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Wavelets in Physics

This book surveys the application of the recently developed technique of the wavelet

transform to a wide range of physical fields, including astrophysics, turbulence,

meteorology, plasma physics, atomic and solid state physics, multifractals occurring

in physics, biophysics (in medicine and physiology) and mathematical physics. The

wavelet transorm can analyse scale-dependent characteristics of a signal (or image)

locally, unlike the Fourier transform, and more flexibly than the windowed Fourier

transform developed by Gabor 50 years ago. The continuous wavelet transform is

used mostly for analysis, but the discrete wavelet transform allows very fast

compression and transmission of data and speeds up numerical calculation, and is

applied, for example, in the solution of partial differential equations in physics. This

book will be of interest to graduate students and researchers in many fields of

physics, and to applied mathematicians and engineers interested in physical

application.

J. C. VAN DEN BERG studied physics and mathematics at the University of

Amsterdam. He graduated in high energy physics, doing some work on the

automatization of the analysis of bubble chamber films exhibiting the paths of

elementary particles in collision experiments. He later took a degree in philosophy of

science and logic at the same university, doing his masters thesis on quantum logic.

He became a mathematics instructor at Wageningen University in 1973 and is now

an Assistant Professor of Applied Mathematics at the Biometris group of

Wageningen University and Research Center.

After being interested in the foundations of quantum mechanics for many years,

he moved on to non-linear dynamics, especially the concept of multifractals and the

difficulties of analysing them. In the writings of Alain Arnéodo on multifractals, he

came across the wavelet transform for the first time, taking his first technical course

on the subject in 1991 at the CWI in Amsterdam. Soon after, discovering the

pioneering works of Marie Farge in turbulence and Gerald Kaiser in

electromagnetism, he became convinced that wavelets were important for physics at

large. Gradually wavelets overshadowed all his other interests and have remained a

main focus ever since. This book is a result of that continuing interest and he hopes it

may stimulate others to explore the possibilities of the new tools wavelet analysis

continues to deliver.
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Université Aix-Marseille III

Marseille, France

charles-antoine.guerin@fresnel.fr

S. Havlin

Department of Physics

Bar-Ilan University

Ramat Gan, Israel

havlin@ophir.ph.biu.ac.il

M. Holschneider

Universität Potsdam

Applied and Industrial Mathematics

Potsdam, Germany

hols@rz.uni-potsdam.de

List of contributors xiii



L. Hudgins

Northrop Grumman Electronic Systems

Space Systems Division

Azusa, California, USA

lonnie.hudgins@northropgrumman.com

P.Ch. Ivanov

Center for Polymer Studies, Boston University and

Beth Israel Deaconess Medical Center, Harvard Medical School

Boston, Massachusetts, USA

plamen@argento.bu.edu

J.H. Kaspersen

SINTEF Unimed Ultrasound

7465 Trondheim, Norway

Jon.H.Kaspersen@sintef.no

N.K.-R. Kevlahan

Department of Mathematics and Statistics

McMaster University

Hamilton, Canada

kevlahan@mcmaster.ca

B.Ph. van Milligen

Laboratorio Nacional de Fusión

Asociación EURATOM-CIEMAT

Madrid, Spain

boudewijn, vanmilligen@ciemat.es

J.F. Muzy

Laboratoire SPE, CNRS UMR 6134

Université de Corse
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Preface to the paperback edition

Since the hardback edition of this book was put together wavelets have

continued to flourish both in mathematics and in applications in ever more

diverse branches of science and engineering. A standard library electronic

alert system now easily produces more than fourteen hundred references to

papers per year, developing or using wavelet techniques. These are pub-

lished in a very broad array of journals. Here we can point to only a few of

the recently developed methods, in particular as they have been used in

physics.

In recent years many variations on the wavelet theme have appeared. One

tries to go ‘beyond wavelets’. In this context there is a whole family of new

animals in the wavelet zoo. Its members carry names like bandelets, beamlets,

chirplets, contourlets, curvelets, fresnelets, ridgelets : : : These are new bases or

frames of functions, customized to handle 2D or 3D data processing better.

In [23] for example, it is explained how ridgelets and curvelets can be used in

astrophysics. It turns out that noise filtering, contrast enhancement and

morphological component analysis of galaxy images are performed much

better by a skilful combination of the new transforms than by mere wavelet

transforms. More examples can be found on the ‘curvelet homepage’ [24],

maintained by J.L. Starck.

It seems that the applications of the discrete wavelet transform (DWT) far

outnumber those of the continuous wavelet transform (CWT), although the

latter started the modern development of wavelet theory in the early eighties.

Of the more than two hundred books on wavelet theory that have been

published since the early nineties, most are focussed on the DWT and some-

times omit to mention the CWT altogether. This, I think, is unfortunate

because both transforms have a lot to offer. A drawback of the CWT is

that its computation is much more time consuming than that of the DWT.

However, progress has been made in this area too. For example, in [20] a fast

xvii



algorithm is described for the computation of the CWT at any real scale a

and integer time localization b.

The 2D CWT described in detail in Ch. 2 has been further developed by

J.-P. Antoine et al. and now also covers the case of wavelets living on a

sphere instead of on a flat plane [1], [2]. These spherical wavelets have been

used for instance in astrophysics [4], and also in the recently emerged field of

cosmic topology [21], the study of the global shape of the universe. How

much richer the world of the 2D transform has become since Ch. 2 was

written the reader may see in great detail in the volume especially devoted

to this topic [3].

In turbulence studies M. Farge, the earliest promotor of wavelet methods

in that field, together with K. Schneider and N. Kevlahan proposed the

method of Coherent Vortex Simulation (CVS), initially applied to 2D flows,

which is already briefly mentioned here in Ch. 4, p. 189. This method was

much further developed in the following years, and was recently applied also

to 3D flows [7]. More results of Farge and her increasingly productive team,

which she set up together with K. Schneider, can be found at [8].

The Wavelet Transform Modulus Maximim (WTMM) method and its use

for the computation of singularity spectra of multifractals, pioneered by

A. Arnéodo’s group and described here in Ch. 9, has recently been extended

to image analysis [5] and to 3D fields [19]. Another application continuing to

produce interesting results is the wavelet-based study of correlations in DNA

[6].

The authors of Ch. 10, using wavelet techniques for the study of cardiac

dynamics, more recently also adopted the WTMM method [15], [12] to

expose the multifractal character of cardiovascular and several other

human physiological signals.

It is of interest to note here that M. Haase and B. Lehle [13], using wavelets

that are derivatives of the Gaussian function, have been able to derive differ-

ential equations for the maxima lines used in the WTMM method. Thus they

produce an algorithm for the singularity spectra that is more accurate. More

applications can be found at [14].

A. Fournier has advanced the research described in Ch. 7 in at least three

ways: by establishing the wavelet-energetics interpretation for idealized fluid

models [9], by enlarging the observational dataset to obtain statistically sig-

nificant results [10] and by inventing customized representations of blocking

using ‘best shift’ wavelets [11].

Let me finish by mentioning some interesting recent examples not directly

related to the material of this volume. An application to chaos control was

published by G. W. Wei et al. [25]. They study a set of chaotic Lorenz
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oscillators, synchronized by nearest neighbour couplings. Using wavelets to

decompose the coupling matrix, they show they can vastly reduce the mini-

mally necessary coupling strength for synchronization to occur.

A. Romeo et al. [22] published an appealing N-body simulation of disc

galaxies, where N ranges between 105 and 9� 106, in which the initial sym-

metry is broken after initial fluctuations have been amplified sufficiently by

gravitational instability. They show that their use of wavelets to denoise the

calculation at each timestep makes their simulations become equivalent to

simulations with two orders of magnitude more bodies. Their wavelet

method is expected to produce a comparable improvement in performance

for cosmological and plasma simulations.

G. Kaiser, well known for his book on wavelets [16], has extended his very

interesting programme of finding ‘physical wavelets’, i.e. wavelets that are

also solutions of physical equations such as the Maxwell equations or the

wave equation. Initially these were solutions of source-free equations, but

now sources have been included in the treatment as well [17].

There are many more interesting recent examples, but reasons of space

unfortunately force me to stop here. I hope I have made it clear that wavelets

are continuing to inspire physicists in many disciplines to improve existing

methods and to explore new territory as well.

At the beginning of this year the wavelet community witnessed the

relaunch, after one year of silence, of its popular electronic news bulletin

the Wavelet Digest [18], started by Wim Sweldens in 1992, in a modernized

format, with an enlarged readership of about 20,000 people, a sure sign, I

think, of the vigour of the wavelet enterprise.

HANS VAN DEN BERG

Wageningen University and Research Centre

April 2003
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Preface to the first edition

Why should physicists bother about wavelets? Why not leave them to the

mathematicians and engineers?

Physicists are sometimes reluctant to learn about wavelets because they

cannot be interpreted in physical terms as easily as sines and cosines and their

frequencies. This is understandable enough: the ‘harmonic oscillator’ has

been with us for more than three centuries, and continues to play its impor-

tant role. But as we hope to show in the chapters that follow, wavelets can

also be of great help in uncovering the presence or absence of certain fre-

quencies in a physical phenomenon. Wavelet analysis is not replacing fre-

quency analysis, but is rather an important refinement and expansion of it:

Fourier analysis analyses a signal globally, whereas wavelet analysis looks

into the signal locally.

Let us illustrate this is in musical terms. If you listen to a classical

symphony you hear several parts, usually three to four. Each of them

has its own main key: e.g. C minor, EE major, etc. The Fourier power

spectrum of the symphony will of course reveal the dominating keys:

groundtones, and their harmonics. Frequencies of other chords which

occur more fleetingly during modulations and variations in the piece of

music, will also show up. If you would play the parts in a different order,

the power spectrum would not change at all, but to the listener it becomes

a very different piece, and more so if you interchange parts within the

parts, at an ever finer scale: you have changed the musical score drasti-

cally. A musical score is a still coarse (the ear catches much more infor-

mation than the composer writes down in the score) but time-localized

frequency analysis of the symphony. This is what a wavelet analysis also

supplies you with: it not only gives the main frequencies used, but also, in

contrast to the Fourier Transform, indicates when they occur, and what
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their duration is. In the words of Lau and Went (Ch. 1, ref. 18) wavelets

‘make a time series sing’.

To be fair, this was already tried with some success in Fourier analysis

also: as explained by Antoine in Chapter 1, in 1946 Gabor introduced the

Windowed Fourier Transform, by placing a Gaussian time window with

constant width over the signal to be analysed, and shifting the window

through the signal. Wavelets, springing up in the early 1980s, generalize

this in two respects: there is a large and ever growing family of different

wavelet functions, and their time resolution is not fixed, but is variable

with the frequency, so that high frequencies have a better time resolution.

Moreover, one has been able to construct orthonormal bases for many dif-

ferent types of wavelets. Instead of considering signals f ðtÞ to be composed of

everlasting oscillations (Fourier Transform) or oscillations within a fixed

time window (Windowed Fourier Transform) one considers the signal as

being composed of oscillations which arise and die out in time, more rapidly

the higher their frequencies. The Wavelet Transform uses a time window

which may be shortened or stretched adaptively, thus giving much more

flexibility in representing non-stationary signals. This is why the Wavelet

Transform is sometimes called a mathematical microscope: it allows you to

‘zoom’ in and out at any desired magnification (inversely proportional to the

scale), at any point of time in the signal. It is precisely this kind of flexibility

that makes the Wavelet Transform such a useful and efficient analysis tool.

Of course the transform can also be performed in two (image analysis) and

more dimensions, and even in space-time.

A further reason to learn about wavelets is that wavelets are fast. How

fast? For a one-dimensional signal with n data points the Fourier Transform

requires � n2 operations. This was reduced by the Fast Fourier Transform to

� n log n, which after its implementation in software packages, made the

application of Fourier analysis an industry in many fields of science and

technology. Orthornormal wavelets reduce this even further: here one

needs only � cn computations where the constant c depends only on the

type of wavelet used. As already mentioned, wavelets exist in a variety of

shapes and one can pick any particular one to work with according to one’s

need. This is in marked contrast to Fourier analysis, where everything is

always analysed in terms of sines and cosines. The computational efficiency

is fine for data compression and transmission, and for numerical calculations,

and turns out to produce more accurate and/or faster solutions for partial

differential equations occurring in physics, as the reader will see for instance

in Chapter 4 and Chapter 8.
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Every student learning about the Fourier Transform and the power spec-

trum should now at least be made aware of some of the possibilities wavelets

have to offer. From scientists of various disciplines one still sometimes hears

the complaint that the mathematics of wavelets is so much more complicated

than Fourier analysis that they don’t really want to try. This feeling is caused

partly because the first generation of good books about the subject is thor-

oughly mathematical. But the time has arrived that undergraduate books are

appearing to serve those people who have only basic mathematical training.

To mention only one here: R. Todd Ogden’s little book (see Ch. 1), ref. 26).

Moreover journals in many fields have published tutorials that deal with the

mathematical basics only. Also there are now quite a number of software

toolboxes available which can give the beginner a hands-on feeling for the

subject without a deep mathematical understanding. The reader will find

more on this material in the last paragraphs of Chapter 1 and the references

therein.

The first time I myself met wavelets was in 1991, when I read work by

Arneodo, Holschneider and others, about the analysis of (multi)fractal mea-

sures arising in certain non-linear dynamical systems. My understanding of it

was much stimulated by a wavelet course given at the Amsterdam Center of

Mathematics and Computer Science at the end of 1991. The closing lecture

was given by Michiel Hazewinkel: ‘Wavelets Understand Fractals’. He

reported on the work by those scientists, and since that lecture I was hooked

onto wavelets. Arneodo and Holschneider both contribute to this volume

(Ch. 9 and Ch. 11). One of the other speakers in the course was Tom

Koornwinder, who later introduced me further into the theory of wavelets.

During that period he came up with the suggestion that I produce a book like

the present one, for which I am still grateful to him. I soon became aware of

the use of wavelets in other areas of physics, in particular by Farge, in

turbulence research, and by Kaiser in electromagnetism (applications in

radar) and acoustics. Farge and some of her colleagues contribute Chapter

4 of this work, whereas Kaiser’s investigations are published in the second

part of his fine textbook on wavelets (Ch. 1, ref. 16).

The material you find in this book does not by any means exhaust the

applications of wavelets in physics, but I do hope that the reader finds

representative examples of good work in this area, and that it stimulates

further exploration and application in the fields covered, and elsewhere.

Before the book starts, Chapter 0 gives you a brief ‘guided tour’ through

the chapters.
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A guided tour through the book

J . C . V AN DEN BERG

Department of Agricultural, Environment and Systems Technology,
Subdepartment of Mathematics,

Wageningen Agricultural University.

The reader might want to jump right into the book, but I decided to give a

guided tour (which one may leave and rejoin at will of course) through the

chapters, to whet the reader’s taste.

Antoine opens in Chapter 1 with a brief survey of the basic properties of

wavelet transforms, both continuous (CWT) and discrete (DWT). In the

latter case one learns about the intuitively very appealing concept of multi-

resolution analysis. Section 1.4 looks ahead to the two- and more-dimensional

versions, and summarily brings out connections with well known symmetry

groups of physics, and the theory of coherent states.

In the second chapter, also by Antoine, the 2-D wavelet transform is trea-

ted. Here the characterization as mathematical microscope must be further

qualified, because it misses the new and important property of orientability of

the 2-D wavelets, which the 1-D case lacks. A real-world microscope is not

more sensitive in one direction than in another one, it is ‘isotropic’. But the

mathematical microscope as embodied in 2-D wavelets has an extra feature:

these wavelets can be designed in such a way that they are directionally selec-

tive. Apart from dilation and translation, one can now also rotate the wavelet,

which makes possible a sensitive detection of oriented features of a signal (a 2-

D image). In many texts the 2-D case is still limited to the DWT, and the

wavelets are usually formed by taking tensor products of 1-D wavelets in the x

and y-direction, thereby giving preference to horizontal, vertical and diagonal

features in the plane. The continuous case is described here in some detail, first

because it admits interesting physical applications, such as measuring the

velocity field of a 2-D turbulent flow around an obstacle, the disentangling

of a superposition of damped plane waves under water produced by a source

above the water surface, fault detection in geology, analysis of spectra, con-

trast enhancement of images. By using the scale-angle measure one can exhibit

symmetries of objects. Another neat example under development is the
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detection of Einstein rings by using an annular-shaped wavelet at a fixed scale,

leading to, e.g., distance measurements of quasars. The second reason to

devote much attention to the 2-D CWT is that the mathematical background,

as mapped out in section 2.4, brings out the connections with group repre-

sentations and coherent states, both used in physics long before wavelets came

into the picture. It turns out that wavelets are the coherent states associated to

the similitude groups (Euclidean groups with dilations). This section is math-

ematically somewhat more abstract than the rest of the chapter. The impor-

tance of it is that it is shown here, how one can extend the CWT to other

‘spaces’, such as 3-D space, the sphere, and to space-time (‘kinematical’ wave-

lets used in motion tracking, including relativistic effects (using wavelets asso-

ciated to the Galilei or Poincaré group resp.). Also some applications of the 2-

D DWT are indicated.

In Chapter 3 we turn to applications on the largest scale in the Universe:

Bijaoui describes a wide variety of applications in astrophysics and observa-

tional cosmology. The wavelet transform is a very good tool to study power-

law signals, and these occur in many astrophysical sources, such as the light

intensity of the solar surface, the brightness of interstellar clouds, or galaxy

distributions from galaxy counts. Often the power law behaviour is exhibited

by statistical correlation functions, so in many applications there is a combi-

nation of statistical techniques with wavelet methods. Cluster analysis of

galaxies for instance, was much improved. Image compression is frequently

needed in astronomy. Much work was done on Hubble Space Telescope

(HST) images and astronomical aperture synthesis. The DWT is not only

used in the form resulting from multiresolution analysis, but also by other

methods: the ‘à trous algorithm’, and the ‘pyramidal transform’ are used for

image restoration and analysis. Denoising images also receives a good deal of

attention: criteria to establish the notion of ‘significant coefficient’ were

developed. Connected with that is the problem of deconvolving an observed

signal (image) to obtain the true object signal: that is the signal before it is

convolved with the response function (called the ‘point spread function’ in

optics) of the measuring apparatus. Multiresolution techniques yield a good

reduction of resolution here, especially for HST data. To obtain an auto-

mated image analysis for astronomical images, one needs a so called ‘vision

model’: a protocol of operations to analyse the image. The classical examples

of this were based on edge detection, but this is not adequate to recognize

astronomical objects accurately. In a typical image one can see point-like

sources (stars), quasi-point-like objects (double stars, faint galaxies...) and

complex diffuse structures (galaxies, nebulae, clusters...). The multiscale

vision model developed here is able to optimize the detection of objects,
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because it yields a background mapping adapted to a given object. The ear-

lier methods were only suited to stars of quasi-stellar sources with a slowly

varying background. Since in the multiscale approach the notion of sub-

object is defined, much more complex structures can be analysed.

From astronomical scales down to microscopically small scales one finds

turbulence, naturally occurring or man-made. The study of fully developed

(high Reynolds number) turbulence by means of the wavelet transform is

presented by Farge et al. in Chapter 4. The authors argue that part of the

reason the subject has not undergone fundamental progress for a long time is

that point measurements are used to compute averages in the statistical

theory, and also because one keeps thinking in terms of Fourier modes.

Thus the presence of coherent structures (here defined as local condensations

of the vorticity field which survive much longer than the typical eddy turn-

over time) is missed, although these are observed in physical space, and their

role seems essential in the dynamics. The classical theory of turbulence is not

able to see the coherent structures, because they are only felt in the high order

statistical moments of the velocity increments in the flow, which have been

measured only relatively recently and turn out not to obey Kolmogorov’s

theory. Wavelets can play a role in separating the coherent components from

the incoherent components of turbulent flows, so that one can arrive at new

conditional averages, replacing the classical ensemble averages. Fourier space

analysis is not capable of this disentanglement, because it averages over space

and thus loses local information. The coherent structures correspond to

spatio-temporally quasi-singular structures, and thus the use of wavelets to

analyse isolated or dense distributions of singularities is brought out, a sub-

ject that will be dealt with in extenso in Arneodo et al.’s Chapter 9. The

separation of coherent structures and random background flow allows new

proposals in the modelling of turbulence in which one may expect to be able

to explore back and forth transfers of energy between coherent components

and the background of the flow. Similar transfers are estimated from real-

world global atmospheric data (albeit outside the turbulent regime) by

Fournier in Chapter 7. Also in stochastic models of turbulence wavelets

are beginning to be used.

Wavelet bases are also increasingly being used to solve partial differential

equations numerically. Section 4.6 describes some examples in the literature

and presents in some detail algorithms to solve the two-dimensional Navier–

Stokes equations.

Coherent structures are also the subject of Chapter 5 by Hudgins and

Kaspersen. They focus on the case of cylinder wake flow, and compare the

performance of conventional as well as wavelet-based coherent structure

A guided tour through the book 3



detector algorithms. This performance is measured by two statistics: the

probability of detection PD, and the false alarm-rate PFA, that is the prob-

ability that a detection will be reported when the relevant event is in fact not

present. These quantities are dependent, and this dependence can be para-

metrized, giving rise to a plot of PD vs. PFA. The authors test their algorithms

on a particular kind of coherent structure called a burst: an outrush from the

wall, during which the transverse velocity is positive while the streamwise

velocity temporarily falls below its mean value. Three conventional detectors

are described, and two different wavelet detectors are introduced.

Comparison of the results then shows that wavelet methods perform better

than the conventional ones, and for high detection rates the second wavelet

method outperforms all of the others.

Van Milligen aims at getting a grip on the non-linearity aspect of turbu-

lence in Chapter 6. He defines the notions of bispectrum and bicoherence

based on wavelets. The bicoherence is a measure of the amount of phase

coupling that occurs in a signal or between two signals, which means that if

two frequencies are simultaneously present in the signal(s) along with their

sum (or difference), the sum of the phases of these frequency components is

constant in time. Since the wavelet version of these notions is based on

integration over a short time interval, temporal variations in phase coupling

(intermittent behaviour) can be revealed. Two possible interpretations of the

bicoherence are presented: one in terms of coherent structures passing by the

observation point, and another one in terms of a coupling constant in a

quadratic wave-interaction model. The usefulness of these concepts is first

demonstrated in numerical examples: two coupled van der Pol oscillators

exhibiting chaos, and then two models for plasma turbulence. It turns out

that one can perform detailed spectral analysis on turbulence simulations

although only short data series are available (due to CPU-time limitations)

rendering Fourier analysis impracticable or impossible. In the last section

van Milligen analyses in detail data from torsatron and tokamak plasma

experiments.

Turning away from turbulence, in Chapter 7 we find an application, by

Fournier, of wavelets to an anomalous state of the earth’s atmosphere,

namely blocking. This is a period of time during which the normal progres-

sion (approximately eastward translation) of weather patterns is locally

inhibited. It is associated with a quasi-persistent anomalous high pressure

system. Fournier reviews the equations derived by Saltzman for the evolution

of the mean kinetic energy of eddies. The contributions to this from atmo-

spheric structures of distinct scales are conventionally resolved by (truncated)

Fourier series representations. This is replaced here by an analysis in terms of
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a periodic orthonormal wavelet basis. In terms of these it is possible to

construct scale dependent transfer and flux functions of kinetic energy at a

certain location. These new concepts are then applied to real-world data from

the National Meteorological Center: wind components u (eastward) and v

(northward) and the ‘geopotential height’ Z. Analysis of these data tells us

that blocking is largely described by the largest scale part of the multiresolu-

tion analysis, and new support is found for the hypothesis that blocking is

partially maintained by a particular kind of inverse energy cascade (going

from smaller to larger scales).

Scaling down to very small distances brings us to applications of wavelets

in the domains of atomic and solid state physics. In Chapter 8, Antoine et al.

start with the case of the generation of light emission resulting from the

exposure of atoms to a strong laser pulse. Odd harmonics of the laser fre-

quency are emitted, and in order to understand the mechanism of emission

better one would like to know for instance when the harmonics are emitted

during the optical cycle, and what the time evolution is during the laser pulse.

Standard spectral analysis cannot answer these questions. For atomic hydro-

gen the emission is investigated by both the Gabor Transform (Windowed

Fourier Transform) and the Wavelet Transform, yielding time profiles of

each individual harmonic. Analysis of these profiles leads to the conclusion

that harmonic emission takes place only when the electron is close to the

nucleus. The authors emphasize that in this type of analysis the Gabor trans-

form and the wavelet transform are not each others competitors, but rather

they supply complementary information, depending on the exact physical

problem one studies. A further development on the basis of these results

may be the temporal control of the harmonic emissions by tuning the polar-

ization of the laser, eventually allowing the production of intense attosecond

(10�18 s) pulses. For the case of multi-electronic wave functions orthogonal

wavelet bases on ð0;1Þ are being proposed as a basis for the radial part of

the wave function, allowing improvements over more conventional Hartree–

Fock methods. A combination of wavelet transforms and conventional tech-

niques also allowed a better calculation of energy levels in atoms.

In the second part of the chapter Antoine et al. deal with electronic struc-

ture calculations in solid state physics. Here both non-orthogonal and ortho-

gonal wavelet bases have been applied successfully, and the recently

developed second generation wavelets, used in a biorthogonal basis (see

Ch. 1) have been used to solve a 3-D atomic Coulomb problem, namely

the Poisson equation for the potential of, for instance, a uranium dimer.

The potential is obtained with 6 significant digits throughout the region of
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interest. In the last section of this chapter the use of 2-D wavelet bases to a 2-

D phenomenon, the Fractional Quantum Hall Effect, is explored.

The last three chapters all deal with phenomena in which scaling is of

central importance.

Arneodo et al. show in Chapter 9 how wavelets can be applied to analyse

the scaling properties of multifractal signals which have densely packed sin-

gularities of varying strengths. When a signal possesses a single isolated

singularity at x0, with strength, �ðx0Þ (mathematicians call this the Hölder

exponent), this property is reflected in the behaviour of the wavelet transform

at that location, and �ðx0Þ can therefore be extracted from, a log-log plot of

the wavelet transform amplitude versus the scale. The dense packing of

singularities in a multifractal signal makes straightforward application of

this impossible. In order to analyse multifractal signals, a method not invol-

ving wavelets, called the thermodynamical formalism was developed more

than a decade ago. It enables one to calculate the spectrum of singularities,

the f ð�Þ spectrum, by statistical means. Before the advent of wavelets this

spectrum could be determined for singular measures only, but as the authors

show, by using wavelets one can extend this to singular functions as well,

thereby making the method applicable to any experimental signal.

Roughly speaking a (multi)fractal function is non-smooth in all or a large

part of its domain, thus making traditional analytical (calculus) methods

inadequate to analyse it. Unfolding the function in the wavelet domain

restores the applicability of these methods. In particular, the wavelet trans-

form modulus maxima (WTMM) are used to obtain a skeleton of the function,

which provides a partition allowing the merging of the WTMM method with

the thermodynamical formalism, so that the singularity spectrum can be

determined. This remedies some defects of classical ‘box counting’ for mea-

sures, and of the ‘structure function’ method used for turbulent signals.

In a further development the WTMM skeleton method is used to address

the ‘inverse fractal problem’: if a fractal object is produced by a dynamical

system, can one then extract enough information from the object to recover

the dynamical system that produced it? This is a big problem if stated in such

generality, but as the authors show, one can solve this for instance in the case

when the dynamics is generated by ‘cookie-cutter maps’.

Finally the method is applied to the analysis of diffusion-limited-aggrega-

tion (DLA) processes, and it is shown how one uncovers the ‘Fibonacci

multiplicative process’ responsible for the branching morphology of the clus-

ters formed by DLA. This is a remarkable result, given the geometrically

featureless random walk process that generates the clusters.

6 J.C. van den Berg



The method as described in this chapter is being further developed, as

Farge et al. mention in Ch. 4, and has also been applied for instance to

the analysis of DNA nucleotide sequences (Ch. 10, ref. 81).

The application of wavelets in medicine and biology has proliferated in

many different directions, witness the reference list to Chapter 10, by Ivanov

et al. One area is the study of physiological time series, which generally have

a non-stationary character. The specific case analysed here is the comparison

between time series of heart beat intervals in healthy human individuals, and

in patients suffering from sleep apnea. The authors develop the cumulative

variation amplitude analysis (CVAA), consisting of a sequential application of

the wavelet transform and the Hilbert transform. The first step is to take

analysing wavelets that are able to eliminate the influence of linear and low-

degree polynomial trends in a signal sðtÞ (the derivatives of the Gaussian

supply wavelets that can do this), keeping only in sight the variations of

patterns of a certain duration a of interest. By fixing the scale parameter of

the wavelet transform one obtains again a 1-D signal, say saðtÞ, expressing

how strongly patterns with a certain duration around the value a are present

within the signal. It is the variations in this strength which are of interest. The

Hilbert Transform, applied to the signal saðtÞ enables one to calculate an

‘instantaneous amplitude’ of that signal, which is an envelope of it. By count-

ing how often in saðtÞ a given instantaneous amplitude occurs, one obtains a

distribution of instantaneous amplitude values which tells one what the rela-

tive length (total duration in the entire signal) of an ‘a-scale pattern’ with a

given amplitude is. Every individual has its own amplitude distribution, but it

turns out that they are scaling copies of a common distribution, at least in

groups of healthy patients. Thus by rescaling individual ‘healthy distribu-

tions’, one can collapse them on their common distribution. Moreover this

collapse repeats itself, in healthy individuals, for many different values of a.

The collapse fails, however, in groups of subjects suffering from sleep apnea.

These two groups can thereby be distinguished from one another. (Applying

the Hilbert Transform directly to sðtÞ itself fails to bring this out.) The

authors describe how one may attempt to develop this result further into a

tool to separate healthy from abnormal cardiac dynamics for an individual,

thus setting up a diagnostic. Finally the relation of the scaling property with

the non-linear dynamics of the heartbeat control mechanism is discussed.

The last chapter, by Guérin and Holschneider, concerns the description of

intermittency in the time evolution of a system. They define the concept of a

lacunarity dimension which quantifies the notion of intermittent behaviour.

This is the only chapter where detailed mathematical proofs are presented,

but we have relegated them to the Appendix so that the flow of the argument
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is not interrupted. Intermittency is a concept that has been mentioned many

times already in previous chapters, but only qualitatively. If you think of a

particle recurring intermittently in a region A of phase space, its presence in A

can be described by a function hðtÞ ¼ �AðxðtÞÞ, where xðtÞ is the trajectory in

phase space, and �A is the characteristic function of A, registering whether or

not xðtÞ is in the region A. If one knows the dynamics xðtÞ over a time interval

½0;T �, one can calculate the fraction of T the particle spends in A, by taking

the time average of hðtÞ over this interval. If this fraction converges to a finite

constant as T !1, this limit can be interpreted as a rate of presence in

region A. By considering not just the average of hðtÞ, but also its higher

moments, the authors find the definition of the lacunarity dimension. So

far, no wavelets. This definition is then applied to the case of time evolution

of a system obeying the Schrödinger equation with a time independent

Hamiltonian. The function hðtÞ is now the probability to find the system in

a certain region of space. The lacunarity dimension can be calculated if hðtÞ is

known over a very large time span, but this may be too long for measure-

ments. It turns out that one can circumvent this by using wavelets to define

the generalized wavelet dimensions of the Hamiltonian’s spectral measure. The

latter can be determined from time independent data which are known about

the system. The main theorem of the chapter establishes that the lacunarity

dimension of the time evolution generated by the Schrödinger equation is

obtainable from the generalized wavelet dimensions of the spectral measure

of the Hamiltonian. Thus the long time chaotic behaviour of the system and

small scale spectral properties of the Hamiltonian are strictly related.

This ends our guided tour. I hope it has aroused your curiosity enough to

take a closer look into the chapters that follow.
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Wavelet analysis: a new tool in physics

J . - P . ANTO INE

Institut de Physique Théorique,
Université Catholique de Louvain, Belgium

Abstract

We review the general properties of the wavelet transform, both in its con-

tinuous and its discrete versions, in one or more dimensions. We also indicate

some generalizations and applications in physics.

1.1 What is wavelet analysis?

Wavelet analysis is a particular time- or space-scale representation of signals

which has found a wide range of applications in physics, signal processing

and applied mathematics in the last few years. In order to get a feeling for it

and to understand its success, let us consider first the case of one-dimensional

signals.

It is a fact that most real life signals are nonstationary and usually cover a

wide range of frequencies. They often contain transient components, whose

apparition and disparition are physically very significant. In addition, there is

frequently a direct correlation between the characteristic frequency of a given

segment of the signal and the time duration of that segment. Low frequency

pieces tend to last a long interval, whereas high frequencies occur in general

for a short moment only. Human speech signals are typical in this respect:

vowels have a relatively low mean frequency and last quite long, whereas

consonants contain a wide spectrum, up to very high frequencies, especially

in the attack, but they are very short.

Clearly standard Fourier analysis is inadequate for treating such signals,

since it loses all information about the time localization of a given frequency

component. In addition, it is very uneconomical: when the signal is almost

flat, i.e. uninteresting, one still has to sum an infinite alternating series for

reproducing it. Worse yet, Fourier analysis is highly unstable with respect to
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perturbation, because of its global character. For instance, if one adds an

extra term, with a very small amplitude, to a linear superposition of sine

waves, the signal will barely be modified, but the Fourier spectrum will be

completely perturbed. This does not happen if the signal is represented in

terms of localized components.

For all these reasons, signal analysts turn to time-frequency (TF) represen-

tations. The idea is that one needs two parameters: one, called a, characterizes

the frequency, the other one, b, indicates the position in the signal. This

concept of a TF representation is in fact quite old and familiar. The most

obvious example is simply a musical score!

If one requires in addition the transform to be linear, a general TF trans-

form will take the form:

sðxÞ 7!Sða; bÞ ¼

Z 1
�1

 abðxÞ sðxÞ dx; ð1:1Þ

where s is the signal and  ab the analysing function. Within this class, two TF

transforms stand out as particularly simple and efficient: the Windowed or

Short Time Fourier Transform (WFT) and the Wavelet Transform (WT).

For both of them, the analysing function  ab is obtained by acting on a basic

(or mother) function  , in particular b is simply a time translation. The

essential difference between the two is in the way the frequency parameter

a is introduced.

(1) Windowed Fourier Transform:

 abðxÞ ¼ eix=a  ðx� bÞ: ð1:2Þ

Here  is a window function and the a-dependence is a modulation ð1=a �

frequency); the window has constant width, but the lower a, the larger the

number of oscillations in the window (see Figure 1.1 (left))

(2) Wavelet transform:

 abðxÞ ¼
1ffiffiffi
a
p  

x� b

a

� �
: ð1:3Þ

The action of a on the function  (which must be oscillating, see below) is a

dilation ða > 1Þ or a contraction ða < 1Þ: the shape of the function is

unchanged, it is simply spread out or squeezed (see Figure 1.1 (right)).

The WFT transform was originally introduced by Gabor (actually in a dis-

cretized version), with the window function  taken as a Gaussian; for this

reason, it is sometimes called the Gabor transform. With this choice, the

function  ab is simply a canonical (harmonic oscillator) coherent state [17],

as one sees immediately by writing 1=a ¼ p. Of course this book is concerned
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essentially with the wavelet transform, but the Gabor transform will occa-

sionally creep in, as for instance in Chapter 8.

One should note that the assumption of linearity is nontrivial, for there

exists a whole class of quadratic, or more properly sesquilinear, time-fre-

quency representations. The prototype is the so-called Wigner–Ville trans-

form, introduced originally by E.P. Wigner in quantum mechanics (in 1932!)

and extended by J. Ville to signal analysis:

Wsða; bÞ ¼

Z
e�ix=a s b�

x

2

� �
s bþ

x

2

� �
dx: ð1:4Þ

Further information may be found in [6, 11].

Wavelet analysis: a new tool in physics 11

Fig. 1.1. The function  abðxÞ for increasing values of 1=a � frequency, in the case of
the Windowed Fourier Transform (left) and the wavelet transform (right).



1.2 The continuous WT

Actually one should distinguish two different versions of the wavelet trans-

form, the continuous WT (CWT) and the discrete (or more properly, discrete

time) WT (DWT) [10,14]. The CWT plays the same rôle as the Fourier

transform and is mostly used for analysis and feature detection in signals,

whereas the DWT is the analogue of the Discrete Fourier Transform (see for

instance [4] or [29]) and is more appropriate for data compression and signal

reconstruction. The situation may be caricatured by saying that the CWT is

more natural to the physicist, while the DWT is more congenial to the signal

analyst and the numericist. This explains why the CWT will play a major part

in this book.

The two versions of the WT are based on the same transformation for-

mula, which reads, from (1.1) and (1.3):

Sða; bÞ ¼ a�1=2
Z 1
�1

 
x� b

a

� �
sðxÞ dx; ð1:5Þ

where a > 0 is a scale parameter and b 2 R a translation parameter.

Equivalently, in terms of Fourier transforms:

Sða; bÞ ¼ a1=2
Z 1
�1

b  ða!Þbss ð!Þeib! d!: ð1:6Þ

In these relations, s is a square integrable function (signal analysts would say:

a finite energy signal) and the function  , the analysing wavelet, is assumed

to be well localized both in the space (or time) domain and in the frequency

domain. In addition  must satisfy the following admissibility condition,

which guarantees the invertibility of the WT:Z 1
�1

jb  ð!Þj2 d!

j!j
<1: ð1:7Þ

In most cases, this condition may be reduced to the requirement that  has

zero mean (hence it must be oscillating):Z 1
�1

 ðxÞ dx ¼ 0: ð1:8Þ

In addition,  is often required to have a certain number of vanishing

moments: Z 1
�1

xn  ðxÞ dx ¼ 0; n ¼ 0; 1; . . . ;N: ð1:9Þ
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This property improves the efficiency of  at detecting singularities in the

signal, since it is blind to polynomials up to order N.

One should emphasize here that the choice of the normalization factor

a�1=2 in (1.3) or (1.5) is not essential. Actually, one often uses instead a factor

a�1 (the so-called L1 normalization), and this has the advantage of giving

more weight to the small scales, i.e. the high frequency part (which contains

the singularities of the signal, if any). The choice a�1=2 makes the transform

unitary: k abk ¼ k k and also kSk ¼ ksk, where k � k denotes the L2 norm in

the appropriate variables (the squared norm is interpreted as the total energy

of the signal).

Notice that, instead of (1.5), which defines the WT as the scalar product of

the signal s with the transformed wavelet  ab, Sða; bÞ may also be seen as the

convolution of s with the scaled, flipped and conjugated wavelete  aðxÞ ¼ a�1=2  ð�x=aÞ :

Sða; bÞ ¼ ðe  a � sÞðbÞ ¼

Z 1
�1

e  aðb� xÞ sðxÞ dx: ð1:10Þ

In other words, the CWT acts as a filter with a function of zero mean.

This property is crucial, for the main virtues of the CWT follow from it,

combined with the support properties of  . Indeed, if we assume  and b  to

be as well localized as possible (but respecting the Fourier uncertainty prin-

ciple), then so are the transformed wavelets  ab and b  ab. Therefore, the WT

s 7!S performs a local filtering, both in time (b) and in scale (a). The trans-

form Sða; bÞ is nonnegligible only when the wavelet  ab matches the signal,

that is, the WT selects the part of the signal, if any, that lives around the time

b and the scale a.

In addition, if b  has an essential support (bandwidth) of width �, then b  ab

has an essential support of width �=a. Thus, remembering that 1=a behaves

like a frequency, we conclude that the WT works at constant relative band-

width, that is, �!=! ¼ constant. This implies that it is very efficient at high

frequency, i.e. small scales, in particular for the detection of singularities in

the signal. By comparison, in the case of the Gabor transform, the support ofb  ab keeps the same width � for all a, that is, the WFT works at constant

bandwidth, �! ¼ constant. This difference in behaviour is often the key

factor in deciding whether one should choose the WFT or the WT in a

given physical problem (see for instance Chapter 8).

Another crucial fact is that the transformation sðxÞ 7!Sða; bÞ may be

inverted exactly, which yields a reconstruction formula (this is only the

simplest one, others are possible, for instance using different wavelets for

the decomposition and the reconstruction):
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sðxÞ ¼ c�1 

Z 1
�1

db

Z 1
0

da

a2
 abðxÞSða; bÞ; ð1:11Þ

where c is a normalization constant. This means that the WT provides a

decomposition of the signal as a linear superposition of the wavelets  ab with

coefficients Sða; bÞ. Notice that the natural measure on the parameter space

ða; bÞ is da db=a2, and it is invariant not only under time translation, but also

under dilation. This fact is important, for it suggests that these geometric

transformations play an essential rôle in the CWT. This aspect will be dis-

cussed thoroughly in Chapter 2.

All this concerns the continuous WT (CWT). But, in practice, for numer-

ical purposes, the transform must be discretized, by restricting the parameters

a and b in (1.5) to the points of a lattice, typically a dyadic one:

Sj;k ¼ 2�j=2
Z 1
�1

 ð2�jx� kÞ sðxÞ dx; j; k 2 Z: ð1:12Þ

Then the reconstruction formula (1.11) becomes simply

sðxÞ ¼
X
j;k2Z

Sj;k
g j;k j;kðxÞ; ð1:13Þ

where the function g j;k j;k may be explicitly constructed from  j;k. In this way,

one arrives at the theory of frames or nonorthogonal expansions [9, 10],

which offer a good substitute to orthonormal bases. Very general functions

 satisfying the admissibility condition (1.7) described above will yield a

good frame, but not an orthonormal basis, since the functions

f j;kðxÞ � 2j=2 ð2 jx� kÞ; j; k 2 Zg are in general not orthogonal to each

other!

Yet orthonormal bases of wavelets can be constructed, but by a totally

different approach, based on the concept of multiresolution analysis. We

emphasize that the discretized version of the CWT just described is totally

different in spirit and method from the genuine DWT, to which we now turn.

The full story may be found in [10], for instance.

1.3 The discrete WT: orthonormal bases of wavelets

One of the successes of the WT was the discovery that it is possible to

construct functions  for which f j;k; j; k 2 Zg is indeed an orthonormal

basis of L2
ðRÞ.
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In addition, such a basis still has the good properties of wavelets, including

space and frequency localization. Moreover, it yields fast algorithms, and this

is the key to the usefulness of wavelets in many applications

The construction is based on two facts: first, almost all examples of ortho-

normal bases of wavelets can be derived from a multiresolution analysis, and

then the whole construction may be transcribed into the language of digital

filters, familiar in the signal processing literature.

A multiresolution analysis of L2
ðRÞ is an increasing sequence of closed

subspaces

. . . � V�2 � V�1 � V0 � V1 � V2 � . . . ; ð1:14Þ

with
T

j 2Z Vj ¼ f0g and
S

j 2Z Vj dense in L2
ðRÞ (loosely speaking, this means

limj!1Vj ¼ L2
ðRÞ), and such that

(1) f ðxÞ 2 Vj , f ð2xÞ 2 Vjþ1

(2) there exists a function � 2 V0, called a scaling function, such that the family

f�ðx� kÞ; k 2 Zg is an orthonormal basis of V0.

Combining conditions (1) and (2), one gets an orthonormal basis of Vj,

namely f�j;kðxÞ � 2j=2�ð2jx� kÞ; k 2 Zg: Note that we may take for � a real

function, since we are dealing with signals.

Each Vj can be interpreted as an approximation space: the approximation

of f 2 L2
ðRÞ at the resolution 2�j is defined by its projection onto Vj, and the

larger j, the finer the resolution obtained. Then condition (1) means that no

scale is privileged. The additional details needed for increasing the resolution

from 2�j to 2�ðjþ1Þ are given by the projection of f onto the orthogonal

complement Wj of Vj in Vjþ1:

Vj �Wj ¼ Vjþ1; ð1:15Þ

and we have:

L2
ðRÞ ¼

M
j2Z

Wj: ð1:16Þ

Equivalently, fixing some lowest resolution level jo, one may write

L2
ðRÞ ¼ Vjo �

M
j�jo

Wj

 !
: ð1:17Þ

Then the theory asserts the existence of a function  , called the mother

wavelet, explicitly computable from �, such that f j;kðxÞ � 2j=2 ð2jx� kÞ;

j; k 2 Zg constitutes an orthonormal basis of L2
ðRÞ: these are the orthonormal

wavelets.
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The construction of  proceeds as follows. First, the inclusion V0 � V1

yields the relation (called the scaling or refining equation):

�ðxÞ ¼
ffiffiffi
2
p X1

n¼�1

hn�ð2x� nÞ; hn ¼ h�1;nj�i: ð1:18Þ

Taking Fourier transforms, this gives

b��ð!Þ ¼ m0ð!=2Þb��ð!=2Þ; ð1:19Þ

where

m0ð!Þ ¼
1ffiffiffi
2
p

X1
n¼�1

hne
�in!

ð1:20Þ

is a 2�-periodic function. Iterating (1.19), one gets the scaling function as the

(convergent!) infinite product

b��ð!Þ ¼ ð2�Þ�1=2Y1
j¼1

m0ð2
�j!Þ: ð1:21Þ

Then one defines the function  2W0 � V1 by the relationb  ð!Þ ¼ ei!=2 m0ð!=2þ �Þ b��ð!=2Þ; ð1:22Þ

or, equivalently

 ðxÞ ¼
ffiffiffi
2
p X1

n¼�1

ð�1Þn�1h�n�1�ð2x� nÞ; ð1:23Þ

and proves that the function  indeed generates an orthonormal basis with

all the required properties.

Various additional conditions may be imposed on the function  (hence on

the basis wavelets): arbitrary regularity, several vanishing moments (in any

case,  has always mean zero), symmetry, fast decrease at infinity, even

compact support. The technique consists in translating the multiresolution

structure into the language of digital filters. Actually this means nothing

more than expanding (filter) functions in a Fourier series. For instance,

(1.19) means that m0ð!Þ is a filter (multiplication operator in frequency

space), with filter coefficients hn. Similarly, (1.22) may be written in terms

of the filter m1ð!Þ ¼ ei! m0ð!þ �Þ. (Notice that this particular relation

between m0;m1, together with the identity jm0ð!Þj
2
þ jm1ð!Þj

2
¼ 1, define

what electrical engineers call a Quadrature Mirror Filter or QMF.) Then

the various restrictions imposed on  translate into suitable constraints on
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the filter coefficients hn. For instance,  has compact support if only finitely

many hn differ from zero.

The simplest example of this construction is the Haar basis, which comes

from the scaling function �ðxÞ ¼ 1 for 0 	 x < 1 and 0 otherwise. Similarly,

various spline bases may be obtained along the same line. Other explicit

examples may be found in [5] or [10].

In practical applications, the (sampled) signal is taken in some VJ , and

then the decomposition (1.17) is replaced by the finite representation

VJ ¼ Vjo
�

MJ�1
j¼jo

Wj

 !
: ð1:24Þ

Figure 1.2 shows an example (obtained with the MATLAB Wavelet Toolbox

[3]) of a decomposition of order 5, namely

V0 ¼ V�5 �W�5 �W�4 �W�3 �W�2 �W�1: ð1:25Þ

As we just saw, appropriate filters generate orthonormal wavelet bases.

However, this result turns out to be too rigid and various generalizations

have been proposed (see [25] for details).

(i) Biorthogonal wavelet bases:

As we mentioned in Section 1.2, the wavelet used in the CWT for reconstruc-

tion need not be the same as that used for decomposition, the two have only to

satisfy a cross-compatibility condition. The same idea in the discrete case leads

to biorthogonal bases, i.e. one has two hierarchies of approximation spaces, Vj

and �VVj, with cross-orthogonality relations. This gives a better control, for

instance, on the regularity or decrease properties of the wavelets.

(ii) Wavelet packets and the best basis algorithm:

The construction of orthonormal wavelet bases leads to a special subband

coding scheme, rather asymmetrical: each approximation space Vj gets further

decomposed into Vj�1 and Wj�1, whereas the detail space Wj is left unmodified.

Thus more flexible subband schemes have been considered, called wavelet pack-

ets; they provide rich libraries of orthonormal bases, and also strategies for

determining the optimal basis in a given situation [7, 32].

(iii) The lifting scheme:

One can go one step beyond, and abandon the regular dyadic scheme and the

Fourier transform altogether. The resulting method leads to the so-called sec-

ond-generation wavelets [31], which are essentially custom-designed for any

given problem.
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1.4 The wavelet transform in more than one dimension

Wavelet analysis may be extended to 2-D signals, that is, in image analysis.

This extension was pioneered by Mallat [19, 20], who developed systemati-

cally a 2-D discrete (but redundant) WT. This generalization is indeed a very

natural one, if one realizes that the whole idea of multiresolution analysis lies

at the heart of human vision. In fact, most of the concepts are indeed already

present in the pioneering work of Marr [22] on vision modelling. As in 1-D,

this discrete WT has a close relationship with numerical filters and related

techniques of signal analysis, such as subband coding. It has been applied

successfully to several standard problems of image processing. As a matter of

fact, all the approaches that we have mentioned above in the 1-D case have

been extended to 2-D: orthonormal bases, biorthogonal bases, wavelet pack-

ets, lifting scheme. These topics will be discussed in detail in Chapter 2.
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However, the continuous transform may also be extended to 2 (or more)

dimensions, with exactly the same properties as in the 1-D case [2, 26]. Here

again the mechanism of the WT is easily understood from its very definition

as a convolution (in the sense of (1.10)):

Sða; �; ~bbÞ �

Z
d2 ~xx �  ða�1r��ð~xx� ~bbÞÞsð~xxÞ; a > 0; 0 	 � < 2�; b 2 R

2; ð1:26Þ

where s is the signal and  is the analysing wavelet, which is translated by ~bb,

dilated by a and rotated by an angle � ðr�� is the rotation operator). Since the

wavelet  is required to have zero mean, we have again a filtering effect, i.e.

the analysis is local in all four parameters a; �; ~bb, and here too it is particu-

larly efficient at detecting discontinuities in images.

Surprisingly, most applications have treated the 2-D WT as a ‘mathema-

tical microscope’, like in 1-D, thus ignoring directions. This is particularly

true for the discrete version. There, indeed, a 2-D multiresolution is simply

the tensor product of two 1-D schemes, one for the horizontal direction and

one for the vertical direction (in technical terms, one uses only separable

filters). However the 2-D continuousWT, including the orientation parameter

�, may be used for detecting oriented features of the signal, that is, regions

where the amplitude is regular along one direction and has a sharp variation

along the perpendicular direction, for instance, in the classical problem of

edge detection. The CWT is a very efficient tool in this respect, provided one

uses a wavelet which has itself an intrinsic orientation (for instance, it con-

tains a plane wave). For this reason, a large part of Chapter 2 will be devoted

to the continuous WT and its applications.

For further extensions of the CWT, it is crucial to note that the 2-D

version comes directly from group representation theory, the group in this

case being the so-called similitude group of the plane, consisting of transla-

tions, rotations and global dilations [26]. Note that the 1-D CWTmay also be

derived from group theory [10], in that case from the so-called ‘axþ b’ group

of dilations and translations of the line.

What we have here is in fact a general pattern. Consider the class of finite

energy signals living on a manifold Y , i.e. s 2 L2
ðY; d�Þ � H. For instance,

Y could be space R
n, the 2-sphere S2, space-time R
R or R

2

R, etc.

Suppose there is a group G of transformations acting on Y , that contains

dilations of some kind. As usual, this action will be expressed by a unitary

representation U of G in the space H of signals. Then, under a simple tech-

nical assumption on U (‘square integrability’), a wavelet analysis on Y ,

adapted to the symmetry group G, may be constructed, following the general

construction of coherent states on Y associated to G [1]. This technique has
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been implemented successfully for extending the CWT to higher dimensions

(in 3-D, for instance, one gets a tool for target tracking), the 2-sphere (a tool

most wanted by geophysicists) or to space-time (time-dependent signals or

images, such as TV or video sequences), including relativistic effects (using

wavelets associated to the affine Galilei or Poincaré group). This general

approach will be described with all the necessary mathematical details in

Chapter 2.

It is interesting to remark that the CWT was in fact designed by physicists.

The idea of deriving it from group theory is entirely natural in the framework

of coherent states [1, 17], and the connection was made explicitly from the

very beginning [12, 13]. In a sense, the CWT consists in the application of

ideas from quantum physics to signal and image processing. The resulting

effect of cross-fertilization may be one of the reasons of its richness and its

success.

1.5 Outcome

As a general conclusion, it is fair to say that the wavelet techniques have

become an established tool in signal and image processing, both in their

CWT and DWT incarnations and their generalizations. They are being incor-

porated as a new tool in many reference books and software codes. They

have distinct advantages over concurrent methods by their adaptive charac-

ter, manifested for instance in their good performances in pattern recognition

or directional filtering (in the case of the CWT), and by their very economical

aspect, achieved in impressive compression rates (in the case of the DWT).

This is especially useful in image processing, where huge amount of data,

mostly redundant, have to be stored and transmitted.

As a consequence, they have found applications in many branches of

physics, such as acoustics, spectroscopy, geophysics, astrophysics, fluid

mechanics (turbulence), medical imagery, atomic physics (laser–atom inter-

action), solid state physics (structure calculations), . . . . Some of these

results will be reviewed in the subsequent chapters. For additional informa-

tion, see [24].

Thus we may safely bet that wavelets are here to stay, and that they have a

bright future. Of course wavelets don’t solve every difficulty, and must be

continually developed and enriched, as has been the case over the last few

years. In particular, one should expect a proliferation of specialized wavelets,

each dedicated to a particular type of problem, and an increasingly diverse

spectrum of physical applications. This trend is only natural, it follows from

the very structure of the wavelet transform – and in that respect the wavelet
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philosophy is exactly opposite to that of the Fourier transform, which is

usually seen as a universal tool.

Finally a word about references. The literature on wavelet analysis is

growing exponentially, so that some guidance may be helpful. As a first

contact, an introductory article such as [29] may be a good suggestion, fol-

lowed by the the popular, but highly successful book of Burke Hubbard [4].

Slightly more technical, but still elementary and aimed at a wide audience,

are the books of Meyer [25] and Ogden [27]. While the former is a nice

introduction to the mathematical ideas underlying wavelets, the latter focuses

more on the statistical aspects of data analysis. Note that, since wavelets have

found applications in most branches of physics, pedestrian introductions on

them have been written in the specialized journals of each community (to give

an example, meteorologists will appreciate [18]).

For a survey of the various applications, and a good glimpse of the chron-

ological evolution, there is still no better place to look than the proceedings

of the three large wavelet conferences, Marseille 1987 [8], Marseille 1989 [23]

and Toulouse 1992 [24]. Finally a systematic study requires a textbook.

Among the increasing number of books and special issues of journals appear-

ing on the market, we recommend in particular the volumes of Daubechies

[10], Chui [5], Kaiser [16] and Holschneider [14], the collection of review

articles in [30] and several special issues of IEEE journals [15,28]. In parti-

cular, [3] gives a useful survey of the available software related to wavelets.

Another good choice, complete but accessible to a broad readership, is the

recent textbook of Mallat [21].
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The 2-D wavelet transform, physical applications
and generalizations

J . - P . ANTO INE

Institut de Physique Théorique,
Université Catholique de Louvain, Belgium

Abstract

We begin with a short review of the 2-D continuous wavelet transform

(CWT) and describe a number of physical applications. Then we discuss

briefly the mathematical background, namely coherent states derived from

group representations, and we show how it allows a straightforward exten-

sion to more general situations, such as higher dimensions, wavelets on the

sphere or time-dependent wavelets. We conclude with a short outline of the 2-

D discrete wavelet transform, some generalizations and a few physical appli-

cations.

2.1 Introduction

As we have seen in Chapter 1, both the continuous wavelet transform (CWT)

and the discrete wavelet transform (DWT) may be extended to two dimen-

sions. Here also, many applications have been developed, in various branches

of physics and in image processing. As in the 1-D case, the CWT is better

adapted to analysis, for instance the detection of specific features in an image.

This is true, in particular, for oriented features, if one uses a wavelet which is

directionally selective. On the other hand, the strong point of the DWT is

data compression, notably in transmitting or reconstructing a 2-D signal after

processing (e.g. denoising).

We will spend most of the present chapter discussing the 2-D CWT, for

two reasons. First, it admits a number of interesting physical applications,

that we will describe in Section 2.3. The second motivation is that its math-

ematical background, namely group representation theory (Section 2.4), sug-

gests a straightforward extension to more general situations, such as wavelets

in higher dimensions, or on manifolds (a sphere, for instance), or time-
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dependent wavelets, a promising tool for motion tracking (Section 2.5). We

will also discuss the DWT in 2 dimensions (Section 2.6), but our analysis will

be rather brief, because a full treatment requires the language and techniques

of signal processing (filter theory), which are in general more familiar to

electrical engineers than to physicists. Moreover, the 2-D DWT is mostly

used in image processing, which is not the main thrust of the present book.

2.2 The continuous WT in two dimensions

2.2.1 Construction and main properties of the 2-D CWT

We begin by reviewing briefly the basic properties of the CWT in 2 dimen-

sions, which are completely analogous to those discussed in Chapter 1 for the

1-D case (a detailed mathematical discussion is given in Section 2.4).

We consider 2-D signals of finite energy, represented by complex-valued,

square integrable functions s 2 L2
ðR

2; d2 ~xxÞ. This condition may be relaxed,

to allow, for instance, a plane wave or a � function. In practice, a black and

white image will be represented by a bounded non-negative function:

0�sð~xxÞ�M; 8 ~xx 2 R
2
ðM > 0Þ; the discrete values of sð~xxÞ corresponding to

the level of gray of each pixel.

