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Introduction

Learning Languages from Books
Most people you speak to consider programming languages to be more difficult
than human, or natural, languages. In many ways this is true. Programming is
the art of preparing precise instructions for machines. These machines are very
fast and obedient, but they are incredibly stupid, so everything has to be broken
down into steps; nothing can be assumed. Also, most kinds of programming
involve doing business or engineering calculations, so most people do not need
to program. If setting a VCR feels like programming, somebody has not done his
or her job because one of the goals of programming is to eliminate program-
ming. But part of the trouble is that learning to program is often like learning
Latin: It involves a lot of grammar and vocabulary, little practice, and no real-
life applications. (Living languages, such as school French, can also be success-
fully killed by these problems.) Living human languages are best learned by
speaking to people who know the language, and programming languages are
best learned through interactive conversation with computers. Therefore, this
book is a conversational course in C++.

Why learn C++? Despite the excitement surrounding Java, C++ remains the
foremost industrial-strength programming language. It is incredibly adaptable.
It is not the easiest language to learn and use, but you do not have to learn it
all at once. Right from the start you can write (and read) interesting code that
can do useful things.

By Example
People learn best by example. It’s important to read as much good code as possi-
ble, just as reading lots of English is the only way to learn to write it. This book
presents nontrivial applications of C++ that are interesting, and the case stud-
ies at the end of each chapter show C++ in use. I have provided the UnderC
C++ interactive system for this edition. You should continuously play with the
language, using UnderC, until you have enough confidence in the bricks to build
your own houses. In addition, this book comes with the GNU Compiler
Collection (GCC), which contains the most popular free C++ compiler.

The C++ Standard
C++ has been around for nearly 20 years , but it has only become an interna-
tional standard in the past 5 years. Excellent free compilers are available that
support that standard, so there has never been a better time to learn C++.
Previously, each implementation of C++ had its own code libraries, so portability
was a problem.



The strength of a language lies in its libraries. C++ has a powerful and elegant
standard library that is available everywhere. Standard C++ is a high-level lan-
guage that comes complete with the tools for most programming tasks.

The C Family of Languages: Some History
The history of C++ is interesting because it helps to understand where it comes
from. On the one hand, there is a tradition of low-level power and efficiency that
comes from C, and on the other hand it is a high-level object-oriented language. 

C: Close to the Machine
The ancestor of C++ is C, which has been around since the early 1970s. It was
developed by Dennis Ritchie at AT&T Bell Labs as a lean, fast language that is
rich in low-level machine operations (such as bit twiddling) but can be moved
(that is, ported) easily to other machines. As soon as UNIX was rewritten in C,
it could itself be ported to many different architectures. 

There is a certain cowboy spirit about C: You don’t need to be too worried about
data type safety if you know what you’re doing. C is a very small language. It
has no built-in I/O and file access or string manipulation capabilities, unlike
BASIC, for example, which has PRINT and INPUT. In C, everything is done with
libraries. C is often used to program devices as small as 12KB washing-machine
controllers.

C++: “C with Classes”
C++ grew out of C in the early 1980s at Bell Labs. Bjarne Stroustrup was doing
research in simulation, and he was inspired by the class concept of the Simula
language. The original compiler translated C++ to C, but modern compilers go
directly to machine code. The modern C++ language has grown throughout two
decades from not having templates, exception handling, or multiple inheritance,
to becoming a fine, stable adult.

C++ remains true to its C roots. It still relies on libraries for all its I/O functions
and runs on small devices such as cell phones as well as on continentwide tele-
phone networks. To this day, C++ remains incredibly backward compatible with
C. A programmer can choose to get close to the machine or operate on a very
high level; this flexibility is what gives C++ its special power.

Java: Universal Language
In the early 1990s, researchers at Sun Microsystems were looking at a reliable
way to build the next generation of consumer devices. James Gosling and
Patrick Naughton developed Java, which is syntactically similar to C++ (that is,
it uses the same punctuation and many of the same keywords) but is designed
to be a pure object-oriented language. 
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In consumer devices and Internet services, reliability, security, and portability
are the key concepts. Therefore, Java omitted things like C++ pointers, which
were error prone and open to abuse, and it generated an intermediate bytecode,
which runs on a virtual machine. The Java Virtual Machine (JVM) also provides
a “sandbox” in which small programs (called applets) can run safely without
compromising security. There is a large library of code available for writing
portable graphical user interface programs. Java programs can download new
code dynamically (that is, as they are running). 

Java is the property of Sun, which in 2001 won a court case against Microsoft
for its modifications of Java, claiming that Microsoft was violating the terms of
the Sun license.

C#: New Kid on the Block
In many ways, Microsoft’s answer to Java is C#, pronounced “C sharp.” Because
Sun has effectively shut Microsoft out of more advanced Java versions, the com-
pany has been seeking a new platform for portable Internet services; this plat-
form, which has recently been implemented, is called .NET. Microsoft has been
thinking about this platform as long as Sun has; it was working on a similar
concept, called Blackbird, at the same time that Java came out.

C# is a next-generation Java-like language that generates portable virtual
machine code. Many people are asking whether we really need another pro-
gramming language, but this splitting is probably inevitable because so many
programming languages are owned by corporations, rather than being open
standards, as C++ is.

UnderC: An Interactive C++
My goal in implementing UnderC was to produce a solid but interactive C++
system that would run a “pocket” version of the standard library. It is a 
half-compiler—source is compiled to intermediate stack code, which is exe-
cuted immediately—and this is fast enough for most purposes. Programs can
then be built by using compilers such as GCC if raw speed is required, and
UnderC can link with dynamic link libraries (also known as shared libraries)
that are compiled with any language.

You learn to program by interacting with computers, in the same way that you
can learn French by conversing with a French person. Traditional compilers
slow down this person–computer interaction by the compile-link-go cycle, in
which the whole program is built and linked into an executable program; for
even small programs, this cycle takes a second or two. An interpreter, on the
other hand, brings up a program practically instantaneously. A magic number
for humans is 300 milliseconds; anything more than this, and we start being
conscious of a time lag. As programs get larger, the build cycle gets longer, and

3Introduction



it gets harder to keep the conversation going, but because UnderC has no link
phase, the conversation remains instant. Furthermore, a programmer can
immediately test small parts of a system by using the interactive prompt; there
is no need to write a 30-line program to test a single line. With UnderC, experi-
mentation becomes less painful, and a kind of conversational flow develops,
with no pause between typing and response.

How This Book Is Organized
The book is organized into two parts. Part I concentrates on C++ arithmetic
expressions, program flow control, and functions—what is often called struc-
tured programming. In Part I you will learn how to do calculations and make
decisions, and you will learn how to output the results. Structured program-
ming is the art of organizing actions, using divide-and-conquer techniques to
break complex operations into simpler ones.

Part II introduces object-oriented programming, which sees programs as consist-
ing of objects that manage their own data and communicate with each other. 
In structured programming, there is a dictatorship of functions, and in object-
oriented programming there is a democracy of objects. Neither programming
approach, of course, is the full story. Some problems—for instance, those that
handle simple tasks such as adding up numbers in a file—work best with struc-
tured programming.

Some experts would prefer to go straight to object-orientation and not worry
about “obsolete” structured programming methods. In my experience with main-
taining (bad) object-oriented programs, there is a lot of redundant code, mainly
because the programmers never learned to organize their functions and sepa-
rate out any common code. Also, to understand object-orientation you need to
see how the traditional methods fail. Two case studies in this book tackle the
same problem (drawing graphical shapes) from the two different perspectives to
show the limitations of structured programming and how object-orientation can
produce better programs.

Who Should Use This Book
This book does not assume any previous programming experience, although of
course any exposure to other programming languages is very useful. Anybody
wishing to seriously learn C++ will find everything they need to get started.

What the Reader Should Expect
All C++ language and library concepts in this book are illustrated with exam-
ples. There is a lot of code because it is important to see C++ in action. This
book is a complete learning kit and contains a C++ interpreter (UnderC) for
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interactive exercises and two industrial-strength compilers (GCC and Borland)
for building C++ programs.

What the Reader Should Not Expect
First of all, don’t expect to master C++ in a few weeks. After all, no one expects
a person to master a human language like Spanish immediately. But it will not
take long to learn enough to write useful programs; it isn’t necessary to master
C++ to be a competent programmer. Mastery takes time and happens when
you’re using the language to do real things. 

Second, this book is not a reference book. It is a tutorial introduction, and I did
not want to confuse you with unnecessary detail. But as you continue to learn
C++, you will need a good authority to consult. The classic is, of course, The C++
Programming Language, by Bjarne Stroustrup (3rd edition, Addison-Wesley,
1997), which discusses all features of the language in detail, with more than
300 pages devoted to the standard libraries alone. 

Conventions Used in This Book
This book uses several common conventions to help teach C++. Here is a sum-
mary of those conventions:

Examples are indicated by the icon shown at the left of this sentence.

The typographical conventions used in this book include the following:

• Commands and computer output appear in a monospaced computer font.

• Words you type appear in a boldfaced computer font.

• Italics are used to introduce you to new terms.

In addition to typographical conventions, the following special elements 
are included to set off different types of information to make them easily 
recognizable:

N O T E
Special notes augment the material you read in each chapter. These notes clarify concepts
and procedures.

T I P
Information that offers shortcuts and solutions to common problems is highlighted as a tip.

C A U T I O N
Cautions warn you about roadblocks that sometimes appear when working with C++. Reading
the caution sections should help steer you away from trouble and wasted time.
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Where to Find the Code
If you install the software on the accompanying CD-ROM, the example code for
each chapter will be copied onto your hard drive. For instance, if you have
installed to c:\ccbx, then Chapter 4’s example code will be in c:\ccbx\chap4. As
well as C++ source files, there are Quincy 2000 project files (.prj) for the case
studies.

The CD-ROM will install the GNU C++ compiler GCC 2.95.2 and all the tools
you need to do commmand-line and graphics programs in Windows. I recom-
mend that you also get the Borland Free C++ compiler. Please see Appendix D,
“Compiling C++ Programs and DLLs with GCC and BCC32” for details on
where to find up-to-date versions of these compilers. If you are running Linux,
your system probably already has the GNU C++ compiler. A command-line ver-
sion of UnderC without graphics will be available for Linux early in March
2002; please consult the C++ By Example site listed below.

All updates, bug fixes, and general information can be found at http://
home.mweb.co.za/sd/sdonovan/ccbx.htm.
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Part I

C++ Fundamentals

1 Expressions and Variables

2 Functions and Control Statements

3 Arrays and Algorithms

4 Programs and Libraries

5 Structures and Pointers

6 Overloading Functions and Operators





1

Expressions and Variables
At heart, a computer is a machine for doing arithmetic and making deci-
sions very fast, and a computer language is a precise way to give instruc-
tions to such machines. The simplest kind of C++ statement is an
expression, which is similar to a mathematical expression, although a C++
expression is modified because it is hard to type square root signs and other
mathematical symbols. I am going to introduce C++ expressions to you
using the UnderC system; after you have installed the accompanying soft-
ware, an UnderC icon will appear on your desktop. When you execute this
program, a plain window will appear with a ;> prompt. At this point, you
can type any valid C++ statement, and it will immediately be evaluated.

In this chapter you will learn

• How to write common arithmetic expressions in C++

• How to declare and use variables

• The difference between floating-point and integer numbers

• How to manipulate text strings

• How to do input and output



Using C++ as a Calculator
When you fire up UnderC, you are presented with the command prompt ;>.
Now type 2+3;—note the semicolon—and press Enter :
;> 2+3;
(int) 5

UnderC indicates input in black, output in green, and any errors in red; in
this book we use bold for input and nonbold for output.

Most C++ statements end in a semicolon, so it’s important to get used to
adding a semicolon if you come from a language such as BASIC, which ends
statements at the end of a line, without any terminating punctuation such
as semicolons. C++ does not care about spaces, tabs, or new lines (which
together are called whitespace). Take a look at the following example, where
the user input is spread across several lines:
;>   2
+
3 -
1;
(int)4

As with all computer languages that ultimately derive from FORTRAN,
multiplication in C++ must use the * operator:
;> 10*2 + 1;
(int)21

There are operator precedence rules that apply here, which are similar to
the ones used in ordinary mathematics. Multiplication is understood to
have a higher precedence than addition—that is, multiplication always
happens before addition. If the precedence rules did not apply and the addi-
tion had been done first, the answer would have been 30 instead of 21! You
can always insist on a certain order of evaluation by using parentheses:
;> 10*(2+1);
(int)30

Real, or floating-point, numbers can be used in expressions, as in the fol-
lowing example:
;> 2.3*2;
(double)4.6
;> 2*3 – 1.2;
(double) 4.8
;> 1/1.0e8;
(double) 1.e-008
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Integers and real numbers are treated very differently from one another in
computer arithmetic. Note that floating-point arithmetic dominates in an
expression; if there are any floating-point numbers present in an expres-
sion, then those integers are converted into floating-point numbers. Very
large or small numbers are expressed in scientific notation. In the preced-
ing example, 1.0e8 is ‘1.0 times 10 to the power of 8'.

The usual functions of a scientific calculator are available. Most of these
functions have the normal names, but, as listed in Appendix B, “A Short
Library Reference,” a few are written differently in C++ than in mathemat-
ics in general (for example, arc sin is written asin() in C++). Because a
square root sign cannot be typed on a standard keyboard, you indicate a
square root as sqrt():
;> sqrt(2.3);
(double) 1.51658
;> sqrt(4);
(double)2.0

The mathematical functions like sqrt() expect a floating-point argument,
so the integer 4 is implicitly converted to 4.0.

You can see that even at the very simplest level, C++ is useful as a calcula-
tor. I prefer to calculate by typing rather than by pressing buttons on a cal-
culator. C++ does not provide specific financial functions, such as for
compound interest; however, Chapter 2, “Functions and Control
Statements,” shows how straightforward it is to define new functions and
use C++ as a customizable calculator. 

Programmers used to other languages are often shocked to discover that
there is no simple built-in way to raise a number to a power (exponentia-
tion); C++ does not provide a ^ or ** operator. In C++, as in C, this is done
with the function pow(), which operates on floating-point numbers, as in
the following example:
;> 1.0/sqrt(1+pow(3.2, 2));
(double) 0.298275

The big difference, so far, between C++ calculations and calculations on a
scientific calculator, is that there is a distinction between integer and real
numbers. The next section discusses this in more detail.

N O T E
As you go through this book, I encourage you to constantly try out things at the interac-
tive prompt. It is easier to find out how something works (or whether it will work at all)
in this way than to prepare a whole program and have to guess what went wrong when
something does go wrong.
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Numerical Types
All numbers are stored as a series of bits (short for binary digits) in mem-
ory. On most computers, the smallest addressable chunk of memory is a
byte, which is 8 bits. The size, or precision, of a number is the number of
bytes needed to fully represent it. On a 32-bit machine, the most natural
number is 4 bytes, which makes up a machine word. Generally, a 32-bit
machine moves data around most efficiently in 32-bit word-sized chunks. In
older books, you will sometimes see a relic of the old DOS days, where word
means 16 bits, and double-word means 32 bits, but when I use word, it gen-
erally mean 32 bits. In a few years, we will probably all be driving 64-bit
machines, and then a word will be 64 bits; it is simply the most convenient
and efficient chunk for a particular machine to process. You need to know
these basic facts about machine arithmetic if you don’t want to be unpleas-
antly surprised when you don’t get the numbers you expect.

It is possible to use C++ to do infinite-precision arithmetic (or, more pre-
cisely, indefinite precision arithmetic), but that is a lot slower than normal
machine arithmetic, and if you are working out the digits of pi, for example,
the computation will never finish because pi cannot be represented by a
finite number of digits.

Floating-Point Numbers
Two kinds of floating-point numbers are commonly supported in computers:
single-precision and double-precision. A single-precision number uses one
machine word, and a double-precision number uses two machine words.

On 32-bit machines, as a rule of thumb, single-precision gives you up to 6
valid digits, and double-precision gives you up to about 12 digits. C++ does
all floating-point arithmetic in double-precision, but you can store your
results in single-precision. It is a question of using a word when a word is
enough; if you have tons of memory, then it is safer to always use double-
precision.

Integers
There are four basic integer types: char (which is 1 byte), short (which is 2
bytes), long (which is 4 bytes), and int (which is a machine word in length;
4 bytes in the case of a 32-bit machine). The four integer types can be
either signed or unsigned. For example, a signed char can store numbers
from –127 to +127; an unsigned char can be from 0 to 256. Four byte inte-
gers go up to 2,147,483,647. A single ASCII character can be stored in a
char, and this in fact is the chief use of the char type.
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N O T E
You may recognize the four C++ integer types from Java, but beware! The C++ char
type is ASCII, which is 8 bits; the Java char type is Unicode, which is 16 bits. Unicode
encodes all the non-Roman characters (for example, Greek, Chinese) as well as ASCII.
Standard C++ defines wchar (that is, wide char) for Unicode applications, and this is the
same as the Java char type. Unlike Java, which is meant to be a machine-independent
standard, C++ uses the most efficient sizes possible.

Variables
C++ would be of limited use if you could not use it to store the results of
calculations, whether in memory or in a disk file. Variables allow you to
give names to areas of memory for storing such results. Variables in C++
have definite types, such as int, double, etc., and more complex types that
are built from these basic types.

Declarations
A declaration is a statement that sets aside some space in memory. It con-
sists of a type, followed by a list of variables. A variable can contain a
value, and you often set this value when you are declaring the variable. For
example, the following declaration defines a variable k of type int, and it
allocates 4 bytes for it:
;> int k  = 10;

After a variable has been defined, you can use it in any expression. For
example, you can use the  variable k as follows:
;> 2*k - 1;
(int) 19

If you don’t declare a variable, it is considered an error. The system could
detect such cases and implicitly declare a variable (as occurs in BASIC and
many scripting languages), but this is a bad practice in real programs
because it is too easy to misspell a name. Likewise, you cannot redeclare a
variable, unless the variables are used in different contexts (which we will
discuss in Chapter 2 ). UnderC tends to be more easygoing about variable
redeclaration in interactive mode.
;> m;
CON 4:parse error
CON 4:Cannot find ‘m’

You do not have to initialize the value in a declaration (that is, set the vari-
able to some initial value):
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;> int n;
;> n;
(int) n = 0

The value is 0 in this case, but the language does not guarantee that vari-
ables will be initially set to zero. You will see in Chapter 2 that in some
common situations, declaring variables leaves their value completely unde-
fined.

You can declare a number of variables in one statement. This statement
declares six uninitialized variables:
;> int i1, i2, i3, alice, bonzo_the_clown, SinbadTheSailor;

There are rules for variable names: They may contain alphabetic charac-
ters, digits, and the underscore character (_). They can be lowercase or
uppercase, but the system is case sensitive, so two variables a and A are
considered distinct from one another.

C A U T I O N
Case-sensitivity in C++ is different from how most languages (including English!) do it
so watch out for this. The name “Sinbad” is not the same as “SINBAD” in C++. The fol-
lowing declaration is completely legal, but it is silly because these are all distinct vari-
ables:

;>long onedog=1,Onedog=2,OneDog=3,ONEDOG=4;

There is a problem here because (a) these are different variables and (b) people usu-
ally won’t read them as different variables. (Most other computer languages would
regard these as the same variable; confusion is the result.) The best way to avoid this
silliness is to have a naming convention. Most programmers prefer to make all vari-
ables all lowercase and use underscores (_) to separate words (for example, one_dog
rather than onedog).

C++ supplies the operator sizeof, which you can use to determine how
large (in bytes) a variable or type is:
;> float f;
;> double g;
;> sizeof(f);
(int) 4
;> sizeof(g);
(int) 8
;> sizeof(int);
(int) 4

Occasionally you will need to know the size of a type, such as int, in a pro-
gram. Never assume that it is 4 bytes, and always use sizeof(int) to
ensure that the program can still run on machines where sizeof(int) isn’t
4. For example, on a SGI workstation an int is 8 bytes.
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Assigning Values to Variables
After a variable is declared, you can put any value into it, provided that the
value is of a compatible type. This is called assignment:
;> int n;
;> n = 42;
(int) 42
;> n = 2*n;
(int) 84

N O T E
A common problem is that people (quite naturally) confuse the operator = with mathe-
matical equality. Since the first time you could grab a pencil, you have been brought up
to read = as meaning “is equal to.” It is indeed true that after the assignment in the
preceding example, n is equal to 42. But = didn’t mean they were equal before,
because the variable’s initial value was probably 0. And n = 2*n makes no sense what-
soever as a statement about equality. Other languages avoid this trouble by using an
operator that won’t be confused with equality (for example, := in Pascal). A good habit
to cultivate is to read n = 42 as ‘n becomes 42’ or ‘assign 42 to n,’ rather than ‘n
equals 42’. The operator = does not compare two numbers; rather, it actively takes the
right-hand side and puts it into the variable on the left-hand side, which is modified.

The variable can be used in a subsequent expression, and it will have the
new value until the next assignment. An interesting fact is that the assign-
ment statement n = 42 is actually an expression: It has a value! This has
two important consequences. First, you can say m = n = 0, because n = 0 is
an expression that has the value 0, and so m also becomes 0. (You may find
it easier to read this statement as m = (n = 0).) Second, you can put
assignments where other languages would never allow them. However, this
is often a bad idea, and it can be a cause of much confusion.

We discussed earlier in the chapter that a variable has a given precision,
which is the number of bytes it uses. It is safe to assign a numerical type
that has a smaller precision to a variable. For example, you can assign an
integer to a double variable; this process is called promotion. What happens
if you try to assign a value that is larger than that variable can hold? This
is very easy to show by using unsigned char because char can hold up to
255, and unsigned means the value will be displayed as both a character
and as a decimal integer:
;> unsigned char ch;
;> ch = 32;
(unsigned char) ‘ ‘ (32)
;> ch = 300;
(unsigned char) ‘,’ (44)
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The value 32 is fine; it is the ASCII value of a space. But 300 is too big, and
we get 300 – 256, which equals 44, which is a comma character. This is
called integer overflow, and it happens with any integer type. Even 32-bit
integers overflow eventually; if you keep a Windows 9x machine up for
more than 49 days, the 32-bit clock counter (in milliseconds) overflows, and
the system becomes unstable.

Constants: const and enum
It is very useful to define symbolic constants. The following example calcu-
lates the areas of circles, and so PI is defined as a constant:

N O T E
Constants are commonly written in uppercase so that it’s easy to identify them in code.

;> double PI = 3.14;
;> double r = 2.3;
;> PI*r*r;
(double) 16.6106

Using const Declarations
Even though it is a constant, it is possible to assign values to PI, which
seems to contradict the idea of a constant. (One of Murphy’s Laws for soft-
ware development is “Variables won’t and constants aren’t.”) One C++ solu-
tion is the const modifier. When applied to a type in a declaration, it flags
the declared symbol as not being modifiable:
;> const double PI = 3.14;
;> PI = 3;
CON 3: Cannot modify a const type

Constants, like variables, can be initialized with an expression, but that
expression must be a compile-time constant. That is, it contains numbers
(known as constant literals) or declared constants, as in the following 
example:
;> const double PI4 = PI/4.0;

In traditional systems, all of a program’s statements are compiled into
machine code, which is executed later. So constants cannot depend on the
actual state of the running program. UnderC is more tolerant than tradi-
tional systems because in it, code is generated and executed immediately.

Just as with variable declarations, you can create several constants by
using one statement, but you cannot declare a constant without immedi-
ately initializing it. The following statement creates three constants, ONE,
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TWO, and THREE. Note that you can define TWO in terms of ONE’s value, etc.—
the value of a constant is set immediately:
;> const int ONE=1, TWO=2*ONE, THREE=3*TWO;

Using Enumerations
Another way to create constants in C++ is to use enumerations. By using
the enum keyword, you specify a set of names and let the compiler generate
unique values for them. The names are enclosed in braces ({}) and sepa-
rated by commas.
;> enum { APPLE,BANANA,ORANGE,PEACH };
;> APPLE;  BANANA; ORANGE; PEACH;
(int) APPLE =  0
(int) BANANA = 1
(int) ORANGE = 2
(int) PEACH = 3

Using enumerations is particularly useful if you want a set of constants—
such as NORTH, SOUTH, EAST, and WEST—but don’t particularly care what their
exact values are. You can still force the generation of particular values by
explicitly setting a value; any following values will then default to that
value plus one, as in the following example:
;> enum { LEFT = 1, RIGHT };
;> RIGHT;
(int) RIGHT = 2

It is even possible to fully specify these values:
;> const int n = 2;
;> enum { START = n,

FINISH = 2*n
};

Note that enumerated values, like other constants, can be constant expres-
sions. Again, C++ does not care about whitespace, and you can organize the
enum statement as you please. (But remember to end each with a semicolon;
this is one of the two cases in C++ where a semicolon is needed after a
brace.) In this case, many people think that it is better style to use a const
declaration. Remember the purpose of constants and enumerations; they
are to avoid putting mysterious numbers in programs. If I see the number
‘5000’ in a program, it’s puzzling, but if I see MAXIMUM_OVERDRAFT its mean-
ing becomes self-explanatory (assuming that this was a banking program,
of course) Also, when the bank changes its policy, I will not have to change
every instance of ‘5000’ scattered through several thousand lines of code.
Well-named constants are an important part of documenting code.
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Operators and Shortcuts
So far, you have met only the basic operators for addition, multiplication,
and assignment. C++ has a very rich set of operators, including several
designed to manipulate the individual bits of numbers directly and effi-
ciently. I won’t do those immediately, but concentrate on the most com-
monly used operators first. C++ came from C, which was designed by
people who hated unnecessary typing, so you may find the operator symbols
cryptic at first. But everyone gets used to them with practice.

Division and Remainder
In C++, division is expressed by the forward slash (/). The operator / has
the same precedence as the operator *, just as in ordinary arithmetic, so
the parentheses are necessary in the following example:
;> double x = 1.2;
;> (x+1)/(x–1) + 1;
(double) 12.

In mixed real/integer expressions, the integers are promoted into double-
precision numbers. What if you want an integer result? If you are only
interested in the integer part of a division operation, you can cast a double
into an int; this expression (int)x is called a typecast. Going from a double
to an int is called a narrowing conversion because the result has less preci-
sion. As you can see in the following example, it happens automatically
when assigning a double to an int. Most compilers warn you about narrow-
ing conversions, so it’s best to explicitly use a typecast.
;> x = 2.3;
;> (double) 2.3
;> (int) x / 2;
(int) 1
;> n = x / 2;
(int) 1

It is common to need the remainder after an integer division. For instance,
it will be zero if a divisor can divide exactly into a number. The remainder
or modulo operator (%) does this for you. An interesting use of % is with the
standard function rand(), which generates a large pseudo-random number.
rand() % 10 is guaranteed to be between 0 and 9:
;> 4 % 2;
(int) 0
;> 5 % 2;
(int) 1
;> rand() % 10;
(long int) 1
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rand() % 10;
(long int) 7
;> rand() % 10;
(long int) 4

Logical Operations
As discussed earlier in the chapter the assignment operator (=) does not
mean equality. C++ uses the == symbol to indicate equality. So you can read
a == b as a equals b. Simularly, != means ‘not equal to’.
;> n = 1;
(int) 1
;> n == 1;
(bool) true
;> n != 1;
(bool) false

The result of a comparison is of type bool, which is short for Boolean. (The
founder of mathematical logic was named Boole.) This type was not part of
the original C++ language, in which comparisons resulted in either one or
zero. Generally, any nonzero result is considered true. The type bool is con-
sidered to be an integer, and the compiler converts it into a number if nec-
essary. 

There are other comparison operators as well: less than (<), greater than
(>), less than or equal (<=), and greater than or equal (>=). These can be
combined together with && and ||, which mean and and or respectively. You
express not by using the operator ! and not equal by using the operator !=.
;> 20 > 10 && n == 1;
(bool) true
;> n > 1 || n != 5;
(bool) true
;> n == 1+2 && 20 > 10 || n==5;
(bool) false

C++ notation takes some practice to get right. For example, note the respec-
tive precedence of && and || in the third expression in the preceding 
example:
;> n == 1+2 && 20 > 10 || n==5;

&& is evaluated first, and then || is evaluated; the + operator has highest
precedence of all. The Pascal equivalent would be expressed as follows: 
((n = 1+2) and (20 > 10)) or (n = 5)

If you are unsure of the exact operator precedence in a C++ expression,
there is no harm in adding extra parentheses. They have no effect on the
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resulting code, except that they make sure that it says exactly what you
wanted.

Shortcuts
C++ inherited from C some operators (such as ++, —, +=, -=, and *=) that
increment and decrement variables directly, rather than forcing you to use
expressions such as n = n+1. If n is an integer, then both ++n and n++ incre-
ment that integer; they differ in the value of the expression. ++n is called
the prefix increment operator, and n++ is the postfix increment operator.
;> int nn = 1;
;> ++nn;
(int) 2
;> nn;
(int) 2
;> nn++;
(int) 2
;> nn;
(int) 3

The prefix operator returns the value after the increment, and the postfix
operator returns the value before the increment. There are also two decre-
ment operators, nn— and —nn, which work similarly to ++n and n++.

A number of assignment expressions apply an operation to the right-hand
side of an equation. For instance, it is common to have statements such as
nn = nn + 2. Although this is a valid C++ expression, in C++ this state-
ment can be written as nn += 2. The operators -= and *= can be used simi-
larly. The following code shows these shortcuts in use, assuming that nn
was originally 2. Their value in each case is the value of nn after the opera-
tion.
;> nn += 2;
(int) 5
;> nn -= 2;
(int) 3
;> nn *= 4;
(int) 12

Generally, the shortcuts are not only easier to type, but produce faster code
than writing them out in full (like n=n+2). This is part of the original C phi-
losophy of being a fast language that’s quick to type. The code n=n+1 is not
incorrect, but you will rarely see it in well-written C++ code.
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Strings
So far we have discussed C++’s handling of both integer and floating-point
arithmetic, and we have talked about how variables can be used to save the
results of numerical expressions in memory. However, programs often have
to manipulate text data. For instance, a compiler analyzes program text,
and a word processor must detect the ends of words and of sentences.
String literals such as “this is a string of characters” are part of the C++
language. However, C++ does not directly support character string data
types. The standard C++ library has defined a type string, which is simple
and intuitive to use.

The type string
The type string is not built into C++ like int or float, but it is made possi-
ble by the class mechanism of C++. Standard strings are objects. However,
these strings are so straightforward to use that programmers can use
strings as if they were built in, without worrying about the details. In the
past few years, the standard C++ library has become widely accepted and
implemented, and this means that there is agreement on how strings
should work and how to manipulate them. String variables may be declared
like any other type, as in the following example:
;> string s = “hello dolly”;
;> s;
(string) s = ‘hello dolly’
;> s.find(“dolly”);
(int) 6  
;> s.find(“swell”);
(unsigned long int) 4294967295

find() is a special kind of function: It is associated with an object by using
the dot (.) operator. An object has an associated set of functions called
methods, which you can use to modify the object and ask for its properties.
In the preceding example, the find() method is used to find the position of
the substring “dolly”, and it always returns the largest possible positive
integer if it fails.

Concatenating Strings
A common operation on strings is to compose them out of smaller sub-
strings. For example, the operator + has the effect of concatenating two
strings:
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;> string y = “ you’re so swell”;
;> s + y;
(string) ‘hello dolly you’re so swell’
;> y + “ dolly”;
(string) ‘you’re so swell dolly’
;> s += “ so fine”;
(string) ‘hello dolly so fine’
;> s.length();
(int) 20

Similarly, the operator += appends a string to another string, modifying the
target string. There is no – operator because there is no C++ operation that
is like subtraction on strings. At any point, you can find out the length of
the string by using the method length(), which takes no arguments. In
such a case, you put an empty list after the name.

Note that the first example uses a single quote character within the double
quotes: “ you’re so swell”.

How would you put a double quote in a string literal without prematurely
ending the string? C++ allows you to embed special characters in a string,
by using the backslash escape character (\) followed by a character. Note
that you must double up the backslashes if you want to do a DOS-style
pathname; otherwise, each \ in the pathname will be interpreted as an
escape character. Other very useful escapes are \n (for return) and \t (for
tab). In the following code, I have created three strings containing special
characters. The last is printed out on three lines because it contains two
return characters:
;> string path = “here is a \”quote\””;
;> path;
(string&) ‘here is a “quote”’
;> path = “c:\\programs\\ucw”;
(string&) ‘c:\programs\ucw’ 
;> path = “line1\nline2\nline3”;
(string&) ‘line1
line2
line3’

Finding and Extracting Substrings
The substr() method takes two arguments; the first is a start position,
measured from zero, and the second is a character count. The substr()
method copies the specified number of characters from the start position,
and it is like the Borland Pascal copy function or the BASIC left$ function.
In the example, I use substr() to extract substrings. The third call uses the
index returned by find():
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;> p = “hello dolly”;
(string&) ‘hello dolly’
;> p.substr(0,1);
(string) ‘h’
;> p.substr(1,2);
(string) ‘el’
;> p.substr(p.find(“dolly”), 5);
(string) ‘dolly’

As mentioned earlier in the chapter, the string’s find() method looks for
the first occurrence of a substring. It returns an index that substr() can
use (that is, it is not negative). Generally, you should always check the
return value before using it.

The replace() method takes a specified substring, like substr(), but it
replaces the substring with the given string, rather than extracting it:
p.replace(0,5,”goodbye”);
(string&) ‘goodbye dolly’

Input and Output
To be useful, a program must communicate with the world and save calcu-
lated results on disk. Most C++ systems do not automatically show the
result of every expression the way UnderC does. C++ programs use the
iostreams library, which defines input and output “streams”.

Writing to cout
With C++, a program can direct values and text to output by using the
insertion operator (<<), acting on cout (pronounced “see-out”), which is a
special variable that represents the standard output stream. (Bjarne
Stroustrup suggests we call << “put to.”) The following example uses << to
output a string literal and an integer. Note that the items follow each other
on output with no extra spaces:
;> cout << “nn = “ << nn << endl;
nn = 2
(ostream&) ostream {}

Although this is an expression that has a displayed value, we are not inter-
ested in the result. The statement is executed for the effect of the inser-
tions, which is to output a text value, an integer value, and endl, which
forces a new line. The following example shows the effect of endl, and note
that in this example, the last integer has not been left on its own line:
;> cout << 1 << endl << 2 << endl << 3;
1
2
3(ostream&) ostream {}
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Evaluating an expression because of its effect on the environment or some
object is common in programming. We are not always interested in its
value.

The operator << has a lower precedence than any other mathematical oper-
ator, so you can safely use expressions with it, but comparisons are a prob-
lem. You usually get some sort of error message when you use it, so you will
know when you have a problem. The first statement executes fine, because
of <<’s low precedence, but the second causes an error:
;> cout << “the answer is “ << 20*10+1 << endl;
the answer is 201
;> cout << “a < b = “ << a < b << endl;
CON 36:Could not match void operator<<(int,_Endl_);

Because < has lower precedence than <<, the system has to make sense of
(b << endl), and it fails. This is another instance where you might want to
use extra parentheses to clarify the precedence order you desire.

Reading from cin
You can use the extraction operator (>>), called “get from,” to retrieve val-
ues from the standard input stream, cin (pronounced “see-in”). This code
prompts the user for an integer; in the case of the example that follows, 42
is then typed in: 
;> cin >> nn;
42
(istream&) istream {}
;> nn;
(int) nn = 42
;> int i1,i2;
;> string s1,s2;
;> cin >> i1 >> i2 >> s1 >> s2;
10 20
30 dog
(istream&) istream {}

You can extract multiple values from the input stream, ignoring whitespace
in the input. Note that strings are assumed to be separated by spaces; the
input is assumed to form a continuous stream of characters, not be broken
by lines.

Other languages, such as BASIC, have line-oriented input (that is, each
input statement grabs a whole line), which makes it quite difficult to per-
form stunts like the previous example. However, sometimes in C++ you
need to read in a whole line at a time. You can do this using the getline()
function, which works with an input stream such as cin and reads in the
line as a string:
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;> getline(cin,s1);
a sentence is composed of words
;> s1;
(string) ‘a sentence is composed of words’

Writing and Reading Files
Writing a file involves creating an output stream and using the insertion
operator, exactly as for standard output. First you declare a variable of type
ofstream, and then you use it to open the file. Then the file is written to in
precisely the same way as writing to cout, and when you are finished writ-
ing to the file, you close it:
;> ofstream out;
;> out.open(“tmp.txt”);
(bool) true
;> out << i1 << “ “ << i2 << endl;
(ostream&) ostream {}
;> out.close();

You view the new file by using Notepad, or you can directly execute the
DOS type command from the ;> prompt:
;> #x type tmp.txt
10 20

To read a file, you need to use ifstream, which is a file input stream. Again,
the sequence of operations is the same; you open the stream, giving it the
name of an existing file, and then use >> to extract values from the stream.
When finished, it’s important to close the file.
>ifstream in;
;> in.open(“tmp.txt”);
(bool) true;
;> in >> i1 >> i2;
;> in.close();

Reading from Strings
It is often useful to extract numbers from a string. The easiest way to do
this is by using a special kind of input stream, called istringstream:
;> p = “10 20 fred”;
;> istringstream is(p);
;> is >> i1 >> i2 >> s;
(istream&) istream {}
;> cout << i1 << “,” << i2 << s << endl;
10,20fred
(ostream&) ostream {}
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What’s Next
I have shown you how C++ can be used as a sophisticated calculator with
the UnderC interactive system. Arithmetic expressions are written using
variables and constants, combined together with operators such as * and +.
The main difference from a normal scientific calculator is that integer and
real numbers are treated differently. You can also manipulate character
strings and do input /output. Next, I will show you how to extend the calcu-
lator by writing your own functions and how to control the execution of
statements with loops and decisions.
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Functions and Control Statements
In Chapter 1, “Expressions and Variables,” you learned about C++ expres-
sions and the most important operators used in expressions. In addition,
you learned how to manipulate character strings, display values, and write
to disk files. So far we have not been programming. Programming involves
making decisions and repeating operations; the building blocks of programs
are functions and control statements. A C++ program consists of one or more
files that contain statements (which are its sentences) organized into func-
tions (which are the equivalent of paragraphs). For instance, a program to
calculate the average value of some numbers would have to repeatedly get
a value, add it to the sum, until there were no more values. And finally it
would divide that sum by the number of values and print out the result. If
that result was a student’s final aggregate mark, then the program may
print out a message if that mark is below some value. I could give this
description to a person, and they would be able to sit down with a calcula-
tor and process some test results. Computers are not intelligent enough to
use English, which is in any case far too vague and wordy. So programming
C++ involves precisely specifying each step (for example, what does ‘no
more values’ mean?) so there is no room for misinterpretation.

In this chapter you will learn

• How to define functions

• How to execute statements conditionally

• How to repeat statements

• The difference between global and local variables



Defining Your Own Functions
Functions are collections of C++ statements, which are usually fairly short
and do some specific thing. These are the two main reasons why functions
are essential in programming. I may need hundreds of lines to specify a
complex task, and that is simply too long for most humans to follow. It’s
easy to get lost in big programs, just as in big documents, and you can’t
assume that your reader has the time or patience to work it out. Dividing
code up into functions is like dividing text into named paragraphs and
chapters. Programming is like cooking—complicated recipes are broken
down into sub-recipes, like making the sauce, cooking the vegetables, etc.
The built-in functions like sqrt() are basic steps that all cooks should
know. It is now time to write your own recipes.

Squaring Numbers
You may have found it odd that there is no built-in way to do something as
simple as square a number in C++; there is no n ^ 2 as in BASIC for this
common operation. You can write n*n, but squaring expressions gives ineffi-
cient code, such as (n+1)*(n+1), which might be good mathematics, but
involves repeating the addition, looks clumsy, and can cause errors. In C++,
however, it is straightforward to define a function that squares an integer:
;> iint isqr (int x) { return x*x; }
;> isqr(2);
(int) 4
;> isqr(2*3) - 1;
(int) 35
;> double cube (double x) { return x*x*x; }
;> cube(2);
(double) 8.

The function isqr() is now available for use in any expression, just like a
built-in function such as sqrt(). isqr() takes an argument of type int and
returns a value of type int. isqr(2) is called a function call; we speak of
isqr() being passed an argument of type int. You can likewise define
cube() as a function that returns double and is passed a double value. Note
that, just as with built-in functions, integer arguments are automatically
promoted to double.

You can start customizing C++ to be a financial calculator by defining a
compound interest function that compounds the interest annually. If you
need a function that compounds the interest every quarter, then it can be
defined in terms of the compound_annually() function:
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;> ddouble compound_annually(double cap, double interest, int nyears)
;1> {
;1>  return cap*pow(1.0 + interest,nyears);
;1> }
;> double compound_quarterly(double cap, double interest, int nyears)
;> { 
;>     return compound_annually(cap,interest/4.0,4.0*nyears);
;> }

Argument names should be meaningful—don’t call the interest argument
just ‘i’ and the number of years just ‘n’. These function names may be too
tedious to type for a quick calculation, but it’s possible to define a C++
macro to use as a shorthand, as in the following example:
;> ##define CA compound_annually
;> compound_annually(1000,0.05,10);
(double) 1628.89
;> CA(1000,0.06,10);
(double) 1790.85
;> compound_quarterly(1000,0.06,10);
(double) 1814.02
;>

The Anatomy of a Function
A function definition looks rather like a declaration: It includes a type (that
is, the return type) and the function name, followed by the formal argument
list and the actual code, which is enclosed in braces ({}) and must contain a
return statement. The argument list consists of declarations separated by
commas. Sometimes people speak of a function’s parameters, which are syn-
onymous with arguments. A function can call other functions; it can have no
arguments, or it can have many; and whitespace is not significant. The fol-
lowing example defines a function pi(), which just returns a constant value
and a function circle_area(), which uses pi() and sqr() to calculate the
area of a circle. The function add() takes two integer arguments.
;> ddouble pi() {
;1>  return 3.1412;
;1> }
;> double sqr(double x)  { return x*x; }
;> double circle_area(double r) { return pi()*sqr(x); }
;> int add(int a, int b)
;> { return a + b; }
;> add(10,20);
(int) 30

The idea of a function not taking arguments is strange because such a beast
does not fit easily into mathematics. The function pi() in this example
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might seem to be a silly way to define a constant, but such functions have
interesting uses. The function with two arguments int add(int a, int b)
shows each argument being separately declared. I mention this because it’s
natural to think you could declare that function more easily as int add(int
a,b), which is how ordinary declarations are written (especially since some
languages like Pascal do that!) But that is not how the C++ language
works.

Functions That Don’t Return Values
Sometimes you aren’t interested in a return value, but everything in C++
must have a type. The type void indicates “no type” or “I don’t care” when
used as the return type. The following function prints out an integer value,
but does not return a value.
;> vvoid show(int I)
;> {
;1> cout << “I = “ << I << endl;
;1> }
;> show(42);
I = 42
;>

There are two interesting things about this function: It has no return state-
ment, and it genuinely has no value, which you can see when you use it
interactively at the UnderC prompt. The void function is the only kind of
function that doesn’t need a return statement—because there isn’t anything
to return! Not returning a value is again another odd thing mathematically,
but C++ functions do not play by the same rules as mathematical functions.
Other languages call void functions procedures (for example, Pascal) and
subroutines (for example, BASIC). Why would you need functions that don’t
return values? You might want to collect commonly used statements
together. For example, the following example produces a little report:
;> vvoid interest_report(double capital, double interest_rate) {
;1>  cout << “Original capital was “ << capital << endl;
;1>  double interest = capital*interest_rate;
;1>  cout << “Interest was “ << interest << endl;
;1>  cout << “New capital is “ << capital + interest << endl;
;1> }
;> interest_report(1000,0.06);
Original capital was 1000.000000
Interest was 60.000000
New capital is 1060.000000
;>
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Side Effects of Functions
The function interest_report() is only used for its effect, which is to print
out some stuff. And this is why we made it a void function. But, consider
the following variable and a function that modifies it:
;> iint kount = 0;
;> int isqr(int I) {
;1> kount++;
;1> return I*I;
;1> }
;> isqr(2);
(int) 4
;> kount;
(int) kount = 1

The main purpose of this function is to square integers, but it also incre-
ments a count. You would use this function to get an idea of how many
times integers are squared in a program. This secondary effect of a function
is called a side effect and can be a recipe for disaster if you aren’t careful. A
good rule is for each function to do one thing only. If a function is supposed
to calculate a tax rate, then it shouldn’t moonlight and update the database
as well. If you can’t come up with a clear name for a function, then its role
is probably too vague and needs to be clarified further.

Control Statements
Until this point in the book, statements have been executed in sequence.
The flow of control in a C++ program is linear; it may pass to a function
and back, but it always passes through each statement. Often you need to
make decisions and you need to repeat actions. These are the basic reasons
for control statements.

The if-else Statement
Programs often need to make decisions. For example, if a student scores
less than a certain required minimum, action has to be taken; if an account
is overdrawn more than a prescribed number of days, bills need to be sent
out and interest rates raised. The C++ if-else statement handles these
types of decisions:
;> iint mark = 49;
;> if (mark >= 50) cout << “pass\n”;
;> else cout << “fail\n”;
fail
;>
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This statement consists of three parts:

• A condition, which can be any Boolean (or integer) expression enclosed
in parentheses

• A statement that is executed if the condition is true

• An (optional) else, followed by a statement that is executed if the con-
dition is false

Pascal programmers should note that there is always a semicolon after the
if part. Not every if statement has an else, as in the following example:
;> cconst double MAX_OVERDRAFT = 5000;
;> void check_account (double overdraft) {
;1>  cout << “Overdraft is “ << overdraft;
;1>  if (overdraft > MAX_OVERDRAFT) 
;1>     cout << “ overdrawn by “ << overdraft – MAX_OVERDRAFT; 
;1>  cout << endl;
;1> }
;> check_account(4000);
Overdraft is 4000.
;> check_account(6000);
Overdrarft is 6000. overdrawn by 1000.

The warning about the overdraft happens only if it is excessive.
(Incidentally, note in this example how you can split up a line of output
over several statements. Output streams, like input streams, are not line
based, which is why you need endl.)

Generally speaking, you can put any valid C++ statement after if. The
statements controlled by the if-else statement can themselves be if-else
statements. This is a very common pattern, which is commonly used where
there are multiple choices to be made. Save the following as mult-if.cpp in
Notepad, and load it using the #l command. You can then test it as before:
// mult-if.cpp
string test_if (int mark)
{
string symbol;
if (mark < 50) symbol = “F”;
else if (mark >= 50 && mark < 55) symbol = “E”;
else if (mark >= 55 && mark < 60) symbol = “D”;
else if (mark >= 60 && mark < 65) symbol = “C”;
return symbol;

}
;> ##l mult-if.cpp
;> test_if(55);
(string) ‘D’
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Experimenting with if statements with UnderC reveals curious behavior.
Say you type an if statement that should execute, but nothing happens
until you type another statement. This happens because the compiler is
looking ahead to see whether an else is forthcoming. It’s easy to force this
by adding an extra semicolon, creating an empty statement, as in the follow-
ing example:
;> iif (20 > 10) cout << “yeah!\n”; ;
yeah!

C A U T I O N
The condition of an if statement might be just about any C++ expression that could
possibly make sense as a bool or an integer. Java insists that it must be a bool, which
is a good attitude to take in C++ as well. Remember that the assignment operator
returns a value, which means that the following code is valid C++: n = 1 assigns 1 to
n, and because the value 1 of that expression is nonzero, the condition is true. It is
very easy to confuse == with =! Many compilers (like BCC55) will give you a warning
about ‘possibly incorrect assignment’. 

;> iint n = 2;
;> if (n = 1) cout << “was one!\n”; ;
was one!

Blocks
You have previously encountered blocks in function definitions; the state-
ments between braces ({}) form a block. Blocks are used to collect several
statements together, and they may themselves contain blocks. Blocks are
often controlled by if statements, as in the following example:
;> ddouble a = 1, c = 0;
;> if (a > 0) {
;1>  double b = 2*a;
;1>  cout << “b is “ << b << endl;
;1>  c = a – 1;
;1> }
b is 2
;> b;
CON 3: Parse Error
CON 3: Cannot find ‘b’

The interpreter prompt changes to show how deep the block level is at the
moment. A declaration is a statement, so blocks can contain declarations,
but these declarations are private to that block.
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The while and do-while Statements
Programming any language becomes much more entertaining when state-
ments can be repeatedly executed in a loop. Loop means that the flow of
control jumps (or loops) back while some condition is true, as in the follow-
ing example, which demonstrates the while statement. A while statement is
similar to an if statement; there is a condition in parentheses followed by a
controlled statement. The controlled statement is executed if the condition
is true but will continue to be executed until that condition is false. The
while statement followed by the controlled statement is often called a while
loop:
;> iint k = 0;
;> while (k < 10) k = k + 1;
;> k;
(int) k = 10

The controlled statement k = k + 1 executes 10 times, until the condition
fails, because k was no longer less than 10. Incrementing a variable like
this isn’t good style in C or C++, however. Let’s watch this loop in action
again, this time using the postfix increment operator ++ (which returns the
value of k before it is incremented):
;> kk = 0;
;> while (k < 4) cout << k++ << endl;
0
1
2
3
;> k;
(int) k = 4

The while statement can control any kind of statement, but it is especially
used with blocks. The while statement is not executed if the condition is
false at the beginning. There is another form of while loop in which the
statement is always executed at least once: the do-while loop. The following
function reads and sums numbers from a file until the end of the file: 
int sum_file(string file)
{
ifstream in;
in.open(file.c_str()); 
int val=0,sum = 0;
do {
sum += val;
in >> val;

}  while (! in.eof());
in.close();
return sum;
}
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N O T E
The eof() method usually returns false, so ! in.eof() is true.

The problem with using a while loop here is that we must not use the value
if the EOF becomes true, which means we have gone beyond the EOF, and
the value is not meaningful (it is usually the last value read, but that’s acci-
dental). Replace the do-while with the following loop and note that it
appears to count the last number twice:
while (! in.eof()) {
in >> val;        // get the value
sum += val;       // could be EOF at this point!

}

A much more convenient method is to use the result of the read operation
itself, which is nonzero unless it is past the end of the file:
while (in >> val)

sum += val;

The for Statement
It is common to want to use some statements a certain number of times or
take a variable (that is, a loop counter) from a start to a finish value. The
while statement is not ideal for this job because you must initialize the
variable separately and remember to increment it each time, both of which
are tasks that you can easily get wrong. The initial value of the variable
may be anything, and if you don’t increment it, the loop happily goes on 
forever—it is an endless loop—because the condition is always true. The
for statement is designed to make these kinds of loops easier and less
error-prone. It has three parts, separated by semicolons: an initialization, a
condition, and an operation that happens on each iteration. The following is
the simplest form of the for statement, and you will learn to type it in your
sleep:
;> ffor(k = 0; k < 4; k++) cout << k << endl;
0
1
2
3
;>
;> k = 0;
(int) 0
;> while (k < 4) {
;1> cout << k << endl;
;1> k++;
;1> }
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0
1
2
3

The first part of this for statement is executed once in the beginning; the
second part is executed before the controlled statement; and the third part
is executed after the controlled statement. Like a while statement, the for
statement is not executed if the condition is initially false. In this example,
the for loop is completely equivalent to the while loop, which is more com-
plicated (because it needs a block). With a while statement, it is particu-
larly easy to forget to increment the counter at the end, especially if there
are many statements in the block.

The for statement does not trip off the tongue (or the fingers) as easily as
BASIC’s for loop. It is the ugliest way to get from 0 to n-1, but it is very
flexible. It automatically goes from 0 to n-1, which is the way C++ prefers
to count. You can declare variables in the initialization part. The following
example sums the integers from 0 to 9:
;> iint sum = 0;
;> for(int j = 0; j < 10; j++) sum += j;
;> sum;
(int) 45
;> j;
CON 6: Cannot find ‘j’

In this example, note the shortcut addition operator. Any variables (here j)
declared in the initialization part are visible only within the loop. So we get
an error trying to access j outside the loop. The third section of a for state-
ment is usually a plain increment (like j++) but it can be any expression. A
for loop can go backward or go forward with a skip value, as in the follow-
ing example:
;> ffor(k=3; k > 0; k—) cout << k << endl;
3
2
1
;> sum = 0;  // this will sum the even numbers up to (and including) 20
;> for (k=0; k <= 20; k+=2)  sum += k;

The for statement can control any statement, including another for state-
ment. Therefore, you can use for to write nested loops, as in the following
example:
;> ffor(int i = 0; i < 3; i++)
;1} for(int j = 0; j < 3; j++)
;2}   if (i > j) cout << ‘(‘ << i << ‘,’ << j << “)\n”;;
(1,0)
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(2,0)
(2,1)

The loop variable does not have to be an integer, unlike in most other lan-
guages. In the following example, you vary a float variable and print out a
small table of trigonometric functions. The shorthand assignment-with-
addition operator (+=) is very convenient for incrementing x by a small
amount:
for(float x = 0; x < 1.0; x += 0.1)
cout << x << ‘ ‘ << sin(x) << endl;

0.000000 0.000000
0.100000 0.099833
0.200000 0.198669
0.300000 0.295520
0.400000 0.389418
0.500000 0.479426
0.600000 0.564642
0.700000 0.644218
0.800000 0.717356
0.900000 0.783327
1.000000 0.841471

The C++ for statement takes some getting used to, but it is very powerful
for expressing many different kinds of loops.

The switch Statement
It is common to have a number of actions that are controlled by a set of val-
ues. Because it can be clumsy to use multiple if-else statements, C++
offers the switch statement. Within a switch block there are case labels for
each value, followed by statements that will be executed. These are usually
followed by a break statement, which explicitly forces the flow of control out
of the block. There is a special-case label called default, which acts rather
like an else statement.
void suburb(int prefix)
{
switch(prefix) {
case 728:
cout << “Melville”;
break;

case 482:
cout << “Parktown”;
break;

case 648:  
case 487:
cout << “Yeoville”;
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break;
default:
cout << “*Unrecognized*”;
break;

}
cout << endl;

}

This example shows how you handle cases where the action is triggered by
more than one value. The flow of execution jumps to the case label, and
then it falls through to the next label. If you don’t put in a break, execution
keeps going through every statement. In the following example, if l is 1
then both cases are executed.
;> sswitch(1) {
;>  case 1:  cout << “one “;
;>  case 2:  cout << “two “;
;> }
one two

You need to be careful with switch statements because they do not work
like equivalent statements in other languages. At first, you may find it easy
to forget the break. Even experienced programmers get their breaks mixed
up; one of the most expensive bugs ever took out millions of telephones in
the eastern United States, and it was due to a misplaced break.

Scope
Earlier I remarked that variables declared within blocks are not defined
outside that block. It would be hard to do serious programming if this were
not true; you would be forced to come up with a unique name for every vari-
able. The part of a program in which a variable is visible is called that vari-
able’s scope.

Global Variables
Variables declared outside functions are called global because they are visi-
ble from any function in the system; such a variable has global scope. Side
effects are a problem in large programs, where it is hard to know exactly
where a variable was changed. Unlike in some languages, C++ global vari-
ables are automatically available to all functions defined in a file (this is
called file scope).

Local Variables
Declarations within a block—that is, local variables—are visible only inside
that block. Local variables have local scope and will hide any variables that
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are declared outside the block. That is, the local definition always domi-
nates. The formal arguments (or parameters) of the function are considered
to be declared as local variables. In the following example, the variable var
is redefined within scope_test().
;> iint var = 1;
;> void scope_test(int a, int b) {
;1>  int var = a + b;
;1>  cout << a << “ “ << b << “ var = “ << var << endl;
;1>  a = 999;
;1> }
;> int a = 11;
;> scope_test(a,22);
11 22 var = 33
;> var;
(int) 1
;> a;
(int) 11

In this example, there is a variable var, which has global scope, and a local
variable var declared within the function. However, global var and local var
are completely independent variables; they don’t have to be the same type,
and they won’t interfere with each other. Likewise, the global variable a
and the local variable a share only a name; you can modify the local a as
much as you like, without modifying the global a.

It helps to know how names are looked up in C++. First the local scope is
examined and then any enclosing local scopes. Only then does C++ examine
global scope. If you really need to access the hidden variable var, you can
use the global scope operator (::), as in the following example:
;> vvoid another_test() { int var = 0; cout << ::var << endl; }
;> another_test();
1

Recall that uninitialized variables are not guaranteed to have a ‘sensible’
value. Global variables will initially be zero, but local variables initially
have arbitrary values. This is a common source of problems, and it causes
bugs that mysteriously come and go. As much as possible, you should ini-
tialize local variables and generally keep the declaration as close to the
first use of the variable as possible. This example shows a typical symptom
of an uninitialized local variable:
void show_var() {
int ii;
cout << ii << endl;
}
;> sshow_var();
7521584
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It is important to realize that local variables are by default volatile, which
means they do not keep their values after the function has finished execut-
ing. (Actually, they may randomly keep their values, which is even worse
than not keeping their values.) This may appear to be a strange default
(and some languages don’t do it), but it is a consequence of how C++ allo-
cates local variables. Later you will see why this is the case, (in the section
“Recursion” in Chapter 6), but for now, don’t depend on local variables to
remember anything.

Note that a variable might not be in scope but still be alive and well. For
instance, the following example depends on the second function not forget-
ting the value of ii while the first function is called:
void second(int I) { cout << I << endl; }
void first() {
Int ii = 2;
Second(ii);
Cout << ii << endl;

}

If you want a local variable that is not volatile, you can use the static
qualifier with a variable declaration. This kind of variable is initialized
once, at the start of the program, and it keeps its value until the next call
of the function. In this example, the function show_it() has a local variable
ii. But because it has been declared as static, this variable will remember
its value:
void show_it() {
static int ii = 0;
ii++;
cout << ii << endl;
}
;> sshow_it();
1
;> show_it();
2
;> show_it();
3

Case Study: A Bug and Defect Tracking System
The case studies that appear at the ends of most chapters of this book pre-
sent nontrivial examples of the C++ language in use. You will get more
experience at reading C++ and how to actually use it in practice. Along the
way, you will learn how to go about the business of writing software.
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The Specification
Bugs are a fact of life in any software project, no matter how clean you kept
the surfaces and how shut the windows were, but the testing phase is
meant to find them. It is a good idea to keep track of bugs. Traditionally,
programmers write themselves notes about bugs on small pieces of paper,
but this method breaks down very quickly. 

In this section you will write a very straightforward system for keeping
track of bugs. The following information is crucial: when the bug was dis-
covered, how severe it is, and a short description. Most bugs are fixed even-
tually, so the system must be able to retire bug reports; however, you need
to keep a record of bugs fixed so that the programmers can prove that they
have been productive. The system needs to report all bugs with a severity
or level greater than a specified value. Finally, the system must report all
bugs within a specified date range. Armed with this specification of the sys-
tem, you can begin to start work on the system.

Top-Down Design
In programming, as in most things with computers, it pays to think before
you type. There are many ways to start designing programs, but with any
approach, it is important not to immediately start writing code (unless it
really is a trivial program or you have done something very similar that
could be reused). One way to plan a system is to break the system into
major functions. There appear to be three of these for the bug tracking pro-
gram you need to develop: add_record(), copy_and_remove(), and
show_and_filter().

Bottom-up Coding: Manipulating Dates
While I am thinking about the top-level design of a system, I find it useful
to start writing code to do lower-level tasks. This keeps me from prema-
turely writing the program, and it gives me an idea of what is needed to
actually implement the actions. In the case of the bug tracking application,
you might start by thinking about dates; you need to be able to show and
compare calendar dates. One way of doing this is to keep the dates as
strings in some standard format. There is some dispute across the Atlantic
about whether the month or the day goes first, so I’ll please neither and
pick the International Standards Organization standard date format, which
shows June 28, 2001, as 2001-06-28. I have supplied a function, str2int(),
which converts a number as a string into its value. Using str2int(), you
can immediately write functions that extract the year, month, and date
from an ISO format date:
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// don’t worry about str2int() yet
int str2int(const string& s) { return atoi(s.c_str()); }

// All date routines assume ISO format: YYYY-MM-DD
int year(string s)
{
return str2int(s.substr(0,4));

}
int month(string s)
{
return str2int(s.substr(5,2));

}

int day(string s)
{
return str2int(s.substr(8,2));

}

After you break up a date in this way, it’s straightforward to compare two
dates. The strategy is as follows, given two dates: First, compare the year
part. If it’s different, you know the dates are different and don’t need to
continue comparing. Next, compare the month part and then compare the
day part. The following routine compare_dates() returns zero if two dates
are the same, negative if the first date is less than the other, and positive if
the first date is more than the other. Notice how the return statement
allows you to leave the function as soon as you have a definite answer:
int compare_dates(string d1, string d2)
{
int yd = year(d1) - year(d2);
if (yd != 0) return yd;
int md = month(d1) - month(d2);
if (md != 0) return md;
int dd = day(d1) - day(d2);
if (dd != 0) return dd;
return 0;  // we are equal
}

Just as a bit of fun, consider the problem of showing 2001-06-28 as 28 Jun
2001. You have to use the month index (1 to 12) to return the three-letter
abbreviation. Obviously, a switch statement would do the job, but the fol-
lowing is a little more elegant:
const string _MONTHS_ = 
“JanFebMarAprMayJunJulAugSepOctNovDec”;
string month_as_str(int idx) 
{
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// idx is 1-12
return _MONTHS_.substr(3*(idx-1),3);

}

Appending a Bug Report
For this version of the program, we will use plain ASCII text files for the
bug reports; text files have advantages as well as disadvantages. Their
chief advantage is that they are easy to read by humans. (At the end of
Chapter 5, I’ll show you a version of this application that uses binary files.)
An output file can be opened for appending by using the ios::app constant
in the open() method of ofstream. The following function thus adds another
line to the file of bug reports:
void add_record(string file, int id, int level,

string date, string description)
{
ofstream out;
out.open(file.c_str(),ios::app);
out << id << ‘ ‘ << level << ‘ ‘ << date 

<< ‘ ‘ << description << endl;
out.close();

}

Each bug report is given an identifying (and unique) number. This is not
part of the specification, but it’s usually a good idea to number things, and
it is easy to refer to a particular bug this way. But how do you apply a
unique number to each bug? Rather than rely on the user to remember the
last ID, the following routine reads the ID from a file, increments it, and
writes it back:
const string ID_FILE = “_ID-FILE_.TXT”;
int next_id() 
{
int id;
//...read the last id from the id file
ifstream in;
if (in.open(ID_FILE.c_str())) { // it does exist..
in >> id;
in.close();

} else id = 0;
id++;
//...write the new value back...
ofstream out;
out.open(ID_FILE.c_str());
out << id;
out.close();
return id;

}
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Discarding Bug Reports
Eventually, a large project generates hundreds of bug reports, and it is nec-
essary to remove the reports when the bugs are fixed. You could keep a
record of dead bugs by diligently creating backups of the bugs file, but this
is not really convenient for analysis. Instead, you can copy all bugs marked
as dead to a discards file and then copy the rest of the bugs to a temporary
file. When you are done copying, you can either copy the temporary file
back or simply rename it. In the following example, you use a file copy rou-
tine:
void copy_file(string in_file, string out_file)
{
ifstream in;
ofstream out;
string line;

in.open(in_file.c_str());
out.open(out_file.c_str());

while (! in.eof()) {
getline(in,line);
out << line << endl;

}

in.close();
out.close();
}

As long as you are not at the end of the input file, you continue to read a
line at a time and write it to output. Having defined this operation, you can
now write the function that discards bugs:
const string TMP_FILE = “TMP-BUG-FILE.TXT”;
void copy_and_remove(string bug_file,string discard_file,

string id_list)
{
ifstream bugs_in;
ofstream discards;
ofstream bugs_out;
istringstream ids(id_list);
int id, target_id;
string line, id_str;

bugs_in.open(bug_file.c_str());
bugs_out.open(TMP_FILE.c_str());
discards.open(discard_file.c_str());
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// we have to get the first target id (at least one) 
ids >> target_id;

while (bugs_in >> id) {
//.....not interested in rest of line...

getline(bugs_in,line);
//...Dump to discards and fetch our next target..
if (id == target_id) {

discards << id << line << endl;
if (! ids.eof()) ids >> target_id;

}
else  bugs_out << id << line << endl;

}

bugs_in.close();
bugs_out.close();
discards.close();  
ids.close();

// And finally, overwrite the original with the temporary file
copy_file(TMP_FILE, bug_file);

}  

The idea here is that the function is passed a string that contains a list of
IDs. You can get these IDs in more than one way, but a particularly conve-
nient method is to use an istringstream object to read them one by one.
Before you start reading the file, the first ID is read from the string, and it
becomes the first target. Each ID is read in, followed by the rest of the line
(you don’t need the extra fields, and it would be inefficient to read them in
individually). If the ID matches the target, that bug report must go to the
discards file, and you read the next target from the string. It is important
to check the result of reading in the bug ID, so that you know when the file
has been fully processed. 

Showing the Report
Users want to place two kinds of constraints on bug reports: level and date
range. A report can have hundreds of bugs, so it’s important that the report
pause every 20 lines or so to ask the user whether he or she wants to see
more. This is a good example of using a bool as a logical flag. The flags
level_filter and date_filter are true only if the level and date inputs are
nontrivial; in our application, the levels begin at one, so zero means no
level. If any of these flags is true, then the corresponding test is performed,
as follows:
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void show_and_filter(string bfile, int min_level, 
string lower_date, string upper_date)

{
ifstream in;
int id,level,lcount=1;
string date,description;
bool level_filter = min_level > 0;
bool date_filter = lower_date != “”;
bool pass;

in.open(bfile.c_str());
while (in >> id >> level >> date) {

in.getline(description);

//  The idea here is that these conditions only kick in
//  if we did want to filter on level and/or date...
pass = true;
if (level_filter) pass = pass && level >= min_level;
if (date_filter) pass = pass && 

compare_dates(lower_date,date) < 0 && compare_dates(upper_date,date) > 0;
if (pass) {

cout << id << ‘ ‘ << level << ‘ ‘ << date << ‘ ‘
<< description << endl;

lcount++;
}

//  Output 20 lines at a time....
if (lcount % 20 == 0) {
string tmp;
cout << “Press return to continue....\n”;
cin.getline(tmp);

}
}
cout << “There were “ << lcount << “ records found\n”;
in.close();

}

Putting It All Together
Each one of the operations in this case study’s application can be run from
the UnderC prompt, and that’s how we test the system: Each part is exer-
cised individually. For example, by the time you used compare_dates(), you
had tested it on a few cases. But, you can’t expect users to type function
names, and most C++ systems don’t support that style of interaction. A
basic user interface involves a simple menu of choices that is printed out
before each user command. You can then use a switch statement to handle
the commands. Note that the switch statement is within a for(;;) loop;
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this is the traditional way of writing a loop that continues forever.
Eventually the user will get bored and enter 5, and this causes the loop to
directly return from the main function. A real system would have a lot more
error checking than the example here; for example, it would check whether
any entered dates are valid. The show_menu() function prints out the menu
lines (note the use of ‘\n’ rather than endl) and allows the user to enter a
number, which is then returned. The chief function of this program is
do_bugs(), which is basically a switch statement that does a return when
the user enters the number 5. Until then, it will keep calling show_menu().
Each case label is followed by a block; I’ve done this so that the code for
each option can have its own local variables. 
int show_menu()
{
cout << “1. Add a bug report\n”

<< “2. Show bugs with specified level\n”
<< “3. Show bugs within a time period\n”
<< “4. Delete list of bugs\n”;
<< “5. Quit\n”;

int val;
cin >> val;
return val;

}

void do_bugs()
{
for(;;) { // loop ‘forever’
int icmd = show_menu();
switch(icmd) {
case 1: {
string date,descript;
int id, level;
cout << “give: level date” << endl;
cin >> level >> date;
cout << “give:  description” << endl;
getline(cin,descript);
if (date == “*”) date = today;
id = next_id();
add_record(BF,id,level,date,descript);
cout << “bug “ << id << “ added...\n”;

} break;
case 2: {
int level;
cout << “give minimum level\n”;
cin >> level;
show_and_filter(BF,level,””,””);  
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} break;
case 3: {
string d1,d2;
cout << “give lower and upper dates\n”;
cin >> d1 >> d2;
show_and_filter(BF,0,d1,d2);

} break;
case 4: {
string ids;
cout << “give IDs in ascending order\n”;
getline(cin,ids);
copy_and_remove(BF,DF,ids);

} break;
case 5: return;
default: cout << “unrecognized command\n”;
}

}
}

What’s Next
This chapter has shown you C++ as a programming language; you have col-
lected statements as functions and learned how to conditionally do state-
ments or construct loops using control statements such as if-else, while,
do-while, for, and switch. The next chapter will deal how to organize data
using C++ arrays and standard containers. Routine calculations like find-
ing the maximum value of a set of numbers can be easily done using the
standard algorithms.
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3

Arrays and Algorithms
So far we have discussed the core arithmetic and logical operations of C++,
as well as features such as strings and input /output that are part of the
standard library. In the case study in Chapter 2, “Functions and Control
Statements,” we hit some limitations of basic C++. To pass a number of
integers as a parameter, we were forced to write them as a string. There
are two problems with this; first, there is no guarantee that these are all
valid integers, and second, this would be very inefficient for really large
lists of integers. That case study also depends heavily on having everything
like ID lists in the correct order, but we cannot control the world, and often
things happen in an order other than what we plan, so we cannot insist on
sorted lists. C++ provides a basic built-in way to set up tables of numbers
or objects, called arrays. The standard library also provides more sophisti-
cated ways to group items together, called the standard containers.

