

Learning	CoreOS

Table	of	Contents

Learning	CoreOS

Credits

About	the	Authors

About	the	Reviewer

www.PacktPub.com

eBooks,	discount	offers,	and	more

Why	subscribe?

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	CoreOS,	Yet	Another	Linux	Distro?

Introduction	to	CoreOS

CoreOS	versus	other	Linux	distributions

CoreOS	high-level	architecture

Service	discovery

etcd

Container	management

Linux	Container

cgroups

Namespace

Chroot

Docker

Docker	versus	LXC

Rocket

CoreOS	cluster	management:

systemd

fleet

CoreOS	and	OpenStack

Summary

2.	Setting	Up	Your	CoreOS	Environment

Installing	GIT

Installing	VirtualBox

Introduction	to	Vagrant

Installing	Vagrant

Vagrant	configuration	files

Cloud-config

The	config.rb	configuration	file

Starting	a	CoreOS	VM	using	Vagrant

Setting	up	CoreOS	on	VMware	vSphere

Installing	VMware	vSphere	Client

Introduction	to	Docker

Image

Container

Volumes

Links

Installing	Docker

Creating	a	sample	Docker	image	using	Docker	File

Docker	File

Pulling	the	Docker	image	from	Docker	Hub

Running	Docker	Image

Summary

3.	Creating	Your	CoreOS	Cluster	and	Managing	the	Cluster

Introduction	to	clustering

The	why	and	the	benefits	of	clustering

CoreOS	clustering

Cluster	discovery

Static	discovery

etcd	discovery

DNS	discovery

systemd

Service	unit	files

Starting	and	stopping	a	service

fleet

Architectural	overview

Engine

Agent

fleetctl

Standard	(local)	and	global	units

Unit	file	options	for	fleet

Instantiating	the	service	unit	in	the	cluster

Recovering	from	node	failure

Summary

4.	Managing	Services	with	User-Defined	Constraints

Introduction	to	service	constraints

Predefined	constraints	using	metadata

Service	level	affinity/anti-affinity

Node-level	affinity

High	availability

Summary

5.	Discovering	Services	Running	in	a	Cluster

Introduction	and	necessity	of	service	discovery

Mechanism	for	service	discovery

Operations	of	etcd

Operations	using	etcdctl

etcd	write	using	etcdctl

etcd	read	using	etcdctl

etcd	watch	using	etcdctl

Example	of	etcd	using	etcdctl

Operations	using	cURL

etcd	read	using	curl

etcd	write	using	curl

etcd	watch	using	curl

Example	using	curl

HAProxy	and	service	discovery

Summary

6.	Service	Chaining	and	Networking	Across	Services

Introduction	to	and	necessity	of	service	chaining

Introduction	to	Docker	networking

Container–Container	communication

Docker0	bridge	and	veth	pair

Using	Link

Using	common	network	stack

Container	to	CoreOS	host	communication

Host	networking

docker0	bridge

Container	to	CoreOS	outside	world	communication

Host	networking

Port	mapping

Container	–	Container	communication	in	different	CoreOS	nodes

Introduction	to	Weave

Introduction	to	Flannel/Rudder

Installation

Setting	up	Weave

Container	startup

Integrating	Flannel	with	CoreOS

Summary

7.	Creating	a	Virtual	Tenant	Network	and	Service	Chaining	Using	OVS

Introduction	to	OVS

OVS	architectural	overview

Advantages	of	using	OVS	in	CoreOS

Introduction	to	overlay	and	underlay	networks

Introduction	to	network	virtualization

OpenFlow	support	in	OVS

OpenFlow	switch

OpenFlow	controller

OpenFlow	channel

Running	OVS	in	CoreOS

Attaching	docker0	bridge	to	OVS

Configuration	in	CoreOS	Instance	1

Configurations	during	the	instantiation	of	a	CoreOS	node	1	in	a	cluster

Configurations	during	the	creation	of	a	container	for	CoreOS	Instance	1

Configuration	in	CoreOS	Instance	2

Configurations	during	the	instantiation	of	CoreOS	node	2	in	a	cluster

Configurations	during	the	creation	of	a	container	for	CoreOS	Instance	2

Attaching	container’s	veth	interface	to	OVS

Configuration	in	CoreOS	Instance	1

Configurations	during	the	instantiation	of	a	CoreOS	node	in	a	cluster

Configurations	during	the	creation	of	the	first	container	for	a	tenant

Configurations	during	the	creation	of	subsequent	containers	for	a	tenant

Configuration	in	CoreOS	Instance	2

Configurations	during	the	instantiation	of	a	CoreOS	node	in	a	cluster

Configurations	during	the	creation	of	the	first	container	for	a	tenant

Configurations	during	the	creation	of	subsequent	containers	for	a	tenant

Looping	issue

Summary

8.	What	Next?

Container	security

Update	and	patches	–	CoreUpdate

Dex

sysdig

Competitive	container	orchestration	mechanism

Kubernetes

Kubernetes	master

Kubernetes	nodes

Kubernetes	pods

Kubernetes	service

CoreOS	and	Kubernetes

Apache-Mesos

Mesos	master

Mesos	agent

ZooKeeper

Mesos	frameworks

Swarm

Docker	data	volume	management

Introduction	to	Flocker

Flocker	control	services

Flocker	agents

Flocker	plugin	for	Docker

Open	Container	Project

Summary

Index

Learning	CoreOS

Learning	CoreOS
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	March	2016

Production	reference:	1160316

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-830-4

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Kingston	Smiler.	S

Shantanu	Agrawal

Reviewer

Aneesh	Kumar

Acquisition	Editor

Divya	Poojari

Content	Development	Editor

Shali	Deeraj

Technical	Editor

Mohit	Hassija

Copy	Editors

Dipti	Mankame

Jonathan	Todd

Project	Coordinator

Kinjal	Bari

Proofreader

Safis	Editing

Indexer

Priya	Sane

Graphics

Kirk	D’Penha

Production	Coordinator

Shantanu	N.	Zagade

Cover	Work

Shantanu	N.	Zagade

About	the	Authors
Kingston	Smiler.	S	is	a	seasoned	professional	with	12	years	of	experience	in	software
development	and	presales,	encompassing	wide	range	of	skill	set,	roles,	and	industry
verticals.	He	has	solid	expertise	in	data	communication	networking	and	software-based
switching	and	routing	solutions,	and	virtualization	platforms	such	as	OpenStack,
OpenDaylight	controller,	Docker	Containers,	and	CoreOS.	He	is	currently	working	as	an
advisor	and	technical	consultant	for	networking	companies	in	the	development	of	Layer2
and	Layer3	IP	protocols.

He	also	has	working	experience	in	building	IoT	sensor	networks	with	IoT	OSes	such	as
RIOT	and	Contiki;	SoCs	such	as	Arduino,	Raspberry	Pi,	and	Intel	Galileo;	and	IoT
protocols	such	as	802.14.5	(Zigbee),	6lowpan,	RPL,	CoAP,	and	MQTT.	He	is	interested	in
building	small-scale	robots	using	Arduino	and	ROS	Robotics	platforms.

Active	in	various	networking	standard	bodies	such	as	IETF,	IEEE,	and	ONF,	Kingston	has
proposed	two	drafts	in	TRILL	WG	and	one	draft	in	MPLS	WG	of	IETF.	With	the	current
surge	in	SDN,	virtualization,	and	NFV,	his	primary	focus	is	towards	these	areas.	He
completed	a	bachelor	of	engineering	degree	in	computer	science	from	Madras	University.

Kingston	is	also	the	author	of	OpenFlow	Cookbook,	Packt	Publishing.

First	and	foremost,	I	would	like	to	thank	the	lord	to	give	me	immense	confidence	and
energy	to	start	and	complete	this	book	successfully.	I	want	to	thank	my	kids,	mother,
brother,	sister,	and	all	my	other	family	members	for	their	support	and	encouragement.
Thanks	to	my	coauthor	Shantanu	Agrawal	who	helped	me	finish	the	book	on	time.	Thanks
to	Shali	and	Divya	for	their	reviews	and	helping	me	to	finish	this	book	despite	their	busy
schedule.	Special	thanks	to	my	wife	for	her	patience	and	support	in	bringing	up	this	book
as	most	part	of	the	book	was	written	on	weekends,	at	night,	and	during	vacations.

Shantanu	Agrawal	has	over	15	years	of	experience	in	the	telecom	industry	working	in
systems	having	high	transaction	rates	with	scalable	architectures.	He	has	extensive
experience	of	consulting	for	solutions,	designing,	and	implementing	high-performing	and
highly	available	software.	He	has	exposure	to	the	complete	life	cycle	of	the	product
development	and	deployment	challenges.	During	his	journey,	he	has	worked	on	different
hardware	platforms	and	operating	systems,	such	as	proprietary	UNIX-based	hardware,
embedded	systems	with	real-time	operating	systems,	Linux,	Solaris,	and	so	on.	He	has
experience	in	the	core	network	elements	and	protocols	used	in	GSM/UMTS/LTE
networks.	He	graduated	from	IIT	BTU	and	did	post-graduation	from	BITS	Pilani.

I	would	thank	my	family	for	allowing	me	to	squeeze	their	time	for	this	book	and	for	being
understanding.	I	would	also	want	to	thank	my	coauthor	Kingston	Smiler	for	driving	this	to
completion	and	for	his	excellent	contributions.

About	the	Reviewer
Aneesh	Kumar	is	a	principal	engineer	and	Cloud	evangelist	at	Pramati	Technologies.	He
is	a	developer,	hacker,	and	DevOps.	Aneesh	brings	with	him	over	7	years	of	in-depth
experience	in	designing	and	building	complex	Cloud	architecture	and	web	platforms.	He’s
passionate	about	open	source	technologies	and	cloud	infrastructures	at	scale.

www.PacktPub.com

eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Preface
As	more	and	more	applications	are	moving	towards	the	cloud	with	server	virtualization,
there	is	a	clear	necessity	to	deploy	the	user	applications	and	services	very	fast	and	make
them	reliable	with	assured	SLA	by	deploying	the	services	in	a	right	set	of	servers.	This
becomes	more	complex	when	these	services	are	dynamic	in	nature,	which	results	in
making	these	services	autoprovisioned	and	autoscaled	over	a	set	of	nodes.	The
orchestration	of	the	user	application	is	not	limited	to	deploy	the	services	in	the	right	set	of
server	or	virtual	machines	rather	to	be	extended	to	provide	network	connectivity	across
these	services	to	provide	Infrastructure	as	a	Service	(IaaS).	Compute,	network,	and
storage	are	the	three	main	resources	to	be	managed	by	the	cloud	provider	in	order	to
provide	(IaaS).	Currently,	there	are	various	mechanisms	to	handle	these	requirements	in
more	abstract	fashion.	There	are	multiple	cloud	orchestration	frameworks,	which	can
manage	the	compute,	storage,	and	networking	resources.	OpenStack,	Cloud	Stack,	and
VMware	vSphere	are	some	of	the	cloud	platforms	that	orchestrate	these	resource	pools
and	provide	IaaS.

The	server	virtualization	provided	by	a	Virtual	Machine	(VM)	has	its	own	overhead	of
running	a	separate	instance	of	the	operating	system	on	every	virtual	machine.	This	brings
down	the	number	of	VM	instances	that	can	be	run	on	the	server,	which	heavily	impacts
the	operational	expense.	As	Linux	namespace,	containers	technologies,	such	as	docker	and
rkt,	are	gaining	its	popularity;	one	more	level	of	server	virtualization	can	be	introduced	by
deploying	the	application	services	inside	a	container	rather	than	VM	However,	there	is	a
necessity	of	an	orchestration	and	clustering	framework	for	the	containers	or	dockers	for
deploying	the	services	in	the	cluster,	the	discovery	of	the	service	and	service	parameters,
providing	network	across	these	containers	or	dockers,	and	so	on.	CoreOS	is	developed	for
this	purpose.

CoreOS	is	a	light-weight	cloud	service	orchestration	operating	system	based	on	Google
Chrome.	CoreOS	is	developed	primarily	for	orchestrating	applications/services	over	a
cluster	of	nodes.	CoreOS	extends	the	existing	services	provided	by	Linux	to	work	for	a
distributed	cluster	and	not	limited	to	a	single	node.

What	this	book	covers
Chapter	1,	CoreOS,	Yet	Another	Linux	Distro?,	explains	the	basics	of	containers,	dockers,
and	high-level	architecture	of	CoreOS.

Chapter	2,	Setting	Up	Your	CoreOS	Environment,	teaches	you	how	to	set	up	and	run
CoreOS	with	a	single	machine	using	Vagrant	and	VirtualBox.	It	also	covers	how	to	create
and	run	docker	images	and	get	familiarized	with	the	important	configuration	files	and	their
contents.

Chapter	3,	Creating	Your	CoreOS	Cluster	and	Managing	the	Cluster,	teaches	you	how	to
set	up	the	CoreOS	cluster	with	multiple	machines.	You	will	also	learn	how	machines	are
discovered	and	services	are	scheduled	on	those	machines.	Also,	you	will	learn	about
starting	and	stopping	a	service	using	Fleet.

Chapter	4,	Managing	Services	with	User-Defined	Constraints,	gives	an	introduction	about
service	constraints,	which	helps	to	deploy	services	on	suitable	members.

Chapter	5,	Discovering	Services	Running	in	Cluster,	explains	the	need	and	mechanism	for
the	discovery	of	services	running	on	a	cluster.	Also,	you	will	learn	about	two	important
tools,	which	are	used	widely	for	service	discovery:	etcdctl	and	curl.

Chapter	6,	Service	Chaining	and	Networking	Across	Services,	explains	the	importance	of
the	container	communications	and	the	various	possibilities	provided	by	CoreOS	and
docker	to	provide	the	communication.

Chapter	7,	Creating	a	Virtual	Tenant	Network	and	Service	Chaining	Using	OVS,	explains
the	importance	of	OVS	in	container	communications	and	the	various	advantages	provided
by	OVS.	The	chapter	details	how	the	services	deployed	by	different	customers/tenants
across	the	CoreOS	cluster	can	be	linked/connected	using	OVS.

Chapter	8,	What	Next?,	touches	upon	some	advanced	Docker	and	Core	OS	topics	and	also
discusses	about	what	is	coming	up	in	CoreOS.

What	you	need	for	this	book
The	following	software	would	be	required	for	installing	and	bringing	a	sample	CoreOS
cluster.

Git	-	https://git-scm.com/download
VirtualBox	-	https://www.virtualbox.org/wiki/Downloads
Vagrant	-	http://www.vagrantup.com/downloads.html
VMware	vSphere	Client	-
http://vsphereclient.vmware.com/vsphereclient/1/9/9/3/0/7/2/VMware-viclient-all-
5.5.0-1993072.exe
CoreOS	image	for	VMware	-	http://stable.release.core-os.net/amd64-
usr/current/coreos_production_vmware_ova.ova
Docker	-	https://docs.docker.com/engine/installation/

https://git-scm.com/download
https://www.virtualbox.org/wiki/Downloads
http://www.vagrantup.com/downloads.html
http://vsphereclient.vmware.com/vsphereclient/1/9/9/3/0/7/2/VMware-viclient-all-5.5.0-1993072.exe
http://stable.release.core-os.net/amd64-usr/current/coreos_production_vmware_ova.ova
https://docs.docker.com/engine/installation/

Who	this	book	is	for
This	book	is	for	cloud	or	enterprise	administrators	and	application	developers	who	would
like	to	gain	knowledge	about	CoreOS	to	deploy	a	cloud	application	or	microservices	on	a
cluster	of	cloud	servers.	It	is	also	aimed	at	administrators	with	basic	networking
experience.	You	do	not	need	to	have	any	knowledge	of	CoreOS.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“A
directory,	coreos-vagrant,	is	created	after	git	clone.”

A	block	of	code	is	set	as	follows:

[Unit]

Description=Example

After=docker.service

Requires=docker.service

[Service]

TimeoutStartSec=0

ExecStartPre=-/usr/bin/docker	kill	busybox1

ExecStartPre=-/usr/bin/docker	rm	busybox1

ExecStartPre=/usr/bin/docker	pull	busybox

ExecStart=/usr/bin/docker	run	--name	busybox1	busybox	/bin/sh	-c	"while	

true;	do	echo	Hello	World;	sleep	1;	done"

ExecStop=/usr/bin/docker	stop	busybox1

Any	command-line	input	or	output	is	written	as	follows:

weave	status

...

								Service:	dns

									Domain:	weave.local.

							Upstream:	10.0.2.3

												TTL:	1

								Entries:	2

								Service:	proxy

								Address:	unix:///var/run/weave/weave.sock

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Click	on	Datastore
ISO	File	and	select	the	uploaded	iso	file	from	the	data	store.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/LearningCoreOS_ColorImages.pdf

https://www.packtpub.com/sites/default/files/downloads/LearningCoreOS_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	CoreOS,	Yet	Another	Linux
Distro?
As	more	and	more	applications	move	toward	the	cloud	with	server	virtualization,	there	is	a
clear	necessity	for	deploying	user	applications	and	services	very	fast	and	reliably	with
assured	SLA	by	deploying	the	services	in	the	right	set	of	servers.	This	becomes	more
complex	when	these	services	are	dynamic	in	nature,	which	results	in	making	these
services	auto-provisioned	and	auto-scaled	over	a	set	of	nodes.	The	orchestration	of	the
user	application	is	not	limited	to	deploying	the	services	in	the	right	set	of	servers	or	virtual
machines,	rather	to	be	extended	to	provide	network	connectivity	across	these	services	to
provide	Infrastructure	as	a	Service	(IaaS).	Compute,	network,	and	storage	are	the	three
main	resources	to	be	managed	by	the	cloud	provider	in	order	to	provide	IaaS.	Currently,
there	are	various	mechanisms	to	handle	these	requirements	in	a	more	abstract	fashion.
There	are	multiple	cloud	orchestration	frameworks	that	can	manage	compute,	storage,	and
networking	resources.	OpenStack,	Cloud	Stack,	and	VMware	vSphere	are	some	of	the
cloud	platforms	that	perform	orchestration	of	these	resource	pools	and	provide	IaaS.	For
example,	the	Nova	service	in	OpenStack	manages	the	compute	resource	pool	and	creates
VMs;	the	Neutron	service	provides	the	required	information	to	provide	virtual	network
connectivity	across	VMs;	and	so	on.

The	IaaS	cloud	providers	should	provide	all	three	resources	on-demand	to	the	customers,
which	provide	a	pay-as-you-go	model.	The	cloud	provider	maintains	these	resources	as	a
pool	and	allocates	the	resource	to	a	customer	on-demand.	This	provides	flexibility	for	the
customer	to	start	and	stop	the	services	based	on	their	business	needs	and	can	save	their
OPEX.	Typically,	in	an	IaaS	model,	the	cloud	service	provider	offers	these	resources	as	a
virtualized	resource,	that	is,	a	virtual	machine	for	compute,	a	virtual	network	for	network,
and	virtual	storage	for	storage.	The	hypervisor	running	in	the	physical	server/compute
nodes	provides	the	required	virtualization.

Typically,	when	an	end	user	requests	an	IaaS	offering	with	a	specific	OS,	the	cloud
provider	creates	a	new	VM	(Virtual	Machine)	with	the	OS	requested	by	the	user	in	their
cloud	server	infrastructure.	The	end	user	can	install	their	application	in	this	VM.	When	the
user	requests	more	than	one	VM,	the	cloud	provider	should	also	provide	the	necessary
network	connectivity	across	these	VMs	in	order	to	provide	connectivity	across	the
services	running	inside	these	VMs.	The	cloud	orchestration	framework	takes	care	of
instantiating	the	VMs	in	one	of	the	available	compute	nodes	in	the	cluster,	along	with
associated	services	like	providing	virtual	network	connectivity	across	these	VMs.	Once
the	VM	has	been	spawned,	configuration	management	tools	like	Chef	or	Puppet	can	be
used	to	deploy	the	application	services	over	these	VMs.	Theoretically,	this	works	very
well.

There	are	three	main	problems	with	this	approach:

All	the	VMs	in	the	system	should	run	their	own	copy	of	the	operating	system	with
their	own	memory	management	and	virtual	device	drivers.	Any	application	or

services	deployed	over	these	VMs	will	be	managed	by	the	OS	running	in	the	VM.
When	there	are	multiple	VMs	running	in	a	server,	all	the	VMs	run	a	separate	copy	of
OS,	which	results	in	overhead	with	respect	to	CPU	and	memory.	Also,	as	the	VMs
run	their	own	operating	system,	the	time	taken	to	boot/bring	up	a	VM	is	very	high.
The	operating	system	doesn’t	provide	service-level	virtualization	that	is	running	a
service/application	over	a	set	of	VMs	which	are	part	of	cluster.	The	OS	running	in	the
VM	is	a	general	purpose	operating	system	that	lacks	the	concept	of	clustering	and
deploying	the	application	or	service	over	this	cluster.	In	short,	the	operating	system
provides	machine-level	virtualization	and	not	service-level	virtualization.
The	management	effort	required	to	deploy	a	service/software	from	a	development	to
a	production	environment	is	very	high.	This	is	because	each	software	package
typically	has	dependencies	with	other	software.	There	are	thousands	of	packages;
each	package	comes	with	a	different	set	of	configuration,	with	most	combinations	of
configurations	having	dependency	with	respect	to	performance	and	scaling.

CoreOS	addresses	all	these	problems.	Before	looking	into	how	CoreOS	solves	these
problems,	we	will	look	at	a	small	introduction	to	CoreOS.

Introduction	to	CoreOS
CoreOS	is	a	lightweight	cloud	service	orchestration	operating	system	based	on	Google’s
Chrome	OS.	CoreOS	is	developed	primarily	for	orchestrating	applications/services	over	a
cluster	of	nodes.	Every	node	in	the	cluster	runs	CoreOS	and	one	of	the	CoreOS	nodes	in
the	cluster	will	be	elected	as	the	master	node	by	the	etcd	service.	All	the	nodes	in	the
cluster	should	have	connectivity	to	the	master	node.	All	the	slave	nodes	in	the	system
provide	information	about	the	list	of	services	running	inside	their	system,	along	with	the
configuration	parameter	to	the	master	node.	In	order	to	do	this,	we	may	have	to	configure
fleet	units	in	such	a	way	that	when	we	start	a	fleet	unit	with	the	fleetctl	command,	it
should	push	its	details	such	as	IP	and	port	to	the	etcd	service.	It	is	the	responsibility	of	the
master	node	to	receive	the	service	information	and	publish	to	all	the	other	nodes	in	the
cluster.	In	normal	circumstances,	the	slave	nodes	won’t	talk	to	each	other	regarding
service	availability.	The	etcd	service	running	in	all	the	nodes	in	the	cluster	is	responsible
for	electing	the	master	node.	All	nodes	in	the	system	interact	with	the	etcd	service	of	the
master	node	to	get	the	service	and	configuration	information	of	the	services	running	in	all
other	nodes.	The	following	diagram	depicts	the	CoreOS	cluster	architecture,	wherein	all
the	nodes	in	the	cluster	run	CoreOS	and	other	vital	components	of	CoreOS	like	etcd,
systemd,	and	so	on.	The	etcd	and	fleet	services	are	used	for	service	discovery	and	cluster
management	respectively.	In	this,	all	three	nodes	are	configured	with	the	same	cluster	ID,
so	that	all	these	nodes	can	be	part	of	a	single	cluster.	It	is	not	possible	for	a	node	to	be	part
of	multiple	clusters.

CoreOS	cluster

All	the	applications	or	services	are	deployed	as	a	Linux	container	in	the	CoreOS.	The
Linux	container	provides	a	lightweight	server	virtualization	infrastructure	without	running
its	own	operating	system	or	any	hypervisor.	It	uses	the	operating	system-level

virtualization	techniques	provided	by	the	host	OS	using	the	namespace	concept.	This
provides	drastic	improvements	in	terms	of	scaling	and	performance	of	virtualization
instances	running	over	the	physical	server.	This	addresses	the	first	issue	of	running	the
application	inside	a	VM.

The	following	diagram	depicts	the	difference	between	applications	running	inside	a	VM
and	applications	running	in	an	LXC	container.	In	the	following	diagram,	the	VM	way	of
virtualization	has	a	guest	OS	installed	in	the	VM	along	with	the	host	OS.	In	a	Linux
container-based	implementation,	the	container	doesn’t	have	a	separate	copy	of	the
operating	system;	rather,	it	uses	the	service	provided	by	the	host	operating	system	for	all
the	OS-related	functionalities.

Virtual	Machine	versus	Linux	Container

CoreOS	extends	the	existing	services	provided	by	Linux	to	work	for	a	distributed	cluster
and	not	limited	to	a	single	node.	As	an	example,	CoreOS	extends	the	system	management
service	provided	by	most	of	the	Linux	distribution	for	starting,	stopping,	or	restarting	any
applications/services	to	run	on	a	cluster	of	nodes	rather	than	a	single	node	using	the	fleet
tool.	Instead	of	running	an	application	limited	to	its	own	node,	the	services	are	submitted
to	fleet,	which	acts	as	a	cluster	manager	and	instantiates	the	service	in	any	one	of	the
nodes	in	the	cluster.	It	is	also	possible	to	launch	the	container	in	a	specific	set	of	nodes	by
applying	a	constraint.	This	addresses	the	second	issue	with	using	VMs,	discussed	earlier	in
this	chapter.

CoreOS	uses	Docker/Rocket	as	a	container	to	deploy	services	inside	the	CoreOS	cluster.

Docker	provides	an	easy	way	of	bundling	a	service	and	its	dependent	module	as	a	single
monolithic	image	that	can	be	shipped	from	development.	In	the	deployment,	the	DevOps
person	can	simply	fetch	the	docker	container	from	the	development	person	and	can	deploy
directly	into	the	CoreOS	nodes	without	performing	any	operations	like	building	a
compilation	or	build	environment	and	rebuilding	the	image	on	the	target	platform	and	so
on.	This	bridges	the	gap	between	the	development	and	deployment	of	a	service.	This
addresses	the	third	issue	with	using	VM,	discussed	earlier	in	this	chapter.

CoreOS	versus	other	Linux	distributions
Even	though	CoreOS	is	yet	another	Linux	distribution	like	Fedora/Centos,	the	key
difference	between	CoreOS	and	other	standard	Linux	distributions	are	as	follows:

CoreOS	is	not	designed	to	run	any	applications	or	services	directly.	Any	application
to	be	run	inside	CoreOS	should	be	deployed	as	a	container	(which	can	either	be
Docker/Rocket).	So	it	is	not	possible	to	install	any	software	packages	in	CoreOS	and
hence	CoreOS	doesn’t	have	any	installation	software	packages	like	yum,	apt,	and	so
on.	In	short,	CoreOS	is	a	stripped-down	version	of	a	Linux	distribution	that	doesn’t
have	any	inbuilt	user	applications	or	library	installed.
Most	of	the	Linux	distributions	are	meant	to	run	as	a	host	operating	system	either	in	a
data	center	server	or	in	a	typical	desktop	PC.	They	are	not	developed	to	manage	a
cluster	of	nodes/the	cloud;	rather,	they	will	be	part	of	the	cloud	that	is	being	managed
by	other	cloud	orchestration	platforms.	However,	CoreOS	is	a	Linux	distribution	that
is	builtout	for	the	management	of	a	massive	server	infrastructure	with	clustering.	The
CoreOS	cluster	is	a	group	of	physical	or	virtual	machines	that	runs	CoreOS	with	the
same	cluster	ID.	The	services	running	in	the	cluster	nodes	are	managed	by	fleet,
which	is	the	CoreOS	orchestration	tool.	Software	updates	in	a	traditional	Linux
distribution	are	done	by	updating	the	packages	one	by	one.	However,	CoreOS
supports	a	scheme	called	fast	patch,	wherein	the	entire	CoreOS	OS	is	updated	once.
The	CoreUpdate	program	is	used	for	updating	CoreOS	in	a	server,	cluster,	or
complete	data	center.
CoreOS	is	extremely	lightweight	when	compared	to	traditional	Linux	distributions.

CoreOS	high-level	architecture
The	CoreOS	node	in	a	cluster	comprises	the	following	main	components:

etcd
systemd
fleet
Docker/Rocket	containers

CoreOS	High-level	Architecture

The	CoreOS	node	runs	etcd,	systemd,	and	the	fleet	service	in	all	of	the	nodes	in	the
cluster.	etcd,	which	is	running	in	all	the	nodes,	talk	to	each	other	and	elects	one	node	as
the	master	node.	All	the	services	running	inside	the	node	will	be	advertised	to	this	master
node,	which	makes	etcd	provide	a	service	discovery	mechanism.	Similarly,	fleetd	running
in	different	nodes	maintains	the	list	of	services	running	in	different	nodes	in	its	service
pool,	which	provides	service-level	orchestration.	fleetctl	and	etcdctl	are	command-
line	utilities	to	configure	the	fleet	and	etcd	utilities	respectively.

Refer	to	subsequent	sections	of	this	chapter	to	understand	the	functionality	of	each
component	in	detail.

These	components	together	provide	three	main	functionalities	for	CoreOS	as	follows:

Service	discovery
Cluster	management
Container	management

Service	discovery
In	the	CoreOS	environment,	all	user	applications	are	deployed	as	services	inside	a
container	that	can	either	be	a	Docker	container	or	a	Rocket	container.	As	different
applications/services	are	running	as	separate	containers	in	the	CoreOS	cluster,	it	is
inevitable	to	announce	the	services	provided	by	each	node	to	all	the	nodes	in	the	cluster.
Along	with	service	availability,	it	is	also	required	that	each	service	advertises	the
configuration	parameters	to	other	services.	This	service	advertisement	is	very	important
when	the	services	are	tightly	coupled	and	dependent	on	each	other.	For	example,	the	web
service	should	know	details	about	the	database	services,	about	the	connection	string,	or
type	of	database	and	so	on.	CoreOS	provides	a	way	for	each	service	to	advertise	its	service
and	configuration	information	using	the	etcd	service.	The	data	announced	to	the	etcd
service	will	be	given/announced	to	all	the	nodes	in	the	cluster	by	the	master	node.

etcd
etcd	is	a	distributed	key	value	store	that	stores	data	across	the	CoreOS	cluster.	The	etcd
service	is	used	for	publishing	services	running	on	a	node	to	all	the	other	nodes	in	the
cluster,	so	that	all	the	services	inside	the	cluster	discover	other	services	and	configuration
details	of	other	services.	etcd	is	responsible	for	electing	the	master	node	among	the	set	of
nodes	in	the	cluster.	All	nodes	in	the	cluster	publish	their	services	and	configuration
information	to	the	etcd	service	of	the	master	node,	which	provides	this	information	to	all
the	other	nodes	in	the	cluster.

Container	management
The	key	element	of	the	CoreOS	building	block	is	a	container	that	can	either	be	Docker	or
Rocket.	The	initial	version	of	CoreOS	officially	supports	Docker	as	the	means	for	running
any	service	application	in	the	CoreOS	cluster.	In	the	recent	version,	CoreOS	supports	a
new	container	mechanism	called	Rocket,	even	though	CoreOS	maintains	backward
compatibility	with	Docker	support.	All	customer	applications/services	will	be	deployed	as
a	container	in	the	CoreOS	cluster.	When	multiple	services	are	running	inside	a	server	for
different	customers,	it	is	inevitable	to	isolate	the	execution	environment	from	one
customer	to	another	customer.	Typically,	in	a	VM-based	environment,	each	customer	will
be	given	a	VM	and	inside	this	VM	the	customer	can	run	their	own	service,	which	provides
complete	isolation	of	the	execution	environment	between	customers.	The	container	also
provides	a	lightweight	virtualization	environment	without	running	a	separate	copy	of	the
VM.

Linux	Container
Linux	Container	(LXC)	is	a	lightweight	virtualization	environment	provided	by	the
Linux	kernel	to	provide	system-level	virtualization	without	running	a	hypervisor.	LXC
provides	multiple	virtualized	environments,	each	of	them	being	inaccessible	and	invisible
from	the	other.	Thus,	an	application	that	is	running	inside	one	Linux	container	will	not
have	access	to	the	other	containers.

LXC	combines	three	main	concepts	for	resource	isolation	as	follows:

Cgroups
Namespaces
Chroot

The	following	diagram	explains	in	detail	about	LXC	and	the	utilities	required	to	provide
LXC	support:

Linux	Containers

Libvirt	is	a	‘C’	library	toolkit	that	is	used	to	interact	with	the	virtualization	capabilities
provided	by	the	Linux	kernel.	It	acts	as	a	wrapper	layer	for	accessing	the	APIs	exposed	by
the	virtualization	layer	of	the	kernel.

cgroups

Linux	cgroups	is	a	feature	provided	by	the	kernel	to	restrict	access	to	system	resource	for
a	process	or	set	of	processes.	The	Linux	cgroup	provides	a	way	to	reserve	or	allocate
resources,	such	as	CPU,	system	memory,	network	bandwidth	and	so	on,	to	a	group	of
processes/tasks.	The	administrator	can	create	a	cgroup	and	set	the	access	levels	for	these
resources	and	bind	one	or	more	processes	to	these	groups.	This	provides	fine-grained
control	over	the	resources	in	the	system	to	different	processes.	This	is	explained	in	detail
in	the	next	diagram.	The	resources	mentioned	on	the	left-hand	side	are	grouped	into	two
different	cgroups	called	cgroups-1	and	cgroups-2.	task1	and	task2	are	assigned	to	cgroups-
1,	which	makes	only	the	resources	allocated	for	cgroups-1	available	for	task1	and	task2.

Linux	cgroups

Managing	cgroups	consists	of	the	following	steps:

1.	 Creation	of	cgroups.
2.	 Assign	resource	limit	to	the	cgroup	based	on	the	problem	statement.	For	example,	if

the	administrator	wants	to	restrict	an	application	not	to	consume	more	that	50	percent
of	CPU,	then	he	can	set	the	limit	accordingly.

3.	 Add	the	process	into	the	group.

As	the	creation	of	cgroups	and	allocation	of	resources	happens	outside	of	the	application
context,	the	application	that	is	part	of	the	cgroup	will	not	be	aware	of	cgroups	and	the
level	of	resource	allocated	to	that	cgroup.

Namespace

namespace	is	a	new	feature	introduced	from	Linux	kernel	version	2.6.23	to	provide
resource	abstraction	for	a	set	of	processes.	A	process	in	a	namespace	will	have	visibility
only	to	the	resources	and	processes	that	are	part	of	that	namespace	alone.	There	are	six
different	types	of	namespace	abstraction	supported	in	Linux	as	follows:

PID/Process	Namespace
Network	Namespace
Mount	Namespace

IPC	Namespace
User	Namespace
UTS	Namespace

Process	Namespace	provides	a	way	of	isolating	the	process	from	one	execution
environment	to	another	execution	environment.	The	processes	that	are	part	of	one
namespace	won’t	have	visibility	to	the	processes	that	are	part	of	other	namespaces.
Typically,	in	a	Linux	OS,	all	the	processes	are	maintained	in	a	tree	with	a	child-parent
relationship.	The	root	of	this	process	tree	starts	with	a	specialized	process	called	init
process	whose	process-id	is	1.	The	init	process	is	the	first	process	to	be	created	in	the
system	and	all	the	process	that	are	created	subsequently	will	be	part	of	the	child	nodes	of
the	process	tree.	The	process	namespace	introduces	multiple	process	trees,	one	for	each
namespace,	which	provides	complete	isolation	of	the	processes	running	across	different
namespaces.	This	also	brings	the	concept	of	a	single	process	to	have	two	different	pids:
one	is	the	global	context	and	other	in	the	namespace	context.	This	is	explained	in	detail	in
the	following	diagram.

In	the	following	diagram,	for	namespace,	all	processes	have	two	process	IDs:	one	in	the
namespace	context	and	the	other	in	the	global	process	tree.

Process	Namespace

Network	Namespace	provides	isolation	of	the	networking	stack	provided	by	the
operating	system	for	each	container.	Isolating	the	network	stack	for	each	namespace
provides	a	way	to	run	multiple	same	services,	say	a	web	server	for	different	customers	or	a
container.	In	the	next	diagram,	the	physical	interface	that	is	connected	to	the	hypervisor	is
the	actual	physical	interface	present	in	the	system.	Each	container	will	be	provided	with	a
virtual	interface	that	is	connected	to	the	hypervisor	bridging	process.	This	hypervisor
bridging	process	provides	inter-container	connectivity	across	the	container,	which
provides	a	way	for	an	application	running	in	one	container	to	talk	to	another	application
running	in	another	container.

Network	Namespace

Chroot

Chroot	is	an	operation	supported	by	Linux	OS	to	change	the	root	directory	of	the	current
running	process,	which	apparently	changes	the	root	directory	of	its	child.	The	application
that	changes	the	root	directory	will	not	have	access	to	the	root	directory	of	other
applications.	Chroot	is	also	called	chroot	jail.

Combining	the	cgroups,	namespace,	and	chroot	features	of	the	Linux	kernel	provides	a
sophisticated	virtualized	resource	isolation	framework	with	clear	segregation	of	the	data
and	resources	across	various	processes	in	the	system.

In	LXC,	the	chroot	utility	is	used	to	separate	the	filesystem,	and	each	filesystem	will	be
assigned	to	a	container	that	provides	each	container	with	its	own	root	filesystem.	Each
process	in	a	container	will	be	assigned	to	the	same	cgroup	with	each	cgroup	having	its
own	resources	providing	resource	isolation	for	a	container.

Docker
Docker	provides	a	portable	way	to	deploy	a	service	in	any	Linux	distribution	by	creating	a
single	object	that	contains	the	service.	Along	with	the	service,	all	the	dependent	services

can	be	bundled	together	and	can	be	deployed	in	any	Linux-based	servers	or	virtual
machine.

