's credentials to authenticate the user and authorize
access to operations but cannot impersonate the user.

Anonymous. The service does not use the user's identity to authenticate the user but can
use the user's credentials to perform access checks against resources accessed by the ser-
vice. This setting is only valid for transport mechanisms such as named pipes that con-
nect a client application to a service executing on the same computer. If the service is
running on a remote computer, the setting is handled in the same way as the “Identify”
option.

None. The service does not attempt to impersonate the user.

Summary

In this chapter, you have seen how to use the features of WCF bindings to control the degree
of protection afforded to a WCF service. You have seen how to configure encryption for mes-
sages flowing between a client application and a service, at the message level and at the trans-
port level. You have learned how to specify the authentication mode for a binding and how to
pass Windows credentials from a client application to a WCF service. You have also learned
how to authorize access to operations for authenticated users and how to provide access to
resources based on a user’s authenticated identity by using impersonation.

Chapter 5

Protecting a WCF Service
over the Internet

After completing this chapter, you will be able to:

m Describe how to configure and use the SQL Membership Provider and the SQL Role
Provider for ASPNET to store and query user identity and role information for a WCF
service.

m Explain how to configure a WCF service to authenticate users by using certificates.
m Describe how to use certificates to authenticate a WCF service to a client application.

Managing client application and WCEF service security inside an organization requires some
thought, but WCF provides bindings and behaviors that you can use to simplify many of the
tasks associated with protecting communications. Together with the authentication and
authorization features included with the .NET Framework 3.0, you can help to ensure that cli-
ents and services transmit messages in a confidential manner and have a reasonable degree of
confidence that only authorized users are submitting requests to services. However, bear in
mind that an organization’s internal network is a relatively benign environment because of its
inherent privacy—hackers might be able to penetrate your network, but this is an exceptional
circumstance rather than the norm. As long as your system and network administrators main-
tain the security of the organization’s infrastructure, you can assume a certain degree of trust
between client applications and services. Features such as message encryption, authentica-
tion, and authorization are important, but they can operate at the relatively unobtrusive level
described in Chapter 4 “Protecting an Enterprise WCF Service.”

When you start connecting client applications and services across a public network such as
the Internet, you can no longer make any assumptions about the trustworthiness of client
applications, services, or the communications passing between them. For example, how does
a client application verify that the service it is sending messages to is the real service and not
some nefarious spoof that happens to have supplanted the real service or that is simply inter-
cepting and logging messages before forwarding them on to the real service? How does a ser-
vice know that the user running the client application is who he or she says she is? How does
a service distinguish genuine requests sent by an authenticated client application from those
generated by some program written by an attacker attempting to probe the service by sending
it messages and seeing whether the service responds with any error information that displays
any potential security weaknesses? The Internet is a potentially hostile environment, and you
must treat all communications passing over it with the utmost suspicion. In this chapter, you
will examine some techniques that you can use to help protect client applications, services,
and the information transmitted between them.

117

118

Chapter 5 Protecting a WCF Service over the Internet

Authenticating Users and Services in an Internet
Environment

Maintaining information about all users that can legitimately access a service and their cre-
dentials typically requires some form of database. In a Windows environment, Active Direc-
tory provides just such a database, and a WCF service can use Windows Integrated Security to
help authenticate users that are part of the same Windows domain as the service. When client
applications connect to the service across the Internet, this approach is not always feasible; a
client application will probably not be running using the same security domain as the service
(it might not even be a Windows application). In this environment, you can use several alter-
native approaches for maintaining a list of authenticated users for a WCF service. For exam-
ple, you can employ the SQL Membership Provider to store a list of users and their credentials
in a SQL Server database, together with the SQL Role Provider to associate users with roles.
Alternatively, you can use the Authorization Store Role Provider to record users and roles in
XML files. In the exercises in this chapter, you will make use of the SQL Membership Provider
and SQL Role Provider.

account in its local security domain, so it is not available when alternative authentication
mechanisms such as the SQL Membership Provider are used.

@ Important Chapter 4 described how to use impersonation to enable a service to access
resources. Impersonation requires that the service can identify the user as a Windows

Authenticating and Authorizing Users by Using the SQL Membership
Provider and the SQL Role Provider

To make a WCEF service available across the Internet, you would typically host it by using
Microsoft Internet Information Services (IIS) as described in Chapter 1, “Introducing Win-
dows Communication Foundation.” Hosting a WCEF service in this way enables you to use the
ASP.NET Web Site Administration Tool to easily create a SQL Server database containing the
security information for the service and manage users and roles. You can then configure the
WCEF service to use the SQL Membership Provider to authenticate users, and the SQL Role
Provider to retrieve role information for authorizing users. This is what you will do in the fol-
lowing set of exercises.

Note The procedure for creating a Web site that uses transport security based on SSL dif-
fers between Windows XP and Windows Vista. The exercises in this section call out the differ-
ences, so make sure you follow the appropriate steps for the operating system you are using.

The first exercise only applies to Windows Vista.

Chapter 5 Protecting a WCF Service over the Internet 119

Configure 1IS7 bindings (Windows Vista only)

1.

4.
5.

In the Windows Control Panel, click System and Maintenance, click Administrative
Tools, and then double-click Internet Information Services (IIS) Manager.

In the Internet Information Services (1IS) Manager, in the left pane, expand the node
that corresponds to your computer, expand Web Sites, right-click Default Web Site, and
then click Edit Bindings.

In the Web Site Bindings dialog box, if https is not configured, click Add. In the Add Web
Site Binding dialog box, set Type to https, set the SSL certificate to HTTPS-Server, and
then click OK.

In the Web Site Bindings dialog box, click Close.

Leave the Internet Information Services (IIS) Manager open.

The next exercise applies to Windows Vista and Windows XP.

Create an ASP.NET Web site to host the WCF service

1.
2.

10.

Using Visual Studio 2005, create a new Web site.

In the New Web Site dialog box, select the WCF Service template. Set the Location to
HTTP, set the language to Visual C#, and then click Browse.

In the Choose Location dialog box, click Local IIS. In the right pane, click Default Web
Site, and then click the Create New Virtual Directory icon in the top right corner of the
dialog box.

In the New Virtual Directory dialog box, enter InternetProductsService for the Alias
name. Click Browse adjacent to the Folder text box.

In the Browse For Folder dialog box, move to the Microsoft Press\WCF Step By
Step\Chapter 5 folder under your \My Documents folder. Click the Create New Folder
icon in the toolbar.

In the New Folder dialog box, enter the name InternetProductsService and then click
OK.

In the Browse For Folder dialog box, click Open.
In the New Virtual Directory dialog box, click OK.

In the Choose Location dialog box, click the InternetProductsService folder in the
Default Web Site node. Check the Use Secure Sockets Layer check box at the bottom of
the dialog box, and then click Open.

In the New Web Site dialog box, verify that the address for the new Web site is https:;//
localhost/ InternetProductsService and then click OK.

120

@

Chapter 5 Protecting a WCF Service over the Internet

The InternetProductsService Web site is configured to listen for requests by using the HTTPS
protocol. This is good practice when building Web sites for hosting Web services that will be
accessed from the Internet as it provides a much greater degree of privacy than using unen-
crypted communications.

Note You can still perform message level encryption as well if you need to provide end-to-
end security rather than point-to-point. However, remember that encryption is a necessarily
expensive operation. Encrypting at two levels will impact performance. Transport level
encryption tends to be much faster than message level.encryption. So, if performance is a
limiting factor and you have to make a choice, then go for transport level security.

Although you have specified that the Web site requires clients to connect by using HTTPS, you
still need to perform some additional configuration of IIS. In particular, you must install a cer-
tificate that the IIS service and client applications can use for encrypting messages.

Important In the following exercise, you will use the same test certificate that you created
in Chapter 4. It is worth emphasizing again that, in a production environment, you should
procure a real certificate from a reputable certification authority.

The next exercise has two versions; one for Windows Vista and one for Windows XP.

Configure the IIS Web site to support HTTPS communications (Windows Vista only)
1. Return to the Internet Information Services (1IS) Manager.
2. In the left pane, right-click the Default Web Site folder, and then click Refresh.

3. Click the InternetProductsService node in the Default Web Site folder and make sure the
main panel in the console displays the Web Site in Features View (If the main panel is
displaying the folders App_Code, and Add_Data, and the files Service.svc and Web.con-
fig, it is in Content View; right-click the InternetProductsService node, and click Switch
to Features View.)

4. In theIIS area in the main panel, double-click SSL Settings.

In the SSL Settings pane, check Require SSL, but leave all the other properties at their
default values.

6. In the right pane, click Apply.

7. In the Internet Information Services (IIS) Manager navigation bar, click Back. In the
main panel, double-click Authentication.

8. In the Authentication pane, click Basic Authentication. In the right pane, click Enable.

Close the Internet Information Services (I1S) Manager.

Chapter 5 Protecting a WCF Service over the Internet 121

Configure the IIS Web site to support HTTPS communications (Windows XP only)

1.
2.

10.
11.
12.
13.

14.
15.
16.

On the Windows Start menu, click Run.
In the Run dialog box, type inetmgr and then click OK.
The Internet Information Services console starts.

In the Internet Information Services console, expand the node corresponding to your
computer in the tree view and then expand Web sites.

Right-click the Default Web Site node, and then click Properties.

In the Default Web Site Properties dialog box, click the Directory Security tab.

In the Directory Security page, under Secure communications, click Server Certificate.
The Web Server Certificate Wizard starts.

In the Welcome to the Web Server Certificate Wizard page, click Next.

In the Server Certificate page, select Assign an existing certificate and then click Next.
In the Available Certificates page, select the HTTPS-Server certificate and then click Next.
In the Certificate Summary page, click Next.

In the Completing the Web Server Certificate Wizard page, click Finish.

In the Default Web Site Properties dialog box, click OK.

In the Internet Information Services console, expand the Default Web Site node, right-
click the InternetProductsService node, and then click Properties.

In the InternetProductsService Properties dialog box, click the Directory Security tab.
In the Directory Security page, under Secure communications, click Edit.
In the Secure Communications dialog box, check Require secure channel (SSL), but

leave other properties at their default value, as shown below, and then click OK.

Secure Communications g|
i
[Require 128-bit encryption

Client certificates
(&) Ignore client certificates

O Accept client certificates
O Require client certificates

[Enable client certificate mapping

Client certificates can be mapped to Windows user
accounts. Thiz allows access control to resources uzing
client certificates.

QK] [Cancel] [Help

122

Chapter 5 Protecting a WCF Service over the Internet

17.

18.

19.
20.

In the Directory Security page, under Anonymous access and authentication control,
click Edit.

In the Authentication Methods dialog box, clear the Integrated Windows authentication
check box and select the Basic authentication check box. When the Internet Service
Manager message box appears warning that site should use HTTPS, click Yes. Click OK.

In the InternetProductsService Properties dialog box, click OK.

Close the Internet Information Services console.

The remaining exercises apply to Windows Vista and Windows XP.

Import the code for the WCF service into the IIS Web site

1.
2.

10.

Return to Visual Studio displaying the InternetProductsService solution.
In Solution Explorer, expand the App_Code folder and delete the file Service.cs.

The Service.cs file contains code for a sample WCF Web service. You will not need this
file, although you are welcome to look at it before removing it.

In Solution Explorer, right-click the App_Code folder and then click Add Existing Item.

In the Add Existing Item dialog box, move to the Microsoft Press\WCF Step By
Step\Chapter 5\ProductsService folder under your \My Documents folder, select the
ProductsService.cs file, and then click Add.

The ProductsService.cs file contains the code for the ProductsService service. This is
almost the same code that you used in Chapter 4 (the statements that display the user
identity in the ListProducts method have been removed as you should not attempt to
display an interactive message box from a WCF service hosted by IIS).

In Solution Explorer, rename the Service.svc file as ProductsService.svc.

Double-click the ProductsService.svc file to display the service definition file in the code
view window. Modify this file as shown in bold below:

<% @ServiceHost Language=C# Debug="true" Service="Products.ProductsServiceImpl" CodeBe
hind="~/App_Code/ProductsService.cs"%>

In Solution Explorer, delete the Web.conlfig file.

In the Website menu, click Add Existing Item. In the Add Existing Item dialog box, move
to the Microsoft Press\WCF Step By Step\Chapter 5\ProductsService folder under your
\My Documents folder, select the App.config file, and then click Add.

This is the configuration file used by the WCF host application in Chapter 4. You must
rename this file as Web.config for the Web service to recognize it properly.

Using Solution Explorer, rename the App.config file as Web.config.

Edit the Web.config file by using the WCF Service Configuration Editor.

11.

12.

13.

14.

15.

16.

17.

Chapter 5 Protecting a WCF Service over the Internet 123

In the WCEF Service Configuration Editor, in the Services folder, expand the Prod-
ucts.ProductsServicelmpl node, expand the EndPoints folder, and delete the Prod-
uctsServiceTepBinding endpoint and the ProductsServiceHttpEndpoint endpoint.

This version of the WCF service is only going to be accessed by client applications using
the HTTPS protocol over the wsHttpBinding binding to connect from the Internet.

Important It is good practice to remove any endpoints that a service is not going
to use. They could expose unexpected vulnerabilities if an attacker manages to pene-
trate the network security of your organization.

In the left pane, expand the Bindings folder. Delete both binding configurations located
in this folder.

These binding configurations are for the basicHttpBinding and netTcpBinding bindings
that you have just removed.

Right-click the Binding folder and then click New Binding Configuration. In the Create
a New Binding dialog box, select wsHttpBinding and then click OK.

In the right pane, set the Name property of the binding to ProductsServiceWSHttpBinding-
Config.

Click the Security tab. Set the Mode property of the binding to TransportWithMessageCre-
dential, set the MessageClientCredentialType property to UserName, and set the Transport-
ClientCredentialType to None.

The host Web site is configured to use the HTTPS protocol, so the WCF service must be
configured to support transport level security. The TransportWithMessageCredential
mode uses HTTPS at the transport level to protect messages traversing the network and
uses the server certificate to authenticate with the client. The user’s credentials are
authenticated by using message level security—this is the level at which the SQL Role
Provider operates.

In the left pane, select the ProductsServiceWSHttpEndpoint endpoint in the Endpoints
folder under the Products.ProductsServiceImpl node. In the right pane, set the Binding-
Configuration property to ProductsService WSHttpBindingConfig.

Note IS is hosting this service, so you can leave the Address property blank.

The address IS will use is a combination of the URL of the WCF service and the name
of the service definition file, in this case, https://localhost/InternetProductsService/
ProductsService.svc.

In the left pane, expand the Advanced folder, expand the Service Behaviors folder, right-
click the ProductsBehavior node, and then click Add Service Behavior Element Exten-
sion.

124

Chapter 5 Protecting a WCF Service over the Internet

18.

19.

20.
21.

22.

In the Adding Behavior Element Extension Sections dialog box, select serviceMetadata
and then click Add.

Click the serviceMetadata node under ProductsBehavior. In the right pane, set the Https-
GetEnabled property to True but leave the HttpGetEnabled property set to False.

Save the changes, and exit the WCF Service Configuration Editor.

In Visual Studio 2005, in the Website menu, click Add Reference. In the Add Reference
dialog box, click the Browse tab and add a reference to the Microsoft. Practices.EnterpriseL-

ibrary.Data.dll assembly in the C:\Program Files\Microsoft Enterprise Library\bin
folder.

Note This action automatically adds references to the Microsoft Practices
EnterpriseLibrary.Common.dll and Microsoft.Practices. ObjectBuilder.dll assemblies as
these are referenced by the Microsoft.Practices.EnterpriseLibrary.Data.dll assembly.

Start Internet Explorer and go to the Web site https://localhost/InternetProductsSer-
vice/ProductsService.sve. Depending on how you have configured Internet Explorer on
your computer, you might be prompted with a Security Alert message box. If so, click OK
to acknowledge the message.

Note Windows Vista displays an error page with the message “There is a problem
with this website's security certificate” This is because the certificate you used for con-
figuring SSL was not issued by a recognized trusted certificate authority. If this was a
commercial Web site, you should choose not to view it. However, in this case the Web
site is perfectly safe, so click the link “Continue to this website (not recommended).

If another Security Alert message box appears, click Yes to accept the security certificate
of the Web site.

Security Alert Pz|

ri‘l Information you exchange with this site cannot be viewed or
?. changed by others. However, there is a problem with the site's
® zecurty certificate.

& The zecurity certificate was issued by a company you have
hot chosen ta tust. Yiew the certificate to determine whether
you want to trust the certifying authority,

o The security certificate date iz valid.

& The name on the security certificate is invalid or does not
match the name of the site

Do you want to procesd?

| Yes | [Mo] [Wiew Certificate]

Internet Explorer opens the page https://localhost/InternetProductsService/ProductsSer-
vice.svc, as shown in the following image:

Chapter 5 Protecting a WCF Service over the Internet 125

A ProductsServicelmplService - Microsoft Internet Explorer

File Edt Wiew Favorites Tools Help

Q- Q WA G P slpronss @ -5 -

iscdress | &] https:flocalhost /IntemetProductsServicefProductsService svc v Gu Links *
-~

ProductsServiceImpl Service

fou have created 2 service,

To test this service, you will need ta create & client and use it ta call the service. You can do this using the sweutil.exe tool from
the command line with the following syntax:

svoutil.exe hotps://lon-dev-01/InternetPro vice/Pro vice.sveusdl

This will generate a configuration file and a code file that contains the client class, Add the two files to your dient application and
use the generated client class to call the Service. For example:

c#
class Test
«
static void Main()

i
ProductsServiceclient client = new FroductsServicecClient ();

/¢ Use the ‘elient' variable to call operations on the service.

/7 Always close the client.
client.Close();

&) & & Local intranet

23. Close Internet Explorer.

Now that you have deployed, configured, and tested the WCEF service by using IIS, you can use
the ASPNET Administration Tool to define the users and roles that will be permitted to access
the service. To keep things simple, you will create roles (WarehouseStaff and StockControllers)
and users (Fred and Bert) that mimic those you created by using Windows in Chapter 4.

Define users and roles for the WCF service
1. In Visual Studio 2005, in the Website menu, click ASP.NET Configuration.

The ASP.NET Web Site Administration Tool starts. This is actually another Web applica-
tion that runs using the ASP.NET Development Server (a stand-alone Web server
installed with Visual Studio 2005, and separate from IIS):

2 ASP.Net Web Application Administration - Microsoft Internet Explorer,

Fle Edt View Favortes Tooks Help i

o © ¥ B @ P Seros & 3- L FH

address |] hitp:/ flocalhost: L0S6 asp.netwebadminfiles def ault 2spoxPapplicationPhysicalP:

| ASP

j Home H Security ” Application H Provider |

\Documents¥e20and % 205ettingsistu v | [£ o Links >

Web Site Administration Tool

Welcome to the Web Site Administration Tool

Application:/InternetPraductsService
Current User Name:LON-DEY-01\STUDENT

Enables you to setup and edit users, roles, and access permissions for your site,
Site Is using windows authentication for user management.

Security.

sppleaton Enables you to manage your application's configuration settings.
Configuration

e R"SEEL you to specify where and how o store adminisiration data used by your

€] Done &J Localintranet

126

Chapter 5 Protecting a WCF Service over the Internet

This tool provides pages enabling you to add and manage users for your Web site, specify
Web application settings that you want to be stored in the application configuration file
(not WCF settings), and indicate how security information such as user names and pass-
words are stored. By default, the ASPNET Web Site Administration Tool stores security
information in a local SQL Server database called ASPNETDB.MDF that it creates in the
App_Data folder of your Web site.

Click the Security tab.

The Security page appears. You can use this page to manager users, specify the authen-
tication mechanism that the Web site uses, define roles for users, and specify access
rules for controlling access to the Web site.

Note The first time you click the Security link there will be a delay before the page is
displayed. This is because the tool creates the ASPNETDB.MDF database at this point.

In the Users section of the page, click the Select authentication type link.

A new page appears asking how users will access your Web site. You have two options
available:

0 From the Internet. This option enables you to define users and roles in the SQL
Server database. Users accessing your application must provide an identity that
maps to a valid user.

Note The explanation given for the From the internet option on the page
assumes you are building an ASPNET Web site rather than a WCF Web service,
which is why it describes using forms-based authentication. A client application
connecting to a WCF service can provide the user’s credentials by populating the
ClientCredentials property of the proxy object being used to send requests to the
WCF service.

O From alocal network. This option is selected by default. This option configures the
Web site to use Windows authentication; all users must be members of a Windows
domain that your Web site can access.

Click From the internet, and then click Done.
You return to the Security page.

In the Users section, notice that the number of existing users that can access your Web
site is currently zero. Click the Create user link.

The Create User page appears.

In the Create User page, add a new user with the values shown in the following table:

Chapter 5 Protecting a WCF Service over the Internet

127

Prompt Response

User name Bert

Password Pa$$word

Confirm password Pa$$wOrd

E-mail Bert@Adventure-Works.com
Security Question What was the name of your first pet
Security Answer Tiddles

2 ASP.Net Web Application Administration, - Microsoft Internet Explorer

File Edit View Favorites Toos Help /s

Qe - © \ﬂ @ h /'._U Search ‘T:\L(’Favw\tes o [-{v ; =)

address | (€] hitp flocaihast; 1080fasp.netwebadminfies/securicyfusers/addUser. aspx YD ks ?
Home Security || Application || Provider | &

Add a user by entering the user's 1D, password, and e-mail address on this page.

Greate User [Roles

Roles are not enabled.

Sign Up for Your New Account

User Name:
Password:
Confirm Password:

e mail

Security Question:

Security Answer:

[“] active User E
Back
A
< |8
&] Done % Local intranet

Note You must supply values for all fields in this screen. The E-mail, Security Ques-
tion, and Security Answer fields can be used by the ASPNET PasswordRecovery control
to recover or reset a user’s password. Detailed discussion of the PasswordRecovery

control is outside the scope of this book.

7. Ensure that the Active User box is checked and then click Create User.

The message “Complete. Your account has been successfully created.” appears in a new

page.

Click Continue. The Create User page reappears, enabling you to add further users. Add

another user using the information shown in the following table:

Prompt Response

User name Fred

Password Pa$$wOrd

128

Chapter 5 Protecting a WCF Service over the Internet

10.

11.
12.

13.

14.

15.

Prompt Response

Confirm password Pa$$wOrd

E-mail Fred@Adventure-Works.com
Security Question What was the name of your first pet
Security Answer Rover

Ensure that the Active User box is checked, and then click Create User.

Click Back to return to the Security page. Verify that the number of existing users is now
set to 2.

In the Roles section of the page, click the Enable roles link.

When roles have been enabled, click the Create or Manage roles link.

The Create New Role page appears.

In the New role name text box, type WarehouseStaff and then click Add Role.

The new role appears on the page, together with links enabling you to add and remove
users to or from this role.

Click the Manage link.

Another page appears, enabling you to specify the users that are members of this role.
You can search for users or list users whose names begin with a specific letter and then
add them to the role. Click the All link to display all users.

Check the User Is In Role box for Bert and Fred, as shown in the following image:

2 ASP.Net Web Application Administration, - Microsoft Internet Explorer

Fle Edit View Favorites Tools Help

eﬁack - \‘) @ @ <h pSEarEh \‘:\?Fathes (o) ﬁv ‘QF

address |] http: | flocalhost: 1056/ asp. netwebadminfiles/sscurity roles manageSingleRale. aspx Links **

ASP Web Site Administration Tool

Home: Security H Application ” Provider }

Use this page to manage the members in the specified role. To add a user to the role, search for the user nam
and then select User Is In Role for that user,

Role: warehouseStaff

Search for Users

Search By: |User narme V‘ for: ‘ ‘ [Find User]
wildcard characters * and ? are permitted,
4 B CDEEGHIIKLMHNOEREOQRSTIUYWxXY Z Al

User name User Is In Role

Bert
Fred ;|

Es
=

. \

&] Done % Local intranet

16.

17.

18.

19.

Chapter 5 Protecting a WCF Service over the Internet 129

Wait for the page to be redisplayed, and then click Back.

Important If you click Back before the page is redisplayed, the users might not be
added to the roles correctly.

In Create New Role page, in the New role name text box, type StockControllers and then
click Add Role.

Click the Manage link for the StockControllers role. Add Fred to the StockControllers
role, wait for the page to be redisplayed, and then click Back.

Close the Internet Explorer window displaying the ASPNET Web Site Administration
tool.

Note The ASPNET Web Site Administration Tool modifies the Web.config file of the
Web service. When you return to Visual Studio, if you have the Web.config file open
for editing in the code view window, you will be alerted that the file has been modified.
In the message box, click Yes to reload the file.

The next step is to modify the behavior of the WCF service to perform authorization by using
the users and roles defined in the SQL Server database rather than by using Windows users
and groups.

Configure the WCF service to use the SQL Role Provider and the
SQL Membership Provider

1.

In Visual Studio 2005, in Solution Explorer, right-click the Web.config file and then click
Edit WCF Configuration.

In the WCF Service Configuration Editor, expand the Advanced folder, expand the Ser-
vice Behaviors folder, and then expand the ProductsBehavior node.

Click the serviceAuthorization node under the ProductsBehavior node.In the right pane,
set the PrincipalPermissionMode property to UseAspNetRoles and type
AspNetSqlRoleProvider for the RoleProviderName property.

The RoleProviderName property identifies a particular configuration for the identity role
provider that will be used to map users to roles. The value “AspNetSqlRoleProvider” is
actually defined in the Machine.config file and specifies the version of the SQL Role Pro-
vider to use to authorize users, together with information, about how to connect to the
database holding the user and role information.

In the left pane, right-click the ProductsBehavior node and then click Add Service Behav-
ior Element Extension. In the Adding Behavior Element Extension Sections dialog box,
select serviceCredentials and then click Add.

In the left pane, click the serviceCredentials node. In the right pane, set the UserName-
PasswordValidationMode property to MembershipProvider and type

130

Chapter 5 Protecting a WCF Service over the Internet

6.

AspNetSqlMembershipProvider for the MembershipProviderName property. The mem-
bership provider is responsible for authenticating users based on their names and pass-
words stored in the SQL Server database. The value “AspNetSqlMembershipProvider” is
defined in the Machine.config file.

Note Try not to get too confused by the role provider and the membership provider.
WCF uses the membership provider for authenticating users, and it uses the role pro-
vider for authorizing users’ access to resources after they have been authenticated.

Save the configuration, and then exit the WCF Service Configuration Editor.

You can now test the WCF service by using the client application developed in the previous
chapters. First, you must make some changes so that the client application connects to the
WCEF service by using the correct binding and address.

Modify the WCF client application to connect to the updated WCF service

1.

10.

In Visual Studio, in Solution Explorer, right-click the InternetProductsService solution,
point to Add, and then click Existing Project.

In the Add Existing Project dialog box, move to the Microsoft Press\WCF Step By
Step\Chapter 5\ProductsClient folder under your \My Documents folder, select the
ProductsClient.csproj project file, and then click Open.

Use the WCF Service Configuration Editor to open the app.contfig file for the
ProductsClient project.

In the WCF Service Configuration Editor, right-click the Bindings folder and then click
the New Binding Configuration. In the Create a New Binding dialog box, select
wsHttpBinding and then click OK.

In the right pane, set the Name property to ProductsClientWSHttpBindingConfig.

Click the Security tab, set the Mode property to TransportWithMessageCredential and set
the MessageClientCredential Type property to UserName.

In the left pane, in the Endpoints folder under the Client folder, select the
WSHttpBinding IProductsService endpoint.

In the right pane, change the Address property to https://localhost/ InternetProducts
Service/ProductsService.svc and set the BindingConfiguration property to Products
ClientWSHttpBindingConfig.

Save the configuration and then exit the WCF Service Configuration Editor.

In Solution Explorer, open the Program.cs file in the ProductsClient project. In the code
view window, in the Main method of the Program class, change the statement that cre-
ates the proxy to refer to the WSHttpBinding IProductsService endpoint, like this:

@

11.

Chapter 5 Protecting a WCF Service over the Internet 131

ProductsServiceClient proxy =
new ProductsServiceClient("WSHttpBinding_IProductsService");

Replace the three statements that set the Domain, UserName, and Password properties of
the ClientCredentials. Windows.ClientCredential property of the proxy object with the fol-
lowing statements:

proxy.ClientCredentials.UserName.UserName = "Bert";
proxy.ClientCredentials.UserName.Password = "Pa$$wOrd";

The client application uses message level authentication to send the user’s credentials to
the WCEF service. You specify the credentials to send by using the ClientCredentials.User-
Name property of the proxy object.

Important To reiterate the point made in Chapter 4, this code is for illustrative pur-
poses in this exercise only. You should never hard-code usernames and password
directly into an application.

Test the WCF service

1.

In Solution Explorer, right-click the ProductsClient project and then click Set as Startup
Project.

Start the solution without debugging. When the client console window appears, press
Enter to connect to the service.

The first three tests should run successfully, but the final test fails with the error shown
in the following image:

WINDOWSsystem 32vcmd. exe
TT-R982

+: WB-HB98

: Display the details of a product
B H

Lest 3: Display the stock level of a product
Current stock level: 1

Test 4: Modify the stock level of a product

Receiver: The server was unable to process the request due to an internal error.
or more information about the error

aults Ceither from ServiceBehaviorfttr

the client, or turn on tracing as per the Microsoft .MET Framework 3.8 SDK docunm
entation and inspect the server trace logs.
[Press ENTER to finish

The PrincipalPermission attributes implementing security demands for the first three
methods automatically use the currently configured role provider. In Chapter 4, they
used the Windows Token Role Provider and authorized users based on their Windows
identity. In these exercises, they are using the SQL Role Provider. The problem is that
the method executed by test 4 does not use the PrincipalPermission attribute—the autho-
rization check is performed by using code. In particular, the following statement
attempts to retrieve the identity of the user assuming it was a Windows principal, which
it no longer is:

132 Chapter 5 Protecting a WCF Service over the Internet

8.

WindowsPrincipal user = new WindowsPrincipal(
(WindowsIdentity)Thread.CurrentPrincipal.Identity);

Press Enter and return to Visual Studio 2005.

Edit the ProductsService.cs file in the App_Code folder of the WCF service project.
Locate the ChangeStockLevel method, and modify the two lines of code that create the
user variable and test this variable to determine whether the user is a member of the
StockControllers role, as shown in bold below:

// Determine whether the user is a member of the StockControllers role

IIdentity user = ServiceSecurityContext.Current.PrimaryIdentity;

if (!(System.Web.Security.Roles.IsUserInRole(user.Name,
"StockControllers"))) {

The ServiceSecurityContext class contains information about the current security context
for the WCF operation being performed. This security context information includes the
identity if the user requesting the operation, which is available in the Current. Primaryl-
dentity property. You can use the name held in this identity object to determine the
whether the user is a member of a specific role by using the IsInRole method of the Sys-
tem.Web.Security.Roles class. The Roles class accesses the data in the currently configured
role provider for the WCEF service to perform its work.

Start the solution without debugging. Press Enter when the client application window
appears. This time, test 4 fails with the error “Access is denied.” This is because Bert is
not a member of the StockControllers role.

Press Enter again to close the application.

Edit the Program.cs file in the ProductsClient project. Change the username sent to the
WCEF service through the proxy as follows:

proxy.ClientCredentials.UserName.UserName = "Fred";

Start the solution without debugging. Press Enter when the client application window
appears. Fred is a member of the WarehouseStaff and StockControllers role, and all tests
should run successfully.

Press Enter to close the application.

Authenticating and Authorizing Users by Using Certificates

Using a username and password to identify a user provides a degree of security, but you are
probably all too familiar with the shortcomings of many implementations that follow this
approach. It is very easy to disclose a password (possibly unwittingly) to another user. Many
people use passwords that are easy for them to remember, and typically passwords are often
short, or easily guessed (how many times have you used “password,” or “1234,” or something
equally insecure?). Even your mother’s maiden name, suitably scrambled, is not that secure—
this information is frequently available in the public domain, which is why it is nonsense for

Chapter 5 Protecting a WCF Service over the Internet 133

banks to use this as a piece of information to identity yourself whenever you need to contact
them (I will get off my security hobbyhorse now).

Using a public key infrastructure (PKI) can help to overcome some of the shortcomings of
passwords. PKI provides a mechanism both for encrypting messages and for authenticating
them.

PKl is based on pairs of keys (a key is a long sequence of random numbers): a public key that
you can use to encrypt messages, and a private key that you can use to decrypt them again.
These keys should be unique. If you want to communicate with a third party, you can send
them a copy of your public key. The third party can encrypt their messages using this key and
transmit them to you. You can decrypt these messages using your private key. The theory is
that only your private key can decrypt a message encrypted by using your public key, so it
does not matter if someone else intercepts the message because they will not be able to read
it. In practice, it is possible to decrypt messages even if you don’t have the private key, but it
takes a lot of effort, and the longer the key, the more time and effort it takes—use keys with 128
bits or more.

Public and private keys can also work the other way around. If you encrypt a message with
your private key, anyone with the public key can decrypt it. This does not sound too useful
until you consider that this provides a convenient mechanism for verifying the source of a
message. If a third party receives an encrypted message that purports to come from you, but
that it cannot decrypt by using the public key that you provided, then the chances are that this
message was actually from someone else pretending to be you (only you can send messages
that can be decrypted by using your public key). The third party should probably discard the
message in this case.

Where do you get keys? Well, you can request a pair of keys in a certificate from a certification
authority, or CA. The CA will perform various checks to ensure that you are whom you actu-
ally say you are, and if they are satisfied, they will issue you with a certificate containing a pub-
lic key and a private key (you usually have to pay for this service). The certificate also contains
other bits of identity information about you and about the CA itself.

When you wish to communicate with a third party, you can send them a message that
includes a hash (a calculated summary, a bit like a checksum but more complicated) of the
message contents encrypted with your private key—this is referred to as your signature. You
can arrange for a copy of your certificate, minus your private key, to be installed in the certifi-
cate store on the third-party computer as an out-of-band operation by the administrator at that
end or attach a copy of your certificate, minus the private key, with the message when you
send it. When the third party examines your certificate, it can verify that it was issued by a rec-
ognized and trusted CA, and that it has not been revoked before continuing (a certificate can
be withdrawn if the service no longer wishes to trust the client, and the service can maintain
a list of withdrawn certificates in its certificate revocation list). If the third party does not rec-
ognize or trust the CA, they can simply reject the message. Assuming that the third party does
trust the CA, it can use the public key from your certificate to decrypt the signature and verify

134

Chapter 5 Protecting a WCF Service over the Internet

the unencrypted hash against the message (the third party generates its own hash of the mes-
sage contents using the same algorithm that you did and compares his hash to yours). If this
is successtul, the third party will then have a reasonable degree of assurance that the message
was sent by you. It can also be very confident that the message has not been corrupted or oth-
erwise tampered with as it passed across the network. The third party can use the identity
information from your certificate to determine your level of authorization and process your
request if you have the appropriate authority.

A service can also use a certificate to authenticate itself to a client application, reducing the
likelihood of the client connecting to a spoof service.

Note This discussion has been primarily concerned with signing messages for authentica-
tion purposes. You can use certificates to encrypt messages as well but the process is slightly
more complex. When a client application wants to send an encrypted and signed message to
a service, it first signs the message by using its own private key and then encrypts the com-
plete, signed message by using the service's public key. The service decrypts the signed mes-
sage using its private key and then authenticates the message by using the client
application’s public key.

If the service sends an encrypted and signed response back to the client, the process is
reversed; the service signs the message with its private key and encrypts the message with
the client application’s public key. The client application decrypts the signed message with its
private key and uses the service’s public key to authenticate the message.

You can see that communications that require the use of certificates include a complex pro-
tocol involving an initial exchange of certificates and keys. However, the additional security
that using certificates provides makes this overhead very worthwhile.

You should always obtain the certificates that you use to identify yourself and secure your
communications from a reputable certification authority that is trusted by you and those par-
ties with whom you wish to communicate. And you should never ever disclose your own per-
sonal private key!

In the exercises in this section, you will see how you can use certificates to sign messages and
authenticate users to a WCF service application.

Modify the WCF service to require client applications to authenticate by
using certificates

1. Using Visual Studio 2005, edit the Web.config file for the WCF service project by using
the WCEF Service Configuration Editor.

2. Inthe WCF Service Configuration Editor, expand the Bindings folder and then click the
ProductsServiceWSHttpBindingConfig binding configuration.

3. In the right pane, click the Security tab. Change the MessageClientCredentialType prop-
erty to Certificate.

The WCEF service now requires that client applications supply a certificate to authenti-
cate users. The NegotiateServiceCredential property on this page specifies how the client

Chapter 5 Protecting a WCF Service over the Internet 135

application sends the certificate to the WCF service. If this property is set to True (the
default value), the WCF service expects the client application to include its certificate
with the messages that it sends (actually, a series of initial messages occur while the cli-
ent and WCEF service exchange certificates). If this property is set to False, the adminis-
trator for the WCF service must install the client certificate manually in the Trusted
People certificate store of the computer running the service. Set this property to False, as
you will manually install the client certificates in a later step.

In the left pane, expand the Advanced folder, expand the Service Behaviors folder,
expand the ProductsBehavior behavior, expand the serviceCredentials node, and then
click the clientCertificate node.

The CertificateValidationMode property in the upper part of this page enables you to spec-
ify the how the WCEF service verifies the trustworthiness of client certificates. It can have
the following values:

Q ChainTrust (the default). The service will verify that the CA that issued the certifi-
cate is valid and can be trusted—the CA must either have a certificate that is stored
in the Trusted Root Certification Authorities store on the service’s computer, or
have a certificate that was issued by another CA that is recorded in the Trusted
Root Certification Authorities store, or have a certificate that was issued by a CA
that has a certificate that was issued by another CA recorded in Trusted Root Cer-
tification Authorities store, and so on. The service will navigate its way up the chain
of CA certificates until it either finds a trusted CA or reaches the end of the chain.
If the service fails to establish that the chain ends in a trusted CA, then the client
certificate is not trusted, and it is rejected.

Q PeerTrust. The service searches the Trusted People store for the client certificate. If
the service finds a matching certificate, the client is trusted. If not, the client
request is rejected.

Q PeerOrChainTrust. The service deems that the client certificate is valid if it is in the
Trusted People store, or it can verify that the certificate was issued by a trusted CA
by using the ChainTrust mechanism described above.

Q Custom. The services uses a class that implements your own custom certificate val-
idation process. You specify the class that implements the custom validation by
using the CustomeCertificateValidatorType property.

Q None. The service does not attempt to verify the client certificate and just accepts it
as valid.

By default, the service will look in stores in the LocalMachine store location when vali-
dating certificates. This is useful if you are hosting the WCF service in IIS. If you are cre-
ating a self-hosted service running by using a specific user account, you can configure
the WCEF service to look in the CurrentUser store location instead by changing the Trust-
edStoreLocation property.

136

@

Chapter 5 Protecting a WCF Service over the Internet

6.

The RevocationMode property specifies whether the service should also check to see
whether the client certificate has been revoked (the client is no longer trusted). The ser-
vice can query its online revocation list (Online), its cached revocation list (Offline), or
not bother checking (NoCheck).

In the right pane, set the CertificateValidationMode property to PeerTrust.

Important In the following exercises you will be using test certificates generated by
using the makecert utility to identify users. These certificates do not have a trusted CA.
To enable the WCF service to be able to use these certificates, you can either disable
validation checking (which is very dangerous and never recommended) or arrange for
the certificates to be placed in the Trusted People store, which is what you have spec-
ified here.

Save the configuration, and close the WCF Service Configuration Editor.

You can now configure the client application to send a certificate to the WCF service.

Modify the WCF client application to authenticate with the WCF service by using
a certificate

1.

4.

Edit the app.conlfig file for the ProductsClient project by using the WCF Service Config-
uration Editor.

Expand the Bindings folder, and then click the ProductsClientWSHttpBindingConfig
binding configuration.

In the right pane, click the Security tab. Set the MessageClientCredentialType property to
Certificate, and set the NegotiateServiceCredential property to False.

Save the configuration, and close the WCF Service Configuration Editor.

You can now create certificates for the two test users, Bert and Fred, and then modify the client
application to send a certificate that identifies the user to the WCF service.

Create certificates to identify the test users

1.

On the Windows Start menu, point to All Programs, point to Microsoft Windows SDK,
and then click CMD Shell.

In the command prompt window, type the following command:
makecert -sr CurrentUser -ss My -n CN=Bert -sky exchange

This command creates a certificate with the subject “Bert,” and places it in the Personal
store of the currently logged on user.

In the command prompt window, type the following command:
makecert -sr CurrentUser -ss My -n CN=Fred -sky exchange

This command creates another certificate with the subject “Fred.”

&

Chapter 5 Protecting a WCF Service over the Internet 137

The certificates for Bert and Fred are in the Personal certificate store of the current user. The
WCEF service requires the administrator to install a copy of these certificates into the Trusted
People store of the local computer. In the next exercise, you will export a copy of the personal
certificates to a pair of files and then import the certificates to the Trusted People store for the
local computer.

Note The certmgr command that you use in the following exercise provides options
enabling you to copy a certificate directly from one store to another in a single command.
However, in the real world you would more likely export a certificate to a file, transport the
file (in a secure manner) to the computer hosting the service, and then import the certificate
into the certificate store. This is the approach used in the following exercise.

Export the users’ certificates, and import them into the server’s certificate store

1.

4.

In the command prompt window, type the following command:
certmgr -put -c -n Bert -r CurrentUser -s My bert.cer

This command retrieves a copy of Bert’s certificate from the Personal store (My) for the
current user and creates a file called Bert.cer. This file contains a copy of the certificate
including its public key, but NOT the private key.

Type the following command:
certmgr -add bert.cer -c -r LocalMachine -s TrustedPeople

This command imports the certificate into the Trusted People store for the local com-
puter.

Type the following commands to export Fred’s certificate and import it into the Trusted
People store for the local computer:

certmgr -put -c -n Fred -r CurrentUser -s My fred.cer
certmgr -add fred.cer -c -r LocalMachine -s TrustedPeople

Close the command prompt window.

Update the WCF client application to send a certificate to the WCF service

1.

In Visual Studio 2005, open the Program.cs file in the ProductsClient project to display
it in the code view window.

In the Main method of the Program class, replace the two statements that set the User-
Name and Password properties of the ClientCredentials. UserName property of the proxy
object with the following statement:
proxy.ClientCredentials.ClientCertificate.SetCertificate(

StoreLocation.CurrentUser, StoreName.My,
X509FindType.FindBySubjectName, "Bert");

This statement retrieves Bert’s certificate from the Personal store of the current user and
adds it to the credentials sent to the WCF service.

Start the solution without debugging. In the client console window, press Enter.

138

&

Chapter 5 Protecting a WCF Service over the Internet

4.

The first test fails with the message “Access is denied.” The WCF service has authenti-
cated the client certificate (you would get a different exception if the authentication had
failed), but the service is still attempting to authorize users based on the information
stored in the SQL Server database used by the SQL Role Provider.

Press Enter to close the client console window.

You need to modify the definitions of the users and roles in the SQL Server database to map
user identities retrieved from user’s certificates to roles. But first, you need to understand the
identifiers that the WCF service uses when clients authenticate by using certificates.

Investigate the identities of users authenticated by using certificates

1.
2.

3.

Open the ProductsService.cs file in the App_Code folder in the WCF service project.

Comment out the PrincipalPermission attribute for the ListProducts method in the Prod-
uctsServiceImpl class. Add the statements shown in bold to the start of the method:

//[PrincipalPermission(SecurityAction.Demand, Role="WarehouseStaff")]
public List<string> ListProducts()
{
string userName = ServiceSecurityContext.Current.PrimaryIdentity.Name;
List<string> tempList = new List<string>Q);
tempList.Add(userName) ;
return tempList;

}

The Current.Primaryldentity.Name property of the ServiceSecurityContext object contains
the name of the currently authenticated user. This code returns a list of one string, con-
taining the user’s name.

Note Using an existing operation in the WCF service means that you don't need to
regenerate the proxy for the client. Visual Studio will generate a warning, “Unreachable
code detected,’ for the remaining code in the method. You can ignore this warning, as
you will remove the statements you have just added when you have finished with them.

Start the solution without debugging. In the client console window, press Enter. Test 1
now succeeds and displays the identity of the user, as shown below:

INDOWS\system32\cmd. exe
NIER when the rvice has started

ist all products
et; B1FAAACAB7CA76BABIISA2PB4F92CIFFS1EFBR6Y

he details of a product
ss is denied.
NTER to finish

The authenticated user name consists of two parts: the subject name, and the thumb-
print of the certificate. The thumbprint uniquely identifies the certificate (multiple cer-
tificates can have the same subject name), so yours will probably be different from the

Chapter 5 Protecting a WCF Service over the Internet 139

one shown here. This is the information that you need to store in the SQL Server data-
base, so make a note of the thumbprint.

4. Press Enter to close the client console window.
Update the user information in the SQL Server database

1. In Visual Studio 2005, select the WCF service project in Solution Explorer. In the Web-
site menu, click ASP.NET Configuration to run the ASPNET Web Site Administration
Tool.

2. Inthe ASPNET Web Site Administration Tool, click the Security tab and then click the
Create user link.

3. On the Create User page, set the User Name field to the value displayed by the client
application in the previous exercise. Include the subject name prefixed with “CN=,” fol-
lowed by a semicolon, a space, and the thumbprint of the certificate.

Fill in the remaining fields with dummy values (the ASPNET Web Site Administration
Tool insists that you fill in all fields), and select the WarehouseStaff role. Click Create
User when you have finished:

2 ASP.Net Web Application Administration, - Microsoft Internet Explorer

Fle Edit View Favorites Tools Help

OEaEk - Q @ @ \'h pSEarEh S;"\?Favw\tes & Bv ; =

address €] httpflocalhost: 1092 asp netwebadminfiles/securityfusersfaddUsar. aspx

Home: Security H Application ” Provider }

Add a user by entering the user's 1D, password, and e-mail address on this page.

Greate User [Roles

Select roles for this user:

Beo |unks ®

Web Site Administration Tool

Sign Up for Your New Account

User Name: [Jstockcantrallers
Password: [“lwarehousestaff
Confirm Password:
i
Security Question:
Security Answer:

=)

< - | B

&] Done % Local intranet

4. Click Continue. Leave the ASP.NET Web Site Administration Tool running (you will
need it again shortly) and return to Visual Studio 2005.

5. Run the solution again without debugging. In the client console window, press Enter.

Test 1 still displays the user name, but tests 2 and 3 now succeed. The user has been
identified as a member of the WarehouseStaff role, although test 4 still fails because the
user is not a member of the StockControllers role.

140

Chapter 5 Protecting a WCF Service over the Internet

&

10.
11.

12.
13.

14.

15.

16.

Press Enter to close the client console window.
In Visual Studio 2005, return to the Program.cs file in the ProductsClient project.

In the Main method of the Program class, change the statement that sets the client cre-
dentials to use Fred’s certificate:
proxy.ClientCredentials.ClientCertificate.SetCertificate(

StorelLocation.CurrentUser, StoreName.My,
X509FindType.FindBySubjectName, "Fred");

Start the solution without debugging. In the client console window, press Enter. Make a

note of the user name and thumbprint displayed by the first test. Test 2 fails, as you have
not yet added the new credentials for Fred to the SQL Server database.

Press Enter to close the client console window.

Return to the ASP.NET Web Site Administration Tool. Add another user with the subject
“CN=Fred” and the appropriate thumbprint. Make this user a member of the StockCon-
trollers and WarehouseStaff roles.

When the user has been created, close the ASP.NET Web Site Administration Tool.

In Visual Studio 2005, return to the ProductsService.cs file containing the code for the
WCEF service.

Uncomment the PrincipalPermission attribute for the ListProducts method, and com-
ment out the four lines of code you added earlier, returning the method to its original
state (more or less):

[PrincipalPermission(SecurityAction.Demand, Role="WarehouseStaff")]

public List<string> ListProducts()

{ // string userName = ServiceSecurityContext.Current.PrimaryIdentity.Name; //

List<string> tempList = new List<string>Q); // tempList.Add(username);
// return templList;

//Read the configuration information..
Database dbAdventureWorks;
.}

Run the solution again without debugging. In the client console window, press Enter.
All four tests should execute successfully.

Press Enter to close the client console window.

You have seen how to use certificates to authenticate users, and how to authenticate users
identified by certificates. Note that IIS also enables you to map client certificates to Windows
accounts if you prefer not to use the SQL Role Provider. For more information, see the
Enabling Client Certificates in IIS 6.0 page, on the Microsoft Technet Web site at
http://technet2.microsoft.com/WindowsServer,/en/Library/19¢d478b-9a61-43a8-b288-
67afala343b41033.mspx.

Chapter 5 Protecting a WCF Service over the Internet 141

There is one further feature worth mentioning at this point. The client application currently
hard-codes the details and location of the user’s certificate. This is almost as bad a practice as
hard-coding usernames and passwords. However, it is also a little unreasonable to expect
users to know the details of their certificates, so prompting them for this information is not a
feasible alternative. In addition, an administrator might not actually want the user to know too
much about their certificates; this information could be dangerous in the hands of a naive
user. An alternative approach is for an administrator to put the details of the certificate in the
application configuration file for the client. You can define a client endpoint behavior that
contains the client credentials, and reference this behavior from the endpoint. The code below
highlights the relevant fragments from a client application configuration file (you can, of
course, create this behavior and attach it to the endpoint by using the WCF Service Configu-
ration Editor):

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>
<behaviors>
<endpointBehaviors>
<behavior name="ClientCertificateBehavior'>
<clientCredentials>
<clientCertificate findvalue="Fred"
x509FindType="FindBySubjectName"
storeLocation="CurrentUser" storeName="My" />
</clientCredentials>
</behavior>
</endpointBehaviors>
</behaviors>
<bindings>
<wsHttpBinding>
<binding name="ProductsClientWSHttpBindingConfig">
<security mode="TransportWithMessageCredential">
<transport clientCredentialType="None"
proxyCredentialType="None" />
<message clientCredentialType="Certificate" />
</security>
</binding>
</wsHttpBinding>
</bindings>
<client>
<endpoint
address="https://Tocalhost/InternetProductsService/ProductsService.svc"
behaviorConfiguration="ClientCertificateBehavior"
binding="wsHttpBinding"
bindingConfiguration="ProductsClientWSHttpBindingConfig"
contract="ProductsClient.ProductsService.IProductsService"
name="WSHttpBinding_IProductsService" />
</client>
</system.serviceModel>
</configuration>

142 Chapter 5 Protecting a WCF Service over the Internet

Authenticating a Service by Using a Certificate

Using the HTTPS protocol with a service gives a client application a reasonable degree of con-
fidence that communications with the service are secure. The service sends the client a certif-
icate with a key that the client application uses for encrypting communications, and the client
application verifies that the certificate sent by the service has originated from a trusted CA.
However, HTTPS is primarily concerned with the confidentiality of communications. Authen-
tication for the purpose of establishing an SSL session is not the same as performing message
authentication, which can verify the identity of the message sender. The client application fre-
quently assumes that it is sending messages in a secure manner to a specific, trusted service,
but is this assumption always valid? The client might actually be securely exchanging mes-
sages with a totally different, spoof service—it is not unknown for hackers to infiltrate DNS
servers and arrange for messages addressed to one server to be rerouted elsewhere. To allevi-
ate concerns of this type, you can implement message level security with mutual authentica-
tion in place of using transport level security.

The protocol and mechanism used for authenticating a service to a client is very similar to that
used by the service to authenticate a client. The service signs the messages it sends to the client
application by using its private key. The client application uses a public key from a copy of the
service’s certificate held in its own certificate store to decode and verify the signature. If the

decoding fails, the service’s signature is not recognized (it is possibly a different service pre-

tending to be the real service), and the client can reject the message from the service. All com-
munications are also encrypted, as described when using message level security in Chapter 4.

In the following exercises, you will create another ASPNET Web site to host a copy of the
WCEF service that implements message level security. You will then configure a certificate for
the WCF service that the client application will use to authenticate the WCF service. The first
exercise has different versions for Windows Vista and for Windows XP.

Create an ASP.NET Web site to host the WCF service that will implement message level
security (Windows Vista only)

1. Right-click the ASPNET Development Server icon in the bottom right corner of the Win-
dows toolbar, and then click Stop.

2. Using Windows Explorer, move to the Microsoft Press\WCF Step By Step\Chapter 5
folder under your \My Documents folder.

3. Create a copy of the InternetProductsService folder and rename it as MutualAuthentica-
tionProductsService.

4. In the Windows Control Panel, click System and Maintenance, click Administrative
Tools, and the double-click Internet Information Services (I11S) Manager.

5. In the Internet Information Services (IIS) Manager, in the left pane, expand the node
that corresponds to your computer, expand Web Sites, right-click Default Web Site, and
then click Add Application.

7.

Chapter 5 Protecting a WCF Service over the Internet 143

In the Add Application dialog box, enter MutualAuthenticationProductsService for the
Alias, set the Physical path to the Microsoft Press\WCF Step By Step\Chapter 5\ Mutu-
alAuthenticationProductsService folder under your \My Documents folder, and then
click OK.

Close the Internet Information Services (IIS) Manager.

Create an ASP.NET Web site to host the WCF service that will implement message level
security (Windows XP)

1.

10.

11.

Right-click the ASPNET Development Server icon in the bottom right corner of the Win-
dows toolbar, and then click Stop.

Using Windows Explorer, move to the Microsoft Press\WCF Step By Step\Chapter 5
folder under your \My Documents folder.

Create a copy of the InternetProductsService folder and rename it as MutualAuthentica-
tionProductsService.

On the Windows Start menu, click Run. In the Run dialog box, type inetmgr and then
click OK.

The Internet Information Services console opens.

In the Internet Information Service console, expand the node that corresponds to your
computer, expand Web sites, right-click Default Web Site, point to New, and then click
Virtual Directory.

The Virtual Directory Creation Wizard appears.
In the Welcome to the Virtual Directory Creation Wizard page, click Next.

In the Virtual Directory Alias page, type MutualAuthenticationProductsService, and then
click Next.

In the Web Site Content Directory page, click Browse, select the folder Microsoft
Press\WCF Step By Step\Chapter 5\MutualAuthenticationProductsService under your
\My Documents folder, click OK, and then click Next.

In the Access Permissions page, accept the default values, and then click Next.

In the You have successfully completed the Virtual Directory Creation Wizard page, click
Finish.

The MutualAuthenicationProductsService virtual directory should appear under the
Default Web site node in the Internet Information Services console.

Close the Internet Information Services console.

The remaining exercises apply to Windows Vista and Windows XP.

144

Chapter 5 Protecting a WCF Service over the Internet

Configure the WCF service to authenticate itself to client applications

1.

On the Windows Start menu, point to All Programs, point to Microsoft Windows SDK,
and then click CMD Shell.

In the command prompt window, type the following command:
makecert -sr LocalMachine -ss My -n CN=localhost -sky exchange

This command creates a certificate with the subject “localhost,” and places it in the Per-
sonal store of the local computer. The subject name for a service certificate should match
the name of host computer in the URL that the client application uses to connect to the
service.

If you are hosting a WCF service by using IIS, as you are in this exercise, you must grant
the ASPNET account read access to the certificate by using the procedure in the next
step. If you are using a self-hosted service, then the following step is not necessary,
depending upon the authority of the account you use to execute the self-hosted service.

Type the following command:
findprivatekey My LocalMachine -n CN=localhost -a

The output from this command is the name of a private key file associated with the local
host certificate in the certificate store. It should look something like this (the hexadeci-
mal UUID identifying the certificate will be different on your computer):

C:\Documents and Settings\Al1l Users\Application Data\Microsoft\Crypto\RSA\MachineKeys\
7b90a71bfc56f2582e916a51aed6df9a_9e8a4e8d-4db3-4431-b652-45fbf9358c29

This is the file that you need to grant read access on for the ASPNET account.

Type the following command (replacing the UUID of the certificate with your own
value):
cacls "C:\Documents and Settings\Al1l Users\Application Data\Microsoft\Crypto\RSA\

MachineKeys\7b90a71bfc56f2582e916a5laed6df9a_9e8a4e8d-4db3-4431-b652-45fbf9358c29" /
E /G ASPNET:R

Note Windows Vista runs Web applications by using the Network Service account
rather than ASPNET. If you are using Windows Vista, replace ASPNET in this command
with NETWORKSERVICE.

Type the following command to stop and restart IIS:
iisreset
Leave the command prompt window open, as you will need it later.

In Visual Studio 2005, in the Solution Explorer, right-click the InternetProductsService
solution, point to Add, and then click Existing Web Site.

10.
11.

12.

13.

Chapter 5 Protecting a WCF Service over the Internet 145

In the Add Existing Web Site dialog box, ensure that Local I1S is selected, click the Mutu-
alAuthenticationProductsService site, clear the Use Secure Sockets Layer check box, and
then click Open.

Edit the Web.conlfig file of the MutualAuthenticationProductsService Web site by using
the WCF Service Configuration Editor.

In the WCF Service Configuration Editor, in the left pane, expand the Bindings folder
and click the ProductsServiceWSHttpBindingConfig binding configuration.

In the right pane, click the Security tab. Set the Mode property to Message.

In the left pane, expand the Advanced folder, expand the Service Behaviors folder,
expand the ProductsBehavior node, expand the serviceCredentials node, and then click
the serviceCertificate node.

In the right pane, set the FindValue property to localhost and set the X509FindType prop-
erty to FindBySubjectName. Verify that the StoreLocation property is set to LocalMachine
and that the StoreName property is set to My.

Save the configuration, and close the WCF Service Configuration Editor.

You have now enabled the WCEF service to authenticate itself to client applications by signing
messages with its certificate. In the real world, the administrator for the computer hosting the
WCEF service would export this certificate and then distribute it to all computers running the
client application. The next exercise simulates this process.

Export the WCF service certificate and import it into the client certificate store

1.

Return to the command prompt window and type the following command:
certmgr -put -c -n localhost -r LocalMachine -s My Tocalhost.cer

This command retrieves a copy of the localhost certificate used by the WCF service to
authenticate itself and creates a file called localhost.cer. Remember that this file contains
a copy of the certificate including its public key but NOT the private key. The adminis-
trator can distribute this file to all client computers.

Type the following command:
certmgr -add localhost.cer -c -r CurrentUser -s My

This command imports the certificate into the certificate store for the current user. This
is typically what an administrator would do to make the certificate available to the client
application.

Leave the command prompt window open.

You can now configure the client application to authenticate the WCF service by using the
localhost certificate in the CurrentUser certificate store.

146

Chapter 5 Protecting a WCF Service over the Internet

Configure the WCF client application to authenticate the WCF service

1.

10.

11.

12.
13.

In Visual Studio 2005, edit the app.config file of the ProductsClient project by using the
WCEF Service Configuration Editor.

In the Client Configuration Editor, in the Endpoints folder under the Client folder, click
the WSHttpBinding_IProductsService node.

In the right pane, change the Address property to http://localhost/MutualAuthentication-
ProductsService/ProductsService.svc. This is the address of the WCF service. Notice that it
uses the HTTP protocol, and not HTTPS.

In the left pane, expand the Bindings folder and then select the ProductsClientWSHrttp-
BindingConlfig binding configuration.

In the right pane, click the Security tab. Set the Mode property to Message.

In the left pane, expand the Advanced folder, right-click the Endpoint Behaviors node,
and then click New Endpoint Behavior Configuration.

In the right pane, enter AuthenticationBehavior for the Name property and then click Add.

In the Adding Behavior Element Extension Sections dialog box, select clientCredentials
and then click Add.

In the left pane, expand the clientCredentials node, expand the serviceCertificate node,
and then click the defaultCertificate node.

In the right pane, enter localhost for the FindValue property and set the X509Find Type
property to FindBySubjectName.

Return to the WSHttpBinding IProductsService endpoint in the Endpoints folder under
the Client folder. Set the BehaviorConfiguration property to AuthenticationBehavior.

Save the configuration, and close the WCF Service Configuration Editor.

Edit the Program.cs file for the ProductsClient application. In the Main method, com-
ment out the code the overrides the validity check of the certificate exported by the
HTTPS implementation of the WCF service—this statement is not required by this ver-
sion of the client:

// PermissiveCertificatePolicy.Enact("CN=HTTPS-Server");

Verify that the client application authenticates the WCF service

1.

Start the solution without debugging. In the client console window, press Enter.

The client application should complete all four tests successfully.

Chapter 5 Protecting a WCF Service over the Internet 147

Tip If the client application fails with a message stating that the service could not be
activated, check to make sure that you provided the correct endpoint address for the
service in the configuration file and that you have granted read permission over the
correct certificate file to the ASPNET account.

Press Enter to close the client console window.

Return to the command prompt window, and type the following command:

certmgr -del -c -n localhost -r LocalMachine -s My

This command removes the localhost certificate from the LocalMachine certificate store.
Type the following command:

makecert -sr LocalMachine -ss My -n CN=Tocalhost -sky exchange

This command creates another certificate with the same subject name as before. When
you run the WCF service, it will find this certificate and present it to the client applica-
tion.

Restart IIS by running the following command:
iisreset
When IIS has restarted, close the command prompt window.

Return to Visual Studio 2005 and start the solution without debugging. In the client
console window, press Enter.

The client application should now fail with a MessageSecurityException “An unsecured
or incorrectly secured fault was received from the other party....”

The private key in the localhost certificate used by the WCEF service to sign messages has
changed, so the client cannot use the public key in its copy of the localhost certificate to
verify the signature of the messages sent by the WCF service. This situation is analogous
to arogue version of the WCF service being placed at the same address as the real service
and highlights the benefits of authenticating a service in a client application.

Important The only way the rogue service can imitate the real WCF service is if it
has access to the same private key as the real WCF service. This shows once again the
importance of keeping your private keys private.

Press Enter to close the client console window.

148 Chapter 5 Protecting a WCF Service over the Internet

Summary

In this chapter, you have seen how to authenticate and authorize users and services when they
are running in different Windows domains across the Internet. You have learned how to con-
figure the SQL Membership Provider to authenticate users against credentials held in a SQL
Server database, and the SQL Role Provider to specify the roles that a user has for authoriza-
tion purposes. You also should understand how client applications and services can use cer-
tificates to authenticate each other and explain how they can use public and private keys to
help protect the privacy of communications in a potentially hostile network environment.

Chapter 6

Maintaining Service Contracts and
Data Contracts

After completing this chapter, you will be able to:

Describe how to protect the individual operations in a service contract.
Explain which changes to a service require client applications to be updated.

Implement different versions of a service contract in a service.

Modify a data contract and explain which changes will break existing client
applications.

m Describe how WCF can generate default values for missing items in a data contract.

In Chapter 1, “Introducing Windows Communication Foundation,” you learned that one of
the fundamental tenets of Service Oriented Architectures (SOA) is that services share schemas
and contracts, not classes or types. When you define a service, you specify the operations that
it supports by defining a service contract. The service contract describes each operation,
together with its parameters, and any return types. A WCF service can publish its service con-
tract definition, and a developer can use this information to build client applications that com-
municate with the service. In a WCF environment, a developer uses the svcutil utility to
generate a proxy class for the client from the WSDL description of the service. The client uses
this proxy to communicate with the service.

The service contract is only one part of the story, however. The operations in a service contract
can take parameters and return values. Client applications must provide data formatted in a
manner that the service expects. Many of the primitive types in the NET Framework have pre-
defined formats, but more complex data types such as classes, structures, and enumerations
require the service to specify how client applications should package this information up in
messages that it sends to the service and the format for any information sent by the service
back to client applications. You encapsulate this information in data contracts. Each complex
data type used by a service should have a corresponding data contract. The service publishes
this information together with the service contract, and the definitions of each complex type
are included in the proxy code generated by the svcutil utility.

You should be able to see how service contracts and data contracts are fundamental parts of
a service. If a client application does not understand the set of operations that a service
exposes or the type of data used by these services, then it will have severe trouble communi-
cating with the service.

149

150 Chapter 6 Maintaining Service Contracts and Data Contracts

Modifying a Service Contract

A service contract is an interface that the WCF tools and infrastructure can convert into a
WSDL document, listing the operations for a service as a series of SOAP messages and mes-
sage responses. You provide an implementation of these methods in a class in the service.
When a service executes, the WCF runtime creates a channel stack by using the bindings
specified in the service configuration file and listens for client requests in the form of one of
these messages. The WCF runtime then converts each SOAP message sent by a client applica-
tion into a method call and invokes the corresponding method in an instance of the class
implementing the service (you will learn how and when the WCF runtime actually creates this
instance in Chapter 7, “Maintaining State and Sequencing Operations”). Any data returned by
the method is converted back into a SOAP response message and is sent back through the
channel stack for transmission to the client application.

You can draw two conclusions from the preceding discussion:

1.

The service contract does not depend on the communication mechanism that the ser-
vice uses to send and receive messages. The communications mechanism is governed by
the channel stack constructed from the binding information specified in the service con-
figuration file. You can change the network protocol or address of a service without mod-
ifying the code in the service or in any client applications that access the service
(although client applications must use compatible endpoints in their configuration
files). To a large extent, the security requirements of a service are also independent of the
service contract, although there are exceptions, as you will see in this chapter.

Client applications wishing to communicate with the service must be able to construct
the appropriate SOAP messages. These messages depend on the service contract; if the
service contract changes, then the client must be provided with an up-to-date version,
otherwise, it runs the risk of sending messages that the service does not understand or
that are formatted incorrectly. Alternatively, if the response messages returned by a ser-
vice change, a client application might not be able to handle them correctly.

You will examine what this means from a practical perspective in the exercises in this section.

Selectively Protecting Operations

The previous two chapters have shown how to protect the messages passing between client
applications and services. However, the techniques shown have concentrated on using bind-
ings and behaviors of a service to protect the service as a whole. By modifying the service con-
tract, you can specify different security requirements for operations in the same service.

Chapter 6 Maintaining Service Contracts and Data Contracts 151

Note Protecting a service by modifying binding and behavior information is an example of
the fourth tenet of SOA—compatibility is based on policy. You can protect a service in a vari-
ety of ways without modifying the service contract, as long as the client applications and ser-
vice follow compatible security policies. Selectively protecting an operation is a change to the
service contract because now the protection mechanism becomes tightly coupled to the
operation, rather than being a policy attribute of the service.

Specify the security requirements for operations in the WCF service

1.

Using Visual Studio 2005, open the solution file ProductsService.sln located in the
Microsoft Press\WCF Step By Step\Chapter 6\ProductsService folder under your \My
Documents folder.

This solution contains an amended copy of the ProductsClient, ProductsService, and
ProductsServiceHost projects from Chapter 4, “Protecting an Enterprise WCF Service”
(the service does not display a message box showing the identity of the user, and the cli-
ent application contains an additional exception handler).

2. Edit the ProductsService.cs file in the ProductsService project, and locate the IProd-

uctsService interface that defines the service contract.

In the IProductsService interface, amend the OperationContract attribute for the ListProd-
ucts and GetProduct methods as shown in bold below:
[ServiceContract]

public interface IProductsService

{
// Get the product number of every product

[OperationContract(ProtectionLevel =
System.Net.Security.ProtectionLevel.EncryptAndSign)]
List<string> ListProducts(Q);

// Get the details of a single product
[OperationContract(ProtectionLevel =

System.Net.Security.ProtectionLevel.EncryptAndSign)]
Product GetProduct(string productNumber);

}

The ProtectionLevel property of the OperationContract attribute specifies how messages
invoking this operation, and output by this operation, are protected. In this case, calls to
the ListProducts and GetProduct operations must be signed by the client and encrypted
by using a key negotiated with the service. This requires that the security mode of the
binding used by the client and service specified message level authentication and that
the client and service specify the same value for the AlgorithmSuite property (go back
and look at Chapter 4 if you need to refresh your memory about these properties). In
fact, this is the default protection level for operations when you configure message level
security.

152

Chapter 6 Maintaining Service Contracts and Data Contracts

4.

Modify the OperationContract attribute for the CurrentStockLevel and ChangeStockLevel
methods as shown in bold below:
[ServiceContract]

public interface IProductsService

{

// Get the current stock level for a product
[OperationContract(ProtectionLevel =

System.Net.Security.ProtectionLevel.Sign)]
int CurrentStockLevel(string productNumber);

// Change the stock level for a product
[OperationContract(ProtectionLevel =
System.Net.Security.ProtectionLevel.Sign)]
bool ChangeStockLevel(string productNumber, int newStockLevel,
string shelf, int bin);

}
Calls to theses operations must be signed, but not encrypted. The protection level spec-
ified here overrides the message level security configured for the binding. You can also
specify a value of System.Net.Security.ProtectionLevel.Sign if you don’t want to sign mes-
sages either, although you should use this setting with caution as it has obvious security
implications.

Edit the app.contfig file in the ProductsClient project by using the WCF Service Config-
uration Editor.

In the WCEF Service Configuration Editor, expand the Bindings folder and then select the
ProductsClientTcpBindingConfig binding configuration. In the right pane, click the
Security tab. Verify that the Mode property is set to Message, the AlgorithmSuite property
is set to Basic128, and the MessageClientCredentialType property is set to Windows.

Note For simplicity, these exercises assume that the client application and WCF ser-
vice operate in the same Windows domain. If you are running in an Internet environ-
ment, you can change the MessageClientCredentialType to UserName or Certificate, as
described in Chapter 5, "Protecting a WCF Service over the Internet”

Save any changes you have made to the app.config file, and then close the WCF Service
Configuration Editor.