Algorithms are standard procedures (or recipes) for doing operations such
as searching and sorting. I will compare two ways to search tables of values
(binary and linear search), and I will introduce the very powerful library of
general algorithms in the standard C++ library.

In this chapter you will learn

• How to declare, initialize, and use arrays

• How to search for particular values and how to sort arrays

• How to use the standard containers, including vectors, lists, and maps



Arrays
Arrays contain a linear table of values, which must all be of the same type,
called the base type. These values are called the array’s elements, and any
element can be specified by its position in the array, called its index. In this
section we will discuss C++’s built-in arrays, together with typical array
operations like copying and searching. The next section will then look at
the standard containers, which are ‘intelligent’ arrays.

Arrays as Tables of Values
A C++ array declaration reserves space for a number of elements. For
instance, the following declarations create an array of ints and an array of
chars:
;> iint arr1 [10];
;> char arr2 [10];
;> sizeof(arr1);
(int) 40
;> sizeof(arr2);
(int) 10

You can see in this example that in general, the space occupied by an array
is the number of elements multiplied by the size of each element. The num-
ber of elements in an array is usually called its dimension, and it can be
any positive constant. You can declare more than one array at a time; in the
following code, notice that the dimension follows each new array name. The
dimension of a3 is the expression M*N, which is acceptable because it con-
tains no variables. You can mix regular variables in as well, although this
is not considered a stylish thing to do. The variable x as declared here is
just a plain double.
;> cconst int N = 20, M = 30;
;> double a1[6],a2[N],a3[M*N],x;

You declare two-dimensional arrays (which are used for representing tables
or mathematical matrixes) with two dimensions, rather than with a
comma-separated pair, as in the following example:
;> iint table[10][10];  // NOT int table[10,10]!!

Initializing Arrays
You can initialize arrays by using a list of values separated by commas
enclosed in braces, as in the following declaration of arr. The declaration of
names shows how you can optionally leave out the constant in the brackets
and let the system work out the dimension from the size of the list. For
global declarations, the values in the list must be constants. 
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;> iint arr[4] = {10,5,6,1};
;> string names[] = {“Peter”,”Alice”,”James”}; 
;> double interest_rates[]
= {

5.1,
5.6,
6.0,
7.0
};

;> int numbers[] = {1,2,3,4,5,6,7,8};

You cannot assign arrays in the following fashion because C++ arrays are
not variables. You also cannot use a1 = a2, where both a1 and a2 are
arrays.
;> aarr = {1,2,3,5};
CON 10:parse error
CON 10:error in expression

You can, however, treat each element of the array as if it is a variable; this
is called indexing the array, and the index is often also called a subscript.
To access the i-th element of arr you say arr[i], where the index i is put in
square brackets ([]) like in other languages such as Pascal. This expression
can be used wherever a variable can be used. The array index goes from 0
to one less than the size of the array. Using the definitions of arr and names
from the preceding examples, you can say the following:
;> aarr[0];
(int&) 10
;> arr[3];
(int&) 1
;> arr[0] + 2*arr[3];
(int) 12
;> arr[2] = 2;
(int&) 2
;> names[2] + “ Brown”;
(string) ‘James Brown’

You can make constant arrays that cannot be written to afterward:
;> cconst int AC[] = {10,2,4};
;> AC[2] = 2;
CON 71:Can’t assign to a const type

There are two basic rules to keep in mind with C++ arrays: Arrays go from
0 to n-1 (not 1 to n), and there is no bounds checking whatsoever with
arrays. Therefore, if you write past the end of an array, the value will prob-
ably go somewhere else. In the following case, we have changed the value of
var, (which was an innocent bystander) by forgetting both rules:
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;> int a1[2];
;> int var;
;> a1[2] = 5;
(int&) 5
;> var;
(int) var = 5

N O T E
The fact that C++ arrays always begin at 0 is a benefit. In some other languages, you
can change the start value by a global setting.

N O T E
Running over the end of an array is particularly bad if the array is declared local to a
function, and on most systems, this will crash the program badly. The first C program I
ever wrote did this, and my DOS machine went down in flames. Up to then I had trained
on Pascal, which slaps you on the wrist if you exceed array bounds, but it doesn’t
amputate the whole hand. You may regard this as dumb and dangerous behavior, and
many would agree with you, but C was designed to be fast and somewhat reckless.

You initialize most arrays by using a for loop. for loops naturally go from 0
to n-1, as required. This code is equivalent to the initialization of the array
numbers from an earlier example in this chapter:
;> for(int i = 0; i < 8; i++) numbers[i] = i+1;

Arrays make possible code that otherwise would require big ugly switch
statements. Consider the problem of starting with a date in International
Standards Organization (ISO) form, and working out the day number
(counting from January 1). One solution begins like this and would require
quite a bit more tedious coding:

int days = days(date);
switch(month(date)) { // runs from 1 to 12
case 2: days += 31;  break;
case 3: days += 61;  break;
....
}

Another solution would be to initialize an array with the lengths of the
months and then generate a running sum. Thereafter, you could use just
one line. Here’s how you would implement this solution:
;> int days_per_month[] = {0,31,28,31,30,31,31,30,31,30,31};   
;> int days_upto_month[13];
;> int sum = 0;
;  int days_upto_month[0] = 0;  
;> for(int i = 1; i <= 12; i++) 
days_upto_month[i] = days_upto_month[i-1] + days_per_month[i];

;> int days = days_upto_month[month(day)] + day;
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Passing Arrays to Functions
You can pass an array to a function, by declaring an array argument with
an empty dimension. You usually have to pass the size as another argu-
ment because there is no size information in C/C++ arrays. The advantage
of this is that the following function can be passed any array of ints:
void show_arr(int arr[], int n)
{
for(int i = 0; i < n; i++) cout << arr[i] << ‘ ‘;
cout << endl;

}
;> sshow_arr(numbers,8);
1 2 3 4 5 6 7 8

However, you cannot pass this function an array of doubles. The following
error message means that the compiler failed to match the actual argument
(double[]) with the formal argument (which was int[]):
;> ddouble dd[] = {1.2, 3.4, 1.2};
;> show_arr(dd,3);
CON 28:Could not match void show_arr(double[],const int);

A double value is organized completely differently from an int type. If the
compiler allowed you to pass an array of doubles, you would get very odd
integers displayed. On the other hand, simply passing a double value is not
much trouble in C++; the compiler sensibly converts the double to an inte-
ger and gives you a mild warning that this will involve a loss of precision.
This difference between passing a double value and passing an array of
doubles exists because in C++, ordinary variables (that is, scalars) are
passed by value; they are actually copied into the formal argument. Arrays,
on the other hand, are passed by reference. This difference is similar to the
difference between mailing someone his or her own copy of a document and
telling the person where to find it on a network. An interesting result of
being able to pass arrays by reference is that you can change an array’s ele-
ments within a function. (If you altered the document on the network, this
would change that document for all readers.) The following small function
modifies the first element of its array argument:
;> vvoid modify_array(int arr[])  { arr[0] = 777; }
;> modify_array(numbers);
;> show_arr(numbers,8);
777 2 3 4 5 6 7 8

What if you didn’t want the array to be (accidently) modified? This was
always an issue with C, but C++ has a number of solutions. One solution is
to use the standard library’s vector class, which we will discuss later in this
chapter. Another good solution is to make the array parameter const, as in
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the following example, so that it is impossible to modify the parameter
within the function:
void just_looking(const int arr[]) {
cout << arr[0] << endl;

}

A const parameter is a promise from the function to the rest of the pro-
gram: “Pass me data, and I shall not modify it in any form.” It’s as if I tell
you where to find the document on the server, but make it read-only.

Reading Arrays
Data arrays are commonly read from files. Because arrays are passed by
reference, it is easy to write a function to do this job. The following example
uses a few new shortcuts:
int read_arr(string file, int arr[], int max_n)
{
ifstream in(file.c_str());
if (in.bad()) return 0;
int i = 0;
while (in >> arr[i]) {

++i;
if (i == max_n) return i;

}
return i;

}

In this example, if you initialize the ifstream object in with a filename,
that file will be automatically opened. The file is automatically closed when
in goes out of scope. Also, the bad() method tells you if the file cannot be
opened. There is no simple way to work out how many numbers are in any
given file, so there’s always the danger that you might overrun an array. In
functions that modify arrays, it is common for the actual allocated array
size to be passed. This function reads up to max_n numbers and will exit
the file read loop if there are more numbers; it will return the number of
values read, which is one plus the last index. 

Writing out arrays to a file is straightforward. You can use the remainder
operator (%) to control the number of values written out per line, as in the
following example. (i+1) % 6 is zero for i = 5,11,17,...—that is, the condi-
tion is true for every sixth value. (I added 1 to i so that it would not put out
a new line for i == 0.)
void write_arr(string file, int arr[], int n)
{

ofstream out(file.c_str());
for(int i = 0; i < n; i++) {
out << arr[i];
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if ((i+1) % 6 == 0) out << endl;
else out << ‘ ‘;

}
out << endl;

}

Searching
You will find that you often need to search for a value in a table of num-
bers. You want to know the index of that value within that table, or even
simply whether the value is present. The simplest method is to run along
until you find the value, or key. If you don’t find the key, you just return –1
to indicate that the key is not present in the array, as in the following
example, where the function linear_search() is defined:
int linear_search(int arr[], int n, int val)
{
for(int i = 0; i < n; i++)
if (arr[i] == val) return i;

return -1;
}
;> linear_search(numbers,4);
(int) 3
;> linear_search(numbers,42);
(int) -1

This method is fast enough for small tables, but it isn’t adequate for large
tables that need to be processed quickly. A much better method is to use a
binary search, but the elements of that table must be in ascending order. To
perform a binary search, you first divide the table in two; the key must be
either in the first half or the second half. You compare the key to the value
in the middle; if the key is less than the middle value, you choose the first
half, and if the key is greater than the middle value, you choose the second
half. Then you repeat the process, dividing the chosen half into halves and
comparing the key, until either the key is equal to the value or until you
cannot divide the table any further. Here is a C++ example of performing a
binary search:
int bin_search(int arr[], int n, int val)
{
int low = 0, high = n-1;    // initially pick the whole range
while (low <= high) {
int mid = (low+high)/2;  // average value...
if (val == arr[mid]) return mid;   // found the key
if (val < arr[mid]) high = mid-1;  // pick the first half

else   low  = mid+1;  // pick the second half
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} 
return -1;  // did not find the key

}

How much faster is a binary search than a linear search? Well, if there are
1,000 entries in a table, a binary search will take only about 30 tries (on
average) to find the key. The catch here is that the table must be sorted. If
it’s already sorted, then it seems a good idea to insert any new value in its
proper place. Finding the place is easy: You run along and stop when the
key is less than the value. The code for finding the position is similar to the
code for a linear search, but -1 now means that the key was larger than all
the existing values and can simply be appended to the table:
int linear_pos(int arr[], int n, int val)
{
for(int i = 0; i < n; i++)
if (arr[i] > val) return i;

return -1;
}

Inserting
It takes a surprising amount of effort to insert a new value into an array.
To make space for the new value means moving the rest of the array
along. For example, consider that inserting 4 into the sequence 
1 3 9 11 15; linear_pos() gives an index of 2 (because 9 is greater than
4). Everything above that position must be shifted up to make room; the
top line shows the array subscripts: 

0  1  2  3  4  5 subscripts

1  3| 9  11 15 before shifting up by one

1  3 xxx 9  11 15 after shifting up by one

Here I’ve shown the sequence before and after the shift. We have to put 4
before index 2 (that is, the third position). So everything from the third
position up (9 11 15) has got to move up one. That is, the shift involves
A[5] = A[4], A[4] = A[3], and A[3] = A[2]. We can then set A[2] = 4. In
general:
void insert_at(int arr[], int n, int idx, int val)
{
if (idx==-1) arr[n] = val;  // append
else {
for(int i = n; i > idx; i—)

arr[i] = arr[i-1];
arr[idx] = val;

}
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}
;> iint n = 5;
;> int pos = linear_pos(arr,n,4);
;> insert_at(arr,n,pos,4);
;> show_arr(arr,n);
1 3 4 9 11 15

Once insert_at() is defined, then it is straightforward to put a new ele-
ment into an array so that it remains in order. The special case when idx is
–1 just involves putting the value at the end. But generally there will be a
lot of shuffling, making insertion much slower than array access. Note that
this routine breaks the first rule for dealing with arrays: It goes beyond the
end of the array and writes to arr[n]. For this to work, the array needs to
have a dimension of at least n+1.

This is a good example of a for loop doing something different from what
you’ve seen for loops do before: in this case, the for loop is going down from
n to idx+1. In tricky cases like this, I encourage you to experiment (that’s
what UnderC is for.) But nothing beats sitting down with a piece of paper
and a pencil.

As you can see from the examples in this section, it isn’t straightforward to
insert a value into an array in order.  The algorithm for deleting an item is
similar to insert_at() and involves shifting to the left; I leave this as an
exercise for a rainy afternoon.

Sorting
Sorting a sequence that is not in any order also involves moving a lot of
data around. The following algorithm is called a bubble sort because the
largest numbers “bubble” up to the top. It includes calls to show_arr() so
that you can see how the larger numbers move up and the smaller numbers
move down:
void bsort(int arr[], int n)
{
int i,j;
for(i = 0; i < n; i++) 
for(j = i+1; j < n; j++) 
if (arr[i] > arr[j]) { // swap arr[i] and arr[j]
show_arr(arr,n);  // print out array before swap
int tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;

}
show_arr(arr,n); // show sorted array

}
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;> iint b[] = {55,10,2,3,6};
;> bsort(b,5);
55 10 2 3 6
10 55 2 3 6
2 55 10 3 6
2 10 55 3 6
2 3 55 10 6
2 3 10 55 6
2 3 6 55 10
2 3 6 10 55

Containers
Arrays have several disadvantages. Earlier in this chapter we discussed
their lack of size information, which means you must use two arguments to
pass an array to a function. It also means that you cannot check an array
index at runtime to see whether it’s out of bounds. It is easy to crash a pro-
gram by using the wrong index; what is perhaps worse—because the pro-
gram seems to work—is that memory can be silently overwritten. All C
programmers will tell you that these are some of the worst bugs to solve.
Built-in arrays are also inflexible in that they have a fixed size that must
be a constant. Although it is very fast to access array data randomly, inser-
tions and deletions are slow.

The standard library defines a number of container types. A container holds
a number of elements, like an array, but it is more intelligent. In particular,
it has size information and is resizable. We will discuss three kinds of stan-
dard containers in the following sections: vector, which is used like a built-
in array, but is resizeable; list, which is easy to insert elements into; and
map, which is an associative array. That is, it associates values of one type
with another type. 

Resizable Arrays: std::vector
You use the vector container type the same way you use an ordinary array,
but a vector can grow when required. The following is a vector of 10 ints:
;> vvector<int> vi(10);
;> for(int i = 0; i < 10; i++) vi[i] = i+1;
;> vi[5];
(int&) 6
;> vector<int> v2;
;> v2.size();
(int) 0
;> v2 = vi;
;> v2.size();
(int) 10
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vector is called a parameterized type. The type in angle brackets (<>) that
must follow the name is called the type parameter. vector is called parame-
terized because each specific type (vector<int>, vector<double>,
vector<string>, and so on) is built on a specific base type, like a built-in
array. In Chapter 10, “Templates,” I will show you how you can build your
own parameterized types, but for now it’s only important that you know
how to use them.

vi is a perfectly ordinary object that behaves like an array. That is, you can
access any element very quickly using an index; this is called random
access. Please note that the initial size (what we would call the array
dimension) is in parentheses, not in square brackets. If there is no size (as
with v2) then the vector is initially of size zero. It keeps its own size infor-
mation, which you can access by using the size() method. You cannot ini-
tialize a vector in the same way as an array (with a list of numbers), but
you can assign them to each other. The statement v2 = vi actually causes
all the elements of vi to be copied into v2. A vector variable behaves just
like an ordinary variable, in fact. You can pass the vi vector as an argu-
ment to a function, and you won’t need to pass the size, as in the following
example:
void show_vect(vector<int> v)
{ 
for(int i = 0; i < v.size(); i++) cout << v[i] << ‘ ‘; 
cout << endl;

}
;> sshow_vect(vi);
1 2 3 4 5 6 7 8 9 10

You can resize the vector vi at any point. In the following example the ele-
ments of vi are initialized to random numbers between 0 and 99. (n % 100
will always be in that range). vi is then resized to 15 elements:
;> ffor(int i = 0; i < 10; i++) vi[i] = rand() % 100;
;> show_vect(vi);
41 67 34 0 69 24 78 58 62 64
;> vi.resize(15);
show_vect(vi);
41 67 34 0 69 24 78 58 62 64 0 0 0 0 0

You can resize the vi vector without destroying its values, but this can
sometimes be quite a costly operation because the old values must be
copied.  Note that vectors are passed to functions by value, not by refer-
ence. Remember that passing by value involves making a copy of the whole
object. In the following example, the function try_change() tries to modify
its argument, but doesn’t succeed. Earlier in this chapter (“Passing Arrays
to Functions”) you saw a similar example with built-in arrays, which did
modify the first element of its array argument.
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;> vvector<int> v2 = vi;
;> v2.size();
(int) 15
;> v2[0];
(int&) 41
;> void try_change(vector<int> v) { v[0] = 747; }
;> try_change(v2);
;> v2[0];
(int&) 41

At this point, you may be tired of typing vector<int>. Fortunately, C++ pro-
vides a shortcut. You can create an alias for a type by using the typedef
statement. The form of the typedef statement is just like the form of a dec-
laration, except the declared names are not variables but type aliases. You
can use these typedef names wherever you would have used the original
type. Here are some examples of how to use typedef, showing how the
resulting aliases can be used instead of the full type:
;> ttypedef unsigned int uint;
;> typedef unsigned char uchar;
;> typedef vector<int> VI;
;> typedef vector<double> DV;
;> uint arr[10]; 
;> DV d1(10),d2(10);
;> VI v1,v2;
;> int get(VI v, int i) { return v[i]; }

Think of typedef names as the equivalent of constants. Symbolic constants
make typing easier (typing pi to 12 decimal places each time is tedious) and
make later changes easier because there is only one statement to be
changed. In the same way, if I consistently use VI throughout a large pro-
gram, then the code becomes easier to type (and to read). If I later decide to
use some other type instead of vector<int>, then that changes becomes
straightforward.

As you have learned, passing a vector (or any standard container) to a
function involves a full copy of that vector. This can make a noticeable dif-
ference to a program’s performance if the function is called enough times.
You can mark an argument so that it is passed by reference, by using the
address operator (&). You can further insist that it remains constant, as we
did earlier in the chapter for arrays and as shown in the following example:
void by_reference (vector<int>& vi)
{ vi[0] = 0; }
void no_modify (const vector<int>& vi)
{ cout << vi[0] << endl; }
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Generally, you should pass vectors and other containers by reference; if you
need to make a copy, it’s best to do it explicitly in the function and make
such reference arguments const, unless you are going to modify the vector.
When experienced programmers see something passed by reference, they
assume that someone is going to try to change it. So the preferred way of
passing containers is by const reference, as in the preceding example. You
can always use the typedef names to make things look easier on the eye, as
shown here:
int passing_a_vector (const VI& vi) { return vi[0]; }

The standard string is very much like a vector<char>, and it is considered
an “almost container.” Strings can also be indexed like arrays, so if s is a
string, then s[0] would be the first character (not substring), and
s[s.size()-1] would be the last character.

Linked Lists: std::list
vectors have strengths and weaknesses. As you have seen, any insertion
requires moving elements, so if a vector contained several million elements
(and why not?), insertion could be unacceptably slow. Although vectors
grow automatically, that process can also be slow because it involves copy-
ing all the elements in the vector.

Lists are also sequences of elements, but they are not accessed randomly,
and they are therefore not like arrays. Starting with an empty list, you
append values by using push_back(), and you insert values at the front of
the list by using push_front(). back() and front() give the current values
at each end. To remove values from the ends, you use pop_front() and
pop_back(). The following is an example of creating a list:
;> llist<int> li;
;> li.push_back(10);
;> li.push_front(20);
;> li.back();
(int) 10
;> li.front();
(int) 20
;> li.size();
(int) 2
;> li.pop_back();
;> li.back();
(int) 20

You can remove from a list all items with a certain value. After the remove
operation, the list contains only “two”:
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;> llist<string> ls;
;> ls.push_back(“one”); ls.push_back(“two”); ls.push_back(“one”);
;> ls.remove(“one”);

Associative Arrays: std::map
In mathematics, a map takes members of some input set (say 0..n-1) to
another set of values; a simple example would be an array. The standard
C++ map is not restricted to contiguous (that is, consecutive) values like an
array or a vector, however. Here is a simple map from int to int:
;> mmap<int,int> mii;
;> mii[4] = 2;
(int&) 2;
;> mii[88] = 7;
(int&) 7
;> mii.size();
(int) 2
;> mii[4];
(int&) 2
;> mii[2];
(int&) 0

You access maps the same way you access arrays, but the key values used in
the subscripting don’t have to cover the full range. To create the map in the
preceding example by using arrays, you would need at least 89 elements in
the array, whereas the map needs only 2. If you consider a map of phone
numbers and contact names, you can see that an ordinary array is not an
option. maps become very interesting when the key values are non-integers;
we say that they associate strings with values, and hence they are often
called associative arrays. Typically, a map is about as fast as a binary search.
;> mmap<int,string> mis;
;> mis[6554321] = “James”;
(string&) “James”;
;> mis.size();
(int) 1
;> map<string,int> msi;
;> msi[“James”] = 6554321;
(int&) 6554321
;> msi.size();
(int) 1
;> msi[“Jane”];
(int&) 0
;> msi.size();
(int) 2
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Something that is important to note about maps is that they get bigger if
you are continuously querying them with different keys. Say you are read-
ing in a large body of text, looking for a few words. If you are using array
notation, each time you look up a value in the map, the map gets another
entry. So a map of a few entries can end up with thousands of entries, most
of which are trivial. Fortunately, there is a straightforward way around
this: You can use the map’s find() method. First, you can define some 
typedef names to simplify things:
;> ttypedef map<string,int> MSI;
;> typedef MSI::iterator IMSI;
;> IMSI ii = msi.find(“Fred”);
;> ii == msi.end();
(bool) true

The find() method returns a map iterator, which either refers to an exist-
ing item or is equal to the end of the map.

Maps are some of the most entertaining goodies in the standard library.
They are useful tools, and you can use them to write very powerful routines
in just a few lines. Here is a function that counts word frequencies in a
large body of text (testing this case, the first chapter of Conan Doyle’s
Hound of the Baskervilles, courtesy of the Gutenberg Project):
int word_freq(string file, MSI& msi) {

ifstream in(file.c_str());
string word;
while (in >> word) msi[word]++;
return msi.size();

}
;> wword_freq(“chap1.txt”,msi);
(int) 945
;> msi[“the”];
(int&) 94

This example uses the shorthand for opening a file, and it assumes that the
file will always exist. The real fun happens on the fourth line in this exam-
ple. For each word in the file, you increment the map’s value. If a word is
not originally present in the map, msi[word] is zero, and a new entry is cre-
ated. Otherwise, the existing value is incremented. Eventually, msi will con-
tain all unique words, along with the number of times they have been used.
This example is the first bit of code in this book that really exercises a
machine. The UnderC implementation is too slow for analyzing large
amounts of text, but Chapter 4, “Programs and Libraries,” shows how to 
set up a C++ program that can be compiled into an executable program.
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Stacks and Queues
Sometimes it’s useful to build up a vector element by element. This works
exactly like adding to the end of a list. You can add new elements at the
end with push_back(); back() gives the value of the last value of the vector,
and pop_back() removes the last value, decrementing the size. 
;> ttypedef vector<int> VI;
;> VI vs;
;> vs.push_back(10);
;> vs.push_back(20);
;> show_vect(vs);
10 20
;> vs.size();
(int) 2
;> vs.back();
(int) 20
;> vs.pop_back();
;> vs.back();
(int) 10
;> vs.size();
(int) 1

void read_some_numbers(VI& vi, string file) {
int val;
ifstream in(file.c_str());
while (in >> val)  vi.push_back(val);

}

Often you are given input without any idea of how many numbers to
expect. If you use push_back(),the vector automatically increases in size to
accommodate the new numbers. So the function read_some_numbers() will
read an arbitrary number of integers and add them to the end of the
vector.

There is no push_front() method because that would potentially be 
an expensive operation. If you really need to do it, you can use
vi.insert(vi.begin(),val).

The operations push and pop define a stack. A stack is similar to the spring-
loaded device often used for dispensing plates in cafeterias. As you remove
plates from the top of the device (that is, “pop the stack”), more plates rise
and are ready to be taken. You can also push plates onto the pile. A stack
operates in first-in, last-out (FILO) fashion: if you push 10, 20, and 30, then
you will pop 30, 20, and 10. Stacks are one of the basic workhorses of com-
puter science, and you see them all over the place. A common use is to save
a value, as in the following example:
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void push(int val) {
vi.push_back(val);

}
int  pop() {
int val = vi.back();
vi.pop_back();
return val;

}
;> int val = 1;
;> push(val);     // save val;
;> val = 42;      // modify val;
(int) 42
.... do things with val.......
;> val = pop();   // restore val;

A queue, on the other hand, operates in first-in, first-out (FIFO) fashion,
similarly to a line of waiting people, who are served in first come, first
served order. A vector is not a good implementation of a queue because
inserting at the front causes all entries to shuffle along. lists, however, are
good candidates for queuing. You add an item to a queue by using
push_front(), and you take an item off the end by using pop_back().
Queues are commonly used in data communications, where you can have
data coming in faster than it can be processed. So incoming data is
buffered—that is, kept in a queue until it is used or the buffer overflows.
The good thing about a list is that it never overflows, although it can
underflow, when someone tries to take something off an empty queue;
therefore, it is important to check size. Graphical user interface systems
such as Windows typically maintain a message queue, which contains all
the user’s input. So it is possible to type faster than a program can process
keystrokes.

Iterators
Containers such as lists and maps do not behave like arrays, so you can’t
use a for loop to go through the elements in them. Likewise, because these
containers are not accessible randomly, you cannot use a simple integer
index. You can use iterators to refer to elements of a container.

Iterating through a Container
Each container type has a distinct iterator associated with it. For instance,
this is how you declare the iterator for list<int>:
;> list<int>::iterator ili;

69Iterators

E X A M P L E



You have previously seen the operator :: in two forms: as the global scope
operator (where it has one operand) and in the constant ios::app. Each
container type has a scope that contains a type name (iterator), and the
scope operator (::) allows you to access that type name. Again, using 
typedef can make for easier typing and understanding, as in the following
example; remember that ILI is a completely different name from ili
in C++:
;> ttypedef list<int> LI;
;> typedef LI::iterator ILI;
;> LI ls;  ls.push_back(1);  ls.push(2);  
;> ILI ili = ls.begin();
;> *ili;
(int) 1
;> ++ili;
;> *ili;
(int) 2
;> for(ili = ls.begin(); ili != ls.end(); ++ili)
;1}  cout << *ili << endl;
1
2

In this example, the iterator ili is used for accessing the contents of the
list ls. First, a list ls is created, and the numbers 1 and 2 are added to it.
Then the iterator ili is declared and set to ls.begin(). The expression
*ili gives you the first value in ls, and ++ili moves the iterator to the
next value. You use the dereference operator (*) to extract the value and the
increment operator (++) to move to the next list item. (Note that * is used
for both dereferencing and multiplication, in the same way that – is used
for both –2.3 and 2–3. The unary and binary forms of the operator are quite
different from one another.) The method begin() returns an iterator that
points to the beginning of the list, but the method end() returns an iterator
that is just beyond the end of the list. Once ++ili has moved the iterator
past the end, then ili becomes equal to ls.end(). Therefore, the for loop in
the example visits each item in the list. This technique works for any list
type, and it is a very common way of iterating over all items in a list. The
vector—and in fact, any standard container—can also be traversed by using
an iterator, as in the following example:
;> vvector<string>::iterator vsi;
;> string tot;
;> for(vsi = vs.begin(); vsi != vs.end(); ++vsi) tot += *vsi;

In a case like this, you would use a plain for loop and use the vector as if it
were an array, but being able to iterate over all containers like this allows
you to write very general code that can be used with both vectors and
lists.
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Finding Items
Reinventing the wheel wastes your time and confuses those that follow you.
The standard library provides a number of ready-to-use algorithms that do
common tasks like searching and sorting. For instance, find() does a sim-
ple linear search for a value and returns an iterator that points to that
value if it is successful. You specify the data to be searched by a pair of iter-
ators. Assume that you have a list of strings, ls, which contains “john”,
“mary”, and “alice”:
;> llist<string> iterator ii;
;> ii = find(ls.begin(), ls.end(), “mary”);
;> *ii
(string&) ‘mary’
;> *ii = “jane”;
(string&) ‘jane’

Note that *ii can be assigned a new value, too: It is a valid lvalue (short
for left-hand value) and so can appear on the left-hand side of assignments.
Because *ii is a reference to the second item in the list, modifying *ii
actually changes the list. If find() does not succeed, it returns ls.end().

You might wonder why you can’t just pass the list directly to find(). The
standard algorithms could do that but they prefer to work with sequences.
Consider the following example of finding the second occurrence of 42 in a
list of integers li. You use the result of the first find() as the start of the
sequence for the second find(). We have to increment the iterator because
it will be pointing to 42 after the first find().
;> llist<int>::iterator ili;
;> ili = find(li.begin(),li.end(),42); // first position
;> ++ili;                              // move past the ‘42’
;> ili = find(ili,li.end(),42);        // second position
;> *ili;
(int&) 42

find() accepts a sequence and not a container argument for another good
reason: find() can work with ordinary arrays, which are not proper con-
tainers and have no size information. The following example illustrates
this, with the standard algorithm copy(), which copies a sequence to a
specified destination:
;> iint tbl[] = {6,2,5,1};
;> int cpy[4];
;> copy(tbl,tbl+4,cpy);
;> show_arr(cpy,4);
6 2 5 1
;> int array[20];
;> copy(li.begin(), li.end(), array); 
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;> **find(tbl,tbl+4,5) = 42;
;> show_arr(tbl,4);
6 2 42 1

Note in this example how you specify the end of an array. copy() is very
useful for moving elements from one type of container to another. For
example, in this example, you move a list of integers into an array. Again, it
is important that the array be big enough for the whole list; otherwise, you
could unintentionally damage program memory. Likewise, you can use
find(). The call returns a reference to the third element of tbl, which is
then changed to 42.

If you have a sorted array-like sequence, then using binary_search() is
much faster than find(), as discussed previously. A binary search requires
a random access sequence, so it does not work for lists. Maps already have
their own find() method, and the generic find() won’t work on them.

Erasing and Inserting
Both vectors and lists allow you to erase and insert items, although these
operations are faster with lists than with vectors. You specify a position
using an iterator, such as the iterator returned by find(). Insertion occurs
just before the specified position, as in the following example:
;> llist<string> ls;
;> list<string>::iterator ils;
;> ls.push_back(“one”);
;> ls.insert(ls.end(),”two”);       // definition of push_back()!
;> ls.insert(ls.begin(),”zero”);    // definition of push_front()!
;> ils = find(ls.begin(),ls.end(),”two”);
;> ls.insert(ils, “one-and-a-half”);
;> while (ls.size() > 0) { 
;1}   cout << ls.back() << ‘ ‘;
;1}   ls.pop_back(); // emptying the list in reverse
;1} }
two one-and-a-half one zero

vectors have methods for inserting and erasing elements, and they all
involve moving elements. To erase the second element in a vector (remem-
ber that we are counting from zero and begin() refers to the first element),
you would use code like this:
;> vvi.erase(vi.begin() + 1);
;> vi.erase(vi.end() -  1);   // same as pop_back() !
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Case Study: Calculating Simple Statistics
The case studies throughout this book show C++ being used for practical
purposes. In Chapter 2 you saw that the library functions provided are
biased toward scientific and engineering applications, but it’s not difficult
to write your own functions for statistical analysis. The same kind of data
analysis that you would use on meteorological records can be used to look
at stock prices, because they both involve values that vary over time. In the
following two case studies I particularly want to show you how the stan-
dard algorithms can make processing data easier. Appendix B, “A Short
Library Reference,” will give you more information about the algorithms
available.

In this first case study, we will download historical data that gives the per-
formance of the S&P 500 over the past year, using this format: the date, the
name of the stock or ticker symbol, the opening price, the highest price in
the day, the lowest price in the day, the final price, and the trading volume.
The date is in the same order as the ISO standard, but without the
hyphens. Everything is separated by commas, which is convenient for
spreadsheets, although not for program input /output. All of the stock data
is bundled together in one big 5MB file, and so extracting data for a partic-
ular ticker symbol is going to be necessary. I have put some sample data on
the accompanying CD-ROM, but you can get up-to-date historical data for
the last year from http://biz.swcp.com/stocks/. (Click on the ‘Get Full
Set’ button). The C++ source code for this case study will be found in
chap3\stats.cpp, and the full year set of data is called SP500HST.TXT.

20000710,ABBA,67.75,70.25,67.6875,68.25,38349

The first task is to extract the stock of interest. Along the way, you will
replace all commas with spaces. Although this is not a difficult operation to
write, it has already been done for you to save some time. The replace()
standard algorithm goes through any sequence, performing the required
replacement. As you saw earlier in the chapter, strings are array-like, and
although strings are not full containers, the basic algorithms will still work
on them. Here is replace() in action:
;> iint a[] = {1,2,0,23,0};
;> show_arr(a,5);
1 2 0 23 0
;> replace(a,a+5,0,-1);
;> show_arr(a,5);
1 2 -1 23 -1
;> string s = “a line from a song”;
;> replace(s.begin(),s.end(),’ ‘,’-’);
;> s;
(string) s = ‘a-line-from-a-song’
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Now that you have seen replace() in action, I can show you the function
extract_stock(), which is given the stock ticker symbol. The first part
reads each line until the line contains the symbol, or it runs out of data. If
the symbol was found, then the second part reads each line, replaces com-
mas with spaces, and writes the line out to another file. This continues as
long as the line contains the ticker symbol.
bool extract_stock(string ofile,string stock)
{
ifstream in(SFILE.c_str());
string line;
do { 

getline(in,line);
}
while (! in.eof() && line.find(stock) == string::npos);

if (! in.eof()) { // found our stock!
ofstream out(ofile.c_str());
do {

replace(line.begin(),line.end(),’,’,’ ‘);
out << line << endl;
getline(in,line);

} while (! in.eof() && line.find(stock) != string::npos);
return true;

} else
return false;

}
;> eextract_stock(“yum.txt”,”YUM”);
(bool) true

There is now a file YUM.TXT containing the S&P 500 data for the symbol
YUM, without commas. (This will take a few seconds.) Next, you can easily
read the values into some vectors; you don’t know precisely how many
trading days there were in the last 12-month period, so using push_back()
is useful:
typedef vector<double> V;
typedef V::iterator IV;

bool read_any_stock(string data_file, V& oprices,
V& lprices, V& hprices, V& fprices, V& volumes)

{
ifstream in;
if (! in.open(data_file.c_str())) return false;
double lprice,hprice,fprice,vol,f;
string date,stock;
while (in >> date >> stock >> oprice >> lprice >> hprice >> fprice >> vol) {
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oprices.push_back(oprice);
lprices.push_back(lprice);
hprices.push_back(hprice);
fprices.push_back(fprice);
volumes.push_back(vol);

}
return true;
}

V open_price, low_price, high_price, final_price, volume;

bool read_stock(string dfile)
{
low_price.clear();
high_price.clear();
final_price.clear();
volume.clear();
return read_any_stock(dfile,

low_price,high_price,final_price,volume);
}

read_any_stock() is awkward to call, so you can define a helper function
read_stock() that reads the values into global variables. Now the full
year’s prices are available for YUM; the first question is what the minimum
and maximum prices have been.

The standard algorithms max_element() and min_element() save you the
trouble of writing yet another loop to find the minimum and maximum val-
ues. These are not difficult operations to code, but they’ve already been
done for your convenience. Note that these algorithms return an iterator
that refers to the value and that the dereference operator (*) is needed to
get the actual value. 
;> rread_stock(“YUM.txt”);
(bool) true
;> IV i1 = low_price.begin(), i2 = low_price.end();
*min_element(i1,i2);
(double&) 23.875
*max_element(i1,i2);
(double&) 47.64

The most basic statistic is a plain average value, and it is made easy by the
accumulate() algorithm, which gives you the sum of the elements of a
sequence. To get the average value, you simply need to divide this sum by
the number of values:
;> ddouble val = 0;
;> accumulate(i1,i2,val)/low_price.size();
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(double) 56.4577
;> 

For time-series data like this, a plain average isn’t very useful. Analysts are
fond of moving averages, which smooth out the spikes and make the trends
clearer. The moving average at any point is the average of the values of the
neighboring points. The function moving_average() is passed an input, an
output vector<double>, and a smoothing width. It works as follows: Define
an interval with this width (sometimes called a smoothing window) and get
the average value. Now move the interval along by one element and repeat.
The series of average values generated by this moving interval is the mov-
ing average. Note how the interval is specified for accumulate(); The only
thing to be careful about is how to handle the interval at both ends of the
vector. Here I have used max() and min() to force the interval bounds to lie
between 0 and n-1.
void moving_average(const V& vin, int width, V& vout)
{
int w2 = width/2, n = vin.size();
IV vstart = vin.begin();
vout.resize(n);
for(int i = 0; i < n; i++) {

int lower = max(0,  i-w2);
int upper = min(n-1,i+w2);
double val = 0;
val = accumulate(vstart+lower,vstart+upper,val);
vout[i] = val/(upper - lower);

}
}

;> VV v;
;> moving_average(low_price,10,v);
;> vplot(win,low_price.begin(),low_price.end(),true);
;> vplot(win,v.begin(),v.end(),false);

This example includes some plot-generating calls in stats.cpp because
sometimes a picture is worth a thousand words (or is that 4KB?). The aver-
aged vector is indeed much smoother than the raw data (see Figure 3.1).
The source code for vplot() is in vplot.cpp; the first call is passed a
Boolean argument of true to force vplot() to scale to the data; any sub-
squent calls would pass false so it will reuse the scaling.
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Figure 3.1: The moving image is much smoother than the raw data.

Case Study: Histograms
Suppose that you are presented with a large body of text. Is it possible to
tell interesting things about the authors from the typical length of their
sentences, their words, and so on? Some literary detectives think so; in this
case study, your job is to collect these statistics and present them as a bar
graph, otherwise known as a histogram. You already have one tool for the
job—C++ input streams, which read in strings separated by spaces. C++
input streams are well suited to this task because they are not line based;
text is naturally parsed into tokens, which are usually (but not always)
words. For example, “He said, let’s go.” is read as {“He” “said,”
“let’s” “go.”}. So when you read in a token, you need to look at the end of
each word for punctuation. The basic strategy is to read each word and
punctuation character and to increment word and sentence frequency
tables. These tables don’t have to be very long, so arrays will work well. 

First, the arrays need to be initialized to zero (never assume that this is
already true!). The standard algorithm fill_n() is easier to use in this case
than an explicit for loop:
const int MAXWORD = 30, MAXSENTENCE = 120;

int word_lengths[MAXWORD];
int sentence_lengths[MAXSENTENCE];

void init_arrays() 
{
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fill_n(word_lengths,MAXWORD,0);
fill_n(sentence_lengths,MAXSENTENCE,0);
}

Here is collect_file_stats(), which reads each word of the text using >>.
Then it looks at the last character of the word, which is word[len-1]
because strings are like arrays. If this character is punctuation, it must be
removed from the string. The word length frequency table can be updated
with a single statement: ++word_lengths[len]. The next few lines count
words in sentences.
bool collect_file_stats(string file, int word_lengths[], 

int sentence_lengths[])
{
ifstream in(file.c_str());
if (! in) return false; // sorry, can’t open file!
int wcount = 0;  // will count no. of words in each sentence
string word;
while (in >> word) {
int len = word.length();
char ech = word[len-1];   // last character of word
if (ech == ‘.’ || ech == ‘,’ || ech == ‘;’) {

word = word.substr(0,len-1); // chop off punctuation
—len;

}
++word_lengths[len];
++wcount;
if (ech == ‘.’) {
++sentence_lengths[wcount];
wcount = 0;

} 
} // end of while(...)
} // end of collect_file_stats
;> iinit_arrays();
;> collect_file_stats(“chap1.txt”,word_lengths,sentence_lengths);
;> show_arr(word_lengths,15);
0 266 854 866 806 472 312 316 232 106 104 56 62 30 4
;> show_arr(sentence_lengths,15);
0 4 0 10 0 4 12 8 6 6 4 4 6 4 8

The result of using this code is two frequency tables, word_lengths and
sentence_lengths. word_lengths[1] shows the number of words with one
character, word_lengths[2] shows the number of words with two charac-
ters, up to about 15 or so characters. I have used the useful function
show_arr() from earlier in the chapter to show you the values when the
first chapter of The Hound of the Baskervilles is analyzed.
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Two Approaches to Histograms
The easiest way to print out a histogram is to print it on its side. You can
fill strings or character arrays with a chosen character, but the easiest
method is just to write a character out to cout. (You can make the bars
thicker by nesting another loop inside the i loop.)
void histo_1 (int values[], int sz)
{
for(int i = 0; i < sz; i++) {
for(int k = 0; k < values[i]; k++) cout << ‘*’;
cout << endl;

}
}
;> hhisto_1(sentence_lengths,10);
0
1 ****
2
3 **********
4
5 ****
6 ************
7 ********
8 ******
9 ******

Note that this method is just not going to work with word_lengths, since
the values are very large. These values need to be scaled by choosing a
maximum value for the display (say 60 characters across) and generating
an array within those bounds. The maximum value of the input data is
found as before, and the input data is multiplied by the scaling factor,
which is just the ratio of the desired maximum value to the actual maxi-
mum value. 
void scale_data(int in_data[], int out_data[], int sz, int imax)
{
int maxval = *max_element(in_data,in_data+sz);
for(int i = 0; i < sz; i++)

out_data[i] = (imax*in_data[i])/maxval;
}

;> iint scaled_lengths[16];
;> scale_data(word_lengths,scaled_lengths,15,60);
;> show_arr(scaled_lengths,15);
0 18 59 60 55 32 21 21 16 7 7 3 4 2 0
;> histo_1(scaled_lengths,15);
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0
1 ******************
2 ***********************************************************
3 ************************************************************
4 *******************************************************
5 ********************************
6 *********************
7 *********************
8 ****************
9 *******
10 *******
11 ***
12 ****
13 **
14
;> 

How can you create a histogram that is upright? You start with the maxi-
mum value as a level, and then you run along the array, comparing values
to the level. If the values are greater than or equal to the level, you write
out a string, and if they are less than the level, you write out spaces:
void histo_2 (int values[], int sz)
{
int level = max_arr(values,sz);   // std method to do this?
for(; level > 0; level—) {      // leave out 1st part of for-loop
for(int i = 0; i < sz; i++)
if (values[i] >= level) cout << “**** “;

else cout << “     “;
cout << endl;

\  }
}
;> scale_data(word_lengths,scaled_lengths,10,20);
;> histo_2(scaled_lengths,10);
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****
**** ****
**** **** ****
**** **** ****
**** **** ****
**** **** ****
**** **** ****
**** **** ****
**** **** ****
**** **** ****
**** **** **** ****
**** **** **** ****
**** **** **** ****
**** **** **** **** **** ****

**** **** **** **** **** **** ****
**** **** **** **** **** **** **** ****
**** **** **** **** **** **** **** ****
**** **** **** **** **** **** **** ****
**** **** **** **** **** **** **** **** ****
**** **** **** **** **** **** **** **** ****

**** **** **** **** **** **** **** **** **** ****

This example hardly exploits the supercharged graphics of modern
machines, of course. You can also create histograms by using the Turtle
Graphics interface of UnderC for Windows. Appendix B, “A Short Library
Reference” gives you all the information you need about using Turtle
Graphics for now. I will be discussing it further in Chapter 4, “Programs
and Libraries.”

What’s Next
In this chapter, you saw how C++ arrays and standard containers can be
used to organize tables of data. C++ also supplies a set of convenient algo-
rithms that saves you from having to write your own. Up to now, you have
used C++ interactively with UnderC by writing functions; you are now
ready to write and compile programs using GCC. I will explain precisely
what is meant by a program library, look at how namespaces help you 
to organize your programs, and finally how to write robust code using
exceptions.
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4

Programs and Libraries
In the previous chapters, you have learned about the basic elements of C++:
variables, expressions, arrays, control structures, and functions. To this
point you have not written a program, and I’ve taken this approach deliber-
ately. The usual approach would be to show you a program and promise to
explain it later. Instead, using C++ interactively with UnderC allows you to
play with functions and expressions directly. When you are familiar with
functions and expressions, you can easily write real programs.

In this chapter you will learn

• How to include header files and prototype functions

• How to use namespaces to separate functions into families

• How to compile and run a simple program with command-line 
arguments

• How to bullet-proof programs by using exceptions



Header Files
All functions and variables in C++ need to be declared before they can be
used. C++ provides operators, constants, and a few basic types—and that’s
that. So where are functions like sin() declared? Where does the string
type come from? These declarations are in the standard header files. You
have not needed to know this because UnderC includes the chief header
files automatically. In your project directory, take a look at a file called
defs.h, which usually contains these statements:
#include <iostream>
#include <fstream>
#include <stringstream>
#include <string>
#include <vector>
#include <list>
#include <map>
using namespace std;

The #include statements don’t look like usual C++ statements, and in fact
they are more like UnderC commands like #l than like C++ statements. An
#include statement must stand on a line by itself, and it does not include a
semicolon. Like #l, #include directly includes a file into the program text
that the compiler sees. #include is a preprocessor directive, which is a com-
mand that controls how program text is initially processed; the include
directive allows you to load files that contain declarations. These standard
include files are usually named for the type they define (for example,
<string>), except for <iostream>, which declares the input /output streams,
and <fstream>, which declares the file streams (ofstream and ifstream).
The angle brackets (<>) cause the preprocessor to look for these files in a
special include directory. In the case of UnderC, if \UCW is the directory
where UCW.EXE is kept, then \UCW\include contains these headers. 

The final statement in defs.h, using namespace std, is a proper C++ state-
ment, and you will learn more about it later in this chapter, in the section
“Namespaces.”

Libraries
C++ has a reputation for being a big language, and indeed it is very sophis-
ticated. However, C++ executables can be very small; by far the greatest
amount of code in any program is contained in the language’s libraries. A
C++ library is a collection of functions and types that have already been
compiled into machine code. Using libraries means you don’t have to do
things like write a square-root function, or speak directly to the PC’s BIOS
to get characters out on a screen. These types of things have already been
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done for you and tested by legions of obsessive programmers. The standard
libraries come with the language and are straightforward to include in your
programs; usually all you have to do is include their header files. In fact,
the C++ libraries are what make C++ such a powerful tool.

If the standard libraries don’t have what you are looking for, then usually
somebody out there has had the same problem and has posted the code you
need on the Internet. Programmers build up tool chests of useful functions
and types; they rarely write nontrivial programs without reusing some
libraries they developed previously. Although UnderC is not the fastest
implementation of C++ around (because it is an interpreter), it is straight-
forward to use dynamic link libraries (DLLs), which you can build by using
a compiler such as GCC. (Appendix D, “Compiling C++ Programs and DLLs
with GCC and BCC32,” has the details.)

The libraries used by a working C++ program (that is, the runtime
libraries) consist of hundreds of thousands of lines of C++, C, and assembly
code. Progress would be very slow if all this code had to be compiled each
time (a simple “Hello, World” program would take minutes to build), so
libraries are available as object code, which is linked into the program. That
is, the linker examines your program code and includes any extra functions
that have been refered to, such as sqrt() or sin(). Nontrivial C++ pro-
grams consist of many separate files that are separately compiled. People
don’t use #include with the actual source of functions; rather, they use 
prototypes—function declarations that tell the compiler what arguments 
a function takes and what type it returns, but don’t give a full definition of
their code. Instead of a code block ({}), a prototype has a simple semicolon.
Prototypes or function declarations are promises that the function will be
defined at some later stage. Eventually, of course, you need to define the
function fully. For example, UnderC complains if a function is prototyped
but not yet defined. Using prototypes means that you can write functions in
the most logical order. This example shows a function repeat(), which is
declared first as a prototype, but not defined. You cannot call it directly at
this point, but you may define other functions such as repeat2(), which
refer to repeat() before it is fully defined. 
;> string repeat(string s, int I);
;> repeat(“help”,1);
‘repeat’ is not defined yet <temp>
;> string repeat2(string s)
;> { return repeat(s,2); }     // no error!
;> string repeat(string s, int I) // now define repeat()
;> { string res; for(int k=0;k<I;k++) res += s; return res; }
;> repeat2(“help”);
(string) ‘helphelp’
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In a traditional C++ system, the function is resolved by the linker, which
looks at the functions declared in each file and finds their definitions in the
object files, either from other code in the project or from libraries.

Classifying Characters
To see examples of some more of the facilities supplied by the C++ runtime
library, we’ll look at the problem of classifying characters. For instance, is a
character alphabetic? We know characters are stored as integers, and we
assume that they are stored in order. Here I have defined a function
is_alpha(), which uses a simple test: if the character is greater or equal 
to ‘A’, and less or equal to ‘Z’, then it must be an uppercase alphabetic 
character:
;> bool is_alpha(char ch)
;>  { return ‘A’ <= ch && ch <= ‘Z’; }
;> is_alpha(‘A’);
(bool) true
;> (int)’a’;
(int) 97
;> (int)’A’;
(int) 65

This example works well, but only for uppercase letters. You might assume
that “a” is less than “A”, but that is not the case, as you can see. Generally,
there are too many assumptions involved with comparing characters, and
most of them are true only for ASCII–Unicode works completely differently.
Therefore, it is a good idea to always use the C++ classification functions,
which return nonzero integer values if they are true. To use them, you must
include the <cctype> standard header, which C programmers know better
as <ctype.h>. Here I show isalpha() and isdigit() in action:
;> #include <cctype>
;> isalpha(‘x’);
(int) 2
;> isdigit(‘x’);
(int) 0
;> isdigit(‘9’);
(int) 4

The values returned by these functions are not important; we simply need
to know that the returned values are nonzero, which will translate as being
true in C++. Another useful function is isspace(), which is true if the char-
acter represents whitespace (that is, spaces, tabs, line feeds, and so on).
The following is an example of its use in implementing a trim() function
that operates on strings and removes leading and trailing spaces. That is, 
“ the dog ” becomes “the dog”. Its BASIC equivalent is TRIM$:
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string trim(string s) {
int k = 0, n = s.length();
while (k < n && isspace(s[k])) ++k;   // go forward to first nonspace in s
if (k == n) return “”;                // there were none!
int ke = n-1;                         // position of last character
while (isspace(s[ke])) —ke;          // go backwards to last nonspace
return s.substr(k,ke-k+1);

}
;> trim(“  happy dog    “);
(string) ‘happy dog’
;> trim(“\tone\ttwo\t\n”);
(string) ‘one   two’

If you know the C++ library well, then you won’t waste your time rewriting
it, and other programmers will find your code easier to read.

Programs
A program is a collection of functions. One of those functions must have the
name main(). When program execution begins, main() will be called auto-
matically, together with any parameters. The function main() must return
an int.

The Function main()
After main() has been defined, the UnderC command #r (that is, run)
causes a new console window to be created, showing the output generated
by the program (see Figure 4.1), as in the following example:
;> int main() {
;1} cout << “Hello World\n”;
;1} return 0;
;1} }
;> #r

If main() is not defined, #r produces a “cannot find ‘main’” error. The func-
tion main() is called the entry point of the program, and it should return a
value, unlike in C. C++ compilers (like GCC, but not UnderC) are usually
tolerant about returning a value from main(), but it’s good to get into the
habit of writing main() as a proper function.

main() can optionally have arguments, like this. The arguments follow the
run command in UnderC:
;> int main(int argc, char *argv[]) {
;1}  for(int i=0; i < argc; i++)
;2}    cout << argv[i] << endl;
;1}  return 0;
;1} }
;> #r One Two Three
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CON
One
Two
Three
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Figure 4.1: An example of the output generated by the program.

The second argument of main(), argv, is basically an array of C-style
strings. Notice that argv[0] is not the first argument passed; the command-
line arguments are argv[1] to argv[argc-1]. The first value, argv[0], is the
name of the file that contained the main() function (in this case, just CON,
the console).

Building Your First Program
It’s finally time to compile and run a complete C++ program. Before the
code shown in the previous section will compile correctly, it needs the
<iostream> header for the output stream. Save the following code as
args.cpp using your favorite text editor, load it, and run the program:
// args.cpp
#include <iostream>
using namespace std;
int main(int argc, char *argv[])
{
for(int i=0; i < argc; i++)
cout << argv[i] << endl;

return 0;
}



If you installed the software from the CD, you should have a fully function-
ing version of the GNU C++ compiler on your system. The compiler’s name
is c++, and here is the result of compiling and running args.cpp on my sys-
tem, at the command prompt (user input is bold):
C:\bolsh\ucw\chap4>c++ args.cpp
C:\bolsh\ucw\chap4>a One Two Three
C:\BOLSH\UCW\CHAP4\A.EXE
One
Two
Three

The compiler will work for a second or two, and the resulting compiled pro-
gram will be called a.exe. (This name is an old Unix tradition.) You then
run a.exe with three command-line arguments, and you get the expected
output, except now argv[0] is the full path to the program. An interesting
property of this program is that it does wildcard expansion: Any command-
line arguments that contain wildcard characters (such as *) are expanded
into a full list of files matching those wildcards. You can use this simple lit-
tle program to list all the .cpp files you have in this directory:
C:\bolsh\ucw\chap4>a *.cpp
C:\BOLSH\UCW\CHAP4\A.EXE
args.cpp
basic.cpp
dll1.cpp
stack.cpp

N O T E
UnderC currently doesn’t do wildcard expansion. The Borland compiler does not include
this facility by default, but you can specify it as an option. See Appendix D for details
on how to use other compilers.

Separate Compilation
Programmers often seem to be obsessed with the number of lines of code in
their programs. Unfortunately, Windows doesn’t come standard with an lc
(for line count) command, but you can write a small function to count the
number of lines in an input stream:
// count.cpp
#include <iostream>
using namespace std;

const int LINESIZE = 512;

int count_lines(istream& in)
{
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char buff[LINESIZE];
int k = 0;
while (in.getline(buff,LINESIZE)) ++k;
return k;
}

;> #l count.cpp
;> ifstream ifs(“args.cpp”);
;> count_lines(ifs);
(int) 9

Note that this example does not pass count_lines() a file, but a reference
(istream&) to an input stream. If you are not particularly interested in the
text for each line, you can use the getline() method that quickly fetches
the line into an array of characters. You can then compile count.cpp
directly, but with the -c command-line flag, which means “don’t attempt to
link.” If you leave out this flag, the linker complains that it cannot find
main(). The output is an object file count.o, which is the machine code. (If
you use the Borland or Microsoft compilers, this file has a different exten-
sion: .obj. Object files from different compilers are in general not compati-
ble.) Here I have compiled count.cpp into an object file and shown the
resulting output file count.o (which will not be ASCII): 
C:\bolsh\ucw\chap4>c++ -c count.cpp
C:\bolsh\ucw\chap4>dir count.o

Volume in drive C has no label
Volume Serial Number is 11F3-3136
Directory of C:\bolsh\ucw\chap4

COUNT    O           4,629  26/07/01  12:59 count.o
1 file(s)          4,629 bytes
0 dir(s)     733,261,824 bytes free

You can compile and link this with a file that contains a main() function to
produce an executable:
// main1.cpp
#include <iostream>
#include <fstream>
using namespace std;

int count_lines(istream& in);  // definition in count.cpp!

int main(int argc, char *argv[])
{
ifstream in(argv[1]);
cout << “lines “ << count_lines(in) << endl;
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return 0;
}

C:\bolsh\ucw\chap4>c++ main1.cpp count.o
C:\bolsh\ucw\chap4>a main1.cpp
lines 12

You need lc to operate on standard input if there are no files and on all the
supplied files. It is fairly easy to write a more sophisticated main() function
that does this. Note that you can pass both the standard input stream (cin)
and a file stream (ifstream object) to count_lines() because they are both
istreams. In compiling this version I’ve used the -o option to name the out-
put file lc.exe rather than a.exe:
// main2.cpp
#include <iostream>
#include <fstream>
using namespace std;

int count_lines(istream& in);  // definition in count.cpp!

int main(int argc, char *argv[])
{
int lcount = 0;
if (argc == 1)  
lcount = count_lines(cin);

else for(int i = 1; i < argc; i++) {
ifstream in(argv[i]);
if (!in) cerr << “Can’t open ‘“ << argv[i] << “‘\n”;
else lcount += count_lines(in);

}
cout << lcount << “ lines\n”;
return 0;
}

C:\bolsh\ucw\chap4>c++ -o lc.exe main2.cpp count.o
C:\bolsh\ucw\chap4>dir | lc
52 lines
C:\bolsh\ucw\chap4>lc *.cpp *.h
289 lines

In the first command, the output of dir is ‘piped’ to lc as its standard
input, which is then counted. Because the second command is given wild-
card parameters, lc is actually passed a list of all .cpp and .h files.

In preparing the second version of lc, you don’t have to recompile
count.cpp, which shows the advantage of separate compilation. In a large
project there may be dozens of files, each with many functions. Recompiling
all these files would take minutes or even hours. But deciding what needs
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to be recompiled can be tricky (remember that if the include files change,
the source file must also be recompiled). You need to either create a project
in an integrated development environment (IDE) such as Quincy or write a
make file. Appendix D, “Compiling C++ Programs and DLLs with GCC and
BCC32,” describes this process in detail.

Usually, for each source file there is an include file (otherwise known as a
header file) that has prototypes for all functions that need to be exported
from that file. In this case it would be very short, because count.cpp only
exports one function.

Namespaces
A large program may have thousands of functions, and it can become diffi-
cult to tell them apart. No matter how well you name them, they will get
mixed up. This is, of course, not just a problem with programs; the phone
book of even a small town would be impossible to use if people did not have
surnames. Programmers often use naming conventions to keep functions
separate (for example, stack operations would be called stack_pop(),
stack_push(), and so on) but are not always consistent. Namespaces are a
way of grouping functions and variables together, in much the same way
that families share the same surname.

The Global Namespace
A global declaration is visible throughout a program. Although they are not
necessarily evil, global variables can be a problem because distant parts of
the program become coupled together. Global side effects make it possible
for subsystems to interfere with each other in ways that are not obvious.
You could have two files, neither of which call each other but that still
interact because they operate on the same global data. Another problem is
if you have thousands of global declarations, they will start ‘colliding’ with
each; it becomes hard to come up with a unique meaningful name that isn’t
less than 20 characters long. The set of all global symbols is called the
global namespace.

Therefore, you generally want to keep data private within files. But even if
they are not declared globally, variables declared at the file scope can inter-
fere with each other. Here is a simple (and pointless) program that consists
of two files, which both contain the names jo and fred:
// one.cpp
int fred = 999;
int jo()   { return fred; }
int main() { return jo(); }
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// two.cpp
int fred = 648;
int jo()   { return fred; }

C:\bolsh\ucw\chap4>c++ one.cpp two.cpp
C:\..\..o(.text+0x0):two.cpp: multiple definition of ‘jo(void)’
C:\..\8xfb.o(.text+0x0):one.cpp: first defined here
C:\..\8i2hfb.o(.data+0x0):two.cpp: multiple definition of ‘fred’
C:\..\8xfb.o(.data+0x0):one.cpp: first defined here

Each file is compiled correctly, but the linker complains of multiple defini-
tions. It is a very good thing that the compile failed; I can attest from per-
sonal experience that this is one hard fault to debug! It is useful to insist
that variables and functions be genuinely local to a file. You can do this by
using a nameless namespace (or an anonymous namespace), as in the fol-
lowing example, which shows two.cpp again:
// two.cpp
namespace {
int fred = 648;

int jo() { return fred; }
}

Now when one.cpp and two.cpp are compiled and linked, there is no error:
fred and jo() are completely private to two.cpp. The ideal situation is for
each file to be as independent as possible. (C programmers used to do this
with the static attribute, but this is now officially considered old-fashioned
and “depreciated,” which means the International Standard Organization
[ISO] C++ standards committee wishes it would go away.)

Keeping Similar Functions Together in a Namespace
Say you are using a module to implement a stack. The implemention is eas-
ily done with an array and an index, but it is a good idea to provide a set of
functions that manipulate the representation. There are two operations
that modify the stack: push(), which puts a new value onto the stack, and
pop(), which takes a value off the stack. It is also necessary to know how
many items have been put on the stack: depth() and empty().

That is, it’s not generally a good idea to write arr[iptr++]=val every time
you want to push something onto the stack. It’s easy to get it wrong (I usu-
ally got confused between ++iptr and iptr++), and perhaps one day we will
want to implement the stack using a list. 

You can then use an explicit namespace to group the functions together.
The following example has an implementation file stack.cpp and an inter-
face file stack.h:
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// stack.cpp
namespace {  // private to this module
const int STACKSIZE = 100;
double arr[100];
int iptr = 0;

}
namespace Stack {
void   push(double v) { arr[iptr++] = v;    }
double pop()          { return arr[--iptr]; }
int    depth()        { return iptr;        }
bool   empty()        { return depth()==0;  }

}

//stack.h
namespace Stack {
void   push(double v);
double pop();
int    depth();
bool   empty();

}

After loading this file, you can access its functions by giving the fully quali-
fied name, by using the scope operator (that is, ::). Notice that the function
empty() is defined in terms of depth(), which doesn’t need to be qualified
because it belongs to the same family (that is, it is within the same scope).
If a family consisted of Jane Smith, John Smith, and Peter Smith, then it
would be unnecessary (although not incorrect) for John to call Peter by his
full name, Peter Smith. To use this module I must load the source into the
system with #l, and I can then use the stack operations using their quali-
fied names:
;> #l stack.cpp
;> Stack::push(1.2);
;> Stack::push(3.2);
;> Stack::depth();
(int) 2
;> Stack::pop();
(double) 3.2

You may find them irritating to type at first, but fully qualified names tell
precisely where a function comes from, and they therefore make it easier to
understand large programs. Remember that the purpose of namespaces is
to organize programs better for humans (computers don’t care about keep-
ing track of thousands of names). A person reading your code should be able
to tell where every name is defined.
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You can make a whole namespace available globally by using the using
directive; in this case, for example, you would say that the namespace
Stack has been injected into the global namespace:
;> using namespace Stack;
;> push(3.4);
;> empty();
(bool) false

It’s as if a whole family of functions is introduced to the system at once.
This is particularly useful when you’re working interactively.

The std Namespace
Just about every simple C++ program includes using namespace std:
...
namespace std {.
....

}

The entire standard library is defined inside std; that is, all the definitions
within <iostream>, <string>, and so on are included in a std namespace
definition.

An important feature of namespaces is that they are always open, which
means they can always be added to. Each std namespace definition adds its
functions and types to std. With C++, programmers can explicitly qualify
each name from the standard library, or they can make the definitions glob-
ally available by using using namespace std. Here is a simple program in
which each name is explicitly qualified with std using the scope operator
(::):
// strict.cpp
#include <iostream>
#include <string>

int main() {
std::string s;
while (std::cin >> s) std::cout << s << std::endl;
return 0;

}

I find this method a bit fussy and pedantic. After all, we know string, cin,
cout, and endl well by now and have earned the right to call them by their
first names. However, some people feel strongly that using namespace std
causes namespace pollution because everything is dumped into the global
namespace, which is what namespaces were designed to prevent. You need
to understand the implications of using namespace std, and you need to
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recognize that there is one case where it is always a bad idea. The header
file for the count.cpp file defined early has only one prototype, but it must
include <iostream> for std::istream. That way, any programmer who uses
count.h doesn’t have to remember that <iostream> must be included before
count.h. (You do not have to worry about the programmer then including
<iostream> twice; it is simply ignored the second time.) This is a case where
you don’t just bring in the entire std namespace with using namespace std;
it is considered particularly bad manners because it means programmers
cannot make their own choices. Here is a well-mannered header file for
count.cpp:
// count.h
#include <iostream>
int count(std::istream& is);

In an office context, surnames are necessary only if there are multiple peo-
ple with the same first name. Keeping the standard definitions in std
means that you can avoid problems with namespace collision. Say you have
to use an old library that has defined its very own string type (writing your
own string library was common before the standard library was developed)
and called it string. In this case you would not inject std into the global
namespace because then the two definitions of string would collide with
each other. Using std::string makes it absolutely clear what kind of string
you’re working with. The same is true for simple, often-used names such as
list, vector, and map. It is still tedious to write std::cout, but you can
always use using declarations (as opposed to using directives), as in the fol-
lowing example. These actually make the name available in the global
namespace:
using std::cout;
using std::endl;
using std::cerr;

Why can’t you just change the headers for the library and avoid all the
extra typing? You could then change each library’s string to lib_string, for
example. But this would not help, unless you actually had the libraries’
source code (and with commercial libraries, you usually don’t) because the
function references in the object files still contain string, not lib_string.

You can of course add your own functions to std, but that would defeat the
purpose of std, which is to collect together the standard library functions
and structures. The std types all appear in lowercase, so it is helpful to use
the naming convention of beginning types with an uppercase letter so that
it is obvious what the types are. 
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Defensive Programming
There are five desirable properties of good programs: They should be
robust, correct, maintainable, friendly, and efficient. Obviously, these prop-
erties can be prioritized in different orders, but generally, efficiency is less
important than correctness; it is nearly always possible to optimize a well-
designed program, whereas badly written ”lean and mean” code is often a
disaster. (Donald Knuth, the algorithms guru, says that “premature opti-
mization is the root of all evil.”)

Here I am mostly talking about programs that have to be used by non-
expert users. (You can forgive programs you write for your own purposes
when they behave badly: For example, many scientific number-crunching
programs are like bad-tempered sports cars.) Being unbreakable is impor-
tant for programs to be acceptable to users, and you, therefore, need to be a
little paranoid and not assume that everything is going to work according
to plan. ‘Defensive programming’ means writing programs that cope with
all common errors. It means things like not assuming that a file exists, or
not assuming that you can write to any file (think of a CD-ROM), or always
checking for divide by zero.

In the next few sections I want to show you how to ‘bullet-proof ’ programs.
First, there is a silly example to illustrate the traditional approach (check
everything), and then I will introduce exception handling.

Bullet-Proofing Programs
Say you have to teach a computer to wash its hair. The problem, of course,
is that computers have no common sense about these matters: “Lather,
rinse, repeat” would certainly lead to a house flooded with bubbles. So you
divide the operation into simpler tasks, which return true or false, and
check the result of each task before going on to the next one. For example,
you can’t begin to wash your hair if you can’t get the top off the shampoo
bottle.

Defensive programming means always checking whether an operation suc-
ceeded. So the following code is full of if-else statements, and if you were
trying to do something more complicated than wash hair, the code would
rapidly become very ugly indeed (and the code would soon scroll off the
page):
void wash_hair() 
{
string msg = “”;
if (! find_shampoo() || ! open_shampoo()) msg = “no shampoo”;
else {
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if (! wet_hair()) msg = “no water!”;
else { 
if (! apply_shampoo()) msg = “shampoo application error”;
else {
for(int i = 0; i < 2; i++)  // repeat twice
if (! lather() || ! rinse()) {

msg = “no hands!”;
break;  // break out of the loop

}
if (! dry_hair())  msg = “no towel!”;

}
}

}
if (msg != “”) cerr << “Hair error: “ << msg << endl;
// clean up after washing hair
put_away_towel();
put_away_shampoo();

}

Part of the hair-washing process is to clean up afterward (as anybody who
has a roommate soon learns). This would be a problem for the following
code, now assuming that wash_hair()returns a string:
string wash_hair() 
{
...
if (! wet_hair()) return “no water!”
if (! Apply_shampoo()) return “application error!”;

...
}

You would need another function to call this wash_hair(), write out the
message (if the operation failed), and do the cleanup. This would still be an
improvement over the first wash_hair() because the code doesn’t have all
those nested blocks. 

N O T E
Some people disapprove of returning from a function from more than one place, but
this is left over from the days when cleanup had to be done manually. C++ guarantees
that any object is properly cleaned up, no matter from where you return (for instance,
any open file objects are automatically closed). Besides, C++ exception handling works
much like a return, except that it can occur from many functions deep. The following
section describes this and explains why it makes error checking easier.

Catching Exceptions
An alternative to constantly checking for errors is to let the problem (for
example, division by zero, access violation) occur and then use the C++
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exception-handling mechanism to gracefully recover from the problem.
Exceptional usually means out of the ordinary and unusually good, but
when it comes to errors, the word has a more negative meaning. The sys-
tem throws an exception when some error condition happens, and if you
don’t catch that exception, it will give you a dialog box that says something
like “your program has caused an error—–goodbye.” You should avoid doing
that to your users—at the very least you should give them a more reassur-
ing and polite message.