Docker	is	similar	to	LXC	in	most	aspects.	Similar	to	LXC,	Docker	is	a	lightweight	server
virtualization	infrastructure	that	runs	an	application	process	in	isolation,	with	resource
isolation,	such	as	CPU,	memory,	block	I/O,	network,	and	so	on.	But	along	with	isolation,
Docker	provides	“Build,	Ship	and	Run”	modeling,	wherein	any	application	and	its
dependencies	can	be	built,	shipped,	and	run	as	a	separate	virtualized	process	running	in	a
namespace	isolation	provided	by	the	Linux	operating	system.

Dockers	can	be	integrated	with	any	of	the	following	cloud	platforms:	Amazon	Web
Services,	Google	Cloud	Platform,	IBM	Bluemix,	Jelastic,	Jenkins,	Microsoft	Azure,
OpenStack	Nova,	OpenSVC,	and	configuration	tools	such	as	Ansible,	CFEngine,	Chef,
Puppet,	Salt,	and	Vagrant.	The	following	are	the	main	features	provided	by	Docker.

The	main	objective	of	Docker	is	to	support	micro-service	architecture.	In	micro-service
architecture,	a	monolithic	application	will	be	divided	into	multiple	small	services	or
applications	(called	micro-services),	which	can	be	deployed	independently	on	a	separate
host.	Each	micro-service	should	be	designed	to	perform	specific	business	logic.	There
should	be	a	clear	boundary	between	the	micro-services	in	terms	of	operations,	but	each
micro-service	may	need	to	expose	APIs	to	different	micro-services	similar	to	the	service
discovery	mechanism	described	earlier.	The	main	advantage	of	micro-service	is	quick
development	and	deployment,	ease	of	debugging,	and	parallelism	in	the	development	for
different	components	in	the	system.	One	of	the	main	advantage	of	micro-services	is	based
on	the	complexity,	bottleneck,	processing	capability,	and	scalability	requirement;	every
micro-service	can	be	individually	scaled.

Docker	versus	LXC
Docker	is	designed	for	deploying	applications,	whereas	LXC	is	designed	to	deploy	a
machine.	LXC	containers	are	treated	as	a	machine,	wherein	any	applications	can	be
deployed	and	run	inside	the	container.	Docker	is	designed	to	run	a	specific	service	or
application	to	provide	container	as	an	application.	However,	when	an	application	or
service	has	a	dependency	with	other	services,	these	services	can	also	be	packed	along	with
the	same	Docker	image.	Typically,	the	docker	container	doesn’t	provide	all	the	services
that	will	be	provided	by	any	OS,	such	as	init	systems,	syslog,	cron,	and	so	on.	As	Docker
is	more	focused	on	deploying	applications,	it	provides	tools	to	create	a	docker	container
and	deploy	the	services	using	source	code.

Docker	containers	are	designed	to	have	a	layered	architecture	with	each	layer	containing
changes	from	the	previous	version.	The	layered	architecture	provides	the	docker	to
maintain	the	version	of	the	complete	container.	Like	any	typical	version	control	tools	like
Git/CVS,	docker	containers	are	maintained	with	a	different	version	with	operations	like
commit,	rollback,	version	tracking,	version	diff,	and	so	on.	Any	changes	made	inside	the
docker	application	will	be	made	as	a	read-only	layer	until	it	is	committed.

Docker-hub	contains	more	than	14,000	containers	available	for	various	well-known
services	that	can	be	downloaded	and	deployed	very	easily.

Docker	provides	an	efficient	mechanism	for	chaining	different	docker	containers,	which
provides	a	good	service	chaining	mechanism.	Different	docker	containers	can	be
connected	to	each	other	via	different	mechanisms	as	follows:

Docker	link
Using	docker0	bridge
Using	the	docker	container	to	use	the	host	network	stack

Each	mechanism	has	its	own	benefits.	Refer	to	Chapter	7,	Creating	a	Virtual	Tenant
Network	and	Service	Chaining	Using	OVS	for	more	information	about	service	chaining.

Docker	uses	libcontainer,	which	accesses	the	kernel’s	container	calls	directly	rather	than
creating	an	LXC.

Docker	versus	LXC

Rocket
Historically,	the	main	objective	of	CoreOS	is	to	run	the	services	as	a	lightweight	container.
Docker’s	principle	was	aligning	with	the	CoreOS	service	requirement	with	simple	and
composable	units	as	container.	Later	on,	Docker	adds	more	and	more	features	to	make	the
Docker	container	provide	more	functionality	than	standard	containers	inside	a	monolithic
binary.	These	functionalities	include	building	overlay	networks,	tools	for	launching	cloud
servers	with	clustering,	building	images,	running	and	uploading	images,	and	so	on.	This

makes	Docker	more	like	a	platform	rather	than	a	simple	container.

With	the	previously	mentioned	scenario,	CoreOS	started	working	on	a	new	alternative	to
Docker	with	the	following	objectives:

Security
Composability
Speed
Image	distribution

CoreOS	announced	the	development	of	Rocket	as	an	alternative	to	Docker	to	meet	the
previously	mentioned	requirements.	Along	with	the	development	of	Rocket,	CoreOS	also
started	working	on	an	App	Container	Specification.	The	specification	explains	the	features
of	the	container	such	as	image	format,	runtime	environment,	container	discovery
mechanism,	and	so	on.	CoreOS	launched	its	first	version	of	Rocket	along	with	the	App
Container	Specification	in	December	2014.

CoreOS	cluster	management:
Clustering	is	the	concept	of	grouping	a	set	of	machines	to	a	single	logical	system	(called
cluster)	so	that	the	application	can	be	deployed	in	any	one	machine	in	the	cluster.	In
CoreOS,	clustering	is	one	of	the	main	features	provided	by	CoreOS	by	running	different
services/docker	container	over	the	cluster	of	the	machine.	Historically,	in	most	of	the
Linux	distribution,	services	can	be	managed	using	the	systemd	utility.	CoreOS	extends	the
systemd	service	from	a	single	node	to	a	cluster	using	fleet	utility.	The	main	reason	for
CoreOS	to	choose	fleet	to	orchestrate	the	services	across	the	CoreOS	cluster	is	as	follows:

Performance
Journal	support
Rich	syntax	in	deploying	the	services

It	is	also	possible	to	have	a	CoreOS	cluster	with	a	combination	of	a	physical	server	and
virtual	machines	as	long	as	all	the	nodes	in	the	cluster	are	connected	to	each	other	and
reachable.	All	the	nodes	that	want	to	participate	in	the	CoreOS	cluster	should	run	CoreOS
with	the	same	cluster	ID.

systemd
systemd	is	an	init	system	utility	that	is	used	to	stop,	start,	and	restart	any	of	the	Linux
services	or	user	programs.	systemd	has	two	main	terminologies	or	concepts:	unit	and
target.	unit	is	a	file	that	contains	the	configuration	of	the	services	to	be	started,	and	target
is	a	grouping	mechanism	to	group	multiple	services	to	be	started	at	the	same	time.

fleet
fleet	emulates	all	the	nodes	in	the	cluster	to	be	part	of	a	single	init	system	or	system
service.	fleet	controls	the	systemd	service	at	the	cluster	level,	not	in	the	individual	node
level,	which	allows	fleet	to	manage	services	in	any	of	the	nodes	in	the	cluster.	fleet	not
only	instantiates	the	service	inside	a	cluster	but	also	manages	how	the	services	are	to	be
moved	from	one	node	to	another	when	there	is	a	node	failure	in	the	cluster.	Thus,	fleet
guarantees	that	the	service	is	running	in	any	one	of	the	nodes	in	the	cluster.	fleet	can	also
take	care	of	restricting	the	services	to	be	deployed	in	a	particular	node	or	set	of	nodes	in	a
cluster.	For	example,	if	there	are	ten	nodes	in	a	cluster	and	among	the	ten	nodes	a
particular	service,	say	a	web	server,	is	to	be	deployed	over	a	set	of	three	servers,	then	this
restriction	can	be	enforced	when	fleet	instantiates	a	service	over	the	cluster.	These
restrictions	can	be	imposed	by	providing	some	information	about	how	these	jobs	are	to	be
distributed	across	the	cluster.	fleet	has	two	main	terminologies	or	concepts:	engine	and
agents.	For	more	information	about	systemd	and	fleet,	refer	to	chapter	Creating	Your
CoreOS	Cluster	and	Managing	the	Cluster.

CoreOS	and	OpenStack
Is	CoreOS	yet	another	orchestration	framework	like	OpenStack/CloudStack?	No,	it	is	not.
CoreOS	is	not	a	standalone	orchestration	framework	like	OpenStack/CloudStack.	In	most
server	orchestration	frameworks,	the	framework	sits	external	to	the	managed	cloud.	But	in
CoreOS,	the	orchestration	framework	sits	along	with	the	existing	business	solution.

OpenStack	is	one	of	the	most	widely	used	cloud	computing	software	platforms	to	provide
IaaS.	OpenStack	is	used	for	orchestrating	the	compute,	storage,	and	network	entities	of	the
cloud,	whereas	CoreOS	is	used	for	service	orchestration.	Once	the	compute,	storage,	or
network	entities	are	instantiated,	OpenStack	doesn’t	have	any	role	in	instantiating	services
inside	these	VMs.

Combining	the	orchestration	provided	by	OpenStack	and	CoreOS	provides	a	powerful
IaaS,	wherein	the	cloud	provider	will	have	fine-grained	control	until	the	service
orchestration.	So	CoreOS	can	co-exist	with	OpenStack,	wherein	OpenStack	can	instantiate
a	set	of	VMs	that	run	the	CoreOS	instance	and	form	a	CoreOS	cluster.	That	is,	OpenStack
can	be	used	to	create	a	CoreOS	cluster	as	infrastructure.	The	CoreOS	that	is	running	inside
the	VM	forms	as	a	cluster	and	instantiates	the	service	inside	any	one	of	the	nodes	in	the
cluster.

OpenStack	and	CoreOS

In	the	preceding	diagram,	OpenStack	is	used	to	manage	the	server	farm	that	consists	of
three	servers:	server1,	server2,	and	server3.	When	a	customer	is	requested	for	a	set	of

VMs,	OpenStack	creates	the	necessary	VM	in	any	one	of	these	servers,	as	an	IaaS
offering.	With	CoreOS,	all	these	VMs	run	the	CoreOS	image	with	the	same	cluster	ID,
and	hence	can	be	part	of	the	same	cluster.	In	the	preceding	diagram,	there	are	two	CoreOS
clusters,	each	allocated	for	different	customers.	The	services/applications	to	be	run	on
these	VMs	will	be	instantiated	by	the	fleet	service	of	CoreOS,	which	takes	care	of
instantiating	the	service	in	any	one	of	the	VMs	in	the	cluster.	At	any	point	in	time,
OpenStack	can	instantiate	new	VMs	inside	the	cluster	in	order	to	scale	up	the	cluster
capacity	by	adding	new	VMs	running	the	CoreOS	image	with	the	same	cluster	ID,	which
will	be	a	candidate	for	CoreOS	to	run	new	services.

Summary
CoreOS	and	Docker	open	up	a	new	era	for	deploying	the	services	in	a	cluster	to	streamline
easy	development	and	deployment	of	applications.	CoreOS	and	Docker	bridge	the	gap
between	the	process	of	developing	a	service	and	deploying	the	service	in	production	and
make	the	server	and	service	deployment	less	effort	and	less	intensive	work.	With
lightweight	containers,	CoreOS	provides	very	good	performance	and	provides	an	easy
way	to	auto-scale	the	application	with	less	overhead	from	the	operator	side.	In	this
chapter,	we	have	seen	the	basics	of	containers,	Docker,	and	the	high-level	architecture	of
CoreOS.

In	the	next	few	chapters,	we	are	going	to	see	the	individual	building	blocks	of	CoreOS	in
detail.

Chapter	2.	Setting	Up	Your	CoreOS
Environment
CoreOS	can	be	installed	on	a	variety	of	platforms	such	as	bare	metal	servers,	cloud
provider’s	virtual	machines,	physical	servers,	and	so	on.	This	chapter	describes	in	detail
how	to	bring	up	your	first	CoreOS	environment	focusing	on	deploying	CoreOS	on	a
Virtual	Machine.	When	deploying	in	a	virtualization	environment,	tools	such	as	Vagrant
come	in	very	handy	in	managing	CoreOS	virtual	machines.	Vagrant	enables	setting	up
CoreOS	with	multiple	nodes	even	on	single	laptops	or	workstations	easily	with	minimum
configuration.	Vagrant	supports	VirtualBox,	a	commonly	used	virtualization	application.
Both	Vagrant	and	VirtualBox	are	available	for	multiple	architecture,	such	as	Intel	or
AMD,	and	operating	systems	such	as	Windows,	Linux,	Solaris,	and	Mac.

This	chapter	covers	setting	up	CoreOS	on	VirtualBox,	VMware	VSphere,	and	the
following	topics:

VirtualBox	installation
Introduction	to	Vagrant
CoreOS	on	VMware	VSphere	setup
Introduction	to	Docker

Tip
GIT	is	used	for	downloading	all	the	required	software	mentioned	in	this	chapter.

Installing	GIT
Download	the	latest	version	of	GIT	installation	as	per	the	host	operating	system	from
http://www.vagrantup.com/downloads.html.	After	the	download	is	complete,	start	the
installation.	The	installation	of	GIT	using	this	procedure	is	useful	for	Mac	and	Windows.
For	all	Linux	distributions,	the	GIT	client	is	available	through	its	package	manager.	For
example,	if	the	operation	system	is	CentOS,	the	package	manager	yum	can	be	used	to
install	GIT.

http://www.vagrantup.com/downloads.html

Installing	VirtualBox
Download	the	latest	version	of	VirtualBox	as	per	the	host	operating	system	and
architecture	from	https://www.virtualbox.org/wiki/Downloads.	After	the	download	is
complete,	start	the	installation.

During	installation,	continue	with	the	default	options.	VirtualBox	installation	resets	the
host	machine’s	network	adapters	during	installation.	This	will	result	in	the	network
connection	toggle.	After	the	installation	is	successful,	Installer	will	print	the	status	of	the
operation.

https://www.virtualbox.org/wiki/Downloads

Introduction	to	Vagrant
Vagrant	provides	a	mechanism	to	install	and	configure	a	development,	test,	or	production
environment.	Vagrant	works	with	various	virtualization	applications	such	as	VirtualBox,
VMware,	AWS	and	so	on.	All	installation,	setup	information,	configuration,	and
dependencies	are	maintained	in	a	file	and	virtual	machine	can	be	configured	and	brought
up	using	a	simple	Vagrant	command.	This	also	helps	to	automate	the	process	of
installation	and	configuration	of	machines	using	commonly	available	scripting	languages.
Vagrant	helps	in	creating	an	environment	that	is	exactly	the	same	across	users	and
deployments.	Vagrant	also	provides	simple	commands	to	manage	the	virtual	machines.	In
the	context	of	CoreOS,	Vagrant	will	help	to	create	multiple	machines	of	the	CoreOS
cluster	with	ease	and	with	the	same	environment.

Installing	Vagrant
Download	and	install	the	latest	version	of	Vagrant	from
http://www.vagrantup.com/downloads.	Choose	default	settings	during	installation.

http://www.vagrantup.com/downloads

Vagrant	configuration	files
The	Vagrant	configuration	file	contains	the	configuration	and	provisioning	information	of
the	virtual	machines.	The	configuration	filename	is	Vagrantfile	and	the	file	syntax	is
Ruby.	The	configuration	file	can	be	present	in	any	of	the	directory	levels	starting	from	the
current	working	directory.	The	file	in	the	current	working	directory	is	read	first,	then	the
file	(if	present)	in	one	directory	level	back,	and	so	on	until	/.	Files	are	merged	as	they	are
read.	For	most	of	the	configuration	parameters,	newer	settings	overwrite	the	older	settings
except	for	a	few	parameters	where	they	are	appended.

A	Vagrantfile	template	and	other	associated	files	can	be	cloned	from	the	GIT	repository
(https://github.com/coreos/coreos-vagrant.git).	Run	the	following	command	from	the
terminal	to	clone	the	repository.	Note	that	the	procedure	to	start	a	terminal	may	vary	from
OS	to	OS.	For	example,	in	Windows,	the	terminal	for	running	GIT	commands	is	by
running	Git	Bash:

$	git	clone	https://github.com/coreos/coreos-vagrant/

A	directory,	coreos-vagrant,	is	created	after	git	clone.	Along	with	other	files	associated
to	the	Git	repository,	the	directory	contains	Vagrantfile,	user-data.sample,	and
config.rb.sample.	Rename	user-data.sample	to	user-data	and	config.rb.sample	to
config.rb:

git	clone	https://github.com/coreos/coreos-vagrant/

Cloning	into	'coreos-vagrant'...

remote:	Counting	objects:	402,	done.

remote:	Total	402	(delta	0),	reused	0	(delta	0),	pack-reused	402

Receiving	objects:	100%	(402/402),	96.63	KiB	|	31.00	KiB/s,	done.

Resolving	deltas:	100%	(175/175),	done.

cd	coreos-vagrant/

ls

config.rb.sample*		CONTRIBUTING.md*		DCO*		LICENSE*		MAINTAINERS*		NOTICE*		

README.md*		user-data.sample*		Vagrantfile*

Vagrantfile	contains	template	configuration	to	create	and	configure	the	CoreOS	virtual
machine	using	VirtualBox.	Vagrantfile	includes	the	config.rb	file	using	the	require
directive:

…

CONFIG	=	File.join(File.dirname(__FILE__),	"config.rb")

….

if	File.exist?(CONFIG)

		require	CONFIG

end

…

…

CLOUD_CONFIG_PATH	=	File.join(File.dirname(__FILE__),	"user-data")

…

						if	File.exist?(CLOUD_CONFIG_PATH)

								config.vm.provision	:file,	:source	=>	"#{CLOUD_CONFIG_PATH}",	

https://github.com/coreos/coreos-vagrant.git

:destination	=>	"/tmp/vagrantfile-user-data"

								config.vm.provision	:shell,	:inline	=>	"mv	/tmp/vagrantfile-user-

data	/var/lib/coreos-vagrant/",	:privileged	=>	true

						end

…

Cloud-config
cloud	config	files	are	special	files	that	get	executed	by	the	cloud-init	process	when	the
CoreOS	system	starts	or	when	the	configuration	is	dynamically	updated.	Typically,	the
cloud	config	file	contains	the	various	OS	level	configuration	of	the	docker	container	such
as	networking,	user	administration,	systemd	units	and	so	on.	For	CoreOS,	user-data	is
the	name	of	the	cloud-config	file	and	is	present	inside	the	base	directory	of	the	vagrant
folder.	The	systemd	units	files	are	configuration	files	containing	information	about	a
process.

The	cloud-config	file	uses	the	YAML	file	format.	A	cloud-config	file	must	contain
#cloud-config	as	the	first	line,	followed	by	an	associative	array	that	has	zero	or	more	of
the	following	keys:

coreos:	This	key	provides	configuration	of	the	services	provided	by	CoreOS.
Configuration	for	some	of	the	important	services	are	described	next:

etc2:	This	key	replaces	the	previously	used	etc	service.	The	parameters	for
etc2	are	used	to	generate	the	systemd	unit	drop-in	file	for	etcd2	services.	Some
of	the	important	parameters	of	the	etc2	configuration	are:

discovery:	This	specifies	the	unique	token	used	to	identify	all	the	etcd	members
forming	a	cluster.	The	unique	token	can	be	generated	by	accessing	the	free
discovery	service	(https://discovery.etcd.io/new?sizhttp://e=<clustersize>).	This
is	used	when	the	discovery	mechanism	is	used	to	identify	cluster	etcd	members
in	cases	where	IP	addresses	of	all	the	nodes	are	not	known	beforehand.	The
token	generated	is	also	called	the	discovery	URL.	The	discovery	service	helps
clusters	to	connect	to	each	other	using	initial-advertise-peer-urls	provided
by	each	member	by	storing	the	connected	etcd	members,	the	size	of	the	cluster,
and	other	metadata	against	the	discovery	URL.	For	more	information	regarding
forming	the	CoreOS	cluster,	refer	to	Chapter	3,	Creating	Your	CoreOS	Cluster
and	Managing	the	Cluster.

initial-advertise-peer-urls:	This	specifies	the	member’s	own	peer	URLs
that	are	advertised	to	the	cluster.	The	IP	should	be	accessible	to	all	etcd
members.	Depending	on	accessibility,	a	public	and/or	private	IP	can	be	used.

advertise-client-urls:	This	specifies	the	member’s	own	client	URLs	that	are
advertised	to	the	cluster.	The	IP	should	be	accessible	to	all	etcd	members.
Depending	on	accessibility,	a	public	and/or	private	IP	can	be	used.

listen-client-urls:	This	specifies	the	list	of	self	URLs	on	which	the	member
is	listening	for	client	traffic.	All	advertised	client	URLs	should	be	part	of	this
configuration.

listen-peer-urls:	This	specifies	the	list	of	self	URLs	on	which	the	member	is
listening	for	peer	traffic.	All	advertised	peer	URLs	should	be	part	of	this
configuration.

https://discovery.etcd.io/new?sizhttp://e=<clustersize>

On	some	platforms,	the	providing	IP	can	be	automated	by	using	templating
feature.	Instead	of	providing	actual	IP	addresses,	the	fields	$public_ipv4	or
$private_ipv4	can	be	provided.

$public_ipv4	is	a	substitution	variable	for	the	public	IPV4	address	of	the
machine.

$private_ipv4	is	a	substitution	variable	for	the	private	IPV4	address	of	the
machine.

The	following	is	sample	coreos	configuration	in	the	cloud-config	file:

#cloud-config

coreos:

		etcd2:

				discovery:	

https://discovery.etcd.io/d54166dee3e709cf35b0d78913621df6

				#	multi-region	and	multi-cloud	deployments	need	to	use	

$public_ipv4

				advertise-client-urls:	http://$public_ipv4:2379

				initial-advertise-peer-urls:	http://$private_ipv4:2380

				#	listen	on	both	the	official	ports	and	the	legacy	ports

				#	legacy	ports	can	be	omitted	if	your	application	doesn't	

depend	on	them

				listen-client-urls:	http://0.0.0.0:2379,http://0.0.0.0:4001

				listen-peer-urls:	

http://$private_ipv4:2380,http://$private_ipv4:7001

fleet:	The	parameters	for	fleet	are	used	to	generate	environment	variables	for
the	fleet	service.	The	fleet	service	manages	the	running	of	containers	on	clusters.
Some	of	the	important	parameters	of	the	fleet	configuration	are:

etcd_servers:	This	provides	the	list	of	URLs	through	which	etcd	services	can
be	reached.	The	URLs	configured	should	be	one	of	the	listen-client-urls	for
etcd	services.

public_ip:	The	IP	address	that	should	be	published	with	the	local	machine’s
state.

The	following	is	a	sample	fleet	configuration	in	the	cloud-config	file:

#cloud-config

		fleet:

				etcd_servers:	http://	$public_ipv4:2379,http://	

$public_ipv4:4001

				public-ip:	$public_ipv4

flannel:	The	parameters	for	flannel	are	used	to	generate	environment	variables
for	the	flannel	service.	The	flannel	service	provides	communication	between
containers.
locksmith:	The	parameters	for	locksmith	are	used	to	generate	environment
variables	for	the	locksmith	service.	The	locksmith	service	provides	reboot
management	of	clusters.
update:	These	parameters	manipulate	settings	related	to	how	CoreOS	instances

are	updated.
Units:	These	parameters	specify	the	set	of	systemd	units	that	need	to	be	started
after	boot-up.	Some	of	the	important	parameters	of	unit	configuration	are:

name:	This	specifies	the	name	of	the	service.

command:	This	parameter	specifies	the	command	to	execute	on	the	unit:	start,
stop,	reload,	restart,	try-restart,	reload-or-restart,	reload-or-try-restart.

enable:	This	flag	(true/false)	specifies	if	the	Install	section	of	the	unit	file	has	to
be	ignored	or	not.

drop-ins:	This	contains	a	list	of	the	unit’s	drop-in	files.	Each	unit	information
set	contains	name,	which	specifies	the	unit’s	drop-in	files,	and	content,	which	is
plain	text	representing	the	unit’s	drop-in	file.

The	following	is	a	sample	unit	configuration	in	the	cloud-config	file:

#cloud-config

		units:

				-	name:	etcd2.service

						command:	start

				-	name:	fleet.service

						command:	start

				-	name:	docker-tcp.socket

						command:	start

						enable:	true

						content:	|

								[Unit]

								Description=Docker	Socket	for	the	API

								[Socket]

								ListenStream=2375

								Service=docker.service

								BindIPv6Only=both

								[Install]

								WantedBy=sockets.target

ssh_authorized_keys:	This	parameter	specifies	the	public	SSH	keys	that	will	be
authorized	for	the	core	user.
hostname:	This	specifies	the	hostname	of	the	member.
users:	This	specifies	the	list	of	users	to	be	created	or	updated	on	the	member.	Each
user	information	contains	name,	password,	homedir,	shell,	and	so	on.
write_files:	This	specifies	the	list	of	files	that	are	to	be	created	on	the	member.
Each	file	information	contains	path,	permission,	owner,	content,	and	so	on.
manage_etc_hosts:	This	specifies	the	content	of	the	/etc/hosts	file	for	local	name
resolution.	Currently,	only	localhost	is	supported.

The	config.rb	configuration	file
This	file	contains	information	to	configure	the	CoreOS	cluster.	This	file	provides	the
configuration	value	for	the	parameters	used	by	Vagrantfile.	Vagrantfile	accesses	the
configuration	by	including	the	config.rb	file.	The	following	are	the	parameters:

$num_instances:	This	parameter	specifies	the	number	of	nodes	in	the	cluster
$shared_folders:	This	parameter	specifies	the	list	of	shared	folder	paths	on	the	host
machine	along	with	the	respective	path	on	the	member
$forwarded_ports:	This	specifies	the	port	forwarding	from	the	member	to	the	host
machine
$vm_gui:	This	flag	specifies	if	GUI	is	to	be	set	up	for	the	member
$vm_memory:	This	parameter	specifies	the	memory	for	the	member	in	MBs
$vm_cpus:	This	specifies	the	number	of	CPUs	to	be	allocated	for	the	member
$instance_name_prefix:	This	parameter	specifies	the	prefix	to	be	used	for	the
member	name
$update_channel:	This	parameter	specifies	the	update	channel	(alpha,	beta,	and	so
on)	for	CoreOS

The	following	is	a	sample	config.rb	file:

$num_instances=1

$new_discovery_url="https://discovery.etcd.io/new?size=#{$num_instances}"

#	To	automatically	replace	the	discovery	token	on	'vagrant	up',	uncomment

#	the	lines	below:

#

#if	File.exists?('user-data')	&&	ARGV[0].eql?('up')

#		require	'open-uri'

#		require	'yaml'

#

#		token	=	open($new_discovery_url).read

#

#		data	=	YAML.load(IO.readlines('user-data')[1..-1].join)

#		if	data['coreos'].key?	'etcd'

#				data['coreos']['etcd']['discovery']	=	token

#		end

#		if	data['coreos'].key?	'etcd2'

#				data['coreos']['etcd2']['discovery']	=	token

#		end

#

#		#	Fix	for	YAML.load()	converting	reboot-strategy	from	'off'	to	false`

#		if	data['coreos']['update'].key?	'reboot-strategy'

#					if	data['coreos']['update']['reboot-strategy']	==	false

#										data['coreos']['update']['reboot-strategy']	=	'off'

#							end

#		end

#

#		yaml	=	YAML.dump(data)

#		File.open('user-data',	'w')	{	|file|	file.write("#cloud-config\n\n#

{yaml}")	}

#end

$instance_name_prefix="coreOS-learn"

$image_version	=	"current"

$update_channel='alpha'

$vm_gui	=	false

$vm_memory	=	1024

$vm_cpus	=	1

$shared_folders	=	{}

$forwarded_ports	=	{}

Starting	a	CoreOS	VM	using	Vagrant
Once	the	config.rb	and	user-config	files	are	updated	with	the	actual	configuration
parameter,	execute	the	command	vagrant	up	in	the	directory	where	configuration	files	are
present	to	start	the	CoreOS	VM	image.	Once	the	vagrant	up	command	is	successfully
executed,	the	CoreOS	in	the	VM	environment	is	ready:

vagrant	up

Bringing	machine	'core-01'	up	with	'virtualbox'	provider…

==>	core-01:	Checking	if	box	'coreos-alpha'	is	up	to	date…

==>	core-01:	Clearing	any	previously	set	forwarded	ports…

==>	core-01:	Clearing	any	previously	set	network	interfaces…

==>	core-01:	Preparing	network	interfaces	based	on	configuration…

				core-01:	Adapter	1:	nat

				core-01:	Adapter	2:	hostonly

==>	core-01:	Forwarding	ports…

				core-01:	22	=>	2222	(adapter	1)

==>	core-01:	Running	'pre-boot'	VM	customizations…

==>	core-01:	Booting	VM…

==>	core-01:	Waiting	for	machine	to	boot.	This	may	take	a	few	minutes…

				core-01:	SSH	address:	127.0.0.1:2222

				core-01:	SSH	username:	core

				core-01:	SSH	auth	method:	private	key

				core-01:	Warning:	Connection	timeout.	Retrying…

==>	core-01:	Machine	booted	and	ready!

==>	core-01:	Setting	hostname…

==>	core-01:	Configuring	and	enabling	network	interfaces…

==>	core-01:	Machine	already	provisioned.	Run	`vagrant	provision`	or	use	

the	`--provision`

==>	core-01:	flag	to	force	provisioning.	Provisioners	marked	to	run	always	

will	still	run.

vagrant	status

Current	machine	states:

core-01																			running	(virtualbox)

The	VM	is	running.	To	stop	this	VM,	you	can	run	vagrant	halt	to	shut	it	down
forcefully,	or	you	can	run	vagrant	suspend	to	simply	suspend	the	virtual	machine.	In
either	case,	to	restart	it	again,	simply	run	vagrant	up.

Setting	up	CoreOS	on	VMware	vSphere
VMware	vSphere	is	a	server	virtualization	platform	that	uses	VMware’s	ESX/ESXi
hypervisor.	VMware	VSphere	provides	complete	platform,	toolsets	and	virtualization
infrastructure	to	provide	and	manage	virtual	machines	in	bare	metal.	VMware	vSphere
consists	of	VMware	vCenter	Server	and	VMware	vSphere	Client.	VMware	vCenter
Server	manages	the	virtual	as	well	as	the	physical	resources.	VMware	vSphere	Client
provides	a	GUI	to	install	and	manage	virtual	machines	in	bare	metal.

Installing	VMware	vSphere	Client
Download	the	latest	version	of	VMware	vSphere	Client	installation	as	per	the	host
operating	system	and	architecture	from
http://vsphereclient.vmware.com/vsphereclient/1/9/9/3/0/7/2/VMware-viclient-all-5.5.0-
1993072.exe.	After	the	download	is	complete,	start	the	installation.	During	installation,
continue	with	the	default	options.

Once	the	installation	is	complete,	open	the	VMware	vSphere	Client	application.	This
opens	a	new	GUI.	In	the	IP	address	/	Name	field,	enter	the	IP	address/hostname	to
directly	manage	a	single	host.	Enter	the	IP	address/hostname	of	vCenter	Server	to	manage
multiple	hosts.	In	the	User	name	and	Password	field,	enter	the	username	and	password.

Download	the	latest	version	of	the	CoreOS	image	from	http://stable.release.core-
os.net/amd64-usr/current/coreos_production_vmware_ova.ova.	Once	the	download	is
complete,	the	next	step	is	to	create	the	VM	image	using	the	downloaded	ova	file.	The
steps	to	create	the	VM	image	are	as	follows:

1.	 Open	the	VMware	vSphere	Client	application.
2.	 Enter	IP	address,	username	and	password	as	mentioned	earlier.
3.	 Click	on	the	File	menu.
4.	 Click	on	Deploy	OVF	Template.
5.	 This	opens	a	new	Wizard.	Specify	the	location	of	the	ova	file	that	was	downloaded

earlier.	Click	on	Next.
6.	 Specify	the	name	of	the	VM	and	inventory	location	in	the	Name	and	Location	tab.
7.	 Specify	the	host/server	where	this	VM	is	to	be	deployed	in	the	Host/Cluster	tab.
8.	 Specify	the	location	where	the	VM	image	should	be	stored	in	the	Storage	tab.
9.	 Specify	the	disk	format	in	the	Disk	Format	tab.
10.	 Click	on	Next.	It	takes	a	while	to	deploy	the	VM	image.

http://vsphereclient.vmware.com/vsphereclient/1/9/9/3/0/7/2/VMware-viclient-all-5.5.0-1993072.exe
http://stable.release.core-os.net/amd64-usr/current/coreos_production_vmware_ova.ova

Once	the	VM	image	is	deployed	in	the	VMware	server,	we	need	to	start	the	CoreOS	VM
with	the	appropriate	cloud-config	file	having	required	configuration	property.	The
cloud-config	file	in	VMware	vSphere	should	be	specified	by	attaching	a	config-drive
which	is	an	iso	file	with	filesystem	labeled	config-2	by	attaching	CD-ROMs	or	new
drives.	The	following	are	the	commands	to	create	the	iso	file	in	a	Linux-based	operating
system:

1.	 Create	a	folder,	say	/tmp/new-drive/openstack/latest,	as	follows:

mkdir	-p	/tmp/new-drive/openstack/latest

2.	 Copy	the	user_data	file,	which	is	the	cloud-config	file,	into	the	folder:

cp	user_data	/tmp/new-drive/openstack/latest/user_data

3.	 Create	the	iso	file	using	the	command	mkisofs	as	follows:

mkisofs	-R	-V	config-2	-o	configdrive.iso	/tmp/new-drive

Once	the	config-drive	file	is	created,	perform	the	following	steps	to	attach	the	config
file	to	the	VM:

1.	 Transfer	the	iso	image	to	the	machine	wherein	the	VMware	vSphere	Client	program
is	running.

2.	 Open	VMware	vSphere	Client.
3.	 Click	on	the	CoreOS	VM	and	go	to	the	Summary	tab	of	the	VM	as	shown	in	the

following	screenshot:

4.	 Right-click	over	the	Datastore	section	and	click	on	Browse	Datastore.	This	will
open	a	new	window	called	Datastore	Browser.

5.	 Select	the	folder	named	iso.
6.	 Click	on	the	Upload	file	to	Datastore	icon.
7.	 Select	the	iso	file	in	the	local	machine	and	upload	the	iso	file	to	the	Datastore.

The	next	step	is	to	attach	the	iso	file	as	a	cloud-config	file	for	the	VM.	Perform	the
following	steps:

1.	 Go	to	CoreOS	VM	and	right-click.
2.	 Click	on	Properties.
3.	 Select	CD/DVD	drive	1.
4.	 On	the	right-hand	side,	select	Device	Status	as	Connected	as	well	as	Connect	at

power	on.
5.	 Click	on	Datastore	ISO	File	and	select	the	uploaded	iso	file	from	the	data	store.

Once	the	iso	file	is	uploaded	and	attached	to	the	VM,	start	the	VM.	The	CoreOS	VM	the
VMware	environment	is	ready.

Introduction	to	Docker
Linux	Containers,	as	described	before,	provide	a	lightweight	or	stripped-down	version	of
OS	within	the	host	OS.	Applications	can	be	installed	on	Linux	Containers	and	can	be
ported	to	any	host	OS	supporting	Linux	Containers.	A	user	doesn’t	have	to	care	about
releasing	different	software	for	different	target	machines.	Multiple	Linux	Containers	can
be	created	on	a	host	OS,	thus	providing	the	capability	to	run	multiple	instances	of	software
on	the	same	machine	independent	of	each	other.	Imagine	software	using	a	large	number	of
ports	and	a	tedious	configuration	file.	In	a	traditional	approach,	the	user	has	to	carefully
create	the	configuration	file	for	each	instance	so	that	they	don’t	conflict	with	another
instance.	In	Linux	Containers,	the	same	configuration	file	would	work	on	all	Container
instances.	This	helps	with	faster	deployment	and	simpler	operation.

Docker	containers	are	primarily	Linux	Containers	that	are	capable	of	running	a	single
application	by	design.	They	have	the	capability	to	run	on	any	machine	with	Docker
installed.	Docker	can	be	installed	over	a	variety	of	machines	running	different	operating
systems	such	as	Linux	or	Mac	and	thus	making	the	application	portable.	Let’s	understand
some	Docker	concepts.

Image
Docker	image	is	a	read-only	template.	Usually,	images	contain	an	OS	snapshot,	but
Docker	images	can	contain	anything,	such	as	a	database	and	OS	or	application.	They	are
read	only	and	are	shared	across	multiple	Docker	containers.

Images	can	be	created	from	scratch,	or	from	an	existing	image	listed	on	docker	hub.
Docker	hub	is	a	public	Docker	Registry	that	hosts	docker	images	that	can	be
downloaded	and	used.	We	can	also	set	up	a	private	docker	registry.

Images	have	a	unique	ID	and	a	unique	human-readable	name	and	tag	pair.	Images	can	be
called,	for	example,	ubuntu:latest,	ubuntu:precise,	django:1.6,	django:1.7,	and	so
on.

Docker	uses	Union	File	System	to	combine	layers	of	images	to	form	a	single	Docker
image.	Union	File	System	allows	files	and	directories	in	different	filesystems	to	be
overlaid	over	a	single	filesystem.	A	docker	image	starts	with	the	base	image,	usually	a
standard	OS	image	over	which	other	layers	of	images	are	appended.	Each	layer	provides
additional	functionalities	over	the	previous	layers.	Upon	image	changes,	only	impact
layers	need	to	be	provided	instead	of	the	complete	image.

Container
Containers	are	created	from	the	Docker	Image.	Container	holds	everything	required	for
an	application	to	run,	such	as	user	files,	metadata,	user	applications,	and	so	on.	To	expose
the	service	provided	by	the	containers,	Docker	allows	exposing	specific	ports	of	a
container.