Given a signal s 2 L2
ðR

2; d2 ~xxÞ, we may transform it by translation, rota-

tion and global dilation [70]. This gives, in position and momentum (or

spatial frequency) space, respectively:

s
a;�; ~bb
ð~xxÞ ¼ a�1s a�1r�� ~xx� ~bb

� �� �
; ð2:1Þ

ds
a;�; ~bb
s
a;�; ~bb
ð ~kkÞ ¼ a e�i

~bb: ~kkbss ðar��ð ~kkÞÞ: ð2:2Þ

In these relations, ~bb 2 R
2 is the translation parameter, a > 0 the dilation, and

r�� ð0 � � < 2�Þ denotes the familiar 2� 2 rotation matrix. As usual, the hat

denotes a 2-D Fourier transform [27]. Clearly, the correspondence s 7! s
a;�; ~bb

is a unitary map.

By definition, a wavelet is a complex-valued function  2 L2
ðR

2; d2 ~xxÞ satis-

fying the admissibility condition

c � ð2�Þ
2

Z
d2 ~kk

j ~kkj2
jb  ð ~kkÞj2 <1: ð2:3Þ

If  is regular enough ( 2 L1
ðR

2
Þ \ L2

ðR
2
Þ suffices), the admissibility con-

dition simply means that the wavelet has zero mean:
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b  ð~00Þ ¼ 0 ()

Z
 ð~xxÞ d2 ~xx ¼ 0: ð2:4Þ

Clearly the map s 7! s
a;�; ~bb

preserves the admissibility condition (2.3). Hence

any function  
a;�; ~bb

obtained from a wavelet  by translation, rotation or

dilation is again a wavelet. Thus the given wavelet  generates the whole

family f 
a;�; ~bb
ða > 0; � 2 ½0; 2�Þ; ~bb 2 R

2
Þg. It is easily seen that the linear span

of this family is dense in L2
ðR

2
Þ. In the sequel we will denote by G this 4-

dimensional parameter space.

As we will see in Section 2.4, the whole construction has a group-theore-

tical backbone. The parameter space G is in fact the so-called similitude group

of the plane, composed precisely of translations, rotations and dilations, and

the 2-D CWT may be derived from a unitary representation of it.

Given a signal s 2 L2
ðR

2
Þ, its CWT with respect to the wavelet  is:

Sða; �; ~bbÞ ¼ h 
a;�; ~bb
jsi ¼ a�1

Z
 ða�1r��ð~xx� ~bbÞÞ sð~xxÞ d

2 ~xx ð2:5Þ

¼ a

Z
ei
~bb: ~kk b  ðar��ð ~kkÞÞbss ð ~kkÞ d2 ~kk: ð2:6Þ

The properties of the wavelet transform are best expressed in terms of the

map W : s 7!c
�1=2
 S. They may be summarized as follows [6, 69, 70].

. W is linear, contrary, for instance, to the Wigner–Ville transform, which is

bilinear.

. W is covariant under translations, dilations and rotations.

. W conserves norms:

c�1 

ZZZ
da

a3
d�d2 ~bb jSða; �; ~bbÞj2 ¼

Z
d2 ~xx jsð~xxÞj2; ð2:7Þ

i.e., W is an isometry from the space of signals into the space of transforms,

which is a closed subspace of L2
ðG; dgÞ, where dg � a�3dad�d2 ~bb is the natural

measure on G.

. As a consequence, the map W is invertible on its range, and the inverse trans-

formation is simply the adjoint of W . This means that the signal sð~xxÞ may be

reconstructed exactly from its transform Sða; �; ~bbÞ :

sð~xxÞ ¼ c�1 

ZZZ
da

a3
d�d2 ~bb  

a;�; ~bb
ð~xxÞ Sða; �; ~bbÞ: ð2:8Þ

In other words, the 2-D wavelet transform provides a decomposition of the signal

in terms of the analysing wavelets  
a;�; ~bb

, with coefficients Sða; �; ~bbÞ. As in 1-D

[54], one can also reconstruct the signal by resumming only over scales and angles

(provided the analysing wavelet satisfies a slightly stronger admissibility condi-

tion):

The 2-D wavelet transform 25



sð~xxÞ �

ZZ
da

a2
d� Sða; �; ~xxÞ: ð2:9Þ

. The projection from L2
ðG; dgÞ onto the range of W , the space of wavelet trans-

forms, is an integral operator whose kernel Kða0; �0; ~bb0ja; �; ~bbÞ is the autocorrela-

tion function of  , also called reproducing kernel:

Kða0; �0; ~bb0ja; �; ~bbÞ ¼ c�1 h a0;�0; ~bb0
j 

a;�; ~bb
i: ð2:10Þ

Therefore, a function f 2 L2
ðG; dgÞ is the wavelet transform of a certain signal iff

it verifies the reproduction property:

f ða0; �0; ~bb0Þ ¼

ZZZ
da

a3
d�d2 ~bb Kða0; �0; ~bb0ja; �; ~bbÞ f ða; �; ~bbÞ: ð2:11Þ

2.2.2 Interpretation of the CWT as a singularity scanner

In order to get a physical interpretation of the CWT, we notice that in signal

analysis, as in classical electromagnetism, the L2 norm is interpreted as the

total energy of the signal. Therefore, the relation (2.7) suggests to interpret

jSða; �; ~bbÞj2 as the energy density in the wavelet parameter space.

Assume now, as in 1-D, that the wavelet  is fairly well localized both in

position space ð~xxÞ and in spatial frequency space ð ~kkÞ. Then so does the trans-

formed wavelet  
a;�; ~bb

, with effective support suitably translated by ~bb, rotated

by � and dilated by a. Because (2.5) is essentially a convolution with a func-

tion  of zero mean, the transform Sða; �; ~bbÞ is appreciable only in those

regions of parameter space ða; �; ~bbÞ where the signal is: we get an appreciable

value of S only where the wavelet  
a;�; ~bb

‘matches’ the features of the signal s.

In other words, the CWT acts on a signal as a local filter in all 4 variables

a; �; ~bb: Sða; �; ~bbÞ ‘sees’ only that portion of the signal that ‘lives’ around a; �; ~bb

and filters out the rest. Therefore, if the wavelet is well localized, the energy

density of the transform will be concentrated on the significant parts of the

signal. This is the key to all the approximation schemes that make wavelets

such an efficient tool.

Let us make more precise the support properties of  . Assume  and b  to

be as well localized as possible (compatible with the Fourier uncertainty

property), that is,  has for essential support (i.e. the region outside of

which the function is numerically negligible) a ‘disk’ of diameter T , centred

around ~00, while b  has for essential support a ‘disk’ of diameter �, centred

around ~kko. Then, for the transformed wavelets  
a;�; ~bb

and b  
a;�; ~bb

we have,

respectively:

. ess supp  
a;�; ~bb

is a ‘disk’ of diameter ’ aT around ~bb, rotated by r�;
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. ess supp b  
a;�; ~bb

is a ‘disk’ of diameter ’ �=a around ~kko=a, rotated by r�.

Notice that the product of the two diameters is constant. Thus the wavelet

analysis operates at constant relative bandwidth, �k=k ¼ const,

where k � j~kkj. Therefore, the analysis is most efficient at high frequencies

or small scales, and so it is particularly apt at detecting discontinuities in

images, either point singularities (contours, corners) or directional features

(edges, segments).

In addition to its localization properties, the wavelet  is often required to

have a certain number of vanishing moments. This condition determines the

capacity of the WT to detect singularities. Indeed, if  has all its moments

vanishing up to order n � 1 (by the admissibility condition (2.4), the moment

of order 0 must always vanish),Z
x� y�  ð~xxÞ d2 ~xx ¼ 0; 0 � �þ � � n; ð2:12Þ

then the WT is blind to polynomials of degree up to n, that is, the smoother

part of the signal. Equivalently, it detects singularities down to the ðnþ 1Þth

derivative of the signal.

All together, as in the 1-D case, the 2-D wavelet transform may be inter-

preted as a mathematical, direction selective, microscope, with optics  ,

magnification 1=a and orientation tuning parameter � [19]. Two features

must be emphasized here: the magnification 1=a is global, independently of

the direction, and there is the additional property of directivity, given by the

rotation angle �.

2.2.3 Practical implementation: the various representations

The first problem one faces in practice is that of visualization. Indeed

Sða; �; ~bbÞ is a function of four variables: two position variables
~bb ¼ ðbx; byÞ 2 R

2, and the pair ða; �Þ 2 R
þ
� � ½ð0; 2�Þ ¼ R

2
n f0g.

In the 1-D case [37, 61], a�1 defines the frequency scale, thus the full

parameter space of the 1-D WT, the time-scale half plane, is in fact a

phase space, in the sense of Hamiltonian mechanics (for a 1-D mechanical

system, the phase space is the time-frequency plane, or the position-momen-

tum plane, with canonical coordinates ðq; pÞ). Exactly the same situation

prevails in 2-D: the pair ða�1; �Þ plays the role of spatial frequency (or

momentum), expressed in polar coordinates, and so the full 4-dimensional

parameter space of the 2-D WT may be interpreted as a phase space. This

interpretation, which actually extends to higher dimensions (see Section
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2.5.1), is borne out by mathematical analysis, using the group-theoretical

framework discussed in Section 2.4 (one computes the coadjoint orbits of

the similitude group) [4, 9].

Now, to compute and visualize the full CWT in all four variables is hardly

possible. Therefore, in order to obtain a manageable tool, some of the vari-

ables, a; �; bx; by must be fixed. In other words, one must restrict oneself to a

section of the parameter space. There are six possible choices of two-dimen-

sional sections, but the geometrical considerations made above indicate that

two of them are more natural: either ða; �Þ or ðbx; byÞ are fixed, and the WT is

treated as a function of the two remaining variables. The corresponding

representations have the following characteristics [4].

(1) The position or aspect-angle representation: a and � are fixed and the CWT is

considered as a function of position ~bb alone (this amounts to taking a set of

snapshots, one for each value of ða; �Þ). Alternatively, one may use polar coor-

dinates, in which case the variables are interpreted as range j ~bbj and perception

angle �, a familiar representation of images.

(2) The scale-angle representation: for fixed ~bb, the CWT is considered as a function

of scale a and anisotropy angle �, i.e. of spatial frequency. In other words, one

looks at the full CWT as through a keyhole located at ~bb, and observes all scales

and all directions at once.

The position representation is the standard one, and it is useful for the

general purposes of image processing: detection of position, shape and con-

tours of objects; pattern recognition; image filtering by resynthesis after elim-

ination of unwanted features (for instance, noise). The scale-angle

representation will be particularly interesting whenever scaling behaviour

(as in fractals) or angular selection is important, in particular when direc-

tional wavelets are used. In fact, both representations are needed for a full

understanding of the properties of the CWT in all four variables. And both

will be seen at work in the various applications described in Section 2.3.

For the numerical evaluation, in particular for exploiting the reconstruc-

tion formula (2.8), one has to discretize the WT. In either representation, a

systematic use of the FFT algorithm will lead to a numerical complexity of

3N1N2 logðN1N2Þ, where N1;N2 denote the number of sampling points in the

variables ðbx; byÞ or ða; �Þ. In the former case, the geometry is Cartesian and a

square lattice will give an adequate sampling grid. In the latter, the repre-

sentation is in polar coordinates, and the discretization must naturally be

logarithmic in the scale variable a and linear in the anisotropy angle �.

In addition to these two familiar representations, there are four other two-

dimensional sections, obtained by fixing two of the four variables ða; �; j ~bbj; �Þ,
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and analysing the CWT as a function of the remaining two. Among these, the

angle-angle representation might be useful for applications [8]. Here one fixes

the range j ~bbj and the scale a and considers the CWT at all perception angles �

and all anisotropy angles �. This case is particularly interesting, because the

parameter space is now compact (it is a torus) and the discretization easy

(linear) in both variables.

One may also consider three-dimensional sections, for which a single vari-

able is fixed. Suppose, for instance, the anisotropy angle is fixed, or that it is

irrelevant, because the wavelet is rotation invariant. Then the transform is a

function of position and scale. This representation is optimal for detecting

the presence of coherent structures, that is, structures that survive through a

whole range of scales. Examples may be found, for instance, in astrophysics

(hierarchical structure of galaxy clusters and superclusters) [77] or in the

analysis of turbulence in fluid dynamics [47, 48]. Further information on

these two topics will be found in Chapters 3 and 4, respectively.

2.2.4 Choice of the analysing wavelet

The next step is to choose an analysing wavelet  . At this point, there are two

possibilities, depending on the problem at hand, namely isotropic or direc-

tional wavelets.

(i) Isotropic wavelets:

If one wants to perform a pointwise analysis, that is, when no oriented features

are present or relevant in the signal, one may choose an analysing wavelet  

which is invariant under rotation. Then the � dependence drops out, for

instance, in the reconstruction formula (2.8). A typical example is the isotropic

2-D Mexican hat wavelet.

(ii) Anisotropic wavelets:

When the aim is to detect directional features in an image, for instance to

perform directional filtering, one has to use a wavelet which is not rotation

invariant. The best angular selectivity will be obtained if  is directional,

which means that its (essential) support in spatial frequency space is contained

in a convex cone with apex at the origin. Typical directional wavelets are the

2-D Morlet wavelet or the Cauchy wavelets.

Let us examine in more detail some examples of wavelets of each kind.

2.2.4.1 Isotropic wavelets

The 2-D Mexican hat or Marr wavelet: In its isotropic version, this is simply

the Laplacian of a Gaussian:
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 Hð~xxÞ ¼ ð2� j~xxj
2
Þ expð�1

2j~xxj
2
Þ ¼ �� expð�1

2j~xxj
2
Þ: ð2:13Þ

This is a real, rotation invariant wavelet, originally introduced in [64]. There

exists also an anisotropic version, obtained by replacing in (2.13) ~xx by A~xx,

where A is an anisotropy matrix. However, this wavelet still acts as a second

order operator and detects singularities in all directions and it is of little use

in practice. Hence the Mexican hat will be efficient for a fine pointwise

analysis, but not for detecting directions. On the other hand, one may also

use higher order Laplacians of the Gaussian,

 ðnÞH ð~xxÞ ¼ ð��Þ
n expð�1

2j~xxj
2
Þ: ð2:14Þ

For increasing n, these wavelets have more and more vanishing moments,

and are thus sensitive to increasingly sharper details. An interesting tech-

nique, pioneered in 1-D by A. Arnéodo et al. [20], is to analyse the same

signal with several wavelets  ðnÞH , for different n. The features common to all

the transforms surely belong to the signal, they are not artefacts of the

analysis.

Difference wavelets: Many other wavelets (or filters) have been proposed in

the literature, often designed for a specific problem. An interesting class

consists of wavelets obtained as the difference of two positive functions,

for instance a single function h and a contracted version of the latter. If h

is a smooth non-negative function, integrable and square integrable, with all

moments of order one vanishing at the origin, then the function  given by

the relation :

 ð~xxÞ ¼ ��2 hð��1 ~xxÞ � hð~xxÞ ð0 < � < 1Þ ð2:15Þ

is easily seen to be a wavelet satisfying the admissibility condition (2.4). Such

difference wavelets have the additional advantage that they lead to interest-

ing and fast algorithms [46]. We will come back to this point in Section

2.2.5.4.

A typical example is the ‘Difference-of-Gaussians’ or DOG wavelet,

obtained by taking for h a Gaussian

 Dð~xxÞ ¼ �
�2 e�j~xxj

2=2�2
� e�j~xxj

2=2; ð0 < � < 1Þ: ð2:16Þ

The DOG filter is a good substitute for the Mexican hat (for ��1 ¼ 1:6, their

shapes are extremely similar), frequently used in psychophysics works [39,

41]. Notice that h, and thus also  , need not be isotropic.
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2.2.4.2 Directional wavelets

If one wants to detect oriented features (segments, edges, vector field,. . .), one

needs a wavelet which is directionally selective. To be precise, we will say that

a given wavelet  is directional if the effective support of its Fourier trans-

form b  is contained in a convex cone in spatial frequency space f ~kkg, with apex

at the origin, or a finite union of disjoint such cones (in that case, one will

usually call  multidirectional). A review of directional wavelets and their use

may be found in [11].

This definition may require a word of justification. According to (2.6), the

wavelet acts as a filter in ~kk-space (multiplication by the function b  ). Suppose

the signal sð~xxÞ is strongly oriented, for instance a long segment along the x-

axis. Then its Fourier transformbss ð ~kkÞ is a long segment along the ky-axis. In

order to detect such a signal, with a good directional selectivity, one needs a

wavelet  supported in a narrow cone in ~kk-space. Then the WT is negligible

unless b  ð ~kkÞ is essentially aligned ontobss ð ~kkÞ: directional selectivity demands to

restrict the support of b  , not  . The corresponding standard practice in

signal processing is to design an adequate filter in the frequency domain

(high pass, band pass, . . .). In addition, there are cases (magnetic resonance

imaging, for instance) where data are acquired in ~kk-space (then called the

measurement space) and the image space is obtained after a FT: here again

directional filtering takes place in ~kk-space.

According to this definition, the anisotropic Mexican hat is not directional,

since the support of b  H is centred at the origin, no matter how big its aniso-

tropy is; and, indeed, detailed tests confirm its poor performances in selecting

directions [4].

The 2-D Morlet wavelet: This is the prototype of a directional wavelet:

 Mð~xxÞ ¼ expði ~kko � ~xxÞ expð�
1
2 jA~xxj

2
Þ; ð2:17Þb  Mð

~kkÞ ¼
ffiffiffi
�
p

expð� 1
2 jA
�1
ð ~kk� ~kkoÞj

2
Þ: ð2:18Þ

The parameter ~kko is the wave vector, and A ¼ diag½��1=2; 1	; � � 1; is a 2� 2

anisotropy matrix. As in 1-D, we should add a correction term to (2.17) and

(18) to enforce the admissibility condition b  Mð
~00Þ ¼ 0. However, since it is

numerically negligible for j ~kkoj � 5:6, we have dropped it altogether. The

modulus of the (truncated) wavelet  M is a Gaussian, elongated in the x

direction if � > 1, and its phase is constant along the direction orthogonal

to ~kko. Thus the wavelet  M smoothes the signal in all directions, but detects

the sharp transitions in the direction perpendicular to ~kko. In Fourier space,

the effective support of the function b  M is an ellipse centred at ~kko and elon-
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gated in the ky direction, thus contained in a convex cone, that becomes

narrower as � increases. Hence the angular selectivity increases with j ~kkoj

and with the anisotropy � and the best selectivity will be obtained by taking
~kko parallel to the long axis of the ellipse, that is, ~kko ¼ ð0; koÞ. The function b  M

with � ¼ 5, is shown (in perspective and in level curves) in Figure 2.1 (left).

Cauchy wavelets: In order to achieve a genuinely oriented wavelet, it suffices

to consider a smooth function b  Cð ~kkÞ with support in a strictly convex cone C

in spatial frequency space, with apex at the origin, and behaving inside C as

Pðkx; kyÞe
� ~kk�~��, with ~�� 2 C, or Pðkx; kyÞe

�jkj2 , where Pð:Þ denotes a polynomial

in two variables. A typical example is the family of Cauchy wavelets, that we

now describe.

For simplicity, we consider a cone symmetric with respect to the positive

kx-axis, namely C � Cð��; �Þ ¼ f ~kk 2 R
2
j � � � arg ~kk � �g, the convex cone

determined by the unit vectors ~ee��; ~ee�. The dual cone, also convex, is
~CCð� ~��; ~��Þ ¼ f ~kk 2 R

2
j ~kk � ~k0k0 > 0; 8 ~k0k0 2 Cð��; �Þg, where ~�� ¼ ��þ �=2, and

therefore ~ee�� � ~ee ~�� ¼ ~ee� � ~ee� ~�� ¼ 0. Given the fixed vector ~�� ¼ ð�; 0Þ; � > 0, we

define the Cauchy wavelet in spatial frequency variables [9, 11, 13]:

b  ðCÞlm ð ~kkÞ ¼ ð ~kk � ~ee ~��Þ
l
ð ~kk � ~ee� ~��Þ

m e�
~kk�~��; ~kk 2 Cð��; �Þ

0; otherwise:

(
ð2:19Þ

The Cauchy wavelet b  ðCÞlm ð ~kkÞ is strictly supported in the cone Cð��; �Þ and the

parameters l; m 2 N
� give the number of vanishing moments on the edges of

the cone. An explicit calculation yields the following result:

 ðCÞlm ð~xxÞ ¼ const: ð~zz � ~ee�Þ
�l�1
ð~zz � ~ee��Þ

�m�1; ð2:20Þ

where we have introduced the complex variable ~zz ¼ ~xxþ i~�� 2 R
2
þ ieCC: We

show in Figure 2.1 (right) the wavelet b  ðCÞ44 ð ~kkÞ for C ¼ Cð�10
; 10
Þ; this is

manifestly a highly directional filter.

The construction generalizes in a straightforward way to any convex cone

Cð�; �Þ [9, 11, 13]. In addition, if one lets ~�� vary in the dual cone ~CCð ~��; ~��Þ, then

the wavelet  ðCÞlm ð~xxÞ is the boundary value of a function  ðCÞlm ð~zzÞ, holomorphic

in the tube R
2
þ ieCC: This follows from general theorems [78, 79], since the

function b  lmð
~kkÞ has support in the convex cone C ¼ Cð�; �Þ and is of fast

decrease at infinity.

Note also that other wavelets, although not directional in the sense of the

above definition, may have some capabilities of directional filtering. Such are,

for instance, the gradient wavelets @x expð�j~xxj
2
Þ or @x@y expð�j~xxj

2
Þ. The latter,
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Fig. 2.1. Two 2-D directional wavelets. (Left) The Morlet wavelet (� ¼ 5; ko ¼ 6).
(Right) The Cauchy wavelet  ðCÞ44 for C ¼ Cð�108; 108Þ. The top row shows the real
part of  in position space, the other two the wavelet b  in spatial frequency space,
in 3-D perspective (centre) and in level curves (bottom). For the Morlet wavelet
(bottom left), the segment represents the vector ~ko.



in particular, looks promising for the detection of corners in a contour, as we

will discuss in Section 2.3.1.1.

2.2.5 Evaluation of the performances of the CWT

Given a wavelet, what is its angular and scale selectivity (resolving power)?

What is the minimal sampling grid for the reconstruction formula (2.8) that

guarantees that no information is lost? The answer to both questions resides

in a quantitative knowledge of the properties of the wavelet, that is, the tool

must be calibrated.

To that effect, one takes the WT of particular, standard signals. Three such

tests are useful, and in each case the outcome may be viewed either at fixed

ða; �Þ (position representation) or at fixed ~bb (scale-angle representation).

� Point signal: for a snapshot at the wavelet itself, one takes as the signal a delta

function, i.e. one evaluates the impulse response of the filter:

h 
a;�; ~bb
j�i ¼ a�1  ða�1r��ð� ~bbÞÞ: ð2:21Þ

� Reproducing kernel: taking as the signal the wavelet  itself, one obtains the

reproducing kernel K , which measures the correlation length in each variable

a; �; ~bb:

c Kða; �; ~bbj1; 0; ~00Þ ¼ h a;�; ~bb
j i ¼ a�1

Z
 ða�1r��ð~xx� ~bbÞÞ  ð~xxÞ d2 ~xx: ð2:22Þ

� Benchmark signals: for testing particular properties of the wavelet, such as its

ability to detect a discontinuity or its angular selectivity in detecting a particular

direction, one may use appropriate ‘benchmark’ signals.

2.2.5.1 The scale and angle resolving power

Suppose the wavelet  has its effective support in spatial frequency in a

vertical cone of aperture �’, corresponding to ~kko ¼ ð0; koÞ. The width of b  
in the x and y directions is given by 2wx, resp. 2wy:

wx ¼
1

kb  k
Z

d2 ~kk k2xjb  ð ~kkÞj2� �1=2
; wy ¼

1

kb  k
Z

d2 ~kk ðky � koÞ
2
jb  ð ~kkÞj2� �1=2

:

ð2:23Þ

Then the wavelet b  is concentrated in an ellipse of semi-axes wx;wy, and its

radial support is ko � wy � j
~kk j � ko þ wy: Thus the scale width or scale resol-

ving power (SRP) of  is defined as:
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SRPð Þ ¼
ko þ wy

ko � wy

: ð2:24Þ

In the same way, one defines the angular width or angular resolving power

(ARP) by considering the tangents to that ellipse. Then a straightforward

calculation yields:

ARPð Þ ¼ 2 cot�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2o � w2

y

q
wx

’ �’: ð2:25Þ

For instance, if  is the (truncated) Morlet wavelet (2.17), one obtains:

SRPð MÞ ¼
ko

ffiffiffi
2
p
þ 1

ko
ffiffiffi
2
p
� 1

; ARPð MÞ ¼ 2 cot�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðk2o � 1Þ

q
; ð2:26Þ

and, for ko � 1:

ARPð MÞ ¼ 2 cot�1ðko
ffiffiffi
�
p
Þ: ð2:27Þ

This last expression coincides with the empirical result of [4]: the angular

sensitivity of  M depends only on the product ko
ffiffiffi
�
p

. Notice also that the SRP

is independent of the anisotropy factor �.

If  is the Cauchy wavelet (2.19) with support in the cone Cð��; �Þ; the

ARP is simply the opening angle 2� of the supporting cone.

2.2.5.2 The reproducing kernel and the resolving power of the wavelet

A natural way of testing the correlation length of the wavelet is to analyse

systematically its reproducing kernel. Let the effective support of the wavelet

 in spatial frequency be, in polar coordinates, �� and �’. Then an easy

calculation [9] shows that the effective support of K is given by

amin
¼ ð��Þ�1 � a � amax

¼ �� for the scale variable, and ��’ � � � �’

for the angular variable. Thus we may define the wavelet parameters (or

resolving power) ��;�’ in terms of the parameters �a;�� of K, as:

. scale resolving power (SRP): �� ¼
ffiffiffiffiffiffiffi
�a
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amax=amin

p
;

. angular resolving power (ARP): �’ ¼ 1
2��:

In this way, one may design a wavelet filter bank fb  aj;�‘ð
~kkÞg; which yields a

complete tiling of the spatial frequency plane, in polar coordinates [6, 9].

Clearly this analysis is only possible within the scale-angle representation.

Thus it requires the use of the CWT, and it is outside of the scope of the

DWT, which is essentially limited to a Cartesian geometry (see Section 2.6).
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2.2.5.3 Calibration of a wavelet with benchmark signals

The capacity of the wavelet at detecting a discontinuity may be measured on

the (benchmark) signal consisting of an infinite rod (see [4] for the full dis-

cussion). The result is that both the Mexican hat and the Morlet wavelet are

efficient in this respect.

For testing the angular selectivity of a wavelet, one computes the WT of a

semi-infinite rod, sitting along the positive x-axis, and modelled as usual with

a delta function:

sð~xxÞ ¼ #ðxÞ �ðyÞ; ð2:28Þ

where #ðxÞ is the step function. Let us take first a Morlet wavelet with � ¼ 5,

oriented at an angle �, and compute the CWT of s as a function of x. The

result is that  M detects the orientation of the rod with a precision of the

order of 5
. Indeed, for � < 5
, the WT is a ‘wall’, increasing smoothly from

0, for x � �5, to its asymptotic value (normalized to 1) for x � 5. Then, for

increasing misorientation �, the wall gradually collapses, and essentially dis-

appears for � > 15
. Only the tip of the rod remains visible, and for large

� ð� > 45
Þ, it gives a sharp peak.

Essentially the same result is obtained with a Cauchy wavelet supported in

a cone of opening angle ARP ¼ 20
. Conversely, for a fixed misorientation

angle � ¼ 20
, the Cauchy wavelet yields the same selectivity for ARP � 20


(Figure 2.2). On the contrary, the same test performed with an anisotropic

Mexican hat gives a result almost independent of �. The conclusion is that the

Morlet and the Cauchy wavelets are highly sensitive to orientation, but the

Mexican hat is not.

Let now the signal be a segment. If one uses a Morlet or a Cauchy wavelet

as above, the WT reproduces the segment if the misorientation �	 between

the signal and the wavelet is smaller than 5
, but the segment becomes essen-

tially invisible for �	 > 15
, except for the tips (these are point singularities).

In the end, the image of the segment reduces to two peaks corresponding to

the two endpoints. This is exactly the property used crucially in the measure-

ment of the velocity field of a turbulent fluid (see Section 2.3.2.1 below).

One may remark that the precision mentioned here is obtained with the

modulus of the WT. In fact, if the wavelet is complex (like  M), one may also

exploit the phase of the WT, and it gives a higher precision yet [4]. But this is

practical only on academic signals, real data are in general too noisy and only

the modulus is useful.
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Fig. 2.2. Testing the angular selectivity of the Cauchy wavelet b  44 with the semi-
infinite rod signal. The two figures show the modulus of the CWT as a function of ~xx.
(Top) For fixed ARP ¼ 20
 and various values of the misorientation angle �.
(Bottom) For a fixed misorientation angle � ¼ 20
 and various values of the ARP.



Another way of comparing the angular selectivity of the two wavelets is to

analyse a directional signal in the angle-angle representation (�; �) described

above. The result confirms the previous one [8].

2.2.5.4 Discretization of the CWT

The reproduction property (2.11) means that the information contained in

the WT Sða; �; ~bbÞ is highly redundant. This redundancy may be eliminated

(this is the basic idea behind the discrete WT), or exploited, either under the

form of interpolation formulas or for discretizing the reconstruction formula

(2.8), as needed for numerical evaluation. The integral is replaced by a sum

over a discrete (but infinite) family of wavelets  
aj;�k; ~bbl

, which can be chosen

in such a way that no information is lost:

sð~xxÞ ¼
X
jkl

 
aj;�k; ~bbl

ð~xxÞSðaj; �k; ~bblÞ: ð2:29Þ

Such an overcomplete family is called a frame, according to the terminology

introduced by Duffin and Schaefer [43] in the context of nonharmonic

Fourier series. Its existence for specific wavelets may be proven along the

same lines as in the 1-D case [36, 37, 38] with similar results [69, 70]. In

practical applications, the infinite sum will be truncated (a few terms will

often suffice) and the approximate reconstruction so obtained is numerically

stable [37, 38].

The problem, of course, is how to choose the sampling grid in an optimal

fashion. The 2-D wavelet transform too obeys sampling theorems, that give

lower bounds on the density of sampling points, like the standard Shannon

theorem of signal analysis, only more complicated. Nevertheless, in practice,

the sampling points are quite often fixed empirically. For the ða; �Þ variables,

in particular, they are mostly chosen on the basis of biological considerations

or symmetry requirements [39, 60, 61, 63]. Now the CWT described here

offers a quantitative solution of this sampling problem. As we have seen

above, a systematic exploitation of the reproducing kernel K leads to a

minimal dicretization grid as needed for the numerical evaluation of the

reconstruction integral (2.8).

Besides the full discretization described here, and a fortiori the discrete WT

that we will describe in Section 2.6, there is an intermediate procedure, intro-

duced in [46], under the name of (continuous) wavelet packets. It consists of

discretizing the scale variable alone, on an arbitrary sequence of values (not

necessarily powers of a fixed ratio). This leads to difference wavelets, as

mentioned in Section 2.2.4.1, but more important, to fast algorithms that
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could put the CWT on the same footing as the DWT in terms of speed and

efficiency, for example in reconstruction problems.

2.3 Physical applications of the 2-D CWT

The 2-D CWT has been used by a number of authors, in a wide variety of

physical problems [34, 67, 68]. In all cases, its main use is for the analysis of

images. It can be used for the detection of specific features, such as a hier-

archical structure, edges, filaments, contours, boundaries between areas of

different luminosity, etc. Of course, the type of wavelet chosen depends on

the precise aim. An isotropic wavelet (Mexican hat) suffices for pointwise

analysis, but an oriented wavelet (Morlet, Cauchy) is more efficient for the

detection of oriented features in the signal, that is, regions where the ampli-

tude is regular along one direction and has a sharp variation along the

perpendicular direction.

2.3.1 Pointwise analysis

2.3.1.1 Contour detection, character recognition

Exactly as in the 1-D case, the WT is especially useful to detect discontinuities

in images, for instance the contour [4, 70] or the edges of an object [53, 65].

For that purpose, an isotropic wavelet may be chosen, such as the radial

Mexican hat  H given in (2.13). In that case the effect of the WT consists of

smoothing the signal with a Gaussian and taking the Laplacian of the result.

Thus large values of the amplitude will appear at the location of the discon-

tinuities, in particular the contour of objects (which is a discontinuity in

luminosity).

In order to test this property, we compute the WT of a simple object,

namely a set with the shape of a thick letter ‘A’, represented by its character-

istic function, for various values of the scale parameter a (Figure 2.3). Then,

for large values of a, the WT sees only the object as a whole, thus allowing

the determination of its position in the plane. When a decreases, increasingly

finer details appear. In this simple case, the WT vanishes both inside and

outside the contour, since the signal is constant there, and thus only the

contour remains, and it is perfectly seen at a ¼ 0:075. Of course, if one

takes values of a that are too small, numerical artefacts (aliasing) appear

and spoil the result. We notice that the exterior contour is a sharp negative

‘wall’, whereas the interior contour is a positive one. The same effect would

appear in 1-D if one would consider, for instance, the full WT of a square
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pulse: the jump from 0 to 1 gives a negative minimum followed by a sharp

positive maximum, and the jump from 1 to 0 gives the opposite pattern. Note

also that the corners of the figure are highlighted in the WT by sharp peaks.

The amplitude is larger at these points, since the signal is singular there in two

directions, as opposed to the edges. In addition the WT detects the convexity

of each corner. The six convex corners give rise to positive peaks, whereas the

concave ones yield a negative peak. Here we see the advantage of using a real

wavelet and plotting the WT itself, not its modulus, which is a frequent

practice.

This exercise leads to an algorithm for automatic character recognition [8].

The letter ‘A’, for instance, is entirely characterized by the succession of its 12

corners and a logical flag (concavity or convexity) for each of them. The

algorithm consists in locating the local maxima of the CWT and eliminating

everything else by thresholding, and it is able to detect an ‘A’ unambiguously.

Actually, since only the corners are needed, we may as well use a wavelet that

sees only the corners, not the edges. Typically, a directional wavelet (when

misaligned), or a real wavelet such as the gradient wavelets @x expð�j~xxj
2
Þ or

@x@y expð�j~xxj
2
Þ.

This simple technique may be further improved by adding some denoising

and inclusion of a second wavelet capable of dealing with letters of arbitrary

shape (for instance, a ring-shaped wavelet sensitive to circular shapes). In

addition, the automatic recognition device will need some training. An ele-

gant solution would then be to use the simple wavelet treatment as a pre-

processing for some sort of ‘intelligent’ device, such as a neural network.
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and in 3-D perspective.



2.3.1.2 Analysis of 2-D fractals

By definition, a fractal, be it in 1-D or in 2-D, is self-similar under dilation,

either globally (genuine fractal) or locally (multifractal). Hence the CWT is a

natural tool for analysing it, and there is an abundant literature on the

subject. Notice that the continuous version of the WT is essential here,

since the characteristic scaling ratio is unknown a priori.

In fact, a fractal is in general a very irregular object (for instance, its

support may be a Cantor-like set), hence it should be represented by a mea-

sure, rather than a function. Fortunately the CWT may be extended corre-

spondingly [18, 19]. Let 
 be a fractal measure on R
2. Then its CWT with

respect to the wavelet  is defined as

Tða; �; ~bbÞ ¼

Z
 ða�1r��ð~xx� ~bbÞÞ d
ð~xxÞ: ð2:30Þ

Assume now that the measure has the following scaling behaviour around the

point ~xxo:


ðBð~xx0; ��ÞÞ � �
�ð~xxoÞ 
ðBð~xx0; �ÞÞ; � > 0; ð2:31Þ

where Bð~xx0; �Þ is a ball of radius � around ~xxo and �ð~xxoÞ is the local scaling

exponent. Then it is easily shown that the WT scales in the same way:

Tð�a; �; ~xxo þ � ~bbÞ � �
�ð~xxoÞ Tða; �; ~xxo þ ~bbÞ; �! 0þ: ð2:32Þ

This relation is the key to the wavelet analysis of fractals. For instance, the

local exponent �ð~xxoÞ may be obtained by plotting log j Tða; �; ~bbÞ j vs. log a,

for a small enough. This would suffice for an exact (global) fractal, such as a

numerical snowflake. But most fractals exhibit the scaling behaviour (2.31)

only in the average. Thus a second essential ingredient in fractal analysis is

the use of techniques borrowed from statistical mechanics (as a matter of

fact, the standard ‘box counting’ method is already of a statistical nature).

This leads to the so-called thermodynamical formalism of fractal analysis

developed systematically by Arnéodo and his group in Bordeaux, and

which is the subject of Chapter 9.

This approach has been applied successfully to a wide variety of examples

[18, 19], that cover both artificial fractals (numerical snowflakes, diffusion

limited aggregates) and natural ones (electrodeposition clusters, various

arborescent phenomena, clouds). In addition to the standard numerical

method, these authors have designed an ingenious hardware version, called

the Optical WT and based on Fraunhofer diffraction, a familiar tool in

optics. This approach amounts to obtaining the WT with a binary approx-

imation to the isotropic Mexican hat.
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With both techniques, the method permits the measurement of the fractal

dimensions and the unravelling of universal laws (mean angle between

branches, azimuthal Cantor structures, etc.). It should be remarked that

the analysis uses exclusively an isotropic wavelet (usually a 2-D Mexican

hat), and thus there is no � dependence in (2.32). However, this may not

be the end of the story. Indeed we shall exhibit in Section 2.3.2.2 below a

fractal (‘twisted snowflake’) whose structure requires a directional wavelet for

its complete determination.

2.3.1.3 Shape recognition and classification of patterns

The characterization of a 2-D shape from its outlines is an important pro-

blem in several applications of image analysis, such as character recognition,

machine parts inspection for industrial applications, characterization of

biological shapes such as chromosomes and neural cells, and so on.

Furthermore, in the field of human vision and perception, 2-D shape analysis

also plays a central role in psychophysics and neurophysiology.

There are two general approaches to shape characterization: region based,

which deals with the region in the image corresponding to the analysed

object; and boundary based, where the shape is characterized in terms of its

silhouette. In both cases, 2-D wavelets may be used directly, as discussed

above. But, for the second approach, there is an alternative, which consists of

representing the shape by the complex signal that describes its boundary, and

applying the 1-D CWT to this signal [10]. This leads to the so-called W-

representation, which allows an easy way of performing a number of standard

tasks (for instance, in machine vision), such as detection of dominant points,

shape partitioning, natural scales analysis. Notice that an essential ingredient

of the analysis is the wavelet-based fractal analysis discussed above.

2.3.1.4 Analysis of astronomical images

Astronomical images have two characteristics. They superpose objects living

at very different distances (nearby stars, galaxies, quasars, galaxy clusters),

and they are very noisy (in particular the bright sky represents noise). A 2-D

wavelet analysis is useful on both counts and it has been exploited system-

atically by A. Bijaoui and his group in Nice. Applications include the un-

ravelling of the hierarchical structure of a galactic nebula, or that of the

universe itself (galaxy counts, detection of galaxy clusters or voids), and

the removal of the background sky, with a technique similar to that used

in 1-D for the subtraction of unwanted lines or noise in spectra [55]. Here

too, statistical techniques play an essential rôle. A systematic presentation

will be found in Chapter 3.
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A new application under development [24] is the detection of Einstein

gravitational arcs in cosmological pictures. Whenever the light from a distant

bright object (a quasar) is seen through a galaxy, the latter behaves as a

gravitational lens, so that the point source appears as a ring, or a portion

of a ring (‘arclet’), if the alignment is not exact. By measuring the radius of

that ring, one may infer the distance of the source. This may be done in two

steps. The centre of the arc is obtained with an annular-shaped wavelet,

b  �ð ~kkÞ � e�ðj
~kkj2��Þ; ð2:33Þ

used at a rather large scale (e.g. a ¼ 2). This determination is quite robust to

noise, in particular spurious bright points, that mimic nearby stars. The arc

itself is obtained with a Mexican hat, at a smaller scale (e.g. a ¼ 0:5). By

superposing the two transforms and applying a severe thresholding (up to

95%) for eliminating the noise, one obtains an image with three bright spots:

two points of the arc, around the endpoints, and the centre of the corre-

sponding circle. From this one can reconstruct the arc unambiguously, and

thus one obtains a tool for measuring in a simple way the distance of quasars,

for instance.

2.3.2 Applications of directional wavelets

As a consequence of their good directional selectivity, the Morlet and Cauchy

wavelets are quite efficient for directional filtering. In order to illustrate the

point, we analyse in Figure 2.4 a pattern made of rods in many different

directions (top). Applying the CWT with a fixed direction, here horizontal,

selects all those rods with roughly the same direction (bottom left), whereas

the other ones, which are misaligned, yield only a faint signal corresponding

to their tips, in agreement with the behaviour discussed above. Since this is in

fact noise, one performs a thresholding to remove it, thus getting a clear

picture (bottom right). In this way, one can count the number of objects

that lie in any particular direction.

2.3.2.1 Application in fluid dynamics

Wavelets have been successfully applied to the analysis of 2-D developed

turbulence in fluids, especially localization of small scales in the distribution

of energy or enstrophy [48]. This topic is described in Chapter 4. We describe

here two other applications of 2-D wavelets in fluid dynamics, which both

rely on the possibility of directional filtering with directional wavelets as

described above.
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Measuring a velocity field: In the first example [82, 83], the aim is to measure

the velocity field of a 2-D turbulent flow around an obstacle. Velocity vectors

are materialized by small segments, by the technique of discontinuous tra-

cers. Tiny plastic balls are seeded into the flow and two successive pictures are

taken, both with a short exposure time, but the first one shorter. In this way

one gets a ‘dot-bar’ signature for each tracer, which materializes the direction

and the length of the local velocity. Then the WT with a Morlet wavelet is

computed twice. First the WT selects those vectors that are closely aligned

with the wavelet. Then the analysis is repeated with a wavelet oriented in the

orthogonal direction, thus completely misoriented with respect to the selected

vectors. Now the WT sees only the tips of the vectors and their length may be

easily measured. The same two operations are then repeated with various

successive orientations of the wavelet. Using appropriate thresholdings, the
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.
(Top) the pattern; (bottom left) the CWT; (bottom right) the same after thresholding
at 25%.



complete velocity field may thus be obtained, in a totally automated fashion,

with an efficiency sensibly better than with more traditional methods. Notice

that the analysis gives in principle both the modulus and the phase of the

WT. But here, contrary to the simple applications like contour detection [4],

the phase cannot be exploited, the data are too noisy. Thus one loses some

precision on the orientation. Nevertheless, the method is remarkably effi-

cient.

Disentangling of a wave train: A second example originates from underwater

acoustics. When a point source emits a sound wave above the surface of

water, the wave hitting the surface splits into several components of very

different characteristics (called respectively ‘direct’, ‘lateral’ and ‘transient’).

The resulting wave train is represented by a linear superposition of damped

plane waves, and the goal is to measure the parameters of all components.

This phenomenon has been analysed successfully with the WT both in 1-D

[75] and in 2-D [9], and the extension to a 3-D version is straightforward. The

signal representing the underwater wave train is taken as a linear superposi-

tion of damped plane waves:

f ð~xxÞ ¼
XN
n¼1

cn e
i ~kkn�~xx e�

~lln�~xx; ð2:34Þ

where, for each component, ~kkn is the wave vector, ~lln is the damping vector,

and cn a complex amplitude. Then, using successively the scale-angle and the

position representations described in Section 2.2.3, one is able to measure all

the 6N parameters of this signal with remarkable ease and precision.

The method proceeds in three steps and uses explicitly the phase space

interpretation. First one computes the CWT of the signal (2.34) with a

Morlet wavelet. By linearity, the result is the linear superposition of the

contributions of the various components. Moreover, each component is the

product of two factors, where the first one depends on ~bb only and the second

one on ða; �Þ only:

Fða; �; ~bbÞ ¼
XN
n¼1

c ~bb;n
�FFnða; �Þ: ð2:35Þ

Now we go to the scale-angle representation and consider the WT (2.35) for

fixed ~bb. Then a straightforward calculation shows that, for each term in this

superposition, a�1 �FFnða; �Þ admits a unique local maximum. Suppose that

these local maxima are well separated. Then, barring some interference
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effects (which may often be alleviated by increasing the selectivity of the

wavelet), one may write:

jFða; �; ~bbÞj ’
XN
n¼1

jc ~bb;nj j
�FFnða; �Þj: ð2:36Þ

One then reverts to the position representation, choosing for ða; �Þ succes-

sively each of the maxima. Then the filtering effect of the CWT essentially

eliminates all components except the nth one, which is then easy to treat. In

this way, one is able to measure easily all the 6N parameters of the signal.

2.3.2.2 Detection of symmetries

The directional selectivity of a wavelet may also be used for evaluating the

symmetry of a given pattern. Let Sða; �; ~bb Þ be the wavelet transform of an

object with respect to the Cauchy wavelet. Define the following positive

valued function, called the scale-angle measure of the signal:


Sða; �Þ ¼

Z
d2 ~bb jSða; �; ~bb Þj2: ð2:37Þ

This quantity may also be viewed as a partial energy density in the scale and

angle variables, that is, in spatial frequency space, according to the phase

space interpretation of the CWT given in Section 2.2.3. This is different from

the scale-angle representation, where the position parameter ~bb is fixed [9].

Here, on the contrary, 
S averages over all points in the plane, thus eliminat-

ing the dependence on the point of observation. For any signal of finite

energy, it is clear that 
S is a continuous bounded function of ða; �Þ.

We begin with a simplified version and eliminate the scale dependence by

integrating over a, thus ending with a function �S of the rotation angle only,

called the angular measure of the object. In general, �Sð�Þ is 2�-periodic. But

when the analysed object has rotational symmetry n, that is, it is invariant

under a rotation of angle 2�
n
, then �S is in fact 2�

n
-periodic. Note that, for

n ¼ 2, there are two different operations of order 2, rotation of � and reflec-

tion (mirror symmetry), which may also be seen as a rotation of � around an

axis lying in the plane of the figure (Ox or Oy). To give a simple example,

consider three geometrical figures: a square, a rectangle and a regular hexa-

gon [13, 15]. The square and the hexagon have symmetry n ¼ 4 and n ¼ 6,

respectively, and thus their angular measures show four, resp. six equal

peaks. The width of these peaks is simply the aperture of the support cone

(i.e. the ARP) of the wavelet (Figure 2.5). The case of the rectangle is more

interesting. It has symmetry n ¼ 2� 2 (two mirror symmetries, or rotations

46 J.-P. Antoine



by � around both Ox or Oy), and that is reflected on the graph of its angular

measure: there are two large peaks corresponding to the longest edges and

two smaller peaks corresponding to the shortest ones, and the ratio 2:1

between the two equals that of the lengths of the corresponding edges (to

be sure, the wavelet catches the direction of the edges, not that of the corners,

so that indeed the maxima of �S are again at � ¼ 0
; 90
; 180
; 270
, just as

for the square, but now the amplitudes are different).

This technique also allows one to identify the symmetries of quasi-lattices

or tilings. For instance, the angular measure of a Penrose tiling reveals its

local 10-fold symmetry, namely �P is a �=5-periodic function of � (Figure 2.6,

top left). Actually one may go further and uncover the combined rotation-

dilation symmetry of the tiling, using the full scale-angle measure 
P. This

function is again �=5-periodic in �, which reflects the 10-fold symmetry

(Figure 2.6, top right). But there are in fact two sets of ten maxima, for

two different scales log a1 ¼ �2:6 and log a2 ¼ �2:3, and shifted by 36
.

This means that the tiling has, in addition to its 10-fold symmetry, a com-

bined rotation-dilation symmetry. It is invariant under a rotation by 36
,

followed by a dilation by a factor a1=a2. In order to determine the two

characteristic scales, one may use the skeleton of 
P (lines of local maxima

[40]), or use a wavelet which is sharply peaked in frequency, such as a

Gaussian Cauchy wavelet, as was done in Figure 2.6 (bottom). To illustrate

the point, we show in Figure 2.7 the analysis of a ‘twisted snowflake’. This

means a mathematical snowflake [18, 19] with the following modified con-

struction rule: upon each downscaling by a factor of 3, the figure is turned by

36
. The scale-angle measure of this object shows precisely the combined
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Fig. 2.5. Angular measure of regular figures obtained with a Cauchy wavelet
(ARP ¼ 20
Þ: a square (left) and a rectangle, with side ratio 2:1 (right).



symmetry. The set of 4 maxima at a given scale ao is reproduced, at scale

ao=3, but translated in � by 36
. And reconstructing the WT at the values

ða; �Þ corresponding to these maxima yields successive approximations of the

original signal.

Incidentally, these examples show why it is safer to integrate over all scales

in order to isolate the angular behaviour, rather than to fix a certain scale

a ¼ ao and consider 
Sðao; �Þ. If ao coincides with one of the characteristic

scales, a1; a2; . . ., the result is correct, but if ao falls in between, no maximum
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Fig. 2.6. (Top left) A Penrose tiling. (Top right) The angular measure �Pð�Þ reveals
the 10-fold local symmetry, through the �=5-periodicity. (Bottom) The full scale-
angle measure 
Pða; �Þ shows the combined rotation-dilation symmetry. Both mea-
sures are obtained with a Gaussian Cauchy wavelet, and only a half-cycle ½0; �	 is
shown.



will be seen, and the symmetry is not detected. The effect is shown in Figure

2.8 for the Penrose tiling of Figure 2.6.

This technique permits one to determine, in a straightforward way, the

(possibly hidden) symmetries of a given pattern. This applies to a genuine

lattice, but also to a quasi-lattice, for which the symmetry is only local, for

instance the diffraction spectrum of a quasi-crystal. Thus we expect interest-

ing physical applications, either in the field of crystallography, or in texture

analysis and classification.

2.3.2.3 Geophysics: fault detection

An interesting application of directional wavelets to geology has been

initiated recently [71]. The object to be analysed is a system of geological

faults, with shows a self-similar behaviour over scales from a few metres to

hundreds of kilometres. This explains the use of the multifractal formalism

for analysing such a system. What the authors propose here is a continuous

wavelet analysis, with directional wavelets, combined with a multifractal

analysis. The motivation for this choice is that the relevant information to

be measured is the anisotropy of the fault field, and the variation of this

anisotropy with scale. Unfortunately, the authors use only an anisotropic

Mexican hat, which has rather poor directional selectivity, and this makes

their results less convincing. Clearly such an analysis should be performed
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Fig. 2.7. Analysis of the twisted snowflake. (Left) the pattern; (Right) the scale-angle
measure; the links indicate pairs of points which are related by the combined rotation
(36
) and inflation symmetry by a factor of 3.



with a genuine directional wavelet, such as a Morlet or a Cauchy wavelet,

and a much better precision is likely to result.

2.3.2.4 Determination of textures

The determination and classification of textures in images is an old and

difficult problem, with many potential applications. Because most textures

are oriented, it is natural to try and use 2-D directional wavelets for attacking

the problem. Actually, some proposals have been made with the discrete WT,

but, since directions are essential, the CWT is certainly better adapted.

Indeed some progress on the texture problem has been achieved recently

along these lines [51, 59]. One of the key steps is the generalization to 2-D

of the algorithm for measuring the instantaneous frequency of the signal

(which becomes here the local wave vector) and the systematic use of the

ridge or skeleton of the CWT, both familiar in the analysis of spectra (asymp-

totic signals) [40]. Although the results belong more to image processing, the

method per se is interesting, which justifies its presence in this review.

2.3.3 Local contrast: a nonlinear extension of the CWT

The intensity of light around us varies considerably, in fact by several orders

of magnitude. Our visual system is well adapted to this situation. Indeed it

analyses the spatial organization of the luminous field by relying on the

contrast of objects and figures contained in the images. Intuitively, contrast

is defined as the ratio between a variation of luminance and a reference level
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Fig. 2.8. The scale-angle measure of the Penrose tiling from Figure 2.6, for fixed
values ao of the scale: (Left) for log ao ¼ �2:6, the periodicity is obvious; (Right) for
log ao ¼ �2, between two lines of maxima, the symmetry is not seen.



of luminance, i.e. a quantity of the form �L=L, where L is the luminance

level. The problem is to find a quantitative definition of contrast.

To that effect, one notices two facts. First the concept of multiscale ana-

lysis with functions of constant shape is commonly used in vision research

[64]. This suggests to use the wavelet transform for describing the variations

of luminance. Now the WT is a space-scale analysis, and the spatial extension

of the wavelets is characterized explicitly by their scale factor. Thus it is

possible to define at each scale a different normalization, similar to a local

average. So one is led to the notion of local contrast, defined by combining

the wavelet transform with an adaptive normalization [3, 44]. The latter will

be obtained by projecting the signal, at a given scale, on a local weight

function, chosen with the same localization properties as the wavelets. This

local mean value will be called luminous level: this is the background against

which luminance variations are measured, and the WT may be interpreted as

a representation of these luminance variations within an image. The resulting

contrast analysis is nonlinear, but it presents several advantages. It is parti-

cularly well adapted to the processing of positive signals. It also yields a

multiplicative reconstruction process, which preserves positivity. Let us

give some details and an example of application.

Let h be a nonnegative, rotation invariant, function h 2 L1
ðR

2
Þ \ L2

ðR
2
Þ,

normalized to khkL1 = 1. An image is represented by a nonnegative function

f . Then the luminous level with respect to the weight function h is defined as

Ma½f 	ð ~bbÞ ¼ hehha; ~bbjf i; ehh
a; ~bb
ð~xxÞ ¼ a�2h a�1ð~xx� ~bbÞ

� �
: ð2:38Þ

Note that we use throughout the L1 normalization, that is, ehh
a; ~bb

instead of the

usual h
a; ~bb
. This is more natural in this context, since all the functions ehh

a; ~bb
have

the same L1 norm.

Then we define the local contrast as the ratio of the CWT to the corre-

sponding luminous level (the wavelet  is assumed to be also rotation invar-

iant):

Ca½f 	ð ~bbÞ ¼
Fað

~bbÞ

Ma½f 	ð ~bbÞ
¼
he  

a; ~bb
jf i

hehh
a; ~bb
jf i
¼
h 

a; ~bb
jf i

hh
a; ~bb
jf i

; ð2:39Þ

where again Fað
~bbÞ ¼ he  

a; ~bb
jf i is the CWT of f with the L1 normalization (but

the local contrast is independent of the normalization). In order to make

sense, this definition requires that the support of  be contained in the sup-

port of h. The local contrast is nonlinear, but its behaviour is controlled by an

integral condition. Large absolute values of contrast imply the existence of a

region where the luminance signal is very small. A typical example, very
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natural in the study of vision, is to take for h a Gaussian and for  a Mexican

hat.

But one can do better and take for  the difference wavelet associated to h,

as given in (2.15). Then the local contrast becomes

Ca½f 	ð ~bbÞ ¼
hehh

a�; ~bb
jf i

hehh
a; ~bb
jf i
� 1; ð2:40Þ

and the existence condition is simply that the support of h be star-shaped.

This formula in turn leads to a multiplicative reconstruction scheme.

Indeed, estimates of the luminous level at smaller and smaller scale factors

a may be considered as smoothened versions of the image with progressively

contracted weight functions h. Then, as for the WT, the approximation of a

function at a given scale may be written in terms of the approximation at a

larger scale and the complementary signal :

Ma�½f 	 ¼Ma½f 	 � ðCa½f 	 þ 1Þ;

Ma�2 ½f 	 ¼Ma�½f 	 � ðCa�½f 	 þ 1Þ ð2:41Þ

¼Ma�½f 	 � ðCa½f 	 þ 1Þ � ðCa�½f 	 þ 1Þ;

and by recurrence:

Ma�n ½f 	 ¼Ma�½f 	 � ðCa½f 	 þ 1Þ . . . ðCa�n�1 ½f 	 þ 1Þ: ð2:42Þ

Ma�n ½f 	 is the nth resolution approximation of f , it is the image as seen

through the smoothing function h contracted by a factor a�n ða < 1Þ. One

notices the obvious analogy with the usual multiresolution analysis (Section

2.6). The formalism may be generalized further to the so-called infinitesimal

contrast analysis developed in [46].

This technique may be applied for improving the contrast in any kind of

images. An example of application to a photograph was given in [3]. Here we

show one with a medical image (Figure 2.9). The image f is decomposed over

N contrast levels, as in (2.42), using the couple Gaussian-DOG. For each

level j, one defines the contrast chart as the modulus of the local contrast,

Mjð
~bbÞ ¼ jC2j ½ f 	ð

~bbÞj; j ¼ 1; . . . ;N: ð2:43Þ

Then one interprets the product of the N charts, Sð ~bbÞ ¼
QN

j¼i Mjð
~bbÞ as a

measure of the correlation between the successive scales of the image at the

point ~bb. After thresholding, one obtains a binary image or mask. The latter is

used in medical imagery, for instance, as a preprocessing to more sophisti-

cated algorithms. It is taken as a priori knowledge and helps to reduce the

amount of computation.
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2.4 Continuous wavelets as affine coherent states

2.4.1 A general set-up

As we have seen in Chapter 1, the natural geometry of the ða; bÞ-half-plane

R
2
þ is not the usual Euclidean one. Indeed the measure da db=a2 is invariant

not only under time translation, but also under dilation. The reason behind

these facts and the nice properties described above is to be found in group

representation theory. The natural operations on a 1-D signal are precisely
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Fig. 2.9. Contrast analysis of a medical image. (Top left) The original image. (Top
right) The CWT with a Mexican hat (j ¼ �1). (Bottom left) The contrast chart
Mjð~bÞ; j ¼ �1. (Bottom right) The resulting binary image. Many more details are
seen on the two bottom images than on the ordinary CWT.



time translations and dilations, and these together constitute the affine group

Gaff of the line. Then the relation:

ðUða; bÞf ÞðxÞ � fabðxÞ ¼ a�1=2 f ða�1ðx� bÞÞ; a 6¼ 0; b 2 R; ð2:44Þ

defines a unitary irreducible representation of Gaff in the Hilbert space L2
ðRÞ

of finite energy signals. This means that, for every g � ða; bÞ 2 Gaff ; UðgÞ is a

unitary operator and one has, for any g; g0 2 Gaff :

. UðgÞUðg0Þ ¼ Uðgg0Þ

. Uðg�1Þ ¼ UðgÞy

. UðeÞ ¼ I ; where e ¼ ð1; 0Þ denotes the unit element of Gaff .