If an exception occurs in a try block, the system tries to match the excep-
tion with one (or more) catch blocks.
try { // your code goes inside this block
... problem happens - system throws exception

} 
catch(Exception) { // exception caught here
... handle the problem

}

It is an error to have a try without a catch and vice versa. The ON ERROR
clause in Visual Basic achieves a similar goal, as do signals in C; they allow
you to jump out of trouble to a place where you can deal with the problem.
The example is a function div(), which does integer division. Instead of
checking whether the divisor is zero, this code lets the division by zero hap-
pen but catches the exception. Any code within the try block can safely do
integer division, without having to worry about the problem. I’ve also
defined a function bad_div() that does not catch the exception, which will
give a system error message when called:
int div(int i, int j)
{
int k = 0;
try {
k = i/j;
cout << “successful value “ << k << endl;

}
catch(IntDivideByZero) {
cout << “divide by zero\n”;

}
return k;
}
;> int bad_div(int i,int j) { return i/j; }
;> bad_div(10,0);
integer division by zero <main> (2)
;> div(2,1);
successful value 1
(int) 1
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;> div(1,0);
divide by zero
(int) 0

This example is not how you would normally organize things. A lowly func-
tion like div() should not have to decide how an error should be handled;
its job is to do a straightforward calculation. Generally, it is not a good idea
to directly output error information to cout or cerr because Windows
graphical user interface programs typically don’t do that kind of output.
Fortunately, any function call, made from within a try block, that throws
an exception will have that exception caught by the catch block. The follow-
ing is a little program that calls the (trivial) div() function repeatedly but
catches any divide-by-zero errors: 
// div.cpp
#include <iostream>
#include <uc_except.h>
using namespace std;

int div(int i, int j)
{  return i/j;   }

int main() {
int i,j,k;
cout << “Enter 0 0 to exit\n”;
for(;;) { // loop forever
try {
cout << “Give two numbers: “;
cin >> i >> j;
if (i == 0 && j == 0) return 0; // exit program!
int k = div(i,j);
cout << “i/j = “ << k << endl;

} catch(IntDivideByZero) {
cout << “divide by zero\n”;

}
}
return 0;

}

Notice two crucial things about this example: First, the error-handling code
appears as a separate exceptional case, and second, the program does not
crash due to divide-by-zero errors (instead, it politely tells the user about
the problem and keeps going).

Note the inclusion of <uc_except.h>, which is a nonstandard extension spe-
cific to UnderC. The ISO standard does not specify any hardware error
exceptions, mostly because not all platforms support them, and a standard
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has to work everywhere. So IntDivideByZero is not available on all systems.
(I have included some library code that implements these hardware excep-
tions for GCC and BCC32; please see the Appendix for more details.) 

How do you catch more than one kind of error? There may be more than
one catch block after the try block, and the runtime system looks for the
best match. In some ways, a catch block is like a function definition; you
supply an argument, and you can name a parameter that should be passed
as a reference. For example, in the following code, whatever do_something()
does, catch_all_errors() catches it—specifically a divide-by-zero error—
and it catches any other exceptions as well:
void catch_all_errors()
{
try {
do_something();

}
catch(IntDivideByZero) {
cerr << “divide by zero\n”;

}
catch(HardWareException& e) {
cerr << “runtime error: “ << e.what() << endl;

}
catch(Exception& e) {
cerr << “other error “ << e.what() << endl;

}
}

The standard exceptions have a what() method, which gives more informa-
tion about them. Order is important here. Exception includes
HardwareException, so putting Exception first would catch just about every-
thing. When an exception is thrown, the system picks the first catch block
that would match that exception. The rule is to put the catch blocks in
order of increasing generality.

Throwing Exceptions
You can throw your own exceptions, which can be of any type, including
C++ strings. (In Chapter 8, “Inheritance and Virtual Methods,” you will see
how you can create a hierarchy of errors, but for now, strings and integers
will do fine.) It is a good idea to write an error-generating function fail(),
which allows you to add extra error-tracking features later. The following
example returns to the hair-washing algorithm and is even more paranoid
about possible problems:
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void fail(string msg)
{ 
throw msg;

}

void wash_hair() 
{
try {
if (! find_shampoo()) fail(“no shampoo”);
if (! open_shampoo()) fail(“can’t open shampoo”);
if (! wet_hair())     fail(“no water!”);
if (! apply_shampoo())fail(“shampoo application error”);
for(int i = 0; i < 2; i++)  // repeat twice
if (! lather() || ! rinse()) fail(“no hands!”);

if (! dry_hair())     fail(“no towel!”);
}
catch(string err) {
cerr << “Known Hair washing failure: “ << err << endl; 

}
catch(...) {
cerr << “Catastropic failure\n”;

}
// clean up after washing hair
put_away_towel();
put_away_shampoo();

}

In this example, the general logic is clear, and the cleanup code is always
run, whatever disaster happens. This example includes a catch-all catch
block at the end. It is a good idea to put one of these in your program’s
main() function so that it can deliver a more polite message than “illegal
instruction.” But because you will then have no information about what
caused the problem, it’s a good idea to cover a number of known cases first.
Such a catch-all must be the last catch block; otherwise, it will mask more
specific errors.

It is also possible to use a trick that Perl programmers use: If the fail()
function returns a bool, then the following expression is valid C++ and does
exactly what you want:
dry_hair() || fail(“no towel”);
lather() && rinse() || fail(“no hands!”);

If dry_hair() returns true, the or expression must be true, and there’s no
need to evaluate the second term. Conversely, if dry_hair() returns false,
the fail() function would be evaluated and the side effect would be to
throw an exception. This short-circuiting of Boolean expressions applies
also to && and is guaranteed by the C++ standard.
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Case Study: A Reverse-Polish Calculator
The first serious scientific calculators made by Hewlett-Packard had an
eccentric way of entering expressions backward. You entered the numbers
and then applied the operation. It is a classic use of the stack idea: Two
numbers are pushed onto the stack, and then a multiply function operates
on these numbers and replaces them with the result. Hewlett-Packard’s
many fans claimed that they could type in expressions faster than people
using good old-fashioned infix notation because they did not need parenthe-
ses. Infix notation puts the operator between the operands, like 10 + 20.
Reverse Polish Notation (RPN—Polish as in the nationality) writes the
operator afterward, like 10 20 +. A surprisingly popular programming lan-
guage called FORTH (originally developed to point telescopes) used RPN.
So we have:

10 20 + 2 * RPN  is    (10 + 20) * 2 infix

1.2 sin 1.3 cos + RPN   is    sin(1.2) + cos(1.3) infix

In this case study, you need to write a small program that lets Hewlett-
Packard calculator fans do arithmetic. If you give the program a reverse-
Polish expression as a command line, it evaluates the expression
immediately; otherwise, it assumes that expressions are read from standard
input and terminated with a period (.), which means “display the value.”

Using Stacks
A stack module is defined in stack.cpp. If there are already two numbers
on the stack, then the stack module will perform the addition, as follows:
;> Stack::push(10); Stack::push(20);
;> Stack::push( Stack::pop() + Stack::pop() );
;> Stack::tos();   // top of stack
(double) 30.

The following example is a first version of the reverse-Polish calculator 
RP —or at least the first version that worked.

If you write the operations as in the preceding example—for example,
push(pop() / pop())—the operands end up in the wrong order. (Try it and
see. ) Another surprise with this example is that passing 3 5 * as a com-
mand line did not work. When I dumped out the command-line string, it had
every file in the directory! By default, as you saw earlier, C++ programs
compiled with GCC expand any wildcards, such as *. After some scratching
around in the runtime library source, I found a way to switch this off.

The actual calculator is contained in the eval() function. It is basically a
while loop that reads in tokens separated by spaces. If the token’s first
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character is a digit, then RP assumes it is a number and converts the string
to a number. This number is then pushed onto the stack. If the token is “.”,
then it means that the expression is finished and RP returns the top of the
stack. (So if you gave it “10 .” it would push 10, pop 10, and then display
this value.) Otherwise, if the token is an operator, then RP applies that
operation to the top two elements of the stack. Finally, functions like sin()
and cos() are implemented.
// RP.CPP – Reverse-Polish Calculator vs 1.0
#include <iostream>
#include <stringstream>
#include <string>
#include <cstdlib>
#include <cmath>
#include <cctype>
using namespace std;

#include “stack.h”

double str2float(string s)
{
return atof(s.c_str());

}

double eval(istream& in)
{
using namespace Stack;
string tok;
while (in >> tok) {

if (isdigit(tok[0])) push(str2float(tok));
else if (tok == “.”) return pop();
else {
double val = pop();
if (tok == “+”) push(pop() + val);
else if (tok == “-”) push(pop() - val);
else if (tok == “*”) push(pop() * val);
else if (tok == “/”) push(pop() / val);
else if (tok == “sin”) push(sin(val));
else if (tok == “cos”) push(cos(val));

}
}
return pop();  

}

// this prevents ‘globbing’ of the command line
// in Mingw32. (The other compilers have it off by default)
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// (see comment in init.c from the runtime source)
int _CRT_glob = 0;

int main(int argc, char *argv[])
{
if (argc > 1) { // command-line arguments
string exp;
for(int i = 1; i < argc; i++) { // stitch the arguments together as a string

exp += ‘ ‘;
exp += argv[i];

}
istringstream ins(exp);  // and pass the string to eval() as a stream
cout << eval(ins) << endl;  

} else {
for(;;)  // pass standard input to eval()
cout << eval(cin) << endl;

}
return 0;
}

To build the reverse-Polish calculator, you need to first build the stack mod-
ule with -c. Then compile rp.cpp and link it with stack.o, using the follow-
ing commands:
C:\ucw\chap4>c++ -c stack.cpp
C:\ucw\chap4>c++ rp.cpp stack.o
C:\ucw\chap4>a 10 5 /
2
C:\ucw\chap4>a
1.2 sin 1.3 cos + .
1.19954
^C

In the preceding example, this program is first run with command-line
arguments, which main() builds up into a single string by using spaces.
Because eval() expects an input stream, you use istringstream to pass it
the resulting string.

If there are no command-line arguments, eval() is passed the standard
input stream cin. But because you have a loop that goes on forever here
(because cin >> tok will always succeed), you have to stop the program by
using Ctrl+C. This is not very elegant. (Fortunately, you can nearly always
get yourself out of trouble this way.)

Adding Error-checking to RP
To make this program more solid, you need to pick a character, such as ‘q’
to mean quit, and you need to look out for several error conditions:
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• Although it’s unlikely that the stack will overflow, it’s easy for the
stack to underflow, which means you are trying to pop an empty
stack.

• You need to watch for division by floating-point zero, which is not a
runtime error by default. 

• You need to watch for domain errors (for example, trying to calculate
the square root of a negative number).

Users would also like to define variables. To set pi to 3.1412, you use 3.1412
pi =, which is consistent with RPN but not convenient. It is tricky because
we meet the variable pi before we meet =. You can use a map from strings
to doubles to define variables. That is, you can store the value of pi as
value_map[“pi”]. Fortunately, this map always has a sensible value, so you
push the value of any token that begins with a letter (see the line ending
with [4] in the following example), and keep track of both the token and the
value that was on the stack. Then when you encounter =, these values are
available (notice the line ending with [5]). 
double non_zero(double d)
{
if (d == 0.0) throw string(“must not be zero”);
return d;
}

double non_negative(double d)
{
if (d <= 0.0) throw string(“must not be negative”);
return d;
}

double pops()
{
if (Stack::empty()) throw string(“Stack empty!”);
return Stack::pop();
}

map<string,double> value_map;

double eval(istream& in)
{
using namespace Stack;
string tok, last_tok;
double last_val=0,val;
while (in >> tok) {

if (isdigit(tok[0])) push(str2float(tok));
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else if (tok == “.”) return pops();   // end of expr
else if (tok == “q”) throw 0;        // finished!  [1]
else {
val = pops();
if (tok == “+”) push(pops() + val);
else if (tok == “-”) push(pops() - val);
else if (tok == “*”) push(pops() * val);
else if (tok == “/”) push(pops() / non_zero(val));  //[2]
else if (tok == “sin”) push(sin(val));
else if (tok == “cos”) push(cos(val));
else if (tok == “sqrt”)

push(sqrt(non_negative(val)));                //[3]
else if (tok == “dup”)  { push(val); push(val); }
else if (tok == “=”) 

value_map[last_tok] = last_val;                //[4]
else if (isalpha(tok[0])) {
push(value_map[tok]);                            //[5]
last_tok = tok;
last_val = val;

}
}

}
return pop();  // ran out of input...

}

The three value-checking functions are interesting (see the lines that end
with [2] and [3]). It is difficult for a function like non_zero() to return a
value that means “bad value,” since what floating-point value could you
choose to mean an error? So non_zero(), non_negative(), and pops() all
throw an appropriate exception. Wherever you would use Stack::pop(), you
instead use pops(). I may now say sqrt(non_negative(val)), and sqrt()
will never be called with a negative argument. Instead, an exception will
always be thrown. The point is that error-checking need not involve lots of
ugly if statements.

The function eval() also needs to indicate that the user is tired and has
terminated the session by using q, so you throw another kind of exception
(an int), which guarantees that normal termination is different from an
error. You then call eval() from an error-checked version function called
safe_eval():
double safe_eval(istream& in)
{
try {
return eval(in);

} catch(string err) {
cerr << “error: “ << err << endl;
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return 0.0;
}
}

Notice that safe_eval() does not catch the int that eval() throws if the
user types (q). This means that the caller of safe_eval() can catch the int
exception and bail out of the loop, as in the following code:
try {
for(;;)
cout << safe_eval(cin) << endl;

} catch(int ierr)  {
// jump out of loop!

}

Some people do not think it’s a good idea to use exceptions for normal ter-
mination of a program. They argue that exceptions must be at least
unusual, if not actually errors. But this example demonstrates how using
different kinds of exceptions can enable you to specify precisely where you
want an error to be handled. The function safe_eval() is only interested in
trapping expression errors (and telling the user about them); it passes
through the quit message that eval() sends to the main() function.

You can try making several improvements to the reverse-Polish program.
For example, you can handle trigonometry with degrees, not radians. It
would be useful to save any defined variables to a file (remember that you
can iterate over a map). Even if doing arithmetic backward isn’t your cup of
tea, the idea of a stack machine is very common in computer science. On
Intel platforms, the floating-point machine instructions are precisely com-
prised of push, pop, and operations that act on a stack. 

What’s Next
In this chapter you applied your knowledge of functions to building full C++
programs, which can be compiled as stand-alone executables. In the next
chapter you will learn about structures and pointers; structures are a pow-
erful way of ‘packaging’ complex data together. Pointers allow you to gener-
ate very dynamic data structures.

108 Chapter 4: Programs and Libraries







5

Structures and Pointers
You have learned to structure programs by using functions and to structure
data by using arrays and containers. Functions, arrays, containers, and
program input /output were all that FORTRAN and BASIC gave program-
mers. Modern languages, including C++, give you the ability to group dif-
ferent kinds of data together and create dynamic references.

In this chapter you will learn

• How to declare and use C++ structs

• Why C++ structs are a superior way to organize data

• How to manipulate data via pointers



User-Defined Structures
A structure or struct is a user-defined collection of data. It is superior to
using arrays because each item can have a different type and a different
name. In the following section, you will see the advantages of using user-
defined structures.

Arrays Are Not Enough
Data often appears in groups, or aggregates. For example, in the case study
in Chapter 3, “Arrays and Algorithms,” which performs a simple stock price
analysis, there are five numbers for each trading day: the four prices and
the trading volume. Similarly, measurements from a meteorological station
would include temperatures, air pressure, wind speed and direction, and so
on. In these cases, all the numbers could be floating-point numbers, so an
array could be used. Then mm[k][2] would represent, say, the third number
of the kth measurement; however, this becomes very confusing. There are
other disadvantages; you cannot copy arrays with simple assignment, for
instance.

Now consider a case in which a data aggregate consists of different kinds of
information. To characterize a person, you need two names, an ID number,
a phone number (or two), and an address; the data types are mixed (for
example, strings, integers). The C++ struct was designed to represent this
kind of data.

Defining New Types
A struct (short for “structure”) definition creates a new type, and it does
not reserve space for a variable. The new type defines how memory is to be
organized, by declaring member variables or fields. After the new type is
defined, you can use it to declare variables like any other C++ type. For
example, consider a point on a graph, which has two coordinates x and y.
The following code defines a two-dimensional point type P as a struct.
Until a variable p of type P is declared, no memory is reserved; the variable
is laid out as shown in Figure 5.1, with the member x at zero offset and the
member y at an offset of 4 bytes (which is the size of an int.) To access the
members, the member selection (or dot) operator (.) is used.
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Figure 5.1: Memory layout of a struct Point, showing the offsets of the two
fields.



struct Point {
int x;
int y;

};
;> Point p;
;> p.x = 10; p.y = 20;
(int) 10
(int) 20
;> Point q = p;
;> q.x + q.y;
(int) 30

Notice that you can initialize a struct variable by using another variable of
the same type (Point q = p.) Similarly, you can assign such variables to
each other. If you represented points as arrays of two ints, then you
wouldn’t be able to copy them as easily as in the preceding example. You
can use expressions such as q.x anywhere you would use a normal C++
variable reference.

The following is an example of a structure that describes a person:
struct Date {
short year;
unsigned char month,day;

};
struct Person {

string first_name;
string last_name;
Date birthday;
long id;
string postal_address;
string email_address;
long phone_no;

};
;> Person p;
;> p.birthday.year = 1965;

Notice that structures can contain just about any type, including other
structures. Person contains a member birthday, which is a Date. In cases
like this, you use the dot operator as many times as necessary (as in,
p.birthday.year = 1965.) You can initialize structures by using a set of val-
ues within braces. UnderC does not currently support this, but with stan-
dard C++ you can initialize a Person structure as follows: 
Person fred = {“Fred”,”Jones”,{1965,03,02},2343222,””,

“fjones@cplusplus.com”,4552334};
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As with the enum and struct statements, the last brace in a struct is fol-
lowed by a semicolon.

Passing structs to Functions
struct variables can be used like any other variable type. If p1 and p2 are
both of type Person, then p1 = p2 will copy all the members of p2 to p1.
struct variables can be passed as arguments to functions; by default they
are passed by value. The function int getx(Point p) { return p.x; }
returns the x coordinate of a Point p. The function call getx(p1) will copy
the actual argument (p1) into the formal argument (p). It is also possible to
pass a struct by reference. Such arguments can be very convenient ways to
pass a lot of information to a function. Functions may also return struct
values.

Using Structures Instead of Many Parameters
Functions that have too many arguments are not only difficult to type 
but easy to get wrong. For example, read_any_stock() (discussed in
Chapter 3, “Arrays and Algorithms”) has five arguments, and it’s easy to
mix up the prices. The following function compares dates; it is similar to
int compare_dates(string d1, string d2) as discussed in that case 
study, so I have not written it out fully:
int compare_dates(int y1, int m1, int d1, 

int y2, int m2, int d2)
{
int cmp = y2 - y1;
if (cmp != 0) return cmp;
...

}

When I call such a function, I easily get confused about the order of the
arguments. I know the function needs two dates, but is the day before the
month (as I usually write dates)? The Date struct makes this kind of func-
tion easier to use, especially if you write a special function date() for mak-
ing Date objects. Look at the next definition of compare_dates():
Date date(int y, int m, int d) { 
Date dd;
dd.year = y;  dd.month = m;  dd.day = d;
return dd;

}
int compare_dates(Date d1, Date d2)
{
int cmp = d2.year - d1.year;
....
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}
;> compare_dates(date(2001,07,17),date(2001,06,05));
(int) -1

The function now has only two arguments; note that the function date()
and type Date have distinct names.

N O T E
You may have noticed that I write structs and typedef names with an initial capital
letter. This is part of the naming convention I like to use; any type names are
WrittenLikeThis, and any variables or functions are written_like_this. The only
exceptions are the standard library types (such as std::list) and when linking to
someone else’s functions, such as the Windows API (e.g. GetWindowText()).

Using the Date struct has some advantages over using a string representa-
tion. First, it is more compact. The struct can be packed into 4 bytes (two
bytes for the year and one each for month and for day). Second, it is much
more efficient in terms of speed and code size. Finally, it is automatically in
the right format (year,month,day) unlike a date string. A person may easily
pass “20 June 2001” to a function expecting “2001-06-20”. A Date variable
may still may be invalid, of course (e.g. month is greater than 12).

Passing Structures by Value
Remember from Chapter 3, “Arrays and Algorithms,” that vectors are
always passed by value. The same applies to user-defined structures. This
means two things: You don’t have to worry about accidentally modifying a
passed structure, and you do have to sometimes worry about the cost of all
that copying. A function can also return a structure, but it isn’t a good idea
for large structures such as Person, which is introduced earlier in this chap-
ter. For compact structures such as Point, you can use this fact to make a
function that constructs points, as in the following example:
void show_point(Point p) {
cout << p.x << ‘ ‘ << p.y << endl;
}
Point make_point(int a,int b) {
Point p;
p.x = a;  p.y = b;
return p;

}
;> Point pp = make_point(2,3);
;> show_point(pp);
2 3
;> make_point(5,7).x;
(int) 5
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Note that you can follow any expression (such as a call to make_point())
that returns a structure with the dot operator.

Reference Types 
In the section “Containers,” of Chapter 3, I mentioned that you can force an
argument to be passed by reference by using the address-of operator (&) in
the argument type. This operator means that the argument has a reference
type. Reference types can be declared anywhere, but they must be initial-
ized with a proper variable, as in the following example:
;> int& ri;
CON 3:uninitialized reference
;> int k = 1;
;> int& kr = k;
;> kr;
(int&) 1
;> kr = 2;
(int&) 2
;> k;
(int) k = 2

The reference kr is, in effect, just another name for k; whatever you do to kr
will affect k and vice versa. This is because they occupy the same address in
memory: kr is an alias for k (that is, another name for the same thing).
References are often used when a function has to pass more than one item
of information back to the caller. The function modify_ij() is intended to
return two integer values; by passing i and j as references, they can both
be modified:
bool modify_ij (int& i, int& j) {

i = 0; j = 0; 
return true;

}
; int m = 9;
;> modify_ij(k,m);
(bool) true
;> k; m;
(int) k = 0
(int) m = 9

A function may return a reference, but there can be problems. If you are
returning a reference to a local variable, then by the time the function has
returned to its caller, that local variable may no longer exist. For instance,
if you declared the return type of make_point() as Point&, you might get
very strange results. Returning references may work on one machine, but
not on another. 

116 Chapter 5: Structures and Pointers



const References
Passing a struct variable as a reference is usually fastest for a nontrivial
structure, but this allows the structure to be modified by the function. You
use the const qualifier to insist that an argument be passed as a reference
to a constant object, as in the following example:
;> int var = 1;
;> const int& var_ref = var;
;> var_ref = 2;  // error! Can’t modify a const reference!
CON 23:Can’t assign to a const type
;> string fullname(const Person& p) { return p.first_name + “ “ + p.last_name; }

You should declare the function compare_date(const Date& d1, const
Date& d2) rather than compare_date(Date d1, Date d2). In the case of 
compare_date() there is probably little difference; Date would be packed
into a 4-byte word  (but it might end up as three words if the compiler
decides to use at least one word per field—this is called word alignment).
Large structures such as Person would be expensive to pass by value. You
should qualify a reference with const, unless you intend to modify the
value. Experienced programmers assume that an object will be modified 
if they don’t see const.

Arrays of Structures
You can define arrays of user-defined types, and you can define standard
containers involving them. You will often need to keep collections of objects
like Persons or Points.

Plain Arrays
You declare arrays of structures the same way you declare any other array,
and you access them by using subscripting, as in the following example:
;> Point pts[5];
;> sizeof(pts);
(const int) 40
;> sizeof(Point);
(const int) 8
;> sizeof(pts)/sizeof(pts[0]);
(int) 5
;> pts[0].x = 1;
(int) 1
;> pts[1] = make_point(30,40);
(Point&) Point {}
;> show_point(pts[1]);
30 40
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You can initialize arrays of structures. UnderC does not currently support
such initialization, but the following is a small program that compiles with
standard C++, together with its output:
#include <iostream>
using namespace std;

struct Point {
int x,y;

};

Point pts[] = {
{234,543}, {260,677}, {302,700}, {244,760}

};

int main()
{
for(int i = 0; i < sizeof(pts)/sizeof(Point); i++)
cout << pts[i].x << ‘ ‘ << pts[i].y << endl;

return 0;
}

234 543
260 677
302 700
244 760

In this example, be careful about the semicolon after the brace in the list of
initial values; the error message is obscure if you leave out the semicolon!

Lists and Vectors of Structures
Often a vector of structures is more appropriate than an array, if the num-
ber of elements is not known at compile time. Otherwise, vectors of struc-
tures and arrays of structures are used in the same way. Similarly, lists of
structures can be very useful, as in the following example:
;> vector<Point> vp;   // initially empty
;> vp.push_back(make_point(10,20));
;> vp[0].x;
(int) 10
;> list<Point> lp; 
;> for(int I=0;I<10;I++) lp.push_back(make_point(I,I*I));
;> lp.back().x;
(int) 9

When you have any container of structures, it is straightforward to iterate
over that collection:
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void dump_points(const list<Point>& lp) { 
list<Point>::iterator lpi;
for(lpi = lp.begin(); lpi != lp.end(); ++lpi)
cout << ‘(‘ << (*lpi).x << ‘,’ << (*lpi).y << “)\n”;

}

It is very common to find expressions such as (*lpi).x when using iterators;
because the dot operator (.) has a greater precedence than the dereference
operator (*), you need to include parentheses in the preceding expression
(*lpi.x is read as *(lpi.x), which is wrong.) It is such a common operation
that an operator shortcut, lpi->x, exists. As mentioned in the “Iterators,”
section of Chapter 3 a map has a find() method, which returns an iterator,
but I didn’t tell you how you can use that iterator (apart from saying that it
may be equal to end()). The iterator refers to a pair of values: the key
(which we know) called first and the value (which we are trying to find
out), called second. Rather than using (*imsi).first, you can use 
imsi->first. In this example I have declared a map<string,int> and associ-
ated the string “fred” with the number 648. The iterator returned from
find() has information about both the key and the value:
;> map<string,int> msi;
;> msi[“fred”] = 648;
;> map<string,int>::iterator imsi = msi.find(“fred”);
;> cout << “key = “ << imsi->first

<< “ value = “ << imsi->second << endl;
key = fred value = 648

Pointers
Pointers have long been a source of trouble for beginners and experts alike.
It takes a while for beginners to get used to pointers, and they are a fertile
source of bugs in even professionals’ programs. The pointer is an animal
that is never entirely tamed, and it should be treated with respect. Pointers
are no longer as crucial in basic C++ programming as they were in C, which
is why I’ve delayed talking about them until this chapter. Indeed, Java
deliberately eliminated pointers because they are potentially unsafe,
although they are still there, disguised as references.

Pointers as References
You can think of memory as a large array of bytes, up to 4GB in length on a
32-bit machine. The address of a variable is the index into that array. You
can define a pointer value as being an address. To find the address of a vari-
able, you use the address-of operator (&), which we previously saw used in
reference declarations (in “Reference Types”). Pointer values are tradition-
ally expressed in hexadecimal (that is, base 16, not base 10), but you can
typecast a pointer into an integer if you want to see the value in decimal, 

119Pointers



as in the following example, which also shows the addresses of two adjacent
variables i1 and i2:
;> &i;
(int*) 72CD30
;> (int) &i;
(int&) 7523632
;> int i1=1,i2=2;
;> &i1; &i2;
(int*) 72CD54
(int*) 72CD58

Notice in this example that the address of i2 is 4 bytes ahead of the
address of i1. But don’t depend on facts like this! These pointer values will
not be the same on your machine. Generally, you should not use the actual
values of these addresses. They will change as a program changes and will
probably be different if the program is rebuilt on another platform.

A pointer is a variable that contains a pointer value. That is, it is a reserved
area of memory, 4 bytes in size on most machines, that contains the address
of some other variable. You declare and access pointers by using the derefer-
ence operator (*). The following example shows how. Figure 5.2 shows how
i1, i2, and pi are laid out in memory for this particular example.
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Figure 5.2: The pointer variable pi contains the address of the integer 
variable i1, which contains 1.

;> int i1 = 1, i2 = 2;
;> int *pi = &i1;
;> *pi;
(int) 1
;> *pi = 10;
(int) 10
;> int& ri = i1;
;> int *p2 = pi;
;> *p2;
(int) 10



The result of dereferencing a pointer (*pi, in this case) is the value con-
tained in the original variable i1. *pi is written exactly as iterator expres-
sions such as *lpi (see “Iterators” in Chapter 3); a pointer is a special kind
of iterator. *pi acts as an alias for i1, in the same way that the reference ri
is an alias for i1. Both *pi and i1 refer to the same memory. You can have
as many pointers as you like referring to the original variable. References
are in fact a restricted kind of pointer, and they automatically dereference
themselves (that is, you don’t need *).

C A U T I O N
More than one pointer can be declared at once, but each new pointer must be pre-
ceded by *, as in the following example:

;> int *p3, *p4, p5;
;> p5 = &i1;
CON 52: cannot convert from ‘int*’ to ‘int’

This code declares p3 and p4 to have type int * but declares p5 to have type int.
p5 is just a plain integer, and trying to put a pointer value into it results in an error. If
you are used to a more relaxed language, C++’s insistence on types matching can
become irritating. However, it prevents you from writing foolish or badly behaved code.

You can use any C++ type as the base type of a pointer. It is important to
note that C++ will not let you automatically convert one pointer type to
another. If you force the conversion by using a typecast, you are likely to
get garbage. This is similar to what happens with passing arrays to func-
tions; a double variable is 8 bytes and is organized very differently from a
4-byte integer. There is no translation involved with pointer assignments,
such as when a double value is translated to an integer value. In the follow-
ing example, a pointer to int is copied into a pointer to double, and the
result of dereferencing that pointer is displayed. The bit pattern represent-
ing the integer 10 is some arbitrary (and very small) floating-point number.
;> int i = 10;
;> int *pi = &i;
;> double *pd;
;> pd = pi;   // not allowed!
CON 55: cannot convert from ‘int*’ to ‘double*’
;> pd = (double *) pi; // force it!
(double*) 72CD58
;> *pd;
(double&) 1.67896e-306

Using pointers with structures is probably the most common use of point-
ers. Note that just as with iterators, the clumsy (*ppt).x can be written as
ppt->x, as in the following example:
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;> Point pt = make_point(500,200);
;> Point *ppt = &pt;
;> (*ppt).x;
(int) 500
;> ppt->x;
(int) 500

Some operating system functions use structures. For instance, the standard
C header time.h contains the tm struct, which includes all you need to
know about the time, and allows the time functions to pass back a large
amount of information, as in the following example:
struct tm {

int tm_sec;     /* seconds after the minute - [0,59] */
int tm_min;     /* minutes after the hour - [0,59] */
int tm_hour;    /* hours since midnight - [0,23] */
int tm_mday;    /* day of the month - [1,31] */
int tm_mon;     /* months since January - [0,11] */
int tm_year;    /* years since 1900 */
int tm_wday;    /* days since Sunday - [0,6] */
int tm_yday;    /* days since January 1 - [0,365] */
int tm_isdst;   /* daylight savings time flag */

};

The following function today() uses tm to generate a Date structure for
today’s date:
Date today() {
time_t t;
time(&t);
tm *ts = localtime(&t);
Date dd;
dd.year = ts->tm_year + 1900;  // years since 1900...
dd.month = ts->tm_mon + 1;     // it goes 0-11...
dd.day = ts->tm_mday;
return dd;

}

In this example, the type time_t is a typedef for a long integer; the time()
function returns the number of seconds since midnight January 1, 1970
(which is when UNIX started counting time). localtime() returns a pointer
to a tm struct, which you can transfer to the Date structure. The time func-
tions in this example are a little eccentric, and there are things to watch
out for (for example, the month field goes from 0 to 11). It is a good idea to
keep this kind of unexpected behaviour wrapped up safely in a function so
that you do not have to keep remembering to add 1900 to tm_year. One
advantage of using a struct to return information from a function is that
you need refer to only what you need, and you can ignore the rest.
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Structures can themselves contain pointers. For instance, here is an
Account structure that keeps information about money outstanding:
Struct Account {
Double amount;
Person *debtor;
Date when_due;
};

Why would you keep a pointer to a structure? Consider that any given
Person object probably has a number of accounts (Account object), and
Person is a rather large struct. So keeping one Person object shared among
several Account objects would save memory and disk space. But the most
important reason is that you keep one (and only one) Person object and
thus there is no redundant information floating around. Sooner or later, the
person’s contact details change, and if you didn’t share one object, you
would have to go through every structure in the system that contains that
Person object and update the details. (Some government departments seem
to work like this.)

Pointers can also be used to pass variables by reference:
;> void update_value(int *p) { *p = 0; }
;> update_value(&i1);
;> i1;
(int) i1 = 0

C, which does not have reference variables, uses pointers to pass structures
by reference. Notice that you have to explicitly extract the address of the
argument you want to pass by reference, using &. Many C++ programmers
prefer this style because it shows that the argument of update_value() is
going to be modified. With references, there is no way you can tell just by
looking at the function call whether the argument is going to be modified or
not.

What Pointers Refer To
The big difference between references and pointers (apart from needing to
say *p to extract values from pointers) is that each reference is bound to
one (and only one) variable. Pointers can be made to point to new variables,
and they can also be made to point to anything, which makes them power-
ful and also potentially full of problems. Consider the following example.
You can put an arbitrary number 648 into a pointer, although you will need
an (int *) typecast to remove the error message. But usually any attempt
to dereference such a bogus pointer results in a access violation message. In
other words, 648 is considered an illegal address. Because local variables
are not initialized automatically, you also need to watch out for uninitial-
ized pointers.
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;> int pi = 648;
CON 42: cannot convert from ‘const int’ to ‘int*’
;> pi = (int *)648;
(int*) 288
;> *pi;
access violation <temp> (1)

By now I hope you’re getting worried every time you see a typecast.
Sometimes they are necessary, but too many typecasts usually spells trou-
ble. You might wonder why this arbitrary value 648 was considered a bad
pointer. Surely if you have 64MB of system memory, you can address every-
thing from 0 to about 64×1024×1024 = 67,108,864, right? But modern oper-
ating systems don’t work like that; each program (or process) gets its own
4GB address space, and only isolated sections of that total range are actu-
ally valid memory. System memory is virtual, with chunks of memory
(called pages) being swapped to and from disk continuously. So you actually
have about 100MB of virtual memory available if you have 64MB of ran-
dom access memory (RAM), but it’s much slower to access the disk than to
access RAM. As you load more and more programs, your system grinds to a
halt because it is constantly trying to page to disk. The separate address
space for each process means that a program can’t destroy another pro-
gram’s data; the pointer value 0x77DE230 (say) will have different mean-
ings for different programs.

In Windows 9x, the upper 2GB is shared among all programs and is used
for dynamic link libraries and the operating system. So your program can
still overwrite system memory. This is a major reason Windows NT is more
reliable than Windows 9x

In C++, you can have pointers to pointers. Remember that a pointer is basi-
cally a variable, so it has an address or pointer value, which you can store
in another variable of a suitable type. Again, the style of declaration is
meant to resemble how the pointer will be used; to dereference int** ppi
(read as “pointer to pointer to int”), you would use *ppi. In the following
code, I have ppi, which points to pi, which points to i1. *ppi will be the
value of the pointer pi (that is, the address of i1). **ppi will be the value 
of i1.
;> int *pi = &i1;
;> int **ppi = &pi;
;> *ppi;
(int*) 72CD54
;> **ppi;
(int) 10

;> void *pv = &i1;
;> double f;
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;> pv = &f;    // (double *) will convert directly to (void *)
(void*) 72CE2C
;> *pv;  // this will be an error!

There are two things to remember about void pointers: Any pointer will
happily convert to a void pointer, and you cannot dereference a void pointer
because the system does not know what the pointer’s base type is.

The NULL Pointer
The NULL pointer is usually simply defined to be 0, which is an exception
among integers; it matches any pointer type without typecasting. Trying to
access memory at logical address zero always results in an access violation
on machines that have memory protection. UnderC recognizes this as a spe-
cial problem, but most compilers do not distinguish this case in their run-
time errors. With the GNU compiler, a program will say something like “A
has caused an error in A.EXE. A will now close” and give some helpful
advice about restarting your computer if problems persist. (This is ulti-
mately why I went to the trouble of creating UnderC: I spent years being
frustrated with weird runtime errors and slow compilers!) Here you see
UnderC’s more friendly runtime error:
;> pi = NULL;
(int*) 0
;> *pi;
NULL pointer <temp> (1)

Java programmers are likely to regard this as yet more proof that C++ is not
to be trusted. With C++, you should always check to see whether a pointer is
NULL because many programs use this value to indicate a special state.

Writing Structures to Binary Files
Up to now you have only written plain ASCII text to files. You can inspect
such files with a text editor such as Notepad, and they contain no unprint-
able characters. The main difference between binary files and ASCII text
files is that binary files can use all 256 ASCII characters, whereas text files
tend to keep to a subset of the lower 127 characters.

The other difference between these types of files has to do with human
stubbornness; when Microsoft developed DOS, it decided that the ends of
lines of text should be indicated with two characters, a carriage return (cr)
and a linefeed (lf). The UNIX people just used newline, which is written
like \n in C character strings. (Mac people just use carriage return, so
everyone is different.) When you write the string “this is a line\n” to a
text file, ”\n” must be translated into “\r\n”; the opposite translatation
must occur when you read in a line.
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Accessing a file in binary mode involves no filtering or translation. Streams
default to text mode, so a special constant is needed when you open a file
using ofstream. Here is a small function that writes a few integers directly
to a file:
void binarr(int arr[], int n) {
ofstream out(“arr.bin”,ios::binary);
out.write((char *) arr, n*sizeof(int));

}
;> int a[] = {1,2,3,4};
;> binarr(a,4);

You use another of the ios constants (ios::binary) to indicate that any
character written out to this file should not be translated. An integer might
include a byte with the value of \n (that is, hex 0x0A or decimal 10), and you
don’t want write() inserting an extra \r. UNIX programmers should par-
ticularly be aware of this potential problem with Windows.

The write() method takes two arguments: a pointer to char and the total
size (in bytes) of the data to be written. Usually, you have to put in a type-
cast to force the type to be (char *); if it were (void *), then any pointer
would freely convert. If you now look at the created arr.bin file, you’ll see
that it is exactly 16 bytes (4 integers of 4 bytes each.) You can use a utility
such as DOS DEBUG to look at the first few bytes of the file:
c:\ucw\examples\chap5> debug arr.bin
-d 0100,010f
1AC2:0100  01 00 00 00 02 00 00 00-03 00 00 00 04 00 00 00
-q
c:\ucw\examples\chap5

Sure enough, 1, 2, 3, and 4 each take up 4 bytes. Notice that the least sig-
nificant part of each number (that is, the low byte) appears first. Because
the most significant part is at the end, this is called big-endian, which is
how Intel processors arrange bytes. (Little-endian, on the other hand, is
how Motorola processors arrange the bytes, with the least significant part
at the end; you use little-endian when you write down numbers: 45,233.)

I mention big-endian and little-endian now to raise a warning: Binary files
are not fully portable across different platforms. Consider someone trying
to read the four integers in arr.bin on a non-Intel machine. A Macintosh
would be confused by the byte ordering, because it has a little-endian
processor. A Silicon Graphics workstation is a 64-bit machine (making
sizeof(int) equal to 8), so the integers in the file would be the wrong size.
In recent years, therefore, there has been a move toward ASCII data stan-
dards, such as Hypertext Markup Language and rich text format.
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So what are the advantages of binary files?

• They are usually more compact and are definitely more efficient than
ASCII files. The four integers in the last example were transferred
without any translation. To write out four integers as text, they must
be converted into decimal representation. 

• They are more secure than text files. Users strongly believe that any
ASCII files are for them to edit, and they will then blame you when
the application no longer works.

• They are particularly good at accurate storage of floating-point num-
bers.

• It is easy to write a structure directly into a binary file (as we will
see.)

• Most importantly, you have true random access to the file. That is, you
can move to any arbitrary point in the file, given the offset in bytes
(this is often called ‘seeking’) The text translation involved in text files
makes such access unreliable.

N O T E
There are some things you cannot write to disk very easily. It is meaningless to write a
pointer out directly because it will not have any meaning if you read it in again. A
pointer refers to a specific address, which is kindly (and temporarily) allocated to you by
the operating system. Besides, copying the pointer does not copy the data! Not only
pointers are affected by this restriction; if you look under the hood, you will see that
standard strings are basically structures that contain pointers. So structures such as
Person, which contains strings, are unsuitable for direct binary input /output.

Allocating Memory with new and delete
So far you’ve used two methods for allocating memory to variables. The
first method is through a global or static declaration, where the compiler
reserves space when it is generating the code. (Note that static allocation in
UnderC is limited to about 1MB.) The second method is by using local vari-
ables (called automatic allocation), which has the advantage that the mem-
ory is used only within the function call. The third kind of memory
allocation is dynamic: At any point, a program asks for a block of memory
from the heap, which is the pool of free system memory. The heap is only
limited by the amount of memory available on your system. This allocation
is achieved by using the new operator:
;> int *p = new int;
;> *p = 2;
(int) 2
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Earlier in this chapter, we spoke of pointers referring to other variables;
that is, a pointer is another way of accessing a variable. Some people speak
of dynamically allocated pointers as being nameless variables, which are
accessible only through the pointer. Figure 5.3 shows this situation; the
pointer value is outside the block of statically allocated memory.
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Figure 5.3: The pointer p points outside the usual variable memory.

A marvelous thing about dynamic memory is that you can give it back to the
system by using delete. When you are finished with a pointer, you should
give the block of memory back. After you delete the pointer, that memory no
longer belongs to you, and the pointer is called a dangling pointer. It is like a
phone number after the service has been disconnected. By deleting a block,
you are giving permission to the system to do anything it likes with the
block, including giving it to some other part of the program. Accessing dan-
gling pointers can cause problems that are particularly hard to trap. Here is
how you use delete to give memory back to the system:
;> int *p = new int;   // ask for a 4 byte block
;> *p = 2;
(int) 2
;> delete p;   // give the block back
;> *p;        // p is no longer valid
(int) 9773312

It is useful to write functions that create pointers to objects and guarantee
that the resulting object is properly initialized. This function guarantees
that the name fields of a Person are properly set:
Person *new_person(string fname, string lname)
{
Person *pp = new Person;
pp->first_name = fname;
pp->last_name = lname;
return pp;

}  

It is possible for a struct to contain a pointer to an object of the same type.
Obviously, you can’t have a member that is the same struct (because the
system doesn’t know how big the struct is until it’s defined), but a 
member can be another pointer because all pointers are the same size.



Imagine that the struct Person discussed earlier in this chapter has an
extra field, parent, of type Person *. You can set up a chain of Person
objects (as long as parent is initialized to NULL):
;> Person *fred = new_person(“Fred”,”Jones”);
;> fred->parent = new_person(“Jim”,”Jones”);
;> fred->parent->parent = new_person(“Joshua”,”Jones”);
;> for(Person *p = fred; p != NULL; p = p->parent)

cout << p->first_name << endl;
Fred
Jim
Joshua

The parent field being NULL at the end is an example of a NULL pointer
that is used to indicate some condition—in this case, the end of Fred’s
ancestors. The for loop may seem unfamiliar, but remember that the sec-
ond section (p != NULL) is tested before the output statement, and the third
section (p = p->parent) executes after the output statement, moving you to
the next parent in the chain. This curious arrangement is called a linked
list, and in fact it is how the standard list is implemented. Figure 5.4 shows
how these Person objects are linked to each other (with the name fields
indicated as pointers to emphasize that the names are not stored inside the
struct). But you would rarely have to write such code  since std::list
already implements a linked list. It would in fact be better to use
list<Person> in this case.
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NULL
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“fred”
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“Jim”
“Jones”

Figure 5.4: The pointer fred points to a chain, or list, of Person objects.

N O T E
You may be wondering why pointers are so important, given that they seem to be a
major cause of program bugs. The primary use of pointers is to access dynamic blocks
of memory. You have been using them for this purpose without realizing it, because the
standard containers do this all the time. Modern C++ practice prefers to keep pointers
hidden within trusted library code, precisely because they can be such trouble. It is
best to wrap up a pointer tangle in an easily used package.



Case Study: The Bug Tracking Program Revisited
It is often necessary to revisit an old program and consider how you can
improve it. However, this can be a frustrating exercise because the new
specifications often can’t be easily implemented by using the old scheme,
and in such cases a redesign and rewrite is the only viable choice. There is
too much bad code in the world already, kept beyond its natural life like
some Frankenstein monster.

The first version of the bug-tracking program you created in Chapter 2,
“Functions and Control Statements,” works, but users are frustrated: They
need to track the people reporting and working on the bugs. They would
prefer a number of small utility programs that they can run from the com-
mand prompt. Also, the date needs to be logged when a bug has been fixed.
To implement these changes, you would just need to add extra fields. But
the users also want to edit information in the bugs database—for example,
they want to be able to add a comment or decide that a particular must-fix
bug can be downgraded to a fix-whenever bug. This is not easy to do with a
text file because you would have to rewrite the file for each tiny change.
You decide to see how a binary file solution would work. This means the old
database will have to be converted, but that would have been necessary
anyway. It also raises another question: Can future changes be added with-
out breaking compatibility?

Binary Files: Both Readable and Writable
Consider how the previous bug-tracking system remembered what the last
ID was: It would read the old value from a small text file, increment it, and
write it back. Here is one way to do this with binary files (note how you
combine more than one ios constant to make the file readable and
writable):
int next_id()
{
int val;
ifstream in(IDFILE, ios::binary | ios::in | ios::out);
in.read((char *)&val,sizeof(int));
++val;
// rewind to beginning of file
in.seekg(0);
in.write((char *)&val,sizeof(int));
return val;

}

The significance of this for bug reports is that you can move around a
binary file and overwrite existing data. So you need to define a suitable

130 Chapter 5: Structures and Pointers

E X A M P L E



structure that describes a bug report. Then to move to the nth record, you
need to seek (n-1)*sizeof(S) bytes, where S is the struct. If S is 100 bytes
in size, then the offsets are 0, 100, 200, and so on.

What About the Users?
Each bug report has two associated users: the one that reported the bug
and the one that signed off the bug as fixed. There are two corresponding
dates—the reported date and the fixed date—which are easy to represent
with the Date struct. But how do you represent users? Each user has an
eight-character username (for example, SDONOVAN), but it seems a waste to
copy the whole name into the structure. Besides, what if the username
changes and is no longer eight characters? One solution is to store a user
ID, which is a simple integer from 1 to the number of users. To translate
from a username to a user ID, you use a map, and to translate from the ID
to the name, you use an array. But the rest of the program doesn’t need to
know that. All the clients of the module need to know is that Users::name()
translates IDs to names, and Users::id() translates names to IDs; if you
later change the representation (say user IDs are no longer consecutive),
the rest of the program is not broken. This interface is contained in users.h
and looks like the following:
#include <string>
#include <map>
using namespace std;

#include “users.h”
namespace { // private to this module…
const int MAX_USERS = 20;
typedef map<string,int> UserNameMap;
UserNameMap users;
string user_ids[MAX_USERS];
}

namespace Users {

// ids start at 1, not 0!
string name(int id) { return user_ids[id-1];  }
int id(string s)    { return users[s]; }
string myself()     { return getenv(“USERNAME”);  }

void add(string s, int id)
{
users[s] = id;
user_ids[id-1] = s;

}
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void init()
{
add(“GSMITH”,1);
add(“FJONES”,2);
add(“SREDDY”,3);
add(“PNKOMO”,4);
add(“SDONOVAN”,5);

}

} // namespace users

// users.h
// Interface to the users module
typedef int User; 
const int MAX_USERS = 20;

namespace User {
string name(int id);
int    id(string s);
string myself();
void   add(string s, int id);
void   init();
}

This approach to storing users avoids the problem of how to write strings to
a file, but you can’t get away from storing the actual bug description.

Writing Strings
The following is a structure that contains the required information:
const int MAX_DESCRIPTION = 80;

struct Report {
int id,level;
Date date_reported, date_fixed;
User who_reported, who_fixed;
long extra1;
long extra2;
int  descript_size;
char description[MAX_DESCRIPTION];

};

In this example, everything is straightforward (User is just an integer)
except the description, which is a fixed array of characters. There are also
two extra fields, which allow some room for expansion. The problem with
this example is that there is a limited amount of space for the description.
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80 characters is probably enough for most bugs, but occasionally bugs need
more description than that. 

Let’s first handle the issue of saving strings as character arrays. Generally,
if you are going to do anything nontrivial to a structure and you want to
keep your options open, it is a good idea to write functions that operate on
the structure. You can wrap up the dark secrets of how strings are stored in
two functions, which you can improve later. These are shown in the follow-
ing code.
string get_description(const Report& report)
{
return report.description;

}

void set_description(Report& report, string descript)
{
report.descript_size = descript.size();
strncpy(report.description, descript.c_str(), MAX_DESCRIPTION);
}

The function get_description() seems fairly trivial, but quite a bit goes on
under the hood. The fixed-length character array is implicitly converted
into a variable-length string. set_description() requires a useful function
from the C runtime library. strncpy(dest,src,n) copies at most n charac-
ters from src to dest (note the direction). The string method c_str() pro-
vides the raw character data of the string, which is then copied into the
report description field. If there are too many characters in the string, the
description is truncated. (As usual, it is very important not to run over the
end of the array.) The copy operation should be familiar to a C programmer,
but this operation is usually conveniently (and safely) handled by C++
strings. (For more information on C-style string handling, see “The C
String Functions” in Appendix B, “A Short Library Reference.”)

Adding a bug report is straightforward. You can define a shortcut for the
common case of adding a dated report by using the current username. You
don’t have to bother to set the date_fixed field because the who_fixed mem-
ber is set to zero, and this will mean “still pending, not fixed yet”:
void add_report(string who, int level, Date date,

string descript)
{
Report report;
// fill in the report structure
report.id = next_id();
report.level = level;
report.date_reported = date;
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set_description(report,descript);
report.who_reported = Users::id(who);
report.who_fixed = 0;  // meaning, not fixed yet!

ofstream out(BUGFILE,ios::binary | ios::app);
out.write((char *)&report,sizeof(Report));

}

void add_report_today(int level, string descript)
{
add_report(Users::myself(),level,Dates::today(),descript);

}

The following are the routines for reading through the bug report file and
printing reports out if they match the criteria:
void dump_report(ostream& out, const Report& report)
{

out << report.id << ‘ ‘ << report.level
<< ‘ ‘ << Users::name(report.who_reported)
<< ‘ ‘ << Dates::as_str(report.date_reported)
<< ‘ ‘ << get_description(report) << endl;

}

void list_reports(ostream& out, int min_level, Date d1, Date d2)
{
Report report;
ifstream in(BUGFILE, ios::binary | ios::in);
while (in.read((char *)&report,sizeof(Report)))
if (report.level > min_level &&

Dates::within_range(report.date_reported,d1,d2))
dump_report(out,report);

}

bool read_report(int id, Report& rpt)
{
ifstream in(BUGFILE, ios::binary | ios::in);
in.seekg((id-1)*sizeof(Report));
if (!in.eof()) {

in.read((char *)&rpt, sizeof(Report));
return true;

} else return false;
}

In this example, you separate out the code that does the dumping to sim-
plify list_reports(). As you can see, it is considerably simpler than the
equivalent function using text files; the whole structure is read by using 
the read() method, which returns false when the end of the bugs file is
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reached. The function read_report() returns a report from the file, given
its ID. Assuming that the IDs are consecutive integers, it is straightforward
to go to exactly the position where you can read the requested report.

The code for write_report() is very similar to the code for read_report(),
except that you use seekp() rather than seekg() and write() rather than
read(). (See chap5\bugs.cpp on the CD-ROM that accompanies this book.)
Being able to modify a bug report is a powerful feature; with the old text
file representation, you would have had to rewrite the file. The question of
deleting bug reports doesn’t occur with this version of the bug tracker,
because even a false report must be dealt with and written off as “not-a-
bug” and kept for future reference. But if you did want to delete bug
reports, it would be easier to mark them as being deleted than to rewrite
them each time. This technique is often used in implementing databases; at
some future point, you compact the database, which actually removes all
the collected garbage by leaving out records marked as deleted.

The Utility Program Interface
The prototypes of the functions in bugs.cpp are collected in bugs.h, and you
can now pull this together as a program:
// addbg.cpp
#include <iostream>
#include <cstdlib>
using namespace std;

#include “bugs.h”

int main(int argc, char **argv)
{
// remember, argc counts argv[0] as well!
if (argc != 3) {

cerr << “usage: <level> <description>\n”
<< “Adds a bug report to the database\n”;

return -1;        // this program failed!
}
int level = atoi(argv[1]);
if (level == 0) {

cerr << “Bug level must be > 0\n”;
return -1;

}
Bugs::add_report_today(level, argv[2]);
return 0;  // success

}
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It is considered bad manners for programs to crash because of bad input, so
you should try to give users sensible error messages.

To build this program, you have to compile all the source files and link
them together. Initially, the following DOS command will compile all the
files, and subsequently you have to recompile only the files that change.
Refer to Appendix D, “Compiling C++ Programs and DLLs with GCC and
BCC32,” for the options, including setting up a project in an integrated
development environment such as Quincy 2000.
C:\bolsh\ucw\chap5> c++ addb.cpp bugs.cpp users.cpp dates.cpp - o addbg.exe

Extensions
Let’s now work on the case where the description is more than
MAX_DESCRIPTION characters. Fortunately, there are two extra fields avail-
able; these fields cannot save more than eight characters, but one of them
can give an offset into another file. That is, if there are too many charac-
ters, you can append them to the end of a file of strings and record the posi-
tion in the extra1 member of the struct. There is some redundancy because
you save the first MAX_DESCRIPTION characters twice—in the bug report file
and also in the file of strings—but that would not be difficult to improve.
The following code shows new definitions for set_description() and
get_description().

Writing out the description to the strings file is straightforward because
you aren’t forcing the string into a fixed-length block of characters. The
string’s raw character data can be written directly to the file as so many
bytes. You can ‘tell’ what the offset at the end of the file is by using tellg().
Before you write, you save this offset.

Reading the string back involves moving to the stored offset with seekg()
and reading descript_size bytes into a temporary buffer, which is then
returned as a string. get_description() declares this buffer as static
because sometimes too much local storage can cause a stack overflow.
void set_description(Report& report, string descript)
{
int sz = descript.size();
report.descript_size = sz;
strncpy(report.description, descript.c_str(), MAX_DESCRIPTION);
// extra long description?
if (sz > MAX_DESCRIPTION) {
ofstream out(STRSFILE,ios::binary | ios::app);
report.extra1 = out.tellp();
out.write(descript.c_str(),sz);   

}  
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}

string get_description(const Report& report)
{
if (report.descript_size < MAX_DESCRIPTION)

return report.description;
else { // read the description from the strings file
static char buffer[TRULY_MAX_DESCRIPT];
ifstream in(STRSFILE,ios::binary);
in.seekg(report.extra1);
in.read(buffer,report.descript_size);
return buffer; 

}
}

Note that you could make these modifications to the program without hav-
ing to change the rest of the program because the description reading and
writing logic has been separated out. That is, you are just replacing
set_description() and get_description().

Later in this book, we’ll explore this issue in greater detail, but it’s useful
to note that object-oriented programming is more of a mental habit than
using object-oriented language features like classes. With object-oriented
programming, you need to use encapsulation (that is, wrap up tricky logic
and assumptions into functions, which are given exclusive right to manage
some data). It is possible to write object-oriented programs in any language
that has structures and functions. And conversely, you could write incoher-
ent, bad code and dress it up in classes. I will introduce the object-oriented
features of C++ like classes in Chapter 7, “Classes.”

What’s Next
This chapter introduced the important ideas of user-defined structures and
pointer types. Together with dynamic allocation, they allow you to generate
flexible data structures of any desired complexity, like linked lists. 

The next chapter goes into more detail about C++ functions. A number of
functions may share the same name but have different arguments (called
function overloading). Since C++ operators are essentially functions, they
may also be overloaded for specific functions. And sometimes it is very use-
ful for functions to be able to call themselves. I will do two graphics exam-
ples that show this in action.
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Overloading Functions and Operators
C++ has many features that make life easier for programmers. For exam-
ple, thinking up unique and meaningful names for functions can be irk-
some. You saw in Chapter 4, “Programs and Libraries,” how namespaces
can keep families of functions together, but even with namespaces, you still
need to come up with names such as print_date() and print_person().
With the C++ feature function overloading, you can let one name stand for
a number of functions, depending on the arguments. In C++ you can also
redefine operators, so you can define a simple notation for common opera-
tions on structures. Functions can call themselves, under special conditions,
and they can be passed as parameters to other functions.

In this chapter you will learn about

• Overloading functions and using default parameters

• Redefining C++ operators, especially for output and input

• Recursive algorithms

• Using Turtle Graphics



Default Values for Parameters
To make a function as general as possible, you need to specify all its para-
meters. It is often a bad idea to make a function’s result depend on some
global parameter, and it is frustrating to use a function that depends on
some mysterious constants. 

Specifying too many parameters as arguments is clumsy and makes the
function’s use hard to remember. In Chapter 5, “Structures and Pointers,”
you saw one solution—to wrap up the parameters as members of a struc-
ture, which could then be efficiently passed by reference to a function. This
solution is the equivalent of the named parameters that some languages
support. Here is an example of what this kind of parameter passing looks
like. do_operation() is a function with a large number of parameters, but
we want to change only the font used for text output. Instead of passing a
dozen or more parameters, only the font properties are changed. Again, this
technique can be clumsy because you usually need to initialize the other
members of the structure with some default values.
;> OperationArgs args;
;> args.flags = SET_FONT;
;> args.fontsize = 12;
;> args.fontname = “arial”;
;> do_operation(args);

You can use default arguments to handle this problem. For instance, here is
a function that prints a little table of sine and cosine values to some output
stream. Notice that the last argument dx of dump_trig() is declared like an
initialized variable (double dx = 0.1). Any arguments that specify initial
values in this way are called default arguments. Such arguments may be
left out of function calls.
;> void dump_trig(ostream& out,
;>      double x1, double x2, double dx = 0.1)
;> {  for(double x = x1; x < x2; x+=dx)
;2}     out << sin(x) << ‘ ‘ << cos(x) << endl;
;1} }  
;> dump_trig(cout,0.0,0.5);  // only out, x1, and x2 specified!
0.000000 1.000000
0.099833 0.995004
0.198669 0.980067
0.295520 0.955336
0.389418 0.921061

In this example, the function dump_trig() defines a sensible default value
for the gap between x values dx. If you choose not to use the last argument,
a value of 0.1 will be assumed, or you can specify all four arguments.
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In the previous chapter, you defined the make_point() function to construct
Point objects. Here it is redefined to use default arguments:
Point make_point(int x=0, int y=0) {

Point p;  
p.x = x;  p.y = y;
return p;

}
;> Point p1 = make_point();
;> p1.x;  p1.y;
(int) 0
(int) 0

In this example you can specify two, one, or no arguments for make_point().
It is important to have sensible defaults that would be obvious (for exam-
ple, setting the point coordinates to (10,10) would not be obvious). Zero is a
good obvious value for many types.

N O T E
It is an error to redefine default arguments in the function definition if the function defi-
nition has already been declared with default values. So, if your function is defined in a
header, keep the default values there.

Overloading Functions
A powerful feature of C++ is the ability to use the same name for several
functions. This sounds like a confusing thing to do, but when people draw
water and draw a card the meaning of ‘draw’ is usually obvious from the
context. In the same way, C++ uses the argument types to distinguish
between the various overloaded functions.

sqr()
The sqr(x) function squares its argument. This operation makes sense for
any argument that you can multiply by itself (for instance, both floating-
point and integer numbers). Bear in mind that floating-point and integer
arithmetic are very different on a machine level, and using a double
sqr(double) function to do integer squaring can be very inefficient. So you
need to define two functions, sqr() and sqr_int(), but the marvelous thing
about C++ functions is that you can use the same name for both functions.
Here’s how it works:
;> double sqr(double x) { return x*x; }
;> int sqr(int I) { return I*I; }
;> sqr(2.0);
(double) 4.
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;> sqr(2);
(int) 4

double sqr(double) and int sqr(int) are two very distinct functions; their
implementation may look similar, but floating-point multiplication is differ-
ent from integer multiplication, even though you use * for both types. The
operator * is in fact itself overloaded. The compiler can distinguish the cor-
rect function to use because the double argument is distinct from the int
argument. We say that the signature—that is, the set of arguments plus
the return type—of the functions is different. The correct function is
resolved from the overloaded set of functions with the same name. And you
can continue to add functions called sqr() to the overloaded set providing
their arguments are sufficiently different. For example, some like to define
squaring of a vector to mean the vector of squared values:
;> typedef vector<double> Dvect;
;> Dvect sqr(const Dvect& v) {
;1} Dvect tmp = v;
;1} for(int k=0,n=v.size(); k < n; k++)
;2}   tmp[k] = sqr(tmp[k]);
;1} return tmp;
;1} }

It appears as if this version of sqr() is defined in terms of itself, but this
isn’t so: sqr(tmp[k]) has an argument of type double, which matches
sqr(double); and that is a different function. This appears marvelous, but
there is a downside. First, if there are separate sqr() functions for int and
double, you cannot depend on the usual int-to-double conversion: The sys-
tem picks the best fit and doesn’t try to force the int argument into a 
double function. You can always force the function you want by explicitly
writing floating-point numbers (for example, 2. or 2.0) or by using a type-
cast (for example, sqr((double)k)). Also, the signatures need to be suffi-
ciently different from one another. If the compiler finds two or more
functions that match equally well, an error results. Say that you defined
the floating-point sqr() by using float, not double:
;> float sqr(float x) { return x*x; }
;> sqr(1.2);
CON 4:Ambiguous match for void sqr(const double)

int sqr(int)
float sqr(float)

To begin with, a constant like 1.2 has type double. People tend to instinc-
tively feel that float is somehow closer to double than it is to int, but this
is not necessarily so. It is true that a float will be promoted to a double,
and the system will prefer this to doing a standard conversion from int to
double. But both double-to-int and double-to-float are narrowing opera-
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tions in which information could be lost (often called demotion) because 8
bytes of precision is being forced into 4 bytes. So double-to-int and double-
to-float are both considered standard conversions and are equally favored.
Both versions of sqr() will then match a double argument, and this is
called an ambiguous match. You should prefer double arguments to float
arguments for this reason.

An ambiguous match error is not actually a bad thing; it is worse when the
system silently picks the wrong function without any warning. (Error mes-
sages are very useful when it comes to getting programs right, and every-
one gets compile errors when writing serious programs.) These potential
problems may make you feel nervous about using overloaded functions.
However, you don’t need to know all the rules to use overloaded functions
effectively. Keep the argument types as distinct as possible, and for the
most part, things should behave themselves.

Functions can be distinguished by the numbers as well as by the types of
their arguments. Distinguishing them by number is the best way of keeping
functions distinct and unambiguous. For example, these are clearly differ-
ent signatures because they have a different number of arguments:
;> int minv(char arr[], int sz);
;> int minv(char ptr[]);

Different Parameters for the Same Operation
The basic question to ask when naming a function is this: Does this name
make the function’s purpose clear to some future user? If it is difficult to
name a function, then maybe the function’s purpose is confused anyway;
perhaps the function needs to be broken up into two or more distinct opera-
tions. This is particularly true when functions are overloaded. You reuse
names when a name describes a distinct operation that is applicable to dif-
ferent arguments. You could probably write a whole program in which all
the functions (except for main(), of course) were called function(), and this
would be a bad thing not only because the names are not descriptive but
because there is no common operation. Generally, it’s a good idea to keep
names distinct.

An Alternative to Default Values
Sometimes it is unnecessary to overload functions because default argu-
ments will do the job better than overloaded functions. A good example is
the make_point() function discussed earlier in this chapter. You could
achieve the same effect as that make_point() function by using two func-
tions, declared like this:
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;> Point make_point(int x, int y);
;> Point make_point();

If you supply definitions for these functions, you will see that the two
implementations are practically the same—they aren’t really different func-
tions at all. You can use both default arguments and overloaded functions,
but be aware that they sometimes collide with each other. If you supplied
default arguments for the first function in the preceding example, the over-
load resolution would become ambiguous because there are two identical
ways of matching the same signature:
;> Point make_point(int x=0, int y=0);
;> Point make_point();
;>  make_point();
CON 16:Ambiguous match for void make_point()

Point make_point(int,int)
Point make_point()

Of course, you can change your mind in the future about whether to use
default arguments or function overloading because the effect is the same.
Generally, you should use default arguments if the implementation of the
other case would be almost identical, like with the preceding two versions
of make_point(). But if the implementation is different, then overloading
would be better. You should use overloading only if the functions have very
different ways of doing the same thing; for example, print(Point) and
print(Date) would be good candidates.

Overloading Operators
Operators such as + and * in C++ can be considered to be functions taking
two arguments (these are often called binary operators). Because they are
functions, they can be overloaded. This section shows why and how you can
overload operators.

Adding Two Points Together
Points in the two-dimensional space of a graph can be added together by
adding their coordinates. They can also be divided by a scalar (that is, a
single number). For example, you calculate the average of two points by
adding them together and dividing by 2. The result is a point that is mid-
way between them in space. This shows how the average of two Point
structures can be calculated, by defining add() and div() functions:
Point add(Point p1, Point p2) {

Point p;
p.x = p1.x + p2.x;
p.y = p1.y + p2.y;
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return p;
}
Point div(Point p, int val) {

p.x /= val;
p.y /= val;
return p;

}
;> Point p1 = make_point(1,4), p2 = make_point(5,2);
;> Point p = div(add(p1,p2),2);
;> show(cout,p);  // print out the average of (1,4) and (5,2)
(3,3)

With function overloading, you don’t have to worry about naming these
functions add_point(), show_point(), and so on. But it would be nice to use
the usual arithmetic notation, not the function notation. That is, people are
more used to writing (p1+p2)/2 than writing div(add(p1,p2),2). Functional
expressions like this are often more difficult to read, and bracket-counting
is necessary. The next section shows how to use mathematic notation in
this case.

Operators as Functions
C++ operators are functions that can be redefined. Here are overloaded ver-
sions of the addition and division operators that work with Point types:
Point operator+(Point p1, Point p2) {

Point p;
p.x = p1.x + p2.x;
p.y = p1.y + p2.y;
return p;

}
Point operator/(Point p, int val) {
return div(p,val);

} 
;> Point p1 = make_point(1,2), p2 = make_point(5,2);
;> Point p = (p1 + p2)/2;
;> show(cout,p);
(3,3);>

The definition of operator+() is precisely the same as a normal function
definition, except that you use the keyword operator followed by the symbol
(for example, operator/). It is now possible to write point arithmetic pre-
cisely like normal  arithmetic! Java programmers call this “semantic
sugar,” but people are very used to normal arithmetical notation, and it’s
easier to get right and (just as important) easier to read than functional
notation. Just because sugar makes some programs (and people) fat doesn’t
mean we have to abandon sugar altogether.
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Careful: The fact that you have redefined + and / for points doesn’t mean
that += and /= are automatically redefined. C++ does not check that your
definitions for those operators are consistent: It’s up to you to ensure that
p=p+q is the same as p+=q. operator+= is a good idea for big structures
because it can be defined entirely with references. This operator is passed
two reference arguments, the first of which is not const because it will be
modified by the operation. The following code defines an operator+= that
returns a reference to the modified point, and no copying is involved. Bear
this in mind if fast and compact code is essential (that is, you have to watch
your sugar).
Point& operator+= (Point& p1, const Point& p2) {
p1.x += p2.x;
p1.y += p2.y;
return p1;

}

There are some things you can’t do with operator overloading, and there
are some things you shouldn’t do. You cannot redefine any C++ operator for
the usual simple types, such as double and int. It would be very dangerous
for people to be able to modify basic arithmetic. (Sometimes you need 
unlimited-precision arithmetic, but in those cases, you can define special
structures and overload the arithmetic operators appropriately.) Some oper-
ators such as the member selection, or dot (.), operator can’t be overloaded
at all. You can’t define your own operators, such as $, and you can’t change
the precedence of the operators (for example, operator* will always have a
higher precedence than operator+). These rules prevent people from com-
pletely redefining the language to suit their own (possibly weird) tastes.

Obviously, you would not define - to mean addition, but the overloaded
operator must still be meaningful. Say you had a Club struct and defined +=
so that it took a Person operand and had the effect of adding Person to Club.
This would be silly because this addition here has nothing to do with math-
ematical addition. (+= does also mean string concatenation, but that is a
well-established notation.) Naming functions requires thought, and decid-
ing which operator to use requires particular consideration. Operator over-
loading is very powerful, but it can be abused. 

Overloading << and >>
The insertion operator (<<) can be redefined similarly to other operators. In
fact, it is more commonly used in its overloaded form than in its basic form.
The original meaning of operator<< is to do bit shifting. Given the binary
representation of an integer, << shifts the bits to the left by the specified
number of places. It is equivalent to multiplication by powers of 2. So, for
example, 10 << 1 would be 20.
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Consider the business of building up a list ls of integers.  Typing
ls.push_back(i) can be tedious. It is convenient to redefine operator<< to
mean “add to list”; I’ve simplified the definition of this operator by using
the typedef symbol LI to mean list<int>:
;> typedef list<int> LI;
;> LI ls;
;> LI& operator<< (LI& ls, int val) {
;1}  ls.push_back(val);
;1}  return ls;
;1}  }
;> ls << 1 << 2;
(list<int>&) list<int> {}
;> ls.front(); ls.back();
(int&) 1
(int&) 2

operator<< is usually defined to return a reference to the first argument.
This makes the preceding trick possible. ls << 1 << 2 can be written as
(ls << 1) << 2. ls<<1 is evaluated first, and the result is ls, and so finally
ls<<2 is evaluated. It is exactly the same as typing ls << 1; ls << 2;.