Volumes
As	described	before,	Docker	images	are	layers	of	read-only	Union	filesystems.	When	we
start	a	container,	additionally	a	read-write	layer	is	created	over	the	top	of	the	read-only
layer	as	there	may	be	a	requirement	to	modify	a	file	(for	instance).	When	some
modification	is	made,	data	is	present	in	both	the	read-write	and	read-only	layers.	This	is
required	so	that	the	image	used	in	the	container	remains	unchanged.	The	scope	of	this
read-write	layer	is	only	until	the	container	exists.	Once	the	container	is	deleted,	the	read-
write	layer	is	destroyed	and	the	read-only	(unchanged)	image	is	available	for	reuse.
Volumes	provide	a	mechanism	to	manage	data	within	and	across	containers.	They	also
provide	a	mechanism	to	share	data	from	the	host	machine	to	the	container,	thus	enabling
data	to	be	outside	the	container.	Data	can	be	directly	shared	from	the	host	folder	or	from
another	container.	It’s	recommended	to	create	a	data-only	container	and	share	data	from
that	container.

Links
Docker	containers	can	connect	to	each	other	using	the	network	port	mappings	created
while	containers	are	created.	This	brings	some	element	of	hardcoding	as	the	ports	are
preconfigured.	Container	links	can	also	be	used	by	linking	the	source	container	to	the
recipient	container	using	container	names.	Docker	exposes	connectivity	information	for
the	source	container	to	the	recipient	container	through	environment	variables	and	by
modifying	the	/etc/hosts	file.	The	environment	variables	are	prefixed	with	the	link	name
and	follow	naming	convention	to	help	the	recipient	identify	the	interface	details	(such	as
protocol	used,	IP	address,	port,	and	so	on).	The	/etc/hosts	file	is	updated	with	the	source
container	IP	address	and	the	hostname	as	the	container	name.

Installing	Docker
Docker	can	also	be	installed	on	a	variety	of	platforms,	virtual	machines	and	cloud
providers.	Docker	contains	two	components:

Docker	Client:	The	user	invokes	Docker	Client	to	start,	stop,	and	manage	the	Docker
container.
Docker	Daemon:	Docker	Client	interfaces	with	Docker	Daemon	to	actually	start,
stop,	and	manage	the	Docker	container.	Docker	Daemon	can	only	run	on	Linux
machines.	So	if	Docker	is	installed	on	Windows	or	Mac,	Docker	Daemon	runs	inside
Linux	Virtual	Machine	(for	instance,	in	VirtualBox).

There	are	two	ways	to	create	a	Docker	image:

Using	Docker	File	and	the	Docker	build	command
Using	the	pre-built	docker	images	from	dockerhub

Creating	a	sample	Docker	image	using	Docker	File
In	this	section,	we	will	learn	how	to	create	Docker	containers	through	Docker	File.	Docker
File	has	obvious	benefits.	Docker	File	helps	automate	the	build	process,	it	can	be	version
controlled	for	the	project,	and	inline	comments	serve	as	help	for	beginners	and	many
others.

The	following	is	the	simple	Docker	File	that	creates	a	docker	image	using	the	CentOS
base	image:

$cat	Dockerfile

FROM	centos

CMD	["uname",	"-a"]

$	docker	build	-t	docker_uname	.

Sending	build	context	to	Docker	daemon	2.048	kB

Step	0	:	FROM	centos

	--->	7322fbe74aa5

Step	1	:	CMD	uname	-a

	--->	Using	cache

	--->	36d993cf27b9

Successfully	built	36d993cf27b9

Docker	File
Docker	File	contains	the	instructions	used	by	Docker	to	build	the	images.	The	Docker	File
takes	the	following	format:

#	Comment

INSTRUCTION	arguments

The	instructions	are	run	in	order.	The	lines	beginning	with	#	are	treated	as	comments	and
are	not	executed.	Environment	variables	can	also	be	used	as	variables	in	instruction
arguments.	Some	of	the	important	instructions	are:

FROM:	This	sets	the	base	image	for	the	Docker	image.	This	is	the	first	instruction.
Arguments	can	be	in	any	one	of	the	following	format:

FROM	<image>	

FROM	<image>:<tag>

FROM	<image>@<digest>

If	tag	or	digest	is	not	provided,	the	latest	image	is	selected.

RUN:	This	instruction	specifies	the	commands	to	be	executed	for	building	the
container.	Typical	usages	of	RUN	instructions	are	updating	the	base	image	with	OS
patches,	installing	specific	packages,	updating	system	configuration,	and	so	on.	Each
command	runs	in	a	separate	layer	on	top	of	the	current	image	and	committed.	The
committed	image	is	then	used	for	the	next	step.	Arguments	can	be	in	any	one	of	the
following	format:

RUN	<command>	

In	this	form,	command	is	executed	within	shell	/bin/sh	-c.	Shell	/bin/sh	–c	is	the

default	ENTRYPOINT	for	docker:

RUN	["executable",	"param1",	"param2"]

In	this	form,	command	is	executed	directly	without	invoking	a	shell.

ENTRYPOINT:	This	specifies	the	executable	and	its	corresponding	parameters	when
docker	is	started.	Any	parameters	that	are	passed	during	the	starting	of	docker	are
appended	to	ENTRYPOINT	and	executed.

Arguments	can	be	in	any	one	of	the	following	formats:

ENTRYPOINT	["executable",	"param1",	"param2"]:	In	this	format,	command
is	executed	directly	without	invoking	a	shell.
ENTRYPOINT	<command>	<paramters>:	In	this	format,	command	is	executed
within	shell	/bin/sh	-c.

CMD:	This	specifies	the	defaults	(that	is,	executable,	shell,	and	command-line
parameters)	for	the	containers	to	be	executed	when	docker	is	started.	This	is	different
from	RUN	as	RUN	instructions	are	only	executed	during	building	an	image.

Arguments	can	be	in	any	one	of	the	following	format:

CMD	["executable","param1","param2"]:	This	format	is	used	when
ENTRYPOINT	is	not	provided.	Command	is	executed	here	without	a	shell.
CMD	["param1","param2"]:	This	format	is	used	when	ENTRYPOINT	is	provided
with	a	default	command.	The	parameters	provided	here	are	appended	to
ENTRYPOINT	and	executed.
CMD	command	param1	param2	(shell	form):	In	this	format,	command	is	executed
within	shell	/bin/sh	-c.

Only	one	CMD	instruction	is	executed.	If	multiple	CMD	instructions	are	provided,	the
last	instruction	is	used.

EXPOSE:	This	specifies	the	list	of	listening	ports	on	which	Docker	is	listening.	The
format	of	this	field	is:	EXPOSE	<port>	[<port>...]
VOLUME:	This	specifies	the	mount	path	in	the	container	and	the	external	directories
from	the	host	machine	or	volumes	from	another	container.	The	format	of	this	field	is:
VOLUME	<directory>	[<directory>…]

Pulling	the	Docker	image	from	Docker	Hub
Docker	Hub	is	a	community-driven	docker	image	hosting	service	provided	by	Docker
that	has	capabilities	for	public	and	private	content.	Already	there	are	more	than	100,000
images	available	in	the	Docker	Hub	registry.	Instead	of	building	docker	images	using
Docker	File,	docker	images	can	be	directly	downloaded	from	Docker	Hub.	The	docker
pull	command	is	used	to	pull	the	images	directly	from	Docker	Hub	and	the	format	is	as
follows:

docker	pull	centos

Running	Docker	Image
Let’s	start	by	running	an	already	existing	system	command	from	the	Docker	container.
The	Docker	container	in	this	example	prints	the	system	information	and	exits:

$	docker	run	centos	uname	-a

Linux	3c954433a1e2	4.0.9-boot2docker	#1	SMP	Thu	Aug	13	03:05:44	UTC	2015	

x86_64	x86_64	x86_64	GNU/Linux

The	run	parameter	runs	Docker	containers.	The	image	name	is	provided	as	centos.
During	the	first	run,	if	the	image	is	not	available	in	the	local	machine,	the	latest-version
centos	image	is	downloaded	from	the	public	image	registry	Docker	Hub.	Since	no
version	of	the	image	was	specified,	the	latest	version	was	chosen.	If	a	specific	version	is
required	to	be	installed,	it	can	also	be	provided,	for	example,	centos:6.6.	The	uname	–a
command	is	then	executed	inside	the	container	using	the	default	ENTRYPOINT	/bin/sh	-c.
After	the	command	execution	is	completed,	the	container	exits.

We	will	create	a	more	sophisticated	Docker	File	container	that	executes	the	RUN	instruction
to	install	a	package	over	the	base	image	and	listens	for	a	TCP	connection:

$cat	Dockerfile

FROM	centos

#	install	ncat	commad	to	be	used	for	this	demo	during	build.	Ncat	

#	is	not	part	of	standard	package.

RUN	["yum",	"-y",	"install",	"nc"]

#	print	machine	ips

RUN	["cat",	"/etc/hosts"]

#	run	the	command	ncat	to	listen	on	all	IP	address	on	port	12345

CMD	["ncat",	"-vv",	"-l",	"0.0.0.0",	"12345"]

$	docker	build	-t	dock_ncat	.

Sending	build	context	to	Docker	daemon	3.072	kB

Step	0	:	FROM	centos

	--->	7322fbe74aa5

Step	1	:	RUN	yum	-y	install	nc

	--->	Using	cache

	--->	886063e43760

Step	2	:	RUN	cat	/etc/hosts

	--->	Using	cache

	--->	df623793d532

Step	3	:	CMD	ncat	-vv	-l	0.0.0.0	12345

	--->	Running	in	a0a5daa581b4

	--->	f8ad341c047e

Removing	intermediate	container	a0a5daa581b4

Successfully	built	f8ad341c047e	Removing	intermediate	container	

6f8284dad1f8

Successfully	built	3c60a690a2d7

$	docker	run	-p	:12344:12345	dock_ncat

Ncat:	Version	6.40	(http://nmap.org/ncat)

Ncat:	Listening	on	0.0.0.0:12345

Ncat:	Connection	from	172.18.42.1.

Ncat:	Connection	from	172.18.42.1:58939.

Port	12345	from	the	container	is	mapped	to	port	12344	on	the	host.	If	the	host	tries	to
connect	on	12344,	a	connection	gets	established	on	the	container.

Summary
In	this	chapter,	we	were	able	to	set	up	and	run	CoreOS	with	a	single	machine	using
Vagrant	and	VirtualBox.	We	were	also	able	to	create	and	run	Docker	images.	In	due
process,	we	familiarized	ourselves	with	the	important	configuration	files	and	their
contents.

In	the	next	chapter,	we	will	learn	how	to	set	up	a	CoreOS	cluster	with	multiple	machines.
We	will	also	learn	how	machines	are	discovered	and	services	are	scheduled	on	those
machines.

Chapter	3.	Creating	Your	CoreOS	Cluster
and	Managing	the	Cluster
This	chapter	covers	CoreOS	clustering,	providing	information	on	the	concepts	and
benefits	of	clustering.	We	will	also	learn	how	to	set	up	clusters	and	get	familiar	with	all
the	services	involved	in	clustering	with	greater	detail.

This	chapter	covers	the	following	topics:

Introduction	to	clustering
The	why	and	the	benefits	of	clustering
CoreOS	clustering
Creating	a	CoreOS	cluster
Discovery	using	etcd	
Systemd
Service	deployment	and	High	Availability	(HA)	using	fleet

Introduction	to	clustering
There	are	two	ways	to	scale	a	system.	One	is	to	scale	vertically,	that	is,	by	adding	more
hardware	resources	to	a	machine.	If	the	memory	requirement	of	the	system	increases,	add
more	memory;	if	more	processing	is	required,	upgrade	the	machine	to	one	using	higher-
end	processors	or	providing	a	higher	number	of	cores.	Horizontal	scaling	is	another	way	to
scale	a	system	to	higher	capacity.	This	means	adding	more	machines	when	required	to
form	a	cluster	of	nodes.	This	cluster	of	nodes	work	in	tandem	to	provide	service.	The
nodes	in	the	cluster	may	have	applications	performing	the	same	role	like	a	pool	or	they
may	perform	a	different	role.

The	why	and	the	benefits	of	clustering
Horizontal	scalability	of	a	system	is	limited	by	hardware	resources	available	in	the	market.
For	instance,	scaling	up	RAM	from	8	GB	to	32	or	64	GB	may	be	cost	effective,	as	many
products	may	be	commonly	available,	but	increasing	it	further	may	be	cost	inhibitive.
Similarly,	scaling	up	CPU	is	also	limited	by	system	configuration	available	in	the	market.
Further	doubling	the	hardware	capability	doesn’t	result	in	equal	performance
improvements.	It’s	typically	less.

With	virtualization	and	cloud	services,	the	cost	of	buying	and	maintaining	hardware	is
coming	down,	making	vertical	scaling	or	clustering	or	scaling	out	more	is	lucrative.	The
increased	performance	of	communication	networks	has	considerably	reduced	the	latency
in	the	communication	of	nodes	in	the	cluster.	Clustering	has	various	advantages,	such	as:

On-demand	scaling:	The	nodes	in	the	cluster	can	be	added	as	and	when	required.
We	can	start	with	a	dimensioned	system	and	keep	on	adding	nodes	as	capacity
increases.
Dynamic	scaling:	Most	of	the	clustering	solutions	provide	a	mechanism	to
add/remove	nodes	at	runtime.	Hence,	the	system	as	a	whole	will	be	up	and	running
for	providing	service	while	cluster	modifications	are	being	performed.
Redundancy:	A	cluster	can	be	configured	with	few	spare	nodes.	Upon	failure	of	any
nodes	or	during	planned	or	unplanned	maintenance	of	nodes,	these	spare	nodes	can
be	assigned	to	the	role	of	the	failed	node	or	nodes	under	maintenance	without
impacting	service	capacity.

It’s	also	important	to	know	about	the	shortcomings	of	clusters	to	make	an	informed
decision	while	architecting	a	system.	As	the	number	of	nodes	increase,	the	complexity	in
the	management	of	those	nodes	also	increases.	All	the	nodes	need	to	be	monitored	and
maintained.	The	software	also	has	to	be	designed	to	be	able	to	run	on	multiple	nodes.
There	comes	a	requirement	for	an	orchestration	mechanism	to	orchestrate	the	applications
across	different	instances	in	the	cluster.	For	instance,	load	balancers	to	distribute	load
across	worker	nodes,	or	job	serializers	to	synchronize	and	serialize	a	job	across	nodes.

CoreOS	clustering
Chapter	1,	CoreOS,	Yet	Another	Linux	Distro	covers	CoreOS	cluster	architecture.	We	will
summarize	it	here	again.	A	CoreOS	member	or	node	can	contain	multiple	Docker
containers.	There	can	be	multiple	CoreOS	members	forming	a	CoreOS	cluster.

CoreOS	uses	fleet	to	schedule	and	manage	the	services	using	systemd	onto	the	CoreOS
members	during	initialization.	This	is	similar	to	the	systemd	starting	and	managing
service	on	Linux	machines.	The	scope	of	the	Linux	systemd	process	is	limited	to	a	host
node,	whereas	CoreOS	fleetd	is	the	init	system	for	a	complete	CoreOS	cluster.

CoreOS	uses	etcd	for	node	discovery	and	storing	key-value	pairs	of	configuration	items
accessible	across	a	cluster	member.

It’s	possible	to	set	up	a	cluster	in	two	ways:

etcd	running	on	all	members:	When	the	number	of	members	of	the	cluster	is	few,
then	etcd	can	be	run	on	all	the	members	running	the	services,	also	called	workers.
This	configuration	is	simpler	as	the	same	cloud-config	can	be	used	to	start	all	the
members	of	the	cluster.
etcd	running	on	few	members:	When	the	number	of	members	in	the	cluster	is	large,
typically	greater	than	ten,	it	is	advisable	to	run	etcd	and	other	CoreOS	cluster
services	exclusively	on	some	of	the	machines.	This	becomes	easier	to	dimension	the
platform	configuration	of	the	worker	members	as	they	are	exclusively	used	for
providing	services.	In	this,	two	cloud-config	files	are	required:	one	for	CoreOS
cluster	services	including	etcd,	and	the	other	for	workers	or	proxies.

The	setting	of	CoreOS	clusters	is	fairly	simple.	Prepare	the	cloud-config	file	and	start
booting	members	using	the	file.	Small	scripting	knowledge	is	required	to	regenerate	the
configuration	files	per	member.	The	discovery	service	and	etcd	use	the	discovery	token	or
static	token	provided	to	form	a	cluster	as	the	members	are	started.

Cluster	discovery
This	section	describes	the	various	discovery	mechanisms	used	by	CoreOS	to	form	a
cluster.	For	the	examples	in	this	chapter,	the	following	is	the	system	configuration:

Static	discovery
The	static	discovery	mechanism	is	used	when	the	IP	addresses	of	the	members	are	known
beforehand.	IPs	are	preconfigured	in	the	cloud-config	file.	They	are	useful	in	scenarios
where	the	cluster	size	is	small	and	can	be	generally	used	for	test	setups.	Configuring	large
numbers	of	hardcoded	IPs	will	be	error	prone	and	a	maintenance	nightmare.

The	following	is	the	cloud-config	file	that	is	used	to	create	a	cluster	using	static
discovery:

#cloud-config

coreos:

		etcd2:

				name:	core-01

				advertise-client-urls:	http://$public_ipv4:2379

				initial-advertise-peer-urls:	http://$private_ipv4:2380

				listen-client-urls:	http://0.0.0.0:2379,http://0.0.0.0:4001

				listen-peer-urls:	http://$private_ipv4:2380,http://$private_ipv4:7001

				initial-cluster-token:	coreOS-static

				initial-cluster:	core-01=http://172.17.8.101:2380,core-

02=http://172.17.8.102:2380,core-03=http://172.17.8.103:2380

		units:

		-	name:	etcd2.service

				command:	start

				enable:	true

There	are	two	new	fields	that	were	not	discussed	before.	The	name	field	provides	the	name
of	the	member.	This	is	also	used	to	correlate	the	member	to	the	URL	in	initial-cluster.
The	initial-cluster	field	provides	the	member	name	and	URL	of	all	the	members	of
the	cluster.

Tip
The	IP	addresses	provided	in	the	initial-cluster	field	should	contain	the	static	IP	address.

In	order	to	create	the	previously	mentioned	cloud-config	file,	for	all	the	nodes	that	want
to	be	part	of	the	cluster,	the	following	steps	need	to	be	performed.

Vagrantfile	should	contain	static	IP	addresses	allocated	to	each	member.	As	shown	in	the
following	sample,	IP	172.17.8.101	is	assigned	to	the	first	member,	IP	172.17.8.102	is
assigned	to	the	second	member,	and	so	on:

...

						ip	=	"172.17.8.#{i+100}"

						config.vm.network	:private_network,	ip:	ip…

You	might	have	noticed	the	cloud-config	file	contains	the	name	of	only	one	member,	but
the	systemd	unit	file	for	the	etcd	service	in	each	CoreOS	VM	should	contain	its	own
member	name.	This	requires	the	following	instrumentation	in	Vagrantfile	to	generate	the
cloud-config	file	specific	to	each	member.	Without	going	into	the	specifics	of	ruby,	the
following	code	modifies	the	name	parameter	for	each	member	and	stores	in	a	separate	file.

The	generated	file	is	user-data-1	for	the	first	member,	user-data-2	for	the	second
member,	and	so	on.	Except	for	the	name	field,	all	other	parameters	are	used	from	the
cloud-config	file	provided.	The	generated	files	are	used	during	boot-up	of	Virtual
Machines:

...

						if	$share_home

								config.vm.synced_folder	ENV['HOME'],	ENV['HOME'],	id:	"home",	:nfs	

=>	true,	:mount_options	=>	['nolock,vers=3,udp']

						end

						if	File.exist?(CLOUD_CONFIG_PATH)

								user_data_specific	=	"#{CLOUD_CONFIG_PATH}-#{i}"

								require	'yaml'

								data	=	YAML.load(IO.readlines(CLOUD_CONFIG_PATH)[1..-1].join)

								if	data['coreos'].key?	'etcd2'

										data['coreos']['etcd2']['name']	=	vm_name

								end

								yaml	=	YAML.dump(data)

								File.open(user_data_specific,	'w')	{	|file|	file.write("#cloud-

config\n\n#{yaml}")	}

								config.vm.provision	:file,	:source	=>	user_data_specific,	

:destination	=>	"/tmp/vagrantfile-user-data"

								config.vm.provision	:shell,	:inline	=>	"mv	/tmp/vagrantfile-user-

data	/var/lib/coreos-vagrant/",	:privileged	=>	true

						end…

Set	$num_instances	to	3	in	the	config.rb	file	and	setup	is	complete	for	a	three-member
cluster:

Boot	the	cluster	using	Vagrant	up.	Upon	successful	boot-up,	we	can	see	the	members	of
the	cluster.

vagrant	ssh	core-01

etcdctl	member	list

7cc8bd52fa88d49:	name=core-02	peerURLs=http://172.17.8.102:2380	

clientURLs=http://172.17.8.102:2379

533d38560a602262:	name=core-01	peerURLs=http://172.17.8.101:2380	

clientURLs=http://172.17.8.101:2379

b8d2db3a5bf3d17d:	name=core-03	peerURLs=http://172.17.8.103:2380	

clientURLs=http://172.17.8.103:2379

etcdctl	cluster-health

cluster	is	healthy

member	533d38560a602262	is	healthy

member	7cc8bd52fa88d49	is	healthy

member	b8d2db3a5bf3d17d	is	healthy

etcd	discovery
The	etcd	discovery	mechanism	is	used	when	the	IP	addresses	of	the	members	are	not
known	in	advance	or	DHCP	is	used	to	assign	IP	addresses.	There	can	be	two	modes	of
discovery:	public	and	custom.

If	the	cluster	has	access	to	the	public	IP,	the	public	discovery	service	discovery.etcd.io
can	be	used	to	generate	a	token	and	manage	cluster	membership.	Access	the	website
https://discovery.etcd.io/new?size=<clustersize>	and	generate	a	token.	Note	that	cluster
size	is	required	to	be	provided	while	generating	a	token.

Generation	of	a	token	can	be	automated	in	the	config.rb	file	by	uncommenting	the
following	lines:

...

#	To	automatically	replace	the	discovery	token	on	'vagrant	up',	uncomment

#	the	lines	below:

#

if	File.exists?('user-data')	&&	ARGV[0].eql?('up')

		require	'open-uri'

		require	'yaml'

		token	=	open($new_discovery_url).read

		data	=	YAML.load(IO.readlines('user-data')[1..-1].join)

	

		if	data['coreos'].key?	'etcd2'

				data['coreos']['etcd2']['discovery']	=	token

		end

			yaml	=	YAML.dump(data)

		File.open('user-data',	'w')	{	|file|	file.write("#cloud-config\n\n#

{yaml}")	}

end…

The	following	is	the	cloud-config	file	that	is	used	to	create	a	cluster	using	public	etcd
discovery:

https://discovery.etcd.io/new?size=<clustersize>

#cloud-config

coreos:

		etcd2:

				discovery:	https://discovery.etcd.io/<token>

				advertise-client-urls:	http://$public_ipv4:2379

				initial-advertise-peer-urls:	http://$private_ipv4:2380

				listen-client-urls:	http://0.0.0.0:2379,http://0.0.0.0:4001

				listen-peer-urls:	http://$private_ipv4:2380,http://$private_ipv4:7001

		units:

				-	name:	etcd2.service

						command:	start

						enable:	true

Set	$num_instances	to	3	in	the	config.rb	file	and	setup	is	complete	for	a	three-member
cluster.	Compared	to	static	discovery,	this	is	a	simpler	process	and	no	instrumentation	is
required	in	Vagrantfile.

Boot	the	cluster	using	Vagrant	up.	Upon	successful	boot-up,	we	can	see	the	members	of
the	cluster:

vagrant	ssh	core-01

etcdctl	member	list

466abd73fa498e31:	name=5fd5fe90fef243a090cb2ee4cfac4d53	

peerURLs=http://172.17.8.103:2380	clientURLs=http://172.17.8.103:2379

940245793b93afb3:	name=43e78c85f5bb439f84badd8a5cb9f12b	

peerURLs=http://172.17.8.101:2380	clientURLs=http://172.17.8.101:2379

ea07891f96c6abfe:	name=93c559a5c40d47c7917607a15d676b6d	

peerURLs=http://172.17.8.102:2380	clientURLs=http://172.17.8.102:2379

etcdctl	cluster-health

cluster	is	healthy

member	466abd73fa498e31	is	healthy

member	940245793b93afb3	is	healthy

member	ea07891f96c6abfe	is	healthy

Instead	of	using	a	public	discovery,	an	etcd	instance	can	be	used	as	the	discovery	service
to	manage	cluster	membership.	One	of	the	etcd	instances	is	configured	with	the	token	and
number	of	cluster	instances	and	other	etcd	instances	use	it	to	join	to	the	cluster.

The	following	is	the	cloud-config	file	that	is	used	to	create	a	cluster	using	public	etcd
discovery:

#cloud-config

coreos:

		etcd2:

				discovery:	http://172.17.8.101:4001/v2/keys/discovery/40134540-b53c-

46b3-b34f-33b4f0ae3a9c

				advertise-client-urls:	http://$public_ipv4:2379

				initial-advertise-peer-urls:	http://$private_ipv4:2380

				listen-client-urls:	http://$public_ipv4:2379,http://$public_ipv4:4001

				listen-peer-urls:	http://$private_ipv4:2380,http://$private_ipv4:7001

		units:

				-	name:	etcd2.service

						command:	start

						enable:	true

The	token	can	be	generated	using	the	uuidgen	Linux	command.	The	path
v2/keys/discovery	is	where	cluster	information	is	stored.	Any	path	can	be	provided.
Machine	one	is	used	as	the	custom	discovery	node.

The	etcd	service	running	on	machine	one	doesn’t	need	a	discovery	token	since	it	is	not
going	to	be	part	of	the	cluster.	This	requires	the	following	instrumentation	in	Vagrantfile
to	generate	the	cloud-config	file	separately	for	machine	one	and	other	machines.	The
following	code	modifies	the	name	parameter	for	each	member,	removes	unwanted
parameters	for	machine	one,	and	stores	in	a	separate	file	for	each	member.	In	the
following	sample,	the	parameters	that	are	not	required	are	set	to	empty;	they	can	be
deleted:

...

						if	$share_home

								config.vm.synced_folder	ENV['HOME'],	ENV['HOME'],	id:	"home",	:nfs	

=>	true,	:mount_options	=>	['nolock,vers=3,udp']

						end

						if	File.exist?(CLOUD_CONFIG_PATH)

								user_data_specific	=	"#{CLOUD_CONFIG_PATH}-#{i}"

								require	'yaml'

								data	=	YAML.load(IO.readlines(CLOUD_CONFIG_PATH)[1..-1].join)

								if	data['coreos'].key?	'etcd2'

										data['coreos']['etcd2']['name']	=	vm_name

								end

								if	i.equal?	1

										data['coreos']['etcd2']['discovery']	=	nil

										data['coreos']['etcd2']['initial-advertise-peer-urls']	=	nil

										data['coreos']['etcd2']['listen-peer-urls']	=	nil

								end								

								yaml	=	YAML.dump(data)

								File.open(user_data_specific,	'w')	{	|file|	file.write("#cloud-

config\n\n#{yaml}")	}

								config.vm.provision	:file,	:source	=>	user_data_specific,	

:destination	=>	"/tmp/vagrantfile-user-data"

								config.vm.provision	:shell,	:inline	=>	"mv	/tmp/vagrantfile-user-

data	/var/lib/coreos-vagrant/",	:privileged	=>	true

						end…

Set	$num_instances	to	3	in	the	config.rb	file	and	boot	the	cluster	using	Vagrant	up.
Initially,	the	cluster	formation	will	fail	as	the	number	of	nodes	corresponding	to	the
discovery	token	is	not	set.	Set	the	number	of	nodes	as	2	in	the	cluster.	The	path	provided
in	the	discovery	token	URL	should	match	the	path	provided	in	the	URL.

vagrant	ssh	core-01

curl	-X	PUT	http://172.17.8.101:4001/v2/keys/discovery/40134540-b53c-46b3-

b34f-33b4f0ae3a9c/_config/size	-d	value=2

{"action":"set","node":{"key":"/discovery/40134540-b53c-46b3-b34f-

33b4f0ae3a9c/_config/size","value":"2","modifiedIndex":3,"createdIndex":3}}

Upon	setting	the	node	size,	we	can	see	the	members	in	the	cluster.	This	time,	we
additionally	need	to	provide	the	endpoint	information	on	which	etcd	is	listening	as	the
cloud-config	file	contains	a	specific	IP	address	instead	of	wildcard	IPs	in	the	previous
examples:

etcdctl	--peers=http://172.17.8.102:4001	member	list

36b2390cc35b7932:	name=core-03	peerURLs=http://172.17.8.103:2380	

clientURLs=http://172.17.8.103:2379

654398796d95b9a6:	name=core-02	peerURLs=http://172.17.8.102:2380	

clientURLs=http://172.17.8.102:2379

etcdctl	--peers=http://172.17.8.102:4001	cluster-health

cluster	is	healthy

member	36b2390cc35b7932	is	healthy

member	654398796d95b9a6	is	healthy

DNS	discovery
Cluster	discovery	can	also	be	performed	using	DNS	SRV	records.	Contact	your	system
administrator	to	create	DNS	SRV	records	to	map	the	hostname	to	the	service.	DNS	A
records	should	also	be	created	to	map	the	hostname	to	the	IP	address	of	the	members.

The	DNS	domain	name	containing	the	discovery	SRV	records	is	required	to	be	provided
using	the	discovery-srv	parameter.	The	following	DNS	SRV	records	are	looked	up	in	the
listed	order:

_etcd-server-ssl._tcp.<domain	name>
_etcd-server._tcp.<domain	name>

If	_etcd-server-ssl._tcp.<domain	name>	is	found	then	etcd	will	attempt	the
bootstrapping	process	over	SSL.

The	following	SRV	and	DNS	A	records	are	to	be	created:

_etcd-server._tcp.testdomain.com.	300			IN						SRV					0							0							

2380				CoreOS-01.testdomain.com.

_etcd-server._tcp.testdomain.com.	300			IN						SRV					0							0							

2380				CoreOS-02.testdomain.com.

_etcd-server._tcp.testdomain.com.	300			IN						SRV					0							0							

2380				CoreOS-03.testdomain.com.

CoreOS-01.testdomain.com.							300					IN						A							172.17.8.101

CoreOS-02.testdomain.com.							300					IN						A							172.17.8.102

CoreOS-03.testdomain.com.							300					IN						A							172.17.8.103

The	following	is	the	cloud-config	file	that	is	used	to	create	a	cluster	using	public	etcd
discovery:

#cloud-config

coreos:

		etcd2:

				discovery-srv:	testdomain.com

				advertise-client-urls:	http://$public_ipv4:2379

				initial-advertise-peer-urls:	http://$private_ipv4:2380

				listen-client-urls:	http://0.0.0.0:2379,http://0.0.0.0:4001

				listen-peer-urls:	http://$private_ipv4:2380,http://$private_ipv4:7001

				initial-cluster-token:	etcd-cluster-1

				initial-cluster-state:	new

		units:

		-	name:	etcd2.service

				command:	start

				enable:	true

write_files:

		-	path:	"/etc/resolv.conf"

				permissions:	"0644"

				owner:	"root"

				content:	|

						nameserver	172.17.8.111

Tip
The	cloud-config	file	contains	additional	section	write-files	to	point	to	the	DNS	server

where	SRV	and	A	records	are	created.

Set	$num_instances	to	3	in	the	config.rb	file	and	setup	is	complete	for	a	three-member
cluster.	Compared	to	static	discovery,	this	is	a	simpler	process	and	no	instrumentation	is
required	in	Vagrantfile.

Boot	the	cluster	using	Vagrant	up.	Upon	successful	boot-up,	we	can	see	the	members	of
the	cluster:

vagrant	ssh	core-01

etcdctl	member	list

13530017c40ce74f:	name=5d0c2805e0944d43b03ef260fea20ae2	

peerURLs=http://CoreOS-02.testdomain.com:2380	

clientURLs=http://172.17.8.102:2379

25c0879f38e80fd0:	name=26fed2d2c43b4901ad944d9912d071cb	

peerURLs=http://CoreOS-01.testdomain.com:2380	

clientURLs=http://172.17.8.101:2379

3551738c55e6c3e4:	name=39d95e1e69ae4bea97aed0ba5817241e	

peerURLs=http://CoreOS-03.testdomain.com:2380	

clientURLs=http://172.17.8.103:2379

etcdctl	cluster-health

member	13530017c40ce74f	is	healthy:	got	healthy	result	from	

http://172.17.8.102:2379

member	25c0879f38e80fd0	is	healthy:	got	healthy	result	from	

http://172.17.8.101:2379

member	3551738c55e6c3e4	is	healthy:	got	healthy	result	from	

http://172.17.8.103:2379

cluster	is	healthy

systemd
systemd	is	an	init	system	that	most	of	the	Linux	distribution,	including	CoreOS,	has
adopted	to	start	other	services/daemons	during	boot-up.	systemd	is	designed	to	run
multiple	operations	required	to	start	services	in	parallel,	resulting	in	faster	boot-up.
systemd	manages	services,	devices,	sockets,	disk	mounts,	and	so	on,	called	units.	systemd
performs	operations	like	start,	stop,	enable,	and	disable	on	the	units.	Each	unit	has	a
corresponding	configuration	file	called	unit	file	that	contains	information	about	actions	to
be	performed	for	each	operation,	dependencies	on	other	units,	execution	pre-conditions
and	post-conditions,	and	so	on.

In	this	section,	we	will	understand	how	to	configure	a	service	using	unit	file	and	perform
basic	operations	on	the	services.	Let’s	start	by	understanding	the	contents	of	unit	file.

Service	unit	files
Unit	files	are	embedded	in	the	cloud-config	file	and	CoreOS	copies	the	information
verbatim	to	corresponding	unit	files.

The	unit	name	must	be	of	the	form	string.suffix	or	string@instance.suffix,	where:

string	must	not	be	an	empty	string	and	can	only	contain	alphanumeric	characters
and	any	of	':',	'_',	'.',	'@',	'-'.
instance	can	be	empty,	and	can	only	contain	the	same	characters	as	are	valid	for
string.
suffix	must	be	one	of	the	following	unit	types:	service,	socket,	device,	mount,
automount,	timer,	path.	service	is	used	for	describing	service.

Unit	files	contain	information	grouped	under	sections.	Each	section	contains	a	list	of
parameters	and	their	values.	Each	parameter	can	occur	multiple	times	in	a	section.	Section
and	parameter	names	are	case	sensitive.	As	we	will	be	dealing	mostly	with	services,	we
will	discuss	configuration	relevant	to	it.	The	following	are	the	important	section	names
used	for	services:

[Unit]	section:	This	section	is	not	used	by	systemd	and	contains	information	for	the
user	about	the	service.	Some	of	the	important	parameters	of	the	Unit	section	are:

Description:	This	specifies	the	description	of	the	service	such	as	name,	service
provided,	and	so	on.
After:	This	specifies	service	names	that	are	supposed	to	be	started	before
starting	this	service.
Before:	This	specifies	service	names	that	are	supposed	to	be	started	after
starting	this	service.

[Service]	Section:	This	section	contains	the	configuration	for	managing	units.	Some
of	the	important	parameters	of	the	Service	section	are:

Type:	This	specifies	the	startup	type	for	the	service.	The	type	can	be	one	of	the
following:	simple,	forking,	oneshot,	dbus,	notify,	or	idle.

The	type	simple	indicates	that	the	service	is	started	by	executing	the	command
configured	in	ExecStart,	and	proceeds	with	other	unit	file	processing.	This	is
the	default	behavior.

The	type	fork	indicates	that	the	parent	process	will	fork	a	child	process	and	exit
upon	completion	of	start.	Exiting	of	the	main	process	is	the	trigger	to	process
with	other	unit	file	processing.	To	allow	systemd	to	take	recovery	action	upon
service	failure,	the	pid	file	containing	pid	if	the	process	providing	the	service
can	be	configured	using	PIDFile.

The	type	oneshot	indicates	that	the	service	is	started	by	executing	the	command
configured	in	ExecStart,	waits	for	the	exit	of	the	command,	and	then	proceeds
with	other	unit	file	processing.	RemainAfterExit	can	be	used	to	indicate	that	the
service	is	an	active	event	after	the	main	process	has	exited.

The	type	notify	indicates	that	the	service	is	started	by	executing	the	command
configured	in	ExecStart,	and	waits	for	the	notification	using	sd_notify	to
indicate	startup	is	complete.	Upon	notification,	systemd	starts	executing	other
units.

The	type	dbus	indicates	that	the	service	is	started	by	executing	the	command
configured	in	ExecStart,	waits	for	the	service	to	acquire	the	D-bus	name	as
specified	in	BusName	and	then	proceeds	with	other	unit	file	processing.

TimeoutStartSec:	This	specifies	the	systemd	wait	time	during	starting	the
service	before	marking	it	as	failed.
ExecStartPre:	This	can	be	used	to	execute	commands	before	starting	the
service.	This	parameter	can	be	provided	multiple	times	in	the	section	to	execute
multiple	commands	prior	to	start.	The	value	contains	the	full	path	of	the
command	along	with	arguments	to	the	command.	The	value	can	be	preceded	by
-	to	indicate	that	the	failure	of	the	command	will	be	ignored	and	next	steps	will
be	executed.
ExecStart:	This	specifies	the	full	path	and	the	arguments	of	the	command	to	be
executed	to	start	the	service.	If	the	path	to	the	command	is	preceded	by	a	dash	-
character,	non-zero	exit	statuses	will	be	accepted	without	marking	the	service
activation	as	failed.
ExecStartPost:	This	can	be	used	to	execute	commands	after	starting	the
service.	This	parameter	can	be	provided	multiple	times	in	the	section	to	execute
multiple	commands	after	the	start.	The	value	contains	the	full	path	of	the
command	along	with	arguments	to	the	command.	The	value	can	be	preceded	by
-	to	indicate	that	the	failure	of	the	command	will	be	ignored	and	next	steps	will
be	executed.
ExecStop:	This	indicates	the	command	needed	to	stop	the	service.	If	this	is	not
given,	the	process	will	be	killed	immediately	when	the	service	is	stopped.
TimeoutStopSec:	This	specifies	the	systemd	wait	time	during	stopping	the
service	before	forcefully	killing	it.