In addition, L2
ðRÞ contains no subspace invariant under U, except the trivial

one f0g. Furthermore, and this is the crucial feature, the representation U is

square integrable, that is, there exists at least one (and in fact a dense set of)

admissible vectors, i.e. vectors  such that the matrix element hUða; bÞ j i is

square integrable over the group, with respect to the natural measure, namely

da db=a2. Now a straightforward calculation shows thatZ
Gaff

jhUða; bÞ j ij2
da db

a2
¼ 2�k k2

Z þ1
�1

jb  ð!Þj2 d!

j!j
: ð2:45Þ

Comparing (2.45) with Eq. (1.7) in Chapter 1, one sees that the two notions

of admissibility we have introduced indeed coincide.

Of course, true dilations should be positive, i.e. one should restrict oneself

to a > 0. This defines a subgroup of Gaff, called the ‘axþ b’ group or con-

nected affine group Gþaff of the line. When restricted to Gþaff, the representation

U becomes reducible and splits into two irreducible components, correspond-

ing to the subspaces H
 ¼ ff 2 L2
ðRÞ;bff ð!Þ ¼ 0 for !90g, called Hardy sub-

spaces in the mathematical literature. Then a function f 2 Hþ (resp. H�) has

an analytic extension into the whole upper (resp. lower) half-plane [27, 78].

An element of Hþ is called an analytic signal, and a progressive one if, in

addition, bff ð!Þ is real.
Choosing Hþ, the restriction Uþ of the representation U is unitary, irre-

ducible and square integrable, and from this fact follow all the mathematical

properties of the 1-D CWT similar to those described in Section 2.2.1: covar-

iance, norm conservation (2.7), inversion formula (2.8), reproducing kernel

(2.11). This is of course no accident! It simply reflects the fact that the 1-D

CWT is a particular case of the general theory of coherent states associated to

group representations [1, 2]. This observation is of central importance, for it

is this approach that allows a natural and easy extension of the 1-D CWT to

higher dimensions.
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Now the question is, where does the appropriate group come from? As so

often in physics, the answer lies in the notion of symmetry. Suppose indeed

that the signal possesses certain symmetry properties. It is natural to build

these into the wavelet transform itself, and this clearly requires the use of the

continuous approach. From this there emerges a general pattern, that we

now describe.

Consider the class of finite energy signals living on a manifold Y , i.e.

s 2 L2
ðY; d
Þ � H. For instance, Y could be space R

n, the 2-sphere S2,

space-time R�R or R
2
�R, etc. Quite naturally, the measurement of a

signal is represented by a continuous linear functional on the space of signals,

that is, in the present case, an inner product s 7! h j si. Notice that, if we

were to restrict the signals to smooth functions on Y , measurements would be

represented by distributions of some kind over Y .

Suppose there is a group G of transformations acting (transitively) on

Y : y 7! g½y	, with g½g0½y		 ¼ gg0½y	; e½y	 ¼ y; and for any pair y; y0 2 Y;

there is at least one g 2 G such that g½y	 ¼ y0. Assume the group G acts

linearly on signals. Then the very notion of symmetry requires that U should

be a unitary representation of G in the space H of signals:

hUðgÞsjUðgÞs0i ¼ hsjs0i; 8 g 2 G; s; s0 2 H: ð2:46Þ

Then, in order to get a wavelet analysis on Y , adapted to the symmetry group

G, three conditions must be met:

(1) G contains dilations of some kind.

(2) U is irreducible.

(3) U is square integrable, i.e. there exists at least one nonzero vector  2 H, called

admissible, such that the matrix element hUðgÞ j i is square integrable as a

function on G.

Under these three conditions, a G-adapted wavelet analysis on Y may be

constructed, following the general construction of coherent states on Y asso-

ciated to G, that we now sketch (see [1, 2] for details).

2.4.2 Construction of coherent states from a square integrable group

representation

2.4.2.1 Definitions and main properties

Let H � L2
ðY; d
Þ be the space of finite energy signals on a manifold Y , and

assume there is a transformation group G acting on Y , with a continuous

unitary irreducible representation U in H. Assume furthermore that the

representation U is square integrable.
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Choose a fixed admissible vector  2 H (the analysing wavelet). Then the

wavelets are the vectors  g ¼ UðgÞ 2 H ðg 2 G), and the corresponding con-

tinuous wavelet transform (CWT) is defined as:

S ðgÞ ¼ h gjsi ð2:47Þ

Introduce again the linear map W : H! L2
ðG; dgÞ given by

ðW sÞðgÞ � c�1=2 S ðgÞ, where

c ¼

Z
G

jhUðgÞ j ij2 dg ð2:48Þ

and dg denotes the natural measure on G. Then the CWT has the following

properties [1, 2], that match exactly those described in Section 2.2.1.

(1) Norm conservation:

c�1 

Z
G

jS ðgÞj
2 dg ¼

Z
Y

jsðyÞj2 d
ðyÞ; ð2:49Þ

i.e. W is an isometry; hence its range, the space of wavelet transforms, is a

closed subspace H of L2
ðG; dgÞ.

(2) By (1), W may be inverted on its range by the transposed map, which gives the

reconstruction formula:

sðyÞ ¼ c�1 

Z
G

S ðgÞ gðyÞ dg: ð2:50Þ

(3) The projection from L2
ðG; dgÞ onto H is an integral operator with kernel

Kðg; g0Þ ¼ c�1 h gj g0 i; that is, the auto-correlation function of  , also called

a reproducing kernel; in other words, a function f 2 L2
ðG; dgÞ is a WT iff it

satisfies the reproducing relation:

f ðgÞ ¼ c�1 

Z
G

h gj g0 if ðg
0
Þ dg0: ð2:51Þ

(4) The CWT is covariant under the action of the group G:

W ½UðgÞs	ðgoÞ ¼ ðW sÞðg
�1goÞ; 8 g 2 G: ð2:52Þ

Now it may happen that the analysing wavelet  has a nontrivial isotropy

subgroup H , up to a phase, i.e.

UðhÞ ¼ ei�ðhÞ ; h 2 H : ð2:53Þ

In this case, the whole construction may be performed [1, 2] under a slightly

less restrictive condition (the representation U need only to be square integr-

able on the coset space X ¼ G=H ). Then one obtains wavelets indexed by

the points of X , namely  x ¼ Uð
ðxÞÞ ðx 2 XÞ, where 
 : X ! G is an arbi-
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trary section. We will encounter this situation both in the 2-D and in the 3-D

case. In fact one can go one step further, and extend the whole construction

to the case of an arbitrary coset space X ¼ G=H, where H is not the stability

subspace of any vector  , but this will not concern us in this chapter. The

interested reader may find the detailed theory in the review [1] and papers

quoted there.

As a final remark before discussing examples, we may add that the whole

machinery rests upon the postulated existence of an admissible vector  ,

taken as analysing wavelet, but nothing so far tells us how to choose it. In

the case of coherent states associated to simple Lie groups, Perelomov [72]

gives a criterion, in terms of maximal weight vectors, familiar in the repre-

sentation theory of Lie algebras (for instance, in the case of the rotation

group SOð3Þ, this method yields the extreme spherical harmonics Yllð�; 	Þ,

which then lead to the spin coherent states used in quantum optics [58]). In

general, however, there is no systematic result and the best clue is to try and

mimic the familiar wavelets, such as the Mexican hat or the Morlet wavelet,

as we shall see in several cases below.

2.4.2.2 Examples: the 1-D and 2-D CWT

This formalism is general enough to design a symmetry-adapted CWT in all

cases of physical interest, while, of course, reproducing the familiar 1-D

CWT discussed above. First, one should notice that the Weyl–Heisenberg

group, which consists of phase space translations (translations and modula-

tions), yields the WFT. Indeed the relation (1.2) in Chapter 1 defines a uni-

tary irreducible representation of that group into the space L2
ðR; dxÞ of finite

energy signals, and that representation is square integrable, as can be shown

by a direct verification. The corresponding wavelets are called gaborettes in

the wavelet community, while quantum physicists call them canonical coher-

ent states [1, 2, 58].

As for the 2-D case, the relevant group is the so-called similitude group of

the plane (or Euclidean group with dilations), SIM ð2Þ ¼ R
2
�ðR

þ
� � SOð2ÞÞ

which consists of translations, rotations and global dilations (technically, �

denotes a semidirect product). Then the relation

ðUða; �; ~bbÞsÞð~xxÞ ¼ s
a;�; ~bb
ð~xxÞ ¼ a�1 sða�1 r��ð~xx� ~bbÞÞ; ð2:54Þ

defines the natural representation of SIM(2) in the Hilbert space L2
ðR

2; d2 ~xxÞ,

and it is unitary and irreducible (it is actually the only one, up to unitary

equivalence, as can be shown by the familiar method of induced representa-
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tions). Furthermore, U is also square integrable (with respect to the natural

measure dg � a�3da d� d2 ~bbÞ, and one has the relationZZZ
da

a3
d�d2 ~bbjhUða; �; ~bbÞ j ij2 ¼ c k k

2; ð2:55Þ

where c is the constant defined in (2.3). From this, we see that all the

properties of the 2-D CWT described in Section 2.2.1 are simply the parti-

cularization to the group SIM(2) of those listed above. Notice that, if the

wavelet  is isotropic, its stability subgroup H is the rotation group SOð2Þ,

and the wavelet transform is a function of ða; ~bbÞ 2 SIM ð2Þ=SOð2Þ only. Thus,

as announced, all the aspects of the 2-D CWT are indeed rooted in group

representation theory.

In the following sections, we will apply the same technique and obtain the

extension of the CWT to 3 space dimensions, to the 2-sphere and similar

manifolds, and also to space-time (time-dependent signals or images, such as

TV or video sequences), including relativistic effects (using wavelets asso-

ciated to the affine Galilei or Poincaré group).

2.4.2.3 Application: minimal uncertainty wavelets

As is well-known [58, 72], the canonical coherent states have the character-

istic property of minimal uncertainty, which means that they saturate the

inequality in the Heisenberg uncertainty relations, and this is interpreted as

a semi-classical behaviour. What about wavelets, which are the coherent

states associated to the similitude groups?

According to the standard discussion in quantum mechanics textbooks [32,

52], two observables of a quantum system, represented by self-adjoint opera-

tors A and B, obey the uncertainty relation

�A:�B � 1
2 jh½A;B	ij; ð2:56Þ

where �A � �	A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA2i � hAi2

p
denotes the variance of A in the state 	

and hCi ¼ h	jC	i is the average of the operator C in the state 	. The state 	

is said to have minimal uncertainty if equality holds in (2.56), which happens

iff

ðA� hAiÞ	 ¼ �i�oðB� hBiÞ	; ð2:57Þ

for some �o > 0.

In order to apply this concept to 2-D wavelets, we consider the infinitesi-

mal generators of the transformation (2.54) or its equivalent (2.2) in ~kk-space,

and denote them by P1 and P2 for translations, D for dilations and J for

rotations. Among these, there are four non-zero commutators, namely
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½D;P1	 ¼ iP1; ½J;P2	 ¼ �iP1; ½D;P2	 ¼ iP2; ½J;P1	 ¼ iP2; ð2:58Þ

but the first two transform into the last two under a rotation by �=2. Thus it

is enough to consider the uncertainty relations for the first pair:

�D:�P1 �
1
2 jhP1ij; �J:�P2 �

1
2 jhP1ij: ð2:59Þ

Then, according to (2.57), a vector b  saturates these inequalities iff it satisfies

the following system of equations

ðDþ i�1P1Þ
b  ð ~kkÞ ¼ ðhDi þ i�1hP1iÞ

b  ð ~kkÞ
ðJ þ i�2P2Þ

b  ð ~kkÞ ¼ ðhJi þ i�2hP1iÞ
b  ð ~kkÞ ð�1; �2 > 0Þ: ð2:60Þ

Solving this system of partial differential equations in polar coordinates, one

finally obtains that a real wavelet b  is minimal with respect to the commu-

tation relations (2.58) iff it is of the form

b  ð ~kkÞ ¼ c�
C
ð ~kkÞ j ~kkj� e��

~kk�~ee1 ð� > 0; � > 0Þ; ð2:61Þ

where �
C
is the characteristic function (possibly smoothed) of a convex cone C

in the half-plane kx > 0: We may now impose some degree of regularity

(vanishing moments) at the boundary of the cone, by taking an appropriate

linear superposition of such minimal wavelets b  . Thus we obtain finally:

b  Cð ~kkÞ ¼ c�
C
ð ~kkÞ Fð ~kkÞ e��

~kk�~ee1; ð� > 0Þ ð2:62Þ

where Fð ~kkÞ is a polynomial in kx; ky, vanishing at the boundaries of the cone

C, including the origin. Clearly a Cauchy wavelet with ~�� ¼ ~ee1 is of this type.

Other minimal wavelets may be obtained if one includes commutators

with elements of the enveloping algebra, i.e. polynomials in the generators.

For instance, taking the commutator between D and the Laplacian

�� ¼ P2
1 þ P2

2, one finds a whole family of minimal isotropic wavelets,

among them all powers of the Laplacian, �n, acting on a Gaussian [12].

For n ¼ 2, this gives the 2-D isotropic Mexican hat [35].

2.5 Extensions of the CWT to other manifolds

2.5.1 The three-dimensional case

Some physical phenomena are intrinsically multiscale and three-dimensional.

Typical examples may be found in fluid dynamics, for instance the appear-

ance of coherent structures in turbulent flows, or the disentangling of a wave

train in (mostly underwater) acoustics, as discussed above. In such cases, a

3-D wavelet analysis is clearly more adequate and likely to yield a deeper
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understanding [21]. Hence we will also describe briefly the 3-D CWT, follow-

ing the general pattern of the previous section.

Given a 3-D signal s 2 L2
ðR

3; d3 ~xxÞ,with finite energy, one may act on it by

translation, dilation and rotation:

s
a;�; ~bb
ð~xxÞ ¼ ½Uða; rð�Þ; ~bbÞs	ð~xxÞ ¼ a�

3
2sða�1rð�Þ�1ð~xx� ~bbÞÞ; ð2:63Þ

where a > 0; � 2 SOð3Þ; ~bb 2 R
3 and rð�Þ 2 SOð3Þ is a 3� 3 rotation matrix.

The element � 2 SOð3Þ may be parametrized, for instance, in terms of three

Euler angles. These three operations generate the 3-D Euclidean group with

dilations, that is, the similitude group of R3; SIM ð3Þ ¼ R
3
�ðR

þ
� � SOð3ÞÞ.

Then (2.63) is a unitary representation of SIM ð3Þ in L2
ðR

3; d3 ~xxÞ, which is

irreducible and square integrable, hence it generates a CWT exactly as before.

Wavelets are taken in L2
ðR

3; d3 ~xxÞ and the admissibility condition is nowZ
jb  ð ~kkÞj2 d3 ~kk

j ~kkj3
<1: ð2:64Þ

Also the two familiar wavelets have a 3-D realization.

. The 3-D Mexican hat is given by

 Hð~xxÞ ¼ ð3� jA~xxj
2
Þ expð� 1

2 jA~xxj
2
Þ; ð2:65Þ

where A ¼ diag½�1
�1=2; �2

�1=2; 1	; �1 � 1; �2 � 1, is a 3� 3 anisotropy matrix.

We distinguish three cases:

(1) if �1 6¼ �2 6¼ 1, one has the fully anisotropic 3-D Mexican hat (the stability

subgroup H is trivial);

(2) if �1 ¼ �2 ¼ 1, one has the isotropic, SOð3Þ-invariant, 3-D Mexican hat

(H ¼ SOð3Þ);

(3) if �1 ¼ �2 � � 6¼ 1, the wavelet is axisymmetric, i.e., SOð2Þ-invariant, but not

isotropic (H ¼ SOð2Þ).

. The 3-D Morlet wavelet is given by

 ð~xxÞ ¼ expði ~kko � ~xxÞ expð�
1
2 jA~xxj

2
Þ; ð2:66Þ

where A is the same 3� 3 anisotropy matrix as in the first example. Here again,

for �1 ¼ �2 � � 6¼ 1 and ~kko along the z-axis, the wavelet  is invariant under

SOð2Þ.

Then, given a signal s 2 L2
ðR

3
Þ, its CWT with respect to the admissible

wavelet  is given as

Sða; �; ~bbÞ ¼ a�3=2
Z
 ða�1rð�Þ�1ð~xx� ~bbÞÞ sð~xxÞ d3 ~xx: ð2:67Þ
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As compared with (2.5), the only differences are in the normalization factors

and the rotation matrices. Since the structure of the formulas is the same as

before, so is the interpretation and the consequences (local filtering, reprodu-

cing kernel, reconstruction formula, etc.). Thus the CWT (2.67) may be

interpreted as a mathematical camera with magnification 1=a, position ~bb

and directional selectivity given, in the axisymmetric case, by the rotation

parameters $ � ð�; ’Þ. As for the visualization, the full CWT Sða; �; ~bbÞ is a

function of 7 variables. However, if the wavelet  is chosen axisymmetric,

i.e. SOð2Þ-invariant, S depends on 6 variables only, a > 0;

$ 2 S2
’ SOð3Þ=SOð2Þ, the unit sphere in R

3, and ~bb 2 R
3. In this case

again, ða�1;$Þ may be interpreted as polar coordinates in spatial frequency

space. This is in fact true in any number of dimensions. It follows that, here

too, there are two natural representations for the visualization of the WT: the

position representation (a;$ fixed) and the scale-orientation (or spatial fre-

quency) representation ( ~bb fixed). Of course, there are many other posssible

representations that may be useful.

In conclusion, let us discuss briefly a simple example, the detection of 3-D

objects in a cluttered medium. We consider a scene with 3-D objects (targets)

immersed in a cluttered medium, modelled by the signal:

sð~xxÞ ¼
XN
m¼1

smð~xxÞ þ nð~xxÞ; ð2:68Þ

where smð~xxÞ denotes the density of the target m, and nð~xxÞ the density of the

medium. Since the density of the targets is very different from that of the

medium, there will be a high density gradient at the boundary between the

objects and the medium. In this situation, the wavelet transform Sða; �; ’; ~bbÞ

may be used to extract the 3-D objects and determine their characteristics,

position (range and orientation) and spatial frequency. Further details may

be found in [7], where a detailed strategy is explained for the 2-D version of

the same problem.

2.5.2 Wavelets on the 2-sphere

There are several applications where data to be analysed are defined on a

sphere, in geophysics or astronomy, of course, but also in statistics. If one is

interested only in very local features, one may ignore the curvature and work

on the tangent plane. But when global aspects become important (description

of plate tectonics on the Earth, for instance), one needs a genuine general-

ization of wavelet analysis to the sphere. Several authors have attacked this
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problem, with various techniques. On the discrete side, an efficient solution

has been obtained by Schröder and Sweldens [76] with the so-called lifting

scheme (see Section 2.6.2.4 below), but this obviously misses the particular

symmetry of the sphere. A continuous approach was developed by

Holschneider [56], with several ad hoc assumptions. It turns out that the

general formalism developed in [1, 2] and sketched in the previous section

yields an elegant solution to the problem [16], and in particular allows one to

derive all the assumptions of [56].

Although the discussion is too technical to be described here, it is inter-

esting to outline the main ideas, because they lead to significant generaliza-

tions. As usual, finite energy signals are taken as square integrable functions

on the 2-sphere S2
’ SOð3Þ=SOð2Þ. The natural operations on such signals

are translations (on the sphere) and local dilations. The former are given by

rotations from SOð3Þ. Dilations around the North Pole are obtained by

considering ordinary dilations in the tangent plane and lifting them to S2

by stereographic projection from the South Pole. As for dilations around any

other point, it suffices to bring it to the North Pole by a rotation, perform the

dilation and go back by the inverse rotation. Obviously translations and

dilations do not commute. However, the only group that can be obtained

by combining only SOð3Þ and the dilation group R
þ
� is their direct product,

which cannot be the ‘similitude’ group of the sphere.

A way out of this difficulty [16] is to embed the two groups into the

Lorentz group SOoð3; 1Þ, which acts transitively on S2. Then one is in the

general situation described in Section 2.4.2.1 and the machinery developed in

[1, 2] may be used. In this way one can indeed set up a theory of wavelets on

S2, which coincides with that of [56]. In addition, this CWT on the sphere has

the expected Euclidean limit, that is, as the radius of the sphere increases to

1, the whole wavelet analysis on the sphere goes into the usual wavelet

analysis in the plane (in this case, the tangent plane at the North Pole).

Moreover, the limiting process may be performed entirely in group-theore-

tical language, using the technique known as group contraction.

The whole scheme may be generalized to higher dimensions, essentially

verbatim. It can also be extended to other setups, for instance a CWT on a

two-sheeted hyperboloid. In R
3, this means H2

¼ SOoð2; 1Þ=SOð2Þ, and the

stereographic projection from either ‘pole’ is available, mapping one sheet

onto the interior of the unit disk in the plane tangent to the other pole, and

the other sheet onto the exterior. Now this suggests a further generalization.

In both cases, S2 as well as H2, the unit disk, image of one sheet or one

hemisphere, is a classical domain. Also the stereographic projection has a

group-theoretical origin [72]. This paves the way to the generalization of the
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CWT to a whole class of homogeneous spaces (Riemannian symmetric

spaces).

2.5.3 Wavelet transform in space-time

2.5.3.1 Kinematical wavelets

An important aspect of signal and image processing is the analysis of time-

dependent or moving signals, e.g. in television, and the CWT may be

extended to this case too [45]. We consider first motion on the line. Finite

energy signals are taken as functions sðx; tÞ 2 L2
ðR�R; dx dtÞ: The natural

transformations on such a signal are translations and dilations in space and

time independently, ðx; tÞ 7!ða1xþ b1; a0tþ b0Þ. However it is more conve-

nient to replace the two independent dilations a1; a0 by a global dilation a

and a so-called speed-tuning transformation c, defined as:

sðx; tÞ 7! a�1sða�1x; a�1tÞ; a > 0;

sðx; tÞ 7! sðc1=2x; c�1=2tÞ; c > 0:
ð2:69Þ

This transformation comes from the physiological characteristics of motion

perception by our visual system: in order to be visible, fast moving objects

must be wide, and narrow objects must move slowly (for a typical example,

think of the inscriptions on a departing train carriage).

Combining the transformation (2.69) with space and time translations, we

obtain the affine group of space-time. This group has a natural unitary

irreducible representation in L2
ðR�R; dx dtÞ:

½Uða; c; b0; b1; �Þs	ðx; tÞ ¼
1

a
s

ffiffiffi
c
p

a
ðx� b1Þ;

ð�1Þ�

a
ffiffiffi
c
p ðt� b0Þ

� �
; ð2:70Þ

where ðb0; b1Þ denote space-time translations and � 2 f0; 1g corresponds to

time-reflection (this additional operation is needed for irreducibility). In addi-

tion, the representation U is square integrable. A wavelet  is admissible iff it

satisfies the condition ZZ
jb  ðk; !Þj2
jkjj!j

dk d! <1: ð2:71Þ

From here on, everything follows exactly the general pattern. Thanks to the

filtering property in a and c, the resulting CWT (called kinematical) is effi-

cient in detecting moving objects: the dilation parameter a catches the size of

the target, while the new parameter c adjusts the speed of the wavelet to that

of the target. Thus the spatio-temporal CWT is a tool for motion tracking.
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Clearly there are plenty of applications in which such a technique might be

used.

The extension of these considerations to higher dimensions is straightfor-

ward. First, in n dimensions, the dilation and speed tuning operations (2.69)

become:

x 7! a�1c1=ðnþ1Þx; t 7! a�1c�n=ðnþ1Þt: ð2:72Þ

Then one has to add rotations, as usual, and follow the general pattern.

2.5.3.2 Relativistic wavelets

The kinematical wavelets just described may not always be sufficient, depend-

ing on the type of signal to be analysed. One may wish to consider a specific

form of movement, i.e. choose a particular relativity group. Three examples

may be of interest (we begin again with one space dimension).

(i) Galilean wavelets: here we add to the transformations discussed above the

Galilei boosts, thus getting ðx; tÞ 7! ða1xþ vtþ b1; a0tþ b0Þ. The resulting

group Gaff
1 , called the affine Galilei group, is quite complicated. It has a natural

unitary representation in the space of finite energy signals, which splits into the

direct sum of four irreducible ones. And each of these is square integrable, so

that wavelets may be constructed in the usual way. In addition, more restricted

wavelets may be obtained by taking as parameter space various quotient spaces

Gaff
1 =H, where H is not the stability subgroup of the basic wavelet. Again this

construction requires the more general formalism, described in Section 2.4.2.1

[1,2].

(ii) Schrödinger wavelets: one obtains an interesting subclass of the previous one by

imposing the relation a0 ¼ a21, so that the transformations leave invariant the

Schr€odinger (or the heat) equation. Again there are two unitary irreducible

representations, both square integrable on the (Schrödinger) subgroup. Thus

again a CWT is at hand, which may prove useful for describing, for instance,

the motion of quantum particles on the line.

(iii) Poincaré wavelets: in order to get a CWT in the relativistic regime, it suffices to

replace Galilei transformations by Poincaré ones, while of course imposing the

relation a0 ¼ a1 to space and time dilations. The resulting affine Poincaré group

has a square integrable unitary irreducible representation, defined on the solid

future light cone. The Poincaré wavelets might be useful, for instance, in the

presence of electromagnetic fields.

Of course, this analysis extends in a straightforward way to higher dimen-

sions, just by adding rotations.
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2.6 The discrete WT in two dimensions

As mentioned in Chapter 1, a key step in the success of the 1-D discrete WT

was the discovery that almost all examples of orthonormal bases of wavelets

may be derived from a multiresolution analysis, and furthermore that the

whole construction may be translated into the language of (QMF) filters. In

the 2-D case, the situation is exactly the same, as we shall sketch in this

section. Further information may be found in [38] or [66].

2.6.1 Multiresolution analysis in 2-D and the 2-D DWT

The simplest approach consists of building a 2-D multiresolution analysis

simply by taking the direct (tensor) product of two such structures in 1-D,

one for the x direction, one for the y direction. If fVj; j 2 Zg is a multiresolu-

tion analysis of L2
ðRÞ, then feVVj ¼ Vj � Vj; j 2 Zg is a multiresolution analysis

of L2
ðR

2
Þ. Writing again eVVj �

eWWj ¼
eVVjþ1, it is easy to see that this 2-D

analysis requires one scaling function : �ðx; yÞ ¼ 	ðxÞ	ðyÞ, but three wave-

lets:

�h
ðx; yÞ ¼ 	ðxÞ ðyÞ

�v
ðx; yÞ ¼  ðxÞ	ðyÞ ð2:73Þ

�d
ðx; yÞ ¼  ðxÞ ðyÞ:

As the notation suggests, �h detects preferentially horizontal edges, that is,

discontinuities in the vertical direction, whereas �v and �d detect vertical and

oblique edges, respectively. Indeed, for j ¼ 1, the relation V1 ¼ V0 �W0

yields:

eVV1 ¼ V
ðxÞ
1 � V

ðyÞ
1

¼ ðV
ðxÞ
0 �W

ðxÞ
0 Þ � ðV

ðyÞ
0 �W

ðyÞ
0 Þ

¼ ðV
ðxÞ
0 � V

ðyÞ
0 Þ � ðV

ðxÞ
0 �W

ðyÞ
0 Þ � ðW

ðxÞ
0 � V

ðyÞ
0 Þ � ðW

ðxÞ
0 �W

ðyÞ
0 Þ

¼ eVV0 �
eWW0;

where eVV0 ¼ V
ðxÞ
0 � V

ðyÞ
0 3 	ðxÞ	ðyÞ and

eWW0 is the direct sum of the three

other products, generated by the three wavelets given in (2.73), respectively.

From these three wavelets, one gets an orthonormal basis of eVVj by defining

f�j
klðx; yÞ ¼ 	j;kðxÞ	j;lðyÞ; k; l 2 Zg, and one for eWWj in the same way, namely

f�
�;j
kl ðx; yÞ; � ¼ h; v; d and k; l 2 Zg. Clearly this construction enforces a

Cartesian geometry, with the horizontal and the vertical directions playing

a preferential role. This is natural for certain types of images, such as in
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television, but is poorly adapted for detecting edges in arbitrary directions.

Other solutions are possible, however (see below).

As in the 1-D case, the implementation of this construction rests on a

pyramidal algorithm introduced by Mallat [60, 61]. The technique consists

of translating the multiresolution structure into the language of QMF filters,

and putting suitable constraints on the filter coefficients hn. For instance,  

has compact support if only finitely many hn differ from zero.

2.6.2 Generalizations

It turns out that the scheme based on orthonormal wavelet bases is too rigid

for most applications and various generalizations have been proposed. We

discuss some of them.

2.6.2.1 Biorthogonal wavelet bases

In the CWT, the wavelet used for reconstruction need not be the same as that

used for decomposition, they have only to satisfy a cross-compatibility con-

dition [38]. The same idea in the discrete case leads to biorthogonal bases [31],

i.e. one has two hierarchies of approximation spaces, fVjg and f �VVjg, with

cross-orthogonality relations. In 1-D, the construction goes as follows, and

the extension to 2-D proceeds as above. Start with a scale of closed subspaces

fVjg, assuming only the existence of a scaling function 	 2 V0 such that its

integer translates f	kðxÞ � 	ðx� kÞ; k 2 Zg form a Riesz (or unconditional)

basis of V0. Then, instead of orthogonalizing this basis, which would lead to

the construction of an o.n. wavelet basis, one takes the dual basis f �		kg, that is,

the vectors defined by the relation h	kj �		li ¼ �kl. Let �VV0 denote the closed

subspace generated by f �		k; k 2 Zg. Then the same construction is repeated

for each j, using the dilation invariance of the scale fVjg. The outcome is a

multiresolution scale f �VVjg, with exactly the same properties. Next, for each

j 2 Z, one defines a subspace Wj by the two conditions Wj � Vjþ1 and

Wj ?
�VVj, and similarly �WWj �

�VVjþ1 and �WWj ? Vj. In this way one obtains

two sequences of subspaces fWjg and f �WWjg, with bases f j;k; j; k 2 Zg,

f �  j;k; j; k 2 Zg, respectively, which are mutually orthogonal:

h j;kj
�  j0;k0 i ¼ �jj0�kk0 : ð2:74Þ

In terms of these bases, one gets two types of expansion formulas, for any

f 2 L2
ðRÞ:
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f ¼
X
j;k2Z

h �  j;kjf i j;k

¼
X
j;k2Z

h j;kjf i �  j;k: ð2:75Þ

The resulting scheme is much more flexible and is probably the most efficient

one in practical applications. For instance, it gives a better control on the

regularity or decrease properties of the wavelets [31].

2.6.2.2 Wavelet packets and the best basis algorithm

As mentioned already in Chapter 1, the construction of orthonormal wavelet

bases leads to a special subband coding scheme, rather asymmetrical: each

approximation space Vj gets further decomposed into Vj�1 and Wj�1,

whereas the detail space Wj is left unmodified. Thus more flexible subband

schemes have been considered, called wavelet packets, where both subspaces

Vj�1 and Wj�1 are decomposed at each step [33, 66, 81]. Such a scheme

provides rich libraries of orthonormal bases, and also strategies for determin-

ing (using entropic criteria) the best basis in a given situation. Another gen-

eralization of the strict orthonormal wavelet scheme has been developed by

Coifman and Meyer, starting from the so-called Malvar wavelets (see [29] or

[66]). This scheme, in a sense, is halfway between the wavelet and the wind-

owed Fourier transforms, and it offers also more flexibility and efficiency, for

instance in the analysis of speech signals.

2.6.2.3 More isotropic 2-D wavelets

The tensor product scheme privileges the horizontal and the vertical direc-

tions; more isotropic wavelets may be obtained, either by superposition of

wavelets with specific orientation tuning [64], as we did above with the CWT,

or by choosing a different way of dilating, using a nondiagonal 2-D dilation

matrix, which amounts to dilating by a noninteger factor [37]. Consider, for

instance, the following dilation matrices:

D0 ¼
2 0
0 2

� �
; D1 ¼

1 1
1 �1

� �
; D2 ¼

1 1
�1 1

� �
: ð2:76Þ

The matrix D0 correspond to the usual dilation scheme by powers of 2,

whereas D1 and D2 lead to the so-called ‘quincunx’ scheme [49]. In the

standard scheme, a unit square is dilated, in the transition j! j þ 1, to

another square, twice bigger, with the same orientation. This means that

three kinds of additional details have to be supplied, horizontal, vertical

and oblique (see Figure 2.10, left). By contrast, the same operation in the
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‘quincunx’ scheme leads to a square circumscribed to the original one, that is,

rotated by 45
 and larger by a factor
ffiffiffi
2
p

, so that only one kind of additional

details is necessary (Figure 2.10, right). Indeed only one wavelet is needed in

this scheme, instead of three. This is consistent with a result of Meyer, accord-

ing to which the number of independent wavelets needed in a given multi-

resolution scheme equals ðj detDj � 1Þ, where D is the dilation matrix used.

2.6.2.4 Second-generation wavelets

As indicated in Chapter 1, one can go further and abandon the regular dyadic

scheme and the Fourier transform altogether. Using the ‘lifting scheme’, one

obtains the so-called second-generation wavelets [80]. The same scheme

applies in 2-D as well. For instance, Schröder and Sweldens [76] have applied

it to the design of wavelets on the sphere, with a very convincing application

to the reproduction of coastlines on a terrestrial globe.

2.6.2.5 Integer wavelet transforms

In their standard numerical implementation, the classical (discrete) WT con-

verts floating point numbers into floating point numbers. However, in many

applications (data transmission from satellites, multimedia), the input data

consists of integer values only and one cannot afford to lose information:

only lossless compression schemes are allowed. Recent developments have

produced new methods that allow one to perform all calculations in integer

arithmetic [30].

2.6.3 Physical applications of the DWT

As with other methods, wavelet bases may be applied to all the standard

problems of image processing. The main problem of course is data compres-
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sion, and for achieving useful rates one has to determine which information is

really essential and which one may be discarded with acceptable loss of image

quality. Significant results have been obtained in the following directions:

. Representation of images in terms of wavelet maxima [63], as a substitute for the

familiar zero-crossing schemes [64];

. In particular, application of this maxima representation to the detection of edges,

and more generally detection of local singularities [62];

. Image compression and coding using vector quantization combined with the WT

[17];

. Image compression, combining the previous wavelet maxima method for contours

and biorthogonal wavelet bases for texture description [50];

. Image and signal denoising, by clever thresholding methods [42].

Some applications are less conventional. For instance, a technique based

on the biorthogonal wavelet bases [31] has been adopted by the FBI for

the identification of fingerprints. The advantages over more conventional

tools are the ease of pattern identification and the superior compression

rates, which allows one to store and transmit a much bigger amount of

information in real time. The full story may be found in [28]. Another

striking application is the deconvolution of noisy images from the Hubble

Space Telescope, by a technique combining the DWT with a statistical

analysis of the data [25, 26, 73]. The results compare favourably in quality

with those obtained by conventional methods, but the new method is

much faster. One should also quote a large amount of work under devel-

opment in the field of High Definition Television, where wavelet techni-

ques are being actively exploited; here again the huge compression rates

make them specially interesting.

As for applications of the multidimensional DWT more specifically

oriented to physics, we like to mention two. The first one is in quantum

field theory (although it was done before the wavelet techniques were

born): various perturbation expansions (the so-called ‘cluster expansion’)

used in the analysis of Euclidean field theory models are in fact discrete

wavelet expansions [22]. Actually the summation over scales, indexed by j,

was originally motivated by renormalization group arguments. In the same

domain, we may note that wavelet bases have been used also ([23] and

references therein) for estimating the time evolution of solutions of some

wave equations (Klein-Gordon, Dirac, Maxwell or the wave equation), or

even to expand solutions of the equations in terms of dedicated ‘wavelets’

(although the functions introduced in the last case seem rather far away from

genuine wavelets [57]).
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The other application resorts to solid state physics, namely the Quantum

Hall Effect (quantization of the electric conductivity) that occurs when a 2-D

electron gas is submitted to a strong transverse magnetic field. Here ortho-

normal wavelet bases may be used for generating localized orthonormal

bases for the lowest Landau level, a necessary step towards the analysis of

the Hall effect [5]. This is discussed in detail in Chapter 8.

2.7 Outcome: why wavelets?

As in 1-D signal analysis, wavelet techniques have become an established tool

in image processing, both in their CWT and DWT incarnations and their

generalizations. We want to emphasize here that the CWT and the DWT

have almost opposite properties, hence their ranges of application differ

widely too. The CWT is very efficient at detecting specific features in signals

or images, such as in pattern recognition or directional filtering. On the other

hand, the DWT and its generalizations are extremely fast and economical,

they yield for instance impressive data compression rates, which is especially

useful in image processing, where huge amounts of data, mostly redundant,

have to be stored and transmitted.

Both are powerful and flexible tools, and have become a significant element

in the standard toolbox of image processing. Indeed they find their way into

increasingly many reference books and software codes. In addition, they have

found applications in many branches of physics, such as acoustics, geophy-

sics, astrophysics, fluid mechanics (turbulence), medical imagery, solid state

physics, quantum field theory, . . . .

What distinguishes wavelet analysis from more conventional techniques

are its simplicity and its adaptive character. The algorithm is as simple,

and mathematically justified, as the familiar Fourier transform and its var-

iants (WFT). It is also extremely economical, thanks to the automatic zoom

effect. The WT selects the most signicant parts of the signal (in position scale

and direction) and is negligible elsewhere. As a consequence, it is extremely

stable against approximations. Clearly wavelets are here to stay, and one

should expect an increasingly diverse spectrum of physical applications. An

important point is that wavelets should not be taken as a replacement of

conventional techniques, but as an additional tool, that reveals different

aspects of a problem. The most probable trend for the future is towards

more merging of wavelet ideas with traditional ones, resulting in specialized

tools, optimized for a particular type of problem. This aspect will appear in

many of the subsequent chapters.
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Abstract

The wavelet transform is used in astrophysics for many applications. Its use

is connected to different properties. The Time-Frequency analysis results

from the two-dimensional feature of this transform. Some interesting appli-

cations were performed on nonstationary astrophysical signals. Many astro-

physical results were obtained by this analysis, either on quasi regular

variables, and on chaotic light curves. Solar time series have been also care-

fully analysed by the wavelet transform. New results have been obtained for

series with identified periods (sunspots, diameter, irradiance, chromospheric

oscillations) and for chaotic signals (magnetic activity).

Astronomers have exploited the wavelet transform for image compression.

Many packages are proposed with significant gains. Some full sky surveys are

available now with images compressed by the wavelet transform. Filtering

and restorations are derived from this scale-space analysis. Some threshold-

ing rules furnish adapted filtering. The restoration is connected to an

approach for which we progressively extract the most energetic features.

This may be related to the notion of multiscale support. Many applications

were done for Hubble Space Telescope (HST) images or for astronomical

aperture synthesis. The ability of the wavelet transform to localize an object

in scale-space led also to applying this transform to the detection and to the

analysis of astronomical sources. A multiscale vision model was developed by

our group, which allows one to detect and to characterize all the sources of

different sizes in an astronomical image. Many applications of image analysis

were performed on different astrophysical sources, and specifically the ones

having a power-law correlation, i.e. a fractal-like behaviour: molecular

clouds, infrared cirrus, clumpy galaxies, comets, X-ray clusters, etc. Our

main applications are related to the study of the Large-Scale structure of
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the Universe, generally from galaxy counts. The nature of the data leads us to

develop specific statistical analyses. In the Universe, the distribution of mat-

ter has a correlation function with a power law, so the wavelet transform is

well suited to analyse it. Many astronomical sources have this behaviour, and

fractal analyses were also applied. The same method was successfully applied

to the determination of asteroid families. The wavelet transform was also

used for the determination of the singularity spectrum. A new statistical

indicator for testing cosmological scenarios was obtained from the morphol-

ogy in the wavelet space at different scales.

The wavelet transform is a tool widely used today by astrophysicists, but

they do not apply only the discrete transform resulting from the multiresolu-

tion analysis but a large range of discrete transforms: Morlet’s transform, for

time-frequency analysis, the à trous algorithm and the pyramidal transform

for image restoration and analysis, pyramidal with Fourier transform for

synthesis aperture imaging. Physical constraints generally play an important

part in applying a given discrete transform.

3.1 Introduction

The wavelet transform was originally designed to study nonstationary signals.

The usual astrophysical signals are quite regular so that the need of this kind of

transformwas not evident. Astronomers possessedmany other tools for image

processing, so that it did not seem necessary to implement this new transform

for their needs. But, thanks to its covariance under dilations, the wavelet trans-

form appeared rapidly as the best tool to study power-law signals. These can be

observed in different situations: the light intensity of the solar surface, the

brightness of interstellar clouds, or galaxy distribution from counts. This

last item plays an important role in cosmological research so that it was

soon found interesting to apply the wavelet transform to this subject.

Galaxy distribution is studied from galaxy counts, which are neither a

signal nor an image but a list (a catalogue in astronomical literature) of

positions in two or three dimensions. We have to process these catalogues

in order to extract the different components, ranging from groups to clusters

of galaxies. The existence of a power law for the two-point correlation reflects

the observation of a hierarchical structure, small groups are contained in

larger ones, and so. The wavelet transform would be able to detect and

characterize these groups.

This application of the wavelet transform to cluster analysis was new when

I started with my collaborators on this problem [85]. Previously, the wavelet

transform was only applied to signals but rarely on images. This has led us to
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examine many problems related to the coefficient statistic, the object defini-

tion and their reconstruction. We saw that this point of view allowed us to

develop a new way to process images for different cases of noise, with many

applications to image registration, restoration and analysis.

Since our pioneer paper in astrophysics, many groups of astrophysicists

have applied the wavelet transform for many other purposes, times series,

image restoration, image compression, object detection, fractal analysis, etc.

In this chapter I will try to give an overview of these applications, but I will

also describe some of our own specific work on image restoration, image

analysis and the study of the large scale structure of the Universe.

3.2 Time–frequency analysis of astronomical sources

3.2.1 The world of astrophysical variable sources

The night sky seems to be immutable but an important fraction of astrophy-

sical sources are variable. They can be variable in radiation flux, but they can

also exhibit a regular change of their radial velocity or line profiles of their

spectra. Different behaviours were found in the variations, from a large

increase of the flux by a factor 106 (supernovae) to about 104 (classical

novae), smaller and very regular variations (cepheids, eclipse binaries) or

intermediate situations with variables showing quasi regular variations (RR

Lyrae variables) to eruptive variables without any periodic behaviour.

This wide range of situations is the same for all the observed wavelengths.

Pulsars show very periodic variations in radio wavelengths while quasars

have a chaotic behaviour. The Gamma Ray Bursts (GRB) are one of the

greatest astrophysical enigmas today. They are characterized by a large flux

of gamma rays detected during a few seconds. They seem to be sources

located at cosmological distances.

Temporal variations can be also detected in solar signals. With very accu-

rate measurements, the spatial instrument ACRIM has detected irregular

variations of the flux [108]. The solar radius seems to show also faint varia-

tions [107]. The classical solar cycle is associated with the number of solar

spots. A quasi regular cycle of 11 years was found in the nineteenth century,

but irregularities exist too. The radial velocity exhibits also faint variations, a

5 mn. oscillation phenomenon was discovered in the 1960s [59]. With very

accurate techniques many lines around this frequency were separated, giving

fundamental information about the internal structure of the Sun. This tech-

nique was also applied to other astrophysical objects, Jupiter, Procyon and

solar-like stars, and similar results were obtained [67].
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3.2.2 The application of the Fourier transform

The first purpose for analysing astrophysical signals has to do with the

determination of the periods. If a signal is strictly periodic, and if it is

observed regularly during many periods, there is no problem to determine

the period correctly. One estimates the time between the first and the last

maximum and divides it by the number of periods. But this situation is quite

idyllic in astronomy since:

. astronomical signals are almost never strictly periodic;

. measurements are noisy;

. the sampling is very irregular. This is due to the night and day alternation, to

weather conditions, and to other observational constraints. Generally the sam-

pling is done in a window WðtÞ, which is constituted by a set of square functions.

The Fourier transform is the tool used for analysing the variable astrophy-

sical signals. Its accuracy is limited by the sampling and the noise. Let us

consider a function f ðtÞ in a window WðtÞ. We get the observed function

FðtÞ ¼ f ðtÞ:WðtÞ; ð3:1Þ

which corresponds in the Fourier space to:

F̂Fð�Þ ¼ f̂f ð�Þ ? ŴWð�Þ; ð3:2Þ

where ? is the convolution symbol. Let us consider now the case of a single

square window of size T . ŴWð�Þ is the function sin�T�
�T� , so the original Fourier

spectrum is smoothed with this function. We make the following remarks.

. If the signal is really periodic, f̂f ð�Þ is a sum of Dirac distributions �ð�� �iÞ, but we

observed a set of functions sin�Tð���iÞ
�Tð���iÞ

. The observed peaks have a width of 1=T .

The window size limits the capability for observing the deviation from periodicity.

. The sinc function is known to have a very slow convergence, and, as a conse-

quence, many bumps are observed near a bright peak. They can be reduced by

applying a nonsquare window WðtÞ to the data. Many windows were designed to

reduce the bumps, but they cause a faint loss in frequency resolution. A Gaussian

window is considered to be a good compromise between bumps and resolution.

. If the Fourier transform of a signal FðtÞ shows peaks of 1=T width the signal can

be considered as periodic on this time interval T . On the other hand, if the width

is greater than 1=T that means that the signal is not periodic, the observation time

is greater than the coherence time: the phase changes slowly, or the amplitude

decreases and a new wave packet appears, etc. The width could be also due to the

existence of real secondary peaks around the main one.

In case the Fourier analysis displays peaks compatible with the observational

window, the application of another tool does not seem to be useful. For
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peaks wider than 1=T , this analysis does not take into account all the infor-

mation, and we have to apply a transform which takes fully into account the

observed phenomena.

3.2.3 From Gabor’s to the wavelet transform

The Gabor transform [38] was the first designed operator which enables one

to perform a time–frequency analysis. With this transform, a windowed

Fourier transform is performed around each time t, which leads to a 2D

function ĜGðt; �Þ. By fixing t, the frequency content at this time is obtained,

and by fixing � one gets the variations of the signal at this frequency with the

time. In order to reduce the bumps, a sliding Gaussian window is applied.

The window width Tw delimits the time resolution, while the frequency reso-

lution is equal to 1=Tw. When we increase Tw, we reduce the precision in time,

but we increase it in frequency, while the product of the two resolutions is

constant. The time–frequency plane is divided in identical tiles of ðTw;
1
Tw
Þ

size.

In the Gabor transform the time resolution is independent of the fre-

quency. If the peak widths in the observed signal do not have the same

size, this analysis is not optimal. For many signals the width depends on

the frequency; the larger the period, the larger must be the window size.

With this assumption we are led to the Morlet continuous wavelet transform

[66]. With this transform the time–frequency plane is divided in tiles the size

of which varies with the frequency. If the frequency resolution �� is k�, where

k is a free parameter which depends on the required resolution, then the time

resolution is 1
��.

Taking into account its derivation, the wavelet transform is interesting for

a signal for which the natural width of the frequency peaks is proportional to

the frequency. If this is not the case, the resulting analysis would not be

optimal.

3.2.4 Regular and irregular variables

The first astrophysical paper on the application of the Morlet wavelet trans-

form to astrophysical time series was an analysis of pulsating white dwarfs

[41]. The authors found amplitude variations for most detected oscillations

with periods of modulation as long as or greater than the time intervals of the

observation windows. For this case, where the spectral lines are quite well

defined, a Gabor transform should lead to the same conclusions.

Nevertheless a better time–frequency analysis was required, and Morlet’s
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wavelet carries out such an analysis with a constant shape pattern. Their

analysis allows them to deduce a periodic transfer of energy between two

pulsation modes.

This type of analysis was further developed by a group working on so-

called semiregular variables (SR) [101], a class of stars the luminosity of which

exhibits irregular oscillations. After applying a Fourier analysis to determine

the periods, they analysed the flux intensity variations with the wavelet trans-

form. Using simulations they have investigated the link between the time-

dependent phenomena and physical variations (amplitude or frequency mod-

ulations) [102]. They had first shown by a wavelet analysis that the two

shorter frequencies of a semiregular variable were unstable, as observed in

several other SR-type variable stars [101]. In a recent paper [100] they con-

firm the interest of this analysis on another semiregular variable V Bootis.

Using the ridge technique [43] they showed that the amplitude of the longer

period strongly decreased while the amplitude of the shorter one seems to

remain stable.

The previous works on semiregular variables could have been also done by

the Gabor transform. This tool is being used, with a confusion often occur-

ring between the Gabor and the wavelet transforms [19] [20]. The authors

processed the light curve of a peculiar A star. The transform shows unusual

evolution over the duration of the observation, which cannot be explained by

a beating mechanism of nearby frequencies. The last application on quite

regular variable stars concerns cataclysmic variables observed with the high

speed UV photometer of the Hubble Space Telescope [84]. A low-frequency

flickering was detected by this technique, but the main astrophysical result

concerns the detection of rapid UV quasi-periodic oscillations in the star VV

Pup, related to shock oscillations in its accretion column.

3.2.5 The analysis of chaotic light curves

Previous time series processing has shown the necessity of analysing some

light curves with a time-frequency tool. Some light curves of astrophysical

sources often exhibit chaotic behaviour, characterized by long-term depen-

dencies and a so-called 1
f
spectrum over a wide energy range. Due to the slow

decay of the correlation function, information is present at all scales, and,

consequently, the wavelet transform is always the favourite tool.

The first application was done on the flux data of a double quasar by

Hjorth et al. [47]. The quasar is seen double due to the gravitational lensing

of an angularly close galaxy. The time delay between the two fluxes is due to

the travel path difference. With an available model of the lensing, its measure
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allows one to estimate the Universe expansion rate (i.e. the Hubble constant).

From the wavelet analysis the authors have shown that the discrepancies

between the previous analyses could be due to the choice of the reduction

method. In this signal, no frequency can be determined, so that the wavelet

transform is well suited in allowing us a better temporal resolution and

localization of the multiple scales of the signal.

Scorpio X-1 is a chaotic variable source in X-ray. Scargle et al. [83] have

studied the flux variations with an orthogonal wavelet transform, the Haar

transform. They have computed the scalogram, i.e. the mean energy of the

wavelet coefficients for each scale, and they have shown that the chaotic

variability of the source Scorpio X-1 agrees well with the accretion model

called dripping handrail. The detected quasi-periodic oscillations and the very

low frequency noise are produced by radiation from blobs with a wide size

distribution, resulting from accretion and subsequent diffusion of hot gas.

Another original work was done by Norris et al. [70] on the flux data of the

Gamma Ray Bursts (GRB), in order to test a cosmological time dilation. In

this application the wavelet transform allowed them to rescale all bursts to

fiducial levels of peak intensity. They have shown that the dilation operates

over a broad range of time scales. If the results are consistent with bursts

being at cosmological distances, they conclude that alternative explanations

arising from the nature of the physical processes are still possible.

The GRB flux curves exhibit a large variation in time scale, from seconds

to minutes; the zero crossings in the wavelet transform have been used to

classify GRB [6]. This information, added to a set of other characteristics,

leads to separating these objects into 2–3 classes using a self organizing

neural network.

3.2.6 Applications to solar time series

Using a wavelet analysis, new variations in the solar cycle were displayed [71].

The periods determined by this approach are in agreement with the ones

previously detected. Some long periods in the cycle were also studied.

A comparison between the Fourier transform and wavelets was done by

Vigouroux and Delache [107]. They studied the solar radius measurements

obtained at the CERGA solar astrolab. These measurements were noisy and

not regularly sampled. After resampling and estimating the error bars, they

processed them by a Monte-Carlo method to determine the distribution of

the Fourier and the wavelet coefficients after applying a Daubechies ortho-

gonal transform [27]. They showed that the description which leads to the

minimum of parameters corresponds to the wavelet transform rather than the
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Fourier transform. They extended their analysis to the historical sunspot

numbers [108]. They slightly modified the method and showed the interest

of the wavelet transform which has the capability of taking care of unequal

error bars.

Bocchialini and Baudin [18] obtained new information on chromospheric

oscillations from the application of a Morlet wavelet analysis to observations

of the quiet Sun. The temporal behaviour was described in two kinds of

regions, a magnetic element network, and a nonmagnetic intra-network

cell. Thanks to the wavelet transform they determined the duration of the

chromospheric wavetrains. They estimated the correlation between the oscil-

lations in two spectral lines.

In the above papers on the solar time-series, the wavelet transform is

applied in different forms, and its advantages compared to the Fourier or

the Gabor transforms are not trivial. But solar series may show also a chaotic

behaviour. This is the case for the magnetic activity. Komm [52] and

Lawrence et al. [56] applied the wavelet transform to measure the scaling

and the intermittency properties. Komm applied to the series an orthogonal

wavelet transform and determined a fractal dimension of 1:7, while Lawrence

et al. carried out a wavelet spectral analysis with a Morlet wavelet transform.

The number of samples was large, 16 000, spread over many decades. They

have shown a power-law variation of the magnetic activity on more than two

decades (2 years to 2 days or less). They interpret this result as an indication

of a generic turbulence structuring the magnetic fields as they rise through the

convective zone.

3.3 Applications to image processing

3.3.1 Image compression

Richter [37] [78] introduced the old Haar transform [45] to compress astro-

nomical images a decade before the emergence of the wavelet transform and

the multiresolution analysis [63]. The corresponding wavelet function is equal

to 1 on ½0; 12 ½ and to �1 on ½12 ; 1½. The Haar transform was applied to image

processing in the 1970s [75], but its 2D extension was different from the

multiresolution one. Richter has developed the two-dimensional transform

resulting from the multiresolution analysis and called it the H-Transform.

Their approach was simple, the values corresponding to closest pixels are

correlated, so that the main information is carried by the differences. They

developed a tool named HCOMPRESS which is based on the following elements.

. Compute the 2D Haar transform.
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. Estimate the variance due to the noise at each scale.

. Divide the wavelet coefficients by a value which depends on the variance and on

the required compression factor.

. Keep only the integer part with optimal storage using a 4-bit code [112] [50].

This method was applied to compress the Digital Sky Survey, which results

from a scan done at the Space Telescope Science Institute of images of the

whole sky [113]. Press [76] has introduced the Daubechies filter of length 4.

The compression and uncompression algorithms take more time than

HCOMPRESS and the quality of the resulting measurements is generally less

than those obtained with the simple Haar transform for astronomical images.

This could be due to the characteristics of these images, mainly compound of

peaks due to the stars. The correlation length is very short, and it is not

relevant to process the data with long filters.

For control during astronomical observations it is essential to have a

correct idea of the transmitted images as fast as possible. HCOMPRESS is

well adapted to this progressive transmission of the information. The

image is restored, and displayed, scale by scale, from the largest scale to

the smallest one. Such a modified software was implemented [111] and can

be used for remote observing or for access to remote image archives. After

less than 1% of the data has been received, the image is visually similar to the

original, allowing the user to verify it, and to stop the transmission if neces-

sary.

Unfortunately the restored images display large fields (blocks) of con-

nected pixels having the same value with discontinuities between them.

These blocking effects are due to null values of the thresholded coefficients

of the Haar transform. Richter proposed an improvement using a Kalman

filtering [79], while White [112] solved this problem by interpolation. With

Bobichon [17] we have shown that another improvement is obtained by

restoring taking into account a regularization constraint. The inversion is

not the inverse Haar transform, but an iterative algorithm resulting from

the constraints. We have also implemented more regular biorthogonal trans-

forms, resulting from the B-spline scaling function. Taking into account the

regularization constraint, the quality of the results is also less than the one

obtained by the Haar transform.

The pyramidal median transform [96] is similar to the pyramidal wavelet

transform [11] (see appendix B), the low-pass linear filtering being replaced

by a median filtering. Starck et al. have achieved a method based on this

transform to perform simultaneously a noise suppression and a compression

[96]. This technique is also well adapted for progressive transmission.
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3.3.2 Denoising astronomical images

3.3.2.1 First approaches

Since the first papers on the wavelet transform appeared, it has been shown

that this tool was very useful for denoising, thanks to its capabilities to

locally separate the signal from the noise. Astronomical images are particu-

larly noisy, so that this advantage seems to be very important, and much

work was done to create software for denoising astronomical images using

the wavelet transform. Many different strategies were applied in order to take

into account the noise properties and the aliasing.

Cappacioli et al. [24] developed a method based on the Haar transform for

filtering spectrograms and images (see also [79] [61]). Kalman filtering was

introduced in order to reduce the block effects resulting of zeroing wavelet

coefficients. Donoho’s wavelet shrinking [31] was based on a multiresolution

analysis [63] and a Daubechies orthonormal basis [27]. We have applied this

method and found a lot of artifacts, generated by the aliasing introduced in

this approach. The multiresolution analysis is an unredundant transform. At

each scale the sampling is divided by two in order to keep the same number of

coefficients. The signal is perfectly restored with the full set of data. If we

threshold, at each scale we have an aliasing and that will lead necessarily to

artifacts near discontinuities and peaks. Lorenz et al. [61] reduced these

features by applying a Kalman filtering, but it is possible to remove them

by a regularization constraint such as we have proposed for the decompres-

sion with the Haar transform [17]. These procedures are complicated, some

artifacts always remain from this analysis, making a redundant transform

preferable.

Denoising depends on the noise statistic, and the coefficient thresholding

must take this into account. This led our group to introduce the notion of

significant coefficients.