By far the most common use of overloading << is for output. This way of
chaining << and values is how C++ stream output is done. You can overload
operator<< for Point arguments like this:
ostream& operator<<(ostream& os, Point p) {

os << ‘(‘ << p.x << ‘,’ << p.y << ‘)’;
return os;

}
;> cout << “the point is “ << p1 << endl;
the point is (1,4)

The resulting operator can be used in any output expression. It operates on
a general ostream, so you can use it for file output or writing to strings.
This is exactly how the <iostream> I/O stream libraries are built up: by
overloading operator<< for the basic types. (Look at the end of the
<iostream> header in your UnderC include directory to see this in action.)
A powerful feature of this library is how easy it is to extend it for user-
defined types.

Similarly to overloading the << operator, you can overload the extraction
(that is “get from”) operator for Point arguments:
istream& operator>>(istream& is, Point& p) {

is >> p.x >> p.y;
return is;

}
;> Point p;
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;> cin >> p;
100 200
;> cout << p << endl;
(100,200)

Note that you must pass a reference to Point so that it will be modified by
the input operation. Be careful about this, because forgetting the & leaves
you with an operator that changes a local variable and nothing else. Again,
operator>> operates on a general input stream.

Recursion
Recursion is when a function calls itself. This seems like a recipe for disas-
ter, but recursion is a powerful way to express some operations that are
naturally defined in terms of themselves. 

Another Binary Search
Consider the binary search introduced in Chapter 3, “Arrays and
Algorithms”: You look at the midpoint of the range, and if that value equals
the key, then you have succeeded. If the key is less than the middle value,
you search the first half, and if the key is greater than the value, you
search the second half. Finally, if the range is empty, you have failed. Note
that this description of a search is defined in terms of searching! Here is a
version of bsearch() that has no explicit loop. Instead, it calls itself to
search either the first or the second half:
int bsearch(int arr[], int low, int high, int val)
{

int mid = (low+high)/2;
if (val == arr[mid]) return mid;  // success
if (low == high)     return -1;   // failure
if (val < arr[mid])               // keep searching…

return bsearch(arr, low,  mid-1,val); // first half
else

return bsearch(arr, mid+1,high, val); // second half
}

Recursion must terminate at some point. Eventually there must be some
simple and unambiguous case that can be evaluated immediately. In this
case, either you have found the key, or the interval (low, high) is empty.

How does this magic occur? Consider the list {4,6,10,15,20,30} and the
key 6. You can start with low=0 and high=5, and the midpoint index is 3; the
value there (15) is greater than 6, so you call bsearch() with low=0 and
high=3. The midpoint is at 1, where the value is exactly right; a hit!
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Why Factorial Isn’t So Cool
A classic example of a recursive function is the factorial function. Factorials
are very common in statistics and are related to the number of ways you
can arrange a number of objects. The factorial of 4, which is written 4!, is
defined as 4×3×2×1 = 24. 0! is defined to be 1; otherwise, n! = n × (n–1)!; the
factorial function can be defined in terms of itself. So you can write a recur-
sive function to work out the factorial as follows (note that it continues
until the stopping condition, which is the definition of 0! as 1):
long fact(int i) {
if (i == 0) return 1;
else return i*fact(i-1);
}
;> fact(4);
(long int) 24
;> fact(6);
(long int) 720

This function will go haywire with negative values for the argument,
because i will continue to be decremented and will never be equal to zero.
It will continue to call itself, but until when? Not forever; each call to
fact() uses up a little more of the runtime stack. In most implementations
of C++, the runtime stack is used for three purposes: saving the return
address, passing parameters, and allocating temporary space for local vari-
ables. When a function is called, the arguments are pushed onto the stack.
Then the current address in the program (often called the instruction
pointer) is pushed. When the function is entered, the stack is further
pushed by the number of words needed to store local variables. When the
function is left, these temporary words are popped, the return address is
popped, and finally the arguments are popped. This is why local variables
cease to exist after their scope is closed. (This is also why it is important
not to overwrite local arrays in functions; it usually corrupts the stack by
destroying the return address, and the program crashes in confusion.) 

Recursion can put heavy stress on the runtime stack, particularly if you
have declared a lot of local storage. Because calling a function is more
expensive than just looping, it is a good idea to use recursion only when it
is genuinely necessary. Factorials can be done with straightforward loops,
and in fact people don’t usually evaluate them directly because they over-
flow so quickly (that is, they rapidly become larger than the largest possible
32-bit integer.)
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Drawing Trees with Turtle Graphics
In the late 1960s at MIT, Seymour Papert and others conducted an inter-
esting experiment. They exposed kids to serious computers for the first
time, even inventing a programming language (LOGO) for children in the
process. Papert’s intention was to create a Mathworld in which learning
mathematics was easier, in just the same way that it is easier to learn
French if living in France. LOGO was an intensely graphical environment
and introduced the idea of the turtle, either on the screen or actually on the
floor. The floor turtle was a little robot which could be made to turn at any
angle and move forward and backward. If a pen was attached to it, it would
draw pictures on the floor. A computer turtle is a little triangle in a graphics
window that behaves like a floor turtle. An educational benefit of drawing
with turtles is that children can identify with them; with LOGO, if you
wanted to know how to draw a square, you would pace it out on the floor
yourself and then type in the instructions. You would then define a new
word (what we would call a function) and use it as a building block. Turtle
graphics are very powerful for drawing shapes compared to using Cartesian
coordinates (that is, using x and y coordinates). Some patterns, as you will
see, are much easier to draw by using this method. This implementation of
turtle graphics is specific to UnderC, although I have included the neces-
sary files to build such applications using GCC and BCC32 (please see
Appendix D for more information.)

In the following example, you first have to #include the system file 
<turtle.h>. Then you can construct a turtle graphics (TG) window with the
declaration TG tg(“turtle”), where the string constant will be the window
caption. The init() method is needed to initialize this window, and the
show() method to show the turtle. At this point you should see the turtle
pointing up in the middle of the new window. The draw() method causes
the turtle to advance. After you type tg.turn(90), the turtle points to the
left. Any further calls draw () to continue the line in the direction that the
turtle is pointing. You can switch off the turtle by using tg.show(false),
but it is useful to see the turtle at first because it reminds you that a turtle
has both position and direction. Figure 6.1 shows the turtle in action.
;> #include <turtle.h>
;> TG tg(“turtle”);
;> tg.init();
;> tg.show();
;> tg.draw(30);
;> tg.turn(90);
;> tg.draw(20);
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Figure 6.1: The turtle in action.

In an interactive session, typing these commands can become tedious. The
C++ preprocessor can help you define suitable macros to avoid some of the
typing. Here is how the #define directive can save typing:
;> #define L tg.turn(+90);
;> #define R tg.turn(-90);
;> #define F tg.draw(10);
;> F L F R

A symbol that has been defined (using #define) is replaced by its definition,
including the final semicolon. So, for example, L expands to tg.turn(+90);.

T I P
The preprocessor got a bad reputation thanks to the abuse by C cowboys, so many peo-
ple dislike all macros. But in this section we’re talking about a perfect use for them; in
an iterative session, the ability to create abbreviations is very useful. However, they are
usually not appropriate in a proper program, especially one that has to be publicly
accessible. Expressions such as ain’t are acceptable in colloquial speech but not in
business letters. See Appendix C, “The C++ Preprocessor,” for a discussion of the pre-
processor and its enemies.

The state of the turtle at any point is its orientation and position. The type
TG_State can be used to store this state for later. In the following example,
you reset the turtle with setup() and create a variable of type TG_State:
;> tg.setup();
;> TG_State state(tg);
;> tg.draw(2);
;> state.save();
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;> tg.turn(45);
;> tg.draw(2);
;> state.restore();
;> tg.turn(-45);
;> tg.draw(2);

In this example, you draw a line, save the state, turn right and draw,
restore the state, and turn left and draw. (Type these commands to see
their effects for yourself!) The result is a Y pattern. Now consider how to
draw this Y using Cartesian coordinates; it’s not too difficult. But if you had
turned the turtle by an angle before the last set of commands, then the Y
would have been at an angle. That is, any shape drawn with turtle graphics
can be easily rotated by setting the initial orientation. And this is genuinely
tricky to do with conventional plotting calls.

You can generate interesting patterns by using recursion. The following
recursive function draws a tree:
void draw_tree(TG& tg, double l, double fact,

double ang=45.0, double eps=0.1)
{
TG_State state(tg);
if (l < eps) return;
//---- Draw the line
tg.draw(l);
//---- Save state, turn right, and draw the right branches
state.save();
tg.turn(ang);
draw_tree(tg,fact*l,fact,ang,eps);
//---- Restore state, turn left, and draw the left branches
state.restore();
tg.turn(-ang);
draw_tree(tg,fact*l,fact,ang,eps);
}

Again, the stopping condition is the first thing you check, and this is when
the length (l) passed to the function is less than some small number (eps).
Note that the left and the right sides of the tree are drawn by calls to
draw_tree(), but using a length of l*fact, where fact must be less than
1.0. So eventually, l will be small enough, and the recursion will end. In
practice, this function can go wild if you aren’t careful. If you launch this
function from main() using UnderC and use #r to run the program, then #s
can be used to stop the program at any point.

Note that the function saves the turtle graphics orientation and position in
state, which remembers where you started. The call to draw_tree() also
defines a variable, state, but (and this is the crucial bit) this is distinct
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from the last values. Useful recursion is possible only because automatic
variables are allocated on the stack, which is why languages such as 
FORTRAN and BASIC traditionally couldn’t handle recursion.

Figures 6.2 and 6.3 show the result of calling draw_tree() with two differ-
ent angles of branching.
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Figure 6.2: The result of calling draw_tree(20,0.7,30,0.1).

Figure 6.3: The result of calling draw_tree(20,0.7,60,0.1).

The power of using recursion to model biological trees comes from the
nature of growth. The genes of the tree don’t determine each twig; they
determine the twig-sprouting recipe, and they supply local rules that gen-
erate the pattern.



Function Pointers
All C++ code is translated into some form of machine code, which resides in
memory somewhere when a program is running (in the case of UnderC and
Java, the machine code is for a virtual machine that runs on top of a real
machine). So code is a form of data, and thus it has an address. Usually the
operating system organizes it so that code occupies protected memory that
can’t be written to, but it can be read and executed. Applying the address-of
operator (&) to a function reveals this address:
;> &sin;  &cos;
(double operator(*)(double)) 72B364
(double operator(*)(double)) 72B390

This function address can be kept in a special kind of pointer, which can be
used as a function. The dereference operator (*) is used to extract the value
of the pointer. The function pointer declaration in the following code may
seem strange at first. It is similar to a function prototype declaration,
except for the (*). The parentheses are necessary because otherwise it
would simply be a declaration, double *pfn(double), which is just a func-
tion taking a double argument and returning a pointer to a double. Once
pfn is declared, it can be assigned the address of any compatible function.
pfn can then be used to call the function using a double argument:
;> double (*pfn)(double);
;> pfn = &sin;
;> (*pfn)(1.0);
(double) 0.841471

Function pointer declarations are awkward, so usual practice is to define a
typedef. As usual, the typedef looks exactly like a variable declaration,
except the variable becomes a type alias:
;> typedef double (*DFN)(double);
;> DFN p1 = &sin, p2 = &cos;
;> p2(1.0);
(double) 0.540302

Note that you don’t have to use the dereference operator here because it’s
clear from the context that this is a function call. The address-of operator is
also implied when a function appears without being called. This is different
from the usual pointer behavior; you also cannot freely convert function
pointers to void pointers, because you usually cannot treat function point-
ers as data.

You can use function pointers to pass functions to other functions. A classic
example of this would be code that plots a given function, such as the fol-
lowing:
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void vplot(TG& g, DFN pfn,
double x1, double x2, double dx=0.1)

{
// construct a vector containing the function values
int n = (x2 - x1)/dx;
vector<double> v(n);
int i = 0;
for(double x = x1; x < x2; x += dx)

v[i++] = pfn(x); 

// find our min/max data values
vector<double>::iterator v1 = v.begin(), v2 = v.end();
double vmin = *min_element(v1,v2);
double vmax = *max_element(v1,v2);

// scale our graphics and plot out the points….
g.scale(x1,x2,1.5*vmin,1.5*vmax);
g.init();
g.penup();
for(double x = x1; x < x2; x += dx)

g.plot(x,*v1++);
}

An example of using this would be vplot(tg,0,10,&sin). (Note the default
argument.) This example uses the standard algorithms min_element() and
max_element() (you must include <algorithm> for these), which return itera-
tors, not values (hence the dereference, (*)). The remainder of the example
shows how you can do plain Cartesian graphics with a turtle graphics win-
dow. TG::plot()draws a line to the given point, unless the pen is up. After a
call to plot(), the pen is always down. (This style is less hassle than need-
ing different calls, move_to() and draw_to(), to draw lines. It comes from
the days when you really could see the pen moving about on the plotter.)
You can of course pass any function, not just standard library functions,
provided that the function has the correct signature, double fn(double).

Several standard library algorithms rely on function pointers. It is impor-
tant to avoid writing out loops as much as possible. For example, say you
want to print out a list of integers. Previously you would have declared a
suitable iterator and incremented that iterator from ls.begin() to
ls.end(). The standard algorithm for_each() does the job without needing
the clumsy iterator declaration. For each element in the sequence,
for_each() calls the specified function. The algorithm transform() is simi-
lar, except that it modifies the sequence by saving the result of applying the
function to each element. Keep in mind that transform() doesn’t necessar-
ily write the result back to the sequence. As with copy(), you can use
transform() to modify another, different, output; but often the output is the
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same as the input. In the following example, you set any negative numbers
in the sequence to zero and use the library function toupper() to change
each character in a string to uppercase:
;> list<int> ls;  
;> ls << 10 << -20 << 30;   // using operator<< defined previously!
;> void print_int(int i) { cout << i << endl; }
;> for_each(ls.begin(), ls.end(), print_int);
10
-20
30
;> int positive(int i) { if (i < 0) return 0; }
;> transform(ls.begin(),ls.end(),ls.begin(),positive);  // ls is now 10 0 30
;> string s = “hello”;
;> #include <cctype>  // for toupper()
;> transform(s.begin(),s.end(),s.begin(),toupper);
;> s;
;> (string) s = “HELLO”
;> #define ALL(s)  s.begin(),s.end()
;> transform(ALL(s),s.begin(),tolower);
;> for_each(ALL(ls),print_int);
10
0
30

This example uses the #define macro ALL, which takes one parameter that
will be substituted when the macro is replaced (or expanded). This makes
experimenting with these algorithms more fun because it saves having to
type (and possibly get wrong) the begin/end sequence. (You should not use
such shortcuts in official programs.)

Function pointers behave like ordinary pointers in many ways; you can con-
struct arrays, lists, vectors, or maps, using them. Here is an array of point-
ers to trigonometric functions (note again that the dereference isn’t
necessary when calling these functions):
;> double my_fun(double x) { return sin(x*x); }
;> DFN funs[] = { &sin, &cos, &tan, &my_fun };   // an array of function pointers
;> (*funs[0])(1.0);  funs[0](1.0);
(double) 0.841471
(double) 0.841471

Arrays of function pointers make general menu code easy and flexible. After
all, without such things, you are forced to write an explicit switch state-
ment, which is impossible to extend at runtime. That is not an option for
the function plotter because it must plot any function. Maps of function
pointers can be particularly powerful. For instance, in the reverse-Polish
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calculator case study in Chapter 4, “Programs and Libraries,” you could
have kept a map of strings to function pointers.

Case Study: Drawing Shapes with Turtle Graphics
Graphics programming is a very satisfying activity, because you get imme-
diate visual feedback. Most introductory C++ books don’t do graphics for
the simple reason that there are no standard graphics calls, unlike with
Java. However, the principles are usually the same. Doing some graphics is
(a) enjoyable and (b) better than doing no graphics at all.

This case study shows how structures can be used to store information
about shapes, and how then these shape objects can be drawn using turtle
graphics in more detail. At the end, there is some more advanced but
optional material.

The Specification
You need to write a program that takes a file describing shapes and draws
the shapes on a window. Initially, these shapes are squares, rectangles, cir-
cles, ellipses, and lines; color can be specified for both lines (foreground)
and shapes (background). Here is an example of the proposed format:
RECT    10 10 30 40
SQUARE  40 20 10
CIRCLE  80 20 10
FCOLOR  255 0 0
BCOLOR  0 0 255
ELLIPSE 80 40 120 60
INC STARS 200 200

General shapes such as rectangles and ellipses are specified by their bound-
ing rectangle, whereas squares and circles are specified by an origin fol-
lowed by a size. Colors are specified by three numbers—red, blue, and
green—each of which varies from 0 to 255. This gives you 3 bytes, or 24
bits, per color. There is also an include command that brings in other plot
files; this can be (optionally) drawn in a specified location.

The Representation
Your first design decision is to read the file into a data structure, which is
then used for doing the actual plotting. There are a number of good reasons
for this. First, it is efficient because the file will be read only once, and the
shapes will have to be drawn whenever the window repaints itself. Second,
you need to find the minimum and maximum bounds of the shapes, which
would not only require another reading of the file but would be awkward.
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Third, it allows you to split the problem neatly into two parts—reading in
and plotting out—and this will simplify development.

A struct would be the best way to represent each shape. You could use
unstructured arrays of numbers, but as many a FORTRAN programmer
has discovered, this ends up confusing both the guilty and the innocent.
Shapes naturally can be specified by their bounding rectangles (that is, the
smallest rectangle than encloses the shape); as far as the representation
goes, a circle is merely an ellipse with a square bounding rectangle. If it is
later important to know the difference between circles and ellipses, it is
easy to compare the dimensions of the rectangle.

The first struct you need to create is Rect, which consists of left, bottom,
top, and right (with the typedef real defined as the chosen floating-point
number):
typedef unsigned char byte;
typedef double real;
typedef unsigned long Color;

struct Rect {
real top,left;
real bottom,right;

};

enum Type {ELLIPSE,RECTANGLE,LINE};

struct Shape {
Type type;
Rect rect;
Color fcolor,bcolor;

};

typedef std::list<Shape> ShapeList;

The struct Shape then consists of a Type, a Rect, and two colors. The shape
type can be expressed as a named enumeration because any value of type
Type can have only one of three values: ELLIPSE, RECTANGLE, or LINE. (The
integer values are not important.) Color is just a typedef name for an
unsigned long integer. (Using a typedef here aids documentation and
leaves the design open to later modification.)

For the collection of Shape objects, the best solution is probably a list, given
that you don’t need random access (that is, you will not need to access any
shape quickly by position alone.) Lists are easy to append to and economi-
cal with memory, and they can be rearranged easily. (That might be crucial
later because drawing order is often important.) In any case, you can use a
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typedef to define ShapeList as being the same as std::list<Shape>.
ShapeList is easier to type, and it gives you more freedom to change your
mind later. You rarely know all the relevant factors early on in a project,
and it’s wise to keep options open.

There is also a supporting cast of functions and operators to read (and
write) rectangles, squares, and other shapes. These are pretty straightfor-
ward and exist to make your job easier later. Not only is it easier to type 
in >> pt than in >> pt.x >> pt.y, but it means that you can redefine the
format for reading in points and know that the rest of the code will be fine.
A little more effort up front saves you both time and lines of code later. 

Please look at these functions in chap6\input.cpp. As in the reverse-Polish
program discussed in Chapter 4, you define a fail() function that lets you
bail out if you hit a problem:
void fail(string msg) 
{
throw msg;
} 

Point point(double x=0.0, double y=0.0)
{
Point pt;
pt.x = x;  pt.y = y;
return pt;
}

Rect& operator+= (Rect& rt, Point p)
{
rt.top += p.y;
rt.right += p.x;
rt.bottom += p.y;
rt.left += p.x;
return rt;

}         

void read_color(istream& in, Color& cl)
{
int r,g,b;
in >> r >> g >> b;
cl = TG::rgb(r,g,b);
}

void read_square(istream& in, Rect& rt)
{

double x,y,rr;
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in >> x >> y >> rr;
rt.bottom  = y-rr;
rt.left = x-rr;
rt.right = x+rr;
rt.top = y+rr;

}

ostream& operator<<(ostream& out, const Rect& rt)
{
out << rt.left << ‘ ‘ << rt.bottom << ‘ ‘

<< rt.right << ‘ ‘ << rt.top << endl;
return out;
}

The main input routine is called read_shapes(), and it is responsible for
reading each line from the file, setting the current foreground and back-
ground colors, and including specified plot files.
bool contains_numbers(const string& s)
{
string::iterator p1 = s.begin(), p2 = s.end();
while (p1 != p2) {
if (isdigit(*p1)) return true;
++p1;

}
return false;
}                  

// forward declaration of read_any_shape
void read_any_shape(istream& in, string obj, Shape& shp);

bool read_shapes(string file, ShapeList& sl, real xp, real yp)
{
Shape shp;
Color current_bcolor = default_bcolor, 

current_fcolor = default_fcolor;
string obj;
Color ival;
// if there’s no file extension, then assume it’s .plt   [note 1]
if (file.find(“.”)==string::npos) file += “.plt”;
ifstream in;
if (!in.open(file.c_str())) fail(“cannot open “ + file); 
while (in >> obj) {
switch(obj[0]) {
case ‘F’: // foreground color
read_color(in,ival); current_fcolor = ival;
break; 
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case ‘B’: // background color
read_color(in,ival); current_bcolor = ival;
break;
case ‘I’: { // insert file!  [note 2]
string file,rest;
real xm=xp,ym=yp;
in >> file;
// MAY be followed by some (x,y) offset
getline(in,rest);
if (contains_numbers(rest)) {
istringstream ins(rest);
ins >> xm >> ym;

}
// a recursive call!
read_shapes(file,sl,xm,ym);

} break;
default: { // read a shape...[note 3]
Shape shp;
read_any_shape(in,obj,shp);

// shape properties effected by current color and offset
shp.fcolor = current_fcolor;
shp.bcolor = current_bcolor;
shp.rect += point(xp,yp);
sl.push_back(shp);

}
} // switch...
} // while...
return true;

}

The code for the ‘I’ command (see code marked note 2) calls read_shapes()
again. This is a classic application of recursion: Plot files can include other
plot files, which can themselves include plot files, like Russian dolls or
Chinese boxes. The only complication is that you have to check the line
after the filename for the optional (x,y) offset. The idea is that sometimes
the user wishes to bring in a shape file starting at a specific (x,y). The prob-
lem is that just saying in >> file >> xm >> ym will always try to skip to
the next line if there are no numbers on the line. So the rest of the input
line is read into a string, and contains_numbers() is used to check whether
it does indeed contain an (x,y) offset. If so, then istringstream is used to
read that offset in.

If a command is not recognized by read_shapes(), then it falls through to
the default case of the switch statement (see code marked note 3). It
assumes that the command is a shape and asks read_a_shape() to do the
specific reading. The resulting Shape object is modified by the current color
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and also by any specified offset. The object is then put into the list of Shape
objects.

The function read_a_shape() reads each shape from the file. Because it will
be defined later on in the file, it is declared (or prototyped) before
read_shapes(). It is like a promise that the bill will be paid within 30 days.
You can use a simple switch statement here, only looking at the first char-
acter of each shape. It would not be difficult to use the whole string, but it
might be tedious to have to type the full name of each shape. You can
regard squares as degenerate rectangles, and the code of read_a_shape() is
straightforward because the detailed work has been done by the input rou-
tines such as read_square(). If the command is still not recognized, then
fail() is called and an exception is thrown.

Now I could have put the shape-reading code into read_shapes(), but then
that function would be a large ugly switch statement, which will only get
worse when more commands are added. Plus, putting all the shape com-
mands into their own function makes it easier to see them at a glance. 
void read_any_shape(istream& in, string obj, Shape& shp)
{

switch(obj[0]) {
case ‘C’: // circle
shp.type = ELLIPSE;
read_square(in,shp.rect);
break;

case ‘E’: // ellipse
shp.type = ELLIPSE;
in >> shp.rect;
break;

case ‘S’: // square
shp.type = RECTANGLE;
read_square(in,shp.rect);
break;

case ‘R’: // rectangle
shp.type = RECTANGLE;
in >> shp.rect;
break;

case ‘L’: // line 
shp.type = LINE;
in >> shp.rect;
break;

default:         
fail(“Not recognized “ + obj); 

} 
}
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The task after reading the shapes is to calculate the bounding rectangle of
each of the shapes. You use the standard algorithm  for_each() to call a
function that compares the bounding rectangles (note the initialization of
the bounding rectangle because it’s easy to get it the wrong way around).
Notice that a problem with using for_each() here is that you need a global
variable to store the overall bounding rectangle because the function is
called only with each individual bounding rectangle. You call this gBnd to
make it obvious that this is a global, and you put it inside a nameless
namespace to make gBnd (together with update_bounds() and
reset_bounds()) private to this module. Here is the code that calculates the
bounding rectangle for all the shapes:
const double MAX = 1.0e30;
namespace { 
Rect gBnd;

void update_bounds(const Shape& sh)
{
Rect rt = sh.rect;
gBnd.top    = max((double)gBnd.top,rt.top);
gBnd.right  = max((double)gBnd.right,rt.right);
gBnd.bottom = min((double)gBnd.bottom,rt.bottom);
gBnd.left   = min((double)gBnd.left,rt.left);
} 

void reset_bounds()
{
gBnd.top = -MAX;
gBnd.left = MAX;
gBnd.bottom = MAX;
gBnd.right = -MAX;

}

} // namespace

void max_rect(const ShapeList& sl, Rect& bounds) 
{
reset_bounds();
for_each (sl.begin(),sl.end(),update_bounds);
bounds = gBnd;

}

I have included a write_shapes() function in chap6\input.cpp, which is not
necessary for the purpose of drawing shapes. But experience shows that a
little extra effort in writing debugging code is always rewarded. Debugging
code doesn’t have to be polished; it just needs to give a recognizable text
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form of the program’s internal data structures. The write_shapes() func-
tion, in particular, doesn’t write the same format for colors. Instead, it
forces the system to output colors as hexadecimal. It is then easy to see the
three significant bytes (0xFF is 255, so red is 0xFF0000, blue is 0x00FF00,
and green is 0x0000FF). Here is write_shapes(), which certainly helped me
in constructing this program:
void write_shapes(ostream& os, const ShapeList& sl)
{
ShapeList::iterator sli;
for (sli =  sl.begin();  sli != sl.end(); ++sli) {
if (sli->fcolor != default_fcolor)        
os << “F “ << (void *)sli->fcolor << endl;

if (sli->bcolor != default_bcolor)                
os << “B “ << (void *)sli->bcolor << endl;

char ch;        
switch (sli->type) {
case RECTANGLE: ch = ‘R’;  break;                             
case ELLIPSE:   ch = ‘E’;  break;
case LINE:      ch = ‘L’;  break;
default:        ch = ‘?’;  break;
}
os << ch << ‘ ‘ << sli->rect << endl;

}
}

When you finally get to drawing the shapes, you don’t need much code at
all. With turtle graphics, you use methods for drawing ellipses (ellipse())
and rectangles (rectangle()) that use the foreground color for the outline,
and the background color for the fill color. For instance, to draw a red rec-
tangle with a black border you would set background to red, foreground to
black, and then call rectangle(). You draw lines by calling plot() twice.
Here is draw():
void draw(TG& tg, const ShapeList& sl) 
{
ShapeList::iterator sli;
for (sli =  sl.begin();  sli != sl.end(); ++sli) {
tg.set_color(sli->fcolor,true);       // set foreground color
tg.set_color(sli->bcolor,false);      // set background color  
Rect rt = sli->rect;
switch(sli->type) {         
case RECTANGLE: 

tg.rectangle(rt.left,rt.bottom,rt.right,rt.top);
break;                          

case ELLIPSE:
tg.ellipse(rt.left,rt.bottom,rt.right,rt.top);
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break;
case LINE:

tg.penup();
tg.plot(rt.left,rt.top);
tg.plot(rt.right,rt.bottom);
break;

} // switch(...)
} // for(...) 

}  

This function is the only part of the program where the graphics system
and the data come together; to make this program use a different graphics
library would be straightforward, because you would only have to rewrite
draw().

Extensions

N O T E
You have seen how the basic shape program can be designed and built. I have added
some extra more advanced material to show how you could extend this program. Don’t
be anxious if it seems too difficult at the moment! It does not cover any new material,
and you can continue with Part II of this book and come back at any time.

Specifying the coordinates of shapes explicitly is not fun. If you had a
graphics processor embedded in your head, perhaps it would seem more
natural, but most programmers have to sketch on pieces of paper and then
experiment with various numbers. The beauty of true turtle graphics is
that everything is done relative to the last position and orientation. For
instance, having specified a square, it would be cool to then specify subse-
quent squares as clones of that square, relative to its position. Here is one
possible notation:
S 10 20 40
S +w+3
S +w+3
S +h+3 -w-3

This is intended to produce three squares in a row, separated by three
units. +w would mean “add width to the x position” and +3 would give the
extra spacing (which would be optional). The last line will then add a
square below the middle square; “+h+3” would mean “add height to y posi-
tion, plus 3”, and so on. I will call these ‘relative expressions’ since they
specify coordinates relative to the current position.

To add this feature, you can modify the code responsible for reading in rec-
tangles (operator>>.) First, the code must save the last rectangle read in as
a static variable old_rect. This variable will keep its value between calls
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to the operator. Second, operator>> now scans for ‘w’ and ‘h’ in the line that
has been read in, and if the line contains these characters, then it must
contain relative expressions . The relative expressions are evaluated with
get_inc_expr(), which will give us an offset to add to old_rect. Otherwise,
rect is read in as before from the line.
real get_inc_expr(string s, int idx, int real); // forward

istream& operator>>(istream& in, Rect& rt)
{
string line;
static Rect old_rect;
Point p = point(0,0);
getline(in,line);
//------- look for width expr
int idx = line.find(“w”);
if (idx != string::npos)
p.x = get_inc_expr(line, idx, width(old_rect));

//------- look for height expr
idx = line.find(“h”);
if (idx != string::npos)
p.y = get_inc_expr(line, idx, height(old_rect));

if (p.x != 0 || p.y != 0) { // at least one was specified!
old_rect += p;            // modify and use last rect...
rt = old_rect;
return in;

}
// otherwise, we have to read the full rect in
istringstream ins(line);
ins >> rt.left >> rt.bottom >> rt.right >> rt.top;
old_rect = rt;   // save the rectangle for possible future use...
return in;
}                  

real get_inc_expr(string s, int idx, real dim)
{
s += ‘ ‘; 
char p_m = s[idx-1];
if (p_m != ‘+’ && p_m != ‘-’) fail(“{+|-}...”);
if (p_m == ‘-’) dim = -dim;
p_m = s[idx+1]; 
if (p_m == ‘+’ || p_m == ‘-’) { // pick up number
int is = idx+2;
while (s[is] != ‘ ‘) is++;
string tmp = s.substr(idx+2,is-idx-2);
real val = atof(tmp.c_str());
if (p_m == ‘+’) dim += val;  else dim -= val;
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}
return dim;

}

What’s Next
In this chapter, you saw some of the more advanced C++ features like func-
tion and operator overloading. You saw two non-trivial graphics examples
that used recursion. 

Up to now, the emphasis has been on functions. The data, as arrays, con-
tainers, or structs, has been relatively dumb. In the next chapter I am
going to introduce another way of looking at programming. In object-oriented
programming, the data becomes the center of attention, and functions are
put inside the struct. Objects are collections of data that are responsible
for managing their own data. You have already been using objects; the stan-
dard string, <iostream>, and the containers are all examples of the power-
ful types you can create using C++’s object-oriented features.
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7

Classes
Until now, the focus of this book has been on functions and how to organize
the actions of your programs. It is now time to look at organizing programs
around data. Object-oriented programming (OOP) considers data to be more
important than actions.

In this chapter, you will learn about

• Constructing classes with member functions

• The data access rules for members

• Overloading method operators

• Constructors and destructors

• Separating an interface from an implementation



Member Functions
You have already seen member functions (sometimes called methods) being
used. For instance, string has a find() method, which is called using the
dot (.) operator. When defining structures, you defined member variables; it
is now time to see how to define member functions.

Putting Functions inside Structures
Consider the Point structure from Chapter 5, “Structures and Pointers,”
which consists of two fields, representing the x and y coordinates of a point.
In Chapter 5 we defined the function make_point(), which generates points
in a convenient way. A common property of points is their length, defined as
the distance from the origin—(0,0)—to the point (x,y). These two points
define the corners of a triangle, so the Pythagoras theorem gives the length
of this line as the square root of the sum of the sides squares. Instead of
making these ordinary functions, you can put them inside a struct, as 
follows:
int sqr(int x)  { return x*x; }

struct Point {
int x,y;

void set(int xp, int yp) {
x = xp;
y = yp;

}

int length()  {
return sqrt(sqr(x) + sqr(y));
}

};

;> Point p;
;> p.set(10,10);
;> p.length();
(int) 14

Any function defined inside a struct is called a member function, or a
method. You call a member function by using the dot operator, in the same
way you call the methods of standard library objects, such as string. So all
struct members—variables or functions—are accessed in the same way:
p.x, p.length(), and so on.
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Note that you can use any other members within the member function defi-
nition without using the dot operator! In the member function set(), the
member variables x and y are available directly (as if they were global vari-
ables), but of course you could hide them by accident.  This is why the pre-
ceding example calls the arguments of set() xp and yp. The method
length() has no explicit arguments: The object is completely implicit.

In most C++ implementations, the object is passed as a hidden reference
parameter, so the call p.length() is actually equivalent to something like
length(p). Otherwise, member functions behave like ordinary functions;
they can be overloaded, take default arguments, call themselves recursively,
and so on. 

The following example adds another function, called set(), to the structure
shown in the preceding example: 
struct Point {
...
void set(int val=0) {
set(val,val);

}
};
;> p.set(0,0);  // calls the first version of set() with two arguments
;> p.set(0);    // calls the second version of set() with one argument
;> p.set();     // second version, w/ default argument of 0

set() takes one argument and calls the first set() method to do the actual
work (this isn’t recursion!) The first set() is a member of Point and so can
be accessed directly. Again, we don’t need the dot operator since the object
is implied.

N O T E
In this example, you could use x = val; y = val, but this example shows you how
one member function can call another, without using the dot operator.

Why would you want to put functions inside structures? For one thing, it
simplifies code because you can simply use x instead of p.x, and you don’t
have to explicitly pass the object. But the main reason to put functions
inside structures has to do with how we think about data; length(p) means
“calculate the length of p,” whereas p.length() means “ask p for its length.”
The object p becomes responsible for supplying its length to any interested
customer, or client.
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N O T E
With more complicated situations than this example, it is important to have a naming
convention. You must be able to tell at a glance whether a variable is a member or just
local to a function; I tend to prefix member variables with m_ (for example, m_x, m_y),
but you can choose any scheme, as long as you’re consistent.

Public and Private Members
Object-orientation makes objects responsible for looking after their own
data. An analogy is an employee who is delegated a task; the boss does not
want to know the details—only that the job is done. Employees need pri-
vacy to function; you can’t expect them to do a good, responsible job if peo-
ple keep popping in and replying to their e-mail and writing on their
papers. You can mark data and functions as being private within a struct.
Here is a simplified definition of a Person struct:
struct Person {
private:
string m_name;
long   m_phone;
string m_address;
long   m_id;

public:
void set(string name, string address, long phone, long id) {

m_name = name;   m_address = address; 
m_phone = phone; m_id = id;

}

string get_name()     { return m_name; }
string get_address()  { return m_address; }
long   get_phone()    { return m_phone;  }
void   set_phone(long ph) { m_phone = ph; }
long   get_id()       { return m_id;     }

};
;> Person eddie;
;> eddie.set(“Eddie”,””,6481212,554433);
;> eddie.get_name();
(string) ‘Eddie’
;> eddie.m_name;
CON 11: Cannot access ‘m_name’
(string) ‘Eddie’

The Person object has some privacy to manage its own data. Any code out-
side the structure cannot access the member variables directly. My attempt
to directly access eddie.m_name produced an error message, since m_name is
declared private to Person. To modify m_name, outside code has to go through
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the proper channels and use the accessor functions such as get_name().
Accessor functions are often called get and set methods.

Notice that all members after private: will be private to the struct, until a
public: statement is encountered. In Java, each member has to be explic-
itly marked public or private.

struct and class
At this point, we will begin to use the keyword class instead of the key-
word struct. The resulting type is exactly the same; the only serious differ-
ence between struct and class is that classes are private by default and
you always have to use public: to make your members visible to the rest of
the world. Generally, member variables are kept private, and you define get
and set methods for public access.

This seems at first to be both fussy and inefficient, but C++ does not penal-
ize you for this programming style. When you write methods inside the
class body (that is, everything in the braces following class), the compiler
tries to inline them. That is, the machine code is directly injected in place
of a function call. If the function is a simple one, such as a member variable
access function (for example, get_id() in the Person class above), then this
is just as efficient as accessing the variable directly. That is,
eddie.get_id() is likely to be just as fast as eddie.m_id. In general, you
should not worry about the extra cost of making a function call until you
know for sure that the cost is unacceptable.

The Idea of Encapsulation
As you learned in the preceding section, C++ does not penalize you for sep-
arating data from the interface. If an object is going to manage its own
data, then this separation is important. In the object-oriented view of
things, accessing a class’s data directly is bad manners, because it makes it
hard for the class to take full responsibility for the data. This principle,
that data should be private, is called encapsulation. In the next few sec-
tions, I want to show you why this is a good principle to follow. 

Protecting the Representation
It is possible to manage complex organizations only if the various tasks are
delegated properly. People are given tasks and responsibility for finishing
them; they should not bother their boss with details, and they should
decide precisely how to do what they need to do. This human-management
analogy is useful when we’re talking about programming because large
software systems are the most complicated things ever put together by
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human beings, and they depend on cooperation between their subsystems.
Traditional programming often suffers from micromanagement because
roles and responsibilities are not clearly defined. The boss tends to get too
involved and spread too thin, and the employees never mature.

The idea of an employee is very close to the idea of supervision, so perhaps
it’s best to think of objects as contractors; they are given the specification
and have to deliver the goods. For instance, if you are writing a C++ pro-
gram, you don’t want to know the details of each iostream and string
object; the system contracts out the job of managing strings to the string
class. Very occasionally, standard strings are too expensive for a particular
job, and then you either do it yourself or find another string class to handle
it (that is, you get another contractor). If you use a string class, then you
should not have to know how strings are represented because managing the
data is the responsibility of the string class. Furthermore, if you start fool-
ing around with the representation, micromanaging the project, the class
cannot do its job properly.

Is it always necessary to keep data private? People have strong feelings
about this question. Some “pure” object-oriented languages such as
Smalltalk never expose their objects’ data; even numbers are objects.
Smalltalk is therefore incredibly slow. Stanley Lippman (see his excellent
C++ Primer, 3rd edition, Addison-Wesley) came up with a useful rule of
thumb: For simple things, such as a geometric point, the interface is the
same as the representation. So there is nothing wrong with accessing the
member variable x of Point directly, and saying p.x.

The Date Class
You have seen dates handled several ways in this book, and so a Date class
would be appropriate (not to mention traditional). In this section we will
create a Date class that has an odd representation.

Most commercial data processing was done in the past (and is often still
done) with COBOL, which keeps data in records. These records work rather
like C/C++ structs, except that numbers are traditionally stored as ‘pic-
tures’ (that is, as characters). So a date would be represented with six char-
acters, such as 590320. Because memory and storage in the Sixties was very
expensive (more expensive than programmers), programmers used two-
digit year fields. Another reason was that everything had to fit onto 80-
character wide punch cards. The following is a Date class built around a
six-character representation:
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class Date {
char m_data[6];

int read2(int i)
{
char tmp[3];
tmp[0] = m_data[i];
tmp[1] = m_data[i+1];
tmp[2] = ‘\0’;
return atoi(tmp);

}

void write2(int i, int val)
{
char tmp[15];
itoa(val,tmp,10);
if (val < 10) {
m_data[i] = ‘0’;
m_data[i+1] = tmp[0];

} else {
m_data[i] = tmp[0];
m_data[i+1] = tmp[1];

}
}

public:

int  year() 
{ 
return read2(0) + 1900;

}

void year(int y)
{ 

write2(0,y - 1900); 
}

int  month()      { return read2(2); }
void month(int m) { write2(2,m); }

int  day()        { return read2(4); }
void day(int m)   { write2(4,m); }

};

The business end of this class (that is, the public interface) consists of
get/set methods. Rather than calling them get_year() and set_year(), this
example uses overloading to use the method named year() for both the get
and the set methods. (The two methods have such different signatures that
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it is unlikely that anyone would get them confused, and using just one
short name avoids unnecessary typing.) The get version of year(), month(),
and day() relies on the private method read2() to read two characters and
convert it to an integer; in the string ‘590320’ the year is at offset 0, the
month is at offset 2, and the day is at offset 4. In turn, read2() works by
copying two characters into a buffer, making sure that there’s a NULL char-
acter at the end, and using the C library function atoi() (“ASCII to
Integer”) to convert this to an integer. 

Similarly, the set methods use write2(), which uses the library function
itoa() (“Integer to ASCII”) to generate a character representation of an
integer. It can be difficult to remember how to use functions like itoa(), so
this example class separates out (or factors out) the confusing integer con-
version code into the separate method write2(). There is also a special case
when the day or month is less than 10 (for instance, 9 must be written out
as ‘09’).

Member functions, like write2(), which are part of the implementation, are
usually kept private and are often called helper functions. Factoring out
common code can save you a lot of cut-and-paste programming and will
result in cleaner code. A good object-oriented programmer needs to remem-
ber to be a good structured programmer on occasion. 

Dealing with the Year 2000 Problem
Everybody got a little overexcited about the year 2000 problem, but the prob-
lem really boiled down to lack of encapsulation. The odd (and non-efficient)
Date class would not have caused a problem because it isolated the six-
character representation issue in one place only. All client code of Date
would be religiously calling Date::year(), and making the data private
would ensure that no one got careless. It is, therefore, not necessary to
change each and every reference to the year throughout all of the code.

There would then be two kinds of Year 2000 fixes. The first kind is neces-
sary when people don’t want to mess up their existing file formats; in this
case, dates must continue to be represented by six digits. This can be done
by choosing a pivot value for the date; you assume, for example, that the
years 00 to 99 represent 1930 to 2030. You replace the number 1900 within
the preceding code with the number 1930, you recompile everything, and
the fix is made. You still have to patch the existing files and hope that no
pre-1930 dates are included in the file.

There are, however, a fair number of people older than 70 years, (that is,
born before 1930) so an insurance company, among others, would not find
this fix acceptable. So in the second kind of Year 2000 fix, you need to redo
the old file format and rethink the representation. A date could be packed
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into four binary bytes; two bytes for the year (measured from some conve-
nient point) and one byte each for the month and the day. This example
shows another Date class, which is in fact simpler than the first one:
class Date {
short m_year;
unsigned char m_month, m_day;

public:
int  year()      { return m_year + 1600; }
void year(int y) { m_year = y - 1600;    }
int  month()     { return m_month;       }
void month(int m){ m_month = m;          }
int  day()       { return m_day;         }
void day(int d)  { m_day = d;            }

};

This solution is faster than the original class, and it’s more space-efficient
as well. Because this Date has exactly the same set of public members as
the old Date, it is possible to use it as a replacement. In other words, they
both support the same interface. If done properly, object-oriented program-
ming makes it possible to build real software components, which can be
replaced just like electronic components. A standard serial mouse on a com-
puter can be replaced by another standard serial mouse without any recon-
figuring, because both devices support the same interface.

Of course, a real Date class would have checking code. This is another very
good reason for keeping the data private and separate; if everyone has to go
through the same gate to modify the date, then you can always catch
attempts to set a nonexistent date (such as February 31, 2001). You may
then take action, like throwing an exception. Catching errors as early as
possible is the best way to make programs robust.

N O T E
Privacy does not mean secrecy. You let objects maintain privacy because it is essential
to their jobs, not because you are trying to hide details from other programmers. (The
C++ mechanisms for hiding details from others—when it becomes necessary, as with
commercial libraries—are using separate compilation and dynamic link libraries.) It is
clear from the class definition what members are private; this tells clients of that object
that they don’t have to worry about the details but just use this public interface. This
prevents the client code from taking shortcuts, like a picket fence stops intruders: It
isn’t a physical barrier, but it defines a boundary.

const Methods, the this Pointer, and Static Methods
Objects can be passed by reference, and these references can be marked as
const, which means they should not be modified. But how do you do this with
methods, where the object argument is hidden? As mentioned previously, the
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usual strategy is to pass the object as a hidden reference argument.
Sometimes you need to access this argument (for instance, if a method of
Point had to call a function that took a Point argument). The this pointer
is always available, and its value is a pointer to the object. For example,
within methods of Point, this has type Point*. (The following code assumes
that operator<< has been overloaded for Point.)
struct Point {
...
void show() {
cout << *this << endl;
this->x = 1;  // silly, but legal
this->y = 2;  

}

Point& translate(const Point& p) {
x += p.x;  y += p.y;
return *this;

}
};
;> Point p1,p2;
;> p1.set(120,300);  p2.set(30,50);
;> p1.show()
(120,300)
;> p1.translate(p2).show();
(150,350)

The this pointer is usually used as *this, which in the preceding example
has type Point&; it is not a variable, but it usually isn’t a const reference.
Notice that the return type of translate() is a reference to a Point, which
can be used by any other method; this is similar to the technique that
makes overloading operator<< so useful, where you can build up a chain of
function calls.

The method show() is both silly and dangerous; it is silly because this->x is
spelled out in full (although in some respectable code the authors do this to
indicate when they’re accessing a member field), and it is dangerous
because a user would probably not expect a method called show() to actu-
ally modify the object. In the same way, if I saw a method called get_x() I
would be very surprised if it modified its object. There are no language
rules against playing this kind of trick on users, but at least you should be
able to insist that the this pointer is a const reference. You do this by using
const after the method declaration, which serves two purposes: It means
you (the writer of the method) cannot accidentally change the object, and
the client (the user of the method) has a guarantee that the object will not
be modified. As with passing const references, you should get into a habit of
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labeling methods as const, unless they actually modify the object. Here
show() has been redeclared as void show() const; it will now be an error to
modify x or y in show():
struct Point {
...
void show() const {
cout << *this << endl;
// would be an error now to modify x or y
// this->x = 1; 
// y = 2;
}

void show_x() {
cout << “x = “ << x << endl;

}
};

void show_point(const Point& p)
{   p.show();   }        // fine!

;> void call_p(const Point& p)
;> {  p.show_x();  }        // an error!
CON 20:cannot call a non-const method with a const object

Please note that if you do have a const reference to a Point, then you can-
not call a non-const method like show_x(). This is because show_x() cannot
guarantee to call_p() that it will not modify the object p. This is consid-
ered an error by most C++ compilers (although I note that BCC32 still only
gives a warning). The GCC error message is a little cryptic at first:
C:\bolsh\ucw\examples>c++ -c cpoint.cpp
cpoint.cpp: In function `void call_p(const Point &)’:
cpoint.cpp:10: passing `const Point’ as `this’ argument of `void Point::show_x()’
➥discards qualifiers

It is really trying to tell you that const Point& p cannot be converted to
Point& p, because the qualifier const would have to be dropped.

Not all member functions have a this pointer. For example, you can declare
a method to be static, and it is then a plain member function. It remains a
privileged member of the class, but it does not operate on any particular
instance of that class. Here is an example of a Point that has a static
member function make(). make() has access to the private members of any
Point object but has no this pointer. Notice that static functions are called
just like members of a namespace, using the scope operator (::)—in fact,
you can think of a namespace as a class that has only static members.
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;> class Point {
;1}  int x,y;
;1}
;1} void set(int X, int Y) { x = X; y = Y; }
;1} static Point make(int X, int Y) {
;2}   Point p;
;2}   p.set(X,Y);
;2}   return p;
;2} }
;1} };
;> Point p;
;> p = Point::make(200,100);
(Point&) Point {}
;> p.x; p.y;
(int) 200
(int) 100

Constructors and Destructors
An object will often need to be put into some initial state. The set() method
does this for Point objects, as does make(). This does fine for simple classes
like Point, but more complex classes need to set themselves up properly for
business. You cannot safely use such an object without initializing it, and it is
easy to forget to explicitly initialize an object. Constructors are special meth-
ods that will automatically be called when an object is declared.

Objects often allocate memory dynamically and, therefore, require destruc-
tion as well as construction: Any pointer allocated with new must be given
back to the system with delete, etc. Destructors are methods that will be
called when the life of an object is over.

Class Constructors
Local variables will often not contain sensible values after declaration
(unless they were explicitly initialized, of course). This is because non-static
locals are genuinely temporary; some space is made on the stack for them,
and when the function ends, that space is taken back by popping the stack.
That space can then be used for somebody else’s local variables, so local
variables will contain whatever the last stack value was. Unlike Java, C++
does not implicitly initialize ordinary variables; people may not need it, and
the motto of C++ is “you never pay for what you don’t use.” However, you
can specify code that can be automatically called whenever an object is cre-
ated. These special functions are called constructors. A class constructor has
the same name as the class (or struct), and no return type; otherwise, it
behaves like any other method. Here is a constructor for the Point example
(the full definition of Point is available from chap7\points.h):
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struct Point {
int x,y;
void set(int xp, int yp) {

x = xp;  y = yp;
}

Point(int xp, int yp) {
set(xp,yp);

}
};
;> Point p(100,120);
;> p.x; p.y;
(int) 100
(int) 120

Previously, we defined non-member functions such as make_point() or
member functions like set() to do the important job of initializing an object
to a known value, but constructors are easier to use and often more effi-
cient (because make_point() relies on copying the structure). Constructors
are also called when an object is created dynamically, as in the following 
example:
;> Point *ppoint = new Point(40,23);
;> ppoint->x;
(int) 40

Default Constructors
With the constructor shown in the preceding section, you cannot declare a
Point without supplying initial values. The error message is instructive: The
compiler tells you that no constructor of Point can match a signature that
has no arguments. Here is what happens:
;> Point pp;
CON 4:Function cannot match 0 parameters
CON 4:no default constructor
;> Point p();
;> p.x;
CON 12:Not a class object or pointer

Curiously, you can get away with using Point p(), but the result is not
what you expect. The compiler considers this to be a forward declaration of
the function p(), which returns a Point value and takes no arguments—
hence the error message. Watch out for this because it might seem logical
to declare a Point like this, but C++ (like English) is not necessarily logical.

The constructor with no arguments is called the default constructor, and it
is used when the object is declared without arguments. Constructors, like
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any other functions, can be overloaded, so you can add another constructor,
this time taking no arguments:
struct Point {
...// same as before
Point() {

set(0,0);
}

};

It is now possible to declare Point p, which results in a Point object that is
always properly initialized. 

A class can contain objects that need construction. If you supply a construc-
tor, C++ guarantees that the objects in the class will also be constructed. If
you do not supply a constructor, the compiler will generate a default con-
structor that will do this.

The question now is “How could the original definition of Point have
worked?” What happens for plain old structures? If you do not supply a con-
structor for a plain structure, C++ assumes that there is no need for con-
struction, and it doesn’t bother to find the default constructor. If the class
contains objects (such as strings) that need construction, the compiler gen-
erates a default constructor, which guarantees that the objects are con-
structed. Unlike other object-oriented languages, C++ is usually pretty good
at handling that kind of detail for you. For example, an (apparently) simple
class that contains some standard string objects automatically acquires a
default constructor. Any string objects will be initialized to the empty
string (“”). You need to be aware of this because occasionally you will forget
to supply a default constructor, and a straightforward class will refuse to
compile.

Why doesn’t the system supply a default constructor automatically for
Point? As soon as you define any constructor, C++ assumes that you want
to take full responsibility for constructing that object. It assumes that you
are doing some special initialization, and it doesn’t want to second-guess
your needs. 

Explicit Clean-up
Objects often grab system resources, such as memory or file handles. A tire-
some task in traditional programming is remembering to give these
resources back to the system. If we didn’t take our library books back, even-
tually the library would run out of books. (Java has a different philosophy,
called garbage collection: Occasionally the librarians let themselves into
your house and pick up your library books.) If you allocate memory with the
operator new, at some point you must use delete; if you open a file for writ-
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ing, then you must close it. Failure to close files might mean that data isn’t
written to the file; with the iostream library, you are writing to a buffer
that is flushed to the file when it’s properly closed. (Windows puts some fur-
ther buffering between the file system and the actual disk.) But I have told
you not to worry about explicit closing of files. How is this file-closing
achieved automatically?

You can define class destructors, which are designed to clean up and
“unconstruct” objects. Destructors do not have return types, the same as
constructors, and they use the tilde symbol (~). For example, this is
(roughly) how ofstream closes a file:
class ofstream ... {
...
~ofstream() {

close();
}

};

A class’s destructor is very rarely called directly. Usually it is automatically
called at the end of a variable’s career. If an ofstream object is declared in a
function, the destructor guarantees that the file will be closed, however the
function ends. You can jump out of the function by using return at any
point, or if an exception is thrown; in either case the destructor will be
called.

For example, you can add to the Point class a destructor that does nothing
but announce the object’s destruction. The following code then defines a
function test_destructor() that shows the three main ways of leaving a
function: returning from some arbitrary point, leaving when an exception
terminates the function’s execution, and exiting normally. test_destructor()
is exercised by catch_it(), which will catch any exceptions thrown:
struct Point {
...
~Point() {
cout << “Destroyed “ << x << ‘ ‘ << y << endl;
}

};

void test_destructor(int how) {
Point p;
switch(how) {
case 0: return;
case 1: throw “exception”;
default: break;
}
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cout << “normal exit\n”;
}

void catch_it() {
try {
test_destructor(1);

} catch(...) {
cout << “caught!\n”;

}
}

;> test_destructor(2);
normal exit
Destroyed 0 0
;> test_destructor(0);
Destroyed 0 0
;> catch_it();
Destroyed 0 0
caught!

Just as C++ guarantees that members of a class (or struct) will be properly
constructed, it guarantees that they will be destroyed if they have destruc-
tors. If necessary, the compiler can generate a destructor. In the next exam-
ple, you define the structure Line as consisting of a start and an endpoint,
which are both of type Point. Rather than defining a function, you can put
declarations within a block when in interactive UnderC mode. The Line
object lin is a local variable that goes out of scope after the close brace; you
then see that the points were properly destroyed. That is, 
struct Line {
Point start;
Point end;

};
;> { Line lin; }
Destroyed 0 0
Destroyed 0 0

The delete operator also causes the destructor to be called. In this case, the
programmer completely controls the lifetime of the object:
;> Point *pp = new Point(3,4);
;> delete pp;
Destroyed 3 4

Operators as Methods
C++ operators are functions, and like all functions they can be members of
a class. In Chapter 6, “Overloading Functions and Operators” you saw how
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operators can be redefined for user-defined types. There are some operators
that can be defined only as class members, however.

The [] Operator
We previously overloaded operator+= for Point; here is how it looks as a
method of Point:
struct Point {
...
Point& operator+= (const Point& p) {
x += p.x;  y += p.y;
return *this;

}
};
;> Point p(20,30), offs(10,10);
;> p += offs;
(Point) p = Point {}
;> p.x; p.y;
(int) 30
(int) 40

The += operator is, in fact, just another name for the translate operator—
that is, it moves the point along. The non-member version has two argu-
ments, which here is implicit as the this pointer, but both versions are
used the same way. In fact, you must either define operator+= as a member
or a non-member.

Some operators can be defined only as members. For instance, the operator
= can be only a method because an object must have full control of assign-
ment (and any other copy operations). Allowing client code could redefine
what assignment means and would lead to confusion. 

The operator [] is interesting. Array access is considered an operator, and
you can redefine it. Here is a very simple Array class; it isn’t resizable, but
(unlike regular arrays) it is range-checked:
const int N = 100;

class Array {
int m_arr[N];

public:
int& operator[] (int i)
{ 
if (i < 0 || i > N) {
cerr << i << “: array index out of bounds\n”;
throw 0;

}
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return m_arr[i];
}
};

;> Array a;
;> a[10] = 2;
(int&) 2
;> a[10];
(int&) 2
;> a[1021];
1021: array index out of bounds
uncaught exception: 11 array.h

Note that a[index] can be used on both the right- and the left-hand sides of
an assignment. Array::operator[] returns a reference to an integer;
assigning to this reference causes the value to be updated.

Using Methods versus Functions
C++ can be confusing because there is often more than one way to do a par-
ticular thing. For instance, we can define operator+= as either a member or
a nonmember operator. In the case of operator+=, the member form is both
simpler and more appropriate than the nonmember form because += is an
assignment operator.

In the past, people overused methods because there was no other way to
create a separate namespace. Explicit namespaces now offer an alternative
to defining everything as a method. Methods should represent the basic
operations that need raw access to the data. In particular, you shouldn’t
add very specialized operations that are useful only in some applications.
Instead, you should be able to define functions (in some namespace) to do
the job. (Alternatively, as will be discussed in Chapter 8, “Inheritance and
Virtual Methods,” you can use inheritance, which is a better way to special-
ize a class for a particular job. )

A useful way of looking at classes is the idea of abstract data types (ADTs).
An ADT is defined by a set of operations (called the interface), rather than
by representation. For instance, in mathematics integers are defined by
addition, subtraction, multiplication, and division. Some operations, such as
the remainder (modulo) operation, can be defined in terms of these func-
tions, but the remainder operation is generally useful and so it’s made into
an operator. Counting the number of digits in a decimal representation, on
the other hand, is not a basic operation and would be made a function.

For instance, consider the idea of a stack which you met in Chapter 3, in
the section “Stacks and Queues.” Considered as an ADT, a stack is defined
by the operations push(), pop(), and depth(); it’s also convenient to have
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empty(), which is the same as depth()==0. Here is an implementation of a
Stack class, using a list:
class Stack {
private:

list<int> m_list;
public:

void push(int i)    // push a value onto the stack
{
m_list.push_back(i);
}
int pop ()         //  pop a value from the stack 
{
int val = m_list.back();
m_list.pop_back();
return val;

}
int depth() const  //  how deep is the stack?
{
return m_list.size();

}
bool empty() const //  is the stack empty?
{
return depth()==0;

}
};
;> Stack s;
;> s.push(20);
;> s.push(30);
;> s.depth();
(int) 2
;> s.pop();
(int) 30
;> s.depth();
(int) 1
;> s.pop();
(int) 20

It is interesting to compare this to the version of this example in Chapter 4,
“Programs and Libraries,” which uses an array. That previous version
defined a stack within a namespace. The advantage of using a class is that
you can have a number of stacks. The advantage of using a list is that it
can grow as the stack grows, without using more memory than necessary;
the disadvantage is that it may be too slow for mission-critical tasks, such
as the UnderC stack machine. 
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Interfaces and Implementations
However you write a stack class, the interface of a stack is defined by the
operations push(), pop(), and depth(). These methods define the interface,
and the actual code and data is called the implementation. It is very useful
to separate these two different aspects of a class. A separate interface is
easier to understand, and the implementation can be separately compiled. 

Creating a Header File
To support separate compilation and to break a program into self-contained
units, C++ encourages the use of header files. In the case of a function, a
header file would contain prototypes, which would then be fully defined in
another file. The equivalent for a class is similar. Within the class body are
the member declarations, for both the data and the functions. Any client
code that wants to use the Stack class only needs to include this header file: 
// stack.h
#include <list>
class Stack {
private:

std::list<int> m_list;
public:

void push(int i);
int pop ();
int depth() const;
bool empty() const;

};

This header file defines the interface to the class, and the implementation
of the class is then defined elsewhere. The user of this class might not have
the source code for the implementation; although having the source code
can be useful, it is not essential. All the crucial information is present in
the class definition and comments. 

You should now be able to see how useful it is to label methods as const.
When you do, the user does not have to refer to the implementation to
know that Stack::depth() does not change the object. Note that the inter-
face does not completely hide the details of the implementation; the user
can make a pretty good guess that the stack uses a list. As previously dis-
cussed in Chapter 4, “Programs and Libraries,” in the section “The std
Namespace,” you make it explicit that you are using the standard list,
rather than just taking namespace std for granted.
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The Implementation File
The implementation file for Stack looks like this, with the scope operator
(::) used to show that the functions are members of the Stack class:
// stack.cpp
#include “stack.h”
void Stack::push(int i)
{

m_list.push_back(i);
} 
int Stack::pop ()
{

int val = m_list.back();
m_list.pop_back();
return val;

}
int Stack::depth() const
{

return m_list.size();
}
bool Stack::empty() const
{

return depth()==0;
}

Note that you must have previously declared these methods in stack.h
before you can define them like this; otherwise, the compiler complains that
the method is not a member of the class. (Incidentally, you can define the
members of a namespace in exactly the same fashion, and it is, in fact, the
recommended way.) Must all methods of a class be separately defined like
this? Simple set and get methods can be left in the header file, where they
will are automatically inlined, as discussed in the section “struct and
class.”

Separating the Interface from the Implementation
Separating the interface from the implementation of a class allows you to
organize a program into well-defined modules. Practically, it is useful
because it means that rebuilding a million-line program does not require
compiling a million lines of code; usually only the implementation of a class
changes, not the interface. You should not have to recompile a whole pro-
gram just because of a small change in one method of Stack. This is the
advantage of keeping even simple get /set methods out of the interface.
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From an organizational point of view, separating the interface from the
implementation means that responsibilities are kept separate as well. For
example, you can think of the iostream library as the packaging and logis-
tics department of a C++ program; it is concerned with how to physically
get output out onto the screen, or into a file, or whatever. The client code
merely has to ask.

Also, a programmer should not be swamped with details. Keeping the
implementation separate is often called information hiding and goes hand-
in-hand with encapsulation.

Case Study: Wrapping a Class for Downloading 
Web Pages

An important use of classes is that they can provide a convenient wrapper
around an existing Application Programming Interface (API). APIs in
Windows (as in most operating systems) are collections of functions that
must be called in a particular sequence. When the API is thus wrapped up
as a class, such a class becomes independent of the precise details of that
API and can be ported with little fuss to some other platform. Also, as you
will see, the resulting class is often much easier to use than the original
code.

Using the WinInet API to Access Web Pages
The example in this case study is the WinInet Win32 API, which is a set 
of high-level functions that implement the raw business of WinSock calls
and Internet protocols. It is much simpler than doing it yourself. You may
only have a dial-up connection, but even so, it’s easy to set up a little Web
server such as HSWeb (www.heat-on.com) to operate locally on your
machine. The IP address 127.0.0.1 is reserved for such connections.

However, with WinInet, as is often the case with APIs, there are dozens of
options, and code using this API can be less than dazzlingly obvious. If the
code seems strange at first, you are in good company. The API involves
straightforward function calls, but each function takes a lot of arguments,
most of which you do not have to worry about.

It helps to understand some basic concepts: Accessing a Web page with
WinInet involves opening an Internet  session, then opening a connection to
the server, and creating a request. Finally, the request is sent to the server
and the data is retrieved. Everything in Win32 API programming is
accessed with handles, which are indirect references. Handles are a form of
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information hiding; Win32 function calls very rarely allow you to actually
modify the system’s data, but only to refer to it using handles. 

All the WinInet functions in the following example begin with Internet or
Http:
// wininet1.cpp
#include <windows.h>
#include <wininet.h>
#include <iostream>
using namespace std;

HINTERNET hSession,hConnection,hRequest;

bool go_get(char *hostname, char *page, char *buffer,
long n_to_read)

{
hSession = InternetOpen(“wininet1”,

INTERNET_OPEN_TYPE_DIRECT,
NULL,NULL,NULL);

hConnection = InternetConnect(hSession,
hostname,INTERNET_DEFAULT_HTTP_PORT,

NULL,NULL,
INTERNET_SERVICE_HTTP, NULL,0);

hRequest  = HttpOpenRequest(hConnection,
“GET”,page,
NULL,NULL,NULL,
INTERNET_FLAG_RELOAD | 
INTERNET_FLAG_EXISTING_CONNECT,
0);

if (hRequest==NULL) {
InternetCloseHandle(hSession);
return false; 

}

unsigned long dw1,dw2, n_actually_read;

bool send_req  = HttpSendRequest(hRequest,NULL,0,NULL,0);
bool has_read  = InternetReadFile(hRequest,

buffer,n_to_read, &n_actually_read);
cout << “read: “ << (int)n_actually_read << endl;
InternetCloseHandle(hSession);
return has_read;
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}
const int MAXSIZE = 124096;
char buff[MAXSIZE];

int main()
{
if (go_get(“127.0.0.1”,”index.htm”,buff,MAXSIZE))
cout << buffer << endl;

}

c:\ucw\chapter7> c++ wininet1.cpp -lwininet

In this example, an Internet session is opened with InternetOpen(). With
this handle, a connection to the actual server is opened by using
InternetConnect() and the server’s hostname (for example, www.bonzo.com).
A “GET” request for the page (for example, /default.htm) must be created
with HttpOpenRequest(), and this request is then sent with
HttpSendRequest(). Finally, the resulting output returned by the server is
read by InternetReadFile().

All of these functions return either true or false. A real program would
check these return values and clean-up afterwards. This involves closing
the session handle, which automatically closes the connection.

The last line shows how to compile this program. The -lwininet tells the
linker to import the WinInet functions from Windows. Appendix D,
“Compiling C++ Programs and DLLs with GCC and BCC32” will tell you
more about this process.

There are dozens of parameters and flags in this example code; they control
whether you go through a proxy server (INTERNET_OPEN_TYPE_DIRECT),
whether you grab from the cache (INTERNET_FLAG_RELOAD), and so on. (It’s no
wonder that people give up on C++ and go do Perl!) You need to include
many lines from header files to compile the preceding code, which is one of
the irritating things about Windows API programming. For instance, in
GCC you get about 20,000 lines included; using the Microsoft compiler CL
you get more than 300,000 lines included! There must be an easier way to
do this, and indeed there is.

Encapsulating WinInet
The following is the definition of a class that encapsulates the functionality
we’ve been talking about:
// inet++.h
#include <string>
const int n_to_read = 4096;
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#ifndef _IMPL_
typedef void *HINTERNET;
#endif

class HTTP {
private:
typedef std::string String;
HINTERNET hSession,hConnection,hRequest;
char buffer[n_to_read];
public:
HTTP(bool using_proxy=true, char *name = “wininet”);
void close();
~HTTP();
bool      available()  { return hSession != NULL; }
HINTERNET request()    { return hRequest; }

void open(String hostname);
void create_request(String page, bool do_get);
void send_request(String data);
int read(char *buffer, int nz);
int read_file(String page, String filename, string data);
int get(String page, String filename = “”);
int put(String page, String data, String filename);

};

#ifndef is a conditional compilation. If the macro _IMPL_ is defined, then
HINTERNET is defined as a simple (void *) pointer. That is, you don’t have to
include all those Windows headers just to define one handle type. This is a
case where information hiding is a practical way to reduce compilation
times. Besides, the idea is to keep all the operating system–specific code
wrapped up neatly in a few modules. 

As you can see in the implementation file, the macro is defined before the
header is included: 

N O T E
Most of the code in this example is the same as the code in the preceding example,
and the purpose is never to have to write this API code again. 

#define _IMPL_
#include “inet++.h”

HTTP::HTTP(bool using_proxy, char *name)
{

hSession = InternetOpen(name,
(! using_proxy ? INTERNET_OPEN_TYPE_DIRECT :
INTERNET_OPEN_TYPE_PRECONFIG)
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NULL,NULL,NULL);
hRequest = NULL;
hConnection = NULL; 

}

void HTTP::close() 
{

InternetCloseHandle(hSession);
}

HTTP::~HTTP()
{

close();
}

void HTTP::open(string hostname)
{
if (hSession == NULL) fail(“internet open failed”);
hConnection = InternetConnect(hSession, hostname.c_str(),

INTERNET_DEFAULT_HTTP_PORT,
NULL,NULL,
INTERNET_SERVICE_HTTP, NULL,0);

if (hConnection == NULL) fail(“connection failed”);
}

void HTTP::create_request(string page, bool do_get)
{   

hRequest = HttpOpenRequest(hConnection,
(do_get ? “GET” : “POST”),
page.c_str(),
NULL,NULL,NULL,
INTERNET_FLAG_RELOAD | INTERNET_FLAG_EXISTING_CONNECT,

0);

if (hRequest==NULL) fail(“request failed”);
}

void HTTP::send_request(string data)
{
const char *str = NULL;
if (data != “”) str = data.c_str();
OUT(str);
if (!HttpSendRequest(hRequest,NULL,0,
(char *)data.c_str(),data.size()))  fail(“send request failed”);

}
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int HTTP::read(char *buffer, int nz)
{

DWORD n_actually_read;     
if (!InternetReadFile(hRequest,buffer,nz, &n_actually_read))

fail(“read file failed”);
// necessary to put a final NUL character!
buffer[n_actually_read] = ‘\0’;  
return n_actually_read;
}

int HTTP::read_file(string page, string filename, string data)
{
// note: no data means a plain GET...
create_request(page,data == “”);  
send_request(data);
int n = read(buffer, n_to_read);
buffer[n] = ‘\0’;  
// writing out in ASCII mode should sort out any UNIXisms.
ofstream out(filename.c_str());
out << buffer << endl; 
return n;

}

int HTTP::get(string page, string filename = “”)
{
if (filename == “”) filename = strip_filename(page); 
return read_file(page,filename,””);

}

int HTTP::put(string page, string data, string filename)
{
return read_file(page,filename,data);

}

The constructor HTTP() has two arguments: if the argument using_proxy is
true (which is the default), WinInet tries to use the Windows settings. So
the default for this class should work, whether there is a proxy server or
not; the flag is for occasions when you definitely don’t want to go through
the proxy, such as with a local Web server.