PIDFile:	This	specifies	the	absolute	filename	pointing	to	the	PID	file	of	this	service.
systemd	reads	the	PID	of	the	main	process	of	the	daemon	after	startup	of	the	service.
systemd	removes	the	file	after	the	service	has	shut	down	if	it	still	exists.
BusName:	This	specifies	the	D-Bus	bus	name	that	this	service	is	reachable	at.	This
option	is	mandatory	for	services	where	Type	is	set	to	dbus.
RemainAfterExit:	This	flag	specifies	whether	the	service	shall	be	considered	active
even	when	all	its	processes	exited.	Defaults	to	no.

Starting	and	stopping	a	service
systemd	provides	an	interface	to	monitor	and	manage	the	service	using	the	systemctl
command.	To	start	a	service,	invoke	the	start	option	with	the	service	name.	To	start	the
service	permanently	after	reboot,	invoke	the	enable	option	with	the	service
name..service	can	be	omitted	when	the	service	name	is	provided	to	the	systemctl
command:

systemctl	enable	crond

systemctl	start	crond

To	stop	the	service,	invoke	the	stop	option	with	the	service	name:

systemctl	stop	crond

To	check	the	status	of	the	service,	invoke	the	status	option	with	the	service	name:

systemctl	status	crond

crond.service	-	Command	Scheduler

			Loaded:	loaded	(/usr/lib/systemd/system/crond.service;	enabled)

			Active:	active	(running)	since	Tue	2015-09-08	22:51:30	IST;	2s	ago

	Main	PID:	8225	(crond)

			CGroup:	/system.slice/crond.service

											`-8225	/usr/sbin/crond	-n

...

fleet
CoreOS	extends	the	init	system	to	the	cluster	using	fleet.	fleet	emulates	all	the	nodes	in	the
CoreOS	cluster	to	be	part	of	a	single	init	system	or	system	service.	fleet	controls	the
systemd	service	at	the	cluster	level,	not	at	the	individual	node	level,	which	allows	fleet	to
manage	services	in	any	of	the	nodes	in	the	cluster.	fleet	handles	scheduling	a
unit/service/container	to	a	cluster	member,	handles	units	by	rescheduling	to	another
member,	and	provides	an	interface	for	monitoring	and	managing	units	locally	or	remotely.
You	don’t	have	to	care	about	the	coupling	of	a	member	to	the	service,	as	fleet	does	it	for
you.	The	unit	is	guaranteed	to	be	running	on	all	the	clusters	meeting	the	constraint
required	for	running	the	service.	Unit	files	are	not	only	limited	to	launch	a	Docker,	even
though	most	of	the	time	unit	files	are	used	to	start	a	Docker.	Some	of	the	valid	unit	types
are	.socket,	.mount,	and	so	on.

Architectural	overview
fleet	consists	of	two	main	components:	fleet	agent	and	fleet	engine.	Both	these
components	are	part	of	the	fleetd	module	and	will	be	running	on	all	the	cluster	nodes.
Both	the	engine	and	agent	components	work	with	a	reconciliation	model,	wherein	both
these	components	take	a	snapshot	of	the	current	state	of	the	cluster	and	derive	the	desired
state	and	try	to	emulate	the	derived	state	of	the	cluster.

fleet	uses	the	D-Bus	interface	exposed	by	systemd.	D-Bus	is	the	message	bus	system	for
IPC	provided	by	the	Linux	OS,	which	provides	one-to-one	messaging	methods	and	the
pub/sub	type	of	message	communication.

Tip
As	fleet	is	written	in	Go	language,	fleet	uses	godbus,	which	is	the	native	GO	binding	for
D-Bus.

fleet	uses	godbus	to	communicate	with	systemd	for	sending	the	commands	to	start/stop
units	in	a	particular	node.	It	also	uses	godbus	to	get	the	current	state	of	the	units
periodically.

Engine
The	fleetd	engine	is	responsible	for	making	the	scheduling	decision	of	the	units	among	the
cluster	of	nodes	based	on	the	constraint,	if	any.	The	engine	talks	to	etcd	for	getting	the
current	state	of	units	and	nodes	in	the	cluster.	All	the	units,	state	of	the	units,	and	the	nodes
in	the	cluster	are	stored	in	the	etcd	data	store.

The	scheduling	decision	happens	in	a	timely	fashion	or	is	triggered	by	etcd	events.	The
reconciliation	process	is	triggered	by	etcd	events	or	time	period,	wherein	the	engine	takes
a	snapshot	of	the	current	state	and	the	desired	state	of	the	cluster,	which	includes	the	state
of	all	the	units	running	on	the	cluster	along	with	the	state	of	all	the	nodes/agents	in	the
cluster.	Based	on	the	current	state	and	desired	state	of	the	cluster,	it	takes	necessary	action
to	move	from	the	current	state	to	the	desired	state	and	save	the	desired	state	as	the	current
state.	By	default,	the	engine	uses	the	least-loaded	scheduling	algorithm,	wherein	it	chooses
the	node	that	is	loaded	less	for	running	a	new	unit.

Agent
Agent	is	responsible	for	starting	the	units	in	the	node.	Once	the	engines	choose	the
appropriate	node	for	running	the	units,	it	is	the	responsibility	of	the	agent	in	that	node	to
start	the	unit.	To	start	the	unit,	the	agent	sends	start	or	stop	unit	commands	to	the	local
systemd	process	using	the	D-Bus.	The	agent	is	also	responsible	for	sending	the	state	of	the
units	to	the	etcd,	which	will	be	later	communicated	to	the	engine.	Similar	to	the	engine,
the	agent	also	runs	a	periodic	reconciler	process	to	compute	the	current	state	and	desired
state	of	unit	files	and	takes	the	necessary	action	to	move	to	the	desired	state.

The	following	diagram	represents	how	the	job/unit	is	scheduled	by	the	fleet	engine	to	one
of	the	nodes	in	the	cluster.	When	the	user	wants	to	start	a	unit	using	the	fleetctl	start
command,	the	engine	picks	this	job	and	adds	it	to	the	job	offer.	The	qualified	agent

running	on	the	node	bids	for	the	job	on	behalf	of	the	node.	Once	the	qualified	agent	is
selected	by	the	engine,	it	sends	the	unit	to	the	agent	for	deployment.

fleetctl
fleetctl	is	the	utility	provided	by	the	CoreOS	distribution	to	interface	and	manage	the
fleetd	module.	This	is	similar	to	systemctl	for	systemd	to	fleet.	fleetctl	can	either	be
executed	on	one	of	the	nodes	inside	the	CoreOS	cluster	or	it	can	be	executed	on	a	machine
that	is	not	part	of	the	CoreOS	cluster.	There	are	different	mechanisms	to	run	fleetctl	to
manage	the	fleet	service.

By	default,	fleetctl	communicates	directly	with	unix:///var/run/fleet.sock,	which
is	a	Unix	domain	socket	of	the	local	host	machine.	To	override	and	to	contact	a	particular
node’s	HTTP	API,	the	--endpoint	option	should	be	used,	as	follows.	The	--endpoint
option	can	also	be	provided	using	FLEETCTL_ENDPOINT	environmental	options:

fleetctl	--endpoint	http://<IP:PORT>	list-units

When	the	user	want	to	execute	the	fleetctl	command	from	an	external	machine,	the	--
tunnel	option	is	used,	which	provides	a	way	to	tunnel	fleetctl	commands	to	one	of	the
nodes	in	the	cluster	using	SSH:

fleetctl	--tunnel	10.0.0.1	list-machines

fleetctl	contains	the	command	to	start,	stop,	and	destroy	units	in	the	cluster.	The
following	table	lists	the	commands	provided	by	fleetctl:

Command Description Example

fleetctl

list-unit-

files
List	all	units	in	the	fleet	cluster.

$	fleetctl	list-unit-files

UNIT												HASH				DSTATE			STATE				

TMACHINE

myservice.service	d4d81cf	launched	

launched	85c0c595…/172.17.8.102

example.service			e56c91e	launched	

launched	113f16a7…/172.17.8.103

fleetctl

start
To	start	a	unit.

$	fleetctl	start	myservice.service

Unit	myservice.service	launched	on	

d4d81cf…/172.17.8.102

fleetctl

stop
To	stop	a	unit.

$	fleetctl	stop	myservice.service

Unit	myservice.service	stopped	on	

d4d81cf…/172.17.8.102

fleetctl

load

To	schedule	a	unit	in	a	cluster	without	starting	the	unit.
This	unit	will	be	in	an	inactive	state.

$	fleetctl	load	example.service

Unit	example.service	loaded	on	

133f19a7…/172.17.8.103

fleetctl

unload

To	unschedule	a	unit	in	a	cluster.	This	unit	will	be	visible
in	fleetctl	list-unit-files	but	will	not	have	any
state.

$	fleetctl	load	example.service

fleetctl

submit

To	bring	the	units	into	the	cluster.	This	unit	will	be	visible
in	fleetctl	list-unit-files	but	will	not	have	any
state.

fleetctl	submit	example.service

fleetctl

destroy

The	destroy	command	stops	the	unit	and	removes	the	unit
file	from	the	cluster. fleetctl	destroy	example.service

fleetctl

status

To	get	the	status	of	the	unit.	This	command	invokes	the
systemctl	command	on	the	machine	running	a	given	unit
over	SSH.

$	fleetctl	status	example.service

example.service	-	Hello	World

			Loaded:	loaded	

(/run/systemd/system/example.service;	

enabled-runtime)

			Active:	active	(running)	since	Mon	

2015-09-21	23:20:23	UTC;	1h	49min	ago

	Main	PID:	6972	(bash)

			CGroup:	

/system.slice/example.1.service

											├─	6973	/bin/bash	-c	while	

true;	do	echo	"Hello,	world";	sleep	1;	

done

											└─20381	sleep	1

The	fleetctl	syntax	looks	similar	to	systemctl,	which	is	the	management	interface	for
systemd.

Standard	(local)	and	global	units
Global	units	are	units	that	are	scheduled	to	run	on	all	the	members.	Standard	or	local	units
are	units	that	are	scheduled	to	run	only	on	some	machines.	In	case	of	failures,	these	units
are	switched	to	another	member	in	the	cluster	fit	to	run	those	units.

Unit	file	options	for	fleet
Unit	file	format	is	the	same	as	the	file	format	for	systemd.	fleet	extends	the	configuration
by	adding	another	section,	X-Fleet.	This	section	is	used	by	fleet	to	schedule	the	units	on	a
specific	member	based	on	the	constraints	specified.	Some	of	the	important	parameters	of
the	X-Fleet	section	are:

MachineID:	This	specifies	the	machine	on	which	the	unit	has	to	be	executed.	Machine
ID	can	be	obtained	from	the	/etc/machine-id	file,	or	through	the	fleetctl	list-
machines	-l	command.	This	option	is	to	be	used	with	discretion	as	it	defies	the
purpose	of	fleet,	allowing	a	unit	to	be	targeted	specifically	on	the	machine.
MachineOf:	This	instructs	fleet	to	execute	the	unit	on	which	the	specified	unit	is
running.	This	option	can	be	used	to	group	units	running	on	a	member.
MachineMetadata:	This	instructs	fleet	to	execute	the	units	on	the	member	matching
the	specified	metadata.	If	more	than	one	metadata	is	provided,	all	metadata	should
match.	To	match	any	of	the	metadata	the	parameter	can	include	multiple	times.
Metadata	is	provided	for	the	member	in	the	cloud-config	fleet	configuration.
Conflicts:	This	instructs	fleet	not	to	execute	the	unit	on	the	specified	unit	that	is
running.
Global:	If	this	is	set	to	true,	the	unit	is	scheduled	to	be	executed	on	all	the	members.
Additionally,	if	MachineMetadata	is	configured,	they	run	only	on	members	having
matching	metadata.	Any	other	options,	if	provided,	make	the	unit	configuration
invalid.

Instantiating	the	service	unit	in	the	cluster
We	have	seen	what	CoreOS	clustering	is,	how	to	form	a	cluster,	and	tools	like	fleet	and
fleetctl.	Now,	let	us	see	how	a	service	unit	can	be	started	in	one	of	the	nodes	in	the
cluster	using	fleet.	As	mentioned	already,	fleetctl	is	the	command-line	utility	provided
by	the	CoreOS	distribution	to	perform	various	operations,	such	as	start	the	service,	stop
the	service,	and	so	on	in	a	cluster.	Like	systemctl,	fleetctl	also	requires	a	service	file	to
perform	these	operations.	Let	us	see	a	sample	service	file	and	using	the	service	file,	how
fleet	starts	the	service	in	the	cluster:

[Unit]

Description=Example

After=docker.service

Requires=docker.service

[Service]

TimeoutStartSec=0

ExecStartPre=-/usr/bin/docker	kill	busybox1

ExecStartPre=-/usr/bin/docker	rm	busybox1

ExecStartPre=/usr/bin/docker	pull	busybox

ExecStart=/usr/bin/docker	run	--name	busybox1	busybox	/bin/sh	-c	"while	

true;	do	echo	Hello	World;	sleep	1;	done"

ExecStop=/usr/bin/docker	stop	busybox1

Save	the	preceding	file	as	example.service	on	the	CoreOS	machine.	Now,	execute	the
following	command	to	start	the	service	in	the	cluster:

$	fleetctl	start	example.service

$	fleetctl	list-units

UNIT														MACHINE																	ACTIVE				SUB

example.service					d0ef0562…/10.0.0.3			active				running

$	fleetctl	list-machines

MACHINE																																	IP										METADATA

159b2900-7f06-5d43-92da-daeeabb90d5a				10.0.0.1			-

50a69aa6-518d-4d81-ad3d-bfc4d146e996				10.0.0.2			-

d0ef0562-6a6f-1d80-b7e6-46e996bfc4d1				10.0.0.3			-

One	of	the	major	requirements	for	running	a	service	is	to	provide	high	availability.	To
provide	a	high-availability	service,	we	may	need	to	run	multiple	instances	of	the	same
service.	These	different	instances	should	be	running	on	different	nodes.	To	provide	high
availability	for	a	unit/service,	we	should	make	sure	that	the	different	instances	of	the
service	are	running	on	different	nodes	in	the	cluster.	This	can	be	achieved	in	CoreOS	by
using	the	conflicts	attribute.	Let	us	have	a	look	at	the	service	file	for	these	two	instances
of	the	service,	say,	the	service	as	redis.service:

[Unit]

Description=My	redis	Frontend

After=docker.service

Requires=docker.service

[Service]

TimeoutStartSec=0

ExecStartPre=-/usr/bin/docker	kill	redis

ExecStartPre=-/usr/bin/docker	rm	redis

ExecStartPre	docker	pull	dockerfile/redis

ExecStart	docker	run	-d	--name	redis	-p	6379:6379	dockerfile/redis

ExecStop=/usr/bin/docker	stop	redis

[X-Fleet]

Conflicts=redis@*.service

Save	this	content	as	redis@1.service	and	redis@2.service.	The	conflicts	attributes	in
the	service	file	informs	fleet	not	to	start	these	two	services	in	the	same	node:

$	fleetctl	start	redis@1

$	fleetctl	start	redis@2

$	fleetctl	list-units

UNIT														MACHINE																	ACTIVE				SUB

redis@1.service		5a2686a6…/10.0.0.2			active				running

redis@2.service		259b18ff…/10.0.0.1			active				running

Recovering	from	node	failure
CoreOS	provides	an	inherent	mechanism	to	reschedule	the	units	from	one	node	to	another
node	when	there	is	a	node	failure	or	machine	failure.	All	the	nodes	in	the	cluster	send	a
heartbeat	message	to	the	fleet	leader.	When	the	heartbeat	messages	are	not	received	from	a
particular	node,	all	the	units	running	on	that	node	are	marked	to	be	rescheduled	in
different	nodes.	The	fleet	engine	identifies	the	qualified	node	and	starts	the	units	in	the
qualified	node.

Summary
In	this	chapter,	we	learned	about	CoreOS	clusters	and	how	members	join	a	cluster	using
cluster	discovery.	We	got	ourselves	familiar	with	the	init	system	used	to	start	the	units	in
most	of	the	Linux	systems	and	how	CoreOS	extends	it	to	a	multi-member	cluster	using	the
fleet	service.	We	learned	about	starting	and	stopping	a	service	on	a	member	using	fleet.

In	the	next	chapter,	we	will	understand	more	about	the	constraints	on	the	service,	which
helps	fleet	select	the	member	suitable	for	it	to	run.

Chapter	4.	Managing	Services	with	User-
Defined	Constraints
This	chapter	takes	the	CoreOS	cluster	to	the	next	level	by	putting	constraints	on	the
services	so	that	they	run	on	the	required	members.

This	chapter	covers	the	following	topics:

Pre-defined	constraints	using	metadata
Service-level	affinity/anti-affinity
Node-level	affinity
High	availability

Introduction	to	service	constraints
Not	all	cluster	members	run	all	the	services	in	a	deployment.	Some	may	run	the	services
running	business	logic,	some	may	run	management	software,	and	some	may	run	logging
or	auditing	software,	and	so	on.	Hence,	it’s	imperative	that	cluster	management	software
provides	mechanisms	to	control	service	deployment	so	they	run	only	on	the	members
satisfying	their	properties.	We	will	study	the	mechanisms	provided	by	CoreOS	to	control
the	deployment.

CoreOS	uses	the	fleet	service	to	schedule	the	services	on	the	members	with	constraints.
Unit	file	configuration	options	help	to	target	a	service	on	a	particular	member	or	members
meeting	configured	properties.	In	due	course,	we	will	also	learn	to	integrate	the	fleet
service	into	the	cloud-config	file	and	auto	start	a	custom	service	inside	a	docker
container.

Predefined	constraints	using	metadata
This	mechanism	enables	a	service	to	be	runn	on	a	machine	having	matching	metadata
configured	in	the	metadata	parameter	of	the	coreos.fleet	section.	Metadata	can	be	used
to	describe	a	member	properties	such	as	disk	type,	region,	platform,	and	special	member
property	like	exposed	public	IPs	and	so	on.	Since	it	is	provided	as	a	multiple	key-value
pair,	the	flexibility	it	provides	is	immense	for	defining	a	member.

The	metadata	can	then	also	be	used	to	associate	services	to	be	run	on	those	members.	For
instance,	we	can	say	that	a	particular	service	is	supposed	to	run	on	members	that	are
running	in	a	particular	region	and/or	having	a	particular	disk	type	and/or	having	a
particular	member	type	(bare	metal,	cloud,	and	so	on)	and/or	having	a	particular	provider
(machine	vendor,	cloud	provider,	and	so	on).

In	our	example,	we	will	create	three	members,	each	having	their	own	metadata,	and	then
bind	the	service	to	run	on	a	metadata	matching	its	property.	The	following	is	the	setup:

The	following	is	the	cloud-config	file	used	to	create	the	cluster	with	services	running	on
their	designated	members:

#cloud-config

write_files:

		-	path:	/home/core/example_01.service

				owner:	core:core

				permissions:	420

				content:	|

						[Unit]

						Description=Example

						After=docker.service

						Requires=docker.service

						[X-Fleet]

						MachineMetadata=host=service_01

						[Service]

						TimeoutStartSec=0

						ExecStartPre=-/usr/bin/docker	kill	sampleserv_01

						ExecStartPre=-/usr/bin/docker	rm	sampleserv_01

						ExecStartPre=/usr/bin/docker	pull	busybox

						ExecStart=/usr/bin/docker	run	--name	sampleserv_01	busybox	/bin/sh	-c	

"while	true;	do	echo	Test	Service;	sleep	300;	done"

						ExecStop=/usr/bin/docker	stop	sampleserv_01

		-	path:	/home/core/example_02.service

				owner:	core:core

				permissions:	420

				content:	|

						[Unit]

						Description=Example

						After=docker.service

						Requires=docker.service

						[X-Fleet]

						MachineMetadata=host=service_02

						[Service]

						TimeoutStartSec=0

						ExecStartPre=-/usr/bin/docker	kill	sampleserv_02

						ExecStartPre=-/usr/bin/docker	rm	sampleserv_02

						ExecStartPre=/usr/bin/docker	pull	busybox

						ExecStart=/usr/bin/docker	run	--name	sampleserv_02	busybox	/bin/sh	-c	

"while	true;	do	echo	Test	Service;	sleep	300;	done"

						ExecStop=/usr/bin/docker	stop	sampleserv_02

		-	path:	/home/core/example_03.service

				owner:	core:core

				permissions:	420

				content:	|

						[Unit]

						Description=Example

						After=docker.service

						Requires=docker.service

						[X-Fleet]

						MachineMetadata=host=service_03

						[Service]

						TimeoutStartSec=0

						ExecStartPre=-/usr/bin/docker	kill	sampleserv_03

						ExecStartPre=-/usr/bin/docker	rm	sampleserv_03

						ExecStartPre=/usr/bin/docker	pull	busybox

						ExecStart=/usr/bin/docker	run	--name	sampleserv_03	busybox	/bin/sh	-c	

"while	true;	do	echo	Test	Service;	sleep	300;	done"

						ExecStop=/usr/bin/docker	stop	sampleserv_03

coreos:

		etcd2:

				name:	core-03

				advertise-client-urls:	http://$public_ipv4:2379

				initial-advertise-peer-urls:	http://$private_ipv4:2380

				listen-client-urls:	http://0.0.0.0:2379,http://0.0.0.0:4001

				listen-peer-urls:	http://$private_ipv4:2380,http://$private_ipv4:7001

				initial-cluster-token:	coreOS-static

				initial-cluster:	core-01=http://172.17.8.101:2380,core-

02=http://172.17.8.102:2380,core-03=http://172.17.8.103:2380

		fleet:

				public-ip:	$public_ipv4

				metadata:	host=service_01

		units:

		-	name:	etcd2.service

				command:	start

				enable:	true

		-	name:	fleet.service

				command:	start

				enable:	true

		-	name:	example_fleet_01.service

				command:	start

				content:	|

						[Service]

						Type=oneshot

						ExecStartPre=/bin/sh	-c	"sleep	10"

						ExecStart=/usr/bin/fleetctl	start	/home/core/example_01.service

		-	name:	example_fleet_02.service

				command:	start

				content:	|

						[Service]

						Type=oneshot

						ExecStartPre=/bin/sh	-c	"sleep	10"

						ExecStart=/usr/bin/fleetctl	start	/home/core/example_02.service

		-	name:	example_fleet_03.service

				command:	start

				content:	|

						[Service]

						Type=oneshot

						ExecStartPre=/bin/sh	-c	"sleep	10"

						ExecStart=/usr/bin/fleetctl	start	/home/core/example_03.service

The	write_files	section	is	added	to	generate	the	unit	files	for	fleet.	Three	unit	files	are
created;	each	service	would	be	running	only	one	of	the	members.	Each	unit	file	has	the	X-
Fleet	section	adding	a	constraint	that	it	should	only	run	on	a	machine	having	specific
metadata.

The	fleet	section	updated	to	start	fleet	and	specify	the	IP	address	used	to	contact	the
etcd2	service.	Additionally,	the	metadata	parameter	is	added	to	specify	the	metadata	for
the	member.	Instrumentation	is	required	to	generate	separate	metadata	for	each	of	the
members.	Vagrantfile	for	the	static	cluster	in	Chapter	3,	Creating	Your	Coreos	Cluster
and	Managing	the	Cluster,	is	used	as	the	base	file	and	the	highlighted	instrumentation	is
done	to	modify	metadata	for	each	of	the	members.

...

						if	File.exist?(CLOUD_CONFIG_PATH)

								user_data_specific	=	"#{CLOUD_CONFIG_PATH}-#{i}"

								require	'yaml'

								data	=	YAML.load(IO.readlines('user-data')[1..-1].join)

								if	data['coreos'].key?	'etcd2'

										data['coreos']['etcd2']['name']	=	vm_name

								end

								if	data['coreos'].key?	'fleet'

										data['coreos']['fleet']['metadata']	=	"host=service_%02d"	%	[i]

								end

								yaml	=	YAML.dump(data)

								File.open(user_data_specific,	'w')	{	|file|	file.write("#cloud-

config\n\n#{yaml}")	}

								config.vm.provision	:file,	:source	=>	user_data_specific,	

:destination	=>	"/tmp/vagrantfile-user-data"

								config.vm.provision	:shell,	:inline	=>	"mv	/tmp/vagrantfile-user-

data	/var/lib/coreos-vagrant/",	:privileged	=>	true

						end…

The	units	section	is	updated	to	start	the	fleet	service	and	wrapper	oneshot	service	to
invoke	fleetctl	upon	startup.	Fleetctl	then	manages	the	service.	The	following	is	the
sequence	of	events:

Unit	files	for	the	services	/home/core/example_01.service,
/home/core/example_02.service	and	/home/core/example_03.service	are
created	at	the	time	of	boot-up.	Note	that	write_files	is	kept	before	the	coreos
section	so	that	the	files	are	created	before	services	are	started.
Services	are	started	by	systemd	running	on	each	member.	A	sleep	of	ten	seconds	is
added	in	the	oneshot	services	example_01.service,	example_01.service,	and
example_01.service	to	allow	initialization	of	etcd2	and	the	fleetd	service	before
the	job	is	submitted	using	fleetctl.
Fleetd	then	coordinates	and	schedules	the	services	on	respective	members.

Boot	the	cluster	using	Vagrant	up.	Upon	successful	boot-up,	we	can	see	the	members	in
the	cluster	and	the	services	running	on	the	members.	Note	that	example_01.service	is
started	on	member	01	having	the	metadata	service_01,	example_02.service	is	started	on
member	01	having	the	metadata	service_02,	and	so	on:

vagrant	ssh	core-01

fleetctl	list-units

UNIT																				MACHINE																									ACTIVE		SUB

example_01.service						375bde8b…/172.17.8.101								active		running

example_02.service						2b6184e0…/172.17.8.102								active		running

example_03.service						e59919cc…/172.17.8.103								active		running

fleetctl	list-machines

MACHINE									IP														METADATA

2b6184e0…					172.17.8.102				host=service_02

375bde8b…					172.17.8.101				host=service_01

e59919cc…					172.17.8.103				host=service_03

Now,	let’s	modify	the	cloud-config	file	to	create	another	deployment	where	one	instance

of	example.service	is	running	on	every	member	along	with	respective	services	on
member	2	and	member	3	as	the	previous	example.

We	will	now	go	through	the	modifications	that	are	required	in	the	cloud-config	file
prepared	earlier.

The	unit	files	for	fleetctl	were	modified	for	the	first	service	to	create	a	template	unit.	A
template	file	helps	the	creation	of	multiple	units	from	a	single	configuration	file.	While
adding	a	unit,	Fleet/systemd	looks	for	the	configuration	file	with	an	exact	name	match.	If
such	a	file	is	not	found,	a	filename	with	the	same	name	the	@	character	is	used.	For
example,	to	add	the	unit	common@1	file,	common@.service	will	be	used.

#cloud-config

write_files:

		-	path:	/home/core/common@.service

...

Additional	constraints	were	added	to	the	section	X-Fleet.	MachineMetaData	was	changed
to	use	the	disk	as	ssd.	Metadata	disk=ssd	is	also	added	to	all	the	members	using
Vagrantfile	instrumentation.	This	makes	the	service	fit	for	running	on	all	members.	The
additional	constraint	Conflicts	is	added	so	that	only	one	instance	of	this	service	runs	on	a
machine.	This	constraint	means	that	if	a	service	is	already	running	on	the	member,	other
instances	of	the	service	can’t	be	scheduled	on	the	same	machine.	Note	how	the	service
name	is	provided	with	a	wildcard	to	match	any	of	the	instance	numbers.

...

						[X-Fleet]

						MachineMetadata=disk=ssd

						Conflicts=common@*.service

...

The	service	section	of	the	unit	file	is	updated	to	be	capable	of	spawning	a	service	for	any
instance.	To	refer	to	the	instance	string	from	within	the	configuration	file,	we	can	use	%i
specifier.	%i	gets	replaced	with	the	instance	number	provided	during	start.	This	feature
was	not	required	to	be	used	in	the	example	but	is	worth	a	mention.

...

						[Service]

						TimeoutStartSec=0

						ExecStartPre=-/usr/bin/docker	kill	busybox

						ExecStartPre=-/usr/bin/docker	rm	busybox

						ExecStartPre=/usr/bin/docker	pull	busybox

						ExecStart=/usr/bin/docker	run	--name	busybox	/bin/sh	-c	"while	true;	

do	echo	Test	Service;	sleep	300;	done"

						ExecStop=/usr/bin/docker	stop	busybox…

The	wrapper	service	to	invoke	fleetctl	is	also	updated	to	start	three	instances	of	service:

...

		-	name:	example_fleet1.service

				command:	start

				content:	|

						[Service]

						Type=oneshot

						ExecStartPre=/bin/sh	-c	"sleep	10"

						ExecStart=/usr/bin/fleetctl	start	/home/core/common@1.service

		-	name:	example_fleet2.service

...

						ExecStart=/usr/bin/fleetctl	start	/home/core/common@2.service

		-	name:	example_fleet3.service

...

						ExecStart=/usr/bin/fleetctl	start	/home/core/common@3.service

		-	name:	example_fleet_02.service…

Vagrantfile	was	modified	with	the	following	instrumentation	to	add	the	metadata
disk=ssd	to	all	the	members:

...

								if	data['coreos'].key?	'fleet'

										data['coreos']['fleet']['metadata']	=	

"host=service_%02d,disk=ssd"	%	[i]

								end…

Boot	the	cluster	using	Vagrant	up.	Upon	successful	boot-up,	we	can	see	the	members	in
the	cluster	and	the	services	running	on	the	members.	Note	that	common@.service	is
running	on	all	the	members,	whereas	example_02.service	and	example_03.service	are
only	instantiated	on	respective	members.

vagrant	ssh	core-01

fleetctl	list-units

UNIT																				MACHINE																									ACTIVE		SUB

common@1.service							344d088c…/172.17.8.102								active		running

common@2.service							a5a4a7e5…/172.17.8.101								active		running

common@3.service							200545ed…/172.17.8.103								active		running

example_02.service						344d088c…/172.17.8.102								active		running

example_03.service						200545ed…/172.17.8.103								active		running

fleetctl	list-machines

MACHINE									IP														METADATA

200545ed…					172.17.8.103				disk=ssd,host=service_03

344d088c…					172.17.8.102				disk=ssd,host=service_02

a5a4a7e5…					172.17.8.101				disk=ssd,host=service_01

In	this	example,	we	also	touched	upon	constraints	based	on	running	services	on	the
machine.	We	will	discuss	it	further	in	the	next	section.

Service	level	affinity/anti-affinity
This	mechanism	enables	clubbing	services	together,	to	be	run	on	the	same	member	or	vice
versa;	that	is,	making	sure	that	if	a	particular	service	is	running	on	the	member,	the	current
service	is	not	to	be	scheduled	on	that	machine.

In	the	second	example	for	predefined	constraints	using	metadata,	we	added	a	constraint,
Conflicts,	so	that	only	one	instance	of	service	is	started	on	a	member.	Hence,	the
constraint	was	added	for	the	self-service	name.	This	can	also	be	added	for	another	service.
This	ensures	that	two	services	don’t	co-exist	in	a	member.	To	understand	this,	we	will
modify	the	example	slightly	so	that	common@.service	doesn’t	run	along	with
example_02.service.

Another	Conflicts	parameter	is	added	for	example_02.server	in	the	unit	configuration
file	of	common@.service.	Also,	the	units	section	of	coreos	is	modified	to	add	an	entry	for
example_fleet_02.service	before	example_fleet1.service.

...

						[X-Fleet]

						MachineMetadata=disk=ssd

						Conflicts=common@*.service

						Conflicts=example_02.service

...

Boot	the	cluster	using	Vagrant	up.	Upon	successful	boot-up,	we	can	see	the	members	in
the	cluster	and	the	services	running	on	the	members.	Note	that	common@.service	is
running	on	all	the	members	except	on	the	member	where	example_02.service	is	running.

vagrant	ssh	core-01

fleetctl	list-units

UNIT																				MACHINE																									ACTIVE		SUB

common@1.service								60b21422…/172.17.8.101								active		running

common@2.service								c8009511…/172.17.8.103								active		running

example_02.service						103f8f5a…/172.17.8.102								active		running

example_03.service						c8009511…/172.17.8.103								active		running

fleetctl	list-machines

MACHINE									IP														METADATA

103f8f5a…					172.17.8.102				disk=ssd,host=service_02

60b21422…					172.17.8.101				disk=ssd,host=service_01

c8009511…					172.17.8.103				disk=ssd,host=service_03

Now	let’s	discuss	a	reverse	use	case:	we	want	a	particular	service	to	run	on	a	member	with
another	service.	We	will	run	the	common	service	only	where	example_02.service	is
running.

The	X-Fleet	section	is	updated	with	the	new	parameter	MachineOf.	This	ensures	that
common@.service	only	runs	along	with	example_02.service.

...

						[X-Fleet]

						MachineOf=example_02.service

...

Boot	the	cluster	using	Vagrant	up.	Upon	successful	boot-up,	we	can	see	the	members	in
the	cluster	and	the	services	running	on	the	members.	Note	that	common@1.service	is
running	only	on	the	member	where	example_02.service	is	running.

vagrant	ssh	core-01

core@core-01	~	$	fleetctl	list-units

UNIT																				MACHINE																									ACTIVE		SUB

common@1.service								d119aafa…/172.17.8.102								active		running

example_02.service						d119aafa…/172.17.8.102								active		running

example_03.service						6f3da0a4…/172.17.8.103								active		running

core@core-01	~	$

core@core-01	~	$

core@core-01	~	$	fleetctl	list-machines

MACHINE									IP														METADATA

6f3da0a4…					172.17.8.103				disk=ssd,host=service_03

c88e05ba…					172.17.8.101				disk=ssd,host=service_01

d119aafa…					172.17.8.102				disk=ssd,host=service_02

Node-level	affinity
This	mechanism	uses	the	systemd	generated	machine	ID	to	schedule	the	services.	Upon
member	installation,	systemd	generates	a	machine	ID	that	is	the	same	across	subsequent
system	boots.	Node-level	affinity	ensures	the	user	targets	a	service	onto	a	member	and
nowhere	else.	When	thinking	about	clusters	where	it’s	more	flexible	to	schedule	a	service
based	on	member	properties	rather	than	on	member	identifiers,	this	mechanism	has	limited
use.	Typical	use	cases	can	be	running	a	service	to	collect	specific	data	from	a	machine,	or
for	testing	a	service	where	a	new	service	can	be	scheduled	on	a	test	member	for	observing
the	behavior.

The	following	is	the	cloud-config	file	used	to	create	the	cluster.	This	file	also	creates	a
service	unit	file	in	the	home	directory	that	will	be	used	by	fleet	to	start	the	service.

#cloud-config

write_files:

		-	path:	/home/core/example_test.service

				owner:	core:core

				permissions:	420

				content:	|

						[Unit]

						Description=Example

						After=docker.service

						Requires=docker.service

						[X-Fleet]

						MachineID=dummy

						[Service]

						TimeoutStartSec=0

						ExecStartPre=-/usr/bin/docker	kill	sampleserv_test

						ExecStartPre=-/usr/bin/docker	rm	sampleserv_test

						ExecStartPre=/usr/bin/docker	pull	busybox

						ExecStart=/usr/bin/docker	run	--name	sampleserv_test	busybox	/bin/sh	

-c	"while	true;	do	echo	Test	Service;	sleep	300;	done"

						ExecStop=/usr/bin/docker	stop	sampleserv_test

...

		units:

		-	name:	etcd2.service

				command:	start

				enable:	true

		-	name:	fleet.service

				command:	start

				enable:	true

This	cloud-config	file	serves	two	main	purpose:	starting	fleetd	services	and	creating	the
service	file	/home/core/example_test.service.

We	will	now	find	the	machine	IDs	of	members	in	the	cluster:

vagrant	ssh	core-01

core@core-01	~	$	fleetctl	list-machines	-l

MACHINE																																	IP														METADATA

41b7574b33b0462c8e311ded39302a19								172.17.8.101				host=service_01

7e481484a52945d3ad369f68d2e46a77								172.17.8.103				host=service_03

f70fc5f45cdc49f99fc47757f6fe5ae6								172.17.8.102				host=service_02

Modify	the	service	file	so	that	the	service	is	instantiated	on	the	machine	ID
f70fc5f45cdc49f99fc47757f6fe5ae6.	This	can	be	any	machine	ID	of	your	choice.	We
are	not	able	to	automate	using	Vagrant	as	machine	IDs	are	not	known	to	us	earlier.

core@core-01	~	$	cat	example_test.service

...

[X-Fleet]

MachineID=f70fc5f45cdc49f99fc47757f6fe5ae6

...

Launch	the	service	and	check	that	it’s	running	on	the	desired	machine:

core@core-01	~	$	/usr/bin/fleetctl	start	/home/core/example_test.service

Unit	example_test.service	launched	on	f70fc5f4…/172.17.8.102

core@core-01	~	$	fleetctl	list-units

UNIT																				MACHINE																									ACTIVE										SUB

example_test.service						f70fc5f4…/172.17.8.102								active						running

High	availability
There	are	two	key	principles	in	designing	a	highly	available	system.	One	is	to	avoid	single
point	of	failure;	that	is,	the	complete	system	should	not	fail	when	a	fault	occurs.	For
example,	there	should	not	be	a	dependency	on	a	single	process,	interface,	and	so	on.	The
second	principle	is	how	quickly	the	system	can	recover	in	case	of	failure	so	that	downtime
is	short.

Fleetd	helps	design	a	highly	available	system	by	allowing	the	configuration	of	multiple
instances	of	the	service	on	different	members	and	not	multiple	instances	on	the	same
member.	This	means	that	the	failure	of	a	single	member	doesn’t	bring	down	the	complete
service,	but	it	can	still	perform	the	function	it’s	supposed	to	do	with	reduced	capacity	until
a	recovery	happens.	Once	the	member	is	recovered	or	another	member	is	started	by	the
orchestration	application	detecting	member	failure,	fleet	will	reschedule	the	service	on	the
new	member	automatically.

Summary
In	this	chapter,	we	understood	service	constraints	which	help	to	deploy	services	on
suitable	members.

In	the	next	chapter,	we	will	understand	more	about	discovering	services	running	in	the
CoreOS	cluster.

Chapter	5.	Discovering	Services	Running
in	a	Cluster
When	there	are	large	numbers	of	members	in	a	deployment,	it’s	very	important	for	the
system	to	have	easy	manageability	with	the	least	human	intervention	possible.	Human
interventions	tend	to	have	human	errors	associated	with	them,	making	the	system
unstable.	Imagine	a	scenario	where	there	is	a	load	balancer,	which	distributes	HTTP	traffic
to	multiple	servers.	If	any	servers	go	down	or	come	up,	it’s	very	important	that	the	load
balancer	knows	about	a	node	or	service	addition	or	deletion	automatically	without	manual
intervention,	else	it	will	be	a	nightmare	managing	such	deployments.	Service	discovery
ensures	that	the	load	balancer	is	aware	of	the	currently	active	instances	of	services;	based
on	this,	it	can	take	routing	decisions.

This	chapter	explains	the	need	and	mechanism	for	the	discovery	of	services	running	on	a
cluster.

This	chapter	covers	the	following	topics:

Introduction	and	necessity	of	service	discovery
Mechanism	for	discovery	of	services.

Introduction	and	necessity	of	service
discovery
In	a	CoreOS	environment,	all	of	the	user	applications	will	be	deployed	as	services	inside	a
container.	For	most	of	these,	user	applications	need	to	work	coherently	and	hence,	a
mechanism	is	needed	to	discover	these	services	and	service	parameters.	Service	discovery
via	etcd	provides	a	way	to	publish	the	services	and	the	required	parameters	with	a	service
to	other	services	in	the	system.	The	service	discovery	mechanism	is	not	only	useful	for
service	parameter	discovery	but	also	involves	the	detection	of	the	change	of	state	of	a
member	(the	addition	of	a	new	member	or	the	removal	of	a	member	running	a	service	or	a
member	going	down),	the	state	of	the	service	(the	service	providing	an	application	comes
up	or	goes	down),	and	service	parameters	(like	the	IP	and	port	on	which	the	service	is
provided,	database	connection	end	points,	and	so	on).	It	is	a	requirement	that	the	service
information	is	available	across	all	members	at	all	times,	which	means	that	the	mechanism
for	service	discovery	should	be	replicated	and	made	available	through	multiple	members
to	avoid	single	point	of	failure.

Mechanism	for	service	discovery
Features	provided	by	the	CoreOS	services	etcd	and	fleetd	can	be	used	to	discover
services.	The	following	figure	explains	the	typical	mechanism	used	for	service	discovery:

In	the	previous	chapters,	we	have	seen	how	etcd	and	fleetd	can	be	used	to	discover	the
member	nodes	in	a	cluster.	The	etcd	service	is	not	limited	for	node	discovery.	It	can	be
used	to	discover	or	publish	information	related	to	applications	or	services.	The	subsequent
sections	in	this	chapter	cover	how	to	publish	and	discover	service-related	information
using	etcd.

There	are	two	kinds	of	member	nodes	in	the	cluster:	frontend	service	nodes	and	backend
service	nodes.

The	frontend	service	handles	all	service	requests	and	routes	the	request	to	the
backend	service	for	actual	processing.	This	is	the	simplified	but	typical	architecture
for	any	high-capacity	system.	In	the	frontend	service	nodes,	the	following	services
will	be	running:

Discovery	service
etcd	service
fleetd	service

Frontend	or	route	service

Backend	service	nodes	are	responsible	for	running	the	services	that	are	being
scheduled	or	routed	by	the	frontend	service	nodes.	In	the	backend	service	nodes,	the
following	services	will	be	running:

Register	service:	If	simple	discovery	is	required,	this	can	be	included	in	the
backend	service	unit	file	as	ExeStartPost
etcd	service
fleetd	service
Backend	or	actual	service

The	fleetd	and	etcd	services	are	already	discussed	in	detail	in	previous	chapters.	The
Register	service	running	in	backend	nodes	updates	the	service	information	in	the	etcd	key-
value	store,	which	will	be	published	to	the	discovery	service.	The	discovery	services
running	in	the	frontend	nodes	are	used	to	discover	the	backend	member	service
information	using	etcd	key-value	store	information.

Let’s	understand	the	complete	flow	of	discovery	step	by	step:

The	Frontend	member	is	started.	The	fleetd	service	kicks	in	and	schedules	the
Frontend	and	Discovery	service	.	Service	level	affinity	is	used	to	ensure	that	both
of	them	run	together	on	a	member.
The	Discovery	service	uses	the	etcd	key-value	store	feature	to	look	for	backend
member	information.	It	also	sets	up	a	watch	so	that	it	comes	to	know	of	any	changes
in	the	service	discovery	information.	We	will	learn	about	reading,	writing,	and	setting
up	a	watch	on	etcd	later	in	this	chapter.	Since	backend	members	are	not	started,	no
service	information	is	available	yet,	so	the	discovery	service	is	in	wait	mode	looking
for	any	updates	in	service	information.
One	of	the	backend	member	is	started.	The	fleetd	service	again	kicks	in	and
schedules	the	Backend	and	Register	service.	Here,	also,	service	level	affinity	is	used
to	ensure	that	both	of	them	run	together	on	a	member.	The	Register	service	updates
the	service	information	in	the	etcd	key-value	store.	This	service	information	is	useful
for	the	frontend	member.	Service	information	can	be	endpoint	information	like	IP	and
port,	service	type,	or	any	other	metadata	necessary	for	the	frontend	to	take	an
informed	decision	on	scheduling	the	request.	It’s	also	important	that	a	time	to	live	is
set	on	such	data	and	the	data	is	being	periodically	rewritten	on	etcd.	Setting	time	to
live	on	data	ensures	that	service	data	also	gets	removed	when	service	terminates.
Since	the	Discovery	service	on	the	frontend	member	has	set	up	a	watch	on	etcd,	it
comes	to	know	about	new	service	instance	additions.	It	then	updates	the	frontend
service	that	adds	the	service	instance.	Based	on	the	information	available,	the
frontend	service	can	start	scheduling	the	incoming	request	to	the	service	instance.
Once	other	members	are	started,	service	discovery	keeps	on	happening	as	explained
in	the	previous	step	and	the	frontend	service	becomes	aware	of	more	and	more
service	instances	for	the	scheduling	request.
Now,	assume	one	of	the	members	went	down.	The	service	information	gets	erased
from	etcd	after	the	time	to	live	if	they	are	not	updated	again.	The	same	will	happen

when	the	member	is	up	and	running	but	the	backend	service	goes	down	and	is	not
able	to	come	up	again.	In	this	scenario,	fleetd	will	bring	down	the	Register	service
also,	since	they	are	bound	together.	If	they	don’t	come	up	further	on	the	member,	the
service	parameter	will	again	expire	on	etcd	after	time	to	live.
Parameter	deletion	is	again	detected	by	the	Discovery	service	and	the	information
passed	to	the	Frontend	service.	The	Frontend	service	now	knows	that	there	is	one
less	service	instance	to	work	on.

Note	that	this	is	only	a	conceptual	representation	of	the	whole	process.	There	is	no
restriction	that	your	frontend	application	and	discovery	services	should	be	two	separate
applications	or	services.	There	is	a	possibility	that	your	frontend	application	could	also
contain	the	discovery	services.	When	you	use	a	third	party	or	readymade	frontend
application	like	HAProxy,	then	you	may	need	to	write	a	thin	discovery	service	or	you	can
also	use	confd,	another	readymade	application	for	discovery.	Similarly,	the	backend
service	and	register	service	can	be	fused	together	or	you	can	use	another	readymade
application,	forest,	to	directly	update	etcd	without	writing	a	register	service.

Operations	of	etcd
etcd	provides	the	following	three	operations	for	manipulating	the	key-value	store:

etcd	write
etcd	read
etcd	watch

There	are	two	main	interfaces	provided	by	CoreOS	to	perform	the	preceding	etcd
operations:

etcdctl

REST-based	interface.	cURL	can	be	used	to	invoke	REST	APIs.

Operations	using	etcdctl
etcdctl	is	a	command-line	client	of	etcd.	Using	etcdctl,	you	can	read,	write,	and	watch
the	key-value	store	of	etcd.	etcdctl	can	be	used	as	a	standalone	tool	for	configuring	the
key-value	store	or	can	also	be	used	in	scripts.	etcdctl	sends	the	request	message	to	the
etcd	service	and	waits	for	the	response	from	etcd.	etcdctl	can	return	any	one	of	the
following	return	codes:

Return	value Semantics

0 Success

1 Malformed	etcdctl	arguments

2 Failed	to	connect	to	host

3 Failed	to	auth	(client	cert	rejected,	ca	validation	failure,	and	so	on)

4 400	error	from	etcd

5 500	error	from	etcd

etcd	write	using	etcdctl

The	etcd	write	service	will	be	used	by	the	backend	nodes	to	publish	the	service
information	using	the	key-value	data	store	to	the	frontend	services.

The	following	write	operations	are	possible	using	etcdctl.	The	following	table	lists	the
command	options	provided	by	etcdctl	with	syntax	and	examples:

Operations Command	syntax Example

Setting	value	for	a	key etcdctl	set	<key>	<value> $	etcdctl	set	/foo/bar	"foo	bar"

Setting	value	for	a	key	with	expiry
in	seconds

etcdctl	set	<key>	<value>	–ttl
$	etcdctl	set	/foo/bar	"foo	bar"

–ttl	10

Conditionally	setting	value	for	a etcdctl	set	/<key>	<old-value>	--

swap-with-value	<new-value>

$	etcdctl	set	/foo/bar	"foo	bar"

--swap-with-value	"bar	foo"

key	based	on	the	previous	value

Creating	a	new	key etcdctl	mk	<key>	<value> $	etcdctl	mk	/foo/bar	"foo	bar"

Creating	a	new	directory etcdctl	mkdir	<dir> $	etcdctl	mkdir	/foo/bar

Updating	value	for	a	key etcdctl	update	<key>	<value> $	etcdctl	set	/foo/bar	"bar	foo"

Deleting	a	key etcdctl	rm	<key> $	etcdctl	rm	/foo/bar

Deleting	a	key	and	all	its	child	key
recursively

etcdctl	rm	<key>	--recursive $	etcdctl	rm	/foo/bar	–recursive

Conditionally	deleting	a	key etcdctl	rm	<key>	--with-value

<value>

$	etcdctl	rm	/foo/bar	--with-

value	"foo	bar"

Deleting	a	directory etcdctl	rmdir	<dir> $	etcdctl	rmdir	/foo/bar

etcd	read	using	etcdctl

The	etcd	read	service	will	be	used	by	the	frontend	nodes	to	discover	the	service
information	using	the	key-value	data	store.

The	following	read	operations	are	possible	using	etcdctl.	The	following	table	lists	the
command	options	provided	by	etcdctl	with	syntax	and	examples:

Operations Command	syntax Example

Retrieving	a	key-value etcdctl	get	<key>
$	etcdctl	get	/foo/bar

foo	bar

Retrieving	a	key-value	with	additional
metadata

etcdctl	-o	extended	get

<key>

$	etcdctl	-o	extended	get

/foo/bar

Key:	/foo/bar

Modified-Index:	72

TTL:	0

Etcd-Index:	72

Raft-Index:	5611

Raft-Term:	1

foo	bar

Creating	a	new	key etcdctl	mk	<key>	<value> $	etcdctl	mk	/foo/bar	"foo	bar"

Listing	the	directory etcdctl	ls
$	etcdctl	ls

/foo

Listing	the	directory	recursively etcdctl	ls	–recursive

$	etcdctl	ls	--recursive

/foo

/foo/bar

With	our	testservices	example,	the	following	command	is	used	to	read	the	parameters
using	etcdctl.	Note	that	we	are	using	the	ls	command	here	to	get	the	list	of	services	and

then	querying	on	a	specific	service	instance.

etcdctl	ls	/testservice/backend/1

/testservice/backend/1

/testservice/backend/2

etcdctl	get	/testservice/backend/2

172.17.8.102:55555

etcd	watch	using	etcdctl

The	etcd	watch	service	will	be	used	by	the	frontend	nodes	to	monitor	or	watch	for	any
change	in	the	key-value	data	store.

The	following	watch	operations	are	possible	using	etcdctl.	The	following	table	lists	the
command	options	provided	by	etcdctl	with	syntax	and	examples:

Operations Command	syntax Example

Watching	for	any	change	in	the	key-value. etcdctl	watch	<key>
$	etcdctl	watch

/foo/bar

Continuously	watching	any	change	in	the	key-value.	In	this	case,
etcdctl	hangs	forever	until	Ctrl	+	C	and	it	prints	the	value	when	there
is	a	change	in	the	key-value.

etcdctl	watch	<key>	-

-forever

$	etcdctl	watch

/foo/bar	--

forever

foo	bar

Continuously	watching	any	change	in	the	key-value	and	executes	a
program	when	there	is	a	change	in	the	key-value.

etcdctl	exec-watch

<key>	--sh	-c	program

to	execute

$	etcdctl	exec-

watch—sh	-c	env	|

grep	ETCD

Example	of	etcd	using	etcdctl

Until	now,	we	have	seen	how	a	service	parameter	can	be	published	and	discovered	in
theoretical	fashion.	Now	it’s	time	for	some	practical	work.	Let’s	start	off	by	getting
ourselves	familiar	with	the	etcd	key-value	store	features	used	for	discovery	and	how	to	use
them	with	an	example	of	a	service	called	testservices,	which	publishes	the	IP	address
and	port	number	on	which	this	service	is	running.

Here,	testservices	is	the	directory	where	all	the	new	service	information	is	added.	IP	is
the	IP	of	the	member	and	5555	is	the	port	(chosen	for	this	example)	on	which	a	service	is
running.

The	following	is	the	command	to	write	the	IP	address	and	port	on	which	a	service	is	added
with	the	key	as	IP:

etcdctl	set	/testservices/ip	'172.17.8.101:55555'	–ttl	30

An	optional	parameter,	–ttl	30,	is	added	to	set	the	lifetime	for	the	key	as	30	seconds.

Tip
In	our	example,	we	have	chosen	to	show	how	to	write	the	IP	address	and	port	number	key
to	the	key-store.	Please	note	that	there	are	various	ways	to	learn	about	the	IP	address	on
which	a	service	is	running	programmatically.	The	environment	variables

COREOS_PRIVATE_IPV4	and	COREOS_PUBLIC_IPV4	can	be	used	or	the	ipconfig	command
can	be	used	to	find	out	the	IP	address	assigned	for	the	member.

To	get	the	parameters	published	by	testservices,	the	following	command	should	be
used:

etcdctl	get	/testservices/ip	172.17.8.101:55555

To	watch	these	parameters	the	following	command	should	be	used:

etcdctl	watch	/testservices/ip

The	following	are	the	commands	to	write	entries	that	we	queried	using	etcdctl	before.

etcdctl	set	/testservices/backend/1	172.17.8.101:55555	–ttl	30

etcdctl	set	/testservices/backend/2	172.17.8.102:55555	–ttl	30

Operations	using	cURL
cURL,	often	referred	to	as	curl,	is	a	command-line	tool	used	to	transfer	data	to	and	from
application	servers	using	various	protocols.	cURL	supports	a	range	of	protocols	including
HTTPS,	HTTP,	FTPS,	FTP,	SCP,	TFTP,	SFTP,	DAP,	LDAP,	DICT,	TELNET,
IMAP,	FILE,	POP3,	SMTP,	and	RTSP.	It	is	often	used	for	getting	or	sending	files	using
URL	like	syntax.	Like	etcdctl,	curl	can	also	be	used	as	a	standalone	tool	for	configuring
the	key-value	store	or	can	also	be	used	in	scripts.	All	the	operations	that	can	be	done	using
etcdctl	can	also	be	done	using	curl.	curl	also	provides	more	operations	to	manipulate	the
key-value	store.	curl	sends	a	request	message	to	the	etcd	service	and	waits	for	the
response.	The	response	contains	the	following	parameters/attributes:

Action:	The	action	field	represents	the	type	of	curl	request	sent.	The	action	can	take
the	value	as	get,	set,	create,	delete,	update,	expire,	watch,	and	so	on.
Node:	The	node	field	represents	the	directories	of	the	key-value	store.	It	consists	of
key,	value,	createIndex,	and	modifiedIndex.

The	key	field	represents	the	key	of	the	key-value	store.
The	value	field	represents	the	value	of	the	key-value	store.
Every	node	has	a	field	called	index,	which	will	be	incremented	for	each	change
to	etcd.	The	createdIndex	field	is	filled	with	this	index.
modifiedIndex	also	represents	the	index	of	the	node.	However,	this	represents
the	number	of	operations	that	are	applied	over	this	node,	which	changes	the
value	of	this	key-value	store.

A	sample	output	of	a	curl	set	command	is	shown	as	follows:

curl	-L	http://127.0.0.1:4001/v2/keys/foo/bar	-XPUT	-d	value="foo	bar"

{

				"action":	"set",

				"node":	{

								"createdIndex":	2,

								"key":	"/foo/bar",

								"modifiedIndex":	2,

								"value":	"foo	bar"

				}

}

etcd	read	using	curl

The	following	read	operations	are	possible	using	curl.	The	following	table	lists	the
command	options	provided	by	curl	with	syntax	and	examples:

Operations Command	syntax Example

Retrieving	a	key-value curl	-L	<URL>

curl	-L	http://127.0.0.1:4001/v2/keys/foo/bar

{

				"action":	"get",

				"node":	{

								"createdIndex":	2,

								"key":	"/foo/bar",

								"modifiedIndex":	2,

								"value":	"foo	bar"

				}

}

Retrieving	a	key-value
recursively

curl	-L	<URL>	?	?

recursive=true&sorted=true

curl	-L	'http://127.0.0.1:4001/v2/keys/foo/bar?

recursive=true&sorted=true'

{

				"action":	"get",

				"node":	{

								"createdIndex":	2,

								"key":	"/foo/bar",

								"modifiedIndex":	2,

								"value":	"foo	bar"

				}

}

etcd	write	using	curl

The	following	write	operations	are	possible	using	curl.	The	following	table	lists	the
command	options	provided	by	curl	with	syntax	and	examples:

Operations Command	syntax Example

Setting	value	for	a	key curl	–L	<URL>	-XPUT	-d	value=

<value>

curl	-L	http://127.0.0.1:4001/v2/keys/foo/bar

-XPUT	-d	value="foo	bar"

{

				"action":	"set",

				"node":	{

								"createdIndex":	2,

								"key":	"/foo/bar",

								"modifiedIndex":	2,

								"value":	"foo	bar	"

				}

}

Setting	value	for	a	key
with	expiry	in	seconds

curl	–L	<URL>	-XPUT	-d	value=

<value>	-d	ttl=<value>

curl	-L	http://127.0.0.1:4001/v2/keys/foo/bar

-XPUT	-d	value="foo	bar"	–d	ttl=5

{

				"action":	"set",

				"node":	{

								"createdIndex":	2,

								"expiration":	"2015-12-

04T12:11:11.824823581-08:00",

								"key":	"/foo/bar",

								"modifiedIndex":	2,

								"ttl":	5,

								"value":	"foo	bar"

				}

}

Updating	value	for	a	key curl	–L	<URL>	-XPUT	-d	value=

<value>

curl	-L	http://127.0.0.1:4001/v2/keys/foo/bar

-XPUT	-d	value="foo	bar2"

{

				"action":	"set",

				"node":	{

								"createdIndex":	3,

								"key":	"/foo/bar",

								"modifiedIndex":	3,

								"value":	"foo	bar2	"

				},

				"prevNode":	{

								"createdIndex":	2,

								"key":	"/foo/bar",

								"modifiedIndex":	2,

								"value":	"foo	bar	"

				}

}

Deleting	a	key curl	–L	<URL>	-XDELETE

curl	-L	http://127.0.0.1:4001/v2/keys/foo/bar

-XDELETE

{

				"action":	"delete",

				"node":	{

								"createdIndex":	3,

								"key":	"/foo/bar",

								"modifiedIndex":	3

				},

				"prevNode":	{

								"createdIndex":	2,

								"key":	"/foo/bar",

								"modifiedIndex":	2,

								"value":	"foo	bar	"

				}

}

etcd	watch	using	curl

The	following	watch	operations	are	possible	using	curl.	The	following	table	lists	the
command	options	provided	by	curl	with	syntax	and	examples:

Operations Command	syntax Example

Watching	for	any	change	in	the
key-value

curl	–L	<URL>?

wait=true

curl	-L	http://127.0.0.1:4001/v2/keys/foo/bar?

wait=true

Example	using	curl

Let’s	see	how	to	use	curl	with	our	testservices	that	want	to	publish	the	IP	address	and
port	number	in	which	this	service	is	running.

Here,	testservices	is	the	directory	where	all	the	new	service	information	is	added.	IP	is
the	IP	of	the	member	and	5555	is	the	port	(chosen	for	this	example)	on	which	a	service	is
running.

The	following	is	the	command	to	write	the	IP	address	and	port	on	which	a	service	is	added
with	the	key	as	IP:

curl	-L	http://127.0.0.1:4001/v2/keys/testservices/ip	-XPUT	-d	

value="'172.17.8.101:5555"

{

				"action":	"set",

				"node":	{

								"createdIndex":	3,

								"key":	"/	testservices/ip	",

								"modifiedIndex":	3,

								"value":	"'172.17.8.101:5555"

				}

}

To	get	the	parameters	published	by	testservices,	the	following	command	should	be
used:

curl	-L	'http://127.0.0.1:4001/v2/keys/testservices/ip'

{

				"action":	"get",

				"node":	{

								"createdIndex":	4,

								"key":	"/	testservices/ip	",

								"modifiedIndex":	4,

								"value":	"'172.17.8.101:5555"

				}

}

To	watch	these	parameters,	the	following	command	should	be	used:

curl	-L	http://127.0.0.1:4001/v2/keys/	testservices/ip'?wait=true

HAProxy	and	service	discovery
In	this	section,	we	use	service	discovery	to	create	a	web	service	that	has	multiple	backend
nodes	with	HAProxy	frontend	and	then	load	balancing	the	service	requests.	HAProxy	is	a
commonly	used	load	balancer	for	TCP	and	HTTP-based	applications.

Let’s	start	by	understanding	a	typical	HAProxy	configuration.	We	are	not	going	to	cover
the	HAProxy	configuration	exhaustively,	but	will	only	concentrate	on	the	configurations
that	are	relevant	for	service	discovery:

frontend	testloadbalancer

				bind	*:80

				mode	http

				balance	roundrobin

				server	testserver01	172.17.18.101:80	check

				server	testserver02	172.17.18.102:80	check

This	configuration	instructs	HAProxy	to	bind	to	port	80	and	forward	HTTP	traffic	to	the
servers	172.17.18.10	and	172.17.18.102	in	a	round	robin	fashion.	When	we	have
information	on	every	backend	server,	we	can	configure	HAProxy	statically	and	the	setup
will	work.	But	imagine	a	scenario	where	the	information	on	the	IP	is	not	available.	For
example,	when	IPs	are	allocated	dynamically	or	the	number	of	nodes	keeps	increasing	as
the	traffic	to	the	server	increases.	We	can	use	service	discovery	to	keep	HAProxy	updated
with	the	addition	and	deletion	of	the	backend	dynamically.	We	will	make	ourselves
familiar	with	another	tool	called	confd.	We	will	use	confd	as	a	discovery	service.	confd
has	the	capability	of	watching	the	etcd	key	store,	it	then	prepares	a	configuration	file
based	on	the	template	and	copies	the	configuration	file	to	the	location	required	by	the
applications,	and	invokes	a	command	asking	an	application	to	reload	the	configuration.

confd	requires	a	template	application	configuration	file	in	the	directory
/etc/confd/templates	and	a	confd	configuration	file	in	the	directory
/etc/confd/conf.d.

The	following	is	the	configuration	file	testconfd.toml	for	confd:

[template]

src	=	"haproxy.cfg.tmpl"

dest	=	"/etc/haproxy/haproxy.cfg"

keys	=	[

		"/testservice/backend",

]

reload_cmd	=	"/usr/sbin/service	haproxy	reload"

This	configuration	file	mentions	that	the	HAProxy	template	filename	is
haproxy.cfg.tmpl.	The	configuration	file	prepared	based	on	the	template	file	has	to	be
copied	to	/etc/haproxy/haproxy.cfg.	The	configuration	file	also	mentions	that	the	etcd
key	is	/testservice/backend.	Finally,	it	invokes	the	command	to	reload	HAProxy.

The	following	is	how	the	template	file	haproxy.cfg.tmpl	would	look	for	the	HAProxy
configuration	file	we	have	seen	before:

frontend	testloadbalancer

				bind	*:80

				mode	http

				balance	roundrobin

				{{range	$serveraddr	:=	.	testservice	backend}}

				server	{{Base	$serveraddr.Key}}	{{$serveraddr.Value}}	check

				{{end}}

The	range	directive	loops	through	etcd	keys	and	prepares	the	entries	for	each	name.	The
base	directive	used	is	very	similar	to	the	base-name	utility	of	Linux.	For	the	etcd	keys
written	in	this	chapter	before,	the	corresponding	entries	would	be:

server	1	172.17.18.101:55555	check

server	2	172.17.18.102:55555	check

Now,	coming	to	the	backend	servers,	we	can	add	the	command	(etcdctl	or	curl)	to
update	the	system	IP	address	in	etcd	using	ExeStartPost.	confd	would	then	update	the
frontend	HAProxy	with	the	new	configuration	as	and	when	backend	servers	come	up.

Summary
In	this	chapter,	we	understood	discovery	services,	why	it	is	very	important	while
developing	services	or	applications	in	a	CoreOS	environment,	how	to	publish	a	service
and	its	parameters,	and	how	to	watch	for	changes	in	the	state	of	the	services.	We	also
learned	about	the	two	important	tools,	etcdctl	and	curl,	that	are	widely	used	for	service
discovery,	with	some	examples.

In	the	next	chapter,	we	will	learn	how	different	services	running	inside	a	CoreOS	cluster
can	communicate	with	each	other	using	service	chaining	mechanisms.

Chapter	6.	Service	Chaining	and
Networking	Across	Services
This	chapter	explains	the	need	and	mechanism	for	chaining	different	services	running	in	a
cluster.

This	chapter	covers	the	following	topics:

Introduction	to	and	necessity	of	service	chaining
Introduction	to	Docker	networking
Service	chaining	using	Flannel/Rudder
Service	chaining	using	Weave

In	the	previous	chapter,	we	discussed	in	detail	how	the	services	running	in	different
CoreOS	instances	can	be	discovered	from	other	services.	Once	the	services	are
discovered,	one	or	more	services	may	need	to	talk	to	each	other.	This	chapter	explains	the
need	and	mechanism	for	chaining	different	services	running	in	the	CoreOS	cluster.

Introduction	to	and	necessity	of	service
chaining
As	different	services	in	the	CoreOS	clusters	are	deployed	as	a	docker/Rackt	container,	it	is
inevitable	that	we	will	provide	a	mechanism	to	communicate	between	these	services.
These	services	may	run	in	the	same	CoreOS	instances	of	a	cluster	or	they	may	run	across
different	CoreOS	instances	in	the	cluster.

An	example	is,	when	a	web	server	is	deployed	in	node1	of	a	CoreOS	cluster	and	database
services	are	deployed	in	node2	of	the	cluster.	Here,	the	database	service	provides	a	service
to	the	web	server	and	we	can	call	this	a	service	provider.	Using	the	service	discovery
mechanisms	described	in	the	previous	chapter,	the	web	server	service	may	discover	the
database	service	and	its	parameters	such	as	its	connection	string	with	IP,	port	no.,	and	so
on.	Once	this	information	is	discovered,	the	web	server	may	need	to	interact	with	the
database	service	for	storing	some	information	persistently	or	to	fetch	some	information
from	the	persistent	storage.	In	order	to	do	this,	it	may	need	to	do	the	following:

Establish	a	network	connection	between	each	other
Use	the	service	provided	by	the	service	provider

Everything	looks	fine.	But	when	providing	a	network	connection	between	the	containers,
there	are	some	complexities.	Let’s	look	into	those.	Throughout	this	chapter,	we	assume
that	the	services	in	the	CoreOS	instances	are	deployed	as	a	docker	container.

Each	service/docker	container	in	the	CoreOS	node	is	assigned	an	IP	address.	This	IP
address	can	be	used	by	the	applications	running	in	the	container	to	talk/communicate	with
each	other.	This	works	well	when	the	services	are	running	in	the	same	CoreOS	node.	This
is	because	all	of	the	docker	instances	or	services	running	in	the	same	CoreOS	node	will	be
part	of	the	same	network,	which	will	be	connected	by	the	docker0	bridge.	When	these
services	are	running	in	different	CoreOS	nodes,	then	these	nodes	should	use	the	port-
mapping	functionality	provided	by	the	host	CoreOS	to	reach	the	desired	container.	But
when	using	this	mechanism,	the	containers	should	advertise	the	host	machine’s	IP	address
in	the	discovery	service.	One	option	to	push	the	host	IP	to	the	discovery	service	is	by
using	the	ExecStartPost	option	in	the	fleet	unit	file.	This	way,	the	container	will	be	able
to	access	the	host	IP.	The	host	machine	IP	address	and	network	is	not	available	to	the
containers.	This	allows	some	other	external	entity	to	provide	this	service.

Before	looking	into	how	this	issue	is	being	solved	by	mechanisms	like	Flannel	and	Weave,
let	us	have	a	look	at	the	details	of	Docker	container	networking.

Introduction	to	Docker	networking
There	are	multiple	communication	requirements	for	containers/service	as	follows.	CoreOS
and	Docker	together	should	provide	a	mechanism	to	meet	all	the	following	requirements:

Container–Container	communication	in	the	same	CoreOS	node
Container	to	CoreOS	host	communication
Container	to	external	world	communication
Container–Container	communication	in	a	different	CoreOS	node

Let	us	look	into	how	CoreOS	provides	these	functionalities	for	the	docker	container	in	the
following	sections.

Container–Container	communication
This	section	describes	in	detail	the	different	mechanisms	provided	by	the	CoreOS	and
Docker/Container	technology	to	provide	communication	across	different	instances	of
Docker.	There	are	multiple	ways	to	provide	this	communication	as	follows:

Docker0	bridge	and	veth	pair
Using	Link
Using	common	network	stack

Docker0	bridge	and	veth	pair
Docker0	bridge	is	a	Linux	bridge	created	by	docker	in	order	to	provide	communication
across	different	docker	containers.	By	default,	docker	creates	a	Linux	bridge	called
docker0	bridge,	which	provides	connectivity	for	all	the	docker	containers	in	the	CoreOS
host.

Tip
Docker0	bridge	is	created	only	at	the	instantiation	of	the	first	container	instance.	No	new
bridge	will	be	created	on	subsequent	container	instantiation.

Veth	is	a	Virtual	Ethernet	Device	that	can	be	used	as	a	virtual	link	inside	the	Linux
kernel.	Typically,	the	veth	device	will	be	created	in	a	pair	(called	veth	pair)	to	provide
connectivity	across	different	instances	of	a	container.	When	a	new	container/service	is
instantiated	in	the	CoreOS	node,	a	new	veth	pair	will	be	created.	One	end	of	the	veth	pair
is	attached	to	the	container	service	and	the	other	end	is	connected	to	docker0	bridge.
These	docker0	bridge	and	veth	pairs	provide	connectivity	across	different	containers
running	in	the	same	CoreOS	node.

In	the	following	diagram,	the	docker1	and	docker2	containers	are	connected	to	docker0
bridge	via	the	veth	pair,	which	provides	connectivity	across	the	docker	containers.	One
end	of	the	veth	pair,	which	is	attached	to	the	docker	instance,	will	be	visible	inside	the
docker	instance	as	the	eth0	interface.	It	is	possible	to	configure	the	IP	address	for	this	eth0
interface.	The	user	can	configure	the	eth0	interface	of	the	docker1	and	docker2	instances
with	the	same	network	in	order	to	provide	connectivity	across	them.

Container–Container	communication	using	docker0	bridge

The	docker	instances	are	attached	to	docker0	bridge	using	a	virtual	subnet	with	an	IP
address	ranging	from	172.17.51.1	–	172.17.51.25.	As	the	docker	side	of	the	veth	pair
gets	the	IP	in	the	same	range,	there	is	a	possibility	that,	in	two	different	servers/VM
instances,	two	containers	have	the	same	IP	address.	This	may	result	in	problems	while
routing	the	IP	packet.

Using	Link
This	is	one	of	the	simple	ways	of	providing	communication	between	Docker	containers.
Docker	Link	is	a	unidirectional	conduit/pipe	between	the	source	and	the	destination
containers.	The	docker	command	provides	a	way	to	link	the	containers	while	instantiating
the	container	itself.	The	–link	option	is	used	for	this	purpose.	Docker	Link	can	be	used
only	to	provide	communication	between	containers	running	on	the	same	host.

As	an	example,	if	the	docker2	container	wants	to	use	the	networking	stack	of	another
container,	docker1,	then	the	command	to	start	docker2	is	as	follows:

/usr/bin/docker	run	--name	docker2	–link	docker1:docker1	ubuntu	/bin/sh	-c	

"while	true;	do	echo	Hello	World;	sleep	1;	done"

Container–Container	communication	using	Docker	Link

Using	common	network	stack
In	this	mechanism,	one	docker	container	will	use	the	networking	stack	provided	by	some
other	docker	container’s	networking	stack,	instead	of	having	its	own	networking	stack.
The	docker	container	will	not	use	the	network	namespace	construct	explained	in	the
introduction	section	of	this	book,	but	shares	the	network	namespace	with	another	docker.
As	the	container	shares	the	namespace	with	another	container,	any	application	in	one
container	can	communicate	with	the	other	container	as	if	both	the	docker	container
services	are	running	as	an	application	in	one	networking	stack.

The	docker	command	provides	a	way	to	use	another	docker’s	networking	stack	while
instantiating	the	container	itself.	The	–net=container1	option	is	used	for	this	purpose.

As	an	example,	if	the	container	cont_net1	wants	to	use	the	networking	stack	of	another
container,	b1,	then	the	command	to	start	cont_net1	is	as	follows:

/usr/bin/docker	run	-d	--name	cont_net1	--net=	cont_net1:b1	ubuntu	/bin/sh	

-c	"while	true;	do	echo	Hello	World;	sleep	1;	done"

Container–Container	communication	using	common	network	stack

Container	to	CoreOS	host	communication
Apart	from	the	container	to	container	communication	mechanism,	there	are	some
instances	where	the	service	running	inside	the	container	may	want	to	talk	or	exchange
some	information	with	applications	running	in	the	CoreOS	host.	CoreOS	and	docker
provide	some	mechanisms	to	achieve	this	using	the	following	mechanisms:

Host	networking
docker0	bridge

Host	networking
In	this	mechanism,	the	docker	container	will	use	the	networking	stack	provided	by	the
CoreOS	host	machine	instead	of	having	its	own	networking	stack.	The	docker	container
will	not	use	the	network	namespace	construct	explained	in	the	introduction	section	of	this
book,	but	shares	the	network	namespace	with	the	host	CoreOS	operating	system.	As	the
container	shares	the	namespace	with	the	host	CoreOS	operating	system,	any	application	in
the	CoreOS	host	can	communicate	with	the	docker	container	as	if	the	docker	container
service	is	running	as	an	application	in	the	CoreOS	host.	This	is	one	of	the	simpler
mechanisms	to	allow	docker	to	host	communication.

The	docker	command	provides	a	way	to	use	the	host	machine’s	networking	stack	while
instantiating	the	container	itself.	The	–net=host	option	is	used	for	this	purpose.

As	an	example,	if	the	docker1	container	wants	to	use	the	networking	stack	of	the	host
CoreOS,	then	the	command	to	start	docker1	is	as	follows:

/usr/bin/docker	run	-d	--name	docker1	--net=host	ubuntu_ftp	vsftpd

Container–Container	communication	using	the	host	network	stack

docker0	bridge
docker0	bridge	can	also	be	used	to	provide	communication	between	docker	and	the	host
operating	system.	To	do	this,	one	of	the	interfaces	in	the	host	operating	system	should	be
attached	to	docker0	bridge,	which	provides	communication.	This	is	illustrated	in	detail	in
the	following	diagram	where	the	eth1	interface	of	the	CoreOS	host	machine	is	also
connected	to	docker0	bridge,	which	provides	connectivity	to	and	from	docker	and	the
WAN.	In	this	case,	the	eth0	interface	of	docker1,	docker2,	and	the	eth1	interface	should	be
in	the	same	network	to	provide	network	connectivity	between	docker	and	the	host
CoreOS.

Container	–	External	world	communication	using	docker0	bridge

Container	to	CoreOS	outside	world	communication
This	is	one	of	the	basic	requirements	while	deploying	a	service	as	a	micro-service	in	the
CoreOS	cluster.	The	services	running	in	the	CoreOS	cluster	(as	docker)	should	be
accessible	from	the	external	world	and	vice	versa.	CoreOS	and	docker	provide	the
following	mechanisms	to	achieve	this:

Host	networking
Port	mapping
Using	docker0	bridge

Host	networking
Host	networking	is	described	in	detail	in	the	previous	section.	As	the	container	shares	the
namespace	with	the	host	CoreOS	operating	system,	when	the	host	CoreOS	operating
system	is	connected	to	WAN,	the	service	running	inside	the	container	should	also	be	able
to	be	part	of	the	WAN	network.

The	docker	command	provides	a	way	to	use	the	host	machine’s	networking	stack	while
instantiating	the	container	itself.	The	–net=host	option	is	used	for	this	purpose.

As	an	example,	if	the	docker1	container	wants	to	use	the	networking	stack	of	the	host
CoreOS,	then	the	command	to	start	docker1	is	as	follows:

/usr/bin/docker	run	-d	--name	docker1	--net=host	ubuntu_ftp	vsftpd

Port	mapping
This	is	one	of	the	most	widely	used	mechanisms	for	communicating	a	docker	container	to
the	external	world.	In	this	mechanism,	a	port	number	in	the	host	machine	will	be	mapped
to	a	port	number	in	the	docker	container.	Here,	the	port	refers	to	transport	layer	ports	like
UDP	port/TCP	port.	For	example,	if	the	user	deploys	a	web	server	in	a	docker	container,
they	can	map	the	HTTP	port	(port	no.	80)	in	the	host	CoreOS	operating	system	to	the	HTTP
port	(port	no.	80)	of	the	docker	container.	So	when	a	HTTP	request	is	received	by	the
CoreOS	host,	it	forwards	the	request	to	the	container,	which	processes	this	HTTP	request.
But	one	major	challenge	with	respect	to	this	mechanism	is	that	the	same	service	won’t	be
able	to	deploy	in	multiple	docker	containers,	as	it	results	in	port	collision	in	the	host
operating	system.

Container	–	External	world	communication	using	port	mapping

Container	–	Container	communication	in	different
CoreOS	nodes
We	have	seen	how	CoreOS	or	docker	provides	networking	from	a	single	node	perspective.
As	the	services	are	deployed	inside	the	CoreOS	cluster,	it	is	necessary	to	provide
communication	between	containers	running	in	different	CoreOS	nodes	in	a	cluster.	The
rest	of	the	chapter	discusses	this	communication	mechanism	in	detail.	There	are	multiple
tools	that	provide	this	as	follows:

Weave
Flannel/Rudder
Using	OVS	(OpenVSwitch)

In	this	chapter,	we	are	going	to	see	how	Flannel	and	Weave	provide	the	communication
mechanism.	In	the	next	chapter,	we	will	discuss	OVS	in	detail	and	how	it	can	be	used	to
provide	communication	between	the	various	containers.

Introduction	to	Weave
We	learned	before	that	applications	running	inside	Docker	have	no	knowledge	of	the	IP
address	of	the	host	machine.	Hence,	they	are	not	in	position	to	register	their	IP	for	the
service,	since	another	container	running	outside	the	host	has	to	use	the	host	IP	address	for
accessing	the	service.

If	an	IP	address	of	the	host	machine	is	passed	as	an	environment	variable,	service
information	can	be	stored	in	etcd	and	read	by	the	service	user	as	illustrated	in	Chapter	5,
Discovering	Services	Running	in	Cluster.	This	approach	requires	the	application	code	to
be	aware	of	how	services	can	be	discovered.

Weave	simplifies	service	discovery	and	does	a	lot	more.	Weave	provides	a	mechanism	to
connect	applications	running	inside	a	Docker	container	irrespective	of	where	they	are
deployed.	Since	application	services	are	running	as	a	Docker	container,	the	ease	of
communication	of	micro-services	running	in	Docker	containers	is	very	important.

Weave	registers	the	named	containers	automatically	in	weaveDNS,	hence	services	or
dockers	can	be	accessed	by	resolving	their	names	through	regular	name	resolution.	This
requires	application-specific	code	as	routine	system	calls	like	gethostbyname,	or
getaddrinfo	with	a	pre-defined	Docker	name	used	for	service,	will	resolve	the	name	to
the	IP	address	using	weaveDNS.

Weave	sets	up	a	Virtual	Ethernet	Switch	connecting	all	docker	containers	and	in	turn
services	or	applications	running	inside	Docker.	Weave	builds	up	the	network	assigning
unique	IP	addresses	to	each	of	the	docker	containers	as	they	come	up	and	free	the	IP
address	when	they	go	down.	With	this,	it	is	no	longer	required	to	export	a	port	explicitly
when	starting	Docker	and	enables	service	to	be	accessed	from	anywhere,	thus	not	making
it	mandatory	that	frontend	applications	run	on	the	host	machine,	which	exposes	the	public
network.	It	is	also	possible	to	assign	the	IP	addresses	to	the	containers	manually,	which
can	eventually	be	used	to	create	isolated	subnets.	This	enables	the	isolation	of	a	group	of
applications	from	another	group.

Weave	is	simple	to	integrate	with	Docker,	which	we	will	see	when	we	go	hands-on	later	in
this	chapter.	Weave	also	offers	security	by	encrypting	traffic	when	docker	containers	need
to	be	connected	through	public	or	untrusted	networks.

Introduction	to	Flannel/Rudder
Similar	to	Weave,	Flannel	also	assigns	an	IP	address	to	a	container	that	can	be	used	for
container	to	container	communication	by	creating	an	overlay	mesh	network.	Flannel
internally	uses	etcd	to	store	the	mapping	between	the	assigned	container	IP	address	and
host	IP	address.	It	doesn’t	have	elaborate	features	like	Weave	and	can	be	used	if	other
feature	sets	provided	by	Weave	are	not	required.	For	example,	Flannel	doesn’t	provide
automatic	service	discovery	through	DNS	and	still	requires	application	coding	or
instrumentation	to	discover	service	endpoints.

By	default,	each	container	is	assigned	an	IP	address	in	the	/24	subnet.	Subnet	size	can	be
configured.	Flannel	uses	UDP	to	encapsulate	traffic	to	transmit	to	a	destination.

In	later	sections,	we	will	learn	about	using	Flannel.	Flannel	was	previously	referred	to	as
Rudder.

Integrating	Weave	with	CoreOSWeave	is	rather	simple	to	install.	The	standalone	installation
is	as	simple	as	pulling	the	Weave	script	from	the	repository	and	calling	another	command
to	set	up	and	start	the	Weave	router.

Let’s	run	through	the	sequence	of	command	manually,	and	then	we	will	run	the
installation	and	setup	through	cloud	config.

Installation
Weave	can	be	installed	onto	the	system	by	fetching	the	script	using	wget	or	curl.	After
downloading,	change	the	permission	to	make	it	executable.

/usr/bin/wget	-N	-P	/opt/bin	git.io/weave

/usr/bin/chmod	+x	/opt/bin/weave

Setting	up	Weave
Run	the	command	weave	launch	to	set	up	and	start	the	Weave	router,	Weave	DNS,	and
proxy	for	Docker	API	commands	like	docker	run	and	so	on.	This	command	also	sets	up
the	Weave	network.	When	this	command	is	run	for	the	first	time	in	the	machine,	the	Weave
Docker	image	required	for	setup	is	downloaded.

weave	launch

Unable	to	find	image	'weaveworks/weave:latest'	locally

latest:	Pulling	from	weaveworks/weave

4c25b19b8af6:	Pulling	fs	layer

6498a5f7a259:	Pulling	fs	layer

638a117dec98:	Pulling	fs	layer

afebf09d0da1:	Pulling	fs	layer

e5ac6ff68d75:	Pulling	fs	layer

6498a5f7a259:	Verifying	Checksum

6498a5f7a259:	Download	complete

4c25b19b8af6:	Verifying	Checksum

4c25b19b8af6:	Download	complete

638a117dec98:	Verifying	Checksum

638a117dec98:	Download	complete

4c25b19b8af6:	Pull	complete

e5ac6ff68d75:	Verifying	Checksum

e5ac6ff68d75:	Download	complete

6498a5f7a259:	Pull	complete

638a117dec98:	Pull	complete

afebf09d0da1:	Verifying	Checksum

afebf09d0da1:	Download	complete

afebf09d0da1:	Pull	complete

e5ac6ff68d75:	Pull	complete

Digest:	

sha256:1a8565d24ef2b617619a482cbfe895f8fc27e7a4518ac18b9005ed7b4caa223f

Status:	Downloaded	newer	image	for	weaveworks/weave:latest

To	check	the	status,	the	status	command	is	used	to	check	the	router	status.	If	this
command	is	run	for	the	first	time,	the	Weave	Docker	image	required	for	setup	is
downloaded.

weave	status

Unable	to	find	image	'weaveworks/weaveexec:latest'	locally

latest:	Pulling	from	weaveworks/weaveexec

b6069e3f1ecc:	Pull	complete

326c397fb7ed:	Pull	complete

4d2b936d2fa5:	Pull	complete

16a356f92997:	Pull	complete

ae09ffb2bf28:	Pull	complete

14931fda689e:	Pull	complete

85d81711422f:	Pull	complete

16bfdc48cfb1:	Pull	complete

52bab2cc143b:	Pull	complete

82d8a8c031ec:	Pull	complete

6993b16a50ae:	Pull	complete

ee37b21b766d:	Pull	complete

3c16e5ee0357:	Pull	complete

77b8fe327374:	Pull	complete

23272d8d46c3:	Pull	complete

Digest:	

sha256:1d34246eb53f070f0e35ad13974367e2a4fee78039da74b8760a4eff49a9334f

Status:	Downloaded	newer	image	for	weaveworks/weaveexec:latest

								Version:	git-efd4fc4704ce

								Service:	router

							Protocol:	weave	1..2

											Name:	5a:62:3a:91:af:c5(core-01.testdomain.com)

					Encryption:	disabled

		PeerDiscovery:	enabled

								Targets:	0

				Connections:	0

										Peers:	1

	TrustedSubnets:	none

								Service:	ipam

									Status:	idle

										Range:	10.32.0.0-10.47.255.255

		DefaultSubnet:	10.32.0.0/12

								Service:	dns

									Domain:	weave.local.

							Upstream:	10.0.2.3

												TTL:	1

								Entries:	0

								Service:	proxy

								Address:	unix:///var/run/weave/weave.sock

If	specific	IP	addresses	were	not	provided	during	container	startup,	Weave	assigns	a	free
IP	from	the	address	pool	to	the	container	and	releases	that	address	(that	is,	marks	it	free)
when	the	container	exits.	The	IP	address	pool	is	maintained	across	all	the	Weave	instances
that	are	part	of	the	cluster.	Hence,	at	Weave	launch	either	all	the	members	of	the	cluster	or
one	or	more	members	of	the	cluster	should	be	provided.	Additionally,	a	parameter	should
be	included	to	inform	Weave	about	the	number	of	members.	To	illustrate,	if	there	are	three
members	with	the	IP	addresses	172.17.8.101,	172.17.8.102,	and	172.17.8.103	then	the
following	commands	are	the	right	way	to	launch	Weave	for	allocating	the	IP	addresses.

Option	one:

core@core-01	~$	weave	launch	172.17.8.102	172.17.8.103

core@core-02	~$	weave	launch	172.17.8.101	172.17.8.103

core@core-03	~$	weave	launch	172.17.8.101	172.17.8.102

Option	two:

core@core-01	~$	weave	launch	--init-peer-count	3

core@core-02	~$	weave	launch	--init-peer-count	3	172.17.8.101

core@core-03	~$	weave	launch	--init-peer-count	3	172.17.8.102

Weave	allocates	IP	addresses	in	the	10.32.0.0/12	range	by	default,	unless	it’s	overridden
with	the	--ipalloc-range	option	at	the	time	of	launch.	For	instance,	if	the	subnet	to	be
used	is	10.1.0.0	with	a	size	of	16,	the	following	command	can	be	provided.	The	same

value	should	be	provided	across	all	the	members.

weave	launch	--ipalloc-range	10.1.0.0/16

Weave	gives	an	option	to	enable	or	disable	the	use	of	the	Weave	DNS	service.	By	default,
the	Weave	DNS	service	is	enabled.	To	disable	this	service,	the	--without-dns	option	can
be	provided	while	running	Weave.	Weave	maintains	an	in-memory	database	of	all	the
hosts.	It	builds	up	the	database	as	the	peer	join.	This	is	maintained	on	all	the	hosts	and	is
replicated	across	hosts.	If	a	hostname	is	in	the	.weave.local	domain,	then	Weave	DNS
records	the	association	of	that	name	with	the	container’s	Weave	IP	address	(es).	When
DNS	query	arrives	for	the	.weave.local	domain,	the	Weave	DNS	database	is	used	to
return	with	the	IPs	of	all	containers	for	that	hostname	across	the	entire	cluster.	When	DNS
query	arrives	for	the	name	in	a	domain	other	than	.weave.local,	it	queries	the	host’s
configured	nameserver,	hence	complying	with	default	behavior.

Container	startup
Docker	containers	can	be	started	by	using	the	Weave	proxy	or	without	using	the	Weave
proxy.	When	containers	are	created	using	the	Weave	proxy,	the	container	initialization
waits	for	the	Weave	network	interface	to	become	available	and	then	proceeds	with	further
startup	of	the	container.	The	IP	addresses	of	the	containers	are	assigned	and	the	container
is	connected	to	the	Weave	network.

The	following	command	sets	up	the	environment	so	that	Docker	containers	can	connect	to
the	Weave	network	automatically.	The	usual	Docker	commands	can	be	used	to	start	the
Docker	container:

eval	"$(weave	env)"

docker	run…

By	default,	Weave	allows	the	communication	of	a	container	with	all	other	containers	in
the	cluster.	This	can	be	restricted	by	providing	a	subnet	range	from	which	an	IP	address
can	be	allocated.	Multiple	subnets	can	also	be	provided.	Also,	an	IP	address	can	be
provided	that	will	be	assigned	to	the	container	in	addition	to	the	automatic	IP	address
allocation.	It	is	also	possible	to	avoid	automatic	IP	address	allocation:

docker	run	-e	WEAVE_CIDR=net:10.32.7.0/24…

docker	run	-e	WEAVE_CIDR="net:10.32.1.0/24	net:10.32.8.0/24	

ip:10.32.9.1/24"	...

Containers	can	be	launched	without	the	Weave	proxy	by	starting	them	using	the	command
weave	run.

The	following	is	the	setup	that	will	be	used	to	illustrate	a	network	between	two	CoreOS
hosts.	We	will	instantiate	two	CoreOS	members	in	a	cluster	and	spawn	two	docker
containers	inside	members.	The	docker	container	runs	a	busybox	shell	so	that	we	can	run
the	networking	command	and	check	the	IP	address	assignments	and	peer	container
reachability.	This	setup	illustrates	the	scenario	where	communication	is	happening
between	docker	containers	across	two	CoreOS	hosts.

Weave	setup

The	following	is	the	cloud-config	file	used	to	create	the	setup.	The	other	configuration
files	reused	are	from	the	section	Static	discovery	in	Chapter	3,	Creating	your	CoreOS
cluster	and	managing	the	Cluster.	Set	$num_instances	to	2	in	the	config.rb	file	as	we
need	to	start	only	two	instances	of	members.

#cloud-config

write_files:

		-	path:	/etc/weave.core-01.testdomain.com.env

				permissions:	0644

				owner:	root

				content:	|

						WEAVE_LAUNCH_ARGS="172.17.8.102"

		-	path:	/etc/weave.core-02.testdomain.com.env

				permissions:	0644

				owner:	root

				content:	|

						WEAVE_LAUNCH_ARGS="172.17.8.101"

coreos:

		units:

				-	name:	10-weave.network

						runtime:	false

						content:	|

								[Match]

								Type=bridge

								Name=weave*

								[Network]

				-	name:	install-weave.service

						command:	start

						enable:	true

						content:	|

								[Unit]

								After=network-online.target

								After=docker.service

								Description=Install	Weave

								Requires=network-online.target

								Requires=docker.service

								[Service]

								Type=oneshot

								RemainAfterExit=yes

								ExecStartPre=/usr/bin/wget	-N	-P	/opt/bin	git.io/weave	

								ExecStartPre=/usr/bin/chmod	+x	/opt/bin/weave

								ExecStart=/bin/echo	Wave	Installed

				-	name:	weave.service

						command:	start

						enable:	true

						content:	|

								[Unit]

								After=install-weave.service

								Description=Weave	Network

								Requires=install-weave.service

								[Service]

								Type=oneshot

								EnvironmentFile=/etc/weave.%H.env

								ExecStart=/opt/bin/weave	launch	$WEAVE_LAUNCH_ARGS

Let’s	run	through	the	finer	details	of	the	cloud-config	file	before	we	start	containers	in
the	members	and	check	connectivity.

Firstly,	we	create	two	files	using	the	write_files	section.	They	will	be	used	before
starting	Weave	on	respective	machines.	Each	file	has	the	hostname	in	their	name,	so	that
using	%H	in	EnvironmentFile	results	in	referring	the	file	meant	for	the	member.

Unit	file	10-weave.network	is	added	to	allow	the	Weave	network	to	be	used	for	DHCP
queries.	By	default,	docker0	bridge	is	used.	This	is	optional	and	is	required	if	the	Weave
network	is	being	used	for	DHCP.

Unit	install-weave.service	installs	Weave	onto	the	member	and	sets	the	required
permissions.	This	is	a	one-shot	service	as	it	has	served	its	purpose	once	Weave	is	installed.
After=network-online.target	is	added	to	ensure	that	this	network	is	up	before	Weave
is	installed.	This	is	required	so	that	packages	can	be	downloaded	from	the	Internet.

Unit	weave.service	sources	the	corresponding	environment	file	and	launches	Weave.

Boot	the	cluster	using	Vagrant	up.	After	booting	up,	the	nodes	in	the	cluster	comes	up
with	weave	networking	up:

vagrant	ssh	core-01

weave	status

								Version:	1.4.2

								Service:	router

							Protocol:	weave	1..2

											Name:	96:63:f1:5a:ac:3a(core-01.testdomain.com)

					Encryption:	disabled

		PeerDiscovery:	enabled

								Targets:	0

				Connections:	1	(1	established)

										Peers:	2	(with	2	established	connections)

	TrustedSubnets:	none

								Service:	ipam

									Status:	idle

										Range:	10.32.0.0-10.47.255.255

		DefaultSubnet:	10.32.0.0/12

								Service:	dns

									Domain:	weave.local.

							Upstream:	10.0.2.3

												TTL:	1

								Entries:	0

								Service:	proxy

								Address:	unix:///var/run/weave/weave.sock

We	can	see	that	both	the	peers	are	connected.	We	can	also	see	that	the	DNS	and	router
services	are	enabled	with	default	settings.

Now	we	will	start	a	Docker	container	on	each	of	the	members.	We	will	run	a	simple	shell
on	busybox.	The	following	command	is	executed	on	both	the	members.	Note	that	we	are
providing	the	name	of	the	docker	container	explicitly.	This	will	result	in	two	DNS	entries
with	the	domain	.weave.local.

vagrant	ssh	core-01

eval	"$(weave	env)"

/usr/bin/docker	run	--name=container2	-it	busybox	/bin/sh

/	#	ifconfig	–a

...

ethwe					Link	encap:Ethernet		HWaddr	E6:AA:25:26:EA:04

										inet	addr:10.32.0.1		Bcast:0.0.0.0		Mask:255.240.0.0

										inet6	addr:	fe80::e4aa:25ff:fe26:ea04/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1410		Metric:1

										RX	packets:13	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:8	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:1000

										RX	bytes:1385	(1.3	KiB)		TX	bytes:620	(620.0	B)

...

vagrant	ssh	core-02

eval	"$(weave	env)"

/usr/bin/docker	run	--name=container2	-it	busybox	/bin/sh

/	#	ifconfig	-a

...

ethwe					Link	encap:Ethernet		HWaddr	DA:E1:B8:3A:39:FB

										inet	addr:10.40.0.0		Bcast:0.0.0.0		Mask:255.240.0.0

										inet6	addr:	fe80::d8e1:b8ff:fe3a:39fb/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1410		Metric:1

										RX	packets:11	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:7	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:1000

										RX	bytes:969	(969.0	B)		TX	bytes:550	(550.0	B)

...

Now	ping	the	IP	address	and	hostname	of	the	other	container	to	ensure	that	the	network
across	containers	and	the	DNS	service	is	working.	You	can	also	run	the	status	command	to
check	that	two	DNS	entries	has	been	updated,	once	the	containers	are	started.

weave	status

...

								Service:	dns

									Domain:	weave.local.

							Upstream:	10.0.2.3

												TTL:	1

								Entries:	2

								Service:	proxy

								Address:	unix:///var/run/weave/weave.sock

Integrating	Flannel	with	CoreOS
Flannel	runs	a	daemon	flanneld	on	each	host,	responsible	for	allocating	a	free	IP	within
the	configured	subnet.	flanneld	sets	a	watch	on	etcd	information	and	routes	the	packets
using	the	mechanism	configured.

Although	the	flanneld	service	is	not	part	of	the	standard	CoreOS	distribution,	when	the
flanneld	service	is	started	through	cloud-config,	CoreOS	internally	starts	a	service
before	other	initializations	to	pull	flanneld	from	the	docker	registry.	flanneld	is	stored
as	a	docker	container	in	the	CoreOS	enterprise	registry.

The	same	setup	used	for	Weave	networking	is	being	used	here.	Note	that	for	Flannel,
hostnames	are	irrelevant.

The	following	is	the	cloud-config	file	used	to	create	setup.	The	other	configuration	files
are	reused	from	the	Static	discovery	section	in	Chapter	3,	Creating	your	CoreOS	cluster
and	Managing	the	Cluster.	Set	$num_instances	to	2	in	the	config.rb	file	as	we	need	to
start	only	two	instance	of	members.

#cloud-config

coreos:

		etcd2:

				name:	core-03

				advertise-client-urls:	http://$public_ipv4:2379

				initial-advertise-peer-urls:	http://$private_ipv4:2380

				listen-client-urls:	http://0.0.0.0:2379,http://0.0.0.0:4001

				listen-peer-urls:	http://$private_ipv4:2380,http://$private_ipv4:7001

				initial-cluster-token:	coreOS-static

				initial-cluster:	core-01=http://172.17.8.101:2380,core-

02=http://172.17.8.102:2380,core-03=http://172.17.8.103:2380

		flannel:

				interface:	$public_ipv4

		units:

		-	name:	etcd2.service

				command:	start

				enable:	true

		-	name:	flanneld.service

				drop-ins:

						-	name:	50-network-config.conf

								content:	|

										[Service]

										ExecStartPre=/usr/bin/etcdctl	set	/coreos.com/network/config	'{	

"Network":	"10.1.0.0/16"	}'

				command:	start

Vagrant	setup	will	configure	the	interface	that	Flannel	should	use.	This	is	done	by
providing	the	following	configuration	in	cloud-config:

flannel:

				interface:	$public_ipv4

Directive	ExecStartPre	is	added	to	the	flanneld	service	configuration	as	a	drop-in	file
with	the	name	50-network-config.conf.	Using	ExecStartPre,	Flannel	configuration	is
updated	in	etcd.	This	is	mandatory	for	Flannel	to	work	as	it	looks	up	the	configuration	at
/coreos.com/network/config.	The	following	are	the	Flannel	configurations	that	can	be
provided	as	comma-separated	values	while	setting	the	configuration	to	etcd:

Network:	This	specifies	the	subnets	to	be	used	across	all	Flannel	networks.	This	field
is	mandatory.	In	the	preceding	example,	the	subnet	configuration	was	provided	as
10.1.0.0/16.	Further	subnets	for	each	of	the	hosts	will	be	created	within	this	subnet.
SubnetLen:	This	specifies	the	size	of	the	subnet	as	bits	allocated	to	each	host.	This
field	should	have	a	value	less	or	equal	to	the	subnet	size	provided	for	the	network.	If
this	field	is	not	provided,	a	default	value	of	24	is	used	if	the	Network	field	has	a
subnet	size	more	than	or	equal	to	24.	If	the	Network	field	has	a	subnet	size	less	than
24	and	this	field	is	not	configured,	one	less	than	the	value	configured	for	the	Network
is	used.
SubnetMin:	This	specifies	the	starting	IP	range	from	which	the	subnet	allocation
starts.	This	defaults	to	the	first	subnet	of	Network	if	this	field	is	not	provided.
SubnetMax:	This	specifies	the	end	IP	range	from	which	the	subnet	allocation	starts.
This	defaults	to	the	first	subnet	of	Network	if	this	field	is	not	provided.
Backend:	This	specifies	the	mechanism	to	be	used	for	sending	traffic	across	hosts.
Supported	values	are	udp,	vxlan,	host-gw,	and	so	on.	If	this	field	is	not	provided,
udp	is	used.	If	udp	is	used,	the	port	number	to	be	used	for	UDP	is	configured.	If	the
port	is	not	provided,	the	default	port	of	8285	is	used.	This	port	should	be	allowed	if
the	hosts	are	to	be	networked	across	firewalls.

The	following	is	another	sample	configuration	for	Flannel,	which	contains	other	optional
parameters	set	to	their	respective	defaults:

ExecStartPre=/usr/bin/etcdctl	set	/coreos.com/network/config	'{	"Network":	

"10.1.0.0/16",	"SubnetLen":	24,	"SubnetMin":	"10.1.0.0",	"SubnetMax":	

"10.1.255.0"}'	

Boot	the	cluster	using	Vagrant	up.	After	booting	up,	the	clusters	come	up	with	the
interfaces	setup	on	the	host	by	Flannel.

vagrant	ssh	core-01

ifconfig	–a

...

flannel0:	flags=4305<UP,POINTOPOINT,RUNNING,NOARP,MULTICAST>		mtu	1472

								inet	10.1.35.0		netmask	255.255.0.0		destination	10.1.35.0

								unspec	00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00		txqueuelen	

500		(UNSPEC)

								RX	packets	0		bytes	0	(0.0	B)

								RX	errors	0		dropped	0		overruns	0		frame	0

								TX	packets	0		bytes	0	(0.0	B)

								TX	errors	0		dropped	0	overruns	0		carrier	0		collisions	0

...

Similarly,	we	can	see	that	interfaces	were	created	by	Flannel	on	other	instances	also.

vagrant	ssh	core-02

ifconfig	–a

...

flannel0:	flags=4305<UP,POINTOPOINT,RUNNING,NOARP,MULTICAST>		mtu	1472

								inet	10.1.27.0		netmask	255.255.0.0		destination	10.1.27.0

								unspec	00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00		txqueuelen	

500		(UNSPEC)

								RX	packets	0		bytes	0	(0.0	B)

								RX	errors	0		dropped	0		overruns	0		frame	0

								TX	packets	0		bytes	0	(0.0	B)

								TX	errors	0		dropped	0	overruns	0		carrier	0		collisions	0

...

Flannel	sets	up	subnets	10.1.35.0	for	host1	and	10.1.27.0	for	host2	to	be	used	by
containers.	Flannel	decides	on	the	available	subnets	before	allocating	to	a	host.	Now,	we
will	start	a	Docker	container	on	each	of	the	members.	We	will	run	a	simple	shell	on
busybox.	The	following	command	is	executed	on	both	the	members:

vagrant	ssh	core-01

/usr/bin/docker	run	-it	busybox	/bin/sh

/	#	ifconfig	-a

eth0						Link	encap:Ethernet		HWaddr	02:42:0A:01:23:03

										inet	addr:10.1.35.3		Bcast:0.0.0.0		Mask:255.255.255.0

										inet6	addr:	fe80::42:aff:fe01:2303/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1472		Metric:1

										RX	packets:19	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:6	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:1611	(1.5	KiB)		TX	bytes:508	(508.0	B)

...

vagrant	ssh	core-02

/usr/bin/docker	run	-it	busybox	/bin/sh

/	#	ifconfig	-a

eth0						Link	encap:Ethernet		HWaddr	02:42:0A:01:1B:03

										inet	addr:10.1.27.3		Bcast:0.0.0.0		Mask:255.255.255.0

										inet6	addr:	fe80::42:aff:fe01:1b03/64	Scope:Link

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1472		Metric:1

										RX	packets:21	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:9	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:0

										RX	bytes:1751	(1.7	KiB)		TX	bytes:738	(738.0	B)

...

As	we	see,	an	IP	address	from	the	corresponding	subnet	of	the	hosts	has	been	allocated	to
the	container	and	the	IP	addresses	can	be	pinged	from	the	other	container.	This	also
illustrates	that	with	add-ons	like	Weave	and	Flannel,	communication	across	containers	is
much	simpler	and	closer	to	the	communication	of	applications	across	bare	metal.

Summary
In	this	chapter,	we	have	seen	the	importance	of	container	communications	and	the	various
possibilities	provided	by	CoreOS	and	docker	to	provide	the	communication.	In	the	next
chapter,	we	are	going	to	see	how	OVS	(OpenVSwitch)	can	be	used	to	provide	the
communication	mechanism	over	an	underlay	network.	Apart	from	Flannel,	Weave,	and
OVS,	there	are	other	mechanisms	like	pipework	available	to	provision	the	network	inside
the	CoreOS	and	docker	environment.

Chapter	7.	Creating	a	Virtual	Tenant
Network	and	Service	Chaining	Using	OVS
In	the	previous	chapter,	we	saw	how	different	services	running	inside	the	CoreOS	cluster
can	be	linked	with	each	other.	The	chapter	described	in	detail	how	the	services	deployed
by	different	customers/tenants	across	the	CoreOS	cluster	can	be	linked/connected	using
OVS.

This	chapter	covers	the	following	topics:

Introduction	to	OpenVSwitch/OVS
Introduction	to	overlay	and	underlay	networks
Introduction	to	virtual	tenant	networks
Docker	networking	using	OVS

As	OVS	is	a	production-quality,	widely	deployed	software	switch	with	a	wide	range	of
feature	sets,	we	are	going	to	see	how	OVS	can	be	used	to	provide	service	chaining,	which
can	differentiate	between	different	customer	services.

Introduction	to	OVS
OpenVSwitch	(OVS)	is	a	production-quality	open	source	virtual	switch	application	that
can	be	run	on	any	Unix-based	systems.	Typically,	OVS	is	used	in	a	virtualization
environment	to	provide	communication	between	the	virtual	machines/containers	that	are
running	inside	the	servers.	OVS	acts	as	a	software	switch	that	provides	layer2	connectivity
between	the	VMs	running	inside	a	server.	Linux	Bridge	can	also	be	used	for	providing
communication	between	the	VMs	inside	the	server.	However,	OVS	provides	all	the	bells
and	whistles	that	are	required	in	a	typical	server	virtualization	environment.	The	following
diagram	depicts	how	OVS	provides	connectivity	across	the	VMs	running	inside	the
server:

In	the	diagram,	there	are	three	VMs	that	are	running	in	a	server.	One	end	of	the	VM’s
virtual	NIC	is	connected	to	Open	vSwitch.	Here,	Open	vSwitch	provides	connectivity
across	all	the	VMs	in	the	server.	Open	vSwitch	is	also	connected	to	the	physical	NIC	to
provide	communication	to	and	from	the	VMs	to	the	external	world.

The	OVS	offers	Security	by	providing	traffic	isolation	using	VLAN	and	traffic	filtering

based	on	various	packet	headers.	OVS	provides	a	way	for	Monitoring	the	packets	that	are
exchanged	across	the	VMs	in	the	server	using	protocols	like	sFlow,	SPAN,	RSPAN,	and
so	on.	OVS	also	supports	QoS	(quality	of	service)	with	traffic	queuing	and	shaping
along	with	OpenFlow	support.

OVS	architectural	overview
This	section	describes	the	high-level	architectural	overview	of	OVS	and	its	components.

The	main	components	of	OVS	are	as	follows:

ovs-vsctl:	This	is	the	utility	provided	by	OVS	for	configuring	and	querying	the
ovs-vswitchd	daemon	via	ovsdb-server
ovs-appctl:	This	is	a	utility	for	managing	the	logging	level	of	OVS
ovs-ofctl:	This	is	the	utility	provided	by	OVS	for	managing	OpenFlow	entries	in
the	switch
ovs-dpctl:	This	is	the	data-path	management	utility	that	is	used	to	configure	the	data
path	of	OVS
ovsdb-server:	This	is	the	DB	that	stores	persistently	all	the	configurations	of	OVS
ovs-vswitchd:	This	is	the	OVS	switchd	module	that	provides	the	core	functionality,
such	as	bridging,	VLAN	segregation,	and	so	on	of	OVS
Openvswitch.ko:	This	is	the	data-path	module	for	handling	fast	switching	and
tunneling	of	traffic

Advantages	of	using	OVS	in	CoreOS
In	a	CoreOS	environment,	OVS	can	replace	docker0	bridge	and	can	provide	connectivity
across	the	different	containers	in	the	CoreOS	instance.	docker0	bridge	can	only	provide
connectivity	across	the	containers	running	in	the	same	CoreOS	instance.	However,	along
with	providing	connectivity	across	the	containers	running	in	the	same	CoreOS	instance,
OVS	can	be	used	to	provide	connectivity	across	the	containers	running	in	different
CoreOS	instances.	The	following	are	the	key	advantages	provided	by	OVS	compared	to
other	techniques	mentioned	in	the	previous	chapter:

As	the	name	implies,	OpenVSwitch/OVS	does	layer2	bridging/switching	of	data
from	one	container	to	other	containers.	It	does	typical	layer2	processing,	such	as
flooding,	learning,	forwarding,	traffic	segregation	based	on	VLAN	tag,	providing
loop-free	topology	using	spanning	tree	protocol,	and	so	on.
OVS	supports	tunneling	protocols,	such	as	GRE,	VxLAN,	and	so	on.	These	are	the
tunneling	protocols	that	are	used	to	carry	layer2	traffic	over	a	layer3	network.	These
tunnels	are	used	to	provide	connectivity	for	containers	running	in	different	CoreOS
instances.	The	VxLAN	protocol	is	defined	in	detail	in	RFC	7348	and	the	GRE
protocol	is	defined	in	detail	in	RFC	2784.	These	tunnels	provide	the	virtual
infrastructure	for	laying	out	the	overlay	network	over	the	physical	underlay	network.
OVS	also	supports	the	OpenFlow	protocol	that	can	be	programmed	by	an	external
SDN	controller	like	OpenDayLight	Controller,	RYU	Controller,	ONOS	controller,
and	so	on.	This	means	the	CoreOS	cluster	can	be	managed	easily	by	a	centralized
controller	in	a	typical	SDN	deployment.

Before	looking	in	detail	at	how	OVS	can	be	used	to	provide	connectivity	across	containers
and	hence	can	provide	service	chaining,	we	may	need	to	look	into	some	of	the	core
concepts	and	features,	such	as	overlay	network,	underlay	network,	and	Virtual	Tenant
Network.

Introduction	to	overlay	and	underlay
networks
The	following	diagram	represents	the	typical	service	provided	by	OVS	in	a	virtual
machine	environment:

Server1	and	Server2	are	the	two	physical	servers	wherein	the	customer	applications	are
deployed	inside	the	VM.	There	are	two	VMs	in	each	server	as	VM1	and	VM2.	The	green
VM	belongs	to	one	customer	and	the	orange	VM	belongs	to	another	customer.	A	single
instance	of	OVS	is	running	in	each	of	the	servers.

In	a	typical	virtualization	environment,	there	are	two	kinds	of	network	devices:	the	soft
switch,	which	provides	connectivity	to	the	virtualization	layer,	and	the	physical	switch,
which	provides	connectivity	to	the	physical	infrastructure	(such	as	servers,	switches,	and
routers).

The	OVS	switch	provides	connectivity	to	the	VMs/containers	running	inside	the	server
instance.	These	server	instances	are	also	connected	to	each	other	physically	in	order	to
provide	connectivity	for	all	the	servers.

The	physical	network	that	provides	connectivity	for	the	servers	is	termed	the	underlay
network.	This	underlay	network	will	have	the	physical	infrastructure	that	comprises
physical	switches	and	routers,	which	provides	connectivity	for	the	servers.

Now,	the	complexity	comes	in	providing	connectivity	across	the	containers	that	are
running	in	the	server	to	other	containers	that	are	running	in	different	server	instances.

There	are	multiple	solutions	to	solve	this	problem.	One	of	the	major	and	widely	deployed
solutions	is	using	OVS	to	provide	the	overlay	network.

As	the	term	implies,	an	overlay	network	is	a	network	that	is	overlaid	on	top	of	another
network.	Unlike	physical	underlay	networks,	overlay	networks	are	virtual	networks	that
comprise	virtual	links	that	share	an	underlying	physical	network	(underlay	network),
allowing	deployment	of	containers/virtual	machines	to	provide	connectivity	with	each
other	without	the	need	to	modify	the	underlying	network.	The	virtual	link	here	refers	to
the	tunnels	that	provide	connectivity	across	OVS.	OVS	supports	multiple	tunneling
protocols;	widely	used	tunnels	are	GRE	and	VxLAN.

The	key	benefits	of	the	overlay	network	are:

As	it	is	a	logical	network,	it	is	possible	to	create	and	destroy	the	overlay	network	very
easily	without	any	change	in	the	underlay	networks.	To	create	an	overlay	network
between	two	nodes,	just	create	a	tunnel	between	the	nodes,	and	to	destroy	the	overlay
network,	unconfigure	the	tunnel	interface.
It	is	possible	to	create	multiple	overlay	networks	across	the	nodes.	For	instance,	there
is	a	possibility	to	create	multiple	overlay	networks	based	on	the	number	of	customers
deployed	in	a	server	instance.	This	provides	a	way	of	virtualizing	the	network	similar
to	server	virtualization.	Let	us	look	into	the	details	of	network	virtualization.

Introduction	to	network	virtualization
Network	virtualization	is	one	of	the	most	widely	discussed	topics	in	the	recent	past	in	the
networking	industry.	To	understand	network	virtualization	better,	think	of	server
virtualization	wherein	the	physical	infrastructures	are	logically	segregated	into	multiple
virtual	devices,	each	assigning	to	different	containers	for	performing	its	workload.	Similar
to	server	virtualization,	there	is	a	requirement	to	virtualize	the	networking	layer	that
provides	connectivity	for	different	virtual	machines/containers.

As	in	server	virtualization,	wherein	the	customer	will	have	full	access	to	the	virtualized
server	infrastructure,	customers	may	also	want	to	virtualize	the	networking	infrastructure
to	secure	data	traffic	between	their	VMs	or	containers.	They	don’t	want	others	to	expose
the	data	exchange	that	is	happening	between	their	applications	to	other	customers’	VMs	or
containers.