3.3.2.2 Decision theory and significant coefficients

If the image is locally uniform we can compute the probability density func-

tion (PDF) pðWÞ of the wavelet coefficientW . Then we introduce a statistical

meaning of the observed value from classical decision theory [44]. H0 is the

hypothesis that at the scale i the image is constant in the neighbourhood of

the pixel ðk; lÞ. For a positive coefficient W , the H0 rejection depends on the

probability pðWÞ:

P ¼ Probðw >Wði; k; lÞÞ ¼

Z þ1
Wði;k;lÞ

pðwÞdw ð3:3Þ
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For a negative coefficient we examine:

P ¼ Probðw <Wði; k; lÞÞ ¼

Z Wði;k;lÞ

�1

pðwÞdw ð3:4Þ

We fix a decision level �. If P > �, H0 is not excluded at level �, and therefore

the coefficient value may be due to the noise. On the other hand, if P < �, we

cannot conclude that the value results only from the noise and H0 must be

rejected at this decision level. We say that we have detected a significant

coefficient.

The number of significant coefficients depends on the decision level �. If we

choose � ¼ 0:001, 0:1% of the coefficients are statistically identified as sig-

nificant even if we have only noise. These false detections will generate arti-

facts on further processing. If we choose a fainter decision level, i.e. 10�6,

very few artifacts will remain, but a large part of the real information will be

missed. We must find a compromise between the false alarms and the misses.

This compromise depends on the cost of a false alarm and of a miss.

Generally we have chosen � ¼ 10�4 in our processing.

3.3.2.3 The PDF of the wavelet coefficients

The PDF of the wavelet coefficients depends on the noise process. We assume

generally that we have stationary Gaussian white noise for the image. In the

case of Poisson noise, we can transform the pixel intensity n by Anscombe’s

Transform [2]:

x ¼ 2
ffiffiffiffiffiffiffiffiffiffi
nþ 3

8

q
ð3:5Þ

Then we process the data x as a Gaussian variable of variance 1. This

transform gives correct results for photon counts greater than about 10 per

pixel, which is generally the case. For galaxy counts, we have also examined

the case of a fainter density for which Anscombe’s transform is not available.

Another method was given for determining the PDF [86].

For CCD observations, the noise is described by the sum of a Gaussian

and a Poisson variable, and we generalize Anscombe’s transform, which

leads also to a variable with a constant variance 1 which is processed as a

Gaussian one [68].

x ¼
2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nþ

3

8
�2 þ �2 � �g

r
ð3:6Þ

� is the coding step, g is the background value and � the standard deviation

of the Gaussian noise.
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We have examined the case of Rayleigh variables [16], which are obtained

from Synthetic Aperture Radar. This instrument allows one to get images of

the Earth and near planets and satellites in centimetric wavelengths.

Unfortunately these images are affected by the so-called speckle noise, due

to the coherent lighting. The distribution of the amplitude � follows a

Rayleigh law:

pð�Þ ¼
�

�2
e
�

�2

2�2 ð3:7Þ

where � is a parameter which is characteristic of the ground rugosity. The

PDF of the wavelet coefficients is derived from numerical experiments.

We have shown [16] that it is better to process the energy (�2) instead of the

amplitude, which leads us to examine the PDF of the wavelet coefficients of

an exponential process. This PDF is also determined by numerical simula-

tions.

It is easy to estimate the PDF of the wavelet coefficients in the case of

Gaussian noise. This can be done analytically but simulation is easier. We

compute the image of a simulated Gaussian noise with a variance 1. Then we

compute its discrete wavelet transform and estimate the standard deviation

�nðiÞ at each scale. For the image to be processed, the standard deviation �ð1Þ

is estimated from the histogram of the wavelet coefficients Wð1; k; lÞ. At this

scale, the wavelet coefficient values essentially result from the noise. Knowing

the variation of the noise with the scale from the simulation we deduce the

�ðiÞ set.

3.3.2.4 Denoising by using the significant coefficients

In a first approach with Starck [92], we have carefully examined this problem

applying the à trous (with holes) algorithm [49] [15] for which the wavelet

transform is computed scale by scale without decimation (appendix A). We

have proposed four methods:

. a Wiener-like technique, which corresponds to a stationary Wiener filter done in

the wavelet space;

. a hierarchical Wiener filtering, for which we take into account the correlation

between the coefficients from one scale to the following one;

. an adaptive filtering which corresponds to Donoho’s method, but with a redun-

dant transform;

. hierarchical adaptive filtering for which the threshold depends on the wavelet

coefficient in the previous plane.

Using a multiresolution quality criterion, the results pleaded for the hierarch-

ical Wiener filtering, which led to the minimum of artifacts.
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Due to the redundancy of the wavelet transforms, all the developed algo-

rithms were iterative leading to an image F ðnÞ at iteration n. In order to reduce

the residual artifacts we assume that the difference RðnÞ between the observed

image F and F ðnÞ must be similar to noise [90] [95]. Consequently, a necessary,

but not sufficient, condition holds in the lack of detection of significant

coefficients in the RðnÞ wavelet transform.

We build a Boolean image Mði; k; lÞ such that Mði; k; lÞ ¼ 1 if the wavelet

coefficientWði; k; lÞ is significant; andMði; k; lÞ ¼ 0 in the opposite case. This

mask corresponds also to a volume V of the wavelet transform, the one

where the wavelet coefficients are significant. We can reconstruct the image

from the significant set. If FðI; k; lÞ designs the smoothed image at the largest

scale I , we can restore the image by the expression:

~FFðk; lÞ ¼ FðI; k; lÞ þ
X
1;I

Wði; k; lÞ ð3:8Þ

If we do not threshold, the reconstruction is exact. In the opposite case, we

write:

F ð0Þðk; lÞ ¼ FðI; k; lÞ þ
X
1;I

Mði; j; kÞWði; k; lÞ ð3:9Þ

Then if we get the wavelet transform of F ð0Þðk; lÞ we get another set

V ð0Þði; k; lÞ which is different from the set Wði; k; lÞ even for the significant

coefficients. This deviation is due to the redundancy of the à trous wavelet

transform. By consequence, Fðk; lÞ � F ð0Þðk; lÞ may show significant differ-

ences. This remark leads to the algorithm described in appendix C [23].

Bendjoya et al. [8] have applied also thresholding in a redundant wavelet

transform space for denoising the profile of Saturn’s rings, from data taken

by Voyager 2. In their approach a coefficient statistic was done on the data,

scale by scale, without taking into account white Gaussian noise.

Oosterloo [72] has developed a similar adaptive wavelet smoothing in a

data cube resulting from synthetic observations obtained with a radio inter-

ferometer.

3.3.3 Multiscale adaptive deconvolution

This classical problem has played an important part recently in enhancing the

observations taken with the Hubble Space Telescope (HST), before its

refurbishment. We write:

F ¼ O ? PþN ð3:10Þ
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where O designs the true object distribution, P is the response function which

is called the point spread function (PSF) in image processing and N the noise.

A large number of methods were proposed to get O knowing F . This opera-

tion called deconvolution depends upon:

. the PSF P: if P has frequency holes, regularization techniques are necessary;

. the noise N: the methods are not the same for Gaussian, Poisson, or another kind

of noise;

. the statistical properties of the object O. We do not use the same method to

deconvolve remote sensing images, with building edges, or diffuse galaxies.

The application of multiresolution techniques for deconvolution is widely

connected to the nature of astronomical objects. Many authors have devel-

oped different techniques, with or without redundancy. Bendinelli [7] first

introduced a multiscale approach using Gabor expansions in series of ele-

mentary Gaussians. With Starck [92] [93] we have derived a deconvolution

technique based on a wavelet transform associated with the PSF. The resolu-

tion increased but this algorithm was only adapted to a quite regular PSF,

which was not the case for the HST. So we have developed a simpler idea

connected to the denoising method described above. Our algorithm [15, 58] is

based on the formulation of classical restoration algorithms:

Oðnþ1Þðk; lÞ ¼ GðOðnðk; lÞ;RðnÞðk; lÞ ð3:11Þ

where GðO;RÞ may be:

Van Cittert [114] GðO;RÞ ¼ Oþ R;

Fixed step gradient [54] GðO;RÞ ¼ Oþ � ~PP ? R, where ~PP is the joint operator related

to the PSF ( ~PPðk; lÞ ¼ Pð�k;�lÞ), and � a parameter which is easily estimated;

Lucy [62] GðO;RÞ ¼ OþOð R
O?PÞ ?

~PP.

The algorithm is similar to the smoothing one [15], and it is described in

appendix D.

In Figure 3.1 a simulated astronomical image is plotted. It was convolved

by a given PSF and a Gaussian noise was added. The bottom images show

the restoration by the Lucy algorithm and by the proposed modified one.

Automated analysis software was applied to the two images, allowing us to

compare the results to the initial image:

. the noise suppression helps the object detection;

. the position accuracy is improved by this technique;

. the Signal to Noise ratio is only reduced of 3.5 dB for our method, while it is

reduced by 10 dB using Lucy.
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Some processing was done for HST images [68], for CCD ground based

observations [5], and for deconvolution of X-ray images [105]. Other authors

have developed methods based on the multiresolution analysis [80]. A multi-

scale support constraint is introduced interactively, by the user, in a first

approach. An automated determination of the optimal mask is then intro-

duced.

3.3.4 The restoration of aperture synthesis observations

With an interferometer with two telescopes we measure directly the ampli-

tude of the Fourier transform of the image at a given 2D spatial frequency

ðu; vÞ. By combining the information from three telescopes the phase can also

be obtained, so that the image is directly sampled in the Fourier space. But

the measurements need specific positions of the telescope, and the sampling

in the Fourier space is necessarily irregular. The image, called the dirty map,

is obtained by a simple inverse Fourier transform of the data, and the PSF,

named the dirty beam, by an inverse Fourier transform of the frequency
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coverage. The presence of secondary lobes in the dirty beam creates large

artifacts in the dirty map and deconvolution is necessary. This image restora-

tion problem has led to the development of many different methods.

Generally, radio astronomers apply the CLEAN algorithm [48] for which

detected point-like sources are iteratively subtracted.

Wakker and Schwarz [110] have introduced the concept of Multi-

Resolution Clean (MRC) in order to alleviate the difficulties with CLEAN

for extended sources. The MRC approach consists of building two intermedi-

ate images, the first (called the smooth map) by smoothing the data to a

lower resolution with a Gaussian function, and the second (called the differ-

ence map) by subtracting the smoothed images from the original data. Both

images are then processed separately. By using a standard CLEAN on them,

a smoothed clean map and difference clean map are obtained. The recombi-

nation of these two maps gives the clean map at full resolution.

Let us consider an image characterized by its intensity distribution Fðx; yÞ.

If w
ðFÞ
j are the wavelet coefficients of the image F at the scale j, we get:

ŵw
ðFÞ
j ðu; vÞ ¼ ŵw

ðPÞ
j ÔOðu; vÞ ð3:12Þ

where w
ðPÞ
j are the wavelet coefficients of the PSF at the scale j. We decon-

volve each wavelet plane of the image by the wavelet plane of the PSF by

using the classical algorithm CLEAN to obtain the clean wavelet map. If B is

the ideal PSF(clean beam) and Lj is the list of peaks found by CLEAN at the

resolution j, the estimation of the wavelet coefficients of the object is:

w
ðEÞ
j ðx; yÞ ¼ Lj � w

ðBÞ
j ðx; yÞ ð3:13Þ

The clean map at full resolution is found by the reconstruction algorithm. We

apply CLEAN to each plane of the wavelet transform. This allows us to

detect at each scale the significant structures. An optimization of the height

of the CLEAN peaks is further obtained, in order to get an image which is

fully compatible with the observations.

Some astronomical applications were done for restoring stellar images

from observations done by speckle interferometry [97]. Yan and Peng [114]

have also applied this wavelet approach from radio observations, and they

have shown its power.

3.3.5 Applications to data fusion

Today the same source is often observed at different wavelengths, and at

different epochs. The comparison of these observations requires adapted
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image fusion tools. The fusion is usually based on the pixel values. But many

phenomena may reduce the quality of this approach, and specifically the

existence of a background, and a difference in resolution.

The wavelet transform splits the information along the scale axis, so that

the data fusion may be done scale by scale. Consequently the variations in

resolution are easy to take into account, scale by scale. The wavelet function

has a null mean, and the background variations are automatically removed.

Data fusion in the wavelet transform space presents many advantages. We

have given an application for optimal image addition [13]. The image regis-

tration was done by taking into account the information in the wavelet

transform space. For each scale and for each image we estimated weights

which account for the signal level and the standard deviation due to the

noise. This method was applied also for registering remote sensed images

[29]. A comparison of wavelet coefficients allows us to detect faint variations

at a given scale for a set of images.

This approach could be applied to many other fields, such as biology,

medicine, surveillance or industrial imaging, for geometrical registration

and for detection of variable phenomena at a given scale.

3.4 Multiscale vision

3.4.1 Astronomical surveys and vision models

Astronomical images contain typically a large set of point-like sources (stars),

some quasi point-like objects (faint galaxies, double stars,...) and some com-

plex and diffuse structures (galaxies, nebulous, planetary nebulae, clusters,

etc.). A vision model is defined by the sequence of operations required for

automated image analysis. Astronomical images need specific analyses which

take into account the scientific purpose, the characteristics of the objects and

the existence of hierarchical structures.

The classical vision model for robotic and industrial images is based on

edge detection. We have applied this concept to astronomical imagery [14].

We chose the Laplacian of the intensity as the edge line. The results are

independent of large scale spatial variations, such as those due to sky back-

ground. The main disadvantage of the resulting model lies in the difficulty of

getting a correct object classification: astronomical sources cannot be accu-

rately recognized from their edges.

Many reduction procedures were built using a model for which the image is

the sum of a slowly varying background with superimposed small scale

objects [98] [88] [104] [53]. We created first a background mapping [10].
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For that purpose we need to introduce a scale: the background is defined in a

given area. Each pixel with a value significantly greater than the background

is considered to belong to a real object. The same label is given to each

significant pixel belonging to the same connected field. For each field we

determine the area, the position, the flux and some pattern parameters.

Generally, this procedure leads to quite accurate measurements, with correct

detection and recognition. The model works very well for poor fields. If it

is not the case, a labelled field may correspond to many objects. The back-

ground map is done at a given scale: larger objects are removed. Smoothing is

only adapted to star detection, not to larger objects.

The classical vision models fail to yield a complete analysis of astronomical

images because they are based on a single spatial scale for the adapted

smoothing and background mapping. They are only suited to stars or

quasi stellar sources with a slowly varying background. The multiscale ana-

lysis has allowed us to get a background adapted to a given object and to

optimize the detection of objects with different size.

3.4.2 A multiscale vision model for astronomical images

3.4.2.1 Object definition in the wavelet transform space

An object has to be defined in the wavelet transform space (WTS). In the

image, an object occupies a physically connected region and each pixel of this

region can be linked to the others. The connectivity in the direct space has to

be transported to the WTS. All structures form a 3D connected set which is

hierarchically organized: the structures at a given scale are linked to smaller

structures of the previous scale. This set gives the description of an object in

the WTS. The steps of the multiscale model can now be defined.

After applying the wavelet transform to the image, a thresholding in the

WTS is performed in order to identify the statistically significant pixels.

These pixels are regrouped in connected fields by a scale by scale segmenta-

tion procedure, in order to define the object structures. Then, an interscale

connectivity graph is established. The object identification procedure extracts

each connected sub-graph that corresponds to 3D connected sets of pixels in

the WTS and, by referring to the object definition, the sub-graph which can

be associated with the objects. From each set of pixels an image of the object

can be reconstructed using reconstruction algorithms. Finally, measurement

and classification operations can be carried out.
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3.4.2.2 Scale by scale segmentation and the interscale relation

After thresholding, the region labelling is done by a classical growing tech-

nique. At each scale, neighbouring significant pixels are grouped together to

form a segmented field. A label n > 0 is assigned to each field pixel. If a pixel

is not significant, it does not belong to a field and its label is 0. We denote by

Lði; k; lÞ the label corresponding to the pixel ðk; lÞ at scale i and by Dði; nÞ a

segmented field of label n at the same scale.

Now we have to link the fields labelled at a given scale to the ones belong-

ing to the following scale, in order to construct a graph from which we can

extract the objects. Let us consider the fields Dði; nÞ at scale i and Dði þ 1;mÞ

at scale i þ 1. The pixel coordinates of the maximum coefficient Wði; ki;n; li;nÞ

of Dði; nÞ are ðki;n; li;nÞ. Dði; nÞ is said to be connected to Dði þ 1;mÞ if the

maximum position belongs to the field Dði þ 1;mÞ, i.e Lði þ 1; ki;n; li;nÞ ¼ m.

With this criterion of interscale neighbourhood, a field of a given scale is linked

to at most one field of the upper scale. So we have a set of fields Dði; nÞ and a

relation R:

Dði; nÞ R Dði þ 1;mÞ if Lði þ 1; ki;n; li;nÞ ¼ m ð3:14Þ

This relation leads us to build the interscale connectivity graph whose sum-

mits correspond to the labelled fields. Statistically, some significant structures

can be due to the noise. They contain very few pixels and are generally

isolated, i.e they are connected to no field at upper and lower scales. So, to

avoid false detection, the isolated fields are removed from the initial inter-

scale connection graph.

3.4.2.3 The object identification

An object is associated with each local maximum of the image wavelet trans-

form. For each field Dði; nÞ of the interscale connection graph, its highest

coefficient Wði; ki;n; li;nÞ is compared with the corresponding coefficients of

the connected fields of the upper scale, Wði þ 1; kþ; lþÞ and lower scale,

Wði � 1; k�; l�Þ.

If Wði � 1; k�; l�Þ <Wði; ki;n; li;nÞ and Wði; ki;n; li;nÞ >Wði þ 1; kþ; lþÞ,

Dði; nÞ corresponds to a local maximum of the wavelet coefficients. It defines

an object. No other fields of the scale i are attributed to the object; Dði; nÞ

concentrates the main information which permits the object image to be

reconstructed. Only the fields of the lower scales connected to Dði; nÞ are

kept. So the object is extracted from larger objects that may contain it. On

the other hand, some of these fields may define other objects. They are sub-

objects of the object. To get an accurate representation of the object cleaned
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of its components, the fields associated with the sub-objects cannot be

directly removed; as experiments show, their images will have to be restored

and subtracted from the reconstructed global image of the object. By con-

struction, Dði; nÞ is the root of a sub-graph which defines a tree noted T . T

expresses the hierarchical overlapping of the object structures.

3.4.2.4 The object image reconstruction

Let us consider an object (or a sub-object) O previously defined and its

associated tree T . The object corresponds to a set of wavelet coefficients V

defined on a 3D support S in WTS:

O () fVði; k; lÞ; for ði; k; lÞ 2 Sg ð3:15Þ

where

S ¼ fði; k; lÞ such that Wði; k; lÞ 2 Dði; nÞ element of T g ð3:16Þ

F is an image and W is its corresponding wavelet transform. F can be

considered as a correct restored image of the object O if:

Vði; k; lÞ ¼Wði; k; lÞ 8ði; k; lÞ 2 S ð3:17Þ

Let us denote by PS the projection operator in the subspace S and by WT

the operator associated with the wavelet transform. We can write:

V ¼ ðPS �WTÞðFÞ ¼ AðFÞ ð3:18Þ

We have to solve the inverse problem which consists of determining F

knowing A and V. We minimize the distance kV � AðFÞk leading to:

~AAðVÞ ¼ ð ~AA � AÞðFÞ ð3:19Þ

The initial equation (3.18) is modified with the introduction of ~AA, the

adjoint operator associated with A. ~AA is applied to a wavelet transform W

and gives an image ~FF . The equation (3.19) is solved either by the gradient

algorithm [12] or by the conjugate gradient algorithm [82] which improves the

restoration quality and the convergence speed.

The previous vision scheme has also been applied to a pyramidal wavelet

transform. The interscale connectivity graph is determined taking into

account the decimation from one scale to the following one. The restoration

algorithm is derived from the conjugate gradient algorithm.
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3.4.2.5 Applications to astronomical images

We test the multiscale models on the image L384-350 (see Figure 3.2) corre-

sponding to the galaxy 384350 of the Surface photometry catalogue of ESO-

Uppsala galaxies.

We performed a 7-scales wavelet transform of L384-350, and 58 objects are

detected. The restored image with the à trous algorithm, made of the recon-

structed images of each object, is given in Figure 3.2. The restored image of

the central galaxy is plotted in Figure 3.3. A sub-object of the galaxy, which

corresponds to a spiral arm, has been extracted; its image is shown in the

same figure.

In the case of simple objects of small size, usual astronomical imagery

methods and the multiscale model give very close results [82]. But, the multi-

scale model permits not only point-like objects to be identified but also

objects which are much more complex (for instance the central galaxy of

L384-350). Such objects with their structure hierarchy can be decomposed

by our model thanks to the notion of sub-object.

3.4.3 Applications to the analysis of astrophysical sources

Many applications of the wavelet transform have been done on the analysis

of astrophysical sources by different approaches. Our vision model is too

recent to have been currently applied, but similar ideas were partly imple-

mented.

The fractal behaviour of interstellar clouds was one of the specific applica-

tions of the wavelet transform in astrophysics. Gil and Henriksen [39] first
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analysed the 13CO spectral data of the outflow region of a molecular cloud.

The fractal Hausdorff dimension was obtained for some specific regions. The

wavelet transform was applied with a Mexican hat. A deeper analysis led

them to believe that a substantial quantity of gas is present between the

emission peaks.

From observations obtained with the infrared satellite IRAS, a similar

analysis was done on the 60 and 100 mm emissions at high galactic latitudes

[1]. A local spectral index was obtained for each pixel. Its map is more

homogeneous than the brightness map.

Langer et al. [55] have used a Laplacian pyramid transform for analysing

molecular clouds. This transform can be considered as a discrete wavelet

transform with four wavelets. They identified all the components, with posi-

tive coefficients for fragments or clumps, and with negative ones for cavities

or bubbles. A hierarchical structure was shown. The studied cloud seems to

be more chaotic than that predicted for incompressible turbulence, probably

because of the importance of long-range gravitational forces, the compressi-

bility of clumps and the presence of turbulent dissipation.

A 1D application was done by Lepine et al. [60] [65] for analysing discrete

stochastic components found on emission lines in Wolf-Rayet stars. This

allowed them to identify a dominant scale. The wavelet power spectrum

was used to verify the consistency of the data with a model based on scaling

laws.

Coupinot et al. [26] have developed a multiscale method for analysing

complex objects. They showed by numerical simulations that they obtained

an available photometric accuracy. They applied their method on different

sources. On high angular resolution images of the galaxy M31 they succeeded
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in detecting new faint globular clusters [3]. For a clumpy irregular galaxy

they extracted about twenty clumps [46]. Using a model, they deduced the

age and the mass of these structures. Evidence from the self-propagating star

formation mechanism was derived.

Bendjoya et al. [8] [89] applied a 1D wavelet transform for the analysis of

rings of Saturn and Uranus [74]. They showed their hierarchies, and they

identified the components. The nuclei of comets have also been studied using

a multiscale analysis [69].

Clusters of galaxies include three components: galaxies, an intracluster

medium made of hot gas radiating in the X-ray window, and an amount

of dark matter. The baryonic matter is mainly in the form of ionized hydro-

gen, which appears in images obtained in the X-ray bands by satellites like

Einstein or ROSAT. A subclustering has been found in many clusters [32]

[36] and its analysis is of great importance in establishing the dynamical state

of the cluster of galaxies. Multiscale approaches based on the wavelet trans-

form have contributed to quantify this subclustering [35]. The correlation

between the subclusterings and the gravitational potential wells must be

stated precisely.

In Figure 3.4 the raw image of ABCG 2256 taken with the ROSAT PSPC

detector is plotted. In Figure 3.5 its reconstructed image from its significant

components shows the matter organization. The substructures found with the

wavelet transform at different scales are superimposed in Figure 3.6. This

study has been done on a set of clusters of galaxies and it raised the question

of the validity of the hydrodynamic equilibrium hypothesis of the gas in the

potential well [87].

Today, structural features are identified and measured on X-ray images by

a multiscale analysis [42] [109] [30]. The wavelet transform is also used for

detecting new X-ray clusters [81] [103].

3.4.4 Applications to galaxy counts

The complexity of the distribution of galaxies and of clusters of galaxies is

now clearly established up to scales of 50 Mpcy (with a Hubble constant

¼ 100 km s�1 Mpc�1) [4]. Valuable information on the three-dimensional

clustering of galaxies is provided by wide-angle redshift surveys, such as

the Center for Astrophysics (hereafter CfA) redshift survey slices [51]. The
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main feature of the galaxy distribution is the departure from homogeneity at

all scales within reach. The topology of the distribution is characterized by a

complex network of structures, 1D filaments [40] or 2D sheets [28]. The high-

density structures appear to connect clusters of galaxies and to delineate large

spherical regions which are devoid of bright galaxies: voids are frequent

events of the distribution.
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Fig. 3.4. Raw image of ABCG 2256 taken with the ROSAT PSPC (from [87]).

Fig. 3.5. Reconstructed image of ABCG 2256 after a wavelet analysis (from [87]).



Various statistical methods have been used to detect local structures and to

discriminate among theoretical models. Generally the statistical indicators

provide an objective way to compare observational data with numerical

simulations, but they measure only an average value of the parameter used

to characterize the distribution of galaxies. The wavelet transform provides a

space-scale analysis in which both over- and under-dense structures are

detected according to their typical size.

In Figure 3.7 we have superimposed the positions of a part of the CfA

catalogue with the limit curves of the significant positive wavelet coefficients

at different scales. For each scale we compute a wavelet coefficient image,

then we threshold it taking into account a threshold statistical level, here

equal to 0:001. The superimposed curves show clearly the hierarchy of struc-

tures formed by the galaxies. In Figure 3.8 we show the same plot where the

negative significant pixels and the voids appear distinctly. The wavelet ana-

lysis allowed us for the first time to objectively detect and to locate voids in

the CfA slice and to replace the often used subjective visual criteria with

quantitative parameters [86].

This approach was applied to other catalogues of cosmological interest

and always showed a hierarchically structured distribution of objects [23].

A full description of the large structure was done around the South Galactic

Pole, leading to the identification of clusters and superclusters of galaxies [33]
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[34]. Larger structures were also obtained by analysing the distribution of the

clusters of galaxies [22].

This method for identifying hierarchical groups has also been adapted to

the analysis of the distribution of asteroids in the space of dynamical para-

meters [9]. A new decomposition of asteroids in dynamical families was done

and compared successfully to a classical cluster analysis [25].

A continuous wavelet transform, with a so-called Mexican hat wavelet,

was applied on the radial velocity of galaxies in order to determine an irrota-

tional velocity field [77]. The application of this method to cosmic velocity

fields allows one to derive the potential or, similarly, any linear function on

the vectorial field.

3.4.5 Statistics on the large-scale structure of the Universe

Obviously the analysis of the scalogram obtained on the the galaxy distribu-

tion may disclose information on the fractality of the Universe. Many diffi-
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Fig. 3.7. Map of the significant over-dense structures. The lines define areas corre-
sponding to a statistical level 0:005. Four scales are plotted. For a given structure, the
contours enclosing the larger areas correspond to the larger wavelet scales (from [86]).



culties remain in interpreting the results: bias due to the Poisson noise, velo-

city dispersion in bound gravitational structures, homogeneity in the object

selection, etc. Applying such an analysis, Martinez et al. [64] found the

existence of different exponents showing the multifractal nature of the dis-

tribution of galaxies.

The spectrograms of the quasi stellar objects (QSO) exhibit a large set of

fine absorption lines which have been identified as the redshifted Ly� absorp-

tions of hydrogen galactic halos along the sight line. This Ly� forest became

a fundamental marker of the large-scale structures. Pando and Fang [73]

applied a Daubechies wavelet transform for analysing these data.

Clustering was identified on scales similar to the one of the cluster of galaxies.

The intensity of this clustering seems to decrease with the distance.

The correlation function is not sufficient to separate between cosmological

scenarios. Bromley [21] has proposed an approach based on the histogram of

the wavelet coefficients. We derived a new statistical indicator for that pur-

pose, based on a morphological parameter of the structures detected by the
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and 700 km s�1 (from [86]).



wavelet transform. We implemented on a Connection Machine CM-200 an n-

body simulation program corresponding to different classical scenarios [58].

In Figure 3.9 we show a simulation with a Cold Dark Matter (CDM) scenario

while the Hot Dark Matter (HDM) is given in Figure 3.10. It can be seen

clearly that the CDM scenario favours clustered structures while the HDM

favours filamentary ones. An objective method is necessary to characterize

the structures.

We applied our vision model to 3D images resulting from simulations.

After the structure identification, we quantify the morphological properties

by the shape parameter:

LðaÞ ¼ 36�
V2
ðaÞ

S3ðaÞ
ð3:20Þ

where VðaÞ and SðaÞ are the volume and the surface of a structure at scale a.

The mean of LðaÞ gives a description of the deviation from sphericity at the

scale a. In Figure 3.11 the results obtained for the two scenarios are plotted.

Error bars are given by the variance on < LðaÞ > obtained with five simula-

tions for each scenario. It appears clearly that the CDM scenario is made of

structures of almost spherical shape with a slight variation towards the elon-
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Fig. 3.9. Numerical simulation of the CDM universe on a 1283 grid (the physical size
of the box is 192Mpc) (from [58]).
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Fig. 3.10. Numerical simulation of the HDM universe (from [58]).

Fig. 3.11. Variation of the sphericity indicator with the scale for the structures
generated from the CDM and HDM cosmological scenarios (from [58]).



gated ones, while the HDM scenario is made of elongated structures even at

very small scales.

This new indicator, based on the morphology of structures in the wavelet

space, was applied on observational data, the CfA catalogue [57], or the

Abell cluster of galaxies [22] and tends to favour an intermediate scenario.

3.5 Conclusion

The wavelet transform is used more and more often for astrophysical data

analysis. Its main domain of applications consists essentially of nonstation-

ary processes which exhibit long range correlations. We often observe this

situation in astrophysical data, either for time series (solar granulation, dis-

tribution of the magnetic fields, quasar flux, GRB, etc.), for images (mole-

cular clouds, galaxies, comets, X-ray cluster of galaxies, etc.) and also for

astronomical catalogues (spatial distribution of galaxies, distribution of

asteroids in a dynamical parameter space, etc.).

As we have shown in this chapter, the astrophysicists have applied differ-

ent discrete wavelet transforms: Morlet’s transform, for time-frequency ana-

lysis, the à trous algorithm and the pyramidal transform for image

restoration and analysis, pyramidal with Fourier transform for synthesis

aperture imaging. The choice is determined by the problem. For example

image compression needs a compact representation, consequently the multi-

resolution analysis is a priori the most suitable tool for this application.

Aliasing must be avoided for analysis and if we have no problem with mem-

ory or computing time, the à trous algorithm is the best, and if that is not the

case, a pyramidal transform would be better than the multiresolution analy-

sis. For times series, often the phase is required, so a Morlet or a Gabor

transform is indicated.

Nevertheless, the sampling, the compactness in the direct space and the

regularity of the wavelet are the main elements that the astrophysicist has to

take care of in applying a given discrete wavelet transform. With my colla-

borators I did not apply the multiresolution analysis which provides an

unredundant image representation, but I used instead the wavelet transform

as a set of pass-band filters. So our use of this transform was characterized by

the following.

. The use of the à trous algorithm, in order to keep the same sampling for each

scale.

. The use of a quasi isotropic wavelet, so that no direction is privileged by this

analysis.
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. A wavelet with no positive bumps, of course outside the central peak. Since the

wavelet function has a null mean, it has necessarily at least one negative bump:

significant negative coefficients may result of significant positive structures, but no

other positive structures must be detected around a positive peak.

. A decision rule based on the PDF of the wavelet coefficient for a uniform image is

applied. We can estimate the probability of a given structure to be due to the

noise.

. The groups and the voids are detected by the same objective procedure.

. We detect a group or a void superimposed on a background.

. The image of each structure can be restored by application of partial restoration.

. The structures are characterized by an indicator based on the morphology in the

wavelet transform space.

Many wavelet packages are now available, some of them are accessible by

anonymous FTP. A large part of our work is now integrated in the SADAM

(Système d’Analyse des Données Astronomiques Multiéchelles) package devel-

oped in the framework of a collaboration between our group and Starck’s

one at the CEA [91]. The methods and the algorithms implemented in this

package are described in a book which will allow the physicists to apply our

multiscale methods [94].

Appendices to Chapter 3

A. The à trous algorithm

Let us consider the 1D algorithm. The sampled data are considered as the

scalar product of the image function f ðxÞ with the translated scaling func-

tions �ðx� kÞ:

cð0; kÞ ¼ h f ðxÞ; �ðx� kÞi ð3:21Þ

Let us consider the scalar products at the scale i:

cði; kÞ ¼
1

2i

D
f ðxÞ; �ð

x� k

2i
Þ

E
ð3:22Þ

If �ðxÞ satisfies the dilation equation [99]:

1
2�

x

2

� �
¼
X
n

hðnÞ�ðx� nÞ ð3:23Þ

cði; kÞ can be iteratively computed according to the relation:

cði; kÞ ¼
X
n

hðnÞcði � 1; kþ 2i�1nÞ ð3:24Þ
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We choose the cubic central B-spline B3ðxÞ with hðnÞ ¼ f 116 ;
1
4 ;

3
8 ;

1
4 ;

1
16g

ð�2 � n � 2Þ and we use the wavelet resulting from the difference between

two successive approximations:

wði; kÞ ¼ cði � 1; kÞ � cði; kÞ ð3:25Þ

Hence we get an easy reconstruction algorithm by adding all the wavelet

images with the smoothest one. The n-dimensional algorithm works with

separable B-splines for the successive approximations. The B3ðxÞ function

is close to a Gaussian function and the results are quasi isotropic.

We notice that this wavelet function has no positive bumps, i.e. the origin

is the maximum. This point is essential since bumps lead to rings around each

field.

B. The pyramidal algorithm

Let us consider again the 1D algorithm. We start with the same sampled

data cð0; kÞ but the scalar products at the scale i are:

cði; kÞ ¼
1

2i
f ðxÞ; �

x

2i
� k

� �D E
ð3:26Þ

The sampling step is then 2i, and the number of coefficients are reduced by a

factor 2 from one step to the following one. Taking into account the dilation

equation cði; kÞ can be iteratively computed according to the relation:

cði; kÞ ¼
X
n

hðnÞcði � 1; 2kþ nÞ ð3:27Þ

We choose again the cubic central B-spline B3ðxÞ and the wavelet results

also from the difference between two successive approximations, but we have

to take into account the decimation, i.e. the reduction by a factor 2 of the

sampling. So we introduce the approximation before this operation by:

~ccði; kÞ ¼
X
n

hðnÞcði � 1; kþ nÞ ð3:28Þ

and the wavelet coefficients are:

wði; kÞ ¼ cði � 1; kÞ � ~ccði; kÞ ð3:29Þ

The reconstruction algorithm, based on an iterative scheme, is less trivial.

The n-dimensional algorithm works also with separable B-splines for the

successive approximations.
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C. The denoising algorithm

(i) Set n ¼ 0;

(ii) determine the significant coefficients, and consequently the mask Mði; k; lÞ;

(iii) restore the image F ðnÞ for the significant coefficients and the last smoothed

image;

(iv) compute the residue RðnÞ ¼ F � F ðnÞ;

(v) compute the wavelet transform V ðnÞ of the residue;

(vi) keep the significant values and reconstruct the significant residue ~RRðnÞ from this

set;

(vii) if the significant residue is negligible, stop;

(viii) otherwise, add the significant residue to the previous restored image in order to

get F ðnþ1Þ;

(ix) increment n and return to point (iv).

At the end, no significant difference may be detected between the original

image and the restored one. That needs between 6�10 iteration steps. Some

variants are possible. We see that the set of significant wavelet coefficients is

modified during the iterative process. We can process differently, by modify-

ing the wavelet coefficients outside the mask Mði; k; lÞ, in order to get the

correct solution. In another method, we reconstruct the image by applying a

fixed step or a conjugate gradient. The application of a given variant depends

on the purpose.

D. The deconvolution algorithm

(i) set n ¼ 0;

(ii) set Oð0Þ ¼ 0;

(iii) restore the image F ðnÞ ¼ OðnÞ � P;

(iv) compute the residue RðnÞ ¼ F � F ðnÞ;

(v) compute the significant residue ~RRðnÞ;

(vi) if the significant residue is negligible, stop;

(vii) otherwise, get Oðnþ1Þ ¼ GðOðnÞ; ~RRðnÞÞ;

(viii) increment n and return to point (iii).

Some variants are also possible, by taking into account only the significant

coefficients of the original image Fðk; lÞ.
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[48] J.A. Högbom. Aperture synthesis with a non-regular distribution of
interferometer baselines. Astron. Astroph. Sup. Ser., 15: 417–426, (1974)

[49] M. Holschneider, R. Kronland-Martinet, J. Morlet, and P. Tchamitchian. A
Real-Time Algorithm for Signal Analysis with the Help of the Wavelet
Transform. In Wavelets: Time-Frequency Methods and Phase-Space, pp. 286–
297. Springer, Berlin, 1989.

[50] L. Huang and A. Bijaoui. Astronomical image data compression by
morphological skeleton transform. Experimental Astronomy, 1: 311–327,
(1991)

[51] J.P. Huchra, M. Davis, D. Latham, and J. Tonry. A survey of galaxy redshifts.
IV. The data. Astrophys. J. Sup Ser., 52: 89, (1983)

[52] R. W. Komm. Wavelet analysis of a magnetogram. Solar Phys., 157: 45–50,
(1995)

[53] A. Kruszewski. Inventory-searching, photometric and classifying package. In
1st ESO/ST-ECF Data Analysis. Warsaw University Observatory, 1989.

[54] L. Landweber. An iteration formula for Fredholm integral equations of the
first kind. Am. J. Math., 73: 615–624, (1951)

[55] W.D. Langer, R.W. Wilson, and C.H. Anderson. Hierarchical structure
analysis of interstellar clouds using nonorthogonal wavelets. Astroph. Jour.
Lett., 408: L45–L48, (1993)

[56] J. K. Lawrence, A. C. Cadavid, and A. A. Ruzmaikin. Turbulent and chaotic
dynamics underlying solar magnetic variability. Astroph. Journ., 455: 366–375,
(1995)

[57] E. Lega, A. Bijaoui, J. M. Alimi, and H. Scholl. A morphological indicator for
comparing simulated cosmological scenarios with observations. Astron.
Astroph., 309: 23–29, (1996)

112 Albert Bijaoui



[58] E. Lega, H. Scholl, J.M. Alimi, A. Bijaoui, and P. Bury. A parallel algorithm
for structure detection based on wavelet and segmentation algorithm. Parallel
Comp., 21: 265–285, (1995)

[59] R. B. Leighton, R. W. Noyes, and G. W. Simon. Velocity fields in the solar
atmosphere: I. Preliminary report. Astroph. Jour., 135: 474–499, (1962)

[60] S. Lepine. Wavelet analysis of Wolf-Rayet emission line variability: Evidence
for clumping. Astroph. and Space Sci., 221: 371–382, (1994)

[61] H. Lorenz, G.M. Richter, M. Cappacioli, and G. Longo. Adaptative filtering
in astronomical image processing. Astron. Astroph., 277: 321–330, (1993)

[62] L.B. Lucy. An iteration technique for the rectification of observed
distributions. Astron. Journal, 79: 745–754, (1974)

[63] S. Mallat. A theory for multiresolution signal decomposition: the wavelet
representation. IEEE Trans. Pattern Anal. Mach. Intelligence, 11(7): 674–693,
(1989)

[64] V.J. Martinez, S. Paredes, and E. Saar. Wavelet analysis of the multifractal
character of the galaxy distribution. Mon. Not. Royal Astron. Soc., 260: 365–
375, (1993)

[65] A. F. J. Moffat, S. Lepine, R. N. Henriksen, and C. Robert. First wavelet
analysis of emission line variations in wolf-rayet stars. Astroph. and Space Sci.,
216: 55–65, (1994)

[66] J. Morlet, G. Arens, E. Fourgeau, and D. Giard. Wave propagation and
sampling theory. Geophysics, 47: 203–236, (1982)

[67] B. Mosser, F.X. Schmieder, Ph. Delache, and D. Gautier. A tentative
identification of Jovian global oscillations. Astron. Astroph., 251: 356–364,
(1991)

[68] F. Murtagh, J.L. Starck, and A. Bijaoui. Image restoration with noise
suppression using the wavelet transform ii. AA Sup Ser, 112: 179–189, (1995)

[69] F. Murtagh, W. Zeilinger, J.L. Starck, and A. Bijaoui. Object detection using
multi-resolution analysis. Astronomical Data Analysis Software and Systems
IV, ASP Conference Series, Vol. 77, 1995, R.A. Shaw, H.E. Payne, and J.J.E.
Hayes, eds., 4: 260, (1995)

[70] J. P. Norris, R. J. Nemiroff, J. D. Scargle, C. Kouveliotou, G. J. Fishman, C.
A. Meegan, W. S. Paciesas, and J. T. Bonnel. Detection of signature consistent
with cosmological time dilation in gamma-ray bursts. Astroph. Journ., 424:
540–545, (1994)

[71] A.R. Ochadlick, Jr., H.N. Kritikos, and R. Giegengack. Variations in the
period of the sunspot cycle. Geoph. Res. Let., 20: 1471–1474, (1993)

[72] T. Oosterloo. Adaptive filtering and masking of HI data cubes. Vistas in
Astron., 40: 571–577, (1996)

[73] J. Pando and L.Z. Fang. A wavelet space-scale decomposition analysis of
structures and evolution of QSO Ly alpha absorption lines. Astroph. Journ.,
459: 1–11, (1996)

[74] J.M. Petit and Ph. Bendjoya. A new insight in Uranus rings: a wavelet analysis
of Voyager 2 data, in Proc. of the Pacific Astronomical Society (in the press
1997)

[75] W.K. Pratt. Digital Image Processing, chapter 10, p. 255. (John Wiley and
Sons, New York, 1978)

[76] W. L. Press. Wavalet-based compression software for FITS images.
Astronomical Data Analysis Software and Systems I, ASP Conference Series,
25: 1, (1992)

Wavelets and astrophysical applications 113
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Multiéchelles. CEN Saclay, DAPNIA/SEI, CEA, Gif/Yvette, France, 1996.

[92] J.L. Starck and A. Bijaoui. Filtering and deconvolution by the wavelet
transform ii. Sign. Proc., 35: 195–211, (1994)

[93] J.L. Starck and A. Bijaoui. Multiresolution deconvolution. J. Opt. Soc. Am. A,
11: 1580–1588, (1994)

[94] J.L. Starck, F. Murtagh, and A. Bijaoui. Image processing and data analysis :
the multiscale approach. (Cambridge University Press, 1998.)

[95] J.L. Starck, F. Murtagh, and M. Louys. Astronomical image compression
using the pyramidal median transform. Astronomical Data Analysis Software
and Systems IV, ASP Conference Series, Vol. 77, 1995, R.A. Shaw, H.E. Payne,
and J.J.E. Hayes, eds., 4: 268, (1995)

114 Albert Bijaoui



[96] J.L. Starck, F. Murtagh, B. Pirenne, and M. Albrecht. Astronomical image
compression based on noise suppression. Pub. Astron. Soc. Pacific, 108: 446–
455, (1996)

[97] J.L. Stark, A. Bijaoui, B. Lopez, and C. Perrier. Image reconstruction by the
wavelet transform applied to aperture synthesis. Astron. Astroph., 283: 349–
360, March 1994.

[98] R.S. Stobie. The COSMOS image analyzer. Pattern Recognition Letters, 4:
317–324, (1986)

[99] G. Strang. Wavelets and dilation equations: a brief introduction. SIAM
Review, 31: 614–627, (1989)

[100] K. Szatmary, J. Gal, and L. L. Kiss. Application of wavelet analysis in variable
star research. ii. the semiregular star V Bootis. Astron. Astroph., 308: 791–798,
(1996)

[101] K. Szatmary and J. Vinko. Periodicities of the light curve of the semiregular
variable star Y Lyncis. Month. Not. Royal Astron. Soc., 256: 321–328, (1992)

[102] K. Szatmary, J. Vinko, and J. Gal. Application of wavelet analysis in variable
star research. i. Properties of the wavelet map of simulated variable star light
curves. Astronomy and Astrophysics Supplement Series, 108: 377–394, (1994)

[103] M. P. Ulmer, A. K. Romer, R. C. Nichol, B. Holden, C. Collins, and D. Burke.
A progress report on serendipitous high-redshift archival ROSAT Cluster
(SHARC) survey. Bull. Am. Astr. Soc., 187: 9503, (1995)

[104] F. Valdes. Faint object classification and analysis system standard test image.
In 1st ESO/ST-ECF Data Analysis. IRAF group, Tucson, Arizona, 1989.

[105] S. E. Vance and J. E. Grindlay. Applications of a wavelet-based filtering and
deconvolution technique. Bull. Am. Astr. Soc., 185: 4008, (1994)

[106] P.H. Van Cittert. Zum einfluss der spaltbreite auf die intensitätsverteilung in
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Abstract

We have used wavelets to analyse, model and compute turbulent flows. The

theory and open questions encountered in turbulence are presented. The

wavelet-based techniques that we have developed to study turbulence are

explained and the main results are summarized.

4.1 Introduction

In this chapter we will summarize the ten years of research we have done to

try to better understand, model and compute fully developed turbulent flows

using wavelets and wavelet packets. Fully developed turbulence is a highly

nonlinear regime (very large Reynolds number tending to infinity) and is

distinct from the transition to turbulence (low Reynolds number). We have

chosen to present a personal point of view concerning the current state of our

understanding of fully developed turbulence. It may not always coincide with

the point of view of other researchers in this field because many issues we are

addressing in this chapter are still undecided and highly controversial. This

paper is a substantially revised and extended version of: Wavelets and

Turbulence by Farge, Kevlahan, Perrier and Goirand which appeared in

Proceedings of the IEEE, vol. 84, no. 4, April 1996, pp. 639–669.

After more than a century of turbulence study [30], [173], no convincing

theoretical explanation has produced a consensus among physicists (for a

historical review of various theories of turbulence see [160], [158], [72],
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[91]). In fact, a large number of ad hoc ‘phenomenological’ models exist that

are widely used by fluid mechanicians to interpret experiments and to com-

pute many industrial applications (in aeronautics, combustion, meteorol-

ogy . . .) where turbulence plays a role. For these models there is no need

to suppose the universality of turbulence since they are not derived from first

principles. Their predictions are compared with experiments, such as wind

tunnel measurements, in order to tune the parameters necessary to match the

model to the observations. This procedure is done case by case, for a given

type of turbulent flow and for a given geometry of the internal or external

boundaries. Actually, it is still not known whether fully developed turbulence

has the universal behaviour (independence from initial and boundary condi-

tions) which is generally assumed in the limit of small scales. Already in 1979

one of us (M.F. [69]) expressed reservations about our understanding of

turbulence and thought that we did not yet know the pertinent questions

to ask in order to guide research in this field. Nearly twenty years of work on

the subject have persuaded her that we have not yet identified the appropriate

objects, by which we mean the structures and elementary interactions, from

which it will be possible to construct a satisfactory theory of turbulence.

Turbulent flows are chaotic, i.e. sensitive to initial conditions, therefore we

are looking for a statistical theory, but the classical averages used at present

do not appear to be adequate. This point has been beautifully discussed in a

conference given in 1956 by Kampé de Fériet [112], where he rightly con-

cluded that:

In order to become really useful to research in turbulence theory, the statistical

definition of the average still requires, we believe, that the theory of the integration

of Navier–Stokes equations should have made substantial progresses.

This remark is as pertinent today as it was in 1956.

In our opinion, our present ignorance of the elementary physical mechan-

isms at work in turbulent flows arises in part from the fact that we perform

averages using point measurements and also because we analyse them in

terms of correlations or Fourier modes. This problem has already been

pointed out by Zabusky [208] when he wrote:

In the last decade we have experienced a conceptual shift in our view of turbulence.

For flows with strong velocity shear . . . or other organizing characteristics, many

now feel that the spectral description has inhibited fundamental progress. The next

‘El Dorado’ lies in the mathematical understanding of coherent structures in weakly

dissipative fluids: the formation, evolution and interaction of meta-stable vortex-like

solutions of nonlinear partial differential equations.
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By using point measurements or the Fourier representation, we probably

miss the point, because these classical methods ignore the presence of the

coherent vortices that one observes in physical space and whose dynamic role

seems essential. As Hans Liepmann, successor to Von Karman as director of

the Aeronautical Laboratory of Caltech, likes to comment [141], in turbu-

lence research we are like the drunk man who has lost his keys in a dark alley,

but who finds it easier to search for them under the street light. Everyone

knows that turbulence has to do with vortex production and interaction. This

is even embedded in the Latin etymology of the word ‘turbulence’: turba for

crowd and turbo for vortex. Namely, a turbulent flow can be described as ‘a

crowd of vortices in nonlinear interaction’. However, because we do not have

a good enough theoretical grasp of the structure of these vortices, on the

mechanism of their production by nonlinear instabilities in shear-layers, on

their long-range collective dynamics and their nonlinear interactions, we

prefer to forget about them and content ourselves with studying turbulence

as far as possible from regions where vortices are produced, in particular, as

far as possible from solid walls.

This approach has led turbulence research for the last fifty years to explore

the unphysical academic case of statistically stationary, homogeneous and

isotropic turbulence, which, under those hypotheses and neglecting the essen-

tial effect of walls in considering periodic boundary conditions, represents

turbulent fields in terms of Fourier modes and predict the scaling properties

of ensemble averages. To construct this theory one needs to suppose that the

injection of energy is confined to the low wavenumbers, and that the dissipa-

tion of energy is confined to the high wavenumbers. This assumption allows

us to define an intermediate range of wavenumbers, called the inertial range,

where the flow behaves in a conservative manner, which then enables us to

predict the scaling of the energy spectrum in this range. Unfortunately these

hypotheses are incompatible with the local production of vorticity in bound-

ary layers or shear layers, due to the duality between physical localization

and spectral localization: if you have one you cannot have the other and vice

versa (Heisenberg’s uncertainty principle). The same remark holds for the

dissipation of energy. Incidentally, we are convinced that this lack of physical

soundness of the statistical theory proposed in 1941 by Kolmogorov [117]

[118], [119], and developed by Batchelor [16], explains why G. I. Taylor had

never been convinced by this redirection of turbulence research, where the

dynamics of individual turbulent flow realizations, resulting from vortex

interactions, is not taken into account. In fact, as early as 1938 Taylor had

already recognized the importance of vortices in turbulence when he wrote

[190]:
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The fact that small quantities of very high frequency disturbances appear, and
increase as the speed increases, seems to confirm the view frequently put forward
by the author that the dissipation of energy is due chiefly to the formation of very
small regions where the vorticity is very high.

Nowadays if we want to refocus turbulence research towards a more phy-

sical and dynamical approach valid also for inhomogeneous flows, we should

take up the challenge proposed by Hans Liepmann during a workshop we

organized in February 1997 in Santa Barbara:

As long as we are not able to predict the drag on a sphere or the pressure drop in a
pipe from first principles (namely from continuous, Newtonian, incompressible
assumptions, without any other complications), we will not have made it!’ [142].

As astonishing as it may seem, these two very ‘simple’ and basic problems

are still open and should be taken as a serious challenge. Our conviction is

that the wavelet representation, because it keeps track of both position and

scale, can help us to address these problems, in combining dynamical and

statistical approaches to improve our understanding of fully developed tur-

bulence and propose new turbulence models.

As far as we know, we have been the first to introduce wavelets to analyse

turbulence in two [81], [77] and then three dimensions [75], to design ortho-

gonal wavelet algorithms to solve nonlinear PDEs [165], to use wavelets and

wavelet packets to extract coherent vortices out of turbulent flows [74], to

solve the Navier–Stokes equations in a wavelet basis [96], [41], and to locally

force turbulent flows using wavelets [185]. We apply the wavelet transform to

decompose the vorticity field onto a set of smooth functions with compact (or

quasi-compact) support and thus permit a representation in both space and

scale. The choice of vorticity for both two- and three-dimensional turbulent

flows, rather than velocity, matters because vorticity is, from a dynamical

point of view (considering Helmholtz’s and Kelvin’s theorems), the essential

field which triggers the evolution of velocity. We share the views of Chorin

[43], [44] who has been advocating for 25 years the importance of vorticity for

the computation of turbulent flows.

We are convinced that the wavelet transform is an appropriate tool, not

only for analysing and interpreting experimental results, but also for attempt-

ing to construct a more satisfactory statistical theory, design new turbulence

models and define new numerical methods to compute fully developed tur-

bulent flows. Moreover, the unconditional approximation property of the

wavelet representation may help us to compute high Reynolds number

flows presenting a strong intermittency, to replace periodic boundary condi-

tions by more physical ones, and to simulate the local production of vortices
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at the walls or in shear layers, while controlling the quality (local resolution

and smoothness) of the approximation. This is the program we will expose in

this chapter. We will discuss the results we have obtained in the last ten years,

but it is still very much work in progress and ten more years will be needed

before its potential can be confirmed or denied.

Our chapter is organized as follows. We first state the problem of turbu-

lence and the main open questions. We then focus on how wavelets can be

used to answer these questions. We present fractal and multifractal analysis,

turbulence analysis and turbulence modelling, and finally the use of wavelets

to numerically solve the Navier–Stokes equations. In conclusion, we present

several perspectives and point out where new methods need to be developed

in order to improve our understanding of fully developed turbulence.

4.2 Open questions in turbulence

4.2.1 Definitions

Turbulence is a highly unstable state of fluid flows, where by fluids we mean

continuously movable and deformable media. Liquids, gases and plasmas are

considered to be fluids when the scale of observation is much larger than the

molecular mean free path. Turbulence is characterized by the Reynolds num-

ber, which is the ratio of the nonlinear inertial forces, responsible for the flow

instability, to the linear dissipative damping, which converts kinetic energy

into thermal energy. We will focus on ‘fully developed turbulence’, namely

the limit of very large Reynolds numbers, which corresponds to, either very

large velocities (strong advection), and/or very small viscosity (weak dissipa-

tion, which tends to a constant as the Reynolds number tends to infinity),

and/or very large turbulent scales. For flows encountered in hydraulics and

naval engineering Reynolds numbers are of the order of 102 to 106, in aero-

nautics (engines, airplanes, shuttles) 106 to 108, in meteorology and oceano-

graphy 108 to 1012, and in astrophysics larger than 1012.

While the dissipation term is optimally represented in Fourier space

because Fourier modes diagonalize the Laplacian operator (for periodic

boundary conditions or unbounded domains), the nonlinear advective term

is very complicated in Fourier space where it becomes a convolution, i.e. all

Fourier modes are involved and coupled. As fully developed turbulence cor-

responds to flows where nonlinear advection is dominant, i.e. is larger than

linear dissipation by a factor of the order of Reynolds number, it is obvious

that the Fourier representation is inadequate for studying and computing
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flows in this large Reynolds limit. We need to find a mathematical tool to

optimally solve the nonlinear advection term, in the same way as the Fourier

transform is the most economical representation to solve the linear dissipa-

tion term for the rather unphysical case of periodic boundary conditions.

Surprisingly, however, all classical methods in turbulence rely on the

Fourier representation, which is inappropriate for the nonlinear advection

term. For a review of these methods the best references are Monin and

Yaglom [158] for the statistical theory of three-dimensional turbulence and

Kraichnan and Montgomery [123] for the statistical theory of two-dimen-

sional turbulence.

Turbulence remains an unsolved problem because our traditional concep-

tual and technical tools are inadequate. For instance, classical Hamiltonian

mechanics describes steady states of conservative systems, but turbulent

flows are non-stationary and dissipative. Classical dynamics only solves

systems with a few degrees of freedom, while fully developed turbulent

flows have a very large, perhaps even infinite, number of degrees of free-

dom. Classical statistical theories deal with closed reversible systems in

thermal equilibrium, but turbulent flows are open irreversible systems out

of thermal equilibrium. Classical mathematical methods solve linear differ-

ential equations, but cannot integrate analytically the nonlinear partial

differential equations encountered in the study of turbulence (apart from

a very few cases for which an appropriate transform allows to reformulate

the problem as a linear one, such as Burgers’ equation using the Hopf–

Coles transform). In fact, even the existence and uniqueness of solutions of

the Navier–Stokes equations describing the fluid motions is an unsolved

problem when nonlinear advection becomes dominant, i.e. in the fully

developed turbulent regime. We should mention here recent mathematical

results which give, using multi-scale (Paley–Littlewood) decomposition, a

global existence theorem [35] and a global unicity theorem [98] for Navier–

Stokes equations in IR3 if initial conditions are sufficiently oscillating (in a

Besov norm sense). Some other mathematical attempts have been made

using divergence free vector wavelets [86], [19], but in all cases these proofs

are done in an unbounded space. However, physical fluid flows are

bounded either internally or externally, and we still do not know what is

the optimal functional space for describing real turbulent flows.

In summary, the theory of fully developed turbulence is in what we may

call a pre-scientific phase, because we do not yet have an equation, nor a set

of equations, that could be used to efficiently compute turbulent flows. The

incompressible Navier–Stokes equations, which are the fundamental equa-

tions of fluid mechanics, are not the right ones for turbulence because their
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computational complexity becomes intractable for large Reynolds number

flows. However, in this limit it should then be possible, as it is done in

statistical mechanics, to define averaged quantities which would be the

appropriate variables to describe turbulence and then find the corresponding

transport equations to compute the evolution of these new quantities.