The business end of this class includes two methods: get() and put(). By
default, get() strips the filename out of the full page and creates a local file
of that name (so /~ldubb/friends/pia.html is saved as pia.html in the cur-
rent directory).

You can use the method put() to submit forms to a Web server. For
instance, dog=bonzo&cat=felix%20the%20second would be a POST request
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from a form that contains two edit boxes, dog and cat; any nonalphabetical
characters, such as spaces, are encoded as their hex value (%20 = 32 = ‘ ‘).
The resulting output is retrieved into the filename. 

You don’t need to be an expert on WinInet or Internet protocols in general
to know that if you need finer control over these API calls, you can expand
the class HTTP’s interface. This example uses the default server port for
Hypertext Transfer Protocol (HTTP). It would be easy to make m_server_port
a member variable, defaulting to INTERNET_DEFAULT_HTTP_PORT, which could
be passed to the constructor or set with a method.

This code makes extensive use of fail(msg), which means (as mentioned in
Chapter 4) “throw msg.” If an exception is thrown, you can exit the try block
cleanly, calling HTTP’s destructor in the process. This guarantees that all
open handles are closed. 

The following program shows inet++ in action; it certainly is a good deal
easier to write (and maintain) than straight WinInet API code:
// test-inet.cpp
#include “inet++.h”
int main(int argc, char **argv)
{
try {
HTTP ic;
ic.open(“127.0.0.1”);
for(int i = 1; i < argc; i++)
ic.get(argv[i]);

} catch(string msg) {
cerr << “error: “ << msg << endl;
}
return 0;
}

C:\ucw\chap7>c++ -c wininet.cpp
C:\ucw\chap7>c++ test-inet.cpp wininet.o -lwininet
C:\ucw\chap7>a index.htm

Further exercises:
To explore this case study further, try these extensions:

1. Implement the function strip_filename(). It should take a pathname
like “c:\fred\alice.htm” or “/pub/dan/alice.htm” and extract “alice.htm”.
It must work with both DOS-style (\) and UNIX-style (/) paths.
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2. Hyperlinks within a Hypertext Markup Language (HTML) file are
constructed like this: <a href=”page.htm#tag”>link</a>. #tag is
optional and should be ignored here (it is a reference to an anchor
within the file). Examine an HTML file, extract all the hyperlinks,
and eliminate duplicates. You can further restrict the file by extracting
only links to one server. When you have such a list, you can start
downloading the links. It’s important with this kind of “spider” pro-
gram to know when to stop; for example, you can stop at either a fixed
number of pages, a fixed number of megabytes, or a fixed depth of tra-
versal. (This kind of program can make you very unpopular with net-
work administrators.)

3. WinInet supplies a set of functions that enable File Transfer Protocol
(FTP) access. Write a class that wraps up these functions. (The
WinInet API is documented on the Microsoft MSDN Web site.)

What’s Next?
In this chapter you have learned that functions can be put inside struc-
tures, and instead of fn(obj,args), you use obj.fn(args). A class becomes
responsible for its data, and it is given privileged access to that data.
Dealing with too much detail is the chief downfall of big systems.
Encapsulation keeps implementation details away from the rest of the 
program and means that a class can safely use different implementations.
As long as the interface doesn’t change, then the client code is not broken. 

In Chapter 8 you will see how C++ classes can be extended via inheritance.
With inheritance, reusing code written for similar projects becomes very
easy because classes can be specialized to do new things.
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8

Inheritance and Virtual Methods
In the Chapter 7, “Classes,” you learned that encapsulating class data and
methods together means that the rest of a program can concentrate on
using that class. You learned that by using classes, you can implement
abstract data types (ADTs), which present an interface to the classes’
clients. You can combine different classes together to build up new classes. 

This chapter discusses inheritance, which is another powerful way to build
families of related classes (that is, class hierarchies). You use these class
hierarchies to model a problem. C++ objects can carry runtime type infor-
mation (RTTI), which makes true object-oriented programming possible.

In this chapter you will learn

• How to create new classes by using inheritance

• How to initialize member objects and references

• How to use virtual methods

• How to do dynamic typecasting



The Idea of Inheritance
Different things often have something in common. Buses and cars are all
four-wheeled vehicles, a goat and a sheep are both plant-eating domesti-
cated animals, and so on. In object-oriented programming things are mod-
eled using classes; inheritance is a powerful way to express the common
properties of classes.

Inheritance, as you will see, will also save you a lot of typing. A class can
inherit all the properties of another class, plus some extra functionality. So
it is useful for customizing existing classes.

Extending a struct
Say you want to define an Employee class. In Chapter 7 you created quite a
lot of code that uses the Person class, and so it seems reasonable just to
copy the fields of Person and add some extra fields to create the Employee
class: the date of employment and the employee ID number. The following
is an Employee class that is mostly a copy of Person:
struct Employee {

string m_name;
long   m_phone;
string m_address;
long   m_id;
// 
Date   m_employed;
Long   m_num;

string name()  { return m_name; }
long   phone() { return m_phone; }
Date   employed() { return m_employed; }

};

N O T E
Remember that there is no essential difference between struct and class.

Making up new classes like this can get ugly: Imagine if Person were a
fully-fledged class with dozens of methods that would all have to be copied.
Generally, copy-and-paste programming is not a good idea; it is wasteful
and confusing. A common nightmare for maintainers is having sections of
code that are almost identical, which happens when code is copied and
then modified. Anytime you had new ideas about a Person class, you would
again have to copy code. For example, I’ve obviously left out an email
address in both my definition of Person and Employee; both classes would
have to be changed.
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Also, if there were a whole library of classes and functions that work with
Person objects, would you also want to copy them? For instance, say there is
a function print(Person *) that prints out a Person class, given a pointer.
The following hack actually works:
Person walker;
print ( &walker );
Employee janitor;
print((Person *) &janitor);

You know that Person and Employee are practically identical, up to the
fourth field; therefore, it is possible to pretend that an Employee class is a
Person class. However, C++ does not automatically convert between unre-
lated classes, so a typecast (Person *) is required. 

I’ve called this a hack because it’s quick, it works, and it’s a recipe for
future disaster. You can get away with using the code shown in the preced-
ing example if the structures are fairly simple. But again, any small change
to the first fields causes problems. (For instance, some other programmer
adds an email address to Person.) Also, you will see later in this chapter
how something as innocent as adding a method can change the layout of a
class in memory. As a general rule, you should not make these kinds of
detailed assumptions about how the fields of classes are laid out because
they might work on one machine and fail utterly on another.

Another approach is to actually put a Person object inside the Employee
class, as shown in the following code. You then have access to a bona fide
Person object (such as print(&janitor.m_person)) whenever you need it.
The name() and phone() methods of Employee are defined using the same
methods of Person.  (If methods have the same name, they can be distin-
guished by their full names: Employee::name(), Person::name(), and so on.)
struct Employee {

Person m_person;
Date   m_employed;
long   m_num;

string name() { return m_person.name(); }
long phone()  { return m_person.phone(); }
Date employed() { return m_employed; }

};

This is a good solution that is commonly used. This structure does 
expose its innards in an unseemly way, however, in expressions such as 
janitor.m_ person. The need to properly encapsulate the classes’ assump-
tions leads to many Employee methods merely calling Person methods. This
extra typing is inevitably error prone; imagine if Person had dozens of
methods like name() and phone().
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The official C++ way of solving the problem is to derive the class Employee
from the class Person; Person is said to be the base class of Employee. The
base class follows the class name, separated by a colon (:)
struct Employee: Person {

Date   m_employed;
long   m_num;

};

After you have defined an Employee object, you can access fields such as
m_name and m_id as if they were members of Employee. We say that Employee
inherits m_name from Person, as well as name(). The ability to use the code of
the parent class is called implementation inheritance. Figure 8.1 shows how
the fields of Employee are laid out in memory: Employee automatically con-
tains all fields from Person, plus two extra fields. The following example
uses the UnderC #d command to show all fields of the object cleaner, show-
ing that an Employee object contains everything from Person:
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Figure 8.1: The memory layout of the Employee structure.

;> Employee cleaner;
;> cleaner.m_name = “Fred Bloggs”;
;> cleaner.name();
(string) ‘Fred Bloggs’
;> #d cleaner
(Date) m_employed = Date {}
(long int) m_num = 0
(string) m_address = ‘’
(long int) m_id = 0
(string) m_name = ‘Fred Bloggs’
(long int) m_phone = 0

Employee as a Subset of Person
As with member functions, there is something of a stage magician’s trick
about inheritance; inheritance is very clever, and everyone applauds, but
why go to so much trouble? In object-oriented programming, you try to
model a problem so that the system reflects the world, by using objects,
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actions, and relationships. The classes in a program represent people,
things, and abstractions. There is a very clear relationship between
Employee and Person; every Employee object is a kind of Person object. In
the following example, two functions have been declared, taking a pointer
to Person and a reference to Person, respectively. C++ will happily allow you
to pass an Employee object to these functions:
;> void print(Person *p);
;> bool read(Person& p);
;> Employee fred; 
;> read(fred);
(bool) true
;> print(&fred);

Working the other way, from Person to Employee, does not happen automati-
cally. It is true that every Employee object is a Person object, but not true
that every Person object is an Employee object. In the following example,
C++ requires a typecast (Employee *) to pass p to cust_id(). The answer
returned by cust_id() is nonsense, for the simple reason that Person
doesn’t have an m_num field.
;> int cust_id(Employee *e)
;> { return e->m_num; }
;> cust_id(&cleaner);
(int) 0
;> Person p;
;> cust_id(&p);
CON 16:Could not match void cust_id(Person*);
0 parm
;> cust_id((Employee *)&p);
(int) 1701602080

You can build a chain of classes by using inheritance. For example, you can
derive Manager from Employee. A Manager object has all the properties of an
Employee object, plus a list of everyone managed and a salutation (Dr., Mr.,
Ms., and so forth). 
struct Manager: Employee {
list<Employee *> m_managed;
string           m_salutation;
};

Although by default Manager inherits name() from Person (as well as
m_employed from Employee, and so on), it is possible for Manager to redefine
name(). Assume that the company we’re talking about is the old-fashioned
kind where the directors are Mr. Smith, Dr. Lorenz, and so on. Their names
must always be preceded by the salutation. In this code you must precisely
specify Person::name(). If you left out the explicit Person scope, then the
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compiler would read name() as Manager::name(), which would result in an
uncontrolled recursive call. Here is a definition of the Manager::name()
method:
string Manager::name()
{
return m_salutation + “ “ + Person::name();

}

In this case you can say m_name instead of Person::name(), but it is a good
idea to let the base class manage its own data. If m_name were a private
member of Person, you would not be able to use it directly anyway.

Inheritance makes it possible to use strong type checking for function argu-
ments and yet flexibly pass such functions many different kinds of objects.
Originally, when the code to print out the Person class was written, nobody
was thinking of Employee objects. But because any Employee object in effect
contains a Person object, you can reuse that printing code without forcing
the type. Remember you had to use a typecast to pass a Person pointer as
an Employee pointer: cust_id((Employee *) &p). (This is sometimes called
type coercion, and it is similar to a child trying to get a square peg into a
round hole. It might work, depending on the particular child and the partic-
ular hole.)

Inheritance creates a lineage of related classes, and the distance along that
line is the number of generations between two classes. For example,
Employee is closer to Person than Manager is to Person. This distance is used
when resolving overloaded functions. Here there are two versions of
print(); Manager * will match the second version because the argument
type is closer.
void print(Person *p);   //(1)
void print(Employee *e); //(2)
Employee ee; Manager mm;
print(&mm);    // will match (2), not (1)

Either version of print() works on Manager *, but Employee * is closer to
Manager * than Person * is. The second version of print() is clearly more
specialized (and it may well be defined in terms of the first version). 

Access Control and Derivation
Up to now I’ve used struct instead of class, because it is slightly simpler.
The difference when using class is that all the data fields are private by
default, and the only access to these is through get and set methods like
employed():
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class Employee: public Person {
Date   m_employed;
long   m_num;

public:
void employed(const Date& d) { m_employed = d; }
void number(long n)          { m_num = n;      }
Date employed()   { return m_employed; }
long number()     { return m_num;      }

};

typedef std::list<Employee *> EmployeeList;

class Manager: public Employee {
EmployeeList m_managed;
string       m_salutation;
public:
EmployeeList& managed()         { return m_managed; }
void salutation(string s)       { m_salutation = s; }
string name()
{ return m_salutation + “ “ + Person::name(); }
};

Anything private in Employee will not be available to Manager; methods of
Manager cannot accesss m_num and must use number() instead. This makes it
much easier to change code in Employee without having to worry about code
in all of Employee’s derived (or descendant) classes. 

Making all the data private is often too restrictive; you don’t want everyone
outside to rely on the implementation details, but you can let derived
classes have direct access with the protected access specifier. Here is a
(nonsense) example:
class One {
private:

int m_a;
protected:

int m_b;
public:

int m_c;
};

class Two: public One {
protected:

int m_c;
public:
int use_a() { return m_a; } // error: m_a is private to One
int use_b() { return m_b; } // ok: m_b is protected
int use_c() { return m_c; } // ok: _everyone_ can access m_c!

};
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int use_One(One& o) {
return o.m_b;        // error: m_b is protected

}

This is the C++ equivalent of the saying “blood is thicker than water”; it
shows that relationship is privileged. Saying that One::m_b is protected
means that any children of One have direct access to m_b. By saying that
One::m_a is private, the writer of the class is saying that the implementa-
tion can change and that no derived class should rely on it. Note the public
attribute in the declaration of Two; it shows that One is a public base class of
Two. This is an extremely common situation. Two has free access to all public
and protected members of One. (Sometimes you will see a private base class.
This might seem like the programming equivalent of a black hole; but you
can use classes with private base classes when you need full control of what
appears as public.) From now on, this chapter explicitly indicates the access
mode by using class instead of struct and by using public derivation.

Constructor Initialization Lists
Until this point, we have assumed that base classes have default construc-
tors. Although there is no explicit constructor for Employee, the Date field
might need to be constructed, and its base class Person certainly has a
default constructor to make sure that the strings are properly initialized. In
the section “Constructors and Destructors” in the last chapter you saw that
such a constructor would be automatically supplied for Person. In this way,
you can continue to pretend that complex objects such as strings really are
simple C++ types.

In the same way, the compiler generates a default constructor for Employee
using these constructors. It is helpful to think of the Person part of
Employee as being a member object. If Employee had an explicit constructor,
the compiler would quietly add code to that constructor to construct the
base class, as well as any member objects. Therefore, the following would
work well:
class Employee: public Person {
...
public:

Employee(string name, int id) {
m_name = name;
m_employ_num = id;

}
...
};

If the base class does not have a default constructor, then it must be called
explicitly. Consider the case when Person::Person() takes a string 
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argument intended to initialize m_name; the Employee constructor must call
Person::Person(string name) explicitly in a constructor initialization list,
which might also contain member initializations. This list follows a colon (:)
after the constructor declaration and will contain any base class or member
objects which need initialization. It is the only way you can pass arguments
to the constructors of these objects. For example,
// have to do this with base classes
Employee(string name, int id) : Person(name) 
{ 
m_employ_num = id;

}
// or ….
Employee(string name, int id) 
: Person(name), m_employ_num(id) { }

There are two other cases in which you need to use initialization lists.
First, you use initialization lists if any member objects or base classes have
no default constructors. If Employee does have a Person member, then
Person needs to be constructed with an explicit name value. In this case, you
can think of the base class as a member.

Second, you have to use initialization lists if any members are references.
In both of these cases, you cannot have a declaration without an explicit
initialization. For example:
struct Fred {
Person m_person;   
int& m_accessed;

Fred(string name, int& i) 
: m_person(name), m_accessed(i)
{ }
...

};

Constants in Classes
An easy mistake to make is to try to initialize a member variable directly.
This is, after all, how you usually initialize variables, and in fact Java
allows this for class fields. The only place that standard C++ allows this
kind of initialization is with constants, which must be declared static as
well as const. But not every compiler manages this case properly, and you
often see enumerations used for this purpose. In this example, you can see
that generally initializations inside a struct are not allowed, except for con-
stants. I have also shown an enum used to create constants. Both work fine
(except on some older compilers like Microsoft C++ 6.0), and in both cases
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you access the constant with scope notation: F1::a, and so on. This is how
constants like string::npos and ios::binary are implemented.
;> struct Test {
;1} int a = 1;
CON 3:initialization not allowed here

;> struct F1 {
;1} static const int a = 648;   // Microsoft C++ 6.0 complains
;1} enum { b = 2, c = 3 };      // always acceptable
;1} };
;> F1::a;
(const int) a = 648
;> F1::b;
(const int) b = 2 

Using Classes as Exceptions
In Chapter 4, in the section “Defensive Programming,” when I discussed
exception handling, I mentioned that throwing different types of exceptions
in functions gives any caller of those functions great flexibility in handling
those different types. A function may choose to ignore some types of excep-
tions and let them be caught elsewhere. For instance, in the reverse-Polish
calculator case study in Chapter 4, “Programs and Libraries,” string excep-
tions are true errors and integer exceptions are used to signal that there is
no more input; in the case of string exceptions, the message is printed out,
but the loop is not terminated.

You can think of the catch block following a try block as a function that
receives the thrown exception as its (optional) argument. A number of catch
blocks are possible because the runtime system looks at these argument
types in turn and decides which is the best match; this is a simple form of
overloading. Classes make excellent types for exceptions because you can
generate as many distinct, well-named types as you like. For example, the
following is an example that defines an Exception type; it defines the single
method what(), which returns some explanation of what error occurred (for
example, ParmError is a kind of Exception error, and DivideByZero is a kind
of ParmError error):
class Exception {
string m_what;
public:
Exception(string msg) : m_what(msg) {}
string what() { return m_what; }
};
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class ParmError: public Exception {
public:
ParmError(string msg) : Exception(msg) {}

};

class DivideByZero: public ParmError {
public:
DivideByZero() : ParmError(“divide by zero”) {}

};

int divide(int i, int j)
{
if (j == 0) throw DivideByZero();
return i/j;

}

void call_div()
{
int k;
try {
k = divide(10,0);

}
catch(DivideByZero&) { 
k = 0;  

}
catch(ParmError& e) {
cout << e.what() << endl;

}
catch(Exception&) {
throw;  // re-raise the exception...

}

}

This set of classes classifies run-time errors. All errors will be caught by
Exception; all errors to do with bad parameters will be caught by
ParmError; and only dividing by zero will cause DivideByZero. So the calling
function can choose exactly how detailed its error handling should be. It
could just catch Exception and display its what() value.

The important thing to realize about using exception hierarchies is that you
need to have the catch blocks in the right order. It would be wrong to put
catch(ParmError&) before catch(DivideByZero&) because DivideByZero is a
kind of ParmError error and its catch block would catch the exception first.
This is very different from how normal function overloading works, of
course.
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Polymorphism
A group of related objects can have common behaviour, which still can be
very distinctive. For instance, pens, pencils, and markers all can be used to
draw, yet they leave very different marks on paper. Most animals make a
noise, but the precise sound is unique to the animal. 

Things with common behaviour can be modelled by using inheritance; all
classes that share a base class will inherit that base classes’ behaviour. A
group of classes related by inheritance is called a class hierarchy.

If you have a number of graphical objects, they all will have at least one
thing in common: They can draw themselves. That is, they will all have a
draw() method. If these graphical objects all derive from some common base
class Shape, which defines draw(), then they can all be accessed through
Shape::draw().

Polymorphism, from the Greek words for many and forms, means that a com-
mon function name (such as draw()) can have different meanings for different
objects. You have already seen polymorphism in action;  operator overloading
makes + mean very different operations (like integer or floating-point addi-
tion, or string concatenation) which nevertheless are all kinds of addition.
This is sometimes called static polymorphism, as opposed to dynamic poly-
morphism, when the actual method to call is decided only at run-time. How
this magic works and how it can work for you is discussed in the following
sections.

Class Hierarchies
Consider the family tree shown in Figure 8.2. This tree is unlike human
family trees in two ways: A person has two parents, not one, and generally
a family tree is concerned with the patrilineal line only. Similarly to the
way humans inherit from their ancestors, class inheritance creates a class
hierarchy. As shown in Figure 8.2, both Temp and Manager are derived from
Employee. However, Figure 8.2 does not show a hierarchy of importance; it
doesn’t mean than Temp and Manager are equally important, and less impor-
tant than Employee. Rather, a class hierarchy is like a classification of ani-
mals, which is based on the animals’ evolutionary ancestors. 

When a program is running, objects form dynamic relationships with each
other (for example, Manager keeps a list of Employee objects) called the object
hierarchy, in which a Manager object is indeed more important than a Temp
object.
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Figure 8.2: A family tree and a class hierarchy.

Class hierarchies depend on what you are trying to model. Figure 8.3 shows
a fairly arbitrary classification of some domestic animals; the basic division
is according to diet (that is, carnivore, herbivore, omnivore). This hierarchy
might be more useful to a farmer or zookeeper than a rigorous genetic clas-
sification, which would put elephants and shrews next to each other. 

The Animals hierarchy also classifies a Person as an omnivorous animal.
This is a completely different view of Person, which would not be useful for
human resources or payroll applications.
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Figure 8.3: A classification of animals by diet.

N O T E
A C++ class can have more than one base class. Strictly speaking, a cat is both a
mammal and a carnivore, and many nonmammals are carnivorous. It is equally true that
an Employee object is a Person object and is also a TaxPayer object. It is derived from
two parent classes, just as people are derived from two parents. However, not everyone
thinks that multiple inheritance is good object-oriented design. It is certainly important
to get single inheritence right first. So this book does not discuss multiple inheritance.

A Hierarchy of Animals
Consider the following example, which defines the classes NamedObject,
Animal, and Dog:



class NamedObject {
private:
string m_name;

public:
NamedObject(string name)
: m_name(name) {}
string name()  { return m_name; }

};

class Animal: public NamedObject {
public:
Animal(string name)
: NamedObject(name) {}

static void say(std::string s) {
cout << “say: “ << s << endl;

}

void call_out() { say(“<nada>”); }
};

class Dog: public Animal {
private:
string m_breed;

public:
Dog(string breed = “mongrel”) 
: Animal(“dog”), m_breed(breed) {}

string breed()  { return m_breed; }

void call_out() { say(“woof!”); }
};

void exercise_animal(Animal* pa)
{
pa->call_out();
if (pa->name() == “dog”) {
cout << “breed: “ << ((Dog *)pa)->breed() << endl;

}  
}
;> Animal a(“?”); Dog d;
;> a.call_out();
<nada>
;> d.call_out()
woof!
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;> exercise_animal(&d);
<nada>
breed: mongrel

An Animal object has a name; you can move this property of Animal into the
base class NamedObject, which will not only simplify Animal but any other
classes that carry names. Doing this also means you could in future impose
some policy on all names in your system; for instance, that names should
not contain any special characters. Note that NamedObject has a single con-
structor taking a string argument, so Animal must call this constructor
using an initialization list.

Animal has a method call_out() that you use to print out the Animal
object’s cry. Animal::call_out() does nothing specific, because this is a gen-
eral class. Animal also supplies a function say() for speaking to the world,
which is static in this case because it doesn’t depend on the particular
object.

The Dog class is derived from the Animal class, which means it inherits
everything that is publicly defined in Animal; that is, it inherits name(),
say(), and call_out(). You redefine call_out() because a Dog object is a
definite kind of Animal object that makes a definite sound. The Dog class
can also have a breed value, although it defaults to being a mongrel. 

Both generic Animal objects and specific Dog objects have a call_out()
method, but they are really different functions that have the same name.
Usually C++ makes a final decision at compile time about what function to
call; this is called early binding. The exercise_aninal() function only
knows about the plain generic Animal::call_out(), and so Dog::call_out()
is not called.

Notice the expression ((Dog *)pa)->breed(); the parentheses are necessary
because operator-> has a higher precedence than the typecast operator (Dog
*). Besides being clumsy, it is a dangerous operation to apply to Animal
objects that are not Dog objects, because they don’t have an m_breed field.  In
this case, coercing or forcing the type is likely to cause grief. (This is why
you had to explicitly test for the Animal object’s name.) Such typecasts are
called static because they happen at compile time and are basically dumb.
Because these typecasts are potentially unsafe, modern C++ uses the 
static_cast keyword. The following example shows exercise_animal()
rewritten to properly call the appropriate call_out() method; the principle
here is that you make dangerous things obvious—it’s much easier to search
code for static_cast than for C-style typecasts like (Dog *):
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void exercise_animal(Animal *pa)
{
if (pa->name==”dog”) {
Dog *pd = static_cast<Dog *>(pa);
pd->call_out();                   // Dog::call_out
cout << “breed: “ << pd->breed() << endl;

}
else pa->call_out();               // Animal::call_out

}
;> exercise_animal(&d);
woof!
breed: mongrel

This is not a very satisfying function. Sooner or later, somebody will need to
keep track of Horse objects, and another if statement will have to go into
exercise_animal(). The problem is worse than it seems in this simple
example; there are likely to be many such functions, and they all have to be
modified if extra animal classes are added. Unless you get paid for each
line of code you write (and enjoy debugging bad code all night), you should
not choose to go down this route. Yes, we could make the animal’s sound a
member field, but that would not solve the general problem of making ani-
mals with different behaviors. 

It would be better if calling Animal::call_out() would automatically select
the correct operation. How this is done and how it works is the subject of
the next section.

Virtual Methods
Let’s look at the classes Animal and Dog again, with a one-word change:
adding the qualifier virtual to the first definition of call_out(). You then
create an Animal class and a Dog object, and you can make two Animal point-
ers that refer to them:
class Animal: public NamedObject {
public:
Animal(std::string name)
: NamedObject(name) {}

// notice that call_out() has become virtual
virtual void call_out()  
{ say(“<nada>”); }

};

class Dog: public Animal {
private:
string m_breed;

public:
Dog(string breed) 
: Animal(“dog”), m_breed(breed) {}
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string breed()  { return m_breed; }

void call_out()  // override Animal::call_out
{ say(“woof!”); }
};

void exercise_animal(Animal *pa)
{
cout << “name: “ << pa->name() << endl;
pa->call_out();

}
;> Animal a = “?”; Dog d;
;> Animal *p1 = &a, *p2 = &d;
;> p1->call_out();
<nada>
;> p2->call_out();
woof!
;> exercise_animal(&a);
name: ?
<nada>
;> exercise_animal(&d);
name: dog
woof!

This example defines yet another version of exercise_animal(), which only
calls that which is common to all animals, that is, their ability to call out.
This time, calling call_out() calls the correct function!

The method call_out() is called a virtual method, and redeclaring it in any
derived class is called overriding the method. (You can use the virtual
qualifier on the overridden method, but it isn’t necessary.) It is a good idea,
however, to use a comment to indicate the fact that a method is overridden.
It is important that the overriden method be declared with the same signa-
ture as the original; otherwise, you get an error (if you’re lucky) or a warn-
ing about the fact that the new function is hiding a virtual function. That
is, if the original declaration was void call_out(), then you should not
declare it as int call_out() in some derived class, and so forth.

N O T E
If you have previously used Java, note that Java makes all methods virtual by default,
unless you explicitly use the keyword final.

Here is another class derived from Animal:
class Horse: public Animal {
public:
Horse() 
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: Animal(“horse”) {}
void call_out() // override Animal::call_out
{ 
say(“neigh!”);
}

};
;> Horse h;
;> exercise_animal(&h);
name: horse
neigh!

You can add new animal objects, and any function that understands animal
objects will call the correct method. Similarly, it can be useful to make
say() virtual. What if the animals were expected to announce themselves
in a window rather than to the console? In this case, you simply override
say(), and all subsequent classes output to windows.

How does the system know at runtime what method to call? The secret to
late binding (as opposed to early binding) is that any such object must have
runtime type information (RTTI). Virtual methods are not identified by an
actual address, but by an integer index. The object contains a pointer to a
table of function pointers, and when the time comes to execute the method,
you look up its actual address in the table, by using the index. (This is
shown in Figure 8.4.) The table is called the virtual method table (VMT), or
vtable, and every class derived from Animal has a different VMT, with at
least one entry for call_out(). Such classes are bigger than you would
expect because there is always some allocated space for the hidden pointer.
The C++ standard does not specify where this pointer is found; in some
compilers (such as the Microsoft and Borland C++ compilers), it is the first
field; in GNU C++ it is the last field; and in UnderC it is just before the
first field. This is the main reason you should not depend on a particular
layout of complex classes in memory; the original definition of Employee
would not match Person if you added even one virtual method. Virtual
methods are also slightly slower because of this lookup, but you should be
aware that the main performance issue is that making everything virtual
makes inlining impossible (that is, it cannot insert code directly instead of
calling a function.) 

Classes that contain virtual methods are called polymorphic; this refers to
how call_out(), for example, can be redefined in many different ways.

You often need to keep collections of polymorphic objects. First note how
assignment works between such objects. This example assigns a Dog fido to
an Animal cracker:
;> cracker = fido;    // Dog => Animal is cool…
;> cracker.call_out();
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<nada>
;> Animal *pa = &fido;
;> pa->call_out();
woof!
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Figure 8.4: Each Animal object has a hidden pointer to a VMT.

The type conversion in this example works, but it throws away information
because a Dog object is larger than an Animal object (that is, it contains extra
breed information). Plus—and this is very important—cracker remains an
Animal object, with a hidden pointer to an Animal VMT. Any assignment
between Animal and Dog will have this result. If there was a list of Animal
objects, then adding Dog objects would involve such an assignment.
Therefore, the following is not the way to make a collection of Animal objects:
;> list<Animal> la;
;> la.push_back(cracker);
;> la.push_back(fido);
;> la.back().call_out();
<nada>

To make a collection of Animal objects, you should keep a list of pointers to
Animal objects. As Figure 8.5 shows, if you do this, it is no longer a problem
that some Animal objects are larger objects than others. In the next example,
various objects are created with new and added to the list with push_back().
I then define a function animal_call(Animal *pa) and use the standard
algorithm for_each() to call this function for each element in the list:
;> list<Animal *> zoo;
;> zoo.push_back(new Animal(“llama”));
;> zoo.push_back(new Dog(“pointer”));
;> zoo.push_back(new Horse());
;> void animal_call(Animal *pa) { pa->call_out(); }
;> for_each(zoo.begin(),zoo.end(),animal_call);
<nada>
woof!
Neigh!
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Figure 8.5: A list of pointers to Animal objects.

Any Animal pointer might be a pointer to a Dog object. A type field such as
name() makes the identification easier, but this is irritating to set up. C++
provides an interesting typecast operator called dynamic_cast, which you
can use for polymorphic classes. dynamic_cast<A *>(p) will use RTTI to
decide at run-time whether p is in fact a A * pointer. If not, it will return
NULL. Note that any class derived from A will also qualify. Here it is in
action:
;> Animal *p1 = new Horse, *p2 = new Dog;
;> dynamic_cast<Dog *>(p1);
(Dog *) 0
;> dynamic_cast<Dog *>(p2);
(Dog *) 9343e1a0
;> bool is_dog(Animal *a)
{ return dynamic_cast<Dog *>(a) != NULL; }
;> struct Spaniel: public Dog { Spaniel() { breed(“spaniel”); } };
;> is_dog(new Spaniel);  // A Spaniel is a kind of Dog…
(bool) true 
;> // remove the dogs from the zoo! 
;> // (std::remove_if() - see Appendix B, “Standard Algorithms”)
;> remove_if(zoo.begin(),zoo.end(),is_dog);

Note that dynamic_cast does not work on just any type. It is specifically
designed to exploit the fact that classes with virtual methods always carry
extra type information. Without dynamic_cast, you need to put in the extra
type field by hand. It is always safer than static_cast, which does not
check the actual type at run-time.

Abstract Classes
In a way, there is no such thing as a plain Animal object. In the real world,
any Animal is a specific species or at least has a well-defined family. It
makes no sense to create an Animal class on its own, but only to create spe-
cific derived classes like Dog, Horse, and so forth.
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Animal can be used as an abstract base class; the method call_out() is ini-
tialized to zero, which means that this virtual method is not defined yet
(that is, it is a pure virtual method). A class with a number of pure virtual
methods cannot be created directly, but only used as a base class. Any
derived class must supply a proper definition of call_out(). As you see in
this definition of Animal, call_out() is not given any definition:
class Animal: public NamedObject {
public:
Animal(std::string name)
: NamedObject(name) {}

virtual void call_out() = 0;
};

;> Animal *pa = new Animal(“sloth”);
CON 32:class contains abstract methods

Code Reuse
By now you may have gotten the impression that object-orientated pro-
gramming (OOP) often involves a lot of typing. But this is because OOP is
not just about writing the current program, but the next version, and any
similar programs. Only the smallest programs have no future development
path, so it pays to take a little more trouble.  OOP aims to provide a good
foundation for further development. 

Making code more reuseable is a practical way of improving programming
productivity. Classes are often easier to reuse than libraries of plain func-
tions (although they still have their place.) For example, it is easier to use
string than to use the C-style string manipulation functions like strcpy(),
and so forth.

Class frameworks are effectively customizeable applications. By modifying
the framework’s behaviour with inheritance, you can write powerful graphi-
cal user interface (GUI) programs with a single page of code. This has prob-
ably been the most successful kind of object-oriented code reuse.

Reusable Objects and Functions
A goal of software engineers is to build the best possible system with the
least amount of effort. There is no intrinsic value in hard work; the defini-
tion of efficiency in engineering is the amount of work you can get done
with a given expenditure of energy. Sir Isaac Newton said that if he saw
further than most, it was because he stood on the shoulders of giants; we
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can borrow from Newton to say that many giants have labored to produce
excellent software libraries. Many of the existing libraries are free, but
even if you do have to pay for them, remember that reinventing the wheel
is nearly always more expensive. It takes a lot of effort to create a good new
C++ string class, and the community of programmers will not thank you
for doing things differently from everyone else. The standard library will
often have all you need.

Code reuse is about as old as programming itself. Reusing routines or func-
tions works very well for well-defined mathematical operations such as the
trigonometric functions. Any working programmer soon develops a collec-
tion of useful functions (for example, functions for trimming strings or file-
name extensions), and it would be silly to wrap such things up in a class. In
such a case, it is more appropriate to use namespaces.

In object-oriented software development, the class is the unit of reuse.
Rather than a loose collection of functions for manipulating character
strings (as in C), C++ provides the standard string class. The rest of the
program (that is, the client code) can ignore the details, trust the imple-
mentor, and deal with a convenient high-level abstraction. It is worth
putting effort into producing high-quality software components because
they can make more than one project easier.

Using an Existing Framework
Consider the following (silly) abstract class, which again deals with the
general problem of computers washing their hair:
class HairNight {
public:
virtual void find_shampoo() = 0;
virtual void lather() = 0;
virtual void rinse() = 0;
virtual int no_of_times() = 0;
virtual void dry_hair() = 0;

void wash_hair()
{
find_shampoo();
for(int i = 0, n = no_of_times(); i < n; i++) {

lather();
rinse();

}
dry_hair();

}
};
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Because this class is abstract, you cannot construct a real object of this
type, but only use it in derivation. HairNight contains no information about
how to find the shampoo or wash the hair, but it knows how to put all these
together. A real derived class has to fulfill the contract and supply real ver-
sions of the pure virtual functions. This is the essence of a class framework;
it relies on clients to adapt its abstract functionality.

The most common use for class frameworks is graphical user interface
(GUI) applications. There is no standard C++ library for handling graphics
and GUI applications. Many of the class frameworks used for GUI develop-
ment, particularly on PCs, are both proprietary and odd. But the same con-
cepts are common to all GUI application frameworks: GUI applications
supply you with an application, and you customize it by overriding virtual
methods.

N O T E
Hopefully, when the International Standards Organization committee reconsiders the
C++ standard in a few years, there will be sensible proposals for windowing classes
and grapics, in the same way that the (Abstract Windowing Toolkit) AWT is standard for
Java. 

YAWL
The original purpose behind Yet Another Windows Library (YAWL) was to
take the tedium out of Windows programming. A small class framework is
more useful in demonstrating GUI programming than large proprietary
beasts such as the Microsoft Foundation Classes (MFC) and Borland’s
Visual Control Library (VCL). With YAWL, you can produce a standalone
60KB executable GUI program.

A basic GUI application can inherit most of its behavior from a YAWL appli-
cation window. For example, consider the business of drawing trees, which
is discussed in Chapter 6, in the section “Drawing Trees with Turtle
Graphics.” One serious downside of that style of turtle graphics is that the
output is not persistent and would disappear if the window were resized or
other changes were made. Here is the YAWL version of a program in which
the window can be resized arbitrarily and the tree will be redrawn in scale:
#include <tg-yawl.h>
#include <sstream>
using namespace std;

#include “tree.h”

class MyWin: public TGFrameWindow {
public:
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void tg_paint(TG& tg)              // override
{

// starting in the middle, draw the tree
tg.go_to(50,10);
draw_tree(tg,20,0.7,ang,0.1);
}

void tg_mouse_down(FPoint& p)     // override
{
ostringstream out;
out << ‘(‘ << p.x << ‘,’ << p.y << ‘)’ << ends;

//  change the window caption
set_text(out.str().c_str());    

}
};

int main()
{
MyWin w;
w.show();        // make the window visible
w.run();         // respond to events
return 0;

}

This short YAWL program demonstrates the basic principle of class frame-
works. Our class MyWin derives from TGFrameWindow, and overrides the meth-
ods tg_paint() and tg_mouse_down() to do application-specific work. First,
an application frame window is constructed and made visible through the
use of show(); the application starts processing events when run() is called.
When the user closes the window, run() returns, and the program ends.

To do anything useful, you need to respond to events (often called messages)
from the operating system and from the users. People often have difficulty
with event-driven programming because it is so foreign to the usual way of
doing programming. People are accustomed to being fully in control, able to
issue commands when they choose—at least in the domain of software.
Busy personal assistants do not have this luxury; they must be prepared to
drop anything to answer the phone, and generally their work priorities are
externally determined. Real-world programs are like busy personal assis-
tants; they must take their cues from the environment and be prepared to
multitask.

The application window, for instance, may be called on to repaint itself at
any point. The framework calls the tg_paint() method when this happens,
passing it a valid turtle graphics object. Because tg_paint() is virtual, if
your window class overrides tg_paint() then you can run any graphics code
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you like whenever the window needs to repaint itself. In a similar way,
when the user clicks on the window, the tg_mouse_down() method is called
and will be passed the scaled coordinates. 

When to Use Object-Oriented Programming
You can use any user-defined type as a base class; it does not make sense to
extend or specialize ordinary numbers, in the same way that you cannot
overload operators for ordinary numbers. The reason is that people already
have a good idea of the behavior of numbers, and it would be upsetting to
change this. Similarly, you should treat std::string and the standard con-
tainers as if they were built-in types.

Object-orientation is like the efficient organization of a business; ideally,
everyone should have clearly defined roles. When the business expands, the
responsible classes can expand their roles without being distracted by other
duties. It is important to plan ahead for expansion, for both businesses and
software systems. Therefore, object-oriented designers spend a lot of time
on design because they are already thinking of the next version. As a group
of programmers builds up a body of reusable classes, any similar projects
become much easier. For example, if you are building human resources sys-
tems, an Employee class (especially if it is readily extensible) can save you a
lot of coding.

The extra investment involved in object-orientation is not always needed. If
you are building a small command-line utility, for example, it is usually not
necessary. Sometimes functions are the best solution. Unless you might
later decide to vastly expand the utility’s functionality and build a GUI
application; then object-orientation will save the day.

Case Study: The Drawing Program Revisited
In Chapter 5, “Structures and Pointers,” the case study was a program to
do drawings of common shapes. That program used a struct to keep infor-
mation about each graphics shape. Unfortunately, this does not work very
well if the shape isn’t a simple rectangle or ellipse that can be described by
two points, the lower left and upper right corners. You would have to put in
a pointer, which might contain extra point data. So the first problem is how
to force complicated shapes into a simple struct.

The second problem has to do with program organization. The previous pro-
gram relied on case statements, and this gets awkward when shapes have
other properties as well. For example, users would like to select graphics
shapes interactively. This would invariably lead to the need for a new case
statement. Adding new types of shapes means that code in several places
must be changed.

225Case Study: The Drawing Program Revisited



This case study shows how a class hierarchy of graphics shapes can pro-
duce a straightforward design that is easy to extend.

The first important part of designing any application is to think about the
classes required. In this case, you need a window object and a number of
shape objects. All shapes have certain properties in common; they are required
to draw themselves, and they must be able to read and write themselves to
disk. The class Shape is abstract and defines an interface that all real Shape
objects must supply. That is, any real graphics shape will be derived from
Shape and override methods like draw() and read() (you will find all this code
in chap8\shapes.h, chap8\shapes.cp, and chap8\window.cpp):
class Shape {  // an abstract base class for all Shapes...
public:
enum { MANY = 999 };
Shape() {}
virtual int type() = 0;
virtual void create(FPoint pts[], int n) = 0;
virtual void draw(TG& tg) = 0;
virtual int distance(const FPoint& p) = 0;
virtual int npoints() = 0;
virtual void read(std::istream& is) = 0;
virtual void write(std::ostream& os) = 0;

};

Abstract base classes such as Shape are useful because they concentrate
attention on the interface rather than on the implementation. The
npoints() method is intended to return the number of points necessary; if it
returns MANY, the object has an indefinite number of points (like a polyline).
The distance() method is used so that an application can detect the closest
object to a point. Any Shape object should supply a unique integer type()
function. (Just for a change, this example does not make the std namespace
global, so all std entries like std::string must be fully qualified names.)

As it stands, Shape is pure promise and no delivery. Because shapes like
rectangles and ellipses can be described by a rectanglar bounding box, it
makes sense to specialize Shape for doing such shapes, as in the following
code:
class ShapeRect: public Shape {
protected:
FPoint m_bottom_left, m_top_right;

public:

void create(FPoint pts[], int n)
{ 

if (n != 2) throw Error(“Supply two points for objects”);
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m_bottom_left = pts[0];
m_top_right = pts[1];

}
int distance(const FPoint& p)
{ 
return p.x > m_bottom_left.x && p.y > m_bottom_left.y

&& p.x < m_top_right.x && p.y < m_top_right.y;
}
int npoints() 
{ return 2; }

void read(std::istream& is)
{
is >> m_bottom_left.x >> m_bottom_left.y

>> m_top_right.x, m_top_right.y;
}

void write(std::ostream& os)
{
os << m_bottom_left.x << ‘ ‘ << m_bottom_left.y

<< m_top_right.x   << ‘ ‘ << m_top_right.y << std::endl;
}

};

In this example, the object’s bounding rectangle is represented by two
points, and the object knows how to read and write bounding rectangles.
The distance() method is fairly crude; it is set to 1 if the object is inside
and 0 if the object is outside the rectangle. The create() method simply
creates the bounding rectangle from two points and throws an exception if
given any other number of points. But ShapeRect does not override draw().

Since ShapeRect still does not specify how the object displays itself, it does
not completely fulfill the contract. It is still an abstract class. The actual
classes derived from ShapeRect, Rectangle, and Ellipse, (as shown in the
following code) share everything in common except how to draw them-
selves. This is an excellent example of how using a common base class can
simplify classes.

Note that these actual shapes have static New() member functions, which
are used for dynamic creation of these objects. That is, Rectangle::New()
creates a pointer to a Rectangle object. This may seem unnecessary because
new Rectangle() does the job more simply, but you will see how useful this
is when used with the type() method. Also, these classes have explicit
default constructors that apparently do nothing. This is an UnderC limita-
tion; within methods you can refer only to other members if they have been
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previously defined. new Rectangle() implicitly calls Rectangle() so I have
to make sure that the default is defined first.
class Rectangle: public ShapeRect {
public:
Rectangle() {}
static Shape *New() { return new Rectangle(); }
int type()          { return 1; }

void draw(TG& tg)
{ tg.rectangle(m_bottom_left.x,m_bottom_left.y,

m_top_right.x, m_top_right.y); 
}

};

class Ellipse: public ShapeRect {
public:
Ellipse() {}
static Shape *New() { return new Ellipse(); }
int type()          { return 2; }

void draw(TG& tg)
{ tg.ellipse(m_bottom_left.x,m_bottom_left.y,

m_top_right.x, m_top_right.y); 
}

};

There is another kind of Shape object you can implement that does not fit
into the rectangle mold. A polyline consists of an arbitrary number of
points—rather than just two—joined by lines. Because the representation
of polylines is so different from the representation of regular lines, you
must define special read() and write() methods for them, as in the follow-
ing example:
typedef std::list<Fpoint> PointList;
..
class PolyLine: public Shape {

PointList m_points;
public:
PolyLine() {}
static Shape *New() { return new PolyLine(); }
int type()          { return 3; }

void create(FPoint pts[], int sz)
{
if (sz < 2) throw Error(“at least one point”);
for(int i = 0; i < sz; i++)
m_points.push_back(pts[i]);
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}
int npoints() { return MANY; }  // indefinite no. of points!

void draw(TG& tg)
{

PointList::iterator pli;
tg.penup();
for(pli = m_points.begin(); pli != m_points.end(); ++pli)

tg.plot(pli->x,pli->y); 
}

int distance(const FPoint& p) 
{ return MANY; }  // for now

void read(std::istream& is)
{
int n;
FPoint p;
is >> n;
for(int i = 0; i < n; i++) { 

is >> p.x >> p.y;
m_points.push_back(p);

}
}

void write(std::ostream& os)
{
PointList::iterator pli;
os << m_points.size() << std::endl;
for(pli = m_points.begin(); pli != m_points.end(); ++pli)

os << pli->x << ‘ ‘ << pli->y << std::endl;
}

};

This class has a completely different representation than the other Shape
classes, but it fulfills the same contract. 

A collection of Shape objects needs a responsible adult to look after them
and make sure they are fed and clothed. The window class ShapeWindow
could do this in simple cases; you could keep and maintain a simple list of
Shape pointers. However, it is better if the ShapeWindow concentrates on
doing window-like things, such as managing the user interface, and dele-
gates the management of Shape objects to ShapeContainer.

The ShapeContainer class need not derive from any class, and it would
mostly contain the actual list of shapes. However, the example shows
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ShapeContainer derived from Shape for a number of reasons. It can draw
itself (by drawing all the shapes); it can read and write itself (by asking all
the shapes to read and write themselves); and distance() can be inter-
preted as the minimum distance to a Shape object. Plus, it is very common
for complex drawings to be built of composite shapes; a child’s drawing of a
house is a triangle on top of a rectangle, plus a few rectangles for doors and
windows. So real drawings could be composed of a number of
ShapeContainer shapes. This case study won’t add this functionality, but it
would not be difficult to implement.

The following is the class definition for ShapeContainer; apart from the
usual Shape methods, you can add shapes to the container and register new
kinds of shapes by using add_shape():
// shape-container.h
#include “shapes.h”
typedef std::list<Shape *> ShapeList;
typedef Shape * (*SHAPE_GENERATOR)();

class ShapeContainer: public Shape {
private:
ShapeList m_list;
ShapeList::iterator p, m_begin, m_end;
SHAPE_GENERATOR m_shape_generator[40];

public:

void add_shape(int id, SHAPE_GENERATOR shg);
void add(Shape *obj);

// Shape Interface!
void draw(TG& tg);
void read(std::istream& is);
void write(std::istream& os);
int distance(const FPoint& p);

// no useful purpose so far, but required of a Shape.
void create(FPoint pts[], int n) { }
int npoints() { return MANY; }
int type() { return 0; }
};

Adding and drawing shapes is straightforward; in this example, the itera-
tion over all Shape objects is simplified by keeping the start and finish iter-
ators for the list of shapes. Provided that everyone uses the add() method
and doesn’t manipulate m_list directly, this works fine. Both draw() and
write() call their corresponding method for all objects; in addition, write()

230 Chapter 8: Inheritance and Virtual Methods



writes out the type value for each object. Here are the definitions of
ShapeContainer’s methods:
void ShapeContainer::add(Shape *obj)
{

m_list.push_back(obj);
m_begin = m_list.begin();
m_end = m_list.end();

}

void ShapeContainer::draw(TG& tg)
{

for (p = m_begin; p != m_end; ++p)
(*p)->draw(tg);

}
void ShapeContainer::write(std::istream& os)
{

os << m_list.size() << endl;
for (p = m_begin; p != m_end; ++p) {

os << (*p)->type() << ‘ ‘;
(*p)->write(os);

}
}

Before we can talk about the read() method, we should talk about why you
need to write out the type value and why you then need those static New()
functions. (Remember that a static member function is just a plain function
that is defined inside a class scope, just like inside a namespace.) Here is
code that shows a file consisting of a Rectangle and an Ellipse being read:
;> ifstream in(“first.shp”);
;> int i;
;> Shape *p;
;> in >> i;    // should be 1, which is type of Rectangle
;> p = new Rectangle();   // or you can say Rectangle::New()
;> p->read(in);
;> in >> i;   // will be 2, which is type of Ellipse
;> p = new Ellipse();
;> p->read(in);

This technique works beautifully, because the appropriate code for reading
in the object will be called; read() is a virtual method. But you do need to
construct the particular object first.  How is this done?

The read() method of ShapeContainer first reads the type ID (as shown in
the following code), and then it looks up the function needed to create the
actual Shape object. ShapeContainer keeps a simple array of function pointers;
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these functions take no argument, and they return a pointer to a Shape
object. These functions are sometimes called object factories.
typedef Shape * (*SHAPE_GENERATOR)();

void ShapeContainer::add_shape(int id, SHAPE_GENERATOR shg)
{
m_shape_generator[id] = shg;
}
…
void setup_shapes(ShapeContainer& sc)
{
sc.add_shape(1,Rectangle::New);
sc.add_shape(2,Ellipse::New);
sc.add_shape(3,PolyLine::New);

}

…
void ShapeContainer::read(std::istream& is)
{

int n,id;
Shape *obj;
is >> n;
for(int i = 0; i < n; i++) {
is >> id;
obj = (m_shape_generator[id]) (); // call object factory
obj->read(is);
add(obj);

}
}

The problem here is that you need to create the specific Shape object. After
you do that, you can call the specific read() method to fully construct the
object. If you call the correct object generator function using the unique ID,
then read() will call the specific read() method.

The setup_shapes() function adds the various shape generators to the
ShapeContainer object. Notice that setup_shapes() is not a member of
ShapeContainer because ShapeContainer need not (and should not) know
what all the possible shape objects are; otherwise, you could have just have
used a switch statement within read().

The last ShapeContainer method computes the minimum distance of all 
the objects. Although we haven’t yet dealt with selection, the last
ShapeContainer method shows how the currently selected object can be
found.  Given a point, the distance to each graphics shape is calculated, and
the closest shape is selected:
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int ShapeContainer::distance(const FPoint& pp)
{

iterator p_selected = m_end;
int d, minv = MANY;
for (p = m_begin; p != m_end; ++p) {
d = (*p)->distance(pp);
if (minv < d) {
minv = d;
p_selected = p;

}
}
if (p_selected != m_end) {
//...do something with the selected object!

}
return minv;

}

The window class ShapeWindow manages the user interface. Up to this point,
you have not specifically needed the YAWL framework; you could hook tur-
tle graphics into any framework of choice. The following example uses
TGFrameWindow as a base class because it provides a standalone application
frame window that supports turtle graphics:
const int NP = 60;

class ShapeWindow: public TGFrameWindow {
private:

ShapeContainer m_shapes;
Shape *m_obj;
int m_count;

public:
ShapeWindow()
{ m_count = 0; m_obj = NULL; }

void add_point(FPoint& pt, bool last_point)
{
static FPoint points[NP];
if (m_obj == NULL) { 

message(“Select an object type”);
return;

}
points[m_count++] = pt;

if (m_count == m_obj->npoints() || last_point) {
try {

m_obj->create(points,m_count);
} catch(Error& e) {
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message(e.what().c_str());
return;

}
m_shapes.add(m_obj);
invalidate(NULL);
m_obj = NULL;
m_count = 0;
}

}

void do_read()
{
TOpenFile dlg(this ,”Open Shape File”);
if (dlg.go()) {

ifstream in(dlg.file_name());
m_shapes.read(in);

}
}

void do_write()
{
TSaveFile dlg(this ,”Save Shape File”);
if (dlg.go()) {

ofstream out(dlg.file_name());
m_shapes.write(out);

}  
}

void keydown(int vkey)                // override
{
switch(vkey) { 
case ‘R’: m_obj = new Rectangle(); break;
case ‘E’: m_obj = new Ellipse();  break;
case ‘P’: m_obj = new PolyLine(); break;
case ‘O’: do_read();              break;
case ‘W’: do_write();             break;
default: message(“not recognized”);
}

}

void tg_mouse_down(FPoint& pt)        // override
{  add_point(pt,false); }

void tg_right_mouse_down(FPoint& pt)  // override
{ add_point(pt,true);  }
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void tg_paint(TG& tg)                 // override 
{  m_shapes.draw(tg);  }

};

The ShapeWindow class inherits all the behavior of an application frame win-
dow, but it overrides the painting, keyboard, and mouse methods. The user
interface is very crude: For example, the user presses the R key for a new
rectangle. A Shape object of the correct type is constructed and saved in the
variable m_obj, although it isn’t yet fully created.

You create the object by entering the points with the mouse; when the
required number of points have been entered, you can call the create()
method for the object, add the object to the shapes list, and refresh the win-
dow by calling invalidate(). In the case of polylines, an indefinite number
of points can be entered, and you can right-click to add the last point. Both
left and right mouse events are passed to add_point(), which keeps count
of the number of points that have been entered and saves them into a sta-
tic array of points. Because it’s static, this array will keep its values after
each call to add_point().

Finally, reading and writing is a simple matter of calling the appropriate
file dialogs.

All the user interface information in this example is in ShapeWindow, and all
the shape management is in ShapeContainer. These roles are kept distinct
because as you add features to the program, you want to keep things as
simple as possible. ShapeContainer was not necessary, but it made the pro-
gram structure easier to understand.

Object-oriented designs are easy to extend. For example, consider what is
involved in adding a new Shape object. It is possible to create a circle by
choosing the bounding points carefully, but really you need another way of
doing this. You should instead construct a circle by specifying the center
and a point on the radius, which for simplicity we’ll assume is along a hori-
zontal line. The Circle shape object is obviously just an Ellipse shape
object, but it has a different create() method, which rearranges the points
and passes them to Ellipse::create(); this is a case where the fully quali-
fied name is necessary. Otherwise this create() will call itself indefinitely!
class Circle: public Ellipse {
public:
Circle() {}
static Shape *New() { return new Circle(); }
int type()          { return 4; }

void create(FPoint pts[], int sz)
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{
FPoint p1 = pts[0], p2 = pts[1];
double radius = p1.x - p2.x;
pts[0].x = p1.x - radius;
pts[0].y = p1.y - radius;
pts[1].x = p1.x + radius;
pts[1].y = p1.y + radius;
Ellipse::create(pts,2);

}
};

Notice how simple it was to create a new shape class by using inheritance!
There are now only two modifications:
Sc.add_shape(4,Circle::New);  // in setup_shapes()
...
// in ShapeWindow::keydown.
case ‘C’: m_obj = new Circle(); break; 

This is all quite straightforward; the ShapeWindow class must be modified,
but ShapeContainer needn’t be. The object-oriented version is perhaps more
work up front, but the payoff is that the resulting program is easy to
extend. Figure 8.6 shows the class hieararchy for this case study.
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Some suggestions for further work: 

• Introduce color into these shapes, for both the foreground and the
background.

• Explain how selection of objects could work.

• Explain what would be needed to have true composite shapes. That is,
how can ShapeContainer itself be treated as a full-grown Shape?

What’s Next?
At this point, you have started to see object-oriented programming in
action. It may seem like a lot of difficult typing at the moment, and I’m
sure you can think of other kinds of solutions. Remember that it is impor-
tant for programs to grow and be extended, and object-oriented program-
ming builds a foundation for that growth. It encourages code reuse on a
higher level than does structured programming. It decomposes programs
into self-sufficient modules that can easily be given to different program-
mers to finish.

In Chapter 9, “Copying, Initialization, and Assignment,” we’ll discuss
objects in more detail. We will discuss how C++ objects are copied, how to
customize type conversions, and generally how to invent fully defined types
for which you have full control over every aspect of the object’s life.
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Copying, Initialization, and Assignment
C++ code can be short, precise, and clear. For example, to append a string
to another string, you can use s1 += s2, whereas a C programmer would
have to use strcat(p1,p2), which is not only less obvious but can be a prob-
lem if the buffer p1 is too small to hold all the characters. Similarly, the
simple C++ assignment s1 = s2 takes care of any copying and reallocation
that is necessary. Not everyone who drives cars needs to learn about carbu-
retors, but you are a better car owner if you know that your car contains
fuel, water, and oil systems rather than straw and oats. This chapter gives
a quick tour under the hood of the C++ object model: what its hidden costs
are, and what its weak points are.

In this chapter you will learn

• The difference between initialization and assignment

• What memberwise copying is and why it isn’t always appropriate

• How to customize initialization behavior

• About value semantics, as opposed to pointer semantics



Copying
Programmers make certain assumptions about ordinary number variables
in programming. One of these is that x = y means that the value of y is
copied to x. Thereafter, x and y are completely independent of one another,
and changing y does not change x. References and pointers do not follow
this rule; it is easier to share a reference to an object than to make a copy
of that object, but you then can’t guarantee that the data will not be
changed by someone else. The behavior of ordinary variables is called value
semantics, where semantics refers to the meaning of a statement, as
opposed to its syntax, which is how you write it.

There are fewer surprises with value semantics than with pointer seman-
tics, but it involves copying and keeping redundant information. For exam-
ple, you might have a vector<int> v1 with 1,000,000 elements; the simple
assignment v2 = v1 would involve a lot of copying and use up an extra
4MB of memory. Therefore, understanding how C++ manages copying is
crucial to writing good, fast, and reliable code.

Initialization versus Assignment
Two distinct kinds of copying happen in C++, and they are often confused
with one another because they both usually use =. An object can be initial-
ized when it is declared, and thereafter it can be assigned a new value. But
initialization and assignment are not necessarily the same. This is most
obvious in the case of references, such as the following:
;> int i = 1, j = 2;
;> int& ri = i;  // initialization
;> ri = j;       // assignment

The initialization ri = i means “make ri refer to i,” and the assignment 
ri = j means “copy j into whatever ri is referring to,” which means the
assignment is actually modifying the number stored in i. References are an
exceptional case, and for ordinary types, there is no effective difference
between initialization and assignment—the results of int i; i = 1; and
int i = 1 are the same. But even though the results must be consistent,
class initialization and assignment are different operations. Here is a silly
example that uses the old C output routine puts() to show when the con-
structors and operator= are called:
struct A {
A()                      { puts(“A() default”); }
A(const A& a)            { puts(“A() init”);    }
A& operator=(const A& a) { puts(“A() assign”); return *this; }

};
;> A a1;
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A() default
;> A a2 = a1;
A() init
;> a2 = a1;
A() assign

The declaration A a2 = a1 must involve a constructor, and it matches the
second declaration of A() with a const reference argument; the assignment
a2 = a1 matches operator=. Basically, initialization involves construction
and copying, whereas assignment involves just copying. If you leave out the
second constructor A(const A& a), C++ will generate one; it will not use
the assignment operator. If operator= is not present, the compiler will do
sensible default copying (more about this in the next section.)

Initialization does not need a =. C++ is equally happy with object-style ini-
tializations, in which the argument is in parentheses. Ordinary types can
be initialized with values in parentheses as well, and in fact this is the syn-
tax for constructor initialization lists. So you can rewrite the preceding
example as follows:
;> A a2(a1);
A() init
;> a2 = a1;
A() assign
;> int k(0);
;> k = 0;

The second constructor of A, which takes a const reference argument, is
called a copy constructor, and it is used in all initializations. Initialization
happens in other places as well. Passing an object to a function by value, as
in the following example, is a common case:
;> void f(A a) {  }
;> f(a1);
A() init

Effectively, the formal argument a of f() is a local variable, which must be
initialized. The call f(a1) causes the declaration A a = a1 to happen, so f()
receives its own local copy of a1. You can also return objects from functions,
as in the following example:
;> A g() { return a1; }
;> a2 = g();
A() init
A() assign

You should try to avoid passing and returning objects for large structures
because of the copying overhead. Passing a const reference or returning a
value via a reference does not cause copying to occur.
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Memberwise Copying
What is the default, sensible, way that C++ copies objects? If you consider
the following Person structure, what must happen to properly copy such
objects?
struct Person {

string m_name;
string m_address;
long   m_id;

Person() 
: m_name(“Joe”),m_address(“No Fixed Abode”),m_id(0)
{}

};
;> Person p;
;> p.m_name = “Jack”;
(string&) ‘Jack’
;> Person q;
;> p = p;
;> q.m_name;
(string&) ‘Jack’

People imagine at first that objects are copied byte-by-byte; C copies struc-
tures this way and provides the library function memcpy() for copying raw
memory. However, you should avoid using memcpy() on C++ objects; instead,
you should let the compiler do the work for you because the compiler knows
the exact layout of the objects in memory. For instance, C++ strings contain
pointers to dynamically allocate memory, and you should not copy these
pointers directly. (You’ll learn why this is the case in the next section.) C++
automatically generates the following assignment operator for Person:
Person& Person::operator= (const Person& p)
{
m_name = p.m_name;
m_address = p.m_address;
m_id = p.m_id;
return *this;

}

This type of copying is called memberwise copying: All the member fields of
the source are copied to the corresponding fields of the target. Memberwise
copying is not the same as merely copying the bytes because some members
have their own = operators, which must be used. Of course, if a simple
structure contained no objects, such as strings or containers, memory
would in effect simply be moved, and you can trust C++ to handle this case
very efficiently. In the same way as operator=, C++ generates the following
copy constructor, unless you supply your own:
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Person::Person(const Person& p)
: m_name(p.m_name), m_address(p.m_address),m_id(p.m_id)
{ }

Copy Constructors and Assignment Operators
Why would you need control over copying? C++ memberwise copying gener-
ates default copy constructors and assignment operators that work well for
most cases. But in some cases memberwise copying leads to problems.

The following is a simple Array class, which is an improvement over the one
discussed in Chapter 7, “Classes,” since its size can be specified when the
array is created:
class Array {
int *m_ptr;
int m_size;
public:
Array(int sz) 
{ 
m_size = sz;
m_ptr = new int[sz];

}
~Array()
{
delete[] m_ptr;

}
int& operator[] (int j)
{ 
return m_ptr[j];

}
};

This is the simplest possible dynamic array; space for sz integers is dynam-
ically allocated by new int[sz]. This array form of new makes room for a
number of objects of the given type, which are properly constructed if they
are not simple types. (To ensure that all these objects are destroyed prop-
erly, you need to use delete[]. This will not make any difference for int
objects, but it’s a good practice to always use it with the array new.) The
m_ptr pointer can then be safely indexed from 0 to sz-1; you can easily put
a range check in operator[]. To prevent memory leaks, you should give the
memory back when the array is destroyed; hence, you use delete[] m_ptr
in the destructor. Here is the Array class in action:
;> Array ar(10);
;> for(int i = 0; i < 10; i++) ar[i] = i;
;> Array br(1);
;> br = ar;
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(Array&) Array {}
;> br[2];
(int&) 2
;> ar[2];
(int&) 2
;> br[2] = 3;
(int&) 3
;> ar[2];
(int&) 3

Everything goes fine until you realize that you are not getting a true copy
of br by using br = ar; the second array is effectively just an alias for the
first. This is a consequence of memberwise copying; m_size and m_ptr are
copied directly, so br shares ar’s block of allocated memory. This is not how
value semantics works, and it can be confusing and cause errors because
you are working with the same data, using two different names. In pre-
cisely the same way, initialization will be incorrect. That is, Array b = a
will cause b to share the same alloated block of memory as a. Figure 9.1
shows the situation; ar.m_ptr and ar.m_ptr are the same!
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Figure 9.1: br and ar refer to the same memory block.

You will probably find out sooner rather than later; the following simple
test function crashes badly when the arrays go out of scope and are
destroyed:
void test()
{
Array a(10),b(10);
b = a;

}

After the assignment, both the a and b have a pointer to the same block of
memory. The pointer is given back to the system when b is destroyed
(which calls delete m_ptr.) After a pointer is deallocated, you should have
nothing to do with it, and you should especially not try to dispose of it
again, which is what happens when a is destroyed. 



So in these cases it is necessary to explicitly define copy constructors and
assignment operators. They essentially do the same thing: They both call
copy(), which allocates the pointer and copies the values from another
Array; it can be defined like this:
void Array::copy(const Array& ar)
{
m_size = ar.m_size;
m_ptr = new int[m_size];

int *ptr = ar.m_ptr;
for(int j = 0; j < m_size; j++) m_ptr[j] = ptr[j];

}
Array::Array(const Array& ar)
{
copy(ar);

}
Array& Array::operator= (const Array& ar)
{
delete m_ptr;
copy(ar);
return *this;

}

Factoring out the copy code into Copy() means that you can make sure that
initialization and assignment are in step with one another. C++ has no way
of knowing whether you have defined the initialization and assignment
operations consistently. You should always define both operations or neither
of them.

Some experts say you should always supply the initialization and assign-
ment operations explicitly like this, so that it is clear how the class handles
copying. Stanley Lippman (in a Dr Dobbs Journal article) pointed out that
for simple classes that have to be very efficient, it’s best to let the compiler
handle copying the code. In such cases, you should be sure to include a com-
ment which states that you have left out the initialization and assignment
operations.

Copying with Inheritance
You can understand inheritance best if you consider the base class to be a
member object. That is, if you inherit A from B, then B contains an A object,
as in the case of Person containing Employee in Chapter 8, “Inheritance and
Virtual Methods.” B usually inherits all of A’s members, except for construc-
tors, destructors, and the assignment operator. This is as it should be; B is
usually a different beast from A, with extra data, and using the old assign-
ment leaves the extra fields of B uninitialized. But if you don’t supply copy
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constructors or assignment operators, then the compiler does memberwise
copying on B’s fields, and it uses the inherited methods to initialize the base
class.
struct obj {
obj()             { puts(“obj() default”); }
obj(const obj& o) { puts(“obj() init”);    }

};
struct A {
obj mem_a;
A()               { puts(“A() default”); }
A(const A& a)     { puts(“A() init”);    }

};
struct B: A {
obj mem_b;
B()               { puts(“B() default”); }

};
;> B b1;   
A() default
B() default
;> B b2 = b1;
obj() default
A() init
obj() init

As expected, the default constructor for B first calls the default constructor
for A. Remember the basic rule in operation here: C++ guarantees that
everything in an object will be properly initialized, including the base class.
There is no explicit copy constructor for B, so the compiler generates a copy
constructor that does memberwise initialization. You can think of the base
class A as the first member; it is initialized first, which causes A’s copy con-
structor to be called. The member object mem_b is properly initialized, but
only the default constructor is called for mem_a.

If you supply a copy constructor, you should not assume that the inherited
copy operation will take place. In the following example, B has a copy con-
structor, but only A’s default constructor is called:
struct B: A {
obj mem_b;
B(const B& b)  { puts(“B() init”); }

};
;> B b1;
;> B b2 = b1;
A() default
B() init
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The default base constructor is called when a class is constructed and there
is no explicit call in the class initialization list. You might be tempted to do
the base initialization explicitly, but it is a better idea to rely on the official
copy constructor, which is called on if you ask nicely, as in the following
example:
struct B: A {

obj mem_b;
B(const B& b)
: A(b)
{ puts(“B() init”); }

};
;> B b2 = b1
A() init
B() init

Similarly, if you supply operator=, you should be prepared to call the inher-
ited operator explicitly, as in the following example:
struct A {
A& operator=(const A& a) {
puts(“A() =”);
return *this;

};
};

struct B: A {
B& operator=(const B& a)
{
A::operator=(a);   // call A’s copy assignment operator directly!
puts(“B() op=”);
return *this;

} 
};
;> B b1,b2;
;> b1 = b2;
A() =
B() =

In this example, A::operator=(a) is merely calling the operator = directly as
a function. You can do this with all operators; for instance, operator+(s1,s2)
is the same as s1+s2. You have to call the operator like a function to specify
that the inherited operator is needed. You cannot use *this = a, even
though it compiles, because it finds B::operator=, and the program will
crash quickly due to uncontrolled recursion. Alternatively, if you have
defined A::operator= by using some copy() method (as recommended ear-
lier in the chapter), you can call that directly. 
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The Life of Objects
Everybody gets a little confused at first, when learning about C++ copy
semantics, so don’t worry if your head hurts a bit. An educator noted at a
recent American Academy of Sciences meeting that the average soap opera
is much more complicated than most mathematics. The C++ object model is
certainly more straightforward than The Bold and the Beautiful (but then I
probably don’t watch enough TV). There are basically two ways to deal with
objects:

• Dynamically creating and destroying objects

• Automatically creating and destroying objects

Dynamic Creation of Objects
You can create objects dynamically and use references or pointers to refer to
them. In this case, assignment results in another alias to the object, and if
you want a genuine copy, you have to ask for it explicitly. Generally, this is
how Delphi and Java prefer to do things, and of course you can do this as
well in C++. The following shows a String class (which is different from the
standard one), with the various operations expressed as methods:
;> String *ps1 = new String(“hello”);
;> String *ps2 = new String(“polly”);
;> String *ps3 = ps2;
;> *ps2 = “dolly”;      // changes *ps2 as well!
;> ps3 = ps2->clone();  // now ps3 is independent
;> cout << ps1->append(ps2) << endl;
hellodolly

Initially ps2 and ps3 point to the same object, and only after you explicitly
call String::clone() are they independent. This style seems awkward if
you are used to normal C++ strings. In fact, both Delphi and Java regard
strings as exceptional objects and overload the + operator to mean ‘concate-
nate string.’ The advantage of this style is that everything is out in the
open: Construction and copying are explicit, and (except in Java) destruc-
tion is also explicit. So you have full control of the life of the objects. It is
also efficient because you are passing references around and not copying
excessively.

