P
o
b
b,
o,
e,
b ]
[ ™
P,
e
—
——
o
oy
L
.
e
=
B
—_—
—

Mastering Docker

Rethink what's possible with Docker—become an expert in the
innovative containerization tool to unlock new opportunities in the
way you use and deploy software







Mastering Docker




Table of Contents

Mastering Docker
Credits

About the Author

About the Reviewer

www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?

Free access for Packt account holders

Preface

What this book covers

What vou need for this book
Who this book is for

Conventions
Reader feedback
Customer support
Errata
Piracy
Questions

1. Docker Review

Understanding Docker

Difference between Docker and typical VMs
Dockerfile

Docker networking/linking

Docker installers/installation

Types of installers

Controlling the Docker VM (boot2docker)

Docker Machine — the new boot2docker
Kitematic

The Docker commands



The Docker images
Searching for the Docker images
Manipulating the Docker images
Stopping containers
Summary

2. Up and Running
Dockerfile

A short review of Dockerfile

Reviewing Dockerfile in depth
LABEL

ADD or COPY
ENTRYPOINT
USER
WORKDIR
ONBUILD

Dockerfile — best practices
Docker build

The docker build command

.dockerignore

Building images using Dockerfile

Building a base image using an existing image

Building your own containers
Using tar
Using scratch
Docker Hub
The Docker Hub location

Public repositories

Private repositories

Docker Hub Enterprise

Environmental variables

Using environmental variables in your Dockerfile




Creating a MySQL username, database, and setting permissions
Adding a file to the system

Docker volumes

Data volumes

Data volume containers

Docker volume backups

Summary

3. Container Image Storage
Docker Hub

Dashboard

Explore the repositories page
Organizations
The Create menu
Settings
The Stars page
Docker Hub Enterprise
Comparing Docker Hub to Docker Subscription
Docker Subscription for server

Docker Subscription for cloud

Docker Registry
An overview of Docker Registry

Docker Registry versus Docker Hub

Automated builds

Setting up your code

Setting up Docker Hub

Putting all the pieces together
Creating your own registry

Summary
4. Managing Containers

The Docker commands

docker attach




docker diff
docker exec

docker history

docker inspect
docker logs
docker ps
docker stats
docker top
Using your existing management suite

Puppet
Chef

Ansible
SaltStack

Docker Swarm

What is Docker Swarm?

What can Docker Swarm do?

Summary
5. Docker Security
Containers versus VMs
The good
The not so bad
What to look out for

The Docker commands
docker run

docker diff

Docker security — best practices

Docker — best practices

CIS guide — host configuration

CIS guide — Docker daemon configuration

CIS guide — Docker daemon configuration files

CIS guide — container images/runtime




CIS guide — Docker security operations

The Docker bench security application
Running the tool
Understanding the output

Summary
6. Docker Machine

Installation

Using Docker Machine
Local VM

Cloud environment

Docker Machine commands

active

config

Summary

7. Docker Compose

Installing Docker Compose
Installing on Linux



Installing on OS X and Windows
Docker Compose YAML file

The Docker Compose usage

The Docker Compose options

The Docker Compose commands
build

kill

The last example

Summary

8. Docker Swarm

Docker Swarm install

Installation

Docker Swarm components
Swarm

Swarm manager

Swarm host



Docker Swarm usage

Creating a cluster
Joining nodes
Listing nodes
Managing a cluster

The Docker Swarm commands

Options

ist

[o—

create

manage
The Docker Swarm topics

Discovery services

Advanced scheduling
The Swarm API
The Swarm cluster example
Summary

9. Docker in Production

Where to start?

Setting up hosts
Setting up nodes

Host management
Host monitoring

Docker Swarm

Swarm manager failover

Container management

Container image storage

Image usage
The Docker commands and GUIs

Container monitoring

Automatic restarts

Rolling updates




Docker Compose usage

Developer environments
Scaling environments
Extending to external platform(s)

Heroku

Overall security

Security best practices
DockerUI
Imagel.ayers
Summary
10. Shipyard
Up and running

Containers

Deploying a container
IMAGES

Pulling an image
NODES
REGISTRIES
ACCOUNTS
EVENTS
Back to CONTAINERS

Summary
11. Panamax
Installing Panamax
An example
Applications

Sources

Images

Registries
Remote Deployment Targets

Back to Applications




Adding a service
Configuring the application

Service links
Environmental variables
Ports
Volumes
Docker Run Command

Summary

12. Tutum
Getting started

The tutorial page
The Service dashboard

The Nodes section

Cloud Providers

Back to Nodes

Back to the Services section

Containers

Endpoints
Logs
Monitoring

Triggers
Timeline

Configuration

The Repositories tab

Stacks

Summary
13. Advanced Docker

Scaling Docker

Using discovery services

Consul

etcd



Debugging or troubleshooting Docker

Docker commands
GUI applications
Resources

Common issues and solutions

Docker images
Docker volumes

Using resources
Various Docker APIs

docker.io accounts API
Remote API

Keeping your containers in check
Kubernetes

Chef

Other solutions

Contributing to Docker
Contributing to the code
Contributing to support

Other contributions

Advanced Docker networking

Installation

Creating your own network

Networking plugins
Summary

Index







Mastering Docker







Mastering Docker

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015
Production reference: 1111215
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-703-9

www.packtpub.com



http://www.packtpub.com




Credits

Author

Scott Gallagher
Reviewer

Tommaso Patrizi
Commissioning Editor
Edward Gordon
Acquisition Editor
Reshma Raman
Content Development Editor
Arshiya Ayaz Umer
Technical Editor
Ankita Thakur

Copy Editor

Akshata Lobo

Project Coordinator
Sanjeet Rao
Proofreader

Safis Editing

Indexer

Hemangini Bari
Graphics

Abhinash Sahu
Production Coordinator
Arvindkumar Gupta
Cover Work

Arvindkumar Gupta






About the Author

Scott Gallagher has been fascinated with technology since he played Oregon Trail in
elementary school. His love continued through middle school as he worked on more
Apple Ile computers. In high school, he learned how to build computers and program in
BASIC! His college years were all about server technologies such as Novell, Microsoft,
and Red Hat. After college, he continued to work on Novell, all while maintaining an
interest in all the technologies. He then moved into managing Microsoft environments and
eventually into what he was most passionate about—Linux environments. Now, his focus
is around Docker and cloud environments.

I would like to thank my family for their support not only while I worked on this book, but
throughout my life and career. A special thank you goes to my wife, who is my soul mate,
the love of my life, the most important person in my life, and the reason I push myself to
be the best I can be each day. I would also like to thank my kids, who are the most
amazing thing in this world; I truly am blessed to be able to watch them grow each day.
And lastly, I want to thank my parents, who helped me become the person I am today.






About the Reviewer

Tommaso Patrizi is a Docker fan. He has been using the technology since its first
releases, having machines in production with Docker since its version 0.6.0. He planned
and deployed a basic private PaaS with Docker and Open vSwitch. He is an enthusiastic
Ruby and Ruby on Rails coder. He is striving for simplicity as the perfect synthesis
between code effectiveness, maintainability, and beauty. He is actually learning some
functional tricks through Haskell.

Tommaso is a system administrator with broad OS (Microsoft Windows, Linux, and OS
X), database (SQL Server, MySQL, PostgreSQL and PostGIS, and OrientDB), and
virtualization and cloud (vSphere, VirtualBox, and Docker) knowledge.






www.PacktPub.com



Support files, eBooks, discount offers, and
more

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

IE\ PACKT!L E°

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.


http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser



Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.



http://www.PacktPub.com




Preface

So hot off the presses, the latest buzz that has been on the tip of everyone’s tongues and
the topic of almost any conversation that includes containers these days is Docker! With
this book, you will go from just being the person in the office who hears that buzz to the
one who is tooting it around every day. Your fellow office workers will be flocking to you
for anything related to Docker and shower you with gifts—well, maybe not gifts, but
definitely tapping your brain for knowledge!



What this book covers

Chapter 1, Docker Review, will just be a review of Docker. If you are new to Docker, then
this chapter will get you going for the future chapters. This chapter will cover the items
you would see in the Docker command line as well as the purpose of Dockerfile and the
contents that are contained inside it.

Chapter 2, Up and Running, will explain how to go from just reading the documentation
and looking at the help contents of files to running some Docker commands. You will also
learn how to create or build your own base containers, which will be the basis of all your
future containers. Learn how to create and manage Docker volumes and how to pass
environmental variables during the build process.

Chapter 3, Container Image Storage, will show the locations to store items such as Docker
Hub and the Docker Hub Enterprise. What are the differences between the two. When
should you use one over the other. It will help you answer these questions. Also, you’ll
learn how to set up automated image builds based off the code you have stored in places
such as GitHub. What are the pieces you need to get all this set up and working.

Chapter 4, Managing Containers, will show how you can manage all the containers you
have created and stored. In this chapter, the focus will be on using the command line. So,
if you do decide to use a GUI application at a later time, you will understand what is
happening in the background and also have a resource to fall back on if needed.

Chapter 5, Docker Security, covers security that has unfortunately become the main focus
of not just systems administrators, but everyone involved in projects these days. What are
the benefits of using containers over using traditional virtual machines. What is this new
Docker security configuration tool that you can use to help you assist with your setup
environments. What should you be looking out for? Dive in and let’s take a look at it
together!

Chapter 6, Docker Machine, talks about the future replacement of the boot2docker
instance. Docker Machine is the future of creating your Docker Host environments. With
Docker Machine, you can create the hosts of almost any environment from your local
command line. You can create them to locally test in VMware Fusion or VirtualBox, or
you can create some of them in cloud environments such as AWS, Azure, DigitalOcean,
and many more. Come, learn how you can do this!

Chapter 7, Docker Compose, covers one of the most popular items when it comes to
Docker—Docker Compose. So, what can you do with this magical tool? Docker Compose
helps eliminate the “well it works just fine on my machine.” With Compose, you can have
the environments set up with all the resources tied together as you want them and hand
them off to both the Dev side of the team as well as the Ops side. If it works for one
person, it will work for others and vice versa. If something doesn’t work, it will help you
troubleshoot by replicating the issue with defined steps. You will learn how to use
Compose to set up these environments as well as the file structure of the file that Compose
references.



Chapter 8, Docker Swarm, is all about how you can cluster your containers together. With
Docker Swarm, you can accomplish this task. You will learn how to install and set up
these environments. By default, Docker Swarm uses HTTP for communication. You will
learn how to set it up to use TLS for secure communication between all your cluster nodes
and Swarm manager.

Chapter 9, Docker in Production, says it’s time to deploy Docker in your production
environment now that you have all the tools in your arsenal. But how do we go about
doing this? Let’s take a look at the first step on how to do this as well as monitor
everything we have set up and running. You will learn items such as how to ensure
containers restart when and if there was an error. Also, you will learn how extend to
external platforms such as Heroku.

Chapter 10, Shipyard, will focus on one of the three GUI applications that you can utilize
to set up and manage your Docker containers and images. We will do a complete
walkthrough, from installation to every piece of the Shipyard UI. You will be able to see
the benefits of using such a GUI to help manage your environment.

Chapter 11, Panamax, will focus on one of the three GUI applications that you can utilize
to set up and manage your Docker containers and images. We will do a complete
walkthrough, from installation to every piece of the Panamax UI. This will leave you with
the ability to evaluate which GUI is right for your needs.

Chapter 12, Tutum, will focus on one of the three GUI applications that you can utilize to
set up and manage your Docker containers and images. Tutum is the latest acquisition by
Docker, so this software will only continue to evolve and become more baked into the
Docker ecosystem. We will do a complete walkthrough, from installation to every piece of
the Tutum UI.

Chapter 13, Advanced Docker, will explain some advance items such as:

e Scaling Docker: We’ll look at how we can scale our environments.

e Using discovery services: We’ll look at using discovery services to help scale our
environments.

e Debugging/Troubleshooting Docker: We’ll look at debugging and troubleshooting
Docker issues that crop up.

e Common issues and solutions: We’ll look at the common issues that are faced as
well as the solutions to fix them.

e Various Docker APIs: We’ll look at the Docker APIs that are out there and how to
tie into them and use them to our advantage.

¢ Keeping your containers in check: We’ll look at how we can keep our containers in
check. If they fall out of check, how we can put them back in place.

e Contributing to Docker: We’ll look at how we can contribute to Docker. If we can’t
contribute to the code, how we can help otherwise.

e Advanced Docker networking: We’ll look at the future of Docker networking and
what is coming next that will only enhance our environment.






What you need for this book

The book will walk you through the installation of any tool that you need. You will need a
system with Windows, Mac OS, or Linux installed; preferably the latter of the three, as

well as an Internet connection.






Who this book is for

The reader at the start of the book should be an experienced Linux developer with some
understanding of the Linux filesystems as well as the concept of Linux Container
Virtualization. They must have some experience developing services and applications.
They should also have knowledge of the fundamentals of Docker, though we will re-
establish these fundamentals in the first chapter or two for clarity.






Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “For
example, in an Ubuntu-based system, if you want to install the Apache package, you
would first do an apt-get update followed by an apt-get install -y apache2.”

A block of code is set as follows:

master:
image:
scottpgallagher/galeramaster
hostname:
master
ports:

- "3306:3306"
nodel:
image:
scottpgallagher/galeranode
hostname:

nodel
links:

- master
node2:
image:
scottpgallagher/galeranode
hostname:

node2
links:

- master

Any command-line input or output is written as follows:

$ docker pull tutum/ubuntu

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: “You can search for
prebuilt images on the Docker Hub and click on the CREATE button once you have
found the one you want to use or test.”

Note

Warnings or important notes appear in a box like this.
Tip
Tips and tricks appear like this.






Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the
book’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.


mailto:feedback@packtpub.com
http://www.packtpub.com/authors




Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.



Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.


http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.


mailto:copyright@packtpub.com

Questions

If you have a problem with any aspect of this book, you can contact us at
<guestions@packtpub.com>, and we will do our best to address the problem.



mailto:questions@packtpub.com




Chapter 1. Docker Review

Welcome to the Mastering Docker book! The first chapter will cover the Docker basics
that you should already have a pretty good handle on. But if you don’t already have the
required knowledge at this point, this chapter will help give you the basics, so the future
chapters don’t feel as heavy. By the end of the book, you should be a Docker master able
to implement Docker in your own environments, building and supporting applications on
top of these environments.

In this chapter, we’re going to review the following higher level topics with subtopics in
each section:

¢ Understanding Docker

o Docker versus typical VMs
o The Dockerfile and its function
o Docker networking/linking

e Docker installers/installation

o Types of installers and how they operate
o Controlling your Docker daemon
o The Kitematic GUI

e Docker commands

o Useful commands for Docker, Docker images, and Docker containers



Understanding Docker

In this section, we will be covering the structure of Docker and the flow of what happens
behind the scenes in this world. We will also take a look at Dockerfile and all the magic it
can do. Lastly, in this section, we will look at the Docker networking/linking.



Difference between Docker and typical VMs

First, we must know what exactly Docker is and does. Docker is a container management
system that helps easily manage Linux Containers (LXC) in an easier and universal
fashion. This lets you create images in virtual environments on your laptop and run
commands or operations against them. The actions you do to the containers that you run in
these environments locally on your own machine will be the same commands or
operations you run against them when they are running in your production environment.
This helps in not having to do things differently when you go from a development
environment like that on your local machine to a production environment on your server.
Now, let’s take a look at the differences between Docker containers and the typical virtual
machine environments.

In the following illustration, we can see the typical Docker setup on the right-hand side
versus the typical VM setup on the left-hand side:

Traditional VMs Docker

Docker Engine

Hypervisor Host OS

Server Server

This illustration gives us a lot of insight into the biggest key benefit of Docker, that is,
there is no need for a complete operating system every time we need to bring up a new
container, which cuts down on the overall size of containers. Docker relies on using the
host OS’s Linux kernel (since almost all the versions of Linux use the standard kernel
models) for the OS it was built upon, such as Red Hat, CentOS, Ubuntu, and so on. For
this reason, you can have almost any Linux OS as your host operating system (Ubuntu in
the previous illustration) and be able to layer other OSes on top of the host. For example,
in the earlier illustration, we could have Red Hat running for one app (the one on the left)
and Debian running for the other app (the one on the right), but there would never be a
need to actually install Red Hat or Debian on the host. Thus, another benefit of Docker is
the size of images when they are born. They are not built with the largest piece: the kernel
or the operating system. This makes them incredibly small, compact, and easy to ship.



Dockerfile

Next, let’s take a look at the most important file pertaining to Docker: Dockerfile.
Dockerfile is the core file that contains instructions to be performed when an image is
built. For example, in an Ubuntu-based system, if you want to install the Apache package,
you would first do an apt-get update followed by an apt-get install -y apache2.
These would be the type of instructions you would find inside a typical Dockerfile. Items
such as commands, calls to other scripts, setting environmental variables, adding files, and
setting permissions can all be done via Dockerfile. Dockerfile is also where you specify
what image is to be used as your base image for the build. Let’s take a look at a very basic
Dockerfile and then go over the individual pieces that make one up and what they all do:

FROM ubuntu:latest
MAINTAINER Scott P. Gallagher <email@somewhere.com>

RUN apt-get update && apt-get install -y apache2

ADD 000-default.conf /etc/apache2/sites-available/
RUN chown root:root /etc/apache2/sites-available/000-default.conf

EXPOSE 80
CMD ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

These are the typical items you would find in a basic Dockerfile. The first line states the
image we want to start off with when we build the container. In this example, we will be
using Ubuntu; the item after the colon can be called if you want a specific version of it. In
this case, I am just going to say use the latest version of Ubuntu; but you will also specify
trusty, precise, raring, and so on. The second line is the line that is relevant to the
maintainer of Dockerfile. In this case, I just have my information in there; well, at least,
my name is there. This is for people to contact you if they have any questions or find any
errors in your file. Typically, most people just include their name and e-mail address. The
next line is a typical line you will see while pulling updates and packages in an Ubuntu
environment. You might think they should be separate and wonder why they should be put
on the same line separated by &&. Well, in the Dockerfile, it helps by only having to run
one process to encompass the entire line. If you were to split it into separate lines, it would
have to run one process, finish the process, then start the next process, and finish it. With
this, it helps speed up the process by pairing the processes together. They still run one
after another, but with more efficiency. The next two lines complement each other. The
first adds your custom configurations to the path you specified and changes the owner and
group owner to the root user. The EXPOSE line will expose the ports to anything external to
the container and to the host it is running on. (This will, by default, expose the container
externally beyond the host, unless the firewall is enabled and protecting it.) The last line is
the command that is run when the container is launched. This particular command in a
Dockerfile should only be used once. If it is used more than once, the last CMD in the
Dockerfile will be launched upon the container that is running. This also helps emphasize
the one process per container rule. The idea is to spread out the processes so that each
process runs in its own container, thus the value of the containers will become more



understandable. Essentially, something that runs in the foreground, such as the earlier
command to keep the Apache running in the foreground. If we were to use CMD ["service
apache2 start"], the container would start and then immediately stop. There is nothing
to keep the container running. You can also have other instructions, such as ENV to specify
the environmental variables that users can pass upon runtime. These are typically used and
are useful while using shell scripts to perform actions such as specifying a database to be
created in MySQL or setting permission databases. We will be covering these types of
items in a later chapter, so don’t worry about looking them up right now.



Docker networking/linking

Another important aspect that needs to be understood is how Docker containers are
networked or linked together. The way they are networked or linked together highlights
another important and large benefit of Docker. When a container is created, it creates a
bridge network adapter for which it is assigns an address; it is through these network
adapters that the communication flows when you link containers together. Docker doesn’t
have the need to expose ports to link containers. Let’s take a look at it with the help of the
following illustration:

Docker Typical VM
Ubuntu (Host OS) Ubuntu (Host OS)
Linux Docker Linux Hyper
Kernel Engine Kernel visor
App A App B App A App B
= a4 [B . (Bin/  |||[ Bin/
Bin/ Bin/ ( Libs  J| |{ Libs
| Libs__ Jij{ Libs ‘Guest || |[ Guest |
OS 0S

In the preceding illustration, we can see that the typical VM has to expose ports for others
to be able to communicate with each other. This can be dangerous if you don’t set up your
firewalls or, in this case with MySQL, your MySQL permissions correctly. This can also
cause unwanted traffic to the open ports. In the case of Docker, you can link your
containers together, so there is no need to expose the ports. This adds security to your
setup, as there is now a secure connection between your containers.

We’ve looked at the differences between Docker and typical VMs, as well as the
Dockerfile structure and the components that make up the file. We also looked at how
Docker containers are linked together for security purposes as opposed to typical VMs.
Now, let’s review the installers for Docker and the structure behind the installation once
they are installed, manipulating them to ensure they are operating correctly.






Docker installers/installation

Installers are one of the first pieces you need to get up and running with Docker on both
your local machine as well as your server environments. Let’s first take a look at what
environments you can install Docker in:

Apple OS X (Mac)

Windows

Linux (various Linux flavors)

Cloud (AWS, DigitalOcean, Microsoft Azure, and so on)



Types of installers

With the various types of installers listed earlier, there are different ways Docker actually
operates on the operating system. Docker natively runs on Linux; so if you are using
Linux, then it’s pretty straightforward how Docker runs right on your system. However, if
you are using Windows or Mac OS X, then it operates a little differently, since it relies on
using Linux. With these operating systems, they need Linux in some sort of way, thus
enters the virtual machine needed to run the Linux part that Docker operates on, which is
called boot2docker. The installers for both Windows and Mac OS X are bundled with the
boot2docker package alongside the virtual machine software that, by default, is the Oracle
VirtualBox.

Now, it is worthwhile to note that Docker recently moved away from offering
boot2docker. But, I feel, it is important to understand the boot2docker terms and
commands in case you run across anyone running the previous version of the Docker
installer. This will help you understand what is going on and move forward to the new
installer(s). Currently, they are offering up Docker Toolbox that, like the name implies,
includes a lot of items that the installer will install for you. The installers for each OS
contain different applications with regards to Docker such as:

Docker Toolbox piece||Mac OS X||[Windows

Docker Client

Docker Machine

Docker Kitematic

VirtualBox

First, let’s take a look at the older style commands of boot2docker. Then, we will take a
look at the new commands or application that you can use to achieve these outcomes.

b
b
Docker Compose ||X
b
g




Controlling the Docker VM (boot2docker)

Now, there are ways to run boot2docker on different VM software. But to start off,
VirtualBox is the best and easiest way to operate boot2docker:

$ boot2docker

Usage: boot2docker [<options>]
{help|init|up|ssh|save|down|poweroff|reset|restart|config|status|info|ip|sh
ellinit|delete|download|upgrade|version} [<args>]

Now, after we have installed Docker on Linux, OS X, or Windows, how do we go about
controlling this virtual machine in the events when we need to start it up, restart it, or even
shut it down? This is where the boot2docker command-line parameters come into play.

As you can see in the earlier illustration, there are a lot of options you can use for your
boot2docker instance. The options you will use mostly are up, down, poweroff, restart,
status, ip, upgrade, and version. Some of these commands you will use mostly to
troubleshoot items when you are trying to see why the Docker commands might hang, or
when you run into any other issues with your boot2docker virtual machine. You can see
what each command does by executing the following command:

$ boot2docker help

The most useful command that I have found while troubleshooting is the boot2docker
status command:

$ boot2docker status

Another useful boot2docker command is:

$ boot2docker version

This command will help see what version of boot2docker you are currently running. This
is helpful in knowing when to use the boot2docker upgrade command. The last command
we will look at with respect to boot2docker is the boot2docker ip command. This
command is very useful when you need to know what IP address is to be used to access
the machines you have been running on a particular host:

$ boot2docker ip
192.168.59.103

As you can see, the earlier command gives us the IP address of the boot2docker client
running on my OS X machine inside VirtualBox. By using this IP, I can now access the
containers I might have been running using the IP address alongside any of the open ports
I have exposed.



Docker Machine — the new boot2docker

So, with boot2docker on its way out, there needs to be a new way to do what boot2docker
does. This being said, enter Docker Machine. With Docker Machine, you can do the same
things you did with boot2docker, but now in Machine. The following table shows the
commands you used in boot2docker and what they are now in Machine:

Commandj||boot2docker Docker Machine |
command boot2docker docker-machine |
help boot2docker help docker-machine help |
status boot2docker status |ldocker-machine status

version boot2docker version||docker-machine version

ip boot2docker ip

docker-machine ip |




Kitematic

Now that we have covered all the basics of controlling your boot2docker VM, let’s take a
look at another way you can run Docker containers on your local machine. Let’s take a
look at Kitematic. Kitematic is a recent addition to the Docker portfolio. Up until now,
everything we have done has been command line-based. With Kitematic, you can manage
your Docker containers through a GUI. Kitematic can be used either on Windows or OS
X, just not on Linux; besides who needs a GUI on Linux anyways! Kitematic, just like
boot2docker, operates on a VM defaulting to VirtualBox. Pictures are worth a thousand
words, so let’s take a look at some screenshots of Kitematic:

@] @ ._:'5' f;.l scottpgallag... v
Containers All Recommended My Repos
Recommended
kitematic official
hello-world-nginx ghost
A light-weight nginx container Ghost is a free and open source
that demonstrates the features of blogging platform written in
Kitematic JavaScript
8 ooco | CREATE 0 85 coo | CREATE |
official official
jenkins redis
Official Jenkins Docker image Redis is an open source key-
value store that functions as a
data structure server.
7 429 000 CREATE ) 836 000 CREATE |
official kitematic
rethinkdb minecraft
RethinkDB is an open-source, The Minecraft multiplayer server
document database that makes it allows two or more players to
easy to build and scale realtime... play Minecraft together
7 49 00O ‘ CREATE ‘ D12 000 CREATE
official official
* elasticsearch postgres
DOCKER CL = 0% Elasticsearch is a powerful open The PostgreSQL object-relational

The previous screenshot depicts what you will see when you launch Kitematic for the first
time.

After you start running the containers, they will show up on the left-hand side column.
You can manipulate and get information about them through the GUI. You can search for
prebuilt images on the Docker Hub and click on the CREATE button once you have
found the one you want to use or test.



o®e () scottpgallag.. v hello-world-nginx |Running|

Containers ‘ + NEW ‘ @ @ @
— Home Settings

STOP RESTART EXEC

CONTAINER LOGS WEBPREVEW [/ 4O

_files/index.html not found.

Copying default index.html...

nginx: [alert] could not open error log file: open()
"fvar/log/nginx/error.log" failed (2: No such file or
directory)

2015/06/22 15:42:44 [notice] 7#@: using the “epoll"
event method

2015/06/22 15:42:44 [notice] 7#0: nginx/1.4.7 Voila! Your nginx container is
2015/06/22 15:42:44 [notice] 7#8: built by gcc 4.8.3 running!
(OpenWrt/Linaro GCC 4.8-2014.84 r45973) )

2015/06/22 15:42:44 [notice] 7#@: 0S: Linux 4.0.5- BT Hof; L DD tich TR AT, e e !
boot2docker e

2015/06/22 15:42:44 [notice] 7#8:

getrlimit(RLIMIT_NOFILE): 1048576:1048576

2 index.himi file

2015/06/22 15:42:44 [notice] 7#@: start worker
processes

2015/06/22 15:42:44 [notice] 7#8: start worker VOLUMES don
process 8

/website_files

In the preceding screenshot, we have created and are running the hello-world-nginx
image inside Kitematic. We can now use the STOP, RESTART, and EXEC commands
against the container as well as view the settings of the running container.

In the following screenshot, we can go to settings and view what ports are exposed from
the container to the outside:



L NN @ scotipgaliag... ¥  hello-world-nginx |RUNNING

conas ® 6 O
Home Settings

STOP  RESTART EXEC

hello-world-nginx

hello-world-nginx:latest
General Ports Volumes Advanced

Configure Ports

80 192.168.99.100:32768

€= pockercu (5 O

In the following screenshot, you can see that you can use your login credentials to log in
to the Docker Hub and view the repositories you have created and pushed there:



Containers

€23 DOCKER CLI

® scottpgallag... v

® &

My Repositories

scottpgallagher
rhel?

No description.

0o

scottpgallagher
mysql

No description.

o0

scottpgallagher
php5-mysql

Mo description.

D0

scottpgallagher
galeramaster
No description.

Qo0

[sle]e]

000

CREATE

CREATE

CREATE

All  Recommended My Repos

scottpgallagher
saltmaster

No description.

20 o000 CREATE
scottpgallagher
docker-mysql-automated

No description.

o0 000 CREATE
scottpgallagher
php5-mysql-apache2

Mo description.

& o 000 | CREATE
scottpgallagher

galeranode

No description.







The Docker commands

We have covered the types of installers and what they can be run on. We have also seen
how to control the Docker VM that gets created for you and how to use Kitematic. Let’s
look at some Docker commands that you should be familiar with already. We will start
with some common commands and then take a peek at the commands that are used for the
Docker images. We will then take a dive into the commands that are used for the
containers.

The first command we will be taking a look at will be one of the most useful commands
not only in Docker but in any command-line utility you use—the help command. It is run
simply by executing the command as follows:

$ docker help

The earlier command will give you a full list of all the Docker commands at your disposal
and a brief description of what each command does. For further help with a particular
command, you can run the following:

$ docker <COMMAND> --help

You will then receive additional information on using the command, such as the switches,
arguments, and descriptions of the arguments. Similar to the boot2docker version
command we ran earlier, there is also a version command for the Docker daemon:

$ docker version

Now, this command will give us a little bit more information than the boot2docker
command output, as follows:

Client version: 1.7.0

Client API version: 1.19

Go version (client): gol.4.2
Git commit (client): Obaf609
0S/Arch (client): darwin/amdé64
Server version: 1.7.0

Server API version: 1.19

Go version (server): gol.4.2
Git commit (server): Obaf609
0S/Arch (server): linux/amd64

This is helpful when you want to see the version of the Docker daemon you may be
running to see if you need/want to upgrade.



The Docker images

Next, let’s take a dive into the Docker images. You will learn how to view the images you
currently have that you can run, search for images on the Docker Hub, and pull them
down to your environment, so you can run them. Let’s first take a look at the docker
images command. Upon running the command, we will get an output similar to the
following output:

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE

ubuntu 14.10 ab57dbafeeea 11 days
ago 194.5 MB

ubuntu trusty 6d4946999d4f 11 days
ago 188.3 MB

ubuntu latest 6d4946999d4f 11 days
ago 188.3 MB

Your output will differ based on whether you have any images at all in your Docker
environment or upon what images you do have. There are a few important pieces you need
to understand from the output you see. Let’s go over the columns and what is contained in
each. The first column you see is the REPOSITORY column; this column contains the name
of the repository as it exists in the Docker Hub. If you were to have a repository that was
from someone’s user account, it may show up as follows:

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE

scottpgallagher/mysql latest 57df9c7989a1 9 weeks ago
321.7 MB

The next column, the TAG column, will show you different versions of a repository. As you
can see in the preceding example with the Ubuntu repository, there are tag names for the
different versions. So, if you want to specify a particular version of a repository in your
Dockerfile (as we saw earlier), you are able to. This is useful, so you’re not always reliant
on having to use the latest version of an operating system and can use the one your
application supports the best. It can also help you do backward compatibility testing for
your application.

The next column is labeled IMAGE ID and it is based on a unique 64 hexadecimal digit
string of characters. The image ID simplifies this down to the first 12 digits for easier
viewing. Imagine if you had to view all 64 bits on one line! You will learn when to use
this unique image ID for later tasks.

The last two columns are pretty straightforward; the first being the creation date for the
repository, followed by the virtual size of the image. The size is very important as you
want to keep or use images that are very small in size if you plan to be moving them
around a lot. The smaller the image, the faster is the load time; and who doesn’t like it
faster?



Searching for the Docker images

Okay, so let’s look at how we can search for the images that are in the Docker Hub using
the Docker commands. The command we will be looking at is docker search. With the
docker search command, you can search based on the different criteria you are looking
for. For example, we can search for all the images with the term ubuntu in them and see
what all is available. Here is what we would get back in our results; it would go as
follows:

$ docker search ubuntu

We would get back our results:

NAME DESCRIPTION

STARS OFFICIAL AUTOMATED

ubuntu Ubuntu is a Debian-based Linux operating s..
1835 [OK]

ubuntu-upstart Upstart is an event-based replacement for..
26 [OK]

tutum/ubuntu Ubuntu image with SSH access. For the
root... 25 [OK]
torusware/speedus-ubuntu Always updated official Ubuntu docker imag..

25 [OK]

ubuntu-debootstrap debootstrap --variant=minbase --components...
10 [OK]

rastasheep/ubuntu-sshd Dockerized SSH service, built on top of of..

4 [OK]

maxexcloo/ubuntu Docker base image built on Ubuntu with Sup..
2 [0K]

nuagebec/ubuntu Simple always updated Ubuntu docker images..
2 [0K]

nimmis/ubuntu This is a docker images different LTS
vers.. 1 [OK]

alsanium/ubuntu Ubuntu Core image for Docker

1 [0K]

Based on these results, we can now decipher some information. We can see the name of
the repository, a reduced description, how many people have starred and think it is a good
repository, whether it’s an official repository; which means it’s been approved by the
Docker team, as well as if it’s an automated build. An automated build is typically a
Docker image that is built automatically when a Git repository it is linked to is updated.
The code gets updated, the web hook is called, and a new Docker image is built in the
Docker Hub. If we find an image we want to use, we can simply pull it using its repository
name with the docker pull command, as follows:

$ docker pull tutum/ubuntu

The image will be downloaded and show up in our list when we perform the docker
images command we ran earlier.

We now know how to search for Docker images and pull them down to our machine.
What if we want to get rid of them? That’s where the docker rmi command comes into



play. With the docker rmi command, you can remove unwanted images from your
machine(s). So, let’s take look at the images we currently have on our machine with the
docker images command. We will get the following:

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE

ubuntu 14.10 ab57dbafeeea 11 days
ago 194.5 MB

ubuntu trusty 6d4946999d4f 11 days
ago 188.3 MB

ubuntu latest 6d4946999d4f 11 days
ago 188.3 MB

We can see that we have duplicate images here taking up space. We can see this by
looking at the image ID and seeing the exact image ID for both ubuntu:trusty and
ubuntu:latest. We now know that ubuntu: trusty is the latest Ubuntu image, so there is
no need to keep them both around. Let’s free up some space by removing ubuntu:trusty
and just keeping ubuntu:latest. We do this by using the docker rmi command, as
follows:

$ docker rmi ubuntu:trusty

If you issue the docker images command now, you will see that ubuntu:trusty no longer
shows up in your images list and has been removed. Now, you can remove machines
based on their image ID as well. But be careful while you do so; in this scenario, not only
will you remove ubuntu: trusty, but you will also remove ubuntu:latest as they have
the same image ID.



Manipulating the Docker images

We have gone over the images and know how to obtain and manipulate them in some
ways. Next, we are going to take a look at what it takes to fire them up and manipulate
them. This is the part where the images become containers! Let’s first go over the basics
of the docker run command and how to run containers. We will cover some basic docker
run items in this section and more advanced docker run items in the later chapters. So,
let’s just look at how to get images up, running, and turned into containers. The most basic
way to run a container is as follows:

$ docker run -i -t <image_name>:<tag> /bin/bash

Upon closer inspection of the earlier command, we start off with the docker run
command, followed by two switches: -i and -t. The -i gives us an interactive shell into
the running container, the -t will allocate a pseudo-tty that, while using interactive
processes, must be used together with the -i switch. You can also use switches together;
for example, -it is commonly used for these two switches. This will help you test the
container to see how it operates before running it as a daemon. Once you are comfortable
with your container, you can test how it operates in the daemon mode:

$ docker run -d <image_name>:<tag>

If the container is set up correctly and has an entry point setup, you should be able to see
the running container by issuing the docker ps command. You will see something similar
to the following:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

ccifefcfa098 ubuntu:14.10 "/bin/bash" 3 seconds ago
Up 3 seconds boring_mccarthy

Based on the earlier command, we get a lot of other important information indicating that
the container is running. We can see the container ID, the image name that is running, the
command that is running to keep the image alive, when the container started, its current
status, if any ports were exposed they would be listed here, as well as the name given to
the container. Now, these names are random, unless it is specified otherwise by the - -
name= switch. You can also the expose the ports on your containers by using the -p
switch as follows:

$ docker run -d -p <host_port>:<container_port> <image>:<tag>
$ docker run -d -p 8080:80 ubuntu:14.10

This will run the ubuntu 14.10 container in the demonized mode, exposing port 8686 on
the Docker host to port 80 on the running container:

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
55cfdcb6beb6 ubuntu:14.10 "/bin/bash" 2 seconds ago

Up 2 seconds 0.0.0.0:8080->80/tcp babbage



Now, there will come a time when containers don’t want to behave. For this, you can see
the issues you have by using the docker logs command. The command is very
straightforward. You specify the container you want to see the logs off. For this command,
you need to use the container ID or the name of the container from the docker ps output:

$ docker logs 55cfdch6beb6
Or:
$ docker logs babbage

You can also get this ID when you first initiate the docker run command:

$ docker run -d ubuntu:14.10 /bin/bash
da92261485db98c7463fffadb43e3f684ea9f479491f287192408fd0f3e4f2bad






Stopping containers

Now, let’s take a look at how we can stop these containers. For various reasons, we would
want to do this. There are a few commands we could use; they are docker kill, docker
stop, docker pause, and docker unpause. Let’s cover them briefly as they are fairly
straightforward. First, let’s look at the difference between docker kill and docker stop.
The docker kill command will do just that—Kkill the container immediately. For a
graceful shutdown of the container, you would want to use the docker stop command.
Mostly, when you are testing, you will be using docker kill. When you’re in your
production environments, you will want to use docker stop to ensure you don’t corrupt
any data you might have in the Docker volumes. The commands are used exactly like the
docker logs command, where you can use the container ID, the random name given to
the container, or the one you might specify with the - -name= switch.

Now, let’s take a dive into how we can execute some commands, view information on our
running containers, and manipulate them in a small sense. We will cover more about
container manipulation in the later chapters as well. The first thing we want to take a look
at, which will make things a little easier with the upcoming commands, is the docker
rename command. With the docker rename command, we can change the name that has
been randomly generated for the container. When we performed the docker run
command, a random name was assigned to our container; most times, these names are
fine. But if you are looking for an easy way to manage the containers, a name can be
sometimes easier to remember. For this, you can use the docker rename command as
follows:

$ docker rename <current_container_name> <new_container_name>

Now that we have an easily recognizable and rememberable name, let’s take a peek inside
our containers with the docker stats and docker top commands, taking them in order:

$ docker stats <container_name>

CONTAINER CPU % MEM USAGE/LIMIT MEM %

NET I/O

web1 0.00% 1.016 MB/2.099 GB 0.05%
0 B/06 B

The other command docker top provides a list of all running processes inside the
container. Again, we can use the name of the container to pull the information:

$ docker top <container_name>

We will receive an output similar to the following one based on what processes are
running inside the container:

UID PID PPID Cc
STIME TTY TIME CMD
root 8057 1380 0

13:02 pts/0 00:00:00 /bin/bash



We can see who is running the process (in this case, the root user), the command being
run (in this case, /bin/bash), as well as the other information that might be useful.