Likewise, the Navier–Stokes equations can be derived from the Boltzmann

equation by considering appropriate limits (Knudsen and Mach numbers

tending to zero [11], [12]) and appropriate averaging procedures to define

new coarse-grained variables (velocity and pressure) and associated transport

coefficients (viscosity and density); the turbulence equations should be

derived as a further step in this hierarchy of embedded approximations,

but this scientific programme may be impaired by the possible non-univers-

ality of turbulence, which remains an essential question to address.

More precisely, it is easier to define the appropriate parameters to go

from Boltzmann to Navier–Stokes than from Navier–Stokes to turbulence

equations. In the first case only a linear averaging procedure is needed,

while in the second case we have to find an appropriate nonlinear proce-

dure, namely some conditional averaging which depends on each flow rea-

lization. For this we should first identify the dynamically active structures

constituting turbulent flows, classify their elementary interactions and

define the averaging procedures needed to construct appropriate statistical

observables. Wavelet analysis is a good tool for exploring this conditional

averaging and for seeking an atomic decomposition of phase space, defined

in both space and scale. Tennekes and Lumley in 1972 [191] had already the

intuition of such a phase-space decomposition when they proposed to con-

sider a turbulent flow as a superposition of Gaussian-shaped wave packets,

they were calling ‘eddies’; but we know since Balian’s theorem [10] that we

cannot build orthogonal bases with such functions. This is why we propose

to use instead wavelet or wavelet packet bases to study how phase-space

‘atoms’ exchange energy, or other important dynamical quantities, during

the flow evolution and possibly combine to form phase-space ‘molecules’,

such as coherent structures.

Wavelets may supply new functional bases better adapted to represent and

compute turbulent flows, i.e. to extract their elementary dynamical entities,

perform the appropriate averages on them, and predict the evolution of these

statistical quantities. We still hope that there will be enough universality in

the behaviour of these phase-space ‘molecules’ so that we can find a general

theory and a set of equations to describe their evolution, but this may well be

an unrealistic goal.
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4.2.2 Navier–Stokes equations

The fundamental equations of the dynamics of an incompressible (constant

density) and Newtonian (rate of strain proportional to velocity gradients)

fluid are the Navier–Stokes equations:

@v

@t
þ ðv � rÞvþ

1

�
rP ¼ �r2vþ F; ð4:1Þ

r � v ¼ 0; ð4:2Þ

plus initial and boundary conditions,

where t is the time, v the velocity, P the pressure, F the resultant of the

external forces per unit of mass, � a constant density and � a constant kine-

matic viscosity.

The mathematical difficulty of the Navier–Stokes equations arises from the

fact that the small parameter �, which tends to zero in the limit of infinite

Reynolds numbers, i.e. for fully developed turbulent flows, appears in the

term containing the highest-order derivative, namely the dissipation term

�r2v. Thus the character of the equations changes as � tends to zero, since

in this limit it is the nonlinear advection term ðv � rÞv which dominates. This

singular limit seems similar to the semi-classical limit of quantum mechanics

when the Planck’s constant tends to zero; incidentally Planck’s constant has

the same dimension as kinematic viscosity. When � ¼ 0, i.e. for infinite

Reynolds numbers, the Navier–Stokes equations are called Euler’s equations.

One of the physical difficulties of the Navier–Stokes equations comes from

the incompressibility condition, namely the divergence-free requirement

imposed by equation (4.2), which implies that the speed of sound is infinite.

In this case any local perturbation is instantaneously transmitted throughout

the whole domain. This requirement seems too drastic and quite unphysical

because the speed of sound is large in real flows but never infinite. In the

future we may prefer to consider instead weakly compressible Navier–Stokes

equations to simplify the computation of turbulent flows and represent their

local behaviour more accurately. Moreover, on physical grounds Euler’s

equations are unrealistic because the limit � ¼ 0 contradicts the fluid hypoth-

esis, which supposes that the system is locally close to thermodynamical

equilibrium due to molecular collisions (which implies macroscopic dissipa-

tion).

Taking the curl of equations (4.1) and (4.2) gives the equation of vorticity

x, the curl of velocity,

@x

@t
þ ðv � rÞx ¼ ðx � rÞvþ �r2xþ r � F: ð4:3Þ
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In three dimensions this equation shows that vortex tubes may be stretched

by velocity gradients, a mechanism which has been proposed to explain the

transfer of energy towards the smallest scales of the flow. In two dimensions

the vortex stretching term becomes zero, because the vorticity is then a

pseudo-scalar x ¼ ð0; 0; !Þ perpendicular to the velocity gradients. The vor-

ticity, and its infinitely many moments, are therefore Lagrangian invariants

of the flow (Helmholtz’s theorem). In this case there is no vortex stretching and

energy cannot cascade towards the smallest scales, but tends to accumulate into

the largest scales, the so-called inverse energy cascade [121], [15], while enstro-

phy (vorticity squared) instead cascades towards the smallest scales where it

accumulates.

4.2.3 Statistical theories of turbulence

The first statistical method to analyse turbulent flows was proposed in 1894

by Reynolds [174] who assumed that turbulent flows can be separated into

mean fields and fluctuations. He decomposed the velocity field vðxÞ into a

mean contribution �vvi plus fluctuations v 0i and rewrote the Navier–Stokes

equations to predict the evolution of �vvi, which gives the Reynolds equations

@ �vvi
@t
þ �vvj

@ �vvi
@xj
þ

1

�

@ �PP

@xi
¼

@

@xj
�
@ �vvi
@xj
� v0iv

0
j

� �
þ �FFi: ð4:4Þ

To obtain the time evolution of the mean velocity �vvi one should compute the

second order moment of the velocity fluctuations v0iv
0
j, called the Reynolds

stress tensor, which in fact depends on the third order moment v0iv
0
jv
0
k (i, j, and

k are dummy indices), which depends on the fourth order moment, and so on

ad infinitum . This is the closure problem: there are more unknowns than

equations and, to solve the hierarchy of Reynolds equations, the traditional

strategy is to introduce another equation, or system of equations, chosen

from some a priori phenomenological hypotheses, to close the set of equa-

tions.

For instance, to close the hierarchy of Reynolds equations, Prandtl intro-

duced a characteristic length scale for the velocity fluctuations, called the

mixing length, which led him to rewrite the Reynolds stress tensor term as

a turbulent diffusion. Following an hypothesis proposed by Boussinesq [30],

and by analogy with molecular diffusion which smoothes velocity gradients

for scales smaller than the molecular mean free path, Prandtl assumed that

there exists a turbulent diffusion which regularizes the mean velocity gradi-

ents for scales smaller than the mixing length. Unfortunately this hypothesis

is wrong because, contrary to molecular diffusion which is decoupled from
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the large scale motions and can then be modelled by a linear operator

(Laplacian) with an appropriate transport coefficient (viscosity), turbulent

motions interact nonlinearly at all scales and there is no spectral gap to

decouple large scale motions from small scale motions. This is a major

obstacle faced by all turbulence models and therefore the closure problem

remains open. This is also the reason why renormalization group techniques

[207], nonlinear Galerkin numerical methods [149] and Large Eddy

Simulation (LES) [135] have not yet lived up to their promises. An important

direction of research is to find a new representation of turbulent flows in

which there is a gap, decoupling motions out of equilibrium from well ther-

malized motions, which can then be modelled. Such a separation seems only

possible with a nonlinear closure, based on conditional averages which

depend on the local behaviour of each flow realization. We have proposed

to use nonlinear wavelet filters for this (see section 4.5.2).

Taylor [189], under the influence of Wiener with whom he was in corre-

spondence [18] since his famous paper on turbulent diffusion [188], proposed

in 1935 to characterize turbulent fields by their correlation functions, in

particular by the Fourier transform of their two-point correlation function

which gives their energy spectrum. This relies on Wiener–Khinchin’s theo-

rem, which states that the modulus of the Fourier transform of one realiza-

tion of a stationary and ergodic random process in IRn is the same as the

Fourier transform of the two-point correlation function of this process.

Twenty years before, Einstein [62] had outlined the same method to charac-

terize fluctuating data, but he was not followed at the time [206]. To simplify

the computation of correlation functions, Taylor made the hypothesis of

statistical homogeneity and isotropy of turbulent flows, supposing that the

averages are invariant under both translation and rotation. In the 1930s

Gebelein proposed applying the probability theory of Kolmogorov to hydro-

dynamics, a method later developed by Kolmogorov himself and his student

Obukhov [161], who published in 1941 three key papers on the statistical

theory of fully developed turbulence. Kolmogorov [117], [118], [119] studied

the way in which the energy density of the two-point correlation of a turbulent

flow in three dimensions is distributed among the different wavenumbers. This

type of approach is common in statistical mechanics, but a difficulty arises

here from the fact that turbulent flows are open thermodynamical systems,

due to the injection of energy by external forces and its dissipation by viscous

frictional forces. To resolve this difficulty Kolmogorov supposed that external

forces act only on the largest scales while frictional forces act only on the

smallest scales, which, in the limit of very large Reynolds numbers, leaves an

intermediate range of scales, called the inertial range, in which energy is
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conserved and only transferred from large to small scales at a rate � which is

supposed to be constant. But this cascade of energy is supposed for ensemble

averages and not for an individual flow realization; moreover, this cascade

hypothesis is only phenomenological and has never been proved from first

principles. Following Taylor [189], Kolmogorov supposed that turbulent

flows are statistically homogeneous and isotropic; as a consequence of these

two hypotheses and using Navier–Stokes equations, von Karman and

Howarth [113] have shown that the skewness, namely the departure from

Gaussianity of the velocity increment probability distribution, is a non-zero

constant. All these assumptions lead Kolmogorov to propose the K41 model,

which predicts the following energy spectrum scaling, known as the k�5=3 law

EðkÞ ¼ C�2=3k�5=3 ð4:5Þ

where k is the modulus of the wavenumber averaged over directions and C is

called Kolmogorov’s constant. Classically in turbulence k is interpreted as

the inverse of a scale, but this is only true for averaged fields of statistically

homogeneous and isotropic flows.

Landau criticized Kolmogorov’s hypothesis of a constant rate of energy

transfer � independent of the scale, arguing that the dissipation field should

also be considered random. Following this remark, and due to observational

evidence of small-scale intermittency introduced by Townsend in 1951 ([194],

[195]), Kolmogorov proposed to model the energy transfer as a multiplicative

random process where only a fraction � of energy is transferred from one

scale to another. Assuming that the probability density of the dissipation field

varies randomly in space and time with a log-normal law, this led him to

propose the K62 model which predicts the following energy spectrum scaling

EðkÞ ¼ C�
2
3k�

5
3 ln

k

kI

� ��
ð4:6Þ

where kI is the wavenumber at which energy is injected (inverse of the inte-

gral length scale).

Kolmogorov 1962’s paper opened a debate, which is still very lively today,

but which was already very well addressed 24 years ago by Kraichnan [122]

when he wrote in 1974:

The 1941 theory is by no means logically disqualified merely because the dissipation
rate fluctuates. On the contrary, we find that at the level of crude dimensional
analysis and eddy-mitosis picture the 1941 theory is as sound a candidate as the
1962 theory. This does not imply that we espouse the 1941 theory. On the contrary,
the theory is made implausible by the basic physics of vortex stretching. The point is
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that this question cannot be decided a priori; some kind of non-trivial use must be
made of the Navier–Stokes equation.

Kraichnan claims that one needs to understand the generic dynamics of

Navier–Stokes equation before constructing a statistical theory able to take

into account intermittency:

If the Kolmogorov law EðkÞ / k�5=3�� is asymptotically valid, it is argued that the
value � depends on the details of the nonlinear interaction embodied in the Navier–
Stokes equations and cannot be deduced from overall symmetries, invariances and
dimensionality [122].

To his criticism of Kolmogorov 62’s theory, Kraichnan added:

Once the 1941 theory is abandoned, a Pandora’s box of possibilities is open. The
1962 theory of Kolmogorov seems arbitrary, from an a priori viewpoint [ . . . ]. We
make the point that even in the general framework of some kind of self-similar
cascade, and of intermittency which increases with the number of cascade steps,
the 1962 theory is only one of many possibilities [122].

Kraichnan also commented on the fact that Kolmogorov 41’s theory has

proved to be valid even in cases where its hypotheses are not satisfied:

Kolmogorov’s 1941 theory has achieved an embarrassment of success. The -5/3
spectrum has been found not only where it reasonably could be expected, but also
at Reynolds numbers too small for a distinct inertial range to exist as in boundary
layers and shear flows where there are substantial departures from isotropy, and such
strong effects from the mean shearing motion that the stepwise cascade appealed to
by Kolmogorov is dubious [122].

For two-dimensional turbulence there is a statistical theory similar to

Kolmogorov’s theory which has been proposed by Kraichnan in 1967 [121]

and then developed by Batchelor in 1969 [15]. This theory takes into account,

in addition to the conservation of energy in the inertial range, the conserva-

tion of enstrophy (integral of vorticity squared), which is true only in dimen-

sion two. Making the same kind of hypotheses as Kolmogorov, they

predicted a direct enstrophy cascade, from large to small scales, giving a

k�3 energy spectrum, and an inverse energy cascade, from small to large

scales, giving a k�5=3 energy spectrum. The problem is that the energy spectra

obtained from numerical simulations are in most cases steeper than the pre-

dicted k�3. There is another more recent statistical theory proposed by

Polyakov [170] which takes into account, in addition to the energy conserva-

tion, the conservation of infinitely many moments of vorticity in two dimen-

sions, which led him to predict different scaling laws depending on the way

energy is injected; thus, Polyakov’s theory is not universal. In fact the same
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non-universal behaviour of forced two-dimensional turbulence is also

observed in numerical simulations [128].

Since the pioneering works of Onsager [163] and Joyce & Montgomery

[111], there are several statistical theories for decaying two-dimensional tur-

bulence [178], [152], [179], [54], [180], [67] which are not based on structure

functions nor Fourier representation. These theories, unlike those of

Kraichnan and Polyakov, do not discard the spatial flow structure. For a

recent review of these theories a good reference is [148]. Onsager’s theory

assumes that all vorticity is concentrated into a finite number of point vor-

tices and predicts that there exist negative temperature states; more precisely

it predicts that high energy states can be favoured compared to low energy

states, contrary to classical statistical physics. These negative temperature

states correspond to the clustering of same-sign vortices characteristic of

the inverse energy cascade of two-dimensional turbulence. But the extension

of Onsager’s approach to describe continuous vorticity fields, involving infi-

nite number of degrees of freedom and therefore infinite Liouville measure,

leads to a highly singular limit which has been overcome only recently using

large deviation probabilities and maximum entropy techniques. This new

theory, due independently to Robert [179], [180] and Miller [152], predicts

for decaying 2D turbulent flows (i.e. in the absence of external forces) final

stationary states characterized by a functional relation between coarse-

grained vorticity and streamfunction. This relation is called the coherence

function and it seems to be verified for strong mixing situations, such as two-

dimensional shear layers or vortex merging [187].

In the case of 3D forced homogeneous turbulent flows Chorin proposed a

new statistical theory [45], [46], which is a generalization to 3D of the 2D

vortex equilibrium theory initiated by Onsager [163]. The small-scale struc-

ture is described as a perturbation of an ensemble of vortices in thermal

equilibrium (by ‘equilibrium’ Chorin means ‘Gibbsian equilibrium’ and not

‘statistical steady state’). This theory recovers the Kolmogorov spectrum and

proposes an explanation for the origin of intermittency.

4.2.4 Coherent structures

Since the beginning of turbulence research there has been, alongside the

statistical approach based on ensemble averages, a tendency to analyse

each flow realization separately. This led to the recognition that turbulence

contains coherent structures, even at very large Reynolds numbers [110].

Examples of coherent structures include the vortices observed by Roshko

in 1961 at a Reynolds number of 107 [182], the horseshoe vortices observed
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in turbulent boundary layers and mixing layers [38], [181], and the vorticity

tubes (often called filaments) [49], [32] observed in statistically homogeneous

flows. Coherent structures are defined as local condensations of the vorticity

field which survive for times much longer than the eddy turnover time char-

acteristic of the turbulent fluctuations.

The vorticity field is easy to visualize in numerical experiments, but very

difficult to visualize in laboratory experiments; therefore, one usually

observes the pressure field instead. Indeed, if we take the divergence of equa-

tion (4.1) we obtain

2r2P=�þ s2 � !2
¼ 2r � F; ð4:8Þ

where s2 ¼ 1
2 ð@ivj þ @jviÞ is the rate of strain which controls dissipation. This

equation shows that vorticity concentrations, corresponding to coherent

structures, are sources of low pressure, while strained regions, corresponding

to dissipation, are sources of high pressure. Couder et al. [49], [32] recently

measured the probability distribution function (estimated through a histo-

gram) of pressure and showed that for the large negative pressures it is

exponential, while for the pressures around zero it is Gaussian. In other

words, the coherent structures, which are characterized by strong depres-

sions, are responsible for the non-Gaussian behaviour of turbulent flows,

which is consistent with observations made before by Van Atta and

Antonia [197] from measurements of the spatial gradients of velocity. This

has also been shown by Abry et al. [2], [3] using wavelet techniques to

separate the coherent structures from the background flow in a one-dimen-

sional cut of pressure signal.

The mere existence of finite (and quite small) number of coherent struc-

tures [203] may invalidate the ergodic hypothesis, which is an essential ingre-

dient of any statistical theory, necessary to replace ensemble averages by

space averages. Then, according to Taylor’s hypothesis, which requires that

fluctuating velocities should be much smaller than the mean velocity, space

averages can be replaced by time averages, which are easier to obtain in

laboratory experiments. As far as we know, almost all existing laboratory

results measuring the turbulence energy spectrum rely on Taylor’s hypoth-

esis. We are therefore sceptical of their validity when the coherent structures

produce rare but intense velocity fluctuations. In this case, even though the

the velocity fluctuations remain in average small compared to the mean

velocity, coherent structures produce bursts which exceed the mean value

and it is dubious that time and space averages can then be interchanged.

Concerning numerical experiments, we interpret the energy spectrum, and

its inertial range power-law form, as characteristic of the random processes
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responsible for turbulence. However in practice we analyse only one flow

realization because in most simulations the correlation length is of the

order of the size of the computational periodic domain. In this case a

power-law behaviour could be interpreted as indicating the presence of

some quasi-singular structures in the flow, and not as a proof of its random

dynamics. This new point of view led Saffman [183] to interpret the energy

power-law behaviour as resulting from the presence of vorticity fronts. Later

Farge and Holschneider [76] proposed another interpretation based on the

emergence of cusp-like coherent structures. In the limit of an infinite

Reynolds number, these vorticity cusps will tend to point vortices, which

correspond to the limit case of negative temperature states [34]. The wavelet

transform, because it measures the local scaling of a field, is the appropriate

tool for verifying these different interpretations in relating the power-law

scaling of the energy spectrum to the shape of possible singularities.

Today we still do not have a complete theory to explain the formation and

persistence of coherent structures, and we shall have to content ourselves

with a qualitative description of their behaviour. This is more evidence

that we may still be in a pre-scientific phase, having as yet only a limited

grasp of the nature of turbulence. The new point of view is to consider that

coherent structures are generic to turbulent flows, even at very high Reynolds

numbers, and that they probably play an essential role in their intermittency.

Indeed, several wind tunnel experiments [17], [5] have shown that the energy

associated with the smallest scales of turbulent flows is not distributed den-

sely in space and time. This has led various authors to conjecture that the

support of the set on which dissipation occurs should be fractal [147], [92], or

multifractal [164]. It is now thought, but not proven, that the time and space

intermittency of turbulent flows is related to the presence of coherent struc-

tures [75]. This is still an open question and wavelet analysis seems to be one

of the appropriate techniques to answer it.

The classical theory of turbulence is blind to the presence of coherent

structures because their spatial support is small in the inertial range.

Therefore low-order statistical moments are insensitive to them and charac-

terize only the background flow whose spatial support is on the contrary

dense in the inertial range. Moreover, in three-dimensional flows coherent

structures (vorticity tubes often called filaments) are highly unstable [49] and

therefore their temporal support is also small. Consequently, the presence of

coherent structures only affects the high-order statistical moments of the

velocity increments which are more sensitive to rare and extreme events

(large deviations). The high-order structure functions have been measured

only recently [5], because their calculation requires very long data sequences.
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They do not follow Kolmogorov’s theory which predicts a linear dependence

of the scaling exponent of the velocity structure functions on their order. Van

der Water [199] has observed that there are in fact two distinct nonlinear

dependencies for odd and for even orders, which may be interpreted in terms

of the multi-spiral model of Vassilicos [198].

It is important to provide statistical predictions based on coherent structure

models. It has been shown by Min, Mezic and Leonard [153] that a system of

singular vortex elements in two dimensions and three dimensions possesses

statistics that deviate from Gaussian and that the probability density func-

tions (PDFs) of velocity derivatives are non-Gaussian with a Cauchy distribu-

tion. The experimental evidence of similar findings is contained in the work of

Goldburg and collaborators [193] in which the Cauchy distribution, predicted

in [153] as a consequence of 1=r velocity decay of a singular vortex, is seen for

the region of small velocity differences. The results of [153] also indicate that

the tails of PDFs are determined by the structure of vortex cores.

In conclusion, we have shown [83] that the presence of coherent structures is

responsible for the non-Gaussian statistics of fully developed turbulent flows

in two dimensions, and we conjecture that this will still be valid in three

dimensions. Due to the sensitivity to initial conditions of turbulent flows,

any theory of turbulence should be statistical. But, before being able to con-

struct a new statistical theory of turbulence, we need to find new types of

averages able to preserve the information associated with coherent structures

and therefore take into account the intermittency of turbulent flows. Wavelets

can play a role there in separating the coherent (non-Gaussian) components

from the incoherent (Gaussian) components of turbulent flows, in order to

devise new conditional averages to replace the classical ensemble averages.

This method will lead to new turbulence models based on the fact that the

coherent components, namely the vortices, are out of statistical equilibrium,

while on the contrary we can define a Gaussian equilibrium state for the

incoherent components which correspond to the well-mixed background

flow. Therefore this method to compute turbulent flows combines a determi-

nistic approach, to solve the dynamical system describing the vortex motions,

and a statistical approach, to model the effect of the background flow.

4.3 Fractals and singularities

4.3.1 Introduction

According to Kolmogorov’s K41 model, turbulence in the inertial range has

a power law energy spectrum (4.5), and thus does not have a characteristic
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length scale. Therefore turbulence in this range of length scales looks similar

at any magnification and can be described as self-similar. According to

experimental observations, however, turbulence is also characterized by

quasi-singular structures such as vortices and is intermittent (quantities

such as energy dissipation vary greatly in time and space). A quasi-singular

structure is one that appears singular until the dissipation scale at which the

smoothing effect of viscosity becomes important. In fact the theoretical k�
5
3

inertial range energy spectrum predicted by Kolmogorov’s theory implies

that some sort of quasi-singular distribution of velocity and vorticity must

be present in turbulent flows [106], [154], [101]. This quasi-singular distribu-

tion could be the result of a set of quasi-singular structures (e.g. vortices), or

due to a particular statistical distribution of structures (independently of their

smoothness). One of the difficulties in turbulent flow analysis is how to

disentangle these different contributions from the overall statistics.

It remains an open question whether this quasi-singular behaviour is due

to the randomness of turbulent motions resulting from their chaotic

dynamics or to the presence of localized quasi-singular structures resulting

from an internal organization of the turbulent motions. Kolmogorov’s the-

ory is based on ensemble averages, but in using them we are unable to

disentangle these two hypotheses. Ensemble averages should be replaced by

an analysis of turbulence for each realization and be based on the local

measurements and statistics of singularities for which we need effective

ways of detecting and characterizing quasi-singularities in turbulent signals.

The types of possible singularities in the turbulent velocity or vorticity may

be divided into two classes: cusps (i.e. non-oscillating singularities in which

the function or one of its derivatives approaches infinity at a certain point,

e.g. 1=x) and spirals (i.e. oscillating singularities in which the frequency of

oscillation approaches infinity at a certain point, e.g. sinð1=xÞ). Figure 4.6

shows an example of a two-dimensional flow containing both cusps and a

spiral (a cut through the spiral is an oscillating singularity over a certain

range of length scales.) Likewise the distribution of singularities in turbulence

may also be divided into two classes: isolated (singularities at a finite number

of points) and dense (singularities at an infinite number of points in a finite

area). Dense distributions of singularities are called fractals and are charac-

terized by one (monofractal) or more (multifractal) fractal dimensions char-

acterizing their scaling properties. Figure 4.1a shows a typical fractal signal.

Note that fractals may contain both cusp and spiral type singularities.

Turbulence might contain both fractal and isolated distributions of singula-

rities, and spiral and cusp types of singularities. Figure 4.1b shows a spiral
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type singularity with fractal noise superimposed; both the noise and the spiral

have the same energy spectrum scaling in k�
5
3.

This section is concerned with wavelet-based techniques for calculating

quantities such as energy spectra, structure functions, singularity spectra

and fractal dimensions. These subjects are connected by the fact that they

all measure the local regularity of the signal (i.e. the strength of singularities

in the signal). For example, the slope of the usual Fourier energy spectrum of

a signal containing only isolated cusp singularities is determined by the

strongest singularity [211]. The advantage of the wavelet transform is that

it is able to analyse locally the singular behaviour of a signal. One can then

use this local information to construct statistics describing the distribution

and type of singularities (e.g. multifractals), and define local or conditionally
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energy spectrum EðkÞ / k�

5
3. (b) A spiral with fractal noise (both noise and spiral

have the same energy spectrum EðkÞ / k�
5
3).



averaged versions of traditional diagnostics such as the energy spectrum and

structure functions. We are primarily concerned with cusp type singularities

(either isolated or dense), although we also discuss methods for distinguish-

ing between signals containing isolated spirals and dense fractal signals.

In subsection 4.3.2 we review the mathematical results on one of the key

properties of wavelet transforms: their ability to detect and characterize

singular structures. We then describe three related applications which rely

on this property: calculation of local energy spectra, structure functions

(subsection 4.3.3) and the singularity spectra which characterize multifractals

(subsection 4.3.5). These wavelet methods generally require the assumption

that the singularities of the signal are isolated. Because isolated spirals are

likely to be present in turbulence (see on Figure 4.6 the production of spiral-

ing vorticity filaments by vortex merging) it is essential to have a method of

determining which sort of singularity a signal contains. In subsection 4.3.6 we

review a different wavelet-based method for distinguishing between signals

containing isolated spirals and purely fractal signals (the two types of signal

most likely to be observed in a turbulent flow). Each section gives a practical

review of the method and briefly summarizes some results that have been

obtained for turbulence data. Formulating these techniques in terms of wave-

let transforms brings out the connections between them as well as providing

new information, and this point is emphasized throughout this section.

4.3.2 Detection and characterization of singularities

The most useful property of the wavelet transform is its ability to detect and

accurately measure the strength (given by the Hölder exponent) of individual

singularities in a signal. We will first give a definition of the Hölder exponent.

A function f ðxÞ, such that

f : IR! IR ð4:8Þ

is said to belong to the Hölder space C� for � a positive non-integer if there

exists a constant C such that, for each x0, there exists a polynomial P of order

less than � such that

jf ðxÞ � Pðx� x0Þj � Cjx� x0j
�: ð4:9Þ

f is said to have the Hölder exponent �ðx0Þ at point x0 if

�ðx0Þ ¼ supf� > 0=f 2 C�
ðx0Þg. The exponent �ðx0Þ therefore measures the

smoothness of the function f ðxÞ near x0: the larger �ðx0Þ is, the smoother

or more regular the function f ðxÞ is near x0, while the smaller �ðx0Þ is, the

rougher or more singular the function is. If the Hölder exponent is less than
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one, there is an actual singularity of the function at x0 (or a quasi-singular

behaviour near x0 over a certain range of length scales if one is measuring a

physical quantity like vorticity or velocity).

It is important to note that equation (4.9) does not hold for oscillating

singularities because in this case the Hölder exponent increases by more than

one when the function is integrated. This anomalous behaviour is due to the

fact that there are an infinite number of accumulating oscillations in the

neighbourhood of such a singularity.

Consider the L1 norm wavelet transform (which conserves the L1 norm of

a function)

~ff1ðx; rÞ ¼
1

r

Z 1
�1

f ðx0Þ 
x0 � x

r

� �
dx0: ð4:10Þ

The wavelet transform is thus a two-dimensional function in position x and

scale r > 0. Mallat and Hwang [146] have shown that singularities in f ðxÞ

produce a maximum in the modulus of the wavelet transform j ~ff1ðx; rÞj and

that following the position of a wavelet modulus maximum as r! 0 gives the

position x0 of the singularity. Furthermore, each singularity has an asso-

ciated ‘influence cone’ defined by

jx� x0j � Cr; ð4:11Þ

and, if the singularity is an isolated cusp, then the wavelet transform modulus

for all points within the influence cone is

j ~ff1ðx; rÞj � Ar�ðx0Þ; ð4:12Þ

provided that at least the first n > �ðx0Þ moments of the analysing wavelet

 ðxÞ vanish, where the nth moment is defined by the integralZ þ1
�1

xn ðxÞdx: ð4:13Þ

Equation (4.12) shows that the Hölder regularity �ðx0Þ can be found from the

slope of the graph of log j ~ff1ðx; rÞj versus log r at a position x satisfying

inequality (4.11). When several singularities are present only the non-over-

lapping parts of the cones associated with each singularity satisfy (4.12).

Intuitively, it is the self-similar scaling property of the wavelet which allows

the wavelet transform to measure the rate of self-similar narrowing with

decreasing scale, characterizing the strength of a cusp singularity.

If the singularity is not isolated and there is only one zero-crossing of the

wavelet transform near x0, one can find the regularity in the left and right

neighbourhoods of x0 by measuring the decay of the wavelet coefficient
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modulus along maxima lines of the wavelet transform to the left and right of

the influence cone of x0.

In practice, such graphs of log j ~ff1ðx; rÞj versus log r contain oscillations

superimposed on the power-law behaviour which can make it difficult to

determine the slope at larger scales. Vergassola and Frisch [200] showed

that these oscillations are necessarily present for any self-similar random

process whether or not the signal is multifractal (the lacunarity of multi-

fractal signals should also produce oscillations). These oscillations can be

reduced by finding the average decay of the wavelet coefficient modulus

along many lines in the influence cone, or by averaging the decay along

vertical lines at many different points (e.g. one may be interested in the

conditionally averaged scaling of points in regions of irrotational straining,

see Figure 4.2). Arnéodo, Bacry and Muzy [6] have suggested that the devia-

tions from a strict power-law may be reduced by measuring the decay of the

modulus of the wavelet transform along the line of maximum modulus within

the influence cone.

The analysis of signals containing spiral singularities, either isolated (e.g.

sinð1=jx� x0j)) or fractal (e.g. the Riemann–Weierstrass function), is more

complicated because the worst singular behaviour of a spiral singularity

appears outside the cone of influence. In this case one measures the decay

as r! 0 of the modulus of the wavelet transform along the set of points

which are general maxima outside the cone of influence (i.e. maxima in both

the position and scale directions). This gives an upper bound on the Hölder

exponent, but in general one has to use lines of maximum modulus both

inside and outside the cone of influence to fully determine the singular beha-

viour of an oscillating singularity.

Arnéodo, Bacry and Muzy [7] have recently carried out work defining two

wavelet-based exponents that measure the strength of an oscillating singu-

larity. They find that the faster the frequency increases, the more irregular its

derivative. In general, oscillating behaviour appears in fractal objects that are

self-similar under non-hyperbolic mappings, e.g. the Riemann–Weierstrass

function or the Farey-tree partitioning of rationals.

4.3.3 Energy spectra

The Fourier energy spectrum has been one of the most popular techniques

for turbulence analysis, indeed traditional turbulence theory was constructed

in Fourier space [16]. The energy spectrum EðkÞ of a one-dimensional func-

tion f ðxÞ is the Fourier transform of its two-point correlation, which is equal

(Wiener–Khinchin’s theorem) to
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EðkÞ ¼
1

2�
jf̂f ðkÞj2 for k � 0 ð4:14Þ

where ð�̂�Þ signifies Fourier transform. Note that when analysing turbulence

velocity signals one should ensemble average the energy spectra from many

realizations. In practice, one assumes ergodicity and averages only one flow

realization split into many pieces whose lengths are larger than the integral

scale (which is the largest correlated scale in a turbulent signal). In traditional

turbulence theory only the modulus of the Fourier transform is used (e.g. the

energy spectrum) and thus the phase information is lost. This is probably a

major weakness of the traditional way of analysing turbulence since it

neglects any spatial organization of the turbulent velocity field.

The wavelet transform extends the concept of energy spectrum so that one

can define a local energy spectrum ~EEðx; kÞ using the L2 norm wavelet trans-

form (which conserves the L2 norm of a function) rather than the L1 norm

used in subsection 4.3.2 (i.e. the wavelet transform is normalized by 1=r
1
2

rather than by 1=r and the resulting function is designated by ~ff instead of ~ff1)

~EEðx; kÞ ¼
1

2c k0
~ff x;

k0
k

� ����� ����2 for k � 0 ð4:15Þ

where k0 is the peak wavenumber of the analysing wavelet  and

c ¼

Z þ1
0

j ̂ ðkÞj2

k2
d2k: ð4:16Þ

By measuring ~EEðx; kÞ at different places in a turbulent flow one might

estimate what parts of the flow contribute most to the overall Fourier

energy spectrum and how the energy spectrum depends on local flow con-

ditions. For example, one can determine the type of energy spectrum con-

tributed by coherent structures, such as isolated vortices, and the type of

energy spectrum contributed by the unorganized part of the flow called

background flow.

Since the wavelet transform analyses the flow into wavelets rather than sine

waves it is possible that the mean wavelet energy spectrum may not always

have the same slope as the Fourier energy spectrum. Perrier, Philipovitch and

Basdevant [166] have shown, however, that the mean wavelet spectrum ~EEðkÞ

~EEðkÞ ¼

Z þ1
0

~EEðx; kÞ dx ð4:17Þ

gives the correct Fourier exponent for a power-law Fourier energy spectrum

EðkÞ / k�� provided that the analysing wavelet has at least n > ð�� 1Þ=2
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vanishing moments. This condition is obviously the same as that for detecting

singularities derived in the previous section since � ¼ 1þ 2� for isolated

cusps. Thus, the steeper the energy spectrum the more vanishing moments

of the wavelet we need. The inertial range in turbulence has a power-law

form. The ability to correctly characterize power-law energy spectra is there-

fore a very important property of the wavelet transform (which is of course

related to its ability to detect and characterize singularities).

Note that if the singularities are all isolated then the exponent of the

Fourier energy spectrum is determined by the strongest singularity � of the

signal [211]

EðkÞ ¼ Ck�2ð�þ1Þ; ð4:18Þ

where C is a constant. If the singularities are spirals and/or are not isolated

then the strongest singularity sets a lower bound on the exponent of the

energy spectrum [211]

EðkÞ � Ck�2�: ð4:19Þ

The way the dense singularities accumulate can make the signal effectively

more singular, decreasing the magnitude of the exponent of the energy spec-

trum by up to 2. Because they are both controlled in the same way by

singularities, the wavelet energy spectrum can be thought of as a sort of

local Fourier transform.

The mean wavelet energy spectrum ~EEðkÞ is a smoothed version of the

Fourier energy spectrum EðkÞ. This can be seen from the following relation

between the two spectra

~EEðkÞ ¼
1

2c k0

Z þ1
0

Eðk0Þ  ̂ 
k0k
0

k

� ����� ����2 dk0 ð4:20Þ

which shows that the mean wavelet spectrum is an average of the Fourier

spectrum weighted by the square of the Fourier transform of the analysing

wavelet shifted at wavenumber k. Note that the larger k is, the larger the

averaging interval, because wavelets are passband filters at �k
k
constant. This

property of the mean wavelet energy spectrum is particularly useful for

turbulent flows. The Fourier energy spectrum of a single realization of a

turbulent flow is too spiky to be useful, but one can measure a well-defined

slope from the mean wavelet energy spectrum.

The Mexican hat wavelet

 ̂ ðkÞ ¼ k2 expð�k2=2Þ ð4:21Þ
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has only two vanishing moments and thus can correctly measure energy

spectrum exponents up to � < 5. Only the zeroth order moment of the

Morlet wavelet

 ̂ ðkÞ ¼
1

2�
expð�ðk� k Þ

2=2Þ for k > 0

 ̂ ðkÞ ¼ 0 for k � 0 ð4:22Þ

is zero, but the higher nth order moments are very small (/ kn expð�k
2
 =2Þ)

provided that k is sufficiently large. Therefore the Morlet wavelet transform

should give accurate estimates of the power-law exponent of the energy

spectrum at least for approximately � < 7 (if k ¼ 6).

Perrier, Philipovitch and Basdevant [166] present a family of new wavelets

with an infinite number of cancellations

�̂�nðkÞ ¼ �n exp �
1

2
k2 þ

1

k2n

� �� �
; n � 1; ð4:23Þ

where �n is chosen for normalization. The wavelets defined in (4.23) can

therefore correctly measure any power-law energy spectrum. Furthermore,

these wavelets can detect the difference between a power-law energy spectrum

and a Gaussian energy spectrum (EðkÞ / expð�ðk=k0Þ
2
Þ). It is important to be

able to determine at what wavenumber the power-law energy spectrum

becomes exponential since this wavenumber defines the end of the inertial

range of turbulence and the beginning of the dissipative range.

The first measurements of local energy spectra in three-dimensional turbu-

lence were reported by Farge et al. [75] and Meneveau [150]. Meneveau used

the discrete wavelet transform to measure local energy spectra in experimen-

tal and Direct Numerical Simulation (DNS) flows and found that the stan-

dard deviation of the local energy (a measure of the spatial fluctuation of

energy) was approximately 100% throughout the inertial range. Meneveau

also calculated the spatial fluctuation of TðkÞ which measures the transfer of

energy from all wavenumbers to wavenumber k. On average TðkÞ is negative

for the large scales and positive for the small scales, indicating that in three-

dimensional turbulence energy is transferred from the large scales to the

small scales where it is dissipated (in agreement with Kolmogorov’s [117],

[118], [119] model of turbulence). Meneveau found, however, that at many

places in the flow the energy cascade actually operates in the opposite direc-

tion, from small to large scales, indicating a local inverse energy cascade (also

called back-scattering). This local spectral information, which links the phy-

sical and Fourier space views of turbulence, can only be obtained using the

wavelet transform but not with the Fourier transform.
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4.3.4 Structure functions

Another fundamental quantity in the classical theory of turbulence [117] is

the pth order structure function SpðrÞ

SpðrÞ ¼
1

L

Z L

0

j f ðxÞ � f ðxþ rÞjp dx; ð4:24Þ

where L� r is the length of the signal, and L must be long enough so that

SpðrÞ does not change if L is increased (and thus the increments of f should be

stationary in x). The velocity signal of a turbulent flow varies in both space

and time and between different realizations of the flow. Thus the integral in

(4.24) should, in general, be replaced by a suitably defined ensemble average

in order to calculate the structure function of turbulent velocities. To justify

the use of space or time averages instead of ensemble averages (over different

realizations of the flow), one supposes that the turbulent flow motions are

ergodic, which is an unvalidated hypothesis and is probably wrong for two-

dimensional turbulence [203]. If the energy spectrum exponent � is in the

range 1 < � < 3 (as is usually the case for the inertial range of turbulence) the

velocity increments are a stationary function even though the velocities them-

selves are not [51]; this is a good reason to work with velocity increments

rather than the velocities themselves since stationarity is necessary in order to

justify estimating a quantity by averaging. The larger p the more SpðrÞ is

dominated by extreme events. Thus the pth order structure function charac-

terizes more and more extreme events as p increases.

If f ðxÞ is self-similar then, just as in the case of the energy spectrum, the

structure functions will have a power-law dependence on the scale r

SpðrÞ ¼ r	ðpÞ: ð4:25Þ

The first order structure function 	ð1Þ provides a measure of the smoothness

of f ðxÞ, and in fact 	ð1Þ is related to the box dimension DF of the graph of

f ðxÞ

DF ¼ 2� 	ð1Þ ð4:26Þ

where DF measures the space-fillingness of f ðxÞ. The second order structure

function is related to the energy spectrum by

� ¼ 	ð2Þ þ 1: ð4:27Þ

The Kolmogorov theory [117] showed that the inertial range of turbulence

has � ¼ 5=3, or equivalently that

	ðpÞ ¼ p=3; ð4:28Þ
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however experiments [5] have shown that the structure function exponents

increase more slowly than linearly with p for p > 5, contradicting

Kolmogorov’s 1941 theory. The cause of this difference is generally thought

to be the fact that the energy dissipation "ðxÞ ¼ ðduðxÞ=dxÞ2 is intermittent in

space, i.e. it varies greatly from place to place.

The velocity increment �f ðx; rÞ ¼ jf ðxÞ � f ðxþ rÞj is equivalent to a wave-

let transform with DOD (difference of Diracs) wavelet  �ðxÞ ¼ 
ðxþ 1Þ

�
ðxÞ. In fact Jaffard [107] has shown that the exponent �ðpÞ defined by

~SSpðrÞ ¼
1

L

Z L

0

j ~ff ðx; rÞjp dx � r�ðpÞ ð4:29Þ

is the same as 	ðpÞ provided p > 1 and 	ðpÞ < p, no matter what wavelet is

used. The wavelet-based method of calculating the structure functions unifies

the analysis of structure functions with the calculation of energy spectra and

the strength of local singularities. If one uses a wavelet with a sufficient

number of vanishing moments, then the wavelet-based structure function
~SSpðrÞ should also be more sensitive to larger � singularities since the equiva-

lent wavelet for the structure function, which is the Haar wavelet  �ðxÞ, has

only one vanishing moment. By changing from an integral to a sum over

wavelet maxima we circumvent the divergence of the integral for negative p

and thus one can extend the definition of structure functions to include

negative ps (as in Arnéodo, Bacry and Muzy’s [6] Wavelet Transform

Modulus Maximum method discussed in the following section).

The wavelet-based version of the structure function allows us to see

directly how the structure function is determined by the singular behaviour

of f ðxÞ. From equation (4.12) the wavelet transform modulus is proportional

to r�ðx0Þ and thus, since r� L, the stronger singularities contribute most to

the higher order structure functions and least to the lower order structure

functions. In other words, the value of 	ðpÞ is determined mostly by the

stronger singularities for large ps and mostly by the weaker singularities

for small ps.

Davis, Marshak and Wiscombe [51] point out that the ‘dissipation’ of a

discrete function fj, "j ¼ jfj � fj�1j, is in fact a measure. Because "j is a mea-

sure, the generalized dimension DðpÞ of f ðxÞ can be calculated from the

exponent KðpÞ of the structure function of "ðxÞ,

DðpÞ ¼ 1�
KðpÞ

p� 1
: ð4:30Þ

The generalized dimension DðpÞ is the dimension of the set containing the

singularities that contribute most to the pth order structure function. Because
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"ðxÞ is a homogeneous variable (for 1 < � < 3) we have 0 < �"ðx0Þ < 1 and

thus �1=2 < �ðx0Þ < 0. Because �ðx0Þ < 0 the dissipation contains actual

singular behaviour (the dissipation tends to infinity).

In general terms the exponents 	ðpÞ characterize the homogeneity of the

field, while the exponents KðpÞ characterize the singularity of the field. One

can learn a great deal about the behaviour of a signal from the variability of

	ðpÞ and KðpÞ and from the value of the first structure function exponents 	ð1Þ

and Kð1Þ. This information is summarized in Table 4.1.

Davis, Marshak and Wiscombe [51] introduced the ‘mean multifractal

plane’ defined as the plane with coordinates given by the most informative

exponents 0 < 	ð1Þ ¼ 2�DF < 1 and 0 < dK
dp
ð1Þ ¼ 1�Dð1Þ < 1 (where DF

is the fractal dimension and Dð1Þ is by definition the information dimen-

sion). The position of a particular flow or model on the mean multifractal

plane is a good indicator of its self-similar characteristics. The higher the

flow’s dK
dp
ð1Þ component the more intermittent and multifractal it is, and the

higher the flow’s 	ð1Þ component, the smoother and less stationary it is.

Experimental turbulent velocity fields lie in the centre of the mean multi-

fractal plane. Turbulence models, however, tend to lie along the boundaries

of the multifractal plane: purely multiplicative cascade models (such as


-functions) lie on the dK
dp
ð1Þ axis and purely additive models (such as

fractional Brownian motion) lie on the 	ð1Þ axis! This clearly indicates

that the current turbulence models do not represent correctly the self-

similar structure of turbulent flows.

4.3.5 The singularity spectrum for multifractals

In order to characterize a multifractal function it is necessary to calculate its

singularity spectrum. The singularity spectrum Dð�Þ may be defined as the

Hausdorff (or ‘fractal’) dimension of the set of points with Hölder exponent

� :

Dð�Þ ¼ DF fx; �ðxÞ ¼ �g: ð4:31Þ

Note that this definition is equally valid for multifractal functions and mea-

sures. The singularity spectrum of a monofractal has only one point, e.g. the

singularity spectrum of the fractional Brownian signal B1=3ðxÞ which has a

k�
5
3 energy spectrum is Dð� ¼ 1=3Þ ¼ 1 (the function B1=3ðxÞ is singular every-

where with � ¼ 1=3), while the singularity spectrum of a multifractal is a

curve.

Parisi and Frisch [164] found a way of estimating the singularity spectrum

from the Legendre transform of the structure function exponents 	ðpÞ
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Dð�Þ ¼ inf
p
ðp�� 	ðpÞ þ 1Þ ð4:32Þ

where, as explained in subsection 4.3.4, 	ðpÞ may be calculated using the

wavelet transform.

Equation (4.32) can be derived heuristically by noticing that near a singu-

larity of order �

j ~ff ðx; rÞj � r�; ð4:33Þ

where we have used equation (4.12) and have written � ¼ �ðx0Þ for simplicity.

Now, if the dimension of the points with singularity � is Dð�Þ then there are

about r�Dð�Þ ‘boxes’ (in this case wavelets) with the scaling (4.33) in each

interval r, so that the total contribution to the integral (4.29) is r�p�Dð�Þþ1.

To leading order the magnitude of the integral is given by the largest con-

tribution so that

	ðpÞ ¼ inf
�
ð�p�Dð�Þ þ 1Þ: ð4:34Þ

Since 	ðpÞ is concave, formula (4.32) can be obtained by an inverse Legendre

transform.

However, Jaffard [107] proved mathematically that structure function cal-

culations of the singularity spectrum can, in general, only set an upper bound

on Dð�Þ and he gave some counterexamples where such calculations give

completely misleading answers.

Arnéodo, Bacry and Muzy [6] have developed a method for calculating the

singularity spectrum called the Wavelet Transform Modulus Maximum

(WTMM) method. This method is closely related to the calculation of struc-
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Table 4.1. Properties of a signal from the behaviour of the

exponents of its structure function 	ðpÞ and the structure

function of the modulus of its derivative KðpÞ

Value of structure function Type of signal

	ð1Þ ¼ 0 stationary, DF ¼ 2

	ð1Þ ¼ 1 noiseless, DF ¼ 1
dK
dp ð1Þ ¼ 0 weak variability
dK
dp
ð1Þ ¼ 1 
-function

	ðpÞ variable non-stationary multifractal

	ðpÞ constant non-stationary monofractal

KðpÞ variable stationary multifractal

KðpÞ constant stationary monofractal



ture functions by wavelet transforms except that, instead of integrating (or

summing in case of discretely defined functions) the wavelet transform over

all positions, one only sums the wavelet transforms located at maxima, i.e.

~��pðrÞ ¼
X
l2LðrÞ

sup
ðx;r0Þ
j ~ff ðx; r0Þjp

 !
; ð4:35Þ

where l is a maxima line of the wavelet transform modulus on ½0; r	 and

supðx;r0Þ means that the supremum is taken for ðx; r0Þ on l (so that r0 � r).

The wavelets are in fact playing the role of ‘generalized boxes’ in a new form

of the standard box-counting algorithm used to estimate fractal dimensions

Dð�Þ. Summing only over the wavelet modulus maxima makes sense since, as

Mallat and Hwang [146] showed, most of the information in the wavelet

transform is carried by the wavelet maxima lines. Furthermore, because

one does not sum over places where the wavelet modulus is zero, ~��pðrÞ is

also defined for p < 0 as well as for p � 0. Note that the structure function

methods are defined only for p � 0.

Arnéodo, Bacry and Muzy draw the analogy with statistical thermody-

namics and interpret ~��pðrÞ as a ‘partition function’ (see Table 4.2).

If f ðxÞ is a self-similar function then ~��pðrÞ / r�ðpÞ and the singularity spec-

trum can be found by calculating the Legendre transform

Dð�Þ ¼ inf
p
ðp�� �ðpÞÞ: ð4:36Þ

To avoid technical problems associated with calculating the Legendre trans-

form in (4.36) Arnéodo, Muzy and Bacry [6] recommend an alternative way

of finding Dð�Þ (see their paper for details).

Jaffard [107] proved mathematically that the WTMM method, unlike the

structure function methods, gives the correct singularity spectrum for all p

provided it is slightly modified. Indeed a problem might arise if the wavelet

modulus maxima are too close together; in that case the sum in an interval of

width r must be restricted to the largest maxima. Jaffard also showed that

even the modified WTMM method fails if the function f ðxÞ contains too

many oscillating singularities.

Arnéodo, Bacry and Muzy [6] found the relation between �ðpÞ and 	ðpÞ

from their respective definitions in terms of Dð�Þ, but given the limitations of

equation (4.32), it is perhaps better (and more intuitive) to find the connec-

tion directly through the structure functions. In terms of discrete signals, the

wavelet transform-based calculation of the structure function (4.29) becomes
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~SSpðrÞ ¼
1

N

X
j¼1;N

j ~ff ðxj; rÞj
p: ð4:37Þ

Each cone of influence of width r must contain only maxima lines with the

same scaling (since the scaling r�ðx0Þ is the same for all points within the

influence cone of point x0) and if the function is everywhere singular all

intervals of size r must contain at least one maxima line. If one follows

Jaffard’s [107] refinement to WTMM, and only counts one maximum for

each interval of length r, then the number of terms in the sum must be

proportional to N=r. Therefore, if the wavelet moduli are only summed

over their maxima the structure function becomes

~SSpðrÞ ¼
1

N=r

X
l2LðrÞ

sup
ðxj;r

0Þ

j ~ff ðxj; r
0
Þj
p

 !
¼

1

N=r
~��pðrÞ: ð4:38Þ

We thus find that the relation between the structure function exponents 	ðpÞ

and the WTMM ‘free energy’ exponents �ðpÞ is

	ðpÞ ¼ �ðpÞ þ 1: ð4:39Þ

Note that equation (4.39) only holds if the function f ðxÞ has singularities

everywhere and WTMM is modified by only counting one wavelet modulus

maximum for each interval of length r.

Arnéodo, Bacry & Muzy [6] applied the WTMM method to single point

high Reynolds number (the Taylor scale based Reynolds number is

R
 ¼ 2720) velocity data obtained by Gagne [99] from the wind tunnel of

ONERA at Modane. The self-similar inertial range follows the Kolmogorov

EðkÞ � k�
5
3 law for almost three decades. The WTMM analysis was carried

146 M. Farge, N.K.-R. Kevlahan, V. Perrier and K. Schneider

Table 4.2. Analogies between statistical thermodynamics

and the Wavelet Transform Modulus Maximum method

for multifractals

Thermodynamic parameter Multifractal parameter

Temperature p�1

Partition function ~��pðrÞ

Free energy �ðpÞ
Entropy Dð�Þ



out for this inertial range of scales on a section of data 100 integral (energy

containing) scales long.

The histogram of singularities �ðx0Þ in the turbulence data was found to be

quite wide and centred about the Kolmogorov value � ¼ 1=3. Surprisingly, at

some places in the flow � is negative which implies actual singular behaviour

(velocity tending towards infinity). These negative � values may be spurious

or may indicate the (rare) presence of strong vortices. The function �ðpÞ is

convex which suggests that the regularity of the flow varies greatly from place

to place. The singularity spectrum is peaked at the Kolmogorov value

�maxðp ¼ 0Þ ¼ 0:335
 0:005 with Dð�maxÞ ¼ 1:000
 0:001. This result indi-

cates that the signal is fractal everywhere because the fractal support of

Dð�maxÞ is equal to its topological dimension (i.e. the dimension of the signal,

which is 1).

4.3.6 Distinguishing between signals made up of isolated and dense

singularities

Although the inertial range of turbulence has a self-similar structure, not all

self-similar functions are fractal; in fact some of the most physically plausible

turbulence structures, the spiral vortices, can generate self-similar oscillating

singularities with a non-trivial box-counting dimension (a technique to esti-

mate the Hausdorff or fractal dimension). The conclusion drawn by

Arnéodo, Bacry and Muzy [6] that turbulence is everywhere singular with

a multifractal structure may be invalid if the turbulent velocity signal they

analysed contains oscillating singularities. Because the WTMM method is

only valid for signals that contain dense distributions of cusp type singula-

rities, one should first try to determine whether a signal has isolated oscillat-

ing singularities before attempting to use the WTMM method.

Unfortunately, the difference between signals containing singularities every-

where (‘fractals’) and signals containing a large number of isolated oscillating

singularities (isolated ‘spirals’ in multi-dimensions or isolated ‘chirps’ in one

dimension, see Figure 4.1) is not obvious: both signals can have non-trivial

box-counting dimensions.

Kevlahan and Vassilicos [115] developed two methods for distinguishing

between isolated spiral and fractal signals based on the wavelet transform.

In fact their method only distinguishes between isolated and dense singula-

rities, however isolated cusp singularities have a trivial box-counting dimen-

sion and thus can be distinguished from fractal signals on the basis of box-

counting dimension alone. The first method takes advantage of the fact that

the singularities in a fractal are dense (there are singularities at an infinite
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number of points, see Figure 4.1), whereas the singularities in an isolated

spiral signal are isolated (the signal contains oscillating singularities only at

the centres of spirals). If one averages the wavelet transforms of many reali-

zations, or different data segments (separated by more than one integral scale

L in order to be decorrelated) together, one can prove that the average

wavelet transform modulus j ~ff ðx; rÞj
D E

decays differently for the two types

of singularity

as j ~ff ðx; rÞj
D E

/ N�1=2j ~ff ðx0; rÞj for fractal signals; ð4:40Þ

but

as j ~ff ðx; rÞj
D E

/ j ~ff ðx0; rÞj; r < L=N for spiral signals; ð4:41Þ

where N is the number of realizations or of decorrelated segments averaged

together and L is the length of each segment. Thus, the average wavelet

transform of the random phase fractal signal is N�1=2 times a single realiza-

tion, while that of the spiral signal does not depend, below a certain scale, on

the number of realizations. The difference in the behaviour of j ~ff ðx; rÞj
D E

is

striking, and provides a diagnostic for determining whether a signal contains

spiral-type singularities or not. This method was applied to the Gagne [99]

turbulence data. The results were inconclusive, perhaps due to insufficient

resolution near expected spiral scales or rarity of spiral vortices passing near

the pointwise velocity probe.

The second method for distinguishing between isolated spiral and fractal

singularities derives from the observation that the spatial fluctuation of wave-

let energy ~EEðx; kÞ (measured by the standard deviation ~��ðkÞ of ~EEðx; kÞ) is

independent of wavenumber for a random phase fractal signal, but increases

with wavenumber for a spiral signal with the same energy spectrum. Analysis

of the turbulent signal shows that ~��ðkÞ increases with wavenumber (although

at a slower rate than for the purely spiral test signal), indicating that turbu-

lence probably contains some sort of isolated oscillating singularities. This

conclusion should be borne in mind when interpreting the results of multi-

fractal analyses of turbulence.

4.4 Turbulence analysis

4.4.1 New diagnostics using wavelets

It is impossible to define a local Fourier spectrum, because Fourier modes are

non-local, but it is possible to define a local wavelet spectrum, since wavelets
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are localized functions. Actually, due to the inherent limitation of the uncer-

tainty principle stating that there is a duality between spectral and spatial

selectivity, we should be aware that the spectral accuracy will be poor in the

small scales and that the spatial accuracy will be poor in the large scales.

Since turbulent flows are either two-dimensional or three-dimensional, in

the following section we will use the two-dimensional continuous wavelet

transform. Let us consider a two-dimensional scalar field f ðxÞ and a two-

dimensional real isotropic wavelet  ðxÞ. We generate the family  x;rðx
0
Þ of

wavelets, translated by position parameter x 2 IR2, and dilated by scale para-

meter r 2 IRþ, all having the same L2 norm

 x;rðx
0
Þ ¼ r�1 

x0 � x

r

� �
: ð4:42Þ

The two-dimensional wavelet transform of f ðxÞ is

~ff ðx; rÞ ¼

Z
IR2

f ðx0Þ x;rðx
0
Þ d2x0: ð4:43Þ

The local wavelet spectrum of f ðxÞ is defined as

~EEðx; rÞ ¼
1

2c k0
j ~ff ðx; rÞj2: ð4:44Þ

A characterization of the local ‘activity’ of f ðxÞ is given by its wavelet inter-

mittency ~IIðx; rÞ, which measures the local deviation from the mean spectrum

of f at each position x and scale r, defined as follows

~IIðx; rÞ ¼
j ~ff ðx; rÞj2R

IR2 j ~ff ðx; rÞj2 d
2x
: ð4:45Þ

Another measure of interest for turbulence is the wavelet Reynolds number
~ReReðx; rÞ, given by

~ReReðx; rÞ ¼
~uuðx; rÞr

�
; ð4:46Þ

where r is the scale parameter, � the kinematic viscosity of the fluid, and ~uu the

root mean square value of the velocity field contribution at position x and

scale r defined as

~uuðx; rÞ ¼
1

C 

X3
i¼1

j~uuiðx; rÞj
2

 !1=2

; ð4:47Þ

with the constant
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C ¼

Z
IR2

j ̂ ðkÞj2
d2k

jkj2
: ð4:48Þ

The expectation is that at large scales r � L, the wavelet Reynolds number

should coincide with the usual large-scale Reynolds number Re ¼ UL=�,

where U is the r.m.s. turbulent velocity and L is the integral scale, which is

the energy containing scale of the flow. In the smallest scales (say r � �,

where � is the Kolmogorov scale of the flow which characterizes the high

wavenumber limit of the inertial range where dissipation becomes signifi-

cant), one expects this wavelet Reynolds number to be close to unity when

averaged spatially. The question we want to address here is the variability of

such a wavelet Reynolds number defined in space and scale: are there loca-

tions where such a Reynolds number in the small scales is much larger than

elsewhere, and how do such regions correlate with regions of small-scale

activity in the flow? Actually ~ReReðx; rÞ gives an unambiguous measure of the

nonlinear activity at small scales (or at any desired scale), because regions of

high wavelet Reynolds number correspond to regions of strong nonlinearity.