The difficulty is twofold: First, the lack of “semantic sugar” (that is, opera-
tor overloading) can make code look awkward, and second, there are always
problems with object lifetime. If you delete an object prematurely, pointers
scattered throughout the system might still refer to it. Any attempt to
access these dead objects leads to trouble, usually access violations (it’s also
common to try to delete objects twice). Even worse, the system might have
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reallocated that space to another object of the same type, in which case you
are really in trouble because the program is then subtly wrong. On the
other hand, if you don’t delete objects, the free memory is eventually
exhausted.

Java’s solution to this problem is similar to how modern society consumes
things: It assumes that resources are infinite and hopes that recycling will
save the day. Occasionally, the system runs the garbage collector, which
identifies objects that are no longer in use. (Garbage collection, by the way,
is not restricted to Java. Some large C++ programs rely on it as well—it is
a technique for memory management and does not require direct language
support.) The argument for using garbage collection is that people cannot
be relied on to dispose of their own discarded data. It is indeed easy to mis-
manage the life of dynamic objects, and it is a major cause of unreliability
in C++ programs. Several techniques can help, however, and we’ll talk
about them later in this chapter, in the case study “A Resizable Array.”

Interestingly, C++ allows you to change the meanings of new and delete.
They are operators, after all, and most C++ operators can be overridden. Of
course, you need to do something sensible with them: They must manage
memory allocation. You can pass the request to the usual operators by call-
ing them directly. In the following example, you want to keep tabs on the
number of Blob objects that have been created:
class Blob {
int m_arr[100];

public:
int *ptr()  { return m_arr; }

void *operator new (size_t sz) {
kount++;
return ::operator new(sz); 

}
void operator delete (void *ptr, size_t sz) {

kount—;
::operator delete(ptr,sz);

}
};

Any dynamic allocation of Blob uses Blob::operator new, and any disposal
of a Blob object with delete uses Blob::operator delete. So, you can have
complete control over dynamic allocation; in this case, the overloaded oper-
ators call the system versions using the global scope operator (::). Dynamic
allocation can be an expensive operation, and custom solutions can speed
things up dramatically. Another use of this would be to use this technique
to switch off the disposal of memory completely for a particular class.
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As with any advanced C++ technique, remember that you should only do
this if you have a very good reason—and proving that you can overload
operator new is not good enough. In years of working with C++, I’ve only
had to really do this twice.

Automatic Destruction of Objects
The second approach to dealing with objects involves declaring objects
directly and letting C++ automatically dispose of them at the end of their
lives. C++ guarantees that local automatic (that is, non-static) variables
are automatically destroyed, no matter how you left the function. This
makes C++ exception handling well behaved. Ordinary global variables are
destroyed when the program closes. They are also created before main() is
called, so you could use the following code to run initialization code for a
module:
struct _InitMOD1 {

_InitMOD1() {
puts(“MOD1 initialized”);

}
~_InitMOD1() {

puts(“MOD1 finalized”);
}

};
InitMOD1 _InitVar;

This might look a bit ugly, but the preprocessor can make it quite elegant.

A class member variable is destroyed when its object is destroyed. The com-
piler always generates a suitable destructor for any objects that themselves
contain objects. Of course, this does not apply to pointers in objects, which
need to be explicitly destroyed in destructors.

Temporary Objects
It is possible for local objects to be nameless. These nameless objects only
exist for the duration of a statement. For example, the following code shows
a shortcut for writing out to a file, together with an equivalent long-hand
version:
;> ofstream(“out.txt”) << “count is “ << n;
;> { ofstream tmp(“out.txt”); tmp << “count is “ << n; }

The first line of this example opens a file, writes a string and an integer to
the file, and closes the file. The second line of this example is equivalent
code that shows what actually happens when you run the first line: A tem-
porary object is created, used, and destroyed. A temporary local context
around the statement forces the temporary object to go out of scope.
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Temporary objects are created all the time, and usually you don’t need to
know about them, but they are an essential part of the C++ object model.
For example, consider these string operations:
;> string s3 = s.substr(0,3);
;> string s3s = s3 + s;

The method string::substr() constructs and returns a temporary string
object, which is used to initialize s3. The temporary object is then
destroyed. Likewise, s3+s returns a temporary object. The generation of
unnecessary temporary objects can slow down operations considerably. In
the following code, the first expression s += s3 is much faster than s = s +
s3, (especially if the strings are particularly big) because no temporaries
are created. I have written out the last expression in full, to show that it
involves the creation of a temporary, the concatenation, and two copies.
;> s += s3;
(string) ‘hellohel’
;> s = s + s3;
(string) ‘hellohelhel’ 
;> { string tmp = s; s += s3; s = tmp; }  // what actually happened in ‘s = s + s3’

Beware of keeping references to temporary objects. Here are a few problem
areas:
;> const char *p = (s1+s2).c_str();
;> cout << p << endl;   // can be utter garbage!
;> string& f() { return s.substr(0,3); }

The pointer returned from c_str() should never be kept because it’s gener-
ally valid only as long as the string lasts; in this case, (s1+s2) is a temporary
object. This is an example of the trouble that comes with mixing high-level
objects with low-level code. The function f() shows why you should be careful
about returning references. Any references to a local variable—or a tempo-
rary variable, in this case—will be a source of trouble if that variable is out
of scope.

You can use a constructor of a class as you use a function. Remember that
you originally defined make_point() to create Point objects. It is possible to
use Point(x,y) in expressions in a similar way to make_point(x,y):
;> Point p = Point(x,y);  // legal, but silly
;> int get_x(Point p)
;>  { return p.x; }
;> get_x(Point(100,200));
(int) 100

Using constructors in this way creates temporary objects as well, so you
don’t have to declare a Point variable explicitly and pass it as an argument.
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By now you have probably seen a lot of functions that take std::string
arguments, and you have often called them with string literals (for exam-
ple, str2int(“23”)). However, you do not have to explicitly call the string
constructor (that is, you do not have to use str2int(string(“23”))) because
C++ automatically uses the constructor for converting char * into
std::string. This is not a special case; you can control the type conversion
of any of your classes, which is the subject of the next section.

Type Conversion
Type conversion is an important part of the behavior of any type.  The
usual conversion rules related to numbers and pointers are called the stan-
dard conversions. For instance, any number will be converted to a double
floating-point number, if required; any pointer will convert to void *, and 
so on.

C++ gives the designer of a class full control over how that type behaves in
every situation, and so you can specify how other types can be converted
into the type. This is set up for you if you have defined constructors taking
one argument. For instance, the constructor string(char *) will be used by
the compiler to convert char * into string. This saves a lot of typing
because you can then pass string literals (that is, text in quotes) to func-
tions expecting a string argument. If there was a constructor string(int)
as well, then you could also pass integers to such functions. (This would
probably not be a good idea; the more “silent” conversions that are possible,
the more likely you are going to be unpleasantly surprised.)

But remember the cost: Every silent conversion using a constructor causes a
temporary object to be created. If you need serious speed, you can always
overload a function to achieve the same result—that is, define another func-
tion that takes a char * value directly. For instance, the following example
is one way to make str2int() faster; the first function supplies another way
to call the C library function atoi(), and the second function passes the
string’s character data to the first function:
inline int str2int(const char *s) 

{ return atoi(s); }
inline int str2int(const string& str)
{ return str2int(str.c_str()); } 

The inline function attribute explicitly asks the compiler to insert the
function’s code directly into the program wherever the function is called, so
there is no extra cost in giving atoi() a new name and identity as
str2int(). But you should test a program before going on a mad drive for
maximum efficiency, and ask yourself if shaving off 50 milliseconds is going
to affect the quality of your users’ life.
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const in the first function’s argument is very important. I was bitten by this recently, so
you should share my experience, if not my pain. If the character pointer is not const,
then str2int(str.c_str()) cannot match the first signature because str.c_str()
returns const char * and C++ will never violate “constness” by converting char * to
const char *. Instead, it matches the other signature by type conversion to const
string& s. The snake proceeds to eat its own tail, and the recursion will end only
when the program crashes.

The important thing to note with these two functions is that the compiler
does not try to force a conversion of character literals because there is
already a function that matches them perfectly well. User-defined conver-
sion is only attempted if there is no other way to get a function match.

Note that user-defined conversions also apply to operators, which after all
are just a fancy form of function call. If you were using a string class that
has only defined operator==(const string&, const string&), you would
still be able to compare string literals, as in name==”fred” or “dog”==animal,
because the string(char *) constructor is used to convert those literals.
But the compiler will need to generate temporary string objects, and you
might find that a fast string comparison becomes surprisingly slow. Again,
the solution is to overload operator==, at least for the first case. (The sec-
ond case isn’t as eccentric as it seems; some people write comparisons like
this so they won’t be bitten by name=”fred”.) Remember that assignments
are also operator calls, and C++ strives to convert the right-hand side into
the left-hand side by means of user conversions.

Sometimes you simply don’t want an automatic conversion. In the past,
people would prevent automatic conversion by using clever class design.
For example, there is no std::string constructor that takes a single integer
argument. The idea would be that you could generate a blank string of n
characters with string(n), but it would have strange consequences. The
call str2int(23) would translate as str2int(string(23)), which ends up
returning zero because atoi() is so tolerant of spaces and non-numeric
characters. str2int(23) is definitely a misunderstanding or a typo and
should cause an error. So the string constructor is designed so that you
must use string s(8,’ ‘) to get an empty string s with eight spaces.

Standard C++ introduces a new keyword, explicit, which tells the com-
piler not to use a constructor in such conversions. For example, the stan-
dard vector class has the following constructor:
explicit vector(size_type sz = 0);
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explicit before the declaration of this vector constructor allows you to
declare vectors such as vector<int> vi(20) without getting puzzling
attempts to convert integers into vectors.

So far you have seen how to control how C++ converts other types to your
class. The other kind of conversion operation involves converting your class
into other types. For example, say you have a Date class that has an
as_str() method for returning the date in some standard format. Then the
following user-defined conversion operator in the class definition causes
Date objects to freely convert themselves into strings:
operator string () { return as_str(); }

If C++ tries to match any function argument with Date objects and can’t
find any obvious match, it leaps at the chance to convert the date into a
string. It would probably not be a good idea for a Date object to want to
convert itself into an integer, both because that would not be unique (does
it refer to a Julian date, a star date, or the number of seconds since
Halloween?) and because integers are too common as function arguments.

You can get surprising control over an object’s behaviour by using user-
defined conversions. The following code uses YAWL, which was mentioned
in the last chapter in the section “Class Frameworks.” (See Appendix B, “A
Short Library Reference” for more on YAWL.) TWin is a type that describes a
window, and it has a static member function get_active_window() that
returns the the window which is currently active. When using the UnderC
interactive prompt, this is the console window itself. TWin has two methods
get_text() and set_text() for accessing a window’s caption (that is, text in
the title bar):
;> #include <yawl.h>
;> TWin *w = TWin::get_active_window();
;> w->get_text();
(char *) “UnderC for Windows”
;> w->set_text(“hello, world!”);

This is a classic pair of get and set methods. Borland’s C++ Builder has a
non-standard C++ extension called a property. Properties look like simple
variables, but they have different meanings depending on which side of an
assignment they appear. The preceding YAWL example would be written
like this in C++ Builder:
String s = w->Caption;         // same as get_text() above
w->Caption = “Hello, World!”;  // same as set_text() above

w->Caption looks like a straightforward member variable access but is 
actually an action. w->Caption = “Hello, World!” not only sets a value, but
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updates the window’s caption. User-defined conversions make this possible
using standard C++ as well. Consider the following class:
class TextProperty {
TWin *m_win;

public:
TextProperty(TWin *win) : m_win(win) {}

void operator=(const string& s)
{ m_win->set_text(s.c_str()); }

operator string () 
{ return m_win->get_text(); }

};
;> TextProperty text(TWin::get_active_window());
;> string t = text;      //TextProperty::operator string()
;> text = “hello dolly”; //TextProperty::operator=(const string&)

In the initialization string t = text, the only way to match a
TextProperty value to a string value is to convert the text object into a
string using the user-defined conversion. This will also happen with any
function expecting a string argument. The string conversion operator then
actually gets the window text.

If the object text appears on the left-hand side of an assignment, then its
meaning changes completely. It will then match operator=(const string&
s), which has the effect of setting the window text. This is precisely how
properties are meant to work; what looks like the simple use of a variable
causes either get or set code to be executed. In the first case study, you will
see how this technique can make an intelligent array possible.

Interestingly, it was once common for C++ string classes to automatically
convert to const char *; the Microsoft Foundation Class CString class
behaves like this. But it led to too many odd surprises, and so the standard
string has the c_str() method to do this explicitly. The problem is that C++
gives you the power to design your own language, and you should use this
power wisely or not at all. User-defined conversion operators are like the
color purple with amateur Web designers: They are best avoided until you
know what you’re doing.

Case Study: A Resizable Array
It can be a useful exercise to reinvent the wheel, especially if you don’t
insist on using the results. std::vector and std::valarray (see Appendix B,
“A Short Library Reference”) will do well for most applications and have
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been carefully designed. Also, by now, C++ programmers know them and
may be irritated if they have to learn new classes that you have created to
do the same thing as std::vector and std::valarray.

But the issues of copying and value semantics are best illustrated by some-
thing nontrivial. Furthermore, the resizable array discussed in this section
shows how you can have objects that obey value semantics that are not
expensive to use. 

As mentioned previously in this chapter, you should always pass complex
objects by reference because of the copying overhead involved. (Something
small and nimble, such as the Point class, can probably be moved as fast as
a reference.) But then in the examples in this book, we often pass a
std::string argument by value; isn’t that inconsistent? If you really need
string manipulation to be fast, you would be better off with passing const
string& arguments, but the cost of passing by value is often not as great as
you think.

You want to pretend as much as possible that string is part of the lan-
guage’s original furniture, like int or double, and for that value semantics
must not be too expensive. One solution is a sharing scheme, in which a
number of string objects actually share the same data. So passing by value
is just passing an alias, as in the case of the array class defined earlier in
this chapter, in the section “Copy Constructors and Assignment.”

But as soon as someone tries to write to this string, the string creates its
own unique copy of the data. Thereafter it can relax. This is called copy-on-
write and can save a lot of pointless copying. (It resembles modern manu-
facturing practice, where a computer manufacturer will assemble the item
when it’s ordered, to minimize inventory.)

How do the strings know that they’re sharing data? Because the data is ref-
erence counted. That is, the data has an associated count, starting at 1.
Anybody who wants to borrow the data must increment the reference
count. Anybody who no longer needs the data must ask the data nicely to
dispose of itself, in order to decrement the reference count. When the refer-
ence count becomes zero, the data knows it’s no longer needed and commits
hara-kiri. Here is a base class that implements this strategy:
// C++ By Example, Chapter 9
// ref_count.h
class RefCount {

int m_ref_count;
public:

void init_ref_count() { m_ref_count = 1; }
void incr_ref()       { ++m_ref_count; }
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void decr_ref()       { —m_ref_count; }
int  ref_count()      { return m_ref_count; }

RefCount()            { init_ref_count(); }
virtual ~RefCount()   { }

virtual void dispose()
{
—m_ref_count;
if (m_ref_count == 0) delete this;

}
};
;> RefCount *p = new RefCount(); 
;> p->incr_ref();    // i.e. now shared by two objects
;> p->dispose();     // only by one!
;> p->dispose();     // finally gets deleted

The basic idea of reference-counted objects like RefCount is that the refer-
ence count is the number of owners of that object. Any would-be owners
must cooperate in two ways: They must call incr_ref() when taking pos-
session of a reference, and they must call dispose() when they don’t need
that reference anymore. It is more accurate to say that such objects are
never owned, but only borrowed. 

Please note the virtual destructor for RefCount. Like any method, a class’s
destructor can be overridden, and in fact it is recommended practice in any
hierarchy involving polymorphic methods. You need to make the destructor
virtual here because the dispose() method must call the correct destructor
when it issues the suicidal command delete this.

The new Array class simply has a pointer to the actual representation
object. Copying such arrays just copies these pointers, and it also incre-
ments the representation’s reference count. So the first task is to work on
the representation, which in the preceding example is a vector-like class
that has the familiar std::vector interface.

A Resizable, Reference-Counted Vector
The implementation of the Vector class uses two pointers to int, called
m_begin and m_end, which correspond directly to the begin() and end()
methods (that is, m_end points just past the end of the allocated block
pointed to by m_begin). It is not necessary to keep the number of elements
as a member variable, but you can anyway for efficient access. The class
uses typedef to make T into an alias for int so that you can easily use the
same code for other types, simply by changing the typedef.

257Case Study: A Resizable Array



A simple pointer works fine as an iterator (after all, iterators are general-
ized pointers)—*p accesses the value, and ++p accesses the next value. This
example shows how iterators and pointers behave in very similar ways.
Because the size of the type int is 4 bytes, a pointer increment actually
adds 4 bytes to the address each time, as you can see from the value of
++pi:
;> int *pi = new int[10];
;> for(int i = 0; i < 10; i++) pi[i] = i;
;> pi;
(int*) pi = 8F1E80
;> *pi;
(int) 0
;> ++pi;
(int*) 8F1E84
;> *pi;
(int) 1
;> —pi;
(int*) 8F1E80
;> int *p_end = pi + 10;
;> for(int *p = pi; p != p_end; ++p)
;1} cout << *p << ‘ ‘;
0 1 2 3 4 5 6 7 8 9 

The first part of the interface to Vector looks like this. iterator is defined
as a typedef; this type will be accessed as Vector::iterator, precisely like
with the standard containers. A nested class RangeError is defined as a type
to be thrown when there’s an ‘index out of bounds’ error, which will simula-
rly be refered to as Vector::RangeError:
class Vector: public RefCount {
public:
typedef int   T;   
private:
T *m_begin;
T *m_end;
int m_size;
int m_cap;

public:
typedef T *       iterator;

struct RangeError { 
int idx;
RangeError(int i) { idx = i; }
int where() { return idx; }

};
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iterator begin()  { return m_begin; }
iterator end()    { return m_end;   }
int size()        { return m_size; }
int capacity()    { return m_cap;  }

T& operator[] (int i)
{ return m_begin[i]; }

T& at(int i)  {
if (i < 0 || i >= m_size) throw RangeError(i); 
return m_begin[i];
}

You know that the iterator is really just an int*, but you would like to keep
this implementation detail to yourself. (It does not have to be a pointer and
will certainly not be a plain pointer in the case of a linked list.) As with
vector, the at() method provides checked access, and operator[] provides
unchecked, fast access.

As well as the current size m_size, you also keep the actual capacity of the
array m_cap because, for efficient operation, an array must overallocate.
That is, the actual size of the allocated block is larger than the number of
elements. In the following allocation code, the basic operation is
_realloc(), with which _alloc_copy() and _grow() are defined:
void _copy(T *start, T *finish, T *out)
{ while (start != finish) *out++ = *start++; }

void _realloc(int new_cap, int new_sz, const Vector& v)
{

T *tmp = new T[new_cap];
if (m_begin) {
_copy(v.m_begin,v.m_end,tmp);
delete[]m_begin;

}
m_begin = tmp;
m_end = m_begin + new_sz;
m_size = new_sz;
m_cap  = new_cap;

}

void _alloc_copy(const Vector& v) 
{ realloc(v.m_cap,v.m_size,v); }

void _grow()
{ realloc(m_size+NGROW,m_size,*this); }
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By using _alloc_copy(), you can define the copy constructor and copy
assignment operators, as in the following code:
Vector(const Vector& v)
{
m_size = 0;
m_begin = NULL;
_alloc_copy(v);

}

Vector& operator= (const Vector& v)
{
_alloc_copy(v);
return *this;

}

The resizing operations then become simple:
void resize(int sz) 
{ _realloc(sz+NGROW,sz,*this);  }

void reserve(int sz) 
{ _realloc(sz,m_size,*this); }

The rest of the vector-like interface is as follows:
void clear()
{

delete m_begin;
m_size = 0;
m_cap = 0;

}

~Vector() { clear(); }

void push_back(T t)
{ 

if (m_size+1 > m_cap) _grow();
m_size++;
*m_end++ = t;

}

void pop_back()   { m_end—;  m_size—; }
T back()          { return *(m_end-1); }
T front()         { return *m_begin; }

};

Overallocation makes operations such as push_back() much more efficient:
If there isn’t enough capacity for an extra element, then more space is allo-
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cated using grow(). As you can see in the following example, the new
Vector class works almost exactly like vector<int>. Note that a Vector of
10 elements has room for 20 elements with this implementation:
;> Vector v(10);
;> for(int i = 0; i < 10; i++) v[i] = i+1;
;> v.front();  v.back();
(int) 1
(int) 10
;> v.push_back(11);
;> v.size();
(int) 11
;> v.capacity();
(int) 20
;> Vector::iterator vi;
;> for(vi = v.begin(); vi != v.end(); ++vi)
;1}  cout << *vi << ‘ ‘;
1 2 3 4 5 6 7 8 9 10 11 ;>

The Array Class
The implementation of the Array class is a pointer to a Vector object. So the
first part of Array is pretty boring—in it, most of Array’s methods are dele-
gated to the representation object:
class Array {
private:

Vector *m_rep;

public:
typedef unsigned int uint;
typedef Vector::iterator iterator;
typedef Vector::T T; 

iterator begin()      { return m_rep->begin(); }
iterator end()        { return m_rep->end();   }
void clear()          { m_rep->clear();        }
uint size()           { return m_rep->size();  }
uint capacity()       { return m_rep->capacity();  }
void resize (uint sz) { m_rep->resize(sz);     }
void reserve(uint sz) { m_rep->reserve(sz);    } 
int  ref_count()      { return m_rep->ref_count(); }

void pop_back()       { m_rep->pop_back();    }
T back()              { return m_rep->back(); } 
void push_back(T t)   { m_rep->push_back(t);  }
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This may look very similar to the situation in the last chapter, where
Employee had a Person member variable, and many of Employee’s methods
simply used the Person methods. There inheritance proved a better solution
and saved much typing. However, note that the representation object is not
fixed. The whole point of the scheme is that Array contains an indirect ref-
erence to Vector.

Here is a more interesting part of Array, where we share those references
with other Array objects:
// ‘copying’!
void attach(const Array& a)
{ 
m_rep = a.m_rep;
m_rep->incr_ref();

}

Array(const Array& a) 
{ attach(a);  }

Array& operator= (const Array& a)
{ attach(a);  return *this; } 

~Array()
{ m_rep->dispose(); }

Array(int sz = 0)
{  m_rep = new Vector(sz);  }

void unique() { 
if (m_rep->ref_count() > 1) {

m_rep->dispose();
m_rep = new Vector(*m_rep);

}
}

T get(uint i) const 
{ return m_rep->at(i); }

void put(int val, uint i)
{ unique(); m_rep->at(i) = val; }

Note that Array objects are never copied at first. After a1=a2, a1 and a2
share the same representation object, but the reference count of that object
is then 2. Consider this common situation:
;> int array_test(Array a, int idx) { return a.get(idx); }
;> Array arr(20);
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;> fill(arr.begin(),arr.end(),0);  // initialize all to zero..
;> array_test(arr,2);
(int) 0
;> Array a2 = arr;
;> a2.put(1,0);

As usual, passing an object by value causes the copy constructor to be
called. That initializes the local variable a in the method array_test(), and
a is then destroyed when it goes out of scope. But the initialization does not
involve copying, and in this case, the destruction does not involve dealloca-
tion. It just decrements the reference count of the shared vector object. This
is why you must call m_rep->dispose(), rather than delete m_rep; m_rep
will know when it needs to destroy itself.

Similarly, Array a2 = arr does not generate a copy, but the put() method
calls unique(), which sees that the representation is shared because the
reference count is greater than 1. If the representation object is shared,
unique() lets go of the shared object and creates a new one by using the
Vector copy constructor. Figure 9.2 shows the situation: Originally a and
arr point to the same Vector object, which therefore has a reference count
of 2. A new Vector object is created, and the reference count of the first
Vector object is decremented to 1. The two objects a and arr are now com-
pletely independent.
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Figure 9.2: Effect of arr.unique(); the objects a and arr no longer share the
same Vector.

Most people would be dissatisfied with an array class that did not overload
operator[]. Using get() to read values and put() to write values to the
object seems inconvenient. The problem is that C++ can’t really distinguish
between being on the left- and the right-hand side of an assignment. The
technique used to produce a text property in the section on user-defined
conversions is useful here. operator[] returns a “smart reference” (IRef),
which has a different meaning on the left-hand side. Here is the helper
class IRef and how it is used by operator[]:
struct IRef {
Array& m_arr;
uint   m_idx;



IRef(Array& arr, uint idx)
: m_arr(arr),m_idx(idx) { }

void operator= (int val) { m_arr.put(val,m_idx);  }
operator int   ()        { return m_arr.get(m_idx); }

};

IRef Array::operator[](uint i)
{ return IRef(*this,i); }

If an IRef object is found within an integer expression, the compiler will try
to convert it to an int. The user-defined conversion operator will then actu-
ally get the value by using the Array::get() method.

If the IRef is on the left-hand side of an integer assignment, the assignment
operator (operator=) is chosen, which causes the Array::put() method to be
called. This in turn guarantees that the representation becomes unique.

It seems as though a lot is happening for each simple array access—first
the indirect access and then the temporary IRef. However, most of the
methods involved are easy to inline, and so the runtime cost of the scheme
is not excessive.

There are still some things to be done in this example. For instance, sup-
port for the operators += and *= would need to be put into IRef if you
wanted to use something like a[i] += 2, and begin() does not properly
check whether the representation is shared. The latter would be useful
because it would only need to call unique() once in begin(), and thereafter,
it would produce a very fast pointer access. 

Case Study: Writing XML/HTML

N O T E
This case study is a more advanced demonstration of how a collection of cooperating
classes (or class library) can simplify the generation of HTML. It isn’t necessary to know
HTML to follow the code, but it will help. 

eXtensible Markup Language (XML) has become an important buzzword,
and programs are increasingly being expected to be XML compliant.
Markup languages should not be confused with programming languages. A
markup language is, in fact, all form and very little content. It is a standard
way of representing structured data with tags, but the meaning of those
tags is not specified. It is more like an alphabet than a language. People get
together to decide on a standard for a particular kind of knowledge, such as
banking transactions, books, and class hierarchies, and then they give the
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tags specific meaning. For example, if you needed a more precise way to
describe vegetables, you could create Vegetable Markup Language
(VEGML), which might look like this:
<vegml>
<root name=”potato” size=”15” color=”brown”>
Boiled Fried Baked

</root>
<fruit name=”tomato” size=”8” color=”red”>
Raw Boiled Fried

</fruit>
<nut name=”acorn”/>
</vegml>

The items in <> are usually called tags or elements, and they can have
attributes, which are name/value pairs. Between the open tag and the close
tag there can be character data. If there is no character data, then you can
abbreviate the final tag with a slash (/) (for example, <nut name=”acorn”/>).

A very popular XML-style markup language is Hypertext Markup
Language (HTML). Traditional HTML is not quite XML compatible, but it
can be made so (for instance, by closing every paragraph tag <p> with </p>).
There are two main differences between HTML and XML: XML tags are
case-sensitive and HTML tags are not, and whitespace matters in XML but
not in HTML.
<html>
<head>
<title>This is the name of the page</title>

</head>
<body bgcolor=”#FFFFFF”>
<p>Normal text <a href=”anewpage.htm”>continues </a>as so.....</p>
<ul>

<li>here is item 1</li>
<li>another item</li>

</ul>
<p>Here is <bold>bold</bold> text.
Here is <italic>italic </italic>text.</p>
</body>
</html>  

This chapter can’t discuss the tags in detail (the excellent NCSA HTML
primer at archive.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimer.html
is the place to start). In this case study, you will generate some HTML, and
a good place to begin is to identify the objects involved: tags, attributes, and
documents.

When designing a class library, it is useful to write out how you would
imagine it being used. This is easier than first defining the interface for
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each class. Here is the kind of code I wanted to write: a HTMLDoc object is
created, a heading “A heading” is written, followed by a new paragraph,
and “and some text” in bold.
HTMLDoc d(“first.xml”);
d << head(1) << “A heading” << para << bold << “and some text”;
d.close();

The idea, of course, is to make our class library work like the iostream
library. Most of the iostream manipulators (such as width(); see Appendix
B, “A Short Library Reference”) that you can put in streams affect only the
next field. An alternative is something like bold(on) << “bold text!” <<
bold(off). But it would be tedious to have to close each tag manually, and
that tedium would make it easier to generate badly formed documents. So
somehow you have to keep tabs on the tags and close them automatically.

A useful way to think about this problem is to use stacks: You can keep a
stack of tags. When a tag is pushed onto the stack, it is opened, and when
it is popped, it is closed. For instance, opening the bold tag will put out
“<bold>”, and closing it will put out “</bold>”. So the idea is to pop the
stack after putting out text, which closes any pending tags. For instance,
after “and some text”, the stack contains a bold tag, and popping it will put
out “</bold>”.

This unfortunately works too well: After “A heading”, it closes the heading
tag, and it also closes the body and the HTML tags. The solution is to label
formatting tags such as headings and bold as temporary tags, and make
tags like <body> persistent. That is, only temporary tags are popped after
an output item. You would finally pop all of the stack, temporary or not,
when the document is closed.

Tag and Attrib classes both have name properties, so you can factor out
that part of them as a NamedObject. In addition, an Attrib object has a
value. A Tag object can contain a number of Attrib objects, but it usually
contains none. Any general XML-generating code can be used to generate
HTML, and it makes logical sense to consider HTMLDoc to be a specialized
derived class of XMLDoc. XMLDoc must have a reference to some open
filestream, and it must contain a stack of Tag objects.

The following code is the interfaces for the Attrib and the Tag class
(chap9\attrib.h and chap9\tag.h):
class Attrib: public NamedObject {

string m_value;
public:
Attrib (string nm=””, string vl=””)
: NamedObject(nm), m_value(vl)
{}
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string value() const { return m_value; }
};

typedef std::list<Attrib *> AttribList;
typedef AttribList::iterator ALI;

// tag.h
#include “attrib.h”
using std::string;

class Tag: public NamedObject {
bool m_open,m_temp;
AttribList *m_attribs;
mutable AttribList::iterator m_iter;

public:
Tag(string name=””, bool temp=true);
Tag& set(bool on_off);
void clear();
bool closed() const       { return ! m_open; }
bool is_temporary() const { return m_temp; }
void add_attrib(string a, string v);
void add_attrib(string a, int v);
bool    has_attributes() const;
Attrib *next_attribute() const; 

};

typedef std::list<Tag> TagList;

Both Attrib and Tag are derived from NamedObject, which you saw in “A
Hierarchy of Animals” in Chapter 8. Attrib is basically just a name plus a
value. As you can see, Tag is not a complicated class; it has a name, can be
closed or open, and may be temporary. Its main responsibility is looking
after a list of attributes. It would have been easy to export attribute list
iterators to anybody using this class, but how a Tag object organizes its
business is its own affair. In particular, other code should not have to make
assumptions about the attribute list. So Tag has a pair of functions for
accessing attributes; the first method, has_attributes(), must be tested
before you call next_attribute(), which returns non-null attribute pointers
until there are no attributes left.

In this implementation, AttribList is a list of Attrib *, and you keep a
pointer to AttribList, which is usually null. This is the most space-efficient
way to implement tags, which often don’t have attributes. But these are
specific implementation decisions, which could change, and it is the job of
Tag to keep them to itself. Here is the implementation of Tag, based on
these assumptions:
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Tag::Tag(string name, bool temp)
: NamedObject(name),m_open(true),
m_temp(temp),m_attribs(NULL)

{ }

Tag::Tag& set(bool on_off)
{ m_open = on_off; return *this; }

void Tag::clear()
{ 
delete m_attribs;
m_attribs = NULL;
}  

void Tag::add_attrib(string a, string v)
{ 

if (m_attribs == NULL) m_attribs = new AttribList;
m_attribs->push_back(new Attrib(a,v));

}

void Tag::add_attrib(string a, int v)
{

add_attrib(a,int2str(v));
}

bool Tag::has_attributes() const
{

if (m_attribs == NULL) return false;
m_iter = m_attribs->begin();
return true;

}

Attrib *Tag::next_attribute() const
{

if (m_iter == m_attribs->end()) return NULL;
Attrib *a = *m_iter;
++m_iter;
return a;

}

Note that next_attribute() is a const method of Tag, which it must be if it
is to act on const Tag&. But ++m_iter modifies the object in order to get the
next attribute; how can this be allowed? If you look at the declaration of
m_iter, you will see the new qualifier mutable. What we are saying with
mutable is that modifying the member variable m_iter does not really mod-
ify the object. It is an iterator to the attribute list, but the attribute list is
not itself changed. 
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You now need to think about the class that does the serious work of gener-
ating XML. A list of tags works well as a stack; in fact, most of what XMLDoc
does is manage this stack, as you can see here:
class XMLDoc {
TagList m_tstack;
ofstream m_out;  

public:
// Tag stack management
void push_tag(const Tag& tag)  { m_tstack.push_back(tag);  }
void pop_tag()                 { m_tstack.pop_back();      }
bool empty()   const           { return m_tstack.size()==0; }
const Tag& current() const     { return m_tstack.back();    }

void push(const Tag& tag)
{

Attrib *a;
m_out << ‘<’ << tag.name();
if (tag.closed()) m_out << ‘/’;
else if (tag.has_attributes()) {

m_out << ‘ ‘;
while ((a = tag.next_attribute()) != NULL)
m_out << a->name() << ‘=’

<< quotes(a->value()) << ‘ ‘;
}
m_out << ‘>’;
push_tag(tag);   

} 

bool pop()
{
if (empty()) return false;
Tag& tag = current();
m_out << “</” << tag.name() << “> “;
pop_tag();
return ! empty();

}
// streaming out and document management
virtual void outs(char *str)
{ 
m_out << str;
while (!empty() && current().is_temporary()) pop() ;

}

void outs(const string& s)
{  outs(s.c_str()); }
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void open(const string& name)
{ m_out.open(name.c_str()); }

void close()
{
// close out ALL pending tags
cout << “closing....\n”;
while (pop())   ;
m_out.close();
}

~XMLDoc()
{ close(); }

}; // class XMLDoc

Notice that all references to m_tstack are in the first four methods, which
effectively define XMLDoc as a stack-like class. The methods push() and pop()
are where the XML specifics are. Because Tag is looking after the attributes,
this code can run through them simply, without making any assumptions
about how Tag stores the attributes, using Tag’s has_attributes() and
next_attribute() methods.

The outs() method is the gateway for all character data; after writing the
text to the file stream, it closes any pending tags by popping any temporary
tags off the stack. Finally, the document must be opened and closed; when
it’s closed, the tag stack must be completely emptied with the short and
sweet statement while(pop()) ;.

Note that XMLDoc is not derived from anything. You might be tempted by the
thought “XMLDoc is a stack of Tag objects,” and try to inherit from some stan-
dard class. This is a bad idea because an XMLDoc object has a stack of Tag
objects; it is not a stack of Tag objects. In particular, inheriting from
list<Tag> would make XMLDoc export all kinds of things that have nothing
to do with XMLDoc’s job. Likewise, the idea of inheriting from ofstream is
unwise; you want to force all text data through the narrow gate of the
outs() method. In this case study, composition (that is, building a class out
of other classes) makes more sense than inheritance. Inheritance should
not be used just because it makes a program seem more object oriented.

To get the intended mode of use, you need to create a few more operator
overloads. They may only be syntactic sugar, but these overloads makes
creating documents a lot easier. Like ostream, operator<< is overloaded to
output characters strings and int values; these all go through the outs()
method. It is also overloaded for Tag arguments; the tag is pushed on the
document’s tag stack:
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XMLDoc& operator<<(XMLDoc& doc, char *s)
{
doc.outs(s);
return doc;

}

XMLDoc& operator<<(XMLDoc& doc, const string& s)
{
doc.outs(s);
return doc;

}

XMLDoc& operator<<(XMLDoc& doc, int val)
{
doc.outs(int2str(val));
return doc;

}

XMLDoc& operator<<(XMLDoc& doc, const Tag& tag)
{

doc.push(tag);
return doc;

}

Up to now you have not seen anything specifically about HTML. But
because HMTL is an XML-like language, it is not difficult to specialize
XMLDoc by creating a derived class called HTMLDoc. You should note two
things here. First, XMLDoc is now a useful part of your toolkit that is avail-
able to all other projects you’re working on. (There is quite a bit of pressure
to make all programs talk to each other in some XML-compatible lan-
guage.)

Second, XMLDoc supplies a concise language that makes the actual job
almost straightforward (I say almost because nothing in software is trivial).
The open() method uses the tag-stack interface to generate the tedious bit
at the front of all HTML documents. (All this code is found in
chap9\html.cpp.)
void HTMLDoc::open(string name, string doc_title, string clr)
{
if (name.find(“.”) == string::npos) name += “.htm”;
XMLDoc::open(name);
if (doc_title==””) doc_title = name;

push(Tag(“HTML”,false));
push(Tag(“HEAD”));
push(Tag(“TITLE”));
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XMLDoc::outs(doc_title);
XMLDoc::outs(“\n”);

Tag body_tag(“BODY”,false);
body_tag.add_attrib(“bgcolor”,clr);
push(body_tag);
XMLDoc::outs(“\n”);

}

Note how it is necessary to use the fully qualified name to call the inherited
XMLDoc::open() method. Here is an example of what HTMLDoc::open() gen-
erates at the front of the HTML document.
<html>
<head>
<title>This is the name of the page</title>

</head>
<body bgcolor=”#FFFFFF”>

You also have to explicitly use XMLDoc::outs() because HTMLDoc is going to
overload it:
void HTMLDoc::outs(char *str)  // override
{
// calls original method to do output

if (strchr(str,’\n’) != NULL) {
char buff[256];
strcpy(buff,str);
for(char *t = strtok(buff,”\n”);
t != NULL; t = strtok(NULL,”\n”))
{ 
push(para);
XMLDoc::outs(t);  
XMLDoc::outs(“\n”);

}
} else XMLDoc::outs(str);

}

Here is some old-fashioned C-style code for a change. HTML text runs
together unless you put out paragraph tags. If the character string contains
\n, then it must be broken up and separated by using paragraph tags. The
strchr() function returns a pointer to the first match of the specified char-
acter; otherwise, it is NULL.

strtok() is fairly eccentric: You give it a set of characters (in this case,
“\n”), which is used to break up the string into tokens. strtok() is passed
the character string for the first call; thereafter it is passed NULL. strtok()
modifies the buffer we give it; hence the strcpy(). (See Appendix B, “A

272 Chapter 9: Copying, Initialization, and Assignment



Short Library Reference,” for more information about strtok() and other C
string functions.)

You still have to define some HTML-specific tags. Here are a few of the
most important ones. Simple formating tags work directly (for instance,
<bold>Some text</bold>), but some tags take parameters. Instead of defin-
ing a number of heading tags (<H1>, <H2>, and so forth) I’ve defined a func-
tion head() that modifies the name of the global head_tag variable and
returns a reference to it. The function link() is passed an Internet address,
and returns the global link_tag. The address is the value of the HREF
attribute, which is added to link_tag.
Tag bold(“BOLD”);
Tag italic(“ITALIC”);
Tag link_tag(“A”);
Tag para(“P”);
Tag head_tag(“”);

Tag& head(int level = 0)
{ 

head_tag.name(“H” + int2str(level));
return head_tag.set(level > 0);

}

Tag& link(string fname)
{

link_tag.clear();
link_tag.add_attrib(“HREF”,fname);
return link_tag;

}

And finally, here is some exercise code for HTMLDoc:
void exercise()
{
int n = 58;
HTMLDoc doc(“first”,”An introduction”);
doc << head(1) << “Here is a Title”;
doc << “There have been “ << n << “ visitors\n”;
doc << bold << “bold text\n”;
doc.close();

}  

What’s Next
By now, you should have a good idea about what happens behind the scenes
in C++. You are slightly at the mercy of the system until you appreciate
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what C++ does for you silently and why it is sometimes wrongheaded. One
good way to get a feeling for what C++ does is to single-step through you
first C++ programs with a debugger, looking at all the functions you went
through. It’s a good idea to play with C++ to learn more about it, and
UnderC makes that less painful. You can learn a lot by tracing all function
calls. In UnderC, you do this as follows, by using the #opt command to
switch on t (for trace) and v (for verbose):
;> #opt t+ v+
;> s = “hello”;
*sig:   void operator=(char*)
*match: string& operator=(char*)
*TRACE <temp>
*TRACE =
*TRACE copy
*TRACE strlen
*TRACE resize
*TRACE _new_vect
*TRACE strcpy
*TRACE strcpy
(string&) ‘hello’
;> #opt t- v-

If you repeat this with string s = “hello”, you will indeed see that __C__
(that is, the constructor) is called instead of operator=.

Chapter 10, “Templates,” deals with templates. You have already begun
using templates because all the standard containers are template classes.
Templates offer a powerful way to reuse code because they enable you to
generate functions and classes automatically for each specified type. 
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10

Templates
The same code in different contexts can lead to very different operations.
For example, x+y can mean integer addition, floating-point addition, string
concatenation, and a number of other things, depending on the types of x
and y. This is sometimes called compile-time polymorphism, to distinguish
it from runtime polymorphism, which is what happens with classes that
have virtual methods. In runtime polymorphism the exact function to call is
decided at the last moment, whereas the operation meant by x+y is worked
out by the compiler.

The C++ template mechanism takes advantage of the fact that operations
can be expressed so abstractly. Templates are generators of other types, not
types themselves. 

In this final chapter, you will learn

• How to write template functions

• How to specialize template functions for a particular type

• How to use parameterized classes

• How to write your own template classes



Generic Functions
Code to do things like search a list, copy values, and so forth will often look
exactly the same, no matter what types are being used. The standard algo-
rithms, which you first met in Chapter 3, “Arrays and Algorithms,” are exam-
ples of what is sometimes called generic programming. Rather than write out
the same loops, you can reuse the generic code. In this section you will see
exactly how such functions are generated, using function templates.

sqr() Revisited
The first example of overloading that we examined in Chapter 6,
“Overloading Functions and Operators,” involved a pair of functions that
were both called sqr() but dealt with int and double arguments. Any type
that can be multiplied—not only ordinary types, but mathematical objects
such as matrices and complex numbers—can be squared. For each type of
object, the sqr() function looks exactly the same; thanks to compile-time
polymorphism, x*x always represents the squaring operation.

The traditional way of efficiently doing this is by using macros. Macros do
simple text replacement; for example, SQR(2.3) is replaced by (2.3)*(2.3)
and SQR(1+2) is replaced by (1+2)*(1+2). (Note that if you did not include
the parentheses, the last expression would be wrong. Appendix C, “The C++
Preprocessor,” discusses macros in more detail.) The following code shows
how a macro SQR() can be defined and used to square both double and int
values:
;> #define SQR(x) ((x)*(x))
;> SQR(2.3);
(double) 5.29
;> SQR(2);
(int) 4
;> SQR(1+2);
(int) 9
;> int f(int i) {
;1} cout << “called “ << i << endl;
;1} return i;
;1} }
;> SQR(f(2));
called 2
called 2
(int) 4

However, if the argument to this macro causes a function call or any side
effects, these calls or side effects happen twice. Macros are simply too naive
for general use. In such cases, a function template can be defined, which is
parameterized by a type T. When the compiler finds the template used as a
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function, it looks at the type of the arguments. The type parameter T is
bound to the type of the actual argument (think of the type parameter as a
kind of type variable.) Then a new instance of the template will be gener-
ated, as in the following example:
;> template <class T>
;>  T sqr(T x)
;>   { return x*x; }
;> sqr(1.2);
(double) 1.44
;> sqr(2);
(int) 4
;> sqr(3.0);
(double) 9.0
;> #v sqr
VAR <void> sqr size 4 offset 9432832
int sqr(int)
double sqr(double)

sqr(1.2) causes T to be bound to double, and a function double sqr(double)
is generated. Likewise, sqr(2) causes T to be bound to int, and int
sqr(int) is generated. If you then use the UnderC #v command on sqr, you
will see that two functions called sqr() have been generated by the tem-
plate.

It is useful to think of templates as intelligent macros; the compiler looks at
sqr(1.2), notes that the argument is double, and can then deduce that T
must be double. It then effectively compiles double sqr(double x){ return
x*x; }. If you again call sqr(), with a double argument, the compiler recog-
nizes that this function has already been generated, or instantiated.

Function templates are not themselves functions; they are function genera-
tors. In engineering, the word template refers to a stencil or pattern for cut-
ting metal shapes. Thus, a function template is like a cookie cutter, not the
cookie itself. The actual functions generated by the template are called tem-
plate functions; the order of the words is important.

Function templates can be parameterized by more than one type parame-
ter. Here is Min(), which returns the smallest of its two parameters:
template <class T, class S>

T Min(T a, S b)
{ return a > b ? b : a; }

;> Min(1,2);
(int) 1
;> Min(2.3,2.0);
(double) 2.
;> Min(2.3,1);
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(double) 1.
;> #v Min
VAR <void> Min size 4 offset 9446992
int Min(int,int)
double Min(double,double)
double Min(double,int)

This is a rather simple definition, which has already generated three ver-
sions of Min(). It seems wasteful; why couldn’t you just use one type para-
meter, T?  The difficulty is that template argument matching is not too
intelligent; if T is first bound to double by looking at the first argument, the
compiler complains if the next argument is an int. That is, all arguments
declared as T must have consistently the same types, and no standard con-
versions are applied.

A template can be instantiated only if all the operations needed are avail-
able. For example, this simple template is intended to save a little typing:
template <class T>
void dump(T t) {
cout << t << endl;

}
;> int x = 2;
;> dump(x);
2
;> struct S { int a; };
;> S s; s.a = 1;
;> dump(s);  
;> CON 4:Could not match void operator<<(ostream,S);
1 parm
CON 4:Could not match void operator<<(void,_Endl_);
0 parm

Simple templates like this do not make any assumptions about the type
parameters. They trust that they will be called in situations when it makes
sense. The plain struct S does not overload operator<<, so cout << s is an
error, and the instantiation therefore fails. This also illustrates a general
point about templates; they are only fully compiled when needed. Thus, a
function template may work fine with some types and give compilation
errors with other types. 

Programmers also tended to use macros for speed. Small template functions
can be inlined and so are just as fast as macros. 

Specializations
It is possible to specialize a function template to use different code for cer-
tain types. It is rather like function overloading. If the function template

280 Chapter 10: Templates

E X A M P L E



takes an argument that still contains a type parameter (for instance,
list<T>) it is called a partial specialization; if it has no type parameters,
then it is a full specialization. Full specializations of a function template
are effectively ordinary functions.

Specialization is very useful when working with the standard containers,
which themselves are parametrized types.

The formal arguments of a function template do not have to be simple
types. It is useful to use type expressions that involve the type parameters
(or “dummy types”). In the following example, there are two function tem-
plates called dump(). The first would be more efficient than the preceding
definition when working with class types; the second dump() template han-
dles simple arrays of objects and has an extra size argument:
template <class T>
void dump(const T& t) {

cout << t << endl;
}

template <class T>
void dump(T t[], int n) {
for(int i = 0; i < n; i++) cout << t[i] << ‘ ‘;
cout << endl;

}

These two templates can easily be distinguished from each other because
they have different numbers of arguments, so a kind of overloading is possi-
ble. In the case of templates, this is called specialization.

If you now call dump() with a std::string argument, C++ will use the first
template and can deduce that T is std::string but will then pass that argu-
ment as const std::string&. Likewise, dump(arr,4) (where arr is an array
of integers) matches the second template and leads to T becoming int.

Note that the arguments of a function template can sometimes be ordinary
types, which are converted in the usual fashion; the second version of
dump() has an argument int n. However, each dummy parameter (in this
case, T) must be mentioned at least once. If not, C++ cannot deduce what T
must be from the arguments alone.

Working with the Standard Containers
As you may have guessed, the standard containers such as std::list are
parameterized types that are defined as templates. A powerful use of func-
tion templates is to generate functions that can operate on any list. Here is
a function template for dumping a list:
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template <class T>
void dump(const list<T>& ls) {
list<T>::const_iterator li;
for(li = ls.begin(); li != ls.end(); ++li)

cout << *li << ‘ ‘;
cout << endl;

}
;> list<int> ls;
;> ls.push_back(1); ls.push_back(2);
;> dump(ls);
1 2

Please note that the list iterator type used here is list<T>::const_iterator.
The difference is that a const_iterator cannot be used to modify the list.
Since the list argument is const, C++ will not allow you to use a plain iter-
ator here, because it cannot guarantee that it won’t be used to change any
list values. This can be tricky, because it’s easy to forget this requirement
(I did it for the first version of this template!). The error messages from
C++ compilers can sometimes be a little obscure. If you used iterator
instead of const_iterator earlier, BCC32 would give the following error 
message:
Error E2034 memtemp.cpp 36:
Cannot convert ‘list<int,allocator<int> >::const_iterator’ to
‘list<int,allocator<int> >::iterator’
in function dump<int>(const list<int,allocator<int> > &)

The first thing is to concentrate on the first error (subsequent errors are
often for the same reason or simply because the compiler is confused).
Mentally remove the allocator<int> and you get list<int>; this is a
default argument that you may never need to change. However, it does
make reading error messages a bit tiresome. So the compiler is telling us
that it cannot convert list<int>’s const_iterator to iterator; this error
refers to the assignment li = ls.begin(). Since ls is a const reference,
ls.begin() is a const type; hence the problem. The GCC error message got
from running the C++ command is rather strange:
memtemp.cpp: In function `void dump<int>(const list<int,allocator<int> > &)’:
memtemp.cpp:49:   instantiated from here
memtemp.cpp:36: no match for `_List_iterator<int,int &,int *>& =

_List_iterator<int,const int &,const int *>’

GCC first tells us where the function template was originally called, and
then gives the actual error inside the template. The problem is with an
assignment; and the clue is that on the right-hand side the type parameters
are const. Not obvious, but you start to recognize a pattern.
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I don’t want to scare you with nasty C++ error messages, but you are going
to meet them in real life, and you have to learn to interpret what the com-
piler is trying to say. Error messages to do with templates and especially
with the standard library can be hairy. The main thing is not to be intimi-
dated. This is one good reason, incidently, why the standard algorithms are
often easier than loops. Here is another version of the same template, this
time using for_each:
template <class T>
void dump_item(const T& v) { cout << v << endl; }

template <class T>
void dump(const list<T>& ls) {

for_each(ls.begin(),ls.end(),dump_item);
}

It is perfectly fine to pass function templates like dump_item() to standard
algorithms like for_each(), although I could not use dump() itself because it
would not be clear which template was meant.

The convenience of the dump() template is that it can operate on any list, pro-
vided that its element type can be written out  (that is, operator<< has been
overloaded for that type.) This works well for list<string>, list<double>,
and so on.

It also coexists happily with the simple dump() templates defined in the pre-
ceding section. Consider the call dump(ls) where ls is some list type. The
system finds three templates called dump(), two of which can match
list<int> because they each take one argument. The third template
matches list<int> even more closely, so it is chosen; this template is said
to be more specialized than the others. That is, although list<int> can
match the const T& pattern, the const list<T>& pattern is a closer fit. By
comparing the actual type parameter (list<int>) with the formal type
parameter (const list<T>&), the compiler can deduce that T must be int.

In general, specialized templates give you less trouble than general tem-
plates. All the assumptions required by the dump() template specialized for
list (the nested type iterator, the methods begin() and end()) are guar-
anteed by the fact that the function argument must be a list type.

Functions That Operate on Any Sequence
A major use of function templates is with parametrized classes like list. As
you saw in the last section, specialized templates can be defined that will
work with a container class such as list, for any type. The standard algo-
rithms themselves are all function templates, so that they can be used with
arguments of any type. 
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The idea of input and output sequences is very important in understanding
and using the standard algorithms.

Sequences and for_each()
The standard algorithm for_each() is very simple. In the following imple-
mentation, it is given an input sequence and a function to apply to each ele-
ment of that sequence: 
template <class In, class Fn>
void for_each(In i, In iend, Fn f) {

for(; i != iend; ++i) f(*i);
}

;> void show(int i) { cout << i << endl; }
;> for_each(ls.begin(), ls.end(), show);
1
2
;> for_each(ls.begin(), ls.end(), dump);
1
2
;> list<int>::iterator li;
;> for(li = ls.begin(); li != ls.end(); ++li) dump(*li);
1
2

N O T E
You can pass template functions (such as dump()) as well as conventional functions to
standard algorithms such as for_each().

This example shows three ways of saying the same thing, and the last way
involves explicitly writing out the loop. It is clumsy because you must
explicitly declare a list iterator. In contrast, when you instantiate 
for_ each(), the compiler binds the type parameter In to the type
ls.begin(), which is in fact list<int>::iterator. for_each() simply
assumes that it is passed objects that behave like forward iterators. That
is, *i gives the current value, and ++i moves to the next value. These are
precisely the properties of C++ pointers.

N O T E
With modern compilers, the for_each() version is just as fast as the explicit loop. In
fact, it may have a slight edge because ls.end() is evaluated only once.

Standard Algorithms
The idea behind standard algorithms is to avoid writing out loops, which
are “tedious and error prone,” as Bjarne Stroustrup says in The C++
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Programming Language. However, typing ls.begin(),ls.end() all the 
time seems equally tedious. Why is for_each() not defined as follows?
template <class C, class Fn>
void for_each(const C& c, Fn f) {
typename C::iterator i = c.begin(), iend = c.end();
for(; i != iend; ++i) f(*i);

}
;> for_each(ls,dump);
1
2

N O T E
When the compiler is doing an initial pass through the template code, it doesn’t know
that C::iterator is a valid type, so you have to give it a hint. That is why you use
typename.

This example indeed does the job for any standard container or for any
type that shares this part of the container interface (such as std::string).
But these assumptions are too strict. The following example shows two
things that the standard for_each() can do that the preceding version
cannot. First, the standard for_each() happily operates on built-in arrays.
Second, it’s very useful to specify the input sequence. The second
for_each() applies its function to every element after the first occurance 
of 10:
;> int arr[] = {1,10,3};
;> for_each(arr,arr+3,dump);
1
10
3
;> int *p = find(arr,arr+3,10), p_end = arr+3;
;> for_each(p,p_end,dump);
10
3

The standard algorithms efficiently use compile-time polymorphism. All
standard iterators behave like C++ pointers, so ordinary pointers work fine
as well. The standard library emphasis is on both speed and elegance. But
an old engineering proverb says you can only have two out of three desir-
ables. Aggressive optimization for speed, involving wholesale inlining, can
produce bulky code. One solution to this problem is outlined in the section
“The Standard Containers as Class Templates.”

Objects That Act Like Functions
C programmers are pleasantly surprised to discover that std::sort() can
be considerably faster than the old-fashioned qsort() routine. The reason
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is, again, that the compiler can often inline a function directly into the sort
algorithm. In fact, any standard algorithm that requires a function is satis-
fied by anything that behaves like a function. In C++, the action of calling a
function is an operator, and it can be overloaded. That is, if obj is some
object of class C, obj() can be defined to mean anything we like by over-
loading C::operator[]. The following is a class that behaves like a function:
class Sum {
double m_sum;

public:
Sum()
: m_sum(0.0) {}

void   operator() (double v) { m_sum += v; }

double value() 
{ return m_sum; }

};
;> Sum s;
;> s(2.0);
;> s(3.0);
;> s.value();
(double) 5.0
;> double arr[] = {2.0,3.0};
;> Sum t;
;> for_each(arr,arr+2, t);
;> t.value();
(double) 5.0
;> #include <numeric>
;> double val = 0.0;
;> accumulate(arr,arr+2,val);   
(double) 5.0

Templates turn this party trick into a genuinely useful technique.
Remember that templates are instantiated through a sophisticated kind of
macro substitution that binds the function parameter Fn to the type Sum. The
expression f(*i) is finally compiled as the method call f.operator()(*i).
The advantage of function-like objects is that they carry their own context
around with them. With ordinary functions, finding the sum would require a
global variable.

In the example, a specific numerical algorithm (accumulate()) does the
same job as using for_each() with Sum. You need to pass it a final argument
so that the compiler can deduce what the return type must be. Generally,
you should use the most specific algorithm you can find.
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Class Templates
Function templates allow very general code to be written that will work for
different kinds of types. Class templates do the same for classes; all the
class data and member functions become parameterized by type parame-
ters. Class templates are machines for generating families of related
classes.

A Parameterized Class
When you are designing classes, you need to make choices. In some 
cases, such as when either choice seems perfectly valid, it is irritating to
have to choose. For example, consider a Point class that represents a two-
dimensional coordinate. Should it contain integers, floats, or doubles? There
are good arguments for all three choices. Using typedefs is helpful, as in
the following example:
typedef double coord_t;
struct Point {

coord_t x,y;
};

In this example, there is only one place where the explicit type is men-
tioned (this is particularly useful for numerical code, where the choice of
float or double can give you valuable clues about the precision of the algo-
rithms). However, sometimes you want floating-point coordinates, and other
times you want integer coordinates. Once again, macro magic such as the
following used to be applied:
#define POINT(T) Point_#T
#define DEF_POINT(T) struct POINT(T) { T x,y; }
DEF_POINT(int);    // => struct Point_int { int x,y; };
DEF_POINT(float);  // => struct Point_float { float x,y; };
POINT(int) p1,p2;  // => Point_int p1,p2;

This magic is fine, to a point, but it scales badly. Imagine taking the Vector
class mentioned in Chapter 9, “Copying, Initialization, and Assignment,”
and making a huge 200-line #define statement. If there were an error, you
would have virtually no idea where it occurred, and you wouldn’t be able to
debug any runtime problems. The template solution is much more elegant:
template <class T>
struct Point { 
T x,y;

};
;> Point<int> ip;
;> Point<double> dp;
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N O T E
The two terms class template and template class are sometimes confused, but they are
different beasts. Class template is like the cookie cutter and template class is like the
cookie. A class template is a machine for producing template classes, such as
Point<int>, which behave in absolutely the same way as ordinary classes.

It is important to note that Point<int> and Point<double> are also com-
pletely independent classes. It is true that they are both types of Point and
that int can convert to double. But these facts don’t mean that a
Point<int> can automatically convert into a Point<double>. You can easily
write functions to do the conversion, as in the following example:
Point<double> point(Point<int> p) {

Point<double> pd;
pd.x = p.x;  pd.y = p.y;
return pd;

}

Point<int> point(Point<double> pd) {
Point<int> p;
p.x = pd.x;  p.y = pd.y;
return p;

}

;> Point<int> p; p.x = 10; p.y = 20;
(int) 10
(int) 20
;> Point<double> pd = point(p);
;> p.x; p.y;
(double) 10
(double) 10

Observe that the Point<int> and Point<double> functions are quite distinct
from one another because their argument types are different classes. Later
in this chapter, the case study shows how you can build such relationships
between template classes.

The template type parameters can be ordinary types as well. Consider the
following Buffer class, which has two type parameters; the first can be any
C++ type, and the second has to be an int:
// buffer.cpp
// C++ By Example, Chapter 10, Steve Donovan
#include <iostream>
using namespace std;

template <class T, int N>
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class Buffer {
T m_arr[N];
public:
Buffer()
{ for(int i = 0; i < N; i++) m_arr[i] = 0; }

int size() 
{ return N; }

T& operator[] (int i)
{ return m_arr[i]; }

};

template <class T, int N>
ostream& operator<< (ostream& os, Buffer<T,N>& p)
{
for(int i = 0; i < p.size(); i++) cout << p[i] << ‘ ‘;
return os;
}

int main()
{
int vals[] = {23,43,56,22,22};
Buffer<int,10> buff;
for(int i = 0; i < 5; i++) buff[i] = vals[i];
cout << buff << endl;
}

The Buffer class template is meant to be an efficient array-like class. The
parameter N is a constant, so a C++ array can be used as the representa-
tion. Note how Buffer template classes are written: Buffer<int,10>. The
template class Buffer<int,12> would be completely different class.

It is often not difficult to convert existing classes into template classes.
Generally, it’s a good idea to develop code for some particular type, iron out
the troubles, and only then make the code into a template. You can turn the
Vector class from Chapter 9 into a class template by adding a few extra lines.
Here is the first forty-odd lines of a Vector class template; the rest of the code
is absolutely identical, and you can see the whole class in chap10\vector.h.
There are three changes from the original version: template <class T> has
been added before the class declaration (see (a)), typedef int T is commented
out (see (b)), and the exception type RangeError has been moved out of the
class body. This conversion to a template was easy because the original
Vector uses typedef to define T to mean int.
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// C++ By Example, Chapter 10
// A simple vector template
#include “ref_count.h”
const int NGROW = 10; 

struct RangeError { // *moved outside 
int idx;
RangeError(int i) { idx = i; }
int where() { return idx; }

};

template class<T>   // *added (a)
class Vector: public RefCount {
public:
//  typedef int   T;   // *removed (b)
private:
T *m_begin;
T *m_end;
int m_size;
int m_cap;

public:
typedef T *       iterator;
typedef const T * const_iterator; 
typedef T         value_type;

iterator begin()  { return m_begin; }
iterator end()    { return m_end;   }
int size()        { return m_size; }
int capacity()    { return m_cap;  }

T& operator[] (int i)
{ return m_begin[i]; }

T& at(int i) 
{
if (i < 0 || i >= m_size) throw RangeError(i); 
return m_begin[i];
}
. . . (rest unchanged) . . . 

A template class can inherit from an ordinary class. This can be very useful
from both design and implementation perspectives. From the design per-
spective, it means that all the classes Vector<T>, (for all T) are related to
each other by derivation; they are all RefCount objects. The class template
Vector becomes a machine for breeding subclasses of RefCount. In imple-
mentation terms, the benefit is that you do not have to carry the extra 
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reference-counting code in each instance of Vector<T>. With large classes,
factoring out the common, non-type-specific code and moving it up into a
base class can make a noticeable difference.

Moving out RangeError is necessary because you want one exception class
to represent out-of-range errors for all instances of Vector. If RangeError
were left inside, Vector<int> would throw Vector<int>::RangeError and
Vector<double> would throw Vector<double>::RangeError; these are quite
distinct types (unless you needed to make the exceptions distinct). So, in
fact, nested classes are implicitly template classes. 

The rest of the code for Vector<T> is completely the same as for Vector, but
the meaning is different. For example, look at the copy assignment operator
for Vector<T>:
Vector& operator= (const Vector& v)
{

_alloc_copy(v);
return *this;

}

Within the class body is the one place you can get away with just using the
class template name to mean the template class; in this case, it is assumed
that Vector means Vector<T>. However, it would not be an error to spell it
out in full.

The Standard Containers as Class Templates
It is clear from the Vector<T> example in the preceding section how
std::vector<T> can be implemented. But before we move on, we need to
review how things were handled before templates were available. The first
problem with creating containers without templates is that they are not
type safe. Imagine if you had only list<void *>; any pointer could be put
in such a list. You would need to write code like this:
typedef list<void *> List;  // the one & only list…

void draw_shapes(TG& tg, const List& ls) {
List::iterator li;
for(li = ls.begin(); li != ls.end(); ++li)

static_cast<Shape *>(*li)->draw(tg);
}

This looks nasty, and it is nasty. There is no guarantee at runtime that this
list contains only pointers to Shape. A program would inevitably decide to
put something odd in the list when it was being used for some crucial oper-
ation on the other side of the planet (or, indeed, another planet altogether).
It is not possible to check all the possibilities in even a moderate-sized
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application. Type safety is a guarantee that no surprises with odd types can
happen—that they will be caught by the compiler, not the customer.

Traditional object-oriented languages rely on runtime type information.
Every class derives from some polymorphic base class, usually called
Object. In Delphi, for instance, deriving from Object is implicit, so that the
is operator can always work. Of course, this strategy works in C++ as well;
the ultimate base class Object needs at least one virtual method. The class
Shape will have to be derived from Object in some way. Then
dynamic_cast() will work. The previous example becomes this:
typedef list<Object *> List;  // the one & only list…

void draw_shapes(TG& tg, const List& ls) {
List::iterator li;
for(li = ls.begin(); li != ls.end(); ++li) {
Shape *ps = dynamic_cast<Shape *>(*li)
if (ps != NULL) ps->draw(tg);
}

}

There is now a proper runtime guarantee, at the cost of continuous check-
ing. But what should you do if the object isn’t a Shape pointer? Surely you
should raise an alarm or make a note somewhere. Although this code is
safe, it could be masking an error somewhere else. There should only be
Shape pointers in this list; it isn’t considered particularly clever to keep dif-
ferent kinds of objects together.

So far, we have only talked about pointers. Languages such as Java and
Delphi really deal only with references to objects, but they also have to deal
with the common case of just wanting a list of integers or doubles. You can
either get a whole number of extra container classes or wrap the simple
types themselves as objects, which is what Java does (Delphi programmers
have a horrible habit of trying to stuff integers into lists of pointers). This
is the second problem related to life without templates.

C++ must deal with value-oriented types such as std::string. These types
do not fit very well into a pointer-list scheme. There is an object-oriented
approach to containers of such types, but it isn’t pretty. You define a special
base class—which you could call Linkable—that contains a pointer to
another Linkable object. Any class that you inherit from Linkable, therefore,
has the ability to link to another Linkable object, rather like the parade of
circus elephants holding the tails of their fellows. You can then run through
the list by following pointers, until some stopping condition (in the case of a
circular list, the elephants keep going around the ring). But this is awkward;
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it means that you have to decide, as part of your design, that your objects
are going to be kept in a list. There would need to be auxiliary types such
as linkable strings.

The design of the C++ standard containers answers these two problems, as
well as another: C++ standard containers present a very similar interface to
the world. With some care, code can switch from using list<T> to vector<T>
by changing a single typedef. Say you have found that a time-consuming
task is iterating through containers; in this case, switching to a vector
makes perfect sense. The philosophy is that whether you put widgets in a
list, vector, deque, map, or set, it should not be a high-level design decision.

Note an important property of class templates; not every method is com-
piled when a template class is instantiated; only methods that are refer-
enced in the code, or are needed to implement those methods, are compiled.
This can obviously save a lot of dead code (although smart linkers can strip
out such baggage). But this is crucial to the design of classes like list<T>.
For example, the standard list has a method remove() that is given a spe-
cific element value to take out, but not every type has defined what it
means to be equal. Similarly, the method sort() assumes that e1 < e2
makes sense.  So instantiating only code that is directly needed makes it
possible to generate lists of simple structs, which don’t define equality or
ordering.

The downside of using template containers is that a program might end up
containing many different instances of a particular template type. It is com-
mon to keep lists of many different kinds of objects, and it is unfortunate if
the program has to keep that many (practically identical) copies of the list
code. This is often solved by specialization: You can define list<T *> in
terms of list<void *>. The specialized template for pointer types becomes
a thin “type-safe” wrapper around list<void *>. The code would look some-
thing like this:
typedef list<void *> ListP;
template <class T>
class list<T *>: private ListP {
...
void push_back(T *p)
{ ListP::push_back((void *)p); }

T  * back()       
{ return (T *) ListP::back();  }
...
};
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The basic pointer list type ListP is used as a private base class because
list<T *> redefines every public member anyway—it is pure “implementa-
tion inheritance.” This is not the most exciting code to write, but such spe-
cializations are fast because they are so easy to inline.

Template Functions That Generate Template Classes
One big difference between class and function templates is that the type
parameter is not deduced from the arguments for class templates. That is,
you always have to follow the template name with <type> when constructing
a template class. At first this seems irritating, compared to template func-
tions that work so transparently. The reason is contained in the question:
What arguments can be used to deduce the type? You would have to use the
constructor arguments, but there will always be more than one constructor
in a non-trivial class and so practically it’s impossible to deduce type para-
meters for a class template. However, it’s not difficult to write function tem-
plates that deduce the type and use it to instantiate a template class.

For instance, an interesting part of the standard C++ library is
back_inserter(), which makes copying into containers easy. Here is an
example:
;> list<int> ls;
;> int arr[] = {20,30,50};
;> copy(arr,arr+3,back_inserter(ls));

back_inserter() is necessary because originally the list has no elements;
using ls.begin() as the output iterator will not work, since there simply
aren’t any elements in the list. Something is needed that looks like an out-
put iterator and does the pushing at the list’s end.

To do this, you create a class such as the following that imitates an output
iterator—that is, it defines operator* and operator++. This class keeps one
member, which is a reference to the container m_container, and another
member, which is the same type as the container element m_val. operator*.
This class also returns a reference to m_val, so it will get modified by
expressions like *pi = val. operator++ and then push m_val onto the end of
m_container:
template <class C>
class BackInserter {
private:

C& m_container;
typename C::value_type m_val;

public:
typedef C::value_type value_type;
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BackInserter (C& c)
: m_container
{ }

value_type&
operator*()
{ return m_val; }

BackInserter&
operator++()  {
m_container.push_back(m_val);
return *this;

}
};
;> BackInserter<list<int> > bi(ls);   // watch out for ‘> >’ !
;> *bi = 10;      // sets the value...
(int&) 10
;> ++bi;          // actually does the push!