Lastly, let’s cover how we can remove the containers. The same way we looked at
removing images earlier with the docker rmi command, we can use the docker rm
command to remove unwanted containers. This is useful if you want to reuse a name you
provided to a container:

$ docker rm <container_name>






Summary

In this chapter, we have covered what basic information you should already know or now
know for the chapters ahead. We have gone over the basics of what Docker is and how it
is compared to typical virtual machines. We looked at the Dockerfile structure and the
networking and linking of containers. We went over the installers, how they operate on
different operating systems, and how to control them through the command line. We
briefly looked at the latest Docker addition Kitematic for those interested in a GUI version
for Windows or OS X. Then, we took a small but deep dive into the basic Docker
commands to get you started.

In the next chapter, we will be taking a look at how to build base containers. We will also
look in depth at Dockerfile and places to store your images, as well as using
environmental variables and Docker volumes.






Chapter 2. Up and Running

I am very glad you decided to flip the page and come to Chapter 2, Up and Running! In
this chapter, we will get you up and running with your own base images. You will learn
how to store these images using custom environmental variables and scripts, and Docker
volumes. Here is a short review of what all we will be covering in this chapter:

Dockerfile

Docker build

Build base image using the Dockerfile

Docker Hub (basic overviews; more in depth will be covered in the next chapter)
Environmental variables

Docker volumes



Dockerfile

In this section, we will cover the Dockerfile from a more in-depth perspective than the
previous chapter along with the best practices to use. By the end of the section, you will be
structuring your Dockerfile in the most practical and efficient method. You will also be
able to read and troubleshoot both yours and others’ Dockerfile.



A short review of Dockerfile

In the previous chapter, we did a review of the Dockerfile and its content. We looked at
something like this:

FROM ubuntu:latest
MAINTAINER Scott P. Gallagher <email@somewhere.com>

RUN apt-get update && apt-get install -y apache2

ADD 000-default.conf /etc/apache2/sites-available/
RUN chown root:root /etc/apache2/sites-available/000-default.conf

EXPOSE 80
CMD ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

We saw earlier and in this example as well the basic items that are inside a Dockerfile. The
FROM and MAINTAINER fields have information on what image is to be used and who is the
maintainer of that image. The RUN instruction can be used to fetch and install packages
along with other various commands. The ADD instruction allows you to add files or folders
to the Docker image. The EXPOSE instruction allows you to expose ports from the image to
the outside world. Lastly, the cMD instruction executes the said command and keeps the
container alive. Now that we did a really short review, let’s take a more in-depth look at
Dockerfile.

Reviewing Dockerfile in depth
Let’s take a look at the following commands in depth:

LABEL

ADD or COPY
ENTRYPOINT
ENTRYPOINT with CMD
USER

WORKDIR

ONBUILD

LABEL

The LABEL command can be used to add additional information to the image. This
information can be anything from a version number to a description. You will want to
combine labels into a single line whenever possible. It’s also recommended that you limit
the number of labels you use. Every time you use a label, it will add a layer to the image,
thus increasing the size of the image. Using too many labels can cause the image to
become inefficient as well. You can view the containers’ labels with the docker inspect
command:

$ docker inspect <IMAGE_ID>
ADD or COPY



Now, in the previous chapter and in the preceding Dockerfile example, we used the ADD
instruction to add a file to a folder location. There is also another instruction you can use
in your Dockerfile and that is the COPY instruction. You can use the ADD instruction and
specify a URL straight to a file; it will be downloaded when the container is built. The ADD
instruction will also unpack or untar a file when added. The copY instruction is the same as
the ADD instruction, but without the URL handling or the unpacking/untarring of files.

ENTRYPOINT

In the Dockerfile example, we used the cMD instruction to make the container executable
and to ensure that it stays alive and running. You can also use the ENTRYPOINT instruction
instead. The benefit of using ENTRYPOINT over CMD is that you can use them in conjunction
with each other.

For example, if you want to have a default command that you want to execute inside a
container, you could do something similar to the following example, but be sure to use a
command that keeps the container alive:

FROM ubuntu:latest
ENTRYPOINT ["ps", "-au"]
CMD ["-x"

USER

The USER instruction lets you specify the username to be used when a command is run.
The USER instruction can be used on the RUN instruction, the CMD instruction, or the
ENTRYPOINT instruction in the Dockerfile.

WORKDIR

The WORKDIR command sets the working directory for the same set of instructions that the
USER instruction can use (RUN, CMD, and ENTRYPOINT). It will allow you to use the cMD and
ADD instructions as well.

ONBUILD

The ONBUILD instruction lets you stash a set of commands that will be used when the
image is used again as a base image for a container. For example, if you want to give an
image to developers and they all have a different code they want to test, you can use the
ONBUILD instruction to lay the groundwork ahead of the fact of needing the actual code.
Then, the developer will simply add their code in the directory you tell them and, when
they run a new docker build command, it will add their code to the running image. The
ONBUILD instruction can be used in conjunction with the ADD and RUN instructions:

ONBUILD ADD
ONBUILD RUN



Dockerfile — best practices

Now that we have covered the Dockerfile instructions in depth, let’s take a look at the best
practices of writing these Dockerfile:

¢ You should try to get in the habit of using a .dockerignore file. We will cover the
.dockerignore file in the next section; it will seem very familiar if you are used to
using a .gitignore file. It will essentially ignore the items you have specified in the
file during the build process.

e Minimize the number of packages you need per image. One of the biggest goals you
want to achieve while building your images is to keep them as small as possible. Not
installing the packages that aren’t necessary will greatly help in achieving this goal.

e Execute only one application process per container. Every time you need a new
application, it is a best practice to use a new container to run that application in.
While you can couple commands into a single container, it’s best to separate them
out.

e Sort commands as follows:

o Sort them based upon the actual command itself, that is, run the following
command:

apt-get update && apt-get install -y

o Sort them alphabetically, so it’s easier to change them later, that is, run the
following command:

apt-get update && apt-get install -y \ apache2 \
git \
memcached \
mysql






Docker build

In this section, we will cover the docker build command. This is where the rubber meets
the road, as they say. It’s time for us to build the base that we will start building our future
images on. We will be looking at different ways to accomplish this goal. Consider this as a
template that you may have created earlier with virtual machines. This will help save time
by completing the hard work; you will just have to create the application that needs to be
added to the new images.



The docker build command

Now that you have learned how to create and properly write a Dockerfile, it’s time to learn
how to take it from just a file to an actual image. There are a lot of switches that you can
use while using the docker build command. So, let’s use the always handy - -help
switch on the docker build command to view what all we can do:

$ docker build --help
Usage: docker build [OPTIONS] PATH | URL | -

Build a new image from the source code at PATH

-c, --cpu-shares=0 CPU shares (relative weight)

--cgroup-parent= Optional parent cgroup for the container

--cpu-period=0 Limit the CPU CFS (Completely Fair Scheduler)
period

--cpu-quota=0 Limit the CPU CFS (Completely Fair Scheduler) quota

--cpuset-cpus= CPUs in which to allow execution (0-3, 0,1)

- -cpuset-mems= MEMs in which to allow execution (0-3, 0,1)

-f, --file= Name of the Dockerfile (Default is
'"PATH/Dockerfile')

--force-rm=false Always remove intermediate containers

--help=false Print usage

-m, --memory= Memory limit

- -memory-swap= Total memory (memory + swap), '-1' to disable swap

--no-cache=false Do not use cache when building the image

--pull=false Always attempt to pull a newer version of the image

-q, --quiet=false Suppress the verbose output generated by the
containers

--rm=true Remove intermediate containers after a successful
build

-t, --tag= Repository name (and optionally a tag) for the
image

Now, it may seem like a lot to digest, but the most important ones will be the -f and the -t
switches. You can use the other switches to limit how much CPU and memory the build
process will use. In some cases, you may not want the build command to take as much
CPU or memory as it can have. The process may run a little slower, but if you are running
it on your local machine or a production server and it’s a long build process, you may
want to set a limit. Typically, you don’t use the -f switch as you run the docker build
command from the same folder that the Dockerfile is in. Keeping the Dockerfile in
separate folders helps sort the files and keeps the naming convention of the files the same.

.dockerignore

The .dockerignore file, as we discussed earlier, is used to exclude those files or folders

we don’t want include in the docker build. We also discussed placing the Dockerfile in a

separate folder and the same applies for .dockerignore. It should go in the folder where
the Dockerfile was placed. Keeping all the items you want to use in an image in the same
folder will help you keep the items, if any, in the .dockerignore file to a minimum.



Building images using Dockerfile

The first way we are going to look at to build your base Docker images is by creating a
Dockerfile, populating the Dockerfile with some instructions, and then executing a docker
build command against them to get ourselves a base container. So, let’s first start off by
looking at a typical Dockerfile:

FROM ubuntu:latest
MAINTAINER Scott P. Gallagher <email@somewhere.com>

RUN apt-get update && apt-get install -y apache2

EXPOSE 80
CMD ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

In the preceding Dockerfile, the code is pretty straightforward. We are going to use the
latest Ubuntu image and then run an apt-get update as well as an apt-get install of
the Apache web server. We will set the container to expose port 80 when it is run and then
start Apache in the foreground of the container.

So, there are two ways we can go about building this image. The first way would be by
specifying the -f switch when we use the docker build command. We will also utilize
the -t switch to give the new image a unique name:

$ docker build -f <path_to_Dockerfile> -t <REPOSITORY>:<TAG>

Now, <REPOSITORY> is typically the username you signed up for on Docker Hub and the
<TAG> is a unique container name you want to provide:

$ docker build -f <path_to_Dockerfile> -t scottpgallagher:ubuntu_apache

Typically, the -f switch isn’t used and it can be a little tricky when you have other files
that need to be included with the new image. An easier way to do the build is to place the
Dockerfile in a separate folder by itself along with any other file that you will be placing
in the image with the ADD or COPY instructions:

$ docker build -t scottpgallagher:ubuntu_apache

The most important thing to remember is the .—the dot (or period) at the very end. This is
to tell the docker build command to build in the current folder.

If you are using your own registry to push your images, then you can use any naming
convention that you would like to use. But try to keep it simple and easy to identify by
looking at the name.



Building a base image using an existing image

The easiest way to build a base image is to start off by using one of the official builds
from the Docker Hub. Docker also keeps the Dockerfile for these official builds on their
GitHub repositories. So, there are at least two choices you have for using existing images
that others have already created. By using the Dockerfile, you can see exactly what is
included in the build and add what you need. You can then version control that Dockerfile
for it if you want to change it at a later time.

The other way of doing it is to use an already existing image that requires a little bit more
work, but is essentially the same method. We would first need to get the base image we
want:

$ docker pull ubuntu:latest

Then, we would run the container in the foreground, so we could add packages to it:

$ docker run -it ubuntu:latest /bin/bash

Once the container runs, you can add the packages as necessary by using the apt-get
command in this case, or whatever the package manager commands are for your Linux
flavor. After you have installed the packages you require, you need to save the container.
To do so, you first need to get the container ID. You can do this in the following manner:

$ docker ps

Once you have the container ID, you can save (or commit) the container. So, to save this
container, you need to do something similar to the following:

$ docker commit <container_ID> <REPOSITORY>:<TAG>

Now, if you are planning on using the Docker Hub (that we will be discussing here shortly
in the next section of this chapter), you will want to structure your image names as
follows:

$ docker commit <container_ID> <Docker_Hub_Username>:<Unique_Name>
$ docker commit <container_ID> scottpgallagher :ubuntu_apache2

Now, there will be some downfall to doing it this way. If you do it this way, you would
need to create a Dockerfile in the FROM part and use the image you just created in this
section. This is because you can’t change what CMD or ENTRYPOINT is being used on an
already built container. So, you would want to create a new Dockerfile and add in what
CMD or ENTRYPOINT you might want to use.



Building your own containers

There are two ways to go about building your own containers. They are as follows:
e Using tar
e Using a scratch image

Using tar

So, you have a machine already running as a virtual machine or on a bare metal box and
you want to convert that to a Docker image. How do you go about doing this? The first
thing you will need to do is to install something like debootstrap:

$ sudo apt-get install -y debootstrap

Next, you will need to get the release name of the distribution of Linux you are running.
To do this, we can look at the contents of the /etc/1sb-release file:

$ cat /etc/lsb-release

DISTRIB_ID=Ubuntu

DISTRIB_RELEASE=14.04
DISTRIB_CODENAME=trusty
DISTRIB_DESCRIPTION="Ubuntu 14.04.2 LTS"

We can tell from the preceding output that we are running the trusty release of Ubuntu.
Now, we can execute the next command using the newly installed debootstrap command:

$ sudo debootstrap trusty <unique_name> > /dev/null

We can execute the next command after the previous one is completed:

$ sudo tar -C <unique_name> -c . | sudo docker import - <unique_name>

The preceding command will switch to the directory you specify after -c, create a new
archive from that directory based off the -c switch, and specify . (for the current
directory). It will then import the image into a Docker image with the docker import
command.

You can see this image by issuing the docker images command:

$ docker images

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE

ubuntu_trusty latest 376bfebd75chb 17 minutes ago
228.3 MB

You can then use the image for base images and share them on the Docker Hub or on your
own Docker Registry. We will be covering how to push these images to various locations
in the next section. First, though, we need to look at the other method to create images and
that is to build from scratch.

If you wish to use something other than Ubuntu (or Debian), Docker has created scripts
that you can utilize to create images from as well. You can check them out at
https://github.com/docker/docker/tree/master/contrib.



https://github.com/docker/docker/tree/master/contrib

You will want to look at the mkimage- files based on what distribution you are using.

Using scratch

You also have the option to build from scratch. Now, when you usually hear the term
scratch, it literally means that you start from nothing. That’s what we have here—you get
absolutely nothing and have to build upon it. Now this can be a benefit because it will
keep the image size very small; but it can also not be beneficial if you are fairly new to the
Docker game, as it may be a little complicated.

Docker has done the hard work for us already and created an empty tar file that is on the
Docker Hub named scratch; you can use it in the FROM section of your Dockerfile. You
can base your entire Docker build on this then and add parts as needed. So, your
Dockerfile might look something like this:

FROM scratch
ADD <script_to_add> /<path_to_add_to_on_container>
CMD ["/<path_to_add_to_on_container>"]






Docker Hub

In this section, we will cover the locations you can store the images you will be creating.
There are several different areas to store these, ranging from a location in the cloud that
can be set to public, where anyone can access and use them, to private, again a place in the
cloud that can only be accessed by those you give permission to. You can also host your
own repository, where you can store your own images. You can also purchase a Docker
subscription (Docker Hub Enterprise) that provides you with what you need to deploy to
the cloud or locally, and also comes along with commercial support from Docker.



The Docker Hub location

The Docker Hub is a location on the cloud, where you can store and share images that you
have created. You can also link your images to the GitHub or Bitbucket repositories that
can be built automatically based on web hooks. We will be discussing web hooks in the
next chapter and will go over all the pieces required for that setup. There are two types of
repositories on the Docker Hub: the public and private repositories. You can also roll your
own repository that we will cover more in depth in the next chapter.

Pushing to a repository is very straightforward. Once you have the image built on your
machine, there are two commands you need to run. One you will only have to run once
and the other command you will use every time:

$ docker login

This will prompt you for your Docker Hub credentials and the e-mail address you are
using on Docker Hub:

$ docker push <REPOSITORY>:<TAG>

This will show the progress of your push, kicking back to the command prompt when
completed. You will then be able to see the image in either the command-line search or the
web-based GUI search. By default, repositories are pushed as public. If you want to set
them to private, you need to log in to the Docker Hub website and set the repository to
Make Private. You can also mark images as unlisted, so they don’t show up in the Docker
searches. You can also mark them as listed at a later date as well.



Public repositories

Public repositories are those on the Docker Hub that are open to anyone. Anyone can use
the docker pull command to download an image to their local system and run or build
further images from it. You can also add collaborators to your public repositories and users
can then push to that repository or update it. There are two ways you can search for
images on Docker Hub:

e $ docker search <TERM>: You can search for terms such as ubuntu or a particular
package you are looking to deploy such as salt or mysql

e The Docker Hub website (https://registry.hub.docker.com/): A simple web-based
search with terms of your choosing


https://registry.hub.docker.com/

Private repositories

Private repositories are just that private. You can set permissions for different users from
which the users can push, as we saw with public repositories and collaborators, but they

can also pull all the images in that repository and don’t have administrative rights. Once
you are logged in to Docker Hub, you will be able to see all the private repositories that

you have permission to, both in the web GUI and the command line.



Docker Hub Enterprise

There is also an option for Docker Hub Enterprise that allows you to deploy a Docker
repository to your local system or cloud environment. Now, there is an option to run your
own Docker repository based on a Docker image that is managed by Docker. What Docker
Enterprise offers you is access to the software, access to updates/patches/security fixes,
and support relating to issues with the software. The open source Docker repository image
doesn’t offer these services at this level; you are at the mercy of when that image will be
updated on Docker Hub. Docker does offer various service levels for the said services that
you can purchase through them. They currently are recommending you contact their sales
department for any and all the pricing.






Environmental variables

In this section, we will cover the very powerful environmental variables or ENVs, as you
will be seeing a lot of them. You can use environmental variables for a lot of things from
your Dockerfile. If you are familiar with coding, these will probably come as secondhand
to you. For others like myself, at first, they may seem intimidating; but don’t get
discouraged. They will be your best resource once you get the hang of them. They can be
used from creating MySQL users, passwords, and databases to setting application items
such as memory limits. We will cover some examples that you can use for future
reference.



Using environmental variables in your Dockerfile

To use environmental variables in your Dockerfile, you can use the ENV instruction. The
structure of the ENV instruction is:

ENV <key> <value>
ENV username admin

Else, you can always use an equals sign between the two:

ENV <key>=<value>
ENV username=admin

Now, the question is why do they have two and what are the differences? With the first
example, you can only set one ENV per line. With the second ENV example, you can set
multiple environmental variables on the same line:

ENV username=admin database=dbl tableprefix=pr2_

You can view what environmental variables are set on an image by using the docker
inspect command:

$ docker inspect <IMAGE_ID>

You can change their values when you initialize the docker run command by using the -e
or - -env switch:

$ docker run -e username=superuser
$ docker run --env username=superuser

Now that we know how they need to be set in our Dockerfile, let’s take a look at them in
action. We will go over two examples in the next section showing the Dockerfile. We then
set the corresponding scripts that will be used in the RUN instructions to execute and
perform an action based off the docker run command that we will use after the image is
built.

Don’t get too confused; we will list out all the steps in the upcoming sections.



Creating a MySQL username, database, and setting
permissions

First, we need a Dockerfile that specifies the MySQL username and database we want to
use:

FROM ubuntu:latest

MAINTAINER Scott P. Gallagher <someone@email.com>
RUN apt-get update && apt-get install -y mysql mysql-server
ENV username mysqgluser

ENV password pass

ENV database db2

ADD databasesetup.sh /

RUN chmod 644 /databasesetup.sh

RUN "/usr/bin/sh databasesetup.sh"

EXPOSE 3306

CMD ["/usr/bin/mysqld_safe"]

Now, we need to create the databasesetup.sh file that will be added and then called from
the RUN instruction:

#!1/bin/bash
/usr/bin/mysqld_safe

mysql -uroot -e "CREATE USER '${username}'@'%' IDENTIFIED BY
'${password}'"

mysql -uroot -e "GRANT ALL PRIVILEGES ON '${database}'.* TO
'${username}'@'%' WITH GRANT OPTION"
mysgladmin -uroot shutdown

Okay, what all have we done so far? We created our Dockerfile and databasesetup.sh
file in a folder together. We can then run Docker build against the Dockerfile and it will
create the image we want to use. Now, the last part is to start the container and insert the
values we want to use. Note that the values you put in your Dockerfile are simply meant to
be placeholders. You can execute your container with the values that are in there; but this
is not recommended for production environments:

$ docker run -d -e username <value> -e password <value> -e database <value>
<REPOSITORY>:<TAG>

<REPOSITORY> and <TAG> will be the names you specified when you used the docker
build command.

This should be a good boiler plate to use when you want to set something in a database.
Next, let’s take a look at an example where we want to set memory limits on a file that
might already exist (that we add to the image).



Adding a file to the system

For this example, we are going to add our memcached configuration file to the system
and, instead of specifying an actual value in the configuration file, we are going to set it to
a variable. This will allow us to utilize that variable in our Dockerfile. After we have built
the image, we will be able to give that variable a value with the -e switch. When the
container starts up and starts up the memcached service, it will set the value for that
memory limit to the stated value.

First, we need our Dockerfile:

FROM ubuntu:latest

MAINTAINER Scott P. Gallagher <someone@email.com>
RUN apt-get update && apt-get install -y memcached
ADD memcached /etc/default/

ENV MEMCACHESIZE 2048

EXPOSE 11211

CMD ["/usr/bin/memcached -u root"]

This is the memcached configuration file (named memcached) that will be added to the
system:

# Set this to no to disable memcached.
ENABLE_MEMCACHED=yes
CACHESIZE=SMEMCACHESIZE

After the build is completed, we can run our image as follows:

$ docker run -d -e MEMCACHESIZE 1024 <REPOSITORY>:<TAG>

Again, set <REPOSITORY> and <TAG> to the values used while running the docker build
command.

Now, we have seen how to build our own images from various methods. We took a look at
where we can store our images once we are done building them. And we just took a look
at environmental variables and two different ways of using them. Lastly, for this chapter,
we will be looking at Docker volumes.






Docker volumes

In the last section of this chapter, we will cover container storage or Docker volumes as
they are referred to. We will take a look at data volumes and data volume containers, the
differences between the two, and when to use which one. Lastly, we will also look at the
best practices for Docker volumes. This is the data that we want to be persistent or shared
between containers. We need to remember that, by default, when you exit a running
container, the data isn’t saved. When you start the container backup, it will start in its
initial state, so Docker volumes become incredibly important in areas like databases or
filesystems.

Another switch that we will be covering is the -v or - -volume= switch. This switch
allows you to provide a volume to the Docker container that you wish contained persistent
data. Remember that, when you start a Docker container, the data inside doesn’t remain
persistent unless you save it (or commit in Docker terms). The volumes switch allows you
to have persistent data inside your Docker container such that even if the container is
stopped or deleted, the data remains intact. Let’s take a look at the two ways we can
provide persistent volumes to containers:

e Data volumes
e Data volume containers



Data volumes

The first volume storage we will look at is data volumes. Data volumes are mounted
inside the container when you run the container. However, as stated before, the volume is
not tied to the container in events when it stops, is killed, or is deleted. Let’s see how we
first mount a volume inside a container; then we can dive a little deeper:

$ docker run -it -v /tmp ubuntu /bin/bash

We are simply running an ubuntu container shelled into /bin/bash, so we can see the
/tmp volume mounted. This will create a new volume inside the container at the specified
path. Essentially, it overwrites or hides the folder inside the container if it does exist; and
in our case, /tmp already exists, so any data the container might have had inside it is no
longer there and /tmp will now be an empty folder or volume.

You can also use multiple -v volume switches on a single docker run line:

$ docker run -it -v /tmp -v /data ubuntu /bin/bash

It is nice to use the -it switch sometimes, so you can actually see how this works. In later
times, you will want to be running your containers with the -d switch, so they are not
running the foreground.

Now, you can also mount the directory from the local machine the Docker containers are
running on into the Docker container. To do so, you can use the -v switch again, but you
need to add :/<path> to the path:

$ docker run -it -v /tmp:/data ubuntu /bin/bash

This will mount the contents of /tmp (on the Docker host) to the /data directory inside the
now running Docker container. If you were to look at the contents of /tmp on the Docker
host and the contents of /data on the running Docker container, you will see that they
match. Any changes you make inside the Docker containers /data folder will be reflected
in the Docker host’s /tmp folder.

By default, when you mount a directory from a Docker host to a Docker container, it will
mount in the read/write mode. There is a way you can mount it in the read-only mode as
well. Again, using the -v switch, we will just append : ro to our volume instruction:

$ docker run -it -v /tmp:/data:ro ubuntu /bin/bash

You can locate one or several volumes on a Docker container by using the docker
inspect container:

$ docker inspect <CONTAINER_ID>

The line(s) you will be looking for will resemble the following:

"Volumes": {
"/tmp":
"/mnt/sdal/var/lib/docker/volumes/5c4elbff167ea1479dd9f33f74aeaf5d7f9f4d252
de96e95e87befdb9be23ead/_data"



Remember, you can get the container ID by running:

$ docker ps

The preceding output shows how the docker inspect command actually works. It is
mounting /tmp inside the container; but where does the data actually live? The data
actually lives in the machine your container runs on in the path specified. If you were to
populate data inside the container in the /tmp folder and then navigate from the machine

running the Docker container to the
/mnt/sdal/var/lib/docker/volumes/5c4elbff167eal479dd9f33f74aeaf5d7f9f4d252de

directory, the data would be there. Now, we will go into the details of how to manage data
and move it around between Docker hosts in the next chapter.

On a side note, you can also use the VOLUME instruction inside the Dockerfile to specify
volumes for a container. It would look similar to this:

FROM ubuntu:latest
MAINTAINER Scott P. Gallagher <someone@email.com>
VOLUME ["/datastore"]

You can also use the -v flag to mount a single file into a container. So, the discussion isn’t
just about directories, it’s about files as well. Now, we have seen how we can use Volumes
to create persistent data that is stored inside containers; but what other options do we have
with regards to using Volumes? We can use data volume containers too.



Data volume containers

Data volume containers come in handy when you have data that you want to share
between containers. There is another flag we can utilize on the docker run command.
Let’s take a look at the - -volumes-from switch.

What we will be doing is using the -v switch on one of our Docker containers. Then, our
other containers will be using the - -volumes-from switch to mount the data to the
containers that they run.

First step, let’s fire up a container that has a data volume we can add to other containers.

For this example, we will be using the busybox image since it’s very small in size. We are
also going to use the - -name switch to give the container a name that can be used later:

$ docker run -it -v /data --name datavolume busybox /bin/sh

We are going to create a volume and mount it in /data inside our container. We have also
named our container datavolume so that we can leverage in our - -volumes-from switch.

While we’re still inside the shell, let’s add some data to the /data directory. So, when we
mount it on the other systems, we know it’s the right one:

$ touch /data/correctvolume

This will create the correctvolume file inside the /data directory in the busybox
container we are running.

Now, we need to connect some containers to this /data directory in the container. This is
where the name we gave it will come in handy:

$ docker run -it --volumes-from datavolume busybox /bin/sh

If we now perform 1s /data, we should see the correctvolume file that we created
earlier.

Tip

Something to note here is that when you use the - -volumes-from switch, the directory

will be mounted in the same place on both the containers. You can also specify multiple - -
volumes-from switches on a single command line.

There will come a time when you run into the following error:

$ docker run -it -v /data --name datavolume busybox /bin/bash

Error response from daemon: Conflict. The name "data" is already in use by
container 82af96592008. You have to delete (or rename) that container to be
able to reuse that name.

You can remove the volume if you want, but USE IT CAUTIOUSLY, as once you
remove the volume, the data inside that volume will go away with it:

$ docker rm -v data

You can also use this to clean up the volumes that you no longer want on the system. But



again, use extreme caution as stated before that once a volume is gone, the data will go
with it.

Docker volume backups

It is important to remember that while your containers are immutable, the data inside your
volumes is mutable. It changes, while the items inside your Docker containers do not. For
this reason, you need to make sure that you are backing up your volumes in some manner.

Volumes are stored on the system at /var/lib/docker/volumes/.

The key to remember here is that the volumes are not named the way you named them in
this directory. They are given unique hash values, so understanding what content is in
them can be confusing if you are just looking at their name. If you are looking at
managing volumes at this point, I would highly recommend this image from the Docker

Hub: https://hub.docker.com/r/cpuguy83/docker-volumes/.

This container (once built) will allow you to list volumes as well as export them into a
tarred up file.


https://hub.docker.com/r/cpuguy83/docker-volumes/




Summary

In this chapter, we have looked at an in-depth view of the Dockerfile and the best practices
to write them, the docker build command and the various ways we can build the said
containers, and the various Docker Hubs to store the containers you have built. We also
learned about the environmental variables that you can use to pass from your Dockerfile to
the various items inside your containers and Docker volumes to store persistent or shared
data.

Let’s do a quick review of all the commands we have learned in this chapter.

docker inspect: To inspect a running container

docker build: To build a new image from a Dockerfile

docker login: To login to the Docker Hub

docker commit: To commit changes to a running container

docker search: To search the Docker Hub from the command line

docker push: To push a new image or changes to existing changes to the Docker
Hub

docker run -e: To run a new container and specify an environmental variable value
e docker run -v: To run a Docker container and mount a persistent volume inside it

e docker run --volumes-from: To mount a volume from an already running container
inside this new container

In the next chapter, we will be taking a more in-depth look at the various Docker Hubs and
a good look at web hooks that you can use to do automated builds. We will cover all the
pieces required for these web hooks as well, and go through the process step by step. We
will also look at the Docker Registry that is open sourced, so you can roll your own place
to store images without the fees of Docker Enterprise.






Chapter 3. Container Image Storage

In the third chapter of the book, we will cover the places you store your containers, such
as Docker Hub and Docker Hub Enterprises. We will also cover Docker Registry that you
can use to run your own local storage for the Docker containers. We will review the
differences between them all and when and how to use each of them. It will also cover
how to set up automated builds using web hooks as well as the pieces that are all required
to set them up. Lastly, we will run through an example of how to set up your own Docker
Registry. Let’s take a quick look at the topics we will be covering in this chapter:

Docker Hub

Docker Hub Enterprise
Docker Registry
Automated builds



Docker Hub

We will be covering Docker Hub in a little more detail than what we looked at in the
previous chapter. In Chapter 2, Up and Running, we just glazed over Docker Hub as a
storage location to push our images to. In this section, we will focus on that Docker Hub,
which is a free public option, but also has a private option that you can use to secure your
images. We will focus on the web aspect of Docker Hub and the management you can do
there.

The login page is like the one shown in the following screenshot:

A
&P Explore Help Signup | Log In

Log in to Docker Hub

USErnarn




Dashboard

After logging into the Docker Hub, you will be taken to the following landing page. This
page is known as the Dashboard of Docker Hub.

"== Dashboard Explore Organizations Create m scotipgallagher
scottpgal... o & Repositories % Stars # Contributec Private Repositories: Uising 1 of 1 38t more
Repositories Create Repository +
Docker Trusted
Registry
scottpgallagher/rhel7 0 2 > Need an on-premise registry?
private STARS PULLS DETAILS Get a 30-day free trial

scottpgallagher/saitmaster 0 10 b J

public STARS PULLS DETAILS
‘ll. scottpgallagher/mysqgl 0 1" )
& public STARS PULLS DETAILS
.:. scottpgallagher/docker-mysql-automated 0 11 )
£ public | automated build STARS PULLS DETAILS
."- scottpgallagher/php5-mysq| 1] 9 )
! £ public STARS PULLS DETAILS

From here, you can get to all the other subpages of Docker Hub. In the upcoming sections,
we will go through everything you see on the dashboard, starting with the dark blue bar
you have on the top.



Explore the repositories page

The following is the screenshot of the Explore link you see next to Dashboard at the top
of the screen:

@ Dashboard Explore Organizations Search Greate m scottpgallagher

Explore Official Repositories

u centos 15K 23M >
official STARS PULLS DETAILS

E busybox 316 393 M >
official STARS PULLS DETAILS
m ubuntu 24K 26.8 M >
official STARS PULLS DETAILS
n scratch 112 2231 K >
official STARS PULLS DETAILS
u 225 236.0 K >
official STARS PULLS DETAILS
m ...... y 440 7AM >
n‘f cial STARS PULLS DETAILS

As you can see in the screenshot, this is a link to show you all the official repositories that
Docker has to offer. Official repositories are those that come directly from Docker or from
the company responsible for the product. They are regularly updated and patched as
needed.



Organizations

Organizations are those that you have either created or have been added to.
Organizations allow you to layer on control, for say, a project that multiple people are
collaborating on.

The organization gets its own setting such as whether to store repositories as public or
private by default, changing plans that will allow for different amounts of private
repositories, and separate repositories all together from the ones you or others have.

@r Dashboard Explore Organizations Q Search Create m:'a:aﬂpgﬂllagher

Organizations & Teams

scottorg

You can also access or switch between accounts or organizations from the Dashboard just
below the Docker log, where you will typically see your username when you log in.



Dashboard Explore Organizations

"

%)

—
& Repositories * Stars # Gontributed

scottorg

Repositories

scotipgallagher/rhel7
private

scottpgallagher/saltmaster
public

seottpgallagher/mysql
public

scottpgallagher/docker-mysgl-automated

public | automated build

scottpgallagher/phpS-mysql
public

STARS

STARS

STARS

STARS

STARS

2
PULLS

10
PULLS

11
PULLS

i1
PULLS

PULLS

>

DETAILS

DETAILS

DETAILS

>

DETAILS

DETAILS

Private Repositories: Using 1of 1 Gat mora

Docker Trusted
Registry

Need an on-premise registry?
Get a 30-day free trial

This is a drop-down list, where you can switch between all the organizations you belong

to.



The Create menu

The Create menu is the new item along the top bar of the Dashboard. From this drop-
down menu, you can perform three actions:

¢ (Create repository
e Create automated build
e (reate organization

A pictorial representation is shown in the following screenshot:

% Dashboard Explore Organizations Create mscuttpgallagher

scottpgal... * | & Repositories * Stars # Gontributed & Create Repository : Using 1 of 1 Gat more

@f Greate Automated Build

Repositories ate Repository +

& Create Organization

Docker Trusted

Reqistry

= 3 scottpgallagher/rhel7 0 2 ) MNeed an on-premise ragistry?
j private STARS  PULLS | DETALS Get a 30-day free trial
& scottpgallagher/saltmaster 0 10 >
-l'ﬂ Public STARS PULLS | DETALS
Y scottpgallagher/mysqgl 0 11 >
.-ﬁ public STARS PULLS | DEWALS
. scottpgallagher/docker-mysqgl-automated o 11 >

» o Ak

-E publie | automated build STARS PULLS DETALS

- J scottpgallagher/phpS-mysqgl o [} )
A public STARS PULLS DETALS




Settings

Probably, the first section everyone jumps to once they have created an account on the
Docker Hub—the Settings page. I know, that’s what I did at least.

=t
-=—- Dashboard Explore  Organizations Create m&mﬂngallagner

Account Settings Billing & Plans nked Accounts & Services Maotifications

Account Settings

Default Repository Visibility

Update the default visibility for your repositories.

© public private

Email Addresses

This email address will be used for all notifications and New Email

correspondence from Docker. “
If you wish to designate a different email address as

primary, first add a new address to your account and sgallag@gmail.com verified primary

then click "make primary”,

Change Password
Please choose a password which is longer than 4 Old password

characters.

New password

Confirm new password

The Account Settings page can be found under the drop-down menu that is accessed in
the upper-right corner of the dashboard on selecting Settings.



-
.==. Dashboard Explore Organizations

scottpgal... - & Repositories # Stars

Repositories

" | scottpgallagher/rhel7? 0
‘i ; ;
private STARS
& 4 scottpgallagher/saltmaster 0
I bl
' pubRe STARS
@ 3 4 Scottpgallagher/mysql 0
' el STARS
@ ‘ scotif ac ocker-mysqgl-automated i)
. 2 =
| public | automated build STARS
2 d scottpgallagher/php5-mysql 0
= blic
L STARS

2
PULLS

PULLS

Lh
PULLS

1"
PULLS

PULLS

>

DETAILS

DETAILS

>

DETAILS

>

DETAILS

>

DETAILS

Create m scottpgallagher
LS My Profile
| Documentation
Help

Dockel
Re

MNeed an on-g
Get a 30

The page allows you to set up your public profile; change your password; see what
organization you belong to, the subscriptions for e-mail updates you belong to, what
specific notifications you would like to receive, what authorized services have access to
your information, linked accounts (such as your GitHub or Bitbucket accounts); as well as
your enterprise licenses, billing, and global settings. The only global setting as of now is
the choice between having your repositories default to public or private upon creation. The

default is to create them as public repositories.




The Stars page

Below the dark blue bar at the top of the Dashboard page are two more areas that are yet
to be covered. The first, the Stars page, allows you to see what repositories you yourself
have starred.

.
w Dashboard Explore Organizations Q, Search mscoﬂpgallaghar

scottpgal... = & Repositories W Stars
n ubuntu 24K 26.8 M >
official STARS PULLS DETAILS
u debian 792 41 M )
official STARS PULLS DETAILS
u wordpress 537 30M )
afficial STARS PULLS DETAILS

This is very useful if you come across some repositories that you prefer to use and want to
access them to see whether they have been updated recently or whether any other changes
have occurred on these repositories.

The second is a new setting in the new version of Docker Hub called Contributed. In this
section, there will be a list of repositories you have contributed to outside of the ones
within your Repositories list.






Docker Hub Enterprise

Docker Hub Enterprise, as it is currently known, will eventually be called Docker
Subscription. We will focus on Docker Subscription, as it’s the new and shiny piece. We
will view the differences between Docker Hub and Docker Subscription (as we will call it
moving forward) and view the options to deploy Docker Subscription.



Comparing Docker Hub to Docker Subscription

Let’s first start off by comparing Docker Hub to Docker Subscription and see why each is
unique and what purpose each serves:

Docker Hub

e Shareable image, but it can be private
e No hassle of self-hosting
e Free (except for a certain number of private images)

Docker Subscription

¢ Integrated into your authentication services (that is, AD/LDAP)
¢ Deployed on your own infrastructure (or cloud)
e Commercial support



Docker Subscription for server

Docker Subscription for server allows you to deploy both Docker Trusted Registry as well
as Docker Engine on the infrastructure that you manage. Docker Trusted Registry is the
location where you store the Docker images that you have created. You can set these up to
be internal only or share them out publicly as well. Docker Subscription gives you all the
benefits of running your own dedicated Docker hosted registry with the added benefits of
getting support in case you need it.



Docker Subscription for cloud

As we saw in the previous section, we can also deploy Docker Subscription to a cloud
provider if we wish. This allows us to leverage our existing cloud environments without
having to roll our own server infrastructure up to host our Docker images.

The setup is the same as we reviewed in the previous section; but this time, we will be
targeting our existing cloud environment instead.






Docker Registry

In this section, we will be looking at Docker Registry. Docker Registry is an open source
application that you can run anywhere you please and store your Docker image in. We will
look at the comparison between Docker Registry and Docker Hub and how to choose
among the two. By the end of the section, you will learn how to run your own Docker
Registry and see whether it’s a true fit for you.



An overview of Docker Registry

Docker Registry, as stated earlier, is an open source application that you can utilize to
store your Docker images on a platform of your choice. This allows you to keep them
100% private if you wish or share them as needed. The registry can be found at

https://docs.docker.com/registry/.

This will run you through the setup and the steps to follow while pushing images to
Docker Registry compared to Docker Hub. Docker Registry makes a lot of sense if you
want to roll your own registry without having to pay for all the private features of Docker
Hub. Next, let’s take a look at some comparisons between Docker Hub and Docker
Registry, so you can make an educated decision as to which platform to choose to store
your images.


https://docs.docker.com/registry/

Docker Registry versus Docker Hub

Docker Registry will allow you to do the following:

e Host and manage your own registry from which you can serve all the repositories as
private, public, or a mix between the two

e Scale the registry as needed based on how many images you host or how many pull
requests you are serving out

e All are command-line-based for those that live on the command line

Docker Hub will allow you to:

e Get a GUI-based interface that you can use to manage your images

e A location already set up on the cloud that is ready to handle public and/or private
images

e Peace of mind of not having to manage a server that is hosting all your images






Automated builds

In this section, we will look at automated builds. Automated builds are those that you can
link to your GitHub or Bitbucket account(s) and, as you update the code in your code
repository, you can have the image automatically built on Docker Hub. We will look at all
the pieces required to do so and, by the end, you’ll be automating all your builds.