Concerning the computation of energy and enstrophy transfers and fluxes,

we should be aware that the results depend on the functional basis we con-

sider. Indeed, due to Heisenberg’s uncertainty principle, each representation

measures different types of transfers and fluxes. In Fourier space one com-

putes transfers between different independent wavenumber bands, which

detect the modulations and resonances excited under the flow dynamics. In

wavelet space one computes exchanges between different locations and dif-

ferent scales, which detect instead advections and scalings. But one should

never forget that in wavelet space spatial resolution is bad in the large scales

and good in the small scales, while, by duality, space resolution is good in the

small scales but bad in the large scales. In an orthogonal wavelet basis,

although all wavelets are independent in space and scale, they are not neces-

sarily independent in wavenumber. In an orthogonal wavelet packet basis all

wavelet packets are independent in space, scale and wavenumber, but their

Fourier spectrum may present several peaks at distant wavenumbers and

they may be quite delocalized in wavenumber space; therefore wavelet pack-

ets are not appropriate to precisely measure transfers between different wave-

number bands. This is the reason why a comparison between transfers

computed in wavelets, wavelet packets and Fourier modes is misleading:

these three diagnostics do not measure the same quantities!
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4.4.2 Two-dimensional turbulence analysis

Unlike the velocity field, the vorticity field is invariant with respect to uni-

form rectilinear translations of the inertial frame (Galilean invariance). The

dependence of streamlines and streaklines on the reference frame causes

considerable difficulties in the study of fluid flows, particularly in observing

and defining vortices. In fact, due to its Galilean invariance, vorticity is the

most suitable field for tracking the dynamics of turbulent flows, in both two

and three dimensions. Moreover, due to Helmholtz’s theorem stating the

Lagrangian conservation of vorticity in 2D and of vortex tubes in 3D, we

are convinced that vorticity is, for both 2D and 3D flows, the fundamental

field whose evolution controls all other relevant fields; the importance of

vorticity has been advocated for years by Saffman [184] and Chorin [44].

We think that turbulence analysis, modelling and computing should be

based on a segmentation of the vorticity field into coherent vortices (or

vortex tubes in 3D) and random background of vorticity filaments (namely

1D structures embedded in 2D or 3D) produced by the nonlinearly interac-

tions between the coherent vortices. The vorticity field is directly accessible

from numerical simulations, but is difficult to obtain from laboratory experi-

ments. This is why we will now focus on vorticity fields obtained from direct

numerical simulation (DNS) results. The drawback with DNS, i.e. the inte-

gration of Navier–Stokes equations without any ad hoc turbulence model-

ling, is that current supercomputers are only able to compute low Reynolds

number flows (up to a few thousand).

Let us show an example of a wavelet analysis of an instantaneous vorticity

field computed using the Navier–Stokes equations [168], [71]. We segment it

into three regions using the Weiss criterion [202], [63], namely into rotational

regions corresponding to the coherent structures, strongly strained regions

corresponding to the shear layers surrounding the coherent structures, and

weakly strained regions corresponding to the background flow made of vor-

ticity filaments (these vorticity filaments encountered in two-dimensional

turbulence are not the same dynamical objects as the vorticity tubes encoun-

tered in three-dimensional turbulence and often called filaments). We then

decompose the vorticity field into a continuous wavelet representation using

an isotropic (Hermite) wavelet to integrate in space the wavelet coefficients

for each type of region. This decomposition is in fact a conditional statistical

analysis because the energy spectrum is computed separately for each type of

region. The energy spectrum of the coherent structure regions tends to scale

as k�5, the sheared regions as k�4 and the background regions as k�3 (Figure

4.2). We found [80], [168], [73] that each region has energy throughout the
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inertial range and therefore there is no scale separation. This is why the

Fourier representation cannot disentangle these different regions.

The scaling of the coherent structures seems compatible with the cusp-like

model for vortices proposed by Farge and Holschneider [76], the scaling of

the shear layers seems compatible with the vorticity fronts model proposed

by Saffman [183] and only the scaling of the homogeneous background

regions seems to verify the Batchelor–Kraichnan prediction for 2D homo-

geneous isotropic turbulence [121]. From this analysis we confirm that there

is no universal power-law scaling for two-dimensional turbulent flows; the

slope of the Fourier energy spectrum varies with the density of coherent

structures (their number per unit area in 2D and per unit volume in 3D),

which depends on initial conditions and forcing (energy injection by external

forces). We have then conjectured [80] that there may be a universal scaling

for each region of the flow considered separately, but this has not yet been

proven. Extensive wavelet analysis of very different types of turbulent flows

would be necessary to check this conjecture.

A key question, which remains open, is the following: is there a generic

shape (namely a typical vorticity distribution) for coherent structures? The

answer to this question influences our analysis, in particular our interpreta-

tion in terms of scale, because the notion of scale is intrinsically linked to the

generic shape we assume for the coherent structures. A prioris are as essential

in statistical analysis as hypotheses are in modelling: we should state them

clearly, otherwise our results would be nonsensical. For instance, without a

definition of vortex shape the notion of vortex size and vortex circulation

would be meaningless. A misunderstanding has persisted for years in the field

of turbulence due to the identification of scale with the inverse wavenumber,
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Fig. 4.2. Conditional wavelet spectra (this computation was done in collaboration
with Thierry Philipovitch). (Colours referred to in this caption are shown at
www.cambridge.org/resources/0521533538) (a) Vorticity field. In red: elliptic regions,
dominated by rotation (antisymmetric part of the stress tensor rv), which correspond
to the coherent vortices. In blue: hyperbolic regions, dominated by strain (symmetric
part of the stress tensor rv), which correspond to the incoherent background flow. (b)
Coherent vortices where rotation dominates. (c) Shear layers where strain and strong
velocity dominate. (d) Background flow where strain and weak velocity dominate. (e)
Energy spectra. In black: Fourier energy spectrum, which tends to scale as k�4:5 in the
inertial range. In dark blue: wavelet energy spectrum, which is a smooth approxima-
tion of the Fourier spectrum and tends to scale as k�4:5. In red: wavelet energy
spectrum of the coherent vortices, which tends to scale as k�5. In green: wavelet
energy spectrum of the shear layers, which tends to scale as k�4. In light blue: wavelet
energy spectrum of the background flow, which tends to scale as k�3.



which is true only if one assumes a wave-like shape for the vorticity field.

Conversely, in other papers one encounters different implicit models of

coherent structures (point vortices [203], vortex patches [127], Gaussian vor-

tices [144], or cusp-like vortices [76]), which indeed condition our statistical

analysis. Therefore one first needs a method to extract coherent structures

out of turbulent flows in order to study them individually. The classical

method consists of thresholding the vorticity field and identifying as coherent

vortices all regions where vorticity is larger than this threshold. However, the

spectral information is then lost due to the discontinuity introduced by the

threshold. We have proposed instead [74], [80] two new methods based on the

continuous wavelet representation, which preserves the smoothness of the

vorticity field and therefore its spectrum.

These methods depend on the choice of the analysing wavelet (although

this dependance is weak) and ideally we should use a wavelet which is a local

solution of the linearized Navier–Stokes equations, namely a solution of the

heat equation, such as any isotropic and smooth distribution of vorticity.

This is why we propose to use two-dimensional Hermite wavelets (derivatives

of the Gaussian), which are solutions of the heat equation. The higher the

derivative, the better the cancellations and the more sensitive the wavelet will

be to quasi-singular vortices, however its spatial selectivity will not be as

good as for low order derivative wavelets. In two examples shown in this

chapter (Figures 4.2 and 4.5) we use Marr’s wavelet which is the Laplacian of

the Gaussian.

The new approach we have proposed is to decompose turbulent flows

into coherent and inhomogeneous components versus incoherent and

homogeneous components. This decomposition should be performed for

each flow realization before averaging, because these two classes of com-

ponents correspond to different statistical distributions and present differ-

ent scaling laws. The first method to perform this decomposition consists

of extracting the coherent structures by retaining only the wavelet coeffi-

cients inside the influence cones (namely the spatial support of the wave-

lets) attached to the local maxima of the vorticity field corresponding to

the centres of the coherent structures; the wavelet coefficients outside the

influence cones are discarded before reconstructing the coherent compo-

nents of the vorticity field [80]. We can also extract just one coherent

structure, analyse its shape, and compute its coherence function, namely

the pointwise relation between vorticity and streamfunction, to check if it

corresponds to the stationary states predicted by Montgomery’s [111] or

Robert’s [178], [179], [180] statistical theories. The second method to split

the flow into coherent and incoherent components consists of retaining
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only the wavelet coefficients which are larger than a given threshold and

to discard all other coefficients before reconstructing the coherent vorticity

field. We have thus extracted the coherent structures (corresponding to the

wavelet coefficients larger than the threshold) from the background flow

(corresponding to the weaker wavelet coefficients). By computing the

Fourier spectrum of these two fields we have confirmed our previous

analysis: the energy spectrum of coherent structures tends to scale as

k�5 and that of the background field as k�3 [74], [80], thus recovering

the scaling predicted by the statistical theory of homogeneous 2D turbu-

lence [121]. This confirms the conjecture stating that the coherent struc-

tures are responsible for the intermittency of 2D turbulent flows. We think

this conjecture is also true for 3D turbulent flows.

Inspired by Donoho’s theorem for optimal denoising [58], we have recently

proposed [83] the threshold f!T!T ¼ ð2 < !2 > loge NÞ
1=2 to select the wavelet

coefficients to be retained to extract coherent structures. This threshold

depends only on the variance of the vorticity field < !2 > and on the number

of grid-point samples of the vorticity field N, without any adjustable para-

meter. For statistically steady turbulent flows, whose variance is by definition

stationary, this threshold remains constant during the whole time evolution.

Using this method we have analysed decaying [82], wavelet forced [83] and

Fourier forced 2D turbulent flows [84] (see Figure 4.3). For these three dif-

ferent types of turbulent flows we have observed that the coherent compo-

nents, obtained from the wavelet coefficients of vorticity larger than the

threshold f!T!T , have non-Gaussian vorticity and velocity PDFs, while the inco-

herent components, obtained from the wavelet coefficients of vorticity smaller

than the threshold f!T!T , have Gaussian PDFs [83], [82], [84] (see Figures 4.3f

and 4.10d). There is still some hope of finding universal statistical distribu-

tions for each component taken separately, and we may be able to propose

new turbulence models based on the Gaussianity of the background flow.

Even if such a universal distribution exists for the coherent structures, we

would still need to calculate the dynamics of these structures in detail because

they remain out of equilibrium (unlike the background).

Using the wavelet segmentation technique we have just described, we ana-

lysed a 2D forced turbulent flow computed with 2562 Fourier modes, and

found that only 0:7% of the wavelet modes retain 94:3% of the total enstro-

phy and 99:2% of the total energy. These modes correspond precisely to the

coherent structures as exhibited on the coherence scatter plot (Figure 4.3d).

These coherent modes are responsible for the PDFs of the total vorticity and

velocity fields, while the incoherent modes (corresponding to the 99:3%

remaining wavelet coefficients) have a Gaussian PDF, with a flatness 3 and
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a much smaller variance than that of the total fields (Figure 4.3f). On the

contrary the incoherent background flow is responsible for the energy spec-

trum scaling in the high-wavenumbers (Figure 4.3g), because the contribu-

tion of the coherent modes to the small scales are too localized to be detected

by the two-point correlation (whose Fourier transform gives the energy spec-

trum). We have also shown that the coherent modes are responsible for the

total flow dynamics because they trigger the total velocity field. The incoher-

ent modes are passively advected by the coherent velocity, because the inco-

herent velocity field generated by the background flow is nearly zero (Figure

4.3b). For all these reasons we think that the coherent modes are essential,

and that analysing of turbulent flows in terms of energy spectrum scaling in

the high-wavenumbers alone is misleading, and one should also consider the

PDFs of vorticity and velocity.

Another application of the wavelet representation in turbulence is to

design new types of forcing for numerical simulations. The method, proposed

by Schneider and Farge [185] consists of injecting energy and enstrophy at

each time step, but only into the wavelet coefficients inside the influence cone

corresponding to a given location. Depending on the type of forcing we want,

we could either excite the same vortices or randomly select new vortices at

each time step. Forcing is currently done in Fourier space and is rather

unphysical, while wavelet-based forcing could simulate the production of

vorticity in boundary layers or shear layers, which is a local process. This

is another promising application of wavelet techniques for turbulent flow
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Fig. 4.3. Wavelet compression of vorticity. (a) The vorticity. (b) The modulus of
velocity. (c) The streamfunction. (d) The coherence scatter plot. (e) Cut of vorticity
(f) PDFs of velocity and vorticity. (g) Energy spectrum.

The solid lines correspond to the total vorticity !, the dashed lines to the coherent
part !>, and the dotted lines to the incoherent part !<.

We observe that only 0.7% of the total number of wavelet coefficients are suffi-
cient to represent all coherent structures, while the remaining 99.3% correspond to
the incoherent background flow, which is much weaker and homogeneous. The
coherent vorticity !> contains 94.3% of the total enstrophy. Moreover, the velocity
associated with the coherent structures v> is quasi-identical to the total velocity v
and contains 99.2% of the total energy. As for the coherent stream function, �> is
perfectly identical to the total stream function �. The fact that the coherence scatter
plot of the background F< is isotropic proves that our method has extracted all
coherent structures. The PDFs of velocity and vorticity show that only 0.7% of
the wavelet coefficients are sufficient to capture the non-Gaussian one-point statis-
tical distribution of vorticity, while the remaining 99.3% have a Gaussian distribu-
tion. The energy spectrum, on the contrary, is dominated by the background at small
scales and therefore is insensitive to coherent structures, because they are too loca-
lized in the small scales to affect the energy spectrum (which is the Fourier transform
of the two-point correlation function) in the high wavenumbers. Parts (a) to (d) of
this figure are also shown at www.cambridge.org/resources/0521533538.



simulation (the results obtained with this wavelet forcing method are dis-

cussed in section 4.6.4.3 and shown on Figure 4.10).

4.4.3 Three-dimensional turbulence analysis

We have analysed different flow fields resulting from direct numerical simu-

lations of three-dimensional turbulent flows [75], using the complex-valued

Morlet wavelet, which plays the role of a numerical polarizer due to its

angular selectivity, and whose complex modulus directly measures the energy

density. We have first studied the temperature, velocity and pressure fields of

a channel flow near the wall and have used the wavelet intermittency to

pinpoint the regions of the flow dominated by strong nonlinear dynamics,

corresponding to locally stronger wavelet Reynolds numbers. It appears that

the most intermittent regions are correlated with those of large vertical velo-

city, corresponding to ejections from the boundary layer. We have found that

temperature behaves as a passive scalar almost everywhere, except in these

very localized ejection regions. We have also observed that there is no return

to isotropy in the small scales, contradicting one of the hypotheses of the

statistical theory of turbulence, which supposes that turbulent flows become

homogeneous and isotropic at small scales.

We have then analysed the vorticity, velocity and a passive scalar in a

temporal mixing layer after the mixing transition. We have found that wavelet

intermittency is very strong, up to 120, in the collapsing regions where the ribs

(streamwise vorticity tubes produced by a three-dimensional instability) are

stretched and engulfed into the primary spanwise vortex (produced by a two-

dimensional Kelvin–Helmholtz instability). On the other hand, the wavelet

intermittency in the braids, i.e. outside the spanwise vortex, remains very low,

not exceeding 5. We have also noticed in this case and contrarily to the

channel flow, a return to isotropy in the small scales. From the local spectrum

of the vertical vorticity we have observed that the collapsing regions have a

spectral slope much shallower than the one of the braid regions; this departure

from the space average wavelet spectrum increases with the scale and confirms

the strong intermittency of the mixing layer. If we extrapolate the observed

slopes, we conjecture that intermittency should increase with Reynolds num-

ber. We have then visualized the iso-surfaces of the wavelet Reynolds number,

which can be interpreted as surfaces of iso-nonlinearity in the flow. The peaks

on these iso-surfaces, which are associated with the most unstable regions, are

located in the primary vortex core; this confirms our previous conclusions

concerning the concentration of small-scale nonlinear activity there, due to

the stretching of the ribs rolled around the primary vortex. We have also
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shown that the Kolmogorov scale, corresponding to the iso-surface

Reðx; rÞ ’ 1 where linear dissipation balances nonlinear advection, varies

with location, being at much smaller scales in the vortex core than in the

braids, with a scale variation of four octaves. This means that there may

also be some (spatially localized) dissipation at scales belonging to the inertial

range. This observation contradicts Kolmogorov’s hypothesis of non-dissipa-

tive energy transfers in the inertial range, but is in agreement with Castaing’s

theory of turbulence [36], [37], with Frisch and Vergassola’s [93] multifractal

model and with Benzi et al.’s [21] extended self-similarity model, which

assume a weak dissipation in the inertial range.

For shear flows, such as the channel flow or the mixing layer we have

studied, there is a clear correlation between large-scale events and small-

scale activity, due to the presence of coherent structures. Wavelet analysis

has been an essential tool for identifying them as wavelet phase-space regions

correlated in both space and scale, where intermittency decreases with scale

[75]. We conjecture that for large Reynolds numbers these regions may

become more and more localized and very intense in small-scale enstrophy.

Therefore they correspond to rare but strong events, which are susceptible to

develop singularities at very large Reynolds numbers. For the mixing layer

these quasi-singular regions correspond to collapsing events, where the ribs

are stretched and accumulated inside the primary vortex core, while for the

channel flow these regions correspond to the tip of the hairpin vortices ejected

from the wall boundary layer. According to the Cafarelli–Kohn–Nirenberg

theorem [33], singularities of Navier–Stokes equations, if they exist, should be

at most a set of Hausdorff measure one in space-time for any Reynolds

numbers, which confirms the fact that they could only be rare events to

which standard statistical tools, such as two-point correlation and energy

spectrum, remain insensitive. Incidentally if we want to look for quasi-singu-

larities in three-dimensional turbulent flows it may be better to use a space-

time continuous wavelet transform, whose theory has been initiated by Duval-

Destin and Murenzi [61], but has not yet been sufficiently developed.

4.5 Turbulence modelling

We will now reconsider the closure problem mentioned in subsection 4.2.3,

taking advantage of the new observations we have made of turbulent flows,

and in particular the dynamical role of coherent structures, thanks to the

wavelet analysis.
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4.5.1 Two-dimensional turbulence modelling

To compute turbulent flows we must separate the active components,

responsible for their chaotic behaviour (namely sensitivity to initial condi-

tions), from the passive components, which are advected by the velocity

field resulting from the overall coherent structure motion. The active com-

ponents are not in thermal equilibrium, while the passive components are

well thermalized. Therefore the active components should be computed

explicitly, while the passive components can be modelled by some ad hoc

parametrization.

Classical numerical techniques (Galerkin methods [103], Large Eddy

Simulation [133], [175], [135] and Nonlinear Galerkin methods [149]) assume

that the active components are the low-wavenumber Fourier modes, or the

scales resolved by the computational grid, while the passive components are

the high-wavenumber Fourier modes, or the sub-grid scales. This scale separ-

ability of the turbulent dynamics is assumed to be true in both two and three

dimensions.

We have shown [204] that a compression in the wavelet or wavelet packet

representation extracts the coherent structures out of the background flow,

while the same amount of compression done in the adapted local cosine

(Malvar) representation, which is a type of windowed Fourier basis, does

not have this property (Figure 4.4). Indeed, the more you compress in

Fourier or windowed Fourier representations, the more you smooth the

coherent structures, and consequently lose their enstrophy, destroy their

phase information, and introduce parasitic wiggles in the background.

Indeed, the more you compress, the larger the effect of the analysing func-

tion. Therefore wavelets and wavelet packets, being localized functions, tend

to separate coherent structures from the background flow (Figure 4.4a),

while Fourier and windowed Fourier, being non-localized functions, tend

to smear coherent structures into the background flow (Figure 4.4b).

We have shown [74], using nonlinear wavelet packet compression, that

there is no scale separability in two-dimensional turbulence; we conjecture

that this result is also true in 3D turbulence. To prove this we have computed

the time evolution of a two-dimensional turbulent flow which we use as our

high-resolution reference flow. We have then compressed the initial vorticity

field in two ways: either by retaining only the lower wavenumber Fourier

modes, or by selecting the strongest (in L2-norm) wavelet packet coefficients.

We found that for a compression ratio of 200 the wavelet packet representa-

tion preserves, in a statistical sense (namely the energy spectrum is well

predicted), the reference flow evolution while the Fourier representation
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leads to a statistically different solution. This conclusion is not surprising,

considering the existence of an inverse energy cascade in two-dimensional

turbulence which implies that the high-wavenumber Fourier modes remain

active and affect the evolution of the low-wavenumber modes. The implica-

tion of this behaviour should be implemented in turbulence models, because

we now have wavelet-based numerical methods to replace grid-point or

Fourier representations and integrate Navier–Stokes equations (see 4.6).

In the same paper [74] we showed that there is a possible separability

between active modes, namely the coherent structures corresponding to the

strong wavelet packet coefficients, and passive modes, namely the vorticity

filaments of the background flow corresponding to the weak wavelet packet

coefficients. Both components are multi-scale, which is why the Fourier

representation is not able to disentangle them and a fortiori to model

them. According to Weiss analysis [202] the coherent structures correspond

to elliptic regions (nearby fluid trajectories remain nearby) where rotation

!2 dominates strain s2, while the background flow corresponds to hyper-

bolic regions (two nearby fluid trajectories separate exponentially) where

strain s2 dominates rotation !2. In the elliptic regions the wavelet Reynolds

number R̃eðx; rÞ is larger than one, while in the hyperbolic regions it is

smaller than one, which indicates that the background flow is actually

laminar (Figure 4.5).

We have shown ([83], [82], [84]) that probability distribution functions

(PDF) of the vorticity and velocity fields associated to the coherent struc-

tures are non-Gaussian, while they are Gaussian for the background flow

(Figure 4.3). Therefore the coherent structures are out of thermal equili-

brium, while the background flow has already thermalized due to the very

strong mixing resulting from the strain imposed by the coherent structures.

Therefore the probability distributions of the background flow are station-

ary and do not depend on the spatial configuration of the coherent struc-

tures. We should then be able to model the incoherent background flow by
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Fig. 4.4. Comparison between wavelet packet and adapted local cosine compression
(this computation was done in collaboration with Echeyde Cubillo). (a) The uncom-
pressed vorticity field computed with 1282 modes. (b) The vorticity field recon-
structed from the 70 strongest wavelet packet coefficients, which contain 90% of
the enstrophy. (c) The vorticity field reconstructed from the 425 strongest adapted
local cosine coefficients, which contain 90% of the total enstrophy. (d) Enstrophy
contained in the retained coefficients versus their number. We observe, for instance,
that 70 wavelet packet coefficients retain 90% of the total enstrophy, while 70
adapted local cosine coefficients retain only 50% of the total enstrophy. This figure
is also shown at www.cambridge.org/resources/0521533538.
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an ad hoc stochastic process having the same enstrophy and the same

statistics, in particular the same spectral slope, or using simple turbulence

models (Boussinesq, Smagorinsky or k� � [155]), whereas the coherent

structures should be explicitly computed in wavelet phase-space. A possible

direction would be to construct a wavelet or wave packet frame (namely a

quasi-orthogonal basis) made of local solutions of the linearized Navier–

Stokes equations (namely any isotropic smooth function, such as the

Mexican hat). We do not yet know how to construct it, nor to compute

Navier–Stokes equations in it, although we know how to compute Navier–

Stokes equations in an orthogonal wavelet basis (see 4.6), which is a pro-

mising first step in the same direction.

Wehave also shown [114] that the presence of coherent structures inhibits the

nonlinear instability of the background flow, namely the formation of new

coherent structures. Using the wavelet packet representation to extract the

coherent structures we then computed the evolution of the remaining back-

ground flow, in the absence of coherent structures, and observed the emergence

of new ones out of it (Figure 4.6). Actually when coherent structures are pre-

sent, they impose a strain on the background flow, which then inhibits the

formation of new coherent structures, and therefore there is no energy or

enstrophy backscatter from the incoherent to the coherent components of

two-dimensional flows. The next step to validate this observation will be to

compute the different transfers between coherent and incoherent components

of the flow (namely from coherent structures to coherent structures, from

coherent structures to background, from background to coherent structures

and from background to background) and check that there is no transfer from

background to coherent structures. If this is confirmed, there will be a possible

wavelet separability between the coherent and incoherent flow components and

wemay then be able to propose new turbulence models based on this property.
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Fig. 4.5. Wavelet Reynolds number (this computation was done in collaboration
with Thierry Philipovitch). (a) Velocity field computed with resolution 1282 (�x ¼ 1
unit length between two grid-points). (b) Wavelet Reynolds number at scale 64�x,
which fluctuates between 148 and 2700 with a mean value of 1713. (c) Wavelet
Reynolds number at scale 20�x, which fluctuates between 31 and 578 with a
mean value of 365. (d) Wavelet Reynolds number at scale 8�x, which fluctuates
between 1 and 27 with a mean value of 17. (e) Wavelet Reynolds number at scale
2�x, which fluctuates between 0 and 3 with a mean value of 2. This figure is also
shown at www.cambridge.org/resources/0521533538.
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Fig. 4.6. Dynamical analysis of coherent structures and incoherent background flow.
(Colours referred to in this caption are shown at www.cambridge.org/resources/
0521533538) (a) Total vorticity at t ¼ 30 computed with a resolution 10242. (b)
Vorticity corresponding to the coherent vortices alone at t ¼ 30. They are made
up of 31 strong wavelet packet coefficients which contain 83% of the total enstrophy.
(c) Energy spectra at t ¼ 30. In green: the total energy spectrum. In red: the coherent
vortices energy spectrum. In blue: the filament energy spectrum. (d) Vorticity corre-
sponding to the filaments alone at t ¼ 30. They are made up of 1 048 545 weak
wavelet packet coefficients which contain 17% of the total enstrophy. (e)
Integration of the total vorticity until t ¼ 120. (f) Integration of the coherent vortices
alone until t ¼ 120. (g) Energy spectra at t ¼ 120. In green: the total energy spec-
trum. In red: the coherent vortices energy spectrum. In blue: the filament energy
spectrum. (h) Integration of the filaments alone until t ¼ 120.



4.5.2 Three-dimensional turbulence modelling

The assumption that the high-wavenumber Fourier modes are slaved to the

active low-wavenumber Fourier modes, is probably also wrong for three-

dimensional turbulence due to the evidence of energy backscattering [55],

[54], [56], [129], [169], i.e. inverse energy transfer from small to large scales,

resulting from the presence of organized structures which locally interact and

transfer energy to larger scales. We should take this observation with caution

knowing that the amount of backscattering observed depends sensitively on

the sharpness of the spectral filter used. There are two other reasons to

explain why the assumption that the high-wavenumber modes are slaved to

the low-wavenumber modes is not valid and should be revised.

The first reason comes from the fact that we do not have any universal

theory of turbulence aside from the statistical theory which deals with homo-

geneous and isotropic ensemble averages, while numerical simulations com-

pute one flow realization at the time (at the highest resolution possible with

present supercomputers) and not ensemble averages (which will require too

many computations to obtain several realizations of the same turbulent flow).

Actually each flow realization is, unlike an ensemble average, highly inho-

mogeneous due to the presence of coherent structures. As we have shown in

performing wavelet analyses of two- and three-dimensional turbulent flows,

coherent structures are multi-scale and, through their mutual nonlinear inter-

actions, are responsible for inverse energy transfers. If the computational grid

is too coarse, its resolution is insufficient to accurately compute these trans-

fers. Likewise subgrid-scale parametrization is only able to model direct

transfers (from resolved to unresolved scales) and inverse transfers (from

unresolved to resolved scales) in a statistical sense, assuming homogeneity,

but cannot exactly compute the tranfers for the given inhomogeneous flow

realization one integrates. In fact backscattering is a major unresolved draw-

back of current numerical methods, which will last as long as they will be

unable to separate the coherent structures from the background flow and

take into account the parametrization of homogeneous turbulent compo-

nents separately from the inhomogeneous components. This difficulty

comes from the fact that both components are multi-scale and therefore

low-pass filters are inadequate here.

The second reason comes from the fact that our current numerical methods

are defined, either in grid-point, finite element or Fourier representation, and

are unable to compute multi-scale objects with a small number of coefficients.

This would be possible using either adapted multi-grid or wavelet numerical

methods. Multi-grid techniques were proposed 20 years ago by Achi Brandt
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[31] for solving elliptic problems, such as the diffusion equation; they were

then adapted to quasi-stationary problems, but do not seem yet optimal to

solve time-dependent problems. Actually the multi-grid approach is similar

to a wavelet approach using a Haar wavelet, which is very well localized in

physical space and corresponds to a set of embedded grids, but which is too

delocalized in spectral space and tends to produce large errors in the higher

order derivatives of the solution. As far as we know, locally refined multi-grid

techniques have been tried for the Navier–Stokes equations, but not yet in

the turbulent regime.

One possible approach is to use the wavelet Reynolds number to split the

Navier–Stokes equations at each time step into advection and diffusion

operators, which will be solved separately using the most appropriate numer-

ical method and turbulence parametrization for each operator. Namely, the

advection term should be computed only where ~ReReðx; rÞ > Oð1Þ, and the

diffusion term where ~ReReðx; rÞ � Oð1Þ. This method makes sense only if the

flow is computed either in a multi-grid or in a wavelet representation (see

section 4.6).

Actually, as we have already said, the Navier–Stokes equations are com-

putationally intractable for the large Reynolds number limit which corre-

sponds to fully developed turbulent flows. Although the use of wavelets

may improve current numerical methods of solving the Navier–Stokes equa-

tions (see section 4.6), a more promising direction may be to look for a new

set of equations specific to the turbulent regime. Such equations would be

written in terms of a small number of new variables corresponding to the

degrees of freedom attached to the coherent structures. As a consequence of

this drastic reduction of degrees of freedom to compute, these new equations

may break some of the symmetries of Euler or Navier–Stokes equations. This

is analogous to the way in which Boltzmann’s equation, describing the

macroscopic level, breaks the time reversibility of Newton’s equation,

describing the microscopic level. For modelling turbulent flows we ought

to go one step further in the hierarchy of embedded equations going from

Boltzmann’s to Navier–Stoke’s and define a new ‘organized’ level emerging

out of the thermalized background flow.

4.5.3 Stochastic models

The idea is to find stochastic models of turbulence that mimic the behaviour

of Navier–Stokes equations at high Reynolds numbers, but which would be

easier to solve numerically, and perhaps even analytically. These models

could then be used to study some properties of turbulent flows, such as

168 M. Farge, N.K.-R. Kevlahan, V. Perrier and K. Schneider



energy spectrum, probability density functions, intermittency and departure

from Kolmogorov’s scaling.

The first attempt was done in 1974 by Desjanski and Novikov [52] who

devised a so-called shell model where the Navier–Stokes equations were

represented on a discrete set of wavenumbers in Fourier space, each

Fourier shell corresponding to one octave. The coupling between different

octaves was supposed to be local in Fourier space and energy was transferred

only from large to small scales. Such shell models, sometimes also called

cascade models , are still popular because with them it is easy to obtain

very large inertial range, up to Reynolds numbers 1010, at a limited computa-

tional cost. The number of degrees of freedom needed to compute three-

dimensional Navier–Stokes equations by standard direct simulations scale

as Re9=4, whereas they scale as Re for shell models. The weak point of

shell models is that the vectorial structure of Navier–Stokes equations is

lost, the incompressibility condition is not satisfied and they do not give

accurate information on the spatial structure of the flow.

In 1981 Zimin [209], [90], [210] proposed another model, called the hier-

archical model , defined in both space and scale. He projected the three-dimen-

sional Navier–Stokes equations onto Littlewood–Paley basis and discretized

them by octaves, considering a limited number of vortices for each octave, few

in the large scales and more in the small scales in accordance to Heisenberg’s

uncertainty principle. He then assumed that each vortex is advected by the

velocity field of the larger vortices, which lead him to propose a set of semi-

Lagrangian wavelets to compute the flow evolution. This impressive work

foreshadowed the wavelet decomposition, and has since been developed by

Frick [89], [88], [8]. Hierarchical models are more physical than shell models

because they also take into account the vortex motions, but they are still not

very realistic from a physical standpoint because they neglect the vortex

deformation which is responsible for energy transfers and subsequent dissipa-

tion. Recently Eyink [68] has criticized this approach in showing that semi-

Lagrangian wavelets do not remove the effect of large-scale convection to the

energy transfers and therefore do not guarantee their locality in wavenumber

space. This is again due to Heisenberg’s uncertainty principle and is related to

the fact that it is impossible to compare transfers between wavenumbers and

transfers between scales (this point has already been discussed in section 4.4).

Ideas on turbulence evolve at a very slow pace. As an example of this, let us

quote what Liepmann wrote in the proceedings of the turbulence conference

held in Marseille in 1961 [140]:
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The success of the spectral representation of turbulent fields is due, after all, not to
the belief in the existence of definite waves but to the possibility of representing quite
general functions as Fourier integrals. In the application to stochastic problems the
usefulness of the Fourier representation stems essentially from their translational
invariance. Consequently, really successful models for representing turbulent shear
flows will require far broader invariance considerations. It is clear that the essence of
turbulent motion is vortex interaction. In the particular case of homogeneous
isotropic turbulence this fact is largely masked, since the vorticity fluctuations
appear as simple derivatives of the velocity fluctuations. In general this is not the
case, and a Fourier representation is probably not the ultimate answer. The pro-
posed detailed models of an eddy structure represent, I believe, a groping for an
eventual representation of a stochastic rotational field, but none of the models
proposed so far has proven useful except in the description of a single process.

These remarks, written 37 years ago, are still very pertinent and define the

direction we should take for future research in turbulence.

Nowadays, using wavelets we can construct more elaborate stochastic

processes. As Liepmann has perceived we should be able to synthesize sto-

chastic rotational fields, built from a set of randomly translated, rotated and

dilated elementary vortices, which should have the same non-Gaussian

statistics as those observed for two- and three-dimensional turbulent flows

(see Figure 4.3). Recently Elliott and Majda [64], [65] have used wavelets to

build a Gaussian, stationary and self-similar stochastic process for synthesiz-

ing turbulent velocity fields satisfying Taylor’s hypothesis and displaying

Kolmogorov’s energy spectrum. Using these synthetic velocity fields they

recover Richardson’s law for scalar pair dispersion [66]. It is well-known

that the Gaussian hypothesis is incompatible with the turbulence cascade

(Skewness being non zero [113]), but their method may be useful to model

the background flow, which, contrary to coherent structures, may present

Gaussian statistics, although this point is still very controversial [192].

4.6 Turbulence computation

4.6.1 Direct numerical simulations

The direct numerical simulation of turbulent flows, based on the integration

of the Navier–Stokes equations at high Reynolds number without any sub-

grid turbulence model, requires a very large number of degrees of freedom.

This number increases like Re in two dimensions and like Re9=4 in three

dimensions. Among the numerous Eulerian and Lagrangian numerical

schemes, one may identify two different points of view: spectral and physical.

The first long-time simulations of two-dimensional turbulent flows [14],

[143], [22] were based on spectral methods, i.e. Fourier decomposition, and
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had a resolution of 5122. More recently, resolutions of 40962 have been

calculated [42], but even these high-resolution simulations cannot attain rea-

listic Reynolds numbers which are several orders of magnitude larger. The

observation of the formation of coherent structures in both laboratory and

numerical experiments lead to the recognition of the important dynamical

role played by vortices in turbulent flows and resulted in the development of

Lagrangian methods ([1], e.g. vortex methods [134], [47] or contour dynamics

methods [127]) which follow the motion of each vortex, but which are impre-

cise concerning the background flow between the vortices. Finite-element,

-difference or -volume methods allow mesh refinement in regions of the

flow where small structures appear, for instance in the boundary layer of

an obstacle; unfortunately automatic adaptive refinement requires post-pro-

cessing to follow these small structures.

Wavelet bases, in the context of the numerical simulation of PDEs (partial

differential equations), appear to be a good compromise between spectral

methods (precise, but expensive), contour dynamics (which automatically

follow coherent structures, but not the background flow) and finite element

or finite difference methods (local in space, of low order and therefore not

precise). Wavelet methods have already been used to solve Burgers’ equation

in one [9], [104] and two dimensions [25], Stokes’ equation in two dimensions

[196], the Kuramoto–Sivashinsky equation [159], Benjamin–Davis–Ono–

Burgers’ equation [87], the heat equation in two dimensions [40], some reac-

tion-diffusion equations in one and two dimensions [94], [29], [28], the non-

linear Schrödinger equation [100], Euler’s equation [172] and Navier–Stokes’

equation in two dimensions [41], [96].

4.6.2 Wavelet-based numerical schemes

The localization of wavelet bases, both in space and scale, leads to an effective

nonlinear compression of the solution as well as of the operators involved in

equations (4.3). Such a sparse representation is obtained by performing non-

linear thresholding of the wavelet coefficients of the solution and of the

matrices representing the operators, i.e. those coefficients with absolute

value below a given threshold are set to zero. This thresholding can be jus-

tified by theoretical results [53] and verified by numerical experiments.

The sparsity of the wavelet expansion of a given function is linked to its

local smoothness: where the function is smooth, the corresponding wavelet

coefficients decrease with scale. This fact is related to the characterization of

point-wise Hölder spaces [108], [105] (see subsection 4.3). Recall that for the

Fourier decomposition, the decay of the coefficients depends on the global
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regularity of the function [211]. Another important property of wavelets is

the nonlinear approximation of functions: the approximation error between a

function and its wavelet series taken as the N largest coefficients (in a given

norm) can be estimated, in some Lebesgue space, by a (negative) power of N

which depends on the smoothness, or non-smoothness, of this function. This

result follows from the characterization of Sobolev and Besov spaces by

means of wavelet coefficients [151], [53], [58]. Note that the nonlinear wavelet

approximation of a given function is associated with a grid in physical space

which is refined where there are singularities of this function. A comparison

of Fourier versus wavelet and wavelet packet nonlinear compression for a

turbulent vorticity field is shown in Figure 4.7. We observe that the wavelet

packet compression is the most efficient, both in terms of the minimal num-

ber of coefficients used and the quality of the approximation.

Another important consequence of the simultaneous localization in space

and scale of wavelet bases is that many pseudo-differential operators and

their inverse have a sparse representation, i.e. are almost diagonal or have a

typical finger structure, depending on the employed (i.e. non-standard or

standard) form [24]. This is the case for the gradient operators and the

heat kernel. For a theoretical justification in the general context of

Calderon–Zygmund operators we refer the reader to [151]. As an example,

the discretized heat kernel (on a 10242 grid) is projected onto a wavelet basis

and we observe that only 9.5 % of the coefficients are greater than 10�8,

absolute value to be compared to the largest eigenvalue which is order 1,

instead of 21 % for a finite difference projection.

These two fundamental properties (compression of the solution and of the

operator) allow us to define adaptive wavelet-based numerical schemes for

solving nonlinear PDEs. By neglecting small coefficients in the solution and/

or in the operator’s wavelet representation, each step of the algorithm is

based on approximate but fast matrix-vector products computed in wavelet

space. Note that the schemes based on scaling functions (often deliberately

confused with wavelets) [102], [124], [87] instead of wavelet functions are no

more efficient than classical finite element methods on a regular grid!

Theoretical error and stability estimates for some particular wavelet schemes
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Fig. 4.7. Nonlinear compression of a vorticity field. In each case the reconstructions
using the strong coefficients (containing 95% of the total enstrophy) are displayed
on the left, and using the weak coefficients (containing 5% of the total enstrophy)
are displayed on the right. (a) Uncompressed vorticity field computed with a resolu-
tion of 5122. (b) Compression in a Fourier basis (813 strong coefficients).
(c) Compression in a wavelet basis (338 strong coefficients). (d) Compression in a
wavelet packet basis (156 strong coefficients). This figure is also shown at
www.cambridge.org/resources/0521533538.
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may also be derived [24], [50], [26]. A scaling function scheme for solving the

Euler equations has already been developed by Qian and Weiss [172].

4.6.3 Solving Navier–Stokes equations in wavelet bases

Before presenting wavelet-based numerical schemes to solve the Navier–

Stokes equations, we should mention a very interesting direction which con-

sists of simplifying the Navier–Stokes equations by re-writing them in an

appropriate wavelet basis. Jacques Lewalle has shown that some continuous

wavelets, namely the Hermitian wavelets (derivatives of the Gaussian), sim-

plify the resolution of the linear term and allow a simpler convolution for-

mula for the nonlinear term [136], [137]. He has found that the first derivative

of the Gaussian gives a Hamiltonian form of the diffusion equation, where

dissipation is replaced by spectral transport, namely Hermitian wavelets are

propagators for the diffusion equation [138].

The first adaptive wavelet schemes for the Navier–Stokes equations have

been derived by Charton and Perrier [39] and Fröhlich and Schneider [96].

Different approaches can be used to solve the two-dimensional Navier–

Stokes equations. We will focus here on the two recently developed wavelet

schemes for solving Navier–Stokes equations: the algebraic wavelet method

of Charton and Perrier [41] and the Petrov–Galerkin scheme of Fröhlich and

Schneider [96, 97]. Both methods are based on the discrete wavelet transform

and take advantage of the nonlinear compression of the operators and the

solution.

Apart from the above Eulerian schemes another possible approach would

be to develop Lagrangian-type wavelet methods, based on the continuous

wavelet transform. The travelling wavelet method in which wavelets behave

like particles evolving in phase-space coordinates has been proposed in 1990

by Basdevant, Holschneider and Perrier [13]. The travelling wavelet method

looks for an approximate solution of equation (4.50) (see below), which is a

finite sum of N wavelets evolving in phase-space:

!ðx; tÞ �
XN
i¼1

ciðtÞ 
x� biðtÞ

aiðtÞ

� �
; ai > 0; ð4:49Þ

where  is the wavelet and ci, ai, bi, are respectively the time dependent

amplitude, scale and position parameters.

This method works well for linear equations, such as the convection-diffu-

sion equation, and also for the Korteweg–de-Vries equation. It has also been

applied to the study of the formation of galaxies [20].However, in the nonlinear

case the method encounters technical difficulties which have not yet been com-
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pletely overcome. These difficulties arise when two wavelets approach each

other in phase-space which leads to a ‘phase-space atom collision’.

Now let us consider the two-dimensional Navier–Stokes equations written

in terms of vorticity and stream function, which are scalars

@!

@t
þ v � 5! ¼ �r2!þ F;x 2 ½0; 1	2; t > 0

r
2� ¼ !; v ¼ �

@�

@y
;þ

@�

@x

� �
:

8><>: ð4:50Þ

We complete the problem with periodic or Dirichlet or Neumann boundary

conditions and a suitable initial condition.

By introducing a classical semi-implicit time discretization and a time step


t, and setting !n
ðxÞ � !ðx; n
tÞ to be the approximate solution at time n
t,

equation (4.50) is replaced, for example (for notational ease we take here the

simplest, but unstable, time scheme), by

ð1� �
tr2
Þ!nþ1

¼ !n
þ 
tð f n � vn � 5!n

Þ

r
2�nþ1

¼ !nþ1; vnþ1 ¼ ð�@y�
nþ1;þ @x�

nþ1
Þ;

with f ¼ r � F:

8><>: ð4:51Þ

The spatial discretization is then performed by approximating, at time n
t, !n

by a function !n
J belonging to a finite dimensional subspace VJ obtained from

a multiresolution analysis ðVjÞj�0 of the space L2
ð½0; 1	2Þ.

At this point the algebraic method of Charton and Perrier differs signifi-

cantly from the Petrov–Galerkin scheme of Fröhlich and Schneider. The

method proposed by Charton and Perrier [41] starts with a finite difference

scheme on a regular Cartesian grid. Wavelets are then used to speed up the

solution procedure by compression of the discrete inverse operator and the

actual solution during the time advancement. Furthermore, operator split-

ting by means of an ADI (Alternating Direction Implicit) technique is intro-

duced. The two-dimensional wavelet basis employed relies on a tensor

product of two one-dimensional multiresolution analyses. The method pro-

posed by Fröhlich and Schneider [97, 96] uses a two-dimensional multireso-

lution analysis as the projection basis. In this case the inverse operator is

applied during the time advancement, using special test functions.

We will attempt to clarify the principle of these wavelet methods. The

spatial approximation can be either of collocation type, i.e. grid-point values,

or of Galerkin type, i.e. a projection onto a basis. The transformation

between the single level representation of a function, i.e. its values at regular

collocation points, and a multi-level wavelet Galerkin representation uses an

orthogonal wavelet transform. However, problems arise with adaptive
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schemes because it is difficult to take advantage of the sparsity of the wavelet

decomposition when going back and forth between grid point and wavelet

representations. Let us be more precise, and consider the one-dimensional

case. Suppose that dim VJ ¼ 2J . Then the function !n
J can be expanded onto

the scaling function basis (single level representation) ð’J;kÞk¼0;2J�1 of VJ

!n
J ðxÞ ¼

X2J�1
k¼0

cnJ;k’J;kðxÞ; ð4:52Þ

or onto a wavelet basis ð j;kÞ0�j<J;k¼0;2j�1 of VJ

!n
JðxÞ ¼

XJ�1
j¼0

X2j�1
k¼0

dn
j;k j;kðxÞ þ cn0;0: ð4:53Þ

The transition between both representations is done by the orthogonal wave-

let transform (Mallat’s algorithm).

In the collocation method, the function !n
J is naturally associated with a

regular grid ðxk ¼ k2�JÞk¼0;2J�1 of ½0; 1	 and its corresponding collocation

values !n
JðxkÞ. Often, by using properties of scaling functions ’J;k one can

identify

!n
JðxkÞ � 2�J=2cnJ;k: ð4:54Þ

The wavelet Galerkin method is based on the wavelet coefficients dn
j;k, and

in practice uses only a few (non-negligible) coefficients larger than a given

threshold ": fdn
j;k; jd

n
j;kj > "g. Mallat’s fast wavelet algorithm works well for

regular grids, but is not efficient for irregular grids made up of irregularly

spaced grid points xk corresponding to the ‘centres’ of wavelets  j;k, for

which the coefficients of !n
JðxkÞ satisfy jd

n
j;kj > ". To avoid this problem,

one can introduce in many cases, an interpolating function of VJ [201] and

adapt Mallat’s fast wavelet algorithm [95], [97]. Another way to overcome

this problem is to directly construct the interpolating scaling functions ’J;k
and the corresponding interpolating wavelet basis  j;k [57], [25]. Finally, one

can also construct an adaptive multiresolution analysis [171], [4].

The algorithm (4.51) for solving the two-dimensional Navier–Stokes equa-

tions can now be split into four steps which we will discuss below: (1) time-

stepping of the heat equation, (2) solving a Poisson equation, (3) computing

the nonlinear term, (4) imposing the boundary conditions.

4.6.3.1 The heat equation solution

Let us consider the discretized heat equation
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ð1� �
tr2
Þ!nþ1

¼ !n
þ 
tf n: ð4:55Þ

The biorthogonal approach introduced in [139], [126], [94], [97] consists of

building a biorthogonal system from a classical wavelet basis  j;k, first setting

�j;k ¼ ð1� �
tr
2
Þ
�1 j;k; ð4:56Þ

with suitable hypotheses on  . Then a system ~��j;k biorthogonal to �j;k is

constructed, and solving equation (4.55) reduces to the change of basis

h!nþ1
j j;ki ¼ h!

n
j�j;ki þ 
th f

n
j�j;ki; ð4:57Þ

where the notation hji denotes scalar product. The functions �j;k and ~��j;k are

called vaguelettes and have localization properties similar to those of wave-

lets [151]. This approach avoids assembling and solving a linear system. For

the collocation projection operator-adapted cardinal functions [97] have been

constructed which allow the construction of efficient interpolatory quadra-

ture formulas. The decomposition of the right hand side of equation (4.57)

can then be calculated using the fast adaptive vaguelette decomposition of

[97] based on a hierarchical subtraction strategy. This approach has been

used for one- and two-dimensional problems.

The Galerkin approach is to project (4.55) onto a classical, orthogonal or

biorthogonal, wavelet basis ð j;kÞ of the space VJ . We can write

h!nþ1
J j j;ki

� �
j;k
¼ K h!n

J þ 
tf j j;ki
� �

j;k
ð4:58Þ

where

K ðj;kÞ;ðj0;k0Þ ¼ hð1� �
tr
2
Þ
�1 j;kj j0;k0 i ð4:59Þ

is the heat kernel, which is almost diagonal, as explained in section 4.6.2. This

step is based on approximated, but fast, matrix-vector products. An easy way

to reduce the previous two-dimensional system to several one-dimensional

systems is to use a tensor wavelet basis  j;kðxÞ: j0;k0 ðyÞ
� �

and to split the two-

dimensional heat kernel into two one-dimensional operators

ð1� �
tr2
Þ
�1
� ð1� �
t

@2

@x2
Þ
�1
ð1� �
t

@2

@y2
Þ
�1

ð4:60Þ

as in ADI methods. Such a method is applied in [40], [41].

4.6.3.2 The Poisson equation

The solution of the Poisson equation

r
2�nþ1

¼ !nþ1
ð4:61Þ
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can be obtained using a pseudo-transient technique, i.e. calculating the steady

state solution of the heat equation, which, as in ADI methods, is reached in

only a few iterations by considering iterated powers Kn of the heat kernel K

(4.59) which become sparser with n [40].

An alternative approach, proposed by Jaffard [108], is to consider the well-

conditioned system

PAPP�1 h�nþ1
J j j;ki

� �
ðj;kÞ
¼ P h!nþ1

J j j;ki
� �

ðj;kÞ
ð4:62Þ

where A is the Galerkin matrix of the Laplacian in a wavelet basis:

Aðj;kÞ;ðj0;k0Þ ¼ hr
2 j;kj j0;k0 i and P is the diagonal preconditioning matrix:

Pðj;kÞ;ðj0;k0Þ ¼ 2�j
j;j0
k;k0 , in one dimension (in two dimensions this should be

modified according to the chosen 2D wavelet basis). Jaffard proved that the

condition number of PAP does not depend on the dimension of the system.

Then the solution of (4.62) can be reached in a few iterations by a classical

conjugate gradient method.

The biorthogonal approach is also possible using operator-adapted

biorthogonal vaguelettes for homogeneous operators, i.e. �j;k ¼ ðr
2
Þ
�1 j;k

and ~��j;k ¼ r
2 j;k. The solution of the Poisson equation then reduces to a

change of basis, analogously to the case of the heat equation.

4.6.3.3 The nonlinear term

The nonlinear term vn � 5!n can be computed either by a collocation or by a

Galerkin method. The collocation (also called pseudo-wavelet by analogy

with pseudo-spectral) method can be sketched as follows: starting from the

wavelet coefficients of !n we obtain the values of !n on a locally refined grid

through an inverse wavelet transform. Solving the Poisson equation with one

of the methods described in the previous section, we get the wavelet coeffi-

cients of the stream function �n. Applying an inverse wavelet transform, the

stream function is reconstructed on a locally refined grid. Subsequently, the

velocity vn and r!n are calculated using finite differences on an adaptive grid.

Then the scalar product vn � r!n is calculated at each grid point. Finally, the

wavelet coefficients of the nonlinear term are obtained by a wavelet trans-

form. However, in the bi-orthogonal approach the right hand side of the first

equation of (4.51) is summed up on the adaptive grid in physical space and

then the wavelet coefficients of the vorticity !nþ1 are calculated using the

adaptive vaguelette decomposition. This collocation method requires a fast

wavelet transform between grid points and sparse coefficients sets. This pro-

blem was mentioned in the previous section. Fröhlich and Schneider [97], [95]
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have developed such a wavelet transform for lacunary bases which enables

the adaptive evaluation of terms of the form f ð!Þ without derivatives. This

method has been applied for the full adaptive discretization of reaction-dif-

fusion problems [28]. The algorithm described above will enable the adaptive

evaluation of the convective term.

On the other hand, a Galerkin method works only in the wavelet coeffi-

cient space, avoiding transforms between physical and wavelet space [23].

The nonlinear term is then written as a convolution of the wavelet coefficients

of vn and 5!n; these convolutions involve triple wavelet connection coeffi-

cients of the form h j1;k1 
0
j2;k2 j j3;k3i. A priori the complexity of such a cal-

culation is very large, but the method can be competitive for two reasons.

First, since the wavelets are localized both in space and scale, connection

coefficients vanish when two of the three wavelets are separated either in

scale or space. Hence, only a limited number of terms in the convolution

are significant. Secondly, the method can handle adaptive description of the

fields, i.e. the convolution can be restricted to the significant components of

the flow [167].

Let us mention that at the moment the nonlinear term is computed by a

collocation method either on a regular grid [41], [96], or on an adapted grid

[28].

4.6.3.4 The boundary conditions

Boundary conditions are in general included in the definition of the spaces

ðVjÞj2Z when constructing the multiresolution analysis. The simplest and

most popular (due to the development of Fourier spectral methods) are

periodic boundary conditions for which periodic wavelets, in one or several

dimensions, can be easily constructed [165]. For Dirichlet or Neumann

boundary conditions, compactly supported bases have recently been con-

structed in one dimension [48], [156], [157], and these bases are also asso-

ciated to fast orthogonal wavelet transforms, like for the periodic case. They

can easily be included in some of the previous algorithms, since the extension

to cubic domains in several dimensions is trivial using tensor products of

wavelets (in practice all two-dimensional orthogonal wavelet bases are tensor

products, which raises the problem of the lack of isotropy).

One should also mention the existence of divergence-free wavelet bases

[131], [130], which can be used for the velocity-pressure formulation of

Navier–Stokes equation (4.1) and automatically take into account the incom-

pressibility condition [196].
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4.6.4 Numerical results

To illustrate the previously described adaptive wavelet methods we present

some numerical results for two different cases, i.e. a strong nonlinear inter-

action of three vortices and a decaying turbulent flow. For comparison a

classical pseudo-spectral method serves as a reference. Furthermore in order

to study statistically stationary turbulent flows we discuss results computed

with a recently developed wavelet based forcing method [185]. In all compu-

tations presented below the method of Frölich and Schneider [96] using cubic

spline wavelets of Battle–Lemarié type have been used.

4.6.4.1 Three vortex interaction

As a prototype for vortex merging we consider the strong nonlinear interac-

tion of three Gaussian vortices [186]. This is an important test case, because

the flow dynamics is highly nonlinear, but not yet chaotic (although the

motion of four vortices would be). This allows us to compare in a determi-

nistic manner the time evolution of the solution computed with different

numerical schemes, presenting different truncation errors (here we will com-

pare a pseudo-Fourier scheme and a pseudo-wavelet scheme) with the same

number of nodes. As soon as the dynamics of the system one computes

becomes chaotic, namely sensitive to initial conditions and therefore to

numerical errors, it becomes tricky to compare the predictions of different

numerical schemes. A ‘deterministic comparison’ (based on the L2-norm of

the difference between two solutions computed with two different schemes)

works well for laminar flows, but it should be replaced by a ‘statistical com-

parison’ as soon as the dynamics becomes chaotic (namely beyond the onset of

the transitory regime). The choice of the appropriate statistical diagnostics has

been addressed for several years by Farge and Wickerhauser [74], [205], but is

still an open issue, not yet sufficiently discussed in the numerical analysis

literature.

For details on the numerical simulation we refer the reader to Schneider,

Kevlahan and Farge [186]. The initial condition is given by the superposition

of two positive and one negative Gaussian vortices,

!ðx; yÞ ¼
P3

i¼1 Ai exp ð�ððx� xiÞ
2
þ ðy� yiÞ

2
Þ=�2i Þ with amplitudes A1 ¼

A2 ¼ �2A3 ¼ � and �i ¼ 1=�. The maximum resolution of the computation

corresponds to a finest scale J ¼ 8 which is equivalent to 2562 possible

degrees of freedom. As threshold for the adaptive method [97] we used

" ¼ 10�6, i.e. only wavelet coefficients with absolute value larger than "

have been computed.
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Fig. 4.8. Simulation of the merging of three vortices at times t ¼ 10; 20; 30; 40. (a)
Vorticity field, reference pseudo-spectral method. (b) Vorticity field, adaptive wave-
let method. (c) Wavelet coefficients used in the adaptive wavelet method. (d)
Comparison of Fourier energy spectra for the pseudo-spectral and adaptive
pseudo-wavelet methods (note that the two curves are identical). This figure is
also shown at www.cambridge.org/resources/0521533538.



In Figure 4.8 we show the vorticity field for the reference pseudo-spectral

method and the adaptive pseudo-wavelet method with the corresponding

computed wavelet coefficients (dark entries) for different instants. We

observe that during the interaction small scale components are produced,

which is directly reflected in the active (i.e. the strongest) wavelet coefficients.