This example probably isn’t the fastest way to handle the situation, but it
does the job. This class depends on two reliable things: A standard con-
tainer makes its element type known as value_type, and it has a
push_back() method. But this kind of class is not intended for direct use.
Declaring it is a bit painful because it is itself parameterized by a template
class. (Notice the extra space between the last angle brackets (> >)—this is
one of the few places in C++ where a little whitespace is necessary; the
symbol >> is something else altogether). Therefore, back_inserter() is
defined as a simple function template:
template <class C>

BackInserter<C>
back_inserter(C& c)
{

return BackInserter<C>;
}

This is a common technique for generating template classes. The  function
template back_inserter() deduces the type parameter and uses it to con-
struct the BackInserter object. Again, using back_inserter() is going to be
just as fast as writing the loop out fully.

Separating the Template Interface from the Implementation
As with regular classes, with class templates, it is possible to separate the
interface from the implementation. Here is a simple Point template class,
separated into interface and implementation:
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// point.h
template <class X> 
struct Point {
X x,y;

Point(int _x, int _y);
void set(int _x, int _y);
};

// point.cpp
template <class X>
Point<X>:: Point(int _x, int _y)
{ set(_x,_y); }

template <class X>
void Point<X>::set(int _x, int _y)
{ x = _x; y = _y; }

The member function definitions are templates, as you would expect, except
that the class type (Point<X>) contains the dummy type. As with ordinary
classes, the class body must have previously declared the method. However,
currently most compilers have difficulty with the separate compilation of
templates. So in practice, the definitions of the methods must be included
directly as well.

Member Templates
Member templates are an interesting and occaisionally very useful feature
of modern C++. Member functions can themselves be defined as function
templates. This example is an updated version of the Buffer class template
defined earlier. Note that the assign() method is itself a template:
...
template <class T, int N>
class Buffer {
T m_arr[N];
public:
template <class In>
void assign(In start, In finish) {
int i = 0;
for(; start != finish; ++start) m_arr[i++] = *start;

}
Buffer()
{ for(int i = 0; i < N; i++) m_arr[i] = 0; }

int size() 
{ return N; }
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T& operator[] (int i)
{ return m_arr[i]; }

};
...
int main()
{
int vals[] = {23,43,56,22,22};
Buffer<int,10> buff;
buff.assign(vals,vals+5);
cout << buff << endl;
// standard list<int> defines assign() as a member template!
list<int> ls;
ls.assign(vals,vals+5);
dump(ls);
}

23 43 56 22 22 0 0 0 0 0
23 43 56 22 22

The assign() method in fact looks rather like the standard algorithm
copy(). It is also parameterized by some input iterator type; in the example
it’s used to copy an array of integers into the buffer, so the iterator type is
int *. But you could use assign() with any valid input sequence.

The standard containers all have a method assign(), which is defined as a
member template.

N O T E
Historically, templates have been the most difficult part of C++ to get right. Currently,
UnderC does not support separate member function definitions or member templates,
but it will in the future.

Case Study: Smart Pointers
Chapter 9 mentions some problems with using dynamically allocated
objects in C++. Eventually, someone must remember to dispose of them. If,
however, they are thrown out before someone is finished with them, there is
trouble. (People with small children should recognize the general problem.)
One common solution is reference counting, which you saw working behind
the scenes of the Array class in Chapter 9. It’s clear when a particular
object still has users, and premature disposal cannot happen.

However, to use reference-counting you have to do a certain amount of work.
Whenever an object keeps a pointer to a reference-counted object, it must
increment the reference count. It is equally important to call dispose()
afterward. It would be nice if this could happen automatically. This can be
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done, and the extra cost is not too great. You need to define smart pointers,
which are objects that behave like object pointers and can be very useful.
The standard library provides such a pointer, called auto_ptr<T>, and here
is a simplified implementation of it:
template <class T>
class auto_ptr {
T *m_ptr;

public:
auto_ptr(T *p) : m_ptr(p) {}
~auto_ptr() { delete m_ptr; }

T& operator* () const { return *m_ptr; }
T* operator->() const { return m_ptr; }
operator T * () const { return m_ptr;  }

};

void test_ptr() {
auto_ptr<Person> pp (new Person());
pp->set_name(“Billy”);    // operator->
read(pp);                 // can match Person * (conversion)
if (pp->illegal()) throw Person::Bad();
dump(*pp);                // operator* —- Person&

}  // pp is destroyed.

In this example, the class auto_ptr is stripped down to its basics; it is a
wrapper around an object pointer m_ptr. When pp (which is of type
auto_ptr<Person>) is automatically destroyed at the end of test_ptr(), its
destructor disposes of m_ptr. Otherwise, it behaves just like a Person *
object because of the operator overloads. No matter how you leave the func-
tion, test_ptr(), pp is destroyed, and its pointer is deleted. (The full ver-
sion of auto_ptr<> also manages who gets to delete the pointer, but that’s
not relevant here.)

The overloads are simple, but operator-> is one we haven’t talked about
yet. Normally, an object is not followed by ->, but if it is, the compiler looks
for an overloaded operator->. If the compiler finds such an operator, it
looks at the return type, and if the return type is T *, the compiler looks for
any members of T after ->.

By using this technique you can fashion pointers with any behavior you
choose. It is simple to track access to objects, for example. The idea is to
design a smart pointer that makes using reference-counted objects easy, so
all objects in the system must derive from RefCount. Here is a smart pointer
ptr that manages an object pointer derived from RefCount. The method set()
is the interesting one:
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// ptr.h
template <class T>
class ptr { 
T *m_p;

public:
void set(T *p) { 
if (m_p != NULL) m_p->dispose();
m_p = p;
if (m_p != NULL) m_p->incr_ref();

}

ptr(T *p = NULL)
: m_p(NULL)
{ set(p);    }

ptr(const ptr& pp)
: m_p(NULL)
{ set(pp.m_p);  }

ptr& operator= (const ptr& pp) {
set(pp.m_p);
return *this;

}
ptr& operator= (T *p) {
set(p);
return *this;

}

void unique() 
{ set(new T(*m_p)); }

bool is_empty() const { return m_p == NULL; }

T& operator*  () const { return *m_p; }
T* operator-> () const { return m_p; }
operator T *  () const { return m_p; }

}; 

The last three overloads in this class give you the smart pointer interface.
The business of managing reference counting is managed by the set()
method, which works as follows. If the ptr object already has a pointer, you
call dispose(). (Remember that this does not necessarily delete the object;
it does so only if it has no other users.) The new pointer’s reference count is
then incremented, and the smart pointer is ready for business.
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unique() allows you to force a unique copy of the pointer. It depends on a
sensible copy constructor being available, that is, that the constructor
T(const T&) does generate a proper copy of the object. Here is some exam-
ple code that shows how ptr is used. Note that you may freely pass
ptr<Person> objects around; they behave just like Person*, but quietly dis-
pose of Person pointers when they are no longer needed:
void test1(ptr<Person> p) {
ptr<Person> p_new(new Person(p));
read(p_new);
dump(p_new);

};  // p_new’s object is deleted
// p’s isn’t (still owned)

ptr<Person> test2() {
return ptr<Person> (new Person());

} 

void test2() {
ptr<Person> p1(new Person());
test1(p1); 
ptr<Person> p2 = test2();
} // p1 & p2 destroyed.

This example shows that ptr<Person> manages the life of the Person
pointer. If this pointer is consistently used, there is no need for an explicit
delete p. Deleting from a list of such objects would also cause disposal, as
with value-oriented types such as std::string. But ptr<Person> still obeys
pointer semantics; that is, assigning a ptr<Person> to another ptr<Person>
merely shares a reference to the same Person pointer, without any poten-
tially expensive copying taking place. This case study shows that it is possi-
ble to use pointers in a safe fashion in C++.

Do these smart pointers maintain the same relationship between their
pointers? That is, does a ptr<Employee> match a ptr<Person>, given that
Employee is a derived class of Person? This code demonstrates that it is still
possible to assign ptr<Employee> to ptr<Person>:
;> ptr<Employee> pe (new Employee());
;> ptr<Person> pp;
;> pp = pe;             // cool!
;> pe = pp;             // bad!

The correct assignment in this example takes place in two steps. Obviously,
no assignment operators can do this directly, because ptr<Employee> is not
related to ptr<Person>. When no standard conversion is possible, C++ will
look for user-defined conversion operators. ptr<Employee> has a user-
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defined conversion operator operator Employee*, and so pe will be con-
verted to an Employee pointer. 

The next step happens because an Employee pointer can match a Person
pointer, so the compiler can use Person’s assignment operator operator=
(Person *). Maintaining the relationship between the various pointer types
is the crucial part of using ptr.

What’s Next
Templates are powerful tools, and there’s much more to them than what
I’ve discussed. This book is meant to be an introduction to the world of C++,
not the definitive guide book. My favourite C++ tutorial book has been
Stanley Lippman’s C++ Primer, 3rd edition, and of course the best refer-
ence is from the C++ man himself, Bjarne Stroustrup. The C++
Programming Language is an essential part of any serious programmer’s
bookshelf. (Both of these books are from Addison-Wesley.)

C++ is a very rich language with many ways of saying the same thing.
Some critics believe this is a bad thing, since programmers become con-
fused about which approach to use. However, this is also true about natural
languages like English (which has far too many words meaning almost the
same thing), and the solution is to learn good C++ style. Style depends on
context; if I am experimenting with code interactively with UnderC, I will
use macro shortcuts. They are also appropriate with “quick and dirty” code
you write for your own purposes (like specialized tools). But they are not
appropriate for programs which are worked on by other people; simularly,
another rule is not to use using namespace xxx (where xxx is some name-
space, usually std) in header files. It is useful to remember that a program
is a public document that is meant to be read by humans as well as com-
puters.

The best way to learn good style is to read lots of good C++ code and make
lots of mistakes. This sounds like a joke, but it isn’t: learning from your
mistakes is the main learning skill you will need. Mistakes are an opportu-
nity to learn something new. Also, learn from the C++ community; there are
many C++ resources available on the Net. I have provided links to some of
these pages on the C++ By Example site: see http://home.mweb.co.za/sd/
sdonovan/ccbx.htm.
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A

UnderC for Windows (UCW) Command
Reference



Loading and Running Programs
The UCW (UnderC for Windows) console window allows you to enter C++
statements and UCW commands at the ;> prompt. Generally, expressions
and statements are terminated with a semicolon; anything beginning with
#, like preprocessor directives, and UCW commands are not. Warning and
informational messages (including values of variables) in the console
appear in green, and error messages appear in red. 

Using the Clipboad with UCW
By dragging the mouse over the console to highlight it, you can mark an
area for copying to the Windows Clipboard. After an area is highlighted,
you can use Ctrl+C to copy the content as you would in other Windows
applications. If you want to save the whole session to a file, you can use the
log command (#log). It is also possible to execute commands and state-
ments by pasting them into the console with Ctrl+V.

Exiting UCW: #q
Normally, you use #q to quit a session, but there is also #ql, which means
“quit and write to the log file.” The resulting automatic log files are made
up of the date and time, like this: 0805-1645 (which represents month, day,
hour, and minute).

Changing and Displaying the Working Directory: #cd, #pwd
It is useful to know where you are. Any program has a current working
directory, which determines the default place where files will be found.
UnderC has a command #pwd that will tell you what the working directory
is, and a command #cd that works like the DOS or UNIX command of the
same name:
;> #pwd
C:\gcc\test
;> #cd c:\bolsh\ucw\examples
;> #pwd
c:\bolsh\ucw\examples
;> #cd /gcc/test
;> #pwd
c:\gcc\test
;> #cd ../bin
;> #pwd
c:\gcc\bin

In Windows programs, note that you can actually use the old UNIX slash
(/) instead of the backslash when writing paths to files. The backslash (\) is
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only really necessary at the DOS or NT command prompt. You should use /
in your paths if you want your programs to be portable.

Loading Code and Running Programs: #x, #l, #r
You can execute system commands by using the execute command (#x). For
example, #x dir /w *.cpp lists all C++ source files.

You must load code before you can run it, and this is the job of the #l com-
mand, which is usually followed by the source file. The source file can have
any extension you like, but most source files end in .cpp or .h. If you have
files that contain UnderC extensions, then the convention is to use .uc, to
distinguish the file from files that are compatible with the standard C++
language. UnderC stops when it hits the first error because it concentrates
on sorting out one error at a time. (Errors in C++ files often cause a cascade
of unrelated errors after the first fault.) Warnings are not fatal, but they
usually try to tell you something. Error messages will tell you the file and
the line number where the error was encountered, as in this example:
;> #l inc1.cpp
inc1.cpp 32:parse error
inc1.cpp 32:Cannot find ‘w’

If the #l command is not followed by a file, UCW assumes that you are
reloading the last file.

When code is loaded and compiled, it can be run in two ways. First, by typ-
ing an expression that involves a function, you can exercise each function in
the file. Second, if the file contains a main() function, you can run the pro-
gram by using #r, followed by the command-line arguments, as you would
type them at a Windows command prompt. 

Of course, you can just type main(); at the ;> prompt, but using #r has sev-
eral advantages: First, the program input and output both occur in a sepa-
rate console window, which you can interrupt by using the stop command
(#s) if you get into an infinite loop. Second, you can also inspect program
variables from the ;> prompt if they are not local to some function.
Therefore, it is useful keeping some variables global while you are debug-
ging a program. 

There are no restrictions on what you can do when a program is running.
For instance, say your program consists of the file one.cpp, which exports
do_it(), and main.cpp, which calls do_it() by using values that are read in
from standard input. After loading both of the files, you can run the pro-
gram and exercise do_it(); at any point, you can modify and reload one.cpp
without having to stop the program. A rule of thumb is that you should not
modify the function you are currently running. You can get away with mod-
ifying main.cpp in this case, but the program will probably crash (albeit
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rather harmlessly) when main() gets to the end. You can modify any global
variables at any point.

Inspecting and Browsing symbols: #v, #d, #lv
Several UCW commands are useful in a number of situations. The module
command (#mod) has two forms (a module is another name for a loaded C++
source file.) If you type #mod without parameters, you get a list of all files
currently loaded. If you give #mod the name of a function, it will tell you in
which module that function is defined and at which line.

The variable inspect command (#v) gives you information about a symbol, if
it exists. It tells you the type (and size) of a variable, as well as the proto-
types available for a function name—(there can be a number of overloaded
versions of the function). You can use the scope operator (::) to qualify the
reference to a method or a function within a namespace. The following are
the usual prototypes available for the overloaded operator<<, and the defin-
ition of string::npos:
;> #v operator<<
VAR ostream& operator(ostream&,int) << size 4 offset 9303040
ostream& operator<<(ostream&,int)
ostream& operator<<(ostream&,double)
ostream& operator<<(ostream&,float)
ostream& operator<<(ostream&,const char*)
ostream& operator<<(ostream&,_Endl_&)
ostream& operator<<(ostream&,void*)
ostream& operator<<(ostream&,char)
ostream& operator<<(ostream&,const string&)
;> #v string::npos
VAR const int string::npos size 4 offset 3012
2147483647 was value

The display structure command (#d) is used to inspect the members of a
structure, and the list variables command (#lv) will show the currently
defined variables in scope:
;> struct Point { int x,y; };
;> Point p;
;> p.x = 10; p.y = 20;
(int) 10
(int) 20
;> #d p
(int) x = 10
(int) y = 20
;> int x=1,y=2,z=3;
;> #lv
(int) _xo_ = 0
(Point) p = Point {}
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(int) x = 1
(int) y = 2
(int) z = 3
;>

Setting Breakpoints
Debugging programs is unavoidable and is much easier if you can make
execution stop at any given line in a program, to examine (that is, to
inspect) the values of variables. You can do this by setting a breakpoint. For
example, say you want to know why the following program (main.cpp) isn’t
doing what it’s supposed to do (note that the line numbers are just for refer-
ence):
1 #include<iostream>
2 #include<cstdlib>
3 using namespace std;
4 int main(int argc, char *argv[]) {
5   int count = atoi(argv[0]);
6   for (int i = 0; i < count; i++)
7      cout << argv[1] << endl;
8 }

The program should print out a number of copies of its second argument.
You could put in a number of output statements to display the state of the
variables, and that would certainly do the job in this case. However, it is
tedious to “wire up” a large program in this fashion, since it’s hard to decide
what variables not to print out!

The #b Command
Alternatively, you can set a breakpoint at line 6, by using the #b command,
and then you can run the program with some command-line arguments, as
in the following example:
;> #b 6 main.cpp
breakpoint 0 set
;> #r 10 fred
halted at  main 5,main.cpp

When you run the program, the system gives a message that it has stopped
at line 6. The program’s execution is frozen, and you can access all the local
variables that are in scope at that point (that is, argc, argv, and count).
After the program has halted, you can look at the values of these variables
by typing their names, or any expression involving them (please note that
the comments between square brackets are not part of the session):
;> count;
(int) count = 0            [much as expected. But why?]

309Appendix A



;> argv[0];                [what was the argument of atoi?] 
(char *) “main.cpp”        [oops! This is the script name]
;> argv[1]; [and this should be the number...]
(char *) “10” 

The problem has become obvious: You have forgotten that argv[1] is the
first argument, not argv[0]. Because you are so accustomed to C++ arrays
beginning at zero, this is a common error. (No nontrivial program works the
first time, so don’t worry about finding and needing to fix problems like
this.)

To continue execution of a halted program, use #r with no parameters.

When you are finished with a breakpoint, you use the same command to
toggle the breakpoint; that is, if the breakpoint was set, it is removed. Here
is linear_pos() from Chapter 3, “Arrays and Algorithms,” again showing
line numbers just for illustration. A breakpoint is set inside the for loop:
30 int linear_pos(int arr[], int n, int val)
31 {
32 for(int i = 0; i < n; i++)
33   if (arr[i] > val) return i;
34 return -1;
35 }

;> #l insert.cpp
;> #b 33
breakpoint 33 set
;> int arr[] = {1,3,9,11,15,0};
;> linear_pos(arr,6,9);
halted at  int linear_pos(int*,int,int) 33,insert.cpp
;> i;
(int) i = 0
;> #r
halted at  int linear_pos(int*,int,int) 33,insert.cpp
;> i;
(int) i = 1
;> arr[i];
(int) 3
;> #b 33
breakpoint 33 unset
;> #r
(int) 3

After you are satisfied with the operation of the loop, then the command #b
33 switches off the breakpoint at line 33, and the function can complete its
execution.
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Temporary Breakpoints: The #gt Command
UCW also supports temporary breakpoints, which automatically remove
themselves when the program halts. The command is “go to” (#gt) but oth-
erwise works exactly like #b.  Continuing the preceding example:
;> #gt 33
breakpoint 33 temp set
;> linear_pos(arr,6,3);
halted at  int linear_pos(int*,int,int) 32,insert.cpp
;> i; arr[i];
(int) i = 0
(int) 1
;> #r
(int) 2

Note that it is not necessary to turn this breakpoint off; this automatically
happens when execution resumes.

Inspecting Values
When you inspect your program’s local variables, you can also evaluate any
expression that involves those variables. You can also call any of the pro-
gram’s functions, except for the function you are currently debugging.

Writing Debug Code
UnderC lends itself to a development style in which you work on simple
functions and test them individually; you end up with a set of operations
you can trust that are convenient for the programs you are writing. You
should write some functions specifically to help you debug your program
(for example, code that dumps out the contents of a list in comprehensible
form or performs sanity checks on data structures). This takes care and
effort, but it nearly always makes a difference in a big project.

For instance, when I was developing UnderC, I wrote code to display the
pcode generated by the compiler, a dissembler. (A dissembler is the opposite
of an assembler; it reads raw program memory and writes it out as
machine instructions.) I did not expect users to be interested in the pcode,
but it was absolutely essential in getting the compiler debugged, and it was
completely worth the hundred or so extra lines of code. 

Often it is not necessary to write extra code because the preprocessor can
be used to set up shortcuts. For example, the following code calls a function
repeatedly and inspects a set of local variables; you can save yourself a lot
of typing by using #define at each break:
;> #define W a; i; k;
;> #b 12 fred.cpp
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;> call_fred(2.2,1,1);
Stopped at 12 fred.cpp
;> W
(double) a = 1.2
(int) i = 1
(int) k = 2
;> #r [resume execution]

Note that you could not define a function to do this because functions can-
not be nested within other functions.

A very useful command is #lv, which will list all the local variables in the
current function scope, if you have halted within a function.

Modifying the Program while It’s Running
You can modify the debugged program; you can change a variable’s value if
you know what it should be. But be careful with declarations when you are
stopped within a function. While you are stopped, you are actually in the
function scope. Anything you then declare in interactive mode falls within
that scope and is inaccessible when you leave the function. 

While debugging, you can modify and recompile files other than the one you
are working on. This is very useful in larger programs and a good reason to
break code up into separate files. Traditional systems require you to stop
the program first and then rebuild.

Unfortunately, at the moment you need to reset breakpoints after a recom-
pile. The reset breakpoints command (#bs) has a slightly different syntax:
first it includes the file and then a list of the new line numbers (in order)
for any breakpoints in that file. UCW cannot keep track of modifications to
a file, and those modifications might move breakpoints to different places.

Using Quincy 2000
It is usually more convenient to use an integrated development environ-
ment than to issue commands yourself. For this book I have modified Al
Stevens’ excellent Quincy environment to work with UnderC. Quincy also
works with free compilers like GCC and BCC55. It saves you from having
to remember (and type) the commands yourself, and it keeps track of
breakpoints. UCW runs as a separate program, and Quincy sends it # com-
mands. If, for some reason, UCW gets confused (which happens occasion-
ally), you can shut it down and restart it separately from Quincy, and
Quincy will pick up where you left it.

Figure A.1 shows Quincy 2000 in action, indicating the meaning of the most
important icons on its application toolbar. 
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Figure A.1: Most important operations using Quincy 2000.

Entering a Program into Quincy
Here is how you create a simple C++ program with Quincy: 

1. Create a new document in Quincy by selecting File, New, by pressing
Ctrl+N, or by clicking the first icon on the Toolbar. 

2. Specify “C++ Source File” in the list of choices.

3. Quincy creates a new file called noname1.cpp. In this window, type the
usual “hello world!” program, as shown:
#include <iostream>
using namespace std;

int main() 
{

cout << “Hello, World!” << endl;
}

4. You can now save this with File, Save, by pressing Ctrl+S, or by click-
ing the second icon.

N O T E
Syntax highlighting shows the C++ keywords, the variables, comments, and string liter-
als in different colors. This can be very useful for visually detecting problems (for
example, forgetting to finish a comment or a string).
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Running a Program with Quincy
To run the program, follow these steps:

1. Select Debug, Run, press F9, or click the “running man” icon.

2. Quincy automatically does three things: It saves the file (if the file
was changed), it compiles the file by using #l, and it runs the program
by using #r and any command-line arguments.

3. A separate program window that contains your program output
appears within milliseconds. If there was a compile error or a runtime
error, you are told about it and are immediately placed at the appro-
priate line, which saves you a lot of labor. If a program gets out of con-
trol, clicking the stop icon causes the #s command to be sent to UCW.

Specifying Command-line Arguments
To specify the command-line arguments for program execution, follow these
steps:

1. Select Tools, Options, and you will get the Options dialog box.

2. Select the Run tab and then type in any command-line arguments, or
you can choose to let Quincy prompt you for these arguments each
time the program is run.

Switching between UnderC and GCC
In the Options dialog box, note the “Run UCW” option; if you switch it off
(it is on by default) and run the program as you did before, the program is
compiled and linked with GCC. The progress is indicated in the status bar
at the bottom right of the main window; if there are any errors, a list of
errors appears, and you can click the list to inspect.

A shortcut for switching between UCW and GCC is Options, Use UCW.
This menu item will be checked if you are currently using UCW. (You can
also toggle this setting with Ctrl-U.)

Setting Breakpoints with Quincy
You set breakpoints by using the “hand” icon on the Toolbar (a shortcut is
function key F2), and these appear as a small hand icon in the left-hand
margin of the editor window. When the program stops, this icon changes to
show that execution has halted at that point.

The two stepping operations (controlled by the “boot” icons) are not avail-
able for UCW, but are for GCC. Single-stepping means going through the
program one line at a time; the difference between the two operations is
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that the first will go into a function definition, and the second will “step
over” (hence the “raised boot” icon) the function. 

The Watch Window
The watch window (which you open by selecting Debug, Watch or by press-
ing Ctrl+W) lets you set a number of variables (or expressions) that you can
inspect. This works slightly differently in UCW mode than when working
with GCC, because in UCW mode it is possible to inspect variables when
the program is running, but not halted. You can also inspect more compli-
cated expressions in UCW mode because the full power of the UCW expres-
sion compiler is available. 

You can always switch to the UCW window and work from there; this gives
you the flexibility to call specific functions, and so on. 
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A Short Library Reference
Most of the power of a programming language comes from its libraries,
which give a programmer access to hundreds of thousands of lines of well-
debugged code. The C/C++ library is particularly rich and often supplies
more than one way to handle a situation; knowing the standard library well
keeps you from having to reinvent the wheel. Conversely, any language
that can’t be extended by libraries will not last, as illustrated by the case of
Pascal. Standard Pascal died out because it did not offer powerful libraries,
but Pascal has been revived in recent years, thanks to Borland making the
Delphi VCL library comprehensive and extensible. Generally, you can find
excellent C++ libraries freely available to do specialized tasks; examples
are the Visualization Toolkit (VTK) and SAX and DOM libraries for dealing
with eXtensible Markup Language (XML).

N O T E
The standard library does not currently have any classes for graphical user interfaces
(GUIs). One of the reasons for Java’s popularity is precisely because it has a standard
GUI framework.

Whole books have been written about the C++ libraries (Stroustrup’s book
The C++ Programming Language, 3rd edition, Addison-Wesley 1997,
devotes more than 300 pages to it), so this appendix does not try to cover
everything. Rather, like a good librarian, it indicates what’s important and
helps you navigate the online documentation. This chapter also does not
give overloaded versions of all the methods and functions; rather, it dis-
cusses only the main methods and functions that show the range of func-
tionality offered by the libraries.

The UnderC standard “pocket” library is still under development, and there
are some classes and standard algorithms that are not finished yet. So cur-
rently there are no valarray or complex classes; updates will be available.
But all of these classes are available from either GCC or BCC32.



The <iostream> Library
Input /output (I/O) in C++ relies on overloading the operators << (for writ-
ing) and >> (for reading). All output classes derive from ostream, so over-
loading the >> operator for ostream means that you can use that operator
for any output class. It is important to realize that file output is buffered;
that is, the data is not immediately written to the actual disk file. This is
done to speed up I/O because disk access occurs much more slowly than
memory access. You can flush file streams (that is, write them to disk) by
using the ostream::flush() method when the streams are closed. This is
why it is important that file streams are closed properly.

The standard streams are cin, cout, and cerr. (cerr is used for error out-
put. It will also appear on the screen, but is unbuffered, so no output is
lost.) <iostream> also defines some special objects, called manipulators, that
modify the stream; an example is endl, which inserts a newline and flushes
the stream.

Reading Data
Data items are read by using operator>>, which usually ignores whitespace
(including newlines). You call eof() to determine whether a stream is fin-
ished, and you call bad() to determine whether an error has occurred. If in
is an input stream, then ! in is true if the stream is bad or past the end of
the file; you can test in >> var directly, as follows, because istream has a
conversion operator to integer:
while (in >> x >> y) diff += (x – y);

Reading Character Strings
The extraction operator (>>) is overloaded for both standard strings and
plain arrays of characters. In both cases, the next token (that is, text delim-
ited by whitespace) is read in; reading into a string is safer than reading
into an array because strings do not overflow (they are resizeable); how-
ever, raw character data is faster than string data. (Safety versus speed is
a common choice in programming, and C++ offers both.) If you want to read
a whole line of text, you can use the two main versions of getline(). The
second form of getline() is implemented as a function, not as a method,
and it takes a standard string argument.
istream& istream::getline(char *buff, int sz);
istream& getline(istream& is,string& s);

Both versions of getline() return a reference to the input stream, which
can be used in two ways. First, you can chain calls, as shown in the follow-
ing example. Second, you can test the return value, relying on the conver-
sion operator:
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;> const int BSIZE = 256;
;> char b1[BSIZE],b2[BSIZE];
;> string s;
;> cin.getline(b1,BSIZE).getline(b2,BSIZE);   // two lines are fetched
one
two
;> ifstream in(“temp.txt”);
;> while (getline(in,s)) cout << s << endl;   // while in.eof() isn’t true

<iomanip> defines the setw() manipulator, which can be used as follows to
force the input width, if you need to read the next n characters:
// stream contains ‘dolly the sheep’
in >> setw(4) >> s; // s contains ‘doll’

Reading File Streams
You can read files by using the ifstream class, which is derived from
istream, and you can write files by using the ofstream class, which is
derived from ostream. You use open() to access a file; it returns false if the
operation failed. You should always check whether the operation failed. The
file needs to be closed at the end, and the class destructor does this. Note
that open() does not currently take a string argument, so you have to use
s.c_str() to get the underlying character data if you are using standard
strings.

The file stream open() method can take an extra argument, which controls
how the file is opened. This table shows the main ios flags and their mean-
ings; they may be combined using |:
ios::in         -file opened in input mode
ios::out        -file opened in output mode
ios::app        -file append; any writing starts at end of existing file
ios::binary     -file opened in binary mode; no text translation
ios::in | ios::out       -both read and write!
ios::app | ios::binary   -append to binary file 

Formatting Output
You control floating-point precision with the setprecision() manipulator;
you control the width of the output field with setw(), as in the following
code; please see stdlib\test-io.cpp:
void test_out()
{
int val = 648,k;
double pi = 4*atan(1.0); // a way to calculate PI...

// note that it is necessary to  switch back to decimal....
cout << “Hex “ << hex << val << “ Dec “ << dec << val << endl;
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// floating-point precision can be set using setprecision
cout << “Default precision   “ << pi << endl;
cout << “Precision(12) “ << setprecision(12) << pi << endl;
cout << “Precision(6)  “ << setprecision(6) << pi << endl;
cout << “Precision is (“ << cout.precision() << “) “ << endl;

// can control the width using the setw() manipulator
// note that the width only applies to the _next_ field!
for(int i = 0; i < 5; i++) 

cout << setw(10) << i*pi;
cout << endl;

// setting formatting flags: this forces positive numbers to be
// displayed with an explicit plus sign. 
cout.setf(ios::showpos ) ;
for(int i = 0; i < 5; i++)

cout << 10*i << ‘ ‘;
cout << endl;

}

Hex 288 Decimal 648
Default precision   3.14159
Precision(12) 3.14159265359
Precision(6)  3.14159
Precision is (6) 3.14159

0   3.14159   6.28319   9.42478   12.5664
+0 +10 +20 +30 +40

The C++ Standard string Class
A standard string is essentially a resizable array of characters, with meth-
ods to perform substring searching and extraction, and overloaded opera-
tors to construct longer strings by concatenation. In the following table,
cstr is an argument of type const string&, ch is an argument of type char,
and i and n are arguments of type size_type (which is usually an unsigned
long):
string();       // default constructor - empty string (“”)
string(cs);     // C++ string from a C character string
string(n,ch);   // ch repeated n times.
int size();     // number of characters
int length();   // ditto
int capacity();  // actual space available
void reserve(n); // make space available
string substr(i,n);   // n chars from  i (zero-based index)
int find(cstr);     // first cstr (npos if not found)
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int rfind(cstr);    // last cstr
int find(ch);       // ditto, but for characters...
int rfind(ch);
void replace(i,n,cstr); // n chars after i replaced by cstr
void append(cstr);          // append cstr to the end
string& operator += (cstr);  // ditto
string& operator += (ch);    // ditto for characters
bool operator==(cstr1,cstr2);
string operator+(cstr1,cstr2);

The special constant string::npos is an unsigned value that is larger than
any valid string length; it is –1 as a signed integer, which is why you occa-
sionally see this value used. All the find() routines return npos on failure;
if npos is used as a length (as in replace(2,string::npos,”help”)), it
means “to the end of the string.”

The key to building up strings efficiently is to note that std::string overal-
locates. The string’s capacity() method is always greater than the size()
method. You can explicitly ask for storage to be allocated by using
reserve(). This prevents possibly expensive resizing operations, which usu-
ally involve copying. The following function shows the difference between
size() and capacity() (code found in stdlib\test-string.cpp).
void test_string()
{
string s;
s.reserve(200);
cout << “size = “ << s.size() 

<< “ capacity = “ << s.capacity() << endl;
for(int i = 0; i < 80; i++) s += ‘*’;
cout << “size = “ << s.size() 

<< “ capacity = “ << s.capacity() << endl;
}
size = 0 capacity = 200
size = 80 capacity = 200

You can get a character pointer from std::string by using c_str(). You
should not keep this pointer because it usually becomes invalid when the
string is destroyed.

C++ Standard Containers: list and vector
All the standard containers like list and vector are class templates and
have the following methods in common. That is, they all have operations for
adding or removing elements at the end (push_back() and pop_back()), and
you can access the first and last elements directly. They also have an itera-
tor type, which refers to elements and can be used to access each element
in turn (that is, to iterate through the container.) The standard methods
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begin() and end() return iterators to the first element and just past the
end respectively. Although string is not a full container, it also supports
these methods.
size_type size()   // number of elements
type      back()   // last element
void      push_back(type val);  // add an element to the end
void      pop_back();       // remove an element from the end
type      front();  // first element
iterator  begin();  // iterator at beginning of container
iterator  end();    // iterator pointing just past the end

The common operations allow you to use the containers in similar ways.
The first four operations allow you to use the containers as stacks, and the
iterators can be used to iterate through the elements. This common inter-
face allows a user to write code using containers without having to know
precisely what container is being used; this makes the standard algorithms
possible. To avoid excessive copying, container objects are usually passed as
references.

The Standard Vector: <vector>
std::vector is meant to be a fast, resizable array, which you access by
using operator[]. You can build up this type of array one element at a time
by using push_back(). A detailed discussion of std::vector can be found in
Chapter 3, in the section “Resizable Arrays.”

Resizing involves dynamic allocation and copying, and it can be slow; there-
fore, std::vector usually allocates more memory than is needed. capacity()
returns the actual space available, and size() returns the current number
of elements. That is, capacity() is always greater or equal to size(). If
you know in advance how many elements there are, it is a good idea to allo-
cate space up front by using reserve(). This example shows the difference
between size(), resize() and capacity(), reserve():
;> vector<int> vi;  // size zero!
;> vi.reserve(100);    
;> vi.capacity();
(int) 100
;> vi.size();
(int) 0
;> vi.push_back(648);
;> vi.size();
(int) 1
;> vi.resize(5);
;> vi.size();
(int) 5
;> vector<double> fd(100);  // size 100, capacity 100+x
;> for(int k=0;k<100;k++) fd[k] = k;
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The Standard Deque: <deque>
std::deque (pronounced ‘deck’) has the same interface as std::vector,
except that it has efficient operations on the front as well as on the back.
(Having operations on the front would be inefficient for a vector; that is
why they are not provided.) These methods allow you to add elements to
the front of the deque, and to remove them:
void push_front(T val);     // add to front 
void pop_front();           // remove from front
T front();                  // value of front

std::deque is useful for implementing first in, first out (FIFO) queues. You
can use push_front() to put something in the queue, and you can use
back() and pop_back() to take something out of the queue.

The Standard List: <list>
std::list has the same basic interface as the other containers—that is,
size(), begin(), end(), back(), push_back(), and so on. It also has opera-
tions on the front of the list, like std::deque: push_front(), front(),
pop_front().

std::list differs from std::vector in that it does not have random access
(operator[]), it allocates only as much memory as necessary, and it is easier
to insert, delete, or reorder elements. See the section “Lists” in Chapter 3.

The following useful std::list operations are particularly efficient for
linked lists:
void insert(iterator lp, const T& val);
void erase (iterator lp);
void insert(iterator lp, iterator is, iterator ie);
void erase (iterator is, iterator ie);
void splice(iterator lp, list& ls);
void splice(iterator lp, list& ls, iterator is, iterator ie);
void merge(list& ls);
void remove(const T& val);
void unique();
void sort();

insert() and erase() can be also be used with vector, but they are more
efficient with lists.  The idea is that insert() will put the new element
before the specified position; erase() will remove the element at that 
position. For example, if ls is a list<int> and v is a value, then:
// insert in front of list (same as ls.push_front(v))
ls.insert(ls.begin(),v);  
// insert at end of list (same as ls.push_back(v))
ls.insert(ls.end(),v);
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// insert 67 before the value 42 in the list
list<int>::iterator li = find(ls.begin(),ls.end(),42);
ls.insert(li,67);
// erase the value 42 from the list
ls.erase(li);
// erase the first element (same as ls.pop_front())
ls.erase(ls.begin());
// erase the last element (same as ls.pop_back())
ls.erase(ls.end());
// erase all elements of list (same as ls.clear())
ls.erase(ls.begin(),ls.end());
// insert another list at the front of our list
list<int> l2;  l2.push_back(10); l2.push_back(20);
ls.insert(ls.begin(),l2.begin(),l2.end());

The splice() and merge() operations work with another list. splice()
works rather like the full version of insert() shown in the last example;
the difference is that it actually moves the elements from the source list.
There is no actual copying involved. This shows the two ways to insert
another list into a list; splice() is more efficient but does clear out the
source.
// insert l2 before the value 648 in the list
li = find(ls.begin(),ls.end(),648);
ls.insert(li,l2);      // l2 is not affected
ls.splice(li,l2);      // l2 is empty!

remove() takes out elements with a specified value, and unique() elimi-
nates duplicates, provided that the list is in order. To get a list into ascend-
ing order, use the sort() method.

C++ Standard Algorithms: <algorithm>
Template functions allow many common operations to be written once for
different types. The standard algorithms all operate on sequences, rather
than containers (see the section “Finding Items” in Chapter 3 for the rea-
sons why). For example, to specify all elements of a container c you can use
c.begin(),c.end().  Because the containers have the same basic interface
(for instance, they all have begin() and end()) it is possible to write code
that will work whether you are using list, vector, or any other standard
container. 

Many of the standard algorithms are very straightforward template func-
tions. Most of them are simple loops. Here is a implementation of
for_each(), copy(), and transform():
template <class In, class Fn>
void for_each(In i1, In i2, Fn fn)
{
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while (i1 != i2) {
fn(*i1);
++i1;

}
}

template <class In, class Out, class Fn>
void copy(In i1, In i2, Out oi)
{
while (i1 != i2) {
*oi = *i1;
++i1; ++oi;

}
}

template <class In, class Out, class Fn>
void transform(In i1, In i2, Out oi, Fn fn)
{
while (i1 != i2) {
*oi = fn(*i1);
++i1; ++oi;

}
}

The standard algorithms can be used to replace loops in any case where you
access data with iterators, such as where ++in moves the iterator to the
next value and *in accesses that value. Iterators are meant to be general-
izations of C pointers, and because of how input sequences are specified,
you can apply algorithms to ordinary arrays as well. The last iterator value
is assumed to be the one just past the end, which would be end() for a stan-
dard container and arr+n for an array with n elements. Using the standard
algorithms is usually as fast as creating a loop manually and explicitly
because the code is inlined (unless otherwise specified).

For example, both for_each() and transform() apply a function to each ele-
ment in a sequence. However, the function given to transform() has to
return a value. This value will be written out to an output iterator, which
can be refer back to the input. (See the second use of transform() that fol-
lows.) transform() is like copy(), except with an extra function application.
Here are some examples of how to use these algorithms:
;> char *ar[] = {“2”,”5”,”7”};  // an array of C strings
;> for_each(ar,ar+3,puts);
2
5
7
;> vector<int> v(10);
;> transform(ar,ar+3,v.begin(),atoi);
;> v[0]; v[1]; v[2];
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(int&) 2
(int&) 5
(int&) 7
;> double ad[3];
;> copy(ar,ar+3,ad);  // copy from int array to double array
;> transform(ad,ad+3,ad,sqrt);  // transform in-place!
;> ad[0];
(double) 1.41
;> int sum = 0;
;> void sum_it(int i) { sum += i; }
;> for_each(v.begin(),v.end(),sum_it);
;> sum;
(int) 14

A useful thing about the standard algorithms is that they are quite happy
working with mixed kinds of data, such as moving an integer array into a
double array with copy() or moving integers from an array into a
vector<int>. Please note the standard way to apply a function to all ele-
ments of a sequence: transform(ad,ad+3,ad,sqrt) applies sqrt() to all
three elements of the array ad.      

The last part of the example calculates the sum of a vector’s elements and
works well, but accumulate() (discussed later in the section “Standard
Numerical Algorithms”) does the same job more neatly, and without global
variables.

The algorithms that generate output do not do any range checking. You
either have to make sure that the output is large enough or create space as
you go along, by using back_inserter():
;> list<int> ls;
;> vector<int>::iterator vii;
;> for(vii = v.begin();vii != v.end();++vii) ls.push_back(*vii);
;> copy(v.begin(),v.end(),back_inserter(ls));

This example shows two ways of adding the elements of a vector to a list.
The first way does it with an explicit loop over all elements of the vector,
using push_back() to add each element. The second way is to use copy()
with back_inserter(ls) as the target; this way is just as fast and involves
less tricky typing. back_inserter() in fact uses push_back(), so it can only
be used with types that support this. (See the section “Template Functions
That Generate Template Classes” in Chapter 10 for a simple implementa-
tion of back_inserter().)

Searching and Finding
In all the following tables of algorithms, In means any input iterator, Out
means any output iterator, P a predicate function (that is, a function that
returns true or false for an element), and T is any type.
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The input sequence (i1,i2) means everything from i1 up to but not includ-
ing i2. It is very common to use the format c.begin(),c.end(), for example,
to operate on an entire container c. In interactive work, you can define a
macro ALL() using #define ALL(x) c.begin(),c.end(), and thereafter say
things like find(ALL(ls),42). This saves typing when you are exploring the
algorithms but is not always considered good style in production code.
// return an iterator to first position of val
In find(In i1, In i2, T val);
// like find, except for val for which pred is true.
In find_if(In i1, In i2, P pred);
// In find_first_of(In i1, In i2, In2 s1, In2 s2);
// In adjacent_find(In i1, In i2);
// If (i1,i2) is a sequence in order, then find val
In binary_search(In i1, In i2, T val);
// sort the input sequence
void sort(In i1, In i2);

The find() family of algorithms is convenient for finding all instances of a
value, by using the result to define the input sequence for the next search,
as in the following function. (Please note the const_iterator used because
the function is passed a const reference.)
void print_all(const list<int>& ls, int val) {
list<int>::const_iterator li = ls.begin(), lend = ls.end();
while ((li = find(li,lend,val) != lend)

cout << *li << endl;
} 

Any algorithm with a name that ends in _if takes a predicate, which is a
function (or function-like object) that returns true or false. In the following
example, find_if() is used to find the next alphabetic character in the
string s.

adjacent_find() finds the first repeated value, and find_first_of() com-
pares values of one sequence to see whether they are in another sequence.
In this example, the first sequence is some arbitrary text, and the second
sequence is the set of vowel characters. find_first_of() will then find the
first position in the text where there is a vowel. Again, you need to use
operator* to get the actual character at that position:
;> string s = “404 Not Found”;
;> string::iterator is = s.begin();
;> is = find_if(is,s.end(),isalpha);
;> *is;
(char) ‘N’
;> int arr[] = {2,3,6,6,8,9};
;> *adjacent_find(arr,arr+6);
(int) 6
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;> char txt[]=”quick fox, brown dog”;
;> char vowels[]=”aeiou”;
;> *find_first_of(txt,txt+strlen(txt),vowels,vowels+5);
(char) ‘u’

The find() algorithms use a simple linear search, which is generally the
only type of search you can do on arbitrary sequences, but binary_search()
can do much better, if the sequence is sorted. See the section “Searching
and Sorting” in Chapter 3 for more details.

Comparing and Counting
bool equal(In i1, In i2, In2 i3);
bool equal(In i1, In i2, In2 i3,Bin p);
pair<In,In2> mismatch(In i1, In i2, In2 i3);
pair<In,In2> mismatch(In i1, In i2, In2 i3,Pred p);
size_t count(In i1, In i2, T val);
size_t count_if(In i1, In i2, T val,Pred p);

The benefits of having algorithms that do comparisons are that you can
compare very different kinds of data. For instance, you could compare a list
of integers with an array of integers, and then equal() would be true if
they contained the same numbers. 

Using the second version of equal(), you can specify exactly what you mean
by equality. In the following example, you can compare arrays of character
pointers by using the classic C function strcmp(), which returns 0 if two
pointers to refer to identical characters. To do this, you must define a func-
tion cmp() that returns true instead of 0. (Normal comparison would be
between pointers, which would rarely be meaningful.)  This little program
will print out the message “matched” if it is given the command line “one
two three”. I have deliberately left out the usual using namespace std, so
you can clearly see all the library functions being used here:
// test-equal.cpp
#include <algorithm>
#include <cstring>
#include <cstdio>
bool cmp(char *p1, char *p2) { return !std::strcmp(p1,p2); }
char *reqrd[] = {“one”,”two”,”three”};
int main(int argc, char **argv)
{
if (std::equal(argv+1,argv+argc, reqrd, cmp))

std::puts(“matched!”);
}

mismatch() returns the precise place where two sequences differ, and it
returns a pair of iterators. Pairs are probably the simplest classes in the
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standard library; they just contain two values of different types called first
and second, as shown here:
template <class T1, class T2>
struct pair {
T1 first;
T2 second;
pair(T1 _first, T2 _second)
: first(_first),second(_second)

{}
};

;> string s = “alice”, vowels = “aeiou”;
;> *(mismatch(s.begin(),s.end(),vowels.begin())->first); 
(char) ‘l’

Finally, count() does the common task of counting the number of times a
given value appears in a sequence. The useful count_if() uses a predicate
function to tell which elements to count:
;> string s = “the dog is outside”;
;> count(s.begin(),s.end(),’o’);
(int) 2
;> int arr[] = {23,4,-2,5,2,-1,-3,10};
;> bool less0(int v) { return v < 0; }
;> count_if(arr,arr+8,less0);
(int) 3

Filling and Generating Sequences
fill() copies a specified value into all elements of a sequence; generate()
puts the result of a specified function into the elements. They both come in
two forms: first, where the sequence is specified by (begin,end), and second,
where it is defined by a starting point and a number:
// Fill (i1,i2) with val.
void fill(In i1, In i2, T val);
// Fill n values starting at i1 with val
void fill_n(Out o, Size n, T val);
// Generate values for (i1,i2)
void generate(In i1, In i2, Fn fn);
// Generate n values starting at i1
void generate_n(Out o, Size n, Fn fn);

These four algorithms are useful to initialize arrays and containers with
initial values. fill(ALL(v),0.0) initializes the vector v to 0, and fill_n
(arr,n,0.0) does the same for an array. If you have a function that takes
no arguments, you can use it as a generator, as in the following example:
;> int randint() { return rand() % 100; } // return value is from 0 to 99
;> generate_n(nums,20,randint);   // 20 pseudo-random numbers into the array nums
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generate() can do very interesting things when you use a function-like
object. The following defines a function-like class nseq, which generates a
rising sequence, or “ramp.” The example shows an explicitly created object
of type nseq and shows that each ‘call’ of this object will produce the next
integer in the sequence. Passing a nseq object to generate_n() can be used
to initialize an array to 0..n. nseq can be easily generalized to do any incre-
ment (integer or otherwise):
struct nseq {

int icount;
nseq() : icount(0) {}
int operator() (){ return icount++; }

};
;> nseq ns;
;> ns();
(int) 0
;> ns();
(int) 1
;> double a[10];
;> generate_n(a,10,nseq());  // 0,1,. ..9
;> list<int> ls;
;> generate_n(back_inserter(ls),20,nseq());   // using back_inserter() to add
0..9 to the list

Modifying Sequences
replace() will replace all occurances of some value with another value;
remove() will remove all occurances of some value. remove_if() is similar,
except it removes all values that satisfy some predicate function. For
instance, the function less0() defined earlier, which returns true for values
less than zero, can be used to remove all negative values from a sequence. 
// replace v1 by v2 in the sequence (i1,i2)
void replace(In i1, In i2, T v1, T v2);
// remove val from a sequence
void remove(In i1, In i2, T val);
// remove val if we match the condition
void remove_if(In i1, In i2, Pred p);
// rotate sequence
void rotate(In i1, In mid, In i2);

Minimum and Maximum Values
You will very often need the minimum or maximum of a set of values. min()
and max() apply to pairs of values, and min_element() and max_element()
work with sequences of values. Note that the last two functions return an
iterator to the value, not the value itself ! This makes them more powerful,
because you can then use the iterator to modify the sequence, but you will
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have to remember to use the dereference operator (*) to get the actual 
minimum or maximum value:
// Maximum/minimum of t1 & t2
T max(T v1, T v2);
T min(T v1, T v2);
// minimum/maximum element of sequence
In min_element(In i1, In i2);
In max_element(In i1, In i2);

// for example, the maximum value of a list ls
mx = *max_element(ls.begin(),ls.end());

Numerical Operations
C++ is particularly powerful at engineering and scientific applications,
which require intensive numerical calculations. There is the full range of
mathematical functions inherited from C, now including versions that work
with complex numbers. There are standard algorithms defined in <numeric>,
which do full and partial sums of sequences. There is also the valarray
class, which is optimized for high-performance applications and works like
a mathematical vector. 

Mathematical Functions: <cmath>
All the mathematical functions take double arguments and return double
values. (In addition, C++ makes complex versions available.) Be careful
with functions like sqrt(), log(), and pow() that are not defined for all val-
ues of x; this is called a domain error. For example, it is an error to pass a
negative real value to sqrt().

When calculating angles from values of the tangent, you should use atan2()
rather than atan() because it provides an answer that is not ambiguous;
the answer is in the range –pi to pi, which is the full circle.
sin(x);   // sine of x (all angles in radians)
cos(x);   // cosine of x
tan(x);   // tangent of x
asin(x);  // arc sine of x (returns radians)
acos(x);  // arc cos
atan(x);  // arc tan
atan2(y,x); // arc tangent of y/x (better than atan(x)!) 
pow(x,y);   // x to the power of y
sqrt(x);    // square root of x
log(x);   // ln(x) (natural logarithm)
log10(x); // log(x) (base 10 logarithm)
exp(x);   // exponential function; same as pow(e,x)
ceil(x);  // truncate upwards to nearest integer
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floor(x);  // truncate downwards to nearest integer
fabs(x);   // absolute value of x

In addition to the hyperbolic trigonometric functions (such as sinh()), most
systems have the various Bessel functions, although these are not part of
the ANSI standard. 

Standard Numerical Algorithms: <numeric>
The following are specialized for numerical data and are found in <numeric>.
These algorithms all work on sequences of numbers; accumulate() will sum
the values, but you must give an initial value. partial_sum() will generate
the running sum (for example, (0,1,2,4) becomes (0,1, 2+1, 4+2+1)), and
adjacent_difference() will give the differences. Applying partial_sum()
and then adjacent_difference() will give you back the original sequence.
Please look at the stock statistics case study at the end of Chapter 3,
“Arrays and Algorithms,” for examples of these algorithms in action.
// sum of the elements in (i1,i2)
T accumulate(In i1, In i2, T val);
// put running sum of elements of (i1,i2) into j
Out partial_sum(In i1, In i2, Out j);
// put differences between elements of (i1,i2) into j
Out adjacent_difference(In i1, In i2, Out j);

Complex Numbers <complex.h>
One of the reasons scientific programmers preferred FORTRAN to C was
because FORTRAN explicitly supported complex numbers. The standard
C++ library defines a complex type that can be just as efficient as C or
FORTRAN code.

A complex number has a real part and an imaginary part, and it is essen-
tial in most parts of science and engineering because it is the most general
form of number; it’s no exaggeration to say that normal floating-point real
numbers are a special case of complex numbers. For example, here is an
example program demonstrating operations on C++ complex numbers. 
// test-complex.cpp
#include <iostream>
#include <complex.h>
using namespace std;

typedef complex<double> Complex;
const double PI = 3.14123;

int main()
{
Complex x(0,1);               // the square root of -1
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Complex y = x*x;              // sure enough, y is now (-1,0)
cout << “y = “ << y << endl;  // can write (or write) as numbers
y = sqrt(x);                  // can apply the usual functions
x = pow(y,2.0);
y = sin(x);
x = conj(y);                 // the complex conjugate of y
y = polar(1.0, PI/2);        // a complex number of length 1, argument pi/2
x = 2.0;                     // can initialize with a double 
// Can access the real or imaginary parts
cout << x.real() << ‘ ‘ << y.imag() << endl;
// Or in polar coordinates: a length and an angle.
cout << abs(y) << ‘ ‘ << arg(y) << endl; 
}

This produces the following output:
y = (-1,0)
2 1
1 1.57062

The usual operations (that is, -, +, *, /, ==, !=) are available, as are the
standard scientific functions (that is, sin(), cos(), tan(), sinh(), cosh(),
tanh(), exp(), log(), log10()).

The valarray Class: <valarray>
The valarray type is like vector, but it is designed for fast arithmetic oper-
ations. It is in fact very much like a mathematical vector; you can multiply
it by a scalar (that is, a single real number), add a valarray to another,
apply mathematical functions, and so on, as in the following example:
#include <valarray>
...
#define FOR(i,n) for(int i = 0; i < n; i++)
valarray<double> v1(20), v2(20), v3(20);
FOR(i,20) v1[i] = i
v2 = sin(v1);
v3 = 2.0*(v1 + v2); 
double arr[20];
copy(&v1[0],&v1[20],arr);
v1.resize(100);
FOR(i,100) v1[i] = 1.0/(1.0+i);
v1.apply(sqrt);                 // same as v1 = sqrt(v1) 

valarray is convenient because you can use it in mathematical expressions,
such as v1+v2 or sin(v1) in the preceding code. These operations are short-
cuts that apply to every element in the arrays. In fact, there is a method
called apply() that applies a function to each element in turn. In the preced-
ing code, v1.apply(sqrt) does the same as v1=sqrt(v1), but is more efficient
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because the second expression involves a temporary array that is then
copied. As with strings, you should be aware that temporary creation takes
place in valarray expressions, and this can make them rather slower than
explicit loops, so it’s better to use *= than *, and so on.

valarray is only efficient for larger numbers of elements. An example where
valarray would not be a good solution is using them as three-dimensional
vectors in a graphics program that manipulates a lot of vectors. In this case
it would be worthwhile writing your own Point class.

valarray is an old-fashioned class that predates the Standard Template
Library (STL) and is even considered a bit of a dinosaur in some circles.
The valarray class does not cooperate well with the standard algorithms
because valarray does not have the usual container interfaces, such as
begin() and end(). However, in the previous example, you could still use
copy() to move v1 into the array arr.

valarray has a resize() member function, but valarray is not a true resiz-
able array because resize() does not preserve the old contents by copying.
Be careful with the following constructors:
valarray ();         // these are  
valarray (int sz);   // like vector!
valarray (T value, int sz);   // value comes before size!

Despite its deficiencies, valarray is designed to be fast, and it can be very
useful when you need to crunch numbers.

You can access subsets of valarray by indexing it with slice, which speci-
fies a sequence. The slice_array type behaves like valarray, but it really is
a special alias that refers to an original valarray and hence cannot be
copied directly. Because no copying is involved, it is very efficient. The fol-
lowing example prints out the odd elements of v1. This is done by indexing
with a slice that begins at index 1, which has 10 elements and skips 2 ele-
ments each time. So slice(0,10,2) would refer to the even elements of v1:
FOR(i,20) v1[i] = i;   // 0,1,2,. ..
slice_array<double> v_odd = v1[slice(1,10,2)]; 
FOR(i,10) cout << v_odd[i] << ‘ ‘;  // 1.0, 3.0, 4.0 . . .

There are two other ways to extract subarrays. The first is to use a mask
array, and the second is to use an indexing array. This example program
shows how both of these methods can be used to extract a selected set of
the values. A mask array is a valarray<bool>, which can be generated from
a boolean expression; in this case, v1 > 0. I have dumped out the elements
of this mask array, and you can see that it is true whenever v1 is positive.
That is, mask[i] is true if v1[i] > 0. Using this mask to index v1 gives a
valarray<double>, which only contains the positive values of v1. The second
method of extracting values is to set up an indexing array, which must be of
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type valarray<size_t>. The result has the same size as the index and con-
tains the specified values:
// test-valarray.cpp
#include <iostream>
#include <valarray>
using namespace std;

template <class T>
void dump(const valarray<T>& v) {
for(int i = 0; i < v.size(); i++) 
cout << v[i] << ‘ ‘;

cout << endl;
}

typedef valarray<double> DV;

int main()
{
DV v1(15);
int i;
for(i = 0; i < 15; i++) v1[i] = sin(i/2);
valarray<bool> mask = v1 > 0.0;
dump(mask);

DV gt_zero = v1[mask];                  // index with a mask

// gt_zero now contains all elements of v1 which are > 0;
// Calculate the sum of v1[1]+v1[4]+v1[10]
valarray<size_t> index(3);
index[0] = 1;
index[1] = 4; 
index[2] = 10;
DV subset = gt_zero[index];           // index with an index array;
dump(subset);
cout << “sum of these 3 elements “ << subset.sum() << endl;
}

Here is the output of this program:
0 0 1 1 1 1 1 1 0 0 0
0.841471 0.14112 0
sum of these 3 elements 0.982591

C Library Functions
Although many of the C library functions are no longer necessary in mod-
ern C++ code, you will probably see them in older code. In general, the C
library header <name.h> is <cname> in C++, and the functions appear in the
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std namespace. Some parts of the C library, such as the <cctype> routines
and the mathematical functions, remain as essential as always.

Character Classification: <cctype>
The following are fast and portable ways to classify characters, and they
return nonzero if they are true. Their use is discussed in Chapter 4, in the
section “Classifying Characters.”
isalpha(ch)   islower(ch) or isupper(ch)
isalnum(ch)   isalpha(ch) or isdigit()
isdigit(ch)   ‘0’..’9’
isxdigit(ch)  hexadecimal digit 
islower(ch)   lower-case letter
isupper(ch)   upper-case letter
isprint(ch)   printable character, including space
ispunct(ch)   punctuation
isspace(ch)   whitespace; (space,newline,tab,carriage return)

The following are two case-conversion functions:
int tolower(int ch);
int toupper(int ch);

The C String Functions: <cstring>
String functions were common in C++ code before a standard string class
was agreed upon. A C string is a pointer to a block of characters that ends
with the null character, 0, which is written \0; the length of the string does
not include this \0. Note that the copying operations strcpy() and strcat()
work from right to left, and they assume that the target buffer is big
enough to accept the source string. You are completely responsible for mak-
ing sure that your strings do not overflow, and resizing them involves 
reallocating and then copying. These operations are done quietly by
std::string, which is safer and can sometimes even be faster than the C
string functions.

In the following declarations, s and t are of type char *, and cs and ct are
of type const char *; n is of type size_t; and c is a character. Searching
functions (that is, strchr(), strrchr(), strstr()) return NULL if they are
unsuccessful:
char *strcpy(s, ct);   // copy ct to s, including last ‘\0’.   
char *strncpy(s,ct,n); // copy at most n chars from ct to s
int   strlen(cs);      // length of cs, not including ‘\0’
char *strcat(s,ct);    // append ct at the end of s
char *strncat(s,ct,n); // append at most n chars of ct to s
int   strcmp(cs,ct);   // compare cs to ct; return 0 if equal
char *strchr(cs,c);    // pointer to position of c in cs
char *strrchr(cs,c);   // pointer to last position of c in cs
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char *strstr(cs,ct);   // ditto for a substring ct
char *strtok(s,ct);    // extract tokens delimited by ct
size_t strspn(cs,ct);  // length of beginning sequence in cs 

// consisting of characters in ct
size_t strcspn(cs,ct); // ditto, but characters not in ct.
char *strpbrk(cs,ct);  // pointer to first occurrence in cs of

// any character from ct

The key to manipulating C strings is knowing how to manage C pointers.
Pointers are basically nonconstant arrays, so you can use array subscript-
ing to access individual characters. Adding an integer to a pointer gives a
new pointer; *p gives the character at p, and ++p increments to the next
character. Notice the complete correspondence to C++ iterator notation; in
fact, iterators are a generalization of pointers. This example shows how
character pointers can be manipulated; they are array-like and can be
indexed (note that strlen(p)-1 will be the last character). Note that the
copy functions like strncpy() go in the “wrong” direction. 
;> char *p = “hello”;
;> p[0];
(char) ‘h’
;  p[strlen(p)-1];
(char) ‘o’
;> p+3;
(char*) “lo”
;> char buff[10];
;> strncpy(buff,p+1,3); // like substr(1,3). Right to left!
(char*) “ell”
;> std::copy(p,p+1,buff);  // but copy() goes left to right!
;> buff;
(char*) “hll”
;> *p++;
(char) ‘h’
;> *p++;
(char) ‘e’
;> *p++;
(char) ‘l’

The function strtok() is useful if you need precise control over how a string
is broken up into chunks (that is, tokenized). It is a curious function that
has some hidden pitfalls. The first time you call it, you pass it the string;
thereafter, you pass it NULL. It returns a pointer to the tokens and modifies
the string in the process; at the end, it returns NULL. Essentially, strtok()
uses strpbrk() to find characters from the delimiters, and it sets the ends of
tokens to \0. So if you don’t want the original string argument of strtok() to
be modified, you must explicitly make a copy first. Also, the library keeps a
pointer to the buffer that is being used, so you can tokenize only one string
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at a time. This can be a problem with a program that has more than one
thread of execution.
;> char buff[80], *p;
;> strcpy(buff,”one=two[j]”);
(char*) “one=two[j]”
;>  strtok(buff,”=”);
(char*) “one”
;>  strtok(NULL,”[“);
(char*) “two”
;>  strtok(NULL,”]”);
(char*) “j”
;> strcpy(buff,”hello (world)”);  // strcpy returns its target
(char *) “hello (world)”
;> p = strtok(buff,” ()”);
;> while (p != NULL) { 
;>   cout << p << endl;
;>   p = strtok(NULL,” ()”);
;> }
hello
world
;> buff;  // *note that buff has been modified!
(char *) “hello”

As with any Application Programming Interface (API), it is wise to wrap
eccentric details behind a class facade. The following simple class automati-
cally makes a copy of the buffer to protect it from modification, and it
allows you to set sensible default delimiters:
// tokens.h
class Tokenizer {
private:
char *m_str;
char *m_delim;
bool m_first;

public:
Tokenizer(char *msg, char *delim = “ “)
{

// make a copy of the buffer
m_str = new char[strlen(msg)+1];
strcpy(m_str,msg);
m_delim = delim;
m_first = true;
}
~Tokenizer()
{ delete m_str; }

bool get(std::string &s, char *delim = NULL)
{
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if (delim == NULL) delim = m_delim;
char *tok;
if (m_first) { // first case is special: call strtok() with the string
tok = strtok(m_str,delim);
m_first = false;

} else tok = strtok(NULL,delim);
if (tok != NULL) s = tok;   // watch out for tok being NULL!
return tok != NULL;
}
};

;> #l tokens.h
;> Tokenizer tt(“hello friends”);
;> string s;
;> tt.get(s); s;
(bool) true
(string) s = ‘hello’
;> tt.get(s); s;
(bool) true
(string) s = ‘friends’
;> tt.get(s); s;
(bool) false
(string) s = ‘friends’

This class still can’t be used for multiple streams of tokens, but it is not dif-
ficult to write a replacement that doesn’t use strtok(). This class is partic-
ularly useful when tokens are not separated by plain whitespace and when
the separators are different for each token. For ordinary token extraction,
istringstream is more reliable than using strtok().

Miscellaneous Functions: <cstdlib>
In the following declarations, cs is const char *, and sz is size_t (usually
an unsigned long). The character string conversion functions are very use-
ful; strtol() in particular not only converts to any arbitrary number sys-
tem (from base 2 to base 36), but it indicates where an error in a number
occurred; if endp is not NULL, then it is assumed to be a pointer to a C string,
which is then filled with any unconverted characters. If the number begins
with 0, then the conversion makes the usual C assumptions: leading 0x
means hexadecimal, and leading 0 means octal. 

N O T E
I mention octal (that is, base 8) because it is a curious historical relic that can cause
trouble; any nonzero integer constant that begins with 0 is interpreted in octal, so, for
example, 010 means 8!
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/* string conversion functions */
double atof(cs);  // converts s to double
int atoi(cs);     // converts s to integer
long atol(cs);    // converts s to long
long strtol(c, char **endp, int base);  // s to long
unsigned long strtoul(c,char **endp,int base); // like strtol
/* pseudo-random number functions */
int  rand();              // result in range 0 to RAND_MAX
void srand(unsigned int); // set a new seed
/* operating system */
int system(cs);    // execute a OS command (like ‘dir’)
char *getenv(cs);  // get environment string (NULL if none)
/* C memory allocation */
void *malloc(sz);          // allocate sz bytes
void *calloc(sz);          // allocate sz bytes, init. to zero
void *realloc(void *p,sz); // reallocate p to size sz
void  free(void *p);       // deallocates p

To get random numbers in the range 0..n, you use rand() % n. Bear in
mind that the numbers that rand() returns are only pseudorandom num-
bers; rand() produces exactly the same sequence of numbers each time. You
should feed srand() with something fairly arbitrary such as clock() (which
is the session time from <ctime>) if you need new random sequences each
time.

N O T E
I mention C-style memory allocation so you can recognize its use in old code; it is bet-
ter and easier to use new and delete. See the section, “Allocatating Memory with new
and delete,” in Chapter 5.

Variable-Length Argument Lists: <cstdarg>
The <cstdarg> header declares a few functions, beginning with va_, which
allow you to access arguments in functions that are declared with an
unknown number of arguments. For example, the following function sum()
can add an arbitrary list of integers, provided that the argument list ends
with zero. You declare the variable ap, which acts as a pointer; it is initial-
ized to the last defined argument (there must be at least one), which is
first in this case.

Subsequent values are grabbed by using the macro va_arg(), which is told
the expected type. You must choose a suitable value that will be used to end
the argument list, because there is no other way of knowing when the num-
bers are finished.
// in test-stdarg.cpp
int sum(int first,...)
{

340 Appendix B



int val = first, result = 0;
va_list ap;
va_start(ap,first);
while (val != 0) 

result += va_arg(ap,int);
va_end(ap);
return result;

}
;> sum(10,20,4,0);
(int) 34

C++ inherits from C the curious behavior that functions can take an arbi-
trary number of arguments. This makes the C printf() family of functions
possible. To allow for an arbitrary number of arugments, the default calling
sequence involves pushing the arguments backward (so that the first argu-
ment is right on top of the call stack) and making the caller of the function
responsible for cleaning up the stack. This is called the cdecl calling con-
vention, as opposed to pascal, in which arguments are pushed left-to-right
and routines clean up their own stack because they always know how many
bytes their arguments occupy.

Generally, you should think twice about using variable argument lists in
C++. The compiler cannot do any type checking on the extra arguments,
and, therefore, you can pass any arbitrary garbage to such functions. It is
usually possible to overload operators to achieve the same effect, as with
the iostream library.

C-Style Input and Output: <cstdio>
The key to the C output routines is the printf() function, which takes an
arbitrary number of arguments. The first argument is a format string,
which contains format specifiers. These are matched up one-by-one, with
the arguments following the format string. As with C++ stream output, you
must explicitly ask for a newline with \n, and printf()returns the number
of characters written out.
int printf(const char *format,...);

;> int i = 10, j = 20;
;> printf(“%d %d\n”,i,j);
10 20
(int) 6
;> double y = 2.3;
;> printf(“double %lf value\n”,y);
double 2.000000 value
(int) 22
;> double z = sin(y);
;> printf(“y=%4.1lf z=%4.2lf\n”,y,z);
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y= 2.0 z= 0.92
(int) 15
;> double x = 2.3;
;> printf(“%d\n”,x);
1717986918
(int) 11

A format specifier can contain a width specifier, and in the case of floating-
point numbers, it can also contain a precision specifier. The advantage of
this style is that it is easy to get exactly the output you want; the disadvan-
tage is (again) that there is no type checking, and you can easily end up
with nonsense. In the preceding example, if you try to print a double by
using a %d specifier, you get a ridiculous number.

All the other members of the printf() family work the same way as
printf(); fprintf() writes out to a file opened with fopen(), and sprintf()
writes out to a character buffer. The latter is occasionally still useful as an
alternative to a ostringstream:
;> char buff[80];
;> sprintf(buff,”(%4d,%4d)”,k,j);
;> buff;
(char *) “ ( 230, 150)”

In general, you should stick to C++ streams, which are safer and easier to
use than the <cstdio> functions. One somewhat unusual place where the C
routines are useful is in embedded programming, where the extra overhead
of the iostream library may be unacceptable for small devices.

Yet Another Windows Library
Yet Another Windows Library (YAWL), is introduced in Chapter 8, in the
section of the same name. I wrote YAWL to make my life as a GUI program-
mer easier, and it’s designed just to do the basics. However, it illustrates
the main features of class frameworks, and you will find this knowledge
useful if you need to use a real application framework.

This tutorial is organized around the main classes of YAWL; all class names
begin with T. TWin is the base class for all windows that appear on the
screen (although you can make them invisible as well). TEventWindow is
derived from TWin and is the base class for all application windows that
need to respond to system events like mouse clicks and keystrokes; this is
mostly done by overriding TEventWindow’s virtual methods. TFrameWindow is
derived from TEventWindow and is used as the base class for your main
application window.