Setting up your code

The first step to create automated builds is to set up your GitHub or Bitbucket code. These
are the two options you have while selecting where to store your code. For our example, I
will be using GitHub; but the setup will be the same for GitHub and Bitbucket.

-

scottpgallagher / masteringdocker ® Unwatch ~

Automated build testing — Edit

2 commits 1 branch 0 releases 1 contributor

P branch: master v masteringdocker / +

Create Dockerfile

L& scottpgallagher authored 14 seconds ago latest commit 91628359fc &
E Dockerfile Create Dockerfile 14 seconds ago
E README.md Initial commit 17 minutes ago

README.md

masteringdocker

Automated build testing

First, we set up our GitHub code that contains just a simple README file that we will edit
for our purpose. This file could be anything as far as a script or even multiple files that
you want to manipulate for your automated builds. One key thing is that we can’t just
leave the README file alone. One key piece is that a Dockerfile is required to do the builds
when you want it to for them to be automated. Next, we need to set up the link between
our code and Docker Hub.



Setting up Docker Hub

On Docker Hub, we are going to use the Create drop-down menu and select Create
Automated Build. After selecting it, we will be taken to a screen that will show you the
accounts you have linked to either GitHub or Bitbucket. You then need to search and
select the repository from either of the locations you want to create the automated build
from. This will essentially create a web hook that when a commit is done on a selected
code repository, then a new build will be created on Docker Hub.

]
@- Deshbeard Explore Omganizations Croaie mu;ah.p‘;allngrmr

0 Github [sconpoakagher

Users/Crganizations maseringdockerd

i} seottpgsilaghar 3

After you select the repository you would like to use, you will be taken to a screen similar
to the following one:

.
-'“' Dashboard Explore Organizations Q, Search Create msmﬂogallagher

Setup an Automated Build

1. Choose a namespace (Required)
2. Choose a name (Required)
3. Add a short description (Reguired) scottpgallagher - masteringdocker
4, The Readme.md of your source repository will be
used for the full description
. Setup autobuild tags Mastering Docker Automated Build|

o

6. Set it to be a private or public repository

Type Name Dockerfile Location Tag
Branch - master ! latest -
public ™

EWhen Active, new pushes will trigger automatic builds

For the most part, the defaults will be used by most. You can select a different branch if



you want to use one, say a testing branch if you use one before the code may go to the
master branch. The one thing that will not be filled out, but is required, is the description
field. You must enter something here or you will not be able to continue past this page.

Upon clicking Create, you will be taken to a screen similar to the next screenshot:

s
'==' Dashboard Explore Organizations Create n scottpgallagher

PUBLIC | AUTOMATED BUILD

scottpgallagher/masteringdocker %

Repo Info

Short Description = Docker Pull Command ©
Mastering Docker Automated Build docker pull scottpgallagher/mastering
Full Description (r3 Owner

Full description is empty for this repo. [ 4 IJ scottpgallagher

Source Repository

scottpgallagher/masteringdocker

On this screen, you can see a lot of information on the automated build you have set up.
Information such as tags, the Dockerfile in the code repository, build details, build
settings, collaborators on the code, web hooks, and settings that include making the
repository public or private and deleting the automated build repository as well.



Putting all the pieces together

So, let’s take a run at doing a Docker automated build and see what happens when we
have all the pieces in place and exactly what we have to do to kick off this automated

build and be able to create our own magic:

1. Update the code or any file inside your GitHub or Bitbucket repository.
2. Upon committing the update, the automated build will be kicked off and logged in

Docker Hub for that automated repository.



Creating your own registry

To create a registry of your own, use the following command:
$ docker-machine create --driver vmwarefusion registry

Creating SSH key..

Creating VM..

Starting registry..

Waiting for VM to come online..

To see how to connect Docker to this machine, run the following command:

$ docker-machine env registry

export DOCKER_TLS_VERIFY="1"

export DOCKER_HOST="tcp://172.16.9.142:2376"

export
DOCKER_CERT_PATH="/Users/scottpgallagher/.docker/machine/machines/registry"
export DOCKER_MACHINE_NAME="registry"

# Run this command to configure your shell:

# eval "$(docker-machine env registry)"

$ eval "$(docker-machine env registry)"

$ docker pull registry
$ docker run -p 5000:5000 -v <HOST_DIR>:/tmp/registry-dev registry:2

This will specify to use version 2 of the registry.
For AWS (as shown in example from https://hub.docker.com/ /registry/):

$ docker run \
-e SETTINGS_FLAVOR=s3 \
-e AWS_BUCKET=acme-docker \
-e STORAGE_PATH=/registry \
-e AWS_KEY=AKIAHSHB43HS3J92MXZ \
-e AWS_SECRET=xdDowwlK7TJajV1Y7E0OZrmuPEJ1HYCNP2k43j49T \
-e SEARCH_BACKEND=sqlalchemy \
-p 5000:5000 \
registry:2

Again, this will use version 2 of the self-hosted registry.

Then, you need to modify your Docker startups to point to the newly set up registry. Add
the following line to the Docker startup in the /etc/init.d/docker file:

-H tcp://127.0.0.1:2375 -H unix:///var/run/docker.sock --insecure-registry
<REGISTRY_HOSTNAME>:5000

Most of these settings might already be there and you might only need to add - -
insecure-registry <REGISTRY_HOSTNAME>:5000:

To access this file, you will need to use docker-machine:

$ docker-machine ssh <docker-host_name>

Now, you can pull a registry from the public Docker Hub as follows:


https://hub.docker.com/_/registry/

$ docker pull debian

Tag it, so when we do a push, it will go to the registry we set up:

$ docker tag debian <REGISTRY_URL>:5000/debian

Then, we can push it to our registry:

$ docker push <REGISTRY_URL>:5000/debian

We can also pull it for any future clients (or after any updates we have pushed for it):

$ docker pull <REGISTRY_URL>:5000/debian






Summary

In this chapter, we dove deep into Docker Hub and also reviewed the new shiny Docker
Subscription as well as the self-hosted Docker Registry. We have gone through the
extensive review of each of them. You learned of the differences between them all and
how to utilize each one. In this chapter, we also looked deep into setting up automated
builds. We took a look at how to set up your own Docker Hub Registry. We have
encompassed a lot in this chapter and I hope you have learned a lot and will like to put it
all into good use.

In the next chapter, we will take a look at container management and how to manage all
the containers that we create locally on our servers and in the cloud as well. We will also
take a look at managing the images that keep piling up.






Chapter 4. Managing Containers

In this chapter, you will learn how to manage your containers and the different ways you
can go about doing so. This chapter will focus on the command line (as other chapters will
cover other tools) to help lay the groundwork for understanding what the GUI-based apps
are doing in the background. Sometimes, the command line is the best tool to help
troubleshoot containers as well! Troubleshooting containers will be covered more in depth
in Chapter 10, Shipyard. Apart from managing the containers, we will also cover topics on
how to manage your images.

To be specific, the following topics will be covered:

e Docker commands: We will cover the Docker commands you can use to manage
your containers

e Using existing suite: We will cover it using your existing management suites such as
Chef or Puppet, plus some others to manage your containers

e Docker Swarm: You will have a brief overview of Docker Swarm, which we will be
covering more in depth in a later chapter



The Docker commands

In this section, we will cover some Docker commands that you can use to manage your
containers. These commands will range from looking at the status of containers and
viewing what is going on inside the containers that are running to executing commands
against the running containers. This will lay the groundwork for the GUI apps that we will
be looking at in the later chapters. I believe it is important to understand what is going on
behind the curtains when you run the GUI pieces.



docker attach

We will first take a look at the docker attach command. With this command, you can
connect to the standard input (STDIN) of the container. We have a running container
named reposado. Let’s see how do we attach to it to see the STDIN:

$ docker attach reposado

192.168.59.3 -
192.168.59.3 -
192.168.59.3 -
192.168.59.3 -
HTTP/1.1" 304 -
192.168.59.3 - [29/Jul/2015 13:40:17] "GET /static/css/bootstrap-
responsive.min.css HTTP/1.1" 304 -

[29/Jul/2015 13:40:15] "GET / HTTP/1.1" 200 -
[29/Jul/2015 13:40:15] "GET /products HTTP/1.1" 200 -
[29/Jul/2015 13:40:17] "GET / HTTP/1.1" 200 -
[29/Jul/2015 13:40:17] "GET /static/css/bootstrap.min.css

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/css/backgrid.min.css
HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/css/backgrid-
paginator.min.css HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/js/json2.js HTTP/1.1"
304 -

192.168.59.3 -
HTTP/1.1" 304 -
192.168.59.3 -
HTTP/1.1" 304 -
192.168.59.3 -
HTTP/1.1" 304 -
192.168.59.3 - [29/Jul/2015 13:40:17] "GET

/static/js/backbone.wreqr.min.js HTTP/1.1" 304 -

[29/Jul/2015 13:40:17] "GET /static/js/jquery.min.js

[29/Jul/2015 13:40:17] "GET /static/js/underscore-min.js

[29/Jul/2015 13:40:17] "GET /static/js/backbone-min.js

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET
/static/js/backbone.babysitter.min.js HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET
/static/js/backbone.marionette.min.js HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/js/backbone-
pageable.min.js HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/js/backgrid.min.js
HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/js/backgrid-
paginator.min.js HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/js/margarita.js
HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/js/bootstrap.min.js
HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /products HTTP/1.1" 200 -
192.168.59.3 - - [29/Jul/2015 13:40:18] "GET /static/img/glyphicons-

halflings-white.png HTTP/1.1" 304 -

In the previous example, we used the docker attach command to attach to the container
named reposado. We can see the output as it happens in the container. You will stay
attached to the container until you close your terminal window. This can help you
troubleshoot error messages that might display when someone is trying to access the
application that the container is serving up. It can also help track where the traffic might
be coming from based on the output displayed.



docker diff

The next command is the docker diff command. With this command, we can view the
changes that were made to a given container. We will again use the reposado container
and take a look at the changes that were made to it:

>>0000>2>2>06

docker diff reposado

/Volumes

/Volumes/reposado

/Volumes/reposado/data
/Volumes/reposado/data/html

/opt

/opt/reposado

/opt/reposado/code
/opt/reposado/code/reposadolib
/opt/reposado/code/reposadolib/__init__ .pyc
/opt/reposado/code/reposadolib/reposadocommon.pyc

We can see that the command output is sorted into two columns. The first column will
show us whether things changed (C), were added (A), or were deleted (D). In the earlier
example, we don’t have anything that was deleted, so we don’t see any Ds in the first
column. However, we do see that some items were changed as well as added. This can be
helpful when you want to see what items might have been manipulated on the image that
you are using.



docker exec

Next, let’s take a look at one of the more recent commands that was introduced in Docker.
This is one of the more powerful and more commonly used commands in the Docker
command set. With the docker exec command, you can execute commands against your
containers without the need to connect through something like SSH, like we would
typically do.

There are two switches that are used:

® docker exec -d
® docker exec -1i

What is the difference between the two? The difference is one will allow you to view the
output of the command you are executing against the container (docker exec -i). The
other will run it as a daemon in the background and not display any output (docker exec
-d). After you execute this command, you can view the items that have changed by using
the docker diff command we went over previously.



docker history

The docker history command will give you a full-blown history of everything that
occurred on the image such as when and what created it as well as its size. As we can see
in the following example, we ran the docker history command on the reposado image
we created. We can see all the activity that went on for this image. We can see the activity
that started 6 weeks ago, 21 hours ago, and then 4 hours ago. We can see the Git cloning,
pip commands to install Python-related items, and symbolic links being created. We can
see the size increase on running certain commands:

$ docker history scottpgallagher/reposa
IMAGE CREATED

SIZE COMMENT
b61al1a023244 4 hours ago

c" "python 0B

29dc8c2be431 4 hours ago

0B

a02115b630chb 4 hours ago
/opt/reposado/code/preferenc 36
6b568cd34339 4 hours ago
/opt/reposado/code/reposadol 3
37750915585 4 hours ago

485.7 kB

8b0312f24189 4 hours ago

4.071 MB

b1a301d9d39b 4 hours ago
https://github.com/jesse 791.9
ea9h2533e044 4 hours ago
file:ef8667f1286185255¢c 3.019 kB
1f875df3199b 21 hours ago
file:58d34bd01478346ab1 393 B
2c2833106dddd 21 hours ago
https://github.com/wdas/ 326.8 kB
7e7e52de77bc 21 hours ago
[/Volumes/data/repos 0B
6f63b83840ff 21 hours ago
[/Volumes/data/repos 0B
136cc09dacid 21 hours ago

get install 252.9 MB
2df9f745fbbc 21 hours ago

P. Gallagh 0B

6d4946999d4f 6 weeks ago

OB

9fd3c8c9af32 6 weeks ago

(deb. *universe\)$/ 1.895 kB
435050075b3f 6 weeks ago
/usr/sbin/polic 194.5 kB
428b411c28f0 6 weeks ago
file:b3447f4503091bb6bb 188.1 MB

do

CREATED BY

/bin/sh -c

/bin/sh -c

/bin/sh -c
B

/bin/sh -c
OB
/bin/sh -c

/bin/sh -c¢

/bin/sh
kB

-C

#(nop) CMD ["/bin/sh" "-
#(nop) EXPOSE 8089/tcp
In -s

In -s

pip install simplejson
pip install flask

git clone

/bin/sh -c #(nop) ADD

/bin/sh -c¢

/bin/sh -c
/bin/sh -c
/bin/sh -c
/bin/sh -c
/bin/sh -c
/bin/sh -c
/bin/sh -c

/bin/sh -c¢

#(nop) ADD

git clone

#(nop) VOLUME

#(nop) VOLUME

apt-get update && apt-
#(nop) MAINTAINER Scott
#(nop) CMD ["/bin/bash"]
's/N#\s*\

sed -i

echo '#!/bin/sh' >

/bin/sh -c #(nop) ADD



docker inspect

The next command we are looking at is docker inspect. We will take a look at the
busybox image due to its size:

$ docker inspect busybox

[
{
n Idll :
"8c2e06607696bhd4afh3d03b687e361cc43cf8eclada725bc96e39f05ba97dd55",
"Parent":
"6ce2e90b0bc7224de3db1f0d646fe8e2c4dd37f1793928287f6074bc451a57¢ea",
"Comment": "",
"Created": "2015-04-17T722:01:13.062208605Z2",
"Container":

"811003e0012ef6e6db039bcef852098d45¢cf9f84e995efh93al176alle9aca6h9",

"ContainerConfig": {
"Hostname": "19bbb9ebab4d",
"Domainname": "",
|luserll : l||l’
"Attachstdin": false,
"AttachStdout": false,
"AttachStderr": false,
"PortSpecs": null,
"ExposedPorts": null,
"Tty": false,
"OpenStdin": false,
"StdinOnce": false,
"Env": null,

"Cmd": [

"/bin/sh",

ll_cll’

"#(nop) CMD [\"/bin/sh\"]"
1,
"Image":

"6ce2e90b0Obc7224de3db1f0d646fe8e2c4dd37f1793928287f6074bc451a57¢ea",
"Volumes": null,
"VolumeDriver": "",
"WorkingDir": "",
"Entrypoint": null,
"NetworkDisabled": false,

"MacAddress": "",
"OnBuild": null,
"Labels": {}
}
"DockerVersion": "1.6.0",
"Author": "Jérdme Petazzoni \u003cjerome@docker.com\u003e",
"Config": {
"Hostname": "19bbb9ebab4d",
"Domainname": "",
|luserll : lIll’

"AttachStdin": false,
"AttachStdout": false,
"AttachStderr": false,



"PortSpecs": null,
"ExposedPorts": null,
"Tty": false,
"OpenStdin": false,
"StdinOnce": false,
"Env": null,
|lcmdll : [

"/bin/sh"
1,
"Image":

"6ce2e90b0bc7224de3db1f0d646fe8e2c4dd3711793928287f6074bc451a57¢ea",

"Volumes": null,
"VolumeDriver": "",
"WorkingDir": "",
"Entrypoint": null,
"NetworkDisabled": false,

"MacAddress": "",
"OnBuild": null,
"Labels": {}
1
"Architecture": "amdé64",
|Iosl| : lllinuxl|’
"Size": 0,
"VirtualSize": 2433303
}
1

We can see things such as:

When the image was created

Whether the container is using any volumes

The particular network settings being established
What architecture is being used

The OS for the container

We can also see its size, plus a plethora of other items that are related to the running
container.



docker logs

The docker logs command will allow you to look at what has been happening on your
running container. There is a switch that you can use to get a running output from your
container as well, which we will cover shortly. This is similar to the docker attach
command that we went over earlier, but this will allow you to gather history from when
the container started until the time you ran the docker logs command:

$ docker logs reposado

Running on http://0.0.0.0:8089/ (Press CTRL+C to quit)

192.168.59.3 - - [29/Jul/2015 15:56:23] "GET / HTTP/1.1" 200 -
192.168.59.3 - [29/Jul/2015 15:56:23] "GET /products HTTP/1.1" 200 -
192.168.59.3 - [29/Jul/2015 15:56:23] "GET /favicon.ico HTTP/1.1" 404 -
192.168.59.3 - [29/Jul/2015 15:56:29] "POST /new_branch/test HTTP/1.1"
200 -
192.168.59.3 -

[29/Jul/2015 15:56:29] "GET /products HTTP/1.1" 200 -

Now, docker logs -f will give you a running output of what is actively happening on the
container. This is helpful when you are troubleshooting your containers. It will allow you
to actively monitor your container while you execute, and the application it is running.



docker ps

We covered the docker ps command earlier, but we will now take a look at the switches
we can add to the command.

Here are the switches we will be taking a look at:

e docker ps -a: This will give you a list of all the containers. By default, when you
run the docker ps command, it will only show the ones that are running. It will also
provide the status of the containers that were stopped and how long ago they were
stopped. It will also give you the names of the containers as well as the respective
commands that were running on these containers.

e docker ps -1:This will give you the latest created containers, including the ones
that are not running. It again will give you the same information that the docker ps
-a command provides to you. With the docker ps -1 command, you can see what
containers were running and then launch them again with the docker start
<container_name> command. This will bring the image back to the state it was when
it was stopped/halted.

e docker ps -n=: This will give you the power to slim down the previous command of
docker ps -1.This is useful if the list becomes too long. The docker ps -n=
command allows you to specify a number of how many of the previous containers
you want to view. For example, $ docker ps -n=5 will return the last five
containers, whether they are running or not. There are also other switches you can
use with the docker ps command. Don’t forget that on every command, you can use
the - -help switch that will provide more information on each command, including
all the switches you can utilize.



docker stats

The docker stats command will give you live running information on your container. It
will provide information such as the container name, CPU activity, memory usage /
memory limit, memory percentage being used, as well as the network input/output:

$ docker stats reposado

CONTAINER CPU % MEM USAGE/LIMIT MEM %
NET I/0
reposado 0.06% 13.31 MB/2.099 GB 0.63%

5.549 kB/12.9 kB

This can be helpful if you have a container using up a lot of memory and want to put
restrictions on it. You can exit this command by using the Ctrl + C key combination on
your keyboard.



docker top

The docker top command will allow you to view what commands are currently running
on your container. It will allow you to see what command is running as well as how long it

has been running:

$ docker top reposado

UID PID

STIME TTY

root 21094

15:49 ?

python /opt/margarita/margarita.py
root 21098

15:49 ?

/opt/margarita/margarita.py

PPID
TIME

825
00:00:00

21094
00:00:00

C

CMD

0

/bin/sh -c

0
python






Using your existing management suite

In this section, we will look at what you can do with your already existing management
suite(s) and how you can use them to target actions against your containers. We will cover
most of the major ones: Puppet, Chef, Ansible, and SaltStack. There are surely more out
there and more coming out daily! This will help you leverage your already existing
management environment as well as understand other options that are available.



Puppet

Puppet (as of version 3.8) allows you to manage your Docker containers with your pre-
existing Puppet environment. You simply need to include Docker to your manifests.

You can then use Puppet to install Docker on the hosts as well as run containers on these
Docker hosts. For example, let’s deploy the nginx container using the Puppet code:

docker::run { 'website':
image => 'nginx',
command => '/usr/sbin/nginx -g "daemon off;"',

}

We can also execute the code against our already existing containers using Puppet:

docker::exec { 'update-nginx':

detach => true,

container => 'nginx',

command => 'apt-get update -y nginx',
tty => true,

}

This will update the nginx package in the container named nginx and display the output
on your screen, since tty is set to true.

You can also use other Docker commands in place of the previous exec statement. Simply
refer to the Puppet documentation for more information on it.



Chef

Chef also allows you to manage your Docker infrastructure using your existing Chef
infrastructure. Chef is a little different than Puppet, as it uses recipes to do its tasks. An
example we can use to pull an image from Docker Hub to our Docker host is:

docker_image '<image_name>' do

tag 'latest'
action :pull
end

We can then run that pulled image and turn it into a container:

docker_container '<image_name>' do

tag 'latest'
action :run
end

With the Chef recipes, the possibilities are endless as to what you could do. The
communities in Chef (as well as these other management suites) are very large and recipes
are being shared all the time.

The easiest way to find a Chef recipe is to use ever-handy search engines such as Google
or Yahoo to find an already written recipe that we can just drop in place or modify as
needed.

To learn more about how to use Chef along with Docker to manage your environment, use
the following link:

https://supermarket.chef.io/cookbooks/docker


https://supermarket.chef.io/cookbooks/docker

Ansible

Like the others, we have explored Ansible that can do the many and same things as the
others. If you already have Ansible in place, you have a leg up; you don’t need to get a
management suite in place.

If we want to use Ansible to manage Docker, we can use Ansible to spin up the containers:

- hame: nginx-host
docker:
name: nginx-host
image: nginx
state: started

This will launch a Docker container named nginx-host using the nginx image on the

Docker Hub, ensuring it starts. The catch is that, if there is already a container named
nginx-host, it won’t start a container.

We can also stop a running container:

- hame: Stop a container
docker:
name: nginx-host
state: stopped

We can also start containers:

- name: Start a container
docker:
name: test-container-stopped
state: started



SaltStack

Lastly, we will take a look at SaltStack that, as you can guess, can manage Docker
containers as well. Let’s see how we can start a container using SaltStack:

nginx:
docker.running:
- container: nginx
- image: nginx
- port_bindings: "80/tcp":
HostIp: ""
HostPort: "80"

The previous example using SaltStack will start a container and name it nginx based off
the container: section, then pull the nginx image from the Docker Hub from the image:
section. It will set up the port bindings as well. It will set up TCP port 86 on the Docker
container from the port_bindings: section and tie it to the host port of 80 based off of the
HostPort: entry.

We can also stop these containers with SaltStack:

salt '*' docker.stop <container id>

This will fire off the salt command and use the docker.stop module. It will look for the
container ID that you specify and stop it when it finds it. You can start a container in the
same way as well:

salt '*' docker.start <image_name:tag>

There are many other SaltStack commands that you too can utilize. These can be found on
the SaltStack website:

http://docs.saltstack.com/en/latest/ref/modules/all/salt.modules.dockerio.html#salt.modules


http://docs.saltstack.com/en/latest/ref/modules/all/salt.modules.dockerio.html#salt.modules.dockerio.stop




Docker Swarm

In this section, we will do a brief overview of Docker Swarm. We will take a look at what
it is, what you can do with it to manage your containers, and what to look forward to in the
later chapters with regards to Docker Swarm.



What is Docker Swarm?

The idea behind Docker Swarm is to have native clustering available inside Docker. This
will allow you to both easily scale your environments as well as manage them from a
central location. The best part is that, since it’s tied so tightly with the Docker API, any
command you use with Docker can be used in conjunction with managing the nodes in
your Swarm cluster. The setup is very simple as follows:

1. You install the Swarm component through a docker pull command.
2. You then set up and configure the Swarm manager.
3. Lastly, you add the nodes to Docker Swarm.

This setup uses the TCP communication between all the Swarm nodes through an open
TCP port. It also requires that you have Docker installed on each node (as if we’d not want
it installed). Lastly, it requires that you create and manage TLS certificates that will allow
secure communication between all the hosts.



What can Docker Swarm do?

Docker Swarm, as you previously learned, allows for clustering through secure TLS
communication. It allows for discovery services to be set up as well. This will allow you
to set up services such that, when new nodes are added to the Swarm, they can be
automatically added to the correct corresponding service and allowed to join the service to
help scale for its needs.

Swarm also allows advanced scheduling of jobs. This allows you to choose a strategy to
rank all the nodes in your cluster. The three options to rank your nodes are:

® spread
® binpack
e random

The first two allocate jobs based on the machine’s available CPU and RAM. The last one
—random—does exactly as it says. It randomly chooses a node to run the requested job
on.

You can review more in-depth examples of these on the Docker Docs website:

https://docs.docker.com/swarm/scheduler/strategy/


https://docs.docker.com/swarm/scheduler/strategy/




Summary

In this chapter, you looked at the Docker commands that can be used to manage your
containers, viewing their status and looking inside them to see what they are doing.

To perform tasks, we looked at how we can execute commands against our running
containers. This will lay the groundwork, so you understand what is going on behind the
scenes if you use a GUI application to manage containers.

We also took a look at utilizing your existing management suite and using it to cover more
ground, including your Docker containers. We took a look at four major management
suites that you can use to manage your Docker containers.

We lastly took a look at Docker Swarm that hopefully got you excited for the later chapter
on Docker Swarm. With Docker Swarm, we can cluster our containers, view where all our
containers are running across multiple Docker hosts, and use it for discovery services to
help scale our environments.

In the next chapter, we will be looking at Docker security—the topic that is always at the
forefront of everyone’s mind when it comes to any or all of technology. We will go over
all the aspects of Docker security—the good, the not so bad, and what to look forward to.






Chapter 5. Docker Security

In this chapter, we will be taking a look at Docker security—the topic on the forefront of
everyone’s minds these days. We will be splitting up the chapter into four sections:

e Containers versus VMs

e The Docker commands

e Docker security — best practices

e The Docker bench security application

Now, let’s take a look at each of these sections one after the other.



Containers versus VMs

In this section, we will be looking at the differences in Docker containers and typical
virtual machines. We will focus on the benefits that Docker containers have over typical
virtual machines. We’ll take a look at the good; the not so bad: those items that aren’t bad
but you will want keep an eye on them; and the items you want to look out for: those are
the items that you will ultimately want to consider while using Docker containers over

typical virtual machines.



The good

When you start a Docker container, there is a lot of work going on behind the scenes and
two of those items are setting up namespaces and control groups. What does that mean?
By setting up namespaces, Docker keeps the processes isolated in each container; not only
from other containers, but also from the host system. The control groups ensure that each
container gets its own share of items such as CPU, memory, and disk I/O. More
importantly, they ensure that one container doesn’t exhaust all the resources on a given
Docker host.

Each container also gets its own network stack that again contributes to the idea of
isolation. With each container getting its own network stack, other containers don’t get
access to each other, unless otherwise specified by Docker linking. Also, with this, you
can accordingly set up access through items such as iptables.

Lastly, what I consider one of the biggest advantages of Docker over typical virtual
machines is that you can finally turn off SSH in your containers. There is no need to
enable SSH in your containers anymore to manage them or to issue commands against
them. Docker has the tools to execute items against the containers and pull information
that is needed to help troubleshoot containers as well. With commands such as docker
execute, docker top, docker logs, docker events, and docker stats, you can do
everything you need to do without exposing any more security holes than you need to.



The not so bad

Not so bad, as we will be calling this section, is just to keep you informed about the items
that are in the technology.

What you need to realize is that, when you are dealing with virtual machines, you can
control the required permissions, that is, who has access to what virtual machines. With
Docker, you have a little disadvantage because whoever has access to the Docker daemon
on your server has access to every Docker container that you are running. They can run
new containers; they can stop existing containers and can delete images as well. Be careful
who you grant permission to access the Docker daemon on your hosts. They essentially
hold the keys to the kingdom with respect to all your containers. Knowing this, it is
recommended to use Docker hosts only for Docker; keep other services separate from
Docker.

Hopefully, you trust your organization and all those who do have access to these systems.



What to look out for

You will most likely be setting up virtual machines from scratch. It is probably impossible
to get the virtual machine from someone else, due to its sheer size. So, you will be aware
of what is inside the virtual machine and what isn’t. This being said, with Docker
containers, you will not be aware of what could be there inside the image you might be
using for your container(s).






The Docker commands

Let’s take a look at the Docker commands that can be used to help tighten up security as
well as view information in the images you might be using. There are two commands that
we are going to be focusing on.

The first will be the docker run command, so you can see some of the items you can use
to your advantage with this command. Second, we will take a look at the docker diff
command (that we went over in the previous chapter) that you can use to view what has
been done with the image that you are planning to use.



docker run

With respect to the docker run command, we will mainly focus on the option that allows
you to set everything inside the container as read-only instead of a specified directory or
volume. Let’s take a look at an example and break down what it exactly does:

$ docker run --name mysql --read-only -v /var/lib/mysql -v /tmp:/tmp:rw -e
MYSQL_ROOT_PASSWORD=password -d mysql

Here, we are running a mysql container and setting the entire container as read-only,
except for the /var/1lib/mysql directory. What this means is that the only location the
data can be written inside the container is the /var/1ib/mysql directory. Any other
location inside the container won’t allow you to write anything in it. If you try to run the
following, it would fail:

$ docker exec mysql touch /opt/filename

This can be extremely helpful if you want to control where the containers can write to or
not write to. Be sure to use this wisely. Test thoroughly, as it could have consequences
when the applications can’t write to certain locations.

Remember the Docker volumes we looked at in the previous chapters, where we were able
to set the volumes to be read-only. Similar to the previous command with docker run,
where we set everything to read-only except for a specified volume, we can now do the
opposite and set just a single volume (or more if you use more -v switches) to read only.
The thing to remember about volumes is that when you use a volume and mount it into a
container, it will mount as an empty volume over the top of that directory inside the
container, unless you use the --volumes-from switch or add data to the container in some
other way after the fact:

$ docker run -d -v /opt/uploads:/opt/uploads:ro nginx

This will mount a volume in /opt/uploads and set it to read-only. This can be useful if
you don’t want a running container to write to a volume to keep the data or configuration
files intact.

The last option we want to look at with regards to the docker run command is the - -
device= switch. This switch allows us to mount a device from the Docker host into a
specified location inside the container. By doing so, there are some security risks we need
to be aware of. By default, when you do this, the container will get full access: read, write,
and the mknod access to the device’s location. Now, you can control these permissions by
manipulating rwm at the end of the switch command. Let’s take a look at some of these and
see how they work:

$ docker run --device=/dev/sdb1l:/dev/sdc2 -it ubuntu:latest /bin/bash

The previous command will run the latest Ubuntu image and mount the /dev/sdb1 device
inside the container in the /dev/sdc2 location:

$ docker run --device=/dev/sdbl:/dev/sdc2:r -it ubuntu:latest /bin/bash



This command will run the latest Ubuntu image and mount the /dev/sdb1 device inside
the container in the /dev/sdc2 location. But this one has the :r tag at the end of it that
specifies it’s read-only and can’t be written to.



docker diff

Let’s take another look at the docker diff command since it relates to the security
aspects of the containers you may want to use from the images that are hosted on Docker
Hub or other related repositories.

Remember that whoever has access to your Docker host and the Docker daemon has
access to all of your running Docker containers. This being said, if you don’t have
monitoring in place, someone could be executing commands against your containers and
doing malicious things:

$ docker diff <running_container_name>






Docker security — best practices

In this section, we will look at the best practices when it comes to Docker as well as the
Center for Internet Security guide to properly secure all the aspects of your Docker
environment. You will be referring to this guide when you actually run the scan (in the
next section of this chapter) and get results back of what needs or should be fixed. The
guide is broken down into the following sections:

The host configuration

The Docker daemon configuration

The Docker daemon configuration files
Container images/runtime

Docker security operations



Docker — best practices

Before we dive into the Center for Internet Security guide, let’s go over some of the best
practices to use Docker:

¢ One application per container: Spread out your applications to one per container.
Docker was built for this and it makes everything easier at the end of the day. That
isolation we talked about earlier is where this is the key.

¢ Review who has access to your Docker hosts: Remember that whoever has access
to your Docker hosts has access to manipulate all your images and containers on the
host.

e Use the latest version: Always use the latest version of Docker. This will ensure that
all security holes have been patched and you have the latest features as well.

e Use the resources: Use the resources available if you need help. The community
within Docker is huge and immensely helpful. Use their website, documentation, and
the IRC chat rooms to your advantage.



CIS guide — host configuration

This part of the guide is about the configuration of your Docker hosts. This is that part of
the Docker environment where all your containers run. Thus, keeping it secure is of the
utmost importance. This is the first line of defense against attackers.



CIS guide — Docker daemon configuration

This part of the guide has the recommendations that secure the running Docker daemon.
Everything you do to the Docker daemon configuration affects each and every container.
These are the switches you can attach to the Docker daemon we saw previously, and to the
items you will see in the next section when we run through the tool.



CIS guide — Docker daemon configuration files

This part of the guide deals with the files and directories that the Docker daemon uses.
This ranges from permissions to ownerships. Sometimes, these areas may contain
information you don’t want others to know about that could be in a plain text format.



CIS guide — container images/runtime

This part of the guide contains both the information for securing the container images as
well as the container runtime.

The first part contains images, cover base images, and the build files that were used. As
we covered previously, you need to be sure about the images you are using not only for
your base images, but for any aspect of your Docker experience. This section of the guide
covers the items you should follow while creating your own base images to ensure they
are secure.

The second part, the container runtime, covers a lot of security-related items. You have to
take care with the runtime variables you are providing. In some cases, attackers can use
them to their advantage, while you think you are using them to your own advantage.
Exposing too much in your container can compromise the security of not only that
container, but the Docker host and the other containers running on that host.



CIS guide — Docker security operations

This part of the guide covers the security areas that involve deployment. These items are
more closely tied to the best practices and the recommendations of items that are

recommended to be followed.






The Docker bench security application

In this section, we will cover the Docker benchmark security application that you can
install and run. The tool will inspect:

The host configuration

The Docker daemon configuration

The Docker daemon configuration files
Container images and build files
Container runtime

The Docker security operations

Looks familiar? It should, as these are the same items that we reviewed in the previous
section only built into an application that will do a lot of heavy lifting for you. It will show
you what warnings arise with your configurations and provide information on other
configuration items and even the items that have passed the test.

We will look at how to run the tool, a live example, and what the output of the process will
mean.



Running the tool

Running the tool is simple. It’s already been packaged up for us inside a Docker container.
While you can get the source code and customize the output or manipulate it in some way
(say, e-mail the output), the default may be all you need.

The code is found here:

https://github.com/docker/docker-bench-security

To run the tool, we will simply copy and paste the following into our Docker host:

$ docker run -it --net host --pid host --cap-add audit_control \
-v /var/lib:/var/1lib \
-v /var/run/docker.sock:/var/run/docker.sock \
-v /usr/lib/systemd:/usr/1lib/systemd \
-v /etc:/etc --label docker_bench_security \
diogomonica/docker-bench-security

If you don’t already have the image, it will first download the image and then start the
process for you. Now that we’ve seen how easy it is to install and run it, let’s take a look
at an example on a Docker host to see what it actually does. We will then take a look at the
output and take a dive into dissecting it.

There is also an option to clone the Git repository, enter the directory from the git clone
command, and run the provided shell script. So, we have multiple options!

Let’s take a look at an example and break down each section:

e The host configuration:


https://github.com/docker/docker-bench-security

e The Docker daemon configuration:

e The Docker daemon configuration files:



e Container images and build files:

e Container runtime;




e The Docker security operations:

Wow! A lot of output and tons to digest; but what does it all mean? Let’s take a look and
break down each section.



Understanding the output

There are three types of output that we will see:

e [PASS]: These items are solid and good to go. They don’t need any attention, but are
good to read to make you feel warm inside. The more of these, the better!

e [INFO]: These are items that you should review and fix if you feel they are pertinent
to your setup and security needs.

e [WARN]: These are items that need to be fixed. These are the items we don’t want to
be seeing.

Remember, we had the six main topics that were covered in the scan:

The host configuration

The Docker daemon configuration

The Docker daemon configuration files
Container images and build files
Container runtime

The Docker security operations

Let’s take a look at what we are seeing in each section of the scan. These scan results are
from a default Ubuntu Docker host with no tweaks made to the system at this point. We
want to focus again on the [WARN] items in each section. Other warnings may come up
when you run yours, but these will be the ones that come up most if not for everyone at
first.

¢ Host configuration:

[WARN] 1.1 - Create a separate partition for containers

For this one, you will want to map /var/lib/docker to a separate partition.

[WARN] 1.8 - Failed to inspect: auditctl command not found.
[WARN] 1.9 - Failed to inspect: auditctl command not found.
[WARN] 1.10 - Failed to inspect: auditctl command not found.
[WARN] 1.13 - Failed to inspect: auditctl command not found.
[WARN] 1.18 - Failed to inspect: auditctl command not found.

e The Docker daemon configuration:

[WARN] 2.2 - Restrict network traffic between containers

By default, all the containers running on the same Docker host have access to each
other’s network traffic. To prevent this, you would need to add the --icc=false flag
to the Docker daemon’s start up process.

[WARN] 2.7 - Do not use the aufs storage driver

Again, you can add a flag to your Docker deamon start up process that will prevent
Docker from using the aufs storage driver. By using -s <storage_driver> on your
Docker daemon startup, you can tell Docker not to use aufs for storage. It is
recommended that you use the best storage driver for the OS on the Docker host you



are using.
The Docker daemon configuration files:

If you are using the stock Docker daemon, you should not see any warnings. If you
have customized the code in some way, you may get warnings here. This is one area
you hope to never see warnings.

Container images and build files:

[WARN] 4.1 - Create a user for the container
[WARN] * Running as root: suspicious_mccarthy

This is stating that the container named suspicious_mccarthy is running as the root
user and it is recommended to create another user to run your containers.

Container Runtime:

[WARN] 5.1: - Verify AppArmor Profile, if applicable
[WARN] * No AppArmorProfile Found: suspicious_mccarthy

This states that the container named suspicious_mccarthy does not have
AppArmorProfile, which is the additional security provided in Ubuntu in this case.

[WARN] 5.3 - Verify that containers are running only a single main
process
[WARN] * Too many processes running: suspicious_mccarthy

This error is pretty straightforward. You will want to make sure you are only running
one process per container. If you are running more than one, you will want to spread
them out across multiple containers and use container linking.

[WARN] 5.4 - Restrict Linux Kernel Capabilities within containers
[WARN] * Capabilities added: CapAdd=[audit_control] to
suspicious_mccarthy

This is stating that the audit_control capability has been added to this running
container. You can use - -cap-drop={} from your docker run command to remove
additional capabilities on a container.

[WARN] 5.6 - Do not mount sensitive host system directories on
containers
[WARN] * Sensitive directory /etc mounted in: suspicious_mccarthy

This again goes back to looking at mounting the items inside the containers as read-
only. The --read-only flag would come in handy in this scenario, when you issue
your docker run command.

[WARN] * Sensitive directory /1lib mounted in: suspicious_mccarthy

This too goes back to looking at mounting the items inside the containers as read-
only. The --read-only flag would come in handy in this scenario, when you issue
your docker run command.

[WARN] 5.7 - Do not run ssh within containers
[WARN] * Container running sshd: suspicious_mccarthy



It is straight to the point. No need to run SSH inside your containers. You can do
everything you want to with your containers using the tools provided by Docker.
Ensure that SSH is not running in any container.

[WARN] 5.10 - Do not use host network mode on container
[WARN] * Container running with networking mode 'host':
suspicious_mccarthy

The issue with this one is that, when the container was running, the - -net=host
switch was passed along. It is not recommended to use this, as it allows the container
to open low port numbers as well as access networking services on the Docker host.

[WARN] 5.11 - Limit memory usage for the container
[WARN] * Container running without memory restrictions:
suspicious_mccarthy

By default, the containers don’t have memory restrictions. This can be dangerous if
you are running multiple containers per Docker host. You can use the -m switch while
issuing your docker run commands to limit the containers to a certain amount of
memory. Values are set in megabytes (that is, 512 MB or 1024 MB).

[WARN] 5.12 - Set container CPU priority appropriately
[WARN] * The container running without CPU restrictions:
suspicious_mccarthy

Like the memory option, you can also set the CPU priority on a per container basis.
This can be done using the -c switch while issuing your docker run command. The
CPU share is based off of the number 1024. So, half would be 512 and 25% would be
256. Use 1024 as the base number to determine the CPU share.

[WARN] 5.13 - Mount container's root filesystem as readonly
[WARN] * Container running with root FS mounted R/W:
suspicious_mccarthy

You really want to be using your containers as mutable environments; meaning they
don’t write any data inside them. Data should be written out to volumes. Again, you
can use the - -read-only switch, followed by the -v / switch to specify that the root
directory is read-only for the running container.

[WARN] 5.16 - Do not share the host's process namespace
[WARN] * Host PID namespace being shared with: suspicious_mccarthy

This error arises when you use the - -pid=host switch. It is not recommended to use
this switch, as it breaks the isolation of processes between the container and Docker
host.

The Docker security operations:

Again, another section you hope to or never should see warnings if you are using
stock Docker. Mostly here you will see information and should review them to make
sure it’s all kosher.






Summary

In this chapter, we covered some aspects of Docker security. First, we took a look at
containers versus typical virtual machines with regards to security. We looked at the good,
the not so bad, and what to look out for.

We then took a look at what Docker commands we can use for security purposes. We first
took a look at read-only containers, so we can minimize what we are exposing to other
containers. We then viewed what is done to the images that you have running. It is
important to know what is done on these containers, so you have a trail of activity.

Next, we took a look at the Center for Internet Security guidelines for Docker. This guide
will assist you in setting up multiple aspects of your Docker environment. Lastly, we took
a look at the Docker bench for security. We looked at how to get it up and running and ran
through an example of what the output would look like once it has been run. We then took
a look at the said output to see what all it meant. Remember the six items that the
application covered: the host configuration, Docker daemon configuration, Docker
daemon configuration files, container images and build files, container runtime, and
Docker security operations.

In the next chapter, we will be taking a look at Docker Machine. Docker Machine allows
you to create Docker hosts locally on items such as VirtualBox or VMWare Fusion or to
cloud providers such as Amazon AWS, Microsoft Azure, DigitalOcean, as well as others.
Saving time is the key here. Instead of having to go to a host, spin up a virtual machine,
and get Docker installed on it, Docker Machine will do it all for you and give you more
time to do what you should be doing.






Chapter 6. Docker Machine

In this chapter, we will take a look at Docker Machine. Docker Machine is a tool that
supersedes boot2docker. It can be used to create Docker hosts on various platforms,
including locally or in a cloud environment. You can control your Docker hosts with it as
well. Let’s take a look at what we will be covering in this chapter:

¢ Installing Docker Machine
e Using Docker Machine to set up the Docker hosts
e Various Docker commands



Installation

Installing Docker Machine is very straightforward. There is a simple curl command to
run and install it. It is recommended to install Docker Machine in /usr/local/bin, as this
will allow you to issue the Docker Machine commands from any directory on your
machine:

$ curl -L
https://github.com/docker/machine/releases/download/v0.4.0/docker -
machine_linux-amd64 > /usr/local/bin/docker-machine

After issuing the curl command, you need to set the permissions in the docker-machine
file that was just created in /usr/local/bin/:

$ chmod +x /usr/local/bin/docker-machine

You can then verify that Docker Machine is installed by issuing a simple docker-machine
command:

$ docker-machine --help

You should get back all the commands and switches you can use while operating the
docker-machine command.

Now these instructions are great if you are on Linux. But what if you are using Mac or
even Windows? Then, you would want to use the Docker Toolbox to do your installation.
This will not only install Docker Machine, but other pieces of the Docker ecosystem as
well. To view a list of what all comes in the Docker Toolbox per platform, visit
https://www.docker.com/docker-toolbox.



https://www.docker.com/docker-toolbox




Using Docker Machine

Let’s take a look at how we can use Docker Machine to deploy Docker hosts on your local
infrastructure, on your own machine, as well as on various cloud providers.



Local VM

Docker Machine uses the - -driver switch to specify the location you want to set up and
install the Docker host. So, we can set up a Docker host in VirtualBox:

$ docker-machine create --driver virtualbox <name>

Or, we can set it up on VMware Fusion:

$ docker-machine create --driver vmwarefusion <name>

The previous command is structured as the docker -machine command, followed by what
we want to do: create. We will use the - -driver switch next. Then, we need to specify
where we are going to place the Docker host. In our case, we specified virtualbox and
vmwarefusion. Lastly, we need to give the Docker host a name. This name is to be unique;
so when you issue other Docker Machine commands, they are distinguishable.

There are various other switches we can use to tell how much memory the Docker host to
use and also how much disk space to use as well. You can see all the available switches by
issuing our trustworthy and helpful docker-machine create --help command.
Remember that everything has a - -help switch that can be utilized to gain more
information to get the help you need. It should be the first thing you turn to when you are
looking for assistance.



Cloud environment

Now, let’s take a look at how we deploy to a cloud environment of our choosing. When
you start deploying to cloud environments, it can get tricky, as it requires some form of
authentication to ensure you are who you say you are. For example, DigitalOcean requires
an access token to launch a Docker host in its system. We will be taking a look at how we
can deploy a Docker host in AWS.

For AWS, we need a couple of switches. We would need to get the information from AWS
before we can deploy to this cloud provider:

® --amazonec2-access-key
® --amazonec2-secret-key
® --amazonec2--vpc-id

® --amazonec2-zone

® --amazonec2-region

We can create these drivers by executing the following command:

$ docker-machine create \
--driver amazonec2 \
--amazonec2-access-key <aws_access_key> \
--amazonec2-secret-key <aws_secret_key> \
--amazonec2-vpc-id <vpc_id> \
--amazonec2-subnet-id <subnet_id> \
--amazonec2-zone <zone> \

<name>






Docker Machine commands

Now that we can deploy Docker hosts locally and to the cloud environments, we need to
know how we can manage and manipulate these Docker hosts. Let’s take a look at all the
commands Docker Machine has to offer.

Note

Note that as we previously created these hosts we were given output on how to target them
for use with Docker Machine.

On running the docker-machine create command, you should receive an output similar
to this:

INFO[0041] To point your Docker client at it, run this in your shell:
$(docker-machine env dev2)

This is how you can set the default to target Docker hosts with Docker Machine. Keep this
in mind, when we are looking at the following commands.



active

You can use the active subcommand to see which Docker host is currently active and
commands that you execute will be executed on that Docker host:

$ docker-machine active
dev2



config

You can use the config subcommand to view what the current configuration is for the
Docker Machine setup on the currently active host:

$ docker-machine config

--tls --tlscacert=/Users/scott/.docker/machine/machines/dev2/ca.pem --
tlscert=/Users/scott/.docker/machine/machines/dev2/cert.pem --
tlskey=/Users/scott/.docker/machine/machines/dev2/key.pem -
H=tcp://192.168.50.158:2376



env
You can view the environmental variables on each Docker host with the env subcommand:

$ docker-machine env

export DOCKER_TLS_VERIFY=1

export DOCKER_CERT_PATH=/Users/spgl4/.docker/machine/machines/dev2
export DOCKER_HOST=tcp://192.168.50.158:2376



inspect

You can inspect each Docker host using the Docker Machine inspect subcommand. This
subcommand will give you a lot of information on the Docker host, such as the certificate
paths, Swarm host, disk size, memory, CPUs, and much more:

$ docker-machine inspect

{

"DriverName": "vmwarefusion",
"Driver": {

"MachineName": "dev2",

"IPAddress": "192.168.50.158",

"Memory": 1024,

"DiskSize": 20000,

"CPUs": 8,

"IS0": "/Users/scott/.docker/machine/machines/dev2/boot2docker -

1.5.0-GH747.is0",

"Boot2DockerURL": "",

"CaCertPath": "/Users/scott/.docker/machine/certs/ca.pem",
"PrivateKeyPath": "/Users/scott/.docker/machine/certs/ca-key.pem",
"SwarmMaster": false,

"SwarmHost": "tcp://0.0.0.0:3376",

"SwarmDiscovery": "",

"CPUS": 8
}
"CaCertPath": "/Users/scott/.docker/machine/certs/ca.pem",
"ServerCertPath": "",
"ServerKeyPath": "",
"PrivateKeyPath": "/Users/scott/.docker/machine/certs/ca-key.pem",
"ClientCertPath": "",

"SwarmMaster": false,
"SwarmHost": "tcp://0.0.0.0:3376",
"SwarmDiscovery": ""



1Ip
The ip subcommand will give you the IP address of the active host you are pointing to
with Docker Machine:

$ docker-machine ip <name>
192.168.50.158



kill

If a host is acting up, you can kill the Docker hosts with the kill subcommand of Docker
Machine:

$ docker-machine kill
INFO[0000] Forcibly halting dev2..



Is

You can use the 1s subcommand to view all the running Docker hosts you have used to
create with Docker Machine. The information will include:

The name of the host

Whether the machine is active

The driver that is being used

The state of the host

The URL that is being used for communication

If the host is a part of the Docker Swarm cluster, then that information will be shown
as well

Let’s take a look at a sample command output when you use docker-machine 1s:

$ docker-machine 1s

NAME ACTIVE DRIVER STATE URL SWARM
dev virtualbox Stopped
dev2 * vmwarefusion Running tcp://192.168.50.158:2376

As you can see, you get the list of Docker hosts you can control. As well as the driver, its
state, URL, and its part of a Swarm cluster.



restart
You can restart the hosts as well using the restart subcommand:

$ docker-machine restart <name>
INFO[0000] Gracefully restarting dev2..



rm

You can remove the hosts you no longer need by using the rm subcommand of Docker
Machine:

$ docker-machine rm <name>



scp

There are multiple ways to use the Docker Machine scp command. You can copy files or
folders from the local host to a Docker host:

$ docker-machine scp <file_name> <name>:/<path>/<to>/<folder>/

It can be copied from one machine to another:

$ docker-machine scp <hostl>:/<path>/<to>/<file>
<host2>:/<path>/<to>/<folder>/

It can also be copied from the machine back to the host:

$ docker-machine scp <name>:/<path>/<to>/<file> .



ssh

You can SSH into your Docker hosts as well by using the ssh subcommand. This can be
useful if you need to troubleshoot why the commands you push against your hosts might

not be working:

$ docker-machine ssh <name>



start
The start subcommand can be used to start the Docker hosts that have been stopped:

$ docker-machine start <name>
INFO[0000] Starting dev2..



StOp
You can stop the hosts as well by using the stop subcommand:

$ docker-machine stop <name>
INFO[0000] Gracefully shutting down dev2..



upgrade

If you have a Docker host that is running Docker version 1.7 (let’s say) and you want to
upgrade it to the latest version, you could use the upgrade subcommand of Docker
Machine:

$ docker-machine upgrade <name>

This will upgrade the version of Docker that is running on the Docker hostname you
provide.



url

The url subcommand will give you the URL that is being used for communication for the
Docker host:

$ docker-machine url <name>
tcp://192.168.50.158:2376



TLS

Docker Machine also has the option to run everything over TLS. This is the most secure
way of using Docker Machine to manage your Docker hosts. This setup can be tricky if
you start using your own certificates. By default, Docker Machine stores your certificates
that it uses in /Users/<user_id>/.docker/machine/certs/. You can view these items
simply by running:

$ docker-machine --help

This will give you a global Options section at the bottom of the listing that lists this
information. These are the locations of the intermediate certificate, intermediate key, and
the certificate that Docker Machine uses as well as its corresponding key. You would need
to update these files with your own certificates if you don’t want to be using the self-
signed certificates that Docker Machine creates.






Summary

In this chapter, we looked at Docker Machine. We first looked at how to use Docker
Machine to create the Docker hosts locally on virtualization software such as VirtualBox
or VMware Fusion. We also looked at how to use Docker Machine to deploy Docker hosts
to your cloud environments.

We then took a look at all the commands that are in the Docker Machine Toolbox. With all
these commands, you can manage your entire fleet of Docker hosts. You can manipulate
them from creating new Docker hosts to managing all the configuration aspects of the
Docker hosts. We really dove deep into all the Docker Machine commands, so you should
have a good understanding of this Docker component.

In the next chapter, we will be looking at Docker Compose. Docker Compose is very
complex and has a lot of pieces that you can leverage to your advantage. We will be
focusing very heavily on Docker Compose and it’s a core piece of the Docker ecosystem
that you will find yourself using almost daily. Docker Compose is very powerful and very
useful with all the aspects of managing Docker.






Chapter 7. Docker Compose

In this chapter, we will be taking a look at Docker Compose. We will break the chapter
down into the following sections:

Installing Docker Compose
Docker Compose YAML file
Docker Compose usage

The Docker Compose commands
The Docker Compose examples



Installing Docker Compose

Let’s take a look at how we can get Docker Compose installed on to our machine, so we
can start utilizing its full feature set and power.



Installing on Linux

Let’s take a look at how easy it is to install on Linux:

$ curl -L
https://github.com/docker/compose/releases/download/VERSION_NUM/docker -
compose- "uname -s - uname -m- > /usr/local/bin/docker-compose

The reason we install this in the /usr/local/bin/ folder is that this folder is where global
commands are stored in Linux. For example, when you type a command and hit Enter,
Linux does a search in a few common areas to see if the command you typed exists. If it
does, execution starts, else you will get an error stating that the command can’t be found.
This makes it easier, so you don’t have to use full paths to the docker -compose binary or
be in a certain directory each time to run it:

$ chmod +x /usr/local/bin/docker-compose

This will set the downloaded binary to executable.



Installing on OS X and Windows

The installation for OS X and Windows is different than it originally was. For OS X in
particular, the installation was done using the curl command. Now, Docker has created
what they call Docker Toolbox that is used to install not only Docker Compose but
multiple components of the service for you to use.

To install Docker Compose on these platforms, we need the Docker Toolbox installer. This
can be found on the Docker website. Simply download the installer for your platform and
follow the installer instructions to get up and running.






Docker Compose YAML file

For building your YAML files, I definitely recommend looking at the Docker
documentation for this. There are a plethora of items that can be added to your docker -
compose.yml file and it’s always changing.

The key thing to note about a basic YAML file is that it has to contain either a name for
each service, an image:, or a build: section. There are many other options to do inside
the compose file, such as:

Container linking

Exposing ports

Specifying the volumes to be used

Specifying the environmental variables

Setting the DNS servers to be used

Setting the log driver to be used and much more






The Docker Compose usage

We can start by using the ever-so-helpful --help switch on the docker-compose
command. We will see a lot of output and will sift through it after the following output:

$ docker-compose --help

Define and run multi-

Usage:

container applications with Docker.

docker-compose [options] [COMMAND] [ARGS..]
docker -compose -h|--help

Options:
-f, --file FILE
docker-compose.yml)
-p, --project-name
directory name)
--verbose
-V, --version

Commands:
build
help
kill
logs
port
ps
pull
restart
rm
run
scale
start
stop
up
migrate-to-labels
version

Specify an alternate compose file (default:
NAME Specify an alternate project name (default:

Show more output
Print version and exit

Build or rebuild services

Get help on a command

Kill containers

View output from containers

Print the public port for a port binding
List containers

Pulls service images

Restart services

Remove stopped containers

Run a one-off command

Set number of containers for a service
Start services

Stop services

Create and start containers

Recreate containers to add labels

Show the Docker-Compose version information



The Docker Compose options

Looking at the help output, we can see that the list is categorized as Usage, Options, and
commands. The Usage section is how you will need to structure your commands to run
them successfully. Next is the options section that we will look at now:

Options:

-f, --file FILE Specify an alternate compose file (default:
docker -compose.yml)

-p, --project-name NAME Specify an alternate project name (default:
directory name)

--verbose Show more output

-V, --version Print version and exit

So, as we can see from the previous output of the docker-compose --help command,
there are two sections: an Options section as well as a Commands section. We will first look
at the items in the options section and next look at the Commands section.

There are four items in the options section:

e -f: If you are using Docker Compose outside the folder where the docker -
compose.yml file exists or if you are not naming it docker -compose.yml, then you
will need to specify the -f flag. By default, when you initiate the Docker Compose
commands, they are meant to be done in the directory where your docker -
compose.yml file is located. This helps in keeping things consistent, organized, as
well as less convoluted.

® -p, --project-name: The -p option will allow you to give a name to your project. By
default, Docker Compose uses the name of the folder you are currently running the
Docker Compose commands from. This allows you to override it.

e --verbose: The --verbose switch allows you to run Docker Compose in a way that
you can see the output of items about the image(s) being used, such as:

The command used to start the containers

The CPU shares being used in the container

The domain name being used

Whether an entry point was used and if so, what it is

O O O o

e -v, --version: This will simply print the version number of the Docker Compose
client being used.






The Docker Compose commands

We can tell by running the previous docker-compose --help command that there are
many subcommands that can be used with the main docker -compose command. Let’s
break them down individually and provide examples of each subcommand, starting at the
top and working our way down the list. Remember that there are also switches for each
subcommand that can be found using the - -help option. For example, docker -compose
<subcommand> --help. These commands will also seem very similar as the commands we
saw in the Docker commands section in Chapter 4, Managing Containers. Also, note that
some of these commands need to be run in the folder where docker -compose and/or the
Dockerfile for that service are located.

For the command examples, we will be using the following as the contents of our docker -
compose.yml file called example 1:

master:
image:
scottpgallagher/galeramaster
hostname:
master
ports:
- "3306:3306"
nodel:
image:
scottpgallagher/galeranode
hostname:
nodel
links:
- master
node2:
image:
scottpgallagher/galeranode
hostname:
node2
links:
- master

We will also be creating this file (example 2):

web:
build:
command: php -S 0.0.0.0:8000 -t /code
ports:
- "8000:8000"
links:
- db
volumes:
- .:/code
db:
image: orchardup/mysqgl
environment:
MYSQL_DATABASE: wordpress



We will create our Dockerfile for this docker -compose.yml file:

FROM orchardup/php5
ADD . /code



build

The build command of Docker Compose is used when you have changed the contents of
a Dockerfile that you are using and need to rebuild one of the systems in the docker -
compose.yml file.

For example, if you review our example 2 code, in the previous section, we have a web
container that we are specifying in our docker -compose.yml file. Now, if were to update
the contents of the Dockerfile, we would need to rebuild the container named web, so it
knows about the change. We may want to change the image we are using or, if the image
has been updated, we would want to do a rebuild of the web container:

$ docker-compose build web

It will look for the name web in the docker-compose.yml file, then jump to the Dockerfile,
and rebuild the web container based on the contents of the Dockerfile. This also can be
useful; if the container in question has disappeared, you can rebuild just that image. There
is just one switch that can be used with this subcommand and that is - -no-cache, which
allows you to build the image without using local cache.



kill

The kill subcommand does exactly what its name suggests. It will kill a running
container without gracefully stopping it. This can have unattended consequences with the
data that is being written, such as MySQL database tables, to at the time of issuing this
command. Remember that containers are made to be immutable environments; but if you
start diving into the volumes, then you are referring to data that is mutable and might
change. In an event where you do have a volume and data is being written to it, the best
practice would be to use the stop subcommand.

Using the example 2 code in the The Docker Compose commands section, let’s say that
both the web and db containers are running and we want to stop the web container. In this
case, we could use the kill subcommand:

$ docker-compose kill web



logs

Next up is logs! This subcommand will print the output from the specified service. Let’s
take a look at example 1. We have three running containers in this case: master, node1l,
and node2. We can tell that node2 is doing something strange with its MySQL replication
and we need to see whether we can find out why. Our first stop is to check its logs:

$ docker-compose logs node2

You will receive an output similar to the following (but not exactly the same):

node2_1 | at gcomm/src/gmcast.cpp:connect_precheck():282

node2_1 | 150904 16:47:56 [ERROR] WSREP: gcs/src/gcs_core.cpp:long int
gcs_core_open(gcs_core_t*, const char*, const char*, bool)():206: Failed to
open backend connection: -131 (State not recoverable)

node2_1 | 150904 16:47:56 [ERROR] WSREP: gcs/src/gcs.cpp:long int
gcs_open(gcs_conn_t*, const char*, const char*, bool)():1379: Failed to
open channel 'my wsrep_cluster' at 'gcomm://master': -131 (State not
recoverable)

node2_1 | 150904 16:47:56 [ERROR] WSREP: gcs connect failed: State not
recoverable

node2_1 | 150904 16:47:56 [ERROR] WSREP: wsrep::connect() failed: 7

node2_1 | 150904 16:47:56 [ERROR] Aborting
node2_1
node2_1 150904 16:47:56 [Note] WSREP: Service disconnected.

node2_1 150904 16:47:57 [Note] mysqld: Shutdown complete

|
|
|
node2_1 | 150904 16:47:57 [Note] WSREP: Some threads may fail to exit.
|
node2_1 |

We can see that this node has an issue talking to master and shuts down its MySQL. Now
that sure helps us!

You will notice that the output is colored as well. This is something you will see while
using Docker Compose, as it separates running containers using different colors. You can
get the output of the logs without color as well by appending the - -no-color switch to the
command:

$ docker-compose logs --no-color node2

node2_1 | at gcomm/src/gmcast.cpp:connect_precheck():282

node2_1 | 150904 16:47:56 [ERROR] WSREP: gcs/src/gcs_core.cpp:long int
gcs_core_open(gcs_core_t*, const char*, const char*, bool)():206: Failed to
open backend connection: -131 (State not recoverable)

node2_1 | 150904 16:47:56 [ERROR] WSREP: gcs/src/gcs.cpp:long int
gcs_open(gcs_conn_t*, const char*, const char*, bool)():1379: Failed to
open channel 'my_wsrep_cluster' at 'gcomm://master': -131 (State not
recoverable)

node2_1 | 150904 16:47:56 [ERROR] WSREP: gcs connect failed: State not
recoverable

node2_1 | 150904 16:47:56 [ERROR] WSREP: wsrep::connect() failed: 7
node2_1 | 150904 16:47:56 [ERROR] Aborting

node2_1 |

node2_1 | 150904 16:47:56 [Note] WSREP: Service disconnected.

node2_1 | 150904 16:47:57 [Note] WSREP: Some threads may fail to exit.



node2_1 | 150904 16:47:57 [Note] mysqld: Shutdown complete
node2_1 |



port

The port subcommand allows you to use Docker Compose to get you the public-facing
port from the private port the server is displaying. This can be useful if you either forget
what port privately maps or what port publicly maps. If you have used autoassigned ports,
then you might want to be looking that information up as well. The command is very
straightforward. Again, looking at example 1, we will this time look at master. The thing
to note with this command is that the container must be running in order to get this
information. The structure of this command is:

$ docker-compose <name-from-compose> <port-to-lookup>
$ docker-compose port master 3306

There are also two switches to utilize with this subcommand:

e --protocol: This is used to display either the TCP or UDP port to look up the port
that you specify on the command line. This will default to display TCP. The reason
for this switch would be if you are looking for the UDP port:

$ docker-compose --port udp master 3306

e --index: This is used if you have scaled containers and you want to look up what a
certain image in the list is using. For example, if we were specifying two masters, we
could do:

o $ docker-compose --index 1 master 3306: This would display the public-
facing port for the master container in index position 1.

o $ docker-compose --index 2 master 3306: This would display the
information for the master container in index spot two.

We know for this example that port 3306 is being used for the MySQL service. However,
if you don’t know what ports it was running on the private or public side, you can use the
ps subcommand that we will be looking at next.



PS

The Docker Compose ps subcommand can be used to display information on the
containers running within a particular Docker Compose folder. For instance, in our last
subcommand, we talked about not knowing the private port. This command will help us
get that information. We will now take a look at the output of the docker-compose ps
subcommand using example 2 code in the The Docker Compose commands section:

$ docker-compose ps

Name Command State

galeracompose_master_1 /entrypoint.sh Up
0.0.0.0:3306->3306/tcp,

4444/tcp, 4567/tcp,
4568/tcp, 53/tcp,
53/udp, 8300/tcp,
8301/tcp, 8301/udp,
8302/tcp, 8302/udp,

8400/tcp, 8500/tcp
galeracompose_nodel_1 /entrypoint.sh Exit 1
galeracompose_node2_1 /entrypoint.sh Exit 137

We can get a lot of information from this output. We can get the name of the containers
running. These names are assigned based upon folder_name + _name_used_in_yml_file
+ _<number_of_each_name_running>. For example, galeracompose_master_1, where:

e galeracompose is our folder name
e master is the name being used in the docker -compose.yml file
¢ 1 is how many times this container is being run

We also see the command that is running inside the container as well as the state of each
container. In our earlier example, we see that one container is up and two are in an Exit
status, which means they are off. From the one that is up, we see all the ports that are
being utilized on the backend, including the protocol. Then, we see the ports that are
exposed to the outside and also the backend port they are connected to.

When you use various commands with Docker Compose, you can specify either the name
given from the output using the ps subcommand or by the name given in the docker -
compose.yml file.



pull
The pull subcommand can be used in two ways. One you could run:

$ docker-compose pull

Or you could run:

$ docker-compose pull <service_name>

What’s the difference? The difference in the first one is that it will pull all the images that
are referenced in the docker-compose.yml file. In the second one, it will pull just the
image that is specified for the service asked to be pulled.

If we look back at example 1 in the Docker Compose commands section, we have master,
nodel, and node2 in our docker-compose.yml file. If we wanted to retrieve all the images,
we would use the first example. If we just wanted the image being used by master, we
would use the second one:

$ docker-compose pull master

Remember that these commands need to be run in the folder where the docker -
compose.yml file is located.



restart

Restart does exactly what it says it does. As with the pull subcommand, it can be used in
two ways. You can run:

$ docker-compose restart

It will restart all the containers that are being used in the docker-compose.yml file. You
can also specify which container to restart:

$ docker-compose restart <service>

Again, using example 1 in the The Docker Compose commands section, we only want to
restart one of the node services:

$ docker-compose restart nodel

The restart command will only restart the containers that are currently running. If a
container is in an exit state, then it won’t start that container up to a running state.



rm

The rm subcommand can be used to remove containers for specific Docker Compose
instances. By default, it will ask you to confirm whether you really want to remove the
container in question. It is a good practice to use the subcommand in this way. However, if
you are comfortable enough, you can also use the -f switch with the subcommand to force
removal and you won’t be prompted to for yes as an answer:

$ docker-compose rm <service>

$ docker-compose rm node2

Going to remove galeracompose_node2_1
Are you sure? [yN] y

Removing galeracompose_node2_1.. done

You can use this command, as we have seen with the previous commands, without
specifying a service name. If you do so, it will prompt you to remove each of the stopped
containers. It will not try to remove the containers that are running however. Again, you
could use the -f switch to specify the removal of all the stopped containers without asking
for approval.



run

The run subcommand is used to run a one-time command against a service, not against an
already running container. When you use the run subcommand, you are actually starting
up a new container and executing the specified command. This is one command that you
do need to pay attention to, including the switches that are available for the subcommand.

Specifically, there are two to remember:
e --no-deps: This will not start up containers that may be linked to the container being
used with the run subcommand. By default, when you use the run subcommand, any

linked containers will start up as well.

e --service-ports: By default, ports that are being specified in the docker -
compose.yml file are not exposed during the execution of the run subcommand. This
is to avoid issues with the ports that are already in use. However, this switch will
allow you to expose the ports that are being specified. This can be helpful if the ports

in question aren’t already being exposed.
The structure of the subcommand is as follows:

$ docker-compose run <service> <command>



scale

The scale subcommand allows you just to do that: scale. With the scale subcommand,
you can specify how many instances you want to start up. Using example 1, if we want to
load up a bunch of nodes, we could do that using the scale subcommand:

$ docker-compose scale nodel=3

This would fire up three nodes and link them back to the master container. You can also
specify multiple containers to scale per line as well. If we had a difference in node1 and
node2, we could scale them accordingly on the same line.

$ docker-compose scale nodel=3 node2=3



Start

We will use this for our example with the start subcommand:

$ docker-compose ps

Name Command State
Ports
galeracompose_master_1 /entrypoint.sh Exit 137
galeracompose_node2_run_1 /entrypoint.sh Up

3306/tcp, 4444/tcp,
4567/tcp, 4568/tcp,
53/tcp, 53/udp, 8300/tcp,
8301/tcp, 8301/udp,
8302/tcp, 8302/udp,

8400/tcp, 8500/tcp

From the preceding ps subcommand, we can see that the master node is stopped. That’s
not good! We need to get it started as soon as possible:

$ docker-compose start master

$ docker-compose ps
Name Command State

galeracompose_master_1 /entrypoint.sh Up
0.0.0.0:3306->3306/tcp,

4444/tcp, 4567/tcp,

4568/tcp, 53/tcp, 53/udp,

8300/tcp, 8301/tcp,

8301/udp, 8302/tcp,

8302/udp, 8400/tcp,

8500/tcp

galeracompose_node2_run_1 /entrypoint.sh Up
3306/tcp, 4444/tcp,

4567/tcp, 4568/tcp,

53/tcp, 53/udp, 8300/tcp,



8301/tcp, 8301/udp,
8302/tcp, 8302/udp,

8400/tcp, 8500/tcp

Phew, it is much better now! Let’s take a look at what we need to do if we need to stop a
running container.



stop

The stop subcommand stops running containers gracefully. Using our example from the
last subcommand, let’s stop the master container:

$ docker-stop master

docker -compose ps

Name Command State
Ports
galeracompose_master_1 /entrypoint.sh Exit 137
galeracompose_node2_run_1 /entrypoint.sh Up

3306/tcp, 4444/tcp,
4567/tcp, 4568/tcp,
53/tcp, 53/udp, 8300/tcp,
8301/tcp, 8301/udp,
8302/tcp, 8302/udp,

8400/tcp, 8500/tcp



up

The up subcommand is used to start all the containers specified in a docker -compose.yml
file. It can also be used to start up a single container as well from a compose file. By
default, when you issue the up subcommand, it will keep everything in the foreground.
However, you can use the -d switch to push all that information into a daemon and just get
information on the container names on the screen:

Let’s use example 2 in this test case. We will take a look at docker -compose up -d and
docker-compose up:

$ docker-compose up -d

Starting wordpresstest_db_1..
Start
ing wordpresstest_web_1..

$ docker-compose up

Starting wordpresstest_db_1..

Starting wordpresstest_web_1..

Attaching to wordpresstest_db_1, wordpresstest_web_1

db_1 | 150905 14:39:02 [Warning] Using unique option prefix key_ buffer
instead of key buffer_size is deprecated and will be removed in a future
release. Please use the full name instead.

db_1 | 150905 14:39:02 [Warning] Using unique option prefix key_ buffer
instead of key buffer_size is deprecated and will be removed in a future
release. Please use the full name instead.

db_1 | 150905 14:39:03 [Warning] Using unique option prefix key_buffer
instead of key_ buffer_size is deprecated and will be removed in a future
release. Please use the full name instead.

db_1 | 150905 14:39:03 [Warning] Using unique option prefix myisam-recover
instead of myisam-recover-options is deprecated and will be removed in a
future release. Please use the full name instead.

db_1 | 150905 14:41:36 [Note] Plugin 'FEDERATED' 1is disabled.

db_1 | 150905 14:41:36 InnoDB: The InnoDB memory heap is disabled

db_1 | 150905 14:41:36 InnoDB: Mutexes and rw_locks use GCC atomic
builtins

db_1 | 150905 14:41:36 InnoDB: Compressed tables use zlib 1.2.3.4

db_1 | 150905 14:41:36 InnoDB: Initializing buffer pool, size = 128.0M
db_1 | 150905 14:41:36 InnoDB: Completed initialization of buffer pool
db_1 | 150905 14:41:36 InnoDB: highest supported file format is Barracuda.
db_1 | 150905 14:41:36 InnoDB: Waiting for the background threads to
start

db_1 | 150905 14:41:37 InnoDB: 5.5.38 started; log sequence number 1595675
db_1 | 150905 14:41:37 [Note] Server hostnhame (bind-address): '0.0.0.0';

port: 3306
db_1 | 150905 14:41:37 [Note] - '0.0.0.0' resolves to '0.0.0.0"';
db_1 150905 14:41:37 [Note] Server socket created on IP: '0.0.0.0'.

I
db_1 | 150905 14:41:37 [Note] Event Scheduler: Loaded 0 events
db_1 | 150905 14:41:37 [Note] /usr/sbin/mysqld: ready for connections.
db_1 | Version: '5.5.38-0ubuntu0.12.04.1-log' socket:
'/var/run/mysqld/mysqld.sock' port: 3306 (Ubuntu)



You can see a huge difference. Remember that, if you don’t use the -d switch and hit Ctrl
+ C in the terminal window, it will start shutting down the running containers. While it’s

good for testing purposes, if you are going into a production environment, it is
recommended to use the -d switch.



version

The version subcommand will give you the version of Docker Compose that you are
running. It’s very straightforward and can also be utilized with the -v switch:

$ docker-compose version
$ docker-compose -v

The difference is that the subcommand version will show you a little more information
such as the docker -py version, Python version, and OpenSSL version, while the -v switch
will just show you the version of Docker Compose.






Docker Compose — examples

In this section, we will take a look at some examples and break them to understand what
we can do within the docker-compose.yml file. Remember, earlier we discussed that in
the YAML file, there needs to be either an image section or a build section. Let’s take a
look at an example using each. Then, we will look at an example using as many of the
options available for the Docker Compose YAML file as possible.

Here is a breakdown of an example docker -compose.yml file. We will break the contents
into sections to help you understand each entry.



image

The image section tells Docker Compose that you are going to define the configuration of
your containers and what settings each will have:

haproxy:#container name
image: tutum/haproxy #image to use from the Docker Hub
ports: #defining our port setup
"80:80" #port to map from Docker Host: to container
links: #what containers to link to/with
- varnishi
- varnish2
varnishi:
image: jacksoncage/varnish
ports:
"82:80"
links:
- web1
- web2
- web3
- web4
environment: # you use environment to specify variable to pass to the
container with values
VARNISH_BACKEND_PORT: 80
VARNISH_BACKEND_IP: web1
VARNISH_BACKEND_PORT: 80
VARNISH_BACKEND_IP: web2
VARNISH_BACKEND_PORT: 80
VARNISH_BACKEND_IP: web3
VARNISH_BACKEND_PORT: 80
VARNISH_BACKEND_IP: web4
VARNISH_PORT: 80

varnish2:
image: jacksoncage/varnish
ports:
"81:80"
links:
- web1l
- web2
- web3
- web4
environment:
VARNISH_BACKEND_PORT: 80
VARNISH_BACKEND_IP: web1
VARNISH_BACKEND_PORT: 80
VARNISH_BACKEND_IP: web2
VARNISH_BACKEND_PORT: 80
VARNISH_BACKEND_IP: web3
VARNISH_BACKEND_PORT: 80
VARNISH_BACKEND_IP: web4
VARNISH_PORT: 80

web1:
image: scottpgallagher/php5-mysql-apache2



volumes: # you can specify volumes for the container to use. This will
allow for multiple containers to share a volume
- .:/var/www/html/ # specify the location of the volume
links:
- master
- nodel
- node2
- nfsl
- mcrouter1l
- mcrouter2

web2:
image: scottpgallagher/php5-mysql-apache2
volumes:
- .:/var/www/html/
links:
- master
- nodel
- node2
- nfsl
- mcrouter1l
- mcrouter2
web3:
image: scottpgallagher/php5-mysql-apache2
volumes:
- .:/var/www/html/
links:
- master
- nodel
- node2
- nfsi
- mcrouterl
- mcrouter2
web4:
image: scottpgallagher/php5-mysql-apache2
volumes:
- .:/var/www/html/
links:
- master
- nodel
- node2
- nfsi
- mcrouteril
- mcrouter2
master:
image:
scottpgallagher/galeramaster
hostname: # you can specify a hostname to assign to the container
master #hostname to use
environment:
MARIADB_DATABASE: wordpressmu
MARIADB_USER: replica
MARIADB_PASSWORD: replica
nodel:
image:
scottpgallagher/galeranode



hostname:
nodel
environment:
MARIADB_DATABASE: wordpressmu
MARIADB_USER: replica
MARIADB_PASSWORD: replica
links:
- master
node2:
image:
scottpgallagher/galeranode
hostname:
node2
environment:
MARIADB_DATABASE: wordpressmu
MARIADB_USER: replica
MARIADB_PASSWORD: replica
links:
- master
nfsl:
image: cpuguy83/nfs-server
volumes:
- /var/www/wp-content/uploads
mcrouterl:
image: jmck/mcrouter-docker
command: mcrouter --config-str='{"pools":{"A":{"servers":
["memcached1:11211", "memcached2:11211"]}}, "route":"PoolRoute|A"}' -p 5000
# here you can specify a command to run on the container when it's started
links:
- memcached1l
- memcached2
mcrouter2:
image: jmck/mcrouter-docker
command: mcrouter --config-str='{"pools":{"A":{"servers":
["memcached1:11211", "memcached2:11211"]}}, "route":"PoolRoute|A"}' -p 5000
links:
- memcached1
- memcached2
memcached1:
image: memcached
links:
- dbo
memcached1:
image: memcached
links:
- dbo
memcached2:
image: memcached
links:
- dbo

In this very long example, you can see that we are specifying a name for each service as
well as the image that is going to be used from the Docker Hub Registry. You can also see
a lot of container linking being done in it. Remember that container linking removes the
exposition off ports and keeps the communication secure between the said linked



containers. We are specifying volumes as well as running some commands in the
containers as well.



build

The easiest example of something that uses build is a wordpress instance:

web:
build:
command: php -S 0.0.0.0:8080 -t /wordpress
ports:
- "80:8080"
links:
- database
volumes:
- .:/wordpress
database:
image: mysql
environment:
MYSQL_DATABASE: wordpress
MYSQL_ROOT_PASSWORD: password

Now, there are other files that are required for this setup; but we are just focusing on the
docker -compose.yml file right now. In the earlier example, we are specifying two
services: a web service and a database service. In the database service, we see that we are
using the image option; but in the web service, we are doing something different. We are
building based off the contents of the folder and then placing the files in the /wordpress
directory inside the container.



The last example

Following is an example just for the sake of it. It’s probably something that would not
actually run, but you could use it for reference for the different options that you can set
within your docker -compose.yml file:

node2:
image:
scottpgallagher/galeranode
hostname:
database
environment:
MARIADB_DATABASE: wordpressmu
MARIADB_USER: replica
MARIADB_PASSWORD: replica
nfsl:
image: scottpgallagher/php5-mysql-apache2
ports:
- n 2049 n
volumes:
- .:/var/www/html/
web1:
image: apache
links:
- node2
- nfsl
volumes_from:
- nfsi
expose:
- ll80 n
log_driver: "syslog"
dns: 8.8.8.8
restart: always
hostname: webserver
read_only: true

In the previous example, we specified a lot of things:

¢ image: This specifies what image to use from Docker Hub

e volumes: This specifies what paths to use for the volumes that live outside the
container

e volumes-from: This specifies what volume from another container to mount into the

container

links: This links containers together, so the need to expose ports isn’t there

log_driver: This selects what logging driver to use

dns: This specifies the ability to add additional DNS servers per container

restart: This states that the container needs to restart when or if it fails

hostname: This sets a hostname for the container

read_only: This allows you to specify that a container is read-only

ports: This specifies what ports can be attached to (from the Docker host to the

Docker container)

e expose: This specifies what ports are actually exposed externally



e environment: This sets the values to the specified variables






Summary

In this chapter, we have looked at how to install Docker Compose on various platforms.
We also looked at the file that Docker Compose uses, YAML file, for its operation. We took
a dive into the Docker Compose usage and commands, and some examples for what you
can use Compose.

In the next chapter, we will be looking at Docker Swarm. Docker Swarm is another piece
of the Docker ecosystem that can be used to do multiple things; but at its core, it is used
for Docker container clustering. It can also use discovery services and advanced
scheduling methods. The chapter will also cover the Docker Swarm API, creating a
Swarm environment and some Swarm strategies while setting up the environments.






Chapter 8. Docker Swarm

In this chapter, we will be taking a look at Docker Swarm. With Docker Swarm, you can
create and manage Docker clusters. Swarm can be used to disperse containers across
multiple hosts. It also has the ability to know how to scale containers as well. In this
chapter, we will be covering the following topics:

Installing Docker Swarm

The Docker Swarm components
Docker Swarm usage

The Docker Swarm commands
The Docker Swarm topics



Docker Swarm install

Let’s get things started by the typical way of installing Docker Swarm. Docker Swarm is
only available for Linux and Mac OS X. The installation process for both is the same.
Let’s take a look at how we install Docker Swarm.



Installation

Ensure that you already have Docker installed, either through the curl command on Linux
or through Docker Toolbox on Mac OS X. Once you have the Docker daemon installed,
installing Docker Swarm will be simple:

$ docker pull swarm

One command and you are up and running. That’s it!






Docker Swarm components

What components are involved with Docker Swarm? Let’s take a look at the three
components of Docker Swarm:

e Swarm
e Swarm manager
e Swarm host



Swarm

Docker Swarm is the container that runs on each Swarm host. Swarm uses a unique token
for each cluster to be able to join the cluster. The Swarm container itself is the one that
communicates on behalf of that Docker host to the other Docker hosts that are running
Docker Swarm as well as the Docker Swarm manager.



Swarm manager

The Swarm manager is the host that is the central management point for all the Swarm
hosts. The Swarm manager is where you issue all your commands to control nodes. You
can switch between the nodes, join nodes, remove nodes, and manipulate the hosts.



Swarm host

Swarm hosts, which we saw earlier as the Docker hosts, are those that run the Docker
containers. The Swarm host is managed from the Swarm manager.

Container

Container

N

Container

Container
Container

Swarm Manager

Container

Container
Container

>

The preceding figure is an illustration of all the Docker Swarm components. We see that

the Docker Swarm manager talks to each Swarm host that is running the Swarm container.







Docker Swarm usage

Let’s now take look at Swarm usage and how we can do the following tasks:

e Creating a cluster
¢ Joining nodes

e Removing nodes
e Managing nodes



Creating a cluster

Let’s start by creating the cluster, which starts with a Swarm manager. We first need a
token that can be used to join all the nodes to the cluster:

$ docker run --rm swarm create
85b335f95e9a37h679e2ea9e6ad8d6361

We can now use that token to create our Swarm manager:

$ docker-machine create \
-d virtualbox \
--swarm \
--swarm-master \
--swarm-discovery token://85b335f95e9a37b679e2ea9e6ad8d6361 \
swarm-master
Creating VirtualBox VM..
Creating SSH key..
Starting VirtualBox VM.
Starting VM..

To see how to connect Docker to this machine, run docker-machine env swarm-master.

The swarm-master node is now in VirtualBox. We can see this machine by doing as
follows:

$ docker-machine 1s

NAME ACTIVE DRIVER STATE URL
SWARM
swarm-master virtualbox Running tcp://192.168.99.101:2376

swarm-master (master)

Now, let’s point Docker Machine at the new Swarm master. The earlier output we saw
when we created the Swarm master tells us how to point to the node:

$ docker-machine env swarm-master

export DOCKER_TLS_VERIFY="1"

export DOCKER_HOST="tcp://192.168.99.102:2376"

export DOCKER_CERT_PATH="/Users/spgl4/.docker/machine/machines/swarm-
master"

export DOCKER_MACHINE_NAME="swarm-master"

# Run this command to configure your shell:

# eval "$(docker-machine env swarm-master)"

Upon running the previous command, we are told to run the following command to point
to the Swarm master:

$ eval "$(docker-machine env swarm-master)"

Now, if we look at what machines are on our host, we can see that we have the swarm-
master host as well. It is set to ACTIVE, which means that we can now run commands
against this host:

$ docker-machine 1ls



NAME ACTIVE DRIVER STATE URL

SWARM

swarm-master * virtualbox Running tcp://192.168.99.101:2376
swarm-master (master



Joining nodes

Again using the token, which we got from the earlier commands, used to create the Swarm
manager, we need that same token to join nodes to that cluster:

$ docker-machine create \

-d virtualbox \

--swarm \

--swarm-discovery token://85b335f95e9a37b679e2ea9e6ad8d6361 \
swarm-nodel

Now, if we look at the machines on our system, we can see that they are both part of the
same Swarm:

$ docker-machine 1s

NAME ACTIVE DRIVER STATE URL

SWARM

swarm-master * virtualbox Running tcp://192.168.99.102:2376
swarm-master (master)

swarm-nodel virtualbox Running tcp://192.168.99.103:2376

swarm-master



Listing nodes

First, ensure you are pointing at the Swarm master:

$ docker-machine 1s

NAME ACTIVE DRIVER STATE URL

SWARM

swarm-master * virtualbox Running tcp://192.168.99.102:2376
swarm-master (master)

swarm-nodel virtualbox Running tcp://192.168.99.103:2376

swarm-master

Now, we can see what machines are joined to this cluster based off the token used to join
them all together:

$ docker run --rm swarm list token://85b335f95e9a37b679e2ea9e6ad8d6361

192.168.99.102:2376
192.168.99.103:2376



Managing a cluster

Let’s see how we can do some management of all of the cluster nodes we are creating.

So, there are two ways you can go about managing these Swarm hosts and the containers
on each host that you are creating. But first, you need to know some information about
them, so we will turn to our Docker Machine command again:

$ docker-machine 1s

NAME ACTIVE DRIVER STATE URL

SWARM

swarm-master * virtualbox Running tcp://192.168.99.102:2376
swarm-master (master)

swarm-nodel virtualbox Running tcp://192.168.99.103:2376

swarm-master

You can switch to each Swarm host like we have seen earlier by doing something similar
to the following—changing the values—and by following the instructions from the output
of the command:

$ docker-machine env <Node Name>

But this is a lot of tedious work. There is another way we can manage these hosts and see
what is going on inside them. Let’s take a look at how we can do it. From the previous
docker-machine 1ls command, we see that we are currently pointing at the swarm-master
node. So, any Docker commands we issue would go against this host.

But, if we run the following, we can get information on the swarm-node1 node:

$ docker -H tcp://192.168.99.103:2376 info

Containers: 1
Images: 8
Storage Driver: aufs
Root Dir: /mnt/sdal/var/lib/docker/aufs
Backing Filesystem: tmpfs
Dirs: 10
Dirperml Supported: true
Execution Driver: native-0.2
Logging Driver: json-file
Kernel Version: 4.0.9-boot2docker
Operating System: Boot2Docker 1.8.2 (TCL 6.4); master : aba6192 - Thu Sep
10 20:58:17 UTC 2015
CPUs: 1
Total Memory: 996.2 MiB
Name: swarm-nodel
ID: SDEC:4RXZ:03VL:PEPC:FYWM:IGIK:CFM5:UXPS:U4S5:PNQD:5ULK:TSCE
Debug mode (server): true
File Descriptors: 18
Goroutines: 29
System Time: 2015-09-16T09:32:27.67035212Z
EventsListeners: 1
Init SHA1:
Init Path: /usr/local/bin/docker



Docker Root Dir: /mnt/sdal/var/lib/docker
Labels:
provider=virtualbox

So, we can see the information on this host such as the number of containers, the numbers
of images on the host, as well as information about the CPU, memory, and so on.

We can see from the earlier information that one container is running. Let’s take a look at
what is running on the swarm-node1 host:

$ docker -H tcp://192.168.99.103:2376 ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

12a400424c87 swarm:latest "/swarm join --advert" 17 hours
ago Up 17 hours 2375/tcp swarm-agent

Now, you can use any of the Docker commands using this method against any Swarm host
that is listed in the output of your docker-machine 1s output.






The Docker Swarm commands

Now, let’s take a look at some Docker Swarm-specific commands that we can use. Let’s
revert to the ever-so-helpful—the help switch on the Docker Swarm command:

$ docker run --rm swarm --help
Usage: swarm [OPTIONS] COMMAND [arg..]
A Docker-native clustering system
Version: 0.4.0 (d647d82)
Options:

- -debug debug mode [$DEBUG]

--log-level, -1 "info" Log level (options: debug, info, warn, error,
fatal, panic)

--help, -h show help

--version, -v print the version
Commands:

create, ¢ Create a cluster

list, 1 List nodes in a cluster

manage, m Manage a docker cluster

join, j join a docker cluster

help, h Shows a list of commands or help for one command
Using TLS

Let’s take a look at the options you can use for Docker Swarm as well as the commands
that are associated with it.



Options

Looking over the options from the preceding output, we can see the --debug and - -1og
level switches. The other two are straightforward, as one will just print out the help
information and the other one will print out the version number that we can see in the
previous output. The options are used after each of the following subcommands of Docker
Swarm.

For example:

$ docker run --rm swarm list --debug
$ docker run --rm swarm manage --debug
$ docker run --rm swarm create --debug



list
We looked at the Swarm 1ist command before:

$ docker run --rm swarm list token://85b335f95e9a37b679e2ea9e6ad8d6361

192.168.99.102:2376
192.168.99.103:2376

But there is also a switch that we can tack onto the 1ist command and that is the - -
timeout switch:

$ docker run --rm swarm list --timeout 20s
token://85b335f95e9a37h679e2ea9%9e6ad8d6361

This will allow more time to find the nodes that are a part of Swarm. It could take time for
the hosts to check, depending upon things such as network latency or if they are running in
different parts of the globe.



Create

We have seen how we can create a Swarm cluster as well. What this command actually
does is it gives us the token that we need to create the cluster and join all the nodes to it.
There are no other switches that can be used with this command as we have seen with
other commands:

$ docker run --rm swarm create

85h335f95e9a37h679e2ea9e6ad8d6361



manage

We can manage a cluster with the manage subcommand in Docker Swarm. An example of
this command would look like the following, replacing the information to align with your
IP address and Swarm token:

$ docker run --rm swarm manage -H tcp://192.168.99.104:2376
token://85b335f95e9a37h679e2ea9e6ad8d6361






The Docker Swarm topics

There are three advanced topics we will take a look at in this section:

e Discovery services
e Advanced scheduling
e The Docker Swarm API



Discovery services

You can also use services such as etcd, ZooKeeper, consul, and many others to
automatically add nodes to your Swarm cluster as well as do other things such as list the
nodes or manage them. Let’s take a look at consul and how you can use it. This will be the
same for each discovery service that you might use. It just involves switching out the word
consul with the discovery service you are using.

On each node, you will need to do something different in how you join the machines.
Earlier, we did something like this:

$ docker-machine create \

-d virtualbox \

--swarm \

--swarm-discovery token://85b335f95e9a37b679e2ea9e6ad8d6361 \
swarm-nodel

Now, we would do something similar to the following (based upon the discovery service
you are using):

$ docker-machine create \

-d virtualbox \

--swarm \

join --advertise=<swarm-nodel_ip:2376> \
consul://<consul_ip> \

swarm-nodel

You can now start manage on your laptop or the system that you will be using as the
Swarm manager. Before, we would run something like this:

$ docker run --rm swarm manage -H tcp://192.168.99.104:2376
token://85b335f95e9a37h679e2ea9e6ad8d6361

Now, we run this with regards to discovery services:

$ docker run --rm swarm manage -H tcp://192.168.99.104:2376
consul://<consul_ip>

We can also list the nodes in this cluster as well as the discovery service:

$ docker run --rm swarm list -H tcp://192.168.99.104:2376
consul://<consul_ip>

You can easily switch out consul for another discovery service such as etcd or ZooKeeper;
the format will still be the same:

$ docker-machine create \

-d virtualbox \

--swarm \

join --advertise=<swarm-nodel_ip:2376> \
etcd://<etcd_ip> \

swarm-nodel

$ docker-machine create \
-d virtualbox \



--swarm \
join --advertise=<swarm-nodel 1ip:2376> \

zk://<zookeeper_ip> \
swarm-nodel



Advanced scheduling

What is advanced scheduling with regards to Docker Swarm? Docker Swarm allows you
to rank nodes within your cluster. It provides three different strategies to do this. These
can be used by specifying them with the --strategy switch with the swarm manage
command:

® spread
® binpack
e random

spread and binpack use the same strategy to rank your nodes. They are ranked based off
of the node’s available RAM and CPU as well as the number of containers that it has
running on it.

spread will rank the host with less containers higher than a container with more

containers (assuming that the memory and CPU values are the same). spread does what
the name implies; it will spread the nodes across multiple hosts. By default, spread is used
with regards to scheduling.

binpack will try to pack as many containers on as few hosts as possible to keep the
number of Swarm hosts to a minimal.

random will do just that—it will randomly pick a Swarm host to place a node on.

The Swarm scheduler comes with a few filters that can be used as well. These can be
assigned with the --filter switch with the swarm manage command. These filters can be
used to assign nodes to hosts. There are five filters that are associated with it:

e constraint: There are three types of constraints that can be assigned to nodes:

o storage=: This is used if you want to specify a node that is put on a host and has
SSD drives in it

o region=: This is used if you want to set a region; mostly used for cloud
computing such as AWS or Microsoft Azure

o environment=: This can set a node to be put into production, development, or
other created environments

e affinity: This filter is used to create attractions between containers. This means that
you can specify a filter name and then have all those containers run on the same
node.

e port: The port filter finds a host that has the open port needed for the node to run; it
then assigns the node to that host. So, if you have a MySQL instance and need port
3306 open, it will find a host that has port 3306 open and assign the node to that host
for operation.

e dependency: The dependency filter schedules nodes to run on the same host based off
of three dependencies:

o --volumes-from=dependency
o --link=dependency:<alias>



o --net=container:dependency

e health: The health filter is pretty straightforward. It will prevent the scheduling of
nodes to run on unhealthy hosts.



The Swarm API

Before we dive into the Swarm API, let’s first make sure you understand what an API is.
An API is defined as an application programming interface. An API consists of routines,
protocols, and tools to build applications. Think of an API as the bricks used to build a
wall. This allows you to put the wall together using those bricks. What APIs allow you to
do is code in the environment you are comfortable in and reach into other environments to
do the work you need. So, if you are used to coding in Python, you can still use Python to
do all your work while using the Swarm API to do the work in Swarm that you would like
done.

For example, if you wanted to create a container, you would use the following in your
code:

POST /containers/create HTTP/1.1
Content-Type: application/json

{

"Hostname": "",

"Domainname": "",

Iluserll: IIII’

"AttachStdin": false,

"AttachStdout": true,

"AttachStderr": true,

"Tty": false,

"OpenStdin": false,

"StdinOnce": false,

"Env'": null,

IICdeI: [
Ildatell

1,

"Entrypoint": "",

"Image": "ubuntu",

"Labels": {
"com.example.vendor": "Acme",
"com.example.license": "GPL",
"com.example.version": "1.0"

iy

"Mounts": [
{
"Source": "/data",
"Destination": "/data",
"Mode": "ro,Z",
"RW": false
}
1
"WorkingDir": "",
"NetworkDisabled": false,
"MacAddress": "12:34:56:78:9a:bc",
"ExposedPorts": {
"22/tcp": {}

3
"HostConfig": {



"Binds": ["/tmp:/tmp"],

"Links": ["redis3:redis"],

"LxcConf": {"1lxc.utsname":"docker"},

"Memory": 0,

"MemorySwap": 0,

"CpuShares": 512,

"CpuPeriod": 100000,

"CpusetCpus": "0,1",

"CpusetMems": "O,1",

"Blkioweight": 300,

"MemorySwappiness": 60,

"OomKillDisable": false,

"PortBindings": { "22/tcp": [{ "HostPort": "11022" }] 3},
"PublishAllPorts": false,

"Privileged": false,

"ReadonlyRootfs": false,

"Dns": ["8.8.8.8"],

"DnsSearch": [""],

"ExtraHosts": null,

"VolumesFrom": ["parent", "other:ro"],

"CapAdd": ["NET_ADMIN"],

"CapDrop": ["MKNOD"],

"RestartPolicy": { "Name": "", "MaximumRetryCount": 0 },
"NetworkMode": "bridge",

"Devices": [],

"Ulimits": [{}],

"LogConfig": { "Type": "json-file", "Config": {} },
"Securityopt": [""],

"CgroupParent": ""

}

You would use the preceding example to create a container; but there are also other things
you can do such as inspect containers, get the logs from a container, attach to a container,
and much more. Simply put, if you can do it through the command line, there is more than
likely something in the API that can be used to tie into to do it through the programming
language you are using.

The Docker documentation states that the Swarm API is mostly compatible with the
Docker Remote API. Now we could list them out in this section. But seeing that the list
could change as things could be added into the Docker Swarm API or removed, I believe,
it’s best to refer to the link to the Swarm API documentation here instead of listing them
out, so the information is not outdated:

https://docs.docker.com/swarm/api/swarm-api/



https://docs.docker.com/swarm/api/swarm-api/




The Swarm cluster example

We will now go through an example of how to set up a Docker Swarm cluster:

# Create a new Docker host with Docker Machine
$ docker-machine create --driver virtualbox swarm

Point to the new Docker host
eval "$(docker-machine env swarm)"

&

# Generate a Docker Swarm Discovery Token
$ docker run swarm create

# Launch the Swarm Manager
$ docker-machine create \
--driver virtualbox \
--swarm \
--swarm-master \
--swarm-discovery token://<DISCOVERY_TOKEN> \
swarm-master

# Launch a Swarm node
$ docker-machine create \
--driver virtualbox \
--swarm \
--swarm-discovery token://<DISCOVERY_TOKEN> \
swarm_node-01

# Launch another Swarm node
$ docker-machine create \
--driver virtualbox \
--swarm \
--swarm-discovery token://<DISCOVERY_TOKEN> \
swarm_node-02

Point to our Swarm Manager
eval "$(docker-machine env swarm-master)"

©#

Execute 'docker info' command to view information about your environment
docker info

&

# Execute 'docker ps -a'; will show you all the containers running as well
as how they are joined to the same Swarm cluster
$ docker ps -a

# Run simple test
$ docker run hello-world

# You can then execute the 'docker ps -a' command again to see what node it
ran on

$ docker ps -a

# You will want to look at the column labeled 'NAMES'. If you continue to
re-run the 'docker run hello-world' command/container you will see it will
run on a different Swarm node






Summary

In this chapter, we took a dive into Docker Swarm. We took a look at how to install
Docker Swarm and the Docker Swarm components; these are what make up Docker
Swarm. We took a look at how to use Docker Swarm; joining, listing, and managing
Swarm nodes. We reviewed the Swarm commands and how to use them. We also covered
some advanced Docker Swarm topics such as advanced scheduling for your jobs,
discovery services to discover new containers to add to Docker Swarm, and the Docker
Swarm API that you can use to tie your own code to perform the Swarm commands.

In the next chapter, we will take a look at running Docker in production. We will take
everything you have learned in all of the previous chapters and put them into production.
We will look at how to monitor your containers and the safeguards you can put into place
to help with container recovery. We will also look at how you can extend into external
platforms such as Heroku.






Chapter 9. Docker in Production

In this chapter, we will be looking at Docker in production, pulling all the pieces together
so you can start using Docker in your production environments and feel comfortable doing
so. Let’s take a peek at what we will be covering in this chapter:

Setting up hosts and nodes
Managing hosts and containers
Using Docker Compose
Extending to external platforms
Security



Where to start?

When we start thinking about putting Docker into our production environment, we first
need to know where to start. This sometimes can be the hardest part of any project. We
first need to start by setting up our Docker hosts and then start running containers on them.
So, let’s start here!



Setting up hosts

Remember, as it was mentioned in the earlier chapter, that setting up hosts will require us
to tap into our Docker Machine knowledge. We can deploy these hosts to different
environments, including cloud hosting. To take a walk down memory lane, let’s look at
how we go about doing this:

$ docker-machine create --driver <driver_name> <host_name>

Now, there are two values that we can manipulate: <driver_name> and <host_name>. The
host name can be whatever you want it to be. But I recommend that it should be
something that would help you understand its purpose. The driver name on the other hand
has to be the location where you want to create the host. If you are looking at doing
something locally, then you can use VirtualBox or VMware Fusion. If you are looking at
deploying your application to a cloud service, you can use something like Amazon EC2,
Azure, or DigitalOcean. Most of these cloud services will require additional details to
authenticate who you are and where to place the host:

For example, for AWS, you would use:

$ docker-machine create --driver amazonec2 --amazonec2-access-key
<AWS_ACCESS_KEY> --amazonec2-secret-key <AWS_SECRET_KEY> --amazonec2-
subnet-id east-1b amazonhost

You can see that you will need the following:

e Amazon access key
e Amazon secret key
e Amazon subnet ID



Setting up nodes

Next, we want to set up the nodes or containers to run on the hosts that we have recently
created. Again, using a combination of Docker Machine with the Docker daemon, we can
do this. We first must use Docker Machine to point to the Docker host that we want to
deploy some containers on:

$ docker-machine env <host_name>
$ eval "$(docker-machine env <host_name>)"

Now we can run our normal Docker commands against this Docker host. To do this, we
will simply use the Docker command-line tools. To deploy the containers, we can pull the
following images:

$ docker pull <image_name>
Or, we can run a container on a host:

$ docker run -d -p 80:80 nginx






Host management

In this section, we will focus on host management, that is, the ways we can manage our
hosts, what we should use to manage our hosts, how we can monitor our hosts, and
container failover, which is very important when something happens to the host that is
running critical containers.



Host monitoring

With host monitoring you can do so via the command line using Docker Machine as also
there are some GUI applications out there that can be useful as well. For Machine, you can

use the 1s subcommand:

$ docker-machine 1s

NAME ACTIVE DRIVER
SWARM

amazonhost amazonec2
swarm-master * virtualbox
swarm-master (master)

swarm-nodel virtualbox

swarm-master

STATE URL

Error
Running tcp://192.168.99.102:2376

Running tcp://192.168.99.103:2376

You can use some GUI applications out there as well, such as:

e Shipyard: https://shipyard-project.com/
e DockerUlI: https://github.com/crosbymichael/dockerui

e Panamax: http://panamax.io/


https://shipyard-project.com/
https://github.com/crosbymichael/dockerui
http://panamax.io/

Docker Swarm

Another tool that you can use for node management is that of Docker Swarm. We saw
previously how helpful Swarm can be. Remember that you can use Docker Swarm to
manage your hosts as well as to create and list them. The most useful command to
remember for Swarm is the 1ist subcommand. With the 1ist subcommand, you can get a
view of all the nodes and their statuses:

Remember that you will need either the discovery service IP or the token number that is
used for Swarm:

$ docker run swarm list token://<swarm_token>



Swarm manager failover

With Docker Swarm, you can set up your manager node to be highly available. That is, if
the managing host dies, you can have it failover to another host. If you don’t have it set
up, there will be a service interruption, as you won’t be able to communicate to your hosts
anymore and will need to reset them up to point to the new Docker Swarm manager. You
can set up as many replicas as you want.

To set this up, you will need to use the --replication and - -advertise flags. This tells
Swarm that there will be other managers for failover. It will also tell Swarm what address

to advertise on, so the other managers know on what IP address to connect for other
Swarm managers.






Container management

Now, let’s look at container management. This includes questions such as where to store
the images that we will be creating, how to use these images, and what commands and
GUI applications we can use. It also covers how we can easily monitor our running
containers, automatically restart containers upon a failure, and how to roll the updates of

our containers.



Container image storage

In Chapter 3, Container Image Storage, we looked at the various locations to store the
images you are creating. Remember that there are three major locations to store them:

¢ Docker Hub: A location that is run by Docker and can contain public and private
repositories

e Docker Trusted Registry: A location that is again run by Docker, but provides the
ability to get support from Docker

e The locally run Docker registry: Locally run by yourself to storage images

You will want to consider where you want your images to be stored. If you are running
containers that might contain data that you do not want anybody to be able to access, such
as private code, you may want to run your own Docker registry to keep the data locked. If
you are testing, then you may only want to use Docker Hub. If you are in an enterprise
environment where uptime is necessary, then the second option of having Docker there for
support would be immensely beneficial. Again, it all depends on your setup and needs.
The best thing is that no matter what you choose at first, you can easily change and push
your images to these locations without having to jump through a lot of extra hoops or
other configurations.



Image usage

The most important thing to remember about Docker images is the four Ws:

e Who: Who made the image?

e What: What is contained in the image?

e Why: Why are these things created?

e Where: Where are the items such as the Dockerfile or the other code for the image?



The Docker commands and GUIs

Remember that there are many commands that you can use to control your containers.
With tools such as the Docker daemon, Docker Machine, Docker Compose, and Docker
Swarm, there is almost nothing that can stop you from achieving the goal you want.
Remember, however, that some of these tools are not available on all the platforms yet. I
stress yet as I assume that Docker will eventually have their tools available for all the
environments. Be sure to use the --help flag on all the commands to see the additional
switches that might be available. I myself am always finding new switches to use every
day on various commands.

There are also many GUI applications out there; they can be beneficial to your container’s
management needs. One that has been at the forefront of this since the beginning is
Panamax. Panamax provides the ability to set up your environments in a GUI-based
application for you to deploy, monitor, and manipulate your container environments. With
the popularity of Docker growing each day, there will be many, many, many others that
you can use to help set up and tune your environment.



Container monitoring

We can also monitor our containers using methods similar to monitoring hosts: using
Docker commands as well as GUIs that are built by others.

First, the Docker commands that you can use:

docker stats
docker port
docker logs
docker inspect
docker events

In the Host monitoring section, you can see that the same GUI applications can monitor
both your Docker hosts and your containers. It is a double bonus as you don’t need
separate applications to monitor each service.



Automatic restarts

Another great thing you can do with your Docker images is you can set them to
automatically restart upon a failure or a reboot of a Docker host. There is a flag that can be
set at runtime: the - -restart flag. There are three options you can set, one of which is set
by default by not setting the flag.

These three options are:

e no: The default by not using the flag.

e on-failure:max_retires: Sets the container to restart, but not indefinitely if there is
a major problem. It will try to restart the container a number of times based on the
value set for max_retires. After it has passed that value, it will not try to restart
anymore.

e always: Will always restart the container. It could cause a looping issue if the
container continues to just restart.



Rolling updates

One of the benefits I have learned to love about Docker is the ability to control it the same
way I control the code that I write. Just like Git, remember that your Docker images are
version-controlled as well. This being said, you can do things such as rolling updates to
them. There are two ways you can go about doing it. You can keep your images as a
hosted code on something like GitHub. You can then update your code, build your image,
and deploy your containers. If something goes wrong, you can simply use another version
of that image to redeploy. There is also another way you can do this. You can get the new
image up and running; when you are ready, stop the old container from running and then
start up the new one. If you use items such as discovery services, it becomes even easier;
you can roll your newly updated images into the discovery service while rolling out the
old images. This makes for seamless upgrades and a great peace of mind for zero
downtime.






Docker Compose usage

One of the more useful tools, and one I find myself using a lot, is Docker Compose.
Compose has a lot of powerful usage, which in turn is great for you. In this section, we
will look at two of its usages:

¢ Developer environments
e Scaling environments



Developer environments

You can use Docker Compose to set up your developer environments. How is this any
different from setting up a virtual machine for them to use or letting them use their own
setup? With Docker Compose, you control the setup, you control what is linked to what,
and you know how the environment is set up. So, there is no more “well it works on my
system” or need to troubleshoot error messages that are appearing on one system setup but
not another.



Scaling environments

Docker Compose also allows you to scale containers that are located in the docker -
compose.yml file. For example, let’s say our Compose file looks as follows:

varnish:
image: jacksoncage/varnish
ports:
- "82:80"
links:
- web
environment:
VARNISH_BACKEND_PORT: 80
VARNISH_BACKEND_IP: web
VARNISH_PORT: 80
web:
image: scottpgallagher/php5-mysql-apache2
volumes:
- .:/var/www/html/

With the Compose setup, you can easily scale the containers from your docker -
compose.yml file. For instance, if you need more web containers to help with the backend
load, you can do so with Docker Compose. Be sure that you are in the folder where your
docker -compose.yml file is located:

$ docker-compose scale web=3

This will add three extra web containers and do all the linking as well as the traffic
forwarding from the varnish server that is necessary. This can be immensely helpful if
you are looking at figuring out how many instances you might need to help scale for load
or service usage.






Extending to external platform(s)

We looked at how we can extend to some other external platforms such as cloud services
like AWS, Microsoft Azure, and DigitalOcean before. In this section, we will focus on
extending Docker to the Heroku platform. Heroku is more a little different than those
cloud services; it is considered a Platform as a Service (PaaS). Instead of deploying
containers to it, you can link your containers to the Heroku platform from which it is
running a service, such as PHP, Java, Node.js, Python, or many others. So, you can run
your rails application on Heroku and then attach your Docker container to that platform.



Heroku

The way you can use Docker and Heroku together is by creating your application on the
Heroku platform. Then, in your code, you will have something similar to the following:

{

"name": "Application Name",
"description": "Application to run code in a Docker container",
"image": '<docker_image>:<tag>",

"addons": [ "heroku-postgresql" ]

}

To take a step back, we first need to install a plugin to be able to get this functionality
working. To install it, we will simply run:

$ heroku plugins:install heroku-docker

Now, if you are wondering what image you can or should be using from Docker Hub,
Heroku maintains a lot of images you can use in the preceding code. They are as follows:

heroku/nodejs
heroku/ruby
heroku/jruby
heroku/python
heroku/scala
heroku/clojure
heroku/gradle
heroku/java
heroku/go
heroku/go-gb






Overall security

Lastly, let’s take a look at the security aspect of putting Docker into production. This is
probably one of the most talked about aspects of not only Docker, but any technology out
there. What security risks exist? What security advantages exist? We will take a look at
both of these aspects as well as cover the best practices for your overall Docker setup.



Security best practices

These are the things to keep in mind when you are setting up your production
environment:

e Whoever has access to your Docker host has access to every single Docker container
that is running on that host and has the ability to stop them, delete them, or even start
up new containers.

e Remember that you can run Docker containers or attach containers to Docker
volumes using the read-only modes. This can be done by adding the : ro option to the
volume:

$ docker run -d -v /opt/uploads:ro nginx
$ docker run -d --volumes-from data:ro nginx

e Remember to utilize the Docker security benchmark application to help tune your
environments (see Chapter 5, Docker Security, for more information).

e Utilize the Docker command-line tools to your capability to see what has changed in
a particular image:

$ docker diff
$ docker inspect
$ docker history






DockerUl

DockerUl is a tool written by Michael Crosby, who at the time of writing this book
worked for Docker. DockerUI is a simple way to view what is going on inside your
Docker host.

0@ il & GitHub, Inc & (4] th 3

DockerUl

Home Containers Images

Containers:

L Inage Command Cruatod Stalis
Baddet SEREISLId! B finish ¢ [usrocal/bin/santry —configs/sentry.conf oy start 1370720063 [OEEEE)
20 5o 103 fbin/sh < fusribininedis-server /eic/reds/redls con wroniezze R

Dockerlll is a web interface for the Docker Remote API. The goal is to provide a pure client side
implementation so it is effortless to connect and manage docker. This project is not complete and is
still under heavy development.

Container: 9c8a34d00df172b317647d25529d3bad48560ea46c5324717aa0214cb62d0537F

Created 2013-08-08T10:49:43. 968 708808-09:00
Path foin/gh
Args. [*=c","/usrfiocalbin'sentry —config='santry.conl.py start”]
Syslnitpath Auarflocalbin/dockar
Image 58868950fd1 827 cA2 1720007 864201 biihdaz Tdfe 7 d49e3fde9adii 1 aal50530ce
Running: true
Remove Container
Goals

* Minimal dependencies - | really want to keep this project a pure html/js app.
» Consistency - The web Ul should be consistent with the commands found on the docker CLI.

Container Quickstart

1. Run: docker run —-d —p 9@0@:9008 —privileged -v
fwar/run/docker.sock;: /var/run/docker.sock dockerui/dockerui

This is a screenshot of the GitHub repository, where the code for DockerUI is kept. You
can view the content yourself by visitinghttps://github.com/crosbymichael/dockerui .

This page will include screenshots of DockerUI in action as well as the current features of
DockerUI that are available. You can create pull requests against the code if you have
ideas you would like to see in DockerUI and would like to help contribute to the code.
You can also submit issues that you might find with DockerUI.

The installation of DockerUI is very straightforward with you just running a simple
Docker run command to get started:

$ docker run -d -p 9000:9000 --privileged -v
/var/run/docker.sock:/var/run/docker.sock dockerui/dockerui


https://github.com/crosbymichael/dockerui

oD e < i 172.16.9.126 (4] th [u]
DockerUl
Dashboard Containers Images Info
The Linux container engine
Running Containers Status
» stoic_davingi
B Running [l Stopped Ghost
Docker AF1 Version: wi.17 Ul Version: vO.7.0 gockerul

After you have run the previous command, you will be able to navigate to the DockerUI
web interface. You should be able to easily break down the run command and see what it
is doing and where you need to go to get to the dashboard. However, in case you are
stumped, here is what the command is doing: it is running the DockerUI container on your
Docker host and exposing port 9600 from the host to the container. So, simply launching a
web browser and pointing to the IP address of the Docker host and then port 9000 will
give you to a screen similar to the previous one. This is the DockerUI web dashboard.




o2 ® ¢ i} 172.16.9136 o 0l G

DockerUl

Dashboard Containers Images Info

ontainers Status

 shipyard-swarm-agent [PYIEEY
. :ahi.':y::rd-.'\".’.':1"11-.'":Jn:Jg;E'm
+ shipyard-proxy [

« shipyard-carts

B Rurning [l Stopped Ghost

Containers created
1

Images created
4

3

1

Soptembar 5, 2015 Seplember 14, 2015 Sepbember 16, 2016 Detober 13, 2016

Dockar AP Version: v1.1T Ul Version: v0.7.0

This is another view of the dashboard shortly after you have launched the container and
visited the web interface. You can see information such as what containers are currently
running on your Docker host and what their statuses are; some could be stopped as well. It
will also show you the containers that are created and a timeline for when the images were

created.



eae < in 172.16.8136 i o 5

DockerUl
Dashboard Containers Images Info
Containers:
Fa Display All
Action MName Image Command Created Status
Jdockarul Wed Oct 28 2015 [ Up 30 seconds |
fswarm | --addr 172.16.9.136:2375 con... Wed Oct 28 2015 | Up 51 minutes |
fswarm m --replication --addr 172.16.... Wed Oct 28 2015 | Up 51 minutes |
fustfocal/binrun Wed Oct 28 2015 | Uip 51 mirutes |
shipyard-cens alpine sh Wed Oct 28 2015 | Up 52 mirustes |

Dockert AP1 Version: w1.17 Ul Version: v0.7.0 Tocker

At the top of the web interface, you will see a navigation bar. When you click on the
Containers item, you will be brought to a page that provides you information on all the
containers running on your host. You will see their name, the images used to run the
containers, what command is being executed inside each container, when they were
created, and their statuses. You can take actions against these containers from here as well.
These actions are start, stop, restart, kill, pause, unpause, and remove.



oD e < il 172.16.9.126 : O 7

DockerUl
Dashboard Containers Images Info
Images:
AC
Action id Repository VirtualSize GCreated
swarm:latast 10 MB Tue Oct 13 2015
dockerul/'dockerul:latest aMBE Tue Sep 152015
alpine:latest SMB Mon Sep 14 2015
ahazlett/docker-proxylatest TMB Sat Sep 05 2015

Dockar AP1 Viersion: wi.17 Ul Viersion: v0.7.0 Jockeru

Next up in the navigation bar is Images. Again, like Containers, you can get all the
information on all the images being used on your Docker host here. Information such as
their IDs, what repositories they are from, their virtual sizes, and when they were created
will be displayed here. Again, you can take some actions on your images. But for images,
the only option you have is to remove them from your Docker host.



DockerUl

Dashboard

172.16.9.136 [ o

Containers Images Info

Docker Information

Endpoint: dockerapi
Api Version: vi.17

Version: 1.8.2

Git Commit: 0Oa8c2e3
Go Version: go1.4.2

Containers:
Images:

Debug:

CPUs:

Total Memory:
Operating Systern:
Kernel Viersion:
I

Labets:

Flla Descriptors:
Goroutines:

Storage Driver:

Storage Driver Status:

Exacution Driver:

IFv4 Forwarding:

Index Server Address:

5

19

true

1

298 MB

Boot2Docker 1.8.2 (TCL 6.4); master : abaG192 - Thu Sep 10 20:58:17 UTC 2015
4.0.9-bootZdocker

VHCY-YDNH:BVLZ MBGP. Q3FH UJEW.ZAKS: HIGL:GLGM TXL4.BLOQ:SBJX
[* provider=vmwarefusion®]

61

B4

aufs

["Root Dir*,"/mnt/sdal/var/lib/dockes/auls’] ' Backing Filesystem® “extfs"),|"Dirs®,*29"] [“Dirperm1
Supported”,“trua"]]

rative-0.2
true

hitps:/findex. dockeriof 1/

The last item in the navigation menu is Info. The Info section gives you a general

overview of your Docker host, such as what Docker version it is running and how many
containers and images are there. It also provides system information on the hardware that
is available.






Imagel ayers

ImageLayers is a great tool, when you are looking at shipping your containers or images
around. It will take into account everything that is going on in every single layer of a
particular Docker image and give you an output of how much weight it has in terms of
actual size or the amount of disk space it will take up.

[ ® < 0 imagelayers.io 5 (4]

\L7 M
2 |MAGE LAYERS  About Zus CenturyLink CenturyLink Cloud

Get an Embed Badge

Imagelayers.io 95 MB f 21 Layers

Docker Images Manage Images Share URL Copy URL

Welcome to Imagelayers

Visualize Docker images and the layers that compose them.
See how each command in the Dockerfile contributes to the final
image, and discover which layers are shared by multiple images.

This screenshot is what you will be presented with while navigating to the ImageLayers
website: https://imagelayers.io.

You can search for images that are on Docker Hub to have ImageLayers provide
information on the image back to you. Or, you can load up a sample image set if you are
looking at providing some sample sets or seeing some more complex setups.


https://imagelayers.io

oD ® ¢ il} & imagelayers.io T [+ ] th o]

Manage Images

Enter image names and tags below to inspect them.

wordpress latest

(} Add Anothet Row

CAMCEL

In this example, we are going to search for the wordpress image and select the latest tag.
Now, you can search for any image and it will do auto-complete. Then, you can select the
appropriate tag you wish to use. This could be useful if you have, say, a staging tag and
are thinking of pushing a new image to your latest tag, but you want to see what impact it
has on the size of the image.



L] 8 < jim] & imagelayers.io & [+] th P

Manage Images

Enter image names and tags below to inspect them. Remove All

mysql latest

{} Add Another Row

So, let’s walk through an example. In this example, we are going to select a mysql image
and the latest tag. We will use this since it is a common image that most people will use at
some point in their Docker experience.



@ 8 < in imagelayars.io & (4] th fu]

& 'vace Lavers o £0% CenturyLink' | Gantiryiink Cloud
Get an Embed Badge
360 1 6 22 202 Imagelayers.ia 95 MB f 21 Layers
Share URL Copy URL

Docker Images Manage Images

mysgllatest
360 mb

AL fle:SA0McH1 225860848, ...
125 mb

CMD "/oin/bash’
0 bytes

RN groupadd -r mysqgl &4...

g
5

AUN mikdir /docker-antryp....

Obytes
FUN apt-get update &5 ap...
33 mb

Once we click on Save Changes from the previous item, we will be shown something
similar to the preceding screenshot (now, this will vary depending upon the image you
have selected in your search). This displays some information at the top, such as the total
image size, unique layers, the average layer size, and the largest layer size. This will help
you hone in on a particular layer that might have grown wildly.




® 8 < i imagelayars.io & (4] th fu]

3 About Ve i
‘ IMAGE LAYERS  Aboul w e CenturyLink CenturyLink Cloud

Get an Embed Badge

Imagelayers.io 95 MB f 21 Layers

Shara URL Copy URL
Docker Images Manage Images
512mb

AL fle:SA0McH1 225860848, ...
125 mb

CMD "/bin‘bash”
0 bytes

RUN apt-get update && ap...
18 mb

RUN apt-get update &8 ap...
177 mb

ENY PHP_INI_DIR=/ustioc...
Obytes

AL mikellr -p $PHP_INI_DL..

RUMN apt-get update 83 ap...
7mb

AUN rm -rf Avarfwwwhitml ...
0 bytes

The layers are broken down on the left-hand side of the previous screenshot. We can see
what action is being done at each level as the size that it adds to the overall image per
layer.




[N B i imagelayars.ic (v o th =

- AL
‘ IMAGE LAYERS  Aboul + £ 2 CenturyLink CenturyLink Cloud

T

Get an Embed Badge

Imagelayersio 95 MB / 21 Layers

: Share URL Copy URL
Docker Images (. Manage Images

125 mb

CMD “/oinbash”

0 bytes

AUN apt-get update &8 ap...
18 mb

AUN apt-get update &8 ap...
177 mb

ENV PHP_INI_DIFi=/ust/loc...
0 bytes

FILRN mikellr -p $PHP_INI_DL..

0 bytas

AL fpt-get upcatn &8 ap...

Upon hovering on a particular layer, you will be given information on it at the bottom of
the screen in a black box. This will show how each action is layered one after the other so
as to help see the command structure of the image.




0@ ¢ 0O & imagelayers.io (v (4] th (5]

A : Hestadiar
‘ IMAGE LAYERS  Aboul v %Zoe Centurylink® | GentinytUink Clowd

Get an Embed Badge

ImageLayers.ia 55 MB f 21 Layers

ShareURL (. Gopy URL
Docker Images () Manage Images

niby:lates? pyihon:iatest rodeiales golang: iatest javaiatest php:iatest
718 mb 689 mb 642 mb 709 mb 817 mb 444 mb
yarm: 1 Lapyere: 1 a | Loy 1 Leper 12 e 12
ADD Ml SH0en T 2R585% 4607 e 6P I M0HDEC0BEICAE0E2 BaAPEaae  DARCIPTRT afetl In /
125 mb
CMD “/hintbash®
0 bytes

RUN apt-get update &4 apt-pet install -y --no-install-ecommends ca-certificates curl wget && mm - var/lib/apt/lists™

AUN apt-get update &8 ap...
18 mb

44 mb

RUMN apt-pat update &% apt-gat install -y --no-install-recommends bz git mercurial openssh-client subversion &% rm -rf vaniib/aplfista™ RUN apt-get update 88 ap...
122 mb 177 mb

AUMN apt-gat updsts &8 apt-get inatall -y —nd-inatall-racommancs AUtocant sutamaks Bip2 fle ge+ ... RUIN apt-gat update 38 &p... RAUM ant-pet upaats 38 ap... ENV PHP_INI_DIR=/ussios...
315 mb T kb 0 bytes

AR kel - $PHP_INI_DL..
O bytes

RUN sef -ax &4 for key n 3., RALIM esha “deb hitp:hitpr, ..

61 bytes

RUM agd-get purge -y pyth...

ENV LANG=C.UTF-8 BNV GPG_KEYS=0BOTEB...
0 bytes 0bytes

ENV JAVA VERSION=BLEE FUN sat -x5 &4 for key In §...
0 bytes 17 kb

The preceding screenshot is an example of what you might see if you were to click on the
sample image set from the main screen. As you can see, this one is quite complex; not
only does it have a lot of layers, but it also has a lot of images that are being used. This
could be something you would see while adding multiple images to see your desired
output.

t







Summary

In this chapter, you have learned how to use Docker in a production environment as well
as the key considerations to keep an eye on during the times of and before
implementation.

In the next three chapters, we are going to be taking a look at some GUI applications that

you can utilize to manage your Docker hosts, containers, and images. They are some very
powerful tools and choosing one can be difficult, so let’s cover all three!






Chapter 10. Shipyard

In this chapter, we will take a look at Shipyard. Shipyard is a tool that allows you to
manage Docker resources from a web Ul or a GUI interface.

The topics that will be covered are:

e Starting Shipyard
e The components of Shipyard



Up and running

You will see a screen similar to the following screenshot while navigating your browser to
the Shipyard website at https://shipyard-project.com:

Shipyard

Composable Docker Management

Built on Docker Swarm, Shipyard gives you the ability to manage Docker resources including
containers, images, private registries and more

Shipyard differs from other management applications in that it promotes composability and
is 100% compatible with the Docker Remote API. Shipyard manages containers, images,

Shi G rd nodes, private registries cluster-wide as well as providing authentication and role based
pg access control.

Home

e shipyard

Deploy

Walkthrough
APl
GitHub

First, we need to get Shipyard up and running. To do this, we will execute the following
commands:

$ docker-machine create --driver vmwarefusion ship1l
$ docker-machine env ship1l
$ eval "$(docker-machine env ship1)"

$ curl -sSL
https://raw.githubusercontent.com/scottpgallagher/shipyard/master/deploy |
bash -s

$ docker-machine create --driver vmwarefusion ship2
$ docker-machine env ship2
$ eval "$(docker-machine env ship2)"

$ curl -sSL
https://raw.githubusercontent.com/scottpgallagher/shipyard/master/deploy |
ACTION=node DISCOVERY=consul://<IP_ADDRESS_of_SHIP1>:8500 bash -s

You will see the following login screen when you first navigate to the shipyard web
instance:


https://shipyard-project.com

shipyard

The URL is always the IP address of your Docker host. It runs on port 8080 (that is,
172.16.9.135:8080).

shipyard




The default username is admin. The default password is shipyard. Enter these details and
click on Login.






Containers

After logging in, you will be taken to the main dashboard or the CONTAINERS section
as follows:

ene ¢ il 172.16.9735 & th o B

shipyard =2 CONTAINERS 5 IMAGES s NODES ¥ REGISTRIES = EVENTS ADMIN
L Node Name Image Status Created Actions
L 2015824d73%b  ship2 shipyard-swarm-agent swarm:latest Up 15 seconds 2015-10-28 12:54,20 -0400 Q F
] 081e2%ecdd475  ship2 shipyard-swarm-manager swarm:latest Up 16 seconds 2015-10-28 12:54:20 0400 Q | | F
L ] deBBB3d24661  ship2 shipyard-proxy ehazlett/docker-proxy-latest Up 19 seconds 2015-10-28 12:54:16 0400 Q| F
® | fad106fbfedb ship2 shipyard-ceris alpine Up 23 seconds 2015-10-28 12:54:13 0400 Q F
L ] adfibeB1602c  shipi shipyard-controller shipyard/shipyard:atest Up & minutes 2015-10-28 12:48:74 0400 Q F
@ €2535bd5d31f  shipl shipyard-swarm-agent swarm:latest Up & minutes 2015-10-28 12:48:09 -0400 Q  F
@ ddeaf3f41a3b ship? shipyard-controller swarm:latest Up &6 minutes 2015-10-28 12:48:09 0400 Q ~
L dacd535belcd  shipl shipyard-proxy ehazlett/docker-proxy:latest Up & minutes 2015-10-28 12:42:05 0400 Q|| F
@ | Bac4d7BOaBda  ship? shipyard-certs alpine Up 6 minutes 2015-10-28 12:48:02 -0400 Q  F
@ 3b822de1cBed  shipl shipyard-discovery progrium/consullatest Up & minutes 2015-10-28 12:48:02 -0400 Q|| F
L] 4clalldaad70  shipl shipyard-controller rethinkdb Up & minutes 201 510-28 12:47:55 -0400 Q| F

There is a lot you can do in this section. We will cover all of it step by step in the
following and the Back to CONTAINERS section.



Deploying a container

The first thing we will tackle on this page is the Deploy Container button.

(a]

172.16.9.938

o020 i

E# CONTAINERS G IMAGES i NODES P REGISTRIES & ACCOUNTS = EVENTS ADMIN = L]

Container Deployment
Image Configuration Container Name
Image Name @ Command
*
H Domain Resource Limits
CPUs Memory (ME)

Environment Variables
Name Value Swarm Constraimt

Constraint Rule Value
Volumes
Hast Path Container Path Rastat Py

ﬂ Do naot automatically restart -
Container Links Port Genfigurath
Caoilalner Alias

Automatically expose all ports @

Container Port Protocol Host Listen Address Hest Port

Advanced

Allow container to run in privileged mode

There is a lot of information to digest here. But at the same time, this is the information
you are used to providing either in your Dockerfile or your docker -compose.yml file.
Once you type in all your information, you’re ready to deploy. So, go ahead and click on
the Deploy button.






IMAGES

At the top of the screen, we can see a blue navigation bar. Moving on from the
CONTAINERS section (for now), we will now cover the IMAGES section. In the
IMAGES section, we can see all the images that are being used across our hosts.

ene ¢ i 172169135 & th & 3
& ACCOUNTS = EVENTS ADMIN
x
Names ID Created Node Virtual Size

rethinkdbclatest 684ad5d758db 2015-10-23 19:21:38 -0400 ship1 172.77 MB u
swarm:latest 556c60fB7888 2015-10-13 23:27:36 -0400 shipl 9.72MB n
shipyard/shipyard-latest bd1dcdz840c8 2015-09-24 09:49:16 -0400 ship1 56.01 MB n
alpinalatest fafddca71ec? 2015-09-14 16:01:14 -0400 ship? 501 MB u
shazlett/docker-proxy-latest beazf7546a7f 2015-09-05 19:02:35 -0400 ship1 7.48 MB n
shazlett/our!:latest fa495a510875 2015-09-05 17:20:40 -0400 ship1 Basme u
progrium/consul:tatest eb6fb67TETEZE 2015-06-30 15:59:41 -0400 ship1 66.21 MB n
swarmiistest 556c60f8 7888 20151013 23:27:36 -0400 ship2 9.72 MB u
slpineclatest fafdded71ec? 20150914 16:01:14 -0400 ship2 501 MB n
ehazlett/docker-proxy:latest bbaZf7546a7f 20150905 19:02:35-0400 shipZ 7.48 MB u

We can see information such as the name of the image, its ID, when it was created, what
node or Docker host it’s running on, and its virtual size. We also have the option to delete
the images by using the red trash can icon.



Pulling an image

Now, one thing that we didn’t cover was the Pull Image button. By clicking on this, you
will be presented with the following screen:

'Y Y BF im 172.16.8135 i i J B

Pull Image

Mame

On this screen, you can enter an image name as well as its tag and have it pulled. You
could then go back to the CONTAINERS page and deploy that image. Now, this will
work not only with Docker Hub, but with any other repository you add later to Shipyard.






NODES

Next up is the NODES section. This section shows information on what nodes or Docker
hosts you have connected to Shipyard.

[ ] ® ¢ o] 172.96.8135 W th o e
sNIp }:_'1'-;"] =i CONTAINERS =2 IMAGES & NODES P REGISTRIES & ACCOUNTS B EVENTS ADMIN -~
= Refresh "
Name Address Containers Reserved CPUs Reserved Memory Labels
ship] 172.16.9.135:2375 7 0/1 08 /1.021 GiB executiondriver=native-0.2, kernelversion=4.0 9-boot2docker, operatingsystem=Boot2Docker 1.8.2 (TCL 6.4);

master : aba6192 - Thu Sep 10 20:58:17 UTC 2015, providersvmwarefusion, storagedriver=aufs

executiondriver=native-0.2, kernelversion=4.0.9-boot2docker, operatingsystem=Boot2Docker 1.8.2 (TCL 6.4);

hip Lt ] f R a8 L140 A master : abab192 - Thu Sep 10 20:5817 UTC 201 §, provider=vmwarefusion, storagedriver=aufs

It will give you information such as the name of the node, its IP address, the number of
reserved CPUs and memory, as well as the labels that provide information such as what
version of the Linux kernel or Docker is being used.






REGISTRIES

Next up is the REGISTRIES tab. This is where you can add registries beyond Docker
Hub.

ene ¢ M 172168135 o th g |
sNipL r:_'1'-.'|I =i CONTAINERS = IMAGES s NODES ¥ REGISTRIES & ACCOUNTS E EVENTS ADMIN -~
BN BTN

= Registries

There are no registries.

On clicking the Add Registry button, you will be taken to the following screen:

ene < iH] 172169135 W th 7

SNIPL r._'1'-:"|I =i CONTAINERS = IMAGES & NODES ¥ REGISTRIES & ACCOUNTS E EVENTS ADMIN - @

Registry Details

Marne

Registry Address

==

This will allow you to enter information about the registry such as its name and registry
address, which would include the IP address or the DNS name and the port it is running
on.






ACCOUNTS

Next up is the ACCOUNTS tab where—you guessed it—you can add or remove
accounts.

ene ¢ M 172169135 W t o |

=i CONTAINERS = IMAGES & NODES P REGISTRIES & ACCOUNTS E EVENTS

Ugername First Name Last Name Roles

admin Shipyard Admin Admin Q “

In the following screenshot, you can see what information is needed when you add a new
account:

ene < iH] 172.16.9.135 W th 7 .

shipyard =i CONTAIMNERS = IMAGES & NODES ¥ REGISTRIES & ACCOUNTS E EVENTS ADMIN - @

Account Details

Usermame
First Name
Last Name
Password

Roles

Information such as the username you want to use, your first and last names, the password
you want to assign to it, and lastly your assigned role.






EVENTS

Okay, last up is the EVENTS tab that will display the following screen:

ene ¢ il 172.16.9735 s th a

£ IMAGES 4 NODES P REGISTRIES & ACCOUNTS | EI EVENTS ADMIN
Time User Type Message Contalner Node Tags
201510-28T16:54:47.835Z admin api /apifroles api, api, get
201510-28T16:54:47.8327 admin api Japi/accounts api, api, get
201510-28T16:54:44,816Z admin api Japifregistries api, api, get
2015-10-28T16:54:42.6Z admin api /epifmodes api, api, get
2015-10-28T16:54:33.675Z admin api /apifnodes api, api, get
2015-10-28T16:54:30.77Z admin api /api/nodes api, api, get
201510-28T16:52:14.096Z admin api /api/nodes api, api, get
201510-28T16:52:13.935Z admin api /api/nodes api, api, get
2015 10-28T1 & 52:13.7752 admin api fapifnodes: apl, api, get
2015-10-28T16:52:13.607Z admin apl /api/nodes apl, api, get
2015 10-28T16:52:13.448Z admin apl /api/nodes apl, api, get
201510-28T16:52:13. 2782 admin api /apinodes api, api, get
2015-10-28T16:52:12 5347 admin api Japifnodes api, api, get
2015 10-28T16:52:12.331Z admin api fapifnodes api, api, get
201510-28T16:52.12.1432 admin api /apifnodes api, api, get
2015-10-28T16:52:11.926Z admin api /apifnodes api, api, get
201510-28T1&:5211.711Z admin api /apifnodes api, api, get

This tab will show you all the events that have occurred and what user accounts they were
initiated from. Information such as the message, container, node, and tags are also
displayed.






Back to CONTAINERS

We jump back to the CONTAINERS section where we saw all our containers. We can
also click on the magnifying glass on the right-hand side of each container to get pulled to
the following screen:

0@ O 172.16.9.125

';-ﬁ-lj'!J_:}'.;:[ i3 CONTAINERS 5 IMAGES au NODES F REGISTRIES & ACCOUNTS = EVENTS

@ shipyard-swarm-agent Started today at 12:54 pm
swarm:latest
Container Configuration Swarm Node Environment
Container ID Command Name Host SWARM_HOST=:2375
20158244739 | --addr 172.16.9.136:2375 ship2 172.16.9.136:2375
consul://172.16.9.135:8500

CPUs Memaory
Hostname Domain Name 1 996 MB
2015824d739h N/A

Port Configuration

internal  2375/tcp
Processes
PID USER COMMAND
2308 raat Sewarrn | —addr 172.16.9.136:2375 consul:/172.16.9.135:8500

We can then get information on that running container and manipulate it. We can stop,
restart, or destroy (or remove) it. We can also see information on it such as the command
that it’s running, its port, its IP address, and its node name.

Clicking on the Stats button, we can see information pertaining to the running container
such as the CPU, memory, and network information.



EH CONTAINERS

CPU

Container: 20715824d739b

IMAGES

172.16.9.935

LUNTS

@cru

12:58:26

Memory

12:58:24

Network

12:58.27

12:58:25

12:58.26

12:58:28

12:56:26

1Z:58:2T

12:58:28

12:56:27

12:58:29

12:58:28

12:58:29

12:58:28

12:58:29

125830

12:58:29 12:56:30

B Matwork ()

12:58:30

1Z:58:30

Metwork (i)

0.
12:58:30

050

-1.00
12:88:20

1.00

0.60

0.60

040

0.20

.00

12:58:24

12:58:26

12:58:28

12:68:26

1Z:68:2T

12:58:27

12:68:28

12:58:28

12:58:29

12:58:29 12:68:30

12:68:30

Joiz
0.0z
0.0z
0.0z

0.02

12:58:30

B

L

Clicking on the Logs button will show you everything that is going on with the container.
In this case, the container is polling consult for new information ever so often.

CONTAINERS

&5 IMAGES

NO

172.16.9.935

ADMIN

2015-10-2BT16:
2015-10-28T16:
2015-10-28T16:
2015-10-28T16:;
2015-10-28T16:
2015-10-28T16:
2015-10-2BT16:
2015-10-28T16:
2015-10-28T16:
2015-10-28T16:;
2015-10-28T16;
2015-10-2BT16:
2015-10-2BT16:

54
54
35:
55:
55:
56:
56:
56:
57:
57:
57:
58:
58:

0.
40,
0o.
20.
a0,
00,
0.
40 .
00.
20.
a0,
00.
20.

Container: 2015824d739b

B672834047
BB3ITBR595Z
BE98442712
6940743642
6980216422
7026419507
TDa1192952
7186548532
7207323852
7255507552
7306939172
7362004637
FA1703564L

[34mINFOLON[0000]
[34mINFO[DN[0020]
[34mINFO[ Dm(0040)
[34mINFO[Om[0060]
[34mINFOLDm[00B0]
[34mINFOLONLO100]
[34mINFOLON[0120]
[34mINFO[DN{0140)
[34mINFO[Om[0160]
[34mINFO[Om[0180]
[34mINFOLDm[0200]
[34MINFO[ON[0220]
[34mINFO[DM{0240)

Registering
Hegistering
Registering
Registering
Registering
Registering
Registering
Registering
Registering
Registering
Registering
Registering
Registering

he
The
the
the
the
the
the
the
the
the
the
The
the

discovery
discovery
discovery
discovery
discovery
discovery
discovery
discovery
discovery
discovery
discovery
discovery
discovery

service
service
service
service
service
service
service
service
service
service
service
service
service

every
every
every
avery
every
every
Bvery
every
avery
avery
every
Bvery
every

0s...
208, ..
205...
20s...
20s5...,
20s5...
208....
20s...
20s...
20s...
20s5..,
20s...
20s..:

[34maddr [0r=172. 16,
[34maddr [Or=172_16.
[34maddr [Or=172.16.
[3dmaddr [0m=172.16.
[34maddr [0r=172.16.
[34maddr [De=172.16,
[34maddr [0r=172_16.
[34maddr [Om=172_16.
[34maddr [0m=172.16.

[34maddr [0r=172.16

[34maddr [0r=172.16.
[3dmaddr [0r=172_16.
[3dmaddr [0m=172_16.

[CRCRSR-RE-RERCRE-RERERERE ]

136:2375
136:2375
136:2375
12375

[3amdlscovery[0m=consul :
[34mdiscovery[Om=consul :
[3amdiscovery[Om=consul:

[3amdiscovery[ onsul:
[3amdiscovery[Om=consul:
[3amdiscovery[Om=consul:
[3amdiscovery[ onsul :
[3amdiscovery[0m=consul:
[3amdiscovery[fm=consul:
[3amdiscovery[Om=consul ;
[34mdiscovery[Om=consul :

136: 2375

IXakrs
FA172.
72,

72,
AT

IXakrs
IXarrs
FA172.
1172,
1172,
172,

18500
18500
18500
18500
8500
18500
18500
18500
18500
18500
18500
18500
18500

Now, the Console button is interesting. It will allow you to actually run a command
against the container and provide the output from that command.



e0e < ] 172168136 & R

EE CONTAINERS 5 IMAGES aa NODES P REGISTRIES & ACCOUNTS = EVENTS ADMIN

bazh » “ Disconnect

There are other ways to manipulate these containers as well. We will go back to the
CONTAINERS page, where we can see a list of all our containers and their status. We
have some controls here to restart, stop, and destroy the container.

e e < ] 172169125 [ th 7

5 IMAGES an MODES P REGISTRIES & ACCOUNTS = EVENTS

? o Node HName Image Status Created Actions

[ ] 2015824d739b | ship2 shipyard-swarmragent swarm:latest Up About a minute 201510-28 12:54:20 0408 =  Restant
” i r B Stop

L ] 0B1e29ecd4d7s5 ship2 shipyard-swarm-manager swarm:latest Up About a minute 201510-28 12:54:20 -0400 P

Destroy
L] dcBBB3d24667 | ship2 shipyard-proy ehazlett/ docker-proxylatest Up About a minute 2015-10-28 12:5416 -0400 = Seale F
® | fadi06fhfcah | ship2 shipyard-certs alpine Up About a minute 20151028 12:5413 0400 ¢ Rename F
il Stats

L ] adf1beB1602c ship1 shipyard-controller shipyard/shipyardlatest Up 7 minutes 2015-10-28 12:48:14 -0400 o ks i

L ] c2535bd5d31f ship1 shipyard-swarmragent swarm:latest Up 7 minutes 201510-28 12:48:09 0400 B Logs F

[ ] ddeaf3f41a3b ship1 shipyard-contraller awarm:latest Up 7 minutes 2015-10-28 12:48:09 -0400 Q F

[ ] dacd635ocic3 shipl shipyard-proxy ehazlett/docker-proxy:latest Up 7 minutes 2015-10-28 12:48:05 -0400 Q F

L ] Bac4d7B0aB4a | shipl shipyard-certs alpine Up 7 minutes 201510-28 12:48:02 -0400 Q | F

& 3b822dcicBe3 | shipl shipyard-discovery progrium/consullatest Up 7 minutes 2015-10-28 12:48:02 -0400 Q|| &

L] 4clalldaad70 | shipl shipyard-controller rethinkdb Up & minutes 2015-10-28 12:47:55 -0400 Q| F

We can also scale or rename the container and get to the other areas we saw earlier such as
Stats, Console, or Logs.



e ® " 172.16.9135 : il e

Scale Container: 2015824d73%b

MNumber of Instances

1|

You will be taken to this section if you click on the Scale option. This will allow you to
enter a numerical value and scale the instance up as far as you like.

You can also click on the Rename option to rename the container to anything you wish.



0@ i 172.16.9.135 & u [P

Rename Container: shipyard-swarm-agent

Do be careful; use a name that helps you identify the container.






Summary

As you can see, Shipyard is very powerful and will only continue to grow and integrate
more of the Docker ecosystem. With Shipyard, you can do a lot of manipulation with not
only your hosts, but also the containers running on the hosts.

In the next chapter, we will take look at another GUI tool to manage your Docker hosts,
containers, and images, and that is Panamax.






Chapter 11. Panamax

Panamax is another open source project that helps with deploying Docker environments
by using a GUI interface to allow you to control just about everything that you can with

the CLI.
In this chapter, we will cover:

¢ Installing Panamax
e What after installing?



Installing Panamax

You will see the following page while navigating to the Panamax website at

http://panamax.io/:

ece < i8] panamax.ia

BEaMAMAX  WELCOME  GET PANAMAX  DOCUMENTATION & SUPPORT ABOUT v

Panamax: Docker P——
Management for Humans
An open-source project that makes

deploying complex containerized apps
as easy as Drag-and-Drop.

BANamax

Leam More Get Panamax

About Panamax

What? Panamax is a containerized app creator with an open-source app marketplace hosted in GitHub. Panamax
provides a friendly interface for users of Docker, Fleet & CoreDS. With Panamax, you can easily create,

share and deploy any containerized app no mattar how complex it might be.

a

E:r;‘- CenturyLink:

Next, you will see the instructions to install Panamax on both Mac OS X and Ubuntu:



http://panamax.io/

Mac OS X 10.9.0 or higher

To install Panamax on Mac, use Homebrew. Here are the steps:

On your terminal window, run:

& brew install http://download.panamax.ic/inataller/brew/panamax. b

Install and run Panamax!

% panamax init

After the installation, Panamax will open a browser window automatically.

For a menu of all commands avallable to you, simply run:

$ panasax

List of all available commands, aliases and parameters for the Panamax Installer.

Ubuntu Linux 12.04 or higher

Ubuntu Desktop Users: Download and run script as shown.

& curl http://download.panamax.io/installer/ubuntu.sh | bash

After the installation, Panamax will open a browser window automatically. For a menu of all commands available to you, simply

mn:

& panamax

A

After running the panamax init command and then the panamax command, you will see
the following options:



scottpgallagher — panamax — panamax — bash * panamax

Upon selecting the first selection init, all the magic starts to happen.

scottpgallagher — panamax — panamax — sleep * panamax

Once all the magic is complete, you will be taken to the Panamax dashboard.




The following screenshot shows you what you will see once the installation has been
completed and the browser page has been loaded for you:

00 @ < ] 10.0.0.200 ¢ o M O

L A
Core0S Host Performance; pe =) == CenturyLink

Search Panamax Templates & Docker Repositories

Enamespace/private-repo , l=your registry endp

Or, browse these available templates: Sort Searches by Name
public (18)  posigresgli4) mysolid) nginx(¥ gitlab (M ol (B drupal (@ redis(2)  openssh (2] wordpress(2)  grafana (1)
plwik (1)  wetty (1)  openstock (1) etcd(1) ralls{l) haproxy (1)  eclosticsearch (1) influxdb (1)  onalytics (1) stackedit (1)

markdeown (1) pagedown (1) #res(1) tiny(1) posigres{1] rsa(1}] twitter(1) pgithub({1}] git(l) bulldpack(1) herolu (1]

Show all keywords

From the CenturyLink Labs Blog
Introducing Flatcar: Tool for
Creating Docker-ready Rails
Projects

Developing Rails Apps In-
Container with Docker Compose

Docker Compose YAML
& Panamax

Watchtower: Automatic Updates
for Docker Containers

What to Inspect When You're
Inspecting

Docker Hub Top 10

On this page, you can search for images that are on Docker Hub or browse the available
templates that Panamax has to offer. You can also see the performance of the host that is
running Panamax at the top with information such as the CPU and memory usage.






An example

For this example, we select public from its available templates and use the AWS CLI -
wetty image to run.

gse <>l 1090200 ollo) o gy

BEINamMaX Q seaacH L3 MANAGE [El pocumenTaTiON

oru :Ir,‘

Core0S Host Performance: pe mm == CenturyLink:

Search Panamax Templates & Docker Repositories

sounce Last Refreshed: Ocfober 28th, 2015 77:10 UTC

Birdwatch - Tweet stream analysis and visualization

Examples: Wordpress, =namespacelpivate-repo , =your regisiry endpoint/your-mpo , Rails, redis, NGINK, you gat the picfura,
Templates
AWS CLI - wetty
Run Tempiate »
Amazon YWeb Services - CLI (Version 1.0.0) - using wetty Terminal in Chrome 1 _
Browser More Details
Image
Run Template b
BirdWatch s an open-source reactive web apphication that consumes the 2 _
Twitter Streaming AP for a selection of... Mone Details
Sevurres Last Befreshad: Ootober 28th. 3015 1710 LITE SRS
buildpack-runner
_ ) ) Run Template &
A template for running your GitHub repo code via Heroku buildpacks! Mare 1
Details
\'n....-..\ Last Refreshad Octaber 28th, 2015 1710 UTC image
Drupal 7.38 with MySQL 5.5
Run Templsat »
Drupal 7.28 with mysql 5.5 Mare Details 2 =

Drupal 7.38 with PostgreSQL 9.3

Run Template »
Drupal 7.38 with PostgreS0L 9.3 More Details

N

10 UT IFrages

You can see information such as the image name, the description, how many images it will
contain, and the option to run the template.



eoe < i) 10.0.0.200 & L 2

BEINamMaX Q seaacH L3 MANAGE [E] pocumenTATION

oru s

Core0S Host Performance; pe mm == CenturyLink:

Search Panamax Templates & Docker Repositories

Examples: Wordpress, =namespacalprivata-repa , [=your_registne sndpoint/your-rapo , Rails, realis, NGINX, you get the pictura.

Templates

AWS CLI - wetty
Amazon Web Services - CLI (Varston 1.0.0) - using wetty Terminal in Chrome 1
Browser More Details

Image Fun Locally

Sounce Last Refreshed: Oclober 28th, 2015 17:10 UTC
Deploy o Tamget

Run Template

Birdwatch - Tweet stream analysis and visualization
BirdWatch s an open-source reactive web application that consumes the
Twitter Streaméng AP for a selection of... More Datails

1710 LITC

Scurce Last Refreshed: October 28th, 2015 17

buildpack-runner

Run T
A tempiate for running your GitHub repo code via Heroku buildpacks! Mare 1
Details
Sounce Laat Refreshed, Cetober 28th, 2015 17:10 UTC
Drupal 7.38 with MySQL 5.5

Run Templst »
Drupal 7.28 with mysql 5.5 Mans Datails 2 " =
Seures Last Refreshed: Octfaber 28th, 2018 1710 UTC Images
Drupal 7.38 with PostgreSQL 9.3

Run Templat: »
Drupal 7.38 with PostgreS0L 9.3 More Details 2
Seurca Last Refreshed: October 28th, 2015 17:10 UTC "

Upon clicking the Run Template button, you will get two options. You can run it locally
or deploy it to a target, such as the cloud. For this example, we will choose to run it
locally.



FANAmMaX @ Q searcH

£} MANAGE

E DOCUMENTATION v

10.0.0.200

o
-]
=N
=]

ABOUT

CoreQS Host Performance; w mm

Manage

Dashboard

Registry

GenturyLink Labs Blog (_‘} o Legal & Privacy Policy

A, =
= h:: CenturyLink-

Panamax is an open-source product from CenturyLink Labs.

& 2015 Ganturylink — The Panamax project is provided under the Apache 2.0 icense. All Rights Reserved.

"
s

=7 CenturyLink:

Images

Remote Deploymant Targsts

Sign Up for Our Newsletter

Get all the latest news, tips & tricks for Panamax, Docker, etc.

Email Address | Subscribe

After you choose to run it locally, you will want to navigate to the Manage section. In this
section, there are multiple subsections that you can then navigate to such as Applications,
Sources, Images, Registry, and Remote Deployment Targets. It will show you how
many of these each subsection has in it. We will take a look at each of these next.



Applications

First up is the Applications section. Upon entering this one, we can see the application we
launched earlier is now in here.

eee® < oD 1000200 0.0 ol

BEIMNEMAX | Q seancH L3 MANAGE [E pocumentaTion v ABOUT

ars

Core0S Host Performance: mrn mm =}“= CenturyLink:

The application was successfully created
Click herg to read the additional instructions provided by the author of the tempiate usad to create this application.

The following services have envirenment variables with NULL values. Review the documentation for essistance in filing thess out,

* AWSCLiwstty

Manage / Dashboard / Applications

AWS CLI - wetty

Deployed to: CoreQS Local {} .
Documantation
Access your application | 2 View AWS CLI - wetty on imagalayers.io

Application Services =

AWS_CLI Add a Category

AWSCLiwatty u

CoreOS Journal - Application Activity Log Show Full Activity Leg

51
Oct 2B 13:14:35 docker Sbad d2: Pulling fs layer

We can see information about this running instance such as where it is deployed to (in this
case, locally), the application services that it is running, and the application activity log.



Sources

The Sources section shows you what resources are currently loaded into the system.

(%}
-]
=
=]
|

0D ® < il 10.0.0.200

BEINamaX Q seascH £} MANAGE [E] pocumenTATION

_CPuE A
Core0S Host Performance: pe mm == CenturylLink:

Manage / Dashboard

Sources
https://github.com/centurylinklabs/panamax-public-templates "
Templates: 17 Last Refreshed. 10/28/2015 af 5:10pm UTC x

+ Add a New Source

Panamax |s an open-source product from CenturyLink Labs, Sign Up for Our Newsletter

Gat all the latest news, tips & tricks for Panamax, Docker, etc.

CenturyLink Labs Blog (7) (7) | Legal & Privacy Palicy Email Address Subscribe

AN
E, l;‘. CemuryLink- © 2015 CanturyLink — The Panamen project i providad Lindar the Apache 2.0 license. All Rights Feserved.

In our case, we can see that the public templates for the Panamax public sources are
available. On this screen, you can add additional resources as needed.



Images

In the next section, the Images section, you can see all the images that are currently being
used.

e0® ¢ im} 10.0.0.200 ot (4] th 28

BEINamMaX Q scaacH L} MANAGE [E] pocumenTATION

Py e‘r_p"

Core0S Host Performance: pey mm == CenturyLink:

Manage / Dashboard
Images

% Aemove Selecied

2 centurylink/panamax-ui:latest

Image ID:  &183db5c12b0ef850c0R2chbed 751391 05068 0baab3503ab 1802 das04b2da %0 dd
Image Size: 90.6 MB

& centurylink/panamax-api:latest

Image ID:  Sf00b0AT3e9653001 1dff21 582008364407 563001 1efaifad 7520c5431c0d7h
Image Size: 89.2 MB

£ google/cadvisor:0.13.0

Image ID:  e34bb5f5alba43cTaaedsSeacd7c3bbaadBobal 5a27 29b81315bbTd7bZbeda1a
Image Size: 15.1 MB

= <none>i<none>

Image ID: 01dB88d0:58381 actddEBedBeTadfaTEE54000406c0047 b 5089007 208aabeb 1
Image Size: 20.4 MB

£ <none>:<none>

Image ID:  4eclfbch2afd4aB65a35725dd5a26956604008826f171308aaa131a7deBicfad
Image Size: 50.2 MB

£ centurylink/redis:latest

Your options on this screen are to remove whatever images you would like to by selecting
the checkbox next to them and then selecting the Remove Selected button.



Registries

The next section deals with the registries that you can search for templates and images. By
default, it searches Docker Hub and includes insecure registries along with secure
registries.

0D ® < il 10.0.0.200

o
-]
=
=]

+

BEINamMaX Q seascH L3 MANAGE [E]l pocuMmenTATION v ABOUT

Core0S Host Performance: o mm é‘:;@ CenturyLink:

Manage / Dashboard

Registries
Docker Hub Endpoint: https://index dockerio +| Enabled

Allaw Insecure Registries: NO

+ Add a New Registry

Panamax is an open-source praduct from CenturyLink Labs, Sign Up for Our Newsletter

Get all the latest news, tips & tricks for Panamax, Docker, etc.

Centurylink Labs Blog () o Lagal & Privacy Palicy Email Address |

\ [ .
£,3 CenturyLink-  ©2015 GenturyLink — The Panamax project is provided U the Apache 2.0 fioense. Al Rights Feserved.

You can change that to only search the secure registries if you desire so. You can also add
additional registries such as the registries that you may have deployed in your own
environment.



Remote Deployment Targets

The last section is Remote Deployment Targets.

eee® < > D 1090200 CYEREY

BEINamMaX Q scaacH L3 MANAGE [E] pocumenTaTION

CFy s

Core0S Host Performance; pe mm CenturyLink:

e
Manage

Remote Deployment Targets

A Remote Deployment Target allows you to use Panamax to deploy templates and images to your infrastructure. You
can setup your target manually and register it with Panamax via a token, or via Dray, leveraging popular cloud providers
and orchestrators.

Learn more about Remote Deployment Targets.

i Mualeld Dr

Add a Remote Deployment Target

Automatically set up your deployment target on one of these providers using Dray. Already e a depicyment target sel
up?
- Enter your token here
. amazon 2% CenturyLink: 2% DigitalOcean

Don't sas your favorite providar listed?
Set a deployment target up manually. Learn more.

Panamax is an open-source product from CenturyLink Labs. Sign Up for Our Newsletter

Get all the latest news, tips & tricks for Panamax, Docker, eic.

CenturyLink Labs Blog (') 0 Legal & Privacy Polley Ermafl Address Subscribe

L
3 '= CenturyLink- & 215 Centurylink — The Panamax project i provided under the Apache 2.0 icense. All Rights Fesarved,
A

These are items such as cloud hosts that may include AWS, CenturyLink, and
DigitalOcean.

Now that we have covered all the sections, let’s go back to the application that we
deployed and see what all we can do with it.