At t ¼ 0 the vorticity field is highly regular and the strongest wavelet coeffi-

cients (namely those larger than a given threshold) represent only 3 % of the

total. At later times the number of active coefficients increases to 20 %, i.e.

we still have a compression of a factor 5. The comparison of the vorticity

fields with the pseudo-spectral method, see Figure 4.8, shows no significant

difference. If we look at the energy spectra at t ¼ 40 we can observe quanti-

tatively that all relevant scales, in particular the small ones, are well resolved.

However, as the fine resolution is only required locally, the number of

degrees of freedom has in comparison to the pseudo-spectral method been

reduced by a factor 5.

Let us mention that at the moment both existing adaptive pseudo-wavelet

methods [41, 97, 96] are not yet more efficient in terms of computing time

than a classical, well-optimized, pseudo-spectral method. In principle the

adaptive wavelet methods have a computational complexity of order

OðNadÞ, where Nad denotes the number of the degrees of freedom adapted

to the solution. In comparison the pseudo-spectral methods are of order

OðNreglog2NregÞ complexity, where Nreg denotes the number of degrees of

freedom on the regular grid. The actual numerical cost depends directly on

the constant multiplying the order term. At the moment this factor is rather

high for the adaptive wavelet methods. Therefore for simulations at moderate

resolutions, such as N ¼ 1282 or 2562, the adaptive pseudo-wavelet methods

cannot yet outperform the classical spectral methods, although their opera-

tion count scales slower, as OðNÞ instead of as OðN log2NÞ. But we have

some hope to be able to significantly reduce the time step needed with the

adaptive wavelet code, due to the fact that the retained coefficients are

attached to vortices, namely locations of strong vorticity but weak transla-

tional velocity. Therefore the CFL (Courant–Friedrich–Lewy) criterion,

defining the largest time step to guarantee stability for an explicit time

scheme, can be based on a much larger spatial step than the smallest scale

computed by the adaptive wavelet scheme [85].

4.6.4.2 Freely decaying turbulence

For the computation of freely decaying turbulence one typically uses a sta-

tistical initial condition, generated by means of a Gaussian random distribu-

tion and imposing a given energy spectrum. Here we used a broad band
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spectrum of the form EðkÞ ¼ ck2=ðk0
6
þ k6Þ expð�k2=k�

2
Þ with k0 ¼ 10 and

k� ¼ 80. The constant c has been chosen such that the total kinetic energy

was equal to 1=2. The maximal resolution was 2562 numbers of degrees of

freedom, with � ¼ 10�3. Using a classical pseudo-spectral method we calcu-

lated the solution up to t ¼ 4 corresponding to 12 initial eddy turnover times.

The resulting vorticity field, exhibiting coherent structures and a smooth

spectrum with an inertial range, was then taken as initial condition for the

adaptive wavelet calculation and therefore we assigned the time t ¼ 0. The

threshold for the wavelet coefficients was " ¼ 5 � 10�5. In Figure 4.9 we give

an example of the vorticity field at t ¼ 2 for the pseudo-spectral method and

the adaptive wavelet method with the corresponding wavelet coefficients

which have been computed. As observed in the case of the three vortices,

the wavelet solution does not exhibit a visible difference with respect to the

spectral method. However, out of the total 2562 wavelet coefficients, only

about 20 % have been used during the calculation of the solution. The energy

spectrum also does not deviate significantly from the reference, thus we may

conclude that all scales are well-resolved with only 1/5th of the possible

degrees of freedom. We should mention that the resolution of the present

calculations with 2562 is fairly small. Since for higher resolutions larger

Reynolds number flows can be computed, the compression rate of the wave-

let representation will increase due to the greater intermittency of the flow.

Therefore the impact of adaptive wavelet methods will become particularly

attractive for high Reynolds number flows.

4.6.4.3 Wavelet-forced turbulence

The numerical simulation of turbulent flows has been performed considering

two different regimes: either the freely decaying regime, where the flow is

excited initially and its evolution is computed without any forcing, or the

forced regime, where the flow is excited in such a way that it reaches a

statistically steady state for which the dissipation must be compensated by

the forcing. The advantage of the freely decaying regime is that it depends

only on the flow’s intrinsic nonlinear dynamics, with the hope of thus obser-

ving a universal behaviour. The problem with this method is that it never

reaches a statistically steady state because energy or enstrophy tends to decay

in time. The advantage of the forced regime is that the turbulent flow reaches

a statistically steady state, but this state depends on the kind of forcing

performed [14], which precludes a universal turbulent behaviour.

Classically, two forcing schemes are used which both operate in Fourier

space. Either a negative dissipation within a given wavenumber band, with a

complex amplification coefficient which depends on the wavenumber, or a
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white or coloured noise in time with a prescribed isotropic spectral distribu-

tion, strongly peaked in the vicinity of a given wavenumber, with random

phases. Neither of the two schemes is a satisfactory model because they inject

energy and enstrophy locally in Fourier space and therefore non-locally in

physical space. This forcing mechanism is neither intrinsically related to the

flow’s chaotic dynamics, nor simulates the production of enstrophy on walls

and in shear layers, which is local in physical space and therefore broad-band

in Fourier space. Another drawback of such a forcing is that the scale of the
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Fig. 4.9. (a) Vorticity field of the freely decaying turbulence simulation at time t ¼ 2
for the reference pseudo-spectral method. (b) The vorticity field at t ¼ 2 for the
adaptive wavelet method. (c) The Fourier energy and enstrophy spectra for the
two methods. (d) The corresponding wavelet coefficients used by the adaptive wave-
let method. This figure is also shown at www.cambridge.org/resources/0521533538.



coherent vortices produced by the nonlinear dynamics of the flow is imposed

by the scale at which the forcing is done.

To overcome these drawbacks of the Fourier forcing, a wavelet forcing

scheme has been proposed by Schneider and Farge [185], which excites vor-

tices locally in physical space and as smoothly as possible (in order to avoid

creating any unphysical discontinuities in the vorticity field), without affect-

ing the background. This wavelet forcing is based on the fact that vortices

produced in two-dimensional turbulent flows correspond to the strongest

wavelet coefficients of the vorticity fields, while the remaining weaker coeffi-

cients correspond to the residual background flow [81], [70], [71], [79].

Therefore it injects enstrophy only into the strongest wavelet coefficients,

hence in an inhomogeneous way, in order to excite the vortices without

affecting the background flow. This procedure does not interfere with the

emergence of vortices and does not impose a scale on them, contrary to the

Fourier forcing. The distribution and size of the vortices depend only on the

intrinsic nonlinear dynamics of the flow.

For the numerical results presented here both energy and enstrophy are

kept steady during more than 60 eddy turn over times. Figure 4.10a displays

the vorticity field in a stationary regime at different instants showing that

neither the energy spectrum (Figure 4.10c) nor the PDF of vorticity (Figure

4.10d) change significantly in time. The vortices present in the initial condi-

tion become more circular and well isolated during the flow evolution

because they are better able to withstand the mutual strain due to the addi-

tional enstrophy injected into them. We observe that the slopes of the spectra

(see Figure 4.10c) are much steeper (close to k�6) than the k�3 law predicted

by the statistical theory of homogeneous turbulence. This discrepancy, as

observed for other types of forcing [14], confirms the fact that the spectral

behaviour of two-dimensional turbulent flows is not universal, but instead

depends on the forcing. In Figure 4.10b we observe that the spatial support of

the active wavelet coefficients decreases with the scale, which reveals a strong

intermittency of the flow. Consequently the vorticity field is efficiently com-

pressed in a wavelet basis, because only about 20% of the 1282 coefficients

are needed to represent the flow dynamics. We also show that the PDF of

vorticity (Figure 4.10d) is Gaussian for the weak values, corresponding to the

background flow, and presents non-Gaussian tails for the strong values,

corresponding to the vortices.

In the work presented here, we only excite the vortices produced by the

flow’s nonlinear dynamics. We can also use the same wavelet forcing to create

new vortices by injecting enstrophy locally in the regions of the background

flow where the strain (imposed by the coherent structures to the background
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Fig. 4.10. Temporal evolution of the wavelet-forced turbulence simulation. (a) The
vorticity field at t ¼0, 60, 120. (b) The wavelet coefficients used at t ¼0, 60, 120. (c)
The Fourier energy and enstrophy spectra at t ¼0, 60, 120. (d) The PDF of vorticity
at t ¼ 0, 60, 120. This figure is also shown at www.cambridge.org/resources/
0521533538.



flow) becomes weaker than the background vorticity, this in order to simulate

the formation of new vortices by instabilities, such as the Kelvin–Helmholtz

instability.

4.7 Conclusion

The main factor limiting our understanding of turbulent flows is that we have

not yet identified the structures responsible for its chaotic and therefore

unpredictable behaviour. Based on laboratory and numerical experiments,

we think that coherent vortices are these elementary objects, from which we

may be able to construct a new statistical mechanics and define new equations

appropriate for computing fully developed turbulent flows.

The quasi-singular vortices encountered in turbulent flows are, by their

nature, very rare. In fact, the Cafarelli, Kohn and Nirenberg theorem [33]

shows that singular structures, if they exist, must be of Hausdorff measure

one in space-time. Most of the statistical diagnostics presently used to analyse

turbulent flows are low order statistics and thus insensitive to rare events,

while the effect of coherent structures appears only in the higher order sta-

tistics. An example of this is the fact that the two-point structure function

follows Kolmogorov’s 1941 law (which assumes a homogeneous structureless

and non-intermittent flow), while the higher order structure functions depart

strongly from this law. This deviation is due to the fact that turbulent flows

are highly intermittent, and we think that this intermittency is due to the

nonlinear interaction of coherent vortices, which correspond to strong but

rare events. To efficiently analyse the role of coherent structures in turbulent

flows one requires either a high order statistical method or some conditional

averaging.

Using a wavelet representation instead of a Fourier representation mini-

mizes the restrictions on the basis functions enlarging them from Sobolev

(measuring global smoothness) to Hölder and Besov (measuring local

smoothness) spaces. Moreover, the Fourier spectrum used by the present

statistical theory of turbulence is not the appropriate way to analyse the

physical structure of a turbulent flow, because it loses all spatial information

which is present only in the phase of the Fourier coefficients. Since the

Fourier spectrum is by definition the Fourier transform of the two-point

velocity correlation (which is by Wiener–Khinchin’s theorem the modulus

of the Fourier transform of velocity), the phase is lost. Furthermore, the

Fourier energy spectrum is sensitive to only the strongest isolated singularity

in the flow, and even then can give no information about the form or location
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of this singularity. In short, Fourier space analysis is unable to disentangle

coherent vortices from the rest of the flow.

The complementary simultaneous space and scale information provided by

the wavelet representation makes it an appropriate tool for identifying and

analysing coherent vortices in turbulent flows. The wavelet transform can be

used to segment the vorticity field into coherent and incoherent components

as the first stage in a conditional sampling algorithm. Such a segmentation

method respects Galilean invariance because it is performed on the vorticity

field and not on the velocity field. A local wavelet analysis can also give the

strength and form of all quasi-singular isolated vortices and separate them

from the background flow.

Different wavelet techniques must be used depending on whether the flow

contains oscillating (e.g. spiral) or non-oscillating (e.g. cusp) type singulari-

ties, and whether it contains isolated (e.g. a single cusp or spiral) or dense

(e.g. fractal) distributions of singularities. For example, the current wavelet-

based methods for determining the singularity spectrum of a multifractal

work only if the signal does not contain oscillating singularities.

Turbulence may contain both types of singularities in either dense or isolated

distributions. It is therefore important to determine from the beginning

whether a given turbulence signal contains oscillating singularities and how

these singularities are distributed. This classification is possible using a wave-

let-based diagnostic.

In section 4.3 we reviewed the wavelet-based methods for detecting and

analysing the singular structure of a signal. We saw that these methods are

useful, not only because they provide new information which cannot be

obtained using other methods, but also because they formally unify a wide

range of previously disparate approaches. For instance the wavelet-based

method of calculating the structure functions unifies their analysis with the

calculation of energy spectra and the strength of local singularities.

Furthermore, wavelets play the role of ‘generalized boxes’ in a new form of

the standard box-counting algorithm used to estimate fractal dimensions. This

algorithm brings out the intimate relationship between structure functions and

multifractals. These techniques have been applied to analyse turbulent signals.

In section 4.4 we showed that wavelet analysis has been an essential tool for

identifying coherent structures as phase-space regions correlated in both space

and scale, and for studying their scaling properties. This method has helped to

relate the intermittency of turbulent flows to the presence of organized coher-

ent vortices, and explained why the predictions of the statistical theory of

turbulence are not verified for high-order statistics. The wavelet representa-

tion has also been used to compute the transfers of energy and of enstrophy
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between coherent and incoherent components of turbulent flows. Wavelet

extraction of coherent structures has shown that they have non-Gaussian

one-point PDFs, while the background has Gaussian one-point PDFs.

In section 4.5 we reviewed several applications of wavelets for turbulence

modelling. In particular, we showed that the wavelet representation, asso-

ciated with nonlinear filtering, extracts the coherent vortices in a computa-

tionally efficient way. Turbulent motions are non-separable in the Fourier

representation, while a wavelet representation is able to provide such separ-

ability. Based on the analysis mentioned above, we expect a separation in

wavelet coordinates between organized vortices (having non-Gaussian sta-

tistics) to be explicitly computed, and background flow (having Gaussian

statistics) to be modelled by an appropriate stochastic process. This decom-

position is the basis of a new way of numerically simulating turbulent flows

called Coherent Vortex Simulation (CVS) [84], and possibly other kinds of

intermittent phenomena having similar statistics.

In section 4.6 we summarized the progress that has been made in actually

computing partial differential equations in wavelet space. Numerous promis-

ing experiments have been carried out using wavelets on Burgers’ equation in

one or two dimensions, heat equation or Stokes equation in two dimensions

and Navier–Stokes equations in two dimensions. All these experiments have

shown that wavelet approaches are valid, although they are still computa-

tionally expensive.

In conclusion, we think that the wavelet functional representation may be

the proper tool for building a statistical mechanics of turbulence based on the

identification of elementary dynamical structures from the observational data

we have. This theory may replace the present Fourier-based statistical theory

of turbulence which relies on the symmetries of the Navier–Stokes equations,

but is unable to treat near-wall regions where turbulence is produced by

instabilities and symmetries are broken. We are now convinced that the

Navier–Stokes equations are not the practical model equations to compute

large Reynolds number flows. Indeed in this limit, there is probably some

symmetry breaking associated with the production of coherent structures out

of the random background flow in shear layers.

Turbulence research is a kind of tragi-comedy – tragic due to its military

(atomic bomb, missiles, fighter airplanes) applications – and comic because

at each generation we seem fated to rediscover old ideas. For instance, our

understanding of dissipation and turbulence modelling is the same as what

Richardson was suggesting 68 years ago when he wrote
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Diffusion is a compensation for neglect of detail. By an arbitrary choice we try to
divide motions into two classes: (a) Those which we treat in detail. (b) Those which
we smooth away by some process of averaging [177],

and the program we develop corresponds to the prescription for turbulence

research proposed 48 years ago by Dryden when he wrote: ‘It is necessary to

separate the random processes from the non-random element’ [60]. This

corresponds precisely to what we do: we split each flow realization between

rare events out of statistical equilibrium (the coherent vortices) that we com-

pute as a nonlinear dynamical system, and random events in Gaussian sta-

tistical equilibrium (the incoherent background flow produced by the

nonlinear interactions between coherent vortices) which can be modelled

by a Gaussian stochastic process.

Wavelets, as a new mathematical tool, bring new insights to evaluate

current methods and we hope that they will lead to a better understanding

of turbulent flows. But, knowing the past difficulties encountered in this field,

we should not be overly optimistic, nor should we oversell wavelets. As

Robert Sadourny likes to say ironically: ‘Wavelets? You mean this new

approach which will waste another 20 years of turbulence research!’.
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barotropic model flows: intermittency waves and predictability, J. Atmos. Sci.,
38, 2305–2326.

[15] Batchelor, G. K. (1969). Computation of the energy spectrum in homogeneous
two-dimensional turbulence, Phys. Fluid, suppl. II, 12, 233–239.

[16] Batchelor, G.K. (1953). Homogeneous turbulence, (Cambridge University
Press).

[17] Batchelor, G. K., and Townsend, A. A. (1949). The nature of turbulent motion
at large wave-numbers, Proc. Roy. Soc. Lond. A, 199, 238–255.

[18] Battimelli, G. (1984). The mathematician and the engineer: the statistical
theories of turbulence in the 20’s, Riv. Stor. Sci., 1(1), 73–94.

[19] Battle, G., and Federbush, P. (1993). Divergence-free vector wavelets,
Michigan Math. J., 40, 181–195.

[20] Benhamidouche, N. (1995). Ondelettes mobiles et l’instabilité gravitationnelle,
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[50] Dahmen, W., Prössdorf, S. and Schneider, R. (1994). Multiscale methods for
pseudo-differential equations on smooth closed manifolds, Wavelets: Theory
Algorithms and Applications, eds. Chui, Montefusco and Puccio, (Academic
Press).

[51] Davis, A., Marshak, A. and Wiscombe, W. (1994). Wavelet-based multifractal
analysis of non-stationary and/or intermittent geophysical signals, Wavelet
Transforms in Geophysics , eds. Foufoula-Georgiou and Kumar, 249–298.

[52] Desnjanski, V. and Novikov, E.A. (1974). Model of cascade processes in
turbulent flows, Appl. Math. Mech., 38(3), 507–513.

[53] DeVore, R., Jawerth, B. and Popov, V. (1992). Compression of wavelet
decomposition, Am. J. Math., 114, 737–785.

[54] Domaradzki, J. A. (1992). Nonlocal triad interactions and the dissipation
range of isotropic turbulence, Phys. Fluids A, 4, 2037.

[55] Domaradzki, J. A. and Rogallo, R. S. (1990). Local energy transfer and
nonlocal interactions in homogeneous, isotropic turbulence, Phys. Fluids A, 2,
413.

[56] Domaradzki, J. A., Rogallo, R. S. and Wray, A. A. (1990). Interscale energy
transfer in numerically simulated turbulence, CTR, Proceedings of the Summer
Program.

[57] Donoho, D. L. (1992). Interpolating Wavelet Transforms. Preprint Stanford
University.

[58] Donoho, D. (1993). Unconditional bases are optimal bases for data
compression and statistical estimation, Appl. Comp. Harm. Anal., 1, n. 1, 100–
115.

[59] Dupree, T. (1992). Coarse-grain entropy in two-dimensional turbulence, Phys.
Fluid B, 10, 3101–3114

[60] Dryden, H. (1948). Recent advances in the mechanics of boundary layer flow,
Advances in Applied Mechanics, 1, 1–40, (Academic Press).

[61] Duval-Destin, M. and Murenzi, R. (1993). Spatio-temporal wavelets:
application to the analysis of moving patterns, Progress in Wavelet Analysis
and Applications, eds. Meyer and Roques, (Editions Frontières), 399–408.
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Abstract

The energy cascade found in fully developed fluid turbulence is believed to

originate as large-scale organized motions called coherent structures. The

process of detecting, locating, and tracking these coherent structures is there-

fore of central importance to the continued study of turbulence. A number of

researchers have applied wavelet-based methods to the problem of coherent

structure detection, and significant performance improvements over other

existing methods have already been reported.

In this paper, we compare the performance of various conventional as well

as wavelet-based detector algorithms for cylinder wake flow data. The result-

ing ROC curves quantitatively demonstrate the effectiveness of wavelet meth-

ods. The detections are then used to form conditional averages of the velocity

time-series, revealing their underlying physical structure.

5.1 Introduction

Recently, advances in the theoretical understanding and implementation of

wavelets have led to their increased use in analysis and signal processing.

Wavelet methods can be very effective in the study of non-stationary phe-

nomena [7], and have thus sparked a concerted interest in applying them to
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the analysis of turbulent flows in general, and to the detection of coherent

structures in particular [8].

It is possible that some coherent structure detectors are better suited for

certain types of turbulent flows, or operate most effectively under specific

conditions. As the numbers and types of detectors grow, it becomes increas-

ingly important to measure their relative performance in quantitatively

meaningful ways. In this chapter, we describe an approach to the comparison

of detector algorithms by means of the Receiver Operating Characteristic

(ROC) curves, and demonstrate the utility of this method for the case of

cylinder wake flow. The resulting detections are then used to form condi-

tional averages from the velocity time-series data, so that the precise mor-

phology of the coherent structures can be studied in detail. For additional

discussion regarding the theoretical basis for such conditional averages, see

Chapter 4 by Farge et al. in this volume.

In the early decades of the twentieth century turbulence was considered

to be a purely stochastic process, and well defined statistical quantities

for turbulent flows were measured. In 1895, Reynolds [21] became the

first to divide the flow into its mean and fluctuating parts. By doing this

he was able to derive what is called the Reynolds averaged Navier Stokes

equations. These equations show that the fluctuating part of the velocity

gives rise to convective stress terms which are of great importance in

turbulent flows. Based on the assumption that the turbulent scales inter-

act randomly, Prandtl [20] and Taylor [23] introduced the eddy viscosity

model.

Probably the first investigator to realize that turbulent flows contain

non-random structures was Townsend [25]. He found that turbulent

motion includes a system of large convecting eddies with sizes comparable

to the outer scales of the flow. Townsend further discovered that these

eddies are much larger than those which contain most of the turbulent

energy, and observed that they had a deterministic form. These findings

were probably the main trigger for the present great interest in the nature

of coherent structures. While there is no consensus on exactly how to

define a coherent structure, flow visualizations made by Kline et al. [16]

as well as others have shown that coherent structures physically exist, and

that they underlie the random three-dimensional vorticity that charac-

terizes turbulence. This means for example that a turbulent shear flow

can be decomposed into a sum of coherent structures and incoherent

turbulence. Consider the Reynolds momentum equations as discussed by

Tennekes and Lumley [24]:
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This equation relates the mean flow Ui to the pressure P. The Reynolds shear

stress, which appears in the fluctuating terms 1
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on the right-hand

side of (5.1) would identically vanish if the velocity components were uncor-

related random variables. However, it is known that the shear stress ��uv is

always negative.

It is generally accepted that large scale coherent structures are responsible

for the transport of significant amounts of mass, heat and momentum. On

the other hand, they do not necessarily possess high levels of kinetic energy

[12]. Although there remains some disagreement about this, turbulent kinetic

energy is primarily associated with incoherent turbulence. Coherent struc-

tures in the wake of a solid body have been shown by Zhou [26] to measur-

ably contribute to both u2 (10–20%) and v2 (40–60%), where we use an

overline, e.g., u, to indicate time averaging. They are also responsible for

most of the turbulent shear stress, uv: indeed, recent studies by Krogstad

and Kaspersen [17] have shown that they contribute as much as 70% to the

total. Advances in the physical understanding of these processes will surely be

aided by experimental measurements of coherent structures, which in turn

depend on effective methods for detection.

Drag is a force which occurs in all moving fluids. This frictional, dissipative

force is due to viscosity, and converts kinetic energy into heat. The potential

for reducing its effects would be of great value in many industrial problems.

In the last few years there has been a growing interest in trying to control and

manipulate coherent structures for the purpose of reducing drag and/or heat

transfer. Direct numerical simulations of channel flow at low Reynolds num-

bers have shown that active control of coherent structures could reduce drag

by as much as 50% [19]. If regions of high fluid friction can be reliably

identified in real-time, they might be controlled either by injection or suction

of fluid. Active control of coherent structures is of course strongly dependent

on the algorithm used to detect them. Therefore, it is of great interest to find

a method to evaluate the relative performance of various detection algo-

rithms.

Several authors have tried to define coherent structures, and some defini-

tions are more nebulous than others. In Robinson [22], a coherent structure is

defined as a ‘three-dimensional region of the flow over which at least one
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fundamental flow variable (velocity component, density, temperature, etc.)

exhibits significant correlation with itself or with another variable over a

range of space and/or time that is significantly larger than the smallest

local scales of the flow.’ A more specific definition is given by Hussain [13]:

‘A coherent structure is a connected turbulent fluid mass with instanta-

neously phase-correlated vorticity over its spatial extent.’ Coherent structures

can be further classified as either bursts or sweeps [18] by their location in the

u� v plane. While the correct definitions for bursts and sweeps are still being

debated in the literature, the reader may wish to think of a burst as a near-

wall ‘streak’ of fluid which moves slowly outward into the boundary layer.

Typically, when this streak reaches a distance of yþ � 40 (the quantity yþ is a

dimensionless distance, normalized by the ratio of wall shear velocity to the

kinematic viscosity) it suddenly ejects into the outer portion of the boundary

layer. On the other hand, a sweep is a volume of fluid that moves inward

from the outer portion of the boundary layer toward the wall. For a more

complete description of bursts and sweeps, see Bogard and Tiederman (1983)

[4] in which the authors used flow visualization techniques to study their

structure in detail. These fluid entities are physically coherent structures,

and in our analysis we will always seek to detect bursts. In this study we

will adopt the point of view that coherent structures are distributions of fluid

having a large-scale energetic deterministic form, with statistically random

fluctuations superimposed on them. The use of this definition provides us

with a simple mechanism to treat our coherent structures in a mathematically

precise way.

Equally difficult as defining the coherent structures themselves is the pro-

blem of constructing an algorithm to detect them. Many such detector algo-

rithms have been proposed, and it is not surprising that some perform better

than others. Based on this fact there is no doubt that conclusions made about

the dynamics and significance of coherent structures will depend in part on

which detection algorithm is used. This provides additional motivation to test

and compare the various detection algorithms.

The conventional approach to studying coherent structures begins with a

detector – an algorithm for determining when and where a coherent structure

exists in the flow. Because of the relative difficulty in following a given

coherent structure as it convects downstream, we are typically forced to

collect data from specific locations in space, and employ statistical methods

to infer the nature and motion of the structures. Such statistical methods

generally amount to forming ensemble averages conditioned on the detec-

tions, and examining their structure in the mean. In our analysis we start with

standard ensemble averages and combine them with computer-generated
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noise based on the measured statistics of the data. We thus obtain synthetic

data suitable for comparing the statistical performance of each of the detec-

tors.

This chapter is organized as follows: section 5.2 summarizes the main

advantages that wavelets bring to the detection of coherent structures in

fluid turbulence. Section 5.3 describes the experimental details for the data

used in this study. Section 5.4 outlines the overall approach used to quanti-

tatively measure the relative performance of the various detectors, which are

defined in sections 5.5 and 5.6. Our results are discussed in section 5.7, and

summarized in section 5.8.

5.2 Advantages of wavelets

There are several advantages that wavelets bring to the detection of coherent

structures in fluid turbulence. The aim of this paper is to compare and

illustrate several conventional and wavelet methods in a physically mean-

ingful and intuitive way. It will be seen that the general performance of the

wavelet detectors, as measured by their ROC curves, is superior to the non-

wavelet conventional detectors. In fact, we show that the best conventional

method examined in this study is actually a wavelet method, devised long

before the term ‘wavelet’ came into use.

Unlike the Fourier basis, wavelets are analysing functions that are loca-

lized in space but have a variable width. For turbulence studies where the

event scales aren’t necessarily known ahead of time, wavelet analysis can lead

to rapid determination of the relevant scales. Wavelets are short enough to be

able to detect individual events, and do not require periodicity or stationar-

ity. Finally, with the modifications that we will describe, the bivariate wavelet

cross-transform can be made to optimally detect individual pairs of signal

events that are in quadrature , i.e., whose temporal inner product vanishes,y in

an optimal fashion. This is in contrast to Fourier methods such as the cross-

spectrogram, which provide optimal detection only for one scale.

5.3 Experimental details

The data used in this study were collected in the turbulent wake of a circular

cylinder, where coherent structure generation, often referred to as vortex

shedding , occurs with great regularity. Furthermore, coherent structures

within the wake flow are very distinct, and their existence has been abun-
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dantly confirmed by many researchers (see for example Bisset, Antonia and

Browne [2]). Fluctuating velocity data are relatively easy to measure under

these circumstances, and can even be used for flow visualization, ibid . These

features make cylinder wake flow data particularly suitable to our investiga-

tion.

The measurements were made in a 0:7m� 1:0m closed return wind tunnel.

A sketch of the experimental setup is shown in Figure 5.1. The cylinder,

which spanned the test section, had a diameter of d ¼ 23:6mm, which gave

it a length-to-width ratio of 42.6. All measurements were made at a free

stream velocity of U1 ¼ 13:4m=s, and thus a Reynolds number of � 2200

at room temperature. The turbulence level of the undisturbed flow, i.e., the

standard deviation of the fluctuating part of the velocity divided by the local

mean velocity, was less than 0.3%.

Instantaneous velocity signals were measured in both the streamwise and

transverse-vertical directions. For the purposes of this analysis, we decom-

pose each component into its mean and fluctuating parts by writing uðtÞ þU0

for the streamwise and vðtÞ þ V0 for the transverse velocities. An array of

hot-wire anemometers (X-wire probes) was fabricated in-house, and per-

mitted data collection at eight simultaneous equally spaced positions along

the transverse y-direction. The frequency response of each probe was

approximately 15 kHz. The signals were low pass filtered at 5 kHz and

then digitized at 7874 Hz. Each record contained 315 392 samples per channel

for a total sampling time of 40.05 s. A 12-bit 16 channel digitizer board from

R.C. Electronics was employed in conjunction with a 486 Compaq PC. Raw
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data were then transferred to a Digital Equipment Alpha workstation for

further processing and subsequent tape storage.

Although measurements were made at several positions, we chose to use

data that was taken at a distance of x=d ¼ 8 from the centre of the cylinder.

At this downstream position, near-wake effects like backflow are negligible

while the structures are still very distinct. To better understand the nature of

the fluid flow at this position, it is helpful to visualize the average Reynolds

stresses, �uiuj, as functions of their transverse displacement from the centre-

line. To display these as dimensionless quantities, we have divided by the

density and mean flow speed to obtain u2=U2
0 , v

2=U2
0 , and uv=U2

0 (see Figure

5.2). As part of the validation process for our experimental setup, our mea-

surements were compared with other published sources (see [26]) and were

found to be in close agreement. Figure 5.3 shows the mean flow velocity, also

as a function of distance from the centreline.
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Fig. 5.2. Reynolds stress profiles at x=d ¼ 8.

Fig. 5.3. Mean velocity profile at x=d ¼ 8.



5.4 Approach

The task of a detector algorithm is to identify the presence or absence of

some specified deterministic signal that may be corrupted by noise.

Furthermore, if that deterministic signal is present, the aim will be to provide

an estimate of its time-of-arrival. In much of the existing literature, such an

algorithm is called a receiver and its performance is measured by a set of

statistics called the Receiver Operating Characteristics (ROC). For any given

detector functioning under a fixed set of conditions, its ROC statistics are the

probability of detection and the false-alarm rate. The probability of detec-

tion, or PD, is defined as the likelihood that an event will be properly detected

when presented to the algorithm. The false-alarm rate, PFA, is the probability

that a detection will be reported when in fact the event was not present.

The probability of detection and the false-alarm rate are interdependent

quantities. Generally speaking, the detector must make a trade-off between

maximizing PD while minimizing PFA. When this trade-off can be parame-

trized, the result may be displayed as a ROC curve: a plot of PD vs. PFA for

various values of the parameter. Typically, a receiver consists of some linear

filter followed by a threshold detector. In that case, both PD and PFA are

parametrized by the threshold level.

5.4.1 Methodology

We will assume that the coherent structures we wish to detect are realizations

of some fixed deterministic function gðtÞ. A velocity signal that we have

available from the instrumentation might be represented by f ðtÞ. This signal

will contain coherent structures located at some random set of times f�ng,

along with high levels of additive random noise. If the noise signal is a mean-

zero process �ðtÞ, our signal can be written as

f ðtÞ ¼ �ðtÞ þ
X
n

gðt� �nÞ:

We have at hand several detectors which have been specifically designed to

detect occurrences of g and to provide us with estimates for the �ns. The

purpose of this study is to quantitatively compare their performance, and

we would like to apply the method of ROC curves to accomplish this. Our

task then becomes to parametrically measure both the probability of detec-

tion and the false-alarm rate for each detector. Unfortunately, we do not

know a priori the form of g, the times f�ng, nor even the precise statistics of

�ðtÞ.

208 L. Hudgins and J.H. Kaspersen



The first step is to analyse the noise so that we can synthesize some of our

own. Then, using synthetic noise (containing no coherent structures) we can

experimentally determine the false-alarm rate function PFAð�Þ for each of the

detectors. Next, we obtain an estimate of the function g using the best con-

ditional averages that each detector can provide. We then synthesize as many

data points as we need by generating synthetic noise and placing copies of g

at known locations. Using such data, we then estimate the probability of

detection PDð�Þ for each candidate detector.

5.4.2 Estimation of the false-alarm rate

Figure 5.4 shows the measured power spectra and frequency distributions for

the u and v components in the data record. All curves have been normalized:

power spectra by the sample variance, and probability densities by the stan-

dard deviation. The spectral ‘line’ that appears at � 125Hz corresponds to

the rate at which coherent structures are generated in the wake of the cylin-

der. This rate is in agreement with theoretical predictions based on the fluid
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Fig. 5.4. Measured power spectra and frequency distributions for the u and v com-
ponents in the data.



speed and the dimensions of the cylinder. Its second harmonic is also visible

in the spectrum of v (at � 250Hz). These harmonic components are primarily

associated with the deterministic function gðtÞ, i.e., the coherent structures.

However, since the signal-to-noise ratio of the data is very low, the distribu-

tion and spectrum of the noise �ðtÞ was simply taken to be that of the data

itself. Therefore, to estimate the spectrum of � we ignored these harmonic

lines and assumed that its spectrum was smooth. Having done that, we then

synthesized pseudo-random noise data that approximated the characteristics

of � while at the same time contained no coherent structures . Figure 5.5 shows

the measured power spectrum and frequency distribution of the synthetically

generated noise.

We assume that the deterministic function gðtÞ has support on an interval

of length T , so that N consecutive realizations of data can be written as

f ðtÞ ¼ �ðtÞ þ
XN�1
n¼0

gðt� nTÞ: ð5:2Þ
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Fig. 5.5. Measured power spectra and frequency distributions for the u and v com-
ponents in the synthetic noise.



Setting gðtÞ ¼ 0 in equation (5.2) above, we then process f ðtÞ with each

detector and determine the maximum value achieved at the filter output

for each interval. Thus, at threshold �,

PFAð�Þ �
# intervals a detection � � was observed

N

is an estimate of the false-alarm rate for that detector.

5.4.3 Estimation of the probability of detection

Next, we will need an estimate for gðtÞ. We assume �ðtÞ to be stationary and

uncorrelated over the time T , and that the occurrences of gðtÞ in the signal

aren’t too close together, i.e.,

m 6¼ n ) j�m � �nj � T : ð5:3Þ

Each detector returns a set of times D ¼ f�̂�ng which we use together with the

noisy time series data f ðtÞ to estimate gðtÞ in the following way. Portions of

the signal f ðtÞ, each having length T and centred at one of the times �̂�n are

excerpted and averaged. This technique is called conditional averaging

because the average is ‘conditioned’ on the detection times. It produces an

estimate of gðtÞ which converges for large numbers of detections:

ĝgðtÞ ¼
1

N

X
n

f ðtþ �̂�nÞ ð5:4Þ

¼
1

N

X
n

�ðtþ �̂�nÞ þ gðtÞ
� �

¼ gðtÞ þ
1

N

X
n

�ðtþ �̂�nÞ

! gðtÞ:

By using this estimate of gðtÞ in equation (5.2), we generate portions of

data that contain coherent structures. Again, we process f ðtÞ with each detec-

tor and determine the maximum for each interval. Finally,

PDð�Þ � # intervals a detection � � was observed

N

is an estimate of the probability of detection for that detector.
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5.5 Conventional coherent structure detectors

In this section we summarize some of the methods that have classically been

used for detection and location of coherent structures. A more detailed

description of these algorithms can be found in Kaspersen and Hudgins

[15]. Each such method is equivalent to a definition of coherent structure.

Different detectors use different criteria, and therefore will report different

sets of times. This leads to different conditional averages and consequently

different estimates for the underlying coherent structures.

5.5.1 Quadrant analysis (Q2)

We begin our description of methods for detecting coherent structures with a

simple bivariate example. A burst event is physically associated with an out-

rush of fluid from the wall, during which the transverse velocity is positive

while the streamwise velocity temporarily falls below its mean value. In gen-

eral, the quadrant algorithm can detect large juvj products in any specific

quadrant of the u–v plane. However, to qualify a coherent event as a burst,

we restrict our attention to the second quadrant. The method is therefore

called ‘Q2’. Define

QfgðtÞ ¼
f ðtÞgðtÞ : f > 0; g > 0 and

0 : otherwise.

	
ð5:5Þ

Let M represent the set of local maxima of QfgðtÞ, and for each � > 0 define

the detection set as

DQð�Þ ¼ f� 2M : Qfgð�Þ � �g: ð5:6Þ

In practice, the Q2 algorithm is employed with f ¼ �u and g ¼ þv, which

forces Q�uvðtÞ to take positive values in the second quadrant of the u�v

plane.

5.5.2 Variable Interval Time Average (VITA)

The Variable Interval Time Average (VITA) algorithm of Blackwelder and

Kaplan [3] is an example of a univariate detector. This method looks for large

and/or abrupt changes in the streamwise velocity by calculating its short-time

variance over a fixed time interval.

For � > 0, define the short-time average of f as

bff ðtÞ ¼ 1

�

Z tþ�=2

t��=2

f ðxÞ dx: ð5:7Þ
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The short-time variance may then be expressed aseff ðtÞ ¼ bf 2f 2ðtÞ � ½bff ðtÞ�2: ð5:8Þ

In our analysis, we let M represent the set of local maxima of eff ðtÞ. Then for

each � we define the detection set as

DVITAð�Þ ¼ f� 2M : eff ð�Þ � �g: ð5:9Þ

In terms of wavelets, the above filter can be understood as the lowpass

branch of a perfect reconstruction filter bank for the Haar system. In prac-

tice, the algorithm is applied to the u-component of velocity using � ¼ 10�20

wall time units, which for our data was approximately 2:5 ms.

The first author has demonstrated [9] for an atmospheric boundary layer

over the open ocean that a bivariate wavelet method based on both the u- and

v-velocity components outperforms the corresponding univariate algorithm.

In this study we wish to compare both univariate and bivariate detectors

whenever both methods can reasonably be defined. We therefore offer the

following bivariate version of the VITA algorithm.

Write the short-time covariance as

VfgðtÞ ¼ bfgfgðtÞ � bff ðtÞbggðtÞ: ð5:10Þ

Let M represent the set of local maxima of VfgðtÞ, and for each � define the

detection set as

DBi�VITAð�Þ ¼ f� 2M : Vfgð�Þ � �g: ð5:11Þ

For the same reasons as before, this algorithm is employed with f ¼ �u and

g ¼ þv which forces V�uvðtÞ to take positive values in the second and fourth

quadrants of the u�v plane.

The resulting coherent structures can be further discriminated as bursts by

restricting our attention to the second quadrant. In this way, additional

algorithms may be defined in terms of the existing ones. Let

Q ¼ f� : f ð�Þ > 0 and gð�Þ > 0g: ð5:12Þ

Then the VITA+Q detection set is given by

D
Q
VITAð�Þ ¼ DVITAð�Þ \Q; ð5:13Þ

in other words, those VITA detections which occur in the specified quadrant.

Bursts are detected when we let f ¼ �u and g ¼ þv. Similarly,

D
Q
Bi�VITAð�Þ ¼ DBi�VITAð�Þ \Q ð5:14Þ

gives the Bi-VITA detections which qualify according to their quadrant.
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5.5.3 Window Average Gradient (WAG)

The Window Average Gradient (WAG) algorithm was introduced by

Antonia and Fulachier [1] in 1989 as an alternative to VITA. The abrupt

velocity changes associated with coherent structures can be detected by mea-

suring the average gradient over some appropriate window width. Loosely

speaking, Taylor’s hypothesis states that turbulent fluid velocities are practi-

cally constant over any interval of time less than or equal to their size divided

by their convection speed. This assumption allows us to infer the ‘instanta-

neous’ shape of a coherent structure by observing it at a single point in space

as it moves under the influence of fluid convection. We can also use this to

estimate the streamwise spatial gradient by observing its temporal gradient.

Filter the signal f according to

eff ðtÞ ¼ 1

�

Z tþ�=2

tþ0

f ðxÞ dx�

Z t�0

t��=2

f ðxÞ dx


 �
; ð5:15Þ

and let M be the set of local maxima of eff . For each �, the set of detection

points is given by

DWAGð�Þ ¼ f� 2M : eff ð�Þ � �g: ð5:16Þ

The reader will recognize that the filter employed by the WAG algorithm is

simply the continuous wavelet transform of f using the Haar wavelet at fixed

scale �. As such, it identifies those places where the signal changes over the

characteristic time scale of �. In practice, the algorithm is applied with

f ¼ �u, and with � ¼ 0:9�
U1

, where � is the boundary layer thickness, and

U1 is the free-stream velocity.

The algorithm is easily extended to a bivariate version (Bi-WAG) by defin-

ing eff and egg according to equation (5.15), and letting M represent the set of

local maxima of eff ðtÞeggðtÞ. For each � define
DBi�WAGð�Þ ¼ f� 2M : eff ð�Þeggð�Þ � �g: ð5:17Þ

To further qualify the detected events as bursts, we can restrict them to

quadrant II by defining the WAG+Q detection set as

D
Q
WAGð�Þ ¼ DWAGð�Þ \Q: ð5:18Þ

Similarly, in the bivariate (Bi-WAG+Q) case,

D
Q
Bi�WAGð�Þ ¼ DBi�WAGð�Þ \Q: ð5:19Þ
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5.6 Wavelet-based coherent structure detectors

In the previous section it was observed that the WAG detector and all of its

variants employ the Haar wavelet. Specifically, the continuous wavelet trans-

form is used at a single fixed scale. We are now prepared to generalize this

approach. A comprehensive treatment of the subject of wavelets can be found

in [5], [6], [14], and others. Further details regarding wavelet spectra and their

application to detection of coherent structures may be found in [10], [11], and

[8].

Conventional Fourier methods identified the repetition rate to be approxi-

mately 125 Hz. In this analysis we employ a cubic spline wavelet at fixed scale

a ¼ 1=125 Hz. The choice of the cubic spline wavelet provides an excellent

trade-off between short length (which gives good time localization) and high

peak-to-sidelobe ratio (which minimizes filter leakage) while maintaining

phase linearity (by virtue of its symmetry).

5.6.1 Typical wavelet method (psi)

Except for the wavelet itself and the method of selecting the analysis scale,

the wavelet-based detectors described in this section are identical to the

WAG algorithms above. Filter the signal f according to

Wf ðtÞ ¼

Z
f ðxÞ a x� tð Þdx; ð5:20Þ

where a is the scale parameter, and the functions

 aðtÞ ¼
1ffiffiffiffiffiffi
jaj
p  

t

a


 �
are defined in terms of an admissible wavelet  ðtÞ: Let M be the set of local

maxima of Wf ðtÞ. For each � the  -set of detection points is given by

D ð�Þ ¼ f� 2M :Wf ð�Þ � �g: ð5:21Þ

The algorithm is applied with f ¼ �u. The bivariate version (Bi- ) defines

Wf and Wg according to equation (5.20). Let M represent the set of local

maxima of Wf ðtÞWgðtÞ. For each � define

DBi� ð�Þ ¼ f� 2M :Wf ð�ÞWgð�Þ � �g: ð5:22Þ

As before the  +Q and Bi- +Q detection sets are given by

Wavelets and detection of coherent structures in fluid turbulence 215



D
Q
 ð�Þ ¼ D ð�Þ \Q; and ð5:23Þ

D
Q
Bi� ð�Þ ¼ DBi� ð�Þ \Q: ð5:24Þ

5.6.2 Wavelet quadrature method (Quad)

Each of the aforementioned detection methods was applied to the data

record, with their thresholds individually adjusted so that the average detec-

tion frequency was equal to the peak in Figure 5.4. Conditional averages

were then formed for both the u and v time series according to equation (5.4),

producing estimates for the deterministic parts of these signals. The resulting

averages are shown in Figure 5.6. The u and v averages are very nearly

periodic, and essentially 90� out-of-phase with each other. This observation

led us to make a refinement of the bivariate wavelet method which we call

wavelet quadrature (Quad).

Both Fourier- and complex wavelet-based methods have been devised to

recover the phase relationship between pairs of signals. (For a detailed treat-

ment of the wavelet cross-transform and its relationship to the Fourier cross-

transform see [9].) But the present problem merely requires a real-valued

signal that responds well to events that are in quadrature.

Like the Haar wavelet, the cubic spline tends to detect the rising edges of a

signal as it changes over a characteristic time scale. These are examples of

anti-symmetric spline wavelets. On the other hand, the quadratic and quartic

splines display even symmetry: they respond maximally to signal events that

are fully symmetric. By employing one symmetric wavelet and one anti-sym-

metric wavelet in a bivariate wavelet detector, we can optimize its perfor-

mance for events that are in quadrature. Additional details regarding the use

of symmetric vs. anti-symmetric wavelets in the context of intermittent tur-

bulence have been discussed by Hagelberg and Gamage in [8].

Let  and  0 represent admissible wavelets possessing odd and even sym-

metry, respectively. Define

Wf ðtÞ ¼

Z
f ðxÞ a x� tð Þdx; and ð5:25Þ

W
0
gðtÞ ¼

Z
gðxÞ 0a x� tð Þdx:

Let M represent the set of local maxima ofWf ðtÞW
0
gðtÞ and for each � define

Dquadrantð�Þ ¼ f� 2M :Wf ð�ÞW
0
gð�Þ � �g: ð5:26Þ

In our analysis, we have used the cubic and quartic spline wavelets, respec-

tively. Because of the way these wavelets were chosen, the algorithm no
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longer provides clear discrimination to quadrants in the u�v plane: the

response has been rotated 45� clockwise. This means that we now tend to

detect structures that lie near the v-axis; precisely what is needed to detect

events that are in quadrature. From Figure 5.6, it can be seen that when the

v-velocity is at its positive extremum, the u-velocity is centred on its falling

edge. Therefore, we again apply the algorithm with f ¼ �u and g ¼ þv.

It is possible to proceed with the mathematical development of the wavelet

quadrature method as a wavelet cross-transform of two signals, using a pair

218 L. Hudgins and J.H. Kaspersen

Fig. 5.6. (continued) Conditional averages of the u (solid line) and v (dashed line)
velocity signals for each of the detection methods tested.



of wavelets that are Hilbert transforms of each other [15]. In this sense, it is a

natural extension of the wavelet cross-transform which selectively detects

signals that are 90� out-of-phase with each other.

5.7 Results

Each detector tends to pick out a certain component in the data. All of the

univariate detectors have returned relatively strong harmonic conditional

averages, while their bivariate counterparts appear to have much weaker

responses. The Q2 and wavelet quadrature algorithms (both of which are

inherently bivariate) have also returned large averages. But an algorithm

attempts to identify segments of data that match its criteria, whether or

not they arise from physically meaningful events. The probability that the

algorithm will report a detection in the absence of any coherent structures

determines the false-alarm rate (see section 5.4.1). It is therefore instructive to

examine the response of each of the detectors to an input of random noise. In

Figure 5.7 we display conditional averages of each algorithm’s response to

the synthetic noise data. These control samples were derived in a similar

manner to the averages in Figure 5.6, by adjusting each detector threshold

so that the mean frequency of detection was approximately equal to the

vortex shedding rate in the original data record. The control samples provide

us with clues about precisely what type of structure each method is detect-

ing – at least in the mean. Not surprisingly, those methods with the largest

control responses also returned the greatest conditional averages.

Furthermore, only the WAG+Q, psi+Q, and Quadrature methods exhibit

any tendency to selectively detect events that are in quadrature.

The measured PFAð�Þ and PDð�Þ for each detector were combined to form

the respective ROC curves shown in Figure 5.8. Clearly, some of the detec-

tors performed better than others. The wavelet based methods – WAG, psi,

and Quad, are generally superior to the non-wavelet methods – VITA and

Q2. However, each of the univariate algorithms, VITA, WAG, and psi,

benefited by an additional qualification on quadrant II events. The bivariate

versions that we offered for VITA, WAG, and psi, all gave disappointingly

poor results, even when qualified on quadrant II. It should be observed that

the nearly ‘flat’ control averages of VITA, WAG, and psi can be explained by

noting that they respond equally to events in either quadrant II or IV.

However, the fact that quadrant qualification did not appreciably help

their performance indicates an erroneous physical basis.

Turning our attention toward the high detection rates, it can be seen (cf.

bottom right panel of Figure 5.8) that the wavelet quadrature method
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outperformed all of the others. To better understand this behaviour, we

computed some new Quadrature conditional averages using only detection

thresholds that fell within a narrow range of values. Specifically, the pos-

sible threshold values were sorted into eight ‘octiles’, and conditional

averages formed for each octile. Figure 5.9 demonstrates that the mor-

phology of the coherent structures depends on the threshold level used to

detect them. First of all, this means that the mathematical model in equa-

tion (5.2) is wrong: the deterministic function is not fixed. Indeed, the
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Fig. 5.7. (continued) Control averages of the synthetic signals for each of the detec-
tion methods tested.
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shape of the coherent structures detected at high threshold levels can be

very different from those at low thresholds, especially in the u-velocity

component. The shape of the low threshold averages (high detection

rates) is nearly the same as the Quadrature global mean in Figure 5.6,

but the relatively rare high threshold events (low detection rates) are many

times more energetic. However, while the absolute value of the peak v-

velocity depended somewhat on the threshold level, its overall shape was

virtually constant. This would indicate that the rare, energetic events are
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Fig. 5.8. (continued) Receiver Operating Characteristic (ROC) curves for each of the
detection methods tested.



much more closely associated with the streamwise component of motion

than with the transverse component, but that the more common, low-

energy events are essentially a mix of the u- and v-velocity components

in quadrature. This explains why the Quadrature method works best at

the highest detection rates, while the univariate wavelet method acting

only on the u-component was superior at the lowest detection rates.
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Fig. 5.9. Special conditional averages taken from Quadrature detections near the
centreline of the wake. These demonstrate that the morphology of the coherent
structures depends on the threshold level used to detect them.



5.8 Conclusions

Several of the most commonly used algorithms for detecting coherent struc-

tures in turbulent flows have been tested in an objective manner by the use of

ROC curves. Wavelet methods have been found to perform better than the

conventional detection methods tested. It was also found that additional

qualification on Q2 events improves the performance of each of the relevant

methods. Finally, at high detection rates the wavelet quadrature method

outperforms all of the others.

Conditional averages from the algorithms tested in this study showed that

the coherent structures were in agreement with a quadrature model. In other

regions of the wake or for other types of flow the quadrature detector may

not be optimal; cf. [9] in which the bivariate wavelet method was superior to

the univariate algorithm for an atmospheric boundary layer. Nevertheless,

for any kind of flow conditional averaging methods which take into account

the phase relationship between the velocity components would be strongly

preferred. Complex-valued wavelets also retain phase information, and

represent another way to implement a detection algorithm. This is in agree-

ment with the findings of Hussain [12] who found that averaging based on

constant phase is preferable.

Finally, the morphology of the coherent structures can be very different at

different threshold levels, even for the fixed test geometry described in this

report. At low threshold levels, the coherent structures are very harmonic,

possess relatively low energy, and their effect is more or less evenly split

between the u- and v-velocity components. At high thresholds, they are

quite peaked in shape, highly energetic, and their effect is mainly coupled

to the u-velocity.
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Wavelets, non-linearity and turbulence in fusion
plasmas
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Avda. Complutense 22, 28040 Madrid, Spain

Abstract

Two fundamental properties of turbulence are intermittency and non-linear-

ity. They imply that the standard Fourier spectral techniques are inadequate

for its analysis. Spectral analysis based on wavelets provides a means to

handle intermittency. New tools are required to handle non-linearity.

In this chapter, we redesign spectral analysis in terms of wavelet methods,

paying particular attention to statistical stability, error estimates and non-

linearity. The application to both computer simulations and measurements

carried out in fusion plasmas provide some illustrative examples.

6.1 Introduction

Although the phenomenon of turbulence is only partially understood, there

seems to be consensus on several aspects. First, that intermittency is a basic

property of turbulence. This means that the characteristics of the turbulence

(spectral distribution, amplitude etc.) vary on a short time scale. Analysis

techniques that rely on the accumulation of data over time scales larger than

this characteristic time scale will then average out much of the dynamics and

obliterate relevant information (as may occur with Fourier analyses).

Wavelet analysis provides an interesting starting point for redesigning the

standard analysis techniques in order to tackle this problem. In this chapter

we shall redefine some basic Fourier analysis techniques in terms of wavelets,

such as cross coherence. We shall emphasize the need for statistical stability

and provide noise level estimates. Finally, we provide some examples of these

techniques.

Second, it is generally accepted that turbulence only arises in non-linear

systems. Therefore, to understand the nature of turbulence, it is essential to

employ analysis tools that are capable of handling this non-linearity. The
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usual analyses based on (cross-) spectra and (cross-) correlations, essentially

linear analysis techniques, are not adequate. Non-linear analysis tools can be

obtained by generalizing the common spectral analysis methods to higher

order, which then are sensitive to non-linear interactions. In this chapter

we shall focus on the so-called bispectral analysis, a method for the detection

of quadratic interactions.

A definition of the bispectrum and the bicoherence based on wavelet ana-

lysis is given. Statistical stability of the bispectrum – a third-order spec-

trum – is again an important point, so we shall provide noise level

estimates of this quantity. The main application of the bispectrum is the

detection of phase coupling. It is shown how this phase coupling bears rela-

tion to the existence of ‘structure’ in turbulent or chaotic time series.

Reasonable time resolution, relevant to intermittency in some turbulent phe-

nomena, can be achieved.

The meaning of bicoherence is clarified analysing computer-generated

chaotic time series. Then, some results obtained from measurements of tur-

bulence in fusion plasmas are presented. Intermittency is detected, and an

analysis of L/H transitions (Low- to High-confinement mode, a bifurcation

in the behaviour of thermonuclear plasmas) is presented.

6.2 Linear spectral analysis tools

In this section, we shall redefine the traditional spectral analysis tools in

terms of wavelets. In doing so, we shall mostly avoid reference to a specific

type of wavelet, since the definitions are equally valid for all types. Although

the definitions are given for continuous wavelets, extension to discrete wave-

lets is mostly self-evident. Such an extension is not possible, however, for the

higher-order spectra (bicoherence), which will be introduced in section 6.3.

The wavelet analysis is set up in such a way that it forms a natural extension

to Fourier analysis, which will help the interpretation of the wavelet analysis

results.

6.2.1 Wavelet analysis

The Fourier transform of a function f ðtÞ and its power spectrum are given by:

f̂f ð!Þ ¼

Z1
�1

f ðtÞ e�i!t dt and Pf ð!Þ ¼ f̂f ð!Þ
��� ���2 ð6:1Þ
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A wavelet can be any function �ðtÞ that satisfies the wavelet admissibility

condition:

c� ¼

Z1
�1

�̂�ð!Þ
��� ���2 !j j�1 d! < 1 ð6:2Þ

The corresponding wavelet family is obtained by means of the scale length

parameter a:

�aðtÞ ¼
1

ap
�ðt=aÞ ð6:3Þ

Some authors prefer to use the scale number s instead, where s ¼ 1=a. The

scale number s is proportional to the frequency of the wavelet. The factor p is

the normalization choice. In the literature, values of p of 0, 1/2 and 1 are

encountered [1, 2]. In the present work, we choose p ¼ 1=2. Other choices of p

may be motivated by computational efficiency or by wavelet power spectrum

visualization demands, but the choice p ¼ 1=2 implies that the L2-norm of the

wavelet is independent of a, and thus the wavelet analysis forms a natural

extension of Fourier analysis.

As mentioned earlier, most of the definitions we shall be giving are inde-

pendent of the actual wavelet choice. Nevertheless, for concreteness we select

a specific wavelet (the Morlet wavelet) which has the benefit of conceptual

closeness to the Fourier analysis base functions e�i!t:

�ðtÞ ¼ d
ffiffiffi
�
p� �1=

2 exp �i2�t½ � � c0ð Þ exp �1
2 t=dð Þ

2
� �

ð6:4Þ

The factor c0 ¼ expð�2�2d2
Þ is included to guarantee that Eq. (6.2) is

satisfied; even so, due to its numerical smallness for values of d of the

order of 1 it is usually omitted in practice. The normalization is such that

the L2-norm of this wavelet is equal to 1. The parameter d determines the

exponential decay of the wavelet and thus permits a suitable combination of

time- and frequency resolution to be selected. Comparing Eqs. (6.1), (6.3) and

(6.4) we assign a frequency ! ¼ 2�=a to each scale a. The frequency resolu-

tion of the wavelet �aðtÞ is approximately �! ¼ !=4d (FWHM – Full Width

at Half Maximum). The time resolution is �t ¼ 2ad (twice the e-folding

length), given by the decay of the exponential part of the wavelet. Note

that �!�t ¼ �, independent of either a or d.

The wavelet transform of a function f ðtÞ is defined by:

Wf ða; �Þ ¼

Z
f ðtÞ�aðt� �Þ dt ð6:5Þ
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As d increases, frequency resolution improves but time resolution deterio-

rates. Interestingly, for d � 1 the wavelet analysis essentially becomes a

Fourier analysis, for which the frequency resolution is optimal but there is

no time resolution. At the other extreme, d # 0, the wavelet becomes a �-

function, and the wavelet transform yields the original signal – we have opti-

mal time resolution but no frequency resolution. We set d ¼ 1 in the follow-

ing, which is, we believe, a reasonable compromise between frequency and

time resolution, although for specific purposes other choices may be better.