There is also a TDC, which encapsulates a Windows Device Context. This is
used to access the Windows Graphics Device Interface (GDI) calls, for draw-

342 Appendix B



ing lines and text, and so forth. A higher-level turtle graphics interface
class TG can be used with TGFrameWindow.

Manipulating Windows: (TWin)
TWin encapsulates a window; there are auxilliary classes Rect and Point,
which are used to specify screen areas and points.
class Rect {
public:
int left,top,right,bottom;
Rect() { }
Rect(int x0, int y0, int x1, int y1) 
{ left = x0; top = y0; right = x1;  bottom = y1; }

};
class Point {
public:
int x,y;
Point() { }
Point(int xp, int yp) { x = xp; y = yp; }

};

class TWin {
. . . 
public:
// Getting the size and position of the window
void  get_rect(Rect &rt);           // gets _window_ rectangle
void  get_client_rect(Rect &rt);    // gets _client_ rectangle
int   width();
int   height();

// Converting coordinates
void  to_screen(Point& pt);
void  to_client(Point& pt);
// Resize and move the window
void  resize(int x0, int y0, int w, int h);
void  resize(int w, int h);
void  move(int x0, int y0);

The window rectangle is the window’s position, in screen coordinates. The
client rectangle is the part of the window that is available for painting (that
is, not including scrollbars, menus, caption bars, and so on). The client rec-
tangle is indicated in client coordinates, which are measured from the top-
left corner of the client area. Points can be converted between screen and
client coordinates by using to_screen() and to_client(). width() and
height() refer to the total size, including any nonclient parts such as scroll-
bars. If you want to find the width of the client area, you check the Rect
value that is returned by get_client_rect(). resize() sets the full window
size.
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These two methods are used to force a repaint.
// Causing a repaint
void  update();
void  invalidate(Rect *lprt=NULL);

Normally, when part of a window is uncovered, that area becomes invalid
and causes a paint event to happen, in order to refresh that area of the
window (although often people repaint the whole window even if only a
small part has changed). invalidate() forces a rectangular area to become
invalid and thus ready to be repainted; without the lprt parameter, the
whole client area of the window becomes invalid. Just because a window
has invalid areas doesn’t mean that it is immediately repainted; paint
events wait in a queue for more important things (such as user input) to
happen. update() is used to force an immediate repaint.

These methods set and get any text associated with the window. The sec-
tion on user-defined conversions in Chapter 9 gives an example of these
methods in use:
// Setting and getting the window text
void  set_text(pchar str);
pchar get_text(pchar str=obuff,int sz=BUFSIZE);

For ordinary top-level windows, the window text is the caption that appears
in the top caption bar. For controls such as edit boxes, buttons, and labels,
the window text is the text displayed in the controls. The get_text()
method is used to retrieve the text typed in an edit control by a user.

At any point, there is only one active window that is waiting for user input.
These functions allow you to access this window, make another window
active, change the appearance of a window (for example, make it maxi-
mized or even hidden), and so forth:
static TWin *get_active_window();
int  get_id();
void set_focus();
void  show(int how = SW_SHOW);
bool  is_visible();

If you type TWin::get_active_window()->set_text(“hello”) at the UCW
command prompt, the command modifies the actual UCW command win-
dow. Likewise, there can be only one window that has the input focus, wait-
ing for keyboard input; you can set this window by using set_focus(). You
can use show() to set the window state; the important states are SW_HIDE,
SW_MAXIMIZE, SW_MINIMIZE, SW_RESTORE, and SW_SHOW. SW_RESTORE is used to
restore a window to its original state, if it has been minimized, and so
forth.

is_visible() becomes false after you use show(SW_HIDE).
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Managing Events: TEventWindow
TEventWindow is the base class for any window that tries to intercept
Windows events or messages. For the main window you usually use
TFrameWindow, which is derived from TEventWindow. You catch events by
overriding the following virtual methods:
virtual void size(int cx, int cy);
virtual void on_move();

These methods are called when the window is resized or moved, respec-
tively, by user action or directly by TWin::resize() and TWin::move().

The following is automatically called to repaint the window when it has
become invalid:
virtual void paint(TDC& dc);

You should try to keep all graphics calls in this method and use the graph-
ics context provided.

The keydown event fires when the user presses any key, including nonchar-
acter keys such as Alt and Shift. The following is an example:
virtual void keydown(int vkey);
virtual void on_char(int vkey,int repeat);

The result of a keydown() or a keyup() event is an actual character event,
which causes on_char() to be called. (Note that repeat is greater than one
if a key has been held down long enough.)

The points shown in the following example are in client coordinates:
// mouse messages
virtual void mouse_down(Point& pt);
virtual void mouse_move(Point& pt);
virtual void mouse_up  (Point& pt);
virtual void right_mouse_down(Point& pt);
virtual void mouse_double_click(Point& pt);

Because mouse_move() is called continuously, you should try not to do too
much work while processing it.

You can override command() if you need to directly process commands (sent
from menus, child controls, and so on):
virtual bool command(int id);
virtual bool sys_command(int id);

These functions must return true if you acted on the command, and must
return false if you ignored it.

The following is called every m milliseconds, after a call to
TEventWindow::create_timer(m).
virtual void timer();
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You can stop the timer by using TEventWindow::kill_timer().

The following is called whenever the window gains or loses the input focus:
virtual void focus(bool yes_no);

query_close() is called when the user attempts to close a window:
virtual bool query_close();

This is an opportunity to try to argue with the user and bring up an “are
you really sure?” message. If this method returns false, the window is not
closed. destroy() causes the window to close; TFrameWindow, for example,
redefines destroy(), to close the whole application.

Graphics: (TDC)
All graphics are created via a device context object (in the class TDC), which
is passed to the paint method. You can draw any time you like by defining
a TClientDC object, which is given an event window pointer.
void move_to(int x, int y);
void line_to(int x, int y);
void rectangle(const Rect& rt);
void ellipse(const Rect& rt);
void draw_text(pchar msg);
void text_out(int x, int y, char *buff, int sz = -1);
void set_text_align(int flags, bool update_cp = false);
void get_text_extent(pchar text, int& w, int& h,

TFont *font=NULL);

These correspond to the common graphics device interface (GDI) calls.
draw_text() depends on set_text_align(0,true); that is, any move_to() or
line_to() operation modifies CP (which stands for “current position”), and
the new CP value is used to position text. This is currently the default set-
ting.

Setting Color
You can either specify color by using an RGB triplet, where (1.0,1.0,1.0) is
pure white, or with a 24-bit hexadecimal color value, such as 0xFF0000.
You use the pen to draw lines and outlines of shapes such as rectangles,
ellipses, and polygons. You use the brush to fill in shapes. YAWL ties the
text and graphics colors together.
//*** this changes both the _pen_ and the _text_ color
void set_color(float r, float g, float b);
void set_color(long color);
void set_text_color(long color);
*** ditto, does brush and background color
void set_back_color(float r, float g, float b);
void set_back_color(long color);
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Setting Text Fonts
You can explicitly construct a TFont object and call TDC::select(), as in the
following example:
TFont f1,f2;
f1.create(“Arial”,24,NORMAL);
f2.create(“Courier”,12,  BOLD | ITALIC);
...
dc.select(f1);

Using Turtle Graphics
The turtle graphics subsystem is an alternative to the traditional GDI-style
graphics. I’ve used turtle graphics in the section “Drawing Trees with Turtle
Graphics” in Chapter 6. It brings two new things to the party. First, you can
define a floating-point coordinate system that starts at the bottom-left corner.
One advantage of this is that the picture can scale automatically with win-
dow size.

Second, as well as the usual plotting commands, turtle graphics provides a
set of relative graphics commands, organized around the turtle. This mostly
invisible beast can be controlled in two ways: by specifying how much it
turns and by specifying how much it moves ahead. 

You can use TGFrameWindow, rather than TFrameWindow. The section “Using
an Existing Framework” in Chapter 8 has an example of a turtle graphics
program that uses TGFrameWindow. To use it, override the following methods;
they receive points expressed as a pair of floating-point numbers, and the
tg_paint() method receives its device context as a turtle graphics object.
virtual void tg_mouse_down(FPoint& p);
virtual void tg_right_mouse_down(FPoint& p);
virtual void tg_mouse_move(FPoint& p);
virtual void tg_paint(TG& tg);

The following are all turtle graphics methods:
void scale(double x1, double x2, double y1, double y2);
void penup();                                   
void plot(double x, double y);
void rectangle(double x1, double y1, double x2, double y2);
void ellipse(double x1, double y1, double x2, double y2);
int scalex(double x);
int scaley(double y);
double unscalex(int ix);
double unscaley(int iy);
void fcolor(double r, double g, double b);
void bcolor(double r, double g, double b);
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You set the domain and range by using scale(); the default is (0,100,0,100).
The drawing methods are based on the old Hewlett-Packard pen-based API:
plot(x,y) moves the pen to (x,y); if the pen is down, it draws a line. If the
pen is not down, it is moved to the point and then put down. You can explic-
itly raise the pen by using penup(). This example constrasts the two meth-
ods of plotting some points. The advantage of using TG over the usual TDC
graphics is that the first point is not a special case. The values x[i] and
y[i] in the example would also have to be in client coordinates; in TG, a
scale can be set:
;> // plotting some points using TDC
;> dc.move_to(x[0],y[0]);
;> for(int i = 1; i < n; i++) dc.draw_to(x[i],y[i]);
;> // plotting some points using TG
;> tg.scale(0,n,0,max);
;> tg.penup();
;> for(int i = 0; i < n; i++) tg.plot(i,values[i]);

The scalex() and scaley() routines compute integer client coordinates for
the window, and unscalex() and unscaley() work the other way. You set
the foreground and background color with fcolor() and bcolor(), and rec-
tangle() and ellipse() work like the TDC methods, except that they use
scaled coordinates.

The following methods change the turtle angle (in degrees):
void turn(double angle);
void left();              // same as turn(-90)
void right();             // same as turn(+90)

The following methods move the turtle position, with the pen up and down,
respectively:
void draw(double len);
void move(double len);
void go_to(double x, double y);

The following method shows the turtle (which is initially not visible):
void show(bool yes=true);

The following method places text at the turtle position:
void text(char *msg);
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C

The C++ Preprocessor
The C/C++ preprocessor is an interesting part of C’s history and has been
kept in C++ as it developed from C. The preprocessor is not always consid-
ered a good thing in C++, and in fact Java, which aimed to correct many of
C++’s “mistakes,” left out the preprocessor. C programmers do some old-
fashioned things with this facility that are considered bad manners in C++,
but the preprocessor quietly performs essential things and can occasionally
be very useful. In this appendix I will show the full power of the preproces-
sor, and why some uses are considered bad practice.

continues



Preprocessing Programs
It is a curious fact that C#, which aims to correct the mistakes of Java, has
a limited form of the C preprocessor. Originally, when C was first devel-
oped, the preprocessor was a separate program, which removed comments,
included files, made macro substitutions, did conditional compilation, and
then passed the resulting output to the compiler. That is, the preprocessor
is the ‘front end’ of a C++ compiler, which always gets to do any processing
before passing source onto the compiler, hence the name pre-processor. The
GCC compiler included with this book has a standalone preprocessor cpp,
which you can use to see preprocessor output as the compiler sees it. The
following DOS command will redirect this output (which is often very long)
into another file (by default it writes to standard output):
C:\gcc\test> cpp hello.cpp > hello.pcc

Most modern compilers, including UnderC, include the preprocessor as an
integral part of their input stage for efficiency reasons, but they still have
to do the tasks that are discussed in this appendix.

The #include Directive
The #include directive inserts a source file into the stream of code that the
compiler sees. That source file in turn may contain #include directives, but
the result is a single stream of source code. This is, incidentally, why tradi-
tional C++ compilers can be so slow; your program may have 15 lines, but
when all the headers are included, the compiler sees thousands, and some-
times even hundreds of thousands, of lines of code.

The simple rule is that #include “file” loads the file from the current
directory and #include<file> loads the file from the include directory, but
you can specify multiple include paths in some compilers. The idea is to
separate application header files from library files that are common to all
applications.

Macros
The preprocessor allows you to define macros, which are used rather like
functions, except that they directly insert text into the source that the com-
piler sees.

The #define Directive
The #define directive changes the meaning of a word, or token, so that it is
replaced by substitute text. This token is called a C macro. In this example,
I have created three macros, PI, IF, and THEN:
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#define PI 3.1412
#define IF if(
#define THEN )
#define TWOPI 2*PI

After these definitions, you can type IF x > PI THEN, and the preprocessor
replaces the macros with their substitute text; this is called macro expan-
sion. The compiler then actually sees if (PI > 3.1312). If the expanded
text itself contains a macro, that will be further expanded. The preproces-
sor does not know about C++ syntax and will even let you redefine key-
words; this is a bad idea because you will confuse any normal C++
programmer completely. A common naming convention is to put any macros
in uppercase, which makes it clear when they’re being used. 

Some standard predefined macros are available in any C++ preprocessor;
__FILE__ expands to the current file, and __LINE__ to the current line in
that file.

Macros can have parameters; there must be no space between the name
and the opening parenthesis:
#define SQR(x) x*x

In this example, SQR(2) expands as 2 * 2. Any macros found in the substi-
tution are themselves expanded, so SQR(PI) is expanded to 3.1412 *
3.1412. But SQR(1+t) expands as 1+t * 1+t, which is wrong without paren-
theses around 1+t so the macro must be defined as follows:
#define SQR(x) (x)*(x)

SQR() now behaves as expected. Unfortunately, however, SQR(f(x)) is
replaced by (f(x))*(f(x)), which means the function f(x) is called twice.
It’s not necessarily wrong (unless the function has side effects), but it could
be very inefficient. And SQR(i++) is definitely wrong. I’m showing you these
problems so you can appreciate that inline template functions do the job
much better than macros, and so you can be thankful that nobody has to do
C anymore. This also emphasizes that macros are not functions and in fact
they do a fairly simple-minded substitution.

If you are ever in doubt about the result of a macro substitution, then I
encourage you to use the cpp utility as described previously. As long as you
don’t include any system files, the output will be quite short.

Stringizing and Token Pasting
The stringizing operator (#) is found only in macro substitutions, and it
basically quotes the parameter that follows it, as in the following example:
;> #define OUT(val) cout << #val << “ = “ << val << endl
;> int i = 22;
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;> OUT(i);
i = 22

;> #define S(name)  #name “ is a dog”
;> S(fred);
(char*) “fred is a dog”

Here OUT(i) becomes cout << “i” << “ = “ << i << endl; the magic with
the second macro S() is that adjacent string literals are automatically con-
catenated by C++ to build up the larger string; that is, S(fred) becomes
“fred” “ is a dog”. C++ does this mostly to support multiline strings but
also to let you do this kind of trick.
string a_long_string = 
“after several days they found themselves “
“within sight of the breakers around a barren island”;

After you are finished with a macro, it is possible to undefine it, by using
#undef. The redefinition of a macro is not an error, but it is considered bad
manners, and you get irritating warnings when you try to do it. Also, to
#undef a macro makes it clear that the macro is used for a particular lim-
ited purpose that is now over. For example, the following kind of macro can
save a lot of typing in switch statements, especially if there are many
cases. It is less error prone than a case statement, where people often leave
off the break statement. Notice in the following example that the macro def-
inition and “undefinition” are put as close to the code as possible:
char *message(int id)
{
char *msg;
switch(id) {

#define CASE(x)  case x:  msg = #x;  break;
CASE(NOT_FOUND)
CASE(UNABLE_TO_REACH)
CASE(DISMISSED)

#undef CASE
}
return msg;
}

You can put all these CASE lines into a header file, called errors.h (that is,
everything between the #define and the #undef.) Then you can define an
enumeration and an operator to display the header files, like this:
enum Errors {
#define CASE(x)  x ,
#include “symbols.h”
#undef CASE
END_VAL  // I need this dummy at the end w/out a comma…
};
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...
ostream& operator<< (ostream& os, Errors e) {

char *msg;
switch(id) {

#define CASE(x)  case x:  msg = #x;  break;
#include “symbols.h”
#undef CASE

}
return  os << msg;
}

The token-pasting operator (##) allows you to concatenate tokens. Like the
stringizing operator, it applies to parameters. This means that new valid
C++ identifiers can be constructed:
#define INIT(name) init_##name

So INIT(unit) will expand as init_unit. Combining this with the prede-
fined macro __LINE__, you can generate a unique name at each source file
with INIT(__LINE__), and you will get init_156, init_175, and so on,
depending where the macro is used.

You can extend the substituted text over several lines by using the back-
space continuation character (\). Before templates, C++ would produce
generic classes like this:
#define POINT(t) struct Point_##t { \

T x,y;                     \
T(a,b) : x(a),y(b) {}     \

};

Note that the last line of the substitution does not have a continuation.
POINT(float) would expand to this:
struct Point_float { public: float x,y; float(a,b) : x(a),y(b) {}  };

This technique would work for generating POINT(float), but you can imag-
ine how clumsy this technique is for serious classes.

When Not to Use Macros
There is one use of macros that nobody—not even C programmers—
approves of anymore: using macros for symbolic constants. It is much better
to say const double PI=3.1412 than #define PI 3.1412. The type of the
constant in the first case is completely explicit, but in the second case it is
implicit (not everyone knows that floating-point constants are double). Also,
in traditional C++ systems, the compiler doesn’t know anything about the
preprocessor, so it just sees 3.1412 in the second case. Thus, the debugger
has no record of PI’s existence either, so it cannot be inspected, and you will
not be able to browse for the symbol PI either. (UnderC is different from nor-
mal compilers like GCC in this respect, but this is because the preprocessor
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is always available when debugging in interactive mode. That is, if PI was
defined as a macro, then typing PI at the ;> prompt would indeed give its
value.)

Another problem with macros in C++ has to do with scope; the preprocessor
is completely outside the C++ scope system, and so you never know when a
macro is going to (silently) damage your program and generally make you
wish it had never been born. This is why people insist on writing macros in
uppercase (to make them obvious) and always using parameters with their
macros; if the macros always have parameters, they will never be confused
with constants, which are also traditionally done in uppercase.

When people see the power of macros (especially if they’ve come from
another language and still feel homesick), they often want to make C++
look like their favorite language. You can make C++ look like BASIC or
Pascal, but you will not be impressing the person who has to look after your
code, who is expecting C++. For example, the following example can be
made to compile and run with any C++ compiler:
IF a > b OR n < 5 THEN 

PRINT a;
FOR I = 1 TO n DO 

PRINT I*b;
NEXT

ENDIF

These macros are all straightforward, except for the FOR loop. Just for kicks,
I’ll show you how that one is done:
#define FOR  for(int& _ii_ = ( 
#define TO   );  _ii_ <=
#define DO  ;  _ii_++) {
#define NEXT }

FOR k = 1 TO n DO expands as follows:
for(int& _ii_= (k = 1) ; _ii_ <= n; _ii_++) {

You define a temporary reference variable _ii_ as an alias for the loop vari-
able i. The International Standards Organization (ISO) C++ standard
promises that this temporary reference is valid only within the for loop, so
you can use the trick repeatedly. After the reference is bound to the vari-
able, any action (such as ++) on the reference acts on the variable.

N O T E
Although making C++ look like BASIC is entertaining, it is wise not to take it seriously.
You must learn the language as it is: For example, || means “or”, && means “and,”
and it is better to use { than to use BEGIN. No one will stop you from writing some real
BASIC occasionally, but don’t mix it up with C++. Programs are public documents, and
they must be written in a public language. There is a danger of working in a language
that is only readable by one person.
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There are cases in which one or two control macros can make the language
easier to read and maintain. The following is my favorite:
#define FOR(k,n)   for(k = 0;  k < (n); k++)

Whenever I see FOR() in code, I know that it’s just the usual 0 to n-1 loop.
When I see a for(;;),I know something different is going on, like a 1 to n
loop. for loops are not easy on the eye, and many people misread them (for
instance, one of the is in a loop could be replaced with a j). The macro
must go as the following two lines:
FOR(k,n):   
for(k = 0;  k < (n); k++) xxx.

Here is another of my favorite macros:
#define FORALL(ii,ic)  for(ii = (ic).begin();  ii != (ic).end();  ++ii)

This is a very common control statement when iterating over all elements
of a container. Writing things like this is often a matter of taste, but I pre-
fer to type FORALL(ii,ls) ii->do_something(); rather than for_each
(ii.begin(),ii.end(),operation) because the latter means I still have to
define the operation function.

Generally, you should not try to make macros complicated; the simpler they
are, the better. Remember that the debugger can tell you nothing about
what’s going on inside a macro substitution.

Conditional Compilation
Even if macros go completely out of favor, the C++ preprocessor allows you
to conditionally compile code, depending on the environment. For example,
usually there are debug and release builds of a program; debug builds con-
tain all the symbolic information for the debugger, and release builds are
optimized to be fast and/or small. Sometimes you might want slightly dif-
ferent behavior from the debug version of the program. For example, you
might have output statements that are for testing only. You might have
assert()s, and you don’t want to burden the release version with the extra
code. In these cases, it is useful to exclude code from the compilation.

The #ifdef and #ifndef Directives
The #ifdef directive directs the preprocessor to include the following code,
up to a matching #else or #endif, if the macro symbol following it is
defined:
#ifdef _DEBUG
// trace the progress!
Cerr << “iteration = “ << iter << endl;

#endif
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In this case the programmer only wants to see the progress of a loop in the
debug version, when the symbol _DEBUG is defined. 

The #ifndef directive works similarly to the #ifdef directive, except it
includes code if a symbol is not defined. A very important use of this is to
prevent a header file from being included more than once. (In fact, this is so
common that it’s worth writing a small program to generate new header
files.) Standard compilers do not allow you to redeclare variables, classes,
and so on. The following prevents a header file from being included more
than once:
// header.h
#ifndef __HEADER_H
#define __HEADER_H
...(your code goes here)...
#endif

The first time around, the macro __HEADER_H is defined (it does not need a
value), and the code is included. The second time around, the macro is
defined and the code is not included. In an interactive environment, this
can be problematic, so the UnderC load command (#l) automatically unde-
fines any macros defined in the module.

The symbol __UNDERC__ is available only in the UnderC environment, so you
can write code that can properly compile under old compilers, which don’t
have namespaces:
#ifdef __UNDERC__
#include <iostream>
using namespace std;

#else
#include <iostream.h>

#endif

This ability to configure source to compile properly in all sorts of environ-
ments and all sorts of machines was a strong reason that C became so dom-
inant a language. (It is important to note that the compiler does not see
any excluded code, so there is no runtime penalty. Conditional compilation
has nothing to do with C++ if-else statements.)

Another simple application is to produce an assert() statement. These can
be very useful in debugging; if the asserted statement is no longer true,
then the assert() will stop the program, giving the program file and line
number, together with the failed statement. 
int getval(int arr[], int n, int idx) {
assert(idx >= 0 && idx < n);
return arr[idx];

}
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A program containing getval() would terminate with the following error
message when the index idx is out of range:
assertion failed: test_getval.cpp; idx >= 0 && idx < n

The standard assert() is available from the <assert.h> system header, but
the following is a simplified implementation of assert(), which shows how
assert() statements literally expand to nothing when you don’t need them:
#ifdef _DEBUG
#define assert(expr)  if (!(expr))  __assert(__FILE__ “; “ #expr)

#else
#define assert(expr)
#endif

A simple version of the function __assert() puts out the message and ter-
minates the program with exit(), and would look like this:
void __assert(char *msg)
{

cerr << “assertion failed: “ << msg << endl;
exit(-1);

}

The #if Directive
The #if directive is a generalization of #ifdef, and it allows you to specify a
conditional expression. This looks very much like a C/C++ expression, but it
is restricted to compile-time constants that involve macros. The special
function defined() can be used to inquire about a macro. For example, 
#if defined(_DEBUG) && _TRACE > 2
#message “Now debugging…”
#endif

Currently UnderC does not support this full syntax.

Note the #message directive; it is occaisonally useful to print out a message
when the compiler is preprocessing. This will appear when the programmer
builds the code.
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D

Compiling C++ Programs and DLLs
with GCC and BCC32

UnderC is designed to make beginning C++ programming easier, but in
order to master C++, you have to learn the serious tools of the trade. This
appendix gives details on how to use two well-known freely available com-
pilers, the GNU C++ compiler (GCC) and the Borland Free C++ compiler
(BCC32), which is essentially the engine that powers Borland’s C++
Builder. None of the free compilers includes an integrated development
environment (IDE), so the C++ by Example Website carries a version of
Quincy 2000 (home.mweb.co.za/sd/sdonovan/ccbx.htm), by Al Stevens, that
recognizes either GCC or BCC32 and allows you to set up projects. I’ve
modified this IDE to work with UnderC as well, so you can easily switch
between the interpreter and the compilers. Quincy 2000 comes with online
help, which I encourage you to consult.

A good IDE is very useful (Visual Studio has become my second home), but
it is also useful to know how to compile and link C++ programs from the
command line.



Getting Free Compilers
GCC is freely available under terms of the GNU Public License (GPL) and
is included on the CD-ROM that accompanies this book. The GPL places no
restrictions on what you can do with your own executables. The version
that is included on the CD-ROM is version 2.95.2, the Mingw32 edition
(which is short for Minimal GNU Win32.) This edition contains all the
header files and import libraries for working with both text-based and GUI
Windows applications. Unlike with the better-known Cygwin, with
Mingw32, programs are dependent only on the standard Microsoft runtime
dynamic link library (DLL) MSVCRT40.DLL and are freely distributable.

T I P
To receive updates on Mingw32, see the Mingw32 project at http://sourceforge.
net/projects/mingw32. There is also an excellent mailing list you can consult if you
have any trouble getting Mingw32 programs to run properly.

The installation procedure for Mingw32 is straightforward: If your install
directory is c:\GCC, then you add c:\GCC\bin to the path (for example, set
PATH=%PATH%;c:\GCC\bin). With Windows 9x, you can add this path to
AUTOEXEC.BAT; remember that this file can be specified for each command
prompt shortcut. For Windows NT/2000, you can specify the path in the
command prompt properties. After you have added the path, the command
c++ is available at the command prompt.

BCC32 is free for personal use and can also be found on the CD-ROM. As
with GCC, if your installation directory is c:\Borland\BCC55, then you need
to add c:\Borland\BCC55\bin to the path. You also have to create two .cfg
files, which tell the compiler where to find the include and library files. The
compiler name at the command prompt is bcc32.
contents of bcc32.cfg
-I”c:\Borland\Bcc55\include”
-L”c:\Borland\Bcc55\lib”

contents of ilink32.cfg
-L”c:\Borland\Bcc55\lib”

Quincy 2000 recognizes the GCC and BCC32 compilers automatically, as
long as you give it the right directories. Under Tools, Options, you can click
on the Directories tab and type, for example, c:\gcc or c:\borland\bcc55
into the Compiler field. Quincy 2000 then locates the include and library
files for you. In the Run tab, you must turn off the Use UCW checkbox if
you want to use the installed compiler; this item also appears on the Tools
menu.
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T I P
It is very useful to have more than one compiler available; when you get mysterious
error messages, it’s good to have a second opinion. Therefore, you should use both
compilers to get a better understanding of where your programs are going wrong.

The Compilation Process: Compile, Link, Go
UnderC is quick at getting programs running, but not very fast at execut-
ing them. Once you are happy with your program and need to generate a
standalone .EXE file, you need to build the program using a C++ compiler
and linker.

A C++ compiler translates .cpp files into object files that contain machine
code. These files can’t be executed immediately because they contain unre-
solved references to other functions, some of which are in the other object
files of the project but most of which are contained in the libraries. In the
case of GCC, the object files end in .o, and the library files end in .a (for
“archive”). For BCC32 and Microsoft C++ (CL), the object files end in .obj,
and the library files end in .lib.

The linker resolves all the function references in the object files, packing
them together into an executable program. Not all the code a program
needs is necessarily linked statically; much of the runtime libraries sit in
MSVCRT40.DLL, which is a DLL. (DLLs are often called shared libraries.)
DLLs are loaded only when the program begins execution. (Windows is
mostly a collection of DLLs plus device drivers.) The file that results from
the link phase is by default called a.exe in GCC, but it is easy to modify the
name by using the -o command-line option, which is followed by the desired
name, as in the following example:
C:\gcc\test>c++ hello.cpp
C:\gcc\test>a 10 20
Program is C:\GCC\TEST\A.EXE
arg 0 C:\GCC\TEST\A.EXE
arg 1 10
arg 2 2
C:\gcc\test>c++ -o hello.exe –s hello.cpp
C:\gcc\test>hello
Program is C:\GCC\TEST\HELLO.EXE

The resulting executable from the first command is about 167KB, which
seems large for a 10-line program, but GCC defaults to outputting debugging
information. So using the –s command-line option (which strips the debug
information from the file) brings the file size down to 75KB.
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If you really need a small program and can live with some restrictions, you
can do two things: You can use C input and output (that is, printf(), and
so forth) or you can tell the compiler to use the UnderC pocket libraries.
You use the -I command-line option to specify the UnderC for Windows
(UCW) include directories. If the UCW directory is c:\UCW, the following
command builds a 23KB “Hello, World!” C++ program that is noticeably
faster to compile and link than using the default C++ libraries. This shows
that there is nothing intrinsically big and bloated about C++ programs; it
all depends on the libraries.
C:\gcc\test>c++ -o hello.exe -s -I”c:\ucw\include” hello.cpp

In Quincy 2000, you can achieve the same effect by selecting the Build tab
of the Options dialog, and putting c:\ucw\include in the Includes text field.

To build a program that contains a number of files, you can put more than
one .cpp file on the command line. The following example first shows you
the one-line command to build a program composed of two files, and then
breaks this down into two separate compilation steps and one separate link
step (note the –c option, which tells GCC to compile but not link):
C:\gcc\test>c++ -o test.exe one.cpp two.cpp
C:\gcc\test>c++ -c one.cpp
C:\gcc\test>c++ -c two.cpp
C:\gcc\test>c++ -o test.exe one.o two.o

The trouble with building this program on one line is that each file is com-
piled separately, whether it needs to be recompiled or not. This gets to be a
hassle for anything more than a simple project. Using –c, you can compile a
C++ file manually, but then you need to recompile anything that might
have changed—remember that a file must be recompiled if any header
(include) file changes. Creating a project in Quincy 2000 is one way to build
a program efficiently; later in this appendix, you will learn how to put
together a simple makefile.

Building a YAWL Application
The installation on the CD-ROM comes with two YAWL libraries: libyawl.a
(GCC) and yawl.lib (BCC32). YAWL is used for writing graphical Windows
programs and stands for Yet Another Windows Library, and is discussed in
Appendix B, “A Short Library Reference.” To build a YAWL program with
GCC, you need to link with libyawl.a and the Mingw32 graphics device
interface (GDI) import library:
C:\gcc\test>c++ yhello.cpp libyawl.a –lgdi32 -lcomdlg32
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You need the GDI library to glue YAWL to the underlying Windows applica-
tion programming interface (API) graphics calls. In the Mingw32 lib direc-
tory of GCC, you find a large number of files like lib*.a, one of which is
libgdi32.a. The name following the –l option in the command line is
prepended with lib, and then .a is appended. For the preceding command-
line example to work, libyawl.a must be in the current directory. It is most
convenient to move it into c:\gcc\lib (wherever GCC is located) because
you can then access it as follows:
C:\gcc\test>c++ yhello.cpp -lyawl –lgdi32 -lcomdlg32

This works, but the result has an interesting property. The resulting pro-
gram has both a window and a text console. If the program is run from a
command prompt, an extra console window is not generated. If the program
is run from Windows Explorer, the extra console window can be irritating.
(Sometimes it can be helpful to use the console for debug output.) So here is
the final version of how to build a YAWL program, which you might want to
make into a batch file:
C:\gcc\test>c++ yhello.cpp -lyawl –lgdi32 -lcomdlg32 -mwindows

Linking a DLL into UCW
Here is the UCW header file for the <cctype> character classification func-
tions:
// UnderC Development Project, 2001
#ifndef __cctype_H
#define __cctype_H
#lib MSVCRT40.DLL
extern “C” {
int isalpha(int);
int isalnum(int);
int isdigit(int);
int isspace(int);
int isprint(int);
char toupper(int);
char tolower(int);

}
#lib
#endif

The #lib command is unique to UnderC. It dynamically loads the specified
DLL. Thereafter, any function prototype is assumed to be a reference to
that DLL, until a #lib command appears without a filename.

The extern “C” qualifier is standard C++ and requires some explanation.
Normally, C++ function names within libraries are mangled or decorated;
that is, the function name has extra information about the signature. 
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For example, the following is an Microsoft mangled name:
?getline@istream@@QAEAAV1@PACHD@Z. Name mangling is not done to 
confuse programmers; rather, it is a consequence of function overloading.
Name mangling allows the linker to find exactly the right function from 
an overloaded set; there is actually more than one function called
istream::getline().  Although mangling occurs in a number of ways depend-
ing on the compiler, it is not the major obstacle to compatibility between
different compilers. More important is the fact that implementors have
done things like passing and returning object values in different ways. 

extern “C” tells the compiler that the function name is not mangled as a
C++ name but imported (or exported) as a plain C-style function. In a simi-
lar way, to export a C++ function to another language, you use this:
extern “C” double sqr(double x)
{ return x*x; }

In this way, C++ programs can be linked with other languages such as C,
Pascal, and FORTRAN.

You can extract the exported functions from a DLL by using the TDUMP
utility that comes with the Borland compiler. For example, you can find the
mangled form of istream::getline() by dumping the exports of
MSVCRT40.DLL into a redirected file out.txt. MSVCRT40.DLL is the Microsoft
runtime library that ships with Windows:
C:\gcc\test>tdump -ee \windows\system\msvcrt40.dll > out.txt

Fortunately, the standard C functions are exported with plain undecorated
names, otherwise only Microsoft C++ programs could use them. Any func-
tion in this DLL that you need to export must therefore include extern “C”.

You can import any Windows API call by linking to the correct DLL. Most
window-management functions are in user32.dll; note that any function
that deals with text comes in ASCII and Unicode versions, which are distin-
guished by A and W, respectively. (All these names are publicly available
through TDUMP.) The __API attribute is unique to UCW and is necessary
because the calling convention (__stdcall) is different from usual C calls.
__stdcall is also an available attribute, but the name mangling is nonstan-
dard (that is, Microsoft does not follow its own conventions). This example
shows how two Windows API functions, FindWindow() and SetWindowText(),
can be imported into an UnderC interactive session. Note the A for ASCII
at the end of the function names:
;> #lib user32.dll
;> extern “C”
;>  __API int FindWindowA(char *,char *);
;> extern “C”
;>  __API void SetWindowTextA(int,char *);
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;> int h;
;> h = FindWindowA(NULL,”UnderC for Windows”);
(int) 1332
;> SetWindowTextA(h,”hello dolly”);

The FindWindowA() API call finds the first window with the specified cap-
tion and returns an integer value called the window handle—in this ses-
sion, the UCW console window. Using the window handle, you can change
the window text, which for top-level windows is the caption. Interactively
experimenting with the Windows API is a good way to become familiar with
the available resources. Bear in mind that there is practically no overhead
involved in using the API because DLLs such as user32.dll have already
been loaded.

Building an API program with GCC is straightforward because the proto-
types are all available in <windows.h>. You don’t need to remember the A
because FindWindow is a macro defined as FindWindowA if you’re using
ASCII. GCC by default uses the import libraries for user32.dll and
kernel32.dll, which covers most common API calls, except for graphics 
(in which case you use –lgdi as with linking YAWL programs).  Here is a
standalone version of the preceding UCW session which will compile with
GCC (or any Windows compiler):
// wtext.cpp
#include <windows.h>
int main()
{
HWND h = FindWindow(NULL,”UnderC for Windows”);
SetWindowText(h,”hello dolly”);
}
c:\gcc\test> c++ –s wtext.cpp

This produces a 4KB program, which again proves that C++ isn’t always
bloated. However, compiling wtext.cpp is not fast because of the sheer size
of <windows.h>. UnderC is such a useful prototyping tool for API program-
ming because it is practically instaneous.

Building a DLL with GCC
A large program can be built using several DLLs, which can be tested inde-
pendently and even loaded (and unloaded) dynamically. This makes it easy
for a team of people to work on the same project. Also, on large projects, the
greatest part of the build time is in the linking phase, which is much
shorter for DLLs than for static linking, where the linker has to find the
functions in the libraries and physically build them into the program file.
UnderC is useful in this case because the performance-critical parts of the
program can be built as DLLs and then tested and glued together in the
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interactive environment. So you can have the advantages of both fast code
and interactive development.

If you mix compilers, the best bet is to export all functions from a DLL as
C-style functions. These functions can be implemented using C++, so there’s
no need to do everything in C. Here is a very simple DLL source file:
// testdll.cpp
#define EXPORT extern “C” __declspec(dllexport)

EXPORT double sqr(double x)
{ 
return x*x;
}

extern “C” forces the name to remain unmangled, and 
__declspec(dllexport) is how a Windows compiler indicates that a 
function is to be exported. (It’s best to make that a macro.) Another way to
indicate the exports is to list them in a .DEF file, but the method in the
example is generally simpler to manage.

The command to build the preceding DLL with GCC is as follows:
c:\dlltest> c++ —shared -o dlltest.dll dlltest.cpp

This DLL can be immediately loaded into UCW, as follows:

;> #lib dlltest.dll
;> extern “C” double sqr(double);
;> sqr(2.0);
(double) 4.0

The UnderC command #unload dlltest.dll will release the connection
with the DLL; it is then possible to rebuild the DLL without getting a shar-
ing violation or having to close the UnderC session. You can then bring the
DLL back in with the first two commands above (that is, re-including the
prototype as well). It is useful to put any imports into a header file for this
reason.

A Simple Makefile
A complex project becomes tricky to build—or to make—because each
source file can have several dependencies. Say that a project has two source
files, one.cpp and two.cpp, and there is also a header (one.h). Both source
files are dependent on the header. Here is a makefile to build this project:
project.exe : one.o two.o

c++ -o project.exe one.o two.o
one.o : one.cpp one.h
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c++ -c one.cpp
two.o : two.cpp one.h

c++ -c two.cpp

A makefile consists of rules that have three parts: a target, a colon followed
by the dependent files, and a command that generates the target from the
dependent files. The first rule in our example is for project.exe, which is
dependent on the two object files one.o and two.o. The next line is the com-
mand that builds project.exe using the GCC linker.

If two.cpp changes, the third rule says that two.o is dependent on two.cpp ,
so it is recompiled; the first rule says that project.exe is dependent on
two.o, so the program is relinked. 

Here is a more convenient form of the makefile, which puts the list of object
files into a variable and defines an implicit rule for building .o files from
.cpp files. A variable x in a makefile is accessed with $(x); the special sym-
bol $< refers to the dependency of the implicit rule, which will be the .cpp
file in this case:
ofiles = tg-yawl.o twl.o tree.o
yowl.exe : $(ofiles)

c++ -o yowl.exe $(ofiles) -lgdi32
.cpp.o :
c++ -c $<

tg-yawl.o : tg-yawl.cpp twl.h    
twl.o : twl.cpp twl.h    
tree.o : tree.cpp turtle.h

The list of object files (which can stretch over several lines for a large pro-
ject) is now kept in one place, and the implicit rule .cpp.o defines what it
means to convert a .cpp file into an .h file.

If you call this file makefile, the command make at the Windows prompt
builds the program, but only if anything has changed. The GNU documen-
tation that comes with the GCC installation has an excellent manual for
make. One issue I have noticed is that if you have installed the Borland
compiler as well, the Borland program of the same name may be first on
the path, which will cause confusion since it is more old-fashioned than
GNU make. In such cases rename make.exe in your Borland bin directory.

Using Compiler Extensions
Every C++ compiler has a few special features. These features can be help-
ful, as long as you keep in mind that they are not portable. For example,
GCC’s typeof operator has also (more or less independently) been imple-
mented in UnderC. (It is on Bjarne Stroustrup’s list of things he would like
to see in the next standard C++ revision, so its future is promising.) The
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basic idea is that you can use it in declarations, where type usually has the
following form:
;> int i;
;> typeof(i) k,l,m;   

This might seem like a roundabout way of declaring integer variables, but
some entertaining things become possible. Control-statement macros
become even more expressive with the use of typeof. For example, it is
common to use an iterator to access all of the elements in a standard con-
tainer. It’s possible to save typing the loop out by using the following macro:
#define FORALL(it,c) \

for(typeof::iterator it = c.begin(); it != c.end(); ++it)
;> FORALL(ii,ls) s += *ii;  // concatenate all strings in ls

This version of FORALL unfortunately cannot be implemented by using stan-
dard C++, which means it should be avoided in portable code. However, it
can be useful in an interactive UnderC setting or if you use GCC exclu-
sively.

Several languages, including C#, have for each constructs. Here is how a
C++ FOR_EACH can be implemented:
template <class C, class T>

struct _ForEach {
typename C::iterator m_it,m_end;
T& m_var;

_ForEach(C& c, T& t) : m_var(t)
{ m_it = c.begin(); m_end = c.end(); }

bool get() { 
bool res = m_it != m_end;
if (res) m_var = *m_it;
return res;

}

void next() { ++m_it; }
}; 

;> string s;
;> _ForEach<list<string>,string > sri(ls,s);
;> sri.get();
(bool) true
;> s;
(string) ‘one’;
;> sri.next();
;> sri.get();
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(bool) true
;> s;
(string) ‘two’;

You need a class _ForEach that sets a given variable to each element of a
container in turn. Such a class, which can be called a reference iterator, is
easy to define.

This object keeps a reference to the variable, and it uses an iterator to the
container. It works for any type that supports an iterator type—not just for
the standard containers. It has two type parameters because it’s nice to be
free to use any compatible type for the loop variable. Given this class, the
following is the FOR_EACH macro:
#define FOR_EACH(v,c) \
for(_ForEach<typeof,typeof(v)> _fe(c,v); \

_fe.get();  _fe.next())
;> FOR_EACH(s,ls) cout << s << endl;
one
two
;> int i;
;> FOR_EACH(i,s) cout << i << endl;
116
119
111

This example first displays all the strings in a list of strings ls, and then
dumps out the ASCII values for the characters in s.

Curiously, it is possible to implement FOR_EACH in standard C++. You need
to write a function template that can deduce the type parameters and then
create the reference iterator. However, you cannot declare a variable of the
specific type, so ForEach needs to derive from a base class that defines
get() and next() virtual methods, and this has to be dynamically allocated,
so you need to use auto_ptr() to make sure this object is disposed of prop-
erly. Amazingly, the whole thing works, but it does not break any speed
records because of the virtual method calls. The version using typeof, how-
ever, is practically as fast as an explicit iterator; you will need to watch out
for any big objects being copied to the variable.
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destruction of 
objects, 250

destructors, 182-186
virtual, 257

dimension, of 
array, 54

directives, 84, 151
dispose( ), 297-301 



dissemblers, 311
distance( ), 226, 230
div( ), 99-100, 144-146 
division, 18-19 
do while statement, 36
DOM, 317
domain errors, 
106, 331

dot (.) operator, 172
double precision
numbers, 18

double word, 12
draw( ), 155, 164-165,
226, 227, 230

“dummy types,” 281
dump( ), 281, 283, 284
dynamic link
libraries (DLL), 85,
124, 363
compilers and 
compiling in, GCC in,
367-368

dynamic object 
creation, 248-250 

E
early binding, 215
elements, array, 54
elements, markup
language, 265

ellipse( ), 164, 348
else, 357
empty statements, 35
empty( ), 94, 189
encapsulation, 137,
175-182, 192, 201
WinInet API, 194-198 

end( ), 257, 285, 322,
323, 324, 327
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endif, 357
endl, 95
endless loops, 37
entry points, 87
enumerations (enum),
17, 209

eof( ), 37, 318
equal( ), 328
equality (= =) 
operator, 19

erase( ), 323
error checking, 98-101
ambiguous match
errors, 143

class templates 
and, 291

domain errors in, 
106, 331

Reverse-Polish
Notation (RPN) 
calculator using, 
105-108

templates and, 282-283 
underflow, 106

eval( ), 103-105, 
107-108

exception
hierarchies, 211

exceptions, 108, 
185-186, 210-211
catching, 99-101, 
185-186, 210-211

classes as, 210-211 
throwing, 99-102, 198,
210-211, 258

try/catch blocks, 99-
101, 198, 210-211 

.exe programs, 89
exp( ), 333
explicit keyword, 
253-255

exponentiation, 11
expressions, 9-26 
Extensible Markup
Language (XML),
264-273, 317

extensions, in 
compilers and 
compiling in, 369-371 

extensions, in string
files, 136-137 

extraction (>>) 
operator, 24, 78, 
146-148, 165-166, 318
overloading of, 146-148 

F
factorial function,
recursion and, 149

factories, object, 232
fail( ), 102, 159, 
162, 198

fcolor( ), 348
file scope, 40
file streams, 
reading, 319

File Transfer Protocol
(FTP), 199

fill( ), 77, 329-330 
filling sequences, 329
final keyword, in
Java, 217

find( ), 22-23, 67, 
71-72, 172, 327-328

finding, 326-328 
first in first out
(FIFO), 69, 323

first in last out
(FILO), 68

flags, command 
line, 90

dissemblers



379generating sequences

flags, logical, 47
floating point 
numbers, 10, 11, 12,
106, 332

flow control, 4
flushing a buffer, 185
fonts, in Yet Another
Windows Library
(YAWL), 347

fopen( ), 342
for_each( ), 155, 163,
283, 284, 285, 286,
324, 325

for statement, 37-39,
48-49, 56, 61, 69, 70
array initialization
using, 56, 61

formatting output,
319-320

FORTH, 103
FORTRAN, 10, 111,
332

fprintf( ), 342
framework, class, 
222-223

fully qualified names,
94, 271

function calls, 30
function pointers,
154-157

functions, 4, 29, 53,
111, 335-342 
accessor, 175
ambiguous match 
in, 143

anatomy of, 31-32, 31
any-sequence operation
in, 283-287 

arguments in, 31
arrays passed to, 57-58 

blocks and braces in,
31, 35, 85

calls to, function 
calls, 30

cstdlib, 339-340 
declaring, 84, 85
default arguments 
in, 140

default parameter 
values for, 140-144

defining, 30-33 
different parameters
for the same operation
in, 143

early binding of, 215
fully qualified names
in, 94

functions passed to,
154-157

generic, 278-283 
helper, 178
implementation files
and, 93

interface files and, 93
iostream, 23, 167, 
318-320, 318

late binding of, 218
linker for, 86
main( ), 87-88 
mathematical, 331-332 
methods vs., 172, 
188-189

namespaces to group,
93-95

no value returned
(void), 32

objects acting as, 
286-287

operators as, 
145-146, 186

overloading (See
overloading functions)

parameters in, 31
passing parameters by
reference in, 140

passing structs to, 
114-117 

pointers to, 154-157 
prototyping, 85, 
162, 190

recursion in, 148-153 
returning to, 98
reuse of, 221-222 
side effects of, 33
signature of, 142
specialization in, 
280-281

string, 336-339 
inside structures, 
172-174

structs in, instead of
parameters,
114-115, 140

structures in, 122
templates for (See also
templates), 278

type conversions and,
252-255

variable length 
argument lists, 
cstdarg, 340-341 

G
garbage collection,
184-186, 249

generate( ), 330
generating sequences,
329-330



generic functions,
278-283

get methods, 175, 191,
206, 254

get( ), 133, 136-137,
166, 175, 177, 197, 264

getline( ), 24-25, 90,
318, 358

global namespace, 
92-93

global scope (See
scope operator)

global variables, 40
GNU Compiler
Collection (GCC), 1,
6, 89, 312, 314, 
361-371

Gosling, James, 2
graphical user 
interface (GUI), 221
class frameworks 
for, 223

functions, 221-222 
Microsoft Foundation
Classes (MFC), 223

Visual Control Library
(VCL), 223

Yet Another Windows
Library (YAWL), 
223-225

graphics
histograms, 77-81, 77
Shape Drawing 
example using Turtle
Graphics, 157-167,
225-237

Tree Drawing recursion
in Turtle Graphics
example, 150-153 

greater than (>) 
operator, 19
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greater than or equal
to (>=) operator, 19

grow( ), 259, 261

H
handles, 192-193 
header files, 
84-92, 190

helper functions, 178
hierarchy, class, 
212-216

histograms, 77-81 
history of C++ 
development, 2-3 

HTTP( ), 197
hyperlinks, 199
Hypertext Markup
Language (HTML),
126, 199, 264-273

Hypertext Transfer
Protocol (HTTP), 198

I
icons used in book, 5
#if directive, 359
if else statement, 
33-35, 39, 97

if statements, 34-35 
#ifdef and #ifndef
directives, 195, 
357-359

ifstream, 25, 84
implementation files,
93, 191
interface separated
from, 191-192, 
295-296

implementation
inheritance, 204

implicit declaration
of variables, 13

#include directive, 84,
157, 352

increment (++) 
operator, 20, 70, 294

index, array, 54, 55
infix notation, 103
information hiding,
192, 193

inheritance, 201, 
202-211, 236, 271
access control and
derivation in, 206-208 

copying using, 245-248 
derivation vs., 204
extending a struct
using, 202-204 

implementation, 204
pointers and, 292-293 
relationships and, 205
subclassing and, 
204-206

template class, 290-291 
initialization, 239
arrays, 54-56, 77, 118
assignment vs., 
240-241

initialization lists, 
constructor, 208-209 

struct, 113
variables, 13-14, 41

inline compiling, 175,
191, 285

input and output
(I/O), 2, 23-25, 
318-320
cin in, 24-25, 95, 318
cout in, 23-24, 79, 95,
100, 280, 318

cstdio, 341-342 

generic functions
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extraction operator
(>>) in, 24, 78, 
146-148, 165-166, 318

getline( ) in, 24-25 
ifstream method for, 25
insertion operator 
for, 23

iostreams library for,
23, 167, 318-320, 318

line oriented input 
programming and, 24

put to (<<) operator for,
23, 280, 308

reading from files, 25
reading from strings,
25

writing to files in, 25
insert( ), 323, 324
inserter( ), 295, 326
insertion (<<) 
operator, 23, 146-148,
180, 280, 308, 318
overloading, 146-148 

instance,
instantiation,
279-280

instruction
pointer, 149

int, 12
integer overflow, 16
integers, 11-13, 18
integrated
development
environment (IDE),
92, 361

interface, 93, 176, 188,
190-192
implementation
separated from, 
191-192, 295-296 

iostream, 23, 167, 
318-320, 318

isqr( ), 30
isspace( ), 86
istringstream, 25
iterators, 69-72, 121,
258, 259, 282, 285, 325
erasing/inserting items
using, 72

finding items using, 
71-72

J
Java, 1-3, 175, 
248-250, 351
data types, 13

Java Virtual Machine
(JVM), 3

K
keys, in array 
values, 59

Knuth, Donald, 97

L
late binding, 218
length( ), 22, 173
less than (<) 
operator, 19

less than or equal to
(<=) operator, 19

libraries, 2, 83, 84-86,
317-348
class, 265-273 
code reuse and, 222
custom, 85
dynamic link, 85, 124,
363, 367-368 

runtime, 85
shared, 363
standard, 85
std namespace and, 
95-96

Visual Control Library
(VCL), 223

Yet Another Windows
Library (YAWL), 233

line-oriented input
programming, 24

linear searches, 59-60 
linked lists, 65-66, 129
Lippman, Stanley,
176, 301

lists, 69, 321-324
erasing/inserting items
using iterators, 72

function pointers 
and, 156

linked, 65-66, 129
of structures, 118-119 

literals, constant, 16
literals, string, 21
little endian 
processing, 126

local variables, 
40-42, 251

localtime( ), 122
log( ), 331, 333
log10( ), 333
logical flags, 47
logical operations, 
19-20

LOGO, 150
long, 12
loops, 36-39, 48-49, 69,
70, 75, 103-104, 284,
325
endless, 37



M
machine words, 12
macros, 151
preprocessor and, 
352-357

main( ), 87-92
UnderC, 307

make files, 92, 368-369
make( ), 181, 183
manipulators, 318
map, 66-67, 69, 106, 131
function pointers 
and, 156

markup languages,
264-273

mathematical
functions, 331-332 

max( ), 75, 76, 330-331 
member functions
(See also methods),
172-175

member templates,
296-297

member variables or
fields, 112-114 

memberwise copying,
242-243

memcpy( ), 242-243 
memory, 124
allocation of, using new
and delete, 127-129,
184-186, 249

merge( ), 324
#message
directive, 359

message queues, 69
methods (See also
member functions),
21, 201
functions vs., 188-189 

382

inlining, 175, 191, 285
operators as, 186-189 
overriding, 217, 226
static, 179-182 
virtual, 201, 
216-220, 277

Microsoft, 3
Microsoft Foundation
Classes (MFC), 
223, 255

min( ), 75, 76, 279-280,
330-331

Mingw32, 362
mismatch( ), 328
month( ), 178
move( ), 155
moving averages 
calculation, 76

multiplication, 10, 144

N
nameless
variables, 128

namespaces, 84, 
92-96, 301
anonymous, 93
collisions in, 96
fully qualified names
in, 94

function grouping
using, 93-95 

global, 92-93 
implementation files
and, 93

interface files and, 93
nameless, 93
std, 95-96

naming conventions
fully qualified names
in, 94

namespaces and, 92-96 
variables and, 14

narrowing
conversion, 18

natural languages, 1
Naughton, Patrick, 2
nested classes, 258
nested statements, 98
.NET, 3
new ( ) member 
function, 227

new( ), to allocate
memory, 127-129,
184-186, 249

NOT (! =) operator, 19
notes, 5
npoints( ), 226
NULL pointer, 125
numeric, 332
numerical operations,
331-335

numerical types, 
12-13

O
obj( ), 286
Object class, 292
object code, 85
object factories, 232
object hierarchy, 
212-216

object oriented 
programming, 4, 137,
167, 171, 221, 225

objects, 4, 167
automatic destruction
of, 250

dynamic creation of,
248-250

as functions, 286-287 

machine words
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strings as, 21
temporary, 250-252 

octal numbers, 339
ofstream, 84
open( ), 271, 319
operator
precedence, 10

operators, 18-20
as functions, 
145-146, 186

as methods, 186-189 
overloading (See
overloading operators)

OR (||) operator, 
19, 356

outs( ), 270
overflow, buffer, 69
overflow, integer, 16
overloading
functions, 137, 
139-167, 177
different parameters
for the same operation
in, 143

overloaded set for, 142
sqr( ), 141-143 

overloading operators,
144-148, 187, 270, 280,
308, 318
adding two points
together using, 
144-145

bit shifting and, 
146-148

extraction (>>) 
operator and, 24, 78,
146-148, 165-166, 318

insertion (<<) operator
and, 23, 146-148, 180,
280, 308, 318

operators as functions
in, 145-146 

overriding a method,
217, 226

P
pages of memory, 124
Papert, Seymour, 150
parameterized
classes, 287-291 

parameterized type, 63
parameters/
arguments, 31
by reference 
passing, 140

default values for, 
140-141, 143-144 

different, for the same
operation in, 143

parent classes, 204
parentheses to 
indicate operator
precedence, 10

parsing, 77
penup( ), 348
pi( ), 31
piping, 91
plot generation, 76-77 
plot( ), 155, 164, 348
pointers, 3, 111, 
119-129, 240, 258, 
259, 285
access violations and,
123-124

copying and, 244-245 
dangling, 128
debugging, 129
dereferencing, 121
dispose( ) for, 297-301 

function, 154-157 
inheritance and, 
292-293

instruction, 149
linked lists and, 129
multiple declarations
of, 121

nameless variables 
in, 128

NULL, 125
to pointers, 124-125 
as references, 119-123 
reference counted 
data, 297

referencing in, 123-125 
“smart,” 297-301 
standard conversion
and, 252

as structures, 121-122 
within structures, 123
this, 179-182 
types of, 121
value of, 119

polymorphism,
212-221, 277, 285
compile-time, 277, 285
run-time, 277
static vs. dynamic, 212

pop( ), 68-69, 103, 189,
190, 270, 321, 323

portability of C++
code, 1-2 

postfix increment
operator, 20

pow( ), 11, 331
powers of numbers
(See scientific
notation)

precedence of 
operators, 10



precision of 
numbers, 12

predicates, 327
prefix increment
operator, 20

preprocessor, 84, 151,
351-359
assert( ) in, 358-359 
conditional compilation
and, 357-359 

#define directive in,
352-354

#if directive in, 359
#ifdef and #ifndef
directives in, 357-359 

#include directive 
in, 352

macros and, 352-357 
#message directive 
in, 359

stringizing operator in,
353-355

token pasting in, 
353-355

#undef directive in, 354
printf( ), 341-342 
privacy issues, 179
private access 
specifier, 207-208 

private members of
class, 174-175 

procedures (See also
functions), 32

programs, 83, 
87-88, 111
building, 88-89 
termination of, 108

promotion of values
in variables, 15

properties, 254-255 
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protected access 
specifier, 207-208 

prototype functions,
85, 162, 190

public access 
specifier, 207-208 

public members of
class, 174-175 

pure virtual 
method, 221

push( ), 68-69, 74-75,
189, 190, 260-261, 270,
295, 321, 323

put to (<<) operator,
23, 280

put( ), 197-198, 
240-241, 263, 264

Pythagorean
theorem, 172

Q

qsort( ), 286
queues, 68-69, 323
Quincy 2000, 92, 362
breakpoint setting in,
314-315

command line 
arguments for, 314

entering program 
into, 313

running program 
in, 314

switching between
UnderC and GCC 
in, 314

watch window in, 315
quotation marks, in
strings, 22

R

rand( ), 340
random access, 63
random access ([])
operator, 187-188,
259, 263, 286, 323

random numbers, 
18-19, 340

read( ), 134-135, 160,
161-162, 178, 226, 228,
231, 232

reading data, 318
reading from files, 25
real numbers, 10, 11
realloc( ), 259
recompiling, 91-92 
rectangle( ), 164, 227,
228, 348

recursion, 173
binary search using, 148
factorial function 
in, 149

Tree Drawing example
of, using Turtle
Graphics, 150-153, 150

recursion, 148-153, 148
reference counted
data, 297

reference counted
data, 256-264, 256

reference types, 116
references, 240
handles as, 192-193, 192
pointers as, 
119-123, 119

referencing
pointers and, 
123-124, 123

precision of numbers



385“smart reference”

“smart reference”
in, 263

temporary, 356
relationships, 205
remainder (%) 
operator, 58

remainder, 18-19, 18
remove( ), 324, 330
repeat( ), 85
replace( ), 23, 330
replace( ), 73-74, 73
representation, 176
request, in 
WinInet, 192

reserve( ), 321, 322
reset( ), 163
resizable (std::vector)
arrays, 62-65, 62

resizable array 
example, 255-264, 255

resizable arrays, 320
return statement, 44
reuse of code, 221-225
Reverse-Polish
Notation (RPN) 
calculator, 
103-108, 103

rich text format
(RTF), 126

Ritchie, Dennis, 2
run-time errors, 211
run-time
polymorphism, 277

runtime libraries, 85
runtime stack, 149
runtime type 
information (RTTI), 
201, 218

S
sandbox, Java, 3
SAX, 317
say( ), 218
scalars, 57, 144
scale( ), 348
scalex/scaley( ), 348
scientific notation, 11
scope (::) operator, 70,
94, 95, 181, 191, 210,
249, 308

scope, 40-42, 40
searches
iterator use in, 
71-72, 71

mapping vs., 66-67, 66
sequences and, 
71-72, 71

searches, 326-328, 326
searching
array values, 59-60, 59
binary, 59-60, 59
linear, 59-60, 59

security
binary file, 127
Java, 3

seekg( ), 135
seekg( ), 136-137, 136
semicolon as state-
ment delimiter, 10

sequences
filling, 329-330, 329
generating,
329-330, 329

modifying, 330
sequences, 283-287,
283

sequences, 71-72, 71

sessions, in 
WinInet, 192

set ( ), 175
set methods, 175, 191,
206, 254

set( ), 133, 173, 
177, 183

set( ), 136-137, 136
setprecision( ), 319
setw( ), 319
Shape class, 
226-237, 226

Shape Drawing 
example using
Turtle Graphics, 
157-167, 157

Shape Drawing 
example using
Turtle Graphics, 
225-237, 225

ShapeContainer class,
230, 236

ShapeWindow class,
233-236, 233

shared libraries, 363
short, 12
shortcuts, 20
show( ), 180-181, 180
signature, of 
functions, 142

“silent”
conversion, 252

Simula, 2
sin( ), 84, 85, 104, 333
sine, 11
sinh( ), 333
size( ), 321, 322, 323
sizeof operator, 14
“smart reference,” 263



“smart” pointers, 
297-301, 297

smoothing, in 
statistical
calculation, 76

sort( ), 286, 324
sorting
array value, 61-62, 61
bubble type, 61-62, 61

specializations, in
templates,
280-281, 280

splice( ), 324
sprintf( ), 342
sqr( ), 31, 141-143, 141,
278-280, 278

sqrt( ), 11, 85, 107, 
326, 331

square root, 11
square roots, 30-31, 30
srand( ), 340
Stack class, 190, 191
stacks, 103, 189, 
190, 266
pop( ), 103
Reverse-Polish
Notation (RPN) 
calculator using, 103-
105, 103

runtime, 149
underflow in, 106

stacks, 68-69, 68
standard
algorithms, 285
numerical, 332

standard algorithms,
324-331, 324

standard containers
class templates and,
291-294, 291
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standard containers
(See also arrays), 53

standard containers,
281-283, 281

standard containers,
321-324, 321

standard
conversions, 252

statements, 10, 29
nested, 98

static, 209
static methods, 
179-182, 179

statistics calculation,
73-77, 73

std namespace, 
95-96, 95

strcat( ), 336
strchr( ), 271, 336
strcmp( ), 328
strcpy( ), 271, 336
string, 84, 95, 96, 
167, 210

String class, 
320-321, 320

String class, 336-339,
336

stringizing operator
preprocessor and, 353-
355, 353

strings, 53, 239
appending, 22
concatenating,
21-22, 21

extracting, using 
substr( ), 22-23, 22

finding, using find( ),
22-23, 22

getline( ) for, 24-25, 24
istringstream in, 25
length( ) of, 22

quotation marks in, 22
reading from, 25
reading, 318-319, 318
replacing, using
replace( ), 23

string type, 21
substrings in, 21
variables as, 21
writing, 132-135, 132

strings, 21-23, 21
strings, 336-339, 336
strlen( ), 337
strncpy( ), 133, 337
Stroustrup, Bjarne, 2,
285, 301

strrchr( ), 336
strstr( ), 336
strtok( ), 271, 272
strtok( ), 337-339, 337
strtol( ), 339
struct, 175, 225
passing of, to function,
114-117, 114

struct definition, 
112-114, 112

structured
programming, 4

structures, 111
aggregates of data 
and, 112

aliasing in, 116
arrays of, 117-119, 117
const references in, 117
defining new types for,
112-114, 112

extending, using 
inheritance,
202-204, 202

functions inside, 
172-174, 172

functions using, 122

“smart” pointers
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initialization of, 113
lists of, 118-119, 118
member variables or
fields in, 112-114, 112

parameters/instead
of parameters in 
functions, 140

parameters/instead
of parameters in 
functions,
114-115, 114

pass by reference, 116
pass by value, 
115-116, 115

passing structs to 
functions in, 
114-117, 114

pointers as, 
121-122, 121

pointers within, 123
Shape Drawing 
example using Turtle
Graphics,
157-167, 157

Shape Drawing 
example using Turtle
Graphics,
225-237, 225

struct definition for,
112-114, 112

user defined, 
112-114, 112

vectors of, 118-119, 118
writing to binary files,
125-127, 125

subclasses,
204-206, 204

subscript (See index),
of array, 55

substr( ), 22-23, 22
substrings, 21

Sun Microsystems, 3
switch statement, 39-
40, 44, 48, 56, 354

syntax, 240

T
Tag class, 266-267, 266
tags, markup 
language, 265

tan( ), 333
tanh( ), 333
TDC, 342, 346
templates
any-sequence function
operation in, 
283-287, 283

class type, 287-297, 287
error checking in, 
282-283, 282

instance or 
instantiation of, 
279-280, 279

member templates and,
296-297, 296

objects acting as 
functions in, 
286-287, 286

parameterized classes
and, 287-291, 287

separating template
interface from imple-
mentation in, 
295-296, 295

specializations in, 
280-281, 280

standard algorithms
and, 285

standard containers
and, 281-283, 281

templates, 277-301, 277

temporary objects,
250-252, 250

temporary variables,
251, 356

terminating a 
program, 108

TEventWindow, 342
TEventWindow in,
345-346, 345

TFrameWindow, 342,
346, 347

TGFrameWindow in
Yet Another
Windows Library
(YAWL)
TFrameWindow in, 347

this pointer, 
179-182, 179

throwing exceptions,
99-102, 198, 
210-211, 258

tilde (~) destructor
symbol, 185

time( ), 122
tips, 5
today( ), 122
token pasting
preprocessor and, 
353-355, 353

tokens, 77, 318
tokens, 337-339, 337
top down design, 43
toupper( ), 156
transform( ), 324, 325
transform( ), 
155-156, 155

translate (+=) 
operator, 187

translate( ), 180
Tree Drawing 
example, 150-153, 150



trim( ), 86
try/catch blocks, 
99-101, 198, 210-211

Turtle Graphics, 81
Shape Drawing 
example using, 
157-167, 157

Shape Drawing 
example using, 
225-237, 225

Tree Drawing in, using
recursion,
150-153, 150

Yet Another Windows
Library (YAWL) and,
347-348, 347

TWin, 342
TWin, 343-344, 343
type coercion, 206
type conversion, 
252-255, 252

type parameter, 63
type( ), 226
typecasting, 18, 124
typedef, 154, 289

U
unary operators, 70
#undef directive, 354
Under C for Windows
(UCW)
compilers and 
compiling in and, 
365-367, 365

UnderC
breakpoint setting in, b
and gt commands,
309-311, 309
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Clipboard use with, 306
executing (x) command
in, 307

exiting (using q and 
ql), 306

inspecting and 
browsing (v, d, and 
lv commands), 
308-309, 308

inspecting values in,
311-312, 311

loading (l) command 
in, 307

loading and running
programs in, 
306-309, 306

modifying program
while running in, 312

Quincy 2000 use in,
312-315, 312

running (r) command
in, 307

stop (s) command 
in, 307

switching between
GCC and, 314

temporary breakpoints
in, 311

working directory in,
changing and 
displaying,
306-307, 306

writing debug code in,
311-312, 311

UnderC for Windows
(UCW) command 
reference,
305-315, 305

UnderC, 3-4, 3
underflow, buffer, 69

underflow, stack, 106
Unicode, 13
Unicode, 86-87, 86
unique( ), 263, 
264, 324

UNIX, 2
unscalex/
unscaley( ), 348

unsigned, 15
update( ), 163
user defined 
conversion operator,
254-255, 254

user defined 
structures,
112-114, 112

user IDs, 131-132, 131

V
val( ), 107
valarray, 333-335, 333
value semantics, 240
variables
case sensitivity in, 14
declarations for, 
13-14, 13

declaring, 84
enclosing local 
scopes, 41

global, 40
global scope operator
in, 41

implicit declaration 
of, 13

initialization, 41
initialization of, 
13-14, 13

integer overflow in, 16
local, 251

trim( )



389Yet Another Windows Library (YAWL)

local, 40-42, 40
member, in structures,
112-114, 112

nameless, 128
naming, 14
pointer, 119-129, 119
promotion of values 
in, 15

scalar, 57
scope of, 40-42, 40
sizeof operator for, 14
strings as, 21
temporary, 251, 356
typecasting, 124
values assigned to, 
15-16, 15

volatility in, 42
variables, 13-16, 13
variables, 9-26, 9
vector container type,
62-65, 62

vector, 321-324, 321
vectors
erasing/inserting items
using iterators, 72

function pointers 
and, 156

resizable array using,
255-264, 255

of structures, 
118-119, 118

virtual destructors,
257

virtual method table
(MT), 218

virtual methods, 
201, 277

virtual methods, 
216-220, 216

Visual Control
Library (VCL), 223

Visualization Toolkit
(VTK), 317

void type functions, 32
volatility in 
variables, 42

vplot( ), 76, 155

W
watch window,
Quincy, 315

web site companion
to book, 301

what( ), 101, 210
while statement, 36,
38, 103-104 

whitespace, 10, 86
wildcard
expansion, 89

Windows Graphics
Device Interface
(GDI), 342-343, 346

Windows program-
ming, 223-225 

WinInet API, 192-194
encapsulation of, 
194-198

WinSock, 192

word alignment, 117
word, machine, 12
wrappers, 292-294 
wrapping a class, 
192-199

write( ), 126, 135, 
163-165, 178, 228, 231

writing to files, 25

Y-Z
Y2K dates, 178-179 
year( ), 177, 178
Yet Another Windows
Library (YAWL), 
223-225, 233, 254, 
342-348
color setting in, 346
compilers and 
compiling in and, 
364-365

font setting in, 347
TDC, 342, 346
TEventWindow in, 342,
345-346

TFrameWindow in,
342, 346

TGFrameWindow 
in, 347

Turtle Graphics and,
347-348

TWin in, 342, 343-344 
Windows Graphics
Device Interface (GDI)
in, 342-343, 346
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