

Mastering	Docker

Table	of	Contents

Mastering	Docker

Credits

About	the	Author

About	the	Reviewer

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Errata

Piracy

Questions

1.	Docker	Review

Understanding	Docker

Difference	between	Docker	and	typical	VMs

Dockerfile

Docker	networking/linking

Docker	installers/installation

Types	of	installers

Controlling	the	Docker	VM	(boot2docker)

Docker	Machine	–	the	new	boot2docker

Kitematic

The	Docker	commands

The	Docker	images

Searching	for	the	Docker	images

Manipulating	the	Docker	images

Stopping	containers

Summary

2.	Up	and	Running

Dockerfile

A	short	review	of	Dockerfile

Reviewing	Dockerfile	in	depth

LABEL

ADD	or	COPY

ENTRYPOINT

USER

WORKDIR

ONBUILD

Dockerfile	–	best	practices

Docker	build

The	docker	build	command

.dockerignore

Building	images	using	Dockerfile

Building	a	base	image	using	an	existing	image

Building	your	own	containers

Using	tar

Using	scratch

Docker	Hub

The	Docker	Hub	location

Public	repositories

Private	repositories

Docker	Hub	Enterprise

Environmental	variables

Using	environmental	variables	in	your	Dockerfile

Creating	a	MySQL	username,	database,	and	setting	permissions

Adding	a	file	to	the	system

Docker	volumes

Data	volumes

Data	volume	containers

Docker	volume	backups

Summary

3.	Container	Image	Storage

Docker	Hub

Dashboard

Explore	the	repositories	page

Organizations

The	Create	menu

Settings

The	Stars	page

Docker	Hub	Enterprise

Comparing	Docker	Hub	to	Docker	Subscription

Docker	Subscription	for	server

Docker	Subscription	for	cloud

Docker	Registry

An	overview	of	Docker	Registry

Docker	Registry	versus	Docker	Hub

Automated	builds

Setting	up	your	code

Setting	up	Docker	Hub

Putting	all	the	pieces	together

Creating	your	own	registry

Summary

4.	Managing	Containers

The	Docker	commands

docker	attach

docker	diff

docker	exec

docker	history

docker	inspect

docker	logs

docker	ps

docker	stats

docker	top

Using	your	existing	management	suite

Puppet

Chef

Ansible

SaltStack

Docker	Swarm

What	is	Docker	Swarm?

What	can	Docker	Swarm	do?

Summary

5.	Docker	Security

Containers	versus	VMs

The	good

The	not	so	bad

What	to	look	out	for

The	Docker	commands

docker	run

docker	diff

Docker	security	–	best	practices

Docker	–	best	practices

CIS	guide	–	host	configuration

CIS	guide	–	Docker	daemon	configuration

CIS	guide	–	Docker	daemon	configuration	files

CIS	guide	–	container	images/runtime

CIS	guide	–	Docker	security	operations

The	Docker	bench	security	application

Running	the	tool

Understanding	the	output

Summary

6.	Docker	Machine

Installation

Using	Docker	Machine

Local	VM

Cloud	environment

Docker	Machine	commands

active

config

env

inspect

ip

kill

ls

restart

rm

scp

ssh

start

stop

upgrade

url

TLS

Summary

7.	Docker	Compose

Installing	Docker	Compose

Installing	on	Linux

Installing	on	OS	X	and	Windows

Docker	Compose	YAML	file

The	Docker	Compose	usage

The	Docker	Compose	options

The	Docker	Compose	commands

build

kill

logs

port

ps

pull

restart

rm

run

scale

start

stop

up

version

Docker	Compose	–	examples

image

build

The	last	example

Summary

8.	Docker	Swarm

Docker	Swarm	install

Installation

Docker	Swarm	components

Swarm

Swarm	manager

Swarm	host

Docker	Swarm	usage

Creating	a	cluster

Joining	nodes

Listing	nodes

Managing	a	cluster

The	Docker	Swarm	commands

Options

list

create

manage

The	Docker	Swarm	topics

Discovery	services

Advanced	scheduling

The	Swarm	API

The	Swarm	cluster	example

Summary

9.	Docker	in	Production

Where	to	start?

Setting	up	hosts

Setting	up	nodes

Host	management

Host	monitoring

Docker	Swarm

Swarm	manager	failover

Container	management

Container	image	storage

Image	usage

The	Docker	commands	and	GUIs

Container	monitoring

Automatic	restarts

Rolling	updates

Docker	Compose	usage

Developer	environments

Scaling	environments

Extending	to	external	platform(s)

Heroku

Overall	security

Security	best	practices

DockerUI

ImageLayers

Summary

10.	Shipyard

Up	and	running

Containers

Deploying	a	container

IMAGES

Pulling	an	image

NODES

REGISTRIES

ACCOUNTS

EVENTS

Back	to	CONTAINERS

Summary

11.	Panamax

Installing	Panamax

An	example

Applications

Sources

Images

Registries

Remote	Deployment	Targets

Back	to	Applications

Adding	a	service

Configuring	the	application

Service	links

Environmental	variables

Ports

Volumes

Docker	Run	Command

Summary

12.	Tutum

Getting	started

The	tutorial	page

The	Service	dashboard

The	Nodes	section

Cloud	Providers

Back	to	Nodes

Back	to	the	Services	section

Containers

Endpoints

Logs

Monitoring

Triggers

Timeline

Configuration

The	Repositories	tab

Stacks

Summary

13.	Advanced	Docker

Scaling	Docker

Using	discovery	services

Consul

etcd

Debugging	or	troubleshooting	Docker

Docker	commands

GUI	applications

Resources

Common	issues	and	solutions

Docker	images

Docker	volumes

Using	resources

Various	Docker	APIs

docker.io	accounts	API

Remote	API

Keeping	your	containers	in	check

Kubernetes

Chef

Other	solutions

Contributing	to	Docker

Contributing	to	the	code

Contributing	to	support

Other	contributions

Advanced	Docker	networking

Installation

Creating	your	own	network

Networking	plugins

Summary

Index

Mastering	Docker

Mastering	Docker
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	December	2015

Production	reference:	1111215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78528-703-9

www.packtpub.com

http://www.packtpub.com

Credits
Author

Scott	Gallagher

Reviewer

Tommaso	Patrizi

Commissioning	Editor

Edward	Gordon

Acquisition	Editor

Reshma	Raman

Content	Development	Editor

Arshiya	Ayaz	Umer

Technical	Editor

Ankita	Thakur

Copy	Editor

Akshata	Lobo

Project	Coordinator

Sanjeet	Rao

Proofreader

Safis	Editing

Indexer

Hemangini	Bari

Graphics

Abhinash	Sahu

Production	Coordinator

Arvindkumar	Gupta

Cover	Work

Arvindkumar	Gupta

About	the	Author
Scott	Gallagher	has	been	fascinated	with	technology	since	he	played	Oregon	Trail	in
elementary	school.	His	love	continued	through	middle	school	as	he	worked	on	more
Apple	IIe	computers.	In	high	school,	he	learned	how	to	build	computers	and	program	in
BASIC!	His	college	years	were	all	about	server	technologies	such	as	Novell,	Microsoft,
and	Red	Hat.	After	college,	he	continued	to	work	on	Novell,	all	while	maintaining	an
interest	in	all	the	technologies.	He	then	moved	into	managing	Microsoft	environments	and
eventually	into	what	he	was	most	passionate	about—Linux	environments.	Now,	his	focus
is	around	Docker	and	cloud	environments.

I	would	like	to	thank	my	family	for	their	support	not	only	while	I	worked	on	this	book,	but
throughout	my	life	and	career.	A	special	thank	you	goes	to	my	wife,	who	is	my	soul	mate,
the	love	of	my	life,	the	most	important	person	in	my	life,	and	the	reason	I	push	myself	to
be	the	best	I	can	be	each	day.	I	would	also	like	to	thank	my	kids,	who	are	the	most
amazing	thing	in	this	world;	I	truly	am	blessed	to	be	able	to	watch	them	grow	each	day.
And	lastly,	I	want	to	thank	my	parents,	who	helped	me	become	the	person	I	am	today.

About	the	Reviewer
Tommaso	Patrizi	is	a	Docker	fan.	He	has	been	using	the	technology	since	its	first
releases,	having	machines	in	production	with	Docker	since	its	version	0.6.0.	He	planned
and	deployed	a	basic	private	PaaS	with	Docker	and	Open	vSwitch.	He	is	an	enthusiastic
Ruby	and	Ruby	on	Rails	coder.	He	is	striving	for	simplicity	as	the	perfect	synthesis
between	code	effectiveness,	maintainability,	and	beauty.	He	is	actually	learning	some
functional	tricks	through	Haskell.

Tommaso	is	a	system	administrator	with	broad	OS	(Microsoft	Windows,	Linux,	and	OS
X),	database	(SQL	Server,	MySQL,	PostgreSQL	and	PostGIS,	and	OrientDB),	and
virtualization	and	cloud	(vSphere,	VirtualBox,	and	Docker)	knowledge.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
So	hot	off	the	presses,	the	latest	buzz	that	has	been	on	the	tip	of	everyone’s	tongues	and
the	topic	of	almost	any	conversation	that	includes	containers	these	days	is	Docker!	With
this	book,	you	will	go	from	just	being	the	person	in	the	office	who	hears	that	buzz	to	the
one	who	is	tooting	it	around	every	day.	Your	fellow	office	workers	will	be	flocking	to	you
for	anything	related	to	Docker	and	shower	you	with	gifts—well,	maybe	not	gifts,	but
definitely	tapping	your	brain	for	knowledge!

What	this	book	covers
Chapter	1,	Docker	Review,	will	just	be	a	review	of	Docker.	If	you	are	new	to	Docker,	then
this	chapter	will	get	you	going	for	the	future	chapters.	This	chapter	will	cover	the	items
you	would	see	in	the	Docker	command	line	as	well	as	the	purpose	of	Dockerfile	and	the
contents	that	are	contained	inside	it.

Chapter	2,	Up	and	Running,	will	explain	how	to	go	from	just	reading	the	documentation
and	looking	at	the	help	contents	of	files	to	running	some	Docker	commands.	You	will	also
learn	how	to	create	or	build	your	own	base	containers,	which	will	be	the	basis	of	all	your
future	containers.	Learn	how	to	create	and	manage	Docker	volumes	and	how	to	pass
environmental	variables	during	the	build	process.

Chapter	3,	Container	Image	Storage,	will	show	the	locations	to	store	items	such	as	Docker
Hub	and	the	Docker	Hub	Enterprise.	What	are	the	differences	between	the	two.	When
should	you	use	one	over	the	other.	It	will	help	you	answer	these	questions.	Also,	you’ll
learn	how	to	set	up	automated	image	builds	based	off	the	code	you	have	stored	in	places
such	as	GitHub.	What	are	the	pieces	you	need	to	get	all	this	set	up	and	working.

Chapter	4,	Managing	Containers,	will	show	how	you	can	manage	all	the	containers	you
have	created	and	stored.	In	this	chapter,	the	focus	will	be	on	using	the	command	line.	So,
if	you	do	decide	to	use	a	GUI	application	at	a	later	time,	you	will	understand	what	is
happening	in	the	background	and	also	have	a	resource	to	fall	back	on	if	needed.

Chapter	5,	Docker	Security,	covers	security	that	has	unfortunately	become	the	main	focus
of	not	just	systems	administrators,	but	everyone	involved	in	projects	these	days.	What	are
the	benefits	of	using	containers	over	using	traditional	virtual	machines.	What	is	this	new
Docker	security	configuration	tool	that	you	can	use	to	help	you	assist	with	your	setup
environments.	What	should	you	be	looking	out	for?	Dive	in	and	let’s	take	a	look	at	it
together!

Chapter	6,	Docker	Machine,	talks	about	the	future	replacement	of	the	boot2docker
instance.	Docker	Machine	is	the	future	of	creating	your	Docker	Host	environments.	With
Docker	Machine,	you	can	create	the	hosts	of	almost	any	environment	from	your	local
command	line.	You	can	create	them	to	locally	test	in	VMware	Fusion	or	VirtualBox,	or
you	can	create	some	of	them	in	cloud	environments	such	as	AWS,	Azure,	DigitalOcean,
and	many	more.	Come,	learn	how	you	can	do	this!

Chapter	7,	Docker	Compose,	covers	one	of	the	most	popular	items	when	it	comes	to
Docker—Docker	Compose.	So,	what	can	you	do	with	this	magical	tool?	Docker	Compose
helps	eliminate	the	“well	it	works	just	fine	on	my	machine.”	With	Compose,	you	can	have
the	environments	set	up	with	all	the	resources	tied	together	as	you	want	them	and	hand
them	off	to	both	the	Dev	side	of	the	team	as	well	as	the	Ops	side.	If	it	works	for	one
person,	it	will	work	for	others	and	vice	versa.	If	something	doesn’t	work,	it	will	help	you
troubleshoot	by	replicating	the	issue	with	defined	steps.	You	will	learn	how	to	use
Compose	to	set	up	these	environments	as	well	as	the	file	structure	of	the	file	that	Compose
references.

Chapter	8,	Docker	Swarm,	is	all	about	how	you	can	cluster	your	containers	together.	With
Docker	Swarm,	you	can	accomplish	this	task.	You	will	learn	how	to	install	and	set	up
these	environments.	By	default,	Docker	Swarm	uses	HTTP	for	communication.	You	will
learn	how	to	set	it	up	to	use	TLS	for	secure	communication	between	all	your	cluster	nodes
and	Swarm	manager.

Chapter	9,	Docker	in	Production,	says	it’s	time	to	deploy	Docker	in	your	production
environment	now	that	you	have	all	the	tools	in	your	arsenal.	But	how	do	we	go	about
doing	this?	Let’s	take	a	look	at	the	first	step	on	how	to	do	this	as	well	as	monitor
everything	we	have	set	up	and	running.	You	will	learn	items	such	as	how	to	ensure
containers	restart	when	and	if	there	was	an	error.	Also,	you	will	learn	how	extend	to
external	platforms	such	as	Heroku.

Chapter	10,	Shipyard,	will	focus	on	one	of	the	three	GUI	applications	that	you	can	utilize
to	set	up	and	manage	your	Docker	containers	and	images.	We	will	do	a	complete
walkthrough,	from	installation	to	every	piece	of	the	Shipyard	UI.	You	will	be	able	to	see
the	benefits	of	using	such	a	GUI	to	help	manage	your	environment.

Chapter	11,	Panamax,	will	focus	on	one	of	the	three	GUI	applications	that	you	can	utilize
to	set	up	and	manage	your	Docker	containers	and	images.	We	will	do	a	complete
walkthrough,	from	installation	to	every	piece	of	the	Panamax	UI.	This	will	leave	you	with
the	ability	to	evaluate	which	GUI	is	right	for	your	needs.

Chapter	12,	Tutum,	will	focus	on	one	of	the	three	GUI	applications	that	you	can	utilize	to
set	up	and	manage	your	Docker	containers	and	images.	Tutum	is	the	latest	acquisition	by
Docker,	so	this	software	will	only	continue	to	evolve	and	become	more	baked	into	the
Docker	ecosystem.	We	will	do	a	complete	walkthrough,	from	installation	to	every	piece	of
the	Tutum	UI.

Chapter	13,	Advanced	Docker,	will	explain	some	advance	items	such	as:

Scaling	Docker:	We’ll	look	at	how	we	can	scale	our	environments.
Using	discovery	services:	We’ll	look	at	using	discovery	services	to	help	scale	our
environments.
Debugging/Troubleshooting	Docker:	We’ll	look	at	debugging	and	troubleshooting
Docker	issues	that	crop	up.
Common	issues	and	solutions:	We’ll	look	at	the	common	issues	that	are	faced	as
well	as	the	solutions	to	fix	them.
Various	Docker	APIs:	We’ll	look	at	the	Docker	APIs	that	are	out	there	and	how	to
tie	into	them	and	use	them	to	our	advantage.
Keeping	your	containers	in	check:	We’ll	look	at	how	we	can	keep	our	containers	in
check.	If	they	fall	out	of	check,	how	we	can	put	them	back	in	place.
Contributing	to	Docker:	We’ll	look	at	how	we	can	contribute	to	Docker.	If	we	can’t
contribute	to	the	code,	how	we	can	help	otherwise.
Advanced	Docker	networking:	We’ll	look	at	the	future	of	Docker	networking	and
what	is	coming	next	that	will	only	enhance	our	environment.

What	you	need	for	this	book
The	book	will	walk	you	through	the	installation	of	any	tool	that	you	need.	You	will	need	a
system	with	Windows,	Mac	OS,	or	Linux	installed;	preferably	the	latter	of	the	three,	as
well	as	an	Internet	connection.

Who	this	book	is	for
The	reader	at	the	start	of	the	book	should	be	an	experienced	Linux	developer	with	some
understanding	of	the	Linux	filesystems	as	well	as	the	concept	of	Linux	Container
Virtualization.	They	must	have	some	experience	developing	services	and	applications.
They	should	also	have	knowledge	of	the	fundamentals	of	Docker,	though	we	will	re-
establish	these	fundamentals	in	the	first	chapter	or	two	for	clarity.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“For
example,	in	an	Ubuntu-based	system,	if	you	want	to	install	the	Apache	package,	you
would	first	do	an	apt-get	update	followed	by	an	apt-get	install	-y	apache2.”

A	block	of	code	is	set	as	follows:

master:

image:

scottpgallagher/galeramaster

hostname:

master

ports:

				-	"3306:3306"

node1:

image:

scottpgallagher/galeranode

hostname:

				node1

links:

				-	master

node2:

image:

scottpgallagher/galeranode

hostname:

				node2

links:

				-	master

Any	command-line	input	or	output	is	written	as	follows:

$	docker	pull	tutum/ubuntu

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“You	can	search	for
prebuilt	images	on	the	Docker	Hub	and	click	on	the	CREATE	button	once	you	have
found	the	one	you	want	to	use	or	test.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Docker	Review
Welcome	to	the	Mastering	Docker	book!	The	first	chapter	will	cover	the	Docker	basics
that	you	should	already	have	a	pretty	good	handle	on.	But	if	you	don’t	already	have	the
required	knowledge	at	this	point,	this	chapter	will	help	give	you	the	basics,	so	the	future
chapters	don’t	feel	as	heavy.	By	the	end	of	the	book,	you	should	be	a	Docker	master	able
to	implement	Docker	in	your	own	environments,	building	and	supporting	applications	on
top	of	these	environments.

In	this	chapter,	we’re	going	to	review	the	following	higher	level	topics	with	subtopics	in
each	section:

Understanding	Docker

Docker	versus	typical	VMs
The	Dockerfile	and	its	function
Docker	networking/linking

Docker	installers/installation

Types	of	installers	and	how	they	operate
Controlling	your	Docker	daemon
The	Kitematic	GUI

Docker	commands

Useful	commands	for	Docker,	Docker	images,	and	Docker	containers

Understanding	Docker
In	this	section,	we	will	be	covering	the	structure	of	Docker	and	the	flow	of	what	happens
behind	the	scenes	in	this	world.	We	will	also	take	a	look	at	Dockerfile	and	all	the	magic	it
can	do.	Lastly,	in	this	section,	we	will	look	at	the	Docker	networking/linking.

Difference	between	Docker	and	typical	VMs
First,	we	must	know	what	exactly	Docker	is	and	does.	Docker	is	a	container	management
system	that	helps	easily	manage	Linux	Containers	(LXC)	in	an	easier	and	universal
fashion.	This	lets	you	create	images	in	virtual	environments	on	your	laptop	and	run
commands	or	operations	against	them.	The	actions	you	do	to	the	containers	that	you	run	in
these	environments	locally	on	your	own	machine	will	be	the	same	commands	or
operations	you	run	against	them	when	they	are	running	in	your	production	environment.
This	helps	in	not	having	to	do	things	differently	when	you	go	from	a	development
environment	like	that	on	your	local	machine	to	a	production	environment	on	your	server.
Now,	let’s	take	a	look	at	the	differences	between	Docker	containers	and	the	typical	virtual
machine	environments.

In	the	following	illustration,	we	can	see	the	typical	Docker	setup	on	the	right-hand	side
versus	the	typical	VM	setup	on	the	left-hand	side:

This	illustration	gives	us	a	lot	of	insight	into	the	biggest	key	benefit	of	Docker,	that	is,
there	is	no	need	for	a	complete	operating	system	every	time	we	need	to	bring	up	a	new
container,	which	cuts	down	on	the	overall	size	of	containers.	Docker	relies	on	using	the
host	OS’s	Linux	kernel	(since	almost	all	the	versions	of	Linux	use	the	standard	kernel
models)	for	the	OS	it	was	built	upon,	such	as	Red	Hat,	CentOS,	Ubuntu,	and	so	on.	For
this	reason,	you	can	have	almost	any	Linux	OS	as	your	host	operating	system	(Ubuntu	in
the	previous	illustration)	and	be	able	to	layer	other	OSes	on	top	of	the	host.	For	example,
in	the	earlier	illustration,	we	could	have	Red	Hat	running	for	one	app	(the	one	on	the	left)
and	Debian	running	for	the	other	app	(the	one	on	the	right),	but	there	would	never	be	a
need	to	actually	install	Red	Hat	or	Debian	on	the	host.	Thus,	another	benefit	of	Docker	is
the	size	of	images	when	they	are	born.	They	are	not	built	with	the	largest	piece:	the	kernel
or	the	operating	system.	This	makes	them	incredibly	small,	compact,	and	easy	to	ship.

Dockerfile
Next,	let’s	take	a	look	at	the	most	important	file	pertaining	to	Docker:	Dockerfile.
Dockerfile	is	the	core	file	that	contains	instructions	to	be	performed	when	an	image	is
built.	For	example,	in	an	Ubuntu-based	system,	if	you	want	to	install	the	Apache	package,
you	would	first	do	an	apt-get	update	followed	by	an	apt-get	install	-y	apache2.
These	would	be	the	type	of	instructions	you	would	find	inside	a	typical	Dockerfile.	Items
such	as	commands,	calls	to	other	scripts,	setting	environmental	variables,	adding	files,	and
setting	permissions	can	all	be	done	via	Dockerfile.	Dockerfile	is	also	where	you	specify
what	image	is	to	be	used	as	your	base	image	for	the	build.	Let’s	take	a	look	at	a	very	basic
Dockerfile	and	then	go	over	the	individual	pieces	that	make	one	up	and	what	they	all	do:

FROM	ubuntu:latest

MAINTAINER	Scott	P.	Gallagher	<email@somewhere.com>

RUN	apt-get	update	&&	apt-get	install	-y	apache2

ADD	000-default.conf	/etc/apache2/sites-available/

RUN	chown	root:root	/etc/apache2/sites-available/000-default.conf

EXPOSE	80

CMD	["/usr/sbin/apache2ctl",	"-D",	"FOREGROUND"]

These	are	the	typical	items	you	would	find	in	a	basic	Dockerfile.	The	first	line	states	the
image	we	want	to	start	off	with	when	we	build	the	container.	In	this	example,	we	will	be
using	Ubuntu;	the	item	after	the	colon	can	be	called	if	you	want	a	specific	version	of	it.	In
this	case,	I	am	just	going	to	say	use	the	latest	version	of	Ubuntu;	but	you	will	also	specify
trusty,	precise,	raring,	and	so	on.	The	second	line	is	the	line	that	is	relevant	to	the
maintainer	of	Dockerfile.	In	this	case,	I	just	have	my	information	in	there;	well,	at	least,
my	name	is	there.	This	is	for	people	to	contact	you	if	they	have	any	questions	or	find	any
errors	in	your	file.	Typically,	most	people	just	include	their	name	and	e-mail	address.	The
next	line	is	a	typical	line	you	will	see	while	pulling	updates	and	packages	in	an	Ubuntu
environment.	You	might	think	they	should	be	separate	and	wonder	why	they	should	be	put
on	the	same	line	separated	by	&&.	Well,	in	the	Dockerfile,	it	helps	by	only	having	to	run
one	process	to	encompass	the	entire	line.	If	you	were	to	split	it	into	separate	lines,	it	would
have	to	run	one	process,	finish	the	process,	then	start	the	next	process,	and	finish	it.	With
this,	it	helps	speed	up	the	process	by	pairing	the	processes	together.	They	still	run	one
after	another,	but	with	more	efficiency.	The	next	two	lines	complement	each	other.	The
first	adds	your	custom	configurations	to	the	path	you	specified	and	changes	the	owner	and
group	owner	to	the	root	user.	The	EXPOSE	line	will	expose	the	ports	to	anything	external	to
the	container	and	to	the	host	it	is	running	on.	(This	will,	by	default,	expose	the	container
externally	beyond	the	host,	unless	the	firewall	is	enabled	and	protecting	it.)	The	last	line	is
the	command	that	is	run	when	the	container	is	launched.	This	particular	command	in	a
Dockerfile	should	only	be	used	once.	If	it	is	used	more	than	once,	the	last	CMD	in	the
Dockerfile	will	be	launched	upon	the	container	that	is	running.	This	also	helps	emphasize
the	one	process	per	container	rule.	The	idea	is	to	spread	out	the	processes	so	that	each
process	runs	in	its	own	container,	thus	the	value	of	the	containers	will	become	more

understandable.	Essentially,	something	that	runs	in	the	foreground,	such	as	the	earlier
command	to	keep	the	Apache	running	in	the	foreground.	If	we	were	to	use	CMD	["service
apache2	start"],	the	container	would	start	and	then	immediately	stop.	There	is	nothing
to	keep	the	container	running.	You	can	also	have	other	instructions,	such	as	ENV	to	specify
the	environmental	variables	that	users	can	pass	upon	runtime.	These	are	typically	used	and
are	useful	while	using	shell	scripts	to	perform	actions	such	as	specifying	a	database	to	be
created	in	MySQL	or	setting	permission	databases.	We	will	be	covering	these	types	of
items	in	a	later	chapter,	so	don’t	worry	about	looking	them	up	right	now.

Docker	networking/linking
Another	important	aspect	that	needs	to	be	understood	is	how	Docker	containers	are
networked	or	linked	together.	The	way	they	are	networked	or	linked	together	highlights
another	important	and	large	benefit	of	Docker.	When	a	container	is	created,	it	creates	a
bridge	network	adapter	for	which	it	is	assigns	an	address;	it	is	through	these	network
adapters	that	the	communication	flows	when	you	link	containers	together.	Docker	doesn’t
have	the	need	to	expose	ports	to	link	containers.	Let’s	take	a	look	at	it	with	the	help	of	the
following	illustration:

In	the	preceding	illustration,	we	can	see	that	the	typical	VM	has	to	expose	ports	for	others
to	be	able	to	communicate	with	each	other.	This	can	be	dangerous	if	you	don’t	set	up	your
firewalls	or,	in	this	case	with	MySQL,	your	MySQL	permissions	correctly.	This	can	also
cause	unwanted	traffic	to	the	open	ports.	In	the	case	of	Docker,	you	can	link	your
containers	together,	so	there	is	no	need	to	expose	the	ports.	This	adds	security	to	your
setup,	as	there	is	now	a	secure	connection	between	your	containers.

We’ve	looked	at	the	differences	between	Docker	and	typical	VMs,	as	well	as	the
Dockerfile	structure	and	the	components	that	make	up	the	file.	We	also	looked	at	how
Docker	containers	are	linked	together	for	security	purposes	as	opposed	to	typical	VMs.
Now,	let’s	review	the	installers	for	Docker	and	the	structure	behind	the	installation	once
they	are	installed,	manipulating	them	to	ensure	they	are	operating	correctly.

Docker	installers/installation
Installers	are	one	of	the	first	pieces	you	need	to	get	up	and	running	with	Docker	on	both
your	local	machine	as	well	as	your	server	environments.	Let’s	first	take	a	look	at	what
environments	you	can	install	Docker	in:

Apple	OS	X	(Mac)
Windows
Linux	(various	Linux	flavors)
Cloud	(AWS,	DigitalOcean,	Microsoft	Azure,	and	so	on)

Types	of	installers
With	the	various	types	of	installers	listed	earlier,	there	are	different	ways	Docker	actually
operates	on	the	operating	system.	Docker	natively	runs	on	Linux;	so	if	you	are	using
Linux,	then	it’s	pretty	straightforward	how	Docker	runs	right	on	your	system.	However,	if
you	are	using	Windows	or	Mac	OS	X,	then	it	operates	a	little	differently,	since	it	relies	on
using	Linux.	With	these	operating	systems,	they	need	Linux	in	some	sort	of	way,	thus
enters	the	virtual	machine	needed	to	run	the	Linux	part	that	Docker	operates	on,	which	is
called	boot2docker.	The	installers	for	both	Windows	and	Mac	OS	X	are	bundled	with	the
boot2docker	package	alongside	the	virtual	machine	software	that,	by	default,	is	the	Oracle
VirtualBox.

Now,	it	is	worthwhile	to	note	that	Docker	recently	moved	away	from	offering
boot2docker.	But,	I	feel,	it	is	important	to	understand	the	boot2docker	terms	and
commands	in	case	you	run	across	anyone	running	the	previous	version	of	the	Docker
installer.	This	will	help	you	understand	what	is	going	on	and	move	forward	to	the	new
installer(s).	Currently,	they	are	offering	up	Docker	Toolbox	that,	like	the	name	implies,
includes	a	lot	of	items	that	the	installer	will	install	for	you.	The	installers	for	each	OS
contain	different	applications	with	regards	to	Docker	such	as:

Docker	Toolbox	piece Mac	OS	X Windows

Docker	Client X X

Docker	Machine X X

Docker	Compose X 	

Docker	Kitematic X X

VirtualBox X X

First,	let’s	take	a	look	at	the	older	style	commands	of	boot2docker.	Then,	we	will	take	a
look	at	the	new	commands	or	application	that	you	can	use	to	achieve	these	outcomes.

Controlling	the	Docker	VM	(boot2docker)
Now,	there	are	ways	to	run	boot2docker	on	different	VM	software.	But	to	start	off,
VirtualBox	is	the	best	and	easiest	way	to	operate	boot2docker:

$	boot2docker

Usage:	boot2docker	[<options>]	

{help|init|up|ssh|save|down|poweroff|reset|restart|config|status|info|ip|sh

ellinit|delete|download|upgrade|version}	[<args>]

Now,	after	we	have	installed	Docker	on	Linux,	OS	X,	or	Windows,	how	do	we	go	about
controlling	this	virtual	machine	in	the	events	when	we	need	to	start	it	up,	restart	it,	or	even
shut	it	down?	This	is	where	the	boot2docker	command-line	parameters	come	into	play.

As	you	can	see	in	the	earlier	illustration,	there	are	a	lot	of	options	you	can	use	for	your
boot2docker	instance.	The	options	you	will	use	mostly	are	up,	down,	poweroff,	restart,
status,	ip,	upgrade,	and	version.	Some	of	these	commands	you	will	use	mostly	to
troubleshoot	items	when	you	are	trying	to	see	why	the	Docker	commands	might	hang,	or
when	you	run	into	any	other	issues	with	your	boot2docker	virtual	machine.	You	can	see
what	each	command	does	by	executing	the	following	command:

$	boot2docker	help

The	most	useful	command	that	I	have	found	while	troubleshooting	is	the	boot2docker
status	command:

$	boot2docker	status

Another	useful	boot2docker	command	is:

$	boot2docker	version

This	command	will	help	see	what	version	of	boot2docker	you	are	currently	running.	This
is	helpful	in	knowing	when	to	use	the	boot2docker	upgrade	command.	The	last	command
we	will	look	at	with	respect	to	boot2docker	is	the	boot2docker	ip	command.	This
command	is	very	useful	when	you	need	to	know	what	IP	address	is	to	be	used	to	access
the	machines	you	have	been	running	on	a	particular	host:

$	boot2docker	ip

192.168.59.103

As	you	can	see,	the	earlier	command	gives	us	the	IP	address	of	the	boot2docker	client
running	on	my	OS	X	machine	inside	VirtualBox.	By	using	this	IP,	I	can	now	access	the
containers	I	might	have	been	running	using	the	IP	address	alongside	any	of	the	open	ports
I	have	exposed.

Docker	Machine	–	the	new	boot2docker
So,	with	boot2docker	on	its	way	out,	there	needs	to	be	a	new	way	to	do	what	boot2docker
does.	This	being	said,	enter	Docker	Machine.	With	Docker	Machine,	you	can	do	the	same
things	you	did	with	boot2docker,	but	now	in	Machine.	The	following	table	shows	the
commands	you	used	in	boot2docker	and	what	they	are	now	in	Machine:

Command boot2docker Docker	Machine

command boot2docker docker-machine

help boot2docker	help docker-machine	help

status boot2docker	status docker-machine	status

version boot2docker	version docker-machine	version

ip boot2docker	ip docker-machine	ip

Kitematic
Now	that	we	have	covered	all	the	basics	of	controlling	your	boot2docker	VM,	let’s	take	a
look	at	another	way	you	can	run	Docker	containers	on	your	local	machine.	Let’s	take	a
look	at	Kitematic.	Kitematic	is	a	recent	addition	to	the	Docker	portfolio.	Up	until	now,
everything	we	have	done	has	been	command	line-based.	With	Kitematic,	you	can	manage
your	Docker	containers	through	a	GUI.	Kitematic	can	be	used	either	on	Windows	or	OS
X,	just	not	on	Linux;	besides	who	needs	a	GUI	on	Linux	anyways!	Kitematic,	just	like
boot2docker,	operates	on	a	VM	defaulting	to	VirtualBox.	Pictures	are	worth	a	thousand
words,	so	let’s	take	a	look	at	some	screenshots	of	Kitematic:

The	previous	screenshot	depicts	what	you	will	see	when	you	launch	Kitematic	for	the	first
time.

After	you	start	running	the	containers,	they	will	show	up	on	the	left-hand	side	column.
You	can	manipulate	and	get	information	about	them	through	the	GUI.	You	can	search	for
prebuilt	images	on	the	Docker	Hub	and	click	on	the	CREATE	button	once	you	have
found	the	one	you	want	to	use	or	test.

In	the	preceding	screenshot,	we	have	created	and	are	running	the	hello-world-nginx
image	inside	Kitematic.	We	can	now	use	the	STOP,	RESTART,	and	EXEC	commands
against	the	container	as	well	as	view	the	settings	of	the	running	container.

In	the	following	screenshot,	we	can	go	to	settings	and	view	what	ports	are	exposed	from
the	container	to	the	outside:

In	the	following	screenshot,	you	can	see	that	you	can	use	your	login	credentials	to	log	in
to	the	Docker	Hub	and	view	the	repositories	you	have	created	and	pushed	there:

The	Docker	commands
We	have	covered	the	types	of	installers	and	what	they	can	be	run	on.	We	have	also	seen
how	to	control	the	Docker	VM	that	gets	created	for	you	and	how	to	use	Kitematic.	Let’s
look	at	some	Docker	commands	that	you	should	be	familiar	with	already.	We	will	start
with	some	common	commands	and	then	take	a	peek	at	the	commands	that	are	used	for	the
Docker	images.	We	will	then	take	a	dive	into	the	commands	that	are	used	for	the
containers.

The	first	command	we	will	be	taking	a	look	at	will	be	one	of	the	most	useful	commands
not	only	in	Docker	but	in	any	command-line	utility	you	use—the	help	command.	It	is	run
simply	by	executing	the	command	as	follows:

$	docker	help

The	earlier	command	will	give	you	a	full	list	of	all	the	Docker	commands	at	your	disposal
and	a	brief	description	of	what	each	command	does.	For	further	help	with	a	particular
command,	you	can	run	the	following:

$	docker	<COMMAND>	--help

You	will	then	receive	additional	information	on	using	the	command,	such	as	the	switches,
arguments,	and	descriptions	of	the	arguments.	Similar	to	the	boot2docker	version
command	we	ran	earlier,	there	is	also	a	version	command	for	the	Docker	daemon:

$	docker	version

Now,	this	command	will	give	us	a	little	bit	more	information	than	the	boot2docker
command	output,	as	follows:

Client	version:	1.7.0

Client	API	version:	1.19

Go	version	(client):	go1.4.2

Git	commit	(client):	0baf609

OS/Arch	(client):	darwin/amd64

Server	version:	1.7.0

Server	API	version:	1.19

Go	version	(server):	go1.4.2

Git	commit	(server):	0baf609

OS/Arch	(server):	linux/amd64

This	is	helpful	when	you	want	to	see	the	version	of	the	Docker	daemon	you	may	be
running	to	see	if	you	need/want	to	upgrade.

The	Docker	images
Next,	let’s	take	a	dive	into	the	Docker	images.	You	will	learn	how	to	view	the	images	you
currently	have	that	you	can	run,	search	for	images	on	the	Docker	Hub,	and	pull	them
down	to	your	environment,	so	you	can	run	them.	Let’s	first	take	a	look	at	the	docker
images	command.	Upon	running	the	command,	we	will	get	an	output	similar	to	the
following	output:

REPOSITORY										TAG																	IMAGE	ID												CREATED													

VIRTUAL	SIZE

ubuntu																			14.10															ab57dbafeeea								11	days	

ago									194.5	MB

ubuntu																			trusty															6d4946999d4f								11	days	

ago									188.3	MB

ubuntu																			latest															6d4946999d4f								11	days	

ago									188.3	MB

Your	output	will	differ	based	on	whether	you	have	any	images	at	all	in	your	Docker
environment	or	upon	what	images	you	do	have.	There	are	a	few	important	pieces	you	need
to	understand	from	the	output	you	see.	Let’s	go	over	the	columns	and	what	is	contained	in
each.	The	first	column	you	see	is	the	REPOSITORY	column;	this	column	contains	the	name
of	the	repository	as	it	exists	in	the	Docker	Hub.	If	you	were	to	have	a	repository	that	was
from	someone’s	user	account,	it	may	show	up	as	follows:

REPOSITORY														TAG																	IMAGE	ID												CREATED													

VIRTUAL	SIZE

scottpgallagher/mysql			latest														57df9c7989a1								9	weeks	ago									

321.7	MB

The	next	column,	the	TAG	column,	will	show	you	different	versions	of	a	repository.	As	you
can	see	in	the	preceding	example	with	the	Ubuntu	repository,	there	are	tag	names	for	the
different	versions.	So,	if	you	want	to	specify	a	particular	version	of	a	repository	in	your
Dockerfile	(as	we	saw	earlier),	you	are	able	to.	This	is	useful,	so	you’re	not	always	reliant
on	having	to	use	the	latest	version	of	an	operating	system	and	can	use	the	one	your
application	supports	the	best.	It	can	also	help	you	do	backward	compatibility	testing	for
your	application.

The	next	column	is	labeled	IMAGE	ID	and	it	is	based	on	a	unique	64	hexadecimal	digit
string	of	characters.	The	image	ID	simplifies	this	down	to	the	first	12	digits	for	easier
viewing.	Imagine	if	you	had	to	view	all	64	bits	on	one	line!	You	will	learn	when	to	use
this	unique	image	ID	for	later	tasks.

The	last	two	columns	are	pretty	straightforward;	the	first	being	the	creation	date	for	the
repository,	followed	by	the	virtual	size	of	the	image.	The	size	is	very	important	as	you
want	to	keep	or	use	images	that	are	very	small	in	size	if	you	plan	to	be	moving	them
around	a	lot.	The	smaller	the	image,	the	faster	is	the	load	time;	and	who	doesn’t	like	it
faster?

Searching	for	the	Docker	images
Okay,	so	let’s	look	at	how	we	can	search	for	the	images	that	are	in	the	Docker	Hub	using
the	Docker	commands.	The	command	we	will	be	looking	at	is	docker	search.	With	the
docker	search	command,	you	can	search	based	on	the	different	criteria	you	are	looking
for.	For	example,	we	can	search	for	all	the	images	with	the	term	ubuntu	in	them	and	see
what	all	is	available.	Here	is	what	we	would	get	back	in	our	results;	it	would	go	as
follows:

$	docker	search	ubuntu

We	would	get	back	our	results:

NAME																											DESCRIPTION																																																			

STARS					OFFICIAL			AUTOMATED

ubuntu																									Ubuntu	is	a	Debian-based	Linux	operating	s…								

1835									[OK]							

ubuntu-upstart																	Upstart	is	an	event-based	replacement	for…												

26											[OK]							

tutum/ubuntu																								Ubuntu	image	with	SSH	access.	For	the	

root…										25																													[OK]

torusware/speedus-ubuntu		Always	updated	official	Ubuntu	docker	imag…										

25																													[OK]

ubuntu-debootstrap													debootstrap	--variant=minbase	--components…								

10												[OK]							

rastasheep/ubuntu-sshd						Dockerized	SSH	service,	built	on	top	of	of…																

4																						[OK]

maxexcloo/ubuntu																Docker	base	image	built	on	Ubuntu	with	Sup…											

2																														[OK]

nuagebec/ubuntu																	Simple	always	updated	Ubuntu	docker	images…								

2																													[OK]

nimmis/ubuntu																						This	is	a	docker	images	different	LTS	

vers…							1																													[OK]

alsanium/ubuntu																Ubuntu	Core	image	for	Docker																										

1																														[OK]

Based	on	these	results,	we	can	now	decipher	some	information.	We	can	see	the	name	of
the	repository,	a	reduced	description,	how	many	people	have	starred	and	think	it	is	a	good
repository,	whether	it’s	an	official	repository;	which	means	it’s	been	approved	by	the
Docker	team,	as	well	as	if	it’s	an	automated	build.	An	automated	build	is	typically	a
Docker	image	that	is	built	automatically	when	a	Git	repository	it	is	linked	to	is	updated.
The	code	gets	updated,	the	web	hook	is	called,	and	a	new	Docker	image	is	built	in	the
Docker	Hub.	If	we	find	an	image	we	want	to	use,	we	can	simply	pull	it	using	its	repository
name	with	the	docker	pull	command,	as	follows:

$	docker	pull	tutum/ubuntu

The	image	will	be	downloaded	and	show	up	in	our	list	when	we	perform	the	docker
images	command	we	ran	earlier.

We	now	know	how	to	search	for	Docker	images	and	pull	them	down	to	our	machine.
What	if	we	want	to	get	rid	of	them?	That’s	where	the	docker	rmi	command	comes	into

play.	With	the	docker	rmi	command,	you	can	remove	unwanted	images	from	your
machine(s).	So,	let’s	take	look	at	the	images	we	currently	have	on	our	machine	with	the
docker	images	command.	We	will	get	the	following:

REPOSITORY										TAG																	IMAGE	ID												CREATED													

VIRTUAL	SIZE

ubuntu																			14.10															ab57dbafeeea								11	days	

ago									194.5	MB

ubuntu																			trusty															6d4946999d4f								11	days	

ago									188.3	MB

ubuntu																			latest															6d4946999d4f								11	days	

ago									188.3	MB

We	can	see	that	we	have	duplicate	images	here	taking	up	space.	We	can	see	this	by
looking	at	the	image	ID	and	seeing	the	exact	image	ID	for	both	ubuntu:trusty	and
ubuntu:latest.	We	now	know	that	ubuntu:trusty	is	the	latest	Ubuntu	image,	so	there	is
no	need	to	keep	them	both	around.	Let’s	free	up	some	space	by	removing	ubuntu:trusty
and	just	keeping	ubuntu:latest.	We	do	this	by	using	the	docker	rmi	command,	as
follows:

$	docker	rmi	ubuntu:trusty

If	you	issue	the	docker	images	command	now,	you	will	see	that	ubuntu:trusty	no	longer
shows	up	in	your	images	list	and	has	been	removed.	Now,	you	can	remove	machines
based	on	their	image	ID	as	well.	But	be	careful	while	you	do	so;	in	this	scenario,	not	only
will	you	remove	ubuntu:trusty,	but	you	will	also	remove	ubuntu:latest	as	they	have
the	same	image	ID.

Manipulating	the	Docker	images
We	have	gone	over	the	images	and	know	how	to	obtain	and	manipulate	them	in	some
ways.	Next,	we	are	going	to	take	a	look	at	what	it	takes	to	fire	them	up	and	manipulate
them.	This	is	the	part	where	the	images	become	containers!	Let’s	first	go	over	the	basics
of	the	docker	run	command	and	how	to	run	containers.	We	will	cover	some	basic	docker
run	items	in	this	section	and	more	advanced	docker	run	items	in	the	later	chapters.	So,
let’s	just	look	at	how	to	get	images	up,	running,	and	turned	into	containers.	The	most	basic
way	to	run	a	container	is	as	follows:

$	docker	run	-i	-t	<image_name>:<tag>	/bin/bash

Upon	closer	inspection	of	the	earlier	command,	we	start	off	with	the	docker	run
command,	followed	by	two	switches:	-i	and	-t.	The	-i	gives	us	an	interactive	shell	into
the	running	container,	the	-t	will	allocate	a	pseudo-tty	that,	while	using	interactive
processes,	must	be	used	together	with	the	-i	switch.	You	can	also	use	switches	together;
for	example,	-it	is	commonly	used	for	these	two	switches.	This	will	help	you	test	the
container	to	see	how	it	operates	before	running	it	as	a	daemon.	Once	you	are	comfortable
with	your	container,	you	can	test	how	it	operates	in	the	daemon	mode:

$	docker	run	-d	<image_name>:<tag>

If	the	container	is	set	up	correctly	and	has	an	entry	point	setup,	you	should	be	able	to	see
the	running	container	by	issuing	the	docker	ps	command.	You	will	see	something	similar
to	the	following:

$	docker	ps

CONTAINER	ID								IMAGE															COMMAND													CREATED													

STATUS														PORTS															NAMES

cc1fefcfa098								ubuntu:14.10								"/bin/bash"									3	seconds	ago							

Up	3	seconds																												boring_mccarthy

Based	on	the	earlier	command,	we	get	a	lot	of	other	important	information	indicating	that
the	container	is	running.	We	can	see	the	container	ID,	the	image	name	that	is	running,	the
command	that	is	running	to	keep	the	image	alive,	when	the	container	started,	its	current
status,	if	any	ports	were	exposed	they	would	be	listed	here,	as	well	as	the	name	given	to
the	container.	Now,	these	names	are	random,	unless	it	is	specified	otherwise	by	the	--
name=	switch.	You	can	also	the	expose	the	ports	on	your	containers	by	using	the	-p
switch	as	follows:

$	docker	run	-d	-p		<host_port>:<container_port>	<image>:<tag>

$	docker	run	-d	-p	8080:80	ubuntu:14.10

This	will	run	the	ubuntu	14.10	container	in	the	demonized	mode,	exposing	port	8080	on
the	Docker	host	to	port	80	on	the	running	container:

CONTAINER	ID								IMAGE															COMMAND													CREATED													

STATUS														PORTS																										NAMES

55cfdcb6beb6								ubuntu:14.10								"/bin/bash"									2	seconds	ago							

Up	2	seconds								0.0.0.0:8080->80/tcp			babbage					

Now,	there	will	come	a	time	when	containers	don’t	want	to	behave.	For	this,	you	can	see
the	issues	you	have	by	using	the	docker	logs	command.	The	command	is	very
straightforward.	You	specify	the	container	you	want	to	see	the	logs	off.	For	this	command,
you	need	to	use	the	container	ID	or	the	name	of	the	container	from	the	docker	ps	output:

$	docker	logs	55cfdcb6beb6

Or:

$	docker	logs	babbage

You	can	also	get	this	ID	when	you	first	initiate	the	docker	run	command:

$	docker	run	-d	ubuntu:14.10	/bin/bash

da92261485db98c7463fffadb43e3f684ea9f47949f287f92408fd0f3e4f2bad

Stopping	containers
Now,	let’s	take	a	look	at	how	we	can	stop	these	containers.	For	various	reasons,	we	would
want	to	do	this.	There	are	a	few	commands	we	could	use;	they	are	docker	kill,	docker
stop,	docker	pause,	and	docker	unpause.	Let’s	cover	them	briefly	as	they	are	fairly
straightforward.	First,	let’s	look	at	the	difference	between	docker	kill	and	docker	stop.
The	docker	kill	command	will	do	just	that—kill	the	container	immediately.	For	a
graceful	shutdown	of	the	container,	you	would	want	to	use	the	docker	stop	command.
Mostly,	when	you	are	testing,	you	will	be	using	docker	kill.	When	you’re	in	your
production	environments,	you	will	want	to	use	docker	stop	to	ensure	you	don’t	corrupt
any	data	you	might	have	in	the	Docker	volumes.	The	commands	are	used	exactly	like	the
docker	logs	command,	where	you	can	use	the	container	ID,	the	random	name	given	to
the	container,	or	the	one	you	might	specify	with	the	--name=	switch.

Now,	let’s	take	a	dive	into	how	we	can	execute	some	commands,	view	information	on	our
running	containers,	and	manipulate	them	in	a	small	sense.	We	will	cover	more	about
container	manipulation	in	the	later	chapters	as	well.	The	first	thing	we	want	to	take	a	look
at,	which	will	make	things	a	little	easier	with	the	upcoming	commands,	is	the	docker
rename	command.	With	the	docker	rename	command,	we	can	change	the	name	that	has
been	randomly	generated	for	the	container.	When	we	performed	the	docker	run
command,	a	random	name	was	assigned	to	our	container;	most	times,	these	names	are
fine.	But	if	you	are	looking	for	an	easy	way	to	manage	the	containers,	a	name	can	be
sometimes	easier	to	remember.	For	this,	you	can	use	the	docker	rename	command	as
follows:

$	docker	rename	<current_container_name>	<new_container_name>

Now	that	we	have	an	easily	recognizable	and	rememberable	name,	let’s	take	a	peek	inside
our	containers	with	the	docker	stats	and	docker	top	commands,	taking	them	in	order:

$	docker	stats	<container_name>

CONTAINER											CPU	%															MEM	USAGE/LIMIT					MEM	%															

NET	I/O

web1																								0.00%															1.016	MB/2.099	GB			0.05%																		

0	B/0	B

The	other	command	docker	top	provides	a	list	of	all	running	processes	inside	the
container.	Again,	we	can	use	the	name	of	the	container	to	pull	the	information:

$	docker	top	<container_name>

We	will	receive	an	output	similar	to	the	following	one	based	on	what	processes	are
running	inside	the	container:

UID																	PID																	PPID																C																			

STIME															TTY																	TIME																CMD

root																8057																1380																0																			

13:02															pts/0															00:00:00												/bin/bash

We	can	see	who	is	running	the	process	(in	this	case,	the	root	user),	the	command	being
run	(in	this	case,	/bin/bash),	as	well	as	the	other	information	that	might	be	useful.

Lastly,	let’s	cover	how	we	can	remove	the	containers.	The	same	way	we	looked	at
removing	images	earlier	with	the	docker	rmi	command,	we	can	use	the	docker	rm
command	to	remove	unwanted	containers.	This	is	useful	if	you	want	to	reuse	a	name	you
provided	to	a	container:

$	docker	rm	<container_name>

Summary
In	this	chapter,	we	have	covered	what	basic	information	you	should	already	know	or	now
know	for	the	chapters	ahead.	We	have	gone	over	the	basics	of	what	Docker	is	and	how	it
is	compared	to	typical	virtual	machines.	We	looked	at	the	Dockerfile	structure	and	the
networking	and	linking	of	containers.	We	went	over	the	installers,	how	they	operate	on
different	operating	systems,	and	how	to	control	them	through	the	command	line.	We
briefly	looked	at	the	latest	Docker	addition	Kitematic	for	those	interested	in	a	GUI	version
for	Windows	or	OS	X.	Then,	we	took	a	small	but	deep	dive	into	the	basic	Docker
commands	to	get	you	started.

In	the	next	chapter,	we	will	be	taking	a	look	at	how	to	build	base	containers.	We	will	also
look	in	depth	at	Dockerfile	and	places	to	store	your	images,	as	well	as	using
environmental	variables	and	Docker	volumes.

Chapter	2.	Up	and	Running
I	am	very	glad	you	decided	to	flip	the	page	and	come	to	Chapter	2,	Up	and	Running!	In
this	chapter,	we	will	get	you	up	and	running	with	your	own	base	images.	You	will	learn
how	to	store	these	images	using	custom	environmental	variables	and	scripts,	and	Docker
volumes.	Here	is	a	short	review	of	what	all	we	will	be	covering	in	this	chapter:

Dockerfile
Docker	build
Build	base	image	using	the	Dockerfile
Docker	Hub	(basic	overviews;	more	in	depth	will	be	covered	in	the	next	chapter)
Environmental	variables
Docker	volumes

Dockerfile
In	this	section,	we	will	cover	the	Dockerfile	from	a	more	in-depth	perspective	than	the
previous	chapter	along	with	the	best	practices	to	use.	By	the	end	of	the	section,	you	will	be
structuring	your	Dockerfile	in	the	most	practical	and	efficient	method.	You	will	also	be
able	to	read	and	troubleshoot	both	yours	and	others’	Dockerfile.

A	short	review	of	Dockerfile
In	the	previous	chapter,	we	did	a	review	of	the	Dockerfile	and	its	content.	We	looked	at
something	like	this:

FROM	ubuntu:latest

MAINTAINER	Scott	P.	Gallagher	<email@somewhere.com>

RUN	apt-get	update	&&	apt-get	install	-y	apache2

ADD	000-default.conf	/etc/apache2/sites-available/

RUN	chown	root:root	/etc/apache2/sites-available/000-default.conf

EXPOSE	80

CMD	["/usr/sbin/apache2ctl",	"-D",	"FOREGROUND"]

We	saw	earlier	and	in	this	example	as	well	the	basic	items	that	are	inside	a	Dockerfile.	The
FROM	and	MAINTAINER	fields	have	information	on	what	image	is	to	be	used	and	who	is	the
maintainer	of	that	image.	The	RUN	instruction	can	be	used	to	fetch	and	install	packages
along	with	other	various	commands.	The	ADD	instruction	allows	you	to	add	files	or	folders
to	the	Docker	image.	The	EXPOSE	instruction	allows	you	to	expose	ports	from	the	image	to
the	outside	world.	Lastly,	the	CMD	instruction	executes	the	said	command	and	keeps	the
container	alive.	Now	that	we	did	a	really	short	review,	let’s	take	a	more	in-depth	look	at
Dockerfile.

Reviewing	Dockerfile	in	depth
Let’s	take	a	look	at	the	following	commands	in	depth:

LABEL

ADD	or	COPY
ENTRYPOINT

ENTRYPOINT	with	CMD

USER

WORKDIR

ONBUILD

LABEL
The	LABEL	command	can	be	used	to	add	additional	information	to	the	image.	This
information	can	be	anything	from	a	version	number	to	a	description.	You	will	want	to
combine	labels	into	a	single	line	whenever	possible.	It’s	also	recommended	that	you	limit
the	number	of	labels	you	use.	Every	time	you	use	a	label,	it	will	add	a	layer	to	the	image,
thus	increasing	the	size	of	the	image.	Using	too	many	labels	can	cause	the	image	to
become	inefficient	as	well.	You	can	view	the	containers’	labels	with	the	docker	inspect
command:

$	docker	inspect	<IMAGE_ID>

ADD	or	COPY

Now,	in	the	previous	chapter	and	in	the	preceding	Dockerfile	example,	we	used	the	ADD
instruction	to	add	a	file	to	a	folder	location.	There	is	also	another	instruction	you	can	use
in	your	Dockerfile	and	that	is	the	COPY	instruction.	You	can	use	the	ADD	instruction	and
specify	a	URL	straight	to	a	file;	it	will	be	downloaded	when	the	container	is	built.	The	ADD
instruction	will	also	unpack	or	untar	a	file	when	added.	The	COPY	instruction	is	the	same	as
the	ADD	instruction,	but	without	the	URL	handling	or	the	unpacking/untarring	of	files.

ENTRYPOINT
In	the	Dockerfile	example,	we	used	the	CMD	instruction	to	make	the	container	executable
and	to	ensure	that	it	stays	alive	and	running.	You	can	also	use	the	ENTRYPOINT	instruction
instead.	The	benefit	of	using	ENTRYPOINT	over	CMD	is	that	you	can	use	them	in	conjunction
with	each	other.

For	example,	if	you	want	to	have	a	default	command	that	you	want	to	execute	inside	a
container,	you	could	do	something	similar	to	the	following	example,	but	be	sure	to	use	a
command	that	keeps	the	container	alive:

FROM	ubuntu:latest

ENTRYPOINT	["ps",	"-au"]

CMD	["-x"]

USER
The	USER	instruction	lets	you	specify	the	username	to	be	used	when	a	command	is	run.
The	USER	instruction	can	be	used	on	the	RUN	instruction,	the	CMD	instruction,	or	the
ENTRYPOINT	instruction	in	the	Dockerfile.

WORKDIR
The	WORKDIR	command	sets	the	working	directory	for	the	same	set	of	instructions	that	the
USER	instruction	can	use	(RUN,	CMD,	and	ENTRYPOINT).	It	will	allow	you	to	use	the	CMD	and
ADD	instructions	as	well.

ONBUILD
The	ONBUILD	instruction	lets	you	stash	a	set	of	commands	that	will	be	used	when	the
image	is	used	again	as	a	base	image	for	a	container.	For	example,	if	you	want	to	give	an
image	to	developers	and	they	all	have	a	different	code	they	want	to	test,	you	can	use	the
ONBUILD	instruction	to	lay	the	groundwork	ahead	of	the	fact	of	needing	the	actual	code.
Then,	the	developer	will	simply	add	their	code	in	the	directory	you	tell	them	and,	when
they	run	a	new	docker	build	command,	it	will	add	their	code	to	the	running	image.	The
ONBUILD	instruction	can	be	used	in	conjunction	with	the	ADD	and	RUN	instructions:

ONBUILD	ADD

ONBUILD	RUN

Dockerfile	–	best	practices
Now	that	we	have	covered	the	Dockerfile	instructions	in	depth,	let’s	take	a	look	at	the	best
practices	of	writing	these	Dockerfile:

You	should	try	to	get	in	the	habit	of	using	a	.dockerignore	file.	We	will	cover	the
.dockerignore	file	in	the	next	section;	it	will	seem	very	familiar	if	you	are	used	to
using	a	.gitignore	file.	It	will	essentially	ignore	the	items	you	have	specified	in	the
file	during	the	build	process.
Minimize	the	number	of	packages	you	need	per	image.	One	of	the	biggest	goals	you
want	to	achieve	while	building	your	images	is	to	keep	them	as	small	as	possible.	Not
installing	the	packages	that	aren’t	necessary	will	greatly	help	in	achieving	this	goal.
Execute	only	one	application	process	per	container.	Every	time	you	need	a	new
application,	it	is	a	best	practice	to	use	a	new	container	to	run	that	application	in.
While	you	can	couple	commands	into	a	single	container,	it’s	best	to	separate	them
out.
Sort	commands	as	follows:

Sort	them	based	upon	the	actual	command	itself,	that	is,	run	the	following
command:

apt-get	update	&&	apt-get	install	-y

Sort	them	alphabetically,	so	it’s	easier	to	change	them	later,	that	is,	run	the
following	command:

apt-get	update	&&	apt-get	install	-y	\	apache2	\

																								git	\

																								memcached	\

																								mysql

Docker	build
In	this	section,	we	will	cover	the	docker	build	command.	This	is	where	the	rubber	meets
the	road,	as	they	say.	It’s	time	for	us	to	build	the	base	that	we	will	start	building	our	future
images	on.	We	will	be	looking	at	different	ways	to	accomplish	this	goal.	Consider	this	as	a
template	that	you	may	have	created	earlier	with	virtual	machines.	This	will	help	save	time
by	completing	the	hard	work;	you	will	just	have	to	create	the	application	that	needs	to	be
added	to	the	new	images.

The	docker	build	command
Now	that	you	have	learned	how	to	create	and	properly	write	a	Dockerfile,	it’s	time	to	learn
how	to	take	it	from	just	a	file	to	an	actual	image.	There	are	a	lot	of	switches	that	you	can
use	while	using	the	docker	build	command.	So,	let’s	use	the	always	handy	--help
switch	on	the	docker	build	command	to	view	what	all	we	can	do:

	$	docker	build	--help			

Usage:	docker	build	[OPTIONS]	PATH	|	URL	|	-

Build	a	new	image	from	the	source	code	at	PATH

		-c,	--cpu-shares=0				CPU	shares	(relative	weight)

		--cgroup-parent=						Optional	parent	cgroup	for	the	container

		--cpu-period=0								Limit	the	CPU	CFS	(Completely	Fair	Scheduler)	

period

		--cpu-quota=0									Limit	the	CPU	CFS	(Completely	Fair	Scheduler)	quota

		--cpuset-cpus=								CPUs	in	which	to	allow	execution	(0-3,	0,1)

		--cpuset-mems=								MEMs	in	which	to	allow	execution	(0-3,	0,1)

		-f,	--file=											Name	of	the	Dockerfile	(Default	is	

'PATH/Dockerfile')

		--force-rm=false						Always	remove	intermediate	containers

		--help=false										Print	usage

		-m,	--memory=									Memory	limit

		--memory-swap=								Total	memory	(memory	+	swap),	'-1'	to	disable	swap

		--no-cache=false						Do	not	use	cache	when	building	the	image

		--pull=false										Always	attempt	to	pull	a	newer	version	of	the	image

		-q,	--quiet=false					Suppress	the	verbose	output	generated	by	the	

containers

		--rm=true													Remove	intermediate	containers	after	a	successful	

build

		-t,	--tag=												Repository	name	(and	optionally	a	tag)	for	the	

image

Now,	it	may	seem	like	a	lot	to	digest,	but	the	most	important	ones	will	be	the	-f	and	the	-t
switches.	You	can	use	the	other	switches	to	limit	how	much	CPU	and	memory	the	build
process	will	use.	In	some	cases,	you	may	not	want	the	build	command	to	take	as	much
CPU	or	memory	as	it	can	have.	The	process	may	run	a	little	slower,	but	if	you	are	running
it	on	your	local	machine	or	a	production	server	and	it’s	a	long	build	process,	you	may
want	to	set	a	limit.	Typically,	you	don’t	use	the	-f	switch	as	you	run	the	docker	build
command	from	the	same	folder	that	the	Dockerfile	is	in.	Keeping	the	Dockerfile	in
separate	folders	helps	sort	the	files	and	keeps	the	naming	convention	of	the	files	the	same.

.dockerignore
The	.dockerignore	file,	as	we	discussed	earlier,	is	used	to	exclude	those	files	or	folders
we	don’t	want	include	in	the	docker	build.	We	also	discussed	placing	the	Dockerfile	in	a
separate	folder	and	the	same	applies	for	.dockerignore.	It	should	go	in	the	folder	where
the	Dockerfile	was	placed.	Keeping	all	the	items	you	want	to	use	in	an	image	in	the	same
folder	will	help	you	keep	the	items,	if	any,	in	the	.dockerignore	file	to	a	minimum.

Building	images	using	Dockerfile
The	first	way	we	are	going	to	look	at	to	build	your	base	Docker	images	is	by	creating	a
Dockerfile,	populating	the	Dockerfile	with	some	instructions,	and	then	executing	a	docker
build	command	against	them	to	get	ourselves	a	base	container.	So,	let’s	first	start	off	by
looking	at	a	typical	Dockerfile:

FROM	ubuntu:latest

MAINTAINER	Scott	P.	Gallagher	<email@somewhere.com>

RUN	apt-get	update	&&	apt-get	install	-y	apache2

EXPOSE	80

CMD	["/usr/sbin/apache2ctl",	"-D",	"FOREGROUND"]

In	the	preceding	Dockerfile,	the	code	is	pretty	straightforward.	We	are	going	to	use	the
latest	Ubuntu	image	and	then	run	an	apt-get	update	as	well	as	an	apt-get	install	of
the	Apache	web	server.	We	will	set	the	container	to	expose	port	80	when	it	is	run	and	then
start	Apache	in	the	foreground	of	the	container.

So,	there	are	two	ways	we	can	go	about	building	this	image.	The	first	way	would	be	by
specifying	the	-f	switch	when	we	use	the	docker	build	command.	We	will	also	utilize
the	-t	switch	to	give	the	new	image	a	unique	name:

$	docker	build	-f	<path_to_Dockerfile>	-t	<REPOSITORY>:<TAG>

Now,	<REPOSITORY>	is	typically	the	username	you	signed	up	for	on	Docker	Hub	and	the
<TAG>	is	a	unique	container	name	you	want	to	provide:

$	docker	build	-f	<path_to_Dockerfile>	-t	scottpgallagher:ubuntu_apache

Typically,	the	-f	switch	isn’t	used	and	it	can	be	a	little	tricky	when	you	have	other	files
that	need	to	be	included	with	the	new	image.	An	easier	way	to	do	the	build	is	to	place	the
Dockerfile	in	a	separate	folder	by	itself	along	with	any	other	file	that	you	will	be	placing
in	the	image	with	the	ADD	or	COPY	instructions:

$	docker	build	-t	scottpgallagher:ubuntu_apache

The	most	important	thing	to	remember	is	the	.—the	dot	(or	period)	at	the	very	end.	This	is
to	tell	the	docker	build	command	to	build	in	the	current	folder.

If	you	are	using	your	own	registry	to	push	your	images,	then	you	can	use	any	naming
convention	that	you	would	like	to	use.	But	try	to	keep	it	simple	and	easy	to	identify	by
looking	at	the	name.

Building	a	base	image	using	an	existing	image
The	easiest	way	to	build	a	base	image	is	to	start	off	by	using	one	of	the	official	builds
from	the	Docker	Hub.	Docker	also	keeps	the	Dockerfile	for	these	official	builds	on	their
GitHub	repositories.	So,	there	are	at	least	two	choices	you	have	for	using	existing	images
that	others	have	already	created.	By	using	the	Dockerfile,	you	can	see	exactly	what	is
included	in	the	build	and	add	what	you	need.	You	can	then	version	control	that	Dockerfile
for	it	if	you	want	to	change	it	at	a	later	time.

The	other	way	of	doing	it	is	to	use	an	already	existing	image	that	requires	a	little	bit	more
work,	but	is	essentially	the	same	method.	We	would	first	need	to	get	the	base	image	we
want:

$	docker	pull	ubuntu:latest

Then,	we	would	run	the	container	in	the	foreground,	so	we	could	add	packages	to	it:

$	docker	run	-it	ubuntu:latest	/bin/bash

Once	the	container	runs,	you	can	add	the	packages	as	necessary	by	using	the	apt-get
command	in	this	case,	or	whatever	the	package	manager	commands	are	for	your	Linux
flavor.	After	you	have	installed	the	packages	you	require,	you	need	to	save	the	container.
To	do	so,	you	first	need	to	get	the	container	ID.	You	can	do	this	in	the	following	manner:

$	docker	ps

Once	you	have	the	container	ID,	you	can	save	(or	commit)	the	container.	So,	to	save	this
container,	you	need	to	do	something	similar	to	the	following:

$	docker	commit	<container_ID>	<REPOSITORY>:<TAG>

Now,	if	you	are	planning	on	using	the	Docker	Hub	(that	we	will	be	discussing	here	shortly
in	the	next	section	of	this	chapter),	you	will	want	to	structure	your	image	names	as
follows:

$	docker	commit	<container_ID>	<Docker_Hub_Username>:<Unique_Name>

$	docker	commit	<container_ID>	scottpgallagher:ubuntu_apache2

Now,	there	will	be	some	downfall	to	doing	it	this	way.	If	you	do	it	this	way,	you	would
need	to	create	a	Dockerfile	in	the	FROM	part	and	use	the	image	you	just	created	in	this
section.	This	is	because	you	can’t	change	what	CMD	or	ENTRYPOINT	is	being	used	on	an
already	built	container.	So,	you	would	want	to	create	a	new	Dockerfile	and	add	in	what
CMD	or	ENTRYPOINT	you	might	want	to	use.

Building	your	own	containers
There	are	two	ways	to	go	about	building	your	own	containers.	They	are	as	follows:

Using	tar
Using	a	scratch	image

Using	tar
So,	you	have	a	machine	already	running	as	a	virtual	machine	or	on	a	bare	metal	box	and
you	want	to	convert	that	to	a	Docker	image.	How	do	you	go	about	doing	this?	The	first
thing	you	will	need	to	do	is	to	install	something	like	debootstrap:

$	sudo	apt-get	install	-y	debootstrap

Next,	you	will	need	to	get	the	release	name	of	the	distribution	of	Linux	you	are	running.
To	do	this,	we	can	look	at	the	contents	of	the	/etc/lsb-release	file:

$	cat	/etc/lsb-release

DISTRIB_ID=Ubuntu

DISTRIB_RELEASE=14.04

DISTRIB_CODENAME=trusty

DISTRIB_DESCRIPTION="Ubuntu	14.04.2	LTS"

We	can	tell	from	the	preceding	output	that	we	are	running	the	trusty	release	of	Ubuntu.
Now,	we	can	execute	the	next	command	using	the	newly	installed	debootstrap	command:

$	sudo	debootstrap	trusty	<unique_name>	>	/dev/null

We	can	execute	the	next	command	after	the	previous	one	is	completed:

$	sudo	tar	-C	<unique_name>	-c	.	|	sudo	docker	import	-	<unique_name>

The	preceding	command	will	switch	to	the	directory	you	specify	after	-C,	create	a	new
archive	from	that	directory	based	off	the	-c	switch,	and	specify	.	(for	the	current
directory).	It	will	then	import	the	image	into	a	Docker	image	with	the	docker	import
command.

You	can	see	this	image	by	issuing	the	docker	images	command:

$	docker	images

REPOSITORY										TAG																	IMAGE	ID												CREATED													

VIRTUAL	SIZE

ubuntu_trusty							latest														376bfebd75cb								17	minutes	ago						

228.3	MB

You	can	then	use	the	image	for	base	images	and	share	them	on	the	Docker	Hub	or	on	your
own	Docker	Registry.	We	will	be	covering	how	to	push	these	images	to	various	locations
in	the	next	section.	First,	though,	we	need	to	look	at	the	other	method	to	create	images	and
that	is	to	build	from	scratch.

If	you	wish	to	use	something	other	than	Ubuntu	(or	Debian),	Docker	has	created	scripts
that	you	can	utilize	to	create	images	from	as	well.	You	can	check	them	out	at
https://github.com/docker/docker/tree/master/contrib.

https://github.com/docker/docker/tree/master/contrib

You	will	want	to	look	at	the	mkimage-	files	based	on	what	distribution	you	are	using.

Using	scratch
You	also	have	the	option	to	build	from	scratch.	Now,	when	you	usually	hear	the	term
scratch,	it	literally	means	that	you	start	from	nothing.	That’s	what	we	have	here—you	get
absolutely	nothing	and	have	to	build	upon	it.	Now	this	can	be	a	benefit	because	it	will
keep	the	image	size	very	small;	but	it	can	also	not	be	beneficial	if	you	are	fairly	new	to	the
Docker	game,	as	it	may	be	a	little	complicated.

Docker	has	done	the	hard	work	for	us	already	and	created	an	empty	tar	file	that	is	on	the
Docker	Hub	named	scratch;	you	can	use	it	in	the	FROM	section	of	your	Dockerfile.	You
can	base	your	entire	Docker	build	on	this	then	and	add	parts	as	needed.	So,	your
Dockerfile	might	look	something	like	this:

FROM	scratch

ADD	<script_to_add>	/<path_to_add_to_on_container>

CMD	["/<path_to_add_to_on_container>"]

Docker	Hub
In	this	section,	we	will	cover	the	locations	you	can	store	the	images	you	will	be	creating.
There	are	several	different	areas	to	store	these,	ranging	from	a	location	in	the	cloud	that
can	be	set	to	public,	where	anyone	can	access	and	use	them,	to	private,	again	a	place	in	the
cloud	that	can	only	be	accessed	by	those	you	give	permission	to.	You	can	also	host	your
own	repository,	where	you	can	store	your	own	images.	You	can	also	purchase	a	Docker
subscription	(Docker	Hub	Enterprise)	that	provides	you	with	what	you	need	to	deploy	to
the	cloud	or	locally,	and	also	comes	along	with	commercial	support	from	Docker.

The	Docker	Hub	location
The	Docker	Hub	is	a	location	on	the	cloud,	where	you	can	store	and	share	images	that	you
have	created.	You	can	also	link	your	images	to	the	GitHub	or	Bitbucket	repositories	that
can	be	built	automatically	based	on	web	hooks.	We	will	be	discussing	web	hooks	in	the
next	chapter	and	will	go	over	all	the	pieces	required	for	that	setup.	There	are	two	types	of
repositories	on	the	Docker	Hub:	the	public	and	private	repositories.	You	can	also	roll	your
own	repository	that	we	will	cover	more	in	depth	in	the	next	chapter.

Pushing	to	a	repository	is	very	straightforward.	Once	you	have	the	image	built	on	your
machine,	there	are	two	commands	you	need	to	run.	One	you	will	only	have	to	run	once
and	the	other	command	you	will	use	every	time:

$	docker	login

This	will	prompt	you	for	your	Docker	Hub	credentials	and	the	e-mail	address	you	are
using	on	Docker	Hub:

$	docker	push	<REPOSITORY>:<TAG>

This	will	show	the	progress	of	your	push,	kicking	back	to	the	command	prompt	when
completed.	You	will	then	be	able	to	see	the	image	in	either	the	command-line	search	or	the
web-based	GUI	search.	By	default,	repositories	are	pushed	as	public.	If	you	want	to	set
them	to	private,	you	need	to	log	in	to	the	Docker	Hub	website	and	set	the	repository	to
Make	Private.	You	can	also	mark	images	as	unlisted,	so	they	don’t	show	up	in	the	Docker
searches.	You	can	also	mark	them	as	listed	at	a	later	date	as	well.

Public	repositories
Public	repositories	are	those	on	the	Docker	Hub	that	are	open	to	anyone.	Anyone	can	use
the	docker	pull	command	to	download	an	image	to	their	local	system	and	run	or	build
further	images	from	it.	You	can	also	add	collaborators	to	your	public	repositories	and	users
can	then	push	to	that	repository	or	update	it.	There	are	two	ways	you	can	search	for
images	on	Docker	Hub:

$	docker	search	<TERM>:	You	can	search	for	terms	such	as	ubuntu	or	a	particular
package	you	are	looking	to	deploy	such	as	salt	or	mysql
The	Docker	Hub	website	(https://registry.hub.docker.com/):	A	simple	web-based
search	with	terms	of	your	choosing

https://registry.hub.docker.com/

Private	repositories
Private	repositories	are	just	that	private.	You	can	set	permissions	for	different	users	from
which	the	users	can	push,	as	we	saw	with	public	repositories	and	collaborators,	but	they
can	also	pull	all	the	images	in	that	repository	and	don’t	have	administrative	rights.	Once
you	are	logged	in	to	Docker	Hub,	you	will	be	able	to	see	all	the	private	repositories	that
you	have	permission	to,	both	in	the	web	GUI	and	the	command	line.

Docker	Hub	Enterprise
There	is	also	an	option	for	Docker	Hub	Enterprise	that	allows	you	to	deploy	a	Docker
repository	to	your	local	system	or	cloud	environment.	Now,	there	is	an	option	to	run	your
own	Docker	repository	based	on	a	Docker	image	that	is	managed	by	Docker.	What	Docker
Enterprise	offers	you	is	access	to	the	software,	access	to	updates/patches/security	fixes,
and	support	relating	to	issues	with	the	software.	The	open	source	Docker	repository	image
doesn’t	offer	these	services	at	this	level;	you	are	at	the	mercy	of	when	that	image	will	be
updated	on	Docker	Hub.	Docker	does	offer	various	service	levels	for	the	said	services	that
you	can	purchase	through	them.	They	currently	are	recommending	you	contact	their	sales
department	for	any	and	all	the	pricing.

Environmental	variables
In	this	section,	we	will	cover	the	very	powerful	environmental	variables	or	ENVs,	as	you
will	be	seeing	a	lot	of	them.	You	can	use	environmental	variables	for	a	lot	of	things	from
your	Dockerfile.	If	you	are	familiar	with	coding,	these	will	probably	come	as	secondhand
to	you.	For	others	like	myself,	at	first,	they	may	seem	intimidating;	but	don’t	get
discouraged.	They	will	be	your	best	resource	once	you	get	the	hang	of	them.	They	can	be
used	from	creating	MySQL	users,	passwords,	and	databases	to	setting	application	items
such	as	memory	limits.	We	will	cover	some	examples	that	you	can	use	for	future
reference.

Using	environmental	variables	in	your	Dockerfile
To	use	environmental	variables	in	your	Dockerfile,	you	can	use	the	ENV	instruction.	The
structure	of	the	ENV	instruction	is:

ENV	<key>	<value>

ENV	username	admin

Else,	you	can	always	use	an	equals	sign	between	the	two:

ENV	<key>=<value>

ENV	username=admin

Now,	the	question	is	why	do	they	have	two	and	what	are	the	differences?	With	the	first
example,	you	can	only	set	one	ENV	per	line.	With	the	second	ENV	example,	you	can	set
multiple	environmental	variables	on	the	same	line:

ENV	username=admin	database=db1	tableprefix=pr2_

You	can	view	what	environmental	variables	are	set	on	an	image	by	using	the	docker
inspect	command:

$	docker	inspect	<IMAGE_ID>

You	can	change	their	values	when	you	initialize	the	docker	run	command	by	using	the	-e
or	--env	switch:

$	docker	run	-e	username=superuser	

$	docker	run	--env	username=superuser

Now	that	we	know	how	they	need	to	be	set	in	our	Dockerfile,	let’s	take	a	look	at	them	in
action.	We	will	go	over	two	examples	in	the	next	section	showing	the	Dockerfile.	We	then
set	the	corresponding	scripts	that	will	be	used	in	the	RUN	instructions	to	execute	and
perform	an	action	based	off	the	docker	run	command	that	we	will	use	after	the	image	is
built.

Don’t	get	too	confused;	we	will	list	out	all	the	steps	in	the	upcoming	sections.

Creating	a	MySQL	username,	database,	and	setting
permissions
First,	we	need	a	Dockerfile	that	specifies	the	MySQL	username	and	database	we	want	to
use:

FROM	ubuntu:latest

MAINTAINER	Scott	P.	Gallagher	<someone@email.com>

RUN	apt-get	update	&&	apt-get	install	-y	mysql	mysql-server

ENV	username	mysqluser

ENV	password	pass

ENV	database	db2

ADD	databasesetup.sh	/

RUN	chmod	644	/databasesetup.sh

RUN	"/usr/bin/sh	databasesetup.sh"

EXPOSE	3306

CMD	["/usr/bin/mysqld_safe"]

Now,	we	need	to	create	the	databasesetup.sh	file	that	will	be	added	and	then	called	from
the	RUN	instruction:

#!/bin/bash

/usr/bin/mysqld_safe

		mysql	-uroot	-e	"CREATE	USER	'${username}'@'%'	IDENTIFIED	BY	

'${password}'"

		mysql	-uroot	-e	"GRANT	ALL	PRIVILEGES	ON	'${database}'.*	TO	

'${username}'@'%'	WITH	GRANT	OPTION"

mysqladmin	-uroot	shutdown

Okay,	what	all	have	we	done	so	far?	We	created	our	Dockerfile	and	databasesetup.sh
file	in	a	folder	together.	We	can	then	run	Docker	build	against	the	Dockerfile	and	it	will
create	the	image	we	want	to	use.	Now,	the	last	part	is	to	start	the	container	and	insert	the
values	we	want	to	use.	Note	that	the	values	you	put	in	your	Dockerfile	are	simply	meant	to
be	placeholders.	You	can	execute	your	container	with	the	values	that	are	in	there;	but	this
is	not	recommended	for	production	environments:

$	docker	run	-d	-e	username	<value>	-e	password	<value>	-e	database	<value>	

<REPOSITORY>:<TAG>

<REPOSITORY>	and	<TAG>	will	be	the	names	you	specified	when	you	used	the	docker
build	command.

This	should	be	a	good	boiler	plate	to	use	when	you	want	to	set	something	in	a	database.
Next,	let’s	take	a	look	at	an	example	where	we	want	to	set	memory	limits	on	a	file	that
might	already	exist	(that	we	add	to	the	image).

Adding	a	file	to	the	system
For	this	example,	we	are	going	to	add	our	memcached	configuration	file	to	the	system
and,	instead	of	specifying	an	actual	value	in	the	configuration	file,	we	are	going	to	set	it	to
a	variable.	This	will	allow	us	to	utilize	that	variable	in	our	Dockerfile.	After	we	have	built
the	image,	we	will	be	able	to	give	that	variable	a	value	with	the	-e	switch.	When	the
container	starts	up	and	starts	up	the	memcached	service,	it	will	set	the	value	for	that
memory	limit	to	the	stated	value.

First,	we	need	our	Dockerfile:

FROM	ubuntu:latest

MAINTAINER	Scott	P.	Gallagher	<someone@email.com>

RUN	apt-get	update	&&	apt-get	install	-y	memcached

ADD	memcached	/etc/default/

ENV	MEMCACHESIZE	2048

EXPOSE	11211

CMD	["/usr/bin/memcached	-u	root"]

This	is	the	memcached	configuration	file	(named	memcached)	that	will	be	added	to	the
system:

#	Set	this	to	no	to	disable	memcached.

ENABLE_MEMCACHED=yes

CACHESIZE=$MEMCACHESIZE

After	the	build	is	completed,	we	can	run	our	image	as	follows:

$	docker	run	-d	-e	MEMCACHESIZE	1024	<REPOSITORY>:<TAG>

Again,	set	<REPOSITORY>	and	<TAG>	to	the	values	used	while	running	the	docker	build
command.

Now,	we	have	seen	how	to	build	our	own	images	from	various	methods.	We	took	a	look	at
where	we	can	store	our	images	once	we	are	done	building	them.	And	we	just	took	a	look
at	environmental	variables	and	two	different	ways	of	using	them.	Lastly,	for	this	chapter,
we	will	be	looking	at	Docker	volumes.

Docker	volumes
In	the	last	section	of	this	chapter,	we	will	cover	container	storage	or	Docker	volumes	as
they	are	referred	to.	We	will	take	a	look	at	data	volumes	and	data	volume	containers,	the
differences	between	the	two,	and	when	to	use	which	one.	Lastly,	we	will	also	look	at	the
best	practices	for	Docker	volumes.	This	is	the	data	that	we	want	to	be	persistent	or	shared
between	containers.	We	need	to	remember	that,	by	default,	when	you	exit	a	running
container,	the	data	isn’t	saved.	When	you	start	the	container	backup,	it	will	start	in	its
initial	state,	so	Docker	volumes	become	incredibly	important	in	areas	like	databases	or
filesystems.

Another	switch	that	we	will	be	covering	is	the	-v	or	--volume=	switch.	This	switch
allows	you	to	provide	a	volume	to	the	Docker	container	that	you	wish	contained	persistent
data.	Remember	that,	when	you	start	a	Docker	container,	the	data	inside	doesn’t	remain
persistent	unless	you	save	it	(or	commit	in	Docker	terms).	The	volumes	switch	allows	you
to	have	persistent	data	inside	your	Docker	container	such	that	even	if	the	container	is
stopped	or	deleted,	the	data	remains	intact.	Let’s	take	a	look	at	the	two	ways	we	can
provide	persistent	volumes	to	containers:

Data	volumes
Data	volume	containers

Data	volumes
The	first	volume	storage	we	will	look	at	is	data	volumes.	Data	volumes	are	mounted
inside	the	container	when	you	run	the	container.	However,	as	stated	before,	the	volume	is
not	tied	to	the	container	in	events	when	it	stops,	is	killed,	or	is	deleted.	Let’s	see	how	we
first	mount	a	volume	inside	a	container;	then	we	can	dive	a	little	deeper:

$	docker	run	-it	-v	/tmp	ubuntu	/bin/bash

We	are	simply	running	an	ubuntu	container	shelled	into	/bin/bash,	so	we	can	see	the
/tmp	volume	mounted.	This	will	create	a	new	volume	inside	the	container	at	the	specified
path.	Essentially,	it	overwrites	or	hides	the	folder	inside	the	container	if	it	does	exist;	and
in	our	case,	/tmp	already	exists,	so	any	data	the	container	might	have	had	inside	it	is	no
longer	there	and	/tmp	will	now	be	an	empty	folder	or	volume.

You	can	also	use	multiple	-v	volume	switches	on	a	single	docker	run	line:

$	docker	run	-it	-v	/tmp	-v	/data	ubuntu	/bin/bash

It	is	nice	to	use	the	-it	switch	sometimes,	so	you	can	actually	see	how	this	works.	In	later
times,	you	will	want	to	be	running	your	containers	with	the	-d	switch,	so	they	are	not
running	the	foreground.

Now,	you	can	also	mount	the	directory	from	the	local	machine	the	Docker	containers	are
running	on	into	the	Docker	container.	To	do	so,	you	can	use	the	-v	switch	again,	but	you
need	to	add	:/<path>	to	the	path:

$	docker	run	-it	-v	/tmp:/data	ubuntu	/bin/bash

This	will	mount	the	contents	of	/tmp	(on	the	Docker	host)	to	the	/data	directory	inside	the
now	running	Docker	container.	If	you	were	to	look	at	the	contents	of	/tmp	on	the	Docker
host	and	the	contents	of	/data	on	the	running	Docker	container,	you	will	see	that	they
match.	Any	changes	you	make	inside	the	Docker	containers	/data	folder	will	be	reflected
in	the	Docker	host’s	/tmp	folder.