Note that the selected wavelet family is not orthogonal. This implies a certain

redundancy in the wavelet transform coefficients which must be taken into

account upon interpreting the results. This disadvantage is compensated by

the mentioned conceptual closeness to the Fourier transform. The redun-

dancy is actually a necessity when calculating higher-order spectra, as will

become clear later. Even though the wavelets are not orthogonal, the inverse

wavelet transform (for p ¼ 1=2) can be calculated (for almost all t) by:

f ðtÞ ¼
1

c�

ZZ
Wf ða; �Þ�

�
að� � tÞ

da d�

a2
ð6:6Þ

which completes the analogy with the Fourier transform.

The wavelet transform Wf ða; �Þ at any given a can be interpreted as a

filtered version of f ðtÞ, bandpassed by the filter �a. Usually Wf a; �ð Þ
�� ��2 is

plotted in the ða; �Þ-plane for visualization purposes (scalogram). In many

instances, the scalogram may be very instructive qualitatively, but provides

no indication as to the statistical significance of the observed features. This

problem will be discussed in section 6.2.2.

As we have tried to make plausible by rather hand-waving arguments, the

wavelet transform can be regarded as a generalization of the Fourier trans-

form. The main advantage over the Fourier transform is that, with a suitable

choice of wavelet �, time-resolved spectra can be calculated. Of course, the

Short-Time (or Windowed) Fourier Transform (basically, chopping the sig-

nal f ðtÞ in short time intervals and calculating the Fourier transform for each

section [3]) also achieves this. The particular advantage of the wavelet ana-

lysis lies in the fact that the time resolution is variable with frequency, so that

high frequencies have a better time resolution. In other words, we abandon

the rather mathematical idea of considering signals f ðtÞ to be composed of

‘everlasting’ monochromatic oscillations, and replace it by the more physical

idea that the elementary oscillations composing the signal must die out in

time, and more rapidly so the higher their frequency, which seems quite a

natural state of affairs. Thus, one may expect that wavelet analysis is better

adapted than Fourier analysis to the examination of systems with dissipation,
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or more generally non-linear systems, since the analysis functions used (wave-

lets) are more like the actual (short-lived) oscillations occurring in such sys-

tems than Fourier modes. Seen from another perspective, one may consider

the problem of decomposing the oscillations of a system into modes. When

the system is linear and the modes used are eigenmodes of that same system,

the decomposition is likely to reveal much information. However, when the

modes are not eigenmodes, the information is likely to be poorly represented

on the basis of these non-eigenmode functions and each mode coeficient is the

result of a number of eigenmodes – the information is ‘scrambled’. In the

non-linear systems with dissipation we are concerned with here, we know that

in general no eigenmodes exist that allow such a decomposition.

Nevertheless, locally one can often perform a mode decomposition, since in

a local environment of a given point the equations describing the system can

be linearized, provided the non-linearity of the system is not too strong. This

local decomposition is precisely what the wavelet analysis pretends to do, and

this explains the success of the wavelet analysis in turbulence analysis.

6.2.2 Wavelet spectra and coherence

We shall now proceed to reformulate the usual spectral analysis tools in

terms of wavelets. In practice, the analysis usually starts with a signal f ðtÞ

that has been digitally sampled. Therefore, the integral appearing in Eq. (6.5)

should be replaced by a summation. Due to the fact that the wavelet decays

rapidly, it is sufficient to evaluate the integral (sum) from, say, �4ad to þ4ad.

This interval depends, of course, on the type of wavelet used. The digitally

sampled signal has a finite record length, implying that the wavelet coeffi-

cients cannot be calculated correctly when � is too close to the record bound-

aries. We simply set the wavelet coefficient to zero when � is less than 4ad

from a record boundary. It will be noted that this distance depends on the

frequency.

One could, of course, take the usual definitions of power spectra, cross

correlations, etc., based on Fourier analysis and simply replace all occur-

rences of Fourier coefficients with wavelet coefficients. That would lead,

however, to highly unstable quantities, varying wildly with time, the practical

value of which is limited. In order to obtain statistical stability while main-

taining time resolution, we integrate (sum) the appropriate combinations

of wavelet coefficients over a (small) finite time interval

T : T0 � T=2 � � � T0 þ T=2
� �

. As a bonus, this procedure allows the esti-

mation of a noise level which will tell us the statistical significance of the
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obtained results. Apart from that, the definitions are completely analogous to

the usual definitions used in Fourier analysis.

Thus, for example, the wavelet cross spectrum is given by:

Cw
fgða;T0Þ ¼

Z
T

W�f ða; �ÞWgða; �Þ d� ð6:7Þ

where f ðtÞ and gðtÞ are two time series. We also introduce the delayed wavelet

cross spectrum:

Cw
fgða;T0;��Þ ¼

Z
T

W�f ða; �ÞWgða; � þ��Þ d� ð6:8Þ

which is a useful quantity for detecting e.g. structures flowing past two

separated observation points. Note that Cw
fg is complex and both its phase

and amplitude provide information. The normalized delayed wavelet cross

coherence is:

�wfgða;T0;��Þ ¼

R
T W�f ða; �ÞWgða; � þ��Þ d�

�� ��
Pw
f ða;T0ÞP

w
g ða;T0 þ��Þ

	 
1=2 ð6:9Þ

which can take on values between 0 and 1. Usually either T0 or �� is held

fixed for visualization purposes. Here the wavelet auto-power spectrum is

given by:

Pw
f ða;T0Þ ¼ Cw

ff ða;T0Þ ð6:10Þ

Note that the wavelet power spectrum can also be written in terms of the

Fourier power spectra of the wavelet and f ðtÞ when T !1:

Pw
f ðaÞ ¼

1

2�

Z
P�a
ð!ÞPf ð!Þ d! ð6:11Þ

Thus, in this limit the wavelet power spectrum is the Fourier power spectrum

averaged by the power spectrum of the wavelet filter [4].

We shall provide an estimate of the statistical noise level of �wfg (Eq. (6.9)).

For that purpose, consider Eq. (6.8). In principle, the integration is over all

samples in the interval T (although in practice one may devise a more effi-

cient algorithm based on the considerations that follow). The frequency with

which f ðtÞ is sampled is !samp ¼ 2�fsamp. Thus, theoretically the wavelet coef-

ficients are determined for each of N ¼ T � fsamp samples in the interval T and

summed. However, these wavelet coefficients are not all statistically indepen-

dent, since the chosen wavelet family is not orthogonal. Each coefficient is

calculated by evaluating Eq. (6.5). Due to the periodicity a of the wavelets,

two statistically independent estimates of the wavelet coefficients are sepa-
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rated by a time a=2, or by a number of points MðaÞ ¼ a!samp=4�. Thus, the

integral appearing in Eq. (6.8) is carried out over N=MðaÞ independent esti-

mates of wavelet coefficients. The relative statistical error in the result is

therefore
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðaÞ=N

p
. Using ! ¼ 2�=a, we find:

" Cw
fg

� �
� Cw

fg

�� �� � !samp

2!

1

N

� �1=2
ð6:12Þ

Applying similar estimates to the denominator in Eq. (9), one arrives at:

" �wfg
� �

�
!samp

!

1

N

� �1=2
ð6:13Þ

It is found that the values of �wfg obtained when analysing Gaussian noise

(random data with a Gaussian probability distribution function, P.D.F.)

conform quite well to this prediction. We consider that significant values

of Cw
fg or �

w
fg should at least be a factor 2 above noise level. Now the advan-

tage of introducing the integration time interval T becomes clear: it provides

us with a method to distinguish significant data from noise, something which

is not at all evident for the individual wavelet coefficients, and which has been

a severe point of criticism to the usual wavelet spectral analysis ever since its

introduction. In fact, in the early wavelet papers the statistical fluctuation of

the wavelet coefficients has often been mistaken for significant information.

6.2.3 Joint wavelet phase-frequency spectra

Another way of doing statistics with the wavelet coefficients that is very

informative from a physical point of view is calculating the joint wavelet

phase-frequency probability distribution function (for a motivation of this

technique and a definition in terms of Fourier analysis see [5]). It consists

in calculating the quantity c ¼W�
f ða; �ÞWgða; � þ��Þ (being the argument

appearing in the definition of Cw
fg) for a number of values of a and �, with

fixed ��. As usual, we define ! ¼ 2�=a and in addition we define � to be the

phase of c. A plot in the !; �ð Þ-plane is then made by dividing the frequency

range 0 � ! � !samp



2 and the phase range �� � � � � into bins and scor-

ing how often each bin is ‘hit’. This graph, when normalized so that the sum

over all bins is 1, is referred to as Pð�; !Þ, the joint wavelet phase-frequency

probability distribution function. Another way of calculating consists of not

summing 1 to each bin that is hit, but rather the instantaneous average

wavelet transform value 1
2 Wf

�� ��2þ Wg

�� ��2	 

. The resulting graph is Sð�; !Þ,

the joint wavelet phase-frequency spectrum. These graphs provide a marvel-

Wavelets, non-linearity and turbulence in fusion plasmas 233



lous insight into the frequency-dependent phase relations that may exist

between two signals f and g (usually taken to be two spatially separated

measurements of the same quantity). Moreover, in many cases, depending

on the physical nature of the signals f and g, and under some additional

assumptions (homogeneity of turbulence, see [5]) a relation can be made with

the dispersion relation ! kð Þ for the processes driving the turbulence. For

some examples of this technique, see section 6.4.2.

6.3 Non-linear spectral analysis tools

For the investigation of non-linear systems, proper non-linear spectral ana-

lysis tools are required. Given the importance of non-linearity in chaos and

turbulence, it is surprising how little attention has been paid to the develop-

ment of such tools. The focus has mostly been on statistical tools (referring to

the determination of fractal dimensions, Lyapunov exponents etc.; for a

recent review see [6]), while more recently time- and space-domain analysis

(rather than frequency-domain analysis) has received a surge of interest,

mostly due to wavelet analysis. Nevertheless, non-linear spectral analysis

tools have been around for some time [7, 8, 9, 10] – although their practical

use has always been hampered by the necessity for long time series in order to

obtain statistical stability.

6.3.1 Wavelet bispectra and bicoherence

Basically, the (cross-) bispectrum is a third-order spectrum (in this terminol-

ogy, the usual power spectrum would be a second-order spectrum). Its defini-

tion in terms of Fourier coefficients is Bfg !1; !2ð Þ ¼ f̂f �ð!Þĝgð!1Þĝgð!2Þ

D E
, where

! ¼ !1 þ !2 and �h i signifies taking an ensemble average (averaging over

many similar realizations). The interpretation of this quantity will be

explained below in the discussion of the wavelet bispectrum. The point we

wish to make here is that to obtain a statistically significant value of the

bispectrum, the ensemble should consist of at least about 100, and preferably

more, independent realizations, while each realization must consist of, say, at

least 128 points to be able to obtain a spectrum with reasonable resolution.

That means that experimental series must be well over 104 points longy,

during which time the experimental conditions must not change appreciably.

Obviously, this is a very severe demand when analysing turbulence that may
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be intermittent, and this probably is the reason that the bispectral analysis

has not been very popular or successful until recently.

Wavelet analysis now provides a second opportunity for these higher-order

spectral methods, mainly by reducing the need for long time series. We

replace the idea of the ‘ensemble average’ in the calculation of the bispectrum

by the analogous concept of the time integral, along the lines of section 6.2.2.

We define the wavelet cross bispectrum as in [11, 12]:

Bw
fgða1; a2;T0Þ ¼

Z
T

W�f ða; �ÞWgða1; �ÞWgða2; �Þ d� ð6:14Þ

where T is again a short time interval centred at T0 (see section 6.2.2), and

1

a
¼

1

a1
þ

1

a2
ð6:15Þ

(frequency sum-rule). Both the amplitude and the phase of Bw
fg contain sig-

nificant information.

Now it becomes clear why we have chosen continuous wavelets as the basis

for our analysis. Discrete wavelets provide wavelet coefficients for a set of

scales an 2 f2
n
g [2, 4, 13] (apart from constants), which cannot generally be

combined in the manner of Eq. (6.15).

Likewise, we define the wavelet auto bispectrum

Bw
ða1; a2;T0Þ ¼ Bw

ff ða1; a2;T0Þ ð6:16Þ

The squared wavelet cross bicoherence is the normalized squared cross bis-

pectrum:

bwfgða1; a2;T0Þ
� �2

¼
Bw
fgða1; a2;T0Þ

�� ��2R
T Wgða1; �ÞWgða2; �Þ
�� ��2 d�	 


Pw
f ða;T0Þ

ð6:17Þ

which can attain values between 0 and 1. Similarly, the squared wavelet auto

bicoherence (henceforth simply referred to as bicoherence) is

bwða1; a2;T0Þð Þ
2
¼ bwff ða1; a2;T0Þ
� �2

ð6:18Þ

The bicoherence is a measure of the amount of phase coupling that occurs

in a signal or between two signals. Again, we assume that we are justified in

setting ! ¼ 2�=a, i.e. we are using a ‘well-behaved’ wavelet whose Fourier

transform has one well-defined peak frequency, !. Phase coupling is defined

to occur when two frequencies, !1 and !2, are simultaneously present in the

signal(s) along with their sum (or difference) frequencies, and the sum of the

phases � of these frequency components remains constant in time. The bico-
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herence measures this quantity and is a function of two frequencies !1 and !2

which is close to 1 when the signal contains three frequencies !1, !2 and !

that satisfy the relation !1 þ !2 ¼ ! and �1 þ �2 ¼ �þ const; if no such

relation is satisfied, it is close to 0. Whereas the bicoherence measures the

fraction of spectral power that is involved in the coupling process, the bis-

pectrum measures the total power and phase. The concept of bicoherence is

further explained in section 6.3.2.

When the analysed signal exhibits structure of any kind whatever, it may be

expected that some phase coupling occurs – for example, to describe a non-

sinusoidally shaped pulse (or pulse train) one needs several Fourier coeffi-

cients with definite phase relations. The definition of bicoherence in terms of

wavelets, Eq. (6.17), is based on an integration over a (short) time interval T .

Thus, one may be expected to be able to detect temporal variations in phase

coupling (intermittent behaviour) or short-lived structures with a time reso-

lution T , provided the calculation can be shown to be statistically significant

[14]. This point will be discussed in the following.

Note that, in analogy with the wavelet cross coherence, one may also

define the delayed cross bispectrum (and bicoherence) by replacing Wgða; �Þ

by Wgða; � þ��Þ in Eq. (6.14). Further, it is also possible to calculate the

bispectrum from three time series f , g, and h instead of just two. For the sake

of simplicity, we shall not include these possibilities explicitly in the defini-

tions.

It is convenient to introduce the summed bicoherence, which is defined as

bw að Þð Þ
2
¼ 1

sðaÞ

P
bw a1; a2ð Þð Þ

2
(here explicit reference to T0 has been omitted

for convenience), where the sum is taken over all a1 and a2 such that Eq.

(6.15) is satisfied and sðaÞ is the number of summands in the summation.

Similarly, the total bicoherence is defined as bwð Þ
2
¼ 1

S

PP
bw a1; a2ð Þð Þ

2
where

the sum is taken over all a1 and a2 and S is again the number of terms in the

summation. The factors sðaÞ and S guarantee that the summed and total

bicoherence are bounded between 0 and 1. These quantities summarize the

information conveniently, as will be seen later.

The squared bicoherence bw a1; a2ð Þð Þ
2
is usually plotted in the ð!1; !2Þ-

plane rather than the ða1; a2Þ-plane for ease of interpretation. We allow !1,

!2 and ! to take on negative values in order to be able to represent all sum

and difference combinations of !1 and !2. There is no need to represent the

whole plane; firstly, both !1, !2 and their sum ! must be smaller than the

Nyquist frequency (half the sampling frequency); secondly, because !1 and

!2 are interchangeable, we may restrict the plot to !1 � !2; and finally, the

case ð!1; !2Þ is identical to the case ð�!1;�!2Þ which is therefore not repre-

sented.
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We note that Eq. (6.17) does not provide the only way of normalizing the

bispectrum. For example, a symmetrical definition is possible by replacing

the denominator by Pw
g ða1;T0ÞP

w
g ða2;T0ÞP

w
f ða;T0Þ. With such a definition, it

would be sufficient to plot only values !1; !2 � 0, which (taking into account

the restrictions mentioned in the previous paragraph) is a triangular region.

There is no strong objection to this; however, we shall see that some impor-

tant information is lost (see section 6.3.2).

We proceed to estimate the error of the bicoherence (Eq. (6.17)) similar to

the way we derived Eq. (6.13). Again we point out that the wavelet bispec-

trum (Eq. (6.14)) is calculated by integrating over a time interval T , corre-

sponding to N ¼ T � fsamp samples. As before, we observe that two

statistically independent estimates of the wavelet coefficients are separated

by a time a=2, or by a number of points MðaÞ ¼ a!samp=4�. To be on the safe

side in the estimate of the error in the bispectrum, we say that the number of

independent estimates of wavelet coefficient combinations appearing in Eq.

(6.14) is at least N=maxðMðaÞÞ, where the maximum is taken over the values

of a that come into play for the evaluation of a specific value of the squared

bicoherence: a; a1; a2
� �

. An estimate for the statistical noise level in the bis-

pectrum is, therefore:

" Bw
fg

� �
� Bw

fg

�� �� � !samp

2 �minð !1

�� ��; !2

�� ��; !1 þ !2

�� ��Þ 1N
" #1=2

ð6:19Þ

From which one finds the statistical noise level in the bicoherence, using Eq.

(6.17):

" bwð Þ
2

	 

�

!samp

2 �minð !1

�� ��; !2

�� ��; !1 þ !2

�� ��Þ 1N
" #

ð6:20Þ

Observe that at low frequencies the statistical noise may dominate the

bicoherence, and a significant interpretation must limit itself to (relatively)

high frequencies. Again it is possible to confirm this theoretical estimate by

analysing computer-generated Gaussian noise [12].

6.3.2 Interpretation of the bicoherence

The bicoherence is a complex quantity that contains much information but is

not easy to interpret. We will provide some basic examples here meant to

provide a ‘feeling’ and a guide to interpretation. In sections 6.4 and 6.5 we

shall analyse data from numerical models and measurements. Together, these
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examples will hopefully clarify the significance and usefulness of the bicoher-

ence.

We generate a test signal f ðtÞ:

f ðtÞ ¼ Ap sinð!ptÞ þ Aq sinð!qtÞ þ Ar sinð!rtÞ ð6:21Þ

such that the coupling condition !p ¼ !q þ !r is satisfied and Ap, Aq and Ar

are constants. Three peaks with amplitude 1 will appear in the ð!1; !2Þ-plane:

one at !1 ¼ !q, !2 ¼ !r, one at !1 ¼ !p, !2 ¼ �!r and one at !1 ¼ !p,

!2 ¼ �!q. This is as true for the bicoherence based on Fourier analysis

[9, 10] as it is for wavelet analysis. However, the coupling condition

!p ¼ !q þ !r need only be satisfied to within the frequency resolution to

produce a high value of the bicoherence, which in some cases is a significantly

less strict requirement with wavelet than with Fourier analysis – thus, gen-

erally the wavelet bicoherence graph will show larger ‘blobs’ than the Fourier

bicoherence graphs due to its lower frequency resolution, though the ampli-

tude should be approximately the same (for an example see [12]).

One should be aware that the accuracy of the determination of the phases

of the frequency components decreases rapidly as d gets smaller, since the

smaller d is, the fewer oscillations are sampled (cf. Eq. (6.4)). A reliable phase

determination is essential for a proper determination of the bicoherence.

With the value of d we have chosen to use, d ¼ 1, the wavelet transform

samples about 5 oscillations of each frequency at any given time. Even so, the

phase determination becomes unreliable for frequencies above roughly 95%

of the Nyquist frequency. Therefore, the high values of the bicoherence that

are often seen just below the Nyquist frequency can usually be ascribed to

numerical phantoms.

A test signal that is mostly random noise, except for a short time period in

which phase coupling is generated in the manner of Eq. (6.21), may cause the

Fourier-based bicoherence not to detect the coupling due to the large time

window used in its averaging process, whereas the wavelet bicoherence will

detect the coupling during the relevant time window (provided it has a mini-

mum duration of the order of T). This feature allows intermittent coupling to

be detected; further, the time when the coupling occurs can be identified

along with the scales of the coupling interaction. An interesting practical

application of the wavelet bicoherence is therefore its use as a detector of

intermittent non-linear behaviour.

Proceeding to a slightly more complex situation, imagine a test signal that

is periodic but non-sinusoidal (e.g. a square wave or a sawtooth). Very strong

coupling will be detected for a wide range of frequencies; wide areas of the

bicoherence graph will show high values. This is as expected, since the non-
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sinusoidal wave can be built up from a number of Fourier components that

are phase-locked with respect to each other. Compare this to a situation

where a non-periodic pulse-train is generated; the pulses ‘arrive’ at intervals

that are randomly distributed around some average. Then the bicoherence

will show ‘ridges’: a wide range of frequencies couples to a single frequency

(which corresponds to the average pulse frequency). Both of these situations

are encountered when analysing turbulent data, and these considerations

may serve as a guide to their interpretation.

It was noted before that the normalization of the bicoherence we have

chosen (Eq. (6.17)) is asymmetric. Nevertheless, usually there is a triple sym-

metry of the three subregions of the bicoherence graph (i.e. f!2 > 0g,

f!2 < 0 ^ !1 > �2!2g and f!2 < 0 ^ !1 < �2!2g), which can, however, be

broken. It is observed often that one of the three peaks is significantly higher

than the other two. Due to the symmetry of the numerator in Eq. (6.17), this

asymmetry can only be due to its denominator. In fact, we can conclude that,

during the time interval T , on average Wgða1; �Þ
�� �� and Wgða2; �Þ

�� �� do not

simultaneously achieve significant values, causing the time integral of their

squared product to be small (the as are specified with reference to the high

peak). The other two peaks, which are significantly smaller, indicate that

Wgða1; �Þ
�� �� and Wgða; �Þ

�� ��, on the one hand, and Wgða2; �Þ
�� �� and Wgða; �Þ

�� ��,
on the other hand, do show such a temporal correlation. We interpret these

observations by saying that Wgða1; �Þ
�� �� and Wgða2; �Þ

�� �� do not have a direct

causal connection, while Wgða; �Þ
�� �� does show such a connection with

Wgða1; �Þ
�� �� and Wgða2; �Þ

�� ��, respectively. Thus, while the scales a1 and a2
are linearly independent, they interact (non-linearly) through scale a; one

may conjecture that scale a drives scales a1 and a2. It should be noted that

the observation of asymmetry in the bicoherence graph does not constitute

proof for this conjecture. Summarizing: if the threefold symmetry in the

bicoherence graph is broken and one peak is significantly higher than the

other two, then the sum frequency belonging to the highest peak is most

likely driving the coupling process. We shall encounter a beautiful example

of this in section 6.4.1. The reverse may also occur: one peak is significantly

lower than the other two, which are of similar height. By an argument ana-

logous but opposite to the one given above, we conclude that it is likely that

in this case the sum frequency belonging to the lowest peak is a consequence

of the interaction of the other two frequencies. An example of this will be

encountered in section 6.4.3. One must be careful applying this reasoning

when harmonics are involved, leading to peaks on the lines !2 ¼ �!1=2 (e.g.

due to beat wave phenomena), since in this case two peaks coalesce, making

their individual identification impossible.
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The interpretation of the bicoherence in terms of the underlying physics is,

in general, not straightforward. A simple interpretation is offered by a quad-

ratic coupling model [7, 10, 15], which bears relevance to some elementary

turbulence models. In this model, the coupling between three ‘modes’ or

‘scales’ a, a1 and a2 is expressed by means of a coupling constant Aða1; a2; �Þ:

Wf ða; �Þ ¼W0
f ða; �Þ þ Aða1; a2; �ÞWgða1; �ÞWgða2; �Þ ð6:22Þ

where the frequency sum-rule (Eq. (6.15)) is satisfied. The component

W0
f ða; �Þ is statistically independent of any other scales ai. This equation

expresses the existence of a (quadratic) relation between the three wavelet

components. When the coupling constant Aða1; a2; �Þ changes little during

the time T (cf. Eq. (18)), the following equivalence holds:

Aða1; a2;T0Þ
�� ��2� bwfgða1; a2;T0Þ

�� ��2Pw
f ða;T0ÞR

T Wgða1; �ÞWgða2; �Þ
�� ��2 d� ð6:23Þ

Thus, the coupling constant in this simple quadratic phase-coupling model

can be determined by evaluating the bicoherence, provided the averaging

time T is smaller than the rate of change of the coupling constant.

In summary, we have two possible interpretations of the bicoherence: one

in terms of ‘coherent structures’ (pulses or pulse trains, non-sinusoidal waves)

passing by the observation point and one in terms of a coupling constant in a

dynamical quadratic wave-interaction model. It is not possible to decide from

the bicoherence alone which is the most appropriate interpretation.

More detailed interpretations are possible when data from more than one

observation point are available. For example, two closely spaced observation

points in a turbulent field allow the calculation of the cross bicoherence. This

analysis has two advantages over the single-point measurement: first, any

random noise present in the measurements will be more effectively sup-

pressed provided the two measurements may be considered statistically inde-

pendent; and second, the cross bicoherence decreases when the two points are

separated, such that a determination of the average or typical size of each of

the structures is possible (of course, the fluid velocity along the line connect-

ing the two measurement points has to be taken into account – in some cases

the cross correlation can give an estimate of this quantity).

6.4 Analysis of computer-generated data

The application of new analysis tools to computer-generated data has the

important advantage that all the parameters of the studied system are known,
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so that the results of the interpretation based on the analysis can be checked

against this knowledge and its informative value can be assessed. In the case

of the bicoherence this type of analysis is particularly important, since its use

has been very limited in the past so that little guidance as to its interpretation

is available.

In section 6.4.1 we present an analysis of a chaotic system of coupled

oscillators. Our main interest is of course the application of the analysis

tools we have introduced to turbulence, but we consider chaotic systems to

be illustrative simplifications of full-blown turbulence, possessing some of its

most important characteristics, and therefore a good testing ground for our

analysis tools.

In the following two sections we shall analyse data from numerical experi-

ments that have bearing on turbulence in thermonuclear fusion plasmas. In a

laboratory environment (as opposed to stellar environments), these plasmas

are confined by magnetic fields or inertia, since the temperatures required for

nuclear fusion are higher than any material vessel would withstand. The most

succesful magnetic confinement scheme is the toroidal configuration (which

can be of two general types: tokamak or stellarator), in which a magnetic

field is induced with ring-like magnetic field lines. The ionized particles of the

plasma are bound to these field lines by the Lorentz force, and thus circulate

without colliding with material surfaces. To compensate for drifts in the

necessarily inhomogeneous magnetic field, a second – poloidal, i.e. perpen-

dicular to the main toroidal direction along the ring – field component is

required. Thus the total magnetic field is helical, winds around a ‘magnetic

axis’ and the average helical pitch varies with distance from this axis. The

field lines are embedded in topologically toroidal (doughnut-shaped) sur-

faces. At certain radial intervals the ratio of toroidal to poloidal turns of a

given field line (commonly referred to as ‘safety factor’, q) is a rational

number, meaning that the field line connects with itself after a finite number

of turns around the magnetic axis. Such magnetic surfaces are less stable to

radial displacements of field lines than irrational surfaces, and magnetohy-

drodynamic instabilities may occur, leading to field-line reconnection and the

formation of ‘magnetic islands’ – zones of plasma topologically isolated

from the rest of the plasma by a separatrix enclosing the zone of reconnected

field lines. Various such island chains may develop on various rational sur-

faces. The non-linear interaction between these island chains then leads to

field-line stochastization in the intermediate zones. These zones of stochastic

field line behaviour are expected to have a much higher radial heat transport

than the zones that have their magnetic surfaces still intact.
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The situation described above is known as ‘magnetic turbulence’, and is

one of the main candidates for explaining the anomalously high radial heat

transport found experimentally in toroidal fusion devices (i.e. higher than

expected from a ‘neoclassical’ theory based on the assumption of the exis-

tence of unperturbed nested magnetic surfaces [16]). Another candidate is

‘electrostatic’ turbulence, driven by fluctuations of the plasma electric poten-

tial. The abundance of free energy available from the balance between the

high pressure and temperature gradient forces and the confining magnetic

field pressure may drive many other instabilities as well, drift waves being one

of the more important examples. With drift waves, low-frequency ion motion

perpendicular to the magnetic field is accompanied by electron motion along

the field lines to preserve charge neutrality [17]. It will be clear that although

the magnetic field introduces a strong anisotropy, it does not in general lead

to quasi-two-dimensionality of the turbulence. The fundamental three-

dimensional nature of the turbulence, the invalidity of isotropy assumptions

and the large amount of instability drives available make numerical simula-

tion of turbulence in thermonuclear plasmas a very difficult enterprise. The

experimental identification of the main turbulence drive(s) is one of the most

important and unresolved problems in thermonuclear plasma physics.

In sections 6.4.2 and 6.4.3 we analyse two plasma drift wave models, whose

claim to a realistic description of plasma turbulence is limited since they focus

on a single turbulence drive, but still may provide important clues as to how

drift wave turbulence, if and when it occurs, may be recognized.

6.4.1 Coupled van der Pol oscillators

A system of two coupled van der Pol oscillators is one of the simplest numer-

ical models that exhibits chaos in a self-sustaining way, i.e. without external

driving [18]. The system is fully described by the equations:

@xi
@t
¼ yi

@yi
@t
¼ "i � xi þ �jxj

� �2h i
yi � xi þ �jxj

� �
ð6:24Þ

The system fi ¼ 1; j ¼ 2g describes the first oscillator, whereas fi ¼ 2; j ¼ 1g

describes the second. When �i ¼ 0, the limit cycles of the uncoupled oscilla-

tors are determined completely by "i (i ¼ 1; 2). The parameters �i describe the

non-linear coupling between the oscillators.

The examination of this system presented in [18] proceeds along the stan-

dard lines of chaos analysis. Use is made of spectral analysis, bifurcation
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diagrams, fractal dimension estimates (a value of around 1.5 was found), etc.

We shall not repeat any of this analysis here, but shall be asking whether

wavelet analysis can provide additional insight into a chaotic system. For

comparison, we also analyse the system in a periodic state. Table 6.1 lists the

choice of control parameters for these two system states.

The Fourier spectrum of the signal x2ðtÞ in the periodic case is shown in

Figure 6.1a. The very clean spectrum shows only a few peaks with their

harmonics. A section of 153 data points, sampled every �t ¼ 0:2 (units see

[18]) and covering about 5 periods of the x2 coordinate, was analysed using

the wavelet bicoherence method. The calculation can also be done using a

longer time series as input, but the results would be essentially the same.

The result of the calculation is shown in Figure 6.1b. The strong, straight

horizontal, diagonal and vertical ridges correspond to a frequency of

roughly 0.34, which can be identified in Figure 6.1a with the second

peak. Thus, the two dominant peaks in the Fourier spectrum at frequencies

of 0.17 and 0.51 couple with their difference frequency at 0.34. Likewise,

the difference in frequency between the second and the fourth peak,

between the fourth and the sixth peak, etc., is always 0.34, and the same

holds for the odd series of peaks. The difference frequencies between even

and odd peaks (i.e. 0.17) are not reflected in the bicoherence plot, however

(except when coupled to 0.34). It may therefore be conjectured that the odd

peaks are the harmonics of the limit cyle of the oscillators, whereas the even

peaks are due to the coupling interaction between the two oscillators. This

interpretation is reaffirmed by the knowledge that with the combination of

control parameters as given the limit cycle is asymmetric, which means that,

were the coupling constants zero, only odd harmonics would appear [18].

These conjectures receive strong support from the cross bicoherence calcu-

lated from x1 and x2. Figure 6.1c shows a diagonal ridge at the same

frequency as in Figure 6.1b (and a second one at a frequency of

0:68 ¼ 2	 0:34, a harmonic barely visible in Figure 6.1b), but more impor-
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Table 6.1. System parameters of the coupled

van der Pol oscillators in a periodic and a

chaotic state

System state "1 "2 �1 �2

Periodic 1.0 1.0 0.5 �1:75

Chaotic 1.0 1.0 0.5 1:75
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Fig. 6.1. System of two coupled van der Pol oscillators in a periodic state. For a
description of the system and its parameters see text. a) Fourier spectrum of x2ðtÞ.

Fig. 6.1. b) Bicoherence graph of x2. The bicoherence is calculated from 153 points
covering about five periods. The horizontal and diagonal ridges are due to
the coupling occurring at a frequency of 0.34. This figure is also shown at
www.cambridge.org/resources/0521533538.

Fig. 6.1. c) Cross-bicoherence graph of x1 and x2. The graph is similar to b) except for
its lack of symmetry. The asymmetry pinpoints 0.34 as the driving frequency (see text).
This figure is also shown at www.cambridge.org/resources/0521533538.



tantly it shows a strong asymmetry. Applying the reasoning developed in

section 6.3.2, we conclude that 0.34 is actually the driving frequency

responsible for the coupling. This is an important conclusion, and we stress

that while the previous results only permitted this thesis to be put forward

as a conjecture, now it receives a firm basis. No other techniques are known

to us that allow the identification of the driving frequency in such a simple

and straightforward manner.

The Fourier spectrum of the signal x2ðtÞ in the chaotic case is shown in

Figure 6.2a. Several peaks are still visible, and some of these are related to

the peaks in the periodic case through a frequency shift. New peaks have

also appeared due to the process of period doubling in the transition to

chaos. The chaos is apparent in the increase of the noisy (broad-band) part

of the spectrum. Figure 6.2b shows the bicoherence as calculated using a

section of 303 data points, sampled every �t ¼ 0:2, that covers about 8

pseudo-periods of x2ðtÞ. At first view, there is a striking similarity to Figure

6.1b. The main horizontal and diagonal ridges occur at a frequency of

about 0.25, corresponding to the fourth major peak in Figure 6.2a. This

frequency must therefore be identified with the frequency of 0.34 in Figure

6.1a – the change of control parameters of the coupled system, apart from

introducing chaos, causes an overall frequency downshift with a factor of

0.73. Further it is observed that, although the high-frequency aspect of the

graph has changed little – apart from a reduction in the value of the

squared bicoherence – the low-frequency part is much more complex. The

vertical line indicating the simple coupling at 0.34 of Figure 6.1b has split

into several distinct coherent points at slightly shifted frequencies; observe

the similarity in shape of these three points with the three points at double

the frequency, which is obviously related to the period doubling process.

New couplings have appeared at even lower frequencies (below 0.2), the

biggest of which, at around 0.13, is easily identified as half the main cou-

pling frequency of 0.25, and which is due to the period doubling effect also

apparent in Figure 6.2a. The cross bicoherence shown in Figure 6.2c again

confirms, by its asymmetry, the correct interpretation of 0.25 as the main

coupling frequency.

6.4.2 A large eddy simulation model for two-fluid plasma turbulence

Direct numerical simulations of two-fluid plasma turbulence were carried out

with the CUTIE code [19, 20, 21, 22]. The code is used to simulate low-

frequency, relatively long wavelength drift-like fluctuations. It was developed

to simulate tokamak turbulence, but in order to simplify the calculations the

Wavelets, non-linearity and turbulence in fusion plasmas 245



246 B.Ph. van Milligen

Fig. 6.2. System of two coupled van der Pol oscillators in a chaotic state. a) Fourier
spectrum of x2ðtÞ.

Fig. 6.2. b) Bicoherence graph of x2, chaotic. The bicoherence is calculated from 303
points covering about eight pseudoperiods. The structure seen bears some similarity
to the one seen in Fig. 6.1b, although it is less intense and more complex at lower
frequencies due to the period doubling that has occurred in the transition to chaos.
The main coupling frequency has been downshifted to 0.25. This figure is also shown
at www.cambridge.org/resources/0521533538.

Fig. 6.2. c) Cross bicoherence graph of x1 and x2. The asymmetry seen in Fig. 6.1c
survives in the chaotic régime, permitting the identification of the driving frequency
even in chaos. This figure is also shown at www.cambridge.org/resources/
0521533538.



geometry used is that of a periodic cylinder rather than that of a torus, and

advantage is taken of the so-called tokamak ordering: a=R
 1, where a is

the minor radius – (cylinder radius) – and R is the major radius – (of the

corresponding torus) – B� 
 Bz, i.e. the poloidal field is much smaller than

the toroidal (longitudinal) field, and �
 1, where � is the pressure normal-

ized to the magnetic field pressure. Quasi-neutrality is assumed and standard

two-fluid/Maxwell equations are solved for the seven variables ne (electron

density), Te, Ti (electron and ion temperature), V== (parallel plasma flow), �,

� and � (the electrostatic potential, the poloidal flux function and the par-

allel vorticity), taking account of the appropriate sources and relevant trans-

port coefficients. The system is fully non-linear.

The code was run under the following conditions (typical of the

COMPASS-D tokamak): R = 55 cm, a = 23 cm, Bz = 2 T, plasma current:

269 kA, initial central safety factor (q): 1.6 (related to the field line helicity),

initial central density: 1014 cm�3, initial central ion and electron tempera-

tures: 500 eV and Zeff = 1.73 (effective charge number).

In the following we analyse the simulated density fluctuations dn=n0. Data

are taken at various radial positions.

Figure 6.3a shows the wavelet spectrum of the fluctuating density at r =

21.16 cm. The U-shaped edge profile indicates the region beyond which the

calculation of the wavelet transform is not possible due to the proximity of

the data boundaries. Several modes can be distinguished in this figure: steady

modes at 15 kHz and 100 kHz; and a mode at about 200–250 kHz that shows

a beat phenomenon. Analysis of similar data obtained at a higher sampling

rate indicates that this phenomenon is possibly due to the aliasing of a mode

around 750 kHz. A weak and apparently not stationary mode is visible

around 60 kHz. Analysis of the fluctuating density signal at other radii reveal

very similar features.

Figure 6.3b shows the joint wavelet phase-frequency probability distribu-

tion function, calculated from the fluctuating density signals at two radii: r=

18.4 and r = 22.08 cm. The first striking feature that can be observed is that

both steady modes (15 kHz and 100 kHz) show definite radial phase relations

(the phase differences are –2.6 and 0.7 rad, respectively). This implies a very

strong linear radial correlation for these modes. The mode above 200 kHz

shows slightly less clear behaviour. The fact that the phase shift converges to

0 or � at frequencies close to the Nyquist frequency is a consequence of the

impossibility to obtain accurate phase determinations at those frequencies, as

explained in section 6.3.2, and not of any physical effect. The most interesting

feature is seen in the intervals between 20 and 80 kHz, where a partial phase

randomization occurs. The phase of the Fourier auto spectra of either of the
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two signals used here (not shown) show a � phase jump at 17.6 kHz and

103.5 kHz, indicative of the fact that these frequencies are probably driving

the turbulence. Thus, the feature at 60 kHz is probably due to a non-linear

interaction. The graph as a whole seems indicative of the existence of a low-

dimensional attractor in the strongly non-linear dynamics.
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Fig. 6.3. Analysis of data from the CUTIE numerical turbulence model. a) The
wavelet spectrum of the fluctuating density at r = 21.16 cm. This figure is also
shown at www.cambridge.org/resources/0521533538.

Fig. 6.3. b) The joint wavelet phase-frequency probability distribution function,
calculated from the fluctuating density signals at two radii: r = 18.4 and r =
22.08 cm. This figure is also shown at www.cambridge.org/resources/0521533538.



6.4.3 A long wavelength plasma drift wave model

Another numerical model of drift wave turbulence in plasmas is studied in

this section. This model simplifies the geometry even further to a slab (i.e. a

box-shaped region). The x-coordinate is identified with the radial coordinate

in a torus, the y-coordinate with the poloidal direction and the z-coordinate

with the toroidal direction. The magnetic field does not have a radial (x-)

component and its z-component is fixed while its y-component varies

radially. Thus, a sheared magnetic field is created similar to that in a toka-

mak experiment. The numerical experiment is characterized by the shear

length of the magnetic field, as well as the assumed electron density and

temperature profiles.

The model studies the evolution of the ion density, which is separated in an

average (ni) and a fluctuating ( ~nni) part. With the help of simplifications, such

as the assumption of long wavelengths, an equation is derived for ~nni which is

advanced in time. To do so, ~nni is Fourier-expanded in the toroidal and

poloidal directions and a large number of modes is used to achieve sufficient

accuracy for turbulence studies. In the radial direction, finite differences are

used.

The detailed setup of these calculations is described elsewhere [23]. For the

analysis that follows here, it is sufficient to mention just a few points: distance

and time units are normalized to 	s, the ion gyroradius, and 1=�i, the inverse

ion gyrofrequency, respectively. The values of the model parameters have

been chosen to provide a range of unstable modes with 6 � m � 76, where

m is the poloidal mode number. The safety factor, q, is equal to 3
2 at the centre

of the computational box. The standard box size (x-direction) is 60	s, and the

number of unstable modes with resonant surfaces inside the computational

box is about 250. In the calculation, we have included 439 Fourier compo-

nents. The averaged density gradient is fixed, so saturation is caused by

turbulence effects. The numerical data are for the saturated state.

Figure 6.4a shows raw data from this simulation at r ¼ 30:0	s for the time

interval 30:2	 104 < �it < 40:4	 104. In these units, the time step is 100.

Figure 6.4b shows the corresponding wavelet power spectrum Pw. The spec-

trum is nearly featureless except for two small peaks at low frequencies, the

frequencies being of the order of the linear mode frequency. Figure 6.4c

shows the wavelet power spectrum for the whole range of radii available.

The spectra are calculated over the interval 31:1	 104 < �it < 39:4	 104.

The whole data time window is not used because the continuous wavelet

transform cannot be evaluated near the data edges. The frequency is given

in inverse time units. The radii are given in units of 	s.
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Fig. 6.4. Ion density perturbation of the drift wave model discussed in the text.
a) Raw data of the ion density versus time at r ¼ 30:0	s.

Fig. 6.4. b) Wavelet spectrum of the data shown in a). The relatively featureless
turbulent spectrum shows two small peaks at low frequency.

Fig. 6.4. c) Wavelet spectrum vs. radius. The spectrum is broadest at r ¼ 30:0	s. This
figure is also shown at www.cambridge.org/resources/0521533538.



Figure 6.5a shows the RMS fluctuation level for this simulation, versus

radius. The RMS level peaks at the position of the position of the q ¼ 3
2

rational surface. The wavelet spectrum (Figure 6.4c) broadens where the

RMS level is high. At radial positions where the spectrum is narrow, the

calculation of the wavelet transform suffers from numerical errors at high

frequency. This is important to keep in mind when viewing the results pre-

sented below.

Figure 6.5b shows the total bicoherence vs. radial position for this simula-

tion. Figure 6.5c shows the corresponding summed bicoherence as a function

of both sum frequency and radial position. From Figure 6.4c it is apparent

that e.g. the peak in Figure 6.5b at r ¼ 47:5	s is due mainly to the numerical

problems mentioned above and does not correspond to anything physical.
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Fig. 6.5. a) Analysis of the ion density perturbation of the drift wave model. a) RMS
fluctuation level of the ion density vs. radius.

Fig. 6.5. b) Total wavelet bicoherence vs. radial position. The peaks are associated
to, but do not coincide with, the peaks in a). Note the sharp drop in bicoherence at
r ¼ 30:0	s.



Such numerical problems do not occur if the wavelet power transform coeffi-

cients are sufficiently large. We take the level �10 in Figure 6.4c to delimit

the zone with numerical problems; this level is indicated by the line in Figure

6.5c. Examining the remainder of Figs. 6.5b and c, one can make the follow-

ing observations. (1) The bicoherence drops sharply at the position of the

q ¼ 3
2 rational surface, located at 30	s (whereas neither the RMS value, nor

the spectrum exhibit such a local drop). (2) The maximum of the bicoherence

is at 31	s. (3) Secondary maxima occur, apart from some minor peaks, at

16.5, 24.5, 29.5 and 36:5	s. These positions coincide roughly (but not exactly)

with maxima in the RMS value (see Figure 6.5a). From this, we conclude that

the bicoherence provides information that pertains to an aspect of the tur-

bulence (non-linear, or rather quadratic behaviour) that is not captured by

either of the other methods.

Having established the general interest of this analysis, the next question

must be: how does this information help in understanding turbulence? In the

following, we compare the results from the bicoherence calculation with a

more conventional approach. Figure 6.5d shows the cross correlation, the

weighted average cross coherence and the weighted average cross phase

between one radial position and the next; the weighting being done by the

spectral power (the cross spectra are calculated with the normal FFT). It is

observed that the cross correlation and cross coherence between adjacent

radial positions is generally high, but that around 30	s these quantities

drop. Further, it is observed that the cross phase exhibits a peak around

30:5	s, possibly indicating shear flow. The numerical results also show the

existence of a shear flow layer in this location. Although this analysis is by no

252 B.Ph. van Milligen

Fig. 6.5. c) Summed wavelet bicoherence vs. radial position and sum frequency. The
drawn line (a contour taken from Fig. 6.4c at log(wavelet power) = �10) indicates
roughly up to what frequency the bicoherence may be considered reliable. This figure
is also shown at www.cambridge.org/resources/0521533538.



means conclusive, it seems to suggest an explanation of the drop in bicoher-

ence at 30	s in terms of a decorrelation of the turbulence, possibly linked to a

shear flow.

The maximum in the bicoherence at 31	s is related to the presence of a

long-living structure that is highly localized poloidally and radially. This

structure has the (3,2) periodicity and lies close to the q ¼ 3
2 surface; such a

structure is visible in a two-dimensional plot of the ion density (cf. Figure

6.5e), but because of its high spatial localization, it was only discovered after

this analysis indicated the persistence of non-linear couplings over a time

period of many decorrelation times (in [23] it is explicitly stated that coherent

structures were not seen).

For a more detailed analysis we refer to Figure 6.5f, where the full bidi-

mensional bicoherence is shown for a few selected radial positions. First, we

draw attention to the graph corresponding to 30	s. Here the typical beha-

viour of a single mode coupling to broad-band turbulence is visible (horizon-

tal band-like structure), with the main mode frequency around 1:4	 10�4.

Turning now to the graph taken at the maximum of the bicoherence (at 31	s),

one observes that each point of this band-like structure couples, in its turn, to

a range of frequencies, thus nearly filling the two-dimensional plane of the

bicoherence.

To summarize, we have been able to perform a rather detailed spectral

analysis on computer-generated data of a turbulence simulation, for which

(due to CPU-time limitations) only short data series were available, thus

rendering Fourier analysis impracticable, or (in the case of the bicoherence)
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Fig. 6.5. d) Cross correlation, cross coherence, and cross phase between adjacent
channels. Results are shown at position x	s for the cross analysis between x	s and
ðxþ 0:5Þ	s. The cross coherence and phase are computed from FFT (cross) spectra
and are averaged over all frequencies by weighing with the spectral power.



even impossible. The analysis revealed a rather surprising narrow drop in

non-linear coupling (bicoherence), precisely at the location where the radial

correlation decreases locally and where the radial cross phase shows a peak.

From these observations, we deduced that most likely a local shear flow is

responsible for the observed decorrelation. Finally, the peak in bicoherence

was associated with a small structure in the flow, which was not detected by

other methods.
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Fig. 6.5. f) Bicoherence for r ¼ 30:0	s and r ¼ 31:0	s. This figure is also shown at
www.cambridge.org/resources/0521533538.

Fig. 6.5. e) Two-dimensional graph of ~nni in the 	� � plane. The location of a
small coherent structure is indicated by the arrows. This figure is also shown at
www.cambridge.org/resources/0521533538.



6.5 Analysis of plasma edge turbulence from Langmuir probe data

6.5.1 Radial coherence observed on the TJ-IU torsatron

In the present section we will analyse data from the TJ-IU Torsatron [24].

This is a toroidal device in which a hot plasma is confined by magnetic fields

in the manner described at the beginning of section 6.4. The plasmas were

heated by Electron Cyclotron Resonance Heating (ECRH), and have major

radius R ¼ 0:6 m, central rotational transform of the magnetic field


ð0Þ ¼ 0:21, minor radius hai ¼ 0:1 m, toroidal field BT ¼ 0:6 T, and electron

density ne ¼ 5	 1018 m�3.

Two Langmuir probes were inserted into the plasma edge region, where

temperatures are sufficiently low to allow this without damaging the probes.

The two probes are separated radially by 1 cm. Each of the two probes has

three tips, aligned perpendicular to the magnetic field and separated poloid-

ally by � ¼ 0:2 cm. The probes were designed and positioned to avoid the

shadowing of one probe by another [25] (‘shadow’ referring to the influence

cone of the probe along the direction of the magnetic field). The two extreme

tips of each probe were configured to measure the floating potential, �f ,

whereas the central tip was set up to measure the ion saturation current,

Isat. Thus it is possible to estimate the instantaneous radial turbulent flux

for both probes: �T ¼ ~nn ~EE�=BT , using ~EE� ¼ ~��f ð1Þ � ~��f ð2Þ
� �


� and ~nn / ~IIsat
(where ~xx is the fluctuating part of x and the influence of temperature fluctua-

tions is neglected). The signals were sampled at 1 MHz.

Figure 6.6 shows the cross spectrum and radial cross coherence between

the ~IIsat signals of the two radially separated probes. The influence of a MHD
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Fig. 6.6. Cross spectrum and cross coherence of ~IIsat. Calculations are made on
measurements from two radially separated probes in the edge zone of a TJ-IU
discharge. Continuous line: average wavelet spectrum; long dashes: wavelet coher-
ence; short dashes: the noise level of the coherence.



mode is recognized in the peak of the spectrum at about 20 kHz. The cross

coherence peaks at slightly higher frequency (35 kHz).

Figure 6.7 shows the same graph, now calculated for �T . Features similar

to the ones observed in Figure 6.6 can be seen, although at higher frequen-

cies. This frequency shift is easily explained by the fact that �T is a quadratic

signal. What is most interesting is that the flux does not show a larger radial

correlation than ~IIsat (or ~��f either, not shown). This seems to indicate that, for

the present type of plasmas at least, the non-linear interactions in the turbu-

lence, if present, do not generate a stronger coherence in the flux than in the

fluctuating density and electric field, which is a hypothesis invoked by some

turbulence models in order to explain the heat losses from thermonuclear

plasmas [26].

Figure 6.8 shows the temporally resolved coherence of ~IIsat. The time reso-

lution is 0.5 ms. The noise level is the same as in Figs. 6.6 and 6.7. The

coherence is highly intermittent and occasionally very high values are

achieved (much higher than the time-average value). This figure illustrates

the necessity of using wavelet techniques for turbulence analysis; whereas

results similar to Figs. 6.6 and 6.7 can be obtained using Fourier techniques,

the intermittent character shown here is only evident from a wavelet analysis.

6.5.2 Bicoherence profile at the L/H transition on CCT

The data analysed in this section are from the Continuous Current Tokamak

(CCT). It was operated with major radius R ¼ 1:5 m, minor radus a ¼ 0:35

m, toroidal field BT ¼ 0:25 T, plasma current Ip � 40 kA, electron density
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Fig. 6.7. Cross spectrum and cross coherence of �T . Same as Fig. 6.6 for the instan-
taneous particle flux derived from the probe data (see text). The value of the coher-
ence is smaller than for ~IIsat (Fig. 6.6).



ne ¼ 2	 1018 m�3, loop voltage Vloop ¼ 1:2� 1:4 V, central electron tem-

perature Teð0Þ > 150 eV, and central ion temperature Tið0Þ > 100 eV. A

transition from L-mode to H-mode confinement was induced by biasing a

small electrode located about 0.1 m inside the limiter radius with respect to

the vessel wall [27].

The H- or High confinement mode is a plasma state characterized by

reduced global heat losses, and is the object of intense study by the fusion

community. A full understanding of the reasons for the transition from the

L- or Low confinement mode to the H-mode is not available. It is believed

that a strong shear in the plasma rotation velocity near the edge (in the

present case caused by the artificially generated radial electric field) may

lead to suppression of turbulence in the plasma edge zone and thus to less

heat losses. This belief is strengthened by the observation of strong density

gradients in the edge zone during the H-mode in many devices. A detailed

understanding of this process seems very important, since it may help to

understand the general problem of confinement and may lead to methods

for controlling the turbulence and thus the heat transport, which eventually

may lead to smaller and cheaper thermonuclear fusion reactors.

For the present study we focus on a single probe from a poloidal Langmuir

probe array [28, 29]. It was configured such that one of the probe tips was

recording the floating potential locally. The sampling rate was 2.5 MHz. The

probe was initially located just outside the last-closed-flux-surface (LCFS).

During H-mode the increasing plasma pressure causes a slow movement of
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Fig. 6.8. Time-resolved wavelet coherence-versus-time graph of ~IIsat. The coherence is
between two radially separated probes (see text). The noise level is the same as in Fig.
6.6. In several time intervals and at various frequencies the coherence obtains values
far above the time-average value. This figure is also shown at www.cambridge.org/
resources/0521533538.



the plasma column out towards the low-field side. Thus, when the H-mode

electrode bias is suddenly turned on, the outside midplane probe records a

slow increase in the negative DC floating potential. This enabled a recon-

struction of the radial profile in the H-mode of the quantities measured by

the probe using an estimate of the instantaneous probe position relative to

the LCFS. Knowing the value of the radial electric field Er, the radial posi-

tion r of the probe can be estimated as r ¼ �f =Er, where �f is the floating

potential measured by the probe. From Doppler shift measurements, we

estimated the electric field to be Er � �100 Vcm�1. Uncertainties in this

estimate translate into an uncertainty of 30–50% in the absolute recon-

structed position, although the relative position is much more accurate

since Er does not vary significantly during the measurements.

Figure 6.9 shows the RMS values and the wavelet bicoherence of the

measured ion saturation current (Isat) for the outside midplane probe. The

H-mode period (grey area) shows a slight reduction of the RMS and a

gradual increase of the bicoherence as the plasma moves outward. A broad

range of frequencies is involved in the production of the high bicoherence

around t ¼ 80 ms, with predominance of frequencies around 250 and 500

kHz.

Observations reported earlier for L/H transitions (using reflectometry) [12]

showed an abrupt increase of the bicoherence and decrease of the RMS at the

transition. The difference with the present apparently smooth transition may

be explained by the fact that here the probe location is initially at the LCFS

and moves gradually inward, whereas in the measurements reported earlier
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Fig. 6.9. Analysis of the saturation current Isat measured by a Langmuir probe
positioned on the outside midplane at CCT. Long dashes: RMS of Isat. Drawn
line: bicoherence of Isat. Short dashes: noise level of the bicoherence. The grey
area indicates the H-mode period, induced by probe biasing.



the measurements were taken well inside the LCFS. This would imply that

the gradual change observed is due rather to the existence of a bicoherence

profile than to a slow temporal change.

Performing standard statistical analysis on the outside midplane Isat signal,

we calculate the Probability Distribution Function (PDF) before and after

the transition. Calculations are performed on records of 12500 samples after

high-pass digital filtering with a cutoff frequency 1 kHz to remove drifts. We

find that the L-mode PDF is Poisson-like (with skewness S > 1, and kurtosis

K > 5), whereas in the H-mode it is more like a Gaussian (0 < S < 1,

3 < K < 4) (Figure 6.10). The deviation from Gaussianity in the L-mode

as contrasted with the near-Gaussianity in the H-mode is consistent with

earlier studies of the relation between the PDF shape of turbulent signals

and plasma conditions [26].

Using the above-mentioned estimate of the probe position, the profile of

wavelet bicoherence was reconstructed during the H-mode phase from the

signal of the outside midplane probe. The result is shown in Figure 6.11,

along with a similar profile obtained from a different but similar discharge.

The reproducibility is surprising. We recall that a high value of the bicoher-

ence may either indicate the presence of non-linear interactions or of (quasi-

static) structure [14]. It is interesting that these features should occur a small

distance inside and not at the LCFS, which is possibly related to the fluid

velocity shear layer at or near the LCFS, which may be decorrelating the

turbulence or modifying the size of coherent structures. The precise meaning
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Fig. 6.10. PDF of the outside midplane Isat signal in the L-mode and the H-mode. L-
mode (65–70 ms): Skewness S ¼ 1:32� 0:07, Kurtosis K ¼ 5:94� 0:22; H-mode
(72–77 ms): S ¼ 0:15� 0:06, K ¼ 3:27� 0:11; H-mode (85–90 ms): S ¼
0:67� 0:06, K ¼ 3:83� 0:13.



of this maximum of bicoherence about half a centimetre inside the LCFS is as

yet unclear but it seems relevant to H-mode physics.

6.6. Conclusions

The use of wavelets in the analysis of turbulence is a significant step forward

with respect to the traditional spectral analysis. On the one hand, as was

explained in section 6.2.1, the advance is fundamental in the sense that we

liberate ourselves from the obligatory decomposition of signals in modes

which are not eigenmodes of the system (Fourier modes) and which therefore

lead to a scrambling of significant information. Wavelets can be seen as a

local linear decomposition, and this procedure is justified provided the tur-

bulence is not too strong, so that the non-linear equations describing the

turbulence can be linearized locally. On the other hand, wavelets provide

also a practical advance in the sense that they reduce the need for obtaining

long stationary time series in order to obtain sufficient statistics, which is

often not possible experimentally and difficult or expensive numerically.

Thus, as we have illustrated through numerous examples, we have been

able to perform rather complex analyses (e.g. bispectral analysis, which is

sensitive to non-linear interactions) on rather short time series, something

which was not possible before the advent of wavelets.
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Fig. 6.11. H-mode bicoherence profile. Bicoherence profile in the H-mode deduced
from the outside midplane probe signal shown in Fig. 6.9 and an estimate of the
probe position relative to the LCFS (continuous line). Also included is a similar
profile for another, similar discharge (long dashes). The noise level of the bicoher-
ence is indicated by the short-dashed line.
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[18] I. Pastor, V.M. Pérez-Garcı́a, F. Encinas-Sanz and J.M. Guerra. Ordered and
chaotic behaviour of two coupled van der Pol oscillators. Phys. Rev. E, 48: 171,
1993.

[19] A. Thyagaraja. Is the Hartmann number relevant to tokamak physics? Plasma