Network	virtualization	as	a	concept	is	not	new	to	the	networking	world.	Network
virtualization	is	realized	in	existing	networks	using	technologies	or	concepts	such	as
VLAN,	VRF,	L2VPN,	L3VPN,	and	so	on.	These	network	virtualization	techniques
provide	a	mechanism	for	isolating	traffic	from	one	customer	to	another	customer.	VLAN
provides	a	way	of	logically	segregating	the	layer2	broadcast	domain	based	on	the	VLAN
tag.

These	technologies	also	define	the	necessary	protocol	support	to	have	overlapping	address
spaces	across	different	customers.	Say,	for	instance,	using	VRF,	it	is	possible	for	two	or
more	customers	to	use	and	share	their	IP	address	across	different	sites.

However,	these	technologies	are	not	providing	true	network	virtualization	throughout	the
network.	These	technologies	also	have	their	own	limitations.	The	1026	number	of	VLAN
limits	the	number	of	tenants	in	the	network.	Similarly	for	VPN	support,	protocols	like
MPLS	may	be	required	that	are	typically	deployed	in	a	service	provider	network.

As	more	and	more	operators	and	cloud	providers	are	deploying	Software	Defined
Networking	(SDN)	and	Network	Function	Virtualization	(NFV),	it	is	necessary	to
provide	a	mechanism	to	provide	network	virtualization	and	traffic	isolation	in	a	better
way.

The	overlay	network	described	in	the	previous	chapter	can	provide	an	effective
mechanism	to	isolate	data	traffic	across	different	tenants	or	customers.	As	multiple
overlay	networks	(one	for	each	different	customer)	can	be	laid	out	over	the	underlay
physical	infrastructure,	we	should	be	able	to	provide	the	required	traffic	isolation	between
different	customer	traffic.	Hence,	the	overlay	network	infrastructure	provides	an	easy	way
of	providing	network	virtualization.

To	create	an	overlay	network	for	a	customer	or	tenant,	we	need	to	create	a	tunnel	across	all
the	nodes	wherein	the	customer’s/tenant’s	application	is	deployed.	OVS	helps	in	creating	a
tunnel	across	the	different	OVS	instances	and	hence	supports	the	creation	of	VTNs	and
underlay	networks.

Going	back	to	the	previous	diagram,	there	are	two	customers,	shown	as	green	and	orange.
Both	customers’	VMs	are	running	in	both	server1	and	server2.	In	order	to	provide	network
virtualization	and	isolate	the	traffic	across	these	two	customers,	the	following	steps	can	be
used:

Create	two	bridge	instances	in	OVS,	one	for	each	customer,	as	Greenbr	and
Orangebr.
Attach	the	VM’s	virtual	NIC	interface	(veth)	to	the	corresponding	bridge	instance.
For	example,	the	green	VM’s	virtual	NIC	should	be	attached	to	Greenbr	and	the
orange	VM’s	virtual	NIC	interface	should	be	attached	to	Orangebr.
Create	two	tunnels,	say	Green_tun	and	Orange_tun,	between	server1	and	server2.
The	two	server	instances	can	be	part	of	the	same	network	or	different	networks.	If
they	are	part	of	different	networks,	one	or	more	routers	should	be	deployed	to
provide	physical	connectivity	between	these	servers.

Tip
To	create	a	tunnel	between	two	nodes,	there	should	be	IP	reachability	between	these
two	nodes.	IP	reachability	will	be	provided	by	the	underlay	network.

Attach	these	two	tunnels	to	the	respective	bridge	instances.

With	these	simple	steps,	it	is	possible	to	create	a	virtual	network	for	different	customers.
This	is	illustrated	in	the	following	diagram:

OpenFlow	support	in	OVS
One	of	the	key	advantages	of	using	OVS	is	that	it	supports	the	OpenFlow	protocol	and
supports	flow-based	switching.	OpenFlow	is	a	protocol	defined	by	ONF	to	manage	the
network	infrastructure	centrally	with	standard	interfaces	between	the	controller
(traditionally	called	the	control	plane)	and	the	actual	packet-forwarding	entity
(traditionally	called	the	data	plane).	Enabling	the	network	to	be	programmed	centrally
makes	the	whole	system	more	agile	and	flexible.

OpenFlow	promises	to	ease	the	way	of	provisioning	large	data	centers	and	server	clusters
that	can	be	managed	centrally	using	OpenFlow	controllers.	With	large	data	centers	and
server	clusters,	there	is	a	clear	necessity	of	changing	the	traditional	control	plane	and	data
plane	paradigm	to	move	toward	flow-based	switching,	which	is	more	generic	and	can	be
adoptable	for	different	avenues.	Software	Defined	Networking	(SDN)	is	a	new	paradigm
shift	in	networking.

The	OpenFlow	specification	defines	three	different	components	in	an	OpenFlow-based
network	as	follows.

OpenFlow	switch
An	OpenFlow	switch	consists	of	one	or	more	flow	tables,	meter	table,	group	table,	and
OpenFlow	channels	to	the	external	controller.	The	flow	tables	and	group	table	are	used
during	the	lookup	or	forwarding	phase	of	packet	pipeline	processing	in	order	to	forward
the	packet	to	the	appropriate	port,	whereas	the	meter	table	is	used	to	perform	simple	QoS
operations,	such	as	rate-limiting	to	complex	QOS	operations,	such	as	DiffServ	and	so	on.
The	switch	communicates	with	the	controller	and	the	controller	manages	the	switch	via
the	OpenFlow	protocol	using	OpenFlow	messages.

OpenFlow	controller
An	OpenFlow	controller	typically	manages	one	or	more	OpenFlow	switches	remotely
via	OpenFlow	channels.	Similarly,	a	single	switch	can	be	managed	by	multiple	controllers
for	better	reliability	and	better	load	balancing.	The	OpenFlow	controller	acts	in	a	similar
way	to	the	control	plane	of	typical	traditional	switches	or	routers.	The	controller	is
responsible	for	programming	various	tables,	such	as	flow	table,	group	table,	and	meter
table	using	OpenFlow	protocol	messages	to	provide	network	connectivity	or	network
functions	across	various	nodes	in	the	system

OpenFlow	channel
An	OpenFlow	channel	is	used	to	exchange	OpenFlow	messages	between	an	OpenFlow
switch	and	an	OpenFlow	controller.	The	switch	must	be	able	to	create	an	OpenFlow
channel	by	initiating	a	connection	to	the	controller:

With	OVS,	the	entire	CoreOS	cluster’s	overlay	network	can	be	centrally	managed	by	a
controller	with	very	simple	configurations.	The	ofctl	utility	provided	by	OVS	is	helpful	in
programming	the	flow	tables	using	a	command-line	argument	without	being	controlled	by
an	external	controller.

Running	OVS	in	CoreOS
There	are	two	ways	to	run	or	install	OVS	in	a	CoreOS	environment:

Build	a	CoreOS	image	with	OVS
Run	OVS	inside	a	Docker	container	with	the	–net=host	option

As	we	have	already	seen	in	Chapter	1,	CoreOS,	Yet	Another	Linux	Distro	in	CoreOS	there
is	no	way	to	install	an	application.	Any	service/application	should	be	deployed	in	a
container.	So	the	simple	way	to	run	OVS	is	to	run	OVS	inside	a	Docker	container.	Let	us
see	how	we	can	install	an	OVS	docker	in	CoreOS.

There	is	already	a	docker	image	available	with	OVS	(coreos-ovs).	Download	this	docker
image	from	https://github.com/theojulienne/coreos-ovs	github	link.	Use	the	following
cloud-config	to	start	this	container:

#cloud-config

coreos:

		units:

				-	name:	docker.service

						command:	start

						drop-ins:

								-	name:	50-custom-bridge.conf

										content:	|

												[Service]

												Environment='DOCKER_OPTS=--bip="10.0.11.0/8"	--fixed-

cidr="10.0.11.0/24"'

				-	name:	OVS.service

						command:	start

						content:	|

								[Unit]

								Description=Open	vSwitch	Bridge

								After=docker.service

								Requires=docker.service

								[Service]

								Restart=always

								ExecStartPre=/sbin/modprobe	openvswitch

								ExecStartPre=/sbin/modprobe	af_key

								ExecStartPre=-/usr/bin/docker	run	--name=openvswitch-cfg	-v	

/opt/ovs/etc	busybox	true

								ExecStartPre=-/usr/bin/docker	rm	-f	openvswitch

								ExecStartPre=/usr/bin/docker	run	-d	--net=host	--privileged	--

name=openvswitch	--volumes-from=openvswitch-cfg	theojulienne/coreos-

ovs:latest

								ExecStart=/usr/bin/docker	attach	openvswitch

								ExecStartPost=/usr/bin/docker	exec	openvswitch	/scripts/docker-

attach

This	starts	a	docker	container	that	has	OVS	installed.	Along	with	that,	it	removes	the	IP
address	of	docker0	bridge	and	assigns	it	to	OVS	bridge	(bridge0).	docker0	bridge	will	be
attached	to	bridge0	as	a	link.

https://github.com/theojulienne/coreos-ovs

As	we	are	using	the	–net=host	option,	any	OVS	command	we	are	executing	inside	this
container	will	result	in	changing	the	network	configuration	of	the	host	OS,	which	is	the
CoreOS	network	stack.

This	section	describes	in	detail	how	to	provide	a	virtual	tenant	network	between	docker
containers	that	are	running	in	two	different	CoreOS	instances.	There	are	multiple	ways	to
provide	the	solution.	We	are	going	to	see	the	two	most	common	and	simple	ways	of
providing	the	solution:

Attaching	docker0	bridge	to	OVS
Attaching	the	container’s	veth	interface	to	OVS

Attaching	docker0	bridge	to	OVS
This	is	a	simple	way	of	providing	connectivity	across	different	containers	using	OVS.	In
this	case,	OVS	should	be	connected	to	docker0	bridge	(which	is	already	connected	to	all
the	containers)	using	a	veth	interface.	Refer	to	the	previous	chapter	for	more	detail	about
docker0	bridge	and	how	it	provides	connectivity	for	the	containers	in	a	system.

The	docker	bridge	is	intern	connected	to	the	OVS	bridge.	The	OVS	bridge	provides
connectivity	to	the	other	CoreOS	instances	using	GRE/VxLAN	tunnels.

The	step-by-step	procedure	with	configuration	is	described	in	detail	as	follows.	This
consists	of	the	following	major	steps	on	both	the	CoreOS	instances:

Configurations	during	the	instantiation	of	a	CoreOS	node	in	a	cluster
Configurations	during	the	creation	of	a	container

Configuration	in	CoreOS	Instance	1
This	section	describes	in	detail	the	operations	to	be	performed	on	the	coreos-ovs	docker	of
CoreOS	node1	to	provide	this	solution.

Configurations	during	the	instantiation	of	a	CoreOS	node	1	in	a	cluster

At	the	time	of	CoreOS	server	boot-up,	OVS	needs	to	be	started	and	the	procedure	to	start
OVS	is	as	follows.	Note	that	the	way	in	which	the	OVS	command	will	be	executed
depends	on	whether	OVS	is	deployed	inside	a	docker	container	or	the	CoreOS	host
instance.	However,	in	both	cases,	there	is	no	change	in	the	list	of	OVS	commands	to	be
used:

1.	 Run	the	OVS	data-path	module	using	the	command:

sudo	modprobe	openvswitch

2.	 Create	a	configuration,	db,	using	the	default	schema	file	with	the	following
command:

sudo	ovsdb-tool	create	/var/lib/openvswitch/conf.db	

/usr/share/openvswitch/vswitch.ovsschema

3.	 Run	the	OVS	DB	server	using	the	following	command:

sudo	ovsdb-server	/var/lib/openvswitch/conf.db	--

remote=punix:/var/run/openvswitch/db.sock	--pidfile	--detach	--log-file

4.	 Run	OVS-VSCTL	using	the	following	command:

sudo	ovs-vsctl	--no-wait	init

5.	 Run	the	OVS	switchd	daemon	using	the	following	command:

sudo	ovs-vswitchd	--pidfile	--detach

6.	 Create	a	bridge	instance:

sudo	ovs-vsctl	add-br	br0

7.	 Create	a	GRE	tunnel	with	the	remote	node	as	172.17.8.103.	Here,	the	assumption	is
the	etho	IP	of	CoreOS	instance	2	is	172.17.8.103:

sudo	ovs-vsctl	add-port	br0	gre1—set	Interface	gre1	type=gre	

options:remote_ip=172.17.8.103	options:key=100

Tip
The	key	needs	to	be	different	for	each	tunnel.

8.	 Create	a	veth	interface	to	provide	a	connection	between	docker0	bridge	and	OVS:

Create	the	veth	pair:

	 ip	link	add	tap1	type	veth	peer	name	tap2

Attach	one	end	of	the	veth	pair	to	docker0	bridge:

	 sudo	brctl	addif	docker0	tap1

Attach	the	other	end	of	the	veth	pair	to	OVS:

	 sudo	ovs-vsctl	add-port	br0	tap2

Configurations	during	the	creation	of	a	container	for	CoreOS	Instance	1

This	section	describes	the	configuration	to	be	done	when	a	new	container	is	created	in	the
CoreOS	instance.

Tip

As	by	default,	the	eth0	(one	end	of	the	veth	pair)	interface	of	the	container	is	attached	to
docker0	bridge,	we	need	not	explicitly	attach	the	container	veth	interface	to	docker0
bridge.

Set	the	IP	address	of	the	eth0	interface	of	the	docker	container.	It	is	not	possible	to	set	the
IP	address	of	the	docker	container	inside	the	docker	instance.	We	need	to	use	the	nsenter
utility	for	this.	To	do	this,	follow	these	steps:

1.	 Execute	the	following	command	and	get	the	pid:

docker	inspect	--format	{{.State.Pid}}	<container_name_or_ID>

2.	 Execute	the	following	command	and	get	the	pid:

sudo	nsenter	--target	$PID	--mount	--uts	--ipc	--net	--pid	ifconfig	

eth0	50.0.0.1

Configuration	in	CoreOS	Instance	2
This	section	describes	in	detail	the	operations	to	be	performed	on	the	coreos-ovs	docker	of
CoreOS	node2	to	provide	this	solution.

Configurations	during	the	instantiation	of	CoreOS	node	2	in	a	cluster

This	section	describes	the	list	of	operations	to	be	performed	during	the	initialization	of	the
CoreOS	instance.	During	initialization,	OVS	needs	to	be	started	and	the	procedure	to	start
OVS	is	as	follows:

Run	the	OVS	data-path	module	using	the	command:

sudo	modprobe	openvswitch

Create	a	configuration,	db,	using	the	default	schema	file	with	the	following
command:

sudo	ovsdb-tool	create	/var/lib/openvswitch/conf.db	

/usr/share/openvswitch/vswitch.ovsschema

Run	the	OVS	DB	server	using	the	following	command:

sudo	ovsdb-server	/var/lib/openvswitch/conf.db	--

remote=punix:/var/run/openvswitch/db.sock	--pidfile	--detach	--log-file

Run	OVS-VSCTL	using	the	following	command:

sudo	ovs-vsctl	--no-wait	init

Run	the	OVS	switchd	daemon	using	the	following	command:

sudo	ovs-vswitchd	--pidfile	--detach

Create	a	bridge	instance:

sudo	ovs-vsctl	add-br	br0

Create	a	GRE	tunnel	with	the	remote	node	as	172.17.8.101.	Here,	the	assumption	is

the	etho	IP	of	CoreOS	instance	1	is	172.17.8.101:

sudo	ovs-vsctl	add-port	br0	gre1—set	Interface	gre1	type=gre	

options:remote_ip=172.17.8.101	options:key=100

Tip
The	key	needs	to	be	different	for	each	tunnel.

Now	we	need	to	create	a	veth	interface	to	provide	a	connection	between	docker0
bridge	and	OVS:

Create	the	veth	pair:

	 ip	link	add	tap1	type	veth	peer	name	tap2

Attach	one	end	of	the	veth	pair	to	docker0	bridge:

	 sudo	brctl	addif	docker0	tap1

Attach	the	other	end	of	the	veth	pair	to	OVS:

	 sudo	ovs-vsctl	add-port	br0	tap2

Configurations	during	the	creation	of	a	container	for	CoreOS	Instance	2

This	section	describes	the	configuration	to	be	done	when	a	new	container	is	created	in	the
CoreOS	instance.

Set	the	IP	address	of	the	eth0	interface	of	the	docker	container.	It	is	not	possible	to	set	the
IP	address	of	the	docker	container	inside	the	docker	instance.	We	need	to	use	the	nsenter
utility	for	this.	To	do	this,	follow	these	steps:

1.	 Execute	the	following	command	and	get	the	pid:

docker	inspect	--format	{{.State.Pid}}	<container_name_or_ID>

2.	 Execute	the	following	command	and	get	the	pid:

sudo	nsenter	--target	$PID	--mount	--uts	--ipc	--net	--pid	ifconfig	

eth0	50.0.0.2

Now	you	should	be	able	to	ping	from	the	docker	container	running	in	CoreOS	instance	1
to	a	docker	container	running	in	CoreOS	instance	2.	The	main	disadvantage	of	this
solution	is	tha	it	is	not	possible	to	provide	a	virtual	tenant	network	using	this	solution.	This
is	because	all	the	docker	containers	are	attached	to	docker0	bridge,	which	is	connected	to
OVS.	OVS	acts	as	a	way	to	provide	communication	between	different	server	instances.

Attaching	container’s	veth	interface	to	OVS
In	this	case,	all	the	docker	containers	in	the	CoreOS	instance	are	attached	directly	to	the
OVS	bridge.	There	will	be	multiple	instance	of	bridge	running	inside	OVS,	each	mapping
to	different	customers/tenants.	A	new	bridge	needs	to	be	created	and	provisioned	for	each
tenant	in	the	system.	On	the	subsequent	creation	of	containers	(for	the	same	tenant),	the
container’s	interface	should	be	connected	to	the	corresponding	bridge	instance.	The	OVS
bridge	provides	connectivity	to	the	other	CoreOS	instances	using	GRE/VxLAN	tunnels.

The	step-by-step	procedure	to	configure	this	kind	of	solution	is	described	in	detail	as
follows.	This	consists	of	the	following	major	steps	to	be	performed	on	both	the	CoreOS
instances:

Configurations	during	the	instantiation	of	a	CoreOS	node	in	a	cluster
Configurations	during	the	creation	of	the	first	container	for	a	tenant
Configurations	during	the	creation	of	subsequent	containers	for	a	tenant

Configuration	in	CoreOS	Instance	1
This	section	describes	in	detail	the	operations	to	be	performed	on	the	coreos-ovs	docker	of
CoreOS	node1	to	provide	this	solution.

Configurations	during	the	instantiation	of	a	CoreOS	node	in	a	cluster

During	initialization,	OVS	needs	to	be	started	and	the	procedures	to	start	OVS	are	as
follows.	Note	that	the	way	in	which	the	OVS	command	will	be	executed	depends	on
whether	OVS	is	deployed	inside	a	docker	container	or	the	CoreOS	host	instance.

However,	in	both	cases,	there	is	no	change	in	the	list	of	OVS	commands	to	be	used.

1.	 Run	the	OVS	data-path	module	using	the	command:

sudo	modprobe	openvswitch

2.	 Create	a	configuration,	db,	using	the	default	schema	file	with	the	following
command:

sudo	ovsdb-tool	create	/var/lib/openvswitch/conf.db	

/usr/share/openvswitch/vswitch.ovsschema

3.	 Run	the	OVS	DB	server	using	the	following	command:

sudo	ovsdb-server	/var/lib/openvswitch/conf.db	--

remote=punix:/var/run/openvswitch/db.sock	--pidfile	--detach	--log-file

4.	 Run	OVS-VSCTL	using	the	following	command:

sudo	ovs-vsctl	--no-wait	init

5.	 Run	the	OVS	switchd	daemon	using	the	following	command:

sudo	ovs-vswitchd	--pidfile	--detach

Configurations	during	the	creation	of	the	first	container	for	a	tenant

When	a	container	is	created	for	a	tenant	for	the	first	time,	a	new	bridge	needs	to	be	created
and	this	container	should	be	connected	to	OVS.	The	procedure	to	do	this	is	described	in
detail	as	follows:

1.	 Bring	down	the	docker0	bridge	instance	(the	default	bridge	created	by	docker):

sudo	ip	link	set	dev	docker0	down

2.	 Detach	the	virtual	interface	that	is	created	for	the	container	from	docker0	bridge.	The
virtual	interface	starts	with	the	name	as	veth:

sudo	brctl	delif	docker0	vethda0657c

3.	 Create	a	bridge	instance	for	a	tenant:

sudo	ovs-vsctl	add-br	br0

4.	 Add	the	port	that	is	created	in	docker.	This	interface	starts	with	veth:

sudo	ovs-vsctl	add-port	br0	vethda0657c

5.	 Set	the	IP	address	of	the	eth0	interface	of	the	docker	container.	It	is	not	possible	to	set
the	IP	address	of	the	docker	container	inside	the	docker	instance.	We	need	to	use	the
nsenter	utility	for	this.	To	do	this,	follow	these	steps:

Execute	the	following	command	and	get	the	pid:

docker	inspect	--format	{{.State.Pid}}	<container_name_or_ID>

Execute	the	following	command	and	get	the	pid:

sudo	nsenter	--target	$PID	--mount	--uts	--ipc	--net	--pid	ifconfig	

eth0	50.0.0.1

6.	 Create	a	GRE	tunnel	with	the	remote	node	as	172.17.8.103.	Here,	the	assumption	is
the	eth0	IP	of	CoreOS	instance	2	is	172.17.8.103

sudo	ovs-vsctl	add-port	br0	gre1—set	Interface	gre1	type=gre	

options:remote_ip=172.17.8.103	options:key=100

Tip
The	key	needs	to	be	different	for	each	tunnel.

Configurations	during	the	creation	of	subsequent	containers	for	a	tenant

This	section	describes	the	configuration	to	be	done	when	subsequent	containers	are	being
created	in	the	CoreOS	instance.

1.	 Add	the	port	that	is	created	in	docker.	This	interface	starts	with	veth:

sudo	ovs-vsctl	add-port	br0	veth640b626

2.	 Create	a	GRE	tunnel	with	the	remote	node	as	172.17.8.103:

sudo	ovs-vsctl	add-port	br0	gre1—set	Interface	gre1	type=gre	

options:remote_ip=172.17.8.103	options:key=100

Configuration	in	CoreOS	Instance	2
This	section	describes	in	detail	the	operations	to	be	performed	on	the	coreos-ovs	docker	of
CoreOS	node2	to	provide	this	solution.

Configurations	during	the	instantiation	of	a	CoreOS	node	in	a	cluster

This	section	describes	the	list	of	operations	to	be	performed	during	the	initialization	of	the
CoreOS	instance.	During	initialization,	OVS	needs	to	be	started	and	the	procedure	to	start
OVS	is	as	follows:

1.	 Run	the	OVS	data-path	module	using	the	command:

sudo	modprobe	openvswitch

2.	 Create	a	configuration,	db,	using	the	default	schema	file	with	the	following
command:

sudo	ovsdb-tool	create	/var/lib/openvswitch/conf.db	

/usr/share/openvswitch/vswitch.ovsschema

3.	 Run	the	OVS	DB	server	using	the	following	command:

sudo	ovsdb-server	/var/lib/openvswitch/conf.db	--

remote=punix:/var/run/openvswitch/db.sock	--pidfile	--detach	--log-file

4.	 Run	OVS-VSCTL	using	the	following	command:

sudo	ovs-vsctl	--no-wait	init

5.	 Run	the	OVS	switchd	daemon	using	the	following	command:

sudo	ovs-vswitchd	--pidfile	--detach

6.	 Create	a	bridge	instance:

sudo	ovs-vsctl	add-br	br0

7.	 Create	a	GRE	tunnel	with	the	remote	node	as	172.17.8.101.	Here,	the	assumption	is
the	etho	IP	of	CoreOS	instance	1	is	172.17.8.101:

sudo	ovs-vsctl	add-port	br0	gre1—set	Interface	gre1	type=gre	

options:remote_ip=172.17.8.101	options:key=100

Tip
The	key	needs	to	be	different	for	each	tunnel.

Configurations	during	the	creation	of	the	first	container	for	a	tenant

When	a	container	is	created	for	a	tenant	for	the	first	time,	a	new	bridge	needs	to	be	created
and	this	container	should	be	connected	to	OVS.	The	procedure	to	do	this	is	described	in
detail	as	follows:

1.	 Bring	down	the	docker0	bridge	instance	(the	default	bridge	created	by	docker):

sudo	ip	link	set	dev	docker0	down

2.	 Detach	the	virtual	interface	that	is	created	for	the	container	from	docker0	bridge.	The
virtual	interface	starts	with	the	name	as	veth:

sudo	brctl	delif	docker0	vethda0657c

3.	 Create	a	bridge	instance	for	a	tenant:

sudo	ovs-vsctl	add-br	br0

4.	 Add	the	port	that	is	created	in	docker.	This	interface	starts	with	veth:

sudo	ovs-vsctl	add-port	br0	vethda0657c

5.	 Set	the	IP	address	of	the	eth0	interface	of	the	docker	container.	It	is	not	possible	to	set
the	IP	address	of	the	docker	container	inside	the	docker	instance.	We	need	to	use	the
nsenter	utility	for	this.	To	do	this,	follow	these	steps:

Execute	the	following	command	and	get	the	pid:

docker	inspect	--format	{{.State.Pid}}	<container_name_or_ID>

Execute	the	following	command	and	get	the	pid:

sudo	nsenter	--target	$PID	--mount	--uts	--ipc	--net	--pid	ifconfig	

eth0	50.0.0.1

6.	 Create	a	GRE	tunnel	with	the	remote	node	as	172.17.8.103.	Here,	the	assumption	is
the	etho	IP	of	CoreOS	instance	2	is	172.17.8.103:

sudo	ovs-vsctl	add-port	br0	gre1—set	Interface	gre1	type=gre	

options:remote_ip=172.17.8.103	options:key=100

Tip
The	key	needs	to	be	different	for	each	tunnel.

Configurations	during	the	creation	of	subsequent	containers	for	a	tenant

This	section	describes	the	configuration	to	be	done	when	subsequent	containers	are	being
created	in	the	CoreOS	instance.

1.	 Add	the	port	that	is	created	in	docker.	This	interface	starts	with	veth:

sudo	ovs-vsctl	add-port	br0	veth640b626

2.	 Create	a	GRE	tunnel	with	the	remote	node	as	172.17.8.103:

sudo	ovs-vsctl	add-port	br0	gre1—set	Interface	gre1	type=gre	

options:remote_ip=172.17.8.103	options:key=100

Now	you	should	be	able	to	ping	from	the	docker	container	running	in	CoreOS	instance	1
to	a	docker	container	running	in	CoreOS	instance	2.	The	main	advantage	of	this	solution	is
that	it	is	possible	to	provide	a	virtual	tenant	network	using	this	solution.

Looping	issue
Everything	works	fine	so	far.	However,	when	the	number	of	CoreOS	instances	running	in
the	cluster	increases,	we	may	need	to	create	a	mesh	of	tunnels	between	CoreOS	instances
for	each	customer/tenant.	This	ends	up	creating	a	loop	in	the	network	that	will	result	in	a
traffic	black	hole.	Let	us	look	into	this	issue	in	detail	and	discuss	the	solution.

Consider	a	topology	wherein	you	have	three	CoreOS	instances	running	in	the	CoreOS
cluster.	In	each	of	these	instances,	the	green	and	orange	customers’	applications	are
deployed	as	a	container.	To	provide	VTN	for	each	customer,	we	need	to	create	tunnels
across	these	CoreOS	instances.	In	this	case,	we	need	to	create	two	tunnels	for	each
customer	from	every	CoreOS	instance.	From	CoreOS	instance	1,	we	need	to	create	two
tunnels	for	each	customer:	one	toward	CoreOS	instance	2	and	the	other	toward	CoreOS
instance	3.	Similarly,	from	CoreOS	instance	2,	we	need	to	create	two	tunnels	and	so	on.
This	will	result	in	forming	a	layer2	loop	in	the	customer’s	bridge	instance.

Tip
The	total	number	of	tunnels	required	to	create	a	complete	mesh	in	the	topology	is	2n-1,
where	n	is	the	number	of	CoreOS	instances	wherein	the	tenant’s	service	is	deployed	as	a
container.

As	the	bridge	instance	is	a	layer2	device,	this	results	in	forwarding	the	same	packet
multiple	times	in	the	loop:

A	simple	way	to	avoid	this	looping	problem	is	by	running	Spanning	Tree	Protocol	(STP)
in	OVS.	STP	is	defined	and	standardized	as	IEEE	802.1D.	STP	identifies	a	loop-free
topology,	considering	all	the	links	in	the	topology	based	on	different	metrics.	Once	it
identifies	the	loop-free	topology,	it	will	block	one	or	more	ports	(in	this	case,	tunnels)	that
are	not	part	of	the	loop-free	topology.	The	ports	that	are	in	a	blocking	state	won’t	forward
the	traffic	and	hence	avoid	the	traffic	black	hole.

In	the	preceding	topology,	when	we	run	the	spanning	tree	based	on	the	priority	or
configured	bridge-id,	STP	blocks	one	port,	in	this	case	blocks	the	port	from	CoreOS	3	to
CoreOS	2:

The	list	of	commands	to	enable	and	configure	the	spanning	tree	in	OVS	are	as	follows:

Enable	the	spanning	tree	on	a	bridge	instance:

ovs-vsctl	set	Bridge	br0	stp_enable=true

Set	the	bridge	priority:

ovs-vsctl	set	Bridge	br0	other_config:stp-priority=0x7800

Set	the	path	cost	of	the	port:

ovs-vsctl	set	Port	eth0	other_config:stp-path-cost=10

Tip
The	bridge	priority	and	path	cost	configurations	are	not	mandatory	configurations.

The	spanning	tree	needs	to	be	enabled	on	all	the	bridge	instances	of	OVS	to	avoid	any
loop	in	the	network.

Summary
In	this	chapter,	we	have	seen	the	importance	of	OVS	in	container	communications	and	the
various	advantages	provided	by	OVS.	As	there	are	multiple	communication	mechanisms
available	for	container	communications,	while	deploying	the	CoreOS	cluster,	based	on	the
advantages,	ease	of	use,	and	network	management	tools,	you	should	cautiously	choose	one
or	more	communication	mechanisms	in	your	deployment.	In	the	next	chapter,	we	are
going	to	see	some	of	the	latest	developments	in	CoreOS	and	advanced	topics	such	as
security,	orchestration,	container	data	volume	management,	and	so	on.

Chapter	8.	What	Next?
In	this	chapter,	we	will	touch	upon	some	advanced	Docker	and	Core	OS	topics	and	we
will	also	discuss	what	is	upcoming	in	CoreOS.	For	most	of	the	topics,	we	will	not	go	into
the	details	of	using	or	deploying	each	of	the	features	mentioned	in	this	chapter,	but	will
discuss	enough	so	as	to	be	aware	of	what	else	is	cooking.

This	chapter	covers	the	following	topics:

Container	security
Easy	upgrade	using	CoreUpgrade
User	authentication	using	Dex
Sysdig
Other	container	orchestration	mechanisms	such	as	Kubernetes,	Apache	Mesos,	and
Swarm
Docker	data	volume	management
Open	Container	Project

Container	security
Security	is	an	important	aspect	of	any	deployment.	There	should	be	security	in	the
applications,	devices,	and	network	to	disallow	any	unauthorized	access.	There	should	also
be	security	in	the	container/docker	deployment	so	as	to	disallow	unauthorized	access	to
system	resources	reserved	for	the	container.	We	will	understand	how	Docker	container
ensures	network	and	resource	isolation	and	security.

Docker	uses	the	namespaces	to	isolate	the	container	from	other	containers	running	on	the
host.	There	are	three	important	namespaces	that	take	part	in	providing	security:

Process	namespace:	Each	Linux	system	has	a	process	tree,	that	is,	there	is	an	init
process	with	process	ID	1,	which	is	also	called	the	root	process.	This	root	process
spawns	other	daemons	and	processes	as	a	child	process.	These	daemons	and
processes	can	then	create	their	own	child	and	so	on.	It	is	possible	to	create	a	child
namespace	with	one	of	the	child	as	the	root	process.	All	the	processes	running	in	the
child	namespace	don’t	have	the	knowledge	of	the	parent	namespace;	hence,	they
can’t	perform	any	operations	(like	signal)	on	the	processes	outside	their	namespace.
Network	namespace:	Each	container	has	its	own	network	interface	that	is	different
from	the	host	interface’s.	They	have	their	own	loop-back	interface	as	well.	The	only
way	containers	can	talk	to	the	external	world	is	through	the	bridge	network	at	the
host.	Bridge	network	enables	communication	between	different	namespaces	running
in	the	same	host	or	to	an	address	in	another	host.	This	ensures	that	the	network	stack
is	exclusive	to	the	container,	thereby	running	its	own	IP,	TCP,	UDP	stacks,	and	so	on.
Docker	has	an	additional	layer	of	security	by	allowing	communication	with	another
Docker	by	exposing	ports	or	by	creating	links	to	another	container	explicitly.
Resource	namespace:	This	ensures	that	each	container	has	its	own	resource
exclusively	for	its	own	use.	Resource	can	be	dedicated	RAM,	processors,	or	a	disk
with	its	own	filesystem.	This	ensures	that	the	container	usage	doesn’t	cross	the	set
limits,	thus	ensuring	that	it	doesn’t	intrude	upon	the	resources	being	allocated	to
another	container.

The	following	figure	illustrates	the	isolation	provided	by	the	Docker	container.	As	we	can
see,	the	service	running	inside	container	has	its	own	root	process,	filesystem,	and	interface
which	an	operation	system	would	normally	provide.	These	features	are	present	in	almost
all	of	the	Linux	distributions	that	Docker	uses	to	provide	isolation.

After	isolation,	let’s	discuss	security.	Docker	starts	container	in	non-privilege	mode.	That
means	containers	or	applications	running	inside	the	container	only	have	permissions	to
perform	actions	that	don’t	require	root	privileges.	Some	examples	are	using	a	port	less
than	1024	(though	non-privileged	docker	can	use	ports	that	are	under	and	above	the	1024
range),	modifying	a	file	in	/etc,	mounting	a	filesystem,	and	so	on.	This	ensures	that	even
services	in	containers	are	hacked;	they	can’t	inflict	damage	on	the	host	and	the	impact	can
be	limited	to	that	container	instance.	The	allowed	privileges	can	be	configured	and	it	can
be	very	restrictive,	or	very	relaxed	based	on	the	environment	(trusted	or	non-trusted)
containers	are	expected	to	work.

Docker	also	recommends	securing	the	access	to	Docker	Daemon,	which	runs	as	root	on
the	host	machine.	Also,	it	recommends	enabling	secure	HTTP	connections	in	case	it	is
required	to	administrate	a	container	remotely.	Further,	the	in-built	firewalls	in	Linux
kernel	like	SELinux	can	be	used	to	further	add	restrictions	on	the	Docker	to	set	restrictions
for	using	only	specific	ports	and	specific	protocols	(only	TCP,	only	UDP,	and	so	on).	Also,
it	is	advisable	to	use	other	Linux	security	utilities	and	tools	to	protect	and	harden	the
system.

Update	and	patches	–	CoreUpdate
CoreUpdate	is	a	service	available	as	part	of	Premium	Manged	Service	targeted	at
Enterprise	customers	who	require	support	and	SLA-based	support	in	case	they	face	issues
with	deployment.	CoreUpdate	helps	to	monitor	cluster	health,	cluster	software	versions,
manage	updates,	and	patch	deployment.

CoreUpdates	provides	a	web	interface	and	a	command-line	interface	to	view	the	versions
running	on	each	of	the	CoreOS	instances	and	to	schedule	upgrades	on	them.	All	instances
of	the	CoreOS	can	be	logically	distributed	into	multiple	application	groups,	and	upgrades
can	be	managed	individually	for	those	applications.	For	instance,	they	can	be	configured
to	pick	the	upgrade/patch	from	different	channels	like	stable/beta/alpha.	They	can	be
scheduled	at	different	times	and	can	have	different	metadata,	like	where	to	pick	the
package	for	upgrade/patch.	During	the	upgrade	process,	progress	of	the	upgrade	is
displayed	and	any	error/information/warnings	are	displayed	to	take	corrective	actions.

CoreUpdate	also	provides	a	HTTP-based	API	to	integrate	software	management	with	the
developed	application.

Dex
All	of	us	have	experienced	user	authentication	in	multiple	ways,	like	when	we	log	in	to
websites,	log	in	to	our	computer,	log	in	to	social	sites,	and	so	on.	There	are	a	wide	variety
of	authentication	systems	like	local	users	being	managed	by	a	system	admin	for	Linux	or
Microsoft	Windows,	Enterprise-wide	Active	Directory,	or	LDAP,	or	through	identity
providers	such	as	Google,	Outlook,	Yahoo!,	and	Facebook.

As	an	application	developer,	Dex	(https://github.com/coreos/dex)	solves	the	problem	of
user	authentication	by	providing	a	ready-to-use	standard-based	implementation	and
connectors	for	various	authentication	systems	including	local	authentication.	This	makes	it
easier	for	the	developer	to	concentrate	on	their	business	logic	and	trust	that	authentication
is	well	taken	care	of.

Since	Dex	implementation	is	based	on	standard	(OpenID	Connect	(OIDC)	Core	spec),	it
is	language	independent	as	the	interfaces	are	well	defined.	Use	a	client	library	conforming
to	OIDC	corresponding	to	the	programming	language	and	you	are	good	to	go.

There	are	different	authentication	mechanisms	that	can	be	used	by	integrating	off-the-shelf
connectors.	If	we	have	to	draw	a	parallel,	it	is	very	much	like	a	database	connector.
Currently,	two	connectors,	local	and	OIDC	connector,	and	more	are	getting	developed.
With	local	connector,	the	user	can	log	in	to	the	system	using	the	authentication	database
maintained	by	Dex	locally,	like	Linux	user	IDs	and	passwords.	With	OIDC	connectors,
users	can	be	authenticated	using	another	OIDC	Identity	Provider	like	Google	or	another
Dex	instance	as	Dex	itself	is	an	OIDC	identity	provider.

So,	if	you	have	a	requirement	for	authentication	in	your	system,	explore	Dex.

https://github.com/coreos/dex

sysdig
We	are	aware	of	commonly	used	debugging	tools	for	Linux	to	monitor	and	take	snapshots
of	system	health.	For	example,	if	we	want	to	check	whether	the	machine	is	overloading	its
CPU	or	RAM,	we	use	tools	like	top	or	vmstat.	If	we	have	to	capture	the	packets	over	the
interface,	we	use	wireshark	or	tcpdump.	Similarly,	we	use	iostat	to	monitor	the	system
IO	devices.

sysdig	provides	integrated	support	for	monitoring	all	the	preceding	system	resources
along	with	providing	many	more	features.	And	most	importantly,	in	our	context	it
provides	support	for	containers.	We	know	that	containers	run	in	the	host	OS	in	separate
namespaces.	So	the	processes	running	inside	containers	are	also	visible	to	the	native	tools,
say,	for	example,	ps.	In	a	container	environment,	the	information	related	to	the	application
is	present	in	two	levels:	one	at	the	host	kernel	level,	for	example	process	ID	as	the	host
kernel	sees	it,	and	the	other	at	the	container	level,	for	example,	the	process	ID	inside	the
container.	All	native	Linux	tools	give	a	host	kernel	view	leaving	it	to	the	user	to	correlate
information	to	find	out	which	information	pertains	to	the	container	and	segregate
information	on	a	per-container	basis.	To	get	information	as	the	container	application	sees
it,	Docker	interfaces/commands	are	to	be	used.	sysdig	solves	this	problem.

Let’s	take	a	hands-on	approach	to	get	a	feel	of	what	information	sysdig	provides.

The	first	step	is	to	install	and	run	sysdig.	After	we	start	the	docker	container	for	sysdig,
we	are	taken	to	a	shell	where	we	can	run	the	sysdig	commands.

Vagrant	ssh	core-01

docker	pull	sysdig/sysdig

docker	run	-i	-t	--name	sysdig	--privileged	-v	

/var/run/docker.sock:/host/var/run/docker.sock	-v	/dev:/host/dev	-v	

/proc:/host/proc:ro	-v	/boot:/host/boot:ro	-v	

/lib/modules:/host/lib/modules:ro	-v	/usr:/host/usr:ro	sysdig/sysdig

Start	a	Docker	container	as	daemon	using	the	following	command:

/usr/bin/docker	run	–d	--name	busybox	busybox	/bin/sh	-c	"while	true;	do	

echo	Hello	World;	sleep	60;	done"

We	will	run	some	example	commands	to	find	out	container-specific	information.	First,	we
will	list	the	containers	running	on	the	machine	both	using	the	docker	ps	in	another	login
window	and	using	sysdig:

docker	ps

CONTAINER	ID								IMAGE															COMMAND																		CREATED													

STATUS														PORTS															NAMES

f71277abf37c								busybox													"/bin/sh	-c	'while	tr"			4	seconds	

ago							Up	3	seconds																												busybox

d21a39a0668f								sysdig/sysdig							"/docker-entrypoint.s"			5	minutes	

ago							Up	5	minutes																												sysdig

We	see	here	that	there	are	two	containers	running	on	the	host	machine:	one	container	is	for
sysdig	and	the	other	is	the	busybox	we	started.	Now,	we	will	run	the	corresponding

sysdig	command:

sysdig	-c	lscontainers

container.type	container.image	container.name						container.id

--------------	---------------	-------------------	------------

docker									busybox									busybox													f74777abf37c

docker									sysdig/sysdig			sysdig														d2da79a0668f

The	following	command	shows	the	cumulative	CPU	usage	of	the	containers:

sysdig	-c	topcontainers_cpu

The	output	we	get	is	as	follows:

Similarly,	we	can	see	a	list	of	processes,	its	corresponding	containers,	and	process	ID	(as
seen	by	the	host	and	as	seen	by	the	container	at	the	global	level)	by	using	the	following
command.	Note	that	the	-pc	flag	indicates	that	the	information	is	required	in	the	container
context.	The	same	command	can	also	be	extended	by	providing	a	container	name,	and
information	is	displayed	only	for	that	container.

sysdig	-pc	-c	topconns

The	output	we	get	is	as	follows:

By	now,	you	would	have	got	an	idea	of	the	utility	of	sysdig.	Similar	to	the	process	and
CPU	information,	it	can	provide	a	host	of	other	features	like	monitoring	networks,
network	IO,	disk	usage,	trace	traffic,	and	so	on.	And	most	of	the	monitoring	can	be	done
in	a	container	context	also	by	adding	the	–pc	switch.

Competitive	container	orchestration
mechanism
In	this	section,	we	are	going	to	see	the	other	container	orchestration	mechanism	currently
available	in	the	market.	Some	of	these	orchestration	mechanisms	can	in	fact	be
complementary	to	the	CoreOS	orchestration	mechanism.	As	we	have	already	seen	in
Chapter	3,	Creating	Your	CoreOS	Cluster	and	Managing	the	Cluster,	fleet	acts	as	a	cluster
manager	in	CoreOS	and	instantiates	the	docker	units/service	in	any	one	of	the	nodes	in	the
cluster.	Let	us	discuss	the	other	orchestration	mechanisms	in	detail	in	this	chapter.	Some
of	the	key	container	orchestration	mechanisms	currently	available	are	as	follows:

Kubernetes
Apache	Mesos
Swarm

Kubernetes
Kubernetes	is	an	open	source	container	orchestration	infrastructure	developed	by	Google
for	deploying	containers	or	a	group	of	containers	in	a	server	cluster.	Kubernetes	provides	a
way	of	deploying	a	group	of	containers	as	a	single	logical	service.	This	group	of
containers	has	been	termed	pod.	Apart	from	providing	a	mechanism	for	deploying	an
application	or	container,	Kubernetes	also	provides	way	for	scheduling,	updating,
maintaining,	and	scaling	the	containers	in	a	cluster.

Kubernetes	operates	over	the	pod	rather	than	containers.	A	pod	can	contain	a	single
container	or	a	group	of	logically	interrelated	containers,	as	described	earlier.	Kubernetes
consists	of	the	following	components:

Kubernetes	master
Kubernetes	nodes	(Minion)
Kubernetes	pods
Kubernetes	services

The	following	diagram	illustrates	the	components	of	Kubernetes:

Kubernetes	components	overview

Kubernetes	master
As	the	name	implies,	Kubernetes	master	is	the	master	node	that	controls	other	nodes	and
pods	in	the	cluster.	It	is	the	control	plane	and	provides	the	following	services:

Placement	of	pods	in	the	server
Replication	control	of	various	pods
Maintaining	the	state	of	the	containers
Providing	the	REST	API	for	controlling	the	nodes,	pods,	and	so	on	from	the	external
world

Master	Kubernetes	runs	apiserver,	controller	manager,	and	optionally	the	kubelet	and
proxy	servers.

Kubernetes	nodes
Kubernetes	nodes	are	also	called	the	minion.	User	applications	are	deployed	as	a
container	or	docker	containers	in	the	minion.	The	Kubernetes	nodes	host	important
services	of	Kubernetes	like	kubelet	and	kube-proxy.

Kubelet	is	responsible	for	managing	the	pods	at	the	node	level.	It	acts	as	a	primary	node-
agent.

kube-proxy	or	Kubernetes	network	proxy	is	an	application	that	will	manage	services
inside	the	Kubernetes	nodes.	This	is	also	responsible	for	providing	a	kind	of	virtual	IP	for
the	application	running	in	the	nodes.

Kubernetes	pods
Kubernetes	pods	are	a	group	of	containers	that	are	logically	tightly	coupled	with	each
other	and	running	inside	the	same	Kubernetes	nodes.	The	containers	that	are	part	of	the
same	pods	share	resources	like	storage,	networking,	and	so	on.	The	following	represents	a
pod:

apiVersion:	v1

kind:	Pod

metadata:

		name:	backend-app

		labels:

				app:	backend-app

				version:	v1

				role=backend

spec:

		containers:

		-	name:	javaapp

				image:	kingston/javaapp

				ports:

				-	containerPort:	443

				volumeMounts:

				-	mountPath:	/volumes/logs

						name:	logs

		-	name:	logapp

				image:	kingston/logapp:v1.1.3

				ports:

				-	containerPort:	9999

				volumeMounts:

				-	mountPath:	/logs

						name:	logs

		-	name:	monitor

				image:	kingston/monitor:v1.5.6

				ports:

				-	containerPort:	1234

Kubernetes	service
Kubernetes	service	is	a	group	of	pods	that	is	running	inside	the	cluster.	Services	provide
the	vital	features	that	are	required	for	any	kind	of	pods	in	the	cluster	such	as	load-
balancing,	application	service	discovery,	easy	deployment,	and	so	on.	A	service	is
described	in	JSON	representation	as	follows:

{

				"kind":	"Service",

				"apiVersion":	"v1",

				"metadata":	{

								"name":	"Web	Frontend	Service"

				},

				"spec":	{

								"selector":	{

												"app":	"webapp",

												"role":	"frontend"

								},

								"ports":	[

												{

																"name":	"http"

																"protocol":	"TCP",

																"port":	80,

																"targetPort":	80

												}

]

				}

}

Now,	we	have	seen	the	basics	of	Kubernetes.	Let	us	look	into	how	Kubernetes	can	be	used
as	an	orchestration	framework	for	CoreOS	docker/Rackt	containers.

CoreOS	and	Kubernetes
Kubernetes	can	also	be	used	to	provide	advanced	cluster-wide	orchestration	in	CoreOS
using	an	etcd	distributed	key-value	store.	As	Kubernetes	is	a	powerful	tool	for	container
orchestration,	which	provides	the	essential	features	of	a	typical	deployment	such	as
automatic	load-balancing,	service	discovery,	and	container	replication,	in	a	CoreOS
environment,	Kubernetes	can	be	used	as	a	container	orchestration	framework.

One	node	inside	the	CoreOS	cluster	can	act	as	a	Kubernetes	master,	wherein	you	can	run
the	apiserver	and	controller	manager.	All	other	nodes	in	the	CoreOS	cluster	can	act	as	a
minion,	wherein	you	can	install	and	run	kubelet	and	kube-proxy.

Kubernetes	can	also	be	used	to	provide	advanced	cluster-wide	orchestration	in	CoreOS
using	an	etcd	distributed	key-value	store.

Apache-Mesos
Apache-Mesos	is	a	container	cluster	manager	developed	for	very	large	clusters	involving
thousands	of	hosts.	Mesos	provides	a	distributed	kernel	that	is	running	across	different
nodes	in	the	cluster	and	provides	APIs	for	the	application	to	manage	resources	such	as
memory,	CPU,	disk,	and	scheduling	these	resources.

The	major	components	of	Mesos	are	as	follows:

Mesos	agent
Mesos	master
ZooKeeper
Mesos	frameworks

Mesos	component	overview

Mesos	master
The	Mesos	master	daemon	runs	in	the	master	node	that	manages	all	the	slave	nodes	or
agents	and	the	Mesos	frameworks.	The	master	takes	care	of	sharing	the	resource	to	the
frameworks	based	on	the	configured	scheduling	policy,	which	can	either	be	strict	priority
or	fair	sharing.

Mesos	agent
Mesos	agent	is	responsible	for	running	the	actual	tasks.	The	agent	reports	to	the	master
about	the	availability	of	the	resources,	which	the	master	agent	uses	to	allocate	a	particular
task	or	framework	to	be	ran	on	the	agent.

ZooKeeper
In	a	typical	Mesos	deployment,	there	will	be	more	than	one	master	available	to	avoid
single	point	of	failure.	In	these	cases,	ZooKeeper	is	used	to	elect	the	leader	among	the
available	masters.

Mesos	frameworks
Mesos	frameworks	are	the	ones	that	run	the	tasks	in	the	Mesos	agent.	The	framework
consists	of	two	components:	a	scheduler	that	registers	with	the	master	and	an	executor	that
executes	the	tasks	in	the	slave	node.	The	master	determines	the	number	of	resources	to	be
allocated	for	the	framework	and	allocates	it	to	the	framework.	The	scheduler	picks	the
resource	offered	from	this	list.

Swarm
Swarm	is	a	native	orchestration	mechanism	provided	by	Docker.	Like	other	orchestration
mechanisms,	Swarm	also	consists	of	Swarm	master	and	Swarm	agent.

Swarm	master	takes	care	of	orchestrating	the	docker	container	to	different	Swarm	agents.
The	master	will	be	running	in	one	or	two	nodes	in	the	cluster	whereas	the	Swarm	agent
will	be	running	in	all	the	nodes	in	the	network.

Docker	data	volume	management
One	of	the	main	aspects	of	the	container	that	we	haven’t	discussed	until	now	is	the
container’s	data	volume	management.	In	this	section,	we	are	going	to	see	some	basic
concepts	of	container	data	volume	management,	some	of	the	major	problems	in	data
volume	management,	and	their	solutions.

As	you	may	be	aware,	the	docker	container	provides	two	different	ways	of	managing	the
data	volumes	as:

Data	volumes
Data	volume	containers

The	preceding	two	mechanisms	provide	various	ways	for	storing	the	data	in	a	persistent
volume,	a	way	to	mount	a	host	directory	as	a	data	volume,	a	way	to	mount	a	host	file	as	a
data	volume,	and	so	on.	This	works	well	until	the	containers	are	tied	to	a	particular
node/server	in	the	cluster.

Docker	data	volume	management

When	the	container	is	moving	from	one	server	to	another	server,	the	data	volume	should
also	be	moved.	Typically,	the	data	volume	won’t	be	moved	when	the	container	is	moved
from	one	node	to	another.	This	is	because	the	docker/orchestration	layer	manages	the
containers	and	data	volume	separately.

Here	comes	the	necessity	of	managing	these	two	entities	together.	Flocker	provides	a	way
of	managing	both	the	docker	container	and	docker	volume	together.

Flocker	can	be	used	along	with	container	orchestration	mechanisms	such	as	Kubernetes
and	Mesos.	Work	has	been	going	on	to	integrate	Flocker	with	CoreOS,	though	some	non-
production-ready	deployments	are	already	available	with	CoreOS.

Introduction	to	Flocker
Flocker	is	an	open	source	container	data	volume	manager	to	manage	data	volumes.	In
docker,	a	data	volume	is	tied	to	a	single	server.	However,	in	Flocker,	the	data	volume,
which	is	also	called	a	dataset,	is	portable	and	hence	can	be	used	with	any	server	in	the
cluster.	Flocker	manages	the	docker	container	along	with	the	data	volumes.	Hence,	when	a
container	is	moved	from	one	server	to	another	server	in	the	cluster,	the	corresponding	data
volume	will	also	be	moved.

Flocker	cluster	architecture

The	Flocker	cluster	architecture	consists	of	the	following	components/services:

Flocker	control	services
Flocker	agents
Flocker	plugin	for	Docker

Flocker	control	services
In	Kubernetes,	we	have	Kubernetes	master,	and	similarly	the	Flocker	control	service	acts
as	a	master	and	is	installed	on	a	single	node	in	the	cluster.	It	exposes	the	REST	API	to
interface	with	an	external	application.	This	is	the	brain	of	Flocker	and	enables	the	user	to
monitor	the	state	of	the	cluster.

Flocker	agents

Flocker	agents	receive	the	commands	from	control	services	and	make	sure	that	the	state
of	the	Flocker	agent	matches	with	the	desired	state.	When	the	local	state	is	not	matching
the	desired	state,	it	calculates	the	actions	necessary	to	make	the	local	state	match	the
desired	configuration.

Flocker	plugin	for	Docker
Docker’s	Flocker	plugin	deploys	a	container	along	with	the	data	volume	without
worrying	about	which	server	in	the	cluster	the	data	volume	is	placed.	Whenever	the
container	is	moved	from	one	server	to	another,	the	plugin	takes	care	of	moving	the	data
volume	too.	This	makes	sure	that	the	data	volume	is	running	in	any	one	node	in	the
Flocker	cluster.

Open	Container	Project
As	the	different	container	technologies	are	being	developed,	there	is	a	necessity	of	having
a	standard	container	format	in	order	to	provide	interoperability	and	define	the	standard	for
the	containers.	In	order	to	achieve	this,	the	CoreOS	team	started	working	on	a	container
standardization	mechanism	called	App	Container	to	define	the	standard	container	image
format,	runtime	environment,	and	discovery	protocol,	to	work	toward	the	goal	of	a
standard,	portable	shipping	container	for	applications.

Meanwhile,	the	Open	Container	Project	(OCP)	was	formed	by	a	large	group	of	industry
leaders	to	define	the	standard.	The	Open	Container	Project	is	hosted	under	Linux
Foundation.	CoreOS	App	Container	also	contributes	to	OCP	and	the	latest	specification	of
the	OCP	project	can	be	found	at	the	following	link:
https://github.com/opencontainers/specs

https://github.com/opencontainers/specs

Summary
As	CoreOS	is	a	young	and	very	promising	operating	system,	a	lot	of	developments	are
happening	on	daily	basis.	One	of	the	major	milestones	of	CoreOS	in	the	recent	past	was
that	Google	and	CoreOS	jointly	announced	a	new	project	called	Tectonic	to	offer	IT
infrastructure,	which	is	completely	container-based	leveraging	both	CoreOS	and
Kubernetes.	Tectonic	is	a	commercial	Kubernetes	platform	that	combines	the	CoreOS
stack	with	Kubernetes	to	bring	a	Google-style	infrastructure	to	any	cloud.	Companies	such
as	Rackspace,	Salesforce,	MemSQL,	Atlassian,	and	Pivotal’s	Cloud	Foundry	have	already
deployed	CoreOS.	The	future	of	CoreOS	looks	very	bright	as	CoreOS	is	aiming	to	build
next-generation	IT	infrastructure	without	increasing	the	complexity.	As	security	is	one	of
the	major	concerns	in	current	IT	infrastructure,	one	of	the	major	goals	of	CoreOS	is	to
enable	the	companies	to	run	their	applications	securely	and	reliably	in	any	environment,
bringing	a	promising	future	for	CoreOS.

Index
A

Apache	Mesos
about	/	Apache-Mesos
components	/	Apache-Mesos
Mesos	master	/	Mesos	master
Mesos	agent	/	Mesos	agent
ZooKeeper	/	ZooKeeper
Mesos	frameworks	/	Mesos	frameworks

architectural	overview
about	/	Architectural	overview
engine	/	Engine
agent	/	Agent

B
backend	service	nodes

services,	running	/	Mechanism	for	service	discovery

C
cgroups

managing	/	cgroups
chroot

about	/	Chroot
chroot	jail

about	/	Chroot
cloud	config	files

about	/	Cloud-config
cloud	config	files,	Vagrant

coreos	key	/	Cloud-config
ssh_authorized_keys	parameter	/	Cloud-config
hostname	/	Cloud-config
users	/	Cloud-config
write_files	/	Cloud-config
manage_etc_hosts	/	Cloud-config

cluster
setting	up	/	CoreOS	clustering

clustering
defining	/	Introduction	to	clustering
benefits	/	The	why	and	the	benefits	of	clustering
advantages	/	The	why	and	the	benefits	of	clustering

competitive	container	orchestration	mechanism
about	/	Competitive	container	orchestration	mechanism
Kubernetes	/	Kubernetes
CoreOS	and	Kubernetes	/	CoreOS	and	Kubernetes

config.rb	configuration	file
about	/	The	config.rb	configuration	file
$num_instances	parameter	/	The	config.rb	configuration	file
$shared_folders	parameter	/	The	config.rb	configuration	file
$forwarded_ports	parameter	/	The	config.rb	configuration	file
$vm_gui	parameter	/	The	config.rb	configuration	file
$vm_memory	parameter	/	The	config.rb	configuration	file
$vm_cpus	parameter	/	The	config.rb	configuration	file
$instance_name_prefix	parameter	/	The	config.rb	configuration	file
$update_channel	parameter	/	The	config.rb	configuration	file

configuration
in	CoreOS	Instance	1	/	Configuration	in	CoreOS	Instance	1,	Configuration	in
CoreOS	Instance	1
during	instantiation,	of	CoreOS	node	in	cluster	/	Configurations	during	the
instantiation	of	a	CoreOS	node	1	in	a	cluster,	Configurations	during	the
instantiation	of	a	CoreOS	node	in	a	cluster,	Configurations	during	the
instantiation	of	a	CoreOS	node	in	a	cluster

during	creation	of	container,	for	CoreOS	Instance	1	/	Configurations	during	the
creation	of	a	container	for	CoreOS	Instance	1
in	CoreOS	Instance	2	/	Configuration	in	CoreOS	Instance	2,	Configuration	in
CoreOS	Instance	2
during	instantiation,	of	CoreOS	node	2	in	cluster	/	Configurations	during	the
instantiation	of	CoreOS	node	2	in	a	cluster
during	creation	of	container,	for	CoreOS	Instance	2	/	Configurations	during	the
creation	of	a	container	for	CoreOS	Instance	2
during	creation	of	first	container,	for	tenant	/	Configurations	during	the	creation
of	the	first	container	for	a	tenant,	Configurations	during	the	creation	of	the	first
container	for	a	tenant
during	creation	of	subsequent	containers,	for	tenant	/	Configurations	during	the
creation	of	subsequent	containers	for	a	tenant	,	Configurations	during	the
creation	of	subsequent	containers	for	a	tenant

Container-Container	communication
about	/	Container–Container	communication
Docker0	bridge	/	Docker0	bridge	and	veth	pair
veth	pair	/	Docker0	bridge	and	veth	pair
Link,	using	/	Using	Link
common	network	stack,	using	/	Using	common	network	stack

Container-Container	communication,	in	different	CoreOS	nodes
about	/	Container	–	Container	communication	in	different	CoreOS	nodes

container	management
about	/	Container	management
Linux	Container	(LXC)	/	Linux	Container
Docker	/	Docker
Docker,	versus	LXC	/	Docker	versus	LXC
Rocket	/	Rocket

containers,	Docker
about	/	Container
volumes	/	Volumes

container	security
about	/	Container	security

Container	to	CoreOS	host	communication
about	/	Container	to	CoreOS	host	communication
host	networking	/	Host	networking
docker0	bridge	/	docker0	bridge

Container	to	CoreOS	outside	world	communication
about	/	Container	to	CoreOS	outside	world	communication
host	networking	/	Host	networking
port	mapping	/	Port	mapping

CoreOS
defining	/	Introduction	to	CoreOS
about	/	Introduction	to	CoreOS

versus	Linux	distributions	/	CoreOS	versus	other	Linux	distributions
and	OpenStack	/	CoreOS	and	OpenStack
setting	up,	on	VMware	vSphere	/	Setting	up	CoreOS	on	VMware	vSphere
using	/	Introduction	to	service	constraints
Flannel,	integrating	with	/	Integrating	Flannel	with	CoreOS

CoreOS	clustering
about	/	CoreOS	clustering
cluster	discovery	/	Cluster	discovery
static	discovery	/	Static	discovery
etcd	discovery	/	etcd	discovery
DNS	discovery	/	DNS	discovery
service	unit	files	/	Service	unit	files
service,	starting	/	Starting	and	stopping	a	service
service,	stopping	/	Starting	and	stopping	a	service
architectural	overview	/	Architectural	overview
fleetctl	/	fleetctl
unit	file	options,	for	fleet	/	Unit	file	options	for	fleet
service	unit,	instantiating	in	cluster	/	Instantiating	the	service	unit	in	the	cluster
recovery,	from	node	failure	/	Recovering	from	node	failure

CoreOS	cluster	management
about	/	CoreOS	cluster	management:
systemd	/	systemd
fleet	/	fleet

CoreOS	high-level	architecture
about	/	CoreOS	high-level	architecture
service	discovery	/	Service	discovery
container	management	/	Container	management
CoreOS	cluster	management	/	CoreOS	cluster	management:

CoreOS	image
reference	/	Installing	VMware	vSphere	Client

coreos	key
about	/	Cloud-config
etc2	key	/	Cloud-config
fleet	parameter	/	Cloud-config
flannel	/	Cloud-config
locksmith	/	Cloud-config
update	/	Cloud-config
Units	/	Cloud-config

CoreUpdate
defining	/	Update	and	patches	–	CoreUpdate

CoreUpdate	program
about	/	CoreOS	versus	other	Linux	distributions

cURL
used,	for	operations	/	Operations	using	cURL

about	/	Operations	using	cURL
protocols,	defining	/	Operations	using	cURL
used,	for	etcd	read	/	etcd	read	using	curl
used,	for	etcd	write	/	etcd	write	using	curl
used,	for	etcd	watch	/	etcd	watch	using	curl
references	/	etcd	watch	using	curl
example	/	Example	using	curl

D
Dex

defining	/	Dex
URL	/	Dex

DNS	discovery
about	/	DNS	discovery
systemd	/	systemd

Docker
about	/	Docker,	Introduction	to	Docker
image	/	Image
container	/	Container
links	/	Links
installing	/	Installing	Docker
sample	Docker	image,	creating	with	Docker	File	/	Creating	a	sample	Docker
image	using	Docker	File

Docker0	bridge
about	/	Docker0	bridge	and	veth	pair

Docker	data	volume	management
defining	/	Docker	data	volume	management
Flocker	/	Introduction	to	Flocker

Docker	File
about	/	Docker	File

docker	hub
about	/	Image

Docker	image
pulling,	from	Docker	Hub	/	Pulling	the	Docker	image	from	Docker	Hub
running	/	Running	Docker	Image

Docker	Link
about	/	Using	Link

Docker	networking
defining	/	Introduction	to	Docker	networking
Container-Container	communication	/	Container–Container	communication
Container	to	CoreOS	host	communication	/	Container	to	CoreOS	host
communication
Container	to	CoreOS	outside	world	communication	/	Container	to	CoreOS
outside	world	communication
Container-Container	communication,	in	different	CoreOS	nodes	/	Container	–
Container	communication	in	different	CoreOS	nodes

E
etc2	configuration	parameters

discovery	/	Cloud-config
initial-advertise-peer-urls	/	Cloud-config
advertise-client-urls	/	Cloud-config
listen-client-urls	/	Cloud-config
listen-peer-urls	/	Cloud-config

etcd	/	etcd
etcdctl

used,	for	operations	/	Operations	using	etcdctl
about	/	Operations	using	etcdctl
used,	for	etcd	write	/	etcd	write	using	etcdctl
used,	for	etcd	read	/	etcd	read	using	etcdctl
used,	for	etcd	watch	/	etcd	watch	using	etcdctl
example,	of	etcd	/	Example	of	etcd	using	etcdctl

etcd	discovery
URL	/	etcd	discovery

F
fast	patch

about	/	CoreOS	versus	other	Linux	distributions
Flannel/Rudder

defining	/	Introduction	to	Flannel/Rudder
installing	/	Installation
Weave,	setting	up	/	Setting	up	Weave
container	startup	/	Container	startup
integrating,	with	CoreOS	/	Integrating	Flannel	with	CoreOS

fleet
about	/	fleet

/	fleet
fleet	agent

about	/	Architectural	overview
fleetctl

about	/	fleetctl
commands	/	fleetctl
standard	(local)	and	global	units	/	Standard	(local)	and	global	units

fleet	engine
about	/	Architectural	overview

Flocker
defining	/	Introduction	to	Flocker
control	services	/	Flocker	control	services
agents	/	Flocker	agents
plugin,	for	Docker	/	Flocker	plugin	for	Docker

Flocker	control	service
about	/	Flocker	control	services

frontend	service	nodes
services,	running	/	Mechanism	for	service	discovery

G
GIT

installing	/	Installing	GIT

H
HAProxy

and	service	discovery	/	HAProxy	and	service	discovery
High	availability

defining	/	High	availability

K
Kubernetes

about	/	Kubernetes
components	/	Kubernetes
master	/	Kubernetes	master
nodes	/	Kubernetes	nodes
pods	/	Kubernetes	pods
service	/	Kubernetes	service
and	CoreOS	/	CoreOS	and	Kubernetes

Kubernetes	master	/	Kubernetes	master
Kubernetes	nodes	/	Kubernetes	nodes
Kubernetes	pods	/	Kubernetes	pods
Kubernetes	service	/	Kubernetes	service

L
Linux	Container	(LXC)

about	/	Linux	Container
cgroups	/	cgroups
namespace	/	Namespace
chroot	/	Chroot

looping	issue
defining	/	Looping	issue

M
member	nodes

frontend	service	nodes	/	Mechanism	for	service	discovery
backend	service	nodes	/	Mechanism	for	service	discovery

metadata
used,	for	defining	predefined	constraints	/	Predefined	constraints	using	metadata

micro-services
advantages	/	Docker

N
namespaces

about	/	Container	security
process	namespace	/	Container	security
network	namespace	/	Container	security
resource	namespace	/	Container	security

Network	Function	Virtualization	(NFV)
about	/	Introduction	to	network	virtualization

Network	Namespace
about	/	Namespace

network	virtualization
defining	/	Introduction	to	network	virtualization
OpenFlow	support,	in	OVS	/	OpenFlow	support	in	OVS

node-level	affinity
defining	/	Node-level	affinity

O
(OpenID	Connect	(OIDC)	Core	spec)

about	/	Dex
Open	Container	Project	(OCP)

about	/	Open	Container	Project
URL	/	Open	Container	Project

OpenFlow
about	/	OpenFlow	support	in	OVS

OpenFlow	Channel	/	OpenFlow	channel
OpenFlow	Controller	/	OpenFlow	controller
OpenFlow	support,	in	OVS

OpenFlow	Switch	/	OpenFlow	switch
OpenFlow	Controller	/	OpenFlow	controller
OpenFlow	Channel	/	OpenFlow	channel

OpenFlow	Switch	/	OpenFlow	switch
OpenStack

and	CoreOS	/	CoreOS	and	OpenStack
about	/	CoreOS	and	OpenStack

OpenVSwitch	(OVS)
defining	/	Introduction	to	OVS
architectural	overview	/	OVS	architectural	overview
components	/	OVS	architectural	overview
advantages,	in	CoreOS	/	Advantages	of	using	OVS	in	CoreOS
running,	in	CoreOS	/	Running	OVS	in	CoreOS

operations,	of	etcd
defining	/	Operations	of	etcd

overlay
defining	/	Introduction	to	overlay	and	underlay	networks

overlay	network
benefits	/	Introduction	to	overlay	and	underlay	networks

OVS	(coreos-ovs)
URL	/	Running	OVS	in	CoreOS

OVS	(OpenVSwitch)
about	/	Container	–	Container	communication	in	different	CoreOS	nodes

P
parameters,	fleet	configuration

etcd_servers	/	Cloud-config
public_ip	/	Cloud-config

parameters,	unit	configuration
name	/	Cloud-config
command	/	Cloud-config
enable	/	Cloud-config
drop-ins	/	Cloud-config

pod
about	/	Kubernetes

predefined	constraints
defining,	metadata	used	/	Predefined	constraints	using	metadata

Process	Namespace
about	/	Namespace

R
root	process

about	/	Container	security

S
service

starting	/	Starting	and	stopping	a	service
stopping	/	Starting	and	stopping	a	service
fleet	/	fleet

service	chaining
defining	/	Introduction	to	and	necessity	of	service	chaining
need	for	/	Introduction	to	and	necessity	of	service	chaining

service	constraints
defining	/	Introduction	to	service	constraints

service	discovery
mechanism	/	Mechanism	for	service	discovery
operations,	of	etcd	/	Operations	of	etcd
and	HAProxy	/	HAProxy	and	service	discovery

service	discovery,	CoreOS	high-level	architecture
about	/	Service	discovery
etcd	/	etcd

service	level	affinity/anti-affinity
defining	/	Service	level	affinity/anti-affinity

Software	Defined	Networking	(SDN)
about	/	Introduction	to	network	virtualization

solution,	OpenVSwitch	(OVS)
docker0	bridge,	attaching	to	OVS	/	Attaching	docker0	bridge	to	OVS
veth	interface,	attaching	to	/	Attaching	container’s	veth	interface	to	OVS

Spanning	Tree	Protocol	(STP)
about	/	Looping	issue
commands	/	Looping	issue

Swarm
defining	/	Swarm

Swarm	agent
about	/	Swarm

Swarm	master
about	/	Swarm

sysdig
defining	/	sysdig

T
target

about	/	systemd

U
underlay	networks

defining	/	Introduction	to	overlay	and	underlay	networks
Union	File	System	/	Image
unit

about	/	systemd
unit	file

about	/	systemd

V
Vagrant

about	/	Introduction	to	Vagrant
installing	/	Installing	Vagrant
URL	/	Installing	Vagrant
configuration	files	/	Vagrant	configuration	files
cloud	config	files	/	Cloud-config
config.rb	configuration	file	/	The	config.rb	configuration	file
for	starting	CoreOS	VM	/	Starting	a	CoreOS	VM	using	Vagrant

VirtualBox
installing	/	Installing	VirtualBox

Virtual	Ethernet	Device
about	/	Docker0	bridge	and	veth	pair

VMware	vSphere	Client
installing	/	Installing	VMware	vSphere	Client

W
Weave

defining	/	Introduction	to	Weave
about	/	Introduction	to	Weave

weaveDNS
about	/	Introduction	to	Weave

	Learning CoreOS
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. CoreOS, Yet Another Linux Distro?
	Introduction to CoreOS
	CoreOS versus other Linux distributions
	CoreOS high-level architecture
	Service discovery
	etcd
	Container management
	Linux Container
	cgroups
	Namespace
	Chroot
	Docker
	Docker versus LXC
	Rocket
	CoreOS cluster management:
	systemd
	fleet
	CoreOS and OpenStack
	Summary
	2. Setting Up Your CoreOS Environment
	Installing GIT
	Installing VirtualBox
	Introduction to Vagrant
	Installing Vagrant
	Vagrant configuration files
	Cloud-config
	The config.rb configuration file
	Starting a CoreOS VM using Vagrant
	Setting up CoreOS on VMware vSphere
	Installing VMware vSphere Client
	Introduction to Docker
	Image
	Container
	Volumes
	Links
	Installing Docker
	Creating a sample Docker image using Docker File
	Docker File
	Pulling the Docker image from Docker Hub
	Running Docker Image
	Summary
	3. Creating Your CoreOS Cluster and Managing the Cluster
	Introduction to clustering
	The why and the benefits of clustering
	CoreOS clustering
	Cluster discovery
	Static discovery
	etcd discovery
	DNS discovery
	systemd
	Service unit files
	Starting and stopping a service
	fleet
	Architectural overview
	Engine
	Agent
	fleetctl
	Standard (local) and global units
	Unit file options for fleet
	Instantiating the service unit in the cluster
	Recovering from node failure
	Summary
	4. Managing Services with User-Defined Constraints
	Introduction to service constraints
	Predefined constraints using metadata
	Service level affinity/anti-affinity
	Node-level affinity
	High availability
	Summary
	5. Discovering Services Running in a Cluster
	Introduction and necessity of service discovery
	Mechanism for service discovery
	Operations of etcd
	Operations using etcdctl
	etcd write using etcdctl
	etcd read using etcdctl
	etcd watch using etcdctl
	Example of etcd using etcdctl
	Operations using cURL
	etcd read using curl
	etcd write using curl
	etcd watch using curl
	Example using curl
	HAProxy and service discovery
	Summary
	6. Service Chaining and Networking Across Services
	Introduction to and necessity of service chaining
	Introduction to Docker networking
	Container–Container communication
	Docker0 bridge and veth pair
	Using Link
	Using common network stack
	Container to CoreOS host communication
	Host networking
	docker0 bridge
	Container to CoreOS outside world communication
	Host networking
	Port mapping
	Container – Container communication in different CoreOS nodes
	Introduction to Weave
	Introduction to Flannel/Rudder
	Installation
	Setting up Weave
	Container startup
	Integrating Flannel with CoreOS
	Summary
	7. Creating a Virtual Tenant Network and Service Chaining Using OVS
	Introduction to OVS
	OVS architectural overview
	Advantages of using OVS in CoreOS
	Introduction to overlay and underlay networks
	Introduction to network virtualization
	OpenFlow support in OVS
	OpenFlow switch
	OpenFlow controller
	OpenFlow channel
	Running OVS in CoreOS
	Attaching docker0 bridge to OVS
	Configuration in CoreOS Instance 1
	Configurations during the instantiation of a CoreOS node 1 in a cluster
	Configurations during the creation of a container for CoreOS Instance 1
	Configuration in CoreOS Instance 2
	Configurations during the instantiation of CoreOS node 2 in a cluster
	Configurations during the creation of a container for CoreOS Instance 2
	Attaching container's veth interface to OVS
	Configuration in CoreOS Instance 1
	Configurations during the instantiation of a CoreOS node in a cluster
	Configurations during the creation of the first container for a tenant
	Configurations during the creation of subsequent containers for a tenant
	Configuration in CoreOS Instance 2
	Configurations during the instantiation of a CoreOS node in a cluster
	Configurations during the creation of the first container for a tenant
	Configurations during the creation of subsequent containers for a tenant
	Looping issue
	Summary
	8. What Next?
	Container security
	Update and patches – CoreUpdate
	Dex
	sysdig
	Competitive container orchestration mechanism
	Kubernetes
	Kubernetes master
	Kubernetes nodes
	Kubernetes pods
	Kubernetes service
	CoreOS and Kubernetes
	Apache-Mesos
	Mesos master
	Mesos agent
	ZooKeeper
	Mesos frameworks
	Swarm
	Docker data volume management
	Introduction to Flocker
	Flocker control services
	Flocker agents
	Flocker plugin for Docker
	Open Container Project
	Summary
	Index