By	default,	when	you	mount	a	directory	from	a	Docker	host	to	a	Docker	container,	it	will
mount	in	the	read/write	mode.	There	is	a	way	you	can	mount	it	in	the	read-only	mode	as
well.	Again,	using	the	-v	switch,	we	will	just	append	:ro	to	our	volume	instruction:

$	docker	run	-it	-v	/tmp:/data:ro	ubuntu	/bin/bash

You	can	locate	one	or	several	volumes	on	a	Docker	container	by	using	the	docker
inspect	container:

$	docker	inspect	<CONTAINER_ID>

The	line(s)	you	will	be	looking	for	will	resemble	the	following:

				"Volumes":	{

								"/tmp":	

"/mnt/sda1/var/lib/docker/volumes/5c4e1bff167ea1479dd9f33f74aeaf5d7f9f4d252

d096e95e87befdb9be23ea0/_data"

Remember,	you	can	get	the	container	ID	by	running:

$	docker	ps

The	preceding	output	shows	how	the	docker	inspect	command	actually	works.	It	is
mounting	/tmp	inside	the	container;	but	where	does	the	data	actually	live?	The	data
actually	lives	in	the	machine	your	container	runs	on	in	the	path	specified.	If	you	were	to
populate	data	inside	the	container	in	the	/tmp	folder	and	then	navigate	from	the	machine
running	the	Docker	container	to	the
/mnt/sda1/var/lib/docker/volumes/5c4e1bff167ea1479dd9f33f74aeaf5d7f9f4d252d096e95e87befdb9be23ea0/_data

directory,	the	data	would	be	there.	Now,	we	will	go	into	the	details	of	how	to	manage	data
and	move	it	around	between	Docker	hosts	in	the	next	chapter.

On	a	side	note,	you	can	also	use	the	VOLUME	instruction	inside	the	Dockerfile	to	specify
volumes	for	a	container.	It	would	look	similar	to	this:

FROM	ubuntu:latest

MAINTAINER	Scott	P.	Gallagher	<someone@email.com>

VOLUME	["/datastore"]

You	can	also	use	the	-v	flag	to	mount	a	single	file	into	a	container.	So,	the	discussion	isn’t
just	about	directories,	it’s	about	files	as	well.	Now,	we	have	seen	how	we	can	use	Volumes
to	create	persistent	data	that	is	stored	inside	containers;	but	what	other	options	do	we	have
with	regards	to	using	Volumes?	We	can	use	data	volume	containers	too.

Data	volume	containers
Data	volume	containers	come	in	handy	when	you	have	data	that	you	want	to	share
between	containers.	There	is	another	flag	we	can	utilize	on	the	docker	run	command.
Let’s	take	a	look	at	the	--volumes-from	switch.

What	we	will	be	doing	is	using	the	-v	switch	on	one	of	our	Docker	containers.	Then,	our
other	containers	will	be	using	the	--volumes-from	switch	to	mount	the	data	to	the
containers	that	they	run.

First	step,	let’s	fire	up	a	container	that	has	a	data	volume	we	can	add	to	other	containers.

For	this	example,	we	will	be	using	the	busybox	image	since	it’s	very	small	in	size.	We	are
also	going	to	use	the	--name	switch	to	give	the	container	a	name	that	can	be	used	later:

$	docker	run	-it	-v	/data	--name	datavolume	busybox	/bin/sh

We	are	going	to	create	a	volume	and	mount	it	in	/data	inside	our	container.	We	have	also
named	our	container	datavolume	so	that	we	can	leverage	in	our	--volumes-from	switch.
While	we’re	still	inside	the	shell,	let’s	add	some	data	to	the	/data	directory.	So,	when	we
mount	it	on	the	other	systems,	we	know	it’s	the	right	one:

$	touch	/data/correctvolume

This	will	create	the	correctvolume	file	inside	the	/data	directory	in	the	busybox
container	we	are	running.

Now,	we	need	to	connect	some	containers	to	this	/data	directory	in	the	container.	This	is
where	the	name	we	gave	it	will	come	in	handy:

$	docker	run	-it	--volumes-from	datavolume	busybox	/bin/sh

If	we	now	perform	ls	/data,	we	should	see	the	correctvolume	file	that	we	created
earlier.

Tip
Something	to	note	here	is	that	when	you	use	the	--volumes-from	switch,	the	directory
will	be	mounted	in	the	same	place	on	both	the	containers.	You	can	also	specify	multiple	--
volumes-from	switches	on	a	single	command	line.

There	will	come	a	time	when	you	run	into	the	following	error:

$	docker	run	-it	-v	/data	--name	datavolume	busybox	/bin/bash

Error	response	from	daemon:	Conflict.	The	name	"data"	is	already	in	use	by	

container	82af96592008.	You	have	to	delete	(or	rename)	that	container	to	be	

able	to	reuse	that	name.

You	can	remove	the	volume	if	you	want,	but	USE	IT	CAUTIOUSLY,	as	once	you
remove	the	volume,	the	data	inside	that	volume	will	go	away	with	it:

$	docker	rm	-v	data

You	can	also	use	this	to	clean	up	the	volumes	that	you	no	longer	want	on	the	system.	But

again,	use	extreme	caution	as	stated	before	that	once	a	volume	is	gone,	the	data	will	go
with	it.

Docker	volume	backups
It	is	important	to	remember	that	while	your	containers	are	immutable,	the	data	inside	your
volumes	is	mutable.	It	changes,	while	the	items	inside	your	Docker	containers	do	not.	For
this	reason,	you	need	to	make	sure	that	you	are	backing	up	your	volumes	in	some	manner.

Volumes	are	stored	on	the	system	at	/var/lib/docker/volumes/.

The	key	to	remember	here	is	that	the	volumes	are	not	named	the	way	you	named	them	in
this	directory.	They	are	given	unique	hash	values,	so	understanding	what	content	is	in
them	can	be	confusing	if	you	are	just	looking	at	their	name.	If	you	are	looking	at
managing	volumes	at	this	point,	I	would	highly	recommend	this	image	from	the	Docker
Hub:	https://hub.docker.com/r/cpuguy83/docker-volumes/.

This	container	(once	built)	will	allow	you	to	list	volumes	as	well	as	export	them	into	a
tarred	up	file.

https://hub.docker.com/r/cpuguy83/docker-volumes/

Summary
In	this	chapter,	we	have	looked	at	an	in-depth	view	of	the	Dockerfile	and	the	best	practices
to	write	them,	the	docker	build	command	and	the	various	ways	we	can	build	the	said
containers,	and	the	various	Docker	Hubs	to	store	the	containers	you	have	built.	We	also
learned	about	the	environmental	variables	that	you	can	use	to	pass	from	your	Dockerfile	to
the	various	items	inside	your	containers	and	Docker	volumes	to	store	persistent	or	shared
data.

Let’s	do	a	quick	review	of	all	the	commands	we	have	learned	in	this	chapter.

docker	inspect:	To	inspect	a	running	container
docker	build:	To	build	a	new	image	from	a	Dockerfile
docker	login:	To	login	to	the	Docker	Hub
docker	commit:	To	commit	changes	to	a	running	container
docker	search:	To	search	the	Docker	Hub	from	the	command	line
docker	push:	To	push	a	new	image	or	changes	to	existing	changes	to	the	Docker
Hub
docker	run	-e:	To	run	a	new	container	and	specify	an	environmental	variable	value
docker	run	-v:	To	run	a	Docker	container	and	mount	a	persistent	volume	inside	it
docker	run	--volumes-from:	To	mount	a	volume	from	an	already	running	container
inside	this	new	container

In	the	next	chapter,	we	will	be	taking	a	more	in-depth	look	at	the	various	Docker	Hubs	and
a	good	look	at	web	hooks	that	you	can	use	to	do	automated	builds.	We	will	cover	all	the
pieces	required	for	these	web	hooks	as	well,	and	go	through	the	process	step	by	step.	We
will	also	look	at	the	Docker	Registry	that	is	open	sourced,	so	you	can	roll	your	own	place
to	store	images	without	the	fees	of	Docker	Enterprise.

Chapter	3.	Container	Image	Storage
In	the	third	chapter	of	the	book,	we	will	cover	the	places	you	store	your	containers,	such
as	Docker	Hub	and	Docker	Hub	Enterprises.	We	will	also	cover	Docker	Registry	that	you
can	use	to	run	your	own	local	storage	for	the	Docker	containers.	We	will	review	the
differences	between	them	all	and	when	and	how	to	use	each	of	them.	It	will	also	cover
how	to	set	up	automated	builds	using	web	hooks	as	well	as	the	pieces	that	are	all	required
to	set	them	up.	Lastly,	we	will	run	through	an	example	of	how	to	set	up	your	own	Docker
Registry.	Let’s	take	a	quick	look	at	the	topics	we	will	be	covering	in	this	chapter:

Docker	Hub
Docker	Hub	Enterprise
Docker	Registry
Automated	builds

Docker	Hub
We	will	be	covering	Docker	Hub	in	a	little	more	detail	than	what	we	looked	at	in	the
previous	chapter.	In	Chapter	2,	Up	and	Running,	we	just	glazed	over	Docker	Hub	as	a
storage	location	to	push	our	images	to.	In	this	section,	we	will	focus	on	that	Docker	Hub,
which	is	a	free	public	option,	but	also	has	a	private	option	that	you	can	use	to	secure	your
images.	We	will	focus	on	the	web	aspect	of	Docker	Hub	and	the	management	you	can	do
there.

The	login	page	is	like	the	one	shown	in	the	following	screenshot:

Dashboard
After	logging	into	the	Docker	Hub,	you	will	be	taken	to	the	following	landing	page.	This
page	is	known	as	the	Dashboard	of	Docker	Hub.

From	here,	you	can	get	to	all	the	other	subpages	of	Docker	Hub.	In	the	upcoming	sections,
we	will	go	through	everything	you	see	on	the	dashboard,	starting	with	the	dark	blue	bar
you	have	on	the	top.

Explore	the	repositories	page
The	following	is	the	screenshot	of	the	Explore	link	you	see	next	to	Dashboard	at	the	top
of	the	screen:

As	you	can	see	in	the	screenshot,	this	is	a	link	to	show	you	all	the	official	repositories	that
Docker	has	to	offer.	Official	repositories	are	those	that	come	directly	from	Docker	or	from
the	company	responsible	for	the	product.	They	are	regularly	updated	and	patched	as
needed.

Organizations
Organizations	are	those	that	you	have	either	created	or	have	been	added	to.
Organizations	allow	you	to	layer	on	control,	for	say,	a	project	that	multiple	people	are
collaborating	on.

The	organization	gets	its	own	setting	such	as	whether	to	store	repositories	as	public	or
private	by	default,	changing	plans	that	will	allow	for	different	amounts	of	private
repositories,	and	separate	repositories	all	together	from	the	ones	you	or	others	have.

You	can	also	access	or	switch	between	accounts	or	organizations	from	the	Dashboard	just
below	the	Docker	log,	where	you	will	typically	see	your	username	when	you	log	in.

This	is	a	drop-down	list,	where	you	can	switch	between	all	the	organizations	you	belong
to.

The	Create	menu
The	Create	menu	is	the	new	item	along	the	top	bar	of	the	Dashboard.	From	this	drop-
down	menu,	you	can	perform	three	actions:

Create	repository
Create	automated	build
Create	organization

A	pictorial	representation	is	shown	in	the	following	screenshot:

Settings
Probably,	the	first	section	everyone	jumps	to	once	they	have	created	an	account	on	the
Docker	Hub—the	Settings	page.	I	know,	that’s	what	I	did	at	least.

The	Account	Settings	page	can	be	found	under	the	drop-down	menu	that	is	accessed	in
the	upper-right	corner	of	the	dashboard	on	selecting	Settings.

The	page	allows	you	to	set	up	your	public	profile;	change	your	password;	see	what
organization	you	belong	to,	the	subscriptions	for	e-mail	updates	you	belong	to,	what
specific	notifications	you	would	like	to	receive,	what	authorized	services	have	access	to
your	information,	linked	accounts	(such	as	your	GitHub	or	Bitbucket	accounts);	as	well	as
your	enterprise	licenses,	billing,	and	global	settings.	The	only	global	setting	as	of	now	is
the	choice	between	having	your	repositories	default	to	public	or	private	upon	creation.	The
default	is	to	create	them	as	public	repositories.

The	Stars	page
Below	the	dark	blue	bar	at	the	top	of	the	Dashboard	page	are	two	more	areas	that	are	yet
to	be	covered.	The	first,	the	Stars	page,	allows	you	to	see	what	repositories	you	yourself
have	starred.

This	is	very	useful	if	you	come	across	some	repositories	that	you	prefer	to	use	and	want	to
access	them	to	see	whether	they	have	been	updated	recently	or	whether	any	other	changes
have	occurred	on	these	repositories.

The	second	is	a	new	setting	in	the	new	version	of	Docker	Hub	called	Contributed.	In	this
section,	there	will	be	a	list	of	repositories	you	have	contributed	to	outside	of	the	ones
within	your	Repositories	list.

Docker	Hub	Enterprise
Docker	Hub	Enterprise,	as	it	is	currently	known,	will	eventually	be	called	Docker
Subscription.	We	will	focus	on	Docker	Subscription,	as	it’s	the	new	and	shiny	piece.	We
will	view	the	differences	between	Docker	Hub	and	Docker	Subscription	(as	we	will	call	it
moving	forward)	and	view	the	options	to	deploy	Docker	Subscription.

Comparing	Docker	Hub	to	Docker	Subscription
Let’s	first	start	off	by	comparing	Docker	Hub	to	Docker	Subscription	and	see	why	each	is
unique	and	what	purpose	each	serves:

Docker	Hub

Shareable	image,	but	it	can	be	private
No	hassle	of	self-hosting
Free	(except	for	a	certain	number	of	private	images)

Docker	Subscription

Integrated	into	your	authentication	services	(that	is,	AD/LDAP)
Deployed	on	your	own	infrastructure	(or	cloud)
Commercial	support

Docker	Subscription	for	server
Docker	Subscription	for	server	allows	you	to	deploy	both	Docker	Trusted	Registry	as	well
as	Docker	Engine	on	the	infrastructure	that	you	manage.	Docker	Trusted	Registry	is	the
location	where	you	store	the	Docker	images	that	you	have	created.	You	can	set	these	up	to
be	internal	only	or	share	them	out	publicly	as	well.	Docker	Subscription	gives	you	all	the
benefits	of	running	your	own	dedicated	Docker	hosted	registry	with	the	added	benefits	of
getting	support	in	case	you	need	it.

Docker	Subscription	for	cloud
As	we	saw	in	the	previous	section,	we	can	also	deploy	Docker	Subscription	to	a	cloud
provider	if	we	wish.	This	allows	us	to	leverage	our	existing	cloud	environments	without
having	to	roll	our	own	server	infrastructure	up	to	host	our	Docker	images.

The	setup	is	the	same	as	we	reviewed	in	the	previous	section;	but	this	time,	we	will	be
targeting	our	existing	cloud	environment	instead.

Docker	Registry
In	this	section,	we	will	be	looking	at	Docker	Registry.	Docker	Registry	is	an	open	source
application	that	you	can	run	anywhere	you	please	and	store	your	Docker	image	in.	We	will
look	at	the	comparison	between	Docker	Registry	and	Docker	Hub	and	how	to	choose
among	the	two.	By	the	end	of	the	section,	you	will	learn	how	to	run	your	own	Docker
Registry	and	see	whether	it’s	a	true	fit	for	you.

An	overview	of	Docker	Registry
Docker	Registry,	as	stated	earlier,	is	an	open	source	application	that	you	can	utilize	to
store	your	Docker	images	on	a	platform	of	your	choice.	This	allows	you	to	keep	them
100%	private	if	you	wish	or	share	them	as	needed.	The	registry	can	be	found	at
https://docs.docker.com/registry/.

This	will	run	you	through	the	setup	and	the	steps	to	follow	while	pushing	images	to
Docker	Registry	compared	to	Docker	Hub.	Docker	Registry	makes	a	lot	of	sense	if	you
want	to	roll	your	own	registry	without	having	to	pay	for	all	the	private	features	of	Docker
Hub.	Next,	let’s	take	a	look	at	some	comparisons	between	Docker	Hub	and	Docker
Registry,	so	you	can	make	an	educated	decision	as	to	which	platform	to	choose	to	store
your	images.

https://docs.docker.com/registry/

Docker	Registry	versus	Docker	Hub
Docker	Registry	will	allow	you	to	do	the	following:

Host	and	manage	your	own	registry	from	which	you	can	serve	all	the	repositories	as
private,	public,	or	a	mix	between	the	two
Scale	the	registry	as	needed	based	on	how	many	images	you	host	or	how	many	pull
requests	you	are	serving	out
All	are	command-line-based	for	those	that	live	on	the	command	line

Docker	Hub	will	allow	you	to:

Get	a	GUI-based	interface	that	you	can	use	to	manage	your	images
A	location	already	set	up	on	the	cloud	that	is	ready	to	handle	public	and/or	private
images
Peace	of	mind	of	not	having	to	manage	a	server	that	is	hosting	all	your	images

Automated	builds
In	this	section,	we	will	look	at	automated	builds.	Automated	builds	are	those	that	you	can
link	to	your	GitHub	or	Bitbucket	account(s)	and,	as	you	update	the	code	in	your	code
repository,	you	can	have	the	image	automatically	built	on	Docker	Hub.	We	will	look	at	all
the	pieces	required	to	do	so	and,	by	the	end,	you’ll	be	automating	all	your	builds.

Setting	up	your	code
The	first	step	to	create	automated	builds	is	to	set	up	your	GitHub	or	Bitbucket	code.	These
are	the	two	options	you	have	while	selecting	where	to	store	your	code.	For	our	example,	I
will	be	using	GitHub;	but	the	setup	will	be	the	same	for	GitHub	and	Bitbucket.

First,	we	set	up	our	GitHub	code	that	contains	just	a	simple	README	file	that	we	will	edit
for	our	purpose.	This	file	could	be	anything	as	far	as	a	script	or	even	multiple	files	that
you	want	to	manipulate	for	your	automated	builds.	One	key	thing	is	that	we	can’t	just
leave	the	README	file	alone.	One	key	piece	is	that	a	Dockerfile	is	required	to	do	the	builds
when	you	want	it	to	for	them	to	be	automated.	Next,	we	need	to	set	up	the	link	between
our	code	and	Docker	Hub.

Setting	up	Docker	Hub
On	Docker	Hub,	we	are	going	to	use	the	Create	drop-down	menu	and	select	Create
Automated	Build.	After	selecting	it,	we	will	be	taken	to	a	screen	that	will	show	you	the
accounts	you	have	linked	to	either	GitHub	or	Bitbucket.	You	then	need	to	search	and
select	the	repository	from	either	of	the	locations	you	want	to	create	the	automated	build
from.	This	will	essentially	create	a	web	hook	that	when	a	commit	is	done	on	a	selected
code	repository,	then	a	new	build	will	be	created	on	Docker	Hub.

After	you	select	the	repository	you	would	like	to	use,	you	will	be	taken	to	a	screen	similar
to	the	following	one:

For	the	most	part,	the	defaults	will	be	used	by	most.	You	can	select	a	different	branch	if

you	want	to	use	one,	say	a	testing	branch	if	you	use	one	before	the	code	may	go	to	the
master	branch.	The	one	thing	that	will	not	be	filled	out,	but	is	required,	is	the	description
field.	You	must	enter	something	here	or	you	will	not	be	able	to	continue	past	this	page.

Upon	clicking	Create,	you	will	be	taken	to	a	screen	similar	to	the	next	screenshot:

On	this	screen,	you	can	see	a	lot	of	information	on	the	automated	build	you	have	set	up.
Information	such	as	tags,	the	Dockerfile	in	the	code	repository,	build	details,	build
settings,	collaborators	on	the	code,	web	hooks,	and	settings	that	include	making	the
repository	public	or	private	and	deleting	the	automated	build	repository	as	well.

Putting	all	the	pieces	together
So,	let’s	take	a	run	at	doing	a	Docker	automated	build	and	see	what	happens	when	we
have	all	the	pieces	in	place	and	exactly	what	we	have	to	do	to	kick	off	this	automated
build	and	be	able	to	create	our	own	magic:

1.	 Update	the	code	or	any	file	inside	your	GitHub	or	Bitbucket	repository.
2.	 Upon	committing	the	update,	the	automated	build	will	be	kicked	off	and	logged	in

Docker	Hub	for	that	automated	repository.

Creating	your	own	registry
To	create	a	registry	of	your	own,	use	the	following	command:

$	docker-machine	create	--driver	vmwarefusion	registry

Creating	SSH	key…

Creating	VM…

Starting	registry…

Waiting	for	VM	to	come	online…

To	see	how	to	connect	Docker	to	this	machine,	run	the	following	command:

$	docker-machine	env	registry

export	DOCKER_TLS_VERIFY="1"

export	DOCKER_HOST="tcp://172.16.9.142:2376"

export	

DOCKER_CERT_PATH="/Users/scottpgallagher/.docker/machine/machines/registry"

export	DOCKER_MACHINE_NAME="registry"

#	Run	this	command	to	configure	your	shell:

#	eval	"$(docker-machine	env	registry)"

$	eval	"$(docker-machine	env	registry)"

$	docker	pull	registry

$	docker	run	-p	5000:5000	-v	<HOST_DIR>:/tmp/registry-dev	registry:2

This	will	specify	to	use	version	2	of	the	registry.

For	AWS	(as	shown	in	example	from	https://hub.docker.com/_/registry/):

$	docker	run	\

									-e	SETTINGS_FLAVOR=s3	\

									-e	AWS_BUCKET=acme-docker	\

									-e	STORAGE_PATH=/registry	\

									-e	AWS_KEY=AKIAHSHB43HS3J92MXZ	\

									-e	AWS_SECRET=xdDowwlK7TJajV1Y7EoOZrmuPEJlHYcNP2k4j49T	\

									-e	SEARCH_BACKEND=sqlalchemy	\

									-p	5000:5000	\

									registry:2

Again,	this	will	use	version	2	of	the	self-hosted	registry.

Then,	you	need	to	modify	your	Docker	startups	to	point	to	the	newly	set	up	registry.	Add
the	following	line	to	the	Docker	startup	in	the	/etc/init.d/docker	file:

-H	tcp://127.0.0.1:2375	-H	unix:///var/run/docker.sock	--insecure-registry	

<REGISTRY_HOSTNAME>:5000

Most	of	these	settings	might	already	be	there	and	you	might	only	need	to	add	--
insecure-registry	<REGISTRY_HOSTNAME>:5000:

To	access	this	file,	you	will	need	to	use	docker-machine:

$	docker-machine	ssh	<docker-host_name>

Now,	you	can	pull	a	registry	from	the	public	Docker	Hub	as	follows:

https://hub.docker.com/_/registry/

$	docker	pull	debian

Tag	it,	so	when	we	do	a	push,	it	will	go	to	the	registry	we	set	up:

$	docker	tag	debian	<REGISTRY_URL>:5000/debian

Then,	we	can	push	it	to	our	registry:

$	docker	push	<REGISTRY_URL>:5000/debian

We	can	also	pull	it	for	any	future	clients	(or	after	any	updates	we	have	pushed	for	it):

$	docker	pull	<REGISTRY_URL>:5000/debian

Summary
In	this	chapter,	we	dove	deep	into	Docker	Hub	and	also	reviewed	the	new	shiny	Docker
Subscription	as	well	as	the	self-hosted	Docker	Registry.	We	have	gone	through	the
extensive	review	of	each	of	them.	You	learned	of	the	differences	between	them	all	and
how	to	utilize	each	one.	In	this	chapter,	we	also	looked	deep	into	setting	up	automated
builds.	We	took	a	look	at	how	to	set	up	your	own	Docker	Hub	Registry.	We	have
encompassed	a	lot	in	this	chapter	and	I	hope	you	have	learned	a	lot	and	will	like	to	put	it
all	into	good	use.

In	the	next	chapter,	we	will	take	a	look	at	container	management	and	how	to	manage	all
the	containers	that	we	create	locally	on	our	servers	and	in	the	cloud	as	well.	We	will	also
take	a	look	at	managing	the	images	that	keep	piling	up.

Chapter	4.	Managing	Containers
In	this	chapter,	you	will	learn	how	to	manage	your	containers	and	the	different	ways	you
can	go	about	doing	so.	This	chapter	will	focus	on	the	command	line	(as	other	chapters	will
cover	other	tools)	to	help	lay	the	groundwork	for	understanding	what	the	GUI-based	apps
are	doing	in	the	background.	Sometimes,	the	command	line	is	the	best	tool	to	help
troubleshoot	containers	as	well!	Troubleshooting	containers	will	be	covered	more	in	depth
in	Chapter	10,	Shipyard.	Apart	from	managing	the	containers,	we	will	also	cover	topics	on
how	to	manage	your	images.

To	be	specific,	the	following	topics	will	be	covered:

Docker	commands:	We	will	cover	the	Docker	commands	you	can	use	to	manage
your	containers
Using	existing	suite:	We	will	cover	it	using	your	existing	management	suites	such	as
Chef	or	Puppet,	plus	some	others	to	manage	your	containers
Docker	Swarm:	You	will	have	a	brief	overview	of	Docker	Swarm,	which	we	will	be
covering	more	in	depth	in	a	later	chapter

The	Docker	commands
In	this	section,	we	will	cover	some	Docker	commands	that	you	can	use	to	manage	your
containers.	These	commands	will	range	from	looking	at	the	status	of	containers	and
viewing	what	is	going	on	inside	the	containers	that	are	running	to	executing	commands
against	the	running	containers.	This	will	lay	the	groundwork	for	the	GUI	apps	that	we	will
be	looking	at	in	the	later	chapters.	I	believe	it	is	important	to	understand	what	is	going	on
behind	the	curtains	when	you	run	the	GUI	pieces.

docker	attach
We	will	first	take	a	look	at	the	docker	attach	command.	With	this	command,	you	can
connect	to	the	standard	input	(STDIN)	of	the	container.	We	have	a	running	container
named	reposado.	Let’s	see	how	do	we	attach	to	it	to	see	the	STDIN:

$	docker	attach	reposado

																																																																								

192.168.59.3	-	-	[29/Jul/2015	13:40:15]	"GET	/	HTTP/1.1"	200	-

192.168.59.3	-	-	[29/Jul/2015	13:40:15]	"GET	/products	HTTP/1.1"	200	-

192.168.59.3	-	-	[29/Jul/2015	13:40:17]	"GET	/	HTTP/1.1"	200	-

192.168.59.3	-	-	[29/Jul/2015	13:40:17]	"GET	/static/css/bootstrap.min.css	

HTTP/1.1"	304	-

192.168.59.3	-	-	[29/Jul/2015	13:40:17]	"GET	/static/css/bootstrap-

responsive.min.css	HTTP/1.1"	304	-

192.168.59.3	-	-	[29/Jul/2015	13:40:17]	"GET	/static/css/backgrid.min.css	

HTTP/1.1"	304	-

192.168.59.3	-	-	[29/Jul/2015	13:40:17]	"GET	/static/css/backgrid-

paginator.min.css	HTTP/1.1"	304	-

192.168.59.3	-	-	[29/Jul/2015	13:40:17]	"GET	/static/js/json2.js	HTTP/1.1"	

304	-

192.168.59.3	-	-	[29/Jul/2015	13:40:17]	"GET	/static/js/jquery.min.js	

HTTP/1.1"	304	-

192.168.59.3	-	-	[29/Jul/2015	13:40:17]	"GET	/static/js/underscore-min.js	

HTTP/1.1"	304	-

192.168.59.3	-	-	[29/Jul/2015	13:40:17]	"GET	/static/js/backbone-min.js	

HTTP/1.1"	304	-

192.168.59.3	-	-	[29/Jul/2015	13:40:17]	"GET	

/static/js/backbone.wreqr.min.js	HTTP/1.1"	304	-

192.168.59.3	-	-	[29/Jul/2015	13:40:17]	"GET	

/static/js/backbone.babysitter.min.js	HTTP/1.1"	304	-

192.168.59.3	-	-	[29/Jul/2015	13:40:17]	"GET	

/static/js/backbone.marionette.min.js	HTTP/1.1"	304	-

192.168.59.3	-	-	[29/Jul/2015	13:40:17]	"GET	/static/js/backbone-

pageable.min.js	HTTP/1.1"	304	-

192.168.59.3	-	-	[29/Jul/2015	13:40:17]	"GET	/static/js/backgrid.min.js	

HTTP/1.1"	304	-

192.168.59.3	-	-	[29/Jul/2015	13:40:17]	"GET	/static/js/backgrid-

paginator.min.js	HTTP/1.1"	304	-

192.168.59.3	-	-	[29/Jul/2015	13:40:17]	"GET	/static/js/margarita.js	

HTTP/1.1"	304	-

192.168.59.3	-	-	[29/Jul/2015	13:40:17]	"GET	/static/js/bootstrap.min.js	

HTTP/1.1"	304	-

192.168.59.3	-	-	[29/Jul/2015	13:40:17]	"GET	/products	HTTP/1.1"	200	-

192.168.59.3	-	-	[29/Jul/2015	13:40:18]	"GET	/static/img/glyphicons-

halflings-white.png	HTTP/1.1"	304	-

In	the	previous	example,	we	used	the	docker	attach	command	to	attach	to	the	container
named	reposado.	We	can	see	the	output	as	it	happens	in	the	container.	You	will	stay
attached	to	the	container	until	you	close	your	terminal	window.	This	can	help	you
troubleshoot	error	messages	that	might	display	when	someone	is	trying	to	access	the
application	that	the	container	is	serving	up.	It	can	also	help	track	where	the	traffic	might
be	coming	from	based	on	the	output	displayed.

docker	diff
The	next	command	is	the	docker	diff	command.	With	this	command,	we	can	view	the
changes	that	were	made	to	a	given	container.	We	will	again	use	the	reposado	container
and	take	a	look	at	the	changes	that	were	made	to	it:

$	docker	diff	reposado

C	/Volumes

A	/Volumes/reposado

A	/Volumes/reposado/data

A	/Volumes/reposado/data/html

C	/opt

C	/opt/reposado

C	/opt/reposado/code

C	/opt/reposado/code/reposadolib

A	/opt/reposado/code/reposadolib/__init__.pyc

A	/opt/reposado/code/reposadolib/reposadocommon.pyc

We	can	see	that	the	command	output	is	sorted	into	two	columns.	The	first	column	will
show	us	whether	things	changed	(C),	were	added	(A),	or	were	deleted	(D).	In	the	earlier
example,	we	don’t	have	anything	that	was	deleted,	so	we	don’t	see	any	Ds	in	the	first
column.	However,	we	do	see	that	some	items	were	changed	as	well	as	added.	This	can	be
helpful	when	you	want	to	see	what	items	might	have	been	manipulated	on	the	image	that
you	are	using.

docker	exec
Next,	let’s	take	a	look	at	one	of	the	more	recent	commands	that	was	introduced	in	Docker.
This	is	one	of	the	more	powerful	and	more	commonly	used	commands	in	the	Docker
command	set.	With	the	docker	exec	command,	you	can	execute	commands	against	your
containers	without	the	need	to	connect	through	something	like	SSH,	like	we	would
typically	do.

There	are	two	switches	that	are	used:

docker	exec	-d

docker	exec	-i

What	is	the	difference	between	the	two?	The	difference	is	one	will	allow	you	to	view	the
output	of	the	command	you	are	executing	against	the	container	(docker	exec	-i).	The
other	will	run	it	as	a	daemon	in	the	background	and	not	display	any	output	(docker	exec
-d).	After	you	execute	this	command,	you	can	view	the	items	that	have	changed	by	using
the	docker	diff	command	we	went	over	previously.

docker	history
The	docker	history	command	will	give	you	a	full-blown	history	of	everything	that
occurred	on	the	image	such	as	when	and	what	created	it	as	well	as	its	size.	As	we	can	see
in	the	following	example,	we	ran	the	docker	history	command	on	the	reposado	image
we	created.	We	can	see	all	the	activity	that	went	on	for	this	image.	We	can	see	the	activity
that	started	6	weeks	ago,	21	hours	ago,	and	then	4	hours	ago.	We	can	see	the	Git	cloning,
pip	commands	to	install	Python-related	items,	and	symbolic	links	being	created.	We	can
see	the	size	increase	on	running	certain	commands:

$	docker	history	scottpgallagher/reposado							

																																																								

IMAGE															CREATED													CREATED	BY																																																														

SIZE																COMMENT

b61a1a023244								4	hours	ago									/bin/sh	-c	#(nop)	CMD	["/bin/sh"	"-

c"	"python			 							0	B																	

29dc8c2be431								4	hours	ago									/bin/sh	-c	#(nop)	EXPOSE	8089/tcp																						

0	B																	

a02115b630cb								4	hours	ago									/bin/sh	-c	ln	-s	

/opt/reposado/code/preferenc									36	B																

6b568cd34339								4	hours	ago									/bin/sh	-c	ln	-s	

/opt/reposado/code/reposadol										30	B																

377509f5f585								4	hours	ago									/bin/sh	-c	pip	install	simplejson																 						

485.7	kB												

8b0312f24189								4	hours	ago									/bin/sh	-c	pip	install	flask																																																																																																																																																																													

4.071	MB												

b1a301d9d39b								4	hours	ago									/bin/sh	-c	git	clone	

https://github.com/jesse									791.9	kB												

ea9b2533e044								4	hours	ago								/bin/sh	-c	#(nop)	ADD	

file:ef8667f1286185255c			3.019	kB												

1f875df3199b								21	hours	ago								/bin/sh	-c	#(nop)	ADD	

file:58d34bd01478346ab1					393	B															

2c283310dddd								21	hours	ago								/bin/sh	-c	git	clone	

https://github.com/wdas/							326.8	kB												

7e7e52de77bc								21	hours	ago								/bin/sh	-c	#(nop)	VOLUME	

[/Volumes/data/repos							0	B																	

6f63b83840ff								21	hours	ago								/bin/sh	-c	#(nop)	VOLUME	

[/Volumes/data/repos										0	B																	

136cc09dac1d								21	hours	ago								/bin/sh	-c	apt-get	update	&&	apt-

get	install								252.9	MB												

2df9f745fbbc								21	hours	ago								/bin/sh	-c	#(nop)	MAINTAINER	Scott	

P.	Gallagh												0	B																	

6d4946999d4f								6	weeks	ago									/bin/sh	-c	#(nop)	CMD	["/bin/bash"]																				

0	B																	

9fd3c8c9af32								6	weeks	ago									/bin/sh	-c	sed	-i	's/^#\s*\

(deb.*universe\)$/							1.895	kB												

435050075b3f								6	weeks	ago									/bin/sh	-c	echo	'#!/bin/sh'	>	

/usr/sbin/polic							194.5	kB												

428b411c28f0								6	weeks	ago					/bin/sh	-c	#(nop)	ADD	

file:b3447f4503091bb6bb			188.1	MB

docker	inspect
The	next	command	we	are	looking	at	is	docker	inspect.	We	will	take	a	look	at	the
busybox	image	due	to	its	size:

$	docker	inspect	busybox					

																																																																											

[

{

				"Id":	

"8c2e06607696bd4afb3d03b687e361cc43cf8ec1a4a725bc96e39f05ba97dd55",

				"Parent":	

"6ce2e90b0bc7224de3db1f0d646fe8e2c4dd37f1793928287f6074bc451a57ea",

				"Comment":	"",

				"Created":	"2015-04-17T22:01:13.062208605Z",

				"Container":	

"811003e0012ef6e6db039bcef852098d45cf9f84e995efb93a176a11e9aca6b9",

				"ContainerConfig":	{

								"Hostname":	"19bbb9ebab4d",

								"Domainname":	"",

								"User":	"",

								"AttachStdin":	false,

								"AttachStdout":	false,

								"AttachStderr":	false,

								"PortSpecs":	null,

								"ExposedPorts":	null,

								"Tty":	false,

								"OpenStdin":	false,

								"StdinOnce":	false,

								"Env":	null,

								"Cmd":	[

												"/bin/sh",

												"-c",

												"#(nop)	CMD	[\"/bin/sh\"]"

],

								"Image":	

"6ce2e90b0bc7224de3db1f0d646fe8e2c4dd37f1793928287f6074bc451a57ea",

								"Volumes":	null,

								"VolumeDriver":	"",

								"WorkingDir":	"",

								"Entrypoint":	null,

								"NetworkDisabled":	false,

								"MacAddress":	"",

								"OnBuild":	null,

								"Labels":	{}

				},

				"DockerVersion":	"1.6.0",

				"Author":	"Jérôme	Petazzoni	\u003cjerome@docker.com\u003e",

				"Config":	{

								"Hostname":	"19bbb9ebab4d",

								"Domainname":	"",

								"User":	"",

								"AttachStdin":	false,

								"AttachStdout":	false,

								"AttachStderr":	false,

								"PortSpecs":	null,

								"ExposedPorts":	null,

								"Tty":	false,

								"OpenStdin":	false,

								"StdinOnce":	false,

								"Env":	null,

								"Cmd":	[

												"/bin/sh"

],

								"Image":	

"6ce2e90b0bc7224de3db1f0d646fe8e2c4dd37f1793928287f6074bc451a57ea",

								"Volumes":	null,

								"VolumeDriver":	"",

								"WorkingDir":	"",

								"Entrypoint":	null,

								"NetworkDisabled":	false,

								"MacAddress":	"",

								"OnBuild":	null,

								"Labels":	{}

				},

				"Architecture":	"amd64",

				"Os":	"linux",

				"Size":	0,

				"VirtualSize":	2433303

}

]

We	can	see	things	such	as:

When	the	image	was	created
Whether	the	container	is	using	any	volumes
The	particular	network	settings	being	established
What	architecture	is	being	used
The	OS	for	the	container

We	can	also	see	its	size,	plus	a	plethora	of	other	items	that	are	related	to	the	running
container.

docker	logs
The	docker	logs	command	will	allow	you	to	look	at	what	has	been	happening	on	your
running	container.	There	is	a	switch	that	you	can	use	to	get	a	running	output	from	your
container	as	well,	which	we	will	cover	shortly.	This	is	similar	to	the	docker	attach
command	that	we	went	over	earlier,	but	this	will	allow	you	to	gather	history	from	when
the	container	started	until	the	time	you	ran	the	docker	logs	command:

$	docker	logs	reposado			

																																																																															

	Running	on	http://0.0.0.0:8089/	(Press	CTRL+C	to	quit)

192.168.59.3	-	-	[29/Jul/2015	15:56:23]	"GET	/	HTTP/1.1"	200	-

192.168.59.3	-	-	[29/Jul/2015	15:56:23]	"GET	/products	HTTP/1.1"	200	-

192.168.59.3	-	-	[29/Jul/2015	15:56:23]	"GET	/favicon.ico	HTTP/1.1"	404	-

192.168.59.3	-	-	[29/Jul/2015	15:56:29]	"POST	/new_branch/test	HTTP/1.1"	

200	-

192.168.59.3	-	-	[29/Jul/2015	15:56:29]	"GET	/products	HTTP/1.1"	200	-

Now,	docker	logs	-f	will	give	you	a	running	output	of	what	is	actively	happening	on	the
container.	This	is	helpful	when	you	are	troubleshooting	your	containers.	It	will	allow	you
to	actively	monitor	your	container	while	you	execute,	and	the	application	it	is	running.

docker	ps
We	covered	the	docker	ps	command	earlier,	but	we	will	now	take	a	look	at	the	switches
we	can	add	to	the	command.

Here	are	the	switches	we	will	be	taking	a	look	at:

docker	ps	-a:	This	will	give	you	a	list	of	all	the	containers.	By	default,	when	you
run	the	docker	ps	command,	it	will	only	show	the	ones	that	are	running.	It	will	also
provide	the	status	of	the	containers	that	were	stopped	and	how	long	ago	they	were
stopped.	It	will	also	give	you	the	names	of	the	containers	as	well	as	the	respective
commands	that	were	running	on	these	containers.
docker	ps	-l:	This	will	give	you	the	latest	created	containers,	including	the	ones
that	are	not	running.	It	again	will	give	you	the	same	information	that	the	docker	ps
-a	command	provides	to	you.	With	the	docker	ps	-l	command,	you	can	see	what
containers	were	running	and	then	launch	them	again	with	the	docker	start
<container_name>	command.	This	will	bring	the	image	back	to	the	state	it	was	when
it	was	stopped/halted.
docker	ps	-n=:	This	will	give	you	the	power	to	slim	down	the	previous	command	of
docker	ps	-l.	This	is	useful	if	the	list	becomes	too	long.	The	docker	ps	-n=
command	allows	you	to	specify	a	number	of	how	many	of	the	previous	containers
you	want	to	view.	For	example,	$	docker	ps	-n=5	will	return	the	last	five
containers,	whether	they	are	running	or	not.	There	are	also	other	switches	you	can
use	with	the	docker	ps	command.	Don’t	forget	that	on	every	command,	you	can	use
the	--help	switch	that	will	provide	more	information	on	each	command,	including
all	the	switches	you	can	utilize.

docker	stats
The	docker	stats	command	will	give	you	live	running	information	on	your	container.	It
will	provide	information	such	as	the	container	name,	CPU	activity,	memory	usage	/
memory	limit,	memory	percentage	being	used,	as	well	as	the	network	input/output:

$	docker	stats	reposado	

CONTAINER											CPU	%															MEM	USAGE/LIMIT					MEM	%															

NET	I/O

reposado												0.06%															13.31	MB/2.099	GB			0.63%															

5.549	kB/12.9	kB

This	can	be	helpful	if	you	have	a	container	using	up	a	lot	of	memory	and	want	to	put
restrictions	on	it.	You	can	exit	this	command	by	using	the	Ctrl	+	C	key	combination	on
your	keyboard.

docker	top
The	docker	top	command	will	allow	you	to	view	what	commands	are	currently	running
on	your	container.	It	will	allow	you	to	see	what	command	is	running	as	well	as	how	long	it
has	been	running:

$	docker	top	reposado					

																																																																														

UID																	PID																	PPID																C																			

STIME															TTY																	TIME																CMD

root																21094															825																	0																			

15:49															?																			00:00:00												/bin/sh	-c	

python	/opt/margarita/margarita.py

root																21098															21094															0																			

15:49															?																			00:00:00												python	

/opt/margarita/margarita.py

Using	your	existing	management	suite
In	this	section,	we	will	look	at	what	you	can	do	with	your	already	existing	management
suite(s)	and	how	you	can	use	them	to	target	actions	against	your	containers.	We	will	cover
most	of	the	major	ones:	Puppet,	Chef,	Ansible,	and	SaltStack.	There	are	surely	more	out
there	and	more	coming	out	daily!	This	will	help	you	leverage	your	already	existing
management	environment	as	well	as	understand	other	options	that	are	available.

Puppet
Puppet	(as	of	version	3.8)	allows	you	to	manage	your	Docker	containers	with	your	pre-
existing	Puppet	environment.	You	simply	need	to	include	Docker	to	your	manifests.

You	can	then	use	Puppet	to	install	Docker	on	the	hosts	as	well	as	run	containers	on	these
Docker	hosts.	For	example,	let’s	deploy	the	nginx	container	using	the	Puppet	code:

docker::run	{	'website':

		image			=>	'nginx',

		command	=>	'/usr/sbin/nginx	-g	"daemon	off;"',

}

We	can	also	execute	the	code	against	our	already	existing	containers	using	Puppet:

docker::exec	{	'update-nginx':

		detach				=>	true,

		container	=>	'nginx',

		command			=>	'apt-get	update	-y	nginx',

		tty							=>	true,

}

This	will	update	the	nginx	package	in	the	container	named	nginx	and	display	the	output
on	your	screen,	since	tty	is	set	to	true.

You	can	also	use	other	Docker	commands	in	place	of	the	previous	exec	statement.	Simply
refer	to	the	Puppet	documentation	for	more	information	on	it.

Chef
Chef	also	allows	you	to	manage	your	Docker	infrastructure	using	your	existing	Chef
infrastructure.	Chef	is	a	little	different	than	Puppet,	as	it	uses	recipes	to	do	its	tasks.	An
example	we	can	use	to	pull	an	image	from	Docker	Hub	to	our	Docker	host	is:

docker_image	'<image_name>'	do

		tag	'latest'

		action	:pull

end

We	can	then	run	that	pulled	image	and	turn	it	into	a	container:

docker_container	'<image_name>'	do

		tag	'latest'

		action	:run

end

With	the	Chef	recipes,	the	possibilities	are	endless	as	to	what	you	could	do.	The
communities	in	Chef	(as	well	as	these	other	management	suites)	are	very	large	and	recipes
are	being	shared	all	the	time.

The	easiest	way	to	find	a	Chef	recipe	is	to	use	ever-handy	search	engines	such	as	Google
or	Yahoo	to	find	an	already	written	recipe	that	we	can	just	drop	in	place	or	modify	as
needed.

To	learn	more	about	how	to	use	Chef	along	with	Docker	to	manage	your	environment,	use
the	following	link:

https://supermarket.chef.io/cookbooks/docker

https://supermarket.chef.io/cookbooks/docker

Ansible
Like	the	others,	we	have	explored	Ansible	that	can	do	the	many	and	same	things	as	the
others.	If	you	already	have	Ansible	in	place,	you	have	a	leg	up;	you	don’t	need	to	get	a
management	suite	in	place.

If	we	want	to	use	Ansible	to	manage	Docker,	we	can	use	Ansible	to	spin	up	the	containers:

-	name:	nginx-host

		docker:

				name:	nginx-host

				image:	nginx

				state:	started

This	will	launch	a	Docker	container	named	nginx-host	using	the	nginx	image	on	the
Docker	Hub,	ensuring	it	starts.	The	catch	is	that,	if	there	is	already	a	container	named
nginx-host,	it	won’t	start	a	container.

We	can	also	stop	a	running	container:

-	name:	Stop	a	container

		docker:

				name:	nginx-host

				state:	stopped

We	can	also	start	containers:

-	name:	Start	a	container

		docker:

				name:	test-container-stopped

				state:	started

SaltStack
Lastly,	we	will	take	a	look	at	SaltStack	that,	as	you	can	guess,	can	manage	Docker
containers	as	well.	Let’s	see	how	we	can	start	a	container	using	SaltStack:

nginx:

		docker.running:

				-	container:	nginx

				-	image:	nginx

				-	port_bindings:	"80/tcp":

												HostIp:	""

												HostPort:	"80"

The	previous	example	using	SaltStack	will	start	a	container	and	name	it	nginx	based	off
the	container:	section,	then	pull	the	nginx	image	from	the	Docker	Hub	from	the	image:
section.	It	will	set	up	the	port	bindings	as	well.	It	will	set	up	TCP	port	80	on	the	Docker
container	from	the	port_bindings:	section	and	tie	it	to	the	host	port	of	80	based	off	of	the
HostPort:	entry.

We	can	also	stop	these	containers	with	SaltStack:

salt	'*'	docker.stop	<container	id>

This	will	fire	off	the	salt	command	and	use	the	docker.stop	module.	It	will	look	for	the
container	ID	that	you	specify	and	stop	it	when	it	finds	it.	You	can	start	a	container	in	the
same	way	as	well:

salt	'*'	docker.start	<image_name:tag>

There	are	many	other	SaltStack	commands	that	you	too	can	utilize.	These	can	be	found	on
the	SaltStack	website:

http://docs.saltstack.com/en/latest/ref/modules/all/salt.modules.dockerio.html#salt.modules.dockerio.stop

http://docs.saltstack.com/en/latest/ref/modules/all/salt.modules.dockerio.html#salt.modules.dockerio.stop

Docker	Swarm
In	this	section,	we	will	do	a	brief	overview	of	Docker	Swarm.	We	will	take	a	look	at	what
it	is,	what	you	can	do	with	it	to	manage	your	containers,	and	what	to	look	forward	to	in	the
later	chapters	with	regards	to	Docker	Swarm.

What	is	Docker	Swarm?
The	idea	behind	Docker	Swarm	is	to	have	native	clustering	available	inside	Docker.	This
will	allow	you	to	both	easily	scale	your	environments	as	well	as	manage	them	from	a
central	location.	The	best	part	is	that,	since	it’s	tied	so	tightly	with	the	Docker	API,	any
command	you	use	with	Docker	can	be	used	in	conjunction	with	managing	the	nodes	in
your	Swarm	cluster.	The	setup	is	very	simple	as	follows:

1.	 You	install	the	Swarm	component	through	a	docker	pull	command.
2.	 You	then	set	up	and	configure	the	Swarm	manager.
3.	 Lastly,	you	add	the	nodes	to	Docker	Swarm.

This	setup	uses	the	TCP	communication	between	all	the	Swarm	nodes	through	an	open
TCP	port.	It	also	requires	that	you	have	Docker	installed	on	each	node	(as	if	we’d	not	want
it	installed).	Lastly,	it	requires	that	you	create	and	manage	TLS	certificates	that	will	allow
secure	communication	between	all	the	hosts.

What	can	Docker	Swarm	do?
Docker	Swarm,	as	you	previously	learned,	allows	for	clustering	through	secure	TLS
communication.	It	allows	for	discovery	services	to	be	set	up	as	well.	This	will	allow	you
to	set	up	services	such	that,	when	new	nodes	are	added	to	the	Swarm,	they	can	be
automatically	added	to	the	correct	corresponding	service	and	allowed	to	join	the	service	to
help	scale	for	its	needs.

Swarm	also	allows	advanced	scheduling	of	jobs.	This	allows	you	to	choose	a	strategy	to
rank	all	the	nodes	in	your	cluster.	The	three	options	to	rank	your	nodes	are:

spread

binpack

random

The	first	two	allocate	jobs	based	on	the	machine’s	available	CPU	and	RAM.	The	last	one
—random—does	exactly	as	it	says.	It	randomly	chooses	a	node	to	run	the	requested	job
on.

You	can	review	more	in-depth	examples	of	these	on	the	Docker	Docs	website:

https://docs.docker.com/swarm/scheduler/strategy/

https://docs.docker.com/swarm/scheduler/strategy/

Summary
In	this	chapter,	you	looked	at	the	Docker	commands	that	can	be	used	to	manage	your
containers,	viewing	their	status	and	looking	inside	them	to	see	what	they	are	doing.

To	perform	tasks,	we	looked	at	how	we	can	execute	commands	against	our	running
containers.	This	will	lay	the	groundwork,	so	you	understand	what	is	going	on	behind	the
scenes	if	you	use	a	GUI	application	to	manage	containers.

We	also	took	a	look	at	utilizing	your	existing	management	suite	and	using	it	to	cover	more
ground,	including	your	Docker	containers.	We	took	a	look	at	four	major	management
suites	that	you	can	use	to	manage	your	Docker	containers.

We	lastly	took	a	look	at	Docker	Swarm	that	hopefully	got	you	excited	for	the	later	chapter
on	Docker	Swarm.	With	Docker	Swarm,	we	can	cluster	our	containers,	view	where	all	our
containers	are	running	across	multiple	Docker	hosts,	and	use	it	for	discovery	services	to
help	scale	our	environments.

In	the	next	chapter,	we	will	be	looking	at	Docker	security—the	topic	that	is	always	at	the
forefront	of	everyone’s	mind	when	it	comes	to	any	or	all	of	technology.	We	will	go	over
all	the	aspects	of	Docker	security—the	good,	the	not	so	bad,	and	what	to	look	forward	to.

Chapter	5.	Docker	Security
In	this	chapter,	we	will	be	taking	a	look	at	Docker	security—the	topic	on	the	forefront	of
everyone’s	minds	these	days.	We	will	be	splitting	up	the	chapter	into	four	sections:

Containers	versus	VMs
The	Docker	commands
Docker	security	–	best	practices
The	Docker	bench	security	application

Now,	let’s	take	a	look	at	each	of	these	sections	one	after	the	other.

Containers	versus	VMs
In	this	section,	we	will	be	looking	at	the	differences	in	Docker	containers	and	typical
virtual	machines.	We	will	focus	on	the	benefits	that	Docker	containers	have	over	typical
virtual	machines.	We’ll	take	a	look	at	the	good;	the	not	so	bad:	those	items	that	aren’t	bad
but	you	will	want	keep	an	eye	on	them;	and	the	items	you	want	to	look	out	for:	those	are
the	items	that	you	will	ultimately	want	to	consider	while	using	Docker	containers	over
typical	virtual	machines.

The	good
When	you	start	a	Docker	container,	there	is	a	lot	of	work	going	on	behind	the	scenes	and
two	of	those	items	are	setting	up	namespaces	and	control	groups.	What	does	that	mean?
By	setting	up	namespaces,	Docker	keeps	the	processes	isolated	in	each	container;	not	only
from	other	containers,	but	also	from	the	host	system.	The	control	groups	ensure	that	each
container	gets	its	own	share	of	items	such	as	CPU,	memory,	and	disk	I/O.	More
importantly,	they	ensure	that	one	container	doesn’t	exhaust	all	the	resources	on	a	given
Docker	host.

Each	container	also	gets	its	own	network	stack	that	again	contributes	to	the	idea	of
isolation.	With	each	container	getting	its	own	network	stack,	other	containers	don’t	get
access	to	each	other,	unless	otherwise	specified	by	Docker	linking.	Also,	with	this,	you
can	accordingly	set	up	access	through	items	such	as	iptables.

Lastly,	what	I	consider	one	of	the	biggest	advantages	of	Docker	over	typical	virtual
machines	is	that	you	can	finally	turn	off	SSH	in	your	containers.	There	is	no	need	to
enable	SSH	in	your	containers	anymore	to	manage	them	or	to	issue	commands	against
them.	Docker	has	the	tools	to	execute	items	against	the	containers	and	pull	information
that	is	needed	to	help	troubleshoot	containers	as	well.	With	commands	such	as	docker
execute,	docker	top,	docker	logs,	docker	events,	and	docker	stats,	you	can	do
everything	you	need	to	do	without	exposing	any	more	security	holes	than	you	need	to.

The	not	so	bad
Not	so	bad,	as	we	will	be	calling	this	section,	is	just	to	keep	you	informed	about	the	items
that	are	in	the	technology.

What	you	need	to	realize	is	that,	when	you	are	dealing	with	virtual	machines,	you	can
control	the	required	permissions,	that	is,	who	has	access	to	what	virtual	machines.	With
Docker,	you	have	a	little	disadvantage	because	whoever	has	access	to	the	Docker	daemon
on	your	server	has	access	to	every	Docker	container	that	you	are	running.	They	can	run
new	containers;	they	can	stop	existing	containers	and	can	delete	images	as	well.	Be	careful
who	you	grant	permission	to	access	the	Docker	daemon	on	your	hosts.	They	essentially
hold	the	keys	to	the	kingdom	with	respect	to	all	your	containers.	Knowing	this,	it	is
recommended	to	use	Docker	hosts	only	for	Docker;	keep	other	services	separate	from
Docker.

Hopefully,	you	trust	your	organization	and	all	those	who	do	have	access	to	these	systems.

What	to	look	out	for
You	will	most	likely	be	setting	up	virtual	machines	from	scratch.	It	is	probably	impossible
to	get	the	virtual	machine	from	someone	else,	due	to	its	sheer	size.	So,	you	will	be	aware
of	what	is	inside	the	virtual	machine	and	what	isn’t.	This	being	said,	with	Docker
containers,	you	will	not	be	aware	of	what	could	be	there	inside	the	image	you	might	be
using	for	your	container(s).

The	Docker	commands
Let’s	take	a	look	at	the	Docker	commands	that	can	be	used	to	help	tighten	up	security	as
well	as	view	information	in	the	images	you	might	be	using.	There	are	two	commands	that
we	are	going	to	be	focusing	on.

The	first	will	be	the	docker	run	command,	so	you	can	see	some	of	the	items	you	can	use
to	your	advantage	with	this	command.	Second,	we	will	take	a	look	at	the	docker	diff
command	(that	we	went	over	in	the	previous	chapter)	that	you	can	use	to	view	what	has
been	done	with	the	image	that	you	are	planning	to	use.

docker	run
With	respect	to	the	docker	run	command,	we	will	mainly	focus	on	the	option	that	allows
you	to	set	everything	inside	the	container	as	read-only	instead	of	a	specified	directory	or
volume.	Let’s	take	a	look	at	an	example	and	break	down	what	it	exactly	does:

$	docker	run	--name	mysql	--read-only	-v	/var/lib/mysql	-v	/tmp:/tmp:rw	-e	

MYSQL_ROOT_PASSWORD=password	-d	mysql

Here,	we	are	running	a	mysql	container	and	setting	the	entire	container	as	read-only,
except	for	the	/var/lib/mysql	directory.	What	this	means	is	that	the	only	location	the
data	can	be	written	inside	the	container	is	the	/var/lib/mysql	directory.	Any	other
location	inside	the	container	won’t	allow	you	to	write	anything	in	it.	If	you	try	to	run	the
following,	it	would	fail:

$	docker	exec	mysql	touch	/opt/filename

This	can	be	extremely	helpful	if	you	want	to	control	where	the	containers	can	write	to	or
not	write	to.	Be	sure	to	use	this	wisely.	Test	thoroughly,	as	it	could	have	consequences
when	the	applications	can’t	write	to	certain	locations.

Remember	the	Docker	volumes	we	looked	at	in	the	previous	chapters,	where	we	were	able
to	set	the	volumes	to	be	read-only.	Similar	to	the	previous	command	with	docker	run,
where	we	set	everything	to	read-only	except	for	a	specified	volume,	we	can	now	do	the
opposite	and	set	just	a	single	volume	(or	more	if	you	use	more	-v	switches)	to	read	only.
The	thing	to	remember	about	volumes	is	that	when	you	use	a	volume	and	mount	it	into	a
container,	it	will	mount	as	an	empty	volume	over	the	top	of	that	directory	inside	the
container,	unless	you	use	the	--volumes-from	switch	or	add	data	to	the	container	in	some
other	way	after	the	fact:

$	docker	run	-d	-v	/opt/uploads:/opt/uploads:ro	nginx

This	will	mount	a	volume	in	/opt/uploads	and	set	it	to	read-only.	This	can	be	useful	if
you	don’t	want	a	running	container	to	write	to	a	volume	to	keep	the	data	or	configuration
files	intact.

The	last	option	we	want	to	look	at	with	regards	to	the	docker	run	command	is	the	--
device=	switch.	This	switch	allows	us	to	mount	a	device	from	the	Docker	host	into	a
specified	location	inside	the	container.	By	doing	so,	there	are	some	security	risks	we	need
to	be	aware	of.	By	default,	when	you	do	this,	the	container	will	get	full	access:	read,	write,
and	the	mknod	access	to	the	device’s	location.	Now,	you	can	control	these	permissions	by
manipulating	rwm	at	the	end	of	the	switch	command.	Let’s	take	a	look	at	some	of	these	and
see	how	they	work:

$	docker	run	--device=/dev/sdb1:/dev/sdc2	-it	ubuntu:latest		/bin/bash

The	previous	command	will	run	the	latest	Ubuntu	image	and	mount	the	/dev/sdb1	device
inside	the	container	in	the	/dev/sdc2	location:

$	docker	run	--device=/dev/sdb1:/dev/sdc2:r	-it	ubuntu:latest	/bin/bash

This	command	will	run	the	latest	Ubuntu	image	and	mount	the	/dev/sdb1	device	inside
the	container	in	the	/dev/sdc2	location.	But	this	one	has	the	:r	tag	at	the	end	of	it	that
specifies	it’s	read-only	and	can’t	be	written	to.

docker	diff
Let’s	take	another	look	at	the	docker	diff	command	since	it	relates	to	the	security
aspects	of	the	containers	you	may	want	to	use	from	the	images	that	are	hosted	on	Docker
Hub	or	other	related	repositories.

Remember	that	whoever	has	access	to	your	Docker	host	and	the	Docker	daemon	has
access	to	all	of	your	running	Docker	containers.	This	being	said,	if	you	don’t	have
monitoring	in	place,	someone	could	be	executing	commands	against	your	containers	and
doing	malicious	things:

$	docker	diff	<running_container_name>

Docker	security	–	best	practices
In	this	section,	we	will	look	at	the	best	practices	when	it	comes	to	Docker	as	well	as	the
Center	for	Internet	Security	guide	to	properly	secure	all	the	aspects	of	your	Docker
environment.	You	will	be	referring	to	this	guide	when	you	actually	run	the	scan	(in	the
next	section	of	this	chapter)	and	get	results	back	of	what	needs	or	should	be	fixed.	The
guide	is	broken	down	into	the	following	sections:

The	host	configuration
The	Docker	daemon	configuration
The	Docker	daemon	configuration	files
Container	images/runtime
Docker	security	operations

Docker	–	best	practices
Before	we	dive	into	the	Center	for	Internet	Security	guide,	let’s	go	over	some	of	the	best
practices	to	use	Docker:

One	application	per	container:	Spread	out	your	applications	to	one	per	container.
Docker	was	built	for	this	and	it	makes	everything	easier	at	the	end	of	the	day.	That
isolation	we	talked	about	earlier	is	where	this	is	the	key.
Review	who	has	access	to	your	Docker	hosts:	Remember	that	whoever	has	access
to	your	Docker	hosts	has	access	to	manipulate	all	your	images	and	containers	on	the
host.
Use	the	latest	version:	Always	use	the	latest	version	of	Docker.	This	will	ensure	that
all	security	holes	have	been	patched	and	you	have	the	latest	features	as	well.
Use	the	resources:	Use	the	resources	available	if	you	need	help.	The	community
within	Docker	is	huge	and	immensely	helpful.	Use	their	website,	documentation,	and
the	IRC	chat	rooms	to	your	advantage.

CIS	guide	–	host	configuration
This	part	of	the	guide	is	about	the	configuration	of	your	Docker	hosts.	This	is	that	part	of
the	Docker	environment	where	all	your	containers	run.	Thus,	keeping	it	secure	is	of	the
utmost	importance.	This	is	the	first	line	of	defense	against	attackers.

CIS	guide	–	Docker	daemon	configuration
This	part	of	the	guide	has	the	recommendations	that	secure	the	running	Docker	daemon.
Everything	you	do	to	the	Docker	daemon	configuration	affects	each	and	every	container.
These	are	the	switches	you	can	attach	to	the	Docker	daemon	we	saw	previously,	and	to	the
items	you	will	see	in	the	next	section	when	we	run	through	the	tool.

CIS	guide	–	Docker	daemon	configuration	files
This	part	of	the	guide	deals	with	the	files	and	directories	that	the	Docker	daemon	uses.
This	ranges	from	permissions	to	ownerships.	Sometimes,	these	areas	may	contain
information	you	don’t	want	others	to	know	about	that	could	be	in	a	plain	text	format.

CIS	guide	–	container	images/runtime
This	part	of	the	guide	contains	both	the	information	for	securing	the	container	images	as
well	as	the	container	runtime.

The	first	part	contains	images,	cover	base	images,	and	the	build	files	that	were	used.	As
we	covered	previously,	you	need	to	be	sure	about	the	images	you	are	using	not	only	for
your	base	images,	but	for	any	aspect	of	your	Docker	experience.	This	section	of	the	guide
covers	the	items	you	should	follow	while	creating	your	own	base	images	to	ensure	they
are	secure.

The	second	part,	the	container	runtime,	covers	a	lot	of	security-related	items.	You	have	to
take	care	with	the	runtime	variables	you	are	providing.	In	some	cases,	attackers	can	use
them	to	their	advantage,	while	you	think	you	are	using	them	to	your	own	advantage.
Exposing	too	much	in	your	container	can	compromise	the	security	of	not	only	that
container,	but	the	Docker	host	and	the	other	containers	running	on	that	host.

CIS	guide	–	Docker	security	operations
This	part	of	the	guide	covers	the	security	areas	that	involve	deployment.	These	items	are
more	closely	tied	to	the	best	practices	and	the	recommendations	of	items	that	are
recommended	to	be	followed.

The	Docker	bench	security	application
In	this	section,	we	will	cover	the	Docker	benchmark	security	application	that	you	can
install	and	run.	The	tool	will	inspect:

The	host	configuration
The	Docker	daemon	configuration
The	Docker	daemon	configuration	files
Container	images	and	build	files
Container	runtime
The	Docker	security	operations

Looks	familiar?	It	should,	as	these	are	the	same	items	that	we	reviewed	in	the	previous
section	only	built	into	an	application	that	will	do	a	lot	of	heavy	lifting	for	you.	It	will	show
you	what	warnings	arise	with	your	configurations	and	provide	information	on	other
configuration	items	and	even	the	items	that	have	passed	the	test.

We	will	look	at	how	to	run	the	tool,	a	live	example,	and	what	the	output	of	the	process	will
mean.

Running	the	tool
Running	the	tool	is	simple.	It’s	already	been	packaged	up	for	us	inside	a	Docker	container.
While	you	can	get	the	source	code	and	customize	the	output	or	manipulate	it	in	some	way
(say,	e-mail	the	output),	the	default	may	be	all	you	need.

The	code	is	found	here:

https://github.com/docker/docker-bench-security

To	run	the	tool,	we	will	simply	copy	and	paste	the	following	into	our	Docker	host:

$	docker	run	-it	--net	host	--pid	host	--cap-add	audit_control	\

				-v	/var/lib:/var/lib	\

				-v	/var/run/docker.sock:/var/run/docker.sock	\

				-v	/usr/lib/systemd:/usr/lib/systemd	\

				-v	/etc:/etc	--label	docker_bench_security	\

				diogomonica/docker-bench-security

If	you	don’t	already	have	the	image,	it	will	first	download	the	image	and	then	start	the
process	for	you.	Now	that	we’ve	seen	how	easy	it	is	to	install	and	run	it,	let’s	take	a	look
at	an	example	on	a	Docker	host	to	see	what	it	actually	does.	We	will	then	take	a	look	at	the
output	and	take	a	dive	into	dissecting	it.

There	is	also	an	option	to	clone	the	Git	repository,	enter	the	directory	from	the	git	clone
command,	and	run	the	provided	shell	script.	So,	we	have	multiple	options!

Let’s	take	a	look	at	an	example	and	break	down	each	section:

The	host	configuration:

https://github.com/docker/docker-bench-security

The	Docker	daemon	configuration:

The	Docker	daemon	configuration	files:

Container	images	and	build	files:

Container	runtime:

The	Docker	security	operations:

Wow!	A	lot	of	output	and	tons	to	digest;	but	what	does	it	all	mean?	Let’s	take	a	look	and
break	down	each	section.

Understanding	the	output
There	are	three	types	of	output	that	we	will	see:

[PASS]:	These	items	are	solid	and	good	to	go.	They	don’t	need	any	attention,	but	are
good	to	read	to	make	you	feel	warm	inside.	The	more	of	these,	the	better!
[INFO]:	These	are	items	that	you	should	review	and	fix	if	you	feel	they	are	pertinent
to	your	setup	and	security	needs.
[WARN]:	These	are	items	that	need	to	be	fixed.	These	are	the	items	we	don’t	want	to
be	seeing.

Remember,	we	had	the	six	main	topics	that	were	covered	in	the	scan:

The	host	configuration
The	Docker	daemon	configuration
The	Docker	daemon	configuration	files
Container	images	and	build	files
Container	runtime
The	Docker	security	operations

Let’s	take	a	look	at	what	we	are	seeing	in	each	section	of	the	scan.	These	scan	results	are
from	a	default	Ubuntu	Docker	host	with	no	tweaks	made	to	the	system	at	this	point.	We
want	to	focus	again	on	the	[WARN]	items	in	each	section.	Other	warnings	may	come	up
when	you	run	yours,	but	these	will	be	the	ones	that	come	up	most	if	not	for	everyone	at
first.

Host	configuration:

[WARN]	1.1		-	Create	a	separate	partition	for	containers

For	this	one,	you	will	want	to	map	/var/lib/docker	to	a	separate	partition.

[WARN]	1.8		-	Failed	to	inspect:	auditctl	command	not	found.

[WARN]	1.9		-	Failed	to	inspect:	auditctl	command	not	found.

[WARN]	1.10	-	Failed	to	inspect:	auditctl	command	not	found.

[WARN]	1.13	-	Failed	to	inspect:	auditctl	command	not	found.

[WARN]	1.18	-	Failed	to	inspect:	auditctl	command	not	found.

The	Docker	daemon	configuration:

[WARN]	2.2		-	Restrict	network	traffic	between	containers

By	default,	all	the	containers	running	on	the	same	Docker	host	have	access	to	each
other’s	network	traffic.	To	prevent	this,	you	would	need	to	add	the	--icc=false	flag
to	the	Docker	daemon’s	start	up	process.

[WARN]	2.7		-	Do	not	use	the	aufs	storage	driver

Again,	you	can	add	a	flag	to	your	Docker	deamon	start	up	process	that	will	prevent
Docker	from	using	the	aufs	storage	driver.	By	using	-s	<storage_driver>	on	your
Docker	daemon	startup,	you	can	tell	Docker	not	to	use	aufs	for	storage.	It	is
recommended	that	you	use	the	best	storage	driver	for	the	OS	on	the	Docker	host	you

are	using.

The	Docker	daemon	configuration	files:

If	you	are	using	the	stock	Docker	daemon,	you	should	not	see	any	warnings.	If	you
have	customized	the	code	in	some	way,	you	may	get	warnings	here.	This	is	one	area
you	hope	to	never	see	warnings.

Container	images	and	build	files:

[WARN]	4.1		-	Create	a	user	for	the	container

[WARN]						*	Running	as	root:	suspicious_mccarthy

This	is	stating	that	the	container	named	suspicious_mccarthy	is	running	as	the	root
user	and	it	is	recommended	to	create	another	user	to	run	your	containers.

Container	Runtime:

[WARN]	5.1:			-	Verify	AppArmor	Profile,	if	applicable

[WARN]						*	No	AppArmorProfile	Found:	suspicious_mccarthy

This	states	that	the	container	named	suspicious_mccarthy	does	not	have
AppArmorProfile,	which	is	the	additional	security	provided	in	Ubuntu	in	this	case.

[WARN]	5.3		-	Verify	that	containers	are	running	only	a	single	main	

process

[WARN]						*	Too	many	processes	running:	suspicious_mccarthy

This	error	is	pretty	straightforward.	You	will	want	to	make	sure	you	are	only	running
one	process	per	container.	If	you	are	running	more	than	one,	you	will	want	to	spread
them	out	across	multiple	containers	and	use	container	linking.

[WARN]	5.4		-	Restrict	Linux	Kernel	Capabilities	within	containers

[WARN]						*	Capabilities	added:	CapAdd=[audit_control]	to	

suspicious_mccarthy

This	is	stating	that	the	audit_control	capability	has	been	added	to	this	running
container.	You	can	use	--cap-drop={}	from	your	docker	run	command	to	remove
additional	capabilities	on	a	container.

[WARN]	5.6		-	Do	not	mount	sensitive	host	system	directories	on	

containers

[WARN]						*	Sensitive	directory	/etc	mounted	in:	suspicious_mccarthy

This	again	goes	back	to	looking	at	mounting	the	items	inside	the	containers	as	read-
only.	The	--read-only	flag	would	come	in	handy	in	this	scenario,	when	you	issue
your	docker	run	command.

[WARN]						*	Sensitive	directory	/lib	mounted	in:	suspicious_mccarthy

This	too	goes	back	to	looking	at	mounting	the	items	inside	the	containers	as	read-
only.	The	--read-only	flag	would	come	in	handy	in	this	scenario,	when	you	issue
your	docker	run	command.

[WARN]	5.7		-	Do	not	run	ssh	within	containers

[WARN]						*	Container	running	sshd:	suspicious_mccarthy

It	is	straight	to	the	point.	No	need	to	run	SSH	inside	your	containers.	You	can	do
everything	you	want	to	with	your	containers	using	the	tools	provided	by	Docker.
Ensure	that	SSH	is	not	running	in	any	container.

[WARN]	5.10	-	Do	not	use	host	network	mode	on	container

[WARN]						*	Container	running	with	networking	mode	'host':	

suspicious_mccarthy

The	issue	with	this	one	is	that,	when	the	container	was	running,	the	--net=host
switch	was	passed	along.	It	is	not	recommended	to	use	this,	as	it	allows	the	container
to	open	low	port	numbers	as	well	as	access	networking	services	on	the	Docker	host.

[WARN]	5.11	-	Limit	memory	usage	for	the	container

[WARN]						*	Container	running	without	memory	restrictions:	

suspicious_mccarthy

By	default,	the	containers	don’t	have	memory	restrictions.	This	can	be	dangerous	if
you	are	running	multiple	containers	per	Docker	host.	You	can	use	the	-m	switch	while
issuing	your	docker	run	commands	to	limit	the	containers	to	a	certain	amount	of
memory.	Values	are	set	in	megabytes	(that	is,	512	MB	or	1024	MB).

[WARN]	5.12	-	Set	container	CPU	priority	appropriately

[WARN]						*	The	container	running	without	CPU	restrictions:	

suspicious_mccarthy

Like	the	memory	option,	you	can	also	set	the	CPU	priority	on	a	per	container	basis.
This	can	be	done	using	the	-c	switch	while	issuing	your	docker	run	command.	The
CPU	share	is	based	off	of	the	number	1024.	So,	half	would	be	512	and	25%	would	be
256.	Use	1024	as	the	base	number	to	determine	the	CPU	share.

[WARN]	5.13	-	Mount	container's	root	filesystem	as	readonly

[WARN]						*	Container	running	with	root	FS	mounted	R/W:	

suspicious_mccarthy

You	really	want	to	be	using	your	containers	as	mutable	environments;	meaning	they
don’t	write	any	data	inside	them.	Data	should	be	written	out	to	volumes.	Again,	you
can	use	the	--read-only	switch,	followed	by	the	-v	/	switch	to	specify	that	the	root
directory	is	read-only	for	the	running	container.

[WARN]	5.16	-	Do	not	share	the	host's	process	namespace

[WARN]						*	Host	PID	namespace	being	shared	with:	suspicious_mccarthy

This	error	arises	when	you	use	the	--pid=host	switch.	It	is	not	recommended	to	use
this	switch,	as	it	breaks	the	isolation	of	processes	between	the	container	and	Docker
host.

The	Docker	security	operations:

Again,	another	section	you	hope	to	or	never	should	see	warnings	if	you	are	using
stock	Docker.	Mostly	here	you	will	see	information	and	should	review	them	to	make
sure	it’s	all	kosher.

Summary
In	this	chapter,	we	covered	some	aspects	of	Docker	security.	First,	we	took	a	look	at
containers	versus	typical	virtual	machines	with	regards	to	security.	We	looked	at	the	good,
the	not	so	bad,	and	what	to	look	out	for.

We	then	took	a	look	at	what	Docker	commands	we	can	use	for	security	purposes.	We	first
took	a	look	at	read-only	containers,	so	we	can	minimize	what	we	are	exposing	to	other
containers.	We	then	viewed	what	is	done	to	the	images	that	you	have	running.	It	is
important	to	know	what	is	done	on	these	containers,	so	you	have	a	trail	of	activity.

Next,	we	took	a	look	at	the	Center	for	Internet	Security	guidelines	for	Docker.	This	guide
will	assist	you	in	setting	up	multiple	aspects	of	your	Docker	environment.	Lastly,	we	took
a	look	at	the	Docker	bench	for	security.	We	looked	at	how	to	get	it	up	and	running	and	ran
through	an	example	of	what	the	output	would	look	like	once	it	has	been	run.	We	then	took
a	look	at	the	said	output	to	see	what	all	it	meant.	Remember	the	six	items	that	the
application	covered:	the	host	configuration,	Docker	daemon	configuration,	Docker
daemon	configuration	files,	container	images	and	build	files,	container	runtime,	and
Docker	security	operations.

In	the	next	chapter,	we	will	be	taking	a	look	at	Docker	Machine.	Docker	Machine	allows
you	to	create	Docker	hosts	locally	on	items	such	as	VirtualBox	or	VMWare	Fusion	or	to
cloud	providers	such	as	Amazon	AWS,	Microsoft	Azure,	DigitalOcean,	as	well	as	others.
Saving	time	is	the	key	here.	Instead	of	having	to	go	to	a	host,	spin	up	a	virtual	machine,
and	get	Docker	installed	on	it,	Docker	Machine	will	do	it	all	for	you	and	give	you	more
time	to	do	what	you	should	be	doing.

Chapter	6.	Docker	Machine
In	this	chapter,	we	will	take	a	look	at	Docker	Machine.	Docker	Machine	is	a	tool	that
supersedes	boot2docker.	It	can	be	used	to	create	Docker	hosts	on	various	platforms,
including	locally	or	in	a	cloud	environment.	You	can	control	your	Docker	hosts	with	it	as
well.	Let’s	take	a	look	at	what	we	will	be	covering	in	this	chapter:

Installing	Docker	Machine
Using	Docker	Machine	to	set	up	the	Docker	hosts
Various	Docker	commands

Installation
Installing	Docker	Machine	is	very	straightforward.	There	is	a	simple	curl	command	to
run	and	install	it.	It	is	recommended	to	install	Docker	Machine	in	/usr/local/bin,	as	this
will	allow	you	to	issue	the	Docker	Machine	commands	from	any	directory	on	your
machine:

$	curl	-L	

https://github.com/docker/machine/releases/download/v0.4.0/docker-

machine_linux-amd64	>	/usr/local/bin/docker-machine

After	issuing	the	curl	command,	you	need	to	set	the	permissions	in	the	docker-machine
file	that	was	just	created	in	/usr/local/bin/:

$	chmod	+x	/usr/local/bin/docker-machine

You	can	then	verify	that	Docker	Machine	is	installed	by	issuing	a	simple	docker-machine
command:

$	docker-machine	--help

You	should	get	back	all	the	commands	and	switches	you	can	use	while	operating	the
docker-machine	command.

Now	these	instructions	are	great	if	you	are	on	Linux.	But	what	if	you	are	using	Mac	or
even	Windows?	Then,	you	would	want	to	use	the	Docker	Toolbox	to	do	your	installation.
This	will	not	only	install	Docker	Machine,	but	other	pieces	of	the	Docker	ecosystem	as
well.	To	view	a	list	of	what	all	comes	in	the	Docker	Toolbox	per	platform,	visit
https://www.docker.com/docker-toolbox.

https://www.docker.com/docker-toolbox

Using	Docker	Machine
Let’s	take	a	look	at	how	we	can	use	Docker	Machine	to	deploy	Docker	hosts	on	your	local
infrastructure,	on	your	own	machine,	as	well	as	on	various	cloud	providers.

Local	VM
Docker	Machine	uses	the	--driver	switch	to	specify	the	location	you	want	to	set	up	and
install	the	Docker	host.	So,	we	can	set	up	a	Docker	host	in	VirtualBox:

$	docker-machine	create	--driver	virtualbox	<name>

Or,	we	can	set	it	up	on	VMware	Fusion:

$	docker-machine	create	--driver	vmwarefusion	<name>

The	previous	command	is	structured	as	the	docker-machine	command,	followed	by	what
we	want	to	do:	create.	We	will	use	the	--driver	switch	next.	Then,	we	need	to	specify
where	we	are	going	to	place	the	Docker	host.	In	our	case,	we	specified	virtualbox	and
vmwarefusion.	Lastly,	we	need	to	give	the	Docker	host	a	name.	This	name	is	to	be	unique;
so	when	you	issue	other	Docker	Machine	commands,	they	are	distinguishable.

There	are	various	other	switches	we	can	use	to	tell	how	much	memory	the	Docker	host	to
use	and	also	how	much	disk	space	to	use	as	well.	You	can	see	all	the	available	switches	by
issuing	our	trustworthy	and	helpful	docker-machine	create	--help	command.
Remember	that	everything	has	a	--help	switch	that	can	be	utilized	to	gain	more
information	to	get	the	help	you	need.	It	should	be	the	first	thing	you	turn	to	when	you	are
looking	for	assistance.

Cloud	environment
Now,	let’s	take	a	look	at	how	we	deploy	to	a	cloud	environment	of	our	choosing.	When
you	start	deploying	to	cloud	environments,	it	can	get	tricky,	as	it	requires	some	form	of
authentication	to	ensure	you	are	who	you	say	you	are.	For	example,	DigitalOcean	requires
an	access	token	to	launch	a	Docker	host	in	its	system.	We	will	be	taking	a	look	at	how	we
can	deploy	a	Docker	host	in	AWS.

For	AWS,	we	need	a	couple	of	switches.	We	would	need	to	get	the	information	from	AWS
before	we	can	deploy	to	this	cloud	provider:

--amazonec2-access-key

--amazonec2-secret-key

--amazonec2--vpc-id

--amazonec2-zone

--amazonec2-region

We	can	create	these	drivers	by	executing	the	following	command:

$	docker-machine	create	\

			--driver	amazonec2	\

			--amazonec2-access-key	<aws_access_key>	\

			--amazonec2-secret-key	<aws_secret_key>	\

			--amazonec2-vpc-id	<vpc_id>	\

			--amazonec2-subnet-id	<subnet_id>	\

			--amazonec2-zone	<zone>	\

					<name>

Docker	Machine	commands
Now	that	we	can	deploy	Docker	hosts	locally	and	to	the	cloud	environments,	we	need	to
know	how	we	can	manage	and	manipulate	these	Docker	hosts.	Let’s	take	a	look	at	all	the
commands	Docker	Machine	has	to	offer.

Note
Note	that	as	we	previously	created	these	hosts	we	were	given	output	on	how	to	target	them
for	use	with	Docker	Machine.

On	running	the	docker-machine	create	command,	you	should	receive	an	output	similar
to	this:

INFO[0041]	To	point	your	Docker	client	at	it,	run	this	in	your	shell:	

$(docker-machine	env	dev2)

This	is	how	you	can	set	the	default	to	target	Docker	hosts	with	Docker	Machine.	Keep	this
in	mind,	when	we	are	looking	at	the	following	commands.

active
You	can	use	the	active	subcommand	to	see	which	Docker	host	is	currently	active	and
commands	that	you	execute	will	be	executed	on	that	Docker	host:

$	docker-machine	active

dev2

config
You	can	use	the	config	subcommand	to	view	what	the	current	configuration	is	for	the
Docker	Machine	setup	on	the	currently	active	host:

$	docker-machine	config

--tls	--tlscacert=/Users/scott/.docker/machine/machines/dev2/ca.pem	--

tlscert=/Users/scott/.docker/machine/machines/dev2/cert.pem	--

tlskey=/Users/scott/.docker/machine/machines/dev2/key.pem	-

H=tcp://192.168.50.158:2376

env
You	can	view	the	environmental	variables	on	each	Docker	host	with	the	env	subcommand:

$	docker-machine	env

export	DOCKER_TLS_VERIFY=1

export	DOCKER_CERT_PATH=/Users/spg14/.docker/machine/machines/dev2

export	DOCKER_HOST=tcp://192.168.50.158:2376

inspect
You	can	inspect	each	Docker	host	using	the	Docker	Machine	inspect	subcommand.	This
subcommand	will	give	you	a	lot	of	information	on	the	Docker	host,	such	as	the	certificate
paths,	Swarm	host,	disk	size,	memory,	CPUs,	and	much	more:

$	docker-machine	inspect

{

				"DriverName":	"vmwarefusion",

				"Driver":	{

								"MachineName":	"dev2",

								"IPAddress":	"192.168.50.158",

								"Memory":	1024,

								"DiskSize":	20000,

								"CPUs":	8,

								"ISO":	"/Users/scott/.docker/machine/machines/dev2/boot2docker-

1.5.0-GH747.iso",

								"Boot2DockerURL":	"",

								"CaCertPath":	"/Users/scott/.docker/machine/certs/ca.pem",

								"PrivateKeyPath":	"/Users/scott/.docker/machine/certs/ca-key.pem",

								"SwarmMaster":	false,

								"SwarmHost":	"tcp://0.0.0.0:3376",

								"SwarmDiscovery":	"",

								"CPUS":	8

				},

				"CaCertPath":	"/Users/scott/.docker/machine/certs/ca.pem",

				"ServerCertPath":	"",

				"ServerKeyPath":	"",

				"PrivateKeyPath":	"/Users/scott/.docker/machine/certs/ca-key.pem",

				"ClientCertPath":	"",

				"SwarmMaster":	false,

				"SwarmHost":	"tcp://0.0.0.0:3376",

				"SwarmDiscovery":	""

}

ip
The	ip	subcommand	will	give	you	the	IP	address	of	the	active	host	you	are	pointing	to
with	Docker	Machine:

$	docker-machine	ip	<name>

192.168.50.158

kill
If	a	host	is	acting	up,	you	can	kill	the	Docker	hosts	with	the	kill	subcommand	of	Docker
Machine:

$	docker-machine	kill

INFO[0000]	Forcibly	halting	dev2…

ls
You	can	use	the	ls	subcommand	to	view	all	the	running	Docker	hosts	you	have	used	to
create	with	Docker	Machine.	The	information	will	include:

The	name	of	the	host
Whether	the	machine	is	active
The	driver	that	is	being	used
The	state	of	the	host
The	URL	that	is	being	used	for	communication
If	the	host	is	a	part	of	the	Docker	Swarm	cluster,	then	that	information	will	be	shown
as	well

Let’s	take	a	look	at	a	sample	command	output	when	you	use	docker-machine	ls:

$	docker-machine	ls

NAME			ACTIVE			DRIVER									STATE					URL																									SWARM

dev																							virtualbox								Stopped																															

dev2							*													vmwarefusion	Running			tcp://192.168.50.158:2376

As	you	can	see,	you	get	the	list	of	Docker	hosts	you	can	control.	As	well	as	the	driver,	its
state,	URL,	and	its	part	of	a	Swarm	cluster.

restart
You	can	restart	the	hosts	as	well	using	the	restart	subcommand:

$	docker-machine	restart	<name>

INFO[0000]	Gracefully	restarting	dev2…

rm
You	can	remove	the	hosts	you	no	longer	need	by	using	the	rm	subcommand	of	Docker
Machine:

$	docker-machine	rm	<name>

scp
There	are	multiple	ways	to	use	the	Docker	Machine	scp	command.	You	can	copy	files	or
folders	from	the	local	host	to	a	Docker	host:

$	docker-machine	scp	<file_name>	<name>:/<path>/<to>/<folder>/

It	can	be	copied	from	one	machine	to	another:

$	docker-machine	scp	<host1>:/<path>/<to>/<file>	

<host2>:/<path>/<to>/<folder>/

It	can	also	be	copied	from	the	machine	back	to	the	host:

$	docker-machine	scp	<name>:/<path>/<to>/<file>	.

ssh
You	can	SSH	into	your	Docker	hosts	as	well	by	using	the	ssh	subcommand.	This	can	be
useful	if	you	need	to	troubleshoot	why	the	commands	you	push	against	your	hosts	might
not	be	working:

$	docker-machine	ssh	<name>

start
The	start	subcommand	can	be	used	to	start	the	Docker	hosts	that	have	been	stopped:

$	docker-machine	start	<name>

INFO[0000]	Starting	dev2…

stop
You	can	stop	the	hosts	as	well	by	using	the	stop	subcommand:

$	docker-machine	stop	<name>

INFO[0000]	Gracefully	shutting	down	dev2…

upgrade
If	you	have	a	Docker	host	that	is	running	Docker	version	1.7	(let’s	say)	and	you	want	to
upgrade	it	to	the	latest	version,	you	could	use	the	upgrade	subcommand	of	Docker
Machine:

$	docker-machine	upgrade	<name>

This	will	upgrade	the	version	of	Docker	that	is	running	on	the	Docker	hostname	you
provide.

url
The	url	subcommand	will	give	you	the	URL	that	is	being	used	for	communication	for	the
Docker	host:

$	docker-machine	url	<name>

tcp://192.168.50.158:2376

TLS
Docker	Machine	also	has	the	option	to	run	everything	over	TLS.	This	is	the	most	secure
way	of	using	Docker	Machine	to	manage	your	Docker	hosts.	This	setup	can	be	tricky	if
you	start	using	your	own	certificates.	By	default,	Docker	Machine	stores	your	certificates
that	it	uses	in	/Users/<user_id>/.docker/machine/certs/.	You	can	view	these	items
simply	by	running:

$	docker-machine	--help

This	will	give	you	a	global	Options	section	at	the	bottom	of	the	listing	that	lists	this
information.	These	are	the	locations	of	the	intermediate	certificate,	intermediate	key,	and
the	certificate	that	Docker	Machine	uses	as	well	as	its	corresponding	key.	You	would	need
to	update	these	files	with	your	own	certificates	if	you	don’t	want	to	be	using	the	self-
signed	certificates	that	Docker	Machine	creates.

Summary
In	this	chapter,	we	looked	at	Docker	Machine.	We	first	looked	at	how	to	use	Docker
Machine	to	create	the	Docker	hosts	locally	on	virtualization	software	such	as	VirtualBox
or	VMware	Fusion.	We	also	looked	at	how	to	use	Docker	Machine	to	deploy	Docker	hosts
to	your	cloud	environments.

We	then	took	a	look	at	all	the	commands	that	are	in	the	Docker	Machine	Toolbox.	With	all
these	commands,	you	can	manage	your	entire	fleet	of	Docker	hosts.	You	can	manipulate
them	from	creating	new	Docker	hosts	to	managing	all	the	configuration	aspects	of	the
Docker	hosts.	We	really	dove	deep	into	all	the	Docker	Machine	commands,	so	you	should
have	a	good	understanding	of	this	Docker	component.

In	the	next	chapter,	we	will	be	looking	at	Docker	Compose.	Docker	Compose	is	very
complex	and	has	a	lot	of	pieces	that	you	can	leverage	to	your	advantage.	We	will	be
focusing	very	heavily	on	Docker	Compose	and	it’s	a	core	piece	of	the	Docker	ecosystem
that	you	will	find	yourself	using	almost	daily.	Docker	Compose	is	very	powerful	and	very
useful	with	all	the	aspects	of	managing	Docker.

Chapter	7.	Docker	Compose
In	this	chapter,	we	will	be	taking	a	look	at	Docker	Compose.	We	will	break	the	chapter
down	into	the	following	sections:

Installing	Docker	Compose
Docker	Compose	YAML	file
Docker	Compose	usage
The	Docker	Compose	commands
The	Docker	Compose	examples

Installing	Docker	Compose
Let’s	take	a	look	at	how	we	can	get	Docker	Compose	installed	on	to	our	machine,	so	we
can	start	utilizing	its	full	feature	set	and	power.

Installing	on	Linux
Let’s	take	a	look	at	how	easy	it	is	to	install	on	Linux:

$	curl	-L	

https://github.com/docker/compose/releases/download/VERSION_NUM/docker-

compose-`uname	-s`-`uname	-m`	>	/usr/local/bin/docker-compose

The	reason	we	install	this	in	the	/usr/local/bin/	folder	is	that	this	folder	is	where	global
commands	are	stored	in	Linux.	For	example,	when	you	type	a	command	and	hit	Enter,
Linux	does	a	search	in	a	few	common	areas	to	see	if	the	command	you	typed	exists.	If	it
does,	execution	starts,	else	you	will	get	an	error	stating	that	the	command	can’t	be	found.
This	makes	it	easier,	so	you	don’t	have	to	use	full	paths	to	the	docker-compose	binary	or
be	in	a	certain	directory	each	time	to	run	it:

$	chmod	+x	/usr/local/bin/docker-compose

This	will	set	the	downloaded	binary	to	executable.

Installing	on	OS	X	and	Windows
The	installation	for	OS	X	and	Windows	is	different	than	it	originally	was.	For	OS	X	in
particular,	the	installation	was	done	using	the	curl	command.	Now,	Docker	has	created
what	they	call	Docker	Toolbox	that	is	used	to	install	not	only	Docker	Compose	but
multiple	components	of	the	service	for	you	to	use.

To	install	Docker	Compose	on	these	platforms,	we	need	the	Docker	Toolbox	installer.	This
can	be	found	on	the	Docker	website.	Simply	download	the	installer	for	your	platform	and
follow	the	installer	instructions	to	get	up	and	running.

Docker	Compose	YAML	file
For	building	your	YAML	files,	I	definitely	recommend	looking	at	the	Docker
documentation	for	this.	There	are	a	plethora	of	items	that	can	be	added	to	your	docker-
compose.yml	file	and	it’s	always	changing.

The	key	thing	to	note	about	a	basic	YAML	file	is	that	it	has	to	contain	either	a	name	for
each	service,	an	image:,	or	a	build:	section.	There	are	many	other	options	to	do	inside
the	compose	file,	such	as:

Container	linking
Exposing	ports
Specifying	the	volumes	to	be	used
Specifying	the	environmental	variables
Setting	the	DNS	servers	to	be	used
Setting	the	log	driver	to	be	used	and	much	more

The	Docker	Compose	usage
We	can	start	by	using	the	ever-so-helpful	--help	switch	on	the	docker-compose
command.	We	will	see	a	lot	of	output	and	will	sift	through	it	after	the	following	output:

$	docker-compose	--help

Define	and	run	multi-container	applications	with	Docker.

Usage:

		docker-compose	[options]	[COMMAND]	[ARGS…]

		docker-compose	-h|--help

Options:

		-f,	--file	FILE											Specify	an	alternate	compose	file	(default:	

docker-compose.yml)

		-p,	--project-name	NAME			Specify	an	alternate	project	name	(default:	

directory	name)

		--verbose																	Show	more	output

		-v,	--version													Print	version	and	exit

Commands:

		build														Build	or	rebuild	services

		help															Get	help	on	a	command

		kill															Kill	containers

		logs															View	output	from	containers

		port															Print	the	public	port	for	a	port	binding

		ps																	List	containers

		pull															Pulls	service	images

		restart												Restart	services

		rm																	Remove	stopped	containers

		run																Run	a	one-off	command

		scale														Set	number	of	containers	for	a	service

		start														Start	services

		stop															Stop	services

		up																	Create	and	start	containers

		migrate-to-labels		Recreate	containers	to	add	labels

		version												Show	the	Docker-Compose	version	information

The	Docker	Compose	options
Looking	at	the	help	output,	we	can	see	that	the	list	is	categorized	as	Usage,	Options,	and
Commands.	The	Usage	section	is	how	you	will	need	to	structure	your	commands	to	run
them	successfully.	Next	is	the	Options	section	that	we	will	look	at	now:

Options:

		-f,	--file	FILE											Specify	an	alternate	compose	file	(default:	

docker-compose.yml)

		-p,	--project-name	NAME			Specify	an	alternate	project	name	(default:	

directory	name)

		--verbose																	Show	more	output

		-v,	--version													Print	version	and	exit

So,	as	we	can	see	from	the	previous	output	of	the	docker-compose	--help	command,
there	are	two	sections:	an	Options	section	as	well	as	a	Commands	section.	We	will	first	look
at	the	items	in	the	Options	section	and	next	look	at	the	Commands	section.

There	are	four	items	in	the	Options	section:

-f:	If	you	are	using	Docker	Compose	outside	the	folder	where	the	docker-
compose.yml	file	exists	or	if	you	are	not	naming	it	docker-compose.yml,	then	you
will	need	to	specify	the	-f	flag.	By	default,	when	you	initiate	the	Docker	Compose
commands,	they	are	meant	to	be	done	in	the	directory	where	your	docker-
compose.yml	file	is	located.	This	helps	in	keeping	things	consistent,	organized,	as
well	as	less	convoluted.
-p,	--project-name:	The	-p	option	will	allow	you	to	give	a	name	to	your	project.	By
default,	Docker	Compose	uses	the	name	of	the	folder	you	are	currently	running	the
Docker	Compose	commands	from.	This	allows	you	to	override	it.
--verbose:	The	--verbose	switch	allows	you	to	run	Docker	Compose	in	a	way	that
you	can	see	the	output	of	items	about	the	image(s)	being	used,	such	as:

The	command	used	to	start	the	containers
The	CPU	shares	being	used	in	the	container
The	domain	name	being	used
Whether	an	entry	point	was	used	and	if	so,	what	it	is

-v,	--version:	This	will	simply	print	the	version	number	of	the	Docker	Compose
client	being	used.

The	Docker	Compose	commands
We	can	tell	by	running	the	previous	docker-compose	--help	command	that	there	are
many	subcommands	that	can	be	used	with	the	main	docker-compose	command.	Let’s
break	them	down	individually	and	provide	examples	of	each	subcommand,	starting	at	the
top	and	working	our	way	down	the	list.	Remember	that	there	are	also	switches	for	each
subcommand	that	can	be	found	using	the	--help	option.	For	example,	docker-compose
<subcommand>	--help.	These	commands	will	also	seem	very	similar	as	the	commands	we
saw	in	the	Docker	commands	section	in	Chapter	4,	Managing	Containers.	Also,	note	that
some	of	these	commands	need	to	be	run	in	the	folder	where	docker-compose	and/or	the
Dockerfile	for	that	service	are	located.

For	the	command	examples,	we	will	be	using	the	following	as	the	contents	of	our	docker-
compose.yml	file	called	example	1:

master:

		image:

				scottpgallagher/galeramaster

		hostname:

				master

		ports:

				-	"3306:3306"

node1:

		image:

				scottpgallagher/galeranode

		hostname:

				node1

		links:

				-	master

node2:

		image:

				scottpgallagher/galeranode

		hostname:

				node2

		links:

				-	master

We	will	also	be	creating	this	file	(example	2):

web:

		build:	.

		command:	php	-S	0.0.0.0:8000	-t	/code

		ports:

				-	"8000:8000"

		links:

				-	db

		volumes:

				-	.:/code

db:

		image:	orchardup/mysql

		environment:

				MYSQL_DATABASE:	wordpress

We	will	create	our	Dockerfile	for	this	docker-compose.yml	file:

FROM	orchardup/php5

ADD	.	/code

build
The	build	command	of	Docker	Compose	is	used	when	you	have	changed	the	contents	of
a	Dockerfile	that	you	are	using	and	need	to	rebuild	one	of	the	systems	in	the	docker-
compose.yml	file.

For	example,	if	you	review	our	example	2	code,	in	the	previous	section,	we	have	a	web
container	that	we	are	specifying	in	our	docker-compose.yml	file.	Now,	if	were	to	update
the	contents	of	the	Dockerfile,	we	would	need	to	rebuild	the	container	named	web,	so	it
knows	about	the	change.	We	may	want	to	change	the	image	we	are	using	or,	if	the	image
has	been	updated,	we	would	want	to	do	a	rebuild	of	the	web	container:

$	docker-compose	build	web

It	will	look	for	the	name	web	in	the	docker-compose.yml	file,	then	jump	to	the	Dockerfile,
and	rebuild	the	web	container	based	on	the	contents	of	the	Dockerfile.	This	also	can	be
useful;	if	the	container	in	question	has	disappeared,	you	can	rebuild	just	that	image.	There
is	just	one	switch	that	can	be	used	with	this	subcommand	and	that	is	--no-cache,	which
allows	you	to	build	the	image	without	using	local	cache.

kill
The	kill	subcommand	does	exactly	what	its	name	suggests.	It	will	kill	a	running
container	without	gracefully	stopping	it.	This	can	have	unattended	consequences	with	the
data	that	is	being	written,	such	as	MySQL	database	tables,	to	at	the	time	of	issuing	this
command.	Remember	that	containers	are	made	to	be	immutable	environments;	but	if	you
start	diving	into	the	volumes,	then	you	are	referring	to	data	that	is	mutable	and	might
change.	In	an	event	where	you	do	have	a	volume	and	data	is	being	written	to	it,	the	best
practice	would	be	to	use	the	stop	subcommand.

Using	the	example	2	code	in	the	The	Docker	Compose	commands	section,	let’s	say	that
both	the	web	and	db	containers	are	running	and	we	want	to	stop	the	web	container.	In	this
case,	we	could	use	the	kill	subcommand:

$	docker-compose	kill	web

logs
Next	up	is	logs!	This	subcommand	will	print	the	output	from	the	specified	service.	Let’s
take	a	look	at	example	1.	We	have	three	running	containers	in	this	case:	master,	node1,
and	node2.	We	can	tell	that	node2	is	doing	something	strange	with	its	MySQL	replication
and	we	need	to	see	whether	we	can	find	out	why.	Our	first	stop	is	to	check	its	logs:

$	docker-compose	logs	node2

You	will	receive	an	output	similar	to	the	following	(but	not	exactly	the	same):

node2_1	|				at	gcomm/src/gmcast.cpp:connect_precheck():282

node2_1	|	150904	16:47:56	[ERROR]	WSREP:	gcs/src/gcs_core.cpp:long	int	

gcs_core_open(gcs_core_t*,	const	char*,	const	char*,	bool)():206:	Failed	to	

open	backend	connection:	-131	(State	not	recoverable)

node2_1	|	150904	16:47:56	[ERROR]	WSREP:	gcs/src/gcs.cpp:long	int	

gcs_open(gcs_conn_t*,	const	char*,	const	char*,	bool)():1379:	Failed	to	

open	channel	'my_wsrep_cluster'	at	'gcomm://master':	-131	(State	not	

recoverable)

node2_1	|	150904	16:47:56	[ERROR]	WSREP:	gcs	connect	failed:	State	not	

recoverable

node2_1	|	150904	16:47:56	[ERROR]	WSREP:	wsrep::connect()	failed:	7

node2_1	|	150904	16:47:56	[ERROR]	Aborting

node2_1	|	

node2_1	|	150904	16:47:56	[Note]	WSREP:	Service	disconnected.

node2_1	|	150904	16:47:57	[Note]	WSREP:	Some	threads	may	fail	to	exit.

node2_1	|	150904	16:47:57	[Note]	mysqld:	Shutdown	complete

node2_1	|	

We	can	see	that	this	node	has	an	issue	talking	to	master	and	shuts	down	its	MySQL.	Now
that	sure	helps	us!

You	will	notice	that	the	output	is	colored	as	well.	This	is	something	you	will	see	while
using	Docker	Compose,	as	it	separates	running	containers	using	different	colors.	You	can
get	the	output	of	the	logs	without	color	as	well	by	appending	the	--no-color	switch	to	the
command:

$	docker-compose	logs	--no-color	node2

node2_1	|				at	gcomm/src/gmcast.cpp:connect_precheck():282

node2_1	|	150904	16:47:56	[ERROR]	WSREP:	gcs/src/gcs_core.cpp:long	int	

gcs_core_open(gcs_core_t*,	const	char*,	const	char*,	bool)():206:	Failed	to	

open	backend	connection:	-131	(State	not	recoverable)

node2_1	|	150904	16:47:56	[ERROR]	WSREP:	gcs/src/gcs.cpp:long	int	

gcs_open(gcs_conn_t*,	const	char*,	const	char*,	bool)():1379:	Failed	to	

open	channel	'my_wsrep_cluster'	at	'gcomm://master':	-131	(State	not	

recoverable)

node2_1	|	150904	16:47:56	[ERROR]	WSREP:	gcs	connect	failed:	State	not	

recoverable

node2_1	|	150904	16:47:56	[ERROR]	WSREP:	wsrep::connect()	failed:	7

node2_1	|	150904	16:47:56	[ERROR]	Aborting

node2_1	|	

node2_1	|	150904	16:47:56	[Note]	WSREP:	Service	disconnected.

node2_1	|	150904	16:47:57	[Note]	WSREP:	Some	threads	may	fail	to	exit.

node2_1	|	150904	16:47:57	[Note]	mysqld:	Shutdown	complete

node2_1	|

port
The	port	subcommand	allows	you	to	use	Docker	Compose	to	get	you	the	public-facing
port	from	the	private	port	the	server	is	displaying.	This	can	be	useful	if	you	either	forget
what	port	privately	maps	or	what	port	publicly	maps.	If	you	have	used	autoassigned	ports,
then	you	might	want	to	be	looking	that	information	up	as	well.	The	command	is	very
straightforward.	Again,	looking	at	example	1,	we	will	this	time	look	at	master.	The	thing
to	note	with	this	command	is	that	the	container	must	be	running	in	order	to	get	this
information.	The	structure	of	this	command	is:

$	docker-compose	<name-from-compose>	<port-to-lookup>

$	docker-compose	port	master	3306

There	are	also	two	switches	to	utilize	with	this	subcommand:

--protocol:	This	is	used	to	display	either	the	TCP	or	UDP	port	to	look	up	the	port
that	you	specify	on	the	command	line.	This	will	default	to	display	TCP.	The	reason
for	this	switch	would	be	if	you	are	looking	for	the	UDP	port:

$	docker-compose	--port	udp	master	3306

--index:	This	is	used	if	you	have	scaled	containers	and	you	want	to	look	up	what	a
certain	image	in	the	list	is	using.	For	example,	if	we	were	specifying	two	masters,	we
could	do:

$	docker-compose	--index	1	master	3306:	This	would	display	the	public-
facing	port	for	the	master	container	in	index	position	1.
$	docker-compose	--index	2	master	3306:	This	would	display	the
information	for	the	master	container	in	index	spot	two.

We	know	for	this	example	that	port	3306	is	being	used	for	the	MySQL	service.	However,
if	you	don’t	know	what	ports	it	was	running	on	the	private	or	public	side,	you	can	use	the
ps	subcommand	that	we	will	be	looking	at	next.

ps
The	Docker	Compose	ps	subcommand	can	be	used	to	display	information	on	the
containers	running	within	a	particular	Docker	Compose	folder.	For	instance,	in	our	last
subcommand,	we	talked	about	not	knowing	the	private	port.	This	command	will	help	us
get	that	information.	We	will	now	take	a	look	at	the	output	of	the	docker-compose	ps
subcommand	using	example	2	code	in	the	The	Docker	Compose	commands	section:

$	docker-compose	ps					

																																																																																

										Name																					Command																					State																						

Ports											

galeracompose_master_1					/entrypoint.sh													Up																									

0.0.0.0:3306->3306/tcp,		

																																																																																	

4444/tcp,	4567/tcp,						

																																																																																	

4568/tcp,	53/tcp,								

																																																																																	

53/udp,	8300/tcp,								

																																																																																	

8301/tcp,	8301/udp,						

																																																																																	

8302/tcp,	8302/udp,						

																																																																																	

8400/tcp,	8500/tcp							

galeracompose_node1_1						/entrypoint.sh													Exit	1																																														

galeracompose_node2_1						/entrypoint.sh													Exit	137					

We	can	get	a	lot	of	information	from	this	output.	We	can	get	the	name	of	the	containers
running.	These	names	are	assigned	based	upon	folder_name	+	_name_used_in_yml_file
+	_<number_of_each_name_running>.	For	example,	galeracompose_master_1,	where:

galeracompose	is	our	folder	name
master	is	the	name	being	used	in	the	docker-compose.yml	file
1	is	how	many	times	this	container	is	being	run

We	also	see	the	command	that	is	running	inside	the	container	as	well	as	the	state	of	each
container.	In	our	earlier	example,	we	see	that	one	container	is	up	and	two	are	in	an	Exit
status,	which	means	they	are	off.	From	the	one	that	is	up,	we	see	all	the	ports	that	are
being	utilized	on	the	backend,	including	the	protocol.	Then,	we	see	the	ports	that	are
exposed	to	the	outside	and	also	the	backend	port	they	are	connected	to.

When	you	use	various	commands	with	Docker	Compose,	you	can	specify	either	the	name
given	from	the	output	using	the	ps	subcommand	or	by	the	name	given	in	the	docker-
compose.yml	file.

pull
The	pull	subcommand	can	be	used	in	two	ways.	One	you	could	run:

$	docker-compose	pull

Or	you	could	run:

$	docker-compose	pull	<service_name>

What’s	the	difference?	The	difference	in	the	first	one	is	that	it	will	pull	all	the	images	that
are	referenced	in	the	docker-compose.yml	file.	In	the	second	one,	it	will	pull	just	the
image	that	is	specified	for	the	service	asked	to	be	pulled.

If	we	look	back	at	example	1	in	the	Docker	Compose	commands	section,	we	have	master,
node1,	and	node2	in	our	docker-compose.yml	file.	If	we	wanted	to	retrieve	all	the	images,
we	would	use	the	first	example.	If	we	just	wanted	the	image	being	used	by	master,	we
would	use	the	second	one:

$	docker-compose	pull	master

Remember	that	these	commands	need	to	be	run	in	the	folder	where	the	docker-
compose.yml	file	is	located.

restart
Restart	does	exactly	what	it	says	it	does.	As	with	the	pull	subcommand,	it	can	be	used	in
two	ways.	You	can	run:

$	docker-compose	restart

It	will	restart	all	the	containers	that	are	being	used	in	the	docker-compose.yml	file.	You
can	also	specify	which	container	to	restart:

$	docker-compose	restart	<service>

Again,	using	example	1	in	the	The	Docker	Compose	commands	section,	we	only	want	to
restart	one	of	the	node	services:

$	docker-compose	restart	node1

The	restart	command	will	only	restart	the	containers	that	are	currently	running.	If	a
container	is	in	an	exit	state,	then	it	won’t	start	that	container	up	to	a	running	state.

rm
The	rm	subcommand	can	be	used	to	remove	containers	for	specific	Docker	Compose
instances.	By	default,	it	will	ask	you	to	confirm	whether	you	really	want	to	remove	the
container	in	question.	It	is	a	good	practice	to	use	the	subcommand	in	this	way.	However,	if
you	are	comfortable	enough,	you	can	also	use	the	-f	switch	with	the	subcommand	to	force
removal	and	you	won’t	be	prompted	to	for	yes	as	an	answer:

$	docker-compose	rm	<service>

$	docker-compose	rm	node2

Going	to	remove	galeracompose_node2_1

Are	you	sure?	[yN]	y

Removing	galeracompose_node2_1…	done

You	can	use	this	command,	as	we	have	seen	with	the	previous	commands,	without
specifying	a	service	name.	If	you	do	so,	it	will	prompt	you	to	remove	each	of	the	stopped
containers.	It	will	not	try	to	remove	the	containers	that	are	running	however.	Again,	you
could	use	the	-f	switch	to	specify	the	removal	of	all	the	stopped	containers	without	asking
for	approval.

run
The	run	subcommand	is	used	to	run	a	one-time	command	against	a	service,	not	against	an
already	running	container.	When	you	use	the	run	subcommand,	you	are	actually	starting
up	a	new	container	and	executing	the	specified	command.	This	is	one	command	that	you
do	need	to	pay	attention	to,	including	the	switches	that	are	available	for	the	subcommand.

Specifically,	there	are	two	to	remember:

--no-deps:	This	will	not	start	up	containers	that	may	be	linked	to	the	container	being
used	with	the	run	subcommand.	By	default,	when	you	use	the	run	subcommand,	any
linked	containers	will	start	up	as	well.
--service-ports:	By	default,	ports	that	are	being	specified	in	the	docker-
compose.yml	file	are	not	exposed	during	the	execution	of	the	run	subcommand.	This
is	to	avoid	issues	with	the	ports	that	are	already	in	use.	However,	this	switch	will
allow	you	to	expose	the	ports	that	are	being	specified.	This	can	be	helpful	if	the	ports
in	question	aren’t	already	being	exposed.

The	structure	of	the	subcommand	is	as	follows:

$	docker-compose	run	<service>	<command>

scale
The	scale	subcommand	allows	you	just	to	do	that:	scale.	With	the	scale	subcommand,
you	can	specify	how	many	instances	you	want	to	start	up.	Using	example	1,	if	we	want	to
load	up	a	bunch	of	nodes,	we	could	do	that	using	the	scale	subcommand:

$	docker-compose	scale	node1=3

This	would	fire	up	three	nodes	and	link	them	back	to	the	master	container.	You	can	also
specify	multiple	containers	to	scale	per	line	as	well.	If	we	had	a	difference	in	node1	and
node2,	we	could	scale	them	accordingly	on	the	same	line.

$	docker-compose	scale	node1=3	node2=3

start
We	will	use	this	for	our	example	with	the	start	subcommand:

$	docker-compose	ps								

																																																																														

										Name																							Command																						State																							

Ports											

galeracompose_master_1						/entrypoint.sh														Exit	137																																														

galeracompose_node2_run_1			/entrypoint.sh														Up																										

3306/tcp,	4444/tcp,							

																																																																																				

4567/tcp,	4568/tcp,							

																																																																																				

53/tcp,	53/udp,	8300/tcp,	

																																																																																				

8301/tcp,	8301/udp,							

																																																																																				

8302/tcp,	8302/udp,							

																																																																																				

8400/tcp,	8500/tcp		

From	the	preceding	ps	subcommand,	we	can	see	that	the	master	node	is	stopped.	That’s
not	good!	We	need	to	get	it	started	as	soon	as	possible:

$	docker-compose	start	master

$	docker-compose	ps																																																																																						

										Name																							Command																						State																							

Ports											

galeracompose_master_1						/entrypoint.sh														Up																										

0.0.0.0:3306->3306/tcp,			

																																																																																				

4444/tcp,	4567/tcp,							

																																																																																				

4568/tcp,	53/tcp,	53/udp,	

																																																																																				

8300/tcp,	8301/tcp,							

																																																																																				

8301/udp,	8302/tcp,							

																																																																																				

8302/udp,	8400/tcp,							

																																																																																				

8500/tcp																		

galeracompose_node2_run_1			/entrypoint.sh														Up																										

3306/tcp,	4444/tcp,							

																																																																																				

4567/tcp,	4568/tcp,							

																																																																																				

53/tcp,	53/udp,	8300/tcp,	

																																																																																				

8301/tcp,	8301/udp,							

																																																																																				

8302/tcp,	8302/udp,							

																																																																																				

8400/tcp,	8500/tcp

Phew,	it	is	much	better	now!	Let’s	take	a	look	at	what	we	need	to	do	if	we	need	to	stop	a
running	container.

stop
The	stop	subcommand	stops	running	containers	gracefully.	Using	our	example	from	the
last	subcommand,	let’s	stop	the	master	container:

$	docker-stop	master

docker-compose	ps																																																																																						

										Name																							Command																						State																							

Ports											

galeracompose_master_1						/entrypoint.sh														Exit	137																																														

galeracompose_node2_run_1			/entrypoint.sh														Up																										

3306/tcp,	4444/tcp,							

																																																																																				

4567/tcp,	4568/tcp,							

																																																																																				

53/tcp,	53/udp,	8300/tcp,	

																																																																																				

8301/tcp,	8301/udp,							

																																																																																				

8302/tcp,	8302/udp,							

																																																																																				

8400/tcp,	8500/tcp								

up
The	up	subcommand	is	used	to	start	all	the	containers	specified	in	a	docker-compose.yml
file.	It	can	also	be	used	to	start	up	a	single	container	as	well	from	a	compose	file.	By
default,	when	you	issue	the	up	subcommand,	it	will	keep	everything	in	the	foreground.
However,	you	can	use	the	-d	switch	to	push	all	that	information	into	a	daemon	and	just	get
information	on	the	container	names	on	the	screen:

Let’s	use	example	2	in	this	test	case.	We	will	take	a	look	at	docker-compose	up	-d	and
docker-compose	up:

$	docker-compose	up	-d				

Starting	wordpresstest_db_1…

Start

ing	wordpresstest_web_1…

$	docker-compose	up

Starting	wordpresstest_db_1…

Starting	wordpresstest_web_1…

Attaching	to	wordpresstest_db_1,	wordpresstest_web_1

db_1		|	150905	14:39:02	[Warning]	Using	unique	option	prefix	key_buffer	

instead	of	key_buffer_size	is	deprecated	and	will	be	removed	in	a	future	

release.	Please	use	the	full	name	instead.

db_1		|	150905	14:39:02	[Warning]	Using	unique	option	prefix	key_buffer	

instead	of	key_buffer_size	is	deprecated	and	will	be	removed	in	a	future	

release.	Please	use	the	full	name	instead.

db_1		|	150905	14:39:03	[Warning]	Using	unique	option	prefix	key_buffer	

instead	of	key_buffer_size	is	deprecated	and	will	be	removed	in	a	future	

release.	Please	use	the	full	name	instead.

db_1		|	150905	14:39:03	[Warning]	Using	unique	option	prefix	myisam-recover	

instead	of	myisam-recover-options	is	deprecated	and	will	be	removed	in	a	

future	release.	Please	use	the	full	name	instead.

........

db_1		|	150905	14:41:36	[Note]	Plugin	'FEDERATED'	is	disabled.

db_1		|	150905	14:41:36	InnoDB:	The	InnoDB	memory	heap	is	disabled

db_1		|	150905	14:41:36	InnoDB:	Mutexes	and	rw_locks	use	GCC	atomic	

builtins

db_1		|	150905	14:41:36	InnoDB:	Compressed	tables	use	zlib	1.2.3.4

db_1		|	150905	14:41:36	InnoDB:	Initializing	buffer	pool,	size	=	128.0M

db_1		|	150905	14:41:36	InnoDB:	Completed	initialization	of	buffer	pool

db_1		|	150905	14:41:36	InnoDB:	highest	supported	file	format	is	Barracuda.

db_1		|	150905	14:41:36		InnoDB:	Waiting	for	the	background	threads	to	

start

db_1		|	150905	14:41:37	InnoDB:	5.5.38	started;	log	sequence	number	1595675

db_1		|	150905	14:41:37	[Note]	Server	hostname	(bind-address):	'0.0.0.0';	

port:	3306

db_1		|	150905	14:41:37	[Note]			-	'0.0.0.0'	resolves	to	'0.0.0.0';

db_1		|	150905	14:41:37	[Note]	Server	socket	created	on	IP:	'0.0.0.0'.

db_1		|	150905	14:41:37	[Note]	Event	Scheduler:	Loaded	0	events

db_1		|	150905	14:41:37	[Note]	/usr/sbin/mysqld:	ready	for	connections.

db_1		|	Version:	'5.5.38-0ubuntu0.12.04.1-log'		socket:	

'/var/run/mysqld/mysqld.sock'		port:	3306		(Ubuntu)

You	can	see	a	huge	difference.	Remember	that,	if	you	don’t	use	the	-d	switch	and	hit	Ctrl
+	C	in	the	terminal	window,	it	will	start	shutting	down	the	running	containers.	While	it’s
good	for	testing	purposes,	if	you	are	going	into	a	production	environment,	it	is
recommended	to	use	the	-d	switch.

version
The	version	subcommand	will	give	you	the	version	of	Docker	Compose	that	you	are
running.	It’s	very	straightforward	and	can	also	be	utilized	with	the	-v	switch:

$	docker-compose	version

$	docker-compose	-v

The	difference	is	that	the	subcommand	version	will	show	you	a	little	more	information
such	as	the	docker-py	version,	Python	version,	and	OpenSSL	version,	while	the	-v	switch
will	just	show	you	the	version	of	Docker	Compose.

Docker	Compose	–	examples
In	this	section,	we	will	take	a	look	at	some	examples	and	break	them	to	understand	what
we	can	do	within	the	docker-compose.yml	file.	Remember,	earlier	we	discussed	that	in
the	YAML	file,	there	needs	to	be	either	an	image	section	or	a	build	section.	Let’s	take	a
look	at	an	example	using	each.	Then,	we	will	look	at	an	example	using	as	many	of	the
options	available	for	the	Docker	Compose	YAML	file	as	possible.

Here	is	a	breakdown	of	an	example	docker-compose.yml	file.	We	will	break	the	contents
into	sections	to	help	you	understand	each	entry.

image
The	image	section	tells	Docker	Compose	that	you	are	going	to	define	the	configuration	of
your	containers	and	what	settings	each	will	have:

haproxy:#container	name

		image:	tutum/haproxy	#image	to	use	from	the	Docker	Hub

		ports:	#defining	our	port	setup

				-	"80:80"	#port	to	map	from	Docker	Host:	to	container

		links:	#what	containers	to	link	to/with

				-	varnish1

				-	varnish2

varnish1:

		image:	jacksoncage/varnish

		ports:

				-	"82:80"

		links:

				-	web1

				-	web2

				-	web3

				-	web4

		environment:	#	you	use	environment	to	specify	variable	to	pass	to	the	

container	with	values

				VARNISH_BACKEND_PORT:	80

				VARNISH_BACKEND_IP:	web1

				VARNISH_BACKEND_PORT:	80

				VARNISH_BACKEND_IP:	web2

				VARNISH_BACKEND_PORT:	80

				VARNISH_BACKEND_IP:	web3

				VARNISH_BACKEND_PORT:	80

				VARNISH_BACKEND_IP:	web4

				VARNISH_PORT:	80

varnish2:

		image:	jacksoncage/varnish

		ports:

				-	"81:80"

		links:

				-	web1

				-	web2

				-	web3

				-	web4

		environment:

				VARNISH_BACKEND_PORT:	80

				VARNISH_BACKEND_IP:	web1

				VARNISH_BACKEND_PORT:	80

				VARNISH_BACKEND_IP:	web2

				VARNISH_BACKEND_PORT:	80

				VARNISH_BACKEND_IP:	web3

				VARNISH_BACKEND_PORT:	80

				VARNISH_BACKEND_IP:	web4

				VARNISH_PORT:	80

web1:

			image:	scottpgallagher/php5-mysql-apache2

			volumes:	#	you	can	specify	volumes	for	the	container	to	use.	This	will	

allow	for	multiple	containers	to	share	a	volume

					-	.:/var/www/html/	#	specify	the	location	of	the	volume

			links:

					-	master

					-	node1

					-	node2

					-	nfs1

					-	mcrouter1

					-	mcrouter2

web2:

			image:	scottpgallagher/php5-mysql-apache2

			volumes:

					-	.:/var/www/html/

			links:

					-	master

					-	node1

					-	node2

					-	nfs1

					-	mcrouter1

					-	mcrouter2

web3:

			image:	scottpgallagher/php5-mysql-apache2

			volumes:

					-	.:/var/www/html/

			links:

					-	master

					-	node1

					-	node2

					-	nfs1

					-	mcrouter1

					-	mcrouter2

web4:

			image:	scottpgallagher/php5-mysql-apache2

			volumes:

					-	.:/var/www/html/

			links:

					-	master

					-	node1

					-	node2

					-	nfs1

					-	mcrouter1

					-	mcrouter2

master:

		image:

				scottpgallagher/galeramaster

		hostname:	#	you	can	specify	a	hostname	to	assign	to	the	container

				master	#hostname	to	use

		environment:

				MARIADB_DATABASE:	wordpressmu

				MARIADB_USER:	replica

				MARIADB_PASSWORD:	replica

node1:

		image:

				scottpgallagher/galeranode

		hostname:

				node1

		environment:

				MARIADB_DATABASE:	wordpressmu

				MARIADB_USER:	replica

				MARIADB_PASSWORD:	replica

		links:

				-	master

node2:

		image:

				scottpgallagher/galeranode

		hostname:

				node2

		environment:

				MARIADB_DATABASE:	wordpressmu

				MARIADB_USER:	replica

				MARIADB_PASSWORD:	replica

		links:

				-	master

nfs1:

		image:	cpuguy83/nfs-server

		volumes:

			-	/var/www/wp-content/uploads

mcrouter1:

		image:	jmck/mcrouter-docker

		command:	mcrouter	--config-str='{"pools":{"A":{"servers":

["memcached1:11211",	"memcached2:11211"]}},"route":"PoolRoute|A"}'	-p	5000	

#	here	you	can	specify	a	command	to	run	on	the	container	when	it's	started

		links:

			-	memcached1

			-	memcached2

mcrouter2:

		image:	jmck/mcrouter-docker

		command:	mcrouter	--config-str='{"pools":{"A":{"servers":

["memcached1:11211",	"memcached2:11211"]}},"route":"PoolRoute|A"}'	-p	5000

		links:

			-	memcached1

			-	memcached2

memcached1:

		image:	memcached

		links:

			-	db0

memcached1:

		image:	memcached

		links:

			-	db0

memcached2:

		image:	memcached

		links:

			-	db0

In	this	very	long	example,	you	can	see	that	we	are	specifying	a	name	for	each	service	as
well	as	the	image	that	is	going	to	be	used	from	the	Docker	Hub	Registry.	You	can	also	see
a	lot	of	container	linking	being	done	in	it.	Remember	that	container	linking	removes	the
exposition	off	ports	and	keeps	the	communication	secure	between	the	said	linked

containers.	We	are	specifying	volumes	as	well	as	running	some	commands	in	the
containers	as	well.

build
The	easiest	example	of	something	that	uses	build	is	a	wordpress	instance:

web:

		build:	.

		command:	php	-S	0.0.0.0:8080	-t	/wordpress

		ports:

				-	"80:8080"

		links:

				-	database

		volumes:

				-	.:/wordpress

database:

		image:	mysql

		environment:

				MYSQL_DATABASE:	wordpress

				MYSQL_ROOT_PASSWORD:	password

Now,	there	are	other	files	that	are	required	for	this	setup;	but	we	are	just	focusing	on	the
docker-compose.yml	file	right	now.	In	the	earlier	example,	we	are	specifying	two
services:	a	web	service	and	a	database	service.	In	the	database	service,	we	see	that	we	are
using	the	image	option;	but	in	the	web	service,	we	are	doing	something	different.	We	are
building	based	off	the	contents	of	the	folder	and	then	placing	the	files	in	the	/wordpress
directory	inside	the	container.

The	last	example
Following	is	an	example	just	for	the	sake	of	it.	It’s	probably	something	that	would	not
actually	run,	but	you	could	use	it	for	reference	for	the	different	options	that	you	can	set
within	your	docker-compose.yml	file:

node2:

		image:

				scottpgallagher/galeranode

		hostname:

				database

		environment:

				MARIADB_DATABASE:	wordpressmu

				MARIADB_USER:	replica

				MARIADB_PASSWORD:	replica

nfs1:

		image:	scottpgallagher/php5-mysql-apache2

		ports:

				-	"2049"

		volumes:

				-	.:/var/www/html/

web1:

		image:	apache

		links:

				-	node2

				-	nfs1

		volumes_from:

				-	nfs1

		expose:

				-	"80"

		log_driver:	"syslog"

		dns:	8.8.8.8

		restart:	always

		hostname:	webserver

		read_only:	true

In	the	previous	example,	we	specified	a	lot	of	things:

image:	This	specifies	what	image	to	use	from	Docker	Hub
volumes:	This	specifies	what	paths	to	use	for	the	volumes	that	live	outside	the
container
volumes-from:	This	specifies	what	volume	from	another	container	to	mount	into	the
container
links:	This	links	containers	together,	so	the	need	to	expose	ports	isn’t	there
log_driver:	This	selects	what	logging	driver	to	use
dns:	This	specifies	the	ability	to	add	additional	DNS	servers	per	container
restart:	This	states	that	the	container	needs	to	restart	when	or	if	it	fails
hostname:	This	sets	a	hostname	for	the	container
read_only:	This	allows	you	to	specify	that	a	container	is	read-only
ports:	This	specifies	what	ports	can	be	attached	to	(from	the	Docker	host	to	the
Docker	container)
expose:	This	specifies	what	ports	are	actually	exposed	externally

environment:	This	sets	the	values	to	the	specified	variables

Summary
In	this	chapter,	we	have	looked	at	how	to	install	Docker	Compose	on	various	platforms.
We	also	looked	at	the	file	that	Docker	Compose	uses,	YAML	file,	for	its	operation.	We	took
a	dive	into	the	Docker	Compose	usage	and	commands,	and	some	examples	for	what	you
can	use	Compose.

In	the	next	chapter,	we	will	be	looking	at	Docker	Swarm.	Docker	Swarm	is	another	piece
of	the	Docker	ecosystem	that	can	be	used	to	do	multiple	things;	but	at	its	core,	it	is	used
for	Docker	container	clustering.	It	can	also	use	discovery	services	and	advanced
scheduling	methods.	The	chapter	will	also	cover	the	Docker	Swarm	API,	creating	a
Swarm	environment	and	some	Swarm	strategies	while	setting	up	the	environments.

Chapter	8.	Docker	Swarm
In	this	chapter,	we	will	be	taking	a	look	at	Docker	Swarm.	With	Docker	Swarm,	you	can
create	and	manage	Docker	clusters.	Swarm	can	be	used	to	disperse	containers	across
multiple	hosts.	It	also	has	the	ability	to	know	how	to	scale	containers	as	well.	In	this
chapter,	we	will	be	covering	the	following	topics:

Installing	Docker	Swarm
The	Docker	Swarm	components
Docker	Swarm	usage
The	Docker	Swarm	commands
The	Docker	Swarm	topics

Docker	Swarm	install
Let’s	get	things	started	by	the	typical	way	of	installing	Docker	Swarm.	Docker	Swarm	is
only	available	for	Linux	and	Mac	OS	X.	The	installation	process	for	both	is	the	same.
Let’s	take	a	look	at	how	we	install	Docker	Swarm.

Installation
Ensure	that	you	already	have	Docker	installed,	either	through	the	curl	command	on	Linux
or	through	Docker	Toolbox	on	Mac	OS	X.	Once	you	have	the	Docker	daemon	installed,
installing	Docker	Swarm	will	be	simple:

$	docker	pull	swarm

One	command	and	you	are	up	and	running.	That’s	it!

Docker	Swarm	components
What	components	are	involved	with	Docker	Swarm?	Let’s	take	a	look	at	the	three
components	of	Docker	Swarm:

Swarm
Swarm	manager
Swarm	host

Swarm
Docker	Swarm	is	the	container	that	runs	on	each	Swarm	host.	Swarm	uses	a	unique	token
for	each	cluster	to	be	able	to	join	the	cluster.	The	Swarm	container	itself	is	the	one	that
communicates	on	behalf	of	that	Docker	host	to	the	other	Docker	hosts	that	are	running
Docker	Swarm	as	well	as	the	Docker	Swarm	manager.

Swarm	manager
The	Swarm	manager	is	the	host	that	is	the	central	management	point	for	all	the	Swarm
hosts.	The	Swarm	manager	is	where	you	issue	all	your	commands	to	control	nodes.	You
can	switch	between	the	nodes,	join	nodes,	remove	nodes,	and	manipulate	the	hosts.

Swarm	host
Swarm	hosts,	which	we	saw	earlier	as	the	Docker	hosts,	are	those	that	run	the	Docker
containers.	The	Swarm	host	is	managed	from	the	Swarm	manager.

The	preceding	figure	is	an	illustration	of	all	the	Docker	Swarm	components.	We	see	that
the	Docker	Swarm	manager	talks	to	each	Swarm	host	that	is	running	the	Swarm	container.

Docker	Swarm	usage
Let’s	now	take	look	at	Swarm	usage	and	how	we	can	do	the	following	tasks:

Creating	a	cluster
Joining	nodes
Removing	nodes
Managing	nodes

Creating	a	cluster
Let’s	start	by	creating	the	cluster,	which	starts	with	a	Swarm	manager.	We	first	need	a
token	that	can	be	used	to	join	all	the	nodes	to	the	cluster:

$	docker	run	--rm	swarm	create

85b335f95e9a37b679e2ea9e6ad8d6361

We	can	now	use	that	token	to	create	our	Swarm	manager:

$	docker-machine	create	\

								-d	virtualbox	\

								--swarm	\

								--swarm-master	\

								--swarm-discovery	token://85b335f95e9a37b679e2ea9e6ad8d6361	\

								swarm-master

Creating	VirtualBox	VM…

Creating	SSH	key…

Starting	VirtualBox	VM…

Starting	VM…

To	see	how	to	connect	Docker	to	this	machine,	run	docker-machine	env	swarm-master.

The	swarm-master	node	is	now	in	VirtualBox.	We	can	see	this	machine	by	doing	as
follows:

$	docker-machine	ls

NAME											ACTIVE			DRIVER							STATE					URL																									

SWARM	

swarm-master												virtualbox			Running			tcp://192.168.99.101:2376		

swarm-master	(master)

Now,	let’s	point	Docker	Machine	at	the	new	Swarm	master.	The	earlier	output	we	saw
when	we	created	the	Swarm	master	tells	us	how	to	point	to	the	node:

$	docker-machine	env	swarm-master				

																																																																			

export	DOCKER_TLS_VERIFY="1"

export	DOCKER_HOST="tcp://192.168.99.102:2376"

export	DOCKER_CERT_PATH="/Users/spg14/.docker/machine/machines/swarm-

master"

export	DOCKER_MACHINE_NAME="swarm-master"

#	Run	this	command	to	configure	your	shell:

#	eval	"$(docker-machine	env	swarm-master)"

Upon	running	the	previous	command,	we	are	told	to	run	the	following	command	to	point
to	the	Swarm	master:

$	eval	"$(docker-machine	env	swarm-master)"

Now,	if	we	look	at	what	machines	are	on	our	host,	we	can	see	that	we	have	the	swarm-
master	host	as	well.	It	is	set	to	ACTIVE,	which	means	that	we	can	now	run	commands
against	this	host:

$	docker-machine	ls

NAME											ACTIVE			DRIVER							STATE					URL																									

SWARM	

swarm-master			*									virtualbox			Running			tcp://192.168.99.101:2376		

swarm-master	(master

Joining	nodes
Again	using	the	token,	which	we	got	from	the	earlier	commands,	used	to	create	the	Swarm
manager,	we	need	that	same	token	to	join	nodes	to	that	cluster:

$	docker-machine	create	\

-d	virtualbox	\

--swarm	\

--swarm-discovery	token://85b335f95e9a37b679e2ea9e6ad8d6361	\

swarm-node1

Now,	if	we	look	at	the	machines	on	our	system,	we	can	see	that	they	are	both	part	of	the
same	Swarm:

$	docker-machine	ls

NAME											ACTIVE			DRIVER							STATE					URL																									

SWARM

swarm-master				*							virtualbox			Running			tcp://192.168.99.102:2376			

swarm-master(master)

swarm-node1													virtualbox			Running			tcp://192.168.99.103:2376			

swarm-master

Listing	nodes
First,	ensure	you	are	pointing	at	the	Swarm	master:

$	docker-machine	ls																																																																																																																																																										

NAME											ACTIVE			DRIVER							STATE					URL																									

SWARM

swarm-master			*								virtualbox			Running			tcp://192.168.99.102:2376			

swarm-master(master)

swarm-node1													virtualbox			Running			tcp://192.168.99.103:2376			

swarm-master

Now,	we	can	see	what	machines	are	joined	to	this	cluster	based	off	the	token	used	to	join
them	all	together:

$	docker	run	--rm	swarm	list	token://85b335f95e9a37b679e2ea9e6ad8d6361	

192.168.99.102:2376

192.168.99.103:2376

Managing	a	cluster
Let’s	see	how	we	can	do	some	management	of	all	of	the	cluster	nodes	we	are	creating.

So,	there	are	two	ways	you	can	go	about	managing	these	Swarm	hosts	and	the	containers
on	each	host	that	you	are	creating.	But	first,	you	need	to	know	some	information	about
them,	so	we	will	turn	to	our	Docker	Machine	command	again:

$	docker-machine	ls

NAME											ACTIVE			DRIVER							STATE					URL																									

SWARM

swarm-master					*						virtualbox			Running			tcp://192.168.99.102:2376			

swarm-master(master)

swarm-node1													virtualbox			Running			tcp://192.168.99.103:2376			

swarm-master

You	can	switch	to	each	Swarm	host	like	we	have	seen	earlier	by	doing	something	similar
to	the	following—changing	the	values—and	by	following	the	instructions	from	the	output
of	the	command:

$	docker-machine	env	<Node_Name>

But	this	is	a	lot	of	tedious	work.	There	is	another	way	we	can	manage	these	hosts	and	see
what	is	going	on	inside	them.	Let’s	take	a	look	at	how	we	can	do	it.	From	the	previous
docker-machine	ls	command,	we	see	that	we	are	currently	pointing	at	the	swarm-master
node.	So,	any	Docker	commands	we	issue	would	go	against	this	host.

But,	if	we	run	the	following,	we	can	get	information	on	the	swarm-node1	node:

$	docker	-H	tcp://192.168.99.103:2376	info

Containers:	1

Images:	8

Storage	Driver:	aufs

	Root	Dir:	/mnt/sda1/var/lib/docker/aufs

	Backing	Filesystem:	tmpfs

	Dirs:	10

	Dirperm1	Supported:	true

Execution	Driver:	native-0.2

Logging	Driver:	json-file

Kernel	Version:	4.0.9-boot2docker

Operating	System:	Boot2Docker	1.8.2	(TCL	6.4);	master	:	aba6192	-	Thu	Sep	

10	20:58:17	UTC	2015

CPUs:	1

Total	Memory:	996.2	MiB

Name:	swarm-node1

ID:	SDEC:4RXZ:O3VL:PEPC:FYWM:IGIK:CFM5:UXPS:U4S5:PNQD:5ULK:TSCE

Debug	mode	(server):	true

File	Descriptors:	18

Goroutines:	29

System	Time:	2015-09-16T09:32:27.67035212Z

EventsListeners:	1

Init	SHA1:	

Init	Path:	/usr/local/bin/docker

Docker	Root	Dir:	/mnt/sda1/var/lib/docker

Labels:

	provider=virtualbox

So,	we	can	see	the	information	on	this	host	such	as	the	number	of	containers,	the	numbers
of	images	on	the	host,	as	well	as	information	about	the	CPU,	memory,	and	so	on.

We	can	see	from	the	earlier	information	that	one	container	is	running.	Let’s	take	a	look	at
what	is	running	on	the	swarm-node1	host:

$	docker	-H	tcp://192.168.99.103:2376	ps

CONTAINER	ID								IMAGE														COMMAND																	CREATED												

STATUS														PORTS															NAMES

12a400424c87								swarm:latest								"/swarm	join	--advert"			17	hours	

ago								Up	17	hours									2375/tcp												swarm-agent

Now,	you	can	use	any	of	the	Docker	commands	using	this	method	against	any	Swarm	host
that	is	listed	in	the	output	of	your	docker-machine	ls	output.

The	Docker	Swarm	commands
Now,	let’s	take	a	look	at	some	Docker	Swarm-specific	commands	that	we	can	use.	Let’s
revert	to	the	ever-so-helpful—the	help	switch	on	the	Docker	Swarm	command:

$	docker	run	--rm	swarm	--help														

																																																																																																																																	

Usage:	swarm	[OPTIONS]	COMMAND	[arg…]

A	Docker-native	clustering	system

Version:	0.4.0	(d647d82)

Options:

		--debug						debug	mode	[$DEBUG]

		--log-level,	-l	"info"		Log	level	(options:	debug,	info,	warn,	error,	

fatal,	panic)

		--help,	-h						show	help

		--version,	-v						print	the	version

		

Commands:

		create,	c		Create	a	cluster

		list,	l	 List	nodes	in	a	cluster

		manage,	m		Manage	a	docker	cluster

		join,	j		join	a	docker	cluster

		help,	h		Shows	a	list	of	commands	or	help	for	one	command

Using	TLS

Let’s	take	a	look	at	the	options	you	can	use	for	Docker	Swarm	as	well	as	the	commands
that	are	associated	with	it.

Options
Looking	over	the	options	from	the	preceding	output,	we	can	see	the	--debug	and	--log
level	switches.	The	other	two	are	straightforward,	as	one	will	just	print	out	the	help
information	and	the	other	one	will	print	out	the	version	number	that	we	can	see	in	the
previous	output.	The	options	are	used	after	each	of	the	following	subcommands	of	Docker
Swarm.

For	example:

$	docker	run	--rm	swarm	list	--debug

$	docker	run	--rm	swarm	manage	--debug

$	docker	run	--rm	swarm	create	--debug

list
We	looked	at	the	Swarm	list	command	before:

$	docker	run	--rm	swarm	list	token://85b335f95e9a37b679e2ea9e6ad8d6361

																																																																																																								

192.168.99.102:2376

192.168.99.103:2376

But	there	is	also	a	switch	that	we	can	tack	onto	the	list	command	and	that	is	the	--
timeout	switch:

$	docker	run	--rm	swarm	list	--timeout	20s	

token://85b335f95e9a37b679e2ea9e6ad8d6361

This	will	allow	more	time	to	find	the	nodes	that	are	a	part	of	Swarm.	It	could	take	time	for
the	hosts	to	check,	depending	upon	things	such	as	network	latency	or	if	they	are	running	in
different	parts	of	the	globe.

create
We	have	seen	how	we	can	create	a	Swarm	cluster	as	well.	What	this	command	actually
does	is	it	gives	us	the	token	that	we	need	to	create	the	cluster	and	join	all	the	nodes	to	it.
There	are	no	other	switches	that	can	be	used	with	this	command	as	we	have	seen	with
other	commands:

$	docker	run	--rm	swarm	create

85b335f95e9a37b679e2ea9e6ad8d6361

manage
We	can	manage	a	cluster	with	the	manage	subcommand	in	Docker	Swarm.	An	example	of
this	command	would	look	like	the	following,	replacing	the	information	to	align	with	your
IP	address	and	Swarm	token:

$	docker	run	--rm	swarm	manage	-H	tcp://192.168.99.104:2376	

token://85b335f95e9a37b679e2ea9e6ad8d6361

The	Docker	Swarm	topics
There	are	three	advanced	topics	we	will	take	a	look	at	in	this	section:

Discovery	services
Advanced	scheduling
The	Docker	Swarm	API

Discovery	services
You	can	also	use	services	such	as	etcd,	ZooKeeper,	consul,	and	many	others	to
automatically	add	nodes	to	your	Swarm	cluster	as	well	as	do	other	things	such	as	list	the
nodes	or	manage	them.	Let’s	take	a	look	at	consul	and	how	you	can	use	it.	This	will	be	the
same	for	each	discovery	service	that	you	might	use.	It	just	involves	switching	out	the	word
consul	with	the	discovery	service	you	are	using.

On	each	node,	you	will	need	to	do	something	different	in	how	you	join	the	machines.
Earlier,	we	did	something	like	this:

$	docker-machine	create	\

-d	virtualbox	\

--swarm	\

--swarm-discovery	token://85b335f95e9a37b679e2ea9e6ad8d6361	\

swarm-node1

Now,	we	would	do	something	similar	to	the	following	(based	upon	the	discovery	service
you	are	using):

$	docker-machine	create	\

-d	virtualbox	\

--swarm	\

join	--advertise=<swarm-node1_ip:2376>	\

consul://<consul_ip>	\

swarm-node1

You	can	now	start	manage	on	your	laptop	or	the	system	that	you	will	be	using	as	the
Swarm	manager.	Before,	we	would	run	something	like	this:

$	docker	run	--rm	swarm	manage	-H	tcp://192.168.99.104:2376	

token://85b335f95e9a37b679e2ea9e6ad8d6361

Now,	we	run	this	with	regards	to	discovery	services:

$	docker	run	--rm	swarm	manage	-H	tcp://192.168.99.104:2376	

consul://<consul_ip>

We	can	also	list	the	nodes	in	this	cluster	as	well	as	the	discovery	service:

$	docker	run	--rm	swarm	list	-H	tcp://192.168.99.104:2376	

consul://<consul_ip>

You	can	easily	switch	out	consul	for	another	discovery	service	such	as	etcd	or	ZooKeeper;
the	format	will	still	be	the	same:

$	docker-machine	create	\

-d	virtualbox	\

--swarm	\

join	--advertise=<swarm-node1_ip:2376>	\

etcd://<etcd_ip>	\

swarm-node1

$	docker-machine	create	\

-d	virtualbox	\

--swarm	\

join	--advertise=<swarm-node1_ip:2376>	\

zk://<zookeeper_ip>	\

swarm-node1

Advanced	scheduling
What	is	advanced	scheduling	with	regards	to	Docker	Swarm?	Docker	Swarm	allows	you
to	rank	nodes	within	your	cluster.	It	provides	three	different	strategies	to	do	this.	These
can	be	used	by	specifying	them	with	the	--strategy	switch	with	the	swarm	manage
command:

spread

binpack

random

spread	and	binpack	use	the	same	strategy	to	rank	your	nodes.	They	are	ranked	based	off
of	the	node’s	available	RAM	and	CPU	as	well	as	the	number	of	containers	that	it	has
running	on	it.

spread	will	rank	the	host	with	less	containers	higher	than	a	container	with	more
containers	(assuming	that	the	memory	and	CPU	values	are	the	same).	spread	does	what
the	name	implies;	it	will	spread	the	nodes	across	multiple	hosts.	By	default,	spread	is	used
with	regards	to	scheduling.

binpack	will	try	to	pack	as	many	containers	on	as	few	hosts	as	possible	to	keep	the
number	of	Swarm	hosts	to	a	minimal.

random	will	do	just	that—it	will	randomly	pick	a	Swarm	host	to	place	a	node	on.

The	Swarm	scheduler	comes	with	a	few	filters	that	can	be	used	as	well.	These	can	be
assigned	with	the	--filter	switch	with	the	swarm	manage	command.	These	filters	can	be
used	to	assign	nodes	to	hosts.	There	are	five	filters	that	are	associated	with	it:

constraint:	There	are	three	types	of	constraints	that	can	be	assigned	to	nodes:

storage=:	This	is	used	if	you	want	to	specify	a	node	that	is	put	on	a	host	and	has
SSD	drives	in	it
region=:	This	is	used	if	you	want	to	set	a	region;	mostly	used	for	cloud
computing	such	as	AWS	or	Microsoft	Azure
environment=:	This	can	set	a	node	to	be	put	into	production,	development,	or
other	created	environments

affinity:	This	filter	is	used	to	create	attractions	between	containers.	This	means	that
you	can	specify	a	filter	name	and	then	have	all	those	containers	run	on	the	same
node.
port:	The	port	filter	finds	a	host	that	has	the	open	port	needed	for	the	node	to	run;	it
then	assigns	the	node	to	that	host.	So,	if	you	have	a	MySQL	instance	and	need	port
3306	open,	it	will	find	a	host	that	has	port	3306	open	and	assign	the	node	to	that	host
for	operation.
dependency:	The	dependency	filter	schedules	nodes	to	run	on	the	same	host	based	off
of	three	dependencies:

--volumes-from=dependency

--link=dependency:<alias>

--net=container:dependency

health:	The	health	filter	is	pretty	straightforward.	It	will	prevent	the	scheduling	of
nodes	to	run	on	unhealthy	hosts.

The	Swarm	API
Before	we	dive	into	the	Swarm	API,	let’s	first	make	sure	you	understand	what	an	API	is.
An	API	is	defined	as	an	application	programming	interface.	An	API	consists	of	routines,
protocols,	and	tools	to	build	applications.	Think	of	an	API	as	the	bricks	used	to	build	a
wall.	This	allows	you	to	put	the	wall	together	using	those	bricks.	What	APIs	allow	you	to
do	is	code	in	the	environment	you	are	comfortable	in	and	reach	into	other	environments	to
do	the	work	you	need.	So,	if	you	are	used	to	coding	in	Python,	you	can	still	use	Python	to
do	all	your	work	while	using	the	Swarm	API	to	do	the	work	in	Swarm	that	you	would	like
done.

For	example,	if	you	wanted	to	create	a	container,	you	would	use	the	following	in	your
code:

POST	/containers/create	HTTP/1.1

Content-Type:	application/json

{

							"Hostname":	"",

							"Domainname":	"",

							"User":	"",

							"AttachStdin":	false,

							"AttachStdout":	true,

							"AttachStderr":	true,

							"Tty":	false,

							"OpenStdin":	false,

							"StdinOnce":	false,

							"Env":	null,

							"Cmd":	[

															"date"

],

							"Entrypoint":	"",

							"Image":	"ubuntu",

							"Labels":	{

															"com.example.vendor":	"Acme",

															"com.example.license":	"GPL",

															"com.example.version":	"1.0"

							},

							"Mounts":	[

									{

											"Source":	"/data",

											"Destination":	"/data",

											"Mode":	"ro,Z",

											"RW":	false

									}

],

							"WorkingDir":	"",

							"NetworkDisabled":	false,

							"MacAddress":	"12:34:56:78:9a:bc",

							"ExposedPorts":	{

															"22/tcp":	{}

							},

							"HostConfig":	{

									"Binds":	["/tmp:/tmp"],

									"Links":	["redis3:redis"],

									"LxcConf":	{"lxc.utsname":"docker"},

									"Memory":	0,

									"MemorySwap":	0,

									"CpuShares":	512,

									"CpuPeriod":	100000,

									"CpusetCpus":	"0,1",

									"CpusetMems":	"0,1",

									"BlkioWeight":	300,

									"MemorySwappiness":	60,

									"OomKillDisable":	false,

									"PortBindings":	{	"22/tcp":	[{	"HostPort":	"11022"	}]	},

									"PublishAllPorts":	false,

									"Privileged":	false,

									"ReadonlyRootfs":	false,

									"Dns":	["8.8.8.8"],

									"DnsSearch":	[""],

									"ExtraHosts":	null,

									"VolumesFrom":	["parent",	"other:ro"],

									"CapAdd":	["NET_ADMIN"],

									"CapDrop":	["MKNOD"],

									"RestartPolicy":	{	"Name":	"",	"MaximumRetryCount":	0	},

									"NetworkMode":	"bridge",

									"Devices":	[],

									"Ulimits":	[{}],

									"LogConfig":	{	"Type":	"json-file",	"Config":	{}	},

									"SecurityOpt":	[""],

									"CgroupParent":	""

						}

		}

You	would	use	the	preceding	example	to	create	a	container;	but	there	are	also	other	things
you	can	do	such	as	inspect	containers,	get	the	logs	from	a	container,	attach	to	a	container,
and	much	more.	Simply	put,	if	you	can	do	it	through	the	command	line,	there	is	more	than
likely	something	in	the	API	that	can	be	used	to	tie	into	to	do	it	through	the	programming
language	you	are	using.

The	Docker	documentation	states	that	the	Swarm	API	is	mostly	compatible	with	the
Docker	Remote	API.	Now	we	could	list	them	out	in	this	section.	But	seeing	that	the	list
could	change	as	things	could	be	added	into	the	Docker	Swarm	API	or	removed,	I	believe,
it’s	best	to	refer	to	the	link	to	the	Swarm	API	documentation	here	instead	of	listing	them
out,	so	the	information	is	not	outdated:

https://docs.docker.com/swarm/api/swarm-api/

https://docs.docker.com/swarm/api/swarm-api/

The	Swarm	cluster	example
We	will	now	go	through	an	example	of	how	to	set	up	a	Docker	Swarm	cluster:

#	Create	a	new	Docker	host	with	Docker	Machine

$	docker-machine	create	--driver	virtualbox	swarm

#	Point	to	the	new	Docker	host

$	eval	"$(docker-machine	env	swarm)"

#	Generate	a	Docker	Swarm	Discovery	Token

$	docker	run	swarm	create

#	Launch	the	Swarm	Manager

$	docker-machine	create	\

								--driver	virtualbox	\

								--swarm	\

								--swarm-master	\

								--swarm-discovery	token://<DISCOVERY_TOKEN>	\

								swarm-master

#	Launch	a	Swarm	node

$	docker-machine	create	\

				--driver	virtualbox	\

				--swarm	\

				--swarm-discovery	token://<DISCOVERY_TOKEN>	\

				swarm_node-01

#	Launch	another	Swarm	node	

$	docker-machine	create	\

				--driver	virtualbox	\

				--swarm	\

				--swarm-discovery	token://<DISCOVERY_TOKEN>	\

				swarm_node-02

#	Point	to	our	Swarm	Manager

$	eval	"$(docker-machine	env	swarm-master)"

#	Execute	'docker	info'	command	to	view	information	about	your	environment

$	docker	info

#	Execute	'docker	ps	-a';	will	show	you	all	the	containers	running	as	well	

as	how	they	are	joined	to	the	same	Swarm	cluster

$	docker	ps	-a

#	Run	simple	test

$	docker	run	hello-world

#	You	can	then	execute	the	'docker	ps	-a'	command	again	to	see	what	node	it	

ran	on

$	docker	ps	-a

#	You	will	want	to	look	at	the	column	labeled	'NAMES'.	If	you	continue	to	

re-run	the	'docker	run	hello-world'	command/container	you	will	see	it	will	

run	on	a	different	Swarm	node

Summary
In	this	chapter,	we	took	a	dive	into	Docker	Swarm.	We	took	a	look	at	how	to	install
Docker	Swarm	and	the	Docker	Swarm	components;	these	are	what	make	up	Docker
Swarm.	We	took	a	look	at	how	to	use	Docker	Swarm;	joining,	listing,	and	managing
Swarm	nodes.	We	reviewed	the	Swarm	commands	and	how	to	use	them.	We	also	covered
some	advanced	Docker	Swarm	topics	such	as	advanced	scheduling	for	your	jobs,
discovery	services	to	discover	new	containers	to	add	to	Docker	Swarm,	and	the	Docker
Swarm	API	that	you	can	use	to	tie	your	own	code	to	perform	the	Swarm	commands.

In	the	next	chapter,	we	will	take	a	look	at	running	Docker	in	production.	We	will	take
everything	you	have	learned	in	all	of	the	previous	chapters	and	put	them	into	production.
We	will	look	at	how	to	monitor	your	containers	and	the	safeguards	you	can	put	into	place
to	help	with	container	recovery.	We	will	also	look	at	how	you	can	extend	into	external
platforms	such	as	Heroku.

Chapter	9.	Docker	in	Production
In	this	chapter,	we	will	be	looking	at	Docker	in	production,	pulling	all	the	pieces	together
so	you	can	start	using	Docker	in	your	production	environments	and	feel	comfortable	doing
so.	Let’s	take	a	peek	at	what	we	will	be	covering	in	this	chapter:

Setting	up	hosts	and	nodes
Managing	hosts	and	containers
Using	Docker	Compose
Extending	to	external	platforms
Security

Where	to	start?
When	we	start	thinking	about	putting	Docker	into	our	production	environment,	we	first
need	to	know	where	to	start.	This	sometimes	can	be	the	hardest	part	of	any	project.	We
first	need	to	start	by	setting	up	our	Docker	hosts	and	then	start	running	containers	on	them.
So,	let’s	start	here!

Setting	up	hosts
Remember,	as	it	was	mentioned	in	the	earlier	chapter,	that	setting	up	hosts	will	require	us
to	tap	into	our	Docker	Machine	knowledge.	We	can	deploy	these	hosts	to	different
environments,	including	cloud	hosting.	To	take	a	walk	down	memory	lane,	let’s	look	at
how	we	go	about	doing	this:

$	docker-machine	create	--driver	<driver_name>	<host_name>

Now,	there	are	two	values	that	we	can	manipulate:	<driver_name>	and	<host_name>.	The
host	name	can	be	whatever	you	want	it	to	be.	But	I	recommend	that	it	should	be
something	that	would	help	you	understand	its	purpose.	The	driver	name	on	the	other	hand
has	to	be	the	location	where	you	want	to	create	the	host.	If	you	are	looking	at	doing
something	locally,	then	you	can	use	VirtualBox	or	VMware	Fusion.	If	you	are	looking	at
deploying	your	application	to	a	cloud	service,	you	can	use	something	like	Amazon	EC2,
Azure,	or	DigitalOcean.	Most	of	these	cloud	services	will	require	additional	details	to
authenticate	who	you	are	and	where	to	place	the	host:

For	example,	for	AWS,	you	would	use:

$	docker-machine	create	--driver	amazonec2	--amazonec2-access-key	

<AWS_ACCESS_KEY>	--amazonec2-secret-key	<AWS_SECRET_KEY>	--amazonec2-

subnet-id	east-1b	amazonhost

You	can	see	that	you	will	need	the	following:

Amazon	access	key
Amazon	secret	key
Amazon	subnet	ID

Setting	up	nodes
Next,	we	want	to	set	up	the	nodes	or	containers	to	run	on	the	hosts	that	we	have	recently
created.	Again,	using	a	combination	of	Docker	Machine	with	the	Docker	daemon,	we	can
do	this.	We	first	must	use	Docker	Machine	to	point	to	the	Docker	host	that	we	want	to
deploy	some	containers	on:

$	docker-machine	env	<host_name>

$	eval	"$(docker-machine	env	<host_name>)"

Now	we	can	run	our	normal	Docker	commands	against	this	Docker	host.	To	do	this,	we
will	simply	use	the	Docker	command-line	tools.	To	deploy	the	containers,	we	can	pull	the
following	images:

$	docker	pull	<image_name>

Or,	we	can	run	a	container	on	a	host:

$	docker	run	-d	-p	80:80	nginx

Host	management
In	this	section,	we	will	focus	on	host	management,	that	is,	the	ways	we	can	manage	our
hosts,	what	we	should	use	to	manage	our	hosts,	how	we	can	monitor	our	hosts,	and
container	failover,	which	is	very	important	when	something	happens	to	the	host	that	is
running	critical	containers.

Host	monitoring
With	host	monitoring	you	can	do	so	via	the	command	line	using	Docker	Machine	as	also
there	are	some	GUI	applications	out	there	that	can	be	useful	as	well.	For	Machine,	you	can
use	the	ls	subcommand:

$	docker-machine	ls

NAME											ACTIVE			DRIVER							STATE					URL																									

SWARM

amazonhost															amazonec2				Error																																		

swarm-master				*							virtualbox			Running			tcp://192.168.99.102:2376			

swarm-master(master)

swarm-node1													virtualbox			Running			tcp://192.168.99.103:2376			

swarm-master

You	can	use	some	GUI	applications	out	there	as	well,	such	as:

Shipyard:	https://shipyard-project.com/
DockerUI:	https://github.com/crosbymichael/dockerui
Panamax:	http://panamax.io/

https://shipyard-project.com/
https://github.com/crosbymichael/dockerui
http://panamax.io/

Docker	Swarm
Another	tool	that	you	can	use	for	node	management	is	that	of	Docker	Swarm.	We	saw
previously	how	helpful	Swarm	can	be.	Remember	that	you	can	use	Docker	Swarm	to
manage	your	hosts	as	well	as	to	create	and	list	them.	The	most	useful	command	to
remember	for	Swarm	is	the	list	subcommand.	With	the	list	subcommand,	you	can	get	a
view	of	all	the	nodes	and	their	statuses:

Remember	that	you	will	need	either	the	discovery	service	IP	or	the	token	number	that	is
used	for	Swarm:

$	docker	run	swarm	list	token://<swarm_token>

Swarm	manager	failover
With	Docker	Swarm,	you	can	set	up	your	manager	node	to	be	highly	available.	That	is,	if
the	managing	host	dies,	you	can	have	it	failover	to	another	host.	If	you	don’t	have	it	set
up,	there	will	be	a	service	interruption,	as	you	won’t	be	able	to	communicate	to	your	hosts
anymore	and	will	need	to	reset	them	up	to	point	to	the	new	Docker	Swarm	manager.	You
can	set	up	as	many	replicas	as	you	want.

To	set	this	up,	you	will	need	to	use	the	--replication	and	--advertise	flags.	This	tells
Swarm	that	there	will	be	other	managers	for	failover.	It	will	also	tell	Swarm	what	address
to	advertise	on,	so	the	other	managers	know	on	what	IP	address	to	connect	for	other
Swarm	managers.

Container	management
Now,	let’s	look	at	container	management.	This	includes	questions	such	as	where	to	store
the	images	that	we	will	be	creating,	how	to	use	these	images,	and	what	commands	and
GUI	applications	we	can	use.	It	also	covers	how	we	can	easily	monitor	our	running
containers,	automatically	restart	containers	upon	a	failure,	and	how	to	roll	the	updates	of
our	containers.

Container	image	storage
In	Chapter	3,	Container	Image	Storage,	we	looked	at	the	various	locations	to	store	the
images	you	are	creating.	Remember	that	there	are	three	major	locations	to	store	them:

Docker	Hub:	A	location	that	is	run	by	Docker	and	can	contain	public	and	private
repositories
Docker	Trusted	Registry:	A	location	that	is	again	run	by	Docker,	but	provides	the
ability	to	get	support	from	Docker
The	locally	run	Docker	registry:	Locally	run	by	yourself	to	storage	images

You	will	want	to	consider	where	you	want	your	images	to	be	stored.	If	you	are	running
containers	that	might	contain	data	that	you	do	not	want	anybody	to	be	able	to	access,	such
as	private	code,	you	may	want	to	run	your	own	Docker	registry	to	keep	the	data	locked.	If
you	are	testing,	then	you	may	only	want	to	use	Docker	Hub.	If	you	are	in	an	enterprise
environment	where	uptime	is	necessary,	then	the	second	option	of	having	Docker	there	for
support	would	be	immensely	beneficial.	Again,	it	all	depends	on	your	setup	and	needs.
The	best	thing	is	that	no	matter	what	you	choose	at	first,	you	can	easily	change	and	push
your	images	to	these	locations	without	having	to	jump	through	a	lot	of	extra	hoops	or
other	configurations.

Image	usage
The	most	important	thing	to	remember	about	Docker	images	is	the	four	Ws:

Who:	Who	made	the	image?
What:	What	is	contained	in	the	image?
Why:	Why	are	these	things	created?
Where:	Where	are	the	items	such	as	the	Dockerfile	or	the	other	code	for	the	image?

The	Docker	commands	and	GUIs
Remember	that	there	are	many	commands	that	you	can	use	to	control	your	containers.
With	tools	such	as	the	Docker	daemon,	Docker	Machine,	Docker	Compose,	and	Docker
Swarm,	there	is	almost	nothing	that	can	stop	you	from	achieving	the	goal	you	want.
Remember,	however,	that	some	of	these	tools	are	not	available	on	all	the	platforms	yet.	I
stress	yet	as	I	assume	that	Docker	will	eventually	have	their	tools	available	for	all	the
environments.	Be	sure	to	use	the	--help	flag	on	all	the	commands	to	see	the	additional
switches	that	might	be	available.	I	myself	am	always	finding	new	switches	to	use	every
day	on	various	commands.

There	are	also	many	GUI	applications	out	there;	they	can	be	beneficial	to	your	container’s
management	needs.	One	that	has	been	at	the	forefront	of	this	since	the	beginning	is
Panamax.	Panamax	provides	the	ability	to	set	up	your	environments	in	a	GUI-based
application	for	you	to	deploy,	monitor,	and	manipulate	your	container	environments.	With
the	popularity	of	Docker	growing	each	day,	there	will	be	many,	many,	many	others	that
you	can	use	to	help	set	up	and	tune	your	environment.

Container	monitoring
We	can	also	monitor	our	containers	using	methods	similar	to	monitoring	hosts:	using
Docker	commands	as	well	as	GUIs	that	are	built	by	others.

First,	the	Docker	commands	that	you	can	use:

docker	stats

docker	port

docker	logs

docker	inspect

docker	events

In	the	Host	monitoring	section,	you	can	see	that	the	same	GUI	applications	can	monitor
both	your	Docker	hosts	and	your	containers.	It	is	a	double	bonus	as	you	don’t	need
separate	applications	to	monitor	each	service.

Automatic	restarts
Another	great	thing	you	can	do	with	your	Docker	images	is	you	can	set	them	to
automatically	restart	upon	a	failure	or	a	reboot	of	a	Docker	host.	There	is	a	flag	that	can	be
set	at	runtime:	the	--restart	flag.	There	are	three	options	you	can	set,	one	of	which	is	set
by	default	by	not	setting	the	flag.

These	three	options	are:

no:	The	default	by	not	using	the	flag.
on-failure:max_retires:	Sets	the	container	to	restart,	but	not	indefinitely	if	there	is
a	major	problem.	It	will	try	to	restart	the	container	a	number	of	times	based	on	the
value	set	for	max_retires.	After	it	has	passed	that	value,	it	will	not	try	to	restart
anymore.
always:	Will	always	restart	the	container.	It	could	cause	a	looping	issue	if	the
container	continues	to	just	restart.

Rolling	updates
One	of	the	benefits	I	have	learned	to	love	about	Docker	is	the	ability	to	control	it	the	same
way	I	control	the	code	that	I	write.	Just	like	Git,	remember	that	your	Docker	images	are
version-controlled	as	well.	This	being	said,	you	can	do	things	such	as	rolling	updates	to
them.	There	are	two	ways	you	can	go	about	doing	it.	You	can	keep	your	images	as	a
hosted	code	on	something	like	GitHub.	You	can	then	update	your	code,	build	your	image,
and	deploy	your	containers.	If	something	goes	wrong,	you	can	simply	use	another	version
of	that	image	to	redeploy.	There	is	also	another	way	you	can	do	this.	You	can	get	the	new
image	up	and	running;	when	you	are	ready,	stop	the	old	container	from	running	and	then
start	up	the	new	one.	If	you	use	items	such	as	discovery	services,	it	becomes	even	easier;
you	can	roll	your	newly	updated	images	into	the	discovery	service	while	rolling	out	the
old	images.	This	makes	for	seamless	upgrades	and	a	great	peace	of	mind	for	zero
downtime.

Docker	Compose	usage
One	of	the	more	useful	tools,	and	one	I	find	myself	using	a	lot,	is	Docker	Compose.
Compose	has	a	lot	of	powerful	usage,	which	in	turn	is	great	for	you.	In	this	section,	we
will	look	at	two	of	its	usages:

Developer	environments
Scaling	environments

Developer	environments
You	can	use	Docker	Compose	to	set	up	your	developer	environments.	How	is	this	any
different	from	setting	up	a	virtual	machine	for	them	to	use	or	letting	them	use	their	own
setup?	With	Docker	Compose,	you	control	the	setup,	you	control	what	is	linked	to	what,
and	you	know	how	the	environment	is	set	up.	So,	there	is	no	more	“well	it	works	on	my
system”	or	need	to	troubleshoot	error	messages	that	are	appearing	on	one	system	setup	but
not	another.

Scaling	environments
Docker	Compose	also	allows	you	to	scale	containers	that	are	located	in	the	docker-
compose.yml	file.	For	example,	let’s	say	our	Compose	file	looks	as	follows:

varnish:

		image:	jacksoncage/varnish

		ports:

				-	"82:80"

		links:

				-	web

environment:

				VARNISH_BACKEND_PORT:	80

				VARNISH_BACKEND_IP:	web

				VARNISH_PORT:	80

web:

			image:	scottpgallagher/php5-mysql-apache2

			volumes:

					-	.:/var/www/html/

With	the	Compose	setup,	you	can	easily	scale	the	containers	from	your	docker-
compose.yml	file.	For	instance,	if	you	need	more	web	containers	to	help	with	the	backend
load,	you	can	do	so	with	Docker	Compose.	Be	sure	that	you	are	in	the	folder	where	your
docker-compose.yml	file	is	located:

$	docker-compose	scale	web=3

This	will	add	three	extra	web	containers	and	do	all	the	linking	as	well	as	the	traffic
forwarding	from	the	varnish	server	that	is	necessary.	This	can	be	immensely	helpful	if
you	are	looking	at	figuring	out	how	many	instances	you	might	need	to	help	scale	for	load
or	service	usage.

Extending	to	external	platform(s)
We	looked	at	how	we	can	extend	to	some	other	external	platforms	such	as	cloud	services
like	AWS,	Microsoft	Azure,	and	DigitalOcean	before.	In	this	section,	we	will	focus	on
extending	Docker	to	the	Heroku	platform.	Heroku	is	more	a	little	different	than	those
cloud	services;	it	is	considered	a	Platform	as	a	Service	(PaaS).	Instead	of	deploying
containers	to	it,	you	can	link	your	containers	to	the	Heroku	platform	from	which	it	is
running	a	service,	such	as	PHP,	Java,	Node.js,	Python,	or	many	others.	So,	you	can	run
your	rails	application	on	Heroku	and	then	attach	your	Docker	container	to	that	platform.

Heroku
The	way	you	can	use	Docker	and	Heroku	together	is	by	creating	your	application	on	the
Heroku	platform.	Then,	in	your	code,	you	will	have	something	similar	to	the	following:

{

		"name":	"Application	Name",

		"description":	"Application	to	run	code	in	a	Docker	container",

		"image":	"<docker_image>:<tag>",

		"addons":	["heroku-postgresql"]

}

To	take	a	step	back,	we	first	need	to	install	a	plugin	to	be	able	to	get	this	functionality
working.	To	install	it,	we	will	simply	run:

$	heroku	plugins:install	heroku-docker

Now,	if	you	are	wondering	what	image	you	can	or	should	be	using	from	Docker	Hub,
Heroku	maintains	a	lot	of	images	you	can	use	in	the	preceding	code.	They	are	as	follows:

heroku/nodejs

heroku/ruby

heroku/jruby

heroku/python

heroku/scala

heroku/clojure

heroku/gradle

heroku/java

heroku/go

heroku/go-gb

Overall	security
Lastly,	let’s	take	a	look	at	the	security	aspect	of	putting	Docker	into	production.	This	is
probably	one	of	the	most	talked	about	aspects	of	not	only	Docker,	but	any	technology	out
there.	What	security	risks	exist?	What	security	advantages	exist?	We	will	take	a	look	at
both	of	these	aspects	as	well	as	cover	the	best	practices	for	your	overall	Docker	setup.

Security	best	practices
These	are	the	things	to	keep	in	mind	when	you	are	setting	up	your	production
environment:

Whoever	has	access	to	your	Docker	host	has	access	to	every	single	Docker	container
that	is	running	on	that	host	and	has	the	ability	to	stop	them,	delete	them,	or	even	start
up	new	containers.
Remember	that	you	can	run	Docker	containers	or	attach	containers	to	Docker
volumes	using	the	read-only	modes.	This	can	be	done	by	adding	the	:ro	option	to	the
volume:

$	docker	run	-d	-v	/opt/uploads:ro	nginx

$	docker	run	-d	--volumes-from	data:ro	nginx

Remember	to	utilize	the	Docker	security	benchmark	application	to	help	tune	your
environments	(see	Chapter	5,	Docker	Security,	for	more	information).
Utilize	the	Docker	command-line	tools	to	your	capability	to	see	what	has	changed	in
a	particular	image:

$	docker	diff

$	docker	inspect

$	docker	history

DockerUI
DockerUI	is	a	tool	written	by	Michael	Crosby,	who	at	the	time	of	writing	this	book
worked	for	Docker.	DockerUI	is	a	simple	way	to	view	what	is	going	on	inside	your
Docker	host.

This	is	a	screenshot	of	the	GitHub	repository,	where	the	code	for	DockerUI	is	kept.	You
can	view	the	content	yourself	by	visitinghttps://github.com/crosbymichael/dockerui	.

This	page	will	include	screenshots	of	DockerUI	in	action	as	well	as	the	current	features	of
DockerUI	that	are	available.	You	can	create	pull	requests	against	the	code	if	you	have
ideas	you	would	like	to	see	in	DockerUI	and	would	like	to	help	contribute	to	the	code.
You	can	also	submit	issues	that	you	might	find	with	DockerUI.

The	installation	of	DockerUI	is	very	straightforward	with	you	just	running	a	simple
Docker	run	command	to	get	started:

$	docker	run	-d	-p	9000:9000	--privileged	-v	

/var/run/docker.sock:/var/run/docker.sock	dockerui/dockerui

https://github.com/crosbymichael/dockerui

After	you	have	run	the	previous	command,	you	will	be	able	to	navigate	to	the	DockerUI
web	interface.	You	should	be	able	to	easily	break	down	the	run	command	and	see	what	it
is	doing	and	where	you	need	to	go	to	get	to	the	dashboard.	However,	in	case	you	are
stumped,	here	is	what	the	command	is	doing:	it	is	running	the	DockerUI	container	on	your
Docker	host	and	exposing	port	9000	from	the	host	to	the	container.	So,	simply	launching	a
web	browser	and	pointing	to	the	IP	address	of	the	Docker	host	and	then	port	9000	will
give	you	to	a	screen	similar	to	the	previous	one.	This	is	the	DockerUI	web	dashboard.

This	is	another	view	of	the	dashboard	shortly	after	you	have	launched	the	container	and
visited	the	web	interface.	You	can	see	information	such	as	what	containers	are	currently
running	on	your	Docker	host	and	what	their	statuses	are;	some	could	be	stopped	as	well.	It
will	also	show	you	the	containers	that	are	created	and	a	timeline	for	when	the	images	were
created.

At	the	top	of	the	web	interface,	you	will	see	a	navigation	bar.	When	you	click	on	the
Containers	item,	you	will	be	brought	to	a	page	that	provides	you	information	on	all	the
containers	running	on	your	host.	You	will	see	their	name,	the	images	used	to	run	the
containers,	what	command	is	being	executed	inside	each	container,	when	they	were
created,	and	their	statuses.	You	can	take	actions	against	these	containers	from	here	as	well.
These	actions	are	start,	stop,	restart,	kill,	pause,	unpause,	and	remove.

Next	up	in	the	navigation	bar	is	Images.	Again,	like	Containers,	you	can	get	all	the
information	on	all	the	images	being	used	on	your	Docker	host	here.	Information	such	as
their	IDs,	what	repositories	they	are	from,	their	virtual	sizes,	and	when	they	were	created
will	be	displayed	here.	Again,	you	can	take	some	actions	on	your	images.	But	for	images,
the	only	option	you	have	is	to	remove	them	from	your	Docker	host.

The	last	item	in	the	navigation	menu	is	Info.	The	Info	section	gives	you	a	general
overview	of	your	Docker	host,	such	as	what	Docker	version	it	is	running	and	how	many
containers	and	images	are	there.	It	also	provides	system	information	on	the	hardware	that
is	available.

ImageLayers
ImageLayers	is	a	great	tool,	when	you	are	looking	at	shipping	your	containers	or	images
around.	It	will	take	into	account	everything	that	is	going	on	in	every	single	layer	of	a
particular	Docker	image	and	give	you	an	output	of	how	much	weight	it	has	in	terms	of
actual	size	or	the	amount	of	disk	space	it	will	take	up.

This	screenshot	is	what	you	will	be	presented	with	while	navigating	to	the	ImageLayers
website:	https://imagelayers.io.

You	can	search	for	images	that	are	on	Docker	Hub	to	have	ImageLayers	provide
information	on	the	image	back	to	you.	Or,	you	can	load	up	a	sample	image	set	if	you	are
looking	at	providing	some	sample	sets	or	seeing	some	more	complex	setups.

https://imagelayers.io

In	this	example,	we	are	going	to	search	for	the	wordpress	image	and	select	the	latest	tag.
Now,	you	can	search	for	any	image	and	it	will	do	auto-complete.	Then,	you	can	select	the
appropriate	tag	you	wish	to	use.	This	could	be	useful	if	you	have,	say,	a	staging	tag	and
are	thinking	of	pushing	a	new	image	to	your	latest	tag,	but	you	want	to	see	what	impact	it
has	on	the	size	of	the	image.

So,	let’s	walk	through	an	example.	In	this	example,	we	are	going	to	select	a	mysql	image
and	the	latest	tag.	We	will	use	this	since	it	is	a	common	image	that	most	people	will	use	at
some	point	in	their	Docker	experience.

Once	we	click	on	Save	Changes	from	the	previous	item,	we	will	be	shown	something
similar	to	the	preceding	screenshot	(now,	this	will	vary	depending	upon	the	image	you
have	selected	in	your	search).	This	displays	some	information	at	the	top,	such	as	the	total
image	size,	unique	layers,	the	average	layer	size,	and	the	largest	layer	size.	This	will	help
you	hone	in	on	a	particular	layer	that	might	have	grown	wildly.

The	layers	are	broken	down	on	the	left-hand	side	of	the	previous	screenshot.	We	can	see
what	action	is	being	done	at	each	level	as	the	size	that	it	adds	to	the	overall	image	per
layer.

Upon	hovering	on	a	particular	layer,	you	will	be	given	information	on	it	at	the	bottom	of
the	screen	in	a	black	box.	This	will	show	how	each	action	is	layered	one	after	the	other	so
as	to	help	see	the	command	structure	of	the	image.

The	preceding	screenshot	is	an	example	of	what	you	might	see	if	you	were	to	click	on	the
sample	image	set	from	the	main	screen.	As	you	can	see,	this	one	is	quite	complex;	not
only	does	it	have	a	lot	of	layers,	but	it	also	has	a	lot	of	images	that	are	being	used.	This
could	be	something	you	would	see	while	adding	multiple	images	to	see	your	desired
output.

Summary
In	this	chapter,	you	have	learned	how	to	use	Docker	in	a	production	environment	as	well
as	the	key	considerations	to	keep	an	eye	on	during	the	times	of	and	before
implementation.

In	the	next	three	chapters,	we	are	going	to	be	taking	a	look	at	some	GUI	applications	that
you	can	utilize	to	manage	your	Docker	hosts,	containers,	and	images.	They	are	some	very
powerful	tools	and	choosing	one	can	be	difficult,	so	let’s	cover	all	three!

Chapter	10.	Shipyard
In	this	chapter,	we	will	take	a	look	at	Shipyard.	Shipyard	is	a	tool	that	allows	you	to
manage	Docker	resources	from	a	web	UI	or	a	GUI	interface.

The	topics	that	will	be	covered	are:

Starting	Shipyard
The	components	of	Shipyard

Up	and	running
You	will	see	a	screen	similar	to	the	following	screenshot	while	navigating	your	browser	to
the	Shipyard	website	at	https://shipyard-project.com:

First,	we	need	to	get	Shipyard	up	and	running.	To	do	this,	we	will	execute	the	following
commands:

$	docker-machine	create	--driver	vmwarefusion	ship1

$	docker-machine	env	ship1

$	eval	"$(docker-machine	env	ship1)"

$	curl	-sSL	

https://raw.githubusercontent.com/scottpgallagher/shipyard/master/deploy	|	

bash	-s

$	docker-machine	create	--driver	vmwarefusion	ship2

$	docker-machine	env	ship2

$	eval	"$(docker-machine	env	ship2)"

$	curl	-sSL	

https://raw.githubusercontent.com/scottpgallagher/shipyard/master/deploy	|	

ACTION=node	DISCOVERY=consul://<IP_ADDRESS_of_SHIP1>:8500	bash	-s

You	will	see	the	following	login	screen	when	you	first	navigate	to	the	shipyard	web
instance:

https://shipyard-project.com

The	URL	is	always	the	IP	address	of	your	Docker	host.	It	runs	on	port	8080	(that	is,
172.16.9.135:8080).

The	default	username	is	admin.	The	default	password	is	shipyard.	Enter	these	details	and
click	on	Login.

Containers
After	logging	in,	you	will	be	taken	to	the	main	dashboard	or	the	CONTAINERS	section
as	follows:

There	is	a	lot	you	can	do	in	this	section.	We	will	cover	all	of	it	step	by	step	in	the
following	and	the	Back	to	CONTAINERS	section.

Deploying	a	container
The	first	thing	we	will	tackle	on	this	page	is	the	Deploy	Container	button.

There	is	a	lot	of	information	to	digest	here.	But	at	the	same	time,	this	is	the	information
you	are	used	to	providing	either	in	your	Dockerfile	or	your	docker-compose.yml	file.
Once	you	type	in	all	your	information,	you’re	ready	to	deploy.	So,	go	ahead	and	click	on
the	Deploy	button.

IMAGES
At	the	top	of	the	screen,	we	can	see	a	blue	navigation	bar.	Moving	on	from	the
CONTAINERS	section	(for	now),	we	will	now	cover	the	IMAGES	section.	In	the
IMAGES	section,	we	can	see	all	the	images	that	are	being	used	across	our	hosts.

We	can	see	information	such	as	the	name	of	the	image,	its	ID,	when	it	was	created,	what
node	or	Docker	host	it’s	running	on,	and	its	virtual	size.	We	also	have	the	option	to	delete
the	images	by	using	the	red	trash	can	icon.

Pulling	an	image
Now,	one	thing	that	we	didn’t	cover	was	the	Pull	Image	button.	By	clicking	on	this,	you
will	be	presented	with	the	following	screen:

On	this	screen,	you	can	enter	an	image	name	as	well	as	its	tag	and	have	it	pulled.	You
could	then	go	back	to	the	CONTAINERS	page	and	deploy	that	image.	Now,	this	will
work	not	only	with	Docker	Hub,	but	with	any	other	repository	you	add	later	to	Shipyard.

NODES
Next	up	is	the	NODES	section.	This	section	shows	information	on	what	nodes	or	Docker
hosts	you	have	connected	to	Shipyard.

It	will	give	you	information	such	as	the	name	of	the	node,	its	IP	address,	the	number	of
reserved	CPUs	and	memory,	as	well	as	the	labels	that	provide	information	such	as	what
version	of	the	Linux	kernel	or	Docker	is	being	used.

REGISTRIES
Next	up	is	the	REGISTRIES	tab.	This	is	where	you	can	add	registries	beyond	Docker
Hub.

On	clicking	the	Add	Registry	button,	you	will	be	taken	to	the	following	screen:

This	will	allow	you	to	enter	information	about	the	registry	such	as	its	name	and	registry
address,	which	would	include	the	IP	address	or	the	DNS	name	and	the	port	it	is	running
on.

ACCOUNTS
Next	up	is	the	ACCOUNTS	tab	where—you	guessed	it—you	can	add	or	remove
accounts.

In	the	following	screenshot,	you	can	see	what	information	is	needed	when	you	add	a	new
account:

Information	such	as	the	username	you	want	to	use,	your	first	and	last	names,	the	password
you	want	to	assign	to	it,	and	lastly	your	assigned	role.

EVENTS
Okay,	last	up	is	the	EVENTS	tab	that	will	display	the	following	screen:

This	tab	will	show	you	all	the	events	that	have	occurred	and	what	user	accounts	they	were
initiated	from.	Information	such	as	the	message,	container,	node,	and	tags	are	also
displayed.

Back	to	CONTAINERS
We	jump	back	to	the	CONTAINERS	section	where	we	saw	all	our	containers.	We	can
also	click	on	the	magnifying	glass	on	the	right-hand	side	of	each	container	to	get	pulled	to
the	following	screen:

We	can	then	get	information	on	that	running	container	and	manipulate	it.	We	can	stop,
restart,	or	destroy	(or	remove)	it.	We	can	also	see	information	on	it	such	as	the	command
that	it’s	running,	its	port,	its	IP	address,	and	its	node	name.

Clicking	on	the	Stats	button,	we	can	see	information	pertaining	to	the	running	container
such	as	the	CPU,	memory,	and	network	information.

Clicking	on	the	Logs	button	will	show	you	everything	that	is	going	on	with	the	container.
In	this	case,	the	container	is	polling	consult	for	new	information	ever	so	often.

Now,	the	Console	button	is	interesting.	It	will	allow	you	to	actually	run	a	command
against	the	container	and	provide	the	output	from	that	command.

There	are	other	ways	to	manipulate	these	containers	as	well.	We	will	go	back	to	the
CONTAINERS	page,	where	we	can	see	a	list	of	all	our	containers	and	their	status.	We
have	some	controls	here	to	restart,	stop,	and	destroy	the	container.

We	can	also	scale	or	rename	the	container	and	get	to	the	other	areas	we	saw	earlier	such	as
Stats,	Console,	or	Logs.

You	will	be	taken	to	this	section	if	you	click	on	the	Scale	option.	This	will	allow	you	to
enter	a	numerical	value	and	scale	the	instance	up	as	far	as	you	like.

You	can	also	click	on	the	Rename	option	to	rename	the	container	to	anything	you	wish.

Do	be	careful;	use	a	name	that	helps	you	identify	the	container.

Summary
As	you	can	see,	Shipyard	is	very	powerful	and	will	only	continue	to	grow	and	integrate
more	of	the	Docker	ecosystem.	With	Shipyard,	you	can	do	a	lot	of	manipulation	with	not
only	your	hosts,	but	also	the	containers	running	on	the	hosts.

In	the	next	chapter,	we	will	take	look	at	another	GUI	tool	to	manage	your	Docker	hosts,
containers,	and	images,	and	that	is	Panamax.

Chapter	11.	Panamax
Panamax	is	another	open	source	project	that	helps	with	deploying	Docker	environments
by	using	a	GUI	interface	to	allow	you	to	control	just	about	everything	that	you	can	with
the	CLI.

In	this	chapter,	we	will	cover:

Installing	Panamax
What	after	installing?

Installing	Panamax
You	will	see	the	following	page	while	navigating	to	the	Panamax	website	at
http://panamax.io/:

Next,	you	will	see	the	instructions	to	install	Panamax	on	both	Mac	OS	X	and	Ubuntu:

http://panamax.io/

After	running	the	panamax	init	command	and	then	the	panamax	command,	you	will	see
the	following	options:

Upon	selecting	the	first	selection	init,	all	the	magic	starts	to	happen.

Once	all	the	magic	is	complete,	you	will	be	taken	to	the	Panamax	dashboard.

The	following	screenshot	shows	you	what	you	will	see	once	the	installation	has	been
completed	and	the	browser	page	has	been	loaded	for	you:

On	this	page,	you	can	search	for	images	that	are	on	Docker	Hub	or	browse	the	available
templates	that	Panamax	has	to	offer.	You	can	also	see	the	performance	of	the	host	that	is
running	Panamax	at	the	top	with	information	such	as	the	CPU	and	memory	usage.

An	example
For	this	example,	we	select	public	from	its	available	templates	and	use	the	AWS	CLI	-
wetty	image	to	run.

You	can	see	information	such	as	the	image	name,	the	description,	how	many	images	it	will
contain,	and	the	option	to	run	the	template.

Upon	clicking	the	Run	Template	button,	you	will	get	two	options.	You	can	run	it	locally
or	deploy	it	to	a	target,	such	as	the	cloud.	For	this	example,	we	will	choose	to	run	it
locally.

After	you	choose	to	run	it	locally,	you	will	want	to	navigate	to	the	Manage	section.	In	this
section,	there	are	multiple	subsections	that	you	can	then	navigate	to	such	as	Applications,
Sources,	Images,	Registry,	and	Remote	Deployment	Targets.	It	will	show	you	how
many	of	these	each	subsection	has	in	it.	We	will	take	a	look	at	each	of	these	next.

Applications
First	up	is	the	Applications	section.	Upon	entering	this	one,	we	can	see	the	application	we
launched	earlier	is	now	in	here.

We	can	see	information	about	this	running	instance	such	as	where	it	is	deployed	to	(in	this
case,	locally),	the	application	services	that	it	is	running,	and	the	application	activity	log.

Sources
The	Sources	section	shows	you	what	resources	are	currently	loaded	into	the	system.

In	our	case,	we	can	see	that	the	public	templates	for	the	Panamax	public	sources	are
available.	On	this	screen,	you	can	add	additional	resources	as	needed.

Images
In	the	next	section,	the	Images	section,	you	can	see	all	the	images	that	are	currently	being
used.

Your	options	on	this	screen	are	to	remove	whatever	images	you	would	like	to	by	selecting
the	checkbox	next	to	them	and	then	selecting	the	Remove	Selected	button.

Registries
The	next	section	deals	with	the	registries	that	you	can	search	for	templates	and	images.	By
default,	it	searches	Docker	Hub	and	includes	insecure	registries	along	with	secure
registries.

You	can	change	that	to	only	search	the	secure	registries	if	you	desire	so.	You	can	also	add
additional	registries	such	as	the	registries	that	you	may	have	deployed	in	your	own
environment.

Remote	Deployment	Targets
The	last	section	is	Remote	Deployment	Targets.

These	are	items	such	as	cloud	hosts	that	may	include	AWS,	CenturyLink,	and
DigitalOcean.

Now	that	we	have	covered	all	the	sections,	let’s	go	back	to	the	application	that	we
deployed	and	see	what	all	we	can	do	with	it.

Back	to	Applications
Back	in	our	Applications	section	under	the	application	that	we	deployed	earlier,	the	AWS
CLI	–	wetty	image,	we	can	click	on	the	gear	icon	on	the	right-hand	side	of	the	screen.
Given	some	options	such	as	saving	as	a	PMX	template	that	will	allow	you	to	share	it	with
others	that	are	using	Panamax,	you	can	also	save	it	as	a	Compose	YAML	file	that	can	be
used	in	Docker	Compose.	Other	options	include	deploying	to	a	target	and	rebuilding	and
deleting	the	app.

Adding	a	service
Next,	we	are	going	to	add	a	service	to	our	application.	To	do	so,	we	will	click	on	the	+
button	and	then	give	it	a	name.

In	our	case,	we	are	going	to	add	a	database,	so	we	will	name	this	section	Database.

After	this,	we	will	click	on	+	Add	a	Service	to	the	database’s	application	services	and	will
need	to	search	for	an	image	that	we	want	to	use.

Since	this	is	a	database	application	and	MySQL	is	known	by	almost	everyone,	we	will
search	for	it	and	add	it	to	the	app.

Configuring	the	application
After	we	have	added	it	to	the	app,	Panamax	will	start	to	configure	it	for	our	usage,	so	we
can	tie	the	application	services	we	are	running	together.

Service	links
If	you	want	to	configure	each	application	service,	you	can	click	on	it	and	you	will	be	taken
into	a	submenu.

For	this	example,	we	will	look	at	what	items	we	can	configure	in	the	AWSCLIwetty
application.	The	first	item	we	can	configure	is	the	service	links.	We	can	also	see	the
docker	run	command	that	will	be	used	once	we	populate	our	environmental	variables.

Environmental	variables
Next	are	the	environmental	variables.	For	this	image,	it	would	ask	us	to	supply	our	AWS
access	key	ID	and	our	AWS	secret	access	key.

These	are	two	items	that	are	required	to	be	able	to	use	the	AWS	CLI	to	execute	commands
against	your	AWS	environment.	You	can	add	additional	environmental	variables	too.

Ports
Next,	you	can	view	or	configure	the	port	configuration	that	each	service	uses.

For	this	service,	we	can	see	that	it	is	exposing	port	8088	on	the	host	to	port	3000	on	the
container	using	the	TCP	protocol.	We	can	see	the	exposed	ports	at	the	bottom	and,	for	this
service,	it	is	just	port	3000.	We	can	also	add	additional	ports	for	each	service.

Volumes
Next,	we	can	see	the	volume	configuration	for	each	service.

This	service	doesn’t	utilize	any;	but	if	we	want	to	add	one,	we	can	do	it	from	this	screen.
We	can	remove	one	if	there	was	one.

Docker	Run	Command
Last	is	the	Docker	Run	Command	section.	In	this	section,	you	can	execute	commands
against	the	container	that	is	running	the	service.

This	would	be	similar	to	using	the	docker	exec	command.

Summary
We	have	now	taken	a	look	at	two	very	powerful	GUIs	that	can	be	used	to	control	your
hosts,	containers,	and	images,	and	they	both	do	very	well.	If	you	only	had	more	choices!
Well,	let’s	dive	into	the	next	chapter	and	introduce	another!

In	the	next	chapter,	we	will	take	a	look	at	another	GUI	tool	to	manage	your	Docker	hosts,
containers,	and	images,	and	that	is	Tutum,	which	was	recently	purchased	by	Docker.

Chapter	12.	Tutum
Tutum	is	a	company	that	was	just	recently	purchased	by	Docker	and	has	joined	its	ranks.
The	goal	of	Tutum	is	to	help	you	run	your	containers	on	the	cloud.	Tutum	is	another
feature	that	makes	Docker	easy	to	use.

In	this	chapter,	we	will	cover	how	to:

Start	with	Tutum
Add	your	node
Create	a	stack

Getting	started
You	will	see	a	screen	similar	to	the	following	screenshot	when	you	access	the	Tutum
website	at	https://www.tutum.co.

Upon	clicking	Get	started	for	free!	or	the	Login	link,	you	will	be	presented	with	the
following	screen:

https://www.tutum.co

Now,	given	that	Docker	has	recently	scooped	them	up,	this	could	change	in	the	future.	But
you	will	be	presented	with	a	login	screen	to	use	your	Docker	Hub,	current	Tutum,	or
GitHub	credentials.

The	tutorial	page
You	will	be	presented	with	the	tutorial	page	that	will	provide	a	tour	of	Tutum	if	you	wish.

You	can	also	skip	the	tour	by	clicking	on	the	button	in	the	bottom-right	corner	of	the
screen,	which	we	will	do	to	get	you	started.

The	Service	dashboard
You	will	be	taken	to	Service	dashboard,	where	you	can	create	your	first	service.	But
before	we	do	that,	we	need	to	do	some	other	work.	So,	let’s	get	our	nodes	added	first.

The	Nodes	section
If	you	click	on	the	Nodes	section	in	the	navigation	bar,	you	can	start	adding	your	cloud
provider	or	you	can	bring	your	own	node.

If	you	wish	to	bring	your	own	node,	you	will	need	to	install	a	client	that	Tutum	uses	to
communicate	with	your	node.	For	this	example,	we	are	going	to	stick	with	using	a	cloud
provider:	AWS	in	this	case.

Cloud	Providers
In	the	Cloud	Providers	section,	you	will	get	a	list	of	cloud	services	that	you	can	link	to.
Again,	we	are	going	to	use	AWS.	But	you	could	use	DigitalOcean,	Microsoft	Azure,
SoftLayer,	or	Packet.	We	will	click	on	the	+	Add	credentials	button	for	AWS:

Here	we	would	provide	our	AWS	Access	Key	ID	as	well	as	our	Secret	Access	Key:

AWS	uses	your	access	key	ID	as	well	as	your	secret	access	key	to	authenticate	against
AWS.	You	can	enter	these	details	and	then	click	on	the	Save	credentials	button.

You	will	then	see	that	you	have	linked	your	AWS	account,	can	modify	the	credentials	if
they	ever	change,	or	unlink	the	account	all	together	if	you	need	to.

Now	that	we	have	a	cloud	provider	to	run	our	service	on,	we	can	launch	our	first	node	on
the	cloud	now	by	clicking	on	the	Launch	your	first	node	button:

We	will	navigate	back	to	the	Nodes	screen.

Back	to	Nodes
After	clicking	on	Launch	your	first	node,	we	will	need	to	provide	some	additional
information	such	as	what	region	we	want	to	deploy	our	node	to,	if	we	have	a	custom	VPC
we	have	created	that	we	want	to	deploy	our	node	to,	what	size	we	want	the	node	to	be,	any
IAM	roles	we	want	to	assign	to	the	node,	the	number	of	nodes	we	want,	and	the	disk	size
of	each	node.

For	our	example,	we	mainly	kept	the	default,	only	lowering	the	disk	size	to	the	minimum
size	of	10	GB.

Once	you	have	clicked	on	the	Launch	node	cluster	button,	you	will	see	the	status	of	the
node;	in	this	case,	it’s	Deploying.	We	also	have	some	other	items	we	can	check	out	while
it’s	deploying.

We	can	view	the	Monitoring	tab	and	see	information	pertaining	to	the	node	such	as	CPU,
Memory,	Disk,	and	Bandwidth	Out.

We	can	also	view	the	timeline	of	our	node.	Now,	at	first,	this	will	be	very	short	as	it’s	just
showing	us	that	we	created	the	node	and	are	deploying	it.

Over	time,	this	timeline	will	grow	and	show	you	the	progress	of	your	node.

Our	node	should	be	deployed	by	now.	So,	we	can	click	back	on	the	Nodes	link	and	see
that	it	has	in	fact	been	deployed	and	is	running.

We	can	get	some	information	on	the	left-hand	side,	such	as	it	is	running	on	AWS	in	the	US
West	(Oregon)	region,	and	is	a	t2.micro	instance	with	1	GB	of	memory	and	10	GB	of	disk
space.	We	can	also	see	that	it	currently	has	no	containers	running	on	this	particular	node,
what	IP	address	has	been	assigned,	and	what	version	of	Docker	it	is	running.	We	can
terminate	our	node	as	well	when	we	no	longer	need	it	or	scale	the	number	of	nodes	with
the	slider	at	the	top	if	we	want	to	increase	the	number	of	nodes.

If	we	drill	down	into	the	node	itself	by	clicking	on	its	hostname,	we	can	see	some	more
information	provided	to	us.

It	includes	what,	if	any,	containers	are	running	on	this	node,	what	endpoints	or	ports	are
exposed,	the	monitoring	of	the	node	(as	we	saw	earlier),	as	well	as	the	timeline	that	we
saw	before.	Now,	all	of	this	pertains	to	the	node	itself,	not	the	containers	that	will	be
running	on	the	node.

Back	to	the	Services	section
Now,	it’s	time	for	us	to	launch	a	service	and	get	some	containers	running	on	this	node.

By	clicking	on	the	Services	tab,	we	will	be	taken	to	the	previous	screen,	where	we	can
deploy	a	service.

Now,	Tutum	offers	up	three	areas	to	search	for	the	images	you	might	want	to	use:
jumpstarts	or	collections	that	they	have	categorized	for	you;	public	repositories	on	Docker
Hub;	or	private	repositories	that	you	have	set	as	private	on	your	Docker	Hub	account.	For
our	example,	we	are	going	to	select	the	tutum/hello-world	example	due	to	its	small	size.

After	clicking	the	Select	button	for	it,	we	are	taken	to	a	screen	similar	to	the	following
one;	yours	will	vary	depending	upon	what	image	you	have	selected.

Now,	you	can	give	the	service	a	name	or	use	the	generated	one	for	you.	You	can	also
select	what	tag	to	use	for	the	image,	what	your	deployment	strategy	is	(if	you	are	using
multiple	nodes),	how	many	containers	to	deploy,	any	tags	you	wish	to	add	to	the
containers	that	will	be	deployed,	custom	port	settings	(if	any),	and	whether	it	should
autorestart	in	the	event	of	a	failure.	This	should	seem	familiar	as	some	of	these	items,	such
as	deployment	strategy,	were	covered	in	the	book,	mainly	in	Chapter	8,	Docker	Swarm,
with	regards	to	Docker	Swarm.	So,	once	you	have	everything	kosher,	go	ahead	and	click
on	the	Create	and	deploy	button	and	prepare	for	a	blast	off!

After	we	click	on	the	button,	we	are	taken	to	a	screen	similar	to	the	one	we	saw	when	we
were	deploying	our	host	node.

We	can	see	information	on	the	left-hand	side,	such	as	what	command	the	container	is
running,	what	ports	are	exposed,	and	other	settings	as	well	pertaining	to	the	container.	We
can	see	that	it’s	in	the	Starting	state	and	should	be	running	shortly.

Containers
Once	it	has	finished	starting	and	is	now	in	the	running	state,	we	can	manipulate	the
container	and	do	things	such	as	stop,	terminate,	redeploy,	or	even	edit	the	configuration	of
the	container,	and	expand	the	number	of	containers	that	are	running.

Now,	let’s	take	a	look	at	the	navigation	menu	for	containers.

Endpoints
Again,	the	Endpoints	screenshot	will	show	us	any	port	information	pertaining	to	the
running	container.

Logs
The	Logs	section	will	show	us	a	running	log	of	the	screen	output	the	container	would
have.

Since	this	container	just	started,	we	don’t	have	anything	yet;	but	this	section	can	be	helpful
in	the	event	you	need	to	troubleshoot	a	running	container.

Monitoring
Next,	we	have	the	monitoring	section	that	can	show	us	the	information	we	saw	before	in
the	Nodes	section.

Items	such	as	CPU,	Memory,	and	Bandwidth	Out	can	tell	how	much	our	container	is
being	used	for	the	service	that	it	is	running.

Triggers
Next	up	is	the	Triggers	section.	Now,	this	section	can	come	in	handy	if	you	are	looking	at
scaling	something	based	on	the	CPU	usage	that	a	container	has.

For	example,	you	could	set	a	trigger	that	if	the	CPU	usage	goes	above	60%,	launch
another	container	to	help	with	the	load	(assuming	you	are	running	your	service	in	a	load
balancer).

Timeline
Again,	we	have	the	Timeline	section	that	we	saw	with	regards	to	the	nodes.	We	can	see
the	lifespan	of	a	container	as	well.

Configuration
Lastly,	we	have	the	Configuration	section	that	shows	an	overview	of	the	container	as	a
whole.

This	section	is	also	broken	down	into	subsections	that	include	general	information,
environmental	variables,	container	links,	and	attached	volumes	for	the	container.

The	Repositories	tab
Let’s	take	a	look	back	at	the	navigation	bar	at	the	top	and	click	on	the	Repositories	tab.

In	this	tab,	you	can	add	custom	repositories	beyond	Docker	Hub;	for	example,	if	you	were
running	your	own	private	repositories,	where	your	company	would	be	storing	images	that
you	would	want	to	use,	you	would	add	that	in	this	section.

Stacks
There	is	also	the	Stacks	section.	Stacks	are	a	collection	of	services	similar	to	what	you
would	think	of	when	you	are	using	Docker	Compose.

Let’s	take	a	look	at	this	section,	because	it	can	be	very	useful	while	using	development
environments	or	for	testing.

After	we	click	on	Create	your	first	stack,	we	are	taken	to	a	page	that	is	similar	to	the
following	screenshot:

In	this	screenshot,	we	can	see	that	we	need	pieces	of	information.

We	need	a	name	for	our	stack	and	we	need	the	stackfile	contents.	In	our	case,	we	are	going
to	use	our	trustworthy	MySQL	example	and	call	our	stack	mysql.

For	our	stackfile,	we	are	going	to	use	one	of	the	resources	that	Tutum	encourages	us	to
explore.	In	the	bottom	section	under	the	Stackfile	field,	there	is	an	option	to	get	a
Stackfile	from	the	Stackfile	registry,	which	is	located	at	https://Stackfiles.io.

Upon	entering	stackfiles.io,	we	are	presented	with	an	easy	search	box.

https://Stackfiles.io

Again,	for	our	test,	we	want	to	find	the	mysql	stackfile,	so	we	enter	mysql	in	the	box	and
click	on	Browse.

Now,	for	our	example,	we	want	a	mysql	one	and	we	can	see	it	right	on	the	top.

However,	you	could	use	a	different	one	or	search	for	one	as	well	to	see	if	there	is	one
already	done	for	you.	Again,	always	work	smarter,	not	harder!

So,	if	you	drill	into	the	mysql	stackfile,	you	can	see	what	all	it	is	doing.

In	our	case,	we	are	just	going	to	copy	this,	go	back	to	our	Tutum	stack	deployment	page,
and	paste	it	among	the	contents	of	the	stackfile.

After	we	paste	its	contents	in	our	Stackfile	field	and	click	on	the	Launch	stack	button,	we
will	see	our	stack	come	to	life.

After	a	few	minutes,	it	will	fire	up	for	us	and	we	will	have	created	and	be	running	our	first
stack.	We	can	then	manipulate	the	various	pieces	of	the	stack	by	starting/stopping	them,
terminating	them,	redeploying	them,	or	even	editing	their	configurations.

We	can	also	look	at	the	stackfile	being	used	and	edit	it	if	needed	to	our	likings	or
download	it	to	share	it	with	others	as	well.

Summary
We	have	now	looked	at	three	very	powerful	GUI	tools	that	you	can	add	to	your	Docker
arsenal.	With	these	tools,	you	can	manipulate	everything	from	your	host	environments,	the
images	that	live	on	those	hosts,	as	well	as	the	containers	running	on	those	hosts.	You	can
scale	them,	manipulate	them,	and	even	remove	them	as	needed.

In	the	next	and	the	final	chapter,	we	will	be	looking	at	some	advanced	Docker	topics	such
as	how	to	scale	your	containers,	and	debugging	and	troubleshooting	them.	We	will	also
look	at	the	common	issues	that	can	arise	as	well	as	common	solutions	to	these	issues.	We
will	also	cover	various	APIs	that	pertain	to	Docker	as	well	as	how	to	contribute	to	Docker.
We	will	dive	into	configuration	management	tools,	advanced	networking,	as	well	as
Docker	volume	management.

Chapter	13.	Advanced	Docker
We’ve	made	it	to	the	last	chapter,	and	you’ve	stuck	with	it	until	the	end!	In	this	chapter,
we	will	be	taking	a	look	at	some	advanced	Docker	topics.	Let’s	take	a	peek	into	what	we
will	be	covering	in	this	chapter:

Scaling	Docker
Using	the	discovery	services
Debugging	or	troubleshooting	Docker
Common	issues	and	solutions
Various	Docker	APIs
Keeping	your	containers	in	check
Contributing	to	Docker
Advanced	Docker	networking

Scaling	Docker
In	this	section,	we	will	learn	how	to	scale	Docker.	Earlier,	in	Chapter	7,	Docker	Compose,
we	looked	at	using	Docker	Compose	to	do	our	scaling.	In	this	section,	we	will	look	at
other	technologies	that	we	can	utilize	to	do	the	scaling	for	us.	We	will	take	a	look	at	two
such	technologies—one	that	you	can	use	through	the	command	line	and	the	other	two	that
can	be	used	through	a	web	interface.

Kubernetes:	We	have	looked	at	another	command	line	earlier	to	scale	Docker—
Docker	Compose.	There	are	other	tools	out	there	that	you	can	use	to	scale	your
Docker	environments	from	the	command	line.	One	such	tool	is	Kubernetes:

$	kubectl	scale	[--resource-version=version]	[--current-replicas=count]	

--replicas=COUNT	RESOURCE	NAME

$	kubectl	scale	--current-replicas=1	--replicas=2	Host	Node

You	can	find	out	more	about	it	at	http://kubernetes.io/v1.0/docs/user-
guide/kubectl/kubectl_scale.html.

Mist.io:	With	Mist.io,	you	can	perform	all	your	Docker	actions	in	this	software,
everything	from	adding	your	cloud	environments	to	locally	run	Docker	installations.
You	can	then	see	all	the	machines	or	nodes	that	are	on	that	host	and	check	whether
they	are	running	or	have	been	stopped.	You	can	also	view	information	about	them
such	as	any	alerts	that	they	may	have	as	well	as	their	usage.	You	can	also	scale
environments	within	the	web	console	as	well.	While	Mist.io	is	free	to	use,	there	is	a
fee	if	you	want	to	use	their	monitoring	service.	It	does	come	with	a	free	trial	for	15
days	though.	Scaling	is	done	just	by	selecting	the	node	that	you	want	to	scale	and
entering	a	value	to	scale	to,	the	rest	is	all	done	automatically	for	you.
Shipyard:	When	it	comes	to	being	able	to	scale	easily,	I	am	not	sure	there	is	an
easier	way	than	using	Shipyard.	Like	Mist.io,	you	can	easily	scale	nodes	by	using
Shipyard.	In	Chapter	10,	Shipyard,	we	saw	how	easy	it	was	to	do	tasks	such	as	scale
running	containers	using	Shipyard.

http://kubernetes.io/v1.0/docs/user-guide/kubectl/kubectl_scale.html

Using	discovery	services
In	this	section,	we	will	learn	how	to	scale	Docker,	but	in	a	different	way.	Previously,	we
looked	at	using	Docker	Compose	to	do	our	scaling.	In	this	section,	we	will	look	at	other
technologies	that	we	can	utilize	to	do	the	scaling	for	us	automatically.	There	are	some
discovery	services	that	we	can	tap	into	for	this	usage.	We	will	focus	on	two	of	them	in	this
section	as	they	are	the	more	popular	ones.

Consul
One	of	the	more	popular	options	for	discovery	services	with	regards	to	Docker	is	Consul.
Consul	is	an	extremely	easy-to-use	discovery	service	that	offers	a	lot	of	options	that	we
can	tie	this	into	automatically	updating	the	items	in	Consul	by	using	a	program	called
Registrator	or	by	automatically	taking	those	items	that	are	updated	in	Consul	and	then
turning	around	and	updating	a	configuration	file	to	show	those	updated	items	by	using	the
consul-template	program.	Information	about	Consul	can	be	found	at	https://consul.io/.
For	more	information	on	Registrator,	visit	http://gliderlabs.com/registrator/latest/.	And,	to
know	more	about	consul-template,	refer	to	https://github.com/hashicorp/consul-
template.

Adding	these	three	pieces	to	your	technology	arsenal	can	greatly	increase	the	level	of
performance	and	uptime	that	you	can	provide.	You	can	add	new	nodes	to	a	service	on	the
fly,	and	have	the	configuration	on	a	particular	container	be	updated	on	the	fly.	You	can
also	move	the	updated	nodes	into	a	service	and	then	remove	the	other	ones	that	aren’t
updated	so	that	you	can	provide	a	method	for	zero	downtime	with	rolling	updates	as	well.
You	can	also	go	the	other	way	if	you	notice	something	you	updated	isn’t	functioning
properly.	You	can	roll	an	older	version	of	something	into	a	discovery	service	while	rolling
out	the	newer	version	if	a	bug	or	security	vulnerability	is	discovered.	The	possibilities	of
what	you	can	do	with	these	three	pieces	can	be	endless.

https://consul.io/
http://gliderlabs.com/registrator/latest/
https://github.com/hashicorp/consul-template

etcd
If	you	are	going	extremely	lightweight	with	your	host	environments	and	using	CoreOS,
then	you	are	very	familiar	with	etcd.	It	uses	a	dynamic	configuration	registry	to	do
discovery.	When	etcd	is	configured	on	each	CoreOS	host,	they	can	do	key-value
distribution	and	replication,	which	allows	them	to	discover	each	other	as	well	as	new	etcd
hosts.

etcd	focuses	on	being:

Simple
Secure
Fast
Reliable

To	find	out	more	about	etcd,	refer	to	https://en.wikipedia.org/wiki/CoreOS#ETCD.	You
can	also	visit	https://github.com/coreos/etcd,	which	contains	information	not	just	about
what	etcd	can	do,	but	also	the	ways	you	can	get	support	for	it,	roadmap,	mailing	list,	and
reported	bugs.	You	can	also	refer	to	https://coreos.com/etcd/	and
https://github.com/coreos/etcd.

Two	of	the	more	well-known	projects	that	are	using	etcd	are:

Kubernetes
Cloud	Foundry

To	view	other	projects	that	also	use	etcd,	visit	https://github.com/search?
utf8=%E2%9C%93&q=etcd.

Debugging	or	troubleshooting	Docker
Now	that	we	have	our	Docker	containers	running	in	our	production	level	service,	we	need
to	know	how	we	can	troubleshoot	them—how	do	we	fix	common	problems	with
containers,	what	should	we	be	looking	out	for,	and	how	can	we	quickly	debug	issues	that
do	arise	in	our	environments	to	avoid	any	serious	downtime?	Let’s	take	a	look	at	some	of
the	topics	that	we	can	cover.

https://en.wikipedia.org/wiki/CoreOS#ETCD
https://github.com/coreos/etcd
https://coreos.com/etcd/
https://github.com/coreos/etcd
https://github.com/search?utf8=%E2%9C%93&q=etcd

Docker	commands
There	are	quite	a	few	built-in	Docker	commands	that	you	can	use	to	help	debug	and
troubleshoot	Docker.	With	focus	on	running	the	containers	themselves,	here	are	the	ones
that	can	help	you:

Docker	history:	This	lets	you	view	the	history	of	Docker	image
Docker	events:	This	lets	you	view	the	live	stream	of	the	container	events
Docker	logs:	This	lets	you	view	output	from	a	container
Docker	diff:	This	lets	you	view	the	changes	of	a	container’s	filesystem
Docker	stats:	This	helps	you	view	the	live	stream	of	a	container’s	resource	usage

GUI	applications
The	best	way	to	be	able	to	debug	or	troubleshoot	your	containers	is	to	have	a	visual
overview	of	all	your	containers.	There	are	a	few	options	for	you	out	there	that	we	can	use:

Shipyard	(https://shipyard-project.com)
Mist.io	(http://mist.io)
DockerUI	(https://github.com/crosbymichael/dockerui)

Now	only	these	options	will	allow	you	to	get	an	overview	of	the	status	on	all	your	running
containers.	You	can	also	manipulate	these	containers,	that	is,	you	can	restart	them	or	view
the	logs	for	a	particular	container.	While	some	of	the	options	will	do	more	than	others,	it	is
important	to	review	them	all	to	see	what	is	the	best	fit	for	what	you	would	like	to	see	and
be	able	to	perform.

https://shipyard-project.com
http://mist.io
https://github.com/crosbymichael/dockerui

Resources
While	there	are	a	lot	of	resources	out	there	for	Docker,	you	would	want	to	make	sure	you
are	focusing	on	the	following	two	at	all	times,	as	they	are	the	official	means	by	which	you
can	get	information	or	obtain	help:

Docker	documentation:	This	is	an	official	documentation	straight	from	Docker
Docker	IRC	room:	This	is	the	official	communication	for	the	Docker	community
and	a	place	where	you	can	not	only	get	help	from	others	in	the	Docker	community,
but	also	assistance	from	those	who	work	at	Docker

Common	issues	and	solutions
What	are	some	common	issues	that	others	have	run	into	putting	their	environments	into
production	while	using	various	Docker	products?	What	are	the	solutions	to	those	common
issues?	How	can	we	mitigate	against	these	issues	so	that	no	further	instances	occur?	Let’s
take	a	look	at	what	we	can	do!

Docker	images
When	you	are	using	images,	remember	two	things:

Each	image	you	pull	takes	up	space
Each	time	you	run	an	image,	that	particular	run	is	stored	using	disk	space

If	you	are	running	low	on	space,	this	might	be	something	to	keep	an	eye	on	before	it
becomes	a	problem.	If	the	space	fills	up,	the	containers	might	stop	working,	and	this	might
lead	to	loss	of	data.	Now	you	can	view	the	images	that	you	currently	have	by	running	a
simple	command:

$	docker	images	

To	remove	a	particular	image,	we	can	run	another	command:

$	docker	rmi	<image_name>

But	what	about	those	images	whose	run	is	stored	using	disk	space?	How	do	we	view
them?	There	is	a	switch	that	can	be	added	onto	the	images	subcommand	to	view	them:

$	docker	images	-a

You	can	remove	these,	by	using	their	image	ID:

$	docker	rmi	<image_ID>

Docker	volumes
As	of	Docker	v1.9,	you	can	manage	volumes	through	the	Docker	CLI.	Let’s	take	a	look	at
what	all	can	we	do	and	how:

$	docker	volume	--help

Usage:		docker	volume	[OPTIONS]	[COMMAND]

Manage	Docker	volumes

Commands:

		create																			Create	a	volume

		inspect																		Return	low-level	information	on	a	volume

		ls																							List	volumes

		rm																							Remove	a	volume

Run	'docker	volume	COMMAND	--help'	for	more	information	on	a	command

		--help=false							Print	usage	

So	we	can	do	quite	a	lot;	we	can	create	volumes,	inspect	the	volumes,	list	volumes,	and
remove	volumes.	Let’s	take	a	look	at	each,	going	through	the	lifecycle	of	a	volume,	that	is,
from	creation	to	deletion:

$	docker	volume	create	--name	test

test

$	docker	volume	ls

local															test

Now	you	will	notice	this	one	was	created	locally.	You	can	use	the	--driver	flag	and
specify	which	volume	driver	to	use:

$	docker	volume	inspect	test

[

				{

								"Name":	"test",

								"Driver":	"local",

								"Mountpoint":	"/var/lib/docker/volumes/test/_data"

				}

]

With	this,	we	can	see	the	name	of	the	volume,	which	driver	was	used	to	create	it,	and
where	it’s	located	on	our	system:

$	docker	volume	rm	test

test

Using	resources
Be	sure	to	use	all	the	resources	that	are	out	there.	Those	resources	could	include:

Docker	IRC	room
Docker	documentation
Docker	commands

Various	Docker	APIs
Some	of	the	various	Docker	APIs	can	immensely	help	you	when	you	are	writing	up	a
script	in	the	coding	language	of	your	choice.	You	can	tie	that	into	pulling	the	strings	on
Docker	and	have	it	to	do	the	work	for	you	without	having	to	break	out	into	another
program	or	scripting	language.

docker.io	accounts	API
This	API	is	used	just	for	account	management.	With	it,	you	can:

Get	a	single	user
Update	various	parameters	for	a	particular	user
List	e-mail	addresses	for	a	user
Add	an	e-mail	address	for	a	user
Delete	an	e-mail	address	for	a	user

There	is	not	a	lot	that	you	can	do	with	this	API	as	it	is	mainly	focused	around	what	you
can	do	with	one’s	user	account.	In	reality,	there	isn’t	a	lot	of	information	baked	into	one’s
user	account,	and	as	you	can	see,	the	e-mail	address	is	the	main	focal	point	of	one’s
account.

For	more	information,	please	visit
https://docs.docker.com/reference/api/docker_io_accounts_api/.

https://docs.docker.com/reference/api/docker_io_accounts_api/

Remote	API
Let’s	just	start	off	by	saying	that	the	Remote	API	is	very	intense,	and	that’s	not	a	bad
thing.	When	it	comes	to	APIs,	you	want	them	to	be	able	to	do	just	anything	you	want	so
that	you	never	have	to	leave	your	code	to	perform	these	actions.	Here	is	the	high-level
overview	of	what	you	can	do	with	this	API:

Endpoints
Containers
Images

So	you	heard	me	say	it	was	very	intense,	but	based	on	what	you	can	do	with	it,	it	doesn’t
look	very	intense	until	you	take	a	peek	into	it	yourself.	Think	of	all	the	things	that	you	can
normally	do	with	a	container	or	an	image	and	then	you	will	understand	why	I	state	that	it
is	intense.	Things	such	as	creating	containers	or	images,	listing	them	out,	and	getting
information	about	containers	or	images	might	include	getting	information	about	the	files
and	folders	inside	a	container,	copying	files	or	folders	from	a	container,	and	removing	a
container	or	image.	There	are	also	ways	to	manipulate	or	“hijack”,	as	the	documentation
puts	it	such	as	using	the	docker	run	command.	You	can	retrieve	the	various	codes	from
the	run	command	and	determine	what	the	command	is	doing.

For	more	information	on	the	Remote	API,	refer	to
https://docs.docker.com/reference/api/docker_remote_api/	and	to	know	more	about	the
latest	Remote	API,	visit	https://docs.docker.com/reference/api/docker_remote_api_v1.20/.

https://docs.docker.com/reference/api/docker_remote_api/
https://docs.docker.com/reference/api/docker_remote_api_v1.20/

Keeping	your	containers	in	check
What	are	some	of	the	tools	that	we	can	use	to	keep	our	containers	the	way	we	have	set
them	up?	How	do	we	ensure	that	they	stay	the	way	we	want	them	to?	How	do	we	ensure
that	if	they	do	drift	off	or	things	change	on	them,	we	are	able	to	put	them	back	in	place	to
where	we	want	them	to	be?	Let’s	see	how	we	can	achieve	that.

Kubernetes
Kubernetes	is	an	open	source	project	that	was	developed	by	Google	to	help	with	the
automating	deployment	of	your	containers	as	well	as	scaling	and	the	operations	of	your
containers,	not	only	on	one	host,	but	across	multiple	hosts.	Kubernetes	has	been	set	to
work	on	almost	every	environment	that	can	be	imagined,	from	locally	in	a	Vagrant	or
VMware	environment	to	cloud	solutions	such	as	AWS	or	Microsoft	Azure.	There	will	be
some	terminology	that	will	need	to	be	learned	beyond	the	Docker	terms,	but	if	you
understand	how	Docker	operates,	learning	the	Kubernetes	terminology	will	come
naturally.	For	example,	instead	of	hosts,	Kubernetes	calls	them	pods.	Kubernetes	uses	a
single	master	node	to	control	all	its	pods.	The	documentation	can	provide	a	lot	more
information	including	examples	on	how	to	administer	your	pods,	set	up	pod	clusters,	and
much	more.

More	information	on	Kubernetes	can	be	found	at	http://kubernetes.io.

http://kubernetes.io

Chef
The	reason	we	are	focusing	on	Chef	in	this	section	is	that	AWS	uses	it	as	part	of	one	of	the
solutions	that	they	offer—in	the	form	of	OpsWorks.	OpsWorks	allows	you	to	set	up	and
use	Chef	to	automate	not	only	your	Docker	containers,	but	also	other	aspects	of	your	AWS
environment.	I	have	personally	set	up	and	used	Chef	to	do	a	lot	of	system	automation
throughout	my	personal	environments.	With	that	being	said,	Chef	can	be	a	little	tricky	at
first	to	learn	how	to	set	up	the	server	and	client	environments.	There	is	a	steep	learning
curve	at	first	as	with	almost	any	configuration	management	system,	but	Chef	does	seem	to
have	a	little	bit	of	a	larger	one	with	respect	to	all	the	moving	pieces	that	are	involved	with
the	server	environment	and	setup.

I	wanted	to	draw	focus	to	Chef	though	because	if	you	are	going	to	be	viewing	your
environment	within	AWS,	it	might	be	a	good	idea	to	use	Chef	since	it	does	offer	it	as	a
service	within	AWS.	OpsWorks	allows	you	to	easily	set	up	and	control	your	environments
as	well	as	use	their	built-in	Chef	cookbooks.	You	can	learn	more	about	Chef	at
http://chef.io.

http://chef.io

Other	solutions
Some	other	solutions	that	are	worth	checking	out	or	even	use,	if	you	already	have	the
setup,	to	manage	your	Docker	environment	are:

Puppet	(http://puppetlabs.com)
Ansible	(http://www.ansible.com/)
SaltStack	(http://saltstack.com/)

http://puppetlabs.com
http://www.ansible.com/
http://saltstack.com/

Contributing	to	Docker
So	you	want	to	contribute	to	Docker?	Do	you	have	a	great	idea	that	you	would	like	to	see
in	Docker	or	one	of	its	components?	Let’s	get	you	the	information	and	tools	that	you	need
to	have.	If	you	aren’t	a	programmer-type	person,	there	are	other	ways	you	can	help
contribute	as	well.	Docker	has	a	massive	audience	and	you	can	help	with	supporting	other
users	of	their	services.	Let’s	learn	how	you	can	do	that!

Contributing	to	the	code
One	of	the	biggest	ways	you	can	contribute	to	Docker	is	helping	with	the	Docker	code.
Since	Docker	is	all	open	source,	you	can	download	the	code	to	your	local	machine	and
work	on	new	features	and	present	them	as	pull	requests	back	to	Docker.	Those	will	then
get	reviewed	on	a	regular	basis	and	if	they	feel	what	you	have	contributed	should	be	in	the
service,	they	will	approve	the	pull	request.	This	can	be	very	interesting	when	you	get	to
know	something	you	have	written	has	been	accepted.

You	first	need	to	know	how	you	can	get	the	setup	to	contribute.	Everything	is	pretty	much
available	at	https://github.com/docker,	which	is	open	for	you	to	help	contribute	to.	But
how	do	we	go	about	getting	the	setup	to	help	contribute?	The	best	place	to	start	is	by
following	the	guide	at	https://docs.docker.com/project/who-written-for/.	The	software	you
will	need	to	contribute	can	be	found	by	following	another	guide	at
https://docs.docker.com/project/software-required/.

These	guides	will	help	you	get	all	the	setup	with	the	knowledge	you	will	need,	as	well	as
the	software.	The	last	link	that	you	will	need	to	review	is
https://github.com/docker/docker/blob/master/CONTRIBUTING.md.	This	page	will
provide	information	on	how	to	report	issues,	contribution	tips	and	guidelines,	community
guidelines,	and	other	important	information	about	how	to	successfully	contribute.

https://github.com/docker
https://docs.docker.com/project/who-written-for/
https://docs.docker.com/project/software-required/
https://github.com/docker/docker/blob/master/CONTRIBUTING.md

Contributing	to	support
You	can	also	contribute	to	Docker	by	other	means	beyond	contributing	to	the	Docker	code
or	feature	sets.	You	can	help	by	using	the	knowledge	you	have	obtained	to	help	others	in
their	support	channels.	Currently,	Docker	uses	IRC	rooms	where	users	can	gather	online
and	either	provide	support	to	other	users	or	ask	questions	about	the	various	services	that
they	offer.	The	community	is	very	open	and	someone	is	always	willing	to	help.	I	have
found	it	of	great	help	when	I	run	into	something	that	I	come	across	and	scratch	my	head.
It’s	also	nice	to	get	help	and	to	help	others	back	(a	nice	give	and	take).	It	also	is	a	great
place	that	harvests	ideas	for	you	to	use.	You	can	see	what	questions	others	are	asking,
based	on	their	setups,	and	it	could	spur	ideas	that	you	may	want	to	think	about	using	in
your	environment.

You	can	also	follow	the	GitHub	issues	that	are	brought	up	about	the	services.	These	could
be	feature	requests	and	how	Docker	may	implement	them	or	the	issues	that	have	cropped
up	through	the	usage	of	services.	You	can	help	test	out	the	issues	that	others	are
experiencing	to	see	whether	you	can	replicate	it	or	find	a	possible	solution	to	it.

Other	contributions
There	are	other	ways	to	contribute	to	Docker	as	well.	You	can	do	things	such	as	presenting
at	conferences	about	Docker.	You	can	also	promote	the	service	and	gather	interest	at	your
institution.	You	can	start	the	communication	through	your	organization’s	means	of
communications	such	as	e-mail	distribution	lists,	group	discussions,	IT	roundtables,	or
regularly	scheduled	meetings.	You	can	also	schedule	your	own	meetings	within	your
organization	to	get	people	talking	or	you	can	do	Docker	meetups.	These	meetups	are
designed	to	not	only	include	your	organization,	but	also	the	city	or	town	members	that
your	organization	is	in	to	get	more	widespread	communication	and	promotion	of	the
services.	You	can	search	whether	there	are	already	meetups	in	your	area	by	visiting
https://www.docker.com/community/meetup-groups.

https://www.docker.com/community/meetup-groups

Advanced	Docker	networking
Lastly,	one	of	the	up	and	coming	features	of	Docker	that	we	will	be	taking	a	look	at	will
be	that	of	the	Docker	networking.	Now	at	its	current	form,	this	is	a	solution	that	has	not
yet	been	implemented,	but	is	a	feature	set	that	will	be	coming	soon.	So,	it’s	good	to	get
ahead	of	the	curve	on	this	one	and	learn	it	so	that	you	are	ready	to	implement	it	or
architect	your	future	environments	around	it.

Installation
Since	this	feature	is	not	part	of	the	current	Docker	release,	you	need	to	install	the
experimental	release	to	get	this	completed.	To	install	Docker	experimental	releases,
simply	use	the	curl	command	that	you	have	seen	previously.	Now	this	will	only	work	on
Linux	and	Mac	currently.	In	future,	experimental	builds	might	be	installed	on	Windows
systems.	So	to	install,	use	the	following	command:

$	curl	-sSL	https://experimental.docker.com/	|	sh

On	Mac,	run:

$	curl	-L	https://experimental.docker.com/builds/Darwin/x86_64/docker-

latest	>	/usr/local/bin/docker

$	chmod	+x	/usr/local/bin/docker

Now	you	will	get	a	warning	message	if	you	already	have	Docker	installed:

Warning:	the	"docker"	command	appears	to	already	exist	on	this	system.

If	you	already	have	Docker	installed,	this	script	can	cause	trouble,	which	

is

why	we're	displaying	this	warning	and	provide	the	opportunity	to	cancel	the

installation.

If	you	installed	the	current	Docker	package	using	this	script	and	are	using	

it

again	to	update	Docker,	you	can	safely	ignore	this	message.

You	may	press	Ctrl+C	now	to	abort	this	script.

sleep	20

You	want	to	make	sure	you	are	installing	experimental	builds	to	a	machine	that	is	not	a
production-related	one.	For	example,	you	probably	don’t	want	to	install	an	experimental
release	to	your	laptop	if	you	are	using	it	to	develop	and	test	Docker-related	items	on.	Best
practice	would	be	to	install	it	on	a	virtual	machine	that	you	can	throw	away	if	it	gets
broken.

After	running	the	curl	command,	you	will	be	able	to	see	the	networking	option	from	the
list	of	Docker	commands	now:

$	docker

Usage:	docker	[OPTIONS]	COMMAND	[arg…]

							docker	daemon	[--help	|	...]

							docker	[--help	|	-v	|	--version]

A	self-sufficient	runtime	for	containers.

Options:

		--config=~/.docker														Location	of	client	config	files

		-D,	--debug=false															Enable	debug	mode

		-H,	--host=[]																			Daemon	socket(s)	to	connect	to

		-h,	--help=false																Print	usage

		-l,	--log-level=info												Set	the	logging	level

		--no-legacy-registry=false						Do	not	contact	legacy	registries

		--tls=false																					Use	TLS;	implied	by	--tlsverify

		--tlscacert=~/.docker/ca.pem				Trust	certs	signed	only	by	this	CA

		--tlscert=~/.docker/cert.pem				Path	to	TLS	certificate	file

		--tlskey=~/.docker/key.pem						Path	to	TLS	key	file

		--tlsverify=false															Use	TLS	and	verify	the	remote

		-v,	--version=false													Print	version	information	and	quit

Commands:

				attach				Attach	to	a	running	container

				build					Build	an	image	from	a	Dockerfile

				commit				Create	a	new	image	from	a	container's	changes

				cp								Copy	files/folders	between	a	container	and	the	local	

filesystem

				create				Create	a	new	container

				diff						Inspect	changes	on	a	container's	filesystem

				events				Get	real	time	events	from	the	server

				exec						Run	a	command	in	a	running	container

				export				Export	a	container's	filesystem	as	a	tar	archive

				history			Show	the	history	of	an	image

				images				List	images

				import				Import	the	contents	from	a	tarball	to	create	a	filesystem	

image

				info						Display	system-wide	information

				inspect			Return	low-level	information	on	a	container	or	image

				kill						Kill	a	running	container

				load						Load	an	image	from	a	tar	archive	or	STDIN

				login					Register	or	log	in	to	a	Docker	registry

				logout				Log	out	from	a	Docker	registry

				logs						Fetch	the	logs	of	a	container

				network			Network	management

				pause					Pause	all	processes	within	a	container

				port						List	port	mappings	or	a	specific	mapping	for	the	CONTAINER

				ps								List	containers

				pull						Pull	an	image	or	a	repository	from	a	registry

				push						Push	an	image	or	a	repository	to	a	registry

				rename				Rename	a	container

				restart			Restart	a	container

				rm								Remove	one	or	more	containers

				rmi							Remove	one	or	more	images

				run							Run	a	command	in	a	new	container

				save						Save	an	image(s)	to	a	tar	archive

				search				Search	the	Docker	Hub	for	images

				start					Start	one	or	more	stopped	containers

				stats					Display	a	live	stream	of	container(s)	resource	usage	

statistics

				stop						Stop	a	running	container

				tag							Tag	an	image	into	a	repository

				top							Display	the	running	processes	of	a	container

				unpause			Unpause	all	processes	within	a	container

				version			Show	the	Docker	version	information

				volume				Manage	Docker	volumes

				wait						Block	until	a	container	stops,	then	print	its	exit	code

Run	'docker	COMMAND	--help'	for	more	information	on	a	command.

Creating	your	own	network
In	the	preceding	command	output,	I	have	highlighted	the	section	that	we	will	be	focusing
on—the	network	subcommand	in	Docker.	There	is	also	another	command	you	may	want
to	take	a	look	at,	and	that	is	the	volume	subcommand,	but	we	will	be	focusing	on	the
network	subcommand.

Let’s	create	ourselves	a	network	that	our	Docker	containers	can	use	to	communicate	on.
From	the	output	of	the	docker	network	command,	we	can	see	our	options:

$	docker	network

docker:	"network"	requires	a	minimum	of	1	argument.

See	'docker	network	--help'.

Usage:	docker	network	[OPTIONS]	COMMAND	[OPTIONS]	[arg…]

Commands:

		create																			Create	a	network

		rm																							Remove	a	network

		ls																							List	all	networks

		info																					Display	information	of	a	network

Run	'docker	network	COMMAND	--help'	for	more	information	on	a	command.

Doing	a	docker	ls	will	give	us	a	view	of	what	our	current	network	setup	is:

$	docker	network	ls

NETWORK	ID										NAME																TYPE

02f3d3834733										none																			null																

b22ff5151bcb											host																					host																

f4b7c38b83b1										bridge																	bridge	

Now	let’s	get	to	creating	ourselves	a	network.	Using	the	network	subcommand	as	well	as
the	create	option,	we	can	create	ourselves	a	network:

$	docker	network	create	<name>

$	docker	network	create	docker-net

21625dd96ac08e1713621d951cfa140cebee96c9fae9f8ff44748f86a4c731d7

$	docker	network	ls

NETWORK	ID										NAME																TYPE

02f3d3834733									none																				null																

b22ff5151bcb										host																					host																

f4b7c38b83b1									bridge																		bridge														

21625dd96ac0								docker-net											bridge	

Now	that	we	have	our	network,	how	do	we	tell	our	containers	about	it?	That	comes	with	a
—publish-service=	switch	when	you	use	your	docker	run	command:

$	docker	run	-it	--publish-service=<name>.<network_name>	ubuntu:latest	

/bin/bash

$	docker	run	-it	--publish-service=web.docker-net	ubuntu:latest	/bin/bash

We	can	also	create	networks	and	provide	drivers	for	those	networks	so	that	they	can	span
across	multiple	hosts.	By	default,	there	is	a	driver	named	overlay	that	will	allow	you	to	do
this.	Now	this	is	the	first	of	many	drivers	that	will	be	coming	on	board,	either	when	this
network	feature	is	baked	into	Docker	or	at	a	later	time,	for	sure.	When	you	create	the
network	is	when	you	will	specify	the	overlay	driver.	However,	there	is	one	thing	that	this
driver	does	need.	It	will	need	access	for	not	only	itself,	but	also	the	other	Docker	hosts	that
you	want	to	network	together:

$	docker	network	create	-d	overlay	docker-overlay

Networking	plugins
Going	back	to	our	previous	example	of	using	the	overlay	driver,	this	is	also	considered	a
Docker	network	plugin.	While	networking	has	the	use	for	plugins,	keep	in	mind	that
volumes	also	have	the	option	to	do	plugins	or	drivers	as	well.	With	regards	to	networking
plugins	though,	there	is	quite	a	list	of	plugins	that	are	already	available,	and	I	can	only
assume	that	others	will	be	added	quickly.	Currently	that	list	of	networking	plugins	consists
of:

Weave
Project	Calico
Nuage	Networks
Cisco
VMware
Microsoft
Midokura

To	use	these	plugins,	we	simply	change	what	we	are	using	in	the	--publish-service=
option,	for	example:

$	docker	run	-it	--publish-service=service.network.cisco	ubuntu:latest	

/bin/bash

$	docker	run	-it	--publish-service=service.network.vmware	ubuntu:latest	

/bin/bash

$	docker	run	-it	--publish-service=service.network.microsoft	ubuntu:latest	

/bin/bash

Note
Note	that	some	of	the	names	may	change	before	they	actually	come	to	production	level.

Summary
In	this	chapter,	we	looked	at	a	lot	of	items	in	depth.	We	covered	various	aspects	of	Docker
such	as	how	we	can	scale	our	environments	and	use	Docker	services.	Later,	you	came	to
know	about	the	various	techniques	that	can	be	used	to	debug	or	troubleshoot	the	issues
that	crop	up	while	using	Docker	along	with	the	solutions.	You	then	learned	how
contribution	of	codes	can	be	done	to	Docker	and	its	networking.

I	hope	you	have	enjoyed	this	book	and	will	continue	to	refine	your	skill	set	when	it	comes
to	Docker.	It	really	is	a	technology	that	is	on	the	tip	of	everyone’s	tongue	these	days,	so
knowing	it	will	not	only	benefit	you	at	your	current	position,	but	also	any	future	positions
you	may	be	looking	at.	Throughout	the	chapters,	you	should	be	able	to	pick	up	on	some
ways	to	get	in	touch	with	me	if	you	do	have	any	questions	or	want	to	provide	any
feedback.	I	am	frequently	on	the	IRC	rooms	that	Docker	has,	so	hit	me	up	sometime	to
chat.	Good	luck	and	use	the	resources	out	there	to	your	advantage!

Index
A

advanced	Docker	networking
about	/	Advanced	Docker	networking
installation	/	Installation
custom	network,	creating	/	Creating	your	own	network
networking	plugins	/	Networking	plugins

Ansible
about	/	Ansible
URL	/	Other	solutions

automated	builds
about	/	Automated	builds
code,	setting	up	/	Setting	up	your	code
Docker	Hub,	setting	up	/	Setting	up	Docker	Hub
implementing	/	Putting	all	the	pieces	together
custom	registry,	creating	/	Creating	your	own	registry

B
boot2docker

controlling	/	Controlling	the	Docker	VM	(boot2docker)

C
Chef

about	/	Chef,	Chef
reference	/	Chef
URL	/	Chef

Cloud	Providers
about	/	Cloud	Providers

commands,	Docker	Machine
about	/	Docker	Machine	commands
active	/	active
config	/	config
env	/	env
inspect	/	inspect
ip	/	ip
kill	/	kill
ls	/	ls
restart	/	restart
rm	/	rm
scp	/	scp
ssh	/	ssh
start	/	start
stop	/	stop
upgrade	/	upgrade
url	/	url
TLS	/	TLS

common	issues
about	/	Common	issues	and	solutions
Docker	images	/	Docker	images
Docker	volumes	/	Docker	volumes
resources,	using	/	Using	resources

components,	Docker	Swarm
about	/	Docker	Swarm	components
Swarm	/	Swarm
Swarm	manager	/	Swarm	manager
Swarm	host	/	Swarm	host

constraint	filter
about	/	Advanced	scheduling
storage=	/	Advanced	scheduling
region=	/	Advanced	scheduling
environment=	/	Advanced	scheduling

Consul
about	/	Consul

container	management

about	/	Container	management
container	image	storage	/	Container	image	storage
image	usage	/	Image	usage
Docker	commands,	and	GUIs	/	The	Docker	commands	and	GUIs
container	monitoring	/	Container	monitoring
automatic	restarts	/	Automatic	restarts
updates,	rolling	/	Rolling	updates

containers
stopping	/	Stopping	containers
about	/	Keeping	your	containers	in	check
Kubernetes	/	Kubernetes
Chef	/	Chef

containers,	versus	VMs
about	/	Containers	versus	VMs
good	section	/	The	good
not	so	bad	section	/	The	not	so	bad
what	to	look	out	for	section	/	What	to	look	out	for

custom	containers
tar,	used	/	Using	tar
scratch,	used	/	Using	scratch

D
discovery	services

using	/	Using	discovery	services
Consul	/	Consul
etcd	/	etcd

Docker
about	/	Understanding	Docker
versus	typical	VMs	/	Difference	between	Docker	and	typical	VMs
networking	/	Docker	networking/linking
linking	/	Docker	networking/linking
installers	/	Docker	installers/installation
installation	/	Docker	installers/installation
using	in	production	environments	/	Where	to	start?
hosts,	setting	up	/	Setting	up	hosts
nodes,	setting	up	/	Setting	up	nodes
scaling	/	Scaling	Docker
debugging	/	Debugging	or	troubleshooting	Docker
troubleshooting	/	Debugging	or	troubleshooting	Docker
contributing	to	/	Contributing	to	Docker
contributing	to,	code	/	Contributing	to	the	code
contributing	to,	support	/	Contributing	to	support
other	contributions	/	Other	contributions

docker.io	account	API
about	/	docker.io	accounts	API
reference	/	docker.io	accounts	API

Docker	APIs
about	/	Various	Docker	APIs
docker.io	account	API	/	docker.io	accounts	API
Remote	API	/	Remote	API

Docker	bench	security	application
about	/	The	Docker	bench	security	application
running	/	Running	the	tool
host	configuration	/	Running	the	tool
Docker	daemon	configuration	/	Running	the	tool
Docker	daemon	configuration	files	/	Running	the	tool
container	images	and	build	files	/	Running	the	tool
container	runtime	/	Running	the	tool
Docker	security	operations	/	Running	the	tool
output	/	Understanding	the	output

docker	build	command
about	/	Docker	build,	The	docker	build	command
.dockerignore	file	/	.dockerignore

Docker	commands

about	/	The	Docker	commands,	The	Docker	commands,	The	Docker	commands
docker	attach	/	docker	attach
docker	diff	/	docker	diff,	docker	diff
docker	exec	/	docker	exec
docker	history	/	docker	history
docker	inspect	/	docker	inspect
docker	logs	/	docker	logs
docker	ps	/	docker	ps
docker	stats	/	docker	stats
docker	top	/	docker	top
docker	run	/	docker	run

Docker	Compose
installing	/	Installing	Docker	Compose
installing,	on	Linux	/	Installing	on	Linux
installing,	on	OS	X	/	Installing	on	OS	X	and	Windows
installing,	on	Windows	/	Installing	on	OS	X	and	Windows
YAML	file	/	Docker	Compose	YAML	file
usage	/	The	Docker	Compose	usage
options	/	The	Docker	Compose	options
examples	/	Docker	Compose	–	examples

Docker	Compose	commands
about	/	The	Docker	Compose	commands
build	/	build
kill	/	kill
logs	/	logs
port	/	port
ps	/	ps
pull	/	pull
restart	/	restart
rm	/	rm
run	/	run
scale	/	scale
start	/	start
stop	/	stop
up	/	up
version	/	version

Docker	Compose	usage
about	/	Docker	Compose	usage
developer	environments	/	Developer	environments
environments,	scaling	/	Scaling	environments

Docker	documentation	/	Resources
Dockerfile

about	/	Dockerfile,	Dockerfile
reviewing	/	A	short	review	of	Dockerfile,	Reviewing	Dockerfile	in	depth

LABEL	command	/	LABEL
ADD	instruction	/	ADD	or	COPY
COPY	instruction	/	ADD	or	COPY
ENTRYPOINT	/	ENTRYPOINT
WORKDIR	command	/	WORKDIR
ONBUILD	instruction	/	ONBUILD
best	practices	/	Dockerfile	–	best	practices

Docker	Hub
about	/	Docker	Hub,	Docker	Hub,	Container	image	storage
location	/	The	Docker	Hub	location
public	repositories	/	Public	repositories
private	repositories	/	Private	repositories
dashboard	/	Dashboard
repositories	page	/	Explore	the	repositories	page
Organizations	/	Organizations
Create	menu	/	The	Create	menu
settings	/	Settings
Stars	page	/	The	Stars	page

Docker	Hub	Enterprise
about	/	Docker	Hub	Enterprise,	Docker	Hub	Enterprise
Docker	Hub,	versus	Docker	Subscription	/	Comparing	Docker	Hub	to	Docker
Subscription
Docker	Subscription	for	server	/	Docker	Subscription	for	server
Docker	Subscription	for	cloud	/	Docker	Subscription	for	cloud

Docker	images
about	/	The	Docker	images
searching	for	/	Searching	for	the	Docker	images
manipulating	/	Manipulating	the	Docker	images
building,	Dockerfile	used	/	Building	images	using	Dockerfile
base	image,	building	with	existing	image	/	Building	a	base	image	using	an
existing	image

Docker	IRC	room	/	Resources
Docker	Machine	/	Docker	Machine	–	the	new	boot2docker

installing	/	Installation
using	/	Using	Docker	Machine
local	VM	/	Local	VM
cloud	environment	/	Cloud	environment
commands	/	Docker	Machine	commands

docker	ps	-a	switch	/	docker	ps
docker	ps	-l	switch	/	docker	ps
docker	ps	-n=	switch	/	docker	ps
Docker	Registry

about	/	Docker	Registry,	Container	image	storage
overview	/	An	overview	of	Docker	Registry

versus	Docker	Hub	/	Docker	Registry	versus	Docker	Hub
Docker	security

best	practices	/	Docker	security	–	best	practices,	Docker	–	best	practices
host	configuration	/	CIS	guide	–	host	configuration
daemon	configuration	/	CIS	guide	–	Docker	daemon	configuration
daemon	configuration	files	/	CIS	guide	–	Docker	daemon	configuration	files
container	images/runtime	/	CIS	guide	–	container	images/runtime
operations	/	CIS	guide	–	Docker	security	operations

Docker	Subscription
about	/	Docker	Hub	Enterprise

Docker	Swarm
about	/	What	is	Docker	Swarm?
functionalities	/	What	can	Docker	Swarm	do?
installation	/	Docker	Swarm	install
components	/	Docker	Swarm	components
usage	/	Docker	Swarm	usage
cluster,	creating	/	Creating	a	cluster
nodes,	joining	/	Joining	nodes
nodes,	listing	/	Listing	nodes
cluster,	managing	/	Managing	a	cluster
strategies	/	Advanced	scheduling
filters	/	Advanced	scheduling

Docker	Swarm	commands
about	/	The	Docker	Swarm	commands
options	/	Options
list	/	list
create	/	create
manage	/	manage

Docker	Swarm	topics
about	/	The	Docker	Swarm	topics
discovery	service	/	Discovery	services
advanced	scheduling	/	Advanced	scheduling

Docker	Toolbox
URL	/	Installation

Docker	Trusted	Registry
about	/	Container	image	storage

DockerUI
URL	/	Host	monitoring,	GUI	applications
about	/	DockerUI

Docker	VM
controlling	/	Controlling	the	Docker	VM	(boot2docker)

Docker	volumes
about	/	Docker	volumes,	Data	volumes
containers	/	Data	volume	containers

backups	/	Docker	volume	backups

E
environmental	variables

about	/	Environmental	variables
using,	in	Dockerfile	/	Using	environmental	variables	in	your	Dockerfile
MySQL	username,	creating	/	Creating	a	MySQL	username,	database,	and	setting
permissions
MySQL	database,	creating	/	Creating	a	MySQL	username,	database,	and	setting
permissions
permissions,	setting	/	Creating	a	MySQL	username,	database,	and	setting
permissions
file,	adding	to	system	/	Adding	a	file	to	the	system

etcd
about	/	etcd
reference	/	etcd

example,	Panamax
about	/	An	example
applications	/	Applications
sources	/	Sources
images	/	Images
registries	/	Registries
Remote	deployment	targets	/	Remote	Deployment	Targets
Back	to	Applications	/	Back	to	Applications
service,	adding	/	Adding	a	service
application,	configuring	/	Configuring	the	application
service	links	/	Service	links
environmental	variables	/	Environmental	variables
ports	/	Ports
volumes	/	Volumes
Docker	Run	Command	/	Docker	Run	Command

examples,	Docker	Compose
about	/	Docker	Compose	–	examples,	The	last	example
image	section	/	image
build	/	build

existing	management	suite
about	/	Using	your	existing	management	suite
Puppet	/	Puppet
Chef	/	Chef
Ansible	/	Ansible
SaltStack	/	SaltStack
Docker	Swarm	/	Docker	Swarm

external	platforms
extending	to	/	Extending	to	external	platform(s)
Heroku	/	Heroku

F
filters,	Docker	Swarm

constraint	/	Advanced	scheduling
affinity	/	Advanced	scheduling
port	/	Advanced	scheduling
dependency	/	Advanced	scheduling
health	/	Advanced	scheduling

H
Heroku

about	/	Heroku
host	management

about	/	Host	management
host	monitoring	/	Host	monitoring
Docker	Swarm	/	Docker	Swarm
Swarm	manager	failover	/	Swarm	manager	failover

I
ImageLayers

about	/	ImageLayers
installation

Docker	Machine	/	Installation

K
Kitematic

about	/	Kitematic
Kubernetes

about	/	Scaling	Docker,	Kubernetes
URL	/	Kubernetes

L
Linux	Containers	(LXC)	/	Difference	between	Docker	and	typical	VMs

M
Mist.io

about	/	Scaling	Docker
URL	/	GUI	applications

N
nodes

about	/	Back	to	Nodes
Nodes	section

about	/	The	Nodes	section

O
Options	section,	Docker	Compose

-f	/	The	Docker	Compose	options
-p	/	The	Docker	Compose	options
—project-name	/	The	Docker	Compose	options
—verbose	/	The	Docker	Compose	options
—v	/	The	Docker	Compose	options
—version	/	The	Docker	Compose	options

P
Panamax

URL	/	Host	monitoring,	Installing	Panamax
installing	/	Installing	Panamax
example	/	An	example

Platform	as	a	Service	(PaaS)	/	Extending	to	external	platform(s)
pods	/	Kubernetes
Puppet

about	/	Puppet
URL	/	Other	solutions

R
Registrator

about	/	Consul
Remote	API

about	/	Remote	API
Repositories	tab

about	/	The	Repositories	tab

S
SaltStack

about	/	SaltStack
reference	/	SaltStack
URL	/	Other	solutions

security
about	/	Overall	security
best	practices	/	Security	best	practices

Services	dashboard
about	/	The	Service	dashboard

Services	section
about	/	Back	to	the	Services	section
containers	/	Containers
endpoints	/	Endpoints
logs	/	Logs
monitoring	/	Monitoring
Triggers	/	Triggers
Timeline	/	Timeline
Configuration	/	Configuration

Shipyard
URL	/	Host	monitoring,	Up	and	running,	GUI	applications
starting	/	Up	and	running
CONTAINERS	section	/	Containers,	Back	to	CONTAINERS
Deploy	Container	button	/	Deploying	a	container
IMAGES	section	/	IMAGES
Pull	Image	button	/	Pulling	an	image
NODES	section	/	NODES
REGISTRIES	tab	/	REGISTRIES
ACCOUNTS	tab	/	ACCOUNTS
EVENTS	tab	/	EVENTS
about	/	Scaling	Docker

Stacks	section
about	/	Stacks

standard	input	(STDIN)	/	docker	attach
strategies,	Docker	Swarm

spread	/	Advanced	scheduling
binpack	/	Advanced	scheduling
random	/	Advanced	scheduling

Swarm	API
about	/	The	Swarm	API
URL	/	The	Swarm	API

Swarm	cluster	example
about	/	The	Swarm	cluster	example

T
troubleshooting,	Docker

Docker	commands	/	Docker	commands
GUI	applications	/	GUI	applications
resources	/	Resources

Tutum
URL	/	Getting	started
accessing	/	Getting	started
tutorial	page	/	The	tutorial	page
Services	dashboard	/	The	Service	dashboard
Nodes	section	/	The	Nodes	section
Cloud	Providers	section	/	Cloud	Providers

types	of	installers,	Docker	/	Types	of	installers

	Mastering Docker
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Errata
	Piracy
	Questions
	1. Docker Review
	Understanding Docker
	Difference between Docker and typical VMs
	Dockerfile
	Docker networking/linking
	Docker installers/installation
	Types of installers
	Controlling the Docker VM (boot2docker)
	Docker Machine – the new boot2docker
	Kitematic
	The Docker commands
	The Docker images
	Searching for the Docker images
	Manipulating the Docker images
	Stopping containers
	Summary
	2. Up and Running
	Dockerfile
	A short review of Dockerfile
	Reviewing Dockerfile in depth
	LABEL
	ADD or COPY
	ENTRYPOINT
	USER
	WORKDIR
	ONBUILD
	Dockerfile – best practices
	Docker build
	The docker build command
	.dockerignore
	Building images using Dockerfile
	Building a base image using an existing image
	Building your own containers
	Using tar
	Using scratch
	Docker Hub
	The Docker Hub location
	Public repositories
	Private repositories
	Docker Hub Enterprise
	Environmental variables
	Using environmental variables in your Dockerfile
	Creating a MySQL username, database, and setting permissions
	Adding a file to the system
	Docker volumes
	Data volumes
	Data volume containers
	Docker volume backups
	Summary
	3. Container Image Storage
	Docker Hub
	Dashboard
	Explore the repositories page
	Organizations
	The Create menu
	Settings
	The Stars page
	Docker Hub Enterprise
	Comparing Docker Hub to Docker Subscription
	Docker Subscription for server
	Docker Subscription for cloud
	Docker Registry
	An overview of Docker Registry
	Docker Registry versus Docker Hub
	Automated builds
	Setting up your code
	Setting up Docker Hub
	Putting all the pieces together
	Creating your own registry
	Summary
	4. Managing Containers
	The Docker commands
	docker attach
	docker diff
	docker exec
	docker history
	docker inspect
	docker logs
	docker ps
	docker stats
	docker top
	Using your existing management suite
	Puppet
	Chef
	Ansible
	SaltStack
	Docker Swarm
	What is Docker Swarm?
	What can Docker Swarm do?
	Summary
	5. Docker Security
	Containers versus VMs
	The good
	The not so bad
	What to look out for
	The Docker commands
	docker run
	docker diff
	Docker security – best practices
	Docker – best practices
	CIS guide – host configuration
	CIS guide – Docker daemon configuration
	CIS guide – Docker daemon configuration files
	CIS guide – container images/runtime
	CIS guide – Docker security operations
	The Docker bench security application
	Running the tool
	Understanding the output
	Summary
	6. Docker Machine
	Installation
	Using Docker Machine
	Local VM
	Cloud environment
	Docker Machine commands
	active
	config
	env
	inspect
	ip
	kill
	ls
	restart
	rm
	scp
	ssh
	start
	stop
	upgrade
	url
	TLS
	Summary
	7. Docker Compose
	Installing Docker Compose
	Installing on Linux
	Installing on OS X and Windows
	Docker Compose YAML file
	The Docker Compose usage
	The Docker Compose options
	The Docker Compose commands
	build
	kill
	logs
	port
	ps
	pull
	restart
	rm
	run
	scale
	start
	stop
	up
	version
	Docker Compose – examples
	image
	build
	The last example
	Summary
	8. Docker Swarm
	Docker Swarm install
	Installation
	Docker Swarm components
	Swarm
	Swarm manager
	Swarm host
	Docker Swarm usage
	Creating a cluster
	Joining nodes
	Listing nodes
	Managing a cluster
	The Docker Swarm commands
	Options
	list
	create
	manage
	The Docker Swarm topics
	Discovery services
	Advanced scheduling
	The Swarm API
	The Swarm cluster example
	Summary
	9. Docker in Production
	Where to start?
	Setting up hosts
	Setting up nodes
	Host management
	Host monitoring
	Docker Swarm
	Swarm manager failover
	Container management
	Container image storage
	Image usage
	The Docker commands and GUIs
	Container monitoring
	Automatic restarts
	Rolling updates
	Docker Compose usage
	Developer environments
	Scaling environments
	Extending to external platform(s)
	Heroku
	Overall security
	Security best practices
	DockerUI
	ImageLayers
	Summary
	10. Shipyard
	Up and running
	Containers
	Deploying a container
	IMAGES
	Pulling an image
	NODES
	REGISTRIES
	ACCOUNTS
	EVENTS
	Back to CONTAINERS
	Summary
	11. Panamax
	Installing Panamax
	An example
	Applications
	Sources
	Images
	Registries
	Remote Deployment Targets
	Back to Applications
	Adding a service
	Configuring the application
	Service links
	Environmental variables
	Ports
	Volumes
	Docker Run Command
	Summary
	12. Tutum
	Getting started
	The tutorial page
	The Service dashboard
	The Nodes section
	Cloud Providers
	Back to Nodes
	Back to the Services section
	Containers
	Endpoints
	Logs
	Monitoring
	Triggers
	Timeline
	Configuration
	The Repositories tab
	Stacks
	Summary
	13. Advanced Docker
	Scaling Docker
	Using discovery services
	Consul
	etcd
	Debugging or troubleshooting Docker
	Docker commands
	GUI applications
	Resources
	Common issues and solutions
	Docker images
	Docker volumes
	Using resources
	Various Docker APIs
	docker.io accounts API
	Remote API
	Keeping your containers in check
	Kubernetes
	Chef
	Other solutions
	Contributing to Docker
	Contributing to the code
	Contributing to support
	Other contributions
	Advanced Docker networking
	Installation
	Creating your own network
	Networking plugins
	Summary
	Index