Edit the App.config file in the ProductsServiceHost project by using the WCF Service
Configuration Editor. Follow the procedure in Step 6 to verify that the security settings
for the ProductsServiceTepBindingConfig binding configuration match those of the cli-
ent application.

In the left pane, expand the Diagnostics folder and then click the Message Logging node.
In the right pane, set the LogMessagesAtServiceLevel property to False but ensure that the
LogMessagesAtTransportLevel property is set to True.

You will use the Service Trace Viewer to examine the messages sent between the client
application and the service. To minimize the logging overhead, the WCF runtime will

10.

11.

Chapter 6 Maintaining Service Contracts and Data Contracts 153

only trace messages as they flow in and out of the transport level. At this level, you will
be able to see the effects of the message level security applied by the binding and the ser-
vice contract—logging at the service (message) level will only show unencrypted mes-
sages as they are received and sent by the service.

In the left pane, expand the Listeners folder, and then click the MessageLog node. Set
the InitData property to the Products.svclog file in the Microsoft Press\WCF Step By
Step\Chapter 6 folder under your \My Documents folder.

Save the changes, and exit the Service Configuration Editor.

Test the modified service

1.

Start the solution without debugging. In the ProductsServiceHost form, click Start (if a
Windows Security Alert message box appears, click Unblock to allow the service to open
the TCP port it uses for listening for client requests). In the client console window, press
Enter.

Tests 1 and 2 complete successfully because the binding implements a policy of encryp-
tion and signing, and this automatically meets the requirements of the operation con-
tract for the ListProducts and GetProduct operations. However, test 3 raises the
exception, “The primary signature must be encrypted” because the CurrentStockLevel
operation specifies only signing in the operation contract, but the binding is also
encrypting information. The problem is that you have modified the service contract, but
you have not updated the corresponding code in the client application; the proxy used
by the client application is still expecting to send signed and encrypted messages to the
service for tests 3 and 4.

Press Enter to close the client console window. In the ProductsServiceHost form, click
Stop and then close the form.

In Visual Studio 2005, open the Products.cs file in the ProductsClient project.

This file contains the code for the proxy that you generated by using the svcutil tool in
Chapter 3 ,“Making Applications and Services Robust.” You now have two choices: you
can regenerate the proxy again or you can modify the code in this file to incorporate the
changes required. Under normal circumstances, it would be advisable to regenerate the
proxy, but in this case it is more informative for you to modify the code so that you can
see the changes required in the proxy code.

Scroll through the Products.cs file to locate the definition of the IProductsService interface
(this should be somewhere around line 228).

You should be able to recognize the methods in this interface as they correspond very
closely to the methods in the service contract. The return type of the ListProducts
method is slightly different—it is an array of strings rather than a generic list, and the
OperationContract and FaultContract attributes for each operation include Action and
ReplyAction properties identifying the names of the SOAP messages that the WCF runt-
ime uses when communicating with the WCF service.

154

Chapter 6 Maintaining Service Contracts and Data Contracts

5.

10.

11.

12.

Modify the OperationContract attribute for the CurrentStockLevel and
ChangeStockLevel methods as shown in bold below (do not modify the Action and
ReplyAction properties):
[System.ServiceModel.OperationContractAttribute(ProtectionLevel=System.Net.Security.

ProtectionLevel.Sign, Action= .)]
int CurrentStockLevel(string productNumber);

[System.ServiceModel.OperationContractAttribute(ProtectionLevel = System.Net.Security.
ProtectionLevel.Sign, Action = ..)]

bool ChangeStockLevel(string productNumber, int newStockLevel, string shelf, int bin);
Using Windows Explorer, delete the Products.svclog file in the Microsoft Press\WCF
Step By Step\Chapter 6 folder under your \My Documents folder.

In Visual Studio 2005, start the solution without debugging. In the ProductsServiceHost
form, click Start. In the client console window, press Enter.

All tests should now complete successfully.

Press Enter to close the client console window. In the ProductsServiceHost form, click
Stop and then close the form.

Start the Service Trace Viewer (in the Microsoft Windows SDK, Tools program group).

In the Service Trace Viewer, open the Products.svclog file in the Microsoft Press\WCF
Step By Step\Chapter 6 folder under your \My Documents folder.

In the left pane, click the Message tab. You should see six messages concerned with
negotiating the encryption keys used by the client and service; these messages have an
Action in the http://schemas.xmlsoap.org namespace. Following these are ten messages
corresponding to the messages received by the service, and the responses sent back to
the client application with an Action in the http://tempuri.org namespace. There are two
further messages at the end, again with an Action in the http://schemas.xmlsoap.org
namespace.

Tip Expand the Action column in the left pane to see more of the name for each
action.

Click the message with the Action http://tempuri.org/IProductsService/ListProducts. In
the lower right pane, click the Formatted tab and scroll to the bottom of the pane to dis-
play the Envelope Information section (if the Envelope Section is not visible, expand the
Message Log area in this pane). In the Parameters box, note that the Method used to
send the data is e:EncryptedData, and that the parameter sent by the client application
has been encrypted, as highlighted in the following image:

Chapter 6 Maintaining Service Contracts and Data Contracts

B8, Microsoft Service Trace Yiewen- c:idocuments and settingsistudentimy documentsimicrosoft pressiwef step b,

Fle Edt Yew Activity Help

H i SeapchIng None - Level Al - Fiter Now Clec
 Find What: Look In:
Activity | Froject| Message | Graph Group By - (None) Creats Clstom Filer Activity - 000000000000
Group By - (Nane) Description Level A
&3 Message Log Trace Infarmation

Action
hittp:#/schemas. xmizoap.org/ws/ 2008/ 02/ st /RS T Assue
hitp:?/schemas smlsoap.orgdws, 2005/02 st /RS TR/ ssue
hitp:#/schemas smlsnap.orgdws/2006/02tust /RS TR /ssue
hitp:#/schemas. xmisoap.org/ws/ 2008/ 02 st /RS TR /ssue
hittp:#/schemas. xmisoap.org/ws/ 2008/02 st /RS T /SCT
hitpe/schemas xmisoap.org/ws 2005/02/Must RS TR/SCT

Message Log Trace Information
Message Log Trace Infermation
Message Log Trace Infermation
Message Log Trace Information
Message Log Trace Information
UE3Message Log Trace Infomation ¥
<

hitp: /tempuiorg/IProductsS ervice/ListFroductsResponse ||| Fomatted [XML | Message

https/tempui crgProductsService /GetProduct ¢ ontere -
it/ tempuii crg/IProductsServics /GetProductRespense. ||| F2bn " ———
it tempuii g/ IProductsServics/ CunentStockl evel o MessagelD] uld 3 A
it /tempuii g/ IProductsServios/CunentStockl evelFiesp & MassagelD i 00228fcf-2 ¥
itp: #/tempur. org/IProductsS ervice/ChangeStockLevel 3 | >
https//tempuii cra/IProductsService/ChangeStockLevelFtes]
itp: /temputi org/IProductsS erviceCunentStockL svel Method ([eEneypiedData |]
it /tempuii g/ IProductsServios/CunentStockl evelFiesp Parameters: o e
hitpe #/schemas kmisnap org/ws/2006/02Must/RS T /SCT /T 5
itp:4schemas. sinfsoap.org s/ 2005/ 02 st RS TRASCT £ & Encrypliontethod
[eCipheiData JIGv3pSNUDZkzucclh
< >
< > v

Activities: 1 Traces: 18

155

13. In the left pane, click the message with the Action http://tempuri.org/IProductsService/
ListProductsResponse. In the lower-right pane, verify that this response message is also
encrypted. Follow the same procedure to examine the http://tempuri.org/IProductsSer-

14.

and verify that they are also encrypted.

vice/GetProduct and http://tempuri.org/IProductsService/ GetProductResponse messages

In the left pane, click the http://tempuri.org/IProductsService/ ChangeStockLevel message.
In the lower right pane, you should observe that the Method is CurrentStockLevel and
that the parameter is an unencrypted product number:

icrosoft Service Trace Viewer- c:idocuments and settingsistudentimy documentsimicrosoft presshwef step

File Edt View Activiy Help
H i SearchIn: None ~ Level Al ~ Filter Now Cleaf
i Find wrhat: Look In:
Activity | Project | Message | Giaph Group By - (Mone) Create Custom Filter Activity - 000000000000
Group By - (Hane) Dessiiption Level A
Bl [Information
it ¢/ schemas.kmlsoap.org/ws/ 2005/02/must/RS T lssus :”;D'”‘at‘u"
hitp:4/schemas.smlsoap.org s/ 200502 ust/RE TR lssue ‘”met‘”“
hitp: /schemas smlsoap.org/ws/ 2006/ 02 Arust /RS TR/l ssue ‘”FD'”“[‘D" 4
hittp: ¢/ schemas. smlsoap.org/ws/2005/02/ust/RS TRAssue ‘"f’”‘at“"
itip: ¢/ schemas. smlsoap.org/ws/ 2005/02/must/RST /5ET B s ‘"f'”‘at‘u" -
hitp:/schemas.smlsoap.orglws/ 200502 ust/RSTR/SCT '(’d essage -og Jrace ricimat ‘D’“ —
hittp:#/tempuri.org/IProductsS ervice/ListProducts = =
it tempuri orgIProdductsService ListProductsRespanse ||| Famnatied | ML | Message
it tempu. g IProductsServiceGetPraduct T
it tempuii cng/ProductsServios/GetProductResponss. ||| EL2E2
T T e —
[aMessagelD] uld 2 =
ilp://tempuii cvgIFroductsService/ CunentStacklevelFiesp & MessagelD i 864ce717- ¥
it temput. orgIProductsService/ChangeStackLevel < | >
it temput. orgIProductsService/ChangeStockL evelFiesy o
Method:
hitp:? temputiorg/IProductsS ervice/CunentStockL evel ethe (|E“”E“t5'°°“-eve' I
hitp: #/tempuiorg/IProductsS ervice/CunentStockL eveFiesp Paramelers T =
itp://schemas smlsoap.org/ws/2005/02/ust RS T/SCT /T aé"a P w::nas
hitip:¢/schemas. smlsoap.org/ws/2005/02/ust/ RS TRASCT / productfumber
L1} kd
< >)
Activities: 1 Traces: 18

156 Chapter 6 Maintaining Service Contracts and Data Contracts

15. In the left pane, click the http://tempuri.org/IProductsService/ ChangeStockLevelResponse
message. This message should also be unencrypted. Examine the http://tempuri.org/
IProductsService/ChangeStockLevel and http://tempuri.org/IProductsService/ChangeStock-
LevelResponse messages. These messages should be unencrypted as well.

16. In the File menu, click Close All. Leave the Service Trace Viewer open.

Versioning a Service

Change happens. It is almost inevitable that a widely used service will evolve as circumstances
and business process change. In many cases, these changes will manifest themselves as mod-
ifications to the code that implements the operations in a service. However, it is also possible
that the definitions of operations might need to change as well; you might need to add new
operations, retire old or redundant operations, or change the parameters and return types of
existing operations. Clearly, these modifications require updating the service contract. How-
ever, client applications depend on the service contract to specify the messages that the ser-
vice receives and the responses it sends. If the service contract changes, what happens to
clients that used the previous version of the contract? Will they still work or do you need to go
and visit every client installation and update the code? Do you actually know where to locate
every client? If client applications connect across the Internet, there could be a large number
of them located anywhere in the world.

You can see that modifying a service is not a task that you should undertake lightly and, as far
as possible, you should take steps to ensure that existing clients will continue to function
without requiring to be updated. To this end, it helps to understand what actually happens
when you change a service or a service contract and the strategies that you can follow to min-
imize any detrimental impact of these changes. The following exercises illustrate some com-
mon scenarios.

Add a method to the WCF service and amend the business logic of operations
1. Using Visual Studio 2005, edit the ProductsService.cs file in the ProductsService project.
2. Add the following method to the ProductsServicelmpl class:

public bool IsPotentialSqlInjectionAttack(string data)
{
// Check to see whether the data contains a rogue character

// or the string "--", or the string "/

%N

char[] rogueChars = { ';', "\'', "\\', '"', '=', ‘%', '_', '},
if ((data.IndexOfAny(rogueChars) != -1) ||

data.Contains("--") || data.Contains("/*"))

return true;
else

return false;

Chapter 6 Maintaining Service Contracts and Data Contracts 157

Note A copy of this code is supplied in the PotentialSqlinjectionAttack.txt file, in the
Microsoft Press\WCF Step By Step\Chapter 6 folder under your \My Documents folder.

The Adventure-Works organization has recently conducted a security audit of some of
their applications. The auditors have identified the ProductsService service as being
prone to a SQL injection attack. This method checks a string for characters and sub-
strings that are typically used by an attacker, returning true if the string is suspect and
false if the string seems safe.

More Info For a description of what a SQL injection attack is and how dangerous it
can be, see the SQL Injection topic in SQL Server Books Online, also available at
http.//msdn2.microsoft.com/en-us/library/ms161953.aspx. The solution shown here is
quite primitive, but gives you an idea of what you need to do to protect your service.
Alternative strategies exist, such as using SQL parameters, to provide the data values to
the SOL statement.

3. Add the statements shown below in bold to the start of the GetProduct method, before
the code that connects to the database:

public Product GetProduct(string productNumber)

! // Check for potential SQL Injection attack
if (IsPotentialSqlInjectionAttack(productNumber))
! return new Product();
i/ Connect to the AdventureWorks database

}

If the productNumber provided by the user contains characters that are commonly used
by a SQL Injection attack, the method simply returns an empty product, otherwise, it
operates as before.

@ Important Do not return an error message in this situation. An attacker could use
this information to determine that you are explicitly checking for SQL injection attacks

and attempt to probe further. Returning a value that contains no meaningful data pro-

vides no further information to the attacker. Additionally, although not shown in this

example, you should also log this message, and record the identity of the user sending
the message.

4. Add the following statements to the start of the CurrentStockLevel method:

public int CurrentStockLevel(string productNumber)

{
// Check for potential SQL Injection attack
if (IsPotentialSqlInjectionAttack(productNumber))
{

158 Chapter 6 Maintaining Service Contracts and Data Contracts

return 0;

}
// Connect to the AdventureWorks database

3
If the user provides a suspect product number, the method returns a stock level of zero.
5. Add the statements shown below to the start of the ChangeStockLevel method:

public bool ChangeStockLevel(string productNumber, int newStockLevel,
string shelf, int bin)

{
// Check for potential SQL Injection attack
if (IsPotentialSqlInjectionAttack(productNumber) ||
IsPotentialSqlInjectionAttack(shelf))
{
return false;
}
}

This time you need to check two string parameters. The method returns false and does
not update the database if either string is suspicious.

6. Start the solution without debugging. In the ProductsServiceHost form, click Start In the
client console window, press Enter.

All tests should execute successfully.

7. Press Enter to close the client console window. In the ProductsServiceHost form, click
Stop and then close the form.

8. InVisual Studio 2005, edit the Program.cs file in the ProductsClient project. In the Main
method, locate the statement that invokes the GetProduct operation and change the
parameter that the client sends to this operation, like this:

Product product =
proxy.GetProduct("WB-H098'; DELETE FROM Production.Product --");

This rather sneaky piece of code passes a string that contains a valid product number
butalso contains an SQL DELETE statement that maliciously attempts to delete all prod-
ucts from the AdventureWorks database. Although this would most likely fail (even with-
out the code that checks for an SQL injection attack) because of the referential integrity
checking performed by SQL Server, it is still a loophole you would probably rather not
leave exposed.

9. Start the solution without debugging. In the ProductsServiceHost form, click Start In the
client console window, press Enter.

Tests 1, 2, and 4 perform successfully, but the output from test 2 displays an “empty”
product—all the fields are either blank or zero:

10.

11.

Chapter 6 Maintaining Service Contracts and Data Contracts 159

INDOWS\system32\cmd. exe

= WB-HG98

: Display the details of a product

Test 3: Display the stock level of a product
Current stock level: 26652

Test 4: Modify the stock level of a product
Stock changed. Current stock level: 26152

[Press ENTER to finish

Press Enter to close the client console window. In the ProductsServiceHost form, click
Stop and then close the form.

Edit the Program.cs file in the ProductsClient project, and change the line that calls the
GetProduct method back to its original state:

Product product = proxy.GetProduct("WB-H098");

Although the service has changed and a new public method has been added, the service con-
tract has not been updated. The IsPotentialSqllnjectionAttack method is not accessible to cli-
ent applications, which can continue to access the service exactly as before. This is an example
of a nonbreaking change to a service.

Add a parameter to an existing operation in the service contract

1.
2.

Using Visual Studio 2005, edit the ProductsService.cs file in the ProductsService project.

Locate the definition of the IProductsService interface. Add a parameter to the ListProd-
ucts method, as follows:

List<string> ListProducts(string match)

The Adventure-Works organization has dramatically increased the number of products
that they manufacture. The original ListProducts method returns a list comprising thou-
sands of rows. It has therefore been decided to modify this operation to enable the user
to constrain the list of products returned to be those whose name matches a string spec-
ified by the user.

In the ProductsServiceImpl class, update the definition of the ListProducts method:
public List<string> ListProducts(string match)

Add the following statements to the start of the method, before the code that reads the
configuration information for connecting to the database:

// Check for potential SQL Injection attack
if (IsPotentialSqlInjectionAttack(match))
{

return new List<string>Q);

3

160 Chapter 6 Maintaining Service Contracts and Data Contracts

5. Change the SQL statement that retrieves the product numbers from the database as
shown in bold below:

// Retrieve the details of all products by using a DataReader
IDataReader productsReader;

try
{
string queryString = @"SELECT ProductNumber
FROM Production.Product
WHERE Name LIKE '%" + match + "%'";
productsReader = dbAdventureWorks.ExecuteReader(CommandType.Text, queryString);
}

6. Start the solution without debugging. In the ProductsServiceHost form, click Start In the
client console window, press Enter

Test 1 fails, reporting an internal error:

WINDOWS\system32\emd. exe
139 ENTER when the service has started

Test 1: List all products

te

send the exception information back to
ithe client. or turn on tracing as per the Microsoft _MET Framework 3.8 SDK docun|
entation and inspect the server trace logs.
[Press ENTER to finish

7. Press Enter to close the client console window. In the ProductsServiceHost form, click
Stop and then close the form.

The problem now is that the client application is attempting to invoke a version of an opera-
tion that the service no longer implements (the SOAP message expected by the service
includes a parameter that the client has not supplied). This is a breaking change, and presents
an issue that you must address. You will see how in the following exercises.

Add a new operation to the WCF service
1. Using Visual Studio 2005, edit the ProductsService.cs file in the ProductsService project.

2. In the IProductsService interface, remove the parameter from the ListProducts method
and add another version of the ListProducts method, called ListSelectedProducts, that
includes this parameter to the interface, as follows:

// Get the product number of every product

[FaultContract(typeof(ConfigFault))]

[FaultContract(typeof(DatabaseFault))]

[OperationContract(ProtectionLevel=
System.Net.Security.ProtectionLevel.EncryptAndSign)]

List<string> ListProducts(); // Get the product number of selected products

3.

Chapter 6 Maintaining Service Contracts and Data Contracts 161

[FaultContract(typeof(ConfigFault))]
[FaultContract(typeof(DatabaseFault))]
[OperationContract(ProtectionLevel =

System.Net.Security.ProtectionLevel.EncryptAndSign)]
List<string> ListSelectedProducts(string match);

Note C# permits you to have multiple methods in an interface and a class that have
the same name as long as their signatures differ. This is called “overloading.” So, in the-
ory, you could create two versions of the same method, both called ListProducts, one
which takes no parameters and the other which takes a single string parameter. How-
ever, the SOAP standard does not allow a service to expose multiple operations that
share the same name in the same service, so this approach would fail.

Apart from giving the operations different names in the C# interface, an alternative
approach is to use the Name property of the OperationContract attribute in the service
contract, like this:

[OperationContract(Name="ListSelectedProducts"”, ..]
List<string> ListProducts(string match);

WCF uses this property to generate the names for the SOAP request and response
messages. If you don't provide a value for the Name property, WCF uses the name of
the method instead. You should also notice that the name of an operation in a service
contract impacts the SOAP request and response messages, and changing the name of
an operation is therefore a breaking change to the service contract.

In the ProductsServicempl class, change the name of the ListProducts method to ListSe-
lectedProducts:

[PrincipalPermission(SecurityAction.Demand, Role = "WarehouseStaff")]
public List<string> ListSelectedProducts(string match)

{

}

Add a new implementation of the original ListProducts method to the ProductsServicelm-
ple class, like this:
[PrincipalPermission(SecurityAction.Demand, Role = "WarehouseStaff")]

public List<string> ListProducts()

{

return ListSelectedProducts("");
}

The ListProducts method uses the ListSelectedProducts method, passing in an empty
string as the parameter. The SQL SELECT statement in the ListSelectedProducts

method will therefore return all products; the query criteria it generates will be “WHERE
Name LIKE '%%".”

Start the solution without debugging. In the ProductsServiceHost form, click Start In the
client console window, press Enter. All tests should now succeed.

Press Enter to close the client console window. In the ProductsServiceHost form, click
Stop and then close the form.

162

Chapter 6 Maintaining Service Contracts and Data Contracts

Adding a new operation to a service contract is another nonbreaking change. New client appli-
cations can send messages corresponding to the new operation (you can generate a proxy that
includes the new operation by using the svcutil utility if you are building a WCF client appli-
cation). Existing client applications using the old version of the proxy still continue to func-
tion, but are not aware that the new operation exists.

There is still a potential issue, however. If you want new client applications to be able to call
only the new operation (ListSelectedProducts) and not use the older operation (ListProd-
ucts), how can you hide this operation from them? The answer is to use multiple service con-
tracts. Keep the existing service contract unchanged, and define a new service contract that
includes the new version of the operation, but not the old version. The code fragments below
show the existing contract (IProductsService), and the new one (IProductsServiceV2). The
code fragments also show the recommended way of identifying and naming the different ver-
sions of a service contract by using the Namespace and Name properties of the ServiceContract
attribute. By default, the service contract uses the namespace “http://tempuri.org,” and takes
its name from the name of the interface (if you recall, when using the Service Trace Viewer to
examine the messages sent to the ProductsService, you saw that they were all of the form
“http://tempuri.org/IProductsService/...”). When defining a new version of a service contract,
use the Namespace property to identify the version by including the date, but keep the Name
property the same for each version. However, be warned that modifying the Namespace or
Name properties of a service contract constitutes a breaking change as these items are used to
help identify the SOAP messages sent between the client application and the service:

// Service contract describing the operations provided by the WCF service
[ServiceContract(Namespace="http://adventure-works.com/2006/07/04",
Name="ProductsService")]

public interface IProductsService

{
// Get the product number of every product
[FaultContract(typeof(ConfigFault))]
[FaultContract(typeof(DatabaseFault))]
[OperationContract(ProtectionLevel=

System.Net.Security.ProtectionLevel.EncryptAndSign)]

List<string> ListProducts(Q);

// Get the details of a single product

}

// Version 2 of the service contract
[ServiceContract(Namespace="http://adventure-works.com/2006/08/31",
Name="ProductsService")]

public interface IProductsServiceV2

{
// Get the product number of selected products
[FaultContract(typeof(ConfigFault))]
[FaultContract(typeof(DatabaseFault))]
[OperationContract(ProtectionLevel =

Chapter 6 Maintaining Service Contracts and Data Contracts 163

System.Net.Security.ProtectionLevel.EncryptAndSign)]
List<string> ListSelectedProducts(string match);

// Get the details of a single product

}

The service implementation class, ProductsServiceImpl, should implement both of these inter-
faces. The code for the methods common to both interfaces (GetProduct, CurrentStockLevel,
and ChangeStockLevel) needs to be provided only once in this class:

public class ProductsServiceImpl : IProductsService, IProductsServiceV2

{
// Implement ListProducts, ListSelectedProducts,
// GetProduct, CurrentStockLevel, and ChangeStockLevel

}

Finally, create a separate set of endpoints for the new version of the service contract (one for
each binding). You can use the WCF Service Configuration Editor, or edit the service configu-
ration file by hand, to add an endpoint with the contract attribute set to Prod-
ucts.IProductsServiceV2:

<system.serviceModel>

<services>
<service behaviorConfiguration=".."
name="Products.ProductsServiceImpl">
<endpoint binding=".." bindingConfiguration=".."
name=".." contract="Products.IProductsServiceVv2" />
</service>
</services>
</system.serviceModel>

Note You can find a working implementation of the ProductsService service, and a client
application, that provides these two versions of the service contract in the ProductsServiceV?2

folder, located in the Microsoft Press\WCF Step By Step\Chapter 6 folder under My Docu-
ments. You will make use of this solution later in this chapter.

Making Breaking and Nonbreaking Changes to a Service Contract

Strictly speaking, you should consider a service contract to be immutable; any changes that
you make to the contract are likely to affect client applications, which might no longer be able
to communicate with the service correctly. In practice, you have seen that you can make some
changes to a service contract without breaking the terms of this contract as far as a WCF client
application is concerned. Table 6-1 summarizes some common changes that developers fre-
quently make to service contracts and the effects that these changes can have on existing cli-
ent applications.

164

Chapter 6 Maintaining Service Contracts and Data Contracts

Table 6-1 Service Contract Changes

Change

Effect

Adding a new operation

This is a nonbreaking change. Existing client applications are
unaffected, but the new operation is not visible to WCF client
applications connecting to the service by using a proxy gener-
ated from the WSDL description of the original service contract.
Existing client applications that dynamically query services and
construct messages can use the new operation. For more
details, see Chapter 10, "Programmatically Controlling the Con-
figuration and Communications.”

Removing an operation

This is a breaking change. Existing client applications that
invoke the operation will no longer function correctly, although
client applications that do not use the operation remain
unaffected.

Changing the name of an
operation

This is a breaking change. Existing client applications that
invoke the operation will no longer work, although client
applications that do not use the operation remain unaffected.

Note that the name of an operation defaults to the name of the
method in the service contract. You can change the name of a
method but retain the original name of the operation by using
the Name property in the OperationContract attribute of the
method, like this:

[OperationContract (Name="ListProducts")]
List<string> ListAllProducts();

This is good practice, as it removes any dependency between
the service contract and the name of the physical method that
implements the operation.

Changing the protection level
of an operation

This is a breaking change. Existing client applications will not be
able to invoke the operation.

Adding a parameter to an opera-
tion

This is a breaking change. Existing client applications will no
longer be able to invoke the operation, as the SOAP messages
they send will be incompatible with the SOAP messages
expected by the service.

Reordering parameters in an
operation

This is a breaking change. The results are not easily predictable
(some existing client applications might continue to work).

Removing a parameter from an
operation

This is a breaking change. As with reordering parameters, the
results are not easily predictable.

Changing the types of
parameters or the return type
of an operation

This is a breaking change. Existing client applications might
continue to function, but there is a significant risk that data in
SOAP messages will be lost or misinterpreted. This includes
applying or removing the ref and out modifiers to parameters,
even if the underlying type does not change. For more
information, see the section "Modifying a Data Contract” later
in this chapter.

Chapter 6 Maintaining Service Contracts and Data Contracts 165

Table 6-1 Service Contract Changes

Change Effect

Adding a FaultContract to an This is a breaking change. Existing client applications can be

operation sent fault messages that they will not be able to interpret
correctly.

Removing a FaultContract from This is a nonbreaking change. Existing client applications

an operation will continue to function correctly, although any handlers for
trapping the faults specified by this fault contract will be
rendered obsolete.

Changing the Name or This is a breaking change. Existing client applications that
Namespace property of the use the previous name or namespace will no longer be able to
ServiceContract attribute for a send messages to the service.

service contract

Making breaking changes to a service contract requires you to update the client applications
that use the service. If client applications use WCF proxies, you will need to regenerate these
proxies. However, the recommended approach for modifying a service contract is to create a
new version and to leave the existing version intact, as described in the previous section. This
removes the requirement for you to update existing client applications, although they will not
be able to use any new features of the service.

Modifying a Data Contract

The methods in a service contract can take parameters and return values. The data for these
parameters and return values is included in the SOAP messages that pass between the client
application and service. SOAP messages encode data values as tagged XML text. The WCF
runtime uses the built-in XML serialization features of the NET Framework to serialize and
deserialize primitive .NET Framework data types, such as integers, real numbers, or even
strings. For more complex structured types, the service must specify the exact format for the
serialized representation; there could be several ways to depict the same structured data as
XML. You define structured types by using data contracts. The WCF runtime can then use
data contract serializer (an instance of the DataContractSerializer class) to serialize and deseri-
alize these types.

Using a data contract, you can specify exactly how the service expects the data to be formatted
as XML. The data contract is used by a data contract serializer in WCF client applications to
describe how to serialize the data for parameters into XML, and by a data contract serializer in
the service to deserialize the XML back into data values that it can process. Values returned by
a service are similarly serialized as XML and transmitted back to the client application, which
deserializes them.

166 Chapter 6 Maintaining Service Contracts and Data Contracts

Data Contract and Data Member Attributes

You saw in Chapter 1 how to define a simple data contract representing products in the Adven-
tureWorks database. To remind you, this is what the data contract looks like:

// Data contract describing the details of a product
[DataContract]
public class Product

{
[DataMember]
public string Name;

[DataMember]
public string ProductNumber;

[DataMember]
public string Color;

[DataMember]
public decimal ListPrice;

}

Tagging a class with the DataContract attribute marks it as serializable by using the data con-
tract serializer. The data contract serializer will serialize and deserialize each member of the
class marked with the DataMember attribute. In the example shown here, the members of the
class are NET Framework primitive types, and the serializer uses its own built-in rules to con-
vert these types into a form that can be included in an XML message, like this:

<GetProductResponse xmlns="http://adventure-works.com/2006/07/04">
<GetProductResult
xmIns:d4pl="http://schemas.datacontract.org/2004/07/Products"”
xmIns:i="http://www.w3.0rg/2001/XMLSchema-instance">
<d4pl:Color>N/A</d4pl:Color>
<d4pl:ListPrice>4.9900</d4pl:ListPrice>
<d4pl:Name>Water Bottle - 30 o0z.</d4pl:Name>
<d4pl:ProductNumber>WB-H098</d4pl:ProductNumber>
</GetProductResult>
</GetProductResponse>

If any of the members of a data contract are themselves structured types, they should also be
marked with the DataContract attribute. The data contract serializer can then recursively
apply its own serialization and deserialization process to these members.

The DataContract and DataMember attributes have optional properties that you can use to tai-
lor the way in which the data contract serializer performs its work. You will investigate some
of these properties in the exercises in this section.

Change the order of members in the Product data contract

1. Using Visual Studio 2005, open the solution file ProductsService.sln located in the
Microsoft Press\WCF Step By Step\Chapter 6\ProductsServiceV2 folder under your
\My Documents folder.

10.

Chapter 6 Maintaining Service Contracts and Data Contracts 167

This solution contains the implementation of the ProductsService service providing two
versions of the service contract, as described earlier. The client application still uses ver-
sion 1 of the service contract.

Open the ProductsService.cs file in the ProductsService project and locate the Product
class. Note that the order of the members of this class is Name, ProductNumber, Color,
and ListPrice.

Using Windows Explorer, delete the Products.svclog file in the Microsoft Press\WCF
Step By Step\Chapter 6 folder under your \My Documents folder.

In Visual Studio 2005, start the solution without debugging. In the ProductsServiceHost
form, click Start. In the client console window, press Enter.

All tests should run successfully.

Press Enter to close the client console window. In the ProductsServiceHost form, click
Stop, and then close the form.

Return to the Service Trace Viewer, and open the Products.svclog file in the Microsoft
Press\WCF Step By Step\Chapter 6 folder under your \My Documents folder.

In the left pane, click the Message tab. Click the fourth message in the http://adventure-
works.com/2006,07,/04 namespace. This is the GetProductResponse message sent by
the service to the client when replying to a GetProduct message.

Note The WCF service configuration file for this version of the solution enables trac-
ing at the service level rather than the transport level. All messages are traced in their
unencrypted format to make it easier for you to examine their contents.

In the lower right pane, click the Message tab. Scroll this pane to display the body of the
SOAP message. Note that the order of the fields in this message is Color, ListPrice, Name,
and ProductNumber. This sequence is different from the order of the members in the
Product class.

The data contract serializer serializes the members of a data contract in alphabetic order.
Rather than let the names of members imply an order, it is recommended that you use
the Order property of the DataMember attribute to explicitly specify the sequence of the
members.

Close the Products.svclog trace file, but leave the Service Trace Viewer open.

Return to Visual Studio 2005 and edit the ProductsService.cs file in the ProductsService
project. Amend the DataMember attributes of each member as shown below, in bold:

[DataContract]

public class Product

{
[DataMember(Order=0)]
public string Name;

168

Chapter 6 Maintaining Service Contracts and Data Contracts

11.

12.

13.

14.

15.

16.

[DataMember(Order=1)]
public string ProductNumber;

[DataMember(Order=2)]
public string Color;

[DataMember(Order=3)]
public decimal ListPrice;

}
The data contract serializer will serialize members of the Product class starting with the

member with the lowest Order value. If two members have the same Order value, then
they will be serialized in alphabetic order.

Using Windows Explorer, delete the Products.svclog file in the Microsoft Press\WCF
Step By Step\Chapter 6 folder under your \My Documents folder.

In Visual Studio 2005, start the solution without debugging. In the ProductsServiceHost
form, click Start. In the client console window, press Enter.

All tests appear to run successfully. However, if you examine the output from test 2 dis-
playing the details of a product more closely, you should see that the Color is blank and
the Price is zero. Changing the order of members in a data contract is a breaking change
(you will fix the client application later).

Press Enter to close the client console window. In the ProductsServiceHost form, click
Stop and then close the form.

Return to the Service Trace Viewer, and open the Products.svclog file in the Microsoft
Press\WCEF Step By Step\Chapter 6 folder under your \My Documents folder.

In the left pane, click the Message tab. Click the fourth message in the http://adventure-
works.com,/2006,/07,/04 namespace. In the lower right pane, click the Message tab. Note
that the order of the fields in this message is now Name, ProductNumber, Color, and
ListPrice. This sequence now matches the order of the members in the Product class. You
can see that the service is emitting the data in the products contract in the correct
sequence even though the client application is not receiving this data correctly.

Close the Products.svclog trace file, but leave the Service Trace Viewer open.

You need to regenerate the proxy for the client application to make things work properly.
Before doing that though, it is worth also looking at how changing the names of data mem-
bers also affects a data contract.

In a manner similar to the service contract, the data contract serializer uses the name of each
data member to form the name of each serialized field. Consequently, changing the name of a
data member is also a breaking change that requires updating client applications. Like the
operations in a service contract, you can provide a logical name for data members that the
data contract serializer will use in place of the physical name of the data members; the Data-
Member attribute provides the Name property for this purpose. You can use this feature to

Chapter 6 Maintaining Service Contracts and Data Contracts 169

rename the physical members of a data contract while keeping the logical names the same,
like this:

[DataContract]
public class Product

{
[DataMember(Order=0)]
public string Name; // Serializer uses physical name of member

[DataMember (Order=1, Name="ProductNumber")]
public string Number; // Field renamed. Serializer uses Name property

}

The DataContract attribute provides a Namespace property. By default, WCF uses the
namespace “http.//schemas.datacontract.org/2004,/07” with the .NET Framework namespace
containing the data contract appended to the end. In the ProductsService service, the Product
data contract is a member of the Products .NET Framework namespace, so messages are serial-
ized with the namespace “http://schemas.datacontract.org/2004,/07/Products.” You can over-
ride this behavior by specifying a value for the Namespace property of the DataContract
attribute. This is good practice; you can include date information in the namespace to help
identify a specific version of the data contract. If you update the data contract, then modify the
namespace with the update date.

Change the namespace of the Product data contract
1. In Visual Studio 2005, edit the ProductsService.cs file in the ProductsService project.
2. Modify the DataContract attribute for the Product class as shown in bold below:

[DataContract (Namespace=
"http://adventure-works.com/datacontract/2007/03/01/Product™)]
public class Product

{

}
(For the purposes of this exercise, pretend that the current date is 1 March 2007.)

3. Using Windows Explorer, delete the Products.svclog file in the Microsoft Press\WCF
Step By Step\Chapter 6 folder under your \My Documents folder.

4. InVisual Studio 2005, start the solution without debugging. In the ProductsServiceHost
form, click Start. In the client console window, press Enter.

All tests should run, but this time test 2 is also missing the product number and name
(previously, only the color and price were omitted). Changing the namespace for a data
contract is another example of a breaking change.

5. Press Enter to close the client console window. In the ProductsServiceHost form, click
Stop and then close the form.

170

Chapter 6 Maintaining Service Contracts and Data Contracts

6.

8.

Return to the Service Trace Viewer, and open the Products.svclog file in the Microsoft
Press\WCF Step By Step\Chapter 6 folder under your \My Documents folder.

In the left pane, click the Message tab. Click the fourth message in the http://adventure-
works.com,/2006,07,/04 namespace. In the lower right pane, click the Message tab. Verify
that the namespace for the fields in the message body is new namespace; the <GetPro-
ductResult> element creates an alias for the namespace called “d4p1,” and the fields in the
message are prefixed with this alias.

Close the Products.svclog trace file, but leave the Service Trace Viewer open.

You can see that the ProductsService service is formatting messages as expected, although the
client application is not currently processing them correctly. The next step is to regenerate the
proxy for the client application. You will also take the opportunity to switch the client appli-
cation to use version 2 of the ProductsService interface.

Regenerate the proxy class and update the WCF client application

1.

Open a Visual Studio 2005 Command Prompt window and move to the folder
\Microsoft Press\WCF Step By Step\Chapter 6\ProductsServiceV2\ProductsSer-
vice\bin folder under your \My Documents folder.

Run the following command to generate the schema files and WSDL description file the
ProductsService service:

svcutil ProductsService.dl1
This command should generate the following files:

Q adventure-works.com.2006.07.04.wsdl
adventure-works.com.2006.08.31.wsdl
adventure-works.com.2006.07.04.xsd
adventure-works.com.2006.08.31.xsd
schemas.microsoft.com.2003.10.Serialization.xsd

schemas.microsoft.com.2003.10.Serialization. Arrays.xsd

O 0o U0 U 0 O

Products.xsd
0 adventure-works.com.datacontract.2007.03.01.xsd

Notice that as the service now contains two service contracts, this command generates
two WSDL description files with their corresponding schemas.

Run the following command to generate the proxy class from the WSDL description file
for the version 2 interface (2006.08.31) and the schema files:

svcutil /namespace:*,ProductsClient.ProductsService adventure-
works.com.2006.08.31.wsd1 *.xsd /out:ProductsV2.cs

Chapter 6 Maintaining Service Contracts and Data Contracts 171

Note If you need to generate a proxy for the version
1 interface (2006.07.04), then simply specify the appropriate WSDL file.

Leave the Visual Studio 2005 Command Prompt window open, and return to Visual Stu-
dio 2005.

In the ProductsClient project, delete the Products.cs file.

In the Project menu, click Add Existing Item. Move to the Microsoft Press\WCF Step By
Step\Chapter 6\ProductsServiceV2\ProductsService\bin folder, located under your
\My Documents folder, and add the file ProductsV2.cs.

The client application currently invokes the ListProducts operation. This operation is not
available in version 2 of the ProductsService service. Edit the Program.cs file in the Prod-
uctsClient project. In the Main method, change the code that performs test 1 to call the
ListSelectedProducts method, passing in a product name that matches all bicycle frames:

// Obtain a 1list of all bicycle frames

Console.WriteLine("Test 1: List all bicycle frames");

string[] productNumbers = proxy.ListSelectedProducts("Frame");

Start the solution without debugging. In the ProductsServiceHost form, click Start. In
the client console window, press Enter.

All tests should run successfully, and test 2 should now display valid data for product
WB-H098 (a 30-0z water bottle of indeterminate color that costs $4.99).

Press Enter to close the client console window. In the ProductsServiceHost form, click
Stop and then close the form.

You can now see that you should carefully assess the impact of updating a data contract, as
doing so can cause client applications to malfunction in ways that are not always apparent.
The nature of SOAP serialization means that reorganized or misplaced fields end up being

assigned default values, which are very easy to miss!

You can also add new members to a data contract. Under some circumstances, you can per-
form this task without breaking existing client applications.

Note Adding a member to a data contract changes the schema exported by WCF. Client
applications use this schema to determine the format of the data they send and receive in
SOAP message. Many client applications that use SOAP (including those built by using WCF,
and ASPNET Web services) will happily ignore additional fields in SOAP messages. However,
a small number of client applications created by using other technologies can enable strict
schema validation. If you have to support these types of client applications, you cannot add
new fields to a data contract without updating those client applications as well. In these
cases, you should adopt a data contract versioning strategy similar to that shown for version-
ing service contracts. For more information, see the topic, Best Practices: Data Contract Ver-
sioning in the Microsoft Windows SDK documentation, also available on the Microsoft Web
site at http.//windowssdk.msdn.microsoft.com/en-us/library/ms733832.aspx.

172 Chapter 6 Maintaining Service Contracts and Data Contracts

Add a new field to the Product data contract to examine how a client handles
unexpected fields

1.
2.

Using Visual Studio 2005, edit the ProductsService.cs file in the ProductsService project.
Add the following member, shown in bold, to the end of the Product data contract:

public class Product
{

[DataMember (Order=0)]
public decimal StandardCost; }
The StandardCost in the Product table in the AdventureWorks database records the cost of
the product to the Adventure Works organization. The difference between the value in the
ListPrice column and this one is the profit that Adventure Works makes whenever it sells
an item. Adding this member with the Order property set to zero causes it to be serialized
as the second member of the data contract. The Name member, which also has the Order
property set to zero, will be output first, as it comes alphabetically before StandardCost.

Note As mentioned earlier, | would not normally recommend that you rely on alpha-
betical order to determine the sequence of members in a data contract, but in this
case there is a reason for this approach; you will quickly be able to see what happens
in a client application when an unexpected data member appears in the middle of a
data contract.

Find the GetProduct method in the ProductsServiceImpl class. In this method, update the
SQL statement that retrieves product information from the database, as follows:

// Retrieve the details of the selected product by using a DataReader
string queryString =
@"SELECT ProductNumber, Name, Color, ListPrice, StandardCost
FROM Production.Product
WHERE ProductNumber = '" + productNumber +

LU RTI
H

In the block of code belonging to the if statement that populates the product passed
back to the client application, add the following statement to copy the value in the Stan-
dardCost column to the Product object:

if (productsReader.Read())
{

product.StandardCost = productsReader.GetDecimal(4); }

Using Windows Explorer, delete the Products.svclog file in the Microsoft Press\WCF
Step By Step\Chapter 6 folder under your \My Documents folder.

In Visual Studio 2005, start the solution without debugging. In the ProductsServiceHost
form, click Start. In the client console window, press Enter.

10.

11.
12.

13.

14.

15.

16.

Chapter 6 Maintaining Service Contracts and Data Contracts 173

All tests should run successfully, including test 2, which completely ignores the new
member of the data contract. Adding a new member in the middle of a data contract
does not affect the client application at all.

Press Enter to close the client console window. In the ProductsServiceHost form, click
Stop and then close the form.

Return to the Service Trace Viewer, and open the Products.svclog file in the Microsoft
Press\WCF Step By Step\Chapter 6 folder under your \My Documents folder.

In the left pane, click the Message tab. Click the fourth message in the http:;//adventure-
works.com,/2006,/07,/04 namespace. Remember that this is the GetProductResponse
message sent by the service to the client when replying to a GetProduct message.

In the lower right pane, click the Message tab. Scroll this pane to display the body of the
SOAP message. Notice that the StandardCost field appears between the Name and Pro-
ductNumber fields.

The data contract serializer serializes every member of the data contract. The WCEF client
application is not expecting the StandardCost field, and as it does not perform strict
schema validation, the client application simply ignores this extra field.

Close the Products.svclog trace file, and exit the Service Trace Viewer open.
Regenerate the proxy object for the client application:
0 In the Visual Studio 2005 Command Prompt window, run the command:
svcutil ProductsService.d11
0 Run the command:

svcutil /namespace:*,ProductsClient.ProductsService adventure-
works.com.2006.08.31.wsd1 *.xsd /out:ProductsV2.cs

Return to Visual Studio 2005. In the ProductsClient project, delete the ProductsV2.cs
file and replace it with the new file located in the Microsoft Press\WCF Step By

Step\Chapter 6\ProductsServiceV2\ProductsService\bin folder, located under your
\My Documents folder.

Edit the Program.cs file in the ProductsClient project. In the Main method, add a state-
ment after the code that performs test 2, to display the standard cost:
Console.WriteLine("Price: " + product.ListPrice);

Console.WriteLine("Standard Cost: " + product.StandardCost);
Console.WriteLine(Q);

Start the solution without debugging. In the ProductsServiceHost form, click Start. In
the client console window, press Enter.

All tests should run successfully, and test 2 should now include the standard cost
($1.8663).

Press Enter to close the client console window. In the ProductsServiceHost form, click
Stop and then close the form.

174

Chapter 6 Maintaining Service Contracts and Data Contracts

While it is acceptable for a client application to discard a field sent by the service, this scenario
can cause complications if the client application is later expected to send data to the service
that includes this missing field. You will examine this scenario in the next exercise.

Add another operation to the WCF service for investigating data contract serialization

1.
2.

6.

In Visual Studio 2005, edit the ProductsService.cs file in the ProductsService project.
Add the following operation to the IProductServiceV2 service contract:

public interface IProductServiceV2

{
// Update the details of the specified product in the database
[OperationContract]
void UpdateProductDetails(Product product);

}

A client application will be able to use this operation to modify the details of a product
in the database.

Add the implementation of the UpdateProductDetails method to the end of the Prod-
uctsServiceImpl class:

public class ProductsServiceImpl

{
public void UpdateProductDetails(Product product)
{
string msg = String.Format("Number: {0}\nName: {1}",
product.ProductNumber, product.Name);
System.Windows.Forms.MessageBox.Show(msg) ;
}
}

This method displays the product number and name sent by the client application. In
the real world, this method would also update the database with the information in the
parameter passed to the method. To keep things straightforward, the logic to perform
this task has been omitted.

Build the solution.
Regenerate the proxy object for the client application:
0 In the Visual Studio 2005 Command Prompt window, run the command:
svcutil ProductsService.d11
0 Run the command:

svcutil /namespace:*,ProductsClient.ProductsService adventure-
works.com.2006.08.31.wsd1 *.xsd /out:ProductsV2.cs

Return to Visual Studio 2005. In the ProductsClient project, delete the ProductsV2.cs
file and replace it with the new file located in the Microsoft Press\WCF Step By

Chapter 6 Maintaining Service Contracts and Data Contracts 175

Step\Chapter 6\ProductsServiceV2\ProductsService\bin folder, located under your
\My Documents folder.

7. Edit the Program.cs file in the ProductsClient project. In the Main method, add the fol-
lowing statements that test the new operation to the try block:

try
{

// Modify the details of this product
Console.WriteLine("Test 5: Modify the details of a product");
product.ProductNumber = "WB-H098";

product.Name = "Water Bottle - 1 Tliter";

proxy .UpdateProductDetails(product);
Console.WriteLine("Request sent");

Console.WriteLine();

// Disconnect from the service
proxy.Close();
}
8. Start the solution without debugging. In the ProductsServiceHost form, click Start. In
the client console window, press Enter.

When test 5 runs, a message box appears displaying the product number and the new
product name.

Click OK to close the message box.

9. Press Enter to close the client console window. In the ProductsServiceHost form, click
Stop and then close the form.

The client application successfully sends a Product object to the WCF service using the defini-
tion from the data contract. But what happens if the client application uses a version of the
data contract that has a missing field?

Add another field to the Product data contract and examine the default value

1. InVisual Studio 2005, edit the ProductsService.cs file in the ProductsService project and
add the following member, shown in bold, to the end of the Product data contract:

public class Product

{

[DataMember (Order=4)]

public bool FinishedGoodsFlag; }
The FinishedGoodsFlag in the Product table indicates whether the product is a com-
plete item (such as a water bottle) or a component used to construct other parts (such
as a chaining nut).

2. In the UpdateProductDetails method in the ProductsServiceImpl class, modily the state-
ments that display the product details to include the FinishedGoodsFlag member:

176

Chapter 6 Maintaining Service Contracts and Data Contracts

public void UpdateProductDetails(Product product)

{
string msg = String.Format("Number: {0}\nName: {1}\nFlag: {2}",
product.ProductNumber, product.Name, product.FinishedGoodsFlag);
System.Windows.Forms.MessageBox.Show(msg) ;
}

3. Start the solution without debugging. In the ProductsServiceHost form, click Start. In
the client console window, press Enter.

When test 5 runs, the message box displays the value False for the FinishedGoodsFlag.
The client application is still using the old version of the Product data contract and did
not populate this field—this is the default value for a Boolean field in a SOAP message.

Click OK to close the message box.

4. Press Enter to close the client console window. In the ProductsServiceHost form, click
Stop and then close the form.

As when changing the order of data members, you should be very mindful of existing client
applications when adding a new member to a data contract. If the client application does not
populate every field in a serialized object, WCF will use default values—False for Booleans, 0
for numerics, and null for objects. If these default values are unacceptable, you can customize
the serialization and deserialization process by adding methods annotated with the OnSerial-
izing and OnDeserializing attributes to the WCF service.

More Info The details of customizing the serialization process are beyond the scope of
this book, but for more information, examine the topic Version Tolerant Serialization Call-
backs in the Microsoft Windows SDK documentation, also available on the Microsoft Web site
at http.//windowssdk.msdn.microsoft.com/en-us/library/ms733734.aspx.

Data Contract Compatibility

If you need to version a data contract, you should do so in a manner that maintains compati-
bility with existing client applications. The DataMember attribute provides two properties that
can assist you:

B [sRequired. If you set this property to True, then the SOAP message that the service
receives must include a value in this data member. By default, the value of this property
is False, and the WCF runtime will generate default values for any missing fields.

m EmitDefaultValue. If you set this property to True, the WCF runtime on the client will gen-
erate a default value for a data member if it is not included in the SOAP message sent by
the client application. This property is True by default.

If you need to maintain strict conformance to a data contract in future versions of the service,
you should set the IsRequired property of each data member in the data contract to True and
set the EmitDefaultValue property to False when building the first version of a service. You should

Chapter 6 Maintaining Service Contracts and Data Contracts 177

never make a data member mandatory (IsRequired set to True) in a new version of a data con-
tract if it was previously optional (IsRequired set to False).

It is possible for a client application to request data conforming to a data contract from a ser-
vice, modify that data, and then submit it back to the service, in a manner similar to calling the
GetProduct method followed by the UpdateProductDetails method in the ProductsService
example. If a client application uses the old version of a data contract that is missing one or
more members, such as the FinishedGoodsFlag, what happens to this information when the
client sends the data back to the service? The WCF runtime implements a technique called
“Round-tripping” to ensure that data does not get lost.

Examine how the WCF runtime performs round-tripping
1. In Visual Studio 2005, edit the ProductsService.cs file in the ProductsService project.

2. In the GetProduct method in the ProductsServiceImpl class, add the statement shown in
bold below to the end of the block belonging to the if statement that populates the Prod-
uct object returned to the client application:

if (productsReader.Read())
{

product.FinishedGoodsFlag = true;

}
Remember that the default value for Booleans is false.

3. Start the solution without debugging. In the ProductsServiceHost form, click Start. In
the client console window, press Enter.

When test 5 runs, the message box displays the value True for the FinishedGoodsFlag.
This is the value originally provided by the service and which has been sent through the
client application and back to the service. Although the client application does not know
anything about this field, it has managed to preserve its value.

Click OK to close the message box.

4. Press Enter to close the client console window. In the ProductsServiceHost form, click
Stop and then close the form.

The WCEF library performs round-tripping by using the IExtensibleDataObject interface. If you
examine the code in the ProductsV2.cs file, you will see that the client proxy version of the
Product class implements this interface. This interface defines a single property called Exten-
sionData, of type ExtensionDataObject. The ExtensionData property generated for the client
proxy simply reads and writes data to a private field of type ExtensionObjectData, like this:

public partial class Product : object,
System.Runtime.Serialization.IExtensibleDataObject
{
private System.Runtime.Serialization.ExtensionDataObject
extensionDataField;

public System.Runtime.Serialization.ExtensionDataObject ExtensionData

178 Chapter 6 Maintaining Service Contracts and Data Contracts

{
get

return this.extensionDataField;

this.extensionDataField = value;

}

The extensionDataField field acts as a “bucket” for all undefined data items received by the cli-
ent; rather than discarding them, the proxy automatically stores them in this field. When the
client proxy transmits the Product object back to the service, it includes the data in this field.
If you need to disable this feature (if you want to ensure strict schema compliance in client
applications, for example), you can set the IgnoreExtensionDataObject property of the data con-
tract serializer in the endpoint behavior to true for the endpoint that the client is using. You
can perform this task by using the client application configuration file, like this:

<system.serviceModel>
<behaviors>
<endpointBehaviors>
<behavior name="IgnoreBehavior">
<dataContractSerializer ignoreExtensionDataObject="true" />
</behavior>
</endpointBehaviors>
</behaviors>

<client>

<endpoint address="net.tcp://localhost:8080/TcpProductsService"
behaviorConfiguration="IgnoreBehavior” ... />
</client>

</system.serviceModel>

You can also disable extension data objects on the server-side by setting the IgnoreExtension-
DataObject property of data contract serializer for a single service endpoint or for all server
endpoints by adding a service behavior.

Data Contract Serialization and Security

Remember that a data contract provides a potential entry point for a malicious user to
hack into your system—by attempting a SQL Injection attack, for example. You must
design your data contracts to be resistant to misuse such as this.

Another common example is a “Denial of Service” attack. In this type of attack, a user
invokes methods in your service by sending them vast quantities of data. Your service
then spends much of its time simply trying to receive and read this data, and perfor-
mance suffers accordingly. To avoid this type of attack, don’t define data contracts that
involve large, nested data structures, arrays, or collections of indeterminate length. If you

Chapter 6 Maintaining Service Contracts and Data Contracts 179

must define data contracts that allow a user to send an array, collection, or nested data,
then limit the size of the data they can send by using the readerQuota properties of the
service bindings:
<system.serviceModel>
<bindings>
<netTcpBinding>
<binding name="ProductsServiceTcpBindingConfig">

<readerQuotas maxDepth="2" maxStringContentLength="1024"
maxArraylLength="1024" />

</binding>
</netTcpBinding>
</bindings>
<services>
<service ...>
<endpoint binding="netTcpBinding"
bindingConfiguration="ProductsServiceTcpBindingConfig" .../>

</service>
</services>

</system.serviceModel>

The readerQuotas properties include:

m MaxArrayLength. This is the maximum length of any array, in bytes, that the user
can send to the service.

® MaxDepth. If a data structure contains nested data structures, this value specifies
the maximum level of nesting allowed.

m MaxStringContentLength. This is the maximum length of any string, in characters,
that the user can send to the service.

If a client application attempts to send a message of a size that exceeds these parameters,
WCEF will abort the request. By default, these properties are set to zero, which turns off
any restrictions on data length.

Summary

In this chapter, you have learned how WCEF uses service and data contracts to define the oper-
ations that a service exposes to client applications and the information that client applications
can send to, or receive from, these operations. You have seen why it is important to design ser-
vice and data contracts carefully, and how to create new versions of service and data contracts
while maintaining compatibility with existing client applications.

Chapter 7

Maintaining State and
Sequencing Operations

After completing this chapter, you will be able to:

Describe how WCF creates an instance of a service.
Explain the different options available for creating service instances.

Manage state information in a WCF service in a scalable manner.

Fine-tune the way in which the WCF runtime manages service instances.
m Describe how to control the life cycle of a service instance.

In all the exercises that you have performed so far, the client application has invoked a series
of operations in a WCF service. The order of these operations has been immaterial, and calling
one operation before another has had no impact on the functionality of either; the operations
are totally independent. In the real world, a Web service might require that operations be
invoked in a particular sequence. For example, if you are implementing shopping cart func-
tionality in a service, it does not make sense to allow a client application to perform a checkout
operation to pay for goods before actually putting anything into the shopping cart.

The issue of sequencing operations should naturally lead you to consider the need to main-
tain state information between operations. Taking the shopping cart example, where should
the data that describes the items in the shopping cart be held? You have at least two options:

® Maintain the shopping cartin the client application, pass the information that describes
the shopping cart contents as a parameter to each operation, and return the updated
shopping cart contents from the operation back to the client. This is a variation of the
solution implemented by traditional Web applications (including ASPNET Web appli-
cations) that used cookies stored on the user’s computer to store information. It relieved
the Web application of the burden of maintaining state information between client calls,
but there was nothing to stop the client application directly modifying the data in the
cookie or even inadvertently corrupting it in some manner. Additionally, cookies can be
a security risk, so many Web browsers implement features to enable a user to disable
their use, making it difficult to store state information on the user’s computer. In a Web
service environment (as opposed to a Web application and browser combination), a cli-
ent application can maintain state information by using its own code rather than relying
on cookies. However, this strategy ties the client application to the Web service and can
result in a very tight coupling between the two, with all the inherent fragility and main-
tenance problems that this can cause.

181

182 Chapter 7 Maintaining State and Sequencing Operations

® Maintain the shopping cartin the service. The first time the user running the client appli-

cation attempts to add something to the shopping cart, the service creates a data struc-
ture to represent the items being added. As the user adds further items to the shopping
cart, they are stored in this data structure. When the user wants to pay for the items in
the shopping cart, the service can calculate the total, perform an exchange with the user
through the client application to establish the payment method, and then arrange for
dispatch of the items. In a WCF environment, all interactions between the client appli-
cation and the service are performed by invoking well-defined operations specified by
using a service contract. Additionally, the client application does not need to know how
the service actually implements the shopping cart.

The second approach sounds the more promising of the two, but there are several issues that
you must address when building a Web service to handle this scenario. In this chapter, you
will investigate some of these issues, and see how you can resolve them.

Managing State in a WCF Service

It makes sense to look at how to manage and maintain state in a WCF service first and then
return to the issue of sequencing operations later.

The exercises that you performed in previous chapters involved stateless operations. All the
information required to perform an operation in the ProductsService service has been passed
in as a series of parameters by the client application. When an operation has completed, the
service “forgets” that the client ever invoked it! In the shopping cart scenario, the situation is
different. You must maintain the shopping cart between operations. In the exercises in this
section, you will learn that this approach requires a little thought and careful design.

Create the ShoppingCartService service

1.

Using Visual Studio 2005, create a new project. Select the .NET Framework 3.0 project
types under Visual C# and use the WCF Service Library template. Name the project
ShoppingCartService and save it in the Microsoft Press\WCF Step By Step\Chapter 7
folder under your \My Projects folder.

In Solution Explorer, rename the Classl.cs file as ShoppingCartService.cs.

In the code view window displaying the ShoppingCartService.cs file, delete all the com-
ments and code apart from the using statements at the top of the file.

In Solution Explorer, add references to the Microsoft. Practices. EnterpriseLibrary.Data.dll,
Microsoft. Practices. EnterpriseLibrary. Common.dll, and Microsoft. Practices.ObjectBuilder.dll
assemblies located in the C:\Program Files\Microsoft Enterprise Library\bin folder.

In the code view window displaying ShoppingCartService.cs, add the following using
statements to the list at the top of the file:

using Microsoft.Practices.EnterpriseLibrary.Data;
using System.Data;

Chapter 7 Maintaining State and Sequencing Operations 183

Add a namespace definition for the ShoppingCartService namespace to the file, under-
neath the using statements. The file should look like this:

using System;

using System.Collections.Generic;

using System.Text;

using System.ServiceModel;

using System.Runtime.Serialization;

using Microsoft.Practices.EnterpriseLibrary.Data;
using System.Data;

namespace ShoppingCartService

{

}

Add the following data structure shown in bold to the ShoppingCartService namespace:

namespace ShoppingCartService

{
// Shopping cart item
class ShoppingCartItem
{
public string ProductNumber;
public string ProductName;
public decimal Cost;
public int Volume;
}
}

This class defines the items that can be stored in the shopping cart. A shopping cart will
contain a list of these items. Notice that this is not a data contract; this class is for internal
use by the service. If a client application queries the contents of the shopping cart, the
service will send it a simplified representation as a string. In this way, there should be no
dependencies between the structure of the shopping cart and the client applications that
manipulate them.

Add the following service contract to the ShoppingCartService namespace, after the
ShoppingCartltem class:

namespace ShoppingCartService

{

[ServiceContract(Namespace = "http://adventure-works.com/2007/03/01",
Name = "ShoppingCartService")]
public interface IShoppingCartService
{
[OperationContract(Name="AddItemToCart")]
bool AddItemToCart(string productNumber);

[OperationContract(Name = "RemoveItemFromCart')]
bool RemoveItemFromCart(string productNumber);

[OperationContract(Name = "GetShoppingCart")]
string GetShoppingCart();

184 Chapter 7 Maintaining State and Sequencing Operations

10.

11.

[OperationContract(Name = "Checkout")]
bool Checkout();

}

The client application will invoke the AddItemToCart and RemoveltemFromCart opera-
tions to manipulate the shopping cart. In the AdventureWorks database, items are identi-
fied by their product number. To add more than one instance of an item requires
invoking the AddItemToCart operation once for each instance. These operations return
true if they are successful, false otherwise.

The GetShoppingCart operation will return a string representation of the shopping cart
contents that the client application can display.

The client application will call the Checkout operation if the user wants to purchase the
goods in the shopping cart. Again, this operation returns true if it is successful, false oth-
erwise.

Note For the purposes of this example, assume that the user has an account with
Adventure-Works, and so the Checkout operation simply arranges dispatch of the
goods to the customer’s address. The customer will be billed separately.

Add the following class to the ShoppingCartService namespace:

namespace ShoppingCartService

{
public class ShoppingCartServiceImpl : IShoppingCartService
{
}

}

This class will implement the operations for the IShoppingCartService interface.
Add the shoppingCart variable shown below to the ShoppingCartServiceImpl class:

public class ShoppingCartServiceImpl : IShoppingCartService
{
private List<ShoppingCartItem> shoppingCart =
new List<ShoppingCartItem>();
}

This variable will hold the user’s shopping cart, comprising a list of ShoppingCartltem
objects.

Add the private method shown below to the ShoppingCartServiceImpl class:

// Examine the shopping cart to determine whether an item with a

// specified product number has already been added.

// If so, return a reference to the item, otherwise return null

private ShoppingCartItem find(List<ShoppingCartItem> shoppingCart,
string productNumber)

{

12.

}

Chapter 7 Maintaining State and Sequencing Operations 185

foreach (ShoppingCartItem item in shoppingCart)

{

if (string.Compare(item.ProductNumber, productNumber) == 0)
{

return item;

return null;

This AddItemToCart and RemoveltemFromCart operations will make use of this utility
method.

Note The code for this method is available in the file Find.txt located in the Chapter
7 folder.

Implement the AddToCart method in the ShoppingCartServiceImpl class, as shown

below:

public bool AddItemToCart(string productNumber)

{

// Note: For clarity, this method performs very limited security
// checking and exception handling

try

{

// Check to see whether the user has already added this
// product to the shopping cart
ShoppingCartItem item = find(shoppingCart, productNumber);

// If so, increment the volume
if (item != null)
{

item.Volume++;

return true;

}

// Otherwise retrieve the details of the product from the database
else
{
// Connect to the AdventureWorks database
Database dbAdventureWorks =
DatabaseFactory.CreateDatabase("AdventureWorksConnection");

// Retrieve the details of the selected product
string queryString = @"SELECT Name, ListPrice
FROM Production.Product
WHERE ProductNumber = '" + productNumber + "'";
IDataReader productsReader =
dbAdventureWorks.ExecuteReader (CommandType.Text, queryString);

// Check to see whether the user has already added
// this product to the shopping cart
// Create and populate a new shopping cart item

186 Chapter 7 Maintaining State and Sequencing Operations

ShoppingCartItem newItem = new ShoppingCartItem();
if (productsReader.Read())

{
newItem.ProductNumber = productNumber;
newItem.ProductName = productsReader.GetString(0);
newItem.Cost = productsReader.GetDecimal(1);
newItem.Volume = 1;
// Add the new item to the shopping cart
shoppingCart.Add(newItem) ;
// Indicate success
return true;
}
else
{
// No such product in the database
return false;
}
}
}
catch (Exception)
{
// Indicate failure
return false;
}
}
Note The code for this method is available in the file AdditemToCart.txt located in
the Chapter 7 folder.

For clarity, this method does not perform any security checking (such as protecting
against SQL injection attacks) and exception handling is minimal. In a production
application, you should address these aspects robustly, as described in the preceding
chapters.

13. Add the RemoveltemFromCart method shown below to the ShoppingCartServiceImpl
class:

public bool RemoveItemFromCart(string productNumber)
{
// Determine whether the specified product has an
// item in the shopping cart
ShoppingCartItem item = find(shoppingCart, productNumber);

// If so, then decrement the volume
if (item != null)
{

item.Volume--;

// If the volume is zero, remove the item from the shopping cart
if (item.Volume == 0)
{

shoppingCart.Remove(item);

&

&

Chapter 7 Maintaining State and Sequencing Operations 187
3
// Indicate success
return true;

3

// No such item in the shopping cart
return false;

Note The code for this method is available in the file RemoveltemFromCart.txt
located in the Chapter 7 folder.

14. Implement the GetShoppingCart method in the ShoppingCartServiceImpl class, as fol-
lows:

15.

public string GetShoppingCart()

{

// Create a string holding a formatted representation
// of the shopping cart
string formattedContent =
decimal totalCost = 0;

foreach (ShoppingCartItem item in shoppingCart)
{
string itemString = String.Format(
"Number: {0}\tName: {1}\tCost: {2}\tVolume: {3}",
item.ProductNumber, item.ProductName, 1item.Cost,
item.Volume);
totalCost += (item.Cost * item.Volume);
formattedContent += itemString + "\n";

}

formattedContent += "\nTotalCost: " + totalCost;
return formattedContent;

Note The code for this method is available in the file GetShoppingCart.txt located in
the Chapter 7 folder.

This method generates a string describing the contents of the shopping cart. The string
contains a line for each item, with the total cost of the items in the shopping cart at the
end.

Note Although not shown in this method, you should format numeric values con-
taining monetary items using the current locale.

Add the Checkout method to the ShoppingCartServiceImpl class, as follows:

188 Chapter 7 Maintaining State and Sequencing Operations

16.

public bool Checkout()

{
// Not currently implemented - just return true
return true;

}

This method is simply a placeholder. In a production system, this method would per-
form tasks such as arranging the dispatch of items, billing the user, and updating the
database to reflect the changes in stock volume according to the user’s order.

Build the solution.

You now need to build a host application for this service. You will use a simple console appli-
cation for this purpose.

Create a host application for the ShoppingCartService service

Q|
Q)

Add a new project to the ShoppingCartService solution. Select the Windows project
types under Visual C# and use the Console Application template. Name the project
ShoppingCartHost and save it in the Microsoft Press\WCF Step By Step\Chapter
7\ShoppingCartService folder under your \My Projects folder.

Tip In the File menu, point to Add, and then click New Project to add a new project
to a solution.

Add the App.contfig file located in the Microsoft Press\WCF Step By Step\Chapter
7\Config folder under your \My Projects folder to the ShoppingCartHost project.

This configuration file currently just contains the definition of the connection string that
the service uses for connecting to the AdventureWorks database.

Tip In the Project menu, click Add Existing item to add a file to a project. You will
also need to select All Files (*.*) in the Files of type dropdown in the Add Existing Item
dialog box to display the App.config file.

Edit the App.config file by using the WCF Service Configuration Editor. In the right
pane, click Create a New Service.

The New Service Element Wizard starts.

In the “What is the service type of your service?” page, click Browse. In the Type Browser
window, move to the ShoppingCartService\ShoppingCartService\bin\Debug folder
under the Chapter 7 folder, and double-click the ShoppingCartService.dll assembly. Select
the ShoppingCartService.ShoppingCartServicelmpl type, and then click Open. In the
“What is the service type of your service?” page, click Next.

In the “What service contract are you using?” page, select the ShoppingCartSer-
vice. IShoppingCartService contract, and then click Next.

10.

11.

12.

13.

Chapter 7 Maintaining State and Sequencing Operations 189

In the “What communications mode is your service using?” page, click HTTP, and then
click Next.

In the “What method of interoperability do you want to use?” page, select Advanced Web
Services interoperability, select Simplex communication, and then click Next.

In the “What is the address of your endpoint?” page, enter http://localhost:9000
/ShoppingCartService/ShoppingCartService.svc and then click Next.

In the “The wizard is ready to create a service configuration” page, click Finish.

The wizard adds the service to the configuration file, and creates an endpoint definition
for the service.

Save the configuration file, and then exit the WCF Service Configuration Editor. Allow
Visual Studio 2005 to reload the updated App.config file. The <system.serviceModel>
section should look like this:

<system.serviceModel>
<services>
<service name="ShoppingCartService.ShoppingCartServiceImpl">
<endpoint address=
"http://localhost:9000/ShoppingCartService/ShopppingCartService.svc"
binding="wsHttpBinding" bindingConfiguration="" contract="ShoppingCartService.
IShoppingCartService" />
</service>
</services>
</system.serviceModel>

In Solution Explorer, add a reference to the System.ServiceModel assembly and a reference
to the ShoppingCartService project to the ShoppingCartHost project.