Back to Applications

Back in our Applications section under the application that we deployed earlier, the AwS
CLI - wetty image, we can click on the gear icon on the right-hand side of the screen.
Given some options such as saving as a PMX template that will allow you to share it with
others that are using Panamax, you can also save it as a Compose YAML file that can be
used in Docker Compose. Other options include deploying to a target and rebuilding and
deleting the app.

eo® ¢ iH] 10.0.0.200 = (4] th @ ||

FANamax Q seasck £} MANAGE B oocumenTaTiON ¥ ABOUT

Core0S Host Performance: 5:';" ;:i: CenturyLink

Manage / Dashboard / Applications

AWS CLI - wetty

Deployed to: CoreOS Local
Docurmantation

Access vour application View AWS CLI - weity on imagelayers.ic
o i ; * Save as PMX Template

Application Services & Save As Compose YAML
‘. Deploy to Tamget

Rebuild App

AWS _CLI Add a Category

a. AWSCUwetly u

Delete App

CoreOS Journal - Application Activity Log Show Full Activity Log

Oct 2B 13:15:88 docker http on p

Panamax |s an open-source product from CenturyLink Labs. Sign Up for Our Newsletter

Get all the latest news, tips & tricks for Panaman, Docker, efc.




Adding a service

Next, we are going to add a service to our application. To do so, we will click on the +
button and then give it a name.

In our case, we are going to add a database, so we will name this section Database.

[ N il 10.0.0.200 (4] th @

BANEMaX | Q searcH 3 MANAGE [El cocuMeNTATION v ABOUT

Core0S Host Performance; o - =:L= CenturyLink:

Manage / Dashboard / Applications

AWS CLI - wetty

Deployed to: CoreOS Local

Documantation {} 1
Access your application | 2 View AWS CLI - wetty on imagelayers.io
Application Services = o
AWS_CLI Database Add a Category
KT8 AWSCLIwatty
Core0S Journal - Application Activity Log Show Full Activity Log

Oct 28 13:15:88 docker http on port 3808

Panamax |s an open-source product from CanturyLink Labs. Sign Up for Our Newsletter

Get all the istest news, tips & tricks for Panamasx, Docker, etc.




[ N Y N 10.0.0.200 & (4] th (]

Search Images

(=namesoaCe DvaIe-reps VO remelry endoom o reos

Images

Dismiss

After this, we will click on + Add a Service to the database’s application services and will
need to search for an image that we want to use.



ece < i) 10.0.0.200 & B 3

Search Images

Images

Since this is a database application and MySQL is known by almost everyone, we will
search for it and add it to the app.



Configuring the application

After we have added it to the app, Panamax will start to configure it for our usage, so we
can tie the application services we are running together.

10.0.0.200

A -
= 7 CenturyLink

Manage / Dashboard / Applications

AWS CLI - wetty

£ View AWS CLI - wetly on imagetayers.io

Application Services

Add a Category

AWS_CLI Database

Core0S Journal - Application Activity Log

Show Full Activity Log

Sign Up for Our Newsletter

Panamax is an open-source product from CenturyLink Labs

Gat all the lxtest news, tips & tricks for Panamax, Docker, etc.

Service links
If you want to configure each application service, you can click on it and you will be taken

into a submenu.



e ® < il 10.0.0.200 (4] th

BFINEamMaX Q searcH £} MANAGE [E pocumENTATION v ABOUT

Core0S Host Performance:; mrn o =:i= CenturyLink:

Manage / Dashboard / Applications / AWS CLI - wetty

AWSClLIwetty

Base Image: canturylink/aws-cli-wetty Tag: latest CPU  Details (SN
1 HEM
Documentation Find on Docker Hub | 8 View centurylink/aws-cli-watty on imagelayems.io "

EE e e Ii%HHHHHlHHHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIII IliHiHHEHIHHHIIIIIIIIIIIIIIIIIII

G Service Links AWSCLIwetty docker run --name
AWSCLIwetty -p 80988:3608 --
expose 3868 -e

7 Decker Inspec

[ Environment Veriables + AddaLinked Service “AWS_ACCESS_KEY_ID=" -e
"AWS_SECRET_ACCESS_KEY="
centurylink/aws-cli-wetty

0 Fos

E Wolumes

% Docker Aun Commang

CoreOS Journal - Service Activity Log Show Full Activity Log

For this example, we will look at what items we can configure in the AwSCLIwetty
application. The first item we can configure is the service links. We can also see the
docker run command that will be used once we populate our environmental variables.

Environmental variables

Next are the environmental variables. For this image, it would ask us to supply our AWS
access key ID and our AWS secret access key.



eo® ¢ i 10.0.0.200

BEIN2mMaX Q searcH L} MANAGE [E] pocumenTaTiON

CPl) -

CoreQS Host Performance: nen £"2 CenturyLink-

Manage / Dashboard / Applications / AWS CL - wetty

AWSCLIwetty

Base Image: centurylink/aws-cli-wetty Tag: latest CPl  Details & Runming Decker Insoact
Documeantstion Find on Docker Hul 3 View centurylink/aws-cli-wetty on imagelayens.io e

= e Tabg Environment \Variables ? Docker Run

@ Swvica Links docker run --name

AWS_ACCESS_KEY_ID
AWSCLIwetty -p BBB8:3808 --

| R | expose 3868 -e

Stk "AWS_ACCESS_KEY_ID=" -e
“AWS_SECRET_ACCESS_KEY="

AWS_SECRET ACCESS KEY centurylink/aws-cli-wetty

+ Add an Environment Variable

m Environment Varlables

mPcns

E Wolumes

> Docker Run Command

Save all changes

CoreOS Journal - Service Activity Log Show Full Activity Log

These are two items that are required to be able to use the AWS CLI to execute commands
against your AWS environment. You can add additional environmental variables too.

Ports

Next, you can view or configure the port configuration that each service uses.



eoe < i) 10.0.0.200 & L 2 |

BEINamMaX Q seaacH £} MANAGE [El pocumenTaTION ~  ABOUT

CPy

CoreQS Host Performance; wen X

== CenturyLink:

Manage / Dashboard / Applications / AWS CLI - wetty

AWSClLIwetty

Base Image: centurylink/aws-cli-wetty Tag: latest CPU Details (® Aunning Docker Inspect
Documentation Find on Docker Hub | 8 View centurylink/aws-cli-watty on imagelayens.io "

G Servica Links Mapped Endpoints docker run --name
AWSCLIwetty -p BABE 3008 --
expose 3968 -e

[ Evironment variables “AWS_ACCESS_KEY_ID=" -
8088 : 3000/ TCP 10.0.0.200:8088 "AWS_SECRET ACCESS KEY="
centurylink/aws-cli-wetty
D Fons + Binda Port

E P Exposed Ports

) Dockar Aun Command a000 / TCP

3000/ TCP

+ Exposea Porl

Save all changes

Core0S Journal - Service Activity Log Show Full Activity Log

For this service, we can see that it is exposing port 8088 on the host to port 3000 on the
container using the TCP protocol. We can see the exposed ports at the bottom and, for this
service, it is just port 30600. We can also add additional ports for each service.

Volumes

Next, we can see the volume configuration for each service.



Fanamax

10.0.0.200

Q SEARCH L3 MANAGE [El pocuMmenTATION

CoreQS Host Performance: ney

CFy

Manage / Dashboard / Applications / AWS CL - wetly

AWSClLIwetty

Base Image: canturylink/aws-cli-wetty Tag: latest CPU  Details (SN
Documentation Find on Docker Hub | 8 View centurylink/aws-cli-watty on imagelayems.io "

E e e

@ Servica Links Data Volumes ey T
AWSCLIwetty -p 8088.3008 --
expose 3088 -e

ming Deocker Inspect

M Envinment Variables "AWS_ACCES5_KEY_ID=" -e
+  Add a Volume "AWS_SECRET_ACCESS_KEY="
centurylink/aws-cli-wetty
& rone _
Data Volume Containers
g Volumes

+ Mount a new Data Volume Container
% Docker Aun Commang

Save all changes

CoreQS Journal - Service Activity Log Show Full Activity Log

=,:= CenturyLink:

This service doesn’t utilize any; but if we want to add one, we can do it from this screen.
We can remove one if there was one.

Docker Run Command

Last is the Docker Run Command section. In this section, you can execute commands
against the container that is running the service.




eo® < i} 10.0.0.200 [ B ] 2 |

BEINamMaX Q searcH L3 MANAGE [E] pocumenTaTiON

CoreQS Host Performance; ey = £"2 CenturyLink-

Manage / Dashboard / Applications / AWS CL - wetty

AWSCLIwetty

Base Image: centurylink/aws-cli-wetty Tag: latest CPl  Details & Runming Decker Insoact
Documeantation Find on Docker Hi ‘ View centurylink/aws-cli-wetty on imagelayens.io e

= e Tabg Docker Run Gommand Docker Run

@ Swvica Links docker run --name

AWSCLIwetty -p BBB8:30808 --
expose 3868 -e

B environment Variables "AWS_ACCESS_KEY_ID=" -e
"AWS_SECRET_ACCESS_KEY="
centurylink/aws-cli-wetty

) ros

g Wolumes

»  Docker Aun Gommand

Save all changes

CoreOS Journal - Service Activity Log Show Full Activity Log

This would be similar to using the docker exec command.






Summary

We have now taken a look at two very powerful GUIs that can be used to control your
hosts, containers, and images, and they both do very well. If you only had more choices!
Well, let’s dive into the next chapter and introduce another!

In the next chapter, we will take a look at another GUI tool to manage your Docker hosts,
containers, and images, and that is Tutum, which was recently purchased by Docker.






Chapter 12. Tutum

Tutum is a company that was just recently purchased by Docker and has joined its ranks.
The goal of Tutum is to help you run your containers on the cloud. Tutum is another
feature that makes Docker easy to use.

In this chapter, we will cover how to:

e Start with Tutum
e Add your node
e (Create a stack



Getting started

You will see a screen similar to the following screenshot when you access the Tutum
website at https://www.tutum.co.

®
g
&
3
g
o
e
=
|

e < >

o
mtutum Features rks Blog lBsources Slgn up Login

The Docker Platform for Dev and Ops

Build, deploy, and manage your apps across any cloud

Get started for free!

Mo cradit card réquired

We're thrilled to announce that Tutum has joined the Docker team!

Build Deploy Manage
Containerize your applications and All frameworks and technologies Simplify operations, focus on your code,
accelerate development, welcomed. Scale with ease on any Cloud. and forget about managing servers.

Upon clicking Get started for free! or the Login link, you will be presented with the
following screen:


https://www.tutum.co

0D e < il & dashboard.tutum.co 1 o th ) [+

Tutum uses cookies to improve user experience. By using cur website you consent to all cookies in accordance with our Privi [ZIE"A | Understand

D tutum

BY DOCKER

Login with Docker Hub

Other login options <

Now, given that Docker has recently scooped them up, this could change in the future. But
you will be presented with a login screen to use your Docker Hub, current Tutum, or
GitHub credentials.






The tutorial page

You will be presented with the tutorial page that will provide a tour of Tutum if you wish.

i dashboard.tutum.co £ [ [P
et |

slilfa | Understand

Tutum uses cookies to OVE our website you consent to all cookies ccordance with our Frivac!
mtutum BY DOCKER 8 pocs ~ ¥ communiy {23 @ )

£ Tutum Is In BETA starus:

o Welcome & Stacks & Services % Nodes & Repasitories

Welcome to Tutum! The quickest and easiest way to get started with Docker.

Let's get you started with a basic tutorial of Tutum!

Link a cloud Deploy a Create a service Create a stack ) Repositories

provider ) node ) )
A service is a group of A stack is an easy way A repository isa

Link your Amazen & node is a Linux contalners from the o group a collection of collection of tagged
‘Web Serunices, hostVi used o same Docker services that make up IMages. An Image is a
Digital Ocean, deploy and run repository. Services an application {like template used to create

SoftLayer and/or YOUr containers make it simple 1o scale Docker Compose) containers, Images are
Microsoft Azure your application across defined in services.
nodes.

account.

Add your first cloud provider

You can also skip the tour by clicking on the button in the bottom-right corner of the
screen, which we will do to get you started.






The Service dashboard

You will be taken to Service dashboard, where you can create your first service. But
before we do that, we need to do some other work. So, let’s get our nodes added first.

o

e @ < ] & dashboard.tutum.co (v} [+] th

IR | Understand

L ur VaC!
Wielcome,
~ % Community (128 @ ;-:E:I-c:;.':al:asher i

A Tutum Is In BETA status:

|k

Tutum uses cookies to improve user experience. By using ou with o

cordance v
8 pocs

mtutum BY DOGKER

# Stacks & Services = Nodes & Repositories

& Service dashboard

@ A service i5 a collection of containers from the same image and share the same
configuration (emvironment variables, links, exc).
Click here to learn more

o Create your first service







The Nodes section

If you click on the Nodes section in the navigation bar, you can start adding your cloud
provider or you can bring your own node.

eo® < il] & dashboard.tutum.co & 4] th P
+

slilfa | Understand

th our Privac
= b Welcome,
~ % community (28 @ scottpgallagher

£ Tutum Is In BETA starus:

corgance v
mtutum BY DOCKER B pocs

# Stacks & Services & Nodes B Repositaries
& Node dashboard

& A node is an individual Linux host used to deploy and run your applications. A
node cluster is a collection of nodes in the same provider and region and of the
same type.

Click hiere to learn more

 You can link your cloud provider account to deploy a node

Go to doud pravider settings 3

O YOU £3N bePg your own node to Tutwm

4+ Bring your own node

Q

If you wish to bring your own node, you will need to install a client that Tutum uses to
communicate with your node. For this example, we are going to stick with using a cloud
provider: AWS in this case.






Cloud Providers

In the Cloud Providers section, you will get a list of cloud services that you can link to.
Again, we are going to use AWS. But you could use DigitalOcean, Microsoft Azure,
SoftLayer, or Packet. We will click on the + Add credentials button for AWS:

0@ < ] & dashboard.tutum.co (v} (4] th P [

th our Frivacy Policy. EEGLEREERE]

mtutum BY DOCKER B oocs W Community 327 @

® Stacks & Services & Nodes B Repositories A Tutum Is in BETA STALUS .

This. is the list of providers you can
directiy integrate with Tulwm.

Account info

Next
& Cloud Providers
© Link a provider to start deploying nodes.

4> Source Providers Provider not llsted? Thats okay! Use aur Bring your own node feature
1 AP

Provider Account Status Free credit!
a,

Amazon Web Services \unt linked) [=] + -H‘ddtf!dl.‘rl‘.’lals:-
&5 Change email

Digital Doean I T ked) [x] 13520 Tutum code
& Hub account i ; ) Ly et
B Notificakicns Microsoft Azure 0 ACCoL ] [ ] # Ada credentals.
= Newslerers Packet O ‘o Add credentals [ 3100 Tunim rode
5 Cancel accour

Here we would provide our AWS Access Key ID as well as our Secret Access Key:



aen < i8] & dashboard tutum.co
Armazon Web Services credentials

O Don't know where or how to get this? Click here to learn more [

Access Key ID

Secret Access Key

7 .
if ' Sine crodentials

AWS uses your access key ID as well as your secret access key to authenticate against
AWS. You can enter these details and then click on the Save credentials button.

You will then see that you have linked your AWS account, can modify the credentials if
they ever change, or unlink the account all together if you need to.




[ N Y N & dashboard tutum.co & (4] th 2 |

N | Understand

mtutum BY DOCKER & tocs ~ “':I'_:'[IIIII'.H'-I[:.‘ T @ :

# Stacks & Services & Nodes & Repositaries £ Tutum Is in BETA Starus .

Account info

& Cloud Providers

@ Your Amazon AWS account has been successfully linked!

LLAP key Provider Account Status Free credit!

8, Change password Amazon Web Services AKIMIQFATAPFESGCRUIA (]

Microsoft Azure ina account linke 0 = Add credantialy
o HIEEEm
0

Digital Ocean

SoftLayer (na account linked;
B Connected services

Packet (ro account linked
B MNewsletars

B Cancel account

Q

Now that we have a cloud provider to run our service on, we can launch our first node on
the cloud now by clicking on the Launch your first node button:



e ® < il} & dashboard.tutum.co

8 | Understand

mtutum BY DOGKER B pocs ~ ® Community 129 @ d

A Tutum Is In BETA starus: @

® Stacks & Services & Nodes B Repositories
&8 Node dashboard

& A node is an individual Linux host used to deploy and run your applications. A
node cluster is a collection of nodes in the same provider and region and of the
same type.
Click here to learn more &

+ Launch your first node + Ering your own node

We will navigate back to the Nodes screen.







Back to Nodes

After clicking on Launch your first node, we will need to provide some additional
information such as what region we want to deploy our node to, if we have a custom VPC
we have created that we want to deploy our node to, what size we want the node to be, any
IAM roles we want to assign to the node, the number of nodes we want, and the disk size
of each node.

0@ ¢ il i dashboard.tutum.co £ [+] h (al

GRS | Understand

Tutu o ccer o with our Privac
mtutum BY DOCKER E' Docs. ™ ’Cummur"il}' 129 @ :

#® Stacks & Services & Nodes B Repositories £ Tutum Is (n BETA STALUS @

& (Create a node cluster

Deploy tags

Provider | Amazon Web Services -
Region | US West (Oregon) ~
WPC ALt =
subnet
Security group
Type/size | t2.micro[1 CPUs, 1 GE RAM] .
14M roles | None -

MNumber of nodes [ 1

Disk size [} 10 GB

For our example, we mainly kept the default, only lowering the disk size to the minimum
size of 10 GB.



e @ < ] & dashboard.tutum.co [} [+ ] th P [

RN | Understand

Tutum uses cookies to improve user experience. By wsing cur website you co cookies in accordance with our Privac
- 3 Welcome, =
mtutum BY DOCKER & pocs % Community (128 @ scottpgallagher
# Stacks & Services & Nodes & Repositories £ Tutum Is in BETA Status: .
e
& scott

£ Deploying ——

—
Number of nodes LI Ceely |

& smazon Web Services

@ US West (Oregon)
»

w t2.micro
Memary: 1024 MB Hostname State
Disk space: 10 GB
ottpgallagher. node tutum ¥ Deploying
L -’ @ -]

o

Once you have clicked on the Launch node cluster button, you will see the status of the
node; in this case, it’s Deploying. We also have some other items we can check out while
it’s deploying.

We can view the Monitoring tab and see information pertaining to the node such as CPU,
Memory, Disk, and Bandwidth Out.



o2 ® < i & dashboard.tutum.co (v o th

C | Understand

%tutum e & pocs ~ W Community ({25 @

®stacks  HServices  TNodes B Repositories & Tutum is in BETA status:
oz

&= Sscott

& Deploying = -

Eodes Ll Moninoring =T e
CPU
&8 Amazon Web Services 100%
75
@ US West [Oregon) "
" tZicra 255
Memory. 1024 MB 4 15:00 1.0 z1.00 28. Dot 03:00 06.00 03.00

Disk space; 10 GB f 7 3
| == 3355 3d&4-scotipoallagher. node tuTum jo

Memory

15:00 LE:00 2100 28, Oct 03:00 0600 4900 12:00

| == 3355 3d84-scoupgallagher. node.lutum.io

Disk

15:00 i8:00 25 et 03 600 LR 1200

| == 33553dE4-scottpgallagher. node_tutum.io

Bandwidth Out o

We can also view the timeline of our node. Now, at first, this will be very short as it’s just
showing us that we created the node and are deploying it.



e ® < il & dashboard.tutum.co Ty o th =) [+

Tutum uses cookies to improve user experience. By using our website you consent to all cookies in accol with 0 sl | Understand

rdance with our Privac
mtutum BY DOCKER & Docs ~ % Community (128 @ 1

®Stacks b Services  WNodes @ Repositories A Tutum s In BETA status: @

& scott

£ Deploying _
5 Nodes il Monitoning = Timeline
0 Modea Cluster Deplay @ 1335 10/28/2015 | W

° Node Cluster Create © 13:35 10/28/2015 | v

& smazon Web Services

@ UsWest (Oregon)

" t2.micro

Memary: 1024 MB
Disk space: 10 GB

Over time, this timeline will grow and show you the progress of your node.

Our node should be deployed by now. So, we can click back on the Nodes link and see
that it has in fact been deployed and is running.



aae < | > @D & dashboard.tutum.co Ty o th T B

SIS E TR | Understand

Welc e,
~ % Community (128 @ ;-::I-t::g:aliagher -
® Stacks & Services G Nodes & Repositories A Tutum is in BETA starus: i

& scon
» Depl d

Tutum uses cookies to improve user experience. By using cur website yo cookies in acc with o

ordance w
mtutum BY DOCKER B pocs

Number of nodes o'} 1 m

& smazon Web Services

@ LS West (Oregon)
»

" t2.micro
Memary: 1024 MB Hostname State
Disk space: 10 GB
33553d34-scottpgallagher. nade tutism P Deployed
Y t % 54 1 - / es @ o @l

o

We can get some information on the left-hand side, such as it is running on AWS in the US
West (Oregon) region, and is a t2.micro instance with 1 GB of memory and 10 GB of disk
space. We can also see that it currently has no containers running on this particular node,
what IP address has been assigned, and what version of Docker it is running. We can
terminate our node as well when we no longer need it or scale the number of nodes with
the slider at the top if we want to increase the number of nodes.

If we drill down into the node itself by clicking on its hostname, we can see some more
information provided to us.



o2 ® < i & dashboard.tutum.co (v o

ith our Privacy Policy. ERUGLETEERE]

%tutum BY DOCKER - l’“:ummur-i'l;-' 131 @ : 4

A Tutum Is In BETA stz

#® Stacks & Services o Nodes B Repositories

& scolt / 33553d84-scottpgallagher.node.tutum.io Bl & Terminae

» Deployed

& Contalners @ Endpalnt [ pdonitoring = Timeline

@ afew seconds ago

stz
% 54.200.174.206 Name tatus Deployed

Na cantainers deployed on this node
& smzzon Web Services

Q@ US West (Cregon): us-west-23

" t2micro

Memary: 1024 MB
Disk space: 10 GB

Docker Info

Version: « 183
Graph driver: aufs
Exec driver: native-0.2

@

It includes what, if any, containers are running on this node, what endpoints or ports are
exposed, the monitoring of the node (as we saw earlier), as well as the timeline that we
saw before. Now, all of this pertains to the node itself, not the containers that will be

running on the node.






Back to the Services section

Now, it’s time for us to launch a service and get some containers running on this node.

oD ® ¢ O & dashboard.tutum.co T (4] th u) ;

Tutum uses cookies to improve user experience. By using cur website yo cookies in accordance with our Privacy Policy. [JRIGLEEERE]

- S ‘Welcome, S
mtutum BY DOCKER & pocs > W community {31 @ scottpgallagher

# Stacks & Services = Nodes & Repositories A Tutum Is in BETA Status @

& Service dashboard

@ A service i5 a collection of containers from the same image and share the same
configuration (@mvironment variables, links, etc),
Click here to learn more

o

By clicking on the Services tab, we will be taken to the previous screen, where we can
deploy a service.

Now, Tutum offers up three areas to search for the images you might want to use:

jumpstarts or collections that they have categorized for you; public repositories on Docker
Hub; or private repositories that you have set as private on your Docker Hub account. For
our example, we are going to select the tutum/hello-world example due to its small size.



o2 ® < i & dashboard.tutum.co & o th T |5

N | Understand

mtutum o e B pocs W Community {33 m

S

® Stacks & Services & Nodes B Repositories A Tutum s in BETA stz

Image selection

Database sarvers Cache servers Analytics Messaging gqueues Application sarvers Proxies ChES Miscellaneous

tutum/hello-world

m Image to test docker deployments. Has Apache with a ‘Hello World* page listening in
port B0

*

More details &

tutum/authorizedkeys
m Adds a user public SSH key to the host's *~/ssh/authorized_keys ' via docker container

Select &

Mare details 2

s | —
m Image based on gliderlabsfogspout optimized for syzlog and Tutum

More details &

9

After clicking the Select button for it, we are taken to a screen similar to the following
one; yours will vary depending upon what image you have selected.



P08 < lim] & dashboard.tutum.co v (1] th F

Tutum uses cookies to improve user experiance, By using our website yo cookies in accordance with our (SRGIE | Understand

P Ak Welcome,
mtutum BY DOGKER 8 pocs ~ % Community 433 @ scottpgallagher

A Tutum s in BETA stz

#® Stacks &b Services o Nodes B Repositories

© ©

Image selection Service conflgurat:cn

Image & tutum/hello-world &

Image tag | latest
Stack | (Mo stack)
Deployment strategy | Emptiest node

Mumber of containers  m—— 1

Deploy tags

Forts

Click to override ports defined in image

Autorestart | OFf Autodestray | OFF

Privileged

¥ Advanced options o

Hest: ervironmaent variables $

Now, you can give the service a name or use the generated one for you. You can also
select what tag to use for the image, what your deployment strategy is (if you are using
multiple nodes), how many containers to deploy, any tags you wish to add to the
containers that will be deployed, custom port settings (if any), and whether it should
autorestart in the event of a failure. This should seem familiar as some of these items, such
as deployment strategy, were covered in the book, mainly in Chapter 8, Docker Swarm,
with regards to Docker Swarm. So, once you have everything kosher, go ahead and click
on the Create and deploy button and prepare for a blast off!

After we click on the button, we are taken to a screen similar to the one we saw when we
were deploying our host node.



o2 ® < i & dashboard.tutum.co (v o th 2 {i

thoour Privacy Policy. ERNGLETEERE]

%tutum BY DOCKER 8 pocs ~ W Community §33 @ L

® Stacks b Services  WNodes @ Repositories A Tutum s In BETA siatus: (@

& hello-world-a325afa2

& Starting

@ not deplayed & Containers @ Endpaints | Bl Monitor L Triggers = Timeline & Configuration

& twitum/hello-worldlatest

. /Binfah -c "php-fpm -d variab Number of containers 1 Apoly

e
% off - Mame Status

I.": Off & elle-workd-a325afa2 °Slar|ing

E Emptieat node
< off

B off

% Mone

= Bridge

@

We can see information on the left-hand side, such as what command the container is
running, what ports are exposed, and other settings as well pertaining to the container. We
can see that it’s in the Starting state and should be running shortly.



Containers

Once it has finished starting and is now in the running state, we can manipulate the
container and do things such as stop, terminate, redeploy, or even edit the configuration of
the container, and expand the number of containers that are running.

0@ < ] & dashboard.tutum.co (v} (4] th @ [

th our Frivacy Policy. EEGLEREERE]

e e Welcome, =
mtutum BY DOCKER 8 pocs > % community 433 @ scottpgallagher

® Stacks & Services & Nodes B Repositories A Tutum Is in BETA STALUS .

& hello-world-a325afa2

» Running

@ afew seconds ago & Containers @ Endpoints L togs 2l Manitoring & Triggers = Timeline & Configuratior

& witum/hello-world:latest

5 /binfsh =c "php-fpm -d variab Number of containers o} 1

o Actions »

G, off

—| Mame Status

o-workd-a325alal P Running u u E B

It of -
-

&S Emptieat node

= off

B off

% None

= Bridge

Now, let’s take a look at the navigation menu for containers.




Endpoints

Again, the Endpoints screenshot will show us any port information pertaining to the
running container.

0@ < ] & dashboard.tutum.co (v [+] h

N | Understand

mtutum BY DOCKER 8 pocs ~ % communily §33 @

# Stacks & Services & Nodes B Repositories A Tutum is in BETA status:

& hello-world-a325afa2

» Running

& twtum/hello-worldlatest

?~ fbin/ah -c "php-fpm -d variab. © Mo endpoints. If you are expecting an endpeint make sure the appropriate port has been published. Learn more (&
& @D

R Off

Ig off

= prptiest node

& off

B of

*® Mone

= Bridge




Logs

The Logs section will show us a running log of the screen output the container would
have.

@ ® < 1] dashboard.tutum.co : [+] i 3

Tutum uses cookies to improve user experience. By using our website you consent to all cookies in accordance with our Privacy Policy. [REEHERAERE]

Welcome,
Dytutum s ooceen @ o< oo (D @ scotpgalegher

# Stacks o Services S Modes & Repositories A Tutum Is in BETA

& hello-world-a325afa2

» Running

jil
&

@ afew seconds ago & Co . @ logs ul i

@

Since this container just started, we don’t have anything yet; but this section can be helpful
in the event you need to troubleshoot a running container.



Monitoring

Next, we have the monitoring section that can show us the information we saw before in

the Nodes section.

% tutum evoocker

= dashboard. tutum.co

ST | Understand

E n accordance with our 3Ty 0
& pocs - *CI.‘“II"JIJ‘IH_}' 133 @

o

|

¥ Stacks & Services 2 Nodes B Repositories

& hello-world-a325afa2

» Running

@ afew seconds ago W) Containers @ Endpoints

& tutumshello-world:latest
’— /binfsh -c “php-fpm -d vazizb...

- G

# Tue Ocober 27, 19:59
G, Off hello-world-a325afaz-1: 0.00 %

100%

CPU

12 off o 15:00 18:00 -

- .
& empriest node

100 2E8.0m 03:00

— hello-world-a325afaz-1 |

— hella-world-a325afaz-1 |

& off Memaory

58 M
W Off "

18 Mb

None
* R 15 Ml
-
= Britige 1 18 28. 001 03.00 08.00 12.00
= hella-world-a3z5afaz-1 |
Bandwidth Out
Mbp
.1 Mbg
181 2100 28.0ct 091 121

o

Items such as CPU, Memory, and Bandwidth Out can tell how much our container is

being used for the service that it is running.




Triggers

Next up is the Triggers section. Now, this section can come in handy if you are looking at
scaling something based on the CPU usage that a container has.

0@ < ] & dashboard.tutum.co (v} (4] th @ [

th our Frivacy Policy. EEGLEREERE]

mtutum BY DOCKER B pocs ~ % Communiy {33 @ :::

® Stacks & Services & Nodes B Repositories A Tutum Is in BETA STALUS .

& hello-world-a325afa2

> Running

@ a few seconds ago & Contain

& witum/hello-world:latest

% /bin/ah -c "php-fpm -d variab
& @D
@, off

Triggers are APl endpeints to redeploy or scale a service whenever a POST HTTP request is sent ta them.
Learn more &

Add wigger Redeploy -

It of
Name Type URL

= em d
i @ No triggers defined
< off
B off
* Mone

= Bridge

@

For example, you could set a trigger that if the CPU usage goes above 60%, launch
another container to help with the load (assuming you are running your service in a load
balancer).




Timeline

Again, we have the Timeline section that we saw with regards to the nodes. We can see
the lifespan of a container as well.

0@ < ] & dashboard.tutum.co (v} [+] h

N | Understand

mtutum BY DOCKER | Docs ﬁ-:umm-_mi':'_.- 133 @

® Stacks & Services & Nodes B Repositories A Tutum Is in BETA STALUS .

& hello-world-a325afa2

> Running

@ afew seconds ago W Containers @ Endpoints | B Monitor & Configuratior

& witum/hello-world:latest

¥~ /bin/ah -c "php-fpm -d variab, ° Service Start ©13:38 10/28/2015 W

[ 0o
° Service Create O 1338 10/28/2015 | w
Q, of

12 o

E Emptieat node
& off

B off

% None

= Bridge




Configuration

Lastly, we have the Configuration section that shows an overview of the container as a

whole.

% tutum evoocker

& dashboard.tutum.co (v [+]

ST | Understand

E n accordance with our 3Ty 0
& pocs - *CI.‘“II"JIJ‘IH_}' 133 @

# Stacks & Services S Nodes

& hello-world-a325afa2

» Running

@ afew seconds ago

B Repositories

A Tutum s in BETA Seatus

: = el m

[ @ Er int: Log Ml Monitor LT = lir £ Configuration
& tutumshello-world:latest
’— /binfsh -c "php=-fpm -d variab... 3 Ervironment variables % Lir = Valum
8
Image tag s tutum/hallo-world:latest
8 Off
l‘ & Deployment strategy Emptiest node
< O - hlacad )
£ empriest node Deplay tags
~u
o Ports  concainer port Protocol Published Mode part
B off
80 tep
* MNone
= Bridge R -
Run command  /bin/sh - “php-fom -d variables_order="EGPCS" && exec nginx -g "daemon off,™
Entrypoint  (Using
Aurorestart - Off
Autodestroy  Off
PID  None o
Metwork  Sridge

This section is also broken down into subsections that include general information,
environmental variables, container links, and attached volumes for the container.







The Repositories tab

Let’s take a look back at the navigation bar at the top and click on the Repositories tab.

e @ < il & dashboard.tutum.co & [+ ] th

Tutum uses cookies to improve user experience. By using cur website you consent to all cookies in accordance with our Privacy Policy. ERURGEAEE]

o

|

o - Welcome, i
mtutu.m BY DOCKER W o = ooty O @ scottpgallagher

# Stacks & Services & Nodes & Repositories A Tutum is in BETA status: ()

& Repository dashboard

@ A repository is a collection of tagged images. An image Is a template used 10
create containers, Images are defined in services,
Click here to learn more (&

=+ Create your first repository + Add from a third party registry

o

In this tab, you can add custom repositories beyond Docker Hub; for example, if you were
running your own private repositories, where your company would be storing images that
you would want to use, you would add that in this section.






Stacks

There is also the Stacks section. Stacks are a collection of services similar to what you
would think of when you are using Docker Compose.

e @ < im] & dashboard.tutum.co

(v}
Tutum uses cookies to improve u website you consent to all cookies in accordance with ou UEISTREUES | Understand

Welcome,
& pocs v % Community {33 @ ;-:E:I-c::g;alragher i

A Tutum Is In BETA status:

@tutum BY DOGKER

# Stacks & Services & Nodes & Repositories

€ Stack dashboard

@ A stack is a collection of services. It is a corvenient way to automate the
deployment of multiple services that are linked to each other.
Click here to learn more &

of Create your first stack

o

Let’s take a look at this section, because it can be very useful while using development
environments or for testing.

After we click on Create your first stack, we are taken to a page that is similar to the
following screenshot:



o2 ® < i & dashboard.tutum.co (v o th 5}

ith our Privac N | Understand

mtutum o B pocs W Community {33 m ;

S’

® Stacks @b Services  WNodes B Repositories A Tutum s In BETA siatus: (@

€ Create a stack

Stack name

Stackfile

& Drag and drop a Stackfile or Click to upload a file

eam more &

57 Click here
s registry Stackfibes.io & or try ours

In this screenshot, we can see that we need pieces of information.

We need a name for our stack and we need the stackfile contents. In our case, we are going
to use our trustworthy MySQL example and call our stack mysq1l.



o2 ® < i & dashboard.tutum.co (v o th 2 {i

thoour Privacy Policy. ERNGLETEERE]

mtutum BY DOCKER 8 pocs ~ W Community §33 @ L

®otacks  &Services  ENodes B Repositories A Tutum s in BETA satus: @

€ Create a stack

stack name "|-.-'-.:|I|

Stackfile

= "B0:80°
- "443:443"

- ‘“dbimpsgl®

= F3306"

& Drag and drop a Stackfile or Click 1o upload a file

For our stackfile, we are going to use one of the resources that Tutum encourages us to
explore. In the bottom section under the Stackfile field, there is an option to get a
Stackfile from the Stackfile registry, which is located at https://Stackfiles.io.

Upon entering stackfiles.io, we are presented with an easy search box.


https://Stackfiles.io

[ XS ] ) E.n & stackfiles.io [¥] o\t 7|

STACKFILES

Find the perfect Stack for your next project

Getting a jumpstart using Docker is just a search away

Q mysal

Again, for our test, we want to find the mysql stackfile, so we enter mysql in the box and
click on Browse.

Now, for our example, we want a mysql one and we can see it right on the top.



LT RERS el St & O jojd

9 Stackfiles.io Login

mysgl
Deploy to Tutum <3

Blue Green
Deploy to Tutum L8

Docker Monitoring Stack
Deploy to Tutum L4

3 5emvices

Quickstart Go
Deploy to Tutum L4

Rsync Store

Deploy to Tutum <>
6 5ervices
BitTorrent Sync

Deploy to Tutum <
1 Services
Wordpress

Deploy to Tutum <2
2 5ervices
New Relic

Deploy to Tutum <>

Website Snapshots using Rendercat
Deploy ta Tutum £

UL

However, you could use a different one or search for one as well to see if there is one
already done for you. Again, always work smarter, not harder!

So, if you drill into the mysq1 stackfile, you can see what all it is doing.



[}

o0 ® < im] & stackfiles.io (4] th T | .

9 Stackfiles.io Login

Stacks / mysq|l

A comprehensive MySQL stack

wtum-cron  backup_heurly backup_daily mysgl mysgl_slave  dbvel_master

tutn-cron:
image: sillelien/tutum-cron
auterestart: always
cpu_shares: 123
men_limit: &dn
roles:
- global
envirenment:
BACKUP_HOURLY_CROM_SCHEDULE: "G = * * '
BACKUP_DATLY CROM_SCHEDULE: ‘0 3 * #
Links:
- backup_hourly
- backup_daily

Deploy to Tutum

In our case, we are just going to copy this, go back to our Tutum stack deployment page,
and paste it among the contents of the stackfile.

After we paste its contents in our Stackfile field and click on the Launch stack button, we
will see our stack come to life.



o2 ® < 0 & dashboard.tutum.co

%tutu.m BY DOGKER

#® Stacks & Services o Nodes B Repositories

€ mysq

W Not running

MName Status
dbweol-master B ot running
o
@ ysql B ot running
L
backup-hourly M Mot running
N
back W Mot running B
L :
ysql-slave M not running
L
tutum-cror W Not running
&

thoour Privacy Policy. ERNGLETEERE]

8 pocs ~ W Community §33 @ )

A Tutum Is In BETA stz

i Terminate

Image

& ubuntulatest

tutum/mysqgllatest

& silleliendocker-mysgl-backu..

& sillelien/docker-mysgl-backu,

tutumd mysgl:latest

& sillelienftutum-cron:latest

O@Eoe

oDoeE

SEoe

SDEEeE

SDoE

GEe

@

After a few minutes, it will fire up for us and we will have created and be running our first
stack. We can then manipulate the various pieces of the stack by starting/stopping them,
terminating them, redeploying them, or even editing their configurations.

We can also look at the stackfile being used and edit it if needed to our likings or

download it to share it with others as well.




0@ ¢ im} & dashboard.tutum.co & o th

N | Understand

mmunity 133 m

® Stacks @b Services  MNodes B Repositories A Tutum s In BETA sanus @

€ mysq

Bl Not running & o
p Services Endpi

.1 ‘gillelien/docker-mysgl-backup:latest







Summary

We have now looked at three very powerful GUI tools that you can add to your Docker
arsenal. With these tools, you can manipulate everything from your host environments, the
images that live on those hosts, as well as the containers running on those hosts. You can
scale them, manipulate them, and even remove them as needed.

In the next and the final chapter, we will be looking at some advanced Docker topics such
as how to scale your containers, and debugging and troubleshooting them. We will also
look at the common issues that can arise as well as common solutions to these issues. We
will also cover various APIs that pertain to Docker as well as how to contribute to Docker.
We will dive into configuration management tools, advanced networking, as well as
Docker volume management.






Chapter 13. Advanced Docker

We’ve made it to the last chapter, and you’ve stuck with it until the end! In this chapter,
we will be taking a look at some advanced Docker topics. Let’s take a peek into what we
will be covering in this chapter:

Scaling Docker

Using the discovery services
Debugging or troubleshooting Docker
Common issues and solutions

Various Docker APIs

Keeping your containers in check
Contributing to Docker

Advanced Docker networking



Scaling Docker

In this section, we will learn how to scale Docker. Earlier, in Chapter 7, Docker Compose,
we looked at using Docker Compose to do our scaling. In this section, we will look at
other technologies that we can utilize to do the scaling for us. We will take a look at two
such technologies—one that you can use through the command line and the other two that
can be used through a web interface.

e Kubernetes: We have looked at another command line earlier to scale Docker—
Docker Compose. There are other tools out there that you can use to scale your
Docker environments from the command line. One such tool is Kubernetes:

$ kubectl scale [--resource-version=version] [--current-replicas=count]
--replicas=COUNT RESOURCE NAME

$ kubectl scale --current-replicas=1 --replicas=2 Host Node

You can find out more about it at http://kubernetes.io/v1.0/docs/user-
guide/kubectl/kubectl_scale.html.

e Mist.io: With Mist.io, you can perform all your Docker actions in this software,
everything from adding your cloud environments to locally run Docker installations.
You can then see all the machines or nodes that are on that host and check whether
they are running or have been stopped. You can also view information about them
such as any alerts that they may have as well as their usage. You can also scale
environments within the web console as well. While Mist.io is free to use, there is a
fee if you want to use their monitoring service. It does come with a free trial for 15
days though. Scaling is done just by selecting the node that you want to scale and
entering a value to scale to, the rest is all done automatically for you.

e Shipyard: When it comes to being able to scale easily, I am not sure there is an
easier way than using Shipyard. Like Mist.io, you can easily scale nodes by using
Shipyard. In Chapter 10, Shipyard, we saw how easy it was to do tasks such as scale
running containers using Shipyard.


http://kubernetes.io/v1.0/docs/user-guide/kubectl/kubectl_scale.html




Using discovery services

In this section, we will learn how to scale Docker, but in a different way. Previously, we
looked at using Docker Compose to do our scaling. In this section, we will look at other
technologies that we can utilize to do the scaling for us automatically. There are some
discovery services that we can tap into for this usage. We will focus on two of them in this
section as they are the more popular ones.



Consul

One of the more popular options for discovery services with regards to Docker is Consul.
Consul is an extremely easy-to-use discovery service that offers a lot of options that we
can tie this into automatically updating the items in Consul by using a program called
Registrator or by automatically taking those items that are updated in Consul and then
turning around and updating a configuration file to show those updated items by using the
consul-template program. Information about Consul can be found at https://consul.io/.
For more information on Registrator, visit http://gliderlabs.com/registrator/latest/. And, to
know more about consul-template, refer to https://github.com/hashicorp/consul-

template.

Adding these three pieces to your technology arsenal can greatly increase the level of
performance and uptime that you can provide. You can add new nodes to a service on the
fly, and have the configuration on a particular container be updated on the fly. You can
also move the updated nodes into a service and then remove the other ones that aren’t
updated so that you can provide a method for zero downtime with rolling updates as well.
You can also go the other way if you notice something you updated isn’t functioning
properly. You can roll an older version of something into a discovery service while rolling
out the newer version if a bug or security vulnerability is discovered. The possibilities of
what you can do with these three pieces can be endless.


https://consul.io/
http://gliderlabs.com/registrator/latest/
https://github.com/hashicorp/consul-template

etcd

If you are going extremely lightweight with your host environments and using CoreOS,
then you are very familiar with etcd. It uses a dynamic configuration registry to do
discovery. When etcd is configured on each CoreOS host, they can do key-value
distribution and replication, which allows them to discover each other as well as new etcd
hosts.

etcd focuses on being:

Simple
Secure
Fast
Reliable

To find out more about etcd, refer to https://en.wikipedia.org/wiki/CoreOS#ETCD. You
can also visit https://github.com/coreos/etcd, which contains information not just about
what etcd can do, but also the ways you can get support for it, roadmap, mailing list, and
reported bugs. You can also refer to https://coreos.com/etcd/ and

https://github.com/coreos/etcd.

Two of the more well-known projects that are using etcd are:

e Kubernetes
¢ Cloud Foundry

To view other projects that also use etcd, visit https://github.com/search?
utf8=%E2%9C%93&qg=etcd.

Debugging or troubleshooting Docker

Now that we have our Docker containers running in our production level service, we need
to know how we can troubleshoot them—how do we fix common problems with
containers, what should we be looking out for, and how can we quickly debug issues that
do arise in our environments to avoid any serious downtime? Let’s take a look at some of
the topics that we can cover.


https://en.wikipedia.org/wiki/CoreOS#ETCD
https://github.com/coreos/etcd
https://coreos.com/etcd/
https://github.com/coreos/etcd
https://github.com/search?utf8=%E2%9C%93&q=etcd

Docker commands

There are quite a few built-in Docker commands that you can use to help debug and
troubleshoot Docker. With focus on running the containers themselves, here are the ones
that can help you:

Docker history: This lets you view the history of Docker image

Docker events: This lets you view the live stream of the container events
Docker logs: This lets you view output from a container

Docker diff: This lets you view the changes of a container’s filesystem

Docker stats: This helps you view the live stream of a container’s resource usage



GUI applications

The best way to be able to debug or troubleshoot your containers is to have a visual
overview of all your containers. There are a few options for you out there that we can use:

e Shipyard (https://shipyard-project.com)

e Mist.io (http://mist.io)

e DockerUI (https://github.com/crosbymichael/dockerui)
Now only these options will allow you to get an overview of the status on all your running
containers. You can also manipulate these containers, that is, you can restart them or view
the logs for a particular container. While some of the options will do more than others, it is
important to review them all to see what is the best fit for what you would like to see and
be able to perform.


https://shipyard-project.com
http://mist.io
https://github.com/crosbymichael/dockerui

Resources

While there are a lot of resources out there for Docker, you would want to make sure you
are focusing on the following two at all times, as they are the official means by which you
can get information or obtain help:

e Docker documentation: This is an official documentation straight from Docker

¢ Docker IRC room: This is the official communication for the Docker community
and a place where you can not only get help from others in the Docker community,
but also assistance from those who work at Docker






Common issues and solutions

What are some common issues that others have run into putting their environments into
production while using various Docker products? What are the solutions to those common
issues? How can we mitigate against these issues so that no further instances occur? Let’s

take a look at what we can do!



Docker images

When you are using images, remember two things:

e FEach image you pull takes up space
e FEach time you run an image, that particular run is stored using disk space

If you are running low on space, this might be something to keep an eye on before it
becomes a problem. If the space fills up, the containers might stop working, and this might
lead to loss of data. Now you can view the images that you currently have by running a
simple command:

$ docker images
To remove a particular image, we can run another command:
$ docker rmi <image_name>

But what about those images whose run is stored using disk space? How do we view
them? There is a switch that can be added onto the images subcommand to view them:

$ docker images -a

You can remove these, by using their image ID:

$ docker rmi <image_ID>



Docker volumes

As of Docker v1.9, you can manage volumes through the Docker CLI. Let’s take a look at
what all can we do and how:

$ docker volume --help
Usage: docker volume [OPTIONS] [COMMAND]

Manage Docker volumes

Commands:
create Create a volume
inspect Return low-level information on a volume
1s List volumes
rm Remove a volume

Run 'docker volume COMMAND --help' for more information on a command

--help=false Print usage

So we can do quite a lot; we can create volumes, inspect the volumes, list volumes, and
remove volumes. Let’s take a look at each, going through the lifecycle of a volume, that is,
from creation to deletion:

$ docker volume create --name test
test

$ docker volume ls

local test

Now you will notice this one was created locally. You can use the --driver flag and
specify which volume driver to use:

$ docker volume inspect test

[
{
"Name": "test",
"Driver": "local",
"Mountpoint": "/var/lib/docker/volumes/test/_data"
}
1

With this, we can see the name of the volume, which driver was used to create it, and
where it’s located on our system:

$ docker volume rm test
test



Using resources

Be sure to use all the resources that are out there. Those resources could include:

e Docker IRC room
e Docker documentation
e Docker commands






Various Docker APIs

Some of the various Docker APIs can immensely help you when you are writing up a
script in the coding language of your choice. You can tie that into pulling the strings on
Docker and have it to do the work for you without having to break out into another
program or scripting language.



docker.io accounts API

This API is used just for account management. With it, you can:

Get a single user

Update various parameters for a particular user
List e-mail addresses for a user

Add an e-mail address for a user

Delete an e-mail address for a user

There is not a lot that you can do with this API as it is mainly focused around what you
can do with one’s user account. In reality, there isn’t a lot of information baked into one’s
user account, and as you can see, the e-mail address is the main focal point of one’s
account.

For more information, please visit
https://docs.docker.com/reference/api/docker_io_accounts_api/.


https://docs.docker.com/reference/api/docker_io_accounts_api/

Remote API

Let’s just start off by saying that the Remote API is very intense, and that’s not a bad
thing. When it comes to APIs, you want them to be able to do just anything you want so
that you never have to leave your code to perform these actions. Here is the high-level
overview of what you can do with this API:

e Endpoints
e Containers
e Images

So you heard me say it was very intense, but based on what you can do with it, it doesn’t
look very intense until you take a peek into it yourself. Think of all the things that you can
normally do with a container or an image and then you will understand why I state that it
is intense. Things such as creating containers or images, listing them out, and getting
information about containers or images might include getting information about the files
and folders inside a container, copying files or folders from a container, and removing a
container or image. There are also ways to manipulate or “hijack”, as the documentation
puts it such as using the docker run command. You can retrieve the various codes from
the run command and determine what the command is doing.

For more information on the Remote API, refer to

https://docs.docker.com/reference/api/docker_remote_api/ and to know more about the
latest Remote API, visit https://docs.docker.com/reference/api/docker_remote_api_v1.20/.


https://docs.docker.com/reference/api/docker_remote_api/
https://docs.docker.com/reference/api/docker_remote_api_v1.20/




Keeping your containers in check

What are some of the tools that we can use to keep our containers the way we have set
them up? How do we ensure that they stay the way we want them to? How do we ensure
that if they do drift off or things change on them, we are able to put them back in place to
where we want them to be? Let’s see how we can achieve that.



Kubernetes

Kubernetes is an open source project that was developed by Google to help with the
automating deployment of your containers as well as scaling and the operations of your
containers, not only on one host, but across multiple hosts. Kubernetes has been set to
work on almost every environment that can be imagined, from locally in a Vagrant or
VMware environment to cloud solutions such as AWS or Microsoft Azure. There will be
some terminology that will need to be learned beyond the Docker terms, but if you
understand how Docker operates, learning the Kubernetes terminology will come
naturally. For example, instead of hosts, Kubernetes calls them pods. Kubernetes uses a
single master node to control all its pods. The documentation can provide a lot more
information including examples on how to administer your pods, set up pod clusters, and
much more.

More information on Kubernetes can be found at http://kubernetes.io.


http://kubernetes.io

Chef

The reason we are focusing on Chef in this section is that AWS uses it as part of one of the
solutions that they offer—in the form of OpsWorks. OpsWorks allows you to set up and
use Chef to automate not only your Docker containers, but also other aspects of your AWS
environment. [ have personally set up and used Chef to do a lot of system automation
throughout my personal environments. With that being said, Chef can be a little tricky at
first to learn how to set up the server and client environments. There is a steep learning
curve at first as with almost any configuration management system, but Chef does seem to
have a little bit of a larger one with respect to all the moving pieces that are involved with
the server environment and setup.

I wanted to draw focus to Chef though because if you are going to be viewing your
environment within AWS, it might be a good idea to use Chef since it does offer it as a
service within AWS. OpsWorks allows you to easily set up and control your environments
as well as use their built-in Chef cookbooks. You can learn more about Chef at

http://chef.io.


http://chef.io

Other solutions

Some other solutions that are worth checking out or even use, if you already have the
setup, to manage your Docker environment are:

e Puppet (http://puppetlabs.com)
¢ Ansible (http://www.ansible.com/)

e SaltStack (http://saltstack.com/)



http://puppetlabs.com
http://www.ansible.com/
http://saltstack.com/




Contributing to Docker

So you want to contribute to Docker? Do you have a great idea that you would like to see
in Docker or one of its components? Let’s get you the information and tools that you need
to have. If you aren’t a programmer-type person, there are other ways you can help
contribute as well. Docker has a massive audience and you can help with supporting other
users of their services. Let’s learn how you can do that!



Contributing to the code

One of the biggest ways you can contribute to Docker is helping with the Docker code.
Since Docker is all open source, you can download the code to your local machine and
work on new features and present them as pull requests back to Docker. Those will then
get reviewed on a regular basis and if they feel what you have contributed should be in the
service, they will approve the pull request. This can be very interesting when you get to
know something you have written has been accepted.

You first need to know how you can get the setup to contribute. Everything is pretty much
available at https://github.com/docker, which is open for you to help contribute to. But
how do we go about getting the setup to help contribute? The best place to start is by

following the guide at https://docs.docker.com/project/who-written-for/. The software you
will need to contribute can be found by following another guide at

https://docs.docker.com/project/software-required/.

These guides will help you get all the setup with the knowledge you will need, as well as
the software. The last link that you will need to review is
https://github.com/docker/docker/blob/master/CONTRIBUTING.md. This page will
provide information on how to report issues, contribution tips and guidelines, community
guidelines, and other important information about how to successfully contribute.


https://github.com/docker
https://docs.docker.com/project/who-written-for/
https://docs.docker.com/project/software-required/
https://github.com/docker/docker/blob/master/CONTRIBUTING.md

Contributing to support

You can also contribute to Docker by other means beyond contributing to the Docker code
or feature sets. You can help by using the knowledge you have obtained to help others in
their support channels. Currently, Docker uses IRC rooms where users can gather online
and either provide support to other users or ask questions about the various services that
they offer. The community is very open and someone is always willing to help. I have
found it of great help when I run into something that I come across and scratch my head.
It’s also nice to get help and to help others back (a nice give and take). It also is a great
place that harvests ideas for you to use. You can see what questions others are asking,
based on their setups, and it could spur ideas that you may want to think about using in
your environment.

You can also follow the GitHub issues that are brought up about the services. These could
be feature requests and how Docker may implement them or the issues that have cropped
up through the usage of services. You can help test out the issues that others are
experiencing to see whether you can replicate it or find a possible solution to it.



Other contributions

There are other ways to contribute to Docker as well. You can do things such as presenting
at conferences about Docker. You can also promote the service and gather interest at your
institution. You can start the communication through your organization’s means of
communications such as e-mail distribution lists, group discussions, I'T roundtables, or
regularly scheduled meetings. You can also schedule your own meetings within your
organization to get people talking or you can do Docker meetups. These meetups are
designed to not only include your organization, but also the city or town members that
your organization is in to get more widespread communication and promotion of the
services. You can search whether there are already meetups in your area by visiting

https://www.docker.com/community/meetup-groups.


https://www.docker.com/community/meetup-groups




Advanced Docker networking

Lastly, one of the up and coming features of Docker that we will be taking a look at will
be that of the Docker networking. Now at its current form, this is a solution that has not
yet been implemented, but is a feature set that will be coming soon. So, it’s good to get
ahead of the curve on this one and learn it so that you are ready to implement it or
architect your future environments around it.



Installation

Since this feature is not part of the current Docker release, you need to install the
experimental release to get this completed. To install Docker experimental releases,
simply use the curl command that you have seen previously. Now this will only work on
Linux and Mac currently. In future, experimental builds might be installed on Windows
systems. So to install, use the following command:

$ curl -sSL https://experimental.docker.com/ | sh

On Mac, run:

$ curl -L https://experimental.docker.com/builds/Darwin/x86_64/docker -
latest > /usr/local/bin/docker
$ chmod +x /usr/local/bin/docker

Now you will get a warning message if you already have Docker installed:

Warning: the "docker" command appears to already exist on this system.

If you already have Docker installed, this script can cause trouble, which
is

why we're displaying this warning and provide the opportunity to cancel the
installation.

If you installed the current Docker package using this script and are using
it
again to update Docker, you can safely ignore this message.

You may press Ctrl+C now to abort this script.
sleep 20

You want to make sure you are installing experimental builds to a machine that is not a
production-related one. For example, you probably don’t want to install an experimental
release to your laptop if you are using it to develop and test Docker-related items on. Best
practice would be to install it on a virtual machine that you can throw away if it gets
broken.

After running the curl command, you will be able to see the networking option from the
list of Docker commands now:

$ docker

Usage: docker [OPTIONS] COMMAND [arg..]
docker daemon [ --help | ... ]
docker [ --help | -v | --version ]

A self-sufficient runtime for containers.

Options:
--config=~/.docker Location of client config files
-D, --debug=false Enable debug mode

-H, --host=[] Daemon socket(s) to connect to



-h, --help=false Print usage

-1, --log-level=info Set the logging level
--no-legacy-registry=false Do not contact legacy registries
--tls=false Use TLS; implied by --tlsverify
--tlscacert=~/.docker/ca.pem Trust certs signed only by this CA
--tlscert=~/.docker/cert.pem Path to TLS certificate file
- -tlskey=~/.docker/key.pem Path to TLS key file
--tlsverify=false Use TLS and verify the remote
-v, --version=false Print version information and quit
Commands:
attach Attach to a running container
build Build an image from a Dockerfile
commit Create a new image from a container's changes
cp Copy files/folders between a container and the local
filesystem
create Create a new container
diff Inspect changes on a container's filesystem
events Get real time events from the server
exec Run a command in a running container
export Export a container's filesystem as a tar archive
history Show the history of an image
images List images
import Import the contents from a tarball to create a filesystem
image
info Display system-wide information
inspect Return low-level information on a container or image
kill Kill a running container
load Load an image from a tar archive or STDIN
login Register or log in to a Docker registry
logout Log out from a Docker registry
logs Fetch the logs of a container
network Network management
pause Pause all processes within a container
port List port mappings or a specific mapping for the CONTAINER
ps List containers
pull Pull an image or a repository from a registry
push Push an image or a repository to a registry
rename Rename a container
restart Restart a container
rm Remove one or more containers
rmi Remove one or more images
run Run a command in a new container
save Save an image(s) to a tar archive
search Search the Docker Hub for images
start Start one or more stopped containers
stats Display a live stream of container(s) resource usage
statistics
stop Stop a running container
tag Tag an image into a repository
top Display the running processes of a container

unpause Unpause all processes within a container

version Show the Docker version information

volume Manage Docker volumes

wait Block until a container stops, then print its exit code



Run 'docker COMMAND --help' for more information on a command.



Creating your own network

In the preceding command output, I have highlighted the section that we will be focusing
on—the network subcommand in Docker. There is also another command you may want
to take a look at, and that is the volume subcommand, but we will be focusing on the
network subcommand.

Let’s create ourselves a network that our Docker containers can use to communicate on.
From the output of the docker network command, we can see our options:

$ docker network

docker: "network" requires a minimum of 1 argument.
See 'docker network --help'.

Usage: docker network [OPTIONS] COMMAND [OPTIONS] [arg..]

Commands:
create Create a network
rm Remove a network
1s List all networks
info Display information of a network

Run 'docker network COMMAND --help' for more information on a command.

Doing a docker 1s will give us a view of what our current network setup is:

$ docker network 1s

NETWORK ID NAME TYPE
02f3d3834733 none null
b22ff5151bcb host host
f4ab7c38b83b1 bridge bridge

Now let’s get to creating ourselves a network. Using the network subcommand as well as
the create option, we can create ourselves a network:

$ docker network create <name>

$ docker network create docker-net
21625dd96ac08e1713621d951cfal40cebee96c9fae9f8ff44748f86a4c731d7
$ docker network 1ls

NETWORK ID NAME TYPE
02f3d3834733 none null
b22ff5151bch host host
f4ab7c38b83b1 bridge bridge
21625dd96aco docker-net bridge

Now that we have our network, how do we tell our containers about it? That comes with a
—publish-service= switch when you use your docker run command:

$ docker run -it --publish-service=<name>.<network_name> ubuntu:latest
/bin/bash

$ docker run -it --publish-service=web.docker-net ubuntu:latest /bin/bash



We can also create networks and provide drivers for those networks so that they can span
across multiple hosts. By default, there is a driver named overlay that will allow you to do
this. Now this is the first of many drivers that will be coming on board, either when this
network feature is baked into Docker or at a later time, for sure. When you create the
network is when you will specify the overlay driver. However, there is one thing that this
driver does need. It will need access for not only itself, but also the other Docker hosts that
you want to network together:

$ docker network create -d overlay docker-overlay



Networking plugins

Going back to our previous example of using the overlay driver, this is also considered a
Docker network plugin. While networking has the use for plugins, keep in mind that
volumes also have the option to do plugins or drivers as well. With regards to networking
plugins though, there is quite a list of plugins that are already available, and I can only
assume that others will be added quickly. Currently that list of networking plugins consists
of:

Weave

Project Calico
Nuage Networks
Cisco

VMware
Microsoft
Midokura

To use these plugins, we simply change what we are using in the - -publish-service=
option, for example:

$ docker run -it --publish-service=service.network.cisco ubuntu:latest
/bin/bash

$ docker run -it --publish-service=service.network.vmware ubuntu:latest
/bin/bash

$ docker run -it --publish-service=service.network.microsoft ubuntu:latest
/bin/bash

Note

Note that some of the names may change before they actually come to production level.






Summary

In this chapter, we looked at a lot of items in depth. We covered various aspects of Docker
such as how we can scale our environments and use Docker services. Later, you came to
know about the various techniques that can be used to debug or troubleshoot the issues
that crop up while using Docker along with the solutions. You then learned how
contribution of codes can be done to Docker and its networking.

I hope you have enjoyed this book and will continue to refine your skill set when it comes
to Docker. It really is a technology that is on the tip of everyone’s tongue these days, so
knowing it will not only benefit you at your current position, but also any future positions
you may be looking at. Throughout the chapters, you should be able to pick up on some
ways to get in touch with me if you do have any questions or want to provide any
feedback. I am frequently on the IRC rooms that Docker has, so hit me up sometime to
chat. Good luck and use the resources out there to your advantage!



Index
A

¢ advanced Docker networking
o about / Advanced Docker networking
o installation / Installation
o custom network, creating / Creating your own network
o networking plugins / Networking plugins
e Ansible
o about / Ansible
o URL / Other solutions
e automated builds
o about / Automated builds
code, setting up / Setting up your code
Docker Hub, setting up / Setting up Docker Hub
implementing / Putting all the pieces together
custom registry, creating / Creating your own registry

O O O o



B

e boot2docker
o controlling / Controlling the Docker VM (boot2docker)



C

e Chef

e}

e}

e}

about / Chef, Chef
reference / Chef

URL / Chef

e Cloud Providers

e}

about / Cloud Providers

e commands, Docker Machine

e}

0O 0O 0O o 0O O o o o o o o o o o

e}

about / Docker Machine commands
active / active
config / config
env / env
inspect / inspect
ip/1ip

kill / kill

Is / Is

restart / restart
rm/rm

scp / scp

ssh / ssh

start / start

stop / stop

upgrade / upgrade
url / url

TLS / TLS

e Ccommon issues

e}

e}

e}

e}

about / Common issues and solutions
Docker images / Docker images
Docker volumes / Docker volumes
resources, using / Using resources

e components, Docker Swarm

(e]

e}

e}

e}

about / Docker Swarm components
Swarm / Swarm

Swarm manager / Swarm manager
Swarm host / Swarm host

e constraint filter

e}

e}

e}

e}

about / Advanced scheduling
storage=/ Advanced scheduling

region=/ Advanced scheduling
environment=/ Advanced scheduling

e Consul

e}

about / Consul

e container management



about / Container management
container image storage / Container image storage

image usage / Image usage
Docker commands, and GUIs / The Docker commands and GUIs

container monitoring / Container monitoring
automatic restarts / Automatic restarts
o updates, rolling / Rolling updates
e containers
stopping / Stopping containers

about / Keeping your containers in check
Kubernetes / Kubernetes

Chef / Chef
e containers, versus VMs
about / Containers versus VMs
good section / The good
not so bad section / The not so bad
what to look out for section / What to look out for
e custom containers
o tar, used / Using tar
o scratch, used / Using scratch

O O O O O O

(e]

(e]

(e]

(e]

(e]

(e]

(e]

(e]




D

e discovery services
o using / Using discovery services
o Consul / Consul
o etcd / etcd
e Docker
about / Understanding Docker
versus typical VMs / Difference between Docker and typical VMs
networking / Docker networking/linking

linking / Docker networking/linking
installers / Docker installers/installation

installation / Docker installers/installation
using in production environments / Where to start?

hosts, setting up / Setting up hosts
nodes, setting up / Setting up nodes
scaling / Scaling Docker
debugging / Debugging or troubleshooting Docker
troubleshooting / Debugging or troubleshooting Docker
contributing to / Contributing to Docker
contributing to, code / Contributing to the code
contributing to, support / Contributing to support
o other contributions / Other contributions
e docker.io account API
o about / docker.io accounts API
o reference / docker.io accounts API
e Docker APIs
o about / Various Docker APIs
o docker.io account API / docker.io accounts API
o Remote API/ Remote API
e Docker bench security application
about / The Docker bench security application
running / Running the tool
host configuration / Running the tool
Docker daemon configuration / Running the tool
Docker daemon configuration files / Running the tool
container images and build files / Running the tool
container runtime / Running the tool
Docker security operations / Running the tool
o output / Understanding the output
e docker build command
o about / Docker build, The docker build command
o .dockerignore file / .dockerignore
e Docker commands

0O 0O 0O o 0O O o o o o o o o o o

O O O O O O o o




about / The Docker commands, The Docker commands, The Docker commands
docker attach / docker attach
docker diff / docker diff, docker diff
docker exec / docker exec

docker history / docker history
docker inspect / docker inspect
docker logs / docker logs

docker ps / docker ps

docker stats / docker stats

docker top / docker top

docker run / docker run

e Docker Compose

installing / Installing Docker Compose
installing, on Linux / Installing on Linux

installing, on OS X / Installing on OS X and Windows
installing, on Windows / Installing on OS X and Windows
YAML file / Docker Compose YAML file

usage / The Docker Compose usage
options / The Docker Compose options
examples / Docker Compose — examples
e Docker Compose commands

about / The Docker Compose commands
build / build

kill / kill

logs / logs

port / port

ps /ps

pull / pull

restart / restart

rm / rm

run / run

scale / scale

start / start
stop / stop
up / up
version / version
e Docker Compose usage
o about / Docker Compose usage
o developer environments / Developer environments
o environments, scaling / Scaling environments
e Docker documentation / Resources
e Dockerfile
o about / Dockerfile, Dockerfile
o reviewing / A short review of Dockerfile, Reviewing Dockerfile in depth

O 0O 0O O 0O 0O o o o o o

O O O O O O o o

0O 0O 0O o 0O O o o o o o o o o o




LABEL command / LABEL

ADD instruction / ADD or COPY

COPY instruction / ADD or COPY
ENTRYPOINT / ENTRYPOINT

WORKDIR command / WORKDIR
ONBUILD instruction / ONBUILD

best practices / Dockerfile — best practices

e Docker Hub

about / Docker Hub, Docker Hub, Container image storage
location / The Docker Hub location

public repositories / Public repositories

private repositories / Private repositories
dashboard / Dashboard

repositories page / Explore the repositories page
Organizations / Organizations

Create menu / The Create menu

settings / Settings
Stars page / The Stars page
e Docker Hub Enterprise

o about / Docker Hub Enterprise, Docker Hub Enterprise
o Docker Hub, versus Docker Subscription / Comparing Docker Hub to Docker

Subscription

o Docker Subscription for server / Docker Subscription for server

o Docker Subscription for cloud / Docker Subscription for cloud
e Docker images

o about / The Docker images

o searching for / Searching for the Docker images
o manipulating / Manipulating the Docker images
O
O

O O O O O o o

O 0O 0O O O O o o o o

building, Dockerfile used / Building images using Dockerfile
base image, building with existing image / Building a base image using an
existing image
e Docker IRC room / Resources
e Docker Machine / Docker Machine — the new boot2docker
installing / Installation
using / Using Docker Machine
local VM / Local VM
cloud environment / Cloud environment
o commands / Docker Machine commands
docker ps -a switch / docker ps
docker ps -1 switch / docker ps
docker ps -n= switch / docker ps
Docker Registry
o about / Docker Registry, Container image storage
o overview / An overview of Docker Registry

O O O o




o versus Docker Hub / Docker Registry versus Docker Hub
e Docker security
best practices / Docker security — best practices, Docker — best practices

host configuration / CIS guide — host configuration
daemon configuration / CIS guide — Docker daemon configuration
daemon configuration files / CIS guide — Docker daemon configuration files
container images/runtime / CIS guide — container images/runtime
operations / CIS guide — Docker security operations
e Docker Subscription
o about / Docker Hub Enterprise
e Docker Swarm
about / What is Docker Swarm?
functionalities / What can Docker Swarm do?
installation / Docker Swarm install

components / Docker Swarm components
usage / Docker Swarm usage

cluster, creating / Creating a cluster
nodes, joining / Joining nodes

nodes, listing / Listing nodes

cluster, managing / Managing a cluster
strategies / Advanced scheduling

filters / Advanced scheduling
e Docker Swarm commands

about / The Docker Swarm commands
options / Options
list / list
create / create
manage / manage
e Docker Swarm topics
o about / The Docker Swarm topics
o discovery service / Discovery services
o advanced scheduling / Advanced scheduling
e Docker Toolbox
o URL / Installation
e Docker Trusted Registry
o about / Container image storage
e DockerUI
o URL / Host monitoring, GUI applications
o about / DockerUI
e Docker VM
o controlling / Controlling the Docker VM (boot2docker)
e Docker volumes
o about / Docker volumes, Data volumes
o containers / Data volume containers

O O O O O O

O 0O 0O O 0O 0O o o o o o

O O O O O




o backups / Docker volume backups




E

e environmental variables
o about / Environmental variables

o using, in Dockerfile / Using environmental variables in your Dockerfile
o MySQL username, creating / Creating a MySQL username, database, and setting

permissions
o MySQL database, creating / Creating a MySQL username, database, and setting
permissions
o permissions, setting / Creating a MySQL username, database, and setting
permissions
o file, adding to system / Adding a file to the system
e etcd

o about/ etcd
o reference / etcd
e example, Panamax
o about / An example
applications / Applications
sources / Sources
images / Images
registries / Registries
Remote deployment targets / Remote Deployment Targets
Back to Applications / Back to Applications
service, adding / Adding a service
application, configuring / Configuring the application
service links / Service links
environmental variables / Environmental variables
ports / Ports
volumes / Volumes
o Docker Run Command / Docker Run Command
e examples, Docker Compose
o about / Docker Compose — examples, The last example
o image section / image
o build / build
e existing management suite
about / Using your existing management suite
Puppet / Puppet
Chef / Chef
Ansible / Ansible
SaltStack / SaltStack
Docker Swarm / Docker Swarm
e external platforms
o extending to / Extending to external platform(s)
o Heroku / Heroku

0O 0O 0O O o 0o o o o o o o

(e]

O O O o

(e]




F

o filters, Docker Swarm

o constraint / Advanced scheduling
affinity / Advanced scheduling
port / Advanced scheduling
dependency / Advanced scheduling
health / Advanced scheduling

O O O o



H

e Heroku
o about / Heroku
¢ host management
about / Host management
host monitoring / Host monitoring
Docker Swarm / Docker Swarm
Swarm manager failover / Swarm manager failover

(e]

O O O



I

e ImageLlayers
o about / Imagel.ayers
e installation
o Docker Machine / Installation



K

e Kitematic
o about / Kitematic

e Kubernetes
o about / Scaling Docker, Kubernetes
o URL / Kubernetes



L

e Linux Containers (LXC) / Difference between Docker and typical VMs




M

e Mist.io
o about / Scaling Docker
o URL / GUI applications



N

e nodes
o about / Back to Nodes
¢ Nodes section
o about / The Nodes section




O

e Options section, Docker Compose

-f / The Docker Compose options

-p / The Docker Compose options
—project-name / The Docker Compose options
—verbose / The Docker Compose options

—v / The Docker Compose options

—version / The Docker Compose options

(¢]

O O O O O



Panamax

o URL / Host monitoring, Installing Panamax
o installing / Installing Panamax
o example / An example
Platform as a Service (PaaS) / Extending to external platform(s)

pods / Kubernetes
Puppet
o about / Puppet
o URL / Other solutions




R

e Registrator

o about / Consul
e Remote API

o about / Remote API
¢ Repositories tab

o about / The Repositories tab



S

e SaltStack
o about / SaltStack
o reference / SaltStack
o URL / Other solutions
e security
o about / Overall security
o best practices / Security best practices
e Services dashboard
o about / The Service dashboard
e Services section
o about / Back to the Services section
containers / Containers
endpoints / Endpoints
logs / Logs
monitoring / Monitoring
Triggers / Triggers
Timeline / Timeline
o Configuration / Configuration
e Shipyard

o URL / Host monitoring, Up and running, GUI applications

starting / Up and running
CONTAINERS section / Containers, Back to CONTAINERS

Deploy Container button / Deploying a container
IMAGES section / IMAGES
Pull Image button / Pulling an image
NODES section / NODES
REGISTRIES tab / REGISTRIES
ACCOUNTS tab / ACCOUNTS
EVENTS tab/ EVENTS

o about / Scaling Docker
e Stacks section

o about / Stacks
e standard input (STDIN) / docker attach
e strategies, Docker Swarm

o spread / Advanced scheduling
o binpack / Advanced scheduling

o random / Advanced scheduling
e Swarm API
o about / The Swarm API
o URL /The Swarm API
e Swarm cluster example
o about / The Swarm cluster example

O O O O O O

O 0O 0O o o o o o o




T

¢ troubleshooting, Docker

e}

e}

e}

Docker commands / Docker commands
GUI applications / GUI applications
resources / Resources

e Tutum

e}

O O O O O

URL / Getting started
accessing / Getting started

tutorial page / The tutorial page
Services dashboard / The Service dashboard

Nodes section / The Nodes section
Cloud Providers section / Cloud Providers

¢ types of installers, Docker / Types of installers



	Mastering Docker
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Errata
	Piracy
	Questions
	1. Docker Review
	Understanding Docker
	Difference between Docker and typical VMs
	Dockerfile
	Docker networking/linking
	Docker installers/installation
	Types of installers
	Controlling the Docker VM (boot2docker)
	Docker Machine – the new boot2docker
	Kitematic
	The Docker commands
	The Docker images
	Searching for the Docker images
	Manipulating the Docker images
	Stopping containers
	Summary
	2. Up and Running
	Dockerfile
	A short review of Dockerfile
	Reviewing Dockerfile in depth
	LABEL
	ADD or COPY
	ENTRYPOINT
	USER
	WORKDIR
	ONBUILD
	Dockerfile – best practices
	Docker build
	The docker build command
	.dockerignore
	Building images using Dockerfile
	Building a base image using an existing image
	Building your own containers
	Using tar
	Using scratch
	Docker Hub
	The Docker Hub location
	Public repositories
	Private repositories
	Docker Hub Enterprise
	Environmental variables
	Using environmental variables in your Dockerfile
	Creating a MySQL username, database, and setting permissions
	Adding a file to the system
	Docker volumes
	Data volumes
	Data volume containers
	Docker volume backups
	Summary
	3. Container Image Storage
	Docker Hub
	Dashboard
	Explore the repositories page
	Organizations
	The Create menu
	Settings
	The Stars page
	Docker Hub Enterprise
	Comparing Docker Hub to Docker Subscription
	Docker Subscription for server
	Docker Subscription for cloud
	Docker Registry
	An overview of Docker Registry
	Docker Registry versus Docker Hub
	Automated builds
	Setting up your code
	Setting up Docker Hub
	Putting all the pieces together
	Creating your own registry
	Summary
	4. Managing Containers
	The Docker commands
	docker attach
	docker diff
	docker exec
	docker history
	docker inspect
	docker logs
	docker ps
	docker stats
	docker top
	Using your existing management suite
	Puppet
	Chef
	Ansible
	SaltStack
	Docker Swarm
	What is Docker Swarm?
	What can Docker Swarm do?
	Summary
	5. Docker Security
	Containers versus VMs
	The good
	The not so bad
	What to look out for
	The Docker commands
	docker run
	docker diff
	Docker security – best practices
	Docker – best practices
	CIS guide – host configuration
	CIS guide – Docker daemon configuration
	CIS guide – Docker daemon configuration files
	CIS guide – container images/runtime
	CIS guide – Docker security operations
	The Docker bench security application
	Running the tool
	Understanding the output
	Summary
	6. Docker Machine
	Installation
	Using Docker Machine
	Local VM
	Cloud environment
	Docker Machine commands
	active
	config
	env
	inspect
	ip
	kill
	ls
	restart
	rm
	scp
	ssh
	start
	stop
	upgrade
	url
	TLS
	Summary
	7. Docker Compose
	Installing Docker Compose
	Installing on Linux
	Installing on OS X and Windows
	Docker Compose YAML file
	The Docker Compose usage
	The Docker Compose options
	The Docker Compose commands
	build
	kill
	logs
	port
	ps
	pull
	restart
	rm
	run
	scale
	start
	stop
	up
	version
	Docker Compose – examples
	image
	build
	The last example
	Summary
	8. Docker Swarm
	Docker Swarm install
	Installation
	Docker Swarm components
	Swarm
	Swarm manager
	Swarm host
	Docker Swarm usage
	Creating a cluster
	Joining nodes
	Listing nodes
	Managing a cluster
	The Docker Swarm commands
	Options
	list
	create
	manage
	The Docker Swarm topics
	Discovery services
	Advanced scheduling
	The Swarm API
	The Swarm cluster example
	Summary
	9. Docker in Production
	Where to start?
	Setting up hosts
	Setting up nodes
	Host management
	Host monitoring
	Docker Swarm
	Swarm manager failover
	Container management
	Container image storage
	Image usage
	The Docker commands and GUIs
	Container monitoring
	Automatic restarts
	Rolling updates
	Docker Compose usage
	Developer environments
	Scaling environments
	Extending to external platform(s)
	Heroku
	Overall security
	Security best practices
	DockerUI
	ImageLayers
	Summary
	10. Shipyard
	Up and running
	Containers
	Deploying a container
	IMAGES
	Pulling an image
	NODES
	REGISTRIES
	ACCOUNTS
	EVENTS
	Back to CONTAINERS
	Summary
	11. Panamax
	Installing Panamax
	An example
	Applications
	Sources
	Images
	Registries
	Remote Deployment Targets
	Back to Applications
	Adding a service
	Configuring the application
	Service links
	Environmental variables
	Ports
	Volumes
	Docker Run Command
	Summary
	12. Tutum
	Getting started
	The tutorial page
	The Service dashboard
	The Nodes section
	Cloud Providers
	Back to Nodes
	Back to the Services section
	Containers
	Endpoints
	Logs
	Monitoring
	Triggers
	Timeline
	Configuration
	The Repositories tab
	Stacks
	Summary
	13. Advanced Docker
	Scaling Docker
	Using discovery services
	Consul
	etcd
	Debugging or troubleshooting Docker
	Docker commands
	GUI applications
	Resources
	Common issues and solutions
	Docker images
	Docker volumes
	Using resources
	Various Docker APIs
	docker.io accounts API
	Remote API
	Keeping your containers in check
	Kubernetes
	Chef
	Other solutions
	Contributing to Docker
	Contributing to the code
	Contributing to support
	Other contributions
	Advanced Docker networking
	Installation
	Creating your own network
	Networking plugins
	Summary
	Index