Edit the Program.cs file in the ShoppingCartHost project. Add the following using state-
ment to the list at the top of the file:

using System.ServiceModel;
Add the statements shown below in bold to the Main method in the Program class:

class Program
{
static void Main(string[] args)
{
ServiceHost host = new ServiceHost(
typeof (ShoppingCartService.ShoppingCartServiceImpl));
host.Open(Q);
Console.WriteLine("Service running");
Console.WriteLine("Press ENTER to stop the service");
Console.ReadLine(Q);
host.Close(Q);

}

This code creates a new instance of the ShoppingCartService service, listening on the
HTTP endpoint you specified in the configuration file.

190

Chapter 7 Maintaining State and Sequencing Operations

The next task is to build a client application to test the ShoppingCartService service. You will
create another Console application to do this.

Create a client application to test the ShoppingCartService service

1. Add another new project to the ShoppingCartService solution. Select the Windows
project types under Visual C#, and select the Console Application template. Name the
project ShoppingCartClient and save it in the Microsoft Press\WCF Step By Step\Chap-
ter 7\ShoppingCartService folder under your \My Projects folder.

2. In the ShoppingCartClient project, add a reference to the System.ServiceModel assembly.
3. Generate a proxy class for the client application by using the following procedure:

O Opena Visual Studio 2005 Command Prompt window and move to the Shopping-
CartService\ShoppingCartService\bin\Debug folder in the Microsoft Press\WCF
Step By Step\Chapter 7 folder under your \My Projects folder

0 In the Visual Studio 2005 Command Prompt window, run the command:
svcutil ShoppingCartService.d11
0 Run the command:

svcutil /namespace:*,ShoppingCartClient.ShoppingCartService adventure-
works.com.2007.03.01.wsd1 *.xsd /out:ShoppingCartServiceProxy.cs
4. Return to Visual Studio 2005, and add the ShoppingCartServiceProxy.cs file in the Shop-

pingCartService\ShoppingCartService\bin\Debug folder to the ShoppingCartClient
project.

Note You can also use the Add Service Reference command in the Project menu to

generate the proxy for an HTTP service and add it to the client project. However, the
service must be running for Visual Studio 2005 to be able to do this, and the service
must enable metadata publishing (by default, this feature is disabled). See Chapter 1,
“Introducing Windows Communication Foundation,” for details on how to do this.

5. Add a new application configuration file to the ShoppingCartClient project. Name this
file App.config.

‘ Tip To add a new file to a project, on the Project menu, click Add New Item.

6. Edit the App.config file in the ShoppingCartClient project by using the WCF Service
Configuration Editor. In the left pane, click the Client folder and then click Create a New
Client in the right pane.

The New Client Element Wizard starts.

7. In the “What method do you want to use to create the client?” page, select From service
config. Click Browse by the Conlfig file text box. In the Open dialog box, move to the

10.

11.

12.

13.

Chapter 7 Maintaining State and Sequencing Operations 191

Chapter 7\ShoppingCartService\ShoppingCartHost folder, select the app.config file,
and then click Open. In the “What method do you want to use to create the client?” page
click Next.

In the “Which service endpoint do you want to connect to?” page, accept the default ser-
vice endpoint and then click Next.

In the “What name do you want to use or the client configuration?” page, type
HttpBinding ShoppingCartService and then click Next.

In the “The wizard is ready to create a client configuration” page, click Finish.

The wizard adds the client definition to the configuration file and creates an endpoint
called HttpBinding ShoppingCartService that the client application can use to connect
to the ShoppingCartService service. However, the name of the type implementing the
contract in the client proxy has a different name from that used by the service, so you
must change the value added to the client configuration file.

Click the HttpBinding_ShoppingCartService endpoint in the left pane. In the right pane,
set the Contract property to ShoppingCartClient.ShoppingCartService.ShoppingCartSer-
vice (the type is ShoppingCartService in the ShoppingCartClient.ShoppingCartService
namespace in the client proxy).

Save the configuration file, and exit the WCF Service Configuration Editor. Allow Visual
Studio 2005 to reload the modified App.contfig file. The App.config file for the Shopping-
CartClient application should look like this:

<?xm1 version="1.0" encoding="utf-8" 7>
<configuration>
<system.serviceModel>
<client>
<endpoint address="http://localhost:9000/ShoppingCartService/
ShoppingCartService.svc"
binding="wsHttpBinding" bindingConfiguration="" contract="ShoppingCartClient
.ShoppingCartService.ShoppingCartService"
name="HttpBinding_ShoppingCartService">
<identity>
<certificateReference storeName="My" storelLocation="LocalMachine" x509Find
Type="FindSubjectDistinguishedName" />
</identity>
</endpoint>
</client>
</system.serviceModel>
</configuration>

Remove the <identity> element, and its child <certificateReference> element from the con-
figuration file. This version of the service does not use certificates.

In Visual Studio 2005, edit the Program.cs file in the ShoppingCartClient project. Add
the following using statements to the list at the top of the file.

192 Chapter 7 Maintaining State and Sequencing Operations

using System.ServiceModel;
using ShoppingCartClient.ShoppingCartService;

14. Add the statements below, shown in bold, to the Main method of the Program class:

static void Main(string[] args)

{
Console.WriteLine("Press ENTER when the service has started");
Console.ReadLine();
try
{
// Connect to the ShoppingCartService service
ShoppingCartServiceClient proxy =
new ShoppingCartServiceClient("HttpBinding_ShoppingCartService");
// Add two water bottles to the shopping cart
proxy.AddItemToCart("WB-H098") ;
proxy.AddItemToCart(""WB-H098") ;
// Add a mountain seat assembly to the shopping cart
proxy.AddItemToCart("SA-M198");
// Query the shopping cart and display the result
string cartContents = proxy.GetShoppingCart();
Console.WriteLine(cartContents);
// Disconnect from the ShoppingCartService service
proxy.Close();
}
catch (Exception e)
{
Console.WriteLine("Exception: {0}", e.Message);
}
Console.WriteLine("Press ENTER to finish");
Console.ReadLine();
}
Note Complete code for the Main method is available in the file Main.txt located in
the Chapter 7 folder.

The code in the try block creates a proxy object for communicating with the service. The
application then adds three items to the shopping cart—two water bottles and a moun-
tain seat assembly—before querying the current contents of the shopping cart and dis-
playing the result.

15. In Solution Explorer, right-click the ShoppingCartService solution and then click Set
StartUp Projects. In the right pane of the Solution ‘ShoppingCartService’ Property Pages
dialog box, select Multiple startup projects, and set the Action property for the Shopping-
CartClient and ShoppingCartHost projects to Start. Click OK.

16. Start the solution without debugging. In the client console window displaying the mes-
sage “Press ENTER when the service has started,” press Enter.

Chapter 7 Maintaining State and Sequencing Operations 193

Note If a Windows Security Alert message box appears, click Unblock to allow the
service to use HTTP port 9000.

The client application adds the three items to the shopping cart and displays the result,
as shown in the following image:

\WINDOWS\systenﬂl\c d.exe

Humber: WB-HA98 MName: Water Bottle — 38 oz. Cost: Uo lume =
Humber: SA-M198 Mame: LL Mountain Seat Assembly Cost: 133 34EE Uolume =

TotalCost: 143.3288
[Press ENTER to finish

17. Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

This technique for maintaining the shopping cart in the service appears to work well. But, this
is one of those situations that should leave you feeling a little bit suspicious, as everything
appears to be just a bit too easy!

Service Instance Context Modes

If you think for a minute about what is going on, the service creates an instance of the shop-
ping cart when an instance of the service is itself created by the host; the shoppingCart vari-
able is a private instance variable in the ShoppingCartServiceImpl class. What happens if two
clients attempt to use the service simultaneously? The answer is that each client gets their own
instance of the service, with its own instance of the shoppingCart variable. This is an impor-
tant point. By default, the first time each client invokes an operation in a service, the host cre-
ates a new instance of the service just for that client. How long does the instance last? You can
see from the shopping cart example that the instance hangs around between operation calls,
otherwise it would not be able to maintain its state in an instance variable. The service
instance is only destroyed after the client has closed the connection to the host (in true NET
Framework fashion, you do not know exactly how long the instance will hang around after
the client application closes the connection because it depends on when the .NET Frame-
work garbage collector decides it is time to reclaim memory). Now think what happens if you
have 10 concurrent clients—you get 10 instances of the service. What if you have 10,000 con-
current clients? You get 10,000 instances of the service. If the client is an interactive applica-
tion that runs for an indeterminate period while the user browses the product catalog and
decides which items to buy, you had better be running the host application on a machine with
plenty of memory!

194 Chapter 7 Maintaining State and Sequencing Operations

Note If you are using the TCP, or named pipe transport, you can restrict the maximum

number of concurrent sessions for a service by setting the MaxConnections property of the
binding configuration. For these transports, the default limit is 10 connections. If you are
using IS to host a WCF service using the HTTP or HTTPS transports, you can configure IIS
with the maximum number of concurrent connections it should allow—the details of how to
do this are beyond the scope of this book, as it varies depending on which version of IIS you
are using.

You can control the relationship between client applications and instances of a service by
using the InstanceContextMode property of the ServiceBehavior attribute of the service. You
specify this attribute when defining the class that implements the service contract, like this:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerSession)]
public class ShoppingCartService : IShoppingCartService
{

}

The InstanceContextMode property can take one of the following three values: Instance-
Mode.PerSession, InstanceMode.PerCall, and InstanceMode.Single. The following sections
describe these instance context modes.

The PerSession Instance Context Mode

The PerSession instance context mode specifies that the service instance is created when a cli-
ent application first invokes an operation, and the instance remains active, responding to cli-
ent requests, until the client application closes the connection, typically by calling the Close
method on the proxy object. The time between invoking the first operation and closing the
connection is referred to as the client application’s “session,” and the service instance is pri-
vate to the session. Each time a client application creates a new session, it gets a new instance
of the service. Two sessions cannot share a service instance when using this instance context
mode, even if both sessions are created by the same instance of the client application.

It is possible for a client application to create multiple threads and then attempt to invoke
operations in the same session simultaneously. By default, a service is single-threaded and will
not process more than one request at a time. If a new request arrives while the service is still
processing an earlier request, the WCF runtime causes the new request to wait for the earlier
one to complete. The new request could possibly time-out while it is waiting to be handled.
You can modify this behavior. The ServiceBehavior attribute has another property called Con-
currencyMode. You can set this property to specify how to process concurrent requests in the
same session, like this:

[ServiceBehavior(.., ConcurrencyMode = ConcurrencyMode.Single)]
public class ShoppingCartService : IShoppingCartService

{

Chapter 7 Maintaining State and Sequencing Operations 195

}

The default value for this property is ConcurrencyMode.Single, which causes the service to
behave as just described. You can also set this property to ConcurrencyMode.Multiple, in which
case the service instance is multithreaded and can accept simultaneous requests. However,
setting the Concurrency property to this value does not make any guarantees about synchroni-
zation. You must take responsibility for ensuring that the code you write in the service is
thread-safe.

Note There is a third mode called ConcurrencyMode.Reentrant. In this mode, the service
instance is single-threaded, but allows the code in your service to call out to other services
and applications, which can then subsequently call back into your service. However, this
mode makes no guarantees about the state of data in your instance of the service. It is the
responsibility of your code to ensure that the state of service instance remains consistent,
and that the service doesn't accidentally deadlock itself.

The PerCall Instance Context Mode

The InstanceContextMode.PerCall instance context mode creates a new instance of the ser-
vice every time the client application invokes an operation. The instance is destroyed when
the operation completes. The advantage of this instance context mode is that it releases
resources in the host between operations, greatly improving scalability. If you consider the sit-
uation with 10,000 concurrent users and the PerSession instance context mode, the main
issue is that the host has to hold 10,000 instances of the service, even if 9,999 of them are not
currently performing any operations because the users have gone to lunch without closing
their copy of the client application and terminating their sessions. If you use the PerCall
instance context mode instead, then the host will only need to hold an instance for the one
active user.

The disadvantage of using this instance context mode is that maintaining state between oper-
ations is more challenging. You cannot retain information in instance variables in the service,
so you must save any required state information in persistent storage, such as a disk file or
database. It also complicates the design of operations, as a client application must identify
itself so that the service can retrieve the appropriate state from storage (you will investigate
one way of achieving this in an exercise later in this chapter).

You can see that the lifetime of a service instance depends on how long it takes the service to
perform the requested operation, so keep your operations concise. You should be very careful
if an operation creates additional threads, as the service instance will live on until all of these
threads complete, even if the main thread has long-since returned any results to the client

application; this can seriously affect scalability. You should also avoid registering callbacks in
a service. Registering a callback does not block service completion, and the object calling back
might find that the service instance has been reclaimed and recycled. The CLR traps this even-

196

Chapter 7 Maintaining State and Sequencing Operations

tuality so it is not a security risk, but it is inconvenient to the object calling back as it will
recelve an exception.

The Single Instance Context Mode

The InstanceContextMode.Single instance context mode creates a new instance of the service
the first time a client application invokes an operation and then uses this same instance to
handle all subsequent requests from this client and every other client that connects to the same
service. The instance is destroyed only when the host application shuts the service down. The
main advantage of this instance context mode, apart from the reduced resource requirements,
is that all users can easily share data. Arguably, this is also the principal disadvantage of this
instance context mode!

The InstanceContextMode.Single instance context mode minimizes the resources used by the
service at the cost of the same instance being expected to handle every single request. If you
have 10,000 concurrent users, that could be a lot of requests. Also, if the service is single
threaded (the ConcurrencyMode property of the ServiceBehavior attribute is set to Concurrency-
Mode.Single), then expect many timeouts unless operations complete very quickly. Conse-
quently, you should set the concurrency mode to ConcurrencyMode. Multiple and implement
synchronization to ensure that all operations are thread-safe.

More Info Detailed discussion of synchronization techniques in the .NET Framework is
outside the scope of this book, but for more information see the topic “Synchronizing Data
For Multithreading” in the Microsoft Windows SDK Documentation or on the Microsoft Web
site at http.//msdn2.microsoft.com/en-us/library/z8chs7ft.aspx.

In the next exercise, you will examine the effects of using the PerCall and Single instance con-
text modes.
Investigate the InstanceContextMode property of the ServiceBehavior

1. In Visual Studio 2005, edit the ShoppingCartService.cs file in the ShoppingCartService
project.

2. Add the ServiceBehavior attribute to the ShoppingCartServiceImpl class, with the Instance-
ContextMode property set to InstanceContextMode.PerCall, as shown in bold below:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
public class ShoppingCartService : IShoppingCartService

{

}

3. Start the solution without debugging. In the ShoppingCartClient console window dis-
playing the message “Press ENTER when the service has started,” press Enter.

Chapter 7 Maintaining State and Sequencing Operations 197

The client application adds the three items to the shopping cart as before, but the result
displayed after retrieving the shopping cart from the service shows no items and a total
cost of zero:

INDOWSisystem32\cmd. exe

¥ NTER when the seruvice has started

TotalCost: @
[Press ENTER to finish

Every time the client application calls the service, it calls a new instance of the service.
The shopping cart is destroyed every time an operation completes, so the string returned
by the GetShoppingCart operation is a representation of an empty shopping cart.

Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

In Visual Studio 2005, change the InstanceContextMode property of the ServiceBehavior
attribute of the ShoppingCartService to InstanceContextMode.Single, as follows:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]
public class ShoppingCartService : IShoppingCartService
{

3

Start the solution without debugging. In the ShoppingCartClient console window press
Enter.

This time, the client application displays the shopping cart containing two water bottles
and a mountain seat assembly. All appears to be well at first glance.

Press Enter to close the client application console window, but leave the host application
running.

In Visual Studio 2005, right-click the ShoppingCartClient project, point to Debug, and
click Start new instance.

This action runs the client application again without restarting the service host applica-
tion.

In the ShoppingCartClient console window press Enter.

The shopping cart displayed by the client application now contains four water bottles
and two mountain seat assemblies:

198

Q

Chapter 7 Maintaining State and Sequencing Operations

'C:/Documents and Settings/Student/My Documents/Microsoft Press/Ai

ENTER when the service has started

er: WB-HO98 Name: Water Bottle — 38 o stz 4.9908 Uo lume =
r: SA-M198 Name: LL MHountain Seat ﬂssenbly Cu.,t 133.3400 Uolume:

TotalCost: 286.6400
[Press ENTER to finish

The second run of the client application used the same instance of the service as the first
run, and the items were added to the same instance of the shopping cart.

10. Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

Tip The PerSession instance context mode is the default when you use an endpoint
that requires sessions. This is actually most of the time, unless you disable security
(absolutely not recommended), or use the BasicHttpBinding binding, which does not
support sessions when the service host defaults to using the PerCall instance context
mode. This can be quite confusing, so it is better to always explicitly state the instance
context mode your service requires by using the ServiceBehavior attribute.

Maintaining State with the PerCall Instance Context Mode

The exercises so far in this chapter have highlighted what happens when you change the
instance context mode for a service. In the ShoppingCartService service, which instance con-
text mode should you use? In a real-world environment, using a proper client application
rather than the test code you have been working with, the user could spend a significant
amount of time browsing for items of interest before adding them to their shopping cart. In
this case, it makes sense to use the PerCall instance context mode. But you must provide a
mechanism to store and recreate the shopping cart each time the client application invokes an
operation. There are several ways you can achieve this, including generating an identifier for
the shopping cart when the service first creates it, returning this identifier to the client appli-
cation, and forcing the client to pass this identifier in to all subsequent operations as a param-
eter. This technique, and its variations, are frequently used, but suffer from many of the same
security drawbacks as cookies as far as the service is concerned,; it is possible for a client appli-
cation to forge a shopping cart identifier and hijack another user’s shopping cart.

An alternative strategy is to employ the user’s own identity as a key for saving and retrieving
state information. In a secure environment, this information is transmitted as part of the
request anyway, and so it is transparent to client applications—for example, the wsHttpBind-

&

Chapter 7 Maintaining State and Sequencing Operations 199

ing binding uses Windows Integrated Security and transmits the user’s credentials to the
WCEF service by default. You will make use of this information in the following exercise.

Note The same mechanism works even if you are using a non-Windows specific mecha-
nism to identify users, such as certificates, and so is a valuable technique in an Internet secu-
rity environment. The important thing is that you have a unique identifier for the user—it
does not have to be a Windows username.

Manage state in the ShoppingCartService service

1.

In Visual Studio 2005, edit the ShoppingCartService.cs file in the ShoppingCartService
project.

Add the following using statements to the list at the top of the file:

using System.IO;
using System.Xml.Serialization;

You will use classes in these namespaces to serialize the user’s shopping cart and save it
in a text file.

Modify the definition of the ShoppingCartltem class; mark it with the Serializable
attribute, and change its visibility to public, as shown in bold below:

[Serializable]
public class ShoppingCartItem
{

}
You can only serialize publicly accessible classes by using the XML serializer.
Add the saveShoppingCart method shown below to the ShoppingCartServiceImpl class:

// Save the shopping cart for the current user to a Tocal XML
// file named after the user
private void saveShoppingCart()
{
string userName = ServiceSecurityContext.Current.PrimaryIdentity.Name;
foreach (char badChar in Path.GetInvalidFileNameChars())
{
userName = userName.Replace(badChar, '!');
}
string fileName = userName + ".xm1";
TextWriter writer = new StreamWriter(fileName);

Xm1Serializer ser = new XmlSerializer(typeof(List<ShoppingCartItem>));
ser.Serialize(writer, shoppingCart);
writer.Close();

200

&

&

&

Chapter 7 Maintaining State and Sequencing Operations

Note The code for this method is available in the file SaveShoppingCart.txt located
in the Chapter 7 folder.

This private utility method retrieves the name of the user running the client application
and creates a file name based on this username, with an “.xml” suffix. The username
could include a domain name, with a separating “\” character. This character is not
allowed in file names, so the code replaces any “\” characters, and any other characters
in the username that are not allowed in filenames, with a “I” character.

Note If you are using certificates rather than Window's usernames to identify users in
an Internet environment, the file names will still be legal although they will look a little
strange, as user identities in this scheme have the form “CN=user;
FA097524718BD8765D6E4AA7654891245BCADSS "

The method then uses an XmiSerializer object to serialize the user’s shopping cart to this
file before closing the file and finishing.

Note For clarity, this method does not perform any exception checking. In a produc-
tion environment, you should be prepared to be more robust.

Add the restoreShoppingCart method shown here to the ShoppingCartServiceImpl class:

// Restore the shopping cart for the current user from the local XML
// file named after the user
private void restoreShoppingCart()

{
string userName = ServiceSecurityContext.Current.PrimaryIdentity.Name;
foreach (char badChar in Path.GetInvalidFileNameChars())
{
userName = userName.Replace(badChar, "!');
}
string fileName = userName + ".xm1";
if (File.Exists(fileName))
{
TextReader reader = new StreamReader(fileName);
XmlSerializer ser =
new XmlSerializer(typeof(List<ShoppingCartItem>));
shoppingCart = (List<ShoppingCartItem>)ser.Deserialize(reader);
reader.Close();
}
}

Note The code for this method is available in the file RestoreShoppingCart.txt
located in the Chapter 7 folder.

Chapter 7 Maintaining State and Sequencing Operations 201

This method uses the username to generate a file name using the same strategy as the
saveShoppingCart method. If the file exists, this method opens the file and deserializes
its contents into the shoppingCart variable before closing it. If there is no such file, the
shoppingCart variable is left at its initial value of null.

Note In a production environment, you should verify that the file contains a valid
representation of a shopping cart before attempting to cast its contents and assign it
to the shoppingCart variable.

In the AddItemToCart method, call the restoreShoppingCart method before examining
the shopping cart, as follows:

public bool AddItemToCart(string productNumber)

{
// Note: For clarity, this method performs very Timited security
// checking and exception handling
try
{
// Check to see whether the user has already added this
// product to the shopping cart restoreShoppingCart(Q);
ShoppingCartItem item = find(shoppingCart, productNumber);
}

In the block of code that increments the volume field of an item, following the if state-
ment, call the saveShoppingCart method to preserve its contents before returning;

if (item != null)

{
item.Volume++;
saveShoppingCart(Q);
return true;

}

In the block of code that adds a new item to the shopping cart, call the saveShopping-
Cart method before returning:

if (productsReader.Read())

{
// Add the new item to the shopping cart
shoppingCart.Add(newItem);
saveShoppingCart();
// Indicate success
return true;

}

There is no need to save the shopping cart whenever the method fails (returns false).

In the RemoveltemFromCart method, call the restoreShoppingCart method before
examining the shopping cart, as follows:

202 Chapter 7 Maintaining State and Sequencing Operations

10.

11.

12.

public bool RemoveItemFromCart(string productNumber)

{

// Determine whether the specified product has an

// item in the shopping cart

restoreShoppingCart();

ShoppingCartItem item = find(shoppingCart, productNumber);
}

Save the shopping cart after successfully removing the specified item and before return-
ing true:

// Indicate success
saveShoppingCart();
return true;

In the GetShoppingCart method, call the restoreShoppingCart method before iterating
through the contents of the shopping cart, as follows:

public string GetShoppingCart()

{
restoreShoppingCart();
foreach (ShoppingCartItem item in shoppingCart)
{
}
}

Change the InstanceContextMode property of the ServiceBehavior attribute of the Shop-
pingCartServiceImpl class back to InstanceContextMode.PerCall:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
public class ShoppingCartServiceImpl : IShoppingCartService
{

}

Remember that this instance context mode releases the service instance at the end of
each operation.

Test the state management feature of the ShoppingCartService service

1.

Start the solution without debugging. In the ShoppingCartClient console window, press
Enter.

The client application adds the three items to the shopping cart and then displays the
contents. The service saves and restores the shopping cart between operations.

Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

Start the solution again. In the client application console window, press Enter. This time,
the client displays a shopping cart containing four water bottles and two mountain seat

Chapter 7 Maintaining State and Sequencing Operations 203

assemblies. Because the state information is stored in an external file, it persists across
service shutdown and restart.

Note As an additional exercise, you could add some code to the Checkout method
to delete the shopping cart file for the user after they have paid for their goods.

Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

Using Windows Explorer, move to the Chapter 7\ShoppingCartService\Shopping-
CartHost\bin\Debug folder. You should see an XML file in this folder called YourDo-
main!YourName.xml, where YourDomain is the name of your Windows XP computer, or
the domain you are a member of, and YourName is your Windows username.

Open this file by using Notepad. It should look like this:

<?xml version="1.0" encoding="utf-8"?7>
<ArrayOfShoppingCartItem xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<ShoppingCartItem>
<ProductNumber>WB-H098</ProductNumber>
<ProductName>Water Bottle - 30 o0z.</ProductName>
<Cost>4.9900</Cost>
<Volume>4</Volume>
</ShoppingCartItem>
<ShoppingCartItem>
<ProductNumber>SA-M198</ProductNumber>
<ProductName>LL Mountain Seat Assembly</ProductName>
<Cost>133.3400</Cost>
<Volume>2</VoTlume>
</ShoppingCartItem>
</Array0fShoppingCartItem>

Close Notepad and return to Visual Studio 2005.

Return to Visual Studio 2005, and edit the Program.cs file in the ShoppingCartClient
project. Add the statements shown in bold below to the Main method, replacing LON-
DEV-01 with the name of your domain or computer:

// Connect to the ShoppingCartService service
ShoppingCartServiceClient proxy =
new ShoppingCartServiceClient("HttpBinding_ShoppingCartService");

// Provide credentials to identify the user
proxy.ClientCredentials.Windows.ClientCredential.Domain = "LON-DEV-01";
proxy.ClientCredentials.Windows.ClientCredential.UserName = "Fred";
proxy.ClientCredentials.Windows.ClientCredential.Password = "Pa$$wOrd";

// Add two water bottles to the shopping cart
proxy.AddItemToCart("WB-H098");

204 Chapter 7 Maintaining State and Sequencing Operations

You created the user Fred in Chapter 4, “Protecting an Enterprise WCF Service.”

8. Start the solution without debugging. In the client application console window, press
Enter. The client application displays a shopping cart containing only three items—this
is Fred’s shopping cart and not the one created earlier.

9. Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

10. In Windows Explorer, you should see another XML file in Chapter 7\ShoppingCartSer-
vice\ShoppingCartHost\bin\Debug folder, called YourDomain!Fred.xml.

This solution implements an effective balance between resource use and responsiveness.
Although a new service instance has to be created for every operation, and it takes time to
restore and save session state, you do not need to retain a service instance in memory for every
active client application, so the solution should scale effectively as more and more users
access your service.

There are two other points worth making about the sample code in this exercise:

1. TherestoreShoppingCart and saveShoppingCart methods are not currently thread-safe.
This might not seem important as the ShoppingCartService uses the PerCall instance
context mode and the single-threaded concurrency mode. However, if the same user
(such as Fred) runs two concurrent instances of the client application, it will establish
two concurrent instances of the service, which will both attempt to read and write the
same file. The file access semantics of the NET Framework class library prevents the two
service instances from physically writing to the same file at the same time, but both ser-
vice instances can still interfere with each other. Specifically, the saveShoppingCart
method simply overwrites the XML file, so one instance of the service can obliterate any
data saved by the other instance. In a production environment, you should take steps to
prevent this situation from occurring, such as using some sort of locking scheme, or
maybe using a database rather than a set of XML files.

2. The saveShoppingCart method creates human-readable XML files. In a production envi-
ronment, you should arrange for these files to be stored in a secure location rather than
the folder holding the service executables. For reasons of privacy, you don’t want other
users to be able to access these files or modify them.

Selectively Controlling Service Instance Deactivation

The service instance context mode determines the lifetime of service instances. This property
is global across the service; you set it once for the service class, and the WCF runtime handles
client application requests and directs them to an appropriate instance of the service (possibly
creating a new instance of the service), irrespective of the operations that the client applica-
tion actually invokes.

The WCF runtime enables you to selectively control when a service instance is deactivated,
based on the operations being called. You can tag each method that implements an operation
in a service with the OperationBehavior attribute. This attribute has a property called ReleaseIn-

Chapter 7 Maintaining State and Sequencing Operations 205

stanceMode that you can use to modify the behavior of the service instance context mode. You
use the OperationBehavior attribute like this:

[OperationBehavior(ReleaseInstanceMode = ReleaseInstanceMode.AfterCall)]
public bool Checkout()
{

}
The ReleaseInstanceMode property can take one of these values:

W ReleaselnstanceMode.AfterCall. When the operation completes, the WCF runtime will
release the service instance for recycling. If the client invokes another operation, the
WCEF runtime will create a new service instance to handle the request.

B ReleaselnstanceMode.BeforeCall. If a service instance exists for the client application, the
WCEF runtime will release it for recycling and create a new one for handling the client
application request.

B ReleaselnstanceMode. BeforeAndAfterCall. This is a combination of the previous two val-
ues; the WCF runtime creates a new service instance for handling the operation and
releases the service instance for recycling when the operation completes.

B ReleaselnstanceMode.None. This is the default value. The service instance is managed
according to the service instance context mode.

You should be aware that you can only use the ReleaseInstanceMode property to reduce the life-
time of a service instance, and you should understand the interplay between the InstanceCon-
textMode property of the ServiceBehavior attribute and the ReleaseInstanceMode property of any
OperationBehavior attributes adorning methods in the service class. For example, if you specity
an InstanceContextMode value of InstanceContextMode.PerCall and a ReleaseInstanceMode value
of ReleaseInstanceMode.BeforeCall for an operation, the WCF runtime will still release the ser-
vice instance when the operation completes. The semantics of InstanceContextMode.PerCall
cause the service to be released at the end of an operation, and the ReleaseInstanceMode prop-
erty cannot force the WCF runtime to let the service instance live on. On the other hand, if you
specity an InstanceContextMode value of InstanceContextMode.Single and a ReleaseInstanceMode
value of ReleaseInstanceMode.AfterCall for an operation, the WCF runtime will release the ser-
vice instance at the end of the operation, destroying any shared resources in the process
(there are some threading issues that you should also consider as part of your design if the ser-
vice is multi-threaded, in this case).

The ReleaselnstanceMode property of the OperationBehavior is most commonly used in con-
junction with the PerSession instance context mode. If you need to create a service that uses
PerSession instancing, you should carefully assess whether you actually need to hold a service
instance for the entire duration of a session. For example, if you know that a client always
invokes a particular operation or one of a set of operations at the end of a logical piece of

206

Chapter 7 Maintaining State and Sequencing Operations

work, you can consider setting the ReleaselnstanceMode property for the operation to
ReleaselnstanceMode.AfterCall.

An alternative technique is to make use of some operation properties that you can use to con-
trol the sequence of operations in a session, which you will look at next.

Sequencing Operations in a WCF Service

When using the PerSession instance context mode, it is often useful to be able to control the
order in which a client application invokes operations in a WCF service. Revisiting the Shop-
pingCartService service, suppose that you decide to use the PerSession instance context mode
rather than PerCall. In this scenario, it might not make sense to allow the client application to
remove an item from the shopping cart, query the contents of the shopping cart, or perform
a checkout operation, if the user has not actually added any items to the shopping cart.
Equally, it would be questionable practice to allow the user to add an item to the shopping
cart after the user has already checked out and paid for the items in the cart. There is actually
a simple sequence to the operations in the ShoppingCartService service, and the service
should enforce this sequence:

1. Add anitem to the shopping cart.
2. Add another item, remove an item, or query the contents of the shopping cart.
3. Check out and empty the shopping cart.

When you define an operation in a service contract, the OperationContract attribute provides
two Boolean properties that you can use to control the order of operations and the conse-
quent lifetime of the service instance:

m [sInitiating. If you set this property to true, a client operation can invoke this operation to
initiate a new session and create a new service instance. If a session already exists, then
this property has no further effect. By default, this property is set to true. If you set this
property to false, then a client application cannot invoke this operation until another
operation has initiated the session and created a service instance. At least one operation
in a service contract must have this property set to true.

m [sTerminating. If you set this property to true, the WCF runtime will terminate the session
and release the service instance when the operation completes. The client application
must create a new connection to the service before invoking another operation, which
must have the IsInitiating property set to true. The default value for this property is false.
If no operations in a service contract specify a value of true for this property, the session
remains active until the client application closes the connection to the service.

Chapter 7 Maintaining State and Sequencing Operations 207

Note These properties are specific to WCF, and do not conform to any current WS-* stan-
dards. Using them can impact the interoperability of your service with client applications cre-
ated by using other technologies.

The WCF runtime checks the values of these properties for consistency at runtime in conjunc-
tion with another property for the service contract called SessionMode. The SessionMode prop-
erty of the service contract specifies whether the service supports reliable sessions. If you
specity a value of false for the IsInitiating property of any operation, then you must set the
SessionMode property of the service contract to SessionMode.Required, otherwise the WCF
runtime will throw an exception. Similarly, you can only set the IsTerminating property to true
if the SessionMode property of the service is set to SessionMode.Required.

More Info You will learn more about the SessionMode property of a service contract, and
reliable sessions, in Chapter 9, “Implementing Reliable Sessions.”

In the final set of exercises in this chapter, you will see how to apply the IsInitiating and IsTer-
minating properties of the OperationBehavior attribute.

Control the sequence of operations in the ShoppingCartService service

1. In Visual Studio 2005, edit the ShoppingCartService.cs file in theShoppingCartService
project.

2. Add the SessionMode property to the ServiceContract attribute for the IShoppingCartSer-
vice interface, as shown in bold below:
[ServiceContract(SessionMode = SessionMode.Required,
Namespace = "http://adventure-works.com/2007/03/01",
Name = "ShoppingCartService")]

public interface IShoppingCartService

{
3

3. Modify the operations in the IProductsService interface by specifying which operations
initiate a session and which operations cause a session to terminate, as follows:

public interface IShoppingCartService

{
[OperationContract(Name="AddItemToCart", IsInitiating = true)]
bool AddItemToCart(string productNumber);

[OperationContract(Name = "RemoveItemFromCart", IsInitiating = false)]
bool RemoveItemFromCart(string productNumber) ;

[OperationContract(Name = "GetShoppingCart", IsInitiating = false)]
string GetShoppingCart(Q);

[OperationContract(Name = "Checkout", IsInitiating = false,

208 Chapter 7 Maintaining State and Sequencing Operations

IsTerminating = true)]
bool Checkout();
}

Change the InstanceContextMode property of the service to create a new instance of the
service for each session:
[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerSession)]

public class ShoppingCartServiceImpl : IShoppingCartService
{

}

In the AddItemToCart method, comment out the single statement that calls the restore-
ShoppingCart method and the two statements that call the saveShoppingCart method.

The service is using the PerSession instance context mode, so the session will maintain
its own copy of the user’s shopping cart in memory; these method calls are now unnec-
essary.

In the RemoveltemFromCart method, comment out the statement that calls the restore-
ShoppingCart method and the statement that calls the saveShoppingCart method.

In the GetShoppingCart method, comment out the statement that calls the restoreShop-
pingCart method.

You can test the effects of these changes by modifying the client application.

Test the operation sequencing in the ShoppingCartService service

1.

Edit the ShoppingCartServiceProxy.cs file in the ShoppingCartClient project. This is the
proxy class that you generated earlier. You have modified the service contract, so you
must update this class to reflect these changes. You can use the sveutil utility to generate

anew version of the proxy, but the changes are quite small so it is easier to add them by
hand:

O Modify the ServiceContract attribute for the ShoppingCartService interface and spec-
ify the SessionMode property:

[System.ServiceModel.ServiceContractAttribute(SessionMode=System.ServiceModel.Ses

"

sionMode.Required, Namespace=".", .)]

O Add the IsInitiating property to the OperationContract attribute of the AddItemTo-
Cart, RemoveltemFromCart, and GetShoppingCart methods:

[System.ServiceModel.OperationContractAttribute(IsInitiating = true, Action=".")]
bool AddItemToCart(string productNumber);

[System.ServiceModel.OperationContractAttribute(IsInitiating = false, Action=".. "
)] bool RemoveItemFromCart(string productNumber);

[System.ServiceModel.OperationContractAttribute(IsInitiating = false, Action=".")
] string GetShoppingCart();

Chapter 7 Maintaining State and Sequencing Operations 209

O Add the IsInitiating property and the IsTerminating property to the OperationCon-
tract attribute of the Checkout method:
[System.ServiceModel.OperationContractAttribute(IsInitiating = false,

IsTerminating = true, Action=".")]
boo1l Checkout();

Edit the Program.cs file in the ShoppingCartClient project. Add the statements shown
below in bold between the code that displays the shopping cart and the code that closes
the proxy:

// Query the shopping cart and display the result
string cartContents = proxy.GetShoppingCart();
Console.WriteLine(cartContents);

// Buy the goods in the shopping cart proxy.Checkout(Q);
Console.WriteLine("Goods purchased");

// Go on another shopping expedition and buy more goods
// Add a road seat assembly to the shopping cart
proxy.AddItemToCart(""SA-R127");

// Add a touring seat assembly to the shopping cart
proxy.AddItemToCart('"'SA-T872");

// Remove the road seat assembly
proxy .RemoveItemFromCart("'SA-R127");

// Display the shopping basket
cartContents = proxy.GetShoppingCart(Q);
Console.WriteLine(cartContents);

// Buy these goods as well proxy.Checkout(Q);
Console.WriteLine("Goods purchased");

// Disconnect from the ShoppingCartService service
proxy.Close(Q);

The first statement that invokes the Checkout operation terminates the session and
destroys the shopping cart. The statements that follow therefore require a new session,
with its own shopping cart.

Start the solution without debugging. In the ShoppingCartClient console window, press
Enter.

The client application adds the three items to the shopping cart and outputs the con-
tents. It then displays an error:

210 Chapter 7 Maintaining State and Sequencing Operations

WINDOWS\system32\emd. exe
1 ENTER when the service has started

Nunber: WB-H@?8 Name: Water Bottle — 3@ o H Uo lume =
Nunber: SA-M198 Name: LL Mountain Seat ﬂssenbly Cu H 133 3400 Uolume: 1

s channel cannot send any more messages hecause I[sTerminating oper
d.

ation ’Checkout’ has already been calle
[Press ENTER to finish

This demonstrates that the Checkout method successfully terminated the session. The
service has closed the channel that the client application was using when the session fin-
ished. The client application must create a new channel before it can communicate with
the service again.

4. Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

5. The simplest way to create a new connection is to rebuild the proxy. However, you must
ensure that you provide the user’s credentials again, as these will be lost when the new
instance of the proxy is created.

In Visual Studio 2005, add the following statements after the code that performs the
Checkout operation in the Main method of the Program class in the ShoppingCartSer-
vice project:

// Buy the goods in the shopping cart
proxy.Checkout();
Console.WriteLine("Goods purchased");

// Go an another shopping expedition and buy more goods
proxy = new ShoppingCartServiceClient("HttpBinding_ShoppingCartService");

// Provide credentials to identify the user
proxy.ClientCredentials.Windows.ClientCredential.Domain = "LON-DEV-01";
proxy.ClientCredentials.Windows.ClientCredential.UserName = "Fred";
proxy.ClientCredentials.Windows.ClientCredential.Password = "Pa$$wOrd";

// Add a road seat assembly to the shopping cart
proxy.AddItemToCart("SA-R127");
6. Start the solution again. In the ShoppingCartClient console window, press Enter.

The client application successfully creates a second session after terminating the first.
The second session has its own shopping cart:

Chapter 7 Maintaining State and Sequencing Operations 211

INDOWS\system32\cmd. exe
Pr ENTER when the service arted

Nunber: WB-HB?8 Name: Water Bottle — 3@ o ost Uo lume =
Nunber: SA-M198 Name: LL Mountain Seat ﬂssenbly Cu..t: 133 3400 Vo lume =

Eutﬁlc 143 3200
oods
Nunbe)' SR—TS'?Z Hame: HL Touring Seat Assembly Cost: 196.9200 Uolume:

TutalCu.,t 196.9200
purchase
ENTE

R to finish

7. Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

As an additional exercise, you can test the effects of invoking the RemoveltemFromCart, Get-
ShoppingCart, or Checkout operations without calling AddItemToCart first. These operations
do not create a new session, and the client application should fail, with the exception shown
in Figure 7-1.

AWINDOWSisystem32\emd. exe
ENTER when the service has started

r: WB-HB98 Name: Water Bottle — 30 o Cost: 4.9900 Uolume: 2
r: SA-M198 Name: LL MHountain Seat ﬂssenbly Cost: 133.34080 Uolume: 1

143.3200
Goods pm chased
ion ’RemoveltemFromCart’ cannot be the first operation to b
itiating is false.

Figure 7-1 Invoking operations in the wrong sequence.

Summary

In this chapter, you have seen the different options that the WCF runtime provides for creat-
ing an instance of a service. A service instance can exist for the duration of a single operation
or for the entire session, until the client application closes the connection. In many cases, a
service instance is private to a client, but WCF also supports singleton service instances that
can be shared by multiple instances of a client. You have also seen how you can selectively
control which operations create a new session and which operations close a session.

Chapter 8
Supporting Transactions

After completing this chapter, you will be able to:

m Describe the transaction management protocols available with WCF.
m Use transactions with WCF services and operations.

m Explain how to implement secure, distributed transactions by using the
WS-AtomicTransaction protocol.

m Describe the impact that using transactions can have on the design of a
WOCEF service.

A common requirement of most applications is the need to ensure internal consistency in the
data that they manipulate. You can use transactions to help achieve this aim. A transaction is
an atomic unit of work or a series of operations that should either all be performed or, if some-
thing unexpected happens, all be undone. The classic example of a transaction concerns the
transfer of funds between two bank accounts, comprising the deduction of an amount of
money from one account and an equivalent addition to the other account. If the addition
operation fails, then the deduction operation must be undone, otherwise the money is lost
(and the bank risks losing its trading license!). Traditionally, transactions were associated
with database systems, but the semantics of transactions can be applied to any series of oper-
ations that involve making changes to data.

In a Web service environment, a transaction can span several services, possibly running on dif-
ferent computers within different organizations—this is a distributed transaction. In this envi-
ronment, the underlying infrastructure must be able to guarantee consistency across a
network and between potentially heterogeneous data stores. This is a complex task, bearing in
mind the number of possible failure points in a network. This problem has been the subject of
much research, and the commonly accepted standard mechanism for handling distributed
transactions is the two-phase commit protocol. The OASIS organization has proposed the Web
Services Atomic Transaction (WS-AtomicTransaction) specification describing a standard
mechanism for handling transactions in a Web services infrastructure. The WS-AtomicTrans-
action specification defines the semantics of the two-phase commit protocol between Web ser-
vices. Web services running on an infrastructure that conforms to the WS-AtomicTransaction
specification should be interoperable with each other from a transactional perspective.

More Info For detailed information about the WS-AtomicTransaction specification,
see the Web Services Atomic Transaction document on the Microsoft Web site at
http.//msdn.microsoft.com/library/en-us/dnglobspec/html/ws-atomictransaction.pdf.

213

214

Chapter 8 Supporting Transactions

The WS-AtomicTransaction specification is primarily useful when building Web services.
However, WCF is not just concerned with Web services, and you can use it to build applica-
tions based on many other technologies, such as COM, MSMQ, and .NET Framework Remot-
ing. Microsoft has provided their own transaction management features built into the current
family of Microsoft Windows operating systems—Distributed Transaction Coordinator, or
DTC, which uses its own optimized transaction protocol. Transactions based on the DTC
transaction protocol are referred to as OLE transactions (OLE was the name of a technology
that was the forerunner of COM). OLE transactions are ideal if you are building solutions
based on Microsoft technologies.

The .NET Framework 3.0 provides a number of classes in the System. Transactions namespace.
These classes provide an interface to the transaction management features of WCF, enabling
you to develop code that is independent from the technology used to control the transactions
that your code performs. In this chapter, you will see how to create a WCF service that sup-
ports transactions, and how to build client applications that can initiate and control them.

Using Transactions in the ShoppingCartService Service

The ShoppingCartService service currently enables users to add items to their shopping cart,
but it does not perform many of the consistency checks that a production application should
include. For example, the service always assumes that goods are in stock when adding them
to the user’s shopping cart and makes no attempt to update stock levels. You will rectify these
shortcomings in the exercises in this section.

Implementing OLE Transactions

You will start by examining how to configure a WCF service to use transactions with a TCP end-
point. Endpoints established by using the TCP transport can incorporate OLE transactions.

Enable transactions in the ShoppingCartService service

1. Using Visual Studio 2005, open the solution file ShoppingCartService.sln located in the
Microsoft Press\WCF Step By Step\Chapter 8\ShoppingCartService folder under your
\My Documents folder.

This solution contains a modified copy of the ShoppingCartService, and ShoppingCart-
ServiceHost and ShoppingCartClient projects from Chapter 7, “Maintaining State and
Sequencing Operations.” The ShoppingCartHost project exposes a TCP endpoint rather
than the HTTP endpoint that you configured in Chapter 7, and the ShoppingCartClient
application has been simplified and modified to communicate using this TCP endpoint.

2. Add areference to the System. Transactions assembly to the ShoppingCartService project.
This assembly contains some of the classes and attributes required to manage transac-
tions. Some other types and attributes you will use are in the System.ServiceModel assem-
bly, which is already referenced by the ShoppingCartService project.

Chapter 8 Supporting Transactions 215

Edit the ShoppingCartService.cs file in the ShoppingCartService project.

Locate the ServiceBehavior attribute preceding the ShoppingCartServiceImpl class. Add the
TransactionIsolationLevel property, shown in bold below, to this attribute:
[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerSession,
TransactionIsolationLevel=System.Transactions.IsolationLevel.RepeatableRead)]

public class ShoppingCartServiceImpl : IShoppingCartService
{

}

The TransactionIsolationLevel property determines how the database management sys-
tem (SQL Server in the exercises in this book) lets concurrent transactions overlap. In a
typical system, you need to allow multiple concurrent users to access the database at the
same time. However, this can lead to problems if two users try to modify the same data
at the same time or one user tries to query data that another user is modifying. You must
ensure that concurrent users cannot interfere adversely with each other—they must be
isolated. Typically, whenever a user modifies, inserts, or deletes data during a transac-
tion, the database management system locks the affected data until the transaction com-
pletes. If the transaction commits, the database management system makes the changes
permanent. If an error occurs and the transaction rolls back, the database management
system undoes the changes. The TransactionlsolationLevel property specifies how the
locks taken out during a transaction when it modifies data affect other transactions
attempting to access the same data. It can take one of several values. The most common
ones are:

Q IsolationLevel. ReadUncommitted. This isolation level enables the transaction to read
data that another transaction has modified and locked but not yet committed. This
isolation level provides the most concurrency, at the risk of the user being pre-
sented with “dirty” data that might change unexpectedly if the modifying transac-
tion rolls back the changes rather than committing them.

Q IsolationLevel. ReadCommitted. This isolation level prevents the transaction from
reading data that another transaction has modified, but not yet committed. The
reading transaction will be forced to wait until the modified data is unlocked.
Although this isolation level prevents read access to dirty data, it does not guaran-
tee consistency; if the transaction reads the same data twice, there is the possibility
that another transaction might have modified the data in between reads, so the
reading transaction would be presented with two different versions of the data.

Q IsolationLevel RepeatableRead. This isolation level is similar to the ReadCommitted
isolation level but causes the transaction reading the data to lock it until the read-
ing transaction finishes (the ReadCommitted isolation level does not cause a trans-
action to lock data that it reads). The transaction can then safely read the same
data as many times as it wants and it cannot be changed by another transaction

216

Chapter 8 Supporting Transactions

until this transaction has completed. This isolation level therefore provides more
consistency, at the cost of reduced concurrency.

Q IsolationLevel.Serializable. This isolation level takes the RepeatableRead isolation
level one stage further. When using the RepeatableRead isolation level, data read by
a transaction cannot change. However, it is possible for a transaction to execute the
same query twice and obtain different results if another transaction inserts data
that matches the query criteria: new rows suddenly appear. The Serializable isola-
tion level prevents this inconsistency from occurring by restricting the rows that
other concurrent transactions can add to the database. This isolation level pro-
vides the greatest degree of consistency, but the degree of concurrency can be sig-
nificantly reduced.

Unless you have good reason to choose otherwise, use the IsolationLevel. RepeatableRead
isolation level.

In the ShoppingCartServiceImpl class, add the following OperationBehavior attribute to the
AddItemToCart method:

[OperationBehavior(TransactionScopeRequired=true,
TransactionAutoComplete=false)]

public bool AddItemToCart(string productNumber)

{

}

You are going to modify the AddItemToCart method to check the level of stock for the
selected product and modify the stock level if the product is available. The client appli-
cation should only invoke this operation in the context of a transaction, to ensure that
the changes can be undone if some sort of failure occurs. Setting the TransactionScopeRe-
quired property of the OperationBehavior attribute to true forces the operation to execute
as part of a transaction: either the client application must initiate the transaction (you
will see how to do this shortly) or the WCF runtime will automatically create a new
transaction when this operation runs.

The TransactionAutoComplete property specifies what happens to the transaction when
the operation finishes. If you set this property to true, the transaction automatically com-
mits and makes all its changes permanent. Setting this property to false keeps the trans-
action active; the changes are not committed yet. The default value for this property is
true. In the case of the AddItemToCart method, you don’t want to commit changes and

finish the transaction until the user has checked out, so the code sets this property to
false.

Add the TransactionFlow attribute shown below to definition of the AddItemToCart
method in the IShoppingCartService interface, after the OperationContract attribute. Add
the same attribute to the remaining methods in this interface, as shown in bold below:

public interface IShoppingCartInterface
{

Chapter 8 Supporting Transactions 217

[OperationContract(Name = "AddItemToCart", IsInitiating = true)]
[TransactionFlow(TransactionFlowOption.Mandatory)]
public bool AddItemToCart(string productNumber)

[OperationContract(Name = "RemoveItemFromCart", IsInitiating = false)]
[TransactionFlow(TransactionFlowOption.Mandatory)]
bool RemoveItemFromCart(string productNumber);

[OperationContract(Name = "GetShoppingCart", IsInitiating = false)]
[TransactionFlow(TransactionFlowOption.Mandatory)]
string GetShoppingCart(Q);

[OperationContract(Name = "Checkout", IsInitiating = false,
IsTerminating = true)]

[TransactionFlow(TransactionFlowOption.Mandatory)]

bool Checkout();
}
The description of the TransactionScopeRequired property in the previous step mentioned
that the WCF runtime automatically creates a new transaction when invoking an opera-
tion if necessary. In the shopping cart scenario, you want the client application to be
responsible for creating its own transactions. You can enforce this rule by applying the
TransactionFlow attribute to the operation contract. Specifying a parameter of Transac-
tionFlowOption.Mandatory indicates that the client application must create a transaction
before calling this operation and send the details of this transaction as part of the SOAP
message header when invoking the operation. The other values you can specify are
TransactionFlowOption.Allowed, which will use a transaction created by the client if one
exists but the WCF runtime will create a new transaction if not, and TransactionFlowOp-
tion.NotAllowed, which will always cause the WCF runtime to disregard any client trans-
action and always create a new one.

The default value is TransactionFlowOption. NotAllowed.

You can now amend the code in the ShoppingCartServiceImpl class to check stock levels
and update them in the database, safe in the knowledge that this functionality is pro-
tected by transactions—if anything should go wrong, the changes will be rolled back
automatically.

Add the decrementStock method, shown below, to the ShoppingCartServiceImpl class:

public bool decrementStock(string productNumber)

{
// Update the first row for this product in the
// ProductInventory table that has a quantity value
// of greater than zero

try
{

Database dbAdventureWorks =
DatabaseFactory.CreateDatabase("AdventureWorksConnection");

string inventoryUpdate =

218

Chapter 8

Supporting Transactions
@"UPDATE Production.ProductInventory
SET Quantity = Quantity - 1
WHERE rowguid IN
(SELECT TOP(1) rowguid
FROM Production.ProductInventory
WHERE Quantity > 0
AND ProductID IN
(SELECT ProductID
FROM Production.Product
WHERE ProductNumber = '" + productNumber + "'))";
// Execute the update statement and verify that it updated one row
// If it did, then return true.
// If it did not, then either the product does not exist,
// or there are none in stock, so return false
int numRowsChanged = (int)dbAdventureWorks.ExecuteNonQuery(
CommandType.Text, inventoryUpdate);
return (numRowsChanged == 1);
}

// On an exception, indicate failure
catch (Exception e)
{

return false;

}

Note The code for this method is available in the file DecrementStock.txt located in
the Chapter 8 folder. As with previous examples using SQL statements, this method is
greatly simplified for clarity (and because this is a book about WCF rather than how to
write database access code) and does no checking for a SQL Injection attack or any

other potential hazards.

The purpose of this method is to verify that the specified product is available and then
update the stock level for this product. If you recall from Chapter 1, “Introducing Win-
dows Communication Foundation,” a product can be stored in more than one location
and so have more than one row in the Productinventory table. The rather complicated-
looking SQL UPDATE statement in this method updates the first row for the product
that it finds in the ProductInventory table and that has a quantity of greater than zero. If
the update fails to modify a row, this method returns false to indicate either insufficient
stock (all rows have a zero for the quantity) or that no such product exists (there are no
rows). If the update changes exactly one row, then this method returns true to indicate

success.

Chapter 8 Supporting Transactions 219

Note Strictly speaking, the service should save the value in the rowguid column of
the row it updates in the Productinventory table, so that the corresponding row can be
incremented again if the user decides to remove the item from the shopping cart later.
This functionality is left as an exercise for you to perform in your own time.

It is also possible for this method to cause a database deadlock if multiple service
instances execute it simultaneously. In this situation, SQL Server picks one of the trans-
actions (referred to rather prosaically as the “victim” by SQL Server) and aborts it
releasing any locks held and hopefully enabling other concurrent transactions to com-
plete. This will cause the UPDATE operation to fail and the ExecuteNonQuery command
to throw an exception. If this happens, the method returns false. The important point to
learn from this is that using transactions ensures that the database will remain consis-
tent, even in the face of unforeseen eventualities.

In the AddItemToCart method, change the code that increments the volume of an item
in the shopping cart also to update the stock level in the database, as shown in bold
below:

// If so, increment the volume
if (item != null)
{
if (decrementStock(productNumber))
{ item.Volume++;
return true;
}
else
{
return false;

Pl

Modify the else statement to check that sufficient stock is available in the database before
retrieving the details of the product from the database, as shown in bold below:

// Otherwise retrieve the details of the product from the database
else if (decrementStock(productNumber))

{
// Connect to the AdventureWorks database
} else
{
return false;
}
catch (Exception e)
{

}

220

Chapter 8 Supporting Transactions

10.

11.

12.

Leave the block of code that connects to the database and retrieves the product details
untouched. Be sure to add the additional else statement to the end of the block, immedi-
ately before the catch block, as shown above.

Add an OperationBehavior attribute to the RemoveltemFromCart method, setting the
TransactionScopeRequired property to true and the TransactionAutoComplete property to
false. The method should look like this:

[OperationBehavior(TransactionScopeRequired=true,
TransactionAutoComplete=false)]
public bool RemoveItemFromCart(string productNumber)

{

}

Note If you have the time, you might care to add the appropriate code to this
method to increment the stock level in the database after removing the item from the
shopping cart.

Add another OperationBehavior attribute to the GetShoppingCart method, setting the
TransactionScopeRequired property to true and the TransactionAutoComplete property to
false:

[OperationBehavior(TransactionScopeRequired=true,
TransactionAutoComplete=false)]

public bool GetShoppingCart()

{

}

The GetShoppingCart method does not actually query or modify the database but could
be (and probably would be) called by the client application during a transaction. It is
important that this method does not commit the transaction, hence the need to set the
TransactionAutoComplete property to false. You cannot set the TransactionAutoComplete
property to false without setting the TransactionScopeRequired property to true.

Add a final OperationBehavior attribute to the Checkout method, setting the Transaction-
ScopeRequired property to true and the TransactionAutoComplete property to false:
[OperationBehavior(TransactionScopeRequired=true,

TransactionAutoComplete=false)]

public bool Checkout()
{

}

Having modified the code in the service, you must also change the configuration of the service
endpoint to enable the WCF runtime to “flow” transactions from the client application into
the service. Information about transactions is included in the headers of the SOAP messages
sent by client applications invoking the operations.

Chapter 8 Supporting Transactions 221

Configure the ShoppingCartService service to flow transactions from client applications

1.

Edit the App.config file for the ShoppingCartHost project by using the WCF Service
Configuration Editor.

In the WCF Service Configuration Editor, in the left pane, click the Bindings folder. In
the right pane, click the New Binding Configuration link.

In the Create a New Binding dialog box, select the netTcpBinding binding type, and then
click OK.

In the right pane, change the Name property of the binding to ShoppingCartServiceN-
etTcpBindingConfig. In the General section of the pane, set the TransactionFlow property
to True. Verify that the TransactionProtocol property is set to OleTransactions.

The TransactionFlow property indicates that the service should expect to receive informa-
tion about transactions in the SOAP messages it receives.

The TransactionProtocol property specifies the transaction protocol the service should
use. By default, endpoints based on the TCP transport use the internal DTC protocol
when performing distributed transactions. However, you can configure them to use
transactions that follow the WS-AtomicTransaction protocol by changing this property
to WSAtomicTransactionOctober2004 (you can probably guess the date of the WS-
AtomicTransaction specification to which WCF conforms).

In the left pane, in the Services folder expand the ShoppingCartService.ShoppingCart-
Servicelmpl node, expand the Endpoints folder, and then click the ShoppingCartSer-
viceNetTcpEndpoint node. In the right pane, set the BindingConfguration property of the
endpoint to ShoppingCartServiceNetTcpBindingConfig.

Save the configuration file, and then exit the WCF Service Configuration Editor.

In Visual Studio 2005, double-click the App.config file in the ShoppingCartHost project
to display it in the code view window. Locate the connection string that the service uses
for connecting to the AdventureWorks database. Modify this connection string to include
support for multiple active result sets:

<connectionStrings>
<add name="AdventureWorksConnection" connectionString=
"Database=AdventureWorks;Server=(local)\SQLEXPRESS;Integrated Security=SSPI;
MultipleActiveResultSets=True;"
providerName="System.Data.Sql1Client" />
</connectionStrings>

SQL Server 2005 requires you to enable multiple active result sets, also known as MARS,
to operate with DTC in this environment.

You have configured the ShoppingCartService service to expect the client application to

invoke operations within the scope of a transaction. You now need to modify the client appli-

cation to actually create this transaction.

222

Chapter 8 Supporting Transactions

Create a transaction in the client application

1.

In Visual Studio 2005, add a reference to the System. Transactions assembly to the Shop-
pingCartClient project.

Edit the Program.cs file in the ShoppingCartClient project, and add the following using
statement to the list at the top of the file:

using System.Transactions;

In the Main method, surround the statements that invoke the operations in the Shop-
pingCartService service with the using block shown in bold below:

TransactionOptions tOpts = new TransactionOptions();
tOpts.IsolationLevel = IsolationLevel.RepeatableRead;
tOpts.Timeout = new TimeSpan(0, 1, 0);
using (TransactionScope tx =
new TransactionScope(TransactionScopeOption.RequiresNew, tOpts))
{
// Add two water bottles to the shopping cart
proxy.AddItemToCart("WB-H098");
proxy.AddItemToCart("WB-H098");

// Add a mountain seat assembly to the shopping cart
proxy.AddItemToCart('"SA-M198");

// Query the shopping cart and display the result
string cartContents = proxy.GetShoppingCart();
Console.WriteLine(cartContents);

// Buy the goods in the shopping cart
proxy.Checkout();
Console.WriteLine("Goods purchased™);

// Disconnect from the ShoppingCartService service

proxy.Close();

You can create a new transaction in several ways: a service can initiate a new transaction
automatically by setting the TransactionScopeRequired attribute of the OperationBehavior
property to true as described earlier, an operation can explicitly start a new transaction
by creating a CommittableTransaction object, or the client application can implicitly create
a new transaction. In a WCF client application, the recommended approach is to use a
TransactionScope object.

When you create a new TransactionScope object, any transactional operations that follow
are automatically enlisted into a transaction. If the WCF runtime detects that there is no
active transaction when you create a new TransactionScope object, it can initiate a new
transaction and performs the operations in the context of this transaction. In this case,
the transaction remains active until the TransactionScope object is destroyed. For this rea-
son, it is common practice to use a using block to explicitly delimit the scope of a trans-
action.

5.

Chapter 8 Supporting Transactions 223

The TransactionScopeOption parameter to the TransactionScope constructor deter-
mines how the WCF runtime uses an existing transaction. If this parameter is set to
TransactionScopeOption.RequiresNew, the WCF runtime will always create a new transac-
tion. The other values you can specify are TransactionScopeOption.Required, which will
only create a new transaction if there is not already another transaction in scope
(referred to as the “ambient transaction”), and TransactionScopeOption.Suppress, which
causes all operations in the context of the TransactionScope object to be performed with-
out using a transaction (operations will not participate in the ambient transaction, if
there is one).

The transaction isolation level of any new transactions should match the requirements
of the service. You can specify the isolation level by creating a TransactionOptions object
and referencing it in the TransactionScope constructor, as shown in the code. You can
also specify a timeout value for transactions. This can improve the responsiveness of an
application, as transactions will not wait for an indeterminate period for resources
locked by other transactions to become available—the WCF runtime throws an excep-
tion that the client application should be prepared to handle.

Add the if block and statement shown below around the code that invokes the Checkout
operation:
// Buy the goods in the shopping cart if (proxy.Checkout())

{ tx.Complete(Q);
Console.WriteLine("Goods purchased™); }

By default, when the flow of control leaves the using block (either by the natural flow of
the code or because of an exception), the transaction will be aborted and the work it per-
formed undone. This is probably not what you want! Calling the Complete method on
the TransactionScope object before destroying it indicates that work has been completed
successfully and that the transaction should be committed. In the ShoppingCartService
service, the Checkout method returns true if the checkout operation is successful, false
otherwise. If the Checkout method fails and returns false, the Complete method will not
be called and any changes made to the database by the transaction will be rolled back.

Note Calling the Complete method does not actually guarantee that your work will
be committed. It indicates only that the work performed inside the transaction scope
was successful and can be committed in the absence of any other problems. You can
nest transaction scopes; you can create a new TransactionScope object inside the using
statement of another TransactionScope object. If the nested TransactionScope object cre-
ates a new transaction (called a nested transaction), calling the Complete method on
the nested TransactionScope object commits the nested transaction with respect to the
transaction (called the parent transaction) used by the outer TransactionScope object. If
the parent transaction aborts, then the nested transaction will also be aborted.

In an earlier exercise, you modified the contract for the ShoppingCartService by adding
the TransactionFlow attribute to each operation. You must therefore update the proxy

224

Chapter 8 Supporting Transactions

that the client application uses to ensure that the proxy sends the details of transactions
to the service. You can either perform this task by regenerating the code for the proxy
class by using the sveutil utility (Chapter 7 contains the steps for doing this) or you can
modify the code manually. In this example it is instructive to perform this task by hand
and edit the code yourself, as follows:

a

a

Open the ShoppingCartServiceProxy.cs file in the ShoppingCartClient project.
Add the following using statement to the top of the file:
using System.ServiceModel;

Locate the ShoppingCartService interface. This is the first interface in the Shopping-
CartCient.ShoppingCartService interface.

Add the TransactionFlow attribute to each method in this interface, as shown in
bold below. Do not change any other code or attributes in this interface (the prop-
erties of the OperationContractAttribute for each method have been omitted, for
clarity—leave these intact in your code):

public interface ShoppingCartService

{
[System.ServiceModel.0OperationContractAttribute(.)]
[TransactionFlow(TransactionFlowOption.Mandatory)]
bool AddItemToCart(string productNumber);

[System.ServiceModel.OperationContractAttribute(.)]
[TransactionFlow(TransactionFlowOption.Mandatory)]
bool RemoveItemFromCart(string productNumber) ;

[System.ServiceModel.OperationContractAttribute(.)]
[TransactionFlow(TransactionFlowOption.Mandatory)]
string GetShoppingCart(Q);

[System.ServiceModel.OperationContractAttribute(.)]
[TransactionFlow(TransactionFlowOption.Mandatory)]
boo1l Checkout();

}

The final step is to configure the endpoint for the client application to send information about
its transactions across the network to the service.

Configure the client application to flow transactions to the ShoppingCartService service

1.

Edit the App.config file for the ShoppingCartClient project by using the WCF Service
Configuration Editor.

In the WCF Service Configuration Editor, in the left pane, click the Bindings folder. In
the right pane, click the New Binding Configuration link.

In the Create a New Binding dialog box, select the netTcpBinding binding type and then
click OK.

4.

6.

Chapter 8 Supporting Transactions 225

In the right pane, change the Name property of the binding to ShoppingCartClientNetIcp-
BindingConfig. In the General section of the pane, set the TransactionFlow property to
True and verify that the TransactionProtocol property is set to OleTransactions.

In the left pane, select the NetTcpBinding ShoppingCartService node in the Endpoints
folder under the Client folder. In the right pane, set the BindingConfguration property of
the endpoint to ShoppingCartClientNetIcpBindingConfig.

Save the configuration file and then exit the WCF Service Configuration Editor.

You can now test the transactional version of the ShoppingCartService service and the client
application.

Test the transactional implementation of the ShoppingCartService service

1.

On the Windows Start menu, open the Control Panel, click Performance and Mainte-
nance, click Administrative Tools, and then double-click Component Services.

The Component Services console appears. You can use this console to monitor the trans-
actions being processed by DTC.

Note If you are using Windows Vista, open Windows Explorer, move to the C:\Win-
dows\System32 folder, and then double-click the file comexp.msc to start the Compo-
nent Services console.

In the Component Services console, expand the Component Services node, expand the
Computers folder, right-click the My Computer node and then click Stop MS DTC.
Right-click the My Computer node and then click Start MS DTC.

Stopping and restarting DTC clears its statistics, so you can more easily monitor the
progress of your transactions.

Note The Component Services console under Windows Vista does not provide the
facility for stopping and restarting MS DTC, so you will have to work without clearing
the statistics.

Under the My Computer node, expand the Distributed Transaction Coordinator folder
and then click Transaction Statistics.

Note Under Windows Vista, expand the Local DTC node in the Distributed Transac-
tion Coordinator folder, and then click Transaction Statistics.

The right pane displays the statistics, which should all currently be set to zero (unless
you are using Windows Vista).

Return to Visual Studio 2005, and start the solution without debugging.

226 Chapter 8 Supporting Transactions

Note If a Windows Security Alert appears, click Unblock to allow the service to use
TCP port 9080.

In the ShoppingCartClient console window displaying the message “Press ENTER when
the service has started,” press Enter.

The client application displays the shopping cart containing two water bottles and a
mountain seat assembly, followed by the “Goods purchased” method. However, there
also appears to be a problem as the application throws an exception reporting, “The
transaction has aborted™:

WINDOWS\system32\emd. exe
[Pr ENTER when the service h tarted

Uo lume =
Vo lume :

WB-H@98 Name: Water Bottle — 3@ o=z. Cost:
SA-M198 Name: LL Mountain Seat Assembly Cost:

Nunber 4.9908
Nunhber 133.3400
TotalCost: 143.3200

oods purchased

[Exception: The transaction has ahorted.

[Press ENTER to finish

Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

5. Switch to the Component Services console. It should confirm that the one transaction
you have performed since you restarted DTC has aborted:

omponent Senvices

@ Ele Action View Window Help

& 2 =

(] Consals koot
=8 Component Services
=[] Computers
=12} My Computer
#- (] COM+ Applications
#- (] DCOM Canfig
=[] Distributed Transaction C
- P Transaction List

#- (] Running Processes

& @ Event Wiewsr (Local)

-8y Services [Local)

Transaction Statistics

Cument
Active o

Max. Active 1
In Diaubt

Agaregats
Committed
Aborted
Forced Cammit
Forced Abart

Unknown

- o o o = o

Total

Respanse Times [miliseconds)

Minimum: 0 Average:

1} Maximum: 0

The problem is actually quite subtle. Remember that the Complete method of a Transac-
tionScope object indicates only that the transaction can be committed. However, before
committing a transaction, the transaction must have actually done some work and com-

Chapter 8 Supporting Transactions 227

pleted this work successfully. Although the AddItemToCart operation invoked in the
ShoppingCartService service clearly updates the database, it never actually indicates that
the work was successfully completed. The same is true of the other operations. Conse-
quently, when the runtime examines the state of the transaction created for the Transac-
tionScope object, in the absence of any information indicating success, it decides to abort
the transaction and rollback the changes.

You need to make some modifications to the ShoppingCartService service to indicate
when a transaction has completed successfully. Bear in mind that you can complete a
transaction only once, so in the shopping cart scenario, the best place to do this is in the
Checkout method.

In Visual Studio 2005, edit the ShoppingCartService.cs file in the ShoppingCartService
project and find the Checkout method towards the end of the file. The OperationBehavior
attribute for this method currently sets the TransactionAutoComplete property to false.
You could set this property to true, and this would cause the transaction to complete suc-
cessfully at the end of the method, as long as it did not throw an unhandled exception
(if the method throws an exception that you handle in the same method, the transaction
will not abort). But in the real world, you would probably want to be a bit more selective
than this; for example, the transaction should only commit if this method ascertains that
the user has a valid account with Adventure-Works, for billing purposes. However, for
this exercise you will simply add a statement that indicates that the transaction can be
committed.

Modify the code in the Checkout method as shown in bold below:

[OperationBehavior(TransactionScopeRequired = true,
TransactionAutoComplete = false)]
public bool Checkout()

{
// Not currently implemented
// - just indicate that the transaction completed successfully
// and return true
OperationContext.Current.SetTransactionComplete();
return true;

}

The OperationContext object provides access to the execution context of the operation.
The SetTransactionComplete method of the Current property indicates that the current
transaction has completed successfully and can be committed when the client applica-
tion calls the Complete method of the TransactionScope object containing this transac-
tion. If you need to abort the transaction, just exit the method without calling the
SetTransactionComplete method, as you did before.

Note Calling the SetTransactionComplete method indicates that you have finished all
the transactional work. If a transaction spans multiple operations, you cannot invoke

any further operations that have the TransactionScopeRequired property of the Opera-
tionBehavior attribute set to true and that execute in the same transaction scope. Addi-

228

Chapter 8 Supporting Transactions

tionally, you can call the SetTransactionComplete method only once in a transaction. A
subsequent call to this method inside the scope of the same transaction will raise an
exception. Finally, if you call the SetTransactionComplete method, but later fail to call
the Complete method of the TransactionScope object, the transaction will be silently
rolled back.

7. Start the solution without debugging. In the ShoppingCartClient console window, press

10.

Enter.

This time, the client application executes without reporting the message, “The transac-
tion has aborted.”

Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

Return to the Component Services console. This time, you can see that the transaction
committed:

T Component Services

@ Ele Action View Window Help 18] =]
I ezl £ =
(] Consals koot Transaction Statistics
=8 Component Services
=[] Computers Cunent
=13, My Computer Active 0
#- (0] Com+ Applications Max. Active 1 NNNNNNNNNNNEEEN
#- (] DCOM Canfig
=[] Distributed Transaction C In Dioubt o
Aggrenats
" Committed 1 EENENEEN
-{E] Event Wiewer {Local) Aborted 1 EEEEEEEE
-6 Services (Local)
Forced Commit o
Forced Abort o
Unknown 1}
Totsl 2 NNNNNNNNNNNREEN
Response Times [miliseconds)
< 5 Minimum: 5548 Average: 5543 Maximum: 5548

To verify that the database is being updated, open a Visual Studio 2005 command
prompt window, and move to the Microsoft Press\WCF Step By Step\Chapter 8 folder
under your \My Documents folder. Type the following command:

StockLevels

This command executes a script that queries the AdventureWorks database, displaying
the current stock level of water bottles and mountain seat assemblies:

Chapter 8 Supporting Transactions 229

Microsoft Windows XP x86 DEBUG Build Environment

IC:\Documents and Settings:Student\My Documents“Microsoft Press\WCF Step By Step\u
Chapter 8>3tockLevels .

C:\Ducunent“]andf%ettings\Student\My Documents\Microsoft Press\\CF Step By Step\|
ho o

Water bottles in stock
(1 rows affected)

Mountain seat assemblies in stock
(1 rows affected)

g;\Ducunents and Settings\Student\My Documents\Microsoft Press\WCF Step By Step\|
hapter

Make a note of these stock levels.

& ‘ Note Your stock levels might be different from those shown in this image.

11. Leave the command prompt window open and return to Visual Studio 2005. Start the
solution again without debugging. In the ShoppingCartClient console window, press
Enter. When the client application has finished, press Enter to close the client applica-
tion console window. In the host application console window, press Enter to stop the
service.

12. Return to the command prompt window and execute the StockLevels command again.
Verify that the stock level for water bottles has decreased by two, and the stock level for
mountain seat assemblies has decreased by one.

13. Examine the transaction statistics in the Component Services console. You should see
that the number of committed transactions is now 2.

14. Close the Component Services console.

Implementing WS-AtomicTransaction Transactions

The NetTcpBinding binding uses OLE transactions and Microsoft’s own protocol for commu-
nicating through DTC to other Microsoft-specific services, such as SQL Server. In a heteroge-
neous environment, you cannot use OLE transactions. Instead, you should use a more
standardized mechanism such as the WS-AtomicTransaction protocol. When using the
NetTcpBinding or NetNamedPipeBinding bindings, you can explicitly specify which transac-
tion protocol to use by setting the TransactionProtocol property that these bindings provide.
With the HTTP family of bindings, the WCF runtime itself selects the transaction protocol
based on the Windows configuration, the transport you are using, and the format of the SOAP
header used to flow the transaction from the client application to the service. For example, a
WCE client application connecting to a WCEF service through an endpoint based on the “http”
scheme will use OLE transactions. If the computers hosting the WCF client application and
WCF service are configured to support the WS-AtomicTransaction protocol over a specific
port, and the client application connects to the service through an endpoint based on the

230

Chapter 8 Supporting Transactions

“https” scheme that uses this port, then transactions will follow the WS-AtomicTransaction
protocol.

The choice of transaction protocol should be transparent to your services and client applica-

tions. The code that you write to initiate, control, and support transactions based on the WS-
AtomicTransaction protocol is the same as that for manipulating OLE transactions; the same
service can execute using OLE transactions or WS-AtomicTransaction transactions, depend-

ing on how you configure the service.

Important The BasicHttpBinding binding does not support transactions (OLE or WS-
AtomicTransaction).

If you wish to use the implementation of the WS-AtomicTransaction protocol provided by the
NET Framework 3.0 with the HTTP bindings, you must configure support for the WS-Atom-
icTransaction protocol in DTC.

Note If you are using Windows XP, Service Pack 2, you must install the hotfix for adding
WS-AtomicTransaction support to DTC. You can download this hotfix from the Microsoft Web
site at http.//www.microsoft.com/downloads/details.aspx?familyid=86B93C6D-0174-4E25-9E5D-
D949DC92D7ES&displaylang=en.

The .NET Framework 3.0 contains a command line tool called wsatConfig.exe that you can
use to configure WS-AtomicTransaction protocol support. The Microsoft Windows SDK pro-
vides a graphical user interface component that performs the same tasks, and that plugs into
the Component Services console, as shown in Figure 8-1. You can access this interface by
opening the Properties dialog box for My Computer and clicking the WS-AT tab.

The implementation of the WS-AtomicTransaction protocol over HTTP requires mutual
authentication, integrity, and confidentiality for all messages. This means that you must use
the HTTPS transport. If the WCF service listens on a port other than 443 (the default HTTPS
port), you should specify the port in the WS-AT tab. You must also provide a certificate that
the service can use to encrypt messages. Additionally, the WS-AT tab lets you specify which
users are authorized to access your service, identifying these accounts by their Windows cre-
dentials or certificates.

Chapter 8 Supporting Transactions 231

General Options Default Properties
Default Protocols MSDTC COM Security WS-AT

WS-AT network, support requires that Metwork DTC Access iz enabled with
inbound or outbound communication, or both.

Enable ‘wWS-Atomic Tranzaction network supp

Metwork
HTTPS port: 443

Endpoint certificate: ICN=HTTPS-Ser Select...

Authorized accounts:
Authorized certificates:

Timeouts
Default outgoing timeout: B0 zeconds
M aximum incoming timeout: 3600 zeconds

Tracing # logging

Configure tra_c:ing ant_:l logging options, and
perform logging session contral.
[QK] [Cancel] [Apply]

Figure 8-1 The WS-AtomicTransaction configuration tab in the Component Services console.

Note You must register the assembly that implements the user interface before you can
use it in the Component Services console. From a command prompt window, move to the
\Program Files\Microsoft SDKs\Windows\V6.0\Bin folder and type the following command:

regasm /codebase WsatUI.d11

More Info See Chapter 5, “Protecting a WCF Service over the Internet,’ for more details
about configuring SSL and using certificates to identify users.

Designing a WCF Service to Support Transactions

The previous sections have shown you how to implement transactions in a WCF service, but
there are a number of issues you should be aware of when designing a WCF service that
requires transactions.

Transactions and Service Instance Context Modes

If you set the TransactionAutoComplete property of the OperationBehavior attribute of one or
more methods in a WCF service to false, you must use the PerSession service instance context
mode. This is because the WCF runtime needs to maintain transactional state between calls to
operations. If you set the TransactionAutoComplete property to true for every operation, the

232

Chapter 8 Supporting Transactions

WCF runtime does not need to maintain transactional state as it completes the current trans-
action at the end of each operation, and you can use the PerCall and Single service instance
context modes.

If you use the PerSession instance context mode, WCF provides two additional properties you
can specify as part of the ServiceBehavior attribute:

B ReleaseServiceInstanceOnTransactionComplete. If you set this property to true, the WCF
runtime will automatically end the session and recycle the service instance at the end of
each transaction. If a client application invokes another operation, it must create and
connect to a new instance of the service, as described in Chapter 7. Setting this property
to false allows a session to handle multiple transactions. The default value of this prop-
erty is true.

m TransactionAutoCompleteOnSessionClose. If you set this property to true, the WCF run-
time will automatically complete the current transaction when the client application
closes the session. The default value for this property is false.

Transactions and Messaging

A transactional operation sends information back to the client application about the state of
the transaction. All the operations that you have defined so far have followed the request/
response model; the client application sends a request and waits for a response from the ser-
vice. You will see in Chapter 11, “Invoking WCF Service Operations Asynchronously,” that you
can define one-way operations that do not send a response back to the client application. One-
way operations cannot be transactional.

Transactions and Multi-Threading

You saw in Chapter 7 that a WCF service can enable multiple concurrent calls to operations if
you set the ConcurrencyMode property of the ServiceBehavior attribute to Concurrency-
Mode.Multiple. You should note the following points when attempting to use this mode:

m The TransactionAutoComplete property of the OperationBehavior attribute must be set to
true for every operation in the service. Transactions cannot span multiple operations.

m The ReleaseServiceInstanceOnTransactionComplete property of the ServiceBehavior
attribute for the service must be set to false. You must explicitly release the service
instance by closing the connection from the client.

® The TransactionAutoCompleteOnSessionClose property of the ServiceBehavior property for
the service must be set to true. All transactions on all threads must be terminated when
the session closes.

Chapter 8 Supporting Transactions 233

Long-Running Transactions

Transactions lock resources. To minimize the impact on other users and to maintain through-
put and concurrency, you should design transactions to be as short-lived as possible. Avoid
performing tasks such as waiting for user input while executing a transaction.

In a business-to-business scenario, this is not always possible. It is common for inter-business
transactions to take a considerable period of time (possibly days). Such long-running transac-
tions require you to adopt an alternative strategy. The most common solution is for a service
to perform any updates and release any locks on resources immediately, effectively treating
each modification as a singleton transaction in its own right. The service should maintain a list
of changes it has made. At some later point, if the service needs to rollback these changes, it
can consult this list and perform updates that reverse their effect. This undo operation is
sometimes referred to as a “compensating transaction.”

Using compensating transactions has a number of issues. For example, it might not be possi-
ble to undo an operation if another user has made further changes in the interim. Addition-
ally, other users can see the changes that have been made, so if you undo these changes, other
users’ transactions might cause some inconsistencies.

Detailed discussion of creating and rolling back long-running transactions is outside the
scope of this book, but Microsoft provides support for defining compensating transactions by
using Windows Workflow Foundation.

More Info For further details about Microsoft Windows Workflow Foundation, see the
Windows Workflow Foundation Web site at http.//msdn.microsoft.com/winfx/technologies/
workflow/default.aspx.

Summary

In this chapter, you have seen how to define and control transactions in a WCF client applica-
tion and service. An application can enlist in an existing transaction, or create a new transac-
tion, by instantiating a TransactionScope object with the appropriate parameters. Transactions
can flow from a client application, across the network, to the service. You can specify the trans-
actional requirements of a WCF service by using the ServiceBehavior and OperationBehavior
attributes. The operations in a WCF service can indicate that the transaction can be commit-
ted, by executing the OperationContext.Current.SetTransactionComplete method. An appli-
cation can then finish a transaction by calling the Complete method of the TransactionScope
object.

You have seen how to configure a WCEF service and client application to include information
about the transactions they are performing in the SOAP messages that they send and receive.
You have also learned how using transactions can affect the design of a WCF service.

Chapter 9
Implementing Reliable Sessions

After completing this chapter, you will be able to:

m Explain how to implement reliable sessions in a WCF service and client application.
m Describe how the WS-ReliableMessaging protocol works with the WCF runtime.
m Create a custom binding that implements replay detection

Most of the time, apart from when you are performing the exercises in this book, when you
build WCF client applications and services, you will expect them to be deployed to different
computers and communicate with each other across a connecting network. This is a principal
reason for using WCEF, after all. Aside from security issues, the other main problem with net-
works is that they can be unreliable. It is very easy for a cable or wireless connection to be
interrupted and for messages to be intercepted, interfered with, or just lost. This is clearly
unacceptable.

Additionally, if a WCF service is running using the PerSession service instance mode, a con-
versation between a client application and the WCF service can comprise several messages. In
a wide area network such as the Internet, different messages can take different routes when
traveling to their destination, and so it is possible for messages to arrive in a different sequence
from that in which they were sent. It could be important for a service to process messages in
the same order that the client sent them, rather than the order that they were received, so the
client application and service must agree on a protocol to use for indicating the order of mes-
sages.

Messages traveling across an open network are vulnerable. They can be intercepted, cor-
rupted, diverted, or have a variety of other nasty things happen to them. Several of the Web
service (WS-*) specifications are intended to help protect messages, and you have seen how
WCEF implements some of these specifications in earlier chapters. Another specification that is
relevant when you need to send messages reliably is WS-ReliableMessaging. Another common
security issue is the “replay attack,” in which a third party intercepts messages and repeatedly
forwards them on to the intended destination.

In this chapter, you will look at the ways in which you can use WCF to provide reliable mes-
saging and configure replay detection.

Using Reliable Sessions

To handle the problems of lost messages, or messages arriving in the wrong order, the OASIS
organization has proposed the WS-ReliableMessaging specification. This specification defines

235

236

Chapter 9 Implementing Reliable Sessions

an interoperable protocol for transmitting messages in a reliable manner between a single
source and a single destination. Messages can pass through any number of intermediary sites
en route to the destination. WCF provides an implementation of this protocol that attempts to
ensure that all messages sent from the source will arrive at the destination and without dupli-
cation (in other words, exactly once). The protocol implemented by the WCF runtime also
attempts to detect missing messages and resend them if possible. At worst, the WCF runtime
will throw an exception if a message disappears irrevocably.

WCEF optionally supports sequencing, ensuring that messages are processed by the destina-
tion in the order that they were sent—the messages might arrive in a different order, but the
WCF infrastructure can buffer them to present them to a service in the correct sequence.

More Info For detailed information about the WS-ReliableMessaging specification, see the
Web Services Reliable Messaging Protocol document on the Microsoft Web site at
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-ReliableMessaging.pdf.

It is important to understand that reliable messaging as specified by the WS-ReliableMessag-
ing specification does not imply any form of message persistence or message queuing. The
protocol requires that both the source application sending the message and the destination
application receiving the message are running at the same time. If it is not possible to receive
messages, either because the destination application is not running or because of a network
failure, the source application will receive an error. In other words, when using reliable mes-
saging, the WCF runtime will guarantee to deliver a message if it can, or it will alert the sender
if it cannot—WCF will not silently lose messages.

More Info Message queuing implements its own form of reliable messaging through the
use of transactions and message durability rather than the WS-ReliableMessaging protocol.
You will learn about using message queues as a transport mechanism for WCF messages in
Chapter 11, “Implementing OneWay and Asynchronous Operations.”

Implementing Reliable Sessions with WCF

Configuring reliable messaging with a WCF service is a very straightforward task. The WS-
ReliableMessaging protocol generates a number of additional messages used by the WCF
runtime on the client and service to coordinate their activities, and it is instructive to enable
tracing to help you understand how it all works.

Enable reliable sessions in the ShoppingCartService service and client application

1. Using Visual Studio 2005, open the solution file ShoppingCartService.sln located in the
Microsoft Press\WCF Step By Step\Chapter 9\ShoppingCartService folder under your
\My Documents folder.

Chapter 9 Implementing Reliable Sessions 237

This solution contains a copy of the completed ShoppingCartService, and Shopping-
CartServiceHost and ShoppingCartClient projects from Chapter 8, “Supporting Trans-
actions.” Remember that the ShoppingCartService service exposes a TCP endpoint and
requires the client application to create a transaction to maintain the integrity of the
database.

Note This set of exercises uses the NetTcpBinding binding and transport level
security. This enables you to easily examine the messages and headers generated by
the reliable messaging protocol. Reliable messaging works with the WSHttpBinding
over an HTTP endpoint with message level security in exactly the same way. However,
in this configuration the messages are intermingled with other messages negotiating
the various security tokens, and the messages also contain encrypted data and addi-
tional headers making it more difficult to pick out the elements associated with reliable
messaging.

In Solution Explorer, edit the App.config file for the ShoppingCartHost project by using
the WCEF Service Configuration Editor.

In the WCF Service Configuration Editor, in the Bindings folder, select the Shopping-
CartServiceNetTcpBindingConfig binding configuration. In the right pane, scroll down
to display the ReliableSession Properties section and then set the Enabled property to
True. Verify that the Ordered property is set to True, and note that the InactivityTimeout
property is set to 10 minutes by default.

The WCF runtime uses the Ordered property to determine whether to pass messages to
the service in the same order that the client sent them; this is an optional but useful fea-
ture of reliable messaging. The WCF runtime will wait for the time period specified by
the InactivityTimeout property between messages before deciding that something has
gone wrong and messages have gone missing. If this timeout expires, the WCF runtime
sends a “sequence terminated” SOAP fault message to the client application (which it
might not receive if the client application is no longer running or communications have
failed) and then terminates the session, rolling back any changes that have occurred if
the service uses transactions.

Note If you are using the NetTcpBinding or NetNamedPipeBinding bindings you
must also verify that the TransferMode property in the General section of the binding
configuration page is set to Buffered.

The TransferMode property specifies that the WCF runtime buffers complete messages
in memory before passing them to the service or sending out responses. The TCP and
named pipe transports, also support streaming, which enables you to send large
messages as a series of small chunks. In this mode, the receiver does not have to wait
for the sender to finish transmitting the message before it can start processing it. Using
streaming removes the need for holding large messages in memory and can improve
scalability. However, the implementation of reliable sessions in WCF requires that an
entire message has been received before it can be processed, so buffering is
mandatory.

238

Chapter 9 Implementing Reliable Sessions

If you are using the WSHttpBinding binding, messages are automatically buffered (the
HTTP protocol does not support streaming).

Incidentally, transactions and message-level security also require WCF to buffer mes-
sages before transmitting them.

You will examine the messages generated by the WS-ReliableMessaging protocol, so the
next step is to configure tracing.

In the left pane, click the Diagnostics folder. In the right pane, click the EnableMessageL-
ogging link.

In the left pane, expand the Diagnostics folder and then click the Message Logging node.
In the right pane, set the LogEntireMessage property to True and set the LogMalformed-
Messages property to False.

In the left pane, expand the Listeners folder and then click the ServiceModelMessagel -
oggginglistener node. In the right pane, change the path in the InitData property to refer
to the file app_messages.svclog in the Microsoft Press\WCF Step By Step\Chapter 9
folder under your My Documents folder.

Save the configuration file and then exit the WCF Service Configuration Editor.

The binding configuration for the client endpoint must match the properties used by the
service endpoint.

In Solution Explorer, edit the App.config file for the ShoppingCartClient project. Display
the properties for the ShoppingCartClientNetTcpBindingConfig binding configuration,
and set the Enabled property in the ReliableSession Properties section to True. Verify that
the Ordered property is set to True, and the InactivityTimeout property is set to 10 minutes.

Reliable messaging in the client application can cause a timeout and throw an exception
if it doesn’t receive any messages within the period specified by the InactivityTimeout
property. However, a client application normally only receives messages in response to a
request (in Chapter 14, “Using a Callback Contract to Publish and Subscribe to Events,”
you will see that it is also possible for a client application to receive messages at other
times). It is possible for a client application to become quiescent on the network, but
remain active even if it is not sending messages to a service (it might be busy displaying
data, or gathering user input, for example). Similarly, it was mentioned earlier that a
WCE service can timeout if it doesn’t receive any messages within the period specified by
its own InactivityTimeout property. To prevent this happening unnecessarily, the WCF
runtime on the client computer will periodically send a “keep alive” message to the ser-
vice if the client application has not sent any messages recently. The point at which this
happens is approximately half the value of the InactivityTimeout period specified in the
client application configuration file. This “keep alive” message actually serves a dual pur-
pose: it lets the service know the client application is still running, and it probes to make
sure that the service is still accessible. The WCF runtime on the client computer expects

9.

Chapter 9 Implementing Reliable Sessions 239

the WCF runtime on the server computer to reply with an acknowledgement message,
and if this acknowledgement is not received within the period specified by the Inactivi-
tyTimeout property, the WCF runtime on the client application assumes that the service
has died and generates a “sequence terminated” SOAP fault message that the client appli-
cation should handle.

Save the configuration file and then exit the WCF Service Configuration Editor.

Examine the trace messages generated by the client application

1.

Start the solution without debugging. In the ShoppingCartClient console window dis-
playing the message “Press ENTER when the service has started,” press Enter.

The client application executes as before, displaying the shopping cart containing two
water bottles and a mountain seat assembly, followed by the “Goods purchased”
method. Press Enter to close the client application console window. In the host applica-
tion console window, press Enter to stop the service and close the application.

Start the Service Trace Viewer (in the Windows Start menu, point to All Programs, point
to Microsoft Windows SDK, point to Tools, and then click Service Trace Viewer).

In the Service Trace Viewer, open the app_messages.svclog file in the WCF Microsoft
Press\Step By Step\Chapter 9 folder under your My Documents folder.

In the left pane, click the Message tab. Click the first message. In the lower right pane,
click the Message tab. Examine the contents of this message; it should look like this.
(The format of the message has been adjusted to fit on the page. Your MessageID and
Identifier properties will be different from those shown here):

<s:Envelope ..>
<s:Header>
<a:Action s:mustUnderstand=“1">
http://schemas.xmlsoap.org/ws/2005/02/rm/CreateSequence
</a:Action>
<a:MessageID>
urn:uuid: feOe4bbe-4eeb-4e85-85f0-46a133195754
</a:MessageID>
<a:To s:mustUnderstand="“1">
net.tcp://Tocalhost:9080/ShoppingCartService
</a:To>
</s:Header>
<s:Body>
<CreateSequence xmIns=“http://schemas.xmlsoap.org/ws/2005/02/rm”>
<AcksTo>
<a:Address>
http://www.w3.0rg/2005/08/addressing/anonymous
</a:Address>
</AcksTo>
<0ffer>
<Identifier>
urn:uuid:el70f8ff-4715-4ace-bc81-76a2a6e63245
</Identifier>
</0ffer>
</CreateSequence>

240

Chapter 9 Implementing Reliable Sessions

</s:Body>
</s:Envelope>

The WS-ReliableMessaging protocol organizes messages in a conversation between a cli-
ent application and a service by associating them with a unique identifier known as a
sequence number. The first message in the protocol is this CreateSequence message, sent
by the WCF runtime on the client computer. This message initiates the reliable session.
All messages in the same reliable session must share the same set of identifiers, and the
body of this message contains a unique identifier generated by the WCF runtime (high-
lighted in bold) that the service should use when responding to the client application.

In the left pane, click the second message, and then examine the contents of this mes-
sage in the lower right pane. It should look like this:

<s:Envelope ..>
<s:Header>
<a:Action s:mustUnderstand="“1">
http://schemas.xmlsoap.org/ws/2005/02/rm/CreateSequenceResponse
</a:Action>
<a:RelatesTo>
urn:uuid: feOe4bbe-4eeb-4e85-85f0-46a133195754
</a:RelatesTo>
<a:To s:mustUnderstand=“1">
http://www.w3.0rg/2005/08/addressing/anonymous
</a:To>
</s:Header>
<s:Body>
<CreateSequenceResponse xmlns="“http://schemas.xmlsoap.org/ws/2005/02/rm”>
<Identifier>
urn:uuid:efae0f85-cd33-438e-a8f1l-bc6e0818dele
</Identifier>
<Accept>
<AcksTo>
<a:Address>
net.tcp://Tocalhost:9080/ShoppingCartService
</a:Address>
</AcksTo>
</Accept>
</CreateSequenceResponse>
</s:Body>
</s:Envelope>

This is the CreateSequenceResponse message, sent back to the client by the WCF run-
time on the service computer. Note that the body of this message also contains an iden-

tifier (shown in bold). The WCF runtime on the client must provide this identifier when
sending further messages to the service.

Examine the contents of third message. It should look like this (some elements have
been removed for clarity):
<s:Envelope ..>

<s:Header>
<r:AckRequested>

Chapter 9 Implementing Reliable Sessions 241

<r:Identifier>
urn:uuid:efae0f85-cd33-438e-a8fl-bc6e0818dele
</r:Identifier>
</r:AckRequested>
<r:Sequence s:mustUnderstand="1">
<r:Identifier>
urn:uuid:efae0f85-cd33-438e-a8f1l-bc6e0818dele
</r:Identifier>
<r:MessageNumber>
1
</r:MessageNumber>
</r:Sequence>

</s:Header>
<s:Body>
<AddItemToCart xmlns=“http://adventure-works.com/2007/03/01”>
<productNumber>
WB-H098
</productNumber>
</AddItemToCart>
</s:Body>
</s:Envelope>

This is the first AddItemToCart message sent by the client application. The key thing to
notice in this message is the <Sequence>block, shown in bold. The identifier in this block
is the same as the identifier returned in the CreateSequenceResponse message by the
service. All messages transmitted from the client application to the service participating
in the reliable session must include this information in the SOAP header. They should
also include a message number—in this case message “1”—enabling the WCF runtime on
the server computer to ensure that messages are passed to the service in the correct
order. You should also notice that the SOAP header includes an <AckRequested> block.
When the WCF runtime on the server computer receives this message it must send an
acknowledgement message back to the client computer so that the client knows it has
been received.

Examine the contents of the fourth message. It should look like this:

<s:Envelope ..>
<s:Header>
<r:SequenceAcknowledgement>
<r:Identifier>
urn:uuid:efae0f85-cd33-438e-a8f1-bc6e0818dele
</r:Identifier>
<r:AcknowledgementRange Lower=“1" Upper=“1">
</r:AcknowledgementRange>
<netrm:BufferRemaining xmins:netrm=“http://schemas.microsoft.com/ws/2006/05/rm”>
8
</netrm:BufferRemaining>
</r:SequenceAcknowledgement>
<a:Action s:mustUnderstand="1">
http://schemas.xmlsoap.org/ws/2005/02/rm/SequenceAcknow]edgement
</a:Action>

</s:Header>

242

Chapter 9 Implementing Reliable Sessions

<s:Body></s:Body>
</s:Envelope>

This is the acknowledgement message from the WCF runtime on the server computer,
back to the WCF runtime on the client computer. The service has verified that it has
received the AddItemToCartMessage.

Look at the fifth message:

<s:Envelope ..”>
<s:Header>
<r:AckRequested>
<r:Identifier>
urn:uuid:el70f8ff-4715-4ace-bc81-76a2a6e63245
</r:Identifier>
</r:AckRequested>
<r:Sequence s:mustUnderstand="1">
<r:Identifier>
urn:uuid:el70f8ff-4715-4ace-bc81-76a2a6e63245
</r:Identifier>
<r:MessageNumber>
1
</r:MessageNumber>
</r:Sequence>
<a:Action s:mustUnderstand=“1">
http://adventure-works.com/2007/03/01/ShoppingCartService/AddItemToCartResponse
</a:Action>

</s:Header>
<s:Body>
<AddItemToCartResponse xmlns="“http://adventure-works.com/2007/03/01”>
<AddItemToCartResult>
true
</AddItemToCartResult>
</AddItemToCartResponse>
</s:Body>
</s:Envelope>
This is the AddItemToCartResponse message, indicating that the service successfully
added the specified item to the shopping cart. Again, notice how this message requires
the client to acknowledge its receipt, that the identifier used in the <Sequence> block is
the identifier specified by the client at the start of the session, and that this is also mes-
sage “1” (in the opposite direction from the client message). If you examine the sixth
message, you will see that it is the acknowledgement for this AddItemToCartReponse

message from the client sent back to the service.

Examine messages seven through fourteen. You can see that things settle down at this
point, and the conversation consists of request messages sent by the client application
and the response messages sent back from the service. These messages all contain a
<Sequence> block with the appropriate identifier. Each message also has a message num-
ber, which is incremented for each new message in each direction (the next message in

Chapter 9 Implementing Reliable Sessions 243

the sequence sent from the client application to the service is message “2,” and the
response message sent by the service back to the client is also message “27).

Note If it helps, think of the request/response messages as a series of two synchro-
nized one-way conversations. Each message traveling in one direction forms part of a
sequence, and the messages in this sequence are numbered starting at 1. The mes-
sages traveling in the opposite direction form part of a different sequence and are also
numbered starting at 1. The message numbers do not tie messages together; response
message 1 might or might not be the response for request message 1.

As an optimization mechanism, after the initial request/response messages the message
acknowledgements are incorporated into the next request or response messages sent by
the client application or service—the header in a message being sent contains the
acknowledgement for the previous message received.

Note The <SequenceAcknowledgement> block in messages seven through fourteen
also includes a BufferRemaining element. As already mentioned, to handle messages
arriving out of order, the WCF runtime buffers them before handing them off to the
application. If a message with a high message number is received when the runtime
was expecting a lower message number, the higher numbered message will be held in
a buffer until the lower numbered message has been received and passed to the appli-
cation. The WCF runtime provides a finite number of buffers for a session. If a client
application sends a large volume of messages to a service and many arrive out of
order, the WCF runtime on the server computer may run out of buffers and start to
drop messages (they are resent when more space is available). Therefore, when
acknowledging a message, the WCF runtime also provides the number of free buffers it
currently has in the BufferRemaining element. The WCF runtime on the client computer
can examine this value and suspend sending messages if this number minus the num-
ber of messages the client has sent but have not yet been acknowledged (they are in
transit) drops below a certain threshold (currently 2). As the WCF runtime on the server
receives the missing messages it can pass them to the service and hopefully free up
some of the buffers. Subsequent acknowledgement messages from the service should
indicate that more buffer space is available, and the WCF runtime on the client com-
puter can resume sending messages. This is a WCF-specific feature—if an application
built using another technology does not understand this element, it will be ignored.

10. Examine message fifteen. It should look like this:

<s:Envelope ..>
<s:Header>
<r:SequenceAcknowledgement>

<r:Identifier>
urn:uuid:el70f8ff-4715-4ace-bc81-76a2a6e63245

</r:Identifier>

<r:AcknowledgementRange Lower=“1" Upper="“5">

</r:AcknowledgementRange>

<netrm:BufferRemaining xmins:netrm=“http://schemas.microsoft.com/ws/2006/05/rm”>
8

</netrm:BufferRemaining>

244

Chapter 9 Implementing Reliable Sessions

11.

</r:SequenceAcknowledgement>
<r:Sequence s:mustUnderstand="1">
<r:Identifier>
urn:uuid:efae0f85-cd33-438e-a8f1l-bc6e0818dele
</r:Identifier>
<r:MessageNumber>
6
</r:MessageNumber>
<r:LastMessage>
</r:LastMessage>
</r:Sequence>
<a:Action s:mustUnderstand="1">
http://schemas.xmlsoap.org/ws/2005/02/rm/LastMessage
</a:Action>
<a:To s:mustUnderstand="1">
net.tcp://localhost:9080/ShoppingCartService
</a:To>
</s:Header>
<s:Body>
</s:Body>
</s:Envelope>

This is the LastMessage message. It is sent by the WCF runtime on the client computer
to indicate that this is the final message in the sequence. This message is sent when the
client application starts to close the session. The WCF runtime on the server computer
acknowledges this message (see message sixteen) and then sends its own LastMessage
message to indicate that it has also finished (message seventeen). The WCF runtime on
the client computer sends an acknowledgement (message eighteen).

Examine message nineteen:

<s:Envelope ..>
<s:Header>
<a:Action s:mustUnderstand=“1">
http://schemas.xmlsoap.org/ws/2005/02/rm/TerminateSequence
</a:Action>

</s:Header>

<s:Body>
<TerminateSequence xmlns=“http://schemas.xmlsoap.org/ws/2005/02/rm”>
<Identifier>

urn:uuid:el70f8ff-4715-4ace-bc81-76a2a6e63245

</Identifier>
</TerminateSequence>

</s:Body>

</s:Envelope>

This is the TerminateSequence message. The WCF runtime on the server computer
sends this message to indicate that it is not going to send any more messages using the
sequence specified by the identifier and that the WCF runtime on the client computer
can release any resources associated with this session. The WCF runtime on the client
computer also sends a TerminateSequence message to the server (message twenty),

Chapter 9 Implementing Reliable Sessions 245

identifying the sequence used by the client to send messages to the server. At the end of
this exchange, the session terminates.

12. Close the Microsoft Service Trace Viewer and delete the trace file.

These exercises should make two things apparent to you:

m Itis very easy to implement reliable messaging with WCF. You just set a few properties
of the binding configuration. You don’t need to write any additional code; it is all trans-
parent to your client applications and services.

m Reliable sessions can generate a significant amount of additional network traffic, both in
terms of the extra protocol messages and the increased size of each message. The more
messages a client application sends in a session, the smaller this overhead becomes pro-
portionally. However, if you use short sessions, comprising a single request and response
for example, each request sent by a client application establishes a new reliable session
that is thrown away after a response has been received. This is expensive, and in this sit-
uation you should consider very carefully whether you really need reliable messaging or
whether you should rework the client application to make more efficient use of reliable
sessions.

Reliable messaging works well with the PerCall service instance context mode. Although the
WCEF runtime creates a new service instance for each request, it creates the sequence for the
reliable session when the client application makes the first call to the service in the session,
and only terminates the sequence when the session ends. Ideally, you should set the Session-
Mode property of the service contract to SessionMode.Required to ensure that the client appli-
cation actually establishes a session.

You should also be aware that not all binding configurations support the WS-ReliableMessag-
ing protocol. The ones that do are netTcpBinding, wsDualHttpBinding (this binding always
uses reliable messaging, you cannot disable it), wsFederationHttpBinding, and wsHttpBind-
ing. The MSMQ bindings, msmqIntegrationBinding and netMsmqBinding, implement their
own version of reliable messaging based on message persistence and queuing technologies
rather than WS-ReliableMessaging. The common bindings that do not support reliable mes-
saging include basicHttpBinding, netNamedPipeBinding, and netPeerTcpBinding.

Note You can also create custom bindings that support reliable sessions. You will see how
to define a custom binding later in this chapter, and also in Chapter 10, “Programmatically

Controlling the Configuration and Communications.”

Detecting and Handling Replay Attacks

In Chapter 4, “Protecting an Enterprise WCF Service,” you learned a little about replay attacks.
In a replay attack, a hacker intercepts and stores messages flowing over the network and then

246 Chapter 9 Implementing Reliable Sessions

sends them at some time in the future. At best this can become a nuisance if, for example, a
hacker repeatedly replays the same intercepted purchase order sent by a genuine customer to
an online bookstore; the bookstore receives hundreds of orders and sends the books to the
customer who has not ordered them. At worst, it can lead to large-scale fraud; consider an
attacker intercepting a request to credit his bank account and then repeatedly replaying this
message to the bank’s servers.

Using reliable sessions can help to mitigate simple replay attacks, as each message must pro-
vide a valid sequence identifier and a unique message number. When the session has com-
pleted, the sequence identifier becomes invalid, so any subsequent attempt to replay the
message should be rejected by the receiver. However, consider the following hypothetical sce-
nario. If a session is long-running, it might be possible for an attacker to edit the <Sequence>
block in an intercepted message, modify the message number, set it to some value higher than
the message that was received, and then forward this message to the service if the session is
still active. When the application hosting the service receives this message, if no message with
this number has yet been received, the host will buffer it and then pass it to the service when
all the intermediate messages have been received. When a genuine message from the client
with this message number is subsequently received, the genuine message will be rejected.
How can you handle this situation?

You can use transport-level security to encrypt messages as they traverse the network from
machine to machine. Additionally, many implementations of transport-level security include
automatic replay detection of packets at the transport layer. But remember that transport-level
security operates on a point-to-point basis, and when a service receives the message, it has
unrestricted access to its contents. If the service is expected to forward the request on to a ser-
vice running elsewhere, it can modify the message before it does so. The usual way to protect
data, if you cannot trust any intermediate services, is to use message level security. However,
message level security is predominantly concerned with protecting the body of a message
rather than the data in message headers, which is where the sequence identifiers and message
numbers are held.

More Info Review Chapter 4 and Chapter 5, “Protecting a WCF Service over the Internet,’
for more information about implementing message level security with WCF.

So, to prevent a reply attack, the receiver requires a more secure mechanism than simple
sequence identifiers and message numbers for uniquely identifying messages. Fortunately,
WCEF provides just such a mechanism.

Configuring Replay Detection with WCF

When you enable replay detection, the WCF runtime generates a random, unique, signed,
time-stamped identifier for each message. These identifiers are referred to as nonces. On receiv-
ing a message, a service can use the signature to verify that the nonce has not been corrupted

Chapter 9 Implementing Reliable Sessions 247

and extract and examine the timestamp to ascertain that the message was sent reasonably
recently (the service can allow for a certain amount of clock-skew between computers and
should also recognize that it takes a little time for data to physically traverse the network from
the client application). The service can then save the nonce in a cache. When another message
is received, the service can retrieve the nonce from the message header. If a matching nonce is
found in its cache then this is a copy of an earlier message and should be discarded. If it is not,
the message can be processed and its nonce added to the cache.

The WCEF security channel implements replay detection by default, although the relevant
properties for configuring it are not immediately visible when using the standard WCF bind-
ings. However, it is quite simple to create a custom binding that makes them available. You
will adopt this approach in the following exercises.

Create a custom binding for the ShoppingCartService service

1. In Visual Studio 2005, edit the App.config file for the ShoppingCartHost project by
using the WCF Service Configuration Editor.

2. In the left pane, click the Bindings folder. In the right pane, click the New Binding Con-
figuration link. In the Create a New Binding dialog box, select customBinding and then
click OK.

In the right pane, change the Name property to ShoppingCartServiceCustomBindingConfig.

If you recall from Chapter 2, “Hosting a WCF Service,” the WCF runtime creates a chan-
nel stack for sending and receiving messages. Incoming messages arrive at a particular
address (such as a port or a URL) using an appropriate transport (such as TCP or HTTP).
When you host a service, the WCF runtime “listens” for incoming request messages sent
by client applications to the specified address by using a transport channel. Incoming
messages pass through the transport channel to an encoding channel, which parses the
message, and the WCF runtime can then invoke the relevant operation in the service
using the information in this parsed data. Outgoing response messages are encoded by
the encoding channel (a message can be encoded as text, or as binary data), before being
passed to the transport channel for transmission back to the client application.

A channel stack must always have at least these two channels: a transport channel and
an encoding channel. When you create a new custom binding, the WCF Service Config-
uration Editor automatically adds elements for using the HTTP transport and text
encoding. You have been using the TCP transport in previous exercises in this chapter,
so you will change the transport channel.

3. In the lower right pane, select the httpTransport stack element and then click Remove.
Click Add. In the Adding Binding Element Extension Sections dialog box, select tcp-
Transport and then click Add.

A point worth emphasizing from Chapter 2 is that the order of the channels in the chan-
nel stack is important. The transport channel must always be the final item, and it is con-
ventional for the encoding channel to be placed immediately above the transport

248

Chapter 9 Implementing Reliable Sessions

channel. Verify that the tcpTransport element is in position 2 in the list and the textMes-
sageEncoding element is in position 1. If the positions are different, use the Up and Down
buttons to swap them over.

Click Add in the lower right pane. In the Adding Binding Element Extension Sections
dialog box, select security and then click Add. Use the Up and Down buttons to place
the security element in position 1 at the top of the stack, above the textMessageEncoding
element.

In the left pane, click the security node underneath the ShoppingCartServiceCus-
tomBindingConfig node. In the right pane, set the AuthenticationMode property to
SecureConversation. This mode uses the protocol defined by the WS-SecureConversation
specification to establish a secure session between the service and client applications
(see the sidebar after this exercise for details).

In the right pane, click the Service tab. Verify that the DetectReplays property is set to True
by default.

Examine the ReplayCacheSize property.

When implementing replay detection, the WCF runtime on the server computer will
cache nonces in memory. The value of this property determines the maximum amount
of memory it will use, specified as a number of cached nonces. When this limit is
reached, the oldest nonce is removed from the cache before a new one is added. The
default value should be sufficient, but you might want to consider reducing it if memory
is at a premium. However, don’t make it so small that nonces are discarded too quickly
as you could render the service vulnerable to replay attacks again.

Examine the ReplayWindow and MaxClockSkew properties.

The ReplayWindow specifies the time for which nonces are considered valid. If the
timestamp in a received nonce is outside the time window specified here, it is discarded
as being too old. However, WCF recognizes that the system clock on different computers
might not be completely synchronized, and the MaxClockSkew property enables you to
specify the maximum clock difference to allow. It is also possible that the timestamp for
anonce could appear to be for a short time in the future if the clock on the server com-
puter is running slow, so the MaxClockSkew property allows the service to accept nonces
with a future timestamp provided they are within the range specified.

Note The security custom binding element enables you to configure replay detection
for client applications as well, by using the properties in the Client tab.

In the left pane, click the ShoppingCartServiceCustomBindingConfig node.

The ShoppingCartService service uses transactions and reliable sessions, so you must
add channels that implement these features:

Chapter 9 Implementing Reliable Sessions 249

0 In the lower right pane, click Add. In the Adding Binding Element Extension Sec-
tions dialog box, select reliableSession and then click Add.

Repeat this process and add the transactionFlow element to the binding.

0O Rearrange the channel stack so that the transactionFlow element is in position 1,
the reliableSession element is in position 2, the security element is in position 3, the
textMessageEncoding element is in position 4, and the tcpTransport element is in
position 5, as shown in the following image. This is the recommended order for
these channels:

2. c:vdocuments and settingshstudentimy documentsimicrosoft pressiwef step by stepichapter %isolutio... |ZH:\E|

Ele Help
Configuration customBinding: ShoppingCartServiceCustomBindingC...
= [Services A | General
i 1
=% ShoppingCanService ShoppingCants & (Configuration)
“3 Host . . —
Hame ShoppingClartServiceCustomBindingCon
=3 Endpaints
" ShoppingCanServiceNetTcp = (General)
22 Gt CloseTimeout 00:01:00
OpenTimeout 00:01:00
= (3 Bindings - s
] - ReceiveTimeout 00:10:00
T5F ShoppingCanServiceNetT cpBindingl SonTimeout 00-01.00
=B ShoppingCatServiceCustomBindingl —
-3 transactionFlow Hame
3 refiableSession A stiing that contains the configuration name of the binding. This value is 3 user-
«3 security defined string that acts as the identification string for the custom binding,
-3 teMessageEncoding
«3 tepTiansport .
(22 Diagnastios Binding element extension position
= A
< I > Posifion | Stack Element
— i tansactionFlow:
Tasks (8] 2 relisbleSession
o T T | Add... 3 i
Adid Bincing Element Edtension... =2 H v ———
Delete Binding Carfiguration Remave 5 tepTranspart
Create a New Service...
Create a Naw Clisnt

10. In the left pane, expand the ShoppingCartService.ShoppingCartServicelmpl service in
the Services folder, right-click the Endpoints folder, and then click New Service End-
point. In the right pane, set the properties of this endpoint using the values in this table:

Property Value

Name ShoppingCartServiceCustomEndpoint
Address net.tcp://localhost:9090/ShoppingCartService
Binding customBinding

BindingConfiguration ShoppingCartServiceCustomBindingConfig
Contract ShoppingCartService.IShoppingCartService

11. Save the file, and then exit the WCF Configuration Editor.

250

Chapter 9 Implementing Reliable Sessions

The WS-SecureConversation Specification

The WS-SecureConversation specification is yet another specification being developed
by members of OASIS. It enables two participants (a service and a client application) to
establish and share a security context for exchanging multiple messages (a conversa-
tion) in a secure and optimal manner without needing to include comprehensive secu-
rity credential information in every message. Participants exchange and validate
credentials at the start of the session, and negotiate security tokens derived from the
authorized credentials. Subsequent messages in the conversation contain these derived
tokens rather than a complete set of credentials to enable the recipient to authenticate
the source. The process of validating these derived tokens is faster than fully authenti-
cating each message from the original set of credentials.

The WS-SecureConversation specification builds on other WS-* specifications, such as

WS-Security, so you can create a security context based on a variety of authentication
and encryption mechanisms, as described in Chapter 4.

For detailed information about the WS-SecureConversation specification, see the Web
Services Secure Conversation Language (WS-SecureConversation) document on the
Microsoft Web site at http;//msdn.microsoft.com/library/en-us/dnglobspec/html/ WS-
secureconversation.pdyf.

You can now add a corresponding binding to the client application and then configure the cli-
ent to use this binding,.

Create a custom binding for the WCF client application

1.

In Visual Studio 2005, edit the App.contfig file for the ShoppingCartClient project by
using the WCF Service Configuration Editor.

In the left pane, add a new customBinding binding configuration to the Bindings folder
and set the Name property to ShoppingCartClientCustomBindingConfig.

Remove the httpTransport element and replace it with a tcpTransport element.

Add a security element. Set the AuthenticationMode property of this security element to
SecureConversation.

Add a reliableSession and a transactionFlow element to the custom binding.

Rearrange the channel stack so that the transactionFlow element is in position 1, the reli-
ableSession element is in position 2, the security element is in position 3, the textMessag-
eEncoding element is in position 4, and the tcpTransport element is in position 5.

In the left pane, add a new endpoint to the Endpoints folder under the Client folder. Set
the properties for this endpoint using the following values:

Chapter 9 Implementing Reliable Sessions 251

Property Value

Name CustomBinding_ShoppingCartService

Address net.tcp://localhost:9090/ShoppingCartService

Binding customBinding

BindingConfiguration ShoppingCartClientCustomBindingConfig

Contract ShoppingCartClient.ShoppingCartService.ShoppingCartService

8. Save the file, and then exit the WCF Configuration Editor.

9. In Visual Studio 2005, edit the Program.cs file in the ShopingCartClient project. In the
Main method, change the statement that creates the proxy object to reference the
CustomBinding ShoppingCartService endpoint, as shown in bold below:

static void Main(string[] args)

{
try
{
// Connect to the ShoppingCartService service
ShoppingCartServiceClient proxy = new
ShoppingCartServiceClient(“CustomBinding_ShoppingCartService”);
}
}

10. Start the solution without debugging. In the ShoppingCartClient console window dis-
playing the message “Press ENTER when the service has started,” press Enter.

The client application executes exactly as before, except that this time it is using the cus-
tom binding, with replay detection enabled, to communicate with the ShoppingCartSer-
vice service.

11. Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

Summary

In this chapter, you have configured a WCF service and client application to communicate by
using a reliable session. You have seen how WCF implements the protocol defined by the WS-
ReliableMessaging specification and how it uses sequences, message numbers, and acknowl-
edgement messages to verify that messages have been received and assembled in the correct

order. You have also seen how to create a custom binding that enables you to configure replay
detection.

Chapter 10

Programmatically Controlling
the Configuration and
Communications

After completing this chapter, you will be able to:

Describe the main elements of the WCF Service Model.
Create bindings by using code.
Implement a custom service behavior and add it to a service.

Connect to a service from a client application by using the service contract.

Send messages directly to a service without using a proxy object.

By now, you should have a good understanding of how to create WCF client applications and
services and how to configure them so that they can communicate with each other. A compel-
ling feature of WCEF is the ability to perform many of these tasks by using configuration files.
Behind the scenes, the WCF runtime takes this configuration information and uses it to build
an infrastructure that can send and receive messages using specified protocols, encoding
them in the appropriate manner, and directing them to the appropriate methods implement-
ing operations in a service.

There will inevitably be occasions when you need to perform configuration tasks program-
matically, possibly because an application or service needs to adapt itself dynamically accord-
ing to its environment without intervention from an administrator or maybe for security
reasons if you don’t want a user to be able to modify the configuration for an application. For
example, you might not want an administrator to be able to enable or disable metadata pub-
lishing for a service. It is also instructive to see the sorts of things the WCF runtime does when
it executes your client applications and services. So, in this chapter you will look at how to cre-
ate and use bindings in code and how to send and receive messages programmatically.

The WCF Service Model

WCEF provides a comprehensive infrastructure for sending and receiving messages by creating
a number of objects that manage and control the communications. This infrastructure is
extensible, and you can augment it with your own functionality if you need to customize the
way it works. For example, in Chapter 9, “Implementing Reliable Sessions,” you saw how to
compose the channels provided with WCF into a custom binding. If you have a very specific

253

254

Chapter 10 Programmatically Controlling the Configuration and Communications

requirement or need to transmit messages using a protocol that has no corresponding chan-
nel in the .NET Framework 3.0 class library, you can develop your own channel (or buy one
from a third party) and then easily integrate it into your configuration without needing to
modify the code for a service or client application. You can also customize other parts of the
WCEF infrastructure, such as the way that WCF maps incoming messages to operations. You
will see some examples of this in Chapter 13, “Routing Messages.”

More Info Detailed discussion about creating a custom channel is beyond the scope of
this book. For information about creating custom channels, see the Building Custom Chan-
nels page on the Microsoft .NET Framework 3.0 Community Web site at http.//wcf.netfx3.com/
content/BuildingCustomChannels.aspx.

For more information about how to add your own functionality to the WCF infrastructure,
consult the topics in the “Extending WCF" section of the Microsoft Windows SDK
Documentation.

This section introduces you to some of the main components in the WCF infrastructure,
which is sometimes referred to as the WCF Service Model.

Services and Channels

You can think of a binding as a description of the channels in a channel stack. When a host
application starts a service running, the WCF runtime uses the bindings defined for each end-
point to instantiate a ChannelListener object and a channel stack. A ChannelListener object con-
nects an endpoint to the channel. The WCF runtime creates a ChannelListener object for each
URI on which the service can accept messages. When a request message arrives at a URI, the
corresponding ChannelListener object receives the message and passes it to the transport
channel at the bottom of the corresponding channel stack. To the transport channel, a mes-
sage is nothing more than a stream of bytes; it makes no attempt to understand the contents
of the message. The transport channel passes the message to the next channel in the stack,
which by convention is an encoding channel.

The purpose of an encoding channel is to parse the incoming request message and convert it
into a format that the channels above it in the channel stack can understand—usually SOAP.
When sending an outgoing response message, the encoding channel converts a SOAP mes-
sage passed in from the channels above it in the stack into a specified format for transmission
by the transport channel. The .NET Framework 3.0 class library provides encoding channels
for converting between SOAP messages and plain text, binary data, and an optimized format
called the Message Transmission Optimization Mechanism, or MTOM. You will learn more
about MTOM in Chapter 12, “Implementing a WCF Service for Good Performance.” The
transport and encoding channels are mandatory parts of a binding. Above the encoding chan-
nel, you can add channels handling reliability, security, transactions, and other non-functional
aspects of SOAP messaging.

Chapter 10 Programmatically Controlling the Configuration and Communications 255

Note The binary encoding channel implements a WCF-specific encoding. You cannot use it
to communicate with non-WCF client applications and services, so you should only use it in sit-
uations where interoperability is not an issue. MTOM is an OASIS approved specification and
should be used if you need to transmit data in a binary format in an interoperable manner.

Additionally, each transport channel will load a default encoding channel if you don't specify
one in the channel stack. The HTTP and HTTPS transport channels load the text encoding
channel, but the TCP channel defaults to using the binary encoding channel.

When an incoming request message reaches the top of the channel stack, a ChannelDispatcher
object takes the message, examines it, and passes it to an EndpointDispatcher object that
invokes the appropriate method in the service, passing the data items in the message as
parameters to the method. ChannelDispatcher and EndpointDispatcher objects are created auto-
matically when you use a ServiceHost object to run a service.

Note Itis possible to associate multiple endpoints with the same URI. When a WCF service
receives a message, the ChannelDispatcher will query the EndpointDispatcher for each end-
point in turn to establish which one, if any, can process the message. You will learn more
about this process in Chapter 13.

When a method implementing an operation in a service finishes, the data it returns passes
back through the channel stack to the transport channel where it is transmitted back to the
client application. The WCF runtime on the client builds a similar structure to that used by
the service, except that it is slightly simpler, as it does not have to listen for requests or manage
multiple instances of the application in the way that a service does. The WCF runtime for the
client creates a ChannelFactory object and uses this object to construct a channel from the
binding definition. The proxy object in the client application is responsible for converting
method calls into outgoing request messages and passing them to the channel for transmis-
sion. Incoming response messages received on the transport channel work their way back up
through the channel stack, where the proxy object converts them into the format expected by
the client code and returns them as the results of the original method call.

Behaviors

You can customize the way in which components in the WCF infrastructure operate by apply-
ing behaviors. For example, the NET Framework 3.0 provides a number of built-in endpoint

behaviors you can use to modify the way in which the endpoint serializes data, how it batches

operations together in a transaction, the specific credentials it uses when sending messages or

receiving messages, and so on. You can also attach behaviors to other objects in the WCF run-
time, such as the service instance created by the ServiceHost object. As another example, WCF

supplies the serviceDebug service behavior that you can use to specify that the service should

transmit complete error information to the client application in the event of an exception.

256

Chapter 10 Programmatically Controlling the Configuration and Communications

WCEF provides different sets of behaviors for customizing different types of objects, and they
each have a scope that depends on the type of object they apply to. For example, you use ser-
vice behaviors for modifying the behavior of an entire service, operation behaviors for influenc-
ing the way in which individual methods in a service are invoked, and contract behaviors for
affecting the way in which all operations in a contract are called. You can define your own cus-
tom behaviors, and you will see an example of a custom service behavior later in this chapter.

The .NET Framework 3.0 enables you to apply behaviors by using a configuration file, declar-
atively by specifying an attribute, or imperatively by adding code to a service that instantiates
the behavior and sets its properties. Not all behaviors are available through all mechanisms.
The general rule is that you can only change behaviors that are critical to the way in which a
service functions (such as operation behaviors) by using an attribute or writing code. These
behaviors are the concern of the developers building a service rather than an administrator
configuring it. On the other hand, WCF exposes the behaviors that are a matter of administra-
tive policy rather than implementation strategy through the configuration file.

Composing Channels into Bindings

The channels in a channel stack implement the various protocols and specifications used by
SOAP messaging. The binding used by a client application should correspond to the binding
implemented by the service that the client application communicates with; if a channel is
omitted, or placed in a different position in the channel stack, there is the possibility that
either the client application or the service will not be able to interpret messages correctly.

In Chapter 2, “Hosting a WCF Service,” you were first introduced to the predefined bindings
in the NET Framework 3.0, such as basicHttpBinding, wsHttpBinding, and netTcpBinding.
These predefined bindings combine channels in configurations that meet the requirements of
many common scenarios. The NET Framework 3.0 contains classes that correspond to these
bindings in the System.ServiceModel namespace, and these classes expose properties that
enable you to configure the channels used by these bindings. You can also create your own
custom bindings by combining binding elements and setting the properties of each of these
binding elements to determine exactly which channels the WCF runtime uses.

You build a custom binding by adding binding elements to a CustomBinding object. The pre-
defined bindings restrict the channels in a binding to various meaningful combinations.
When you create a custom binding, you must ensure that you combine binding elements in a
sensible manner. To some extent, the WCF runtime protects you and will throw an exception
if, for example, you try and add two encoding binding elements to a binding. However, the
WCEF runtime is not able to perform complete sanity checking of your bindings, especially if
you are using custom bindings. If you get it wrong, the client application and service might not
understand each other’s messages, which will consequently cause faults, timeouts, and excep-
tions.

Chapter 10 Programmatically Controlling the Configuration and Communications 257

The order of the binding elements in a custom binding is also important. It has been men-
tioned before that the transport channel must be at the bottom of the stack, followed by the
encoding channel. Microsoft recommends that you layer channels according to the function
that they perform. Table 10-1 lists the layers and the channels appropriate to each layer. The
class names for the binding element classes associated with the corresponding channels pro-
vided by the .NET Framework 3.0 in each layer are shown in italics:

Table 10-1 Recommended Channel Organization

Layer Function Channel Binding Element Class

1 (top) Transaction Flow TransactionFlowBindingElement

2 Reliable Sessions ReliableSessionBindingElement

3 Security AsymmetricSecurityBindingElement,

SymmetricSecurityBindingElement, or
TransportSecurityBindingElement, and others created
by factory methods in the SecurityBindingElement
class.

4 Stream Upgrades SsIStreamSecurityBindingElement or
WindowsStreamSecurityBindingElement

5 Encoding BinaryMessageEncodingBindingElement,
MtomMessageEncodingBindingElement, or
TextMessageEncodingBindingElement

6 (bottom) Transport HttpTransportBindingElement,
HttpsTransportBindingElement,
PeerTransportBindingElement,
TcpTransportBindingElement,
NamedPipeTransportBindingElement,
MsmqTransportBindingElement, or
MsmglntegrationBindingElement

This table shows the common binding elements that you have met in earlier chapters in this
book. There are others, and you will see some of them later. Most of these binding elements
are self-explanatory, but some warrant a little more explanation.

m The SecurityBindingElement class acts as a factory for security binding elements and
exposes methods that you can use to create channels that implement them. You will see
an example of this in the exercise that follows this section.

m The AsymmetricSecurityBindingElement and SymmetricSecurityBindingElement classes rep-
resent channels that implement message level security. The TransportSecurityBindingEle-
ment class represents a channel that implements transport level security. (For more
information about message level and transport level security, refer back to Chapter 4,
“Protecting an Enterprise WCF Service.”) However, you are more likely to use channels
for specific scenarios, such as CreateAnonymousForCertificateBindingElement, which cre-
ates a symmetric binding element that supports anonymous client authentication and
certificate-based server authentication. You can create these channels by using the fac-
tory methods of the SecurityBindingElement class.

258

Chapter 10 Programmatically Controlling the Configuration and Communications

m Stream upgrades such as the SsIStreamSecurityBindingElement and WindowsStreamSecuri-

tyBindingElement classes do not actually represent channels but rather objects that can
modify the way in which data is transmitted over the network. You can use them in con-
junction with a transport that supports a stream-oriented protocol, such as TCP and
named pipes. A stream upgrade operates on a stream of data rather than individual WCF
messages. For example, the WindowsStreamSecurityBindingElement class enables you to
specify that data should be encrypted and/or signed before being transmitted. Another
example (not currently implemented by the NET Framework 3.0) would be to use a
streaming upgrade channel that compresses the data using a specified algorithm before
transmission.

When you use a configuration file to create a binding, you are not necessarily aware of which
binding elements you are using. For example, when you specify a <security> element, the
“mode” attribute determines whether the WCF runtime uses a message level <security bind-
ing> element or a transport level one. Setting other attributes in the <security> element enable
the WCF runtime to determine exactly which of the many possible security binding elements
it should use when constructing the channel. When you create a binding programmatically,
you have to be explicit.

That’s the theory. The exercises that follow show how to put some of what you have just read
into action.

Programmatically create and use a binding in the ShoppingCartService service

1.

Using Visual Studio 2005, open the solution file ShoppingCartService.sln located in the
Microsoft Press\WCEF Step By Step\Chapter 10\ShoppingCartService folder under your
\My Documents folder.

This solution contains a copy of the ShoppingCartService, and ShoppingCartClient
projects from Chapter 9. The ShoppingCartHost project is a little different though. The
binding and service endpoint information for the ShoppingCartService service has been
removed, leaving only the connection string for the AdventureWorks database. Addition-
ally, the Main method in the Program.cs file is currently empty.

In Solution Explorer, edit the Program.cs file in the ShoppingCartHost project. Add the
following using statement to the list at the top of the file:

using System.ServiceModel.Channels;

The System.ServiceModel. Channels namespace contains the classes defining the various
channels and bindings provided by the WCF.

In the Main method in the Program class, add the following statement:
CustomBinding customBind = new CustomBinding();

This statement creates a new, empty custom binding object. You will add binding ele-
ments to the custom binding object in the next step.

Chapter 10 Programmatically Controlling the Configuration and Communications 259

Note If you want to use one of the standard bindings, you can create it in much the
same way. For example, to create a standard HTTP binding object for the wsHttpBind-
ing binding configuration, you could use:

WSHttpBinding httpBind = new WSHttpBinding();

The ShoppingCartService service uses transactions and requires reliable sessions. Create
the binding elements that correspond to the channels that implement the transaction
and reliable messaging protocols, set their properties, and then add them to the custom
binding as follows:

TransactionFlowBindingElement txFlowBindETlem = new TransactionFlowBindingElement();

txFlowBindETem.TransactionProtocol = TransactionProtocol.0leTransactions;
customBind.Elements.Add(txFTowBindElem);

ReliableSessionBindingElement rsBindElem = new ReliableSessionBindingElement();
rsBindElem.FlowControlEnabled = true;

rsBindElem.Ordered = true;

customBind.Elements.Add(rsBindETem);

The transaction flow binding element is configured to use OLE transactions; the alterna-
tive is to specify WSAtomicTransactionOctober2004, which implements the WS-Atom-
icTransactions specification. Refer back to Chapter 8, “Supporting Transactions,” for
further details.

The reliable sessions binding element enables flow control and ensures that the order of
messages is preserved, as described in Chapter 9.

It is worth emphasizing again that the order in which you add the elements to the cus-
tom binding is important. Binding elements higher up the channel stack must be added
to the custom binding before those that occur lower down in the stack.

The ShoppingCartService service also needs to implement secure conversations and
replay detection. Use the SecurityBindingElement class to create a SecureConversation
BindingElement, as follows:
SecurityBindingElement secBindElem =
SecurityBindingElement.CreateSecureConversationBindingElement(
SecurityBindingElement.CreateSspiNegotiationBindingElement());

secBindElem.LocalServiceSettings.DetectReplays = true;
customBind.Elements.Add(secBindElem);

The secure conversation protocol uses a handshaking mechanism between the client
application and the service to establish a security context token that both parties can use
to authenticate the messages that pass between them. This handshake also needs to be
secured, and the security binding element passed as a parameter to the CreateSecure-
BindingElement method specifies how to protect the handshake messages that flow
while negotiating the security context. The code in this exercise uses SOAP SSPI negoti-
ation to authenticate messages while handshaking (this is the default).

After creating the security binding element, the code enables server-side replay detection
before adding it to the custom binding.

260 Chapter 10 Programmatically Controlling the Configuration and Communications

6.

10.

Add binding elements that implement a text encoding channel and a TCP transport
channel, like this:

customBind.Elements.Add(new TextMessageEncodingBindingElement());

TcpTransportBindingElement tcpBindElem = new TcpTransportBindingElement();
tcpBindElem.TransferMode = TransferMode.Buffered;
customBind.Elements.Add(tcpBindElem);

The reliable sessions channel requires that messages are buffered by the transport. The
transport channel must be the last item in the custom binding.

Add code to create a ServiceHost object, as follows:
ServiceHost host = new ServiceHost(typeof(ShoppingCartService.ShoppingCartServiceImpl));

This should be a familiar statement to you, but you now appreciate what a ServiceHost
object does: it constructs the channel, it manages the lifetimes of various instances of the
service defined by the specified type, and it ensures that client requests are dispatched to
the correct service instance. It performs these tasks in conjunction with ChannelListener,
ChannelDispatcher, and EndpointDispatcher objects that it creates by using the code you
will add in the following steps.

Previously, you specified the endpoint definition for the ShoppingCartService in the
application configuration file, and the ServiceHost constructor used this information to
construct an endpoint and a ChannelListener. You no longer have this information in the
application configuration file, so add the endpoint by using code, as shown below:
host.AddServiceEndpoint(typeof(ShoppingCartService.IShoppingCartService),

customBind, “net.tcp://Tocalhost:9090/ShoppingCartService”);
The parameters to the AddServiceEndpoint method are the service contract that the ser-
vice implements, the binding, and the URI for the listener.

You can now start the service running. Add the following statements to the Main
method:

host.Open(Q);

Console.WriteLine(“Service running”);

Console.WriteLine(“Press ENTER to stop the service”);
Console.ReadLine();

The Open method starts a ChannelListener object listening for client requests. When a
request arrives, the ChannelListener passes it to the channel. The ChannelDispatcher

object retrieves the message from the top of the channel and passes it, through the End-
pointDispatcher, to an instance of the ShoppingCartService service.

Start the solution without debugging. In the ShoppingCartClient console window dis-
playing the message “Press ENTER when the service has started,” press Enter.

The client application runs exactly as before, creates a shopping cart, adds two water bot-
tles and a mountain seat assembly, and then purchases the goods.

Chapter 10 Programmatically Controlling the Configuration and Communications 261

11. Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

Inspecting Messages

An interesting feature of the WCEF service model is the ability to intercept messages as they are
dispatched to a service method, and again as they leave the service method prior to traversing
the channel and being transmitted back to the client application. You can perform this task by
creating a message inspector; you create a class that implements the IDispatchMessagelnspector
interface and insert it into the WCF infrastructure by using a behavior. The behavior that you

use determines the scope of the message interception. If you specify message interception as

a service behavior, all messages sent to the service will be intercepted. You can also apply mes-
sage interception by using operation, endpoint, or contract behaviors, in which case intercep-
tion applies only to the specified operation, endpoint, or contract.

You can implement message inspection in a client application or a service. In the exercise that
follows, you will see how to create a message inspector and integrate it into the dispatch mech-
anism of the WCF runtime for the service. To continue in the spirit of this chapter, you will
perform these tasks programmatically.

Create a message inspector for the ShoppingCartService service

1. In Visual Studio 2005, select the ShoppingCartService project in Solution Explorer. In
the Project menu, click Add Class, and add a new class file called ShoppingCartInspec-
tor.cs to the project.

2. Inthe ShoppingCartlnspector.cs file, add the following using statements to the list at the
top:
using System.ServiceModel.Dispatcher;
using System.ServiceModel.Description;

3. Modify the definition of the ShoppingCartInspector class to implement the IDispatchMes-
sagelnspector interface, as follows:

public class ShoppingCartInspector : IDispatchMessageInspector

{

}

The IDispatchMessageInspector interface defines two methods that enable you to view
and modify messages flowing into and out of the service.

4. In the code view window, right-click IDispatchMessagelnspector, point to Implement
Interface, and then click Implement Interface.

Visual Studio 2005 generates stubs for the two methods in the IDispatchMessagelnspector
interface. These methods are called AfterReceiveRequest, which is invoked immediately
before the service method is called, and BeforeReplySend, which runs when the service
method has completed. Notice that the first parameter to both methods is a reference to

262

Chapter 10 Programmatically Controlling the Configuration and Communications

a Message object. This is the message that has just been received or is about to be sent.
The important point to realize is that you can modify the contents of this message, and
any changes you make will be passed to the service method or returned to the client
application depending on whether this is an inbound message (AfterReceiveRequest) or
an outbound message (BeforeSendReply). For this reason, you should be especially care-
ful that you don’t add any code that inadvertently changes the contents of messages.

Remove the throw statement in the AfterReceiveRequest method, and replace it with the
code shown in bold below:

public object AfterReceiveRequest(
ref System.ServiceModel.Channels.Message request,
System.ServiceModel.IClientChannel channel,
System.ServiceModel.InstanceContext instanceContext)

{
Console.WriteLine(“Message received: {0}\n{1}\n\n”,
request.Headers.Action, request.ToString());
return null;
}

The first statement displays the action that identifies the message, followed by the mes-
sage itself.

It is sometimes useful to be able to correlate messages in the AfterReceiveRequest
method with the corresponding response sent by the BeforeSendReply method. If you
examine the BeforeSendReply method, you will see that it has a second parameter called
correlationState. If you need to correlate request and reply messages, you can create a
unique identifier in the AfterReceiveRequest method and return it. The WCF runtime
will pass this same identifier in as the correlationState parameter to the BeforeSendReply-
Method. In this example, you are not correlating request and reply messages, so the
AfterReceiveRequest method simply returns null.

Caution The Message object contains a SOAP message, comprising XML text. You
can use the generic GetBody<> method to parse the contents of the message and
retrieve the data in the <Body> element, like this:

System.Xml.Xm1Element data =
request.GetBody<System.Xm1.Xm1Element>();

However, the GetBody<> method is destructive. You can use it only once on a mes-
sage, so doing this destroys the message, and the service method receives incorrect
data. To examine a message safely, use the CreateBufferedCopy method of the request
message to create a MessageBuffer object containing a copy of the message. You can
then extract the copy of the message from this MessageBuffer object by using the Cre-
ateMessage method, like this:

MessageBuffer requestBuffer = request.CreateBufferedCopy(10000);

Message requestCopy = requestBuffer.CreateMessage();

Chapter 10 Programmatically Controlling the Configuration and Communications 263

6. Replace the throw statement in the BeforeSendReply method with the code shown in
bold below:

public void BeforeSendReply(ref System.ServiceModel.Channels.Message reply,

{

}

object correlationState)
Console.WriteLine(“Reply sent: {0}\n{1}\n\n”,
reply.Headers.Action, reply.ToString());

This statement displays the action and the reply message on the console.

You will integrate the ShoppingCartInspector into the WCF runtime by using a service behav-
ior. Sadly, there is no built-in “IntegrateShoppingCartInspector” service behavior in WCF. For-
tunately, it is not difficult to write it yourself.

Create a service behavior for the ShoppingCartService service

1.

Add the following class to the ShoppingCartinspector.cs file, underneath the Shopping-

CartInspector class:

public class ShoppingCartBehavior: IServiceBehavior

{
}

The IServiceBehavior interface defines three methods that a class must implement to be
able to act as a service behavior in the WCF infrastructure.

In the code view window, right-click IServiceBehavior, point to Implement Interface, and
then click Implement Interface.

Visual Studio 2005 adds the following three methods to the ShoppingCartBehavior class:

0 AddBindingParameters. Some behaviors can take additional data items as param-

eters to the binding elements, and an administrator or developer can supply this
information in the BindingParameterCollection passed to this method. The WCF
runtime invokes the AddBindingParameters method once for each URI that the
service is listening on. The ShoppingCartBehavior service behavior does not
require this facility.

ApplyDispatcherBehavior. This method enables you to modify the behavior of Ser-
viceHost object hosting the service. The ServiceHost object is passed in as the second
parameter to this method. Use this method to perform tasks such as adding cus-
tom error handlers or message inspector objects into the runtime. The Shopping-
CartBehavior service behavior will use this method to insert the message inspector
into the processing path for each EndpointDispatcher object used by the service.

Validate. The WCF runtime invokes this method to verify that the service meets
your own custom requirements. For example, you can examine the service descrip-
tion passed in as the first parameter and if it does not conform to expectations (it
doesn’t specify how to handle faults, for example), you can reject the contract and

264 Chapter 10 Programmatically Controlling the Configuration and Communications

throw an exception. The ShoppingCartBehavior service behavior does not use this
feature either.

3. Commentout the throw statements in the AddBindingParameters and Validate methods.
Replace the throw statement in the ApplyDispatchBehavior method with the code shown
in bold below:

public void ApplyDispatchBehavior(ServiceDescription serviceDescription,
System.ServiceModel.ServiceHostBase serviceHostBase)

{
foreach (ChannelDispatcher chanDispatcher in
serviceHostBase.ChannelD1ispatchers)
{
foreach (EndpointDispatcher epDispatcher in
chanDispatcher.Endpoints)
{
epDispatcher.DispatchRuntime.MessageInspectors.Add(
new ShoppingCartInspector());
}
}
}

This block of code iterates through each EndpointDispatcher object for each ChannelDis-
patcher object created by the ServiceHost object and adds a ShoppingCartInspector object
into the MessageInspectors collection of each endpoint. Subsequently, whenever an End-
pointDispatcher object dispatches a service method or whenever a service method
returns to the EndpointDispatcher object, the message will pass through the Shopping-
CartInspector object.

4. The final step is to apply the ShoppingCartBehavior to the ShoppingCartService when it
runs. Open the Program.cs file in the ShoppingCartHost project and add the code
shown below in bold between the statement that adds the service endpoint to the service
and the statement that opens the service:

host.AddServiceEndpoint(typeof(ShoppingCartService.IShoppingCartService),

customBind, “net.tcp://Tocalhost:9090/ShoppingCartService”);
host.Description.Behaviors.Add(new ShoppingCartService.ShoppingCartBehavior());
host.Open(Q);

5. Start the solution without debugging. In the ShoppingCartClient console window, press
Enter.

The client application runs as before (albeit a little more slowly). However, the console
window running the service host now displays the SOAP messages being sent and
received, like this:

Chapter 10 Programmatically Controlling the Configuration and Communications 265

01 /0as is—200401 u
y-utility
heckout xmlns="http://adventure—works.con/2007/03/01" />

</s:Body
K/s:Envelope>

[Reply sent: http:/sadventure—works.con/2087,/03/01/ShoppingCartServiceCheckoutRe
s pons:

w3 .org/20085 /08 addressing” xmlns: ht tp:/ . vl

="1">http://adventure—works .con/2087./03/81/Shoppin
e</azfiction
52¢280—e49a—4b16—-a5h5—1fcdh5c44682<{ a:RelatesTo>

dy>
{CheckoutResponse xmlns="http://adventure—works.con/2087,03,/01">
<{CheckoutResult >true</CheckoutResult>
{/CheckoutResponse >
</s:Body
K/s:Envelope>

6. Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

Controlling Client Communications

You have now seen how to configure the channel stack for a service and how to create a behav-
ior that can modify the way in which the WCF runtime processes messages. In this section,
you will examine how to programmatically connect a client application to a service, send mes-
sages, and process responses.

Connecting to a Service Programmatically

When a client application runs and connects to a service, the WCF runtime creates an infra-
structure that is a simplified mirror of that created for the service. When you use a proxy
object to connect to a service, behind the scenes the WCF runtime creates a binding object
using the binding elements specified in the configuration file, and an endpoint based on the
selected endpoint definition, and then uses these items to construct a ChannelFactory object.
The WCF runtime uses the ChannelFactory object to instantiate the channel stack and connect
it to the URI specified by the endpoint. When the client application invokes operations
through the proxy object, the WCF runtime routes these requests through the channel stack
and transmits them to the service. When a response message arrives from the service, it passes
back up through the channel stack to the WCF runtime, and the proxy object then passes it
back to the client application code.

You can create a client proxy class for a service by using the svcutil utility to query the meta-
data for the service and generate an assembly that you can add to the client project (you have
performed this task at regular intervals during the exercises in this book). For security rea-
sons, the administrator managing the host computer running a WCF service can elect to dis-
able service metadata publishing. However, the WCF service developer can distribute an
assembly containing the service contract, and you can use this to create a proxy object instead
of using svcutil. In the next exercise, you will see how to connect to a service by using the ser-
vice contract to create a proxy object at runtime.

266

&

Chapter 10 Programmatically Controlling the Configuration and Communications

Note You can also use the svcutil to generate the proxy class from an assembly containing
the service interface (you will use this technique in later chapters), but performing this task
by using code provides you with additional flexibility and helps you to understand how the
proxy class generated by using svcutil actually works.

Connect to the ProductsService service by using a service contract

1.

In Visual Studio 2005, close the ShoppingCartService solution and then open the Prod-
uctsService solution in the Microsoft Press\WCF Step By Step\Chapter
10\ProductsServiceV2 folder under your \My Documents folder.

This solution contains a copy of the ProductsService service and ProductsServiceHost
application from Chapter 6, “Maintaining Service Contracts and Data Contracts,” and a
version of the ProductsClient application that has most of the code from the Program.cs
file removed. The application configuration file and the file containing the proxy class
definition have also been removed from the client application.

In Solution Explorer, open the ProductsServiceContract.cs file in the ProductsClient
project and examine its contents. This file contains the definition of the service contract
for the ProductsService service, IProductsServiceV2, and the associated data contracts (it
was copied from the ProductsService.cs file in the ProductsService project). It does not
contain any code that implements the service.

In Solution Explorer, open the Program.cs file in the ProductsClient project. This file
contains the basic framework for the client application in the Main method, but the code
that connects to the service and invokes operations is currently missing.

Add the following using statement to the list at the top of the file:
using System.ServiceModel.Security;

In the Main method, in the try block, add the statements shown in bold below:

try

{
NetTcpBinding tcpBinding = new NetTcpBinding(SecurityMode.Message);
NetTcpSecurity tcpSec = tcpBinding.Security;
tcpSec.Message.AlgorithmSuite = SecurityAlgorithmSuite.Basic128;
tcpSec.Message.ClientCredentialType = MessageCredentialType.Windows;
}

The NetTIcpBinding class implements the standard TCP binding. The ProductsService ser-
vice exposes a TCP endpoint with the URI, “net.tcp://localhost:8080/TcpProductsSer-
vice.” If you examine the application configuration file for the ProductsServiceHost
project, you will see that the binding configuration for the service endpoint uses message
level security, with 128-bit encryption of messages and Windows authentication. The
code you have just added sets the corresponding security properties for the NetTcpBind-
ing object in the client application.

Chapter 10 Programmatically Controlling the Configuration and Communications 267

Add the following statement:

EndpointAddress address = new EndpointAddress(
“net.tcp://localhost:8080/TcpProductsService”);

The EndpointAddress object encapsulates the address that the client application uses to
communicate with the service.

Add the code shown below:

Products.IProductsServiceV2 proxy =
ChannelFactory<Products.IProductsServiceV2>.CreateChannel(
tcpBinding, address);

The generic ChannelFactory class creates a channel by calling the static CreateChannel
method. The new channel uses the binding specified in the first parameter and connects
to the address provided in the second parameter. The value returned is a reference to the
channel just created. A channel has a type based on the service contract. In this case, the
channel is assigned to a variable of type Products.IProductsServiceV2. Remember that
IProductsServiceV2 is the interface implemented by the service contract in the Prod-
uctsServiceContract.cs file. You can create channels based on any interface that is anno-
tated with the ServiceContract attribute.

You can now invoke methods through the proxy variable. Add the following statements
that invoke the ListSelectedProducts operation to retrieve a list of bicycle frames and dis-
play the results:

Console.WriteLine(“Test 1: List all bicycle frames”);
List<string> productNumbers = proxy.ListSelectedProducts(“Frame”);
foreach (string productNumber in productNumbers)

{

Console.WriteLine(“Number: “ + productNumber);
}

Console.WriteLine(Q);
There is one very subtle difference between this code and the corresponding code you
used in Chapter 6: the value returned by the ListSelectedProducts method is now

returned as a List<string> object rather than the array of strings passed back when using
the generated proxy.

Close the connection to the service by setting the proxy variable to null, as follows:
proxy = null;

The complete code for the Main method should look like this (comments have been
added to help clarify the code):

static void Main(string[] args)

{
Console.WriteLine(“Press ENTER when the service has started”);
Console.ReadLine();

try
{

// Create the TCP binding and configure security

268 Chapter 10 Programmatically Controlling the Configuration and Communications

}

3

NetTcpBinding tcpBinding = new NetTcpBinding(SecurityMode.Message);

NetTcpSecurity tcpSec = tcpBinding.Security;

tcpSec.Message.AlgorithmSuite = SecurityAlgorithmSuite.Basicl28;

tcpSec.Message.ClientCredentialType =
MessageCredentialType.Windows;

// Create an endpoint
EndpointAddress address = new EndpointAddress(
“net.tcp://localhost:8080/TcpProductsService”);

// Build the channel for communicating with the service
Products.IProductsServiceV2 proxy =
ChannelFactory<Products.IProductsServiceV2>.CreateChannel(
tcpBinding, address);

// Obtain a Tist of all bicycle frames

Console.WriteLine(“Test 1: List all bicycle frames”);

List<string> productNumbers = proxy.ListSelectedProducts(“Frame”);
foreach (string productNumber in productNumbers)

{

Console.WriteLine(“Number: + productNumber);

3

Console.WriteLine(Q);

// Close the connection to the service
proxy = null;

catch (Exception e)

{

3

Console.WriteLine(“Exception: {0}”, e.Message);

Console.WriteLine(“Press ENTER to finish”);
Console.ReadLine();

10. Build the solution, and then exit Visual Studio 2005.

Before you run the client application, you must make one configuration change to the security
of your computer: you must add your user account to the WarehouseStaff group. This is
because the ProductsService service expects the user requesting the ListSelectedProducts
operation to be a member of this group.

Configure security and test the client application

1. On the Windows Start menu, right-click My Computer and then click Manage.

The Computer Management console appears.

2. Inthe Computer Management console, expand the Local Users and Groups node in the
System Tools folder, and then click the Groups folder. In the right pane, right-click the
WarehouseStaff group and then click Add to Group.

The WarehouseStaff Properties window appears.

Chapter 10 Programmatically Controlling the Configuration and Communications 269

3. In the WarehouseStaff Properties window, click Add.

The Select Users window appears.

In the WarehouseStaff Properties window, click OK.

Close the Computer Management console.

N Ve

Log off from Windows and log back in again.

In the Select Users window, enter the name of your own user account and then click OK.

This step is necessary for Windows to recognize your new membership of the Warehous-

eStaft group.
8. Start Visual Studio 2005, and open the ProductsService solution again.

9. Start the solution without debugging. In the ProductsServiceHost form, click Start. In
the client console window, press Enter.

The client application connects to the service, requests a list of bicycle frames, and dis-

plays the results, like this:

AWINDOWS\system32\cmd.exe

NTER when the service has started

= FR-R38B—44

10. Press Enter in the client console window to close the client application. In the Prod-
uctsServiceHost form, click Stop and then close the form.

Using the ClientBase Abstract Class

In earlier chapters, you used the ClientCredentials property of the proxy object to specify
the credentials to send to the service. The Products.[ProductsServiceV2 interface does not
include this functionality. If you need to provide credentials other than your current
Windows identity, you must define a class that extends the System.ServiceModel.Client-
Base generic abstract class. This class incorporates the client-side ChannelFactory infra-
structure through a series of constructors. You can expose whichever of the base class
constructors are appropriate for your situation. The class should also provide an imple-
mentation of the interface that defines service contract. You can use the Channel prop-
erty of the base class to route method calls through the channel to the service in each

270

Chapter 10 Programmatically Controlling the Configuration and Communications

method implementing the service interface. The code below shows an example, creating
a ClientBase class based on the Products.IProductsServiceV2 service contract and imple-
menting the methods of the Products.IProductsServiceV2 interface. This example also
implements one of the ten available ClientBase constructors:

class ProductsServiceProxy : ClientBase<Products.IProductsServiceV2>,
Products.IProductsServiceV2

{
public ProductsServiceProxy(Binding binding, EndpointAddress address)
base(binding, address)
{
}
#region IProductsServiceV2 Members
public List<string> ListSelectedProducts(string match)
{
return base.Channel.ListSelectedProducts(match);
}
public Products.Product GetProduct(string productNumber)
{
return base.Channel.GetProduct(productNumber);
}
public int CurrentStockLevel(string productNumber)
{
return base.Channel.CurrentStockLevel (productNumber);
}
public bool ChangeStockLevel(string productNumber, int newStockLevel,
string shelf, int bin)
{
return base.Channel.ChangeStockLevel (productNumber, newStockLevel,
shelf, bin);
}
public void UpdateProductDetails(Products.Product product)
{
base.Channel.UpdateProductDetails(product);
}
#endregion
}

You can instantiate this class and use it as your proxy object. The ClientBase class pro-
vides the ClientCredentials property that you can use to specify the credentials to trans-
mit to the service by using the following familiar code:

ProductsServiceProxy proxy = new ProductsServiceProxy(tcpBinding, address);
proxy.ClientCredentials.Windows.ClientCredential.UserName = “Fred”;

Chapter 10 Programmatically Controlling the Configuration and Communications 271

proxy.ClientCredentials.Windows.ClientCredential.Password = “Pa$$wOrd”;
proxy.ClientCredentials.Windows.ClientCredential.Domain = “LON-DEV-01";

If you examine the code for any client proxy class generated by using the svcutil utility,
you will see that it follows this approach.

Sending Messages Programmatically

A major objective of WCF is to provide a platform for interoperability. You can build WCF cli-
ent applications that communicate with services created by using other, non-WCF technolo-
gies, such as Java. In this situation, if the administrator of the computer hosting the service
disables service metadata publishing, the service developer is unlikely to provide you with a
NET Framework assembly containing the service contract. However, if you have documenta-
tion describing the SOAP messages that the service can accept and the responses the service
emits, you can still access the service from a WCEF client application; you can send messages
directly through the channel. Thisis a very low-level, but extremely flexible approach that also
gives a valuable insight into how the WCF runtime on the client converts proxy object
method calls into SOAP messages. This is the subject of the final exercise in this chapter.

Send a message and process the response in the client application

1. InVisual Studio 2005, close the ProductsService solution and then open the Sim-
pleProductsService solution in the Microsoft Press\WCF Step By Step\Chapter 10\Sim-
pleService folder under your \My Documents folder.

This solution contains a simplified version of the ProductsService service called Sim-
pleProductsService. The settings in the app.config file cause the host application, Sim-
pleProductsServiceHost, to publish the service with an HTTP endpoint using the
BasicHttpBinding binding at the URI http://localhost:8040/SimpleProductsService/
SimpleProductsService.svc.

2. Open the ProductsService.cs file in the SimpleProductsService project. Locate the ISim-
pleProductsService interface defining the service contract. It looks like this:

// Simplified service contract
[ServiceContract(Namespace="http://adventure-works.com/2006/09/30",
Name=“SimpTeProductsService”)]
public interface ISimpleProductsService
{
[OperationContract(Name = “ListProducts”)]
List<string> ListProducts(Q);

}

The service contract defines a single operation: ListProducts (this is the same as the cor-
responding operation in the original ProductsService service). Note the namespace and
name of the service contract. WCF uses the service contract namespace and name in
conjunction with the name of the operations to define the SOAP messages, or actions,
that the service publishes. In this case, the service will accept and process SOAP mes-

272

Chapter 10 Programmatically Controlling the Configuration and Communications

sages with an action of “http://adventure-works.com/2006/09/30/SimpleProductsSer-
vice/ListProducts.” Also, notice that the return type is List<string>, so the service will
return a SOAP message containing a serialized list of strings.

Note If you don't want to base the name of an action on the name and namespace
properties of the service contract, you can provide your own name by specifying the
Action and ReplyAction properties for the OperationContract attribute. You will learn
more about the Action and ReplyAction properties in Chapter 13.

Edit the Program.cs file in the ProductsClient project. The Main method in this project
currently creates a default BasicHttpTcpBinding and an EndpointAddress object. The URI
in this endpoint is http://localhost:8040/SimpleProductsService/SimpleProductsSer-
vice.svc; this is the address that the SimpleProductsService is configured to listen on.

Add the following using statement to the list at the top of the file:
using System.ServiceModel.Channels;

In the try block in the Main method, add the following statements shown in bold imme-
diately after the code that creates the EndpointAddress object:

EndpointAddress address = new EndpointAddress(
“http://localhost:8040/SimpTeProductsService/SimpleProductsService.svc”);

IChannelFactory<IRequestChannel> factory =
httpBinding.BuildChannelFactory<IRequestChannel>(Q);
factory.OpenQ; ..

The first statement creates a client-side ChannelFactory object that the client application
can use for sending and receiving messages. The Open method instantiates the channel
factory ready for building the channel stack.

A channel implements interfaces that specify the messaging model that it supports. A
channel can be an input channel, an output channel, an input and output channel (a
duplex channel), a special form of output channel known as a request channel, or an
equivalent input channel known as a reply channel. These interfaces are collectively
referred to as channel shapes. The shapes available to a transport channel depend on
several factors, including the type of the transport channel and the current value of its
properties. For example, a TCP transport channel cannot act as a reply channel if it uses
the buffered transfer mode; it can only operate as a bi-directional duplex channel in this
case. However, the HTTP protocol operates using a send/receive pattern, and by default
the HTTP transport channel conforms to the request channel shape in a client applica-
tion, and the reply channel shape in a service.

The next step is to create the channel stack by using the channel factory. Add the follow-
ing statements to perform this task:

IRequestChannel channel = factory.CreateChannel(address);
channel.0pen(Q);

Chapter 10 Programmatically Controlling the Configuration and Communications 273

You can now send messages and receive replies through the channel stack. You create a
message by using the static CreateMessage method of the Message class. Add the follow-
ing statement to your code:

Message request = Message.CreateMessage(MessageVersion.Soapll,
“http://adventure-works.com/2006/09/30/SimpTleProductsService/ListProducts”);

When creating a message, you must specify the message version and a string specifying
the requested action. The SOAP messaging specification has undergone several changes
since it was first released, and the various bindings in WCF support different versions of
the specification. The BasicHttpBinding binding is intended to be compatible with SOAP
1.1 messaging. The constant MessageVersion.Soap11 indicates that the message should be
formatted according to this specification. As discussed earlier, the action string com-
bines the namespace and name of the service with the name of the operation.

The CreateMessage method is overloaded. This is the simplest version. Other overloads
enable you to specify parameters to send to messages and to generate SOAP fault mes-
sages (useful if you are creating a service using this low-level mechanism).

To send a message by using the request/response pattern, you use the Request method
of the channel. Add the statements shown below to your code:

Message reply = channel.Request(request);

Console.Out.WriteLine(reply);

The Request method blocks until a response is received from the service. The incoming

response message is passed back as the return value from the Request method. After the
application has received the response, the client simply displays it to the console.

At this point, you can send further requests to the service, but this simple client applica-
tion will simply disconnect and finish. Add these statements to your code immediately
before the end of the try block.

request.Close();

reply.Close();

channel.Close();
factory.Close();

Messages, channels, and channel factories all consume resources, so you should close
them when you have finished using them.

Start the solution without debugging. In the ProductsServiceHost form, click Start. In
the client application console window, press Enter.

The client application sends the ListProducts request to the service, which responds
with a message containing a list of products. The client application displays the SOAP
message containing this list, which has the following format:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/”>
<s:Header />
<s:Body>
<ListProductsResponse xmlns="“http://adventure-works.com/2006/09/30”>

274 Chapter 10 Programmatically Controlling the Configuration and Communications

<ListProductsResult
xmIns:a="“http://schemas.microsoft.com/2003/10/Serialization/Arrays”
xmIns:i="“http://www.w3.0rg/2001/XMLSchema-instance”>
<a:string>AR-5381</a:string>
<a:string>BA-8327</a:string>

<a:string>VE-C304-S</a:string>
<a:string>WB-H098</a:string>
</ListProductsResult>
</ListProductsResponse>
</s:Body>
</s:Envelope>
You can use the generic GetBody<> method of the reply message to parse the contents,

as described earlier in this chapter.

10. Press Enter to close the client application console window. In the ProductsServiceHost
form, click Stop and then close the form.

Summary

In this chapter, you have examined some of the internal mechanisms that the WCF runtime
uses to send and receive messages. You have seen how to create bindings in code and how to
use a ServiceHost object to create a channel for listening for requests. You have also seen how
to use a ChannelFactory object in a client application for sending requests and receiving
responses. You have learned how you can use a message inspector to examine the messages
flowing from the channel stack into a service and how to create a service behavior for modify-
ing the way in which the WCF runtime manages a service. You have also examined ways of
sending messages from a client to a service if you don’t have access to a proxy class generated
by using the svcutil utility: you can create your own proxy or you can use the low-level mes-
saging interface.

Chapter 11
Implementing OneWay and
Asynchronous Operations

After completing this chapter, you will be able to:

m Explain the behavior of OneWay operations, and how they are impacted by service
behavior and binding properties.

m Implement OneWay operations in a WCF service, and invoke them from a WCF client
application.

m Implement asynchronous operations in a WCF service, and invoke operations asyn-
chronously in a WCF client application.

m Explain the difference between invoking an operation asynchronously and imple-
menting an operation that supports asynchronous execution.

m Use a message queue to send requests to a service asynchronously.

WCE client applications and services frequently follow the request/response messaging pat-
tern for performing operations; the client application issues a request and then waits patiently
while the message crosses the network, the service receives and processes the message, the
service generates a reply, and the reply wends its way back across the network to the client
application. If the client application does not require the service to send a response, then wait-
ing for one is a waste of time and can impact the responsiveness of the client application. In
this situation, you might find that a OneWay operation can improve performance of the client
application.

If the client application does require a response but can safely perform other tasks while wait-
ing for this response, then you should use asynchronous method invocation. This technique
enables the client application to send a request and then continue execution. When a reply
message arrives from the service, a separate thread in the client application handles the
response.

OneWay operations and asynchronous operations both require that the client application and
the service are running at the same time. If this is not the case, then you should consider using
message queues as the transport medium between the client application and the service. A
message queue can provide durable storage for messages. However, you must design client
applications and services carefully if you are planning on using message queues, as the
request/response messaging pattern is not appropriate in this case.

In this chapter, you will look in detail at these three options for invoking operations in a WCF
service and maximizing the scope for parallelism in your applications.

275

276

Chapter 11 Implementing OneWay and Asynchronous Operations

Note It is also possible for a client to provide a callback method for a service. The service
can send a message that invokes this method. WCF client applications and services can use
this mechanism to implement events, enabling the service to notify a client application of
some significant occurrence. You will examine this feature in more detail in Chapter 14,
"Using a Callback Contract to Publish and Subscribe to Events”

Implementing OneWay Operations

When a client application invokes a OneWay operation, it can continue running without wait-
ing for the service to complete the operation. You can indicate that an operation is OneWay by
specifying the OneWay behavior in the operation contract. The simplest way to achieve this is
to set the IsOneWay property to true in the OperationContract attribute when defining the oper-
ation. You will see an example of this in the exercises in this section.

The Effects of a OneWay Operation

Marking an operation as OneWay has several implications. The most important one is that
such an operation cannot pass any data back to the client application; it must return a void
and cannot have parameters marked as out or ref. When a OneWay operation starts running
in the service, the client application has no further contact with it and will not even be aware
of whether the operation was successful or not. If the operation raises an exception that
would normally generate a SOAP fault message, this SOAP fault message is simply discarded
and never sent to the client.

Note If you invoke a OneWay operation by using the Request method of an /RequestChan-
nel object as described in Chapter 10, "Programmatically Controlling the Configuration and
Communications,” the value of the response message returned will be null.

Invoking a OneWay operation is not simply a matter of generating a message and throwing it
atan endpoint where, hopefully, the service is listening. Although a client application does not
know when a OneWay operation has completed (successfully or not), it is still important for
the client application to know that the service has received the message. If the service is not lis-
tening on the specified endpoint, the client will be alerted with an exception. Additionally, if
the service is very busy, it might not be able to accept the message immediately. Some trans-
ports implement a buffering mechanism for requests and will not accept further messages if
the number of outstanding requests is too big. For example, the TcpTransport channel has a
configurable property called ListenBacklog that specifies the maximum number of connection
requests that can be pending. If this number is exceeded, then subsequent requests will be
blocked until the number of pending requests drops; the client application will wait until the
request is accepted. If you want to be absolutely certain that the service has received the mes-
sage and that the transport has not just buffered it, you can invoke the OneWay operation in

Chapter 11 Implementing OneWay and Asynchronous Operations 277

areliable session. The service will send back an acknowledgement to the client when it starts
processing the message, as described in Chapter 9, “Implementing Reliable Sessions.” Reliable
messaging has some other beneficial side effects on OneWay operations, as you will see in the
exercise.

OneWay Operations and Timeouts

There are several possible failure points when sending messages over a network. If a client
application does not receive a response to a request within a specified period of time, the WCF
runtime on the client computer assumes that something has gone wrong and throws a Sys-
tem.TimeoutException to the client application. The duration of this timeout period is config-
urable as the SendTimeout property of the client binding and has a default value of 1 minute.
If a client application invokes a OneWay operation, the service only needs to accept the mes-
sage within this time period; it does not have to complete processing the message in this time.

Malicious users have often exploited OneWay operations to perform Denial of Service attacks;
they bombard a service with a large number of requests, causing it to grind to a halt as it
attempts to process all the messages. Bindings have a ReceiveTimeout property, which is used
by the WCF runtime managing the service. If an operation takes longer than the amount of
time specified by this value to complete, the WCF runtime aborts the operation and throws a
Timeout exception. The default value for the ReceiveTimeout property is 10 minutes. This is a
long time, and you should consider changing this value unless you genuinely have operations
that could take this long to perform.

In the following exercises, you will implement a OneWay operation and investigate what hap-
pens when you invoke it from a client application. To provide another variation in the host
environment, you will create a new WCF service that runs using the ASP.NET Development
Web Server supplied with Visual Studio 2005. Developers frequently use this environment
when building new Web services and then deploy them to IIS when they are complete. The
Web service you will create will provide administrative functions for the AdventureWorks
organization.

The first operation you will implement enables an administrator to request a report of the cur-
rent day’s sales. This report could take several minutes to run, and you don’t want to hold up
the administrator while this is happening, so you will implement this feature as a OneWay
operation.

Create the AdventureWorks administrative operations service

1. Using Visual Studio 2005, create a new Web site using the WCF Service template. In the
New Web Site dialog box, select File System from the Location drop-down list box and
set the location to the Microsoft Press\WCF Step By Step\Chapter 11\AdventureWork-
sAdmin folder under your \My Documents folder. Make sure you set the Language to
Visual C#.

278 Chapter 11 Implementing OneWay and Asynchronous Operations

2.

In Solution Explorer, select the C:\...\AdventureWorksAdmin\ project. In the Properties
window, set the Use dynamic ports property to False and set the Port number to 9090.

By default, the ASP.NET Development Web Server picks an unused port when it starts
running. For this exercise, it is useful to know in advance exactly which port the service
will use, and disabling the dynamic ports property enables you to specify a fixed port.

In Solution Explorer, expand the App_Code folder and edit the Service.cs file.

In the code view window, remove everything underneath the using statements (leave the
using statements intact).

Add a new service contract called IAdventureWorksAdmin to the file. In the ServiceCon-
tract attribute, set the Namespace property to http://adventure-works.com,/2007,/01,/01
(pretend itis January 1st, and that you use the recommended approach of incorporating
the creation date into namespaces), and set the Name property to AdministrativeSetvice,
like this:

[ServiceContract(Namespace="http://adventure-works.com/2007/01/01",
Name="AdministrativeService")]

public interface IAdventureWorksAdmin

{

}

Add an operation called GenerateDailySalesReport, shown below in bold, to the service

contract. Mark it as a OneWay operation by setting the IsOneWay property of the Opera-
tionContract attribute to true:

public interface IAdventureWorksAdmin

{
[OperationContract(IsOneWay = true)]
void GenerateDailySalesReport(string id);

}

Notice that this method returns a void. All OneWay methods must be void methods.
OneWay methods can take parameters, as long as they are not marked with the ref or out
modifiers. The parameter passed to the GenerateDailySalesReport method will contain
a string that you will use to identify an invocation of the operation.

In Solution Explorer, right-click the C:\..\AdventureWorksAdmin\ project, and then
click Add Reference. In the Add Reference dialog box, add a reference to the Presentation-
Framework assembly and then click OK.

Add a class called IAdventureWorksAdmin to the file, underneath the service contract.
This class should implement the IAdventureWorksAdmin interface and provide the Gen-
erateDailySalesReport method, as follows:

public class AdventureWorksAdmin : IAdventureWorksAdmin

{
public void GenerateDailySalesReport(string id)

{

// Simulate generating the report

10.

11.

12.

13.

14.

15.

Chapter 11 Implementing OneWay and Asynchronous Operations 279

// by sleeping for 1 minute and 10 seconds
System.Threading.Thread.Sleep(70000);

string msg = String.Format("Report {0} generated", id);
System.Windows.MessageBox.Show(msg) ;

}

In this version of the WCF service, you will simulate the process of generating the report
by sleeping for 70 seconds (you will understand why I have selected a duration of just
over 1 minute in the next exercise). When the report has been generated, the method
displays a message box.

Important The message box displayed by this method is primarily so you can
observe when the method completes. You should never incorporate interactive mes-
sage boxes like this in a production service. If you need to output messages for testing
or debugging purposes, you should generally use the System.Diagnos-
tics.Debug.WriteLine method and send messages to a trace listener.

In Solution Explorer, edit the Service.svc file. Modiy this file to refer to the Adventure-
WorksAdmin class, as shown in bold below:

<% @ServiceHost Language=C# Debug="true" Service="AdventureWorksAdmin" CodeBehind="~/
App_Code/Service.cs" %>

In Solution Explorer, edit the Web.config file by using the WCF Service Configuration
Editor.

In the WCF Service Configuration Editor, select the MyService service in the
Services folder. In the right pane, change the Name property of the service to
AdventureWorksAdmin.

Notice that this service also has a behavior defined called returnFaults. You will examine
this behavior later in this exercise.

In the left pane, expand the service (the name will still appear as MyService until you
click it), expand the Endpoints folder, and click the endpoint labeled (Empty Name). In
the right pane, verify that this endpoint uses the wsHttpBinding binding. Set the Name
property of the endpoint to AdventureWorksAdminHttpBinding and set the Contract prop-
erty to [AdventureWorksAdmin.

In the left pane, add a new binding configuration to the Bindings folder based on the
wsHttpBinding binding type.

In the right pane displaying the properties of the new binding, set the Name property to
AdventureWorksAdminHttpBindingConfig. It should never take more than 5 minutes to
generate the daily report, so set the ReceiveTimeout property to 00:05:00.

In the left pane, return to the AdventureWorksAdminHttpBinding endpoint. In the right
pane, set the BindingConfiguration property to AdventureWorksAdminHttpBindingConfig.

280

Chapter 11 Implementing OneWay and Asynchronous Operations

16.

17.

18.
19.

In the left pane, expand the Advanced folder, expand the ServiceBehaviors folder. Note
that the service has a behavior called returnFaults.

This is the service behavior mentioned earlier. If you examine this service behavior using
the WCF Configuration Editor, you will see that it contains a <serviceDebug> element
with the IncludeExceptionDetaillnFaults property set to True. Leave this element intact for
the time being, but bear in mind that you should disable this property of the behavior,
or remove the behavior, before deploying the service to a live environment.

Select the returnFaults behavior and then click Add in the right pane. In the Adding
Behavior Element Extension Sections dialog box, click serviceMetadata, and then click
Add. In the left pane, click the <serviceMetadata> element that has just been added to the
returnFaults service behavior. In the right pane, set the HttpGetEnabled property to True
(leave the HttpsGetEnabled property set to False).

This element enables metadata publishing for the service. You will query the metadata
for the service when you build the client application for testing this service.

Save the configuration file and exit the WCF Service Configuration Editor.
In Visual Studio 2005, start the solution without debugging.

If you have not made any mistakes so far, the ASP.NET Development Server will start (if
itis not already running) and display an icon in the bottom right corner of the Windows
taskbar. Internet Explorer will run, navigate to the site http.//localhost:9090,/Adventure-
WorksAdmin/Service.svc, and display the page describing how to generate the WSDL
description for the service and how to use the service in a client application, like this:

A AdventureWorksfdmin Service - Microsoft Intennet Explorer, [ZI[E‘El
o

File Edit Yiew Favorites Tools Help
Qe - @ - ¥ @ &) search 5 ¢ Ravarites) (v i -
Address] htpflocalhost: 9090 AdventursWorksidmin/Servics. sve v B ks *

AdventureWorksAdmin Service r

You have created a service,

To test this service, you will need to ereate a client and use it to call the service, You can do this using the sveutil.exe tool fram
the command lins with the following syntax:

svocutil.exe http://localhost:9090/ Adventureliorkshidmin/Service. sve2usdl

This will generats a configuration fils and s code fils that cantains the client class. Add the twa files ta your dient application and
use the generated dient dass to call the Service. For example:

c#
class Test
1
static void Hain()

{
AdministrativeServiceClient client = new AdministrativeServiceClient():

/¢ Use the 'client' wvariable to call operations on the service.

/¢ Always close the client.
client.Close();

&) % Local intranst

Q

20.
21.

Chapter 11 Implementing OneWay and Asynchronous Operations 281

Tip If Internet Explorer displays a blank page, manually enter the address
http.//localhost:9090/AdventureWorksAdmin/Service.svc in the address bar and
press Enter to display the page for the service.

Close Internet Explorer and return to Visual Studio 2005.

In Solution Explorer, right-click the C:\..\AdventureWorksAdmin\ project and then
click Start Options. In the Start Options page, select the option “Don’t open a page. Wait
for a request from an external application,” and then click OK.

When you start this project in subsequent exercises, you just need the service to start
running but don’t want Internet Explorer to open.

Create a WCF client application for testing the AdventureWorks administrative
operations service

1.

In Visual Studio 2005, add a new project to the AdventureWorksAdmin solution. In the
Add New Project dialog box, select the Visual C# project types, select the Console Appli-
cation template, set the Name to AdventureWorksAdminTestClient, and save it in the
Microsoft Press\WCF Step By Step\Chapter 11 folder under your \My Documents
folder.

In Solution Explorer, right-click the AdventureWorksAdminTestClient project and then
click Add Service Reference. In the Add Service Reference dialog box, type http://local-
host:9090/AdventureWorksAdmin/Service.svc in the Service URI text box, type Adven-
tureWorksAdmin in the Service reference name text box, and then click OK.

This step generates the client proxy for the AdventureWorksAdmin WCF service and
adds it to the AdventureWorksAdminTestClient project. It also creates an application
configuration file.

Open the app.contfig file and examine its contents. Note that Visual Studio 2005 has
added and configured a binding for communication with the AdventureWorksAdmin
service called AdventureWorksAdminHttpBinding.

In Solution Explorer, in the AdventureWorksAdminTestClient project, open the file Pro-
gram.cs. Add the following using statement to the list at the start of the file:

using AdventureWorksAdminTestClient.AdventureWorksAdmin;
The proxy class generated in the previous step is in this namespace.
Add the statements shown below in bold to the Main method:

static void Main(string[] args)
{ try
{
AdministrativeServiceClient proxy =
new AdministrativeServiceClient
("AdventureWorksAdminHttpBinding");

282 Chapter 11 Implementing OneWay and Asynchronous Operations

Console.WriteLine("Requesting first report at {0}", DateTime.Now);

proxy.GenerateDailySalesReport("First Report");

Console.WriteLine("First report request completed at {0}",
DateTime.Now) ;

Console.WriteLine("Requesting second report at {0}", DateTime.Now);

proxy.GenerateDailySalesReport(''Second Report");

Console.WriteLine("Second report request completed at {0}",
DateTime.Now);

proxy.Close();

}
catch (Exception e)
{
Console.WriteLine("Exception: {0}", e.Message);
}

Console.WriteLine("Press ENTER to finish");
Console.ReadLine();

}
This code creates a proxy object and then invokes the GenerateDailySalesReport opera-

tion twice in quick succession, displaying the date and time before and after each
request.

6. In Solution Explorer, right-click the AdventureWorksAdmin solution and then click Set
Startup Projects. In the Property Pages dialog box, select the Multiple startup projects
option. Set the action for both projects to Start, and then click OK.

7. Start the solution without debugging.

The request for the first report completes quickly (it might take a few seconds, depend-
ing on whether the WCF service is still running or Visual Studio 2005 needs to start it,
but it will be less than the 70 seconds that the operation runs for), but the second
request causes the client application to stop. If you wait for 1 minute, the client applica-
tion eventually times out with an error (the default value of the SendTimeout property of
the binding is 1 minute):

INDOWS\system32\cmd. exe

le waiting for a reply after 00:80:5
. Increase the timeout value passed to the call to Request or increase
ithe SendTimeout value on the Binding. The time allotted to this operation may ha]
ve bheen a portion of a longer timeout.
[Press ENTER to finish

You should also notice that the AdventureWorksAdmin service successfully completes
the first request and displays a message box:

Chapter 11 Implementing OneWay and Asynchronous Operations 283

Report First Report generated

Click OK to close the message box. If you wait for another 70 seconds, the message box
for the second request appears as well. This shows that the request was actually received
successfully by the AdventureWorksAdmin service, although something appears to have
gone awry with the client application.

Click OK to close the second message box, and press Enter to close the client application
console window.

So, what went wrong? The problem lies partly in the fact that the service uses sessions, and
partly in the concurrency mode of the service. If you disable sessions (by using a binding that
does not support them, or by setting the SessionMode property of the ServiceContract attribute
of the IAdventureWorksAdmin interface to SessionMode.NotAllowed), then the concurrent calls
to the service are not blocked. However, sessions are a useful feature, especially if you want to
make effective use of transactions, or control the sequencing of operations. Consequently,
many services make a lot of use of them. If you recall from Chapter 7, “Maintaining State and
Sequencing Operations,” services that use sessions are single-threaded by default. This behav-
ior causes the service to block the second request from the client application until the first has
completed processing.

Note In case you are wondering, setting the service instance context mode to PerCall
rather than PerSession (which is the default when using sessions) does not stop the service
from blocking requests. The important factor is the use of sessions, and how the service pro-
cesses requests made in the same session.

The blocking problem is also exacerbated by the fact that the AdventureWorksAdmin service
uses the HTTP transport, which does not support request queuing like the TCP transport
does. If you had used a TCP endpoint, the client would be able to continue as soon as the
second request would be queued by the transport channel, rather than waiting for it to be
accepted by the service. The second request would still not be processed until the first had
completed, however.

In the next exercise you will see how to address this situation.

Resolve the blocking problem with the OneWay request in the WCF client application

1. In Solution Explorer, edit the Service.cs file in the App_Code folder in the C:\...\Adven-
tureWorksAdmin\ project. Add the ServiceBehavior attribute shown below in bold to the
AdventureWorksAdmin class:

[ServiceBehavior(ConcurrencyMode=ConcurrencyMode.Multiple)]
public class AdventureWorksAdmin : IAdventureWorksAdmin

284

Chapter 11 Implementing OneWay and Asynchronous Operations

{

3

As described in Chapter 7, the ConcurrencyMode property of the ServiceBehavior attribute
enables you to change the threading model used by the session. Selecting the value Con-
currencyMode.Multiple allows the service to process multiple concurrent requests in the
same session, although you must ensure that the code you write in each method is
thread-safe (as it is in this example).

Start the solution without debugging.

This time, both requests are submitted successfully (the client application displays the
message “Second report request completed at ...”), but the client application now stops
and times out at the end of the Main method:

c C:\WINDOWS\system32\cmd.exe

856. Increase the timeout value passed to the call to Request or increase
the Sendlimeout value on the Binding. The time allotted to this operation may hal
e heen a portion of a longer timeout.

Press ENTER to finish

Press Enter to close the client console window, and press OK when the two message
boxes displayed by the service appear.

This time, the blockage is caused by a combination of the security implemented by the
service and the call to the Close method of the proxy. Remember that the wsHttpBinding
binding uses sessions and message-level security by default. When terminating a ses-
sion, the client application and service exchange messages to ensure that the session ter-
minates in a secure and controlled manner. The client application will not finish until
this message exchange completes, and the service does not send its final message until
all operations have completed, and hence a timeout occurs. Two possible solutions are
to disable security (absolutely not recommended) or to switch to transport-level security
(which requires installing a certificate and configuring HTTPS). However, there is
another workaround available if you want to use message-level security; you can use reli-
able sessions.

In the C:\..\AdventureWorksAdmin\ project, edit the web.config file by using the WCF
Service Configuration Editor. In the WCF Service Configuration Editor, expand the
Bindings folder and select the AdventureWorksAdminHttpBindingConfig binding con-
figuration. In the right pane, set the Enabled property in the ReliableSession Properties
section to True. Save the file, and close the WCF Service Configuration Editor.

Chapter 11 Implementing OneWay and Asynchronous Operations 285

4. Follow the same procedure to edit the app.config file of the client application and enable
reliable sessions in the AdventureWorksAdminHttpBinding binding configuration.

5. Start the solution without debugging,.

The client should successfully send both requests and close the session without timing
out.

In Chapter 9, you investigated the acknowledgement messages sent by the reliable sessions
protocol implemented by WCF. The purpose of this protocol is to assure both parties (the cli-
ent and the service) that the messages they have sent have been received. When the client
application closes its session, it does not need to wait for the service to actually complete its
processing as long as the service has acknowledged all messages sent by the client application;
the Close method can complete before the service actually terminates the session.

Note If you need to implement OneWay operations but cannot guarantee the thread-
safety of the corresponding methods, you should not set the ConcurrencyMode attribute of the
service to ConcurrencyMode.Multiple. Just enable reliable sessions.

When you enable reliable sessions, the client will not wait for a single-threaded service to
accept each message before continuing; instead, the client will be able to carry on as soon as
the service has acknowledged the message. Message acknowledgements are generated by
the WCF runtime hosting the service before the message is dispatched to the service
instance; so they are not blocked by a single-threaded service instance.

If you are curious, try disabling multiple-threading for the AdventureWorksAdmin service, but
keep reliable sessions enabled and then run the solution. The client application will run with-
out blocking. However, you should observe the difference in the behavior of the service. Pre-
viously, both calls to the GenerateDailySalesReport method executed concurrently, and the
second message box appeared a couple of seconds after the first. If you use reliable messag-
ing rather than multiple threads, the method calls run sequentially, and the second message
box will appear at least 70 seconds after the first.

Recommendations for Using OneWay Methods

You have seen that OneWay methods are a very useful mechanism for improving the perfor-
mance of a client application by enabling it to continue executing without waiting for the ser-
vice to complete processing operation requests. However, to maximize the concurrency
between a client application and a service, you should bear in mind the following points, sum-
marizing what you have seen in the exercises:

m Services that don’t use sessions provide the greatest degree of parallelism by default. If
a service requires or allows sessions, then depending on how the transport used by the
binding buffers messages, the service can block OneWay requests if it is already busy
processing a message in the same session. This is true even if the service uses the PerCall
service instance context mode; it is the fact that the service uses sessions that causes the
service to block requests.

286

Chapter 11 Implementing OneWay and Asynchronous Operations

W Services that use sessions can set the concurrency mode to enable multi-threading, but
you must ensure that the operations in the service are thread-safe. Enabling multi-
threading allows the service to execute requests in the same session simultaneously.

m Enable reliable sessions to allow a client application to close a connection to a service
before the service has completed processing of all outstanding requests.

Invoking and Implementing Operations Asynchronously

A OneWay operation is useful for “fire and forget” scenarios, where the client application does
not expect the service to pass back any information. However, many operations do not fit into
this scheme of working and return data to the client application. To cater for these situations,
WCEF supports asynchronous operations and the IAsyncResult design pattern. WCF enables
you to implement the TAsyncResult design pattern in two ways: in the client application invok-
ing the operation and in the WCF service implementing the operation.

More Info The IAsyncResult design pattern is commonly used throughout the .NET
Framework and is not peculiar to WCF. For details, see the topic "Asynchronous Programming
Design Patterns” in the .NET Framework Developer's guide, available in the Microsoft Visual
Studio 2005 Documentation, and also online at http://msdn2.microsoft.com/en-us/library/
ms228969.aspx.

Invoking an Operation Asynchronously in a Client Application

WCEF enables you to generate a version of the proxy class that a client application can use to
invoke operations asynchronously; you can use the /async flag with the svcutil utility when
creating the proxy class. When you specily this flag, svcutil generates begin and end pairs of
methods for each operation. The client application can invoke the begin method to initiate the
operation. The begin method returns after sending the request, but a new thread created by
the NET Framework runtime in the client waits for the response. When you invoke the begin
method, you also provide the name of a callback method. When the service finishes the oper-
ation and returns the results to the client proxy, the new thread executes this callback
method. You use the callback method to retrieve the results from the service. You should also
call the end method for the operation to indicate that you have processed the response.

Itis important to understand that you do not need to modify the service in any way to support
this form of asynchronous programming. Indeed, the service itself does not necessarily have
to be a WCEF service; it could be a service implemented by using other technologies. The code
making the operation appear asynchronous to the client application is encapsulated inside
the proxy generated on the client side and the .NET Framework runtime. All the threading
issues are handled by code running in the WCF runtime on the client. As far as the service is
concerned, the operation is being invoked in the exact same, synchronous manner that you
have seen in all the preceding chapters in this book.

Chapter 11 Implementing OneWay and Asynchronous Operations 287

Implementing an Operation Asynchronously in a WCF Service

As mentioned earlier, WCF also enables you to implement an operation that can execute asyn-
chronously. In this case, the service provides its own pair of begin and end methods that con-
stitute the operation. The code in the client application invokes the operation through the
proxy object using the ordinary operation name (not the begin method). The WCF runtime
transparently routes the operation to the begin method, so the client application is not neces-
sarily aware that the service implements the operation as an asynchronous method.

As a variation, the developer of the service can add logic to the begin method to choose
whether the operation should run synchronously or asynchronously. For example, if the cur-
rent workload of the service is light, it might make sense to perform the operation synchro-
nously to allow it to complete as soon as possible. As the workload increases, the service
might choose to implement the operation asynchronously. Implementing operations in this
manner in a service can increase the scalability and performance of a service without the need
to modify client applications. It is recommended that you implement any operation that
returns data to a client application after performing a lengthy piece of processing in this way.

Important You should understand the important distinction between asynchronous oper-
ation invocation in the client application and asynchronous operation implementation in the
service. Asynchronous invocation in the client application enables the client to initiate the
operation and then continue its own processing while waiting for a response. Asynchronous
implementation in the service enables the service to offload the processing to another
thread, or sleep while waiting for some background process to complete. A client application
invoking an operation implemented asynchronously in the service still waits for the operation
to complete before continuing.

You can specify that an operation supports asynchronous processing by setting the AsyncPat-
tern property to true in the OperationContract attribute when defining the operation and pro-
viding a pair of methods that follow a prescribed naming convention and signature and that
implement the IAsyncResult design pattern.

In the next set of exercises, you will add another operation called CalculateTotalValueOfStock
to the AdventureWorksAdmin service. The purpose of this operation is to determine the total
value of every item currently held in the AdventureWorks warehouse. This operation could
take a significant time to run, so you will implement it as an asynchronous method.

Add an asynchronous operation to the AdventureWorks administrative service

1. InVisual Studio 2005, edit the Service.cs file in the App_Code folder in the C:\..\Adven-
tureWorksAdmin\ project. Add the following operation, shown in bold, to the IAdven-
tureWorksAdmin service contract:

[ServiceContract(Namespace="http://adventure-works.com/2007/01/01",
Name="AdministrativeService")]

public interface IAdventureWorksAdmin

{

288

Chapter 11 Implementing OneWay and Asynchronous Operations

[OperationContract(IsOneWay = true)]
void GenerateDailySalesReport(string id);

[OperationContract(AsyncPattern = true)]
IAsyncResult BeginCalculateTotalValueOfStock(string id,
AsyncCallback cb,
object s);
int EndCalculateTotalValueOfStock(IAsyncResult r);
}

This operation consists of two methods: BeginCalculateTotalValueOfStock and EndCal-
culateTotalValueOfStock. Together, they constitute a single asynchronous operation
called CalculateTotalValueOfStock. It is important that you name both methods in the
operation following this convention for them to be recognized correctly when you build
the client proxy. You can specify whatever parameters the operation requires in the begin
method (in this case, the client application will pass in a string parameter to identify
each invocation of the operation), but the final two parameters must be an AsyncCall-
back referencing a callback method in the client application and an object holding state
information provided by the client application. The return type must be IAsyncResult.
The end method must take a single parameter of type IAsyncResult, but the return type
should be the type appropriate for the operation. In this case, the CalculateTotalValueOf-
Stock operation returns an int containing the calculated value.

The other key part of this operation is the AsyncPattern property of the OperationContract
attribute. You only apply the OperationContract attribute to the begin method. When you
generate the metadata for this service (when building the client proxy, for example), this
property causes the begin and end methods to be recognized as the implementation of a
single asynchronous operation.

In Solution Explorer, right-click the App_Code folder in the C:\..\AdventureWorksAd-
min\ project and then click Add Existing Item. Add the file AsyncResult.cs, located in
the Microsoft Press\WCF Step By Step\Chapter 11\Async folder under your \My Doc-
uments folder.

Open the AsyncResult.cs file and examine its contents. It contains a single generic class
called AsyncResult that implements the IAsyncResult interface. Detailed discussion of this
class and the IAsyncResult interface is outside the scope of this book, but the purpose of
the AsyncResult class is to provide synchronization methods and state information
required by other classes that implement asynchronous methods. For this exercise, the
important members of the AsyncResult class are:

Q Data. This property provides access to the data returned by the asynchronous
operation. In this example, the CalculateTotalValueOfStock operation will popu-
late this property and return the AsyncResult object to the client application when
it executes the end method.

O AsyncResult. This is the constructor. It take two parameters which it stores in pri-
vate fields. The service will use the synchronous parameter to indicate whether it
really is invoking the operation synchronously, and the stateData parameter will be

Chapter 11 Implementing OneWay and Asynchronous Operations 289

a reference to the object passed in as the final parameter to the begin method (it is
important to save this object, as it has to be returned to the client application to
enable it to complete processing).

4. Return to the Service.cs file in the App_Code folder. Add the following delegate to the
AdventureWorksAdmin class:

private delegate void AsyncSleepCaller(int millisecondsTimeout);
You will use this delegate in the methods that you will add in the next steps.
5. Add the following method to the AdventureWorksAdmin class:

// CalculateTotalValueOfStock operation

// Service can elect to perform the operation

// synchronously or asynchronously

public IAsyncResult BeginCalculateTotalValueOfStock(string id,
AsyncCallback callback, object state)

{

AsyncResult<int> calcTotalValueResult;

// Generate a random number.
// The value generated determines the "complexity" of the operation
Random generator = new Random();

// If the random number 1is even, then the operation is simple
// so perform it synchronously
if ((generator.Next() % 2) == 0)

{
calcTotalValueResult = new AsyncResult<int>(true, state);
System.Threading.Thread.S1eep(20000);
System.Windows .MessageBox.Show(

"Synchronous sleep completed");
calcTotalValueResult.Data = 5555555;
calcTotalValueResult.Complete();

}
// Otherwise, the operation is complex so perform it asynchronously
else
{
// Perform the operation asynchronously
calcTotalValueResult = new AsyncResult<int>(false, state);
AsyncSleepCaller asyncSleep = new

AsyncSleepCaller(System.Threading.Thread.Sleep);
IAsyncResult result = asyncSleep.BeginInvoke(30000,

new AsyncCallback(EndAsyncSleep), calcTotalValueResult);

}

callback(calcTotalValueResult);
System.Windows.MessageBox . Show(

"BeginCalculateTotalValueOfStock completed for " + id);
return calcTotalValueResult;

290

Chapter 11 Implementing OneWay and Asynchronous Operations

Note You can find this code in the file BeginCalculateTotalValueOfStock.txt in the
Async folder under the Chapter 11 folder.

Again, the exact details of how this method works are outside the scope of this book
(strictly speaking, it has nothing to do with WCF). But to summarize, the method gen-
erates a random number, and if this number is even it performs the operation synchro-
nously, otherwise it performs it asynchronously. In the synchronous case, the code
creates a new AsyncResult object, sleeps for 20 seconds to simulate the time taken to per-
form the calculation, and then populates the AsyncResult object with the result—
5555555. In the asynchronous case, the code also creates an AsyncResult object, but
spawns a thread that sleeps for 30 seconds in the background. It does not populate the
AsyncResult object, as this happens when the background, when the sleeping thread,
wakes up later. In both cases, the code invokes the callback method in the client appli-
cation, passing the AsyncResult object as its parameter. The client application will retrieve
the results of the calculation from this object. The same AsyncResult object is also
returned as the result of this method (this is a requirement of the IAsyncResult design
pattern).

The method also displays message boxes helping you to trace the execution of the method
and establish whether the operation is running synchronously or asynchronously.

Add the end method shown below to the AdventureWorksAdmin class:

public int EndCalculateTotalValueOfStock(IAsyncResult r)

{
// Wait until the AsyncResult object indicates the
// operation is complete
AsyncResult<int> result = r as AsyncResult<int>;
if (!result.CompletedSynchronously)
{
System.Threading.WaitHandle waitHandle = result.AsyncWaitHandle;
waitHandle.WaitOne(Q);
}
// Return the calculated value in the Data field
return result.Data;
}

Note You can find this code in the file EndCalculateTotalValueOfStock.txt in the
Async folder under the Chapter 11 folder.

This method is invoked when the begin method completes. The purpose of this method
is to retrieve the result of the calculation from the Data property in the AsyncResult object
passed in as the parameter. If the operation is being performed asynchronously, it might
not have completed yet. (Applications invoking the begin method for an asynchronous
operation can call the end method at any time after the begin finishes, so the end method

8.

Chapter 11 Implementing OneWay and Asynchronous Operations 291

should ensure that the operation has completed before returning.) In this case, the
method waits until the AsyncResult object indicates that the operation has finished
before extracting the data and returning.

Add the following method to the AdventureWorksAdmin class:

private void EndAsyncSleep(IAsyncResult ar)

{
// This delegate indicates that the "complex" calculation
// has finished
AsyncResult<int> calcTotalValueResult =

(AsyncResult<int>)ar.AsyncState;

calcTotalValueResult.Data = 9999999;
calcTotalValueResult.Complete();

System.Windows.MessageBox.Show("Asynchronous sleep completed");

Note You can find this code in the file EndAsyncSleep.txt in the Async folder under
the Chapter 11 folder.

If the begin method decides to perform its task asynchronously, it simulates performing
the calculation by creating a new thread and sleeping for 30 seconds. The EndAsync-
Sleep method is registered as a callback when the background sleep starts, and when the
30 seconds have expired, the operating system reawakens the thread and invokes this
method. This method populates the Data field of the AsyncResult object, and then indi-
cates that the operation is now complete. This releases the main thread in the service,
waiting in the end method, and allows it to return the data to the client application.

Notice that the values returned are different if the service performs the operation syn-
chronously (5555555) and asynchronously (9999999).

Rebuild the solution.

Invoke the CalculateTotalValueOfStock operation in the WCF client application

1.

In the AdventureWorksAdminTestClient project, expand the Service References folder,
right-click the AdventureWorksAdmin.map file, and then click Update Service Reference.

This action generates a new version of the client proxy, including the CalculateTotalVal-
ueOfStock operation.

Expand the AdventureWorksAdmin.map file, and open the AdventureWorksAdmin.cs
file. In the code view window, examine the updated proxy. Notice that the new operation
is called CalculateTotalValueOfStock and that there is no sign of the begin and end meth-
ods thatimplement this operation; the fact that this operation is implemented asynchro-
nously is totally transparent to the client application.

292 Chapter 11 Implementing OneWay and Asynchronous Operations

3.

Edit the Program.cs file. Remove the statements in the try block that invoke the Gener-
ateDailySalesReport operation and the Console. WriteLine statements, and replace them
with the following code shown in bold:

try
{

AdministrativeServiceClient proxy =
new AdministrativeServiceClient("AdventureWorksAdminHttpBinding");

int totalValue = proxy.CalculateTotalValueOfStock("First Calculation");
Console.WriteLine("Total value of stock is {0}", totalvalue);

totalValue = proxy.CalculateTotalValueOfStock(''Second Calculation");
Console.WriteLine("Total value of stock is {0}", totalValue);

totalValue = proxy.CalculateTotalValueOfStock("Third Calculation");
Console.WriteLine("Total value of stock is {0}", totalValue);

proxy.Close();
}

These statements simply invoke the CalculateTotalValueOfStock method three times
and display the results. Hopefully, the service will execute at least one of these callsin a
different manner from the other two (either synchronously or asynchronously).

Start the solution without debugging.

If you are unlucky, you will have to wait for 20 seconds before you see the first message
box appear.

Synchronous sleep completed

This is because the random number generator in the BeginCalculateTotalValueOfStock
method produced an even number and is executing the method synchronously. This
should be followed by the following message box:

BeginCalculateTotalValueOfStock completed For First Calculation

You will see the result (5555555) displayed in the client application console window as
soon as you click OK in the message box.

Chapter 11 Implementing OneWay and Asynchronous Operations 293

If you only see the second message box, the BeginCalculateTotalValueOfStock has
decided to execute the method asynchronously. You will then have to wait for up to 30
seconds after closing the message box, until you see the following one:

Asynchronous sleep completed

The value 9999999 should also appear in the client application console window.
5. Press Enter to close the client application console window.

This is all very well, but so far, we have gone to a lot of trouble to allow the service to deter-
mine the best strategy for running a potentially lengthy or expensive operation, although as
far as the client application is concerned, everything is still synchronous; each call to the Cal-
culateTotalValueOfStock operation was blocked until it completed. Well, you can also enable
asynchronous operations on the client, by regenerating the proxy with the /async flag as men-
tioned earlier. This is what you will do in the next exercise.

Invoke the CalculateTotalValueOfStock operation asynchronously

1. Open a Windows SDK CMD Shell window and move to the Microsoft Press\WCF Step
By Step\Chapter 11\AdventureWorksAdminTestClient\Service References folder under
your \My Documents folder.

2. In the CMD Shell window, type the following command:

svcutil http://Tocalhost:9090/AdventureWorksAdmin/Service.svc
/namespace:*,AdventureWorksAdminTestClient.AdventureWorksAdmin /async

This command creates a version of the client proxy that includes asynchronous versions
of each of the operations in the service contract.

Tip If the sveutil command fails with the message “No connection could be made
because the target machine actively refused it then the ASPNET Development Web
Service has probably shut down. You can restart it by running the solution.

3. Return to Visual Studio 2005 and examine the AdventureWorksAdmin.cs file under
AdventureWorksAdmin.map in the Service References folder.

Tip If you still have this file open in the code view window from earlier, close the file
and reopen it to refresh the display.

You should see that the client proxy now contains begin and end methods for all of the
operations in the service contract (and not just the CalculateTotalValueOfStock opera-

294 Chapter 11 Implementing OneWay and Asynchronous Operations

tion). Remember that these changes are only implemented in the client proxy and that
the service is not actually aware of them.

4. Edit the Program.cs file in the AdventureWorksAdminTestClient project. Remove the
statements that invoke the CalculateTotalValueOfStock operation and the Con-
sole. WriteLine statements and replace them with the following code:
proxy.BeginCalculateTotalValueOfStock("First Calculation",
CalculateTotalValueCallback, proxy);
proxy.BeginCalculateTotalValueOfStock("Second Calculation",
CalculateTotalValueCallback, proxy);

proxy.BeginCalculateTotalValueOfStock("Third Calculation",
CalculateTotalValueCallback, proxy);

This code invokes the client-side asynchronous version of the CalculateTotalValueOfS-
tock method three times. The results will be handled by a method called CalculateTotal-
ValueCallback, which you will add next. A reference to the proxy is passed in as the state
parameter.

5. Delete the proxy.Close statement from the try block in the Main method.

If you close the proxy at this point, the WCF runtime will destroy the channel stack on
the client side before the asynchronous calls have completed, and the client application
will be unable to obtain the responses from the service.

6. Add the following method immediately after the end of the Main method in the Program
class:

static void CalculateTotalValueCallback(IAsyncResult asyncResult)

{
int total = ((AdministrativeServiceClient)asyncResult.AsyncState).
EndCalculateTotalValueOfStock(asyncResult);
Console.WriteLine("Total value of stock is {0}", total);
}

This is the callback method. When the CalculateTotalValueOfStock operation com-
pletes, the proxy will run this method. It retrieves the object passed back from the ser-
vice (this is the state object, which is a reference to the proxy passed in by the client
application as the third parameter in the BeginCalculateTotalValueOfStock method),
and uses this object to invoke the EndCalculateTotalValueOfStock method. The value
returned by the end method is the calculated total value of the stock from the service.

7. Start the solution without debugging.

The client application starts, and then immediately displays the message “Press ENTER
to finish.” This is because the calls to the BeginCalculateTotalValueOfStock method are
no longer blocking the client application.

Do not press Enter just yet, but allow the application to continue running. After 20 or 30
seconds, you should see the message boxes that appeared in the previous exercise, indi-
cating whether the service is executing each request synchronously or asynchronously.

Chapter 11 Implementing OneWay and Asynchronous Operations 295

The results of the calculations should appear in the client console window as the oper-
ations complete.

8. After all three results have been displayed, press Enter to close the client application con-
sole window.

From these exercises, you should now fully understand the difference between invoking an
operation asynchronously in a client application and implementing an operation that sup-
ports asynchronous processing in the service. A developer can decide whether to implement
an operation as a pair of methods implementing the IAsyncResult design pattern indepen-
dently from any client applications. These methods appear as a single operation to the client
application, and the implementation is totally transparent. Equally, if a developer creating a
WCEF client application wishes to invoke operations asynchronously, all she needs to do is
generate a proxy using the /async flag with the svcutil utility. Whether the client application
invokes an operation synchronously is transparent to the service. You should also realize that
although a client application can invoke an operation asynchronously, the service may choose
to implement the operation synchronously, and vice versa. The result is complete flexibility on
the part of both client applications and services.

There is one final point worth making. You can define synchronous and asynchronous ver-
sions of the same operation in a service contract, like this:

[ServiceContract(..)]
public interface IAdventureWorksAdmin

{
// Synchronous operation
[OperationContract]
int CalculateTotalValueOfStock(string id);
// Asynchronous version
[OperationContract(AsyncPattern = true)]
TAsyncResult BeginCalculateTotalValueOfStock(string id,
AsyncCallback cb,
object s);
int EndCalculateTotalValueOfStock (IAsyncResult r);
}

However, if you do this, both operations appear as the same action (CalculateTotalValueOfS-
tock) if you examine the WSDL description of the service. WCF will not throw an exception
but will always use the synchronous version of the operation in favor of the asynchronous ver-
sion (WCEF assumes that the synchronous version achieves faster throughput). So, don’t
define synchronous and asynchronous versions of the same operation in the same service
contract.

296

Chapter 11 Implementing OneWay and Asynchronous Operations

Using Message Queues

Message queues are the ultimate in asynchronous technology. Message queues can provide a
durable, reliable, transacted transport for messages. Furthermore, a client application sending
messages, and a service receiving them, do not have to be running at the same time. There is
a price you pay for this flexibility though: message queues are an inherently one-way trans-
port, so implementing applications and services that send requests and expect to receive
responses requires a lot of careful design. Message queues are also slower than other trans-
ports, primarily because of their reliability and durability; the Windows operating system
stores messages in files on disk. This means that messages held in a message queue can sur-
vive machine shutdown and power failure, at the cost of the additional I/O involved in creat-
ing and transmitting them.

Note You can specify that messages are not durable if performance is more important
than reliability. So-called volatile messages are cached in memory rather than disk and con-
sequently do not survive machine restarts or crashes.

If you have already built message queuing applications using Microsoft Message Queue
(MSMQ), you will appreciate that although the programming model is straightforward, it is
fundamentally different compared to the programming practices you adopt when building a
more traditional client/server application. However, one of the goals of WCF is to provide a
consistent model for sending and receiving irrespective of the underlying transport, so using
message queues with WCF is very similar to using most other transports, but is somewhat dif-
ferent from the message queuing techniques you might have used in the past.

In the final set of exercises in this chapter, you will see just how easy it is to use message
queues as a transport for asynchronous one-way operations.

Implement a WCF service that uses message queuing

1. Using Visual Studio 2005, open the solution file AdventureWorksAdmin.sIn located in
the Microsoft Press\WCF Step By Step\Chapter 11\MSMQ folder under your \My Doc-
uments folder.

This solution contains two projects: AdventureWorksAdminHost, which is a self-hosted
version of the AdventureWorksAdmin WCEF service, and AdventureWorksAdminTestCli-
ent, which is a client application for testing the service.

2. InSolution Explorer, open the file Service.cs in the AdventureWorksAdminHost project.

This is the code that defines and implements the service contract. It should look familiar,
as it is very similar to the service you created in the first set of exercises in this chapter.
The service contains a single operation, GenerateDailySalesReport. Notice that the oper-
ation contract still specifies that this is a OneWay operation. This is important as all
operations in a service accessed through a message queue must be OneWay operations.

Chapter 11 Implementing OneWay and Asynchronous Operations 297

Also note that the implementation of the GenerateDailySalesReport method now only
waits for 10 seconds (pretend that you are running on a faster machine than before, so
the processing takes less time).

Open the HostController.xaml file. This is a version of the Windows Presentation Foun-
dation form that you previously used to host the ProductsService service.

Open the code behind this form in the file HostController.xaml.cs. The logic in this form
is the same as before. The only difference is that this form now hosts the Adventure-
WorksAdmin service.

Add anew application configuration file to the AdventureWorksAdminHost project, and
then edit this file by using the WCF Service Configuration Editor.

In the WCEF Service Configuration Editor, create a new service and set the Name property
to AdventureWorksAdmin (this is the name of the class implementing the service).

Add an endpoint to this service. Set the Name property to AdventureWorksAdminMsm-
qEndpoint, set the Address property to net.msmq://localhost/private/AdventureWorksAd-
min, set the Binding property to netMsmqBinding, and set the Contract property to
[AdventureWorksAdmin.

The format for a message queuing URI consists of the scheme “net.msmgq” followed by
the name of the queue. MSMQ identifies queues using a syntax very similar to HTTP
URLs, although the semantics are a little different. The “private” part of the URI indicates
that this is a private message queue, meaning that it can only be accessed from applica-
tions running on the local computer. If you are using a computer that is a member of a
Windows domain, you can also create public message queues that can be accessed by

code running on other computers. The actual name of the message queue is “Adventure-
WorksAdmin.”

More Info For a detailed description of message queues, see the topic “Using Mes-
saging Components” in the Microsoft Windows SDK documentation, and also on the
Microsoft Web site at http.//msdn2.microsoft.com/en-us/library/fzc40kc8.aspx.

Add a new binding configuration using the netMsmqBinding binding type. Set the Name
property of this binding configuration to AdventureWorksAdminMsmqBindingConfig.

You can set binding properties that control many aspects of the way the message queue
works. For example, the Durable property determines whether messages should be capa-
ble of surviving process failure or machine shutdown and restart; setting this property to
False makes messages volatile. The ExactlyOnce property is the MSMQ analog of reliable
messaging for other transports. Setting this property to True guarantees that messages
will be received once and once only; messages will not be lost, or inadvertently retrieved
twice by concurrent instances of the service from the message queue. Setting this prop-
erty to True requires that the message queue is transactional.

298

Chapter 11 Implementing OneWay and Asynchronous Operations

9.

10.

11.
12.

Send

Modify the security settings of the binding configuration, and set the Mode property to
None.

Message queues support message level security and transport level security, although
the implementation of transport level security is peculiar to MSMQ and does not require
you to configure SSL. If you implement message level security, you can specify the client
credential type. You should note that the authentication mechanism implemented by
MSMQ message level security requires that the message queue server must be config-
ured to provide a certificate for the message queue used by the binding.

Important For simplicity, this example uses a local, unprotected private message
queue that is accessible only on the host computer. In a production environment, you
will probably use public queues, which should be protected by using transport or mes-
sage level security.

Return to the AdventureWorksAdminMsmqEndpoint endpoint definition you added in
step 7. Set the BindingConfiguration property to AdventureWorksAdminMsmqBinding
Config.

Save the configuration file, and exit the WCF Configuration Editor.

In Visual Studio 2005, build the AdventureWorksAdminHost project. Do not try and
build the entire solution, as the client application is not yet complete; this is your next
task.

messages to a message queue in a WCF client application

Open a Microsoft Windows SDK CMD Shell window, and move to the Microsoft
Press\WCF Step By Step\Chapter I1\MSMQ\AdventureWorksAdminHost\bin\Debug
folder under your \My Documents folder. Type the following commands to generate the
client proxy from the service contract compiled into the AdventureWorksAdminHost.exe
assembly:

svcutil AdventureWorksAdminHost.exe

svcutil /namespace:*,AdventureWorksAdminTestClient.AdventureWorksAdmin adventure-
works.com.2007.01.01.wsd1 *.xsd /out:AdventureWorksAdminProxy.cs

Return to Visual Studio 2005, and add the AdventureWorksAdminProxy.cs file that you
have just created to the AdventureWorksAdminTestClient project.

Open the Program.cs file in the AdventureWorksAdminTestClient project. Again, this
code should look very familiar, as it is almost identical to the client application you devel-
oped in the first set of exercises in this chapter for testing OneWay operations. There is
an additional prompt “Press ENTER to send messages” in the try block, and you must
specify a binding to use when instantiating the proxy. Before you do this, you must create
an application configuration file and define the binding you are going to use.

Add a new application configuration file to the AdventureWorksAdminTestClient
project and edit it by using the WCF Service Configuration Editor.

5.

Chapter 11 Implementing OneWay and Asynchronous Operations 299

In the WCF Service Configuration Editor, add a new client endpoint with the properties
shown in the following table:

Property Value

Name AdventureWorksAdminMsmgEndpoint

Address net.msmq://localhost/private/AdventureWorksAdmin
Binding netMsmqBinding

Contract AdventureWorksAdminTestClient. AdventureWorksAdmin.

AdministrativeService

Add a binding configuration based on the netMsmqBinding type. Set the Name property
of this binding configuration to AdventureWorksAdminMsmqBindingConfig. Change the
security settings of the binding configuration, and set the Mode property to None.

Return to the AdventureWorksAdminMsmqEndpoint endpoint definition and set the
BindingConfiguration property to AdventureWorksAdminMsmqBindingConfig.

Save the configuration file and exit the WCF Service Configuration Editor.

In the Program.cs file, modify the statement that creates the proxy object and replace the
text “INSERT ENDPOINT HERE” with the name of the MSMQ endpoint, as shown in
bold below:

AdministrativeServiceClient proxy =
new AdministrativeServiceClient("AdventureWorksAdminMsmgEndpoint");

That completes the code. You can now create the message queue and test the client applica-
tion and service.

Create the AdventureWorksAdmin queue and test the service

1.

On the Windows Start menu, right-click My Computer and then click Manage.
The Computer Management console starts.

In the Computer Management console, expand the Services and Applications node in
the left pane, expand the Message Queuing node, right-click the Private Queues folder,
point to New, and then click Private Queue.

In the New Private Queue dialog box, type AdventureWorksAdmin in the Queue name
text box, check the Transactional box, and then click OK.

Note If you don't want the overhead of transactional message queues, you must set
the ExactlyOnce property of the binding configuration for the netMsmqBinding binding
to False.

Leave the Computer Management console open, and return to Visual Studio 2005.

300

Q

Chapter 11 Implementing OneWay and Asynchronous Operations

5.

Start the solution without debugging. In the client console window, press Enter to send
the two GenerateDailySalesReport messages but don’t start the service running yet.
Notice that the client successfully sends the messages even though the service is not run-
ning. Press Enter to close the client console window.

Return to the Computer Management console. Expand the AdventureWorksAdmin
queue in the Private Queues folder under Message Queuing, and then click the Queue
messages folder. Two messages should be displayed in the right pane:

=) Fle Action View Window Help == =]
® = @ 4
= storage A | Label Priority | Class | Size | Msssage ID

Disl Defragmenter & 0 Mormal 305 {4FTCTEDA-B017-486CH
Disk Management

= services and Applications
Services

e g Removable Storage =] o Mormal 304 {4F7C7EDA-B017-486C-

W Cantral
+ |8 SGL Server Configuration Manager
+ B Indexing Service
+ ' Internet Information Services
- = Message Queuing
[Outgoing Queues
=[] Private Queues
+ 5 msmatriggersnotifications
= 85 AdventureWorksadmin
e} Ouew ges
B Journal messages
Triggers
-2 System Queues
- B8} Message Queding Triggers ~
< > < >

‘ Tip If no messages appear, click Refresh on the Action menu to update the display.

If you double-click a message, you can display its properties, including the text in the
body of the message.

In the AdventureWorksAdminHost form for the service host application, click Start.

The service starts running, retrieves each message from the queue in turn, and processes
them (remember that each message takes at least 10 seconds to process). The operation
displays a message box after each message is processed.

Stop the service and close the AdventureWorksAdminHost form after the second mes-
sage box has been displayed.

Return to the Computer Management console displaying the messages in the message
queue. On the Action menu, click Refresh to update the display. Both messages should
disappear as they have now been removed from the message queue by the WCF service.

Close the Computer Management console.

MSMQ provides an easy-to-use mechanism for implementing asynchronous operations. How-
ever, the netMsmqBinding binding restricts you to implementing OneWay operations. If a ser-
vice needs to send a response, it can do so asynchronously by sending a message to a queue

Chapter 11 Implementing OneWay and Asynchronous Operations 301

to which the client application can connect. This involves implementing a different message
for each client (for privacy) and correlating messages, so the client application knows which
response corresponds to which request.

More Info For more information and an example of using message queues to implement
asynchronous request/response messaging, see the topic “Two-Way Communication” in the
Windows SDK documentation, which is also available on the Microsoft Web site at http.//win-
dowssdk.msdn.microsoft.com/en-us/library/ms752264.aspx.

Summary

In this chapter, you have seen three ways to send and process messages to improve the
response time of a service and exploit multiple threads. You should use OneWay messaging
for long-running operations that do not return any data. For operations that do pass informa-
tion back to the client application, you can generate a client proxy using the svcutil utility with
the /async option and invoke these operations asynchronously from the client. A service can
also choose to implement a long-running operation asynchronously, independent from the
way in which the client application actually invokes the operation, by setting the AsyncPattern
property of the operation contract to True, and then implementing the IAsyncResult design
pattern. If client applications and services execute at different times, you can use message
queuing and the MSMQ transport.

Chapter 12
Implementing a WCF Service for
Good Performance

After completing this chapter, you will be able to:

m Manage service scalability by using throttling to control use of resources.

m Use the Message Transmission Optimization Mechanism (MTOM) to transmit
messages containing binary data in a standardized, efficient manner.

m Explain how to enable streaming for a binding and design operations that
support streaming.

Good performance is a key factor in most applications and services. You can help to ensure
that a WCF service maintains throughput, remains responsive, and is scalable by thoughtful
design, by selecting the appropriate features that meet this design. Examples that you have
met so far include careful use of transactions, session state, reliable messaging, and asynchro-
nous operations.

There are other aspects that can impact performance, such as security. You have seen, in ear-
lier chapters, that implementing message level security and secure conversations results in a
complex exchange of messages negotiating the protocol to use and the exchange of identity
information. Messages themselves are bigger as a result of the additional security information
included in the message headers, which means they take longer to traverse the network and
require more memory to process. Encryption and decryption are also very resource intensive
tasks. However, these are all necessary parts of a secure system, and most people are willing to
sacrifice some performance in return for ensuring that their data and identity information
remain private. (If decryption were quick and easy to perform, it would also be fairly useless;
the more resources it takes to decrypt a message, results in a better protected message.)

An important aspect of maintaining performance is to ensure that a service does not exhaust
the resources available on the host computer, as this will cause the system to slow down and
possibly stop altogether. WCF provides service throttling to help control resource utilization.
Using this feature can greatly aid the scalability of your service. You can also use WCF in con-
junction with load-balanced servers. Chapter 13, “Routing Messages,” describes a simple
implementation of this technique using WCF. You can also build a load-balancing infrastruc-
ture based on Microsoft Windows Network Load Balancing, although the details of this tech-
nology are outside the scope of this book.

303

304

Chapter 12 Implementing a WCF Service for Good Performance

More Info For further information about Microsoft Windows Network Load Balancing, see
the Load Balancing page on the Microsoft Windows Server TechCenter Web site at http.//
technet2.microsoft.com/windowsserver/en/technologies/nlb.mspx.

Using the appropriate encoding mechanism when transmitting data can also have a signifi-
cant effect on performance. You have seen how WCF supports text and binary encoding of
messages. Binary encoding is often more compact and incurs less network overhead, but the
format is proprietary and cannot easily be used with applications and services running on
non-Microsoft platforms. However, WCF also supports MTOM, which provides a standard-
ized, interoperable format for transmitting large blocks of binary data.

MTOM is useful if you know how much data the service is going to transmit. Some services
emit long data blocks of indeterminate size. This type of data is best transmitted as a stream,
and WCEF provides support for outputting streams from a service.

In this chapter, you will examine how to use service throttling to assist in maintaining scalabil-
ity, how to encode data by using MTOM to reduce the overhead of transmitting large binary
data objects, and how to enable streaming to make best use of network bandwidth.

Using Service Throttling to Control Resource Use

You can use service throttling to prevent over-consumption of resources in a WCF service. If
you recall from Chapter 10, “Programmatically Controlling the Configuration and Communi-
cations,” when a message received by a service host reaches the top of the channel stack, it
passes to a ChannelDispatcher object, which in turn passes it to the appropriate EndpointDis-
patcher object, which invokes the corresponding method in the appropriate service instance.
However, before forwarding the request to the EndpointDispatcher object, the ChannelDis-
patcher object can examine the current load on the service and elect to hold the request back
if the request would cause the service to exceed the permissible load. The request is blocked
and held in an internal queue until the load on the service eases. The ChannelDispatcher object
has a property called ServiceThrottle that you can use to help control how the ChannelDis-
patcher decides whether to block and queue requests or let them execute. The ServiceThrottle
property is an instance of the ServiceThrottle class, and this class itself exposes three further
integer properties:

m MaxConcurrentInstances. This property specifies the maximum number of concurrent
service instances that the service host will permit.

m MaxConcurrentCalls. This property specifies the maximum number of concurrent mes-
sages that the service host will process. If a client application makes a large number of
concurrent calls, either as the result of invoking OneWay operations or by using client-
side multi-threading, it can quickly monopolize a service. In this scenario, you might
want to limit each client to a single thread in the service by setting the ConcurrencyMode

Chapter 12 Implementing a WCF Service for Good Performance 305

property of the service to ConcurrencyMode.Single. The client application can continue
running asynchronously and should remain responsive to the user, but requests submit-
ted by the client application will be processed in a serial manner by the service.

m MaxConcurrentSessions. This property specifies the maximum number of concurrent ses-
sions that the service host will permit. Client applications are responsible for establish-
ing and terminating sessions and can make several calls to the service during a session.
Clients creating long-running sessions can result in other clients being blocked, so keep
sessions as brief as possible and avoid performing tasks such as waiting for user input.

Configuring Service Throttling

&

By default, the ServiceThrottle property of the ChannelDispatcher object is null and the WCF
runtime uses its own default values for the maximum number of concurrent instances, calls,
and sessions. To control scalability, you should arrange for the WCF runtime to create a Set-
viceThrottle object and explicitly set these properties to values suitable for your environment,
taking into account the expected number of concurrent client applications and the work that
they are likely to perform. You can perform this task in code by creating a ServiceThrottlingBe-
havior object, setting its properties (the ServiceThrottlingBehavior class provides the same prop-
erties as the ServiceThrottle class), and adding it to the collection of behaviors attached to the
ServiceHost object, as described in Chapter 10. You must do this before opening the ServiceHost
object. The following code shows an example:

// Required for the ServiceThrottlingBehavior class
using System.ServiceModel.Description;

ServiceHost host = new ServiceHost(.);

ServiceThrottlingBehavior throttleBehavior = new ServiceThrottlingBehavior();
throttleBehavior.MaxConcurrentCalls = 40;
throttleBehavior.MaxConcurrentInstances = 20;
throttleBehavior.MaxConcurrentSessions = 20;
host.Description.Behaviors.Add(throttleBehavior);

host.Open(Q);

However, be warned that the values of the properties in a ServiceThrottle object can have a
drastic affect on the response time and throughput of a WCEF service. You should actively
monitor the performance of the WCF service and be prepared to change these settings if the
computer hosting the service is struggling. Additionally, clients blocked by limits that are set
too low can result in an excessive number of time-outs or other errors occurring in the client
application or the channel stack, so be prepared to catch and handle them.

Note At the time of writing, the default value for the maximum number of concurrent
instances is 21474836467 (Int32.MaxValue), the default value for the maximum number of
concurrent calls is 16, and the default value for the maximum number of concurrent sessions
is 10. However, these values may change in subsequent releases of WCF.

306

Chapter 12 Implementing a WCF Service for Good Performance

A more flexible way to create a ServiceThrottle object and set its properties is to add a service
behavior that contains the <serviceThrottling> element to the service configuration file. This is
the approach that you will adopt in the following exercise.

Apply Throttling to the ShoppingCartService Service

1.

Using Visual Studio 2005, open the solution file ShoppingCartService.sln located in the
Microsoft Press\WCF Step By Step\Chapter 12\Throttling folder under your \My Doc-
uments folder.

This solution contains a simplified non-transactional version of the ShoppingCartSer-
vice service that does not actually update the database, and an extended version of the
client application that opens multiple concurrent sessions to the service.

Note The rationale behind not updating the database or using transactions is to
allow you to concentrate on the throttling semantics of a service and not worry about
any potential locking and concurrency issues in the database. In the real world, you
have to take all of these factors into account.

Open the ShoppingCartService.cs file in the ShoppingCartService project. Notice that
the service specifies that sessions are required in the ServiceContract attribute of the
IShoppingCartService interface and that the ServiceBehavior attribute of the ShoppingCart-
ServiceImpl class specifies the PerSession instance context mode.

Examine the AddItemToCart method in this class. This method starts with a WriteLine
statement that displays the method name. A corresponding WriteLine statement has been
added at each point that the method can terminate. You will use these statements to trace
the progress of each instance of the service as it runs. Also notice that the method contains
the statement System. Threading. Thread.Sleep(5000) immediately after the first WriteLine
statement. Although this method still queries the database, it no longer performs updates
for reasons described earlier. This statement slows the method down by waiting for 5 sec-
onds, simulating the time taken to perform the database update (assume the database
update operation is very time consuming), and making it a little easier to observe the
effects of the service throttling parameters. The other public methods, RemoveltemFrom-
Cart, GetShoppingCart, and Checkout, have been amended in the same way.

Open the Program.cs file in the ShoppingCartClient project, and locate the doClient-
Work method. This method contains code that creates a new instance of the proxy
object and then invokes the various operations in the ShoppingCartService service, in
much the same way as you have seen in earlier chapters. The method contains WriteLine
statements displaying its progress to the console. The output includes a number that
identifies the client. The client connects to the service using a standard TCP binding.

Examine the Main method. This method asynchronously calls the doClientWork
method ten times, passing in the client number as the parameter. Each call creates a new
thread. This simulates ten different but identifiable clients connecting to the service at
the same time.

Chapter 12 Implementing a WCF Service for Good Performance 307

Open the Program.cs file in the ShoppingCartHost project. This is the application that
hosts the service. Add the following using statement to the top of the file:

using System.ServiceModel.Dispatcher;
This namespace contains the ServiceThrottle and ChannelDispatcher classes.

Add the code shown below in bold to the Main method, immediately after the statement
that opens the ServiceHost object:

host.0Open();

ChannelDispatcher dispatcher =
(ChannelDispatcher)host.ChannelDispatchers[0];
ServiceThrottle throttle = dispatcher.ServiceThrottle;
if (throttle == null)
Console.WriteLine("Service 1is using default throttling behavior");
else
Console.WriteLine("Instances: {0}\nCalls: {1}\nSessions: {2}",
throttle.MaxConcurrentInstances, throttle.MaxConcurrentCalls,
throttle.MaxConcurrentSessions);

Console.WriteLine("Service running");

This code retrieves a reference to the ChannelDispatcher object used by the service (the
service has only a single binding, so the WCF runtime creates only a single ChannelDis-
patcher when the service opens). The code then examines the ServiceThrottle property of
this ChannelDispatcher object. If it is null, then the administrator or developer has not
specified any customized throttling settings so the service uses the default values. If the
ServiceThrottle property is not null, then the service is using a customized throttling
behavior and the values provided by the administrator or developer are displayed.

Start the solution without debugging. In the service console window, notice that the ser-
vice is using the default throttling behavior.

Press Enter in the client console window.

The client console window displays ten messages of the form “Client n: 1st AddItemTo-
Cart,” where n is the number identifying the instance of the client. In the service console
window, notice that the message “AddItemToCart operation started” appears ten times
in succession, as shown in the following image:

[Press ENTER to stop the
AddltemToCart operation st
AddltemToCart operation
AddltemToCart operation
AddltemToCart operation
AddltemToCart operation
AddltemToCart operation
AddltemToCart operation
AddltemToCart operation started

AddltemToCart operation started
AddItemToCart operation started

308

Chapter 12 Implementing a WCF Service for Good Performance

10.

11.
12.

13.
14.

This indicates that the service is handling all ten clients simultaneously. As each method
completes, the service displays “AddItemToCart operation completed” messages and the
clients invoke further operations. At this point, the output becomes a little more chaotic,
but the important point is that in this “unthrottled” state the service has not prevented
any of the ten clients from invoking operations at the same time (the default value for the
maximum number of concurrent calls is greater than 10).

When the clients have finished (the message “Client n: Goods Purchased” has appeared
ten times), press Enter to close the client console window. Press Enter to close the ser-
vice console window.

In Visual Studio 2005, edit the App.contfig file in the ShoppingCartHost project by using
the WCF Service Configuration Editor.

In the WCF Service Configuration Editor, expand the Advanced Folder and then click
the Service Behaviors folder. In the right pane, click the New Service Behavior Configu-
ration link.

Anew behavior appears in the right pane. Change the Name property of this behavior to
ThrottleBehavior.

In the right pane, click Add and add a serviceThrottling element to the behavior.
Double-click the serviceThrottling behavior element you have just added.

The properties for this element appear: MaxConcurrentCalls, MaxConcurrentInstances,
and MaxConcurrentSessions. Each property displays its default value:

B {c:\documents and settingskstudentimy, documentskmicrosoft presshwef step by stepichapten 12soluti.... [=|[B)[5]

Fie Help

Configuration serviceThrottling
5[Services B (General)
#., ShappingCanService ShoppingCanSeri e 16
£ Clert MarCancunentinstances 2147483647

8 l[%)mdmst MaxConcurentS essions 10
iagnostics

(1 Advanced
(21 Endpoint Behaviors
- Servics Bshaviors
=15 ThrottleBshavior
i3 serviceThiotting
(1] Extensions
(2 HostEnvironmant

BB

Remave Extension

Create a Mew Service...
Create a Mew Client.
MaxConcurrentCalls

The masimum number of messages actively prossssing acioss al dispatcher objects in &
ServieHost

Change the value of the MaxConcurrentCalls property to 3.

In the left pane, click the ShoppingCartService.ShoppingCartServicelmpl node in the Ser-
vices folder. In the right pane, set the BehaviorConfiguration property to ThrottleBehavior.

15.
16.

17.

18.

Chapter 12 Implementing a WCF Service for Good Performance 309

Save the configuration file, but leave the WCF Service Configuration Editor open.

In Visual Studio 2005, start the solution without debugging. In the service console win-
dow, you should see that the service is now using the throttling behavior you have just
defined rather than the default settings.

Press Enter in the client console window.

In the client console window, all ten clients output the message “Client n:1st AddItem-
ToCart,” but the service console shows something different from before; initially only
three “AddItemToCart operation started” messages appear. This is because the service
now supports only three concurrent operation calls. Each request that occurs after this
is queued by the ChannelDispatcher. As each call finishes, displaying “AddItemToCart
operation completed,” the ChannelDispatcher releases the next request from its queue,
and you see the message “AddItemToCart operation started” appear for the next client.
Thereafter, each time an operation completes, the ChannelDispatcher releases the next
request. You should see alternating “completed” and “started” messages until the clients
have finished their work, as the time taken for the service to process each request is at
least 5 seconds, and this is longer than the time taken for each client to send the next
request when the previous one completes.

Note The ChannelDispatcher releases requests from its queue on a first-come first-
served basis. Currently, WCF does not allow you to specify that the requests for one
client should have a higher priority than another.

Press Enter to close the client console window, and then press Enter to close the service
console window.

Return to the WCF Service Configuration Editor and click the serviceThrottling service
behavior element in the left pane. In the right pane, increase the MaxConcurrentCalls
property to 16 (the default value) and set the MaxConcurrentSessions property to 3. Save
the configuration file, but leave the WCF Service Configuration Editor open.

In Visual Studio 2005, start the solution without debugging. In the service console win-
dow, you should see that the service is using the updated throttling behavior.

Press Enter in the client console window.

Again, in the client console window, all ten clients output the message “Client n: 1st
AddItemToCart,” and the service console window shows three calls to the AddItemTo-
Cart operation starting and completing. However, when these calls complete, if you
observe the messages in the client console window, you will see that only clients 0, 1,
and 2 invoke the AddItemToCart operation the second time; the other clients are held
pending by the ChannelDispatcher because it has reached the maximum number of con-
current sessions it will allow. Clients 0, 1, and 2 complete their cycle of work calling
AddItemToCart a third time, followed by the GetShoppingCart operation and the Check-
out operation. Only when Checkout completes and a client closes its session before ter-

310

Chapter 12 Implementing a WCF Service for Good Performance

19.

minating does the next client actually get to continue. You should see messages
occurring in batches of three in the client console window (three “2nd AddItemToCart”
messages, three “3rd AddItemToCart” messages, and so on), as each set of three sessions
executes.

Some of the later sessions might report the exception “The operation did not complete
within the allotted time-out of 00:01:00. ...,” as the time between them submitting the ini-
tial AddItemToCart request and the service allowing that request to be handled exceeds
the time-out limit specified for the client binding.

Note Although the ChannelDispatcher queues the requests to create each session in
the order it receives them, once a session starts running, there is no guarantee that it
will be serviced before or after any other running session in this example. For example,
when sessions for clients 3, 4, and 5 are running, you might see messages indicating
that operations for client 4 execute before those of client 3; this is due to the schedul-
ing algorithm in the operating system deciding when to execute each thread in the cli-
ent and in the service.

Press Enter to close the client console window, and then press Enter to close the service
console window.

Return to the WCF Service Configuration Editor. In the right pane, set the MaxConcur-
rentSessions property to 10 (the default value). Save the configuration file, and close the
WCEF Service Configuration Editor.

This exercise has shown you the effects of using service throttling to control the maximum
number of concurrent calls and sessions that a service will permit. To what values should you
set the service throttling properties? I am afraid that there is no simple answer. You need to
test your service against a realistic workload and observe whether client applications are
blocked for extended periods. Remember that the purpose of service throttling is to prevent
your service from being inundated with a flood of requests that it does not have the resources
to cope with. You should set the service throttling properties to ensure that, when a client
request is accepted and execution actually starts, the computer hosting the service has sulffi-
cient resources available to be able to complete the operation before the client times out, as
this would hinder overall performance further. In a transactional environment, aborted client
requests generate even more work for the service, as it then has to rollback all the transac-
tional work it has performed.

WCF and Service Instance Pooling

The WCF runtime creates service instances to handle client requests. If the service is

using the PerSession instance context mode, the instance can last for several operations.
If the service is using the PerCall instance context mode, each operation call results in a
new service instance, which is discarded and destroyed when the operation ends. Creat-

Chapter 12 Implementing a WCF Service for Good Performance 311

ing and destroying instances are expensive, potentially time-consuming tasks. Service
instance pooling would be very useful in this scenario.

When using instance pooling, the WCF runtime would create a pool of service instance
objects when the service starts. When using the PerCall instance context mode, as client
applications invoke operations, the WCF runtime would retrieve a pre-created service
instance from the pool and return it to the pool when the operation completes. When
using the PerSession instance context mode, the same semantics apply, but the WCF
runtime would obtain a service instance from the pool at the start of the session and
return it at the end of the session. For security purposes, any data held by the service
instance (fields in the class defining the service implementation) would be cleared as the
instance was returned to the pool.

As you might have gathered from the tone of the previous paragraph, WCF does not pro-
vide service instance pooling directly, but it is possible to extend WCF by defining your
own custom behavior that implements pooling. WCF supplies the IInstanceProvider
interface in the System.ServiceModel. Dispatcher namespace that you can use to define
your own service instance dispatch mechanism. This is a useful technique, but the
details are outside the scope of this book, although Chapter 10 provides an example of
how to implement a service behavior. For more information, see the topic “Pooling” in
the Microsoft Windows SDK Documentation. This topic is also available on the
Microsoft Web site at http://msdn2.microsoft.com/en-gh/library,/ms751482(en-us).aspx.

Transmitting Data by Using MTOM

A SOAP message usually contains a message body, which is held in an XML format. This body
contains the data for a request being transmitted to a service or the information being
returned in response to a request back to a client application. The actual structure of the infor-
mation in the message body is specified by the WSDL description of the operation, which is in
turn derived from the operation contract you specify in your services. For example, the Prod-
uctsService service that you created in Chapter 1, “Introducing Windows Communication
Foundation,” defined the ChangeStockLevel operation in the IProductsService service con-
tract like this:

[ServiceContract]
public interface IProductsService

{

[OperationContract]
bool ChangeStockLevel(string productNumber, int newStockLevel, string
shelf, int bin);

312

Chapter 12 Implementing a WCF Service for Good Performance

When a client application invokes the ChangeStockLevel operation, the WCF runtime con-
structs a message that looks like this:

<s:Envelope xmins:a="http://www.w3.0rg/2005/08/addressing” xmlns:s="http://www.w3.0rg/2003/
05/soap-envelope">
<s:Header>

</s:Header>
<s:Body>
<ChangeStockLevel xmlns="http://tempuri.org/">
<productNumber>WB-H098</productNumber>
<newStockLevel>25000</newStockLevel>
<shelf>N/A</shelf>
<bin>40101</bin>
</ChangeStockLevel>
</s:Body>
</s:Envelope>

You can see that the message body contains the parameters for the operation, encoded as an
XML infoset. This scheme works well for parameters that have easily definable representa-
tions. However, remember that the XML message is transmitted as a series of text characters
when it traverses the network, and non-text data, such as the <newStockLevel> and the <bin>
elements in the example above, is being converted to and from a text representation as it is
sent and received. This conversion incurs an overhead at two levels:

1. It takes time, memory, and computational power to convert from the binary representa-
tion of an integer (in the case of the <newStockLevel> and the <bin> elements) to text and
back again.

2. The textrepresentation of the data as it crosses the network might be less compact than
the original binary representation; the bigger the number, the longer the text represen-
tation.

In this example, this overhead is minimal. However, how would you handle lengthy binary
data, such as an image? One possible solution is to convert the binary data into a text repre-
sentation containing the corresponding series of “0” and “1” characters. But consider the over-
head of this approach. Converting a megabyte of binary data into a string a million characters
long requires a significant amount of memory and time. What actually happens in this case is
that WCF converts the binary data into a Base64 encoded string rather than a string of “0”
and “1” characters. The result is a more compact text representation of the data. However, on
average, the Base64 encoding mechanism results in a string that is approximately 140% of the
length of the original data. Additionally, this data has to be converted back into its original
binary format by the recipient of the data. Clearly, it makes sense to find an alternative repre-
sentation when transmitting messages that include large amounts of binary data.

MTOM is a specification that provides just such a facility. When you use MTOM to transmit a
message that includes binary data, the binary data is not encoded as text but is transmitted
unchanged as an attachment to the message following the format of the Multipurpose Inter-

Chapter 12 Implementing a WCF Service for Good Performance 313

net Mail Extension (MIME) specification. Any text information in the original message is
encoded as an XML infoset as before, but binary information is represented as a reference to
the MIME attachment, as depicted in Figure 12-1:

Image (Binary Data)

Unencoded Binary Data

v

<envelope>
<header>

</header>
<body>
<BodyContent>

Serialized XML Data g (et

v

</BodyContent>
</body>
SOAP Message </envelope>

(XML Infoset)

MIME Multipart Message

Figure 12-1 Encoding a message containing binary data.

Note MTOM supersedes previous proposed standards that you might have heard of, such
as the Direct Internet Message Encapsulation protocol (DIME) and the WS-Attachments spec-
ification. Don't confuse DIME with MIME.

As always, security is an important consideration. When signing MTOM messages, WCF com-
putes a signature that includes the data in any MIME attachments. If any part of the message,
including the MIME attachments, is changed between sending and receiving the message, the
signature will be invalid. For more details about signing messages, refer back to Chapter 4,
“Protecting an Enterprise WCF Service.”

In WCF, MTOM is handled by a specific encoding channel. If you are using any of the stan-
dard HTTP bindings (basicHttpBinding, wsDualHttpBinding, wsFederationHttpBinding, or
wsHttpBinding), you can change the MessageEncoding property of the binding configuration
to MTOM to use the MTOM encoding channel. Other transports, such as TCP, MSMQ, and
Named Pipes, use their own proprietary binary encodings by default. The corresponding
standard bindings do not have a MessageEncoding property, so if, for example, you want to use
MTOM over TCP, you must create your own custom binding.

314

Chapter 12 Implementing a WCF Service for Good Performance

Sending Large Binary Data Objects to a Client Application

Consider this scenario: Adventure-Works wants, to extend the functionality available in the
ShoppingCartService WCF service to enable a user to be able to view photographs of the prod-
ucts supplied by Adventure-Works. The database contains images of the products held as
binary data. The developers have built a prototype service called ShoppingCartPhotoService
that provides an operation called GetPhoto. This operation retrieves the image data from the
database and returns it to the client application. In the following exercise, you will see how to
encode binary data using MTOM over HTTP when transmitting the photographic data from
the service back to the client application.

Use MTOM to transmit photographic images from the ShoppingCartService service

1.

Using Visual Studio 2005, open the solution file MTOMService.sln located in the
Microsoft Press\WCF Step By Step\Chapter 12\MTOM folder under your \My Docu-
ments folder.

This solution contains a prototype WCEF service called ShoppingCartPhotoService that
implements the proposed GetPhoto operation. The ShoppingCartPhotoService service
is hosted by using the ASPNET Development Web Server provided with Visual Studio
2005. The solution also contains a basic WPF client application that displays data in a
WPF form.

Open the ShoppingCartPhotoService.cs file in the App_Code folder in the C:\..\MTOM-
Service\ project.

Examine the IShoppingCartPhotoService interface defining the service contract. This
interface contains the GetPhoto operation. This operation enables a client application to
request the photograph of a product given its name. The photograph itself is passed
back to the client application in the photo parameter, which is marked as out. The type
of this parameter is byte[], because the photographic images are held as raw binary data
in the database. The return value is a Boolean indicating whether the operation was suc-
cessful or not.

If you have time, look at the implementation of the GetPhoto method in the Shopping-
CartPhotoServicelmpl class. There is nothing specific to WCF in this method; all it does is
query the Production.ProductPhoto table in the database to find the photograph for the
specified product (for clarity, this method does not perform any checks to deter SQL
Injection attacks). The photograph is held as a varbinary column of unspecified length
in the database, so the code reads the contents of this column in manageable chunks
and then pieces these chunks together to construct the byte array that is passed back to
the client application.

Note The size of the chunks used by this method is specified by the chunkSize inte-
ger constant. The developer can increase or decrease the value of this constant to
determine the optimal chunk size.

Chapter 12 Implementing a WCF Service for Good Performance 315

Open the Window1.xaml file in the ShoppingCartGUIClient application. This XAML
file defines a WPF form that contains an image control occupying the main part of the
form, together with a label, a text box, and a button. The user types a product number
into the text box and clicks the “Get Photo” button.

Open the Window1.xaml.cs code file behind this form (expand the Window1.xaml
node in Solution Explorer to display the file). The onGetPhotoClick method in this file
runs when the user clicks the “Get Photo” button. The code in this method creates an
instance of the client proxy, reads the product number typed in by the user, creates a
new byte array, and then invokes the GetPhoto operation passing in the byte array and
the product number as parameters. If the operation returns true, the method uses the
byte array containing the data for the photograph and uses it to populate a BitmapImage
object, which it then displays in the image control on the WPF form.

Start the solution without debugging. The ShoppingCartPhotoService starts the
ASPNET Development Web Server and starts listening on port 9080.

When the ShoppingCartGUIClient form appears, type WB-H098 in the product num-
ber text box and then click Get Photo. An image showing a pair of water bottles appears
in the image control on the form, like this:

]

BX

M ShoppingCantGUICent =]

Enter product number: | WB-Hog8

Type PU-M044 in the product number text box and then click Get Photo. This time the
image displays a picture of a mountain pump.

Close the client form and return to Visual Studio 2005.

In Solution Explorer, edit the Web.conlfig file in the C:\..\MTOMService\ project by
using the WCF Service Configuration Editor.

In the left pane, right-click the Diagnostics folder. In the right pane, click the Enable Mes-
sageLogging link.

In the left pane, expand the Diagnostics folder and click the Message Logging node. In
the right pane, set the LogEntireMessage property to True.

316

Chapter 12 Implementing a WCF Service for Good Performance

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

In the left pane, expand the Sources folder under Diagnostics and then click the Sys-
tem.ServiceModelMessageLogging node. In the right pane, set the Trace level to Verbose.

Click the Diagnostics node again in the left pane. In the right pane, click the Enable Trac-
ing link. In the left pane, click System.ServiceModel in the Sources folder, and in the
right pane, set the Trace level to Verbose.

Save the configuration file, but leave the WCF Service Configuration Editor open.

In Visual Studio 2005, start the solution again without debugging. Using the Shopping-
CartGUIClient form, retrieve and display the photographs for products WB-H098 and
PU-M044 and then close the ShoppingCartGUIClient form. Stop the ASPNET Web
Development Server by right-clicking the ASP.NET Development Server icon in the Win-
dows taskbar and then clicking Stop.

Start the Service Trace Viewer in the Tools program group in the Microsoft Windows
SDK program group. In the Service Trace Viewer, open the file web_messages.svclog in
the Microsoft Press\WCF Step By Step\Chapter 12\MTOM\MTOMService folder under
your \My Documents folder.

In the left pane, click the Message tab. Four messages are listed; one for each request and
response. Click the first message. In the lower right pane, click the Message tab and
scroll down to display the body of the message. You should see that this is the message
requesting the photograph for product WB-HO098.

In the left pane, click the second message. In the lower right pane, examine the message
body. This is the response containing the photographic data in the <photo> element. You
can see that this data consists of a long string of characters containing the Base64 encod-
ing of the binary data. Examine the remaining messages; the third message is the
request for the photograph of product PU-M044, and the fourth is the response contain-
ing the Base64 encoded image data.

Open the web_tracelog.svclog file, and then click the Activity tab in the left pane. This
file contains a log of the work performed by the WCF runtime, and the Activity pane dis-
plays a list of all the tasks the WCF runtime on the service performed.

Locate and click the first item named “Process action ‘http://adventure-works.com/
2007/03/01/ShoppingCartService/GetPhoto.” The upper right pane displays the tasks
performed by this activity, including receiving the message over the channel, opening an
instance of the service, executing the operation, creating a response message, sending
the response message, and finally, closing the service instance.

In the upper right pane, scroll down and click the task “A message was written.” The
lower right pane displays information about the message. In the Message Properties and
Headers section, note that the Encoder property is “application/soap+xml; charset=utf-
8.” This indicates that the message was encoded as text:

20.
21.

22.

23.

24.

25.

Chapter 12 Implementing a WCF Service for Good Performance 317

B8 Microsoft Service Trace Viewer- c:idocuments and settingshstudentimy documentsimicrosoft pressiwef step b... E|@\g|
File Edt View Activity Help

H | { SearchIni Mone - Lewel: all + Filer ow Cle:
 Find What: - LookIn: Al Activities -~ Find
Activity | Project | Message | Graph Group By - (None) Create Custom Filter Activity - Process action 'http:/fadventure-works com{2007/03...
Activity Description Level Thiead ID | Prc#
1,7 000000000000 DOpering System ServiceModel InstanceContext/41622463 Verbose 7 we
"1\} Construst ServiceH ost 'Shoppingl| Opened System. ServiceModel InstanceContext/41622463 Werbose 7 We
#a0pen ServiceHost 'S hoppingCartF, & message was read Verbose 7 We
—_‘-J Listen at 'http: /lacalhost3080/M | || 23 To: Execute 'ShoppingCatPhotoService.|ShoppingCanPhotoService. Ge... Transfer 7 We
23 Processing message 1. {5 Activity boundary. Suspend 7 we
l,jFrncess action ‘bt //adventure-v| || 25 From: Execute 'ShoppingCantPhotoService.|ShoppingCanPhotoService.... Transfer 7 We
) Execute "ShoppingCanPhotoServi| || 54 bou e
“E5 Processing message 2 ten \erbose el
1.\ Process action http:/#adventure-v| || [Sent a message over a channel Infarmation 7 We
1) Execute ‘ShoppingCantPhatoServil A message was closed Verbose 7 We
",q Close ServiceHost "ShoppingCartF| A message was closed Werbose 7 e v
< | >
Formatted \XML
i Options -
= Message Properties and Headers]
Properties:
e ————
g Value
Encoder application/soap+kml; charset=uti-&
OutputBatching False
< > Headers v

Activities: 11 Traces: 125

On the File menu click Close All, but leave the Service Trace Viewer running.

Return to the WCF Service Configuration Editor editing the Web.config file for the Shop-
pingCartPhotoService service. In the left pane, click the ShoppingCartPhotoServiceBind-
ingContfig binding configuration in the Bindings folder. This is the binding
configuration used by the HTTP endpoint. In the right pane, change the MessageEncod-
ing property from Text to MTOM. Save the configuration file and then close the WCF Ser-
vice Configuration Editor.

In Visual Studio 2005, edit the app.config file in the ShoppingCartGUIClient project
using the WCF Service Configuration Editor. In the left pane, click the
WSHttpBinding ShoppingCartPhotoService binding configuration in the Bindings
folder. In the right pane, change the MessageEncoding property to MTOM. Save the con-
figuration file and then close the WCF Service Configuration Editor.

Using Windows Explorer, delete the files web_messages.svclog and web_tracelog.sve in
the Microsoft Press\WCF Step By Step\Chapter 12\MTOM\MTOMService folder under
your \My Documents folder.

In Visual Studio 2005, start the solution without debugging. Fetch and display the pho-
tographs for products WB-H098 and PU-M044. Close the ShoppingCartGUIClient
form, and then stop the ASPNET Web Development Server.

In the WCF Service Trace Viewer, open the web_tracelog.svclog file. In the Activity pane,
locate and click the first item named “Process action ‘http://adventure-works.com/
2007/03/01/ShoppingCartService/GetPhoto.”” In the upper right pane, locate and click
the task “A message was written.” In the lower right pane, examine the Encoder property
in the Message Properties and Headers section. This time the Encoder property is set to

318 Chapter 12

“multipart/related;

Implementing a WCF Service for Good Performance

I

type="application/xop+xml.

MIME multipart message:

IS, Microsoft Service Trace Viewer- c:\documents and settingsistudent\my documentsimicrosoft presshwef step b... E”E‘El
File Edit Yiew Activity Help

This indicates that the service sent a

E |55eagch1n: Mone - Level: all ~ Filter Now Cle:
¢ Find wihat: » LookIn: Al Activities + Find
Activity | Project | Messags | Graph Group By - (None) Creats Custom Filtsr Activity - Process action 'http:/fadventure-works, comi200703...
Activity Description Level Thiead 1D | Pre
1,1 000000000000 Opening System. S erviceModel InstanceContext/ 31364015 Verbose 7 We
#: Construct ServiceHost ‘ShoppingC| DOpened System SemviceModel InstanceContext/31364015 Verbose 7 We
®Open ServicsHost ShoppingCartF| A message was read Verbose 7 We
Ll Listen at 'hitp: /localhost 30807 || 23 To: Execute ‘ShoppingCatPhotoService IShoppingCanPhotoService Ge... Transfer 7 we
) Processing message 1 Ty Activity baundary. Suspend 7 We
(I Pracess action 'hitp://adventure-v| || (25 From: Execute 'ShoppinaCatPhatoService IShoppingCatPhotoService.... Transfer 7 we
() Execute ‘ShoppingCantPhatoServ| || 73 Activity boundary, Resume 7 We
3 Processing message 2. en Verbose 7 We
() Process sction hitp://adventure-v| || [Sent a message over a channel. Infarmation 7 owWe
L Execute "ShoppingCanPhatoS ervil & message was closed Verbose 7 We
#: Close ServiceHost ‘ShoppingCantF & message was closed Verbose 7 oWew
< | >
Formatted \XML
i Options =
= Message Properties and Headers &
Properties:
W Value 3
 Encoder mulipart/relsted: type="spplication/xop+uml”
tputB atching False
< | » Heade: v
Activities: 11 Traces: 122

26. Close the WCEF Service Trace Viewer.

Note If you examine the SOAP messages in the web_messages.svclog file, you might
be surprised, and possibly disappointed, to see that the <photo> parameter returned
in the GetPhotoResponse message always appears to be encoded as a Base64 string
embedded in the message. Do not be fooled. MTOM s actually transparent to WCF
SOAP message logging in much the same way that it is transparent to your own appli-
cations, and so it is not aware that the <photo> parameter is being transmitted as an
attachment. If you really want to see the SOAP message in its raw format with the
attachment, you must use a network analyzer, such as Windows Netmon.

You have seen that configuring a binding to use the MTOM encoding is a very straightforward
task. Using MTOM does not affect the functionality of your applications, and you don’t have
to make any special coding changes to use it.

Streaming Data from a WCF Service

MTOM is useful for encoding large binary data objects in messages, but if these objects
become too large they can consume significant amounts of memory in the computer hosting
the WCEF service and the client applications that receive them. Additionally, very large mes-
sages can take a long time to construct and transmit, and it is possible that the client applica-
tion could time-out while waiting for a response containing a large binary object.

Chapter 12 Implementing a WCF Service for Good Performance 319

In many cases, it does not make sense to even attempt to try and package up data into a single
message. Consider a WCEF service that provides an operation that emits audio or video data. In
this scenario, it is far more efficient to send the data as a stream than to try and send it as one
big chunk. Streaming enables the client application to start receiving and processing bytes of
data before the service has transmitted the end of the message, resolving the need to create
large buffers for holding an entire message in the service and the client application, and resolv-
ing the time-out issue.

Enabling Streaming in a WCF Service and Client Application

WCEF provides streaming support for operations by enabling you to modify the TransferMode
property of binding configurations based on the basicHttpBinding, netTcpBinding, or net-
NamedPipeBinding bindings. If you need to use a binding other than these, you must create
a custom binding with a transport channel element that exposes the TransferMode property
(basically, this means using <HttpTransportBindingElement>, <HttpsTransportBindingElement>,
<TcpTransportBindingElement>, or <NamedPipeTransportBindingElement>). For further informa-
tion on creating and using a custom binding, refer back to Chapter 10.

You can set the TransferMode property to one of the following values:

m Buffered. This is the default transfer mode. Messages are completely constructed in mem-
ory and transmitted only when they are complete.

B StreamedRequest. Request messages are streamed, but response messages are buffered.
StreamedResponse. Response messages are streamed, but request messages are buffered.

Streamed. Request and response messages are all streamed.

Designing Operations to Support Streaming

There is more to streaming than just changing the TransferMode property of a binding, and not
all operations are conducive to streaming. To support request streaming, an operation can
take only a single input parameter, and this parameter must either be a stream object (a
descendent of the System.IO.Stream class) or be serializable using the encoding mechanism
specified by the binding. To support response streaming, an operation must either have a non-
void return type or a single out parameter, and, like the input parameter, the type of this return
type or parameter must either be a stream object or be serializable. As an example, here is the
service contract for a version of the GetPhoto operation from the ShoppingCartPhotoService
service that supports streaming:

public interface IShoppingCartPhotoService
{
[OperationContract(Name = "GetPhoto")]
byte[] GetPhoto(string productNumber);

320

Chapter 12 Implementing a WCF Service for Good Performance
If you enable message logging, you will see that the body of the response message appears like this:

<s:Envelope xmins:s="http://www.w3.0rg/2003/05/soap-envelope"
xmIns:a="http://www.w3.0rg/2005/08/addressing">
<s:Header>

</s:Header>
<s:Body>... stream ...</s:Body>
</s:Envelope>

Note A version of the ShoppingCartPhotoService that uses streaming is available in the
Microsoft Press\WCF Step By Step\Chapter 12\Streaming folder under your \My Documents
folder. The solution contains a project called StreamingHost that implements the GetPhoto
operation, a console application called StreamingServiceHost that hosts the service and con-
figures a TCP binding with the TransferMode property set to enable streaming, and a GUI cli-
ent application called StreamingGUIClient that exercises the GetPhoto operation.

Security Implications of Streaming

Message level security features such as signing and encryption require the WCF runtime to
have access to the entire message. When you enable streaming for a binding, this is no longer
possible, so you must use transport level security instead.

Additionally, you cannot use reliable messaging. This feature depends on buffering so that the
protocol can acknowledge delivery of complete messages and optionally order them (if
ordered delivery has been specified for the binding). This is only really an issue for bindings
based on the HTTP transport, as the TCP protocol and named pipes typically provide their
own inherently reliable delivery mechanisms that are independent of the WCF implementa-
tion of the WS-ReliableMessaging protocol.

One final point concerning security: by default, bindings created by WCF allow a maximum
received message size of 64Kb. If a message being received exceeds this limit, the WCF runtime
throws an exception and aborts the operation. This limit is primarily intended to reduce the
scope for Denial of Service attacks. This value is sufficient for most message-oriented operations
but is too low for many streaming scenarios. In these cases, you will need to increase the value
of the MaxReceivedMessageSize property of the binding. However, be aware that this is a global
setting for the binding and so affects all operations exposed by the service through this binding.

Summary

In this chapter, you have seen how to use service throttling to control the requests submitted
to a service and ensure that a service does not overcommiit itself and attempt to handle too
many concurrent operations. You have also seen how to use MTOM to optimize the way in
which WCF encodes large binary objects for transmission. Finally, you have seen how to
design operations and services that support streaming.

Chapter 13
Routing Messages

After completing this chapter, you will be able to:

m Describe how the WCF runtime for a service dispatches messages to operations.
m Build a WCF service that transparently routes client requests to other WCF services.
m Describe how WCF conforms to the WS-Addressing specification.

When a client application sends a message to a WCF service, it sends the request through an
endpoint. If you recall, an endpoint specifies three pieces of information: an address, a bind-
ing, and a contract. The address indicates where the message should go; the binding identifies
the transport, format, and protocols to use to communicate with the service; and the contract
determines the messages that the client can send and the responses it should expect to
receive. A service can expose multiple endpoints, each associated with the same or a different
contract. When a WCEF service receives a message, it has to examine the message to determine
which service endpoint should actually process it. You can customize the way in which WCF
selects the endpoint to use, and this provides a mechanism for you to change the way in which
WCEF routes messages within a service.

Sometimes it is useful to forward messages to entirely different services for handling. Suppose
that client applications send requests to various WCF services hosted by an organization, but
all of these requests actually go through the same front-end service, which acts as a firewall to
the real WCF services. The front-end service can run on a computer forming part of the orga-
nization’s perimeter network, and the computers hosting the real WCF service servers can
reside in a protected network inside the organization. The front-end service can act as a router,
forwarding requests on the real services by examining the action or address in each message.
This mechanism is known as address-based routing. The front-end service can also filter mes-
sages, detecting rogue requests and blocking them, depending on the degree of intelligence
you want to incorporate into the front-end service logic.

An alternative scheme is to route messages based on their contents rather than the action
being requested. This mechanism is known as content-based routing. For example, if you are
hosting a commercial service, you might offer different levels of service to different users
depending on the fees that they pay you. A “premium” user (paying higher fees) could have
requests forwarded to a high-performance server for a fast response, whereas a “standard”
user (not paying as much) might have to make do with a lower level of performance. The cli-
ent application run by both categories of user actually sends messages to the same front-end
service, but the front-end service examines some aspect of the message, such as the identity of
the user making the request, and then forwards the message to the appropriate destination.

321

322 Chapter 13 Routing Messages

A front-end service can also provide other features such as load-balancing. Requests from cli-
ent applications arrive at a single front-end server, which uses a load-balancing algorithm to
distribute requests evenly across all servers running the WCF service.

In this chapter, you will look at techniques you can use to handle scenarios such as these.

How the WCF Service Runtime Dispatches Operations

Before looking in detail at how you can build a WCF service that routes messages to other ser-
vices, it is useful to explain a little more about what happens when a WCF service actually
receives a request message from a client application.

ChannelDispatcher and EndpointDispatcher Objects Revisited

In Chapter 10, “Programmatically Controlling the Configuration and Communications,” you
saw that the WCF runtime for a service creates a channel stack for each distinct address and
binding combination used to communicate with the service. Each channel stack has a Chan-
nelDispatcher object and one or more EndpointDispatcher objects. The purpose of the Chan-
nelDispatcher object is to determine which EndpointDispatcher object should handle the
message. The role of the EndpointDispatcher object is to convert the message into a method
call and invoke the appropriate method in the service.

Note This is a very simplified view of the WCF Service Model. The EndpointDispatcher

object does not directly invoke the method in the service itself. It uses a number of other
helper objects instantiated by the WCF runtime. These objects have their own specific
responsibilities for converting the message into a method call, selecting the appropriate ser-
vice instance, handling the value returned by the method, and all the other low-level tasks
associated with executing an operation. The WCF runtime is highly customizable, and you
can replace many of the standard objects provided by WCF that perform these tasks with
your own implementations.

Each address and binding combination exposed by a service can be shared by multiple end-
points. For example, the configuration file for the ProductsServiceV2 solution from Chapter 6,
“Maintaining Service Contracts and Data Contracts,” defined the following service and end-

points:

<services>
<service .. name="Products.ProductsServiceImpl">

<endpoint
address="https://localhost:8000/ProductsService/ProductsService.svc"
binding="basicHttpBinding" name="ProductsServiceHttpEndpoint"
contract="Products.IProductsService" />

<endpoint address="net.tcp://lTocalhost:8080/TcpProductsService"
binding="netTcpBinding" name="ProductsServiceTcpBinding"
contract="Products.IProductsService" />

<endpoint

Chapter 13 Routing Messages 323

address="http://localhost:8010/ProductsService/ProductsService.svc"
binding="wsHttpBinding" name="ProductsServiceWSHttpEndpoint"
contract="Products.IProductsService" />

<endpoint
address="https://localhost:8000/ProductsService/ProductsService.svc"
binding="basicHttpBinding" name="ProductsServiceHttpEndpointV2"
contract="Products.IProductsServiceVv2" />

<endpoint address="net.tcp://localhost:8080/TcpProductsService"
binding="netTcpBinding" name="ProductsServiceTcpBindingv2"
contract="Products.IProductsServiceVv2" />

<endpoint
address="http://localhost:8010/ProductsService/ProductsService.svc"
binding="wsHttpBinding" name="ProductsServiceWSHttpEndpointV2"
contract="Products.IProductsServiceVv2" />

</service>
</services>

Notice that this configuration defines six endpoints, but that there are only three distinct
address/binding combinations. Consequently, this configuration causes the WCF runtime to
create three channel stacks, each with its own ChannelDispatcher object. Each channel stack is
associated with two possible endpoints; one for each of the contracts available through that
channel stack. The WCF runtime creates two EndpointDispatcher objects for each channel
stack and adds them to the collection of EndpointDispatcher objects associated with the Chan-
nelDispatcher object. Figure 13-1 shows the relationship between the endpoints, channel
stacks, and dispatcher objects for this service.

e Q Q Q Q Q Q

IProductsService IProductsServiceV2 IProductsService IProductsServiceV2 IProductsService IProductsServiceV2

Channel
Dispatchers

Channel
Stacks ces ces ces
HTTP HTTP HTTP
Endooint URI: https://localhost:8000/ URL: https://localhost:8080/
DefiniFt)ions ProductsService/ProductsService.svc TepProductsService/ProductsService.svc
Binding: basicHttpBinding Binding: net TcpBinding
Contracts: IProductService and IProductServiceV2 Contracts: IProductService and IProductServiceV2

URI: https://localhost:8100/
ProductsService/ProductsService.svc

Binding: wsHttpBinding

Contracts: IProductService and IProductServiceV2

Figure 13-1 Channels and Dispatchers for the ProductsServicelmpl service.

324

Chapter 13 Routing Messages

When the service receives a message on a channel, the ChannelDispatcher object at the top of
the channel stack queries each of its associated EndpointDispatcher objects to determine
which endpoint can process the message. If none of the EndpointDispatcher objects can accept
the message, the WCF runtime raises the UnknownMessageReceived event on the ServiceHost
object hosting the service. Chapter 3, “Making Applications and Services Robust,” describes
how to handle this event.

EndpointDispatcher Objects and Filters

How does an EndpointDispatcher object indicate that it can process a message? Well, an End-
pointDispatcher object exposes two properties that the ChannelDispatcher can query. These
properties are AddressFilter and ContractFilter.

The AddressFilter property is an instance of the EndpointAddressMessageFilter class. The End-
pointAddressFilterMessage class provides a method called Match that takes a message as its
input parameter and returns a Boolean value indicating whether the EndpointDispatcher
object recognizes the address contained in the header of this message or not.

The ContractFilter property is an instance of the ActionMessageFilter class. This class also pro-
vides a Match method that takes a message as its input parameter, and it returns a Boolean
value indicating whether the EndpointDispatcher object can handle the action specified in the
message header. Remember that the action identifies the method that the EndpointDispatcher
will invoke in the service instance if it accepts the request. Internally, the ActionMessageFilter
object contains a table of actions, held as strings, and all the Match method does is iterate
through this table until it finds a match or reaches the end of the table.

The Match method in both filters must return true for the ChannelDispatcher object to consider
sending the message to the EndpointDispatcher object for processing. It is also possible for
more than one EndpointDispatcher object to indicate that it can handle the message. In this
case, the EndpointDispatcher class provides the FilterPriority property. This property returns
an integer value, and an EndpointDispatcher object can indicate its relative precedence com-
pared to other EndpointDispatcher objects by returning a higher or lower number. If two
matching endpoints have the same priority, the WCF runtime throws a MultipleFilter-
MatchesException exception.

The WCF runtime creates the EndpointAddressFilterMessage and ActionMessageFilter objects for
each ChannelDispatcher object based on the endpoint definitions in the service configuration
file (or in code, if you are creating endpoints dynamically by using the AddServiceEndpoint
method of the ServiceHost object, as described in Chapter 10). You can override these filters by
creating your own customized instances of these objects with your own address and table of
actions and inserting these filters when the WCF runtime builds the service prior to opening
it. One way to do this is to create a custom behavior, as you did when adding the message
inspector in Chapter 10.

Chapter 13 Routing Messages 325

By default, the EndpointDispatcher invokes the method corresponding to the action in the ser-
vice contract. However, you can modify the way in which the EndpointDispatcher processes an
operation request by creating a class that implements the IDispatchOperationSelector interface
and assigning it to the OperationSelector property of the DispatchRuntime object referenced by
the DispatchRuntime property of the EndpointDispatcher. This interface contains a single
method called SelectOperation:

public string SelectOperation(ref Message message).

You can use this method to examine the message and return the name of a method that the
EndpointDispatcher should invoke to handle it. This is useful if you want to manually control
the way in which the dispatching mechanism works.

More Info The Custom Demux sample included with the WCF samples in the Microsoft
Windows SDK provides more information on creating an endpoint behavior class that over-
rides the contract filter and operation selector for an endpoint dispatcher. This sample is
based on the MsmglntegrationBinding binding, but the general principles are the same for
other bindings. You can find this sample online at http.//windowssdk.msdn.microsoft.com/en-
us/library/ms752265.aspx.

To summarize, the dispatching mechanism provides a highly customizable mechanism for
determining which endpoint should process a message. You can make use of this knowledge
to build services that can transparently route messages to other services.

Routing Messages to Other Services

The WCF runtime makes it a relatively simple matter to build a WCF service that accepts spe-
cific messages and sends them to another service for processing (I shall refer to this type of ser-
vice as a front-end service from here on in this chapter). All you need to do is define a front-end
service with a service contract that mirrors that of the target service. The methods defining the
operations in the front-end service can perform any pre-processing required, such as examin-
ing the identity of the user making the request or the data being passed in as parameters, and
then forward the request on to the appropriate target service.

However, creating a generalized WCF service that can accept any messages and route them to
another service running on a different computer requires a little more thought. There are at
least three issues that you need to handle:

1. The service contract. A WCEF service describes the operations it can perform by defining
a service contract. For a service to accept messages, they must be recognized by the Con-
tractFilter of one or more EndpointDispatcher objects. At first glance, therefore, it would
appear that any front-end service that accepts messages and forwards them on to
another service must implement a service contract that is the same as that of the target
service. Though it is acceptable when routing messages to a single service, if a WCF ser-

326

Chapter 13 Routing Messages

vice is acting as a front-end for many other services this situation can quickly become
unmanageable, as the front-end service has to implement service contracts that match all
of these other services.

2. The contents of messages. In some ways this issue is related to the first problem. If a
front-end service has to implement the service contracts for a vast array of other services,
italso has to implement any data contracts that these other services use, describing how
data structures are serialized into the bodies of the messages. Again, this can quickly
become an unwieldy task.

3. The contents of message headers. Apart from the data in the body, a message also con-
tains one or more message headers. These message headers contain information such as
encryption tokens, transaction identifiers, and many other miscellaneous items used to
control the flow of data and manage the integrity of messages. A front-end service must
carefully manage this information in order to appear transparent to the client application
sending requests and the services that receive and process those requests.

Fortunately, there are reasonably simple solutions to at least some of these problems. In the
following exercises, you will see how to build a very simple load-balancing router for the
ShoppingCartService service. You will run two instances of the ShoppingCartService service,
and the load-balancing router will direct requests from client applications transparently to
them. The load-balancing routing will implement a very simple algorithm, sending alternate
requests to each instance of the ShoppingCartService service. Although all three services in
this exercise will be running on the same computer, it would be very easy to arrange for
them to execute on different machines, enabling you to spread the workload across different
processors.

You will start by re-familiarizing yourself with the ShoppingCartService service and modifying
it to execute in a more traditional Internet environment.

Revisit the ShoppingCartService service

1. Using Visual Studio 2005, open the ShoppingCartService solution in the Microsoft
Press\WCF Step By Step\Chapter 13\Load-Balancing Router folder under your \My
Projects folder.

This solution contains a copy of the ShoppingCartService and ShoppingCartService-
Host projects from Chapter 7, “Maintaining State and Sequencing Operations,” and the
ShoppingCartClient project containing a client application for testing the service in a
multi-user environment.

2. In the ShoppingCartService project, open the ShoppingCartService.cs file. Examine the
ServiceBehavior attribute for the ShoppingCartServiceImpl class. Note that this version of
the service uses the PerCall instance context mode; this is the stateless version of the ser-
vice. The operations in the service make use of the saveShoppingCart and restoreShop-
pingCart methods to serialize users’ shopping carts as XML files.

Chapter 13 Routing Messages 327

Open the Program.cs file in the ShoppingCartServiceHost project. This is the service
host application. All it does is start the service running by using a ServiceHost object and
then waiting for the user to press Enter to close the host.

Open the App.contfig file in the ShoppingCartServiceHost project. Notice that the service
host creates an HTTP endpoint with the URI http://localhost:7080/ShoppingCartSer-
vice/ShoppingCartService.svc. The endpoint uses the wsHttpBinding binding. The
binding configuration specifies message level security; the client application is expected
to provide a Windows username and a password for accessing the service. Close the
App.contfig file when you have finished examining it.

Open the Program.cs file in the ShoppingCartClient project. This is a multi-threaded cli-
ent application. Each thread runs the doClientWork method. This version of the client
application creates two threads.

Examine the doClientWork method. You can see that this method creates a proxy for
connecting to the ShoppingCartService service and provides credentials for Fred and
Bert, depending on which thread the method is running in. The method then exercises
the methods in the ShoppingCartService service.

Open the App.config file in the ShoppingCartClient project, and verify that the client
application uses an endpoint with the same URI and binding as the service (http://local-
host:7080/ShoppingCartService/ShoppingCartService.svc). Close the App.config file
when you have finished.

Start the solution without debugging. In the client console window, press Enter when
the message “Service running” appears in the service console window.

As the two client threads perform their tasks, they output messages in the client console
window displaying their progress. Both threads add two water bottles and a mountain
seat assembly to the shopping basket, display it, and then invoke the Checkout opera-
tion. The result should look like this (your output might appear in a slightly different
sequence):

AWINDOWS\system32\cmd.exe
NIER when the service has started

t AddltenToCart

: 3rd AddItenToCart
= GetShoppingCart
GetS]m ppingCart

Name: Water Bottle — 30 o Uo lume =

ost: 4.9900
SR—MI‘JS Name: LL Hountain Seat ﬂssenbly Cu..t: 133.3408 Uolume:

ent he
r: WB-HG98 Name: Water Bottle — 30 o ost: 4.9900 Uo lume =
Nunber: SA-M198 Name: LL Mountain Seat ﬂssenbly Cu..t: 133.3408 Uolume:

TotalCost: 143.3200
Client 1: Checkout
Client @: Goods purchased
[Client 1: Goods purchased

After both “Goods purchased” messages have appeared, press Enter to close the client
console window. In the service console window, press Enter to stop the service.

328

Chapter 13 Routing Messages

In an Internet environment, for reasons of speed and interoperability, you are more likely to
protect the ShoppingCartService by using transport level security than message level security.
In the next exercise, you will reconfigure the service and client application to use transport
level security. You will reuse the HTTPS-Server certificate that you created in Chapter 4, “Pro-
tecting an Enterprise WCF Service,” to provide the necessary protection.

Note In general, you should avoid reusing the same certificate for protecting multiple ser-
vices in a production environment. However, | don't want you to have to uninstall too many
test certificates on your computer when you have finished reading this book.

Reconfigure the ShoppingCartService service to use transport level security

1. Using Microsoft Management Console and the Certificates snap-in, find the thumbprint
of the HTTPS-Server certificate. (If you cannot remember how to do this, refer back to
the exercise “Configure the WCF HTTP endpoint with an SSL certificate” in Chapter 4.)

2. OpenaWindows SDK CMD Shell window, and run the following command to associate
the certificate with port 7080, replacing the string following the —h flag with the thumb-
print of the HTTPS-Server certificate on your computer:

httpcfg set ss1 -i 0.0.0.0:7080 -h c390e7a4491cf97b96729167bf50186a4b68e052

Note On Windows Vista, use the following command, replacing the value for the
certhash parameter with the thumbprint of the HTTPS-Server certificate:
netsh http add sslcert 1ipport=0.0.0.0:7080

certhash= ¢390e7a4491cf97b96729167bf50186a4b68e052
appid={00112233-4455-6677-8899-AABBCCDDEEFF}

Leave the CMD Shell window open and return to Visual Studio 2005.

Edit the App.config file in the ShoppingCartServiceHost project by using the WCF Ser-
vice Configuration editor.

QO Change the Address property of the ShoppingCartServiceHttpEndpoint endpoint
in the Endpoints folder to use the https scheme.

0 Edit the ShoppingCartServiceHttpBindingConfig binding configuration in the
Bindings folder, click the Security tab, and change the Mode property to Transport.
Set the TransportClientCredential Type property to Basic.

Q Save the file and exit the WCF Configuration Editor.

5. Open the App.conlfig file in the ShoppingCartClient project by using the WCF Service
Configuration Editor.

0 In the Bindings folder, create a new binding configuration for the wsHttpBinding
type. Set the Name property of the binding configuration to ShoppingCartClientHt-

10.

Chapter 13 Routing Messages 329

tpBindingConfig. Click the Security tab and set the security Mode property to Trans-
port, and set the TransportClientCredentialType property to Basic.

0 Change the Address property of the WSHttpBinding_ShoppingCartService end-
point to use the https scheme, and set the BindingConfiguration property of the
endpoint to ShoppingCartClientHttpBindingConfig.

Q Save the file and exit the WCF Configuration Editor.

In Visual Studio 2005, edit the Program.cs file in the ShoppingCartClient project.
Because the certificate used to protect the communications with the service was not
issued by a recognized certification authority, you need to add the code you used before
(in Chapter 4), to bypass the certificate validation. Add the following using statements to
the top of the file:

using System.Security.Crytography.X509Certificates;
using System.Net;

Add the PermissiveCertificatePolicy class to the file, immediately after the Program class.

The code for this class is available in the PermissiveCertificatePolicy.txt file in the Chap-
ter 13 folder.

In the doClientWork method in the Program class, add the following statement shown in
bold immediately before the code that creates the proxy object:

PermissiveCertificatePolicy.Enact("CN=HTTPS-Server");
ShoppingCartServuceClient proxy =
new ShoppingCartServiceClient("WSHttpBinding_ShoppingCartService");

Change the statements that populate the ClientCredentials property of the proxy to pro-
vide the username and password for Fred and Bert as tokens available to Basic authen-

tication rather than Windows authentication:

if (clientNum == 0)

{
proxy.ClientCredentials.UserName.UserName = "Bert";
proxy.ClientCredentials.UserName.Password = "Pa$$wOrd";
}
else
{
proxy.ClientCredentials.UserName.UserName = "Fred";
proxy.ClientCredentials.UserName.Password = "Pa$$wOrd";
}

Start the solution without debugging. In the client console window, press Enter when
the message “Service running” appears in the service console window.

Verify that the client application runs exactly as before. When the client application has
finished, press Enter to close the client console window. Press Enter to close the service
console window.

330

Chapter 13 Routing Messages

You now have a version of the ShoppingCartService service that a client application can con-
nect to by using transport level security. The next step is to run multiple instances of this ser-
vice and create another service that routes messages from the client application transparently
to one of these instances.

Create the ShoppingCartRouter service

1.

Add a new project to the ShoppingCartService solution using the WCF Service Library
template (make sure you select the Visual C# project types). Name the project Shopping-
CartServiceRouter, and save it in the Microsoft Press\WCF Step By Step\Chapter
13\Load-Balancing Router folder under your \My Projects folder.

In the ShoppingCartServiceRouter project, rename the Classl.cs file as ShoppingCart-
ServiceRouter.cs.

Open the ShoppingCartServiceRouter.cs file. Add the following using statements to the
list at the top of the file:

using System.ServiceModel.Channels;

using System.ServiceModel.Dispatcher;

using System.ServiceModel.Description;

using System.Security.Cryptography.X509Certificates;
using System.Net;

Remove the extensive comments describing how to host the WCF service and the sam-
ple code for the IServicel service contract, the servicel class, and the DataContractl data
contract. Leave the empty ShoppingCartServiceRouter namespace in place.

Add the service contract shown below to the ShoppingCartServiceRouter namespace:

[ServiceContract(Namespace = "http://adventure-works.com/2007/03/01",
Name = "ShoppingCartServiceRouter™)]
public interface IShoppingCartServiceRouter
{
[OperationContract(Action="*", ReplyAction="*")]
Message ProcessMessage(Message message);
}

Understanding this rather simple-looking service contract is the key to appreciating how
the router works.

In the earlier discussion, you saw that the problems that you have to overcome when
designing a generalized front-end service that can forward any message on to another
service concern the service contract and the contents of messages passing through the
service. A service contract defines the operations that the service can process. Under nor-
mal circumstances, the WSDL description for an operation combines the Namespace and
Name properties from the ServiceContract attribute with the name of the operation to the
generate identifier, or action, defining the request message that a client application
should send to invoke the operation, and the identifier, or reply action, for the response
message that the service will send back. For example, the AddItemToCart operation in
the ShoppingCartService service is identified like this:

Chapter 13 Routing Messages 331

http://adventure-works.com/2007/03/01/ShoppingCartService/AddItemToCart

When the WCF runtime constructs each EndpointDispatcher for a service, it adds the
actions that the corresponding endpoint can accept to the table referenced by the Con-
tractFilter property.

If you explicitly provide a value for the Action property of the OperationContract attribute
when defining an operation, the WCF runtime uses this value instead of the operation
name. If you specify a value of “*” for the Action property, the WCF runtime automati-
cally routes all messages to this operation, regardless of the value of the action specified
in the header of the message sent by the client application. Internally, the WCF runtime
for the service replaces the ActionMessageFilter object referenced by the ContractFilter
property of the EndpointDispatcher object with a MatchAllMessageFilter object. The Match
method of this object returns true for all non-null messages passed to it, so the Endpoint-
Dispatcher will automatically indicate that it can accept all requests sent to it (the Address-
Filter property is still queried by the ChannelDispatcher, however). In this exercise, when
the ShoppingCartClient application sends AddItemToCart, RemoveltemFromCart, Get-
ShoppingCart, and Checkout messages to the ShoppingCartRouter service, it will accept
them all and the EndpointDispatcher will invoke the ProcessMessage method.

You should also pay attention to the signature of the ProcessMessage method. The WCF
runtime on the client packages the parameters passed into an operation as the body of
a SOAP message. Under normal circumstances, the WCF runtime on the service con-
verts the body of the SOAP message back into a set of parameters that are then passed
into the method implementing the operation. If the method returns a value, the WCF
runtime on the service packages it up into a message and transmits it back to the WCF
runtime on the client, where it is converted back into the type expected by the client
application.

The ProcessMessage method is a little different as it takes a Message object as input. In
Chapter 10, you saw that the Message class provides a means for transmitting and receiv-
ing raw SOAP messages. When the WCF runtime on the service receives a message from
the client application, it does not unpack the parameters but instead passes the com-
plete SOAP message to the ProcessMessage method. It is up to the ProcessMessage
method to parse and interpret the contents of this Message object itself.

Similarly, the value returned by the ProcessMessage method is also a Message object. The
ProcessMessage method must construct a complete SOAP message containing the data
in the format expected by the client application and return this object. This response
message must also include a ReplyAction in the message header corresponding to the
ReplyAction expected by the WCF runtime on the client. Usually, the WCF runtime on
the service adds a ReplyAction based on the name of the service and the operation. For
example, the message that the ShoppingCartService service sends back to a client appli-
cation in response to an AddItemToCart message is identified like this:

http://adventure-works.com/2007/03/01/ShoppingCartService/AddItemToCartResponse

332

Chapter 13 Routing Messages

If you set the ReplyAction property of the OperationContract attribute to “*”, the WCF
runtime on the service expects you to provide the appropriate ReplyAction yourself and
add it to the message header when you create the response message. In this case, you will
pass the ReplyAction returned from the ShoppingCartService back to the client applica-
tion unchanged.

Add the ShoppingCartServiceRouterImpl class to the ShoppingCartServiceRouter

namespace:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall,
ValidateMustUnderstand = false)]

public class ShoppingCartServiceRouterImpl : IShoppingCartServiceRouter

{

3

This class will contain the implementation of the ProcessMessage method. If you are

familiar with the SOAP protocol, you will be aware that you can include information in

message headers that the receiving service must recognize and be able to process. In this

example, the ShoppingCartServiceRouter service is not actually going to process the

messages itself, it is simply going to forward them to an instance of the ShoppingCart-

Service service. It therefore does not need to examine or understand the message head-

ers and should pass them on unchanged. Setting the ValidateMustUnderstand property of

the ServiceBehavior attribute to false turns off any enforced recognition and validation of

message headers by the service.

Add the following private fields to the ShoppingCartServiceRouterImpl class:

private static IChannelFactory<IRequestChannel> factory = null;

private EndpointAddress addressl = new EndpointAddress(
"https://Tocalhost:7080/ShoppingCartService/ShoppingCartService.svc");

private EndpointAddress address2 = new EndpointAddress(
"https://Tocalhost:7090/ShoppingCartService/ShoppingCartService.svc");

private static int routeBalancer = 1;

The ShoppingCartServiceRouter service actually acts as a client application to two

instances of the ShoppingCartService service, sending them messages and waiting for

responses. The generalized nature of the ProcessMessage method requires you to con-

nect to the ShoppingCartService service using the low-level techniques described in

Chapter 10 rather than by using a proxy object. You will use the IChannelFactory object

to create channel factory for opening channels to each instance of the ShoppingCartSer-

vice. Notice that channels for sending messages over the HTTP transport use the IRe-

questChannel shape (refer back to Chapter 10 for a description of channel shapes).

The EndpointAddress objects specify the URI for each instance of the ShoppingCartSer-
vice service. You will configure the ShoppingCartServiceHost application to run two
instances of the ShoppingCartService service at these addresses in a later step.

The ProcessMessage method will use the routeBalancer variable to determine which
instance of the ShoppingCartService service to send messages to.

2

Chapter 13 Routing Messages 333

8. Add the static constructor shown below to the ShoppingCartServiceRouterImpl class:

static ShoppingCartServiceRouterImpl()

{
try
{
PermissiveCertificatePolicy.Enact("CN=HTTPS-Server");
WSHttpBinding service = new WSHttpBinding(SecurityMode.Transport);
factory = service.BuildChannelFactory<IRequestChannel>(Q);
factory.Open();
}
catch (Exception e)
{
Console.WriteLine("Exception: {0}", e.Message);
}
}

The ShoppingCartServiceRouter service uses the PerCall instance context mode, so each
request from the ShoppingCartClient application creates a new instance of the service
(for scalability). The ProcessMessage method will use a ChannelFactory object to open a
channel with the appropriate instance of the ShoppingCartService service. ChannelFac-
tory objects are expensive to create and destroy, but all instances can reuse the same
ChannelFactory objects. Building these objects in a static constructor ensures that they
are created only once.

Also, notice that the ChannelFactory object is constructed by using a WSHttpBinding
object with the security mode set to Transport. This matches the security requirements
of the ShoppingCartService service.

Note The code also includes a statement that invokes the PermissiveCertificatePol-
icy.Enact method to bypass the security checks for the certificate used to protect com-
munications with the ShoppingCartService service (you will add the
PermissiveCertificatePolicy class to this service in a later step). You should not include
this statement in a production environment.

9. Add the ProcessMessage method to the ShoppingCartServiceRouterImpl class, as follows:

public Message ProcessMessage(Message message)

{

IRequestChannel channel = null;

Console.WriteLine("Action {0}", message.Headers.Action);

try
{
if (routeBalancer % 2 == 0)
{
channel = factory.CreateChannel(addressl);
Console.WriteLine("Using {0}\n", addressl.Uri);
}
else
{

channel = factory.CreateChannel(address2);

334

Chapter 13 Routing Messages

Console.WriteLine("Using {0}\n", address2.Uri);
}

routeBalancer++;

channel.0Open();

Message reply = channel.Request(message);
channel.Close();

return reply;

}

catch (Exception e)

{
Console.WriteLine(e.Message);
return null;

}

}

This method contains several Console. WriteLine statements that enable you to follow the
execution in the service console window when the service runs.

The if statement in the try block implements the load-balancing algorithm; if the value in
the routeBalancer variable is even, the method creates a channel for forward requests to
addressl (https://localhost:7080/ShoppingCartService/ShoppingCartService.svc), oth-
erwise it creates a channel for address2 (https://localhost:7090/ShoppingCartService/
ShoppingCartService.svc). The method then increments the value in the routeBalancer
variable. In this way, the ProcessMessage method sends all requests alternately to one
instance or the other of the ShoppingCartService service.

The Request method of the IRequestChannel class sends a Message object through the
channel to the destination service. The value returned is a Message object containing the
response from the service. The ProcessMessage method returns this message unchanged
to the client application.

Important Note that the code explicitly closes the /RequestChannel object before
the method finishes. This object is local to the ProcessMessage method and so is sub-
ject to garbage collection when the method finishes, and if it was open at that time, it
would be closed automatically. However, you can never be sure when the Common
Language Runtime is going to perform its garbage collection, so leaving the /Request-
Channel object open holds a connection to the service open for an indeterminate
period, possibly resulting in the service refusing to accept further connections if you
exceed the value of MaxConcurrentinstances for the service (Refer back to Chapter 12,
"Implementing a WCF Service for Good Performance,” for more details.)

Remember that the Message object sent by the client application can contain security and
other header information. The ProcessMessage method makes no attempt to examine or
change this information, and so the destination service is not even aware that the mes-
sage has been passed through the ShoppingCartServiceRouter service. Similarly, the Pro-
cessMessage method does not modify the response in any way, and the router is
transparent to the client application. However, there is nothing to stop you from adding
code that modifies the contents of a message or a response before forwarding it. This

10.

11.

Chapter 13 Routing Messages 335

opens up some interesting security considerations, and you should ensure that you
deploy the ShoppingCartServiceRouter service in a secure environment.

Add the PermissiveCertificatePolicy class to the file, immediately after the ShoppingCart-
ServiceRouterImpl class. The code for the PermissiveCertificatePolicy class is available in
the PermissiveCertificatePolicy.txt file in the Chapter 13 folder.

Build the ShoppingCartServiceRouter project.

Configure the ShoppingCartServiceHost application

1.

3.

Edit the App.contfig file for the ShoppingCartServiceHost project by using the WCF Ser-

vice Configuration Editor.

Click the Services folder in the left pane. In the right pane click the Create a New Service
link. Use the values in the table below as the response to the various questions in the
New Service Element Wizard:

Page Prompt

Response

What is the Service type
service type

of your

service?

ShoppingCartServiceRouter.ShoppingCartServiceRouterimpl

What Contract
service

contract are

you using?

ShoppingCartServiceRouter.IShoppingCartServiceRouter

What Existing
binding binding
config- configuration
uration do

you want to

use?

ShoppingCartServiceHttpBindingConfig_wsHttpBinding

What is Address
the address

of your

endpoint?

https://localhost:7070/ShoppingCartService
/ShoppingCartService.svc

Note Make sure you include the “s” in the "https” scheme when specifying the

address of the endpoint.

In the Services folder, note that there are now two services. Expand the Endpoint folder
for the ShoppingCartService.ShoppingCartServicelmpl service. Select the Shopping-
CartServiceHttpEndpoint service endpoint. In the right pane, change the name of this
endpoint to ShoppingCartServiceHttpEndpointl.

336 Chapter 13 Routing Messages

4. Add another endpoint to the ShoppingCartService. ShoppingCartServicelmpl service.
Use the values in the following table to set the properties for this endpoint.

Property Value

Name ShoppingCartServiceHttpEndpoint2

Address https://localhost:7090/ShoppingCartService
/ShoppingCartService.svc

Binding wsHttpBinding

BindingConfiguration ShoppingCartServiceHttpBindingConfig

Contract ShoppingCartService.IShoppingCartService

5. Save the configuration file and exit the WCF Service Configuration Editor.

6. Using Solution Explorer, add a reference to the ShoppingCartServiceRouter project to
the ShoppingCartServiceHost project.

7. Edit the Program.cs file in the ShoppingCartServiceHost project. In the Main method,
add the following statements, shown in bold, which create and open a new ServiceHost
object for the ShoppingCartServiceRouter service:

ServiceHost host = new ServiceHost(..)
host.Open(Q);
ServiceHost routerHost = new ServiceHost(
typeof (ShoppingCartServiceRouter.ShoppingCartServiceRouterImpl));
routerHost.Open();
Console.WriteLine("Service running");

8. The ShoppingCartServiceRouter service listens to port 7070, and the second instance of
the ShoppingCartService service listens to port 7090. Both of these services require
transport level security. Return to the CMD Shell window you opened earlier, and run
the following commands to associate the HTTPS-Server certificate with ports 7070 and
7090, replacing the string following the —h flag with the thumbprint of the HTTPS-Server
certificate on your computer:

httpcfg set ss1 -i 0.0.0.0:7070 -h c390e7a4491cf97b96729167bf50186a4b68e052
httpcfg set ss1 -i 0.0.0.0:7090 -h c390e7a4491cf97b96729167bf50186a4b68e052

Note On Windows Vista, use the following commands, replacing the value of the
certhash parameter with the thumbprint of the HTTPS-Server certificate:
netsh http add sslcert ipport=0.0.0.0:7070

certhash= c390e7a4491cf97b96729167bf50186a4b68e052
appid={00112233-4455-6677-8899-AABBCCDDEEFF}

netsh http add sslcert ipport=0.0.0.0:7090
certhash= ¢390e7a4491cf97b96729167b150186a4b68e052
appid={00112233-4455-6677-8899-AABBCCDDEEFF}

Chapter 13 Routing Messages 337

9. Close the CMD Shell window and return to Visual Studio 2005.
Reconfigure the client application to use the ShoppingCartRouter service

1. Edit the App.config file for the ShoppingCartClient project. Change the address of the
WSHttpBinding ShoppingCartService endpoint to refer to port 7070, like this:

https://Tocalhost:7070/ShoppingCartService/ShoppingCartService.svc
This is the address of the router.
2. Save the configuration file.

3. Start the solution without debugging. In the client console window, press Enter when
the message “Service running” appears in the service console window.

The client application should function exactly as before. However, if you examine the
service console window, you can see that the router has forwarded the messages to the
two instances of the ShoppingCartService service in turn; the addresses alternate
between port 7090 and port 7080:

WINDOWS\system32\emd. exe

ruice
s cun/ZBB'?/IM/Bl/S]mppmngtSe)ulce/ﬂddItenTqut
U..mg https: 9B/Shupp1ngC<utSe)ulce/S]luppmchutSe)ulce suc

Action http rks .con/2007/03 /01 /ShoppingCartServiceAddItenToCart
Using https: 80/ShoppingCartService/ShoppingCartService.suc

fAction http rks .con/2007/03/01/ShoppingCartServiceAddItenToCart
Using https: 90/ShoppingCartService/ShoppingCartService.suc

Action http: rks .con/2007/03 /01 /ShoppingCartServiceAddItenToCart
Using https://localho 80/ShoppingCartService/ShoppingCartService.suc

Action http://adventur: rks .con/2007/03 /01 /ShoppingCartServiceAddItenToCart
Using https://localho 90/ShoppingCartService/ShoppingCartService.suc

Action http:/sadventu rks .con/2007/03/01/ShoppingCartServiceAddItenToCart
Using https://localho 80/ShoppingCartService/ShoppingCartService.suc

Action http:/sadventure—works.con/2007,/83/01/ShoppingCartService/GetShoppingCart

Using https: 90/ShoppingCartService/ShoppingCartService.suc

4. When the client application has finished, press Enter to close the client console window.
Press Enter to close the service console window.

WCF and the WS-Addressing Specification

When using the WSHttpBinding binding, the mechanism that WCF uses to identify message
actions, route a message to a service, and send a response message back follows to the WS-
Addressing specification. This specification defines a standard format for the message header,
containing information such as the action, the address of the destination service, and the
return address for any response, which conforming services should use in a SOAP message. As
long as a message contains addressing information in this standard format, neither the service
nor the client application cares about the technology used to create the message. This is a key
factor enabling WCF client applications and services to interoperate with applications and ser-
vices running on other platforms; you can use WCF to build a router for Web services devel-
oped using other languages and running on platforms other than Windows, as long as these
Web services also follow the WS-Addressing specification.

338

Chapter 13 Routing Messages

Here is an example showing the addressing header of a typical message sent by the Shopping-
CartClient application to the ShoppingCartServiceRouter service:

<s:Envelope xmins:s="http://www.w3.0rg/2003/05/soap-envelope" xmins:a="http://
schemas.xmlsoap.org/ws/2004/08/addressing">
<s:Header>
<a:Action s:mustUnderstand="1">
http://adventure-works.com/2007/03/01/ShoppingCartService/AddItemToCart
</a:Action>
<a:MessageID>
urn:uuid:5705a3al-21ca-4e83-b279-dc223a0274a9
</a:MessageID>
<a:ReplyTo>
<a:Address>
http://www.w3.0rg/2005/08/addressing/anonymous
</a:Address>
</a:ReplyTo>
<a:To s:mustUnderstand="1">
https://localhost:9070/ShoppingCartService
</a:To>
</s:Header>
<s:Body>

</s:Body>
</s:Envelope>

Much of the information in this header should be reasonably clear, although there are one or
two points that require further explanation. In particular, you might expect the Address in the
<ReplyTo> element to contain the address of the client endpoint. The question is: what is the
address of the client endpoint? In many cases, you cannot easily specify the information for a
reply address in a manner that is meaningful in a SOAP header (several applications might
share the same address, or the address might even vary between the time the application
sends the message and the time the service responds). For this reason, the WS-Addressing
specification allows a client application to insert this “anonymous” placeholder instead. How-
ever, the client application must provide some alternative mechanism of providing an address
to enable the service to send it a response. The way in which the client application and service
negotiate the reply address is independent of the WS-Addressing specification and frequently
depends on the underlying transport mechanism. For example, the client might expect the
service to reply using the same connection that the client used to send the initial request. The
exact details of how this happens are beyond the scope of this book.

The other noteworthy part of the WS-Addressing header is the <MessageID> element. Each

message that the client application sends has a unique identifier. When a service responds, it
should include this same identifier in a <RelatesTo> element in the response header. A typical
response to an AddItemToCart message from the ShoppingCartService service looks like this:

<s:Envelope xmlns:s="http://www.w3.0rg/2003/05/soap-envelope" xmlns:a="http://
schemas.xmlsoap.org/ws/2004/08/addressing">
<s:Header>
<a:Action s:mustUnderstand="1">

Chapter 13 Routing Messages 339

http://adventure-works.com/2007/03/01/ShoppingCartService/AddItemToCartResponse
</a:Action>
<a:RelatesTo>
urn:uuid:5705a3al-21ca-4e83-b279-dc223a0274a9
</a:RelatesTo>
</s:Header>
<s:Body>

</s:Body>
</s:Envelope>

When the client application receives this response message, it can use the information in the
<RelatesTo> element to correlate the response with the original request.

More Info You can find a detailed description of the WS-Addressing specification on
the Microsoft Web Services and Other Distributed Technologies Developer Center at
http.//msdn.microsoft.com/webservices/webservices/understanding/specs/default.aspx?pull=
/library/en-us/dnglobspec/html/ws-addressing.asp.

The WS-Referral Specification and Dynamic Routing

The approach to building a router described in this chapter works well, but the routes it
defines are static; the addresses of the services are hard-coded into the router. The next evolu-
tionary step is to build a dynamic router that routes messages to services that register them-
selves with the router. This is actually a common scenario, and the WS-Referral specification
defines a protocol that enables a SOAP router to dynamically configure and modify its paths
for routing messages. The WS-Referral specification describes a standard set of messages that
services can use to register themselves with a SOAP router, and the messages to which they
are interested. The SOAP router can store this information in a referral cache. When a client
application sends a request message to the SOAP router, the router can query the referral
cache, obtain the address of a service that can handle the message, and forward the request to
this service.

WCEF does not provide explicit support for the WS-Referral specification, but if you are inter-
ested in this approach to message routing, you should look at the Intermediary Router sample
included with the WCF samples in the Microsoft Windows SDK. This sample is also available
online at http://windowssdk.msdn.microsoft.com/en-us/library/ms751497.aspx.

More Info For a detailed description of the WS-Referral specification, see the Web
Services Referral Protocol page at http;//msdn2.microsoft.com/en-us/library/ms951244.aspx.

340

Chapter 13 Routing Messages

Summary

In this chapter, you have seen how the WCF runtime for a service determines how to handle
an incoming message. The ChannelDispatcher object receiving the message queries each of its
EndpointDispatcher objects in turn. An EndpointDispatcher exposes the AddressFilter and Con-
tractFilter properties that the ChannelDispatcher can use to ascertain whether the EndpointDis-
patcher can accept the message. The EndpointDispatcher selected to process the message
invokes the appropriate method in the service. You can customize the way in which the End-
pointDispatcher accepts and processes messages by providing your own AddressFilter and Con-
tractFilter objects and implementing the IDispatchOperationSelector interface.

You have also seen how to define a very generalized WCF service that can act as a router for
other services, implementing a method that can accept almost any message and forwarding it
for processing elsewhere.

Finally, you have seen how the infrastructure provided by WCF conforms to the WS-Address-
ing specification, when using the WSHttpBinding binding. This enables you to accept and
route messages to and from applications and services created by using other technologies.

Chapter 14
Using a Callback Contract to
Publish and Subscribe to Events

After completing this chapter, you will be able to:

m Define a callback contract enabling a WCF service to call back into a client application.
m Create a client application that implements a callback contract.

m Use a callback contract to build a simple mechanism for alerting client applications
about significant events.

The examples and exercises that you have seen so far in this book have concentrated on the
client/server model of processing. In this model, a server provides a service that waits pas-
sively for a request from a client application, handles that request, and then optionally sends
aresponse back to the client application. The client application is the active participant, mak-
ing requests and effectively determining when the service should perform its work. While this
is the most common model, WCF supports other processing schemes, such as peer-to-peer
networking and client callbacks.

In the peer-to-peer scenario, there are no passive services. All applications are autonomous cli-
ents that can communicate with each other as equals (or peers). There is no client/server rela-
tionship, and applications should be prepared to handle messages sent to them at any time.

More Info Peer-to-peer technologies are an integral part of Windows Vista but require
you to manually install Peer Networking services if you are using Windows XP. You must also
configure the peer-to-peer infrastructure. WCF provides the PeerChannel for communicating
between peers and defines the NetPeerTcpBinding binding to enable you to configure the
communication parameters. Detailed discussion of using WCF to build peer-to-peer applica-
tions is outside the scope of this book, but the Windows SDK documentation provides infor-
mation and examples in the Peer to Peer Networking section, under Windows
Communication Foundation. You can find further information about configuring and building
peer-to-peer applications and services online in the Windows Peer-to-Peer Networking site at
http.//www.microsoft.com/technet/itsolutions/network/p2p/default. mspx. Additionally, you can
find a good overview and introduction to building peer-to-peer applications on the MSDN
Web site at http.//msdn.microsoft.com/msdnmag/issues/06/10/PeerToPeer.

Using client callbacks, a service can invoke a method in a client application, in essence invert-
ing the client/server relationship between the client application and the service. In this chapter,
you will look at how to define a client callback and how to use it to implement a simple event-
ing mechanism for alerting interested client applications about a change of state in the service.

341

342 Chapter 14 Using a Callback Contract to Publish and Subscribe to Events

Implementing and Invoking a Client Callback

A client callback is an operation implemented by a client application that a service can invoke.
This is a reverse of the more traditional mechanism for exchanging messages and requires that
the client application is listening for requests from the service. However, while a service listens
to an endpoint, using the WCF service infrastructure established when the host application
opens a ServiceHost object, a client application does not use a ServiceHost object, and it nor-
mally only expects to receive messages in response to explicit requests that it sends. The ques-
tion is how can a client application listen for requests and at the same time continue its own
processing? WCF provides two features that you can use to implement this functionality: call-
back contracts and duplex channels.

Defining a Callback Contract

A callback contract specifies the operations that a service can invoke in a client application. A
callback contract is very similar to a service contract inasmuch as it contains operations
marked with the OperationContract attribute. The main syntactic difference is that you do not
decorate it with the ServiceContract attribute. Here is an example:

public interface IProductsServiceCallback

{
// Inform the client application that the price of the specified
// product has changed
[OperationContract]
void OnPriceChanged(Product product);
}

Client applications are expected to provide an implementation of each method in the callback
contract. You reference a callback contract from a service contract defining the operations
implemented by the service by using the CallbackContract property of the ServiceContract
attribute, like this:

[ServiceContract(.., CallbackContract=typeof(IProductsServiceCallback)]
public interface IProductsServiceV3

{
// Any method in this contract can invoke the OnPriceChanged method
// in the client application
[OperationContract]
List<string> ListSelectedProducts(string match);
[OperationContract]
bool ChangePrice(string productNumber, decimal price);

}

The service can invoke any of the operations in the callback contract from methods imple-
menting the service contract. You can only associate a single callback contract with a service
contract.

Chapter 14 Using a Callback Contract to Publish and Subscribe to Events 343

Implementing an Operation in a Callback Contract

The callback contract defines the operations that the service can invoke in a client application,
but you must also provide a means for the service to actually invoke these operations. If you
create a client proxy class for the service by using the svcutil utility, the class is based on the
generic System.ServiceModel. DuplexClientBase class (an ordinary client proxy extends the Cli-
entBase generic class, as described in Chapter 10, “Programmatically Controlling the Configu-
ration and Communications”). An abbreviated version of the proxy code for the
IProductsServiceV3 interface looks like this:

[System.ServiceModel.ServiceContractAttribute(..,
CallbackContract=typeof(ProductsServiceCallback))]
public interface ProductsService

{
[System.ServiceModel.OperationContractAttribute(Action=..,
ReplyAction=..)]
string[] ListSelectedProducts(string match);
[System.ServiceModel.0OperationContractAttribute(Action=...,
ReplyAction=..)]
bool ChangePrice(string productNumber, decimal price);
}
public interface ProductsServiceCallback
{
[OperationContractAttribute(Action=.)]
void OnPriceChanged(Product product);
}

public partial class ProductsServiceClient :
DuplexClientBase<ProductsService>, ProductsService
{
ProductsServiceClient(InstanceContext callbackInstance) :
base(callbackInstance)
{
}

public ProductsServiceClient(InstanceContext callbackInstance,
string endpointConfigurationName) :
base(callbackInstance, endpointConfigurationName)
{
}

// Other constructors not shown

public string[] ListSelectedProducts(string match)

{
return base.Channel.ListSelectedProducts(match);
}
bool ChangePrice(string productNumber, decimal price);
{
return base.Channel.ChangePrice(productNumber,price);
}

344

Chapter 14 Using a Callback Contract to Publish and Subscribe to Events

The bold statements highlight the important differences between this code and the code for a
proxy that does not define a callback contract. The client application must provide a class that
implements the ProductsServiceCallback interface, including the OnPriceChanged method.

The ProductsServiceClient proxy class extends the DuplexClientBase<ProductsService> class and
defines a number of constructors that the client application can use to instantiate a proxy
object. The code fragment shows only two of these constructors, but the main feature is that
they all expect you to provide an InstanceContext object as the first parameter. This is the key
property that enables the service to invoke the operation in the client application.

You should already be familiar with the concept of instance context for a service; each
instance of a service runs in its own context holding the state information (instance variables
and pieces of system information) for that instance. Different instances of a service have their
own context. The WCF runtime creates and initializes this context automatically when it
instantiates the service instance. A client application implementing a callback contract must
also provide an instance context that the service can use to invoke the operations in this
instance of the client. You create and provide this context, wrapped up as an InstanceContext
object, to the constructor of the proxy. When the client application sends a request message to
the service, the WCF runtime automatically sends the client context with the request. If the
service needs to invoke an operation in the callback contract, it uses this context object to
direct the call to the appropriate instance of the client application (you will see how to do this
shortly).

Here is the code for part of a client application that implements the ProductsServiceCallback
interface defined in the client proxy:

class Client : ProductsServiceCallback, IDisposable
{

private ProductsServiceClient proxy = null;

public void DoWork()

{
// Create a proxy object and connect to the service
InstanceContext context = new InstanceContext(this);
proxy = new ProductsServiceClient(context, ..);

// Invoke operations
bool result = proxy.ChangePrice(..);

}
public void Dispose()
{
// Disconnect from the service
proxy.Close();
}
// Method specified in the ProductsServiceCallback interface
public void OnPriceChanged(Product product)
{

Chapter 14 Using a Callback Contract to Publish and Subscribe to Events 345

Console.WriteLine("Price of {0} changed to {1}",
product.Name, product.ListPrice);

}

The parameter specified for the InstanceContext constructor (this) is a reference to the object
implementing the ProductsServiceCallback contract. The statement that creates the proxy
object in the DoWork method references this InstanceContext object. If the service invokes the
OnPriceChanged operation through this context object, the WCF runtime will call the
method on this instance of the client application.

Notice that the client class also implements the IDisposable interface. The Dispose method
closes the proxy. A service could potentially call back into the client application at any time
after the Client object has sent an initial message. If the client application closes the proxy
immediately after sending requests to the service in the DoWork method, the service will fail
if it attempts to call back into the Client object. The Client object continues to exist after the
DoWork method finishes, and closing the proxy in the Dispose method enables a service to
invoke operations in the Client object at any time until the client application terminates or it
explicitly disposes the Client object.

Invoking an Operation in a Callback Contract

To invoke an operation in a callback contract, a service must obtain a reference to the client
application object implementing the callback contract. This information is available in the
operation context for the service. You can access the operation context through the static
OperationContext.Current property, which returns an OperationContext object. The Operation-
Context class provides the generic GetCallbackChannel method, which in turn returns a refer-
ence to a channel that the service can use to communicate with the instance of the client
application that invoked the service. The value returned by the GetCallbackChannel method
is a typed reference to the callback contract, and you can invoke operations through this ref-
erence, like this:

// WCF service class that implements the service contract
public class ProductsServiceImpl : IProductsServiceV3

{

public bool ChangePrice(string productNumber, decimal price)

{
// Update the price of the product in the database
// Invoke the callback operation in the client application
IProductsServiceCallback callback = OperationContext.Current.

GetCallbackChannel<IProductsServiceCallback>(Q);

callback.OnPriceChanged(GetProduct(productNumber)) ;

}

346

Chapter 14 Using a Callback Contract to Publish and Subscribe to Events

Itis possible that the client application could terminate between invoking the operation in the
service and the service calling back into the service, especially if the operation in the service is
a one-way operation. You should therefore check to ensure that the callback channel has not
been closed before invoking a callback operation:

IProductsServiceCallback callback = OperationContext.Current.
GetCallbackChannel<IProductsServiceCallback>(Q);
if (((ICommunicationObject)callback).State == CommunicationState.Opened)

{
callback.0OnPriceChanged(GetProduct(productNumber));

}

All WCF channels implement the ICommunicationObject interface. This interface provides the
State property, which you can use to determine whether the channel is still open or not. If the
value of this property is anything other than CommunicationState.Opened, then the service
should not attempt to use the callback.

does (the ServiceHost class indirectly implements the /CommunicationObject interface). Refer
to Chapter 3, "Making Applications and Services Robust,” for a description of these states.

Q Note Channels exhibit the same set of states and state transitions that a ServiceHost object

Reentrancy and Threading in a Callback Operation

If a service invokes an operation in a callback contract, it is possible for the client code imple-
menting that contract to make another operation call into the service. By default, the WCF
runtime in the client handling the callback contract executes using a single thread, and calling
back into the service could possibly result in the service blocking the thread processing the
initial request. In this case, the WCF runtime detects the situation and throws an InvalidOp-
erationException exception, with the message “This operation would deadlock because the
reply cannot be received until the current Message completes processing.” To prevent this sit-
uation from arising, you can set the concurrency mode of the class implementing the callback
contract in the client application either to enable multiple threading (if the client application
code is thread-safe) or enable reentrancy (if the client application code is not thread-safe, but
the data it uses remains consistent across calls). You achieve this by applying the CallbackBe-
havior attribute to the class in the client application implementing the callback contract and
setting the ConcurrencyMode property to ConcurrencyMode.Multiple or ConcurrencyMode.Reen-
trant:

[CallbackBehavior(ConcurrencyMode = ConcurrencyMode.Reentrant)]

class Client : ProductsServiceCallback, IDisposable

{

}

Chapter 14 Using a Callback Contract to Publish and Subscribe to Events 347

Implementing a Duplex Channel

Not all bindings support client callbacks. Specifically, you must use a binding that supports
bidirectional communications; either end of the connection must be able to initiate communi-
cations, and the other end must be able to accept them. Transports such as TCP and named
pipes are inherently bidirectional, and you can use the NetTcpBinding and NetNamedPipe-
Binding bindings with a client callback. However, the model implemented by the HTTP pro-
tocol does not support this mode of operation, so you cannot use the BasicHttpBinding or
WSHttpBinding bindings. This sounds like a major shortcoming if you want to build an Intra-
net system based on the HTTP transport. However, WCF provides the WSDualHttpBinding
binding for this purpose. The WSDualHttpBinding binding establishes two HTTP channels
(one for sending requests from the client application to the service, and the other for the ser-
vice to send requests to the client application) but hides much of the complexity from you, so
you can treat it as a single bidirectional channel.

There are some important differences between the WSHttpBinding binding and the WSDu-
alHttpBinding binding. Specifically, the WSDualHttpBinding binding does not support trans-
port level security, but it always implements reliable sessions (you cannot disable them).

Using a Callback Contract to Implement Events

One of the principal uses of a callback contract is to provide a service with a means to inform
a client application of a significant occurrence. You can use callbacks to implement an event-
ing mechanism,; the service can advertise events and provide operations to enable client appli-
cations to subscribe to these events or unsubscribe from them. The service can use the
callback contract to send a message to each subscribing client when an event occurs. You will
see how to do this later, but first you need to define, implement, and test a callback contract
that can act as the basis for an eventing mechanism.

Add a callback contract to the ProductsService service and invoke a callback operation

1. Using Visual Studio 2005, open the solution file ProductsService.sln located in the
Microsoft Press\WCF Step By Step\Chapter 14\ProductsServiceV3 folder under your
\My Documents folder.

This solution contains version 3 of the ProductsService service. This service contains the
operations ListSelectedProducts, GetProduct, CurrentStockLevel, ChangeStockLevel,
and a new operation called ChangePrice, which a client application can invoke to change
the price of a product. The solution also contains a WPF application for hosting the ser-
vice, and a client application that you will use to test the ProductsService service and pro-
vide an implementation of a callback contract.

348 Chapter 14 Using a Callback Contract to Publish and Subscribe to Events

2.

In Solution Explorer, open the ProductsService.cs file in the ProductsService project.
Add the following callback contract to the file, immediately before the IProductsServiceV3
interface defining the service contract:

// Callback interface for propagating "price changed" event

public interface IProductsServiceCallback
{
[OperationContract(IsOneWay = true)]
void OnPriceChanged(Product product);
}

This callback contract contains a single operation called OnPriceChanged. You will mod-
ify the ChangePrice operation in the ProductsService service to invoke this operation in
a later step. The purpose of this operation is to inform the client of a change in the price
of the product passed in as the parameter. Notice that this operation is defined as a one-
way operation; all it does is alert the client application and does not return any sort of
response.

Modify the ServiceContract attribute for the IProductsServiceV3 interface to reference this
callback contract, as shown in bold below:
// Version 3 of the service contract
[ServiceContract(Namespace = "http://adventure-works.com/2006/08/31",
Name = "ProductsService",
CallbackContract = typeof(IProductsServiceCallback))]
public interface IProductsServiceV3

{

}

The value to the CallbackContract property must be a type, so this code uses the typeof
operator to return the type of the IProductsServiceCallback interface.

Locate the ChangePrice method at the end of the ProductsServiceImpl class (the Prod-
uctsServiceImpl class implements the IProductsServiceV3 service contract). This method
updates the AdventureWorks database with the new product price, returning true if the
update was successful, false otherwise (the method performs very limited error check-
ing). Modify the code near the end of the method to invoke the OnPriceChanged oper-
ation in the callback contract if the update succeeds, as shown in bold below:

if (numRowsChanged != 0)

{

IProductsServiceCallback callback = OperationContext.Current.
GetCallbackChannel<IProductsServiceCallback>(Q);

callback.OnPriceChanged(GetProduct (productNumber)) ;
return true;

}

else

{

return false;

}

Chapter 14 Using a Callback Contract to Publish and Subscribe to Events 349

5. Build the ProductsService project.

The next step is to implement the callback contractin the client application, but first you need
to generate the proxy code for the client.

Generate the client proxy and implement the callback contract
1. Generate a proxy class for the client application by using the following procedure:

0 Open a Visual Studio 2005 Command Prompt window and move to the
ProductsServiceV3\ProductsService\bin folder in the Microsoft Press\WCF Step
By Step\Chapter 14 folder under your \My Projects folder.

QO In the Visual Studio 2005 Command Prompt window, run the command:
svcutil ProductsService.d11l
O Run the command:

svcutil /namespace:*,ProductsClient.ProductsService adventure-
works.com.2007.03.01.wsd]l *.xsd /out:ProductsServiceProxy.cs

2. Leave the Visual Studio 2005 Command Prompt window open and return to Visual Stu-
dio 2005. Add the ProductsServiceproxy.cs file in the ProductsServiceV3\ProductsSer-
vice\bin folder to the ProductsClient project.

3. Edit the Program.cs file in the ProductsClient project. Add the following using statement
to the list at the top of the file:

using ProductsClient.ProductsService;
4. Add the following class to the ProductsClient namespace, below the Program class:

class Client : ProductsServiceCallback, IDisposable
{
}

ProductsServiceCallback is the interface in the proxy that defines the callback contract.

5. Add the private proxy variable, the public TestProductsService method, and the public
Dispose method shown below to the Client class. Replace the text “LON-DEV-01” in the
statement that specifies the security domain for client credentials with the name of your
own computer:

private ProductsServiceClient proxy = null;

public void TestProductsService()

{
// Create a proxy object and connect to the service
proxy = new ProductsServiceClient(new InstanceContext(this),

"WSDuaTHttpBinding_IProductsServiceV3");

proxy.ClientCredentials.Windows.ClientCredential.Domain = "LON-DEV-01";
proxy.ClientCredentials.Windows.ClientCredential.UserName = "Fred";
proxy.ClientCredentials.Windows.ClientCredential.Password = "Pa$$wOrd";

// Test the operations in the service

350 Chapter 14 Using a Callback Contract to Publish and Subscribe to Events

try
{
// Obtain a Tist of frames
Console.WriteLine("Test 1: List all frames");
string[] productNumbers = proxy.ListSelectedProducts("Frame");
foreach (string productNumber in productNumbers)
{
Console.WriteLine("Number: {0}", productNumber);
}

Console.WriteLine(Q);

// Fetch the details for a specific frame
Console.WriteLine("Test 2: Display the details of a frame");
Product product = proxy.GetProduct("FR-M21S-40");
Console.WriteLine("Number: {0}", product.ProductNumber);
Console.WriteLine("Name: {0}", product.Name);
Console.WriteLine("Color: {0}", product.Color);
Console.WriteLine("Price: {0}", product.ListPrice);
Console.WriteLine(Q);

// Modify the price of this frame
Console.WriteLine("Test 3: Modify the price of a frame");
if (proxy.ChangePrice("FR-M21S-40", product.ListPrice + 10))

{
product = proxy.GetProduct("FR-M21S-40");
Console.WriteLine("Price changed. New price: {0}",
product.ListPrice);
}
else
{
Console.WriteLine("Price change failed");
}
Console.WriteLine(Q);
}
catch (Exception e)
{
Console.WriteLine("Exception: {0}", e.Message);
}
}
public void Dispose()
{
// Disconnect from the service
proxy.Close();
}
% ‘ Note This code is available in the file Client.txt located in the Chapter 14 folder.

The TestProductsService method connects to the ProductsService using an instance of
the proxy, fetches and displays a list of bicycle frames, displays the details for a specific
frame, and updates the price of that frame. The Dispose method, which is part of the
IDisposable interface, closes the proxy when the Client object is disposed.

Chapter 14 Using a Callback Contract to Publish and Subscribe to Events 351

Notice that the statement that creates the proxy object creates a new instance of the
InstanceContext class as the first parameter to the constructor. The WCF runtime uses
this information to construct the information in the operation context on the service, to
enable the service to locate the client object when it calls the GetCallbackChannel
method. The client application connects to the ProductsService by using the WSDualHt-
tpBinding (you will configure this binding later), using message level security and Win-
dows identities.

6. Add the following OnPriceChanged method to the Client class, after the Dispose
method:

public void OnPriceChanged(Product product)
{
Console.WriteLine("Callback from service: Price of {0} changed to {1}",
product.Name, product.ListPrice);
}

This method implements the operation in the ProductsServiceCallback interface defining
the callback contract.

7. Inthe Main method in the Program class, add the statements shown below in bold to cre-
ate a new instance of the Client class and call the TestProductsService method:

static void Main(string[] args)

{
Console.WriteLine("Press ENTER when the service has started");
Console.ReadLine();

Client client = new Client();
client.TestProductsService(Q);

Console.WriteLine("Press ENTER to finish");
Console.ReadLine();
}

Configure the WCF service and client application to use the WSDualHttpBinding
binding
1. Edit the App.config file in the ProductsServiceHost project by using the WCF Configu-

ration Editor.

2. Intheleft pane, add a new endpoint to the Products.ProductsServicelmpl service. Set the
properties of this endpoint using the values in this table:

Property Value

Name ProductsServiceDualHttpEndpoint

Address http://localhost:8050/ProductsService/ProductsService.svc
Binding wsDualHttpBinding

Contract Products.IProductsServiceV3

352

Chapter 14 Using a Callback Contract to Publish and Subscribe to Events

Note By default, the wsDualHttpBinding binding implements message level security
and uses Windows identities.

Save the configuration and then exit the WCF Service Configuration Editor.
Add a new application configuration file called App.config to the ProductsClient project.

Edit the App.config file in the ProductsClient project by using the WCF Service Config-
uration Editor.

In the left pane, add a new endpoint to the Endpoints folder in the Client folder. Set the
properties of this endpoint using the values in this table:

Property Value

Name WSDualHttpBinding_IProductsServiceV3

Address http://localhost:8050/ProductsService/ProductsService.svc
Binding wsDualHttpBinding

Contract ProductsClient.ProductsService.ProductsService

Save the configuration and then exit the WCF Service Configuration Editor.

Edit the Program.cs file in the ProductsClient project. Add the statements shown below
in bold to the TestProductsService method of the Client class, between the code that cre-
ates the proxy object and the statements that set the client credentials:

proxy = new ProductsServiceClient(new InstanceContext(this),
"WSDuaTHttpBinding_IProductsServiceV3");
WSDualHttpBinding binding (WSDualHttpBinding)proxy.Endpoint.Binding;
binding.ClientBaseAddress
new Uri("http://localhost:8040/ProductsService/" +
Guid.NewGuid().ToString());

proxy.ClientCredentials.Windows.ClientCredential.Domain = "LON-DEV-01";

When a WCEF client application uses the WSDualHttpBinding binding, the WCF runtime
creates two one-way channels using the HTTP transport. By default, the WCF runtime
attempts to create a temporary endpoint for the client application to listen for incoming
requests by using port 80. If you are running Internet Information Services, then port 80
will already be in use, and when the client attempts to connect to the service it will receive
the exception “HTTP could not register URL http://+:80/Temporary_Listen_Address/.../
because TCP port 80 is being used by another application.” You can force the WCF runt-
ime to use a different URL and port by setting the ClientBaseAddress property of the bind-
ing. In the example in this exercise, the WCF runtime creates the temporary address
based on the URL http://localhost:8040,/ProductsService/. The address is supplemented
with a GUID to ensure it is unique (if two instances of the client application execute
simultaneously on the same computer, as you will be doing later, they cannot both share
the same callback URL).

2

2

10.

Chapter 14 Using a Callback Contract to Publish and Subscribe to Events 353

Note This code is only necessary if you are using the WSDualHttpBinding binding.
The other bindings that support callbacks (NetTcpBinding and NetNamedPipeBinding)
automatically provide two-way communications.

Start the solution without debugging. In the ProductsServiceHost form, click Start. In
the client application console window, press Enter.

The client application displays a list of frames, followed by the details for the frame with
product number FR-M21S-40. The code then adds 10 to the price of the frame and
invokes the ChangePrice operation with this new price. Notice that after Test 3 starts, the
message “Callback from service: Price of LL Mountain Frame - Silver, 40 changed to
364.0500” appears, output by the OnPriceChanged operation invoked by the service, as
shown in the following image:

INDOWSisystem32\cmd. exe

Test 2: Display the details of a frame
Number: FR-M215-48

Name: LL Mountain Frame — Silver, 48
Color: Silver

Price: 354.8500

Test 3: Modify the price of a frame
Callback from service: Price of LL Mountain Frame — Silver, 48 changed to 364.85
o

8
[Price changed. Mew price: 364.85808

[Press ENTER to finish

Note The price displayed might be different if you have previously modified the data
in the AdventureWorks database. The important points are that this message appears,
and that the price has increased by 10 from the value displayed in Test 2.

The client application outputs the message “Price changed. New price: 364.0500” after
the ChangePrice operation completes (and after the message displayed by the
OnPriceChanged method).

Press Enter to close the client application console window. In the ProductsServiceHost
form, click Stop, and then close the form.

The callback contract enables the service to confirm to the client application that the product
price has changed, but the client application probably already knew this because it initiated

the change! It is arguably more important for other concurrent instances of the client applica-
tion to be informed of this update. Now that you have seen how to implement and invoke a cli-
ent callback and test that it works as expected, you can extend this idea to invoke the callback
operation in other instances of the client application. To do this, the service must have a refer-
ence to each client application instance. In the following exercises, you will modify the Prod-
uctsService service to enable client application instances to register their interest in product

354

Chapter 14 Using a Callback Contract to Publish and Subscribe to Events

price changes by adding a subscribe operation. The purpose of this operation is simply to
cache a reference to the client application instance that the service can use later to invoke the
OnPriceChanged operation. You will also add an unsubscribe operation to enable a client
application instance to remove itself from the list that the service notifies.

Add subscribe and unsubscribe operations to the WCF service

1.
2.

In Visual Studio 2005, edit the ProductsService.cs file in the ProductsService project.

Add the SubscribeToPriceChangedEvent and UnsubscribeFromPriceChangedEvent
methods shown below in bold to the end of the IProductsServiceV3 service contract:

[ServiceContract(Namespace = "http://adventure-works.com/2006/08/31",
Name = "ProductsService",
CallbackContract = typeof(IProductsServiceCallback))]
public interface IProductsServiceV3
{

// Subscribe to the "price changed" event
[OperationContract]

bool SubscribeToPriceChangedEvent();

// Unsubscribe from the "price changed" event
[OperationContract]

bool UnsubscribeFromPriceChangedEvent();

}

Client applications will use the SubscribeToPriceChangedEvent operation to declare an
interest in product price changes and the UnsubscribeFromPriceChangedEvent opera-
tion to indicate that they are no longer interested in product price changes.

Add the following private variable to the ProductsServiceImpl class:

public class ProductsServiceImpl : IProductsServiceV3

{
static List<IProductsServiceCallback> subscribers =
new List<IProductsServiceCallback>Q);

}

The ProductsServiceImpl class will add references to client callbacks to this list for each cli-
ent application instance that indicates its interest in product price changes.

Add the SubscribeToPriceChanged method shown below to the ProductsServiceImpl
class:

public bool SubscribeToPriceChangedEvent()
{
try
{
IProductsServiceCallback callback = OperationContext.Current.
GetCallbackChannel<IProductsServiceCallback>(Q);
if (!subscribers.Contains(callback))
{
subscribers.Add(callback);
}

Chapter 14 Using a Callback Contract to Publish and Subscribe to Events 355

return true;

}
catch (Exception)
{

return false;
}

}

This method obtains a reference to the callback contract for the client application
instance invoking the operation and stores it in the subscribers list. If the callback con-
tract reference is already in the list, this method does not add it again.

Add the UnsubscribeFromPriceChangedEvent method to the ProductsServiceImpl class,
as follows:

public bool UnsubscribeFromPriceChangedEvent()

{
try
{
IProductsServiceCallback callback = OperationContext.Current.
GetCallbackChannel<IProductsServiceCallback>(Q);
subscribers.Remove(callback);
return true;
}
catch (Exception)
{
return false;
}
}

This method removes the callback reference for the client application instance invoking
the operation from the subscribers list.

Add the private method shown below to the ProductsServiceImpl class:

private void raisePriceChangedEvent(Product product)

{
subscribers.ForEach(delegate(IProductsServiceCallback callback)
{
if (((ICommunicationObject)callback).State ==
CommunicationState.Opened)
{
callback.OnPriceChanged(product);
}
else
{
subscribers.Remove(callback);
}
s
}

This method iterates through all the callback references in the subscribers list. If the ref-
erence is still valid (the client application instance is still running), it invokes the
OnPriceChanged operation, passing in the specified product as the parameter. If the ref-
erence is not valid, the method removes it from the list of subscribers.

356 Chapter 14 Using a Callback Contract to Publish and Subscribe to Events

7.

8.

In the ChangePrice method, comment out the statements that obtain the callback refer-
ence to the client application, invoke the OnPriceChanged method, and add a statement
that calls the raisePriceChangedEvent method instead. Pass the product whose price has
changed as the parameter to the raisePriceChangedEvent method, like this:

if (numRowsChanged != 0)

{
//IProductsServiceCallback callback = OperationContext.Current.
// GetCallbackChannel<IProductsServiceCallback>Q);
//callback.OnPriceChanged(GetProduct(productNumber));
raisePriceChangedEvent (GetProduct(productNumber));
return true;

}

When a client application instance changes the price of a product, all client application
instances that have subscribed to the “price changed” event will be notified by running
the OnPriceChanged method.

Rebuild the ProductsService project.

Update the WCF client application to subscribe to the “Price Changed” event

1.

Regenerate the proxy class for the client application:
0 In the Visual Studio 2005 Command Prompt window, run the command:
svcutil ProductsService.dl]l
O Run the command:

svcutil /namespace:*,ProductsClient.ProductsService adventure-
works.com.2007.03.01.wsd1 *.xsd /out:ProductsServiceProxy.cs

Close the Visual Studio 2005 Command Prompt window, and return to Visual Studio

2005. Delete the ProductsServiceproxy.cs file from the ProductsClient project and add
the new version of this file from the ProductsServiceV3\ProductsService\bin folder.

Edit the Program.cs file in the ProductsClient project. Invoke the SubscribeTo-
PriceChangedEvent operation as the first action inside the try block in the TestProd-
uctsService method in the Client class:

try

{
proxy .SubscribeToPriceChangedEvent() ;

// Obtain a Tist of frames
Console.WriteLine("Test 1: List all frames");
string[] productNumbers = proxy.ListSelectedProducts("Frame");

3

Whenever any instance of the client application updates the price of a product, the ser-
vice will call the OnPriceChanged method in this instance of the client application.

Rebuild the ProductsClient project.

Chapter 14 Using a Callback Contract to Publish and Subscribe to Events 357

Test the "Price Changed” event in the WCF service

1.

6.

In Solution Explorer, right-click the ProductsServiceHost project, point to Debug, and
click Start new instance. In the ProductsServiceHost form, click Start.

Using Windows Explorer, move to the Microsoft Press\WCF Step By Step\Chapter
14\ProductsClient\bin\Debug folder under your \My Documents folder.

Apart from the executable and configuration files, you should notice a command file
called RunClients.cmd. This command file simply runs the ProductsClient application
concurrently, three times, each time opening a new window, like this:

start ProductsClient
start ProductsClient
start ProductsClient

Double-click the RunClients.cmd file. Three console windows appear, one for each
instance of the client application. In one console window, press Enter. Wait for the list of
bicycle frames to appear, the details of frame FR-M21S-40 to be displayed, and the price
of the frame to be changed. Verify that the message “Callback from service: Price of LL
Mountain Frame - Silver, 40 changed to 374.0500” appears. Leave this command win-
dow open (do not press Enter).

In one of the other two console windows, press Enter. Again, wait while the list of frames
and the details of frame FR-M215-40 are displayed and the price of the frame is updated.
Verify that the callback message appears in this client console window. Notice that a sec-
ond callback message appears in the first client console window, also displaying the new
price.

In the final console window, press Enter. Verify that when this instance of the client
application updates the price of the bicycle frame and displays the callback message, the
other two client console windows also output the callback message. The first client con-
sole window should display three callback messages, like this:

:\Documents and Settings\Student\Wy DocumentsiMicrosoft Press\WCF §

FR-M21B—42
FR-M21B-44
r: FR-M21B-48
r: FR-M21B-52
FR-M635-38
r: FR-M21B—48
r: FR-M215-48

: Display the details of a frame
~: FR-M215-48
L Mountain Frame — Silver, 48
Siluer
Price: 364.8508

Test 3: Modify the price of a frame
Callback from service: Price of LL Mountain Frame — Silver, 48 changed to 374.85

)
[Price changed. Mew price: 374.8588

[Press ENTER to finish
: Price of LL Mountain Frame — Siluer, 48 changed to 384.85

(a5}
iCallhack from service: Price of LL Mountain Frame — Silver, 48 changed to 394.85
o8

Press Enter in each of the client application console windows to close them. In the Prod-
uctsServiceHost form, click Stop, and then close the form.

358 Chapter 14 Using a Callback Contract to Publish and Subscribe to Events

Delivery Models for Publishing and Subscribing

Using a callback contract makes it very easy to implement a basic publication and subscrip-
tion service based on WCEF. You should be aware that you have been using a somewhat artifi-
cial and idealized configuration for these exercises. If you are implementing such a system in
alarge enterprise, or across the Internet, you have to consider issues of security and scalability
and how they can impact the operation of a WCF service calling back into a client application.
There are at least three well-known models that publication and subscription systems fre-
quently implement, and you can use WCF to build systems based on any of them. Each model
has its own advantages and disadvantages, as described in the following sections.

The Push Model

This is the model you have used in the exercises in this chapter. In this model, the publisher
(the WCEF service) sends messages directly to each subscriber (WCF client applications)
through an operation in a callback contract. The service must have sufficient resources to be
able to invoke operations in a potentially large number of subscribers simultaneously; the ser-
vice could spawn a new thread for each subscriber if the callback operations return data or
could make use of one-way operations if not. The primary disadvantage of this approach is
security; the callback operations invoked by the service could be blocked by a firewall protect-
ing client applications from unexpected incoming messages.

The Pull Model

In this model, the publisher updates a single, trusted third service with information about
events as they occur. Each subscriber periodically queries this third service for updated infor-
mation (they invoke an operation on the third service that returns the latest version of the
data). This model is less prone to firewall blocking issues but requires more complexity on the
part of the subscribers. There could also be scalability issues with the third service if a large
number of subscribers query it too frequently. On the other hand, if a subscriber does not
query the third site frequently enough, it might miss an event.

The Broker Model

This model is a hybrid combination of the first two schemes. The publisher updates a single,

trusted third service with information about events as they occur. This third site is placed in a
location, such as a perimeter network, trusted by the publishing service and the subscribing

clients. Subscribers actually register with the third site rather than the site originating events.

The third site calls back into subscribers when an event occurs. As well as reducing the likeli-
hood of messages being blocked by a firewall, this model also resolves some of the scalability
issues associated with subscribers polling for updated information too quickly.

Chapter 14 Using a Callback Contract to Publish and Subscribe to Events 359

Note You can also make use of Windows Network Load Balancing and clustering technol-
ogies to overcome some of the scalability concerns when using the Pull or Broker models.

Summary

In this chapter, you have seen how to use a callback contract to define operations that a client
application can expose to a service. Implementing a callback contract requires the client appli-
cation and service to connect with each other over a bidirectional channel that supports
duplex communications; this means using the NetTcpBinding binding, the NetNamedPipe-
Binding binding, the WSDualHttpBinding binding, or a custom binding based on the TCP or
named pipe transports, or the HTTP transport with the <CompositeDuplex> binding element.

You can use a callback contract to help implement a publish and subscribe system, enabling
a service to register instances of client applications that wish to be notified if a particular event
occurs and then using an operation in the callback contract to inform the client application
instances when the event actually happens.

Chapter 15
Managing Identity with
Windows CardSpace

After completing this chapter, you will be able to:

Describe the purpose of Windows CardSpace.
Use Windows CardSpace with a WCF service to provide claims-based security.

Summarize how you can employ claims-based security to implement a federated
security scheme.

Security is an important, if not vital, feature of most commercial Web services and applica-
tions. Throughout this book you have seen some of the mechanisms that WCF provides to
help you protect Web services and client applications. At the heart of these mechanisms is a
scheme enabling a Web service to identify the user running the client application calling into
the Web service. The means of identification is frequently a username and password, a certif-
icate, or possibly a Kerberos token. After a Web service has established the identity of the user
running the client application, it can then authorize or deny access to the operation requested
by the user based on this identity. This use of identity to determine authorization has some
interesting privacy implications—for example, if all a Web service needs to know is your age,
do you really want to divulge your full identity? Consider the following real-world situations:

Being a football fan, T used to regularly visit the supporters club of my local football team.
On matchdays, you had to be a member of the club to be allowed in (at other times, any-
one could enter). All members were issued with membership cards, and on entering the
club, I was obliged to show my card to the person on the door. As long as I had this card
and could show it, I could get in. The door attendant was never actually interested in the
details on the card (my name and membership number), just the fact that I actually had
one.

If I pay for goods in a shop by using a credit card, the vendor does not need to know my
full name, address, age, or even my inside leg measurement. She just needs to be confi-
dent that the credit card I am using is valid and that I have the necessary rights to use it
(she will probably also do an initial visual check, just to make sure I am not using a credit
card belonging to “Miss Jones” if I have a beard and a moustache, but on the Internet it
is not yet possible to perform this type of validation). This scenario is actually a little

more complicated than the previous one, as the vendor does not have access to the infor-
mation needed to prove the validity of the card (strictly speaking, the door attendant at
the football club cannot be totally sure that my membership card is not a forgery, but the
quick examination performed by the door attendant usually provides an adequate level

361

362

Chapter 15 Managing Identity with Windows CardSpace

of security given the circumstances). Instead, the vendor asks the credit card company to
verify my claim that this is my credit card, usually by asking me to type my pin number
on a terminal connected to the credit card company’s computers. The vendor then waits
for the credit card company to respond that (1) the card is genuine and valid, and (2)
know the pin for the credit card and therefore I am probably the real card holder rather
than some imposter who found it lying in the street (we all know this is not foolproof,

but it is the best mechanism that the credit card companies have at this point).

These are two examples of claims-based security. A claim is simply a facet of my identity that
is relevant to the operation being performed. In the first case, the door attendant was able to
verify my claim that [was a member of the club by seeing that I had a membership card; pos-
session of the card was taken as sufficient proof of my identity. In the second case, the vendor
required my claim as the valid holder of the credit card be verified by a trusted third party.

You can apply claims-based security to Web services as well as real-world situations. In con-
trast to a traditional identity-based system, in a claims-based system, the Web service does not
necessarily need to know who I am, just that I should be allowed to use it. WCF enables you
to integrate claims-based security into your services and client applications by using Windows
CardSpace. This is the subject of this chapter.

Using Windows CardSpace to Access a WCF Service

Windows CardSpace is a new technology incorporated into Windows Vista and is also
available for Windows XP as part of the NET Framework 3.0. Windows CardSpace is based
on a number of WS-* standards, in particular WS-Trust, WS-MetadataExchange, and
WS-SecurityPolicy. Consequently, the security mechanism that it implements is interoperable
with Web services and client applications built using other technologies but that conform to
these specifications.

Implementing Claims-Based Security

The world of claims-based security refers to three roles describing the participants involved in
accessing a protected service:

B The subject is the user or entity trying to access the service. The subject provides evi-
dence of suitable rights (a claim) to gain access. This must be a claim that the service can
accept. In the credit card scenario described earlier, it would be no good trying to use my
football supporters’ club membership card when trying to pay for goods—the member-
ship card might well be valid, but the vendor will not accept it.

m The identity provider is the organization or entity that issues the rights to assert a partic-
ular claim (or set of claims) to the subject and verifies the authenticity of any claims to
exercise these rights made by the subject. In the credit card example, the identity pro-
vider is the credit card company issuing the card.

2

Chapter 15 Managing Identity with Windows CardSpace 363

m The relying party is the organization or entity representing the protected service. The rely-
ing party asks the identity provider to verify that the claim made by the subject to the
specified rights is valid. Again, in the credit card example, the relying party is the vendor
selling me the goods that I am attempting to purchase.

Note From here on, I will refer to the information provided by a subject when attempting
to prove its identity simply as a “claim.” Identity providers are said to issue claims, services
can demand verified claims, and subjects can submit claims when attempting to access a
service.

Windows CardSpace comprises a Windows service, a set of components, and a framework for
enabling identity providers to issue claims to a user, allowing the user to store and retrieve
information about these claims in an accessible manner and providing assurance to a service
that any claims asserted by a user are genuine. Windows CardSpace stores information about
the set of claims (called a “claimset”) issued by a provider as metadata in an Information Card.
Windows CardSpace provides a graphical user interface enabling a user to manage and con-
trol her information cards.

A service that uses claims-based security specifies the claims it demands as part of its security
policy. Windows CardSpace includes an identity selector component that can query this pol-
icy and then determine which of the user’s cards have claims that match the policy. In the real
world, you could use several different forms of identity to prove a claim, such as your age—
your driver’s license or your passport, for example. Similarly, when a service demands proof of
one particular aspect of the user, there might be several information cards containing a corre-
sponding claim from which the user can select. When a WCEF client application attempts to
access a service, the WCF runtime can invoke the identity selector component to determine
and display the matching cards and the user can select which information card to use. The
claims on the card then have to be verified by the identity provider before the client applica-
tion can use them to access the service.

The complete sequence of operations that occur when a client application calls a Web service
that uses Windows CardSpace to validate a user is as follows:

1. The client application attempts to invoke an operation or access a resource in a Web
service.

2. The WCF runtime on the client invokes the identity selector component of Windows
CardSpace. The identity selector queries the security policy of the Web service. The Web
service returns information indicating the types of claims it can use to authenticate the
user (for example, an email address or a pin number).

3. Theidentity selector examines the user’s information cards and displays a list of cards
that contain claims of the types specified by the Web service.

4. The user selects the information card to use.

364

@

Chapter 15 Managing Identity with Windows CardSpace

5. The identity selector contacts the identity provider that issued the information card,
passing it the metadata describing the claim on the user’s information card and the
claims demanded by the service.

6. Theidentity provider examines the metadata describing the claim and generates a token
verifying that user’s claim is valid. The identity provider sends this token back to the
identity selector running on the client computer.

7. The identity selector asks the user to approve release of the token to the Web service.

8. Iftheuser approves release, the identity selector sends the token to the Web service. The
Web service examines the token to verify that the user’s claim is valid. If the token is
valid, the Web service can use the identity information in this token to determine
whether the user is authorized to invoke the operation or access the resource.

All of this sounds quite complicated. Fortunately, WCF and Windows CardSpace shield you
from much of this complexity, and it is actually quite straightforward to incorporate claims-
based security into a WCF service. In the following set of exercises, you will configure the
ShoppingCartService service to identify users by their email address.

Before we delve into the world of Windows CardSpace, I need to explain one more thing. In a
real-world environment, you will most likely use information cards issued by commercial,
trusted, third-party identity providers (such as credit card companies, banks, governments, or
other organizations). Windows CardSpace also enables you to create self-issued cards. A self-
issued card is a card that you create yourself by using the Windows CardSpace console, often
for testing purposes (they have other uses as well). A self-issued card can contain a small but
useful subset of claims, such as your name, home address, telephone number, and email
address. In this case, you can think of the identity provider as the Windows CardSpace service
running on your own computer. The exercises that follow make use of self-issued information
cards, as I don’t want you to have to obtain a commercial information card just for learning
purposes. However, the technique is very similar when you use an information card issued by
a trusted third party, as I will explain afterwards.

Important A production Web service should not rely on claims asserted by self-issued
information cards for authorizing access to sensitive data. It is very easy for a user to create
a self-issued card with whatever values they want for the claims it contains.

Configure the ShoppingCartService service to use claims-based security

1. Using Visual Studio 2005, open the solution file ShoppingCartService.sln located in the
Microsoft Press\WCF Step By Step\Chapter 15\ShoppingCartService folder under your
\My Documents folder.

This solution contains a completed version of the ShoppingCartService service, console
host application, and test client application, from Chapter 9, “Implementing Reliable
Sessions.”

Chapter 15 Managing Identity with Windows CardSpace 365

Edit the App.config file in the ShoppingCartHost project by using the WCF Configura-
tion Editor.

In the left pane, add a new binding configuration to the Bindings folder. Select the
wsFederationHttpBinding binding type. Change the name of the binding configuration
to ShoppingCartServiceCardSpaceBindingConfig. The ShoppingCartService service
uses reliable sessions and transactions, so set the TransactionFlow property to True and
set the Enabled property in the ReliableSession Properties section to True.

Note You can also use claims-based security with the wsHttpBinding binding, but
that binding supports only a limited set of claims. The wsFederationHttpBinding bind-
ing enables you to configure the service to specify a more extensive range.

In the left pane, click the ClaimTypes folder under the Security node for the
ShoppingCartServiceCardSpaceBindingConfig binding configuration. Click the New
button at the bottom of the right pane.

In the Claim Type Element Editor, set the ClaimType property to http://schemas.xml-
soap.org/ws/2005/05/identity/ claims/emailaddress. Verify that the IsOptional property is
set to False, and then click OK.

The claims specified in the ClaimTypes property of the binding configuration constitute
the claims security policy for the service. Each type of claim is identified by a well-known
URI-the URI you have specified here indicates an email address. You can add multiple
claim types if you want to identify users based on more than one piece of information.

Note Apart from an email address, Windows CardSpace provides support for a
number of other built-in claim types, such as a user’'s name, address, telephone num-
ber, and date of birth. For a full list of the built-in claim types and the corresponding
URIs that Windows CardSpace recognizes, see the properties of the ClaimTypes class in
the Windows SDK documentation.

However, you are not restricted to this set of claims. A key objective of the WCF claims-
based security model is that it is extensible and interoperable with systems developed
by using other technologies. You can make use of claim types supported by identity

providers other than Windows CardSpace, you just need to know the URI that identifies

the claim types you want to use.

In the left pane, click the Security folder under the ShoppingCartServiceCardSpaceBind-
ingConlfig node. In the right pane, set the IssuedTokenType property to the value
urn:oasis:names:tc:SAML:1.0:assertion.

A 'WCEF service uses the IssuedTokenType property to specify the type of token it expects
to receive from the identity provider containing the claim information (identity provid-
ers can send tokens conforming to a number of different standard formats). In this case,
the ShoppingCartService service expects a Secure Application Markup Language
(SAML) 1.0 token.

366

Chapter 15 Managing Identity with Windows CardSpace

6.

10.

A fundamental requirement of solutions based on Windows CardSpace is that client
applications must be able to verify the identity of the Web service requesting the claim
and the Web service must be able to trust the identity provider verifying the claim. This
means that you should configure the requesting Web service with a certificate and pro-
vide the client application with a reference to this certificate. If you are using a third-party
identity provider, it must also supply a certificate that the client application and Web ser-
vice can use to confirm its identity (the identity provider signs tokens with its private
key, so the Web service must have access to its public key in order to verify their signa-
tures). Additionally, all messages must be encrypted, either at the message level or at the
transport level.

More Info For more information about how you can use certificates to encrypt and
sign messages and verify the authenticity of a service, refer back to Chapter 5, "Pro-
tecting a WCF Service over the Internet”

To create a certificate for the ShoppingCartService, open a Microsoft Windows SDK

CMD Shell prompt, and use the makecert utility to create a new certificate for the service,
like this:

makecert -sr LocalMachine -ss My -n CN=ShoppingCartService -sky exchange

Leave the CMD shell open, and return to the WCF Service Configuration Editor. In the
left pane, add a new service behavior to the Service Behaviors folder in the Advanced
folder. Name this behavior ShoppingCartServiceBehavior.

In the right pane, click Add, and add a <serviceCredentials> element to the behavior. In
the left pane, expand the new serviceCredentials node, and click the serviceCertificate
node. In the right pane, set the FindValue property to ShoppingCartService (this is the
name of the certificate you have just created) and the X509FindType property to
FindBySubjectName.

In this exercise, you are using an unverifiable self-issued information card rather than a
card issued by a third-party identity provider. At run time, the SAML token containing
the claim token is provided by the Windows CardSpace service running on the client
application computer. Therefore, you need to configure the Web service to accept SAML
tokens from an untrusted source (the user running the client application and who has
issued the card to herself).

In the left pane, click the issuedTokenAuthentication node under the serviceCredentials
node. In the right pane, set the AllowUntrustedRsalssuers property to True.

In the left pane, select the ShoppingCartService.ShoppingCartServicelmpl service in the
Services folder. In the right pane, set the BehaviorConfiguration property to
ShoppingCartServiceBehavior.

11.

Chapter 15 Managing Identity with Windows CardSpace 367

In the left pane, add a new endpoint to the Endpoints folder under the ShoppingCart-
Service.ShoppingCartServicelmpl service. Set the properties of this endpoint using the
values in the following table:

Property Value

Name ShoppingCartServiceHttpFederationEndpoint

Address http://localhost:9050/ShoppingCartService
/ShoppingCartService.svc

Binding wsFederationHttpBinding

BindingConfiguration ShoppingCartServiceCardSpaceBindingConfig

Contract ShoppingCartService.IShoppingCartService

12. Save the configuration file, and close the WCF Service Configuration Editor.

The ShoppingCartService now expects the client application to provide the user’s email
address whenever it invokes an operation. You can use the email address to authorize the user
and grant or deny them access to specific operations. You can perform this task in a variety of
ways. The most direct technique is to explicitly examine the value of the claim in the token
passed to the service, which is what you will do in the next exercise.

Amend the ShoppingCartService service to authorize users based on their email address

1.

In Solution Explorer, edit the ShoppingCartService.cs file in the ShoppingCartService
project.

Add the following using statements to the list at the top of the file:

using System.Security;
using System.IdentityModel.Claims;
using System.IdentityModel.Policy;

Add the following private array to the ShoppingCartServicelmpl class:

// The T1ist of authorized users
private string[] authorizedUsers = { "Fred@Adventure-Works.com",
"Bert@Adventure-Works.com" };

This array contains the email addresses of the users that the service will allow to access
the service.

Note This code is for testing purposes only. In a production environment, you
should consider storing the details of authorized users in a database rather than using
a hard-coded array of strings.

368 Chapter 15 Managing Identity with Windows CardSpace

4.

Add the following private method to the ShoppingCartServiceImpl class to determine
whether the claimset in the token passed to the service contains an email claim with an
email address that corresponds to one of the authorized users:

// Authorize the user if their email address is in the authorizedUsers 1ist
private bool authorizeUser()

{

bool authorized = false;

AuthorizationContext authContext =
OperationContext.Current.ServiceSecurityContext.AuthorizationContext;
foreach (ClaimSet claimSet in authContext.ClaimSets)
{
foreach (Claim emailClaim 1in
claimSet.FindClaims(ClaimTypes.Email, Rights.PossessProperty))
{

foreach (string validUser in authorizedUsers)
{
if (String.Compare(emailClaim.Resource.ToString(),
validUser, true) == 0)
{

authorized = true;
break;

}
}

return authorized;

}

When the WCF runtime for the service receives the tokenized claims from the client
application, it matches the values for these claims against the security policy that it
implements. The AuthorizationContext property of the service security context contains
the results of this match. In this case, AuthorizationContext property should contain an
email address claim with the email address provided by the information card sent by the
client application.

Note The AuthorizationContext property will also contain other claims resulting from
the various WS-* protocols that Windows CardSpace uses, but the details are beyond
the scope of this book.

The AuthorizationContext property comprises a collection of claimsets, and each claimset
contains a collection of claims. This method iterates through each claimset looking for
an email claim. If it finds one, it examines the value of the claim and compares it to each
email address in the list of authorized users. Notice that the value of a claim is available
through the Resource property. The type of this property is Object, and its contents are
dependent on the type of the claim. An email claim is a string containing the authenti-
cated email address of the user, so this method simply performs a case-insensitive string
comparison. If the email address in the claim matches one of the authorized users, the
authorizeUser method returns true, otherwise it returns false.

Chapter 15 Managing Identity with Windows CardSpace 369

5. Locate the AddItemToCart method in the ShoppingCartServicelmpl class. At the start of
the method, add a block of code that calls the authorizeUser method and throws a secu-
rity exception if the user is not an authorized user, like this:

public bool AddItemToCart(string productNumber)

{
// Check that the user is authorized
// Throw a SecurityException if they are not
if (lauthorizeUser())
{
throw new SecurityException("Access denied");
}
}

6. Add the same statements to the start of the RemoveltemFromCart, GetShoppingCart,
and Checkout methods.

7. Build the ShoppingCartService project.

You can now configure the client application to enable the user to select an information
card and send the SAML token containing the user’s email address to the ShoppingCartSer-
vice service.

Implementing Custom Authorization

If you need to perform more extensive authorization checks than those shown in the
exercise, the NET Framework 3.0 provides the ServiceAuthorizationManager class in the
System.ServiceModel namespace. The WCF runtime on the service calls the methods of
this class to perform authorization checks whenever it processes a client request. How-
ever, this class is just a placeholder, which by default allows users to invoke all opera-
tions without restriction. To implement a more secure policy, extend this class by using
inheritance and override its methods to perform your own custom authorization. You
then register your implementation of the class with the WCF runtime by setting the
Authorization.ServiceAuthorizationManager property of the service host object to an
instance of your class, or by creating a service behavior in the service configuration file
and specifying the name of your class in the <serviceAuthorization> element.

For a complete example, see the topic “How To: Create a Custom AuthorizationManager
for a Service” in the Microsoft Windows SDK documentation.

Configure the ShoppingCartClient application to use Windows CardSpace to send a
token identifying the user

1. Edit the App.config file in the ShoppingCartClient project by using the WCF Configura-
tion Editor.

2. In the left pane, add a new binding configuration to the Bindings folder. Select the
wsFederationHttpBinding binding type. Change the name of the binding configuration

370

Chapter 15 Managing Identity with Windows CardSpace

to ShoppingCartClientCardSpaceBindingConfig. Set the TransactionFlow property to
True, and set the Enabled property in the ReliableSession Properties section to True.

Add the claim type http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailad-
dress to the Claim Types collection under the Security node in the left pane. Verify that the
IsOptional property is set to False.

Note Hardcoding the claim type in this way removes the need for WCF runtime on
the client computer to query the security policy of the service. This is acceptable if you
know that the types of claims demanded by the service are not going to change very
often. However, if the security policy of the service does change and it requires differ-
ent claims, you must make corresponding updates to this configuration.

Set the IssuedTokenType property of the Security node to
urn:oasis:names:tc:SAML:1.0:assertion.

Return to the CMD Shell window and type the following command:
certmgr -put -c -n ShoppingCartService -r LocalMachine -s My ShoppingCartService.cer

This command retrieves a copy of the ShoppingCartService certificate used by the WCF
service to authenticate itself and creates a file called ShoppingCartService.cer. This file
contains a copy of the certificate including its public key but not the private key.

Type the following command to import this certificate into the trusted people certificate
store for the current user:

certmgr -add ShoppingCartService.cer -c -r CurrentUser -s TrustedPeople

Close the CMD Shell window and return to the WCF Service Configuration Editor. In
the left pane, add a new endpoint behavior to the Endpoint Behaviors folder under the
Advanced folder. Name this behavior ShoppingCartClientEndpointBehavior.

In the right pane, click Add, and add a <clientCredentials> element to the behavior. In the
left pane, expand the clientCredentials node, expand the serviceCertificate node, and
then click the authentication node. In the right pane, set the CertificateValidationMode
property to PeerTrust and the RevocationMode property to NoCheck.

Note You are using a test certificate issued by the certmgr tool rather than a recog-
nized certification authority. You placed the certificate in the TrustedPeople store, and
setting the validation mode to PeerTrust bypasses validation for certificates placed in
this store.

In the left pane, add a new client endpoint to the Endpoints folder under the Client
folder. Set the properties of this endpoint using the values in the following table:

Chapter 15 Managing Identity with Windows CardSpace 371

Property Value
Name HttpFederationBinding_ShoppingCartService
Address http://localhost:9050/ShoppingCartService/ShoppingCartService.svc
BehaviorConfiguration ShoppingCartClientEnpointBehavior
Binding wsFederationHttpBinding
BindingConfiguration ~ ShoppingCartClientCardSpaceBindingConfig
Contract ShoppingCartClient.ShoppingCartService.ShoppingCartService
9. In the right pane, click the Identity tab. In the CertificateReference Properties section, set

10.
11.

the FindValue property to ShoppingCartService and the X509FindType property to
FindBySubjectName.

Save the configuration file, and close the WCF Service Configuration Editor.

In Solution Explorer, edit the Program.cs file in the ShoppingCartClient project. In the
Main method in the Program class, change the statement that creates the proxy to use the
HttpFederationBinding ShoppingCartService endpoint, as follows:

// Connect to the ShoppingCartService service

ShoppingCartServiceClient proxy = new
ShoppingCartServiceClient("HttpFederationBinding_ShoppingCartService");

The next stage is to create some information cards that you can use to test the ShoppingCart-
Service service. You can do this using the Windows CardSpace application in the Control
Panel.

Create information cards for testing the ShoppingCartService service

1.

In Windows Control Panel, select the User Accounts category, and then start the Win-
dows CardSpace application.

The Windows CardSpace console starts and displays the Windows CardSpace-
Welcome dialog box. Click Don’t show me this page again, and then click OK.

If you have not yet created or installed any cards, the list of information cards will be
empty apart from the Add a card icon. Click the Add a card icon, and then click the Add
button that appears at the bottom of the console window.

In the Add a card window, click Create a Personal card.

In the Edit a new card window, specity Valid ShoppingCartService Test Card for the Card
Name property, Fred@Adventure-Works.com for the Email Address property, and then click
Save. The following image shows the details for the information card:

372

Chapter 15 Managing Identity with Windows CardSpace

6.

E! Windows CardSpace

@ Edit card Tasks

The card data, name, and picture for this personal card are stored encrypted on this computer, What data should 1
include an ry card?
Help

£

= . Card properties:

' ‘ Card Mame: ‘ valid ShoppingCartService Test Card
Yy s

v Image File: Choose Picture...

valid Shoppin ...

Information that you can send with this card:

Personal Card

First: Marme: ‘

Last Marme: ‘

Email Addrass: ‘ Fred@adventure-Works,com
Street: ‘

City:

State:

Country/Region:

Home Phone:

\
\
Fostal Code: ‘
\
\

v

Save Cancel

The new information card should appear in the list of cards in the Windows CardSpace
console. The email address for this card represents a user that is authorized to access the
operations in the ShoppingCartService service.

Add another personal card. In the Edit a new card window, specify Invalid ShoppingCart-
Service Test Card for the Card Name property, Sid@Adventure-Works.com for the Email
Addpress property, and then click Save. The email address for this card represents a user
that is not authorized to invoke the operations in the ShoppingCartService service.

Close the Windows CardSpace console.

Test the ShoppingCartService service

1.

In Visual Studio 2005, start the solution without debugging. Wait for the service to start
and display the message “Service running.” In the client application console window dis-
playing the message “Press ENTER when the service has started,” press Enter.

When the client application invokes the first operation in the ShoppingCartService ser-
vice, the Windows CardSpace service intervenes and displays the Windows CardSpace
console.

Note The Windows CardSpace identity selector runs in a separate desktop session
from the user to prevent other applications being able to interfere with it. For this rea-
son, whenever the Windows CardSpace console appears, the user’s desktop is dimmed
and inaccessible.

Notice that Windows CardSpace recognizes that the certificate used by the Shopping-
CartService service is not verified and displays the following warning:

)

Chapter 15 Managing Identity with Windows CardSpace 373

E! Windows CardSpace

&) Do you want to send a card to this site? Tasks

Review the folowing site information and privacy staterment to decide if you want to send a card to this View certificate details
site. Wiew privacy staternent

Why is this important?
» This site does not mest Windows CardSpace requirements for a bank or major Internst Help
& business. Tolearn more, click Why iz this important?
Site infarmation:

ShoppingCartService
Orgartzation name not verifed
Location not venfied

Wiew privacy staternent
Cards that are sent to this site may be sent to the site's designated agents,

Site information verified by
Root Agency

 es, choose a card to send

< Mo, returmn to the site

Click Yes, choose a card to send.

Important If Windows CardSpace displays this message when you access a com-

mercial Web service, you should be very careful, as it indicates that the Web service's
certificate might not have originated from a recognized certification authority. In this
situation, you should probably click No and not send your credentials to the site.

2. Windows CardSpace displays a list of cards that contain email addresses and so match

3.

the claims required by the service. Select the Valid ShoppingCartService Test Card, and
then click Send.

Windows CardSpace displays the details of the card that it will send to the Shopping-
CartService service:

374

Chapter 15 Managing Identity with Windows CardSpace

E! Windows CardSpace

@ Do you want to send this card ta: ShoppingCartService Tasks

Review the data that this site is requesting. To edit the data, name, and picture for this card click Edit. Edit card
Wigw card history
Lack card

/iy + You have nat sent this card to the site. Review the card before you send it. What data wil be sent?

= | Card data that wil be sent to this site:
i Fields marked with an asterisk (*) are required
1'&.\ * Emal Address: FrediAdventure-Works.com

Help

¥alid Shoppin...

Recent card histary (not sent):
Fersonal Card Thiz card has not been uszed before,
Additional card details (not sent):

Created On: 11/6/2006

Click Send to confirm that this is the correct card.

The client application resumes and runs as it has done in previous chapters. The
selected card contains an email address identifying a user that the ShoppingCartService
service allows to invoke the various operations it implements. Notice that although the
client application makes several calls to the service, Windows CardSpace intervenes only
on the first call in the session.

Note If you take more than one minute to select and send the card, the client appli-
cation stops with the exception “"The operation is not valid for the state of the transac-
tion.” This is because the AddltemToCart operation is part of a transaction initiated by
the client application, and the transaction timeout specified by the client application is
one minute. If this happens, stop the client application and service, restart the solution,
and select the Valid ShoppingCartService Test Card when prompted by Windows Card-
Space.

Generally, it is not good practice to gather user input during a transaction. For situa-
tions such as this, you can programmatically request a token for a specific card in
advance of the transaction starting and then supply this token when the first operation
occurs. Note that the API that Windows CardSpace currently provides for performing
these tasks is unmanaged and requires that you are familiar with C++.

4. Press Enter to close the client application console window, but leave the service running.

In Visual Studio 2005, in Solution Explorer, right-click the ShoppingCartClient project,
point to Debug, and then click Start new instance. This action starts a new instance of
the client application.

6. In the client application console window, press Enter. The Windows CardSpace appears
again. This time, however, you don’t get the warning that the Web service is using a sus-

Chapter 15 Managing Identity with Windows CardSpace 375

pect certificate—this warning only appears the first time you access the service. Windows
CardSpace also organizes the list of matching cards and informs you which cards you
have previously sent to the Web service:

El Windows CardSpace

_7 Choose a card to send o) ShoppingCartService Tasks
To see or edit card data before you send it, select a card, and then click Preview. To create a new card, Duplicate card
click Add a card and then click Add.
Delete card
— Add a card
Cards you've sent to this site: o
—— Back up cards
Restare cards
Preferences
Delete all cards
Which card should T
¥alid shoppingCarts... send
Help
Your other cards: Learn maore about this

site

Add a card

TInvalid ShoppingCar ...

To send this card now, click Send. To review the data before you send it, dick
Preview.

£

7. Select the Invalid ShoppingCartService Test Card, and then click Send. Click Send again
to confirm that this is the card you want to use.

This time the client application stops and reports the exception “Access is denied.” The
email address in this card identifies a user to which the ShoppingCartService service has
not granted access.

8. Press Enter to close the client application console. Press Enter to close the service appli-
cation console.

Using a Third-Party Identity Provider

In the previous exercises, Windows CardSpace acted as its own identity provider, verifying the
claim made by the user before sending a SAML token containing the claim information to the
service. I mentioned earlier that you might not want to rely on the veracity of self-issued cards
in a commercial environment. Instead, you should use information cards issued by trusted
third-party identity providers, such as banks, credit card companies, government agencies,
and so forth. Itis important to realize that the claims on an information card are simply a rep-
resentation of a set of rights. The rights themselves are retained by the identity provider, and
the identity provider can withdraw these rights at any time, rendering the user’s information
card invalid.

A user can request an information card from a third party as an out-of-band operation. If the
third party approves the request, it can create an information card file and send it to the user.

376

Chapter 15 Managing Identity with Windows CardSpace

This file is a signed XML file, containing data in a format that Windows CardSpace recognizes.
The user can then install this file into Windows CardSpace using the “Install a Managed card”
feature of the Windows CardSpace console (this is on the same page in the Windows Card-
Space console that you use to create self-issued cards). If the user tries to create a card with a
forged set of claims, the third party will not be able to verify those claims and will conse-
quently not issue a token when the user attempts to use the card.

More Info Remember that Windows CardSpace is built on accepted WS-* protocols.
Microsoft provides documentation on how Windows CardSpace uses these protocols and
how to build non-WCF services that can interact with Windows CardSpace for issuing cards
and verifying claims. For more information, see the document “A Guide to Integrating with
Windows CardSpace v1.0," available at http.//download.microsoft.com/download/6/c/3
/6c3c2ba2-e5f0-4fe3-be7f-c5dcb86af6de/infocard-guide-beta2-published.pdf.

The Microsoft Windows SDK also includes the sample “Creating Managed Cards,” which
shows how to build an application that can create a signed XML file containing claims that a
user can import into Windows CardSpace. This sample is available online at
http.//msdn2.microsoft.com/en-us/library/aa967567.aspx.

Configuring a WCF Client Application and Service to use a Third-Party
Identity Provider

You have seen that an identity provider actually has to perform two related tasks: it issues
claims, and it verifies that the claims submitted by a client application are genuine and issues
a security token. The component of the identity provider that performs claims verification and
issues tokens is usually referred to as a Security Token Service, or STS. In the exercises you
performed earlier, Windows CardSpace provided the STS itself. You can also build your own
STS. The details are outside the scope of this book, but the Microsoft Windows SDK includes
a description of the process in the topic “How To: Create a Security Token Service.” You can
find this document online at http;//msdn2.microsoft.com/en-us/library,/ms733095.aspx.

When you use an STS other than that provided with Windows CardSpace, you must configure
the client application with the address of this STS. The identity selector on the client com-
puter uses this information to contact the STS and obtain a security token. You can provide
this information programmatically or in the application configuration file. If you use the WCF
Configuration Editor to edit the application configuration file, the key properties are in the
Issuer page of the wsFederationHttpBinding configuration, shown in Figure 15-1.

Chapter 15 Managing Identity with Windows CardSpace 377

2! c:idocuments and settingsistudentimy documentsimicrosoft pressiwcf step by stepichapter 15isoluti. .. |;H§Hg|
Ele Help
= (3 Gt | | General | 1dentiy | Headers|
+3 Metadata
(23 Endpaints B (General)
= (2 Bindings Address hitp: //www. adventure-works.com/sts
T8 ShoppingCanClientCustomBindingCor Bindng wsHupBinding
T8k ShoppingCartClentMetT cpBindingCo BindingConfiguration STSBindingConfig
=-18F ShoppingCanClientCards paceBinding
=+ Secuity
1= 5

-o [
+ lssuerMetadata
-3 RequestParameter
3 ClaimT ppes
T8 $TSBindingConfig [wsHitpBinding)
(20 Diagnostics
(2 Advanced

(Bl

Create a Mew Service...

Create a Mew Client.

Binding
This setting lets you choose the type of the binding you want to uss for this endpaint
You can use one of the system-defined WCF binding types, o register your own in the

Figure 15-1 Configuring the Issuer properties for a WCF client application.

Specify the URI of the STS in the Address property. You can optionally provide a binding con-
figuration if the STS has particular communications requirements, such as reliable sessions.
The Identity tab enables you to indicate a certificate in the local certificate store to use for val-
idating the identity of the STS.

The token issued by an STS can be in one of several formats. By default, the client application
requests a token that conforms to the SAML 1.1 specification. However, if the WCF service
expects a token in a different format, you can specify the token type in the IssuedTokenType
property on the Security page. The STS should respond with a token of this type.

More Info For more information about these properties and how to set them program-
matically rather than using an application configuration file, see the topic "How To: Create a
WSFederationHttpBinding” in the Microsoft Windows SDK documentation. This information is
also available online at http.//msdn2.microsoft.com/en-us/library/aa347982.aspx.

Claims-Based Authentication in a Federated Environment

Claims-based authentication is an extremely powerful and flexible mechanism that you can
use in a variety of scenarios. For example, suppose the Fabrikam organization wants to make
one of its Web services available to users belonging to other partner companies, such as Adven-
ture-Works, but not to the general public. One way to authenticate users from Adventure-
Works attempting to access the Fabrikam service would be for Fabrikam to implement an STS
and issue information cards for each employee of Adventure-Works. However, if Adventure-
Works has a large number of employees, then maintaining a list of valid users in the Fabrikam
system can quickly become an unmanageable task. Furthermore, should Fabrikam really be

378

Chapter 15 Managing Identity with Windows CardSpace

concerned with the details of who works for Adventure-Works? All the Fabrikam service

requires is that the user is a verified employee of Adventure-Works but not any other details. If
Fabrikam has several other partner organizations besides Adventure-Works, whose employees
should also be able to access the Fabrikam service, then the scope of the problem multiplies.

To solve this problem, it can help to think of an STS as a service that converts claims of one
type into claims of another. The WS-Trust specification on which the concept of an STS is
based defines a “language” for requesting and issuing claims. An organization can implement
an STS that verifies its employees’ claims, and outputs tokens that can be used as claims for
another STS belonging to another organization (the exact details of the WS-Trust specification
are beyond the scope of this book). What does this mean, and how does it help? Look at the
following possible solution to the problem of Fabrikam authenticating Adventure-Works
employees.

The Fabrikam organization has an STS that issues a single claim to Adventure-Works, effec-
tively stating that it recognizes any employee that Adventure-Works authenticates as an
employee as being a valid user of the Fabrikam Web service. Adventure-Works implements its
own STS. Users inside Adventure-Works have information cards issued by the Adventure-
Works STS containing a claim asserting that they are valid employees of Adventure-Works
(the “employee claim”). An application run by a user within Adventure-Works that requires
access to the Fabrikam Web service actually sends the “employee claim” of the user to the
Adventure-Works STS. This STS verifies that the user really is an employee and returns a token
containing a verified “the user is an employee of Adventure-Works” claim. The application
then sends this new claim to the STS inside the Fabrikam organization. The Fabrikam STS ver-
ifies the authenticity of this claim to establish that it is genuine and was issued by a recognized
partner organization, and then issues another token containing an authenticated claim that
the client application uses to access the Fabrikam Web service. Figure 15-2 depicts the flow of
claims and security tokens.

The Fabrikam organization can issue similar claims to other partner companies, enabling
their employees to access the Fabrikam service. If Fabrikam wishes to withdraw the rights of
a partner company, it only needs to rescind a single claim. Of course, Fabrikam can issue indi-
vidual claims to its own employees as well.

&

Chapter 15 Managing Identity with Windows CardSpace 379

Fabrikam
zecu(lty Token Fabrikam
ervice Web |
@ Service

Fabrikam STS responds with
token for accessing Web service A

Fabrikam STS issues claim
to Adventure-Works out of band

Application sends
token for accessing
Web service

Application sends "employee
of Adventure-Works" @
claim to Fabrikam STS

Adventure-Works
Security Token

Service
Claim issued by # STS responds with “employee of
Fabrikam to @ Adventure-Works” claim

v

Adventure-Works

A

Claim issued by

Q Application sends “employee
i Adventure-Works
.@ ’Q claim” to STS @ @Q to employee

Figure 15-2 Cooperating Security Token Services.

Note This is a somewhat simplified view of the process, and there other security aspects
that a scheme like this requires you to implement, such as authenticating and protecting the
physical communications between organizations.

This mechanism is generally referred to as federated security. Each user is authenticated, but
the authentication is the responsibility of the individual organizations to which they belong.
Internally, each organization operates in an autonomous manner, implementing its own secu-
rity policies and authenticating users in its own way.

Akey aspect of federated security is the confidence that different organizations have with each
other’s authentication mechanisms. As long as an organization implements a strong security
policy, partner organizations can trust that if it says “user x is valid” then that user is genuinely
valid. Security is always a matter of confidence and trust. In the past, different organizations
have tried to protect their systems from unauthorized access by using a wide variety of tech-
niques, often based on proprietary protocols. This frequently becomes a problem as soon as
organizations need to share information with each other, with ad hoc solutions that often
open holes in the security infrastructure of these organizations. The increasing use of STSs
and the adoption of the various WS-* protocols can help to standardize the way in which orga-
nizations protect their communications and their users, making their security mechanisms
more interoperable. Windows CardSpace and WCF provide an important set of tools for help-
ing to implement these mechanisms in a simple-to-use but robust manner.

380 Chapter 15 Managing Identity with Windows CardSpace

Summary

In this chapter, you have seen how to use Windows CardSpace to implement claims-based
security. You have learned how to configure a WCF client application and service to interact
with Windows CardSpace and how to use a self-issued card to send a claim to a service. You
have seen how a service can query the values of claims it has been sent in order to authorize
access to operations. You have also looked at how to configure a client application and service
to use a third-party STS for authenticating claims. Finally, you have seen how organizations
can use claims-based authentication and STSs to implement federated security.

Chapter 16

Integrating with ASP.NET Clients
and Enterprise Services
Components

After completing this chapter, you will be able to:

m Create a WCF service that can interoperate with an ASPNET client application.
m Integrate a COM+ application into a WCF solution.

Akey feature of WCF is the ability to use it to build heterogeneous solutions, protecting your
existing investment in existing components and software. WCF is based on commonly
accepted WS-* standards and protocols. This enables you to create services that can commu-
nicate with client applications running on platforms other than Microsoft Windows and
developed using other technologies, such as Java, as long as they conform to the same WS-*
standards and use the same protocols. If you publish the metadata for your WCF service,
many Java tools vendors provide utilities that can query this metadata and generate Java proxy
classes, in much the same way that svcutil does. The converse situation is also true. You can
use WCEF to build client applications that connect to Java Web services, again as long as those
Java Web services conform to the same WS-* standards and protocols as WCF. If these ser-
vices publish their metadata, you can use the svcutil utility to generate proxy classes for these
services. You may also have a number of components, services, and applications created using
Microsoft technologies that predate WCF, such as COM+ and ASP.NET. Again, WCF protects
your investment in these technologies by enabling you to integrate components built using
them into a WCF solution. This chapter describes two common scenarios. First, you will see
how to configure a WCEF service to enable interoperability with an ASP.NET Web client appli-
cation. Then you will learn how to integrate a COM+ application into a WCF solution by
exposing it as a WCF service.

Creating a WCF Service that Supports an ASP.NET Client

Microsoft developed ASP.NET as a framework for building Web applications. It includes a
large number of components that developers can incorporate into interactive Web pages and
a structure for processing requests and generating Web pages in response to those requests.
Part of the ASP.NET framework is concerned with building Web services. However, the Web
services model implemented by ASPNET now seems quite primitive, as it does not provide
support for many of the WS-* protocols that have emerged in recent years. Consequently,
ASP.NET Web services and client applications cannot easily make use of WS-* specifications

381

382

@

Chapter 16 Integrating with ASP.NET Clients and Enterprise Services Components

covering features such as reliable sessions, transactions, or even message level security
(ASP.NET provides its own implementation of some of these features, and you can use trans-
port level security over the HTTPS transport to protect messages).

Microsoft subsequently released the Web Services Enhancements (WSE) as an add-on to
ASP.NET. WSE includes support for some selected WS-* standards. WSE was really just a tem-
porary solution, and you should consider using WCEF for all new development. However, it is
probably not feasible for your organization to stop using your existing ASP.NET services and
applications while you build new versions using WCF. Furthermore, if your ASPNET Web ser-
vices and client applications are functioning perfectly, why should you replace them? You are
far more likely to migrate Web services to WCF piecemeal, either as you need to add new fea-
tures to a specific Web service or as you retire a service and replace it with a Web service imple-
menting new functionality. Additionally, it might not be feasible or desirable to migrate
ASP.NET Web client applications to WCF. Consequently, you might have a large number of
ASP.NET Web client applications in everyday use in your organization that need to be able to
connect to ASPNET and WCF Web services. It is therefore important to understand how to
support existing ASPNET Web client applications in a WCF service.

Important The current release of WCF does not provide support for client applications
that use partial trust; client applications (including ASPNET Web services communicating with
a WCF service) must run with full trust. This situation might change in the next release of
WCF.

In the following exercise, you will see how to build a WCF service that can be accessed by an
ASPNET Web client application (it can also be accessed by a WCF client application, of
course).

Examine an existing ASPNET Web service and client application

1. Using Visual Studio 2005, open the solution file ASPNETProductsService.sln located in
the Microsoft Press\WCF Step By Step\Chapter 16\ASPNETService folder under your
\My Documents folder.

This solution contains an ASP.NET Web site called ASPNETProductsService and a client
application that uses this service.

Note In this exercise, pretend that the ASPNETProductsService Web service is a copy
of a production Web service deployed elsewhere in your organization using IIS and
transport level security. For ease of testing and configuration, this copy of the Web ser-
vice executes using the ASPNET Development Server supplied with Visual Studio 2005
and consequently does not support SSL and the HTTPS protocol. However, the Web
client application can be configured to connect to the Web service over an HTTPS
connection, and you will provide transport level security when you implement the WCF
version of the Web service.

Chapter 16 Integrating with ASP.NET Clients and Enterprise Services Components 383

Using Solution Explorer, open the ASPNETProductsService.cs file in the App_Code
folder in the C:\..\ASPNETProductsService project and examine its contents.

This Web service should have a familiar look to it; it is an ASP.NET version of the Prod-
uctsService service, providing the ListSelectedProducts, GetProduct, CurrentStockLevel,
and ChangeStockLevel Web methods.

The file contains an implementation of the Product class, tagged with the Serializable
attribute to enable the ASP.NET runtime to transfer instances back to the ASP.NET client
application.

Notice the namespace and name of the Web service (the ASPNETProductsService class);
the WCF version of the Web service will use this same namespace to remain compatible
with existing ASP.NET client applications:
[WebService(Namespace = "http://adventure-works.com/2005/01/01",

Name = "ProductsService")]
public class ASPNETProductsService : System.Web.Services.WebService,

IProductsService
{

}

The Web methods use ADO.NET rather than the Microsoft Enterprise Library for access-
ing the AdventureWorks database (the Web service was created before the Enterprise
Library was available). The web.config file contains the connection string that the appli-
cation uses to connect to the database. If you are not running a local instance of SQL
Server Express, you will need to modify the value property of the configuration setting in
this file to connect to the correct server.

In the C:\..\ASPNETProductsService project, right-click the file ASPNETProductsSer-
vice.asmx, and then click View in Browser.

Internet Explorer starts and displays the list of Web methods implemented by the ser-
vice. Display the WSDL description of the Web service by appending the text “?wsdl” to
the end of the address in the Address box, like this:

http://Tocalhost:7080/ASPNETProductsService/ASPNETProductsService.asmx?wsdl
In the WSDL document displayed by Internet Explorer, note the following points:

0 The return type of the ListSelectedProducts Web method (List<string>) is serial-
ized as a sequence of strings in a type named ArrayOfString in the http://adventure-
works,/2005,/01/01 schema.

0 The Product type is also in the http://adventure-works/2005,/01,/01 schema. It has
four elements named, in order: Name, ProductNumber, Color, and ListPrice.

0 The SOAP action for the ListSelectedProducts Web method is http://adventure-
works,/2005,/01,/01/ListSelectedProducts.

384 Chapter 16 Integrating with ASP.NET Clients and Enterprise Services Components

0 The SOAP action for the GetProduct Web method is http;//adventure-works,/2005/
01,01/ GetProduct.

O The SOAP action for the CurrentStockLevel Web method is http;//adventure-
works,/2005,/01,/01/CurrentStockLevel.

O The SOAP action for the ChangeStockLevel Web method is http;//adventure-
works/2005,01,/01/ChangeStockLevel.

Close Internet Explorer when you have finished browsing the WSDL document and
return to Visual Studio 2005.

4. In Solution Explorer, open the Program.cs file in the ASPNETProductsClient project.
Again, you should recognize much of the code in this application. It connects to the
ASP.NET Web service, and tests each of the Web methods in turn.

The client application makes use of a Web service proxy generated by Visual Studio 2005
using the Add Web Reference command. You will use this same proxy to connect to the
WCEF service later.

Note In the production environment, the Web service uses the ASPNETProductsSer-
vice certificate to protect communications with the client application (this version of the
Web service currently does not use this level of protection because it runs using the
ASPNET Development Server in this exercise). In a subsequent exercise, you will use a
test certificate generated by using the makecert utility, so the client application con-
tains code that invokes the Enact method of the PermissiveCertificatePolicy class to
bypass certificate verification. Once again, it is worth emphasizing that this code is
provided for testing purposes only, and you should never include the PermissiveCertifi-
catePolicy class in a production environment.

5. Open the app.config file in the ASPNETProductsClient project. This configuration file
contains the ASPNETProductsClient_ProductsService_ProductsService setting. This set-
ting was generated by the Add Web Reference command. It specifies the address of the
ASPNET Web service.

6. Start the solution without debugging. The ASP.NET Development Server starts, and the
client application runs. The client application console generates a list of bicycle frames,
displays the details of a water bottle, displays the stock level of water bottles, and then
updates this stock level.

Press Enter to close the client application console when the application finished.

You have now seen the existing ASPNET Web service and client application. Your next task is
to implement a WCF service that provides the same functionality. The ASP.NET client applica-
tion must be able to connect to the WCF service and run unchanged (apart from modifying
the configuration file to refer to the new service).

Chapter 16 Integrating with ASP.NET Clients and Enterprise Services Components 385

Implement a WCF service to replace the ASPNET Web service

1.

Add a new project to the solution, using the WCF Service Library template in the Visual
C# NET Framework 3.0 project types. Name the project WCFProductsService and save
it in the Microsoft Press\WCF Step By Step\Chapter 16\WCFService folder under your
\My Documents folder.

In Solution Explorer, rename the file Classl.cs as ProductsService.cs.

Edit the ProductsService.cs file, and remove all comments and code apart from the using
statements at the top of the file.

Add a reference to the System.Configuration assembly to the WCFProductsService
project.

Add the following using statements to the ProductsService.cs file:

using System.Data;

using System.Data.Sq1Client;

using System.Configuration;

Copy the code for the Product class, the IProductsService interface, and the ASPNETProd-
uctsService class from the ASPNETProductsService.cs file in the App_Code file in the
C:\..\ASPNETProductsService project to the ProductsService.cs file.

In the ProductsService.cs file, modify the definition of the Product class as follows:

O Replace the Serializable attribute for the Product class with the DataContract
attribute.

0 Set the Namespace property of this attribute to the namespace expected by the
ASP.NET client application.

O Tag each member of the Product class with a DataMember attribute ensuring that
the members are serialized in the order in which they appear in the class and that
they have the correct names in the serialization stream.

The Product class should look like this (the new additions are shown in bold):

// Data contract describing the details of a product
[DataContract (Namespace="http://adventure-works.com/2005/01/01")]
public class Product
{
[DataMember (Order=0, Name=""Name")]
public string Name;

[DataMember (Order = 1, Name
public string ProductNumber;

"ProductNumber")]

[DataMember (Order = 2, Name
public string Color;

"Color")]

[DataMember (Order=3, Name="ListPrice")]
public decimal ListPrice;

386 Chapter 16 Integrating with ASP.NET Clients and Enterprise Services Components

8. By default, the WCEF service will serialize the List<string> value returned by the
ListSelectedProducts operation using a different type and schema from that expected by
the ASP.NET client application, which expects an ArrayOfString type in the
http://adventure-works.com,/2005,01,/01 namespace. Add the following class to the
ProductsService.cs file underneath the Product class:

// Data contract for seralizing a list of strings

// using the same schema as the ASP.NET Web service
[CollectionDataContract(Namespace = "http://adventure-works.com/2005/01/01")]
public class ArrayOfString : List<string>

{

}

9. Make the following modification to the IProductsService interface:

0 Add the ServiceContract attribute shown below in bold. In this attribute, specify the
appropriate namespace and name.

0 Mark each operation with an OperationContract interface explicitly specifying the
names of the Action and ReplyAction messages.

O Change the return type of the ListSelectedProducts operation to ArrayOfString.

The IProductsService interface should look like this (the new additions are shown in

bold):

// ASP.NET compatible version of the service contract
[ServiceContract(Namespace = "http://adventure-works.com/2005/01/01",
Name = "ProductsService",
SessionMode = SessionMode.Allowed)] public interface IProductsService

// Get the product number of selected products

[OperationContract(
Action = "http://adventure-works.com/2005/01/01/ListSelectedProducts",
ReplyAction =

"http://adventure-works.com/2005/01/01/ListSelectedProducts

Response')]

[TransactionFlow(TransactionFlowOption.Allowed)]

ArrayOfString ListSelectedProducts(string match);

// Get the details of a single product
[OperationContract(
Action = "http://adventure-works.com/2005/01/01/GetProduct”,
ReplyAction = "http://adventure-works.com/2005/01/01/GetProductResponse™)]
[TransactionFlow(TransactionFlowOption.Allowed)]
Product GetProduct(string productNumber);

// Get the current stock Tevel for a product
[OperationContract(
Action = "http://adventure-works.com/2005/01/01/CurrentStockLevel",
ReplyAction =
"http://adventure-works.com/2005/01/01/CurrentStockLevel
Response")]
[TransactionFlow(TransactionFlowOption.Allowed)]

10.

11.

Chapter 16 Integrating with ASP.NET Clients and Enterprise Services Components 387
int CurrentStockLevel(string productNumber);

// Change the stock level for a product
[OperationContract(
Action = "http://adventure-works.com/2005/01/01/ChangeStockLevel",
ReplyAction =
"http://adventure-works.com/2005/01/01/ChangeStockLevel
Response')]
[TransactionFlow(TransactionFlowOption.Allowed)]
bool ChangeStockLevel(string productNumber, int newStockLevel,
string shelf, int bin);

Note WCF can automatically generate names for the Action and ReplyAction mes-
sages based on the namespace and name properties of the service contract, but it is
better to be explicit in this case. Additionally, WCF includes the name of the service
contract when it generates message names, whereas the ASPNET client application
only expects the messages to be named after the namespace. For example, the default
message name generated by WCF for the action for the ListSelectedProducts opera-
tion would be http.//adventure-works.com/2005/01/01/ProductsService/ListSelected-
Products. However, the ASP.NET client application is expecting the action message to
be named http.//adventure-works.com/2005/01/01/ListSelectedProducts.

Make the following changes to the definition of the ASPNETProductsService class:

O Replace the WebService attribute with the ServiceBehavior attribute, retaining exist-
ing values for the Namespace and Name properties.

Q Do not inherit from the System.Web.Services. WebService class. This is the base class
used by ASPNET Web services only.

The definitions of the ASPNETProductsService class should look like this:

// WCF service class that implements the service contract
[ServiceBehavior(Namespace = "http://adventure-works.com/2005/01/01",

Name = "ProductsService")]
public class ASPNETProductsService : IProductsService
{
}

Make the following changes to the ListSelectedProducts method in the ASPNETProd-
uctsService class:

0 Remove the WebMethod attribute.
0 Change the return type of this method to ArrayOfString.

0 In the body of this method, amend the statement that returns an empty
List<string> object to return an ArrayOfString object instead.

0 Modily the statement that declares the productsList local variable. This variable
must be an ArrayOfString rather than a List<string>.

388 Chapter 16 Integrating with ASP.NET Clients and Enterprise Services Components

12.

13.

public ArrayOfString ListSelectedProducts(string match)
{
// Check for potential SQL Injection attack
if (IsPotentialSqlInjectionAttack(match))
{
return new ArrayOfString();

3

// Read the configuration information for connecting to the

// Create and populate a Tist of products
ArrayOfString productsList = new ArrayOfString();

}

Remove the WebMethod attribute from the remaining operations—GetProduct, Current-
StockLevel, and ChangeStockLevel.

In Solution Explorer, remove the C:\.. \ASPNETProductsService project from the solu-
tion, and then build the WCFProductsService project.

You will use the familiar WPF application to host the WCF service. This will enable you to
implement transport level security for testing purposes.

Configure the WCF host application and service

1.

Add the ProductsServiceHost project located in the Microsoft Press\WCF Step By
Step\Chapter 16\ProjectsServiceHost folder under your \My Documents folder to the
solution.

Add a reference to the WCFProductsService project to the ProductsServiceHost project.
Open the App.config file in the ProductsServiceHost project.

The configuration file defines a single service endpoint with an address of https://local-
host:8040,/ ProductsService/ProductsService.svc. The binding this endpoint uses is basicH-
ttpBinding. The BasicHttpBinding binding is designed for maximum interoperability
with Web services and client applications that do not make use of any WS-* standards,
such as ASP.NET client applications.

At the end of the configuration file you will find the <appSettings> section. This section
contains a single key setting called AdventureWorksConnection, with the value for the
connection string for accessing the AdventureWorks database. If you are not using a local
instance of SQL Server Express to host the database, you will need to modify this string.

Build the solution.

Open a Windows SDK CMD Shell prompt. Type the following command to create and
install the certificate for the ASPNETProductsService service (refer back to Chapter 4,
“Protecting an Enterprise WCF Service,” for a detailed explanation of using certificates to
provide transport level security):

8.

Chapter 16 Integrating with ASP.NET Clients and Enterprise Services Components 389

makecert -sr LocalMachine -ss My -n CN=ASPNETProductsService -sky exchange

Tip To open a Windows SDK CMD Shell prompt, on the Windows Start menu point
to All Programs, point to Microsoft Windows SDK, and then CMD Shell.

Using the Certificates snap-in in the Microsoft Management Console, retrieve the
thumbprint for the ASPNETProductsService service from the Personal certificates store
for the local computer (refer back to the section “Configure the WCF HTTP endpoint
with an SSL certificate” in Chapter 4 for a detailed description of how to do this).

In the CMD Shell prompt, type the following command to associate the certificate with
port 8040 (the port used by the WCF service), replacing the string of digits after the —h
flag with the thumbprint of your certificate:

httpcfg set ss1 -i 0.0.0.0:8040 -h cf60efed47ae63d73005c6cfa5807b3673176e98

Note Under Windows Vista, use the following netsh command, replacing the digits
for the certhash parameter with the thumbprint of your certificate:

netsh http add sslcert ipport=0.0.0.0:8000
certhash= cf60efed47ae63d73005c6cfa5807b3673176e98
appid={00112233-4455-6677-8899-AABBCCDDEEFF}

Close the CMD Shell prompt.

Test the ASP.NET client application

1.

In Solution Explorer, right-click the ProductsServiceHost project, point to Debug, and
then click Start new instance. In the ProductsServiceHost form, click Start.

Using Windows Explorer, move to the Microsoft Press\WCF Step By Step\Chapter
16\ASPNETService \ASPNETProductsClient\bin\Debug folder under your \My Docu-
ments folder. This folder contains the compiled assembly and configuration file for the
ASP.NET client application.

Edit the configuration file ASPNETProductsClient.exe.config by using Notepad. In the
<applicationSettings> section of this file, set the ASPNETProductsClient_Products
Service_ProductsService setting to https://localhost:8040/ ProductsService/Products
Service.svc. This is the URL of the WCF service. Save the file, and then close Notepad.

In Windows Explorer, double-click the file ASPNETProductsClient.exe to start the
ASP.NET client application.

The client application runs exactly as before, except this time it is connecting to the WCF
service rather than the ASPNET Web service. You can verify this if you stop the WCF ser-
vice and run the ASP.NET client application again; it should fail with the message
“Exception: Unable to connect to the remote server.”

390

Chapter 16 Integrating with ASP.NET Clients and Enterprise Services Components

The key to building a WCEF service that can be accessed by applications created using other
technologies is interoperability. You have seen throughout this book how WCF implements
many of the standard WS-* standards and protocols, making it compatible with applications
and services that adhere to these standards and protocols. To provide connectivity to older
applications, like those created by using ASP.NET, you must ensure that you provide a binding
that is compatible with the limited functionality available to these applications. For maximum
interoperability, you should supply a binding that is compatible with applications that con-
form to the WS-I Basic Profile. When you are building a WCF service, this essentially means
using the BasicHttpBinding binding and not mandating the use of message level security,
transactions, or reliable messaging. However, there is nothing to stop you adding further bind-
ings for other capable client applications to use that do enable these features.

The WS-I Basic Profile and WCF Services

The WS- Basic Profile constitutes a set of recommendations for building interoperable
Web services. It was defined by the Web Services Interoperability Organization and
describes how a Web service should apply many of the core Web services specifications
that are not covered by the WS-* specifications, such as the SOAP messaging format, gen-
erating a WSDL description of a Web service, and defining the metadata to enable Web
service discovery using Universal Description, Discovery, and Integration (UDDI). The
WS- Basic Profile essentially describes the lowest common denominator for features
that a Web service must provide and remain useful. Web services that conform to the
WS-I Basic Profile will be interoperable with client applications and other Web services
that also conform to the WS-I Basic Profile. (Web services that implement the WS-* spec-
ifications are only interoperable with other Web services that implement the same WS-
*specifications.)

You can use the WCF BasicHttpBinding binding to configure and expose endpoints that
the service can use to communicate with client applications and services that conform to
the WS-I Basic Profile 1.1, including ASPNET Web client applications.

You can download the specification for the WS-1 Basic Profile 1.1 from the WS-1 Web site
at http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24. html.

Exposing a COM+ Application as a WCF Service

Any reasonably sized organization that has been using the Microsoft Windows platform for
any length of time as the basis for their applications will doubtless have systems that make use
of COM+ applications. The good news is that WCF enables you to leverage this technology
and reuse your existing COM+ components by building a WCF service wrapper around them.
The .NET Framework 3.0 includes a useful tool called ComSvcConfig, which enables you to
integrate COM+ applications into the WCF service model (you can find this tool in the

Chapter 16 Integrating with ASP.NET Clients and Enterprise Services Components 391

CAWINDOWS\Microsoft. NET\Framework\v3.0\Windows Communication Foundation
folder). Additionally, the WCF Service Configuration Editor provides a graphical user inter-
face to many of the features available in the ComSvcContfig utility.

In the final set of exercises, you will use the WCF Service Configuration Editor and the ComS-
vcConfig utility to configure a COM+ application and enable client applications to access it in
the same way as a WCF service. The COM+ application provides an interface that is very sim-
ilar to the ProductsService service you used in the previous exercise.

Deploy the Products COM+ application to the COM+ catalog

1.

Using Visual Studio 2005, open the solution file Products.sln located in the Microsoft
Press\WCF Step By Step\Chapter 16\Products folder under your \My Documents
folder.

This solution contains a COM+ version of the ProductsService service.

Note If you are interested in how this COM+ application has been structured, follow
steps 2—4 below. However, this understanding is not crucial to the exercise, and if you
have never implemented a COM+ application you can safely skip to step 5.

Using Solution Explorer, open the Products.cs file. In the Products namespace, examine
the Product class. Notice that this class is very similar to the Product data contract you
implemented in the WCF service. As with the ASPNET Web service implementation,
this class has been tagged with the Serializable attribute:

[Serializable]
public class Product

{
public string Name;
public string ProductNumber;
public string Color;
public decimal ListPrice;
}

Inspect the IProductsService interface. This interface defines the methods that the appli-
cation exposes through COM+, in a manner very similar to a WCF service contract:

[ComVisible(true)]
[Guid("AO4ED9CA-D61C-984B-AE4D-A164BDCI0FD5™)]
public interface IProductsService
{
// Get the product number of selected products
ICollection ListSelectedProducts(string match);

// Get the details of a single product
Product GetProduct(string productNumber);

// Get the current stock Tevel for a product
int CurrentStockLevel(string productNumber);

392 Chapter 16 Integrating with ASP.NET Clients and Enterprise Services Components

// Change the stock level for a product
bool ChangeStockLevel(string productNumber, int newStockLevel,
string shelf, int bin);

}
Apart from the attributes required by COM+ to identify the component, the most impor-
tant difference between this and the WCEF version of the interface is the return type of the
ListSelectedProducts method. In the WCF service contract, the corresponding operation
returns a List<string> type. COM+ does not support generics, so this version of the
method returns an untyped ICollection object.

4. Examine the ProductsService class. This class implements the IProductsService interface
and is the equivalent of the service class in the WCF service. Additionally, this class
descends from the ServicedComponent class—this is the base class for COM+ serviced
components. Notice that this COM+ application does not expose a class interface (the
only functionality available is that specified in the IProductsService interface), but it sup-
ports transactions (this is common practice for COM+ applications):
[ClassInterface(ClassInterfaceType.None)]

[Transaction(TransactionOption.Supported)]
public class ProductsService : ServicedComponent, IProductsService

{

}

5. In Solution Explorer, edit the app.config file. Like the ASPNET Web service in the pre-
vious set of exercises, the Products COM+ application uses ADO.NET rather than the
Microsoft Enterprise Library for accessing the AdventureWorks database. The app.config
file contains the connection string that the application uses to connect to the database.
If you are not running a local instance of SQL Server Express, you will need to modify
the value property in this file to connect to the correct server.

6. Build the solution.

The application compiles into an assembly called Products.dll. This assembly is signed
because you will deploy it to the NET Framework Global Assembly Cache. (The file
holding the strong name key used for signing the assembly is called ProductsSer-
vice.snk, visible in Solution Explorer.)

7. Open a Visual Studio 2005 Command Prompt window and move to the Microsoft
Press\WCEF Step By Step\Chapter 16\Products\Products\bin\Debug folder under your
\My Documents folder.

Q \ Tip To open a Visual Studio 2005 Command Prompt window, on the Windows Start

menu point to All Programs, point to Microsoft Visual Studio 2005, point to Visual Stu-
dio Tools, and then click Visual Studio 2005 Command Prompt.

10.

11.
12.
13.

14.
15.

Chapter 16 Integrating with ASP.NET Clients and Enterprise Services Components 393

Type the following command to deploy the Products.dll assembly to the Global Assembly
Cache:

gacutil /i Products.dl1

Start the Component Services console.

Tip To start the Component Services console under Windows XP, in the Start menu,
click Control Panel, click Performance and Maintenance, click Administrative Tools, and
then double-click Component Services.

Under Windows Vista, type the command mmc in the Command Prompt window. In the
Microsoft Management Console, on the File menu, click Open, and open the file
comexp.msc in the C:\Windows\System32 folder.

In the Component Services Console, in the left pane expand the Component Service
node, expand the Computers folder, expand My Computer, right-click the COM+ Appli-
cations folder, point to New, and then click Application.

The COM+ Application Install Wizard starts.
In the “Welcome to the COM+ Application Install Wizard” page, click Next.
In the “Install or Create a New Application” page, click Create an empty application.

In the “Create Empty Application” page, type ProductsService for the name of the appli-
cation, ensure that the Activation type is set to Server application, and then click Next.

In the “Set Application Identity” page, accept the default settings, and then click Next.
In the “Thank you for using the COM+ Application Install Wizard” page, click Finish.

The ProductsService application should appear in the list of COM+ applications, as
shown highlighted in the following image:

—— BE
B Fle Ao View Window Help [ISETET
= | B@E XE@ R @ D[=)
(23 Console Root COM+ Applications 2 object{s)
@@ Component Services
froe £ F e
@]
-3 My Computer oM+ comac con+ Utiiies 115 In-Process
& Explorer Dead Lek,, Applications Out- OF Fro..
B % COM+ Explorer
1% COM+ QC Dead Letts o 3
] §° COM4 Utilties '## a‘:a
[115 In-Process Applic: | MQTriggers.., M5 Software ProductsSer... System
- 115 Out-Of -Process P Shadaw Ca... application
&2 MQTriggersApp
il
{ [+ & Productsservice
T System Appcaten
[(Z3 DCOM Config
[+ (2] Distributed Transaction C
[#-(Z2 Running Processes
- (£] Event: Wiewer {Local)
-8y Services (Local)
< £

394

16.

17.

18.
19.

20.

21.
22.

Chapter 16

Integrating with ASP.NET Clients and Enterprise Services Components

Expand the ProductsService application, right-click the Components folder, point to

New, and then click Component.

The Component Install Wizard starts.

In the “Welcome to the COM+ Component Install Wizard” page, click Next.

In the “Import or install a component” page, click Install new component(s).

In the “Select files to install” dialog box, move to the Microsoft Press\WCF Step By
Step\Chapter 16\Products\Products\bin\Debug folder under your \My Documents
folder. Click the Products.dll assembly, and then click Open.

In the “Install new components” page, verify that the Products.ProductsService compo-
nent is correctly identified, as shown in the following image, and then click Next:

Welcome to the COM+ Component Install Wizard

Install new components
Fleaze specify the file(z] that contain the components you want to install,

X]

4

Click &dd to choose the file(s) that contain the components you want to install
Files to install:

Fil=

C:ADocuments and SettingzhStudent'My

| Contents |
components

Components found:

Companent
Products. ProductsService

¥ Details

| Propertiﬂ Interfaces| Installed

CObd found Mo

Add
Eemove |

[< Back][Mewt >][Cancel]

In the “Thank you for using the COM+ Component

Install Wizard” page, click Finish.

Expand the Components folder under the ProductsService application in the Compo-
nent Services console After a short delay, the Products.ProductsService component

should appear:

Chapter 16 Integrating with ASP.NET Clients and Enterprise Services Components 395

T Component Services

@ Ele Action View Window Help

e = EME XE D2 Y[=
[=-(Z COM+ Applications | | Products ProductsService 2 obiect(s)

%% COM+ Explorer

[]"‘o COM+ QC Dead Letter Queus Listen D D

& COM+ Litilties L

[-%® 115 In-Frocess Applications Interfares Sibscriptiors

(- 115 OLt-OF -Process Fooled Applicatio

%2 MQTriggersapp

-8 M5 Software Shadow Copy Provider

@b Productsservice

[=-(Z1 Components
B Yrroducts.Pr

(2 Interfaces

(23 Subscriptions

(21 Legacy Components

(21 Roles

- System Application

-2 DCOM Config

[#-(Z] Distributed Transaction Coordinakor

#-(Z1) Running Processes

[]--@ Evertt Yiswer (Local)

-8 Services (Local)

(Bl

] |

|

23. Leave the Component Services console open.

You can now configure the COM+ application to make it available like a WCF service. The sim-
plest way to do this is to create a new WCF application configuration file and use the Integrate
command in the WCF Service Configuration Editor. This command provides similar function-
ality to using the ComSvcConfig utility from the command line.

Configure the Products COM+ application as a WCF service

1. Start the WCEF Service Configuration Editor.

Tip To start the WCF Service Configuration Editor outside of Visual Studio 2005, on
the Windows Start menu, point to All Programs, point to Microsoft Windows SDK, point
to Tools, and then click Service Configuration Editor.

2. In the WCF Service Configuration Editor, on the File menu, point to Integrate, and then
click COM+ Application.

The COM+ Integration Wizard starts.

3. Inthe “Which component interface would you like to integrate?” page, expand the Prod-
uctsService node, expand the Components folder, expand the Products.ProductsService
component, expand the Interfaces folder, select the IProductsService interface, and then
click Next:

396 Chapter 16

4.

5.

Integrating with ASP.NET Clients and Enterprise Services Components

COM+ Integration Wizard ‘z‘

‘Which component interface would you like to integrate?

Select the name of the companent interace:

(3 COM« Applications
@ MS Software Shadow Copy Provider
& MOTriggersApp
- ProductsService
= (3 Companents
=@ Products ProductsService
= (23 Interfa

< Brevious Hext » Einish Cancel

In the “Which methods do you want to integrate?” page, make sure that all four methods
are selected, and then click Next.

COM:+ Integration Wizard
Which methods do youwant to integrate?

Select the names of the methads. Only supported methods ars listed
B LitSelectedProducts)

B GetFroduct

% CurrentStockLevel

5 ChangeStockLevel

< Brevious Hext » Einish Cancel

In the “Which hosting mode would you like to use?” page, select COM+ hosted, and then
click Next.

Note that by default, the wizard also creates an endpoint for metadata exchange. Leave
this option enabled.

In the “What communication mode do you want to use?” page, select HTTP, and then
click Next.

In the “What is the base address of your service?” page, in the Address field, type http://
localhost:9090/COMProductsService, and then click Next.

8.
9.

10.

Chapter 16 Integrating with ASP.NET Clients and Enterprise Services Components 397

Note that this is the base address of the service and not its URI. The wizard will generate
an endpoint URI based on the name of the interface, and append it to this base address.
In this example, the URI of the service will actually be http://localhost:9090/COMProd-
uctsService/IProductsService.

Note If you are using Windows Vista, use the default port (port 80) rather than port
9090, and specify a base address of http://localhost/COMProductsService.

In the “The wizard is ready to create a service configuration page”, click Next.

Verify that the wizard completes without reporting any errors, and then click Finish:

COM+ Integration Wizard

The wizard is ready to create a service configuration.

A new service configuration will be created.

Microsoft (R) COM+ Service Model Integration Configuration Tool
[Microsoft (R) Windows (R) Communication Foundation, “ersion 3.0.4506.30]
Copyright {c) Microsoft Corporation. All rights reserved

Generated endpoint for interface Products ProductsService. [ProductsService.
Generated Mex endpaoint for the service

Created directory: Ci\Program Files\ComPlus Applications\{15183095-1a0d-4b4t-h021-
Created file: CAProgram Files\ComPlus Applications'{05153095-1a0d-4b4f-b021-31c12
Created file: CAProgram Files\ComPlus Applicationsi{05153085-1a0d-4b4f-b021-31c12
Warning: COM+ application ProductsService must be restarted for configuration change

The configuration is being modified to use the HTTP transport.
The configuration i= being modified to use the http:/flocalhost/COMProductsService ad

=
|

Note that when the wizard finishes, the configuration is not displayed in the WCF Ser-
vice Configuration Editor.

In the WCEF Service Configuration Editor, on the File menu, point to Open, and click
COM+ Service.

A list of all COM+ applications configured as WCF services appears (just the Prod-
uctsService application in this case).

398

Chapter 16 Integrating with ASP.NET Clients and Enterprise Services Components

11.

12.

13.

open B
Select an COM+ Application to configure:
= E_DM+ Applicati Select
Mote:
Only COM+ applications that are configured for 'WCF are listed. |f the application you want to
configure iz not listed above, please use COMSvcConfig.exe to configure it as a ‘WCF service
first.

Click the ProductsService application, and then click Select.

The configuration for this service is loaded and displayed in the WCF Service Configu-
ration Editor.

The service is named using the same globally unique identifiers GUIDs that COM+ uses
to identify the COM+ application and class. Make a note of the first GUID in the service
name.

Expand the service and verify that it has two endpoints. One is based on the wsHttp-
Binding binding and is the endpoint that client applications connect to. The other is the
metadata exchange endpoint.

The COM+ component supports transactions, so the configuration file also includes
transactional and nontransactional binding configurations for the wsHttpBinding and
netNamedPipeBinding bindings. The binding configuration referenced by the HTTP
endpoint refers to the binding that enables transactions by default.

In the left pane, expand the COM Contracts folder. This folder only appears for COM+
applications configured as WCF services. Expand the child folder named after a GUID,
and then click the exposedMethods node.

The right pane displays the four methods available through this configuration. You can
hide methods from client applications by deselecting them in this page. Do not change
anything.

Close the WCF Service Configuration Editor. Do not save any changes if you are
prompted (the configuration was saved earlier by the COM+ Integration Wizard).

14.

15.

16.

Chapter 16 Integrating with ASP.NET Clients and Enterprise Services Components 399

Using Windows Explorer, move to the C:\Program Files\ComPlus Applications folder.
This folder contains folders for each configured COM+ application. Move to the folder
with the same GUID as the application ID of the COM+ application (this is the GUID
that you noted in step 10).

This folder contains two files: a manifest file, and an application configuration file. The
application configuration file is the file you have just created using the COM+ Integra-
tion Wizard in the WCF Service Configuration Editor.

Open the application.config file using Notepad.

Leave Notepad open, and return to Visual Studio 2005. In Solution Explorer, open the
app.config file in the Products project.

Copy the appSettings section of this file to the Windows clipboard.

Return to Notepad, and paste the contents of the Windows clipboard immediately after
the opening <configuration> tag and before the <system.ServiceModel tag>, as shown in
bold below:

<?xml version="1.0" encoding="utf-8"?7>
<configuration>

<appSettings>

<add key="AdventureWorksConnection"

value="Database=AdventureWorks;Server=(1ocal) \SQLEXPRESS;Integrated
Security=SSPI;"/>

</appSettings>

<system.serviceModel>

</system.serviceModel>
</configuration>

The COM+ component needs this key/value pair to retrieve the connection string for
connecting to the database.

Note If you edited the connection string earlier, your value will differ from that
shown here.

Save the file, and close Notepad.

You should now be able to use this COM+ application just like any WCEF service.

Test the Products COM+ application

1.

Start Internet Explorer and move to the URL http://localhost:9090,/COMProductsService.

Note If you are using Windows Vista, move to the URL http.//localhost/COMProd-
uctsService.

400

Chapter 16 Integrating with ASP.NET Clients and Enterprise Services Components

Internet Explorer displays the page describing how to create a client application for the
WCEF service:

2 ProductsService.Products.ProductsService Service - Microsoft Internet Explorer

Fle Edt View Favorites Tools Hslp

Qe - @ - D @ \;) S search s‘:\?Favmes o 2 :;_', -

Address |&] http: | flocalhost 9090/ COMProductsService v B Go Links

ProductsService.Products. ProductsService Service

“You have created a service,

To test this service, you will need to create a clisnt and uss it to call the service, You can da this using the svoutil.exs tool fram
the command line with the following syntax:

svoutil.exe http://localhost:9090/COMProductsService?usdl

This will generate a configuration file and a code file that cantains the dlient class. Add the two files ta your dient application and
uss the genersted dlient class ta call the Service. For example:

c#
class Test
{
stacic void Mainj)

{
ProductsServiceClient client = new ProductsServiceClient();

/4 Use the 'client' wariable to call operations on the service.

/¢ Always close the client.
client.Close() ;

b

53

&] http:/flocalhost 9090/ COMProductsServicerwsdl % Lacal intranet

Tip If Internet Explorer displays the error message “The page cannot be displayed,’
then the COM+ application has probably shutdown due to inactivity. To restart the
application, return to the Component Services console, right-click the ProductsService
application in the COM+ Applications folder, and then click Start.

Click the link http://localhost:9090,/COMProductsService?wsdl. The WSDL description of
the service appears.

Close Internet Explorer.

In Visual Studio 2005, open the solution file ProductsClient.sln located in the Microsoft
Press\WCF Step By Step\Chapter 16\ProductsClient folder under your \My Docu-
ments folder.

This solution contains a copy of the client application for testing the ProductsService ser-
vice. This code is not quite complete; you will add a statement to create the proxy object
in a later step.

Open the Program.cs file. There is one small change to this code compared with the pro-
gram you saw in previous chapters: the statement in the Main method that invokes the
ListSelectedProducts operation returns the result into an ICollection object rather than a
List<string>, for the reasons described earlier:

ICollection productNumbers = proxy.ListSelectedProducts("Frame");

Chapter 16 Integrating with ASP.NET Clients and Enterprise Services Components 401

6. In the Project menu, click Add Service Reference. In the Add Service Reference dialog
box, enter http://localhost:9090/ COMProductsService?wsdl for the service URI and
ProductsService for the service reference name, and then click OK.

Note If you are using Windows Vista, specify http://localhost/
COMProductsService?wsdl for the service URI.

Visual Studio 2005 generates a proxy class for the service and adds it to the Services Ref-
erences folder in Solution Explorer. It also creates an application configuration file. If
you examine this file, you will see that it contains a client endpoint for accessing the
COMProductsService service called WSHttpBinding IProductsService.

7. Add the following using statement to the list at the top of the Program.cs file:
using ProductsClient.ProductsService;
The proxy class you just generated is in this namespace.

8. Inthe Main method, add the statement shown in bold below, before the try block, to cre-
ate the proxy object:
// Create a proxy object and connect to the service

ProductsServiceClient proxy = new
ProductsServiceClient("WSHttpBinding_IProductsService");

9. Start the solution without debugging.

The client application functions as it has done in previous chapters, generating a list of
bicycle frames, displaying the details of a water bottle, and displaying the stock level of
water bottles and then modifying this stock level.

Q Tip If client application console displays an error containing the text “No connection
could be made because the target machine actively refused it’, then the COM+ appli-
cation has again probably shutdown due to inactivity. To restart the application, return

to the Component Services console, right-click the ProductsService application in the
COM+ Applications folder, and then click Start.

10. Press Enter to close the client application console window.

As far as the client application is concerned, there is little discernable difference between this
implementation of the service and previous versions constructed using WCF. The fact that it
is a COM+ application is transparent to the client application.

402 Chapter 16 Integrating with ASP.NET Clients and Enterprise Services Components

Summary

In this chapter, you have seen how to build WCF services that can interoperate with ASPNET
Web client applications and how to integrate COM+ applications into a WCF solution. WCF
also supports a number of other integration and interoperability scenarios. For example, you
can register and configure a WCF service with a COM moniker, enabling you to access it from
a COM environment such as Microsoft Office VBA, Visual Basic 6.0, or Visual C++ 6.0. You can
integrate WCF services with .NET Framework Remoting, and you can build WCF services that
can interoperate with applications and services constructed using WSE. For more informa-
tion, see the topic “Interoperability and Integration” in the Microsoft Windows SDK docu-
mentation. You can also find this topic online on the Microsoft Web site at
http://msdn2.microsoft.com/en-us/library/ms730017.aspx.

John Sharp

John Sharp is a Principal Technologist at Content Master
(http://www.contentmaster.com), part of CM Group Ltd, a technical
authoring company in the United Kingdom. He researches and devel-
ops technical content for training courses, seminars, and white papers.
John is deeply involved with .NET Framework application develop-
ment and interoperability. He has written papers and courses, built
tutorials, and delivered conference presentations covering distributed
systems and Web services, application migration and interoperability
between Windows/.NET Framework and UNIX/Linux/Java, as well as development using the
C# and J# languages. John has also authored Microsoft Visual C# Step by Step, and Microsoft
Visual J# Core Reference, both published by Microsoft Press.

	Cover
	Copyright Page

	Contents at a Glance
	Table of Contents
	Acknowledgments
	Introduction
	Who This Book Is For
	Finding Your Best Starting Point in This Book
	Conventions and Features in This Book
	Conventions

	System Requirements
	Code Samples
	Installing the Code Samples
	Installing and Configuring the Microsoft .NET Framework 3.0 (Windows XP only)
	Installing the Visual Studio 2005 Extensions for .NET Framework 3.0
	Installing and Configuring the Microsoft Enterprise Library
	Installing and Configuring the AdventureWorks Database
	Installing the Microsoft Windows XP Service Pack 2 Support Tools (Windows XP only)
	Granting Access to Your Documents Folder
	Using the Code Samples
	Uninstalling the Code Samples

	Online Companion Content
	Support for This Book
	Questions and Comments

	Chapter 1: Introducing Windows Communication Foundation
	What Is Windows Communication Foundation?
	The Early Days of Personal Computer Applications
	Inter-Process Communications Technologies
	The Web and Web Services
	Using XML as a Common Data Format
	Sending and Receiving Web Service Requests
	Handling Security and Privacy in a Global Environment
	The Purpose of Windows Communication Foundation

	Building a WCF Service
	Defining Contracts
	Implementing the Service
	Configuring, Deploying, and Testing the WCF Service

	Building a WCF Client
	Service-Oriented Architectures and Windows Communication Foundation
	Summary

	Chapter 2: Hosting a WCF Service
	How Does a WCF Service Work?
	Service Endpoints
	Processing a Client Request

	Hosting a WCF Service in a User Application
	Using the ServiceHost Class
	Building a Windows Presentation Foundation Application to Host a WCF Service
	Reconfiguring the Service to Use Multiple Endpoints

	Understanding Bindings
	The WCF Predefined Bindings
	Configuring Bindings

	Hosting a WCF Service in a Windows Service
	Summary

	Chapter 3: Making Applications and Services Robust
	CLR Exceptions and SOAP Faults
	Throwing and Catching a SOAP Fault
	Using Strongly-Typed Faults
	Reporting Unanticipated Exceptions

	Managing Exceptions in Service Host Applications
	ServiceHost States and Transitions
	Handling Faults in a Host Application
	Handling Unexpected Messages in a Host Application

	Summary

	Chapter 4: Protecting an Enterprise WCF Service
	What Is Security?
	Authentication and Authorization in a Windows Environment
	Transport and Message Level Security

	Implementing Security in a Windows Domain
	Protecting a TCP Service at the Message Level
	Protecting an HTTP Service at the Transport Level
	Protecting an HTTP Service at the Message Level
	Authenticating Windows Users
	Authorizing Users
	Using Impersonation to Access Resources

	Summary

	Chapter 5: Protecting a WCF Service over the Internet
	Authenticating Users and Services in an Internet Environment
	Authenticating and Authorizing Users by Using the SQL Membership Provider and the SQL Role Provider
	Authenticating and Authorizing Users by Using Certificates
	Authenticating a Service by Using a Certificate

	Summary

	Chapter 6: Maintaining Service Contracts and Data Contracts
	Modifying a Service Contract
	Selectively Protecting Operations
	Versioning a Service
	Making Breaking and Nonbreaking Changes to a Service Contract

	Modifying a Data Contract
	Data Contract and Data Member Attributes
	Data Contract Compatibility

	Summary

	Chapter 7: Maintaining State and Sequencing Operations
	Managing State in a WCF Service
	Service Instance Context Modes
	Maintaining State with the PerCall Instance Context Mode
	Selectively Controlling Service Instance Deactivation

	Sequencing Operations in a WCF Service
	Summary

	Chapter 8: Supporting Transactions
	Using Transactions in the ShoppingCartService Service
	Implementing OLE Transactions
	Implementing WS-AtomicTransaction Transactions

	Designing a WCF Service to Support Transactions
	Transactions and Service Instance Context Modes
	Transactions and Messaging
	Transactions and Multi-Threading
	Long-Running Transactions

	Summary

	Chapter 9: Implementing Reliable Sessions
	Using Reliable Sessions
	Implementing Reliable Sessions with WCF

	Detecting and Handling Replay Attacks
	Configuring Replay Detection with WCF

	Summary

	Chapter 10: Programmatically Controlling the Configuration and Communications
	The WCF Service Model
	Services and Channels
	Behaviors
	Composing Channels into Bindings
	Inspecting Messages

	Controlling Client Communications
	Connecting to a Service Programmatically
	Sending Messages Programmatically

	Summary

	Chapter 11: Implementing OneWay and Asynchronous Operations
	Implementing OneWay Operations
	The Effects of a OneWay Operation
	OneWay Operations and Timeouts
	Recommendations for Using OneWay Methods

	Invoking and Implementing Operations Asynchronously
	Invoking an Operation Asynchronously in a Client Application
	Implementing an Operation Asynchronously in a WCF Service

	Using Message Queues
	Summary

	Chapter 12: Implementing a WCF Service for Good Performance
	Using Service Throttling to Control Resource Use
	Configuring Service Throttling

	Transmitting Data by Using MTOM
	Sending Large Binary Data Objects to a Client Application

	Streaming Data from a WCF Service
	Enabling Streaming in a WCF Service and Client Application
	Designing Operations to Support Streaming
	Security Implications of Streaming

	Summary

	Chapter 13: Routing Messages
	How the WCF Service Runtime Dispatches Operations
	ChannelDispatcher and EndpointDispatcher Objects Revisited
	EndpointDispatcher Objects and Filters

	Routing Messages to Other Services
	WCF and the WS-Addressing Specification
	The WS-Referral Specification and Dynamic Routing

	Summary

	Chapter 14: Using a Callback Contract to Publish and Subscribe to Events
	Implementing and Invoking a Client Callback
	Defining a Callback Contract
	Implementing an Operation in a Callback Contract
	Invoking an Operation in a Callback Contract
	Reentrancy and Threading in a Callback Operation
	Implementing a Duplex Channel

	Using a Callback Contract to Implement Events
	Delivery Models for Publishing and Subscribing

	Summary

	Chapter 15: Managing Identity with Windows CardSpace
	Using Windows CardSpace to Access a WCF Service
	Implementing Claims-Based Security
	Using a Third-Party Identity Provider
	Claims-Based Authentication in a Federated Environment

	Summary

	Chapter 16: Integrating with ASP.NET Clients and Enterprise Services Components
	Creating a WCF Service that Supports an ASP.NET Client
	Exposing a COM+ Application as a WCF Service
	Summary

	About the Author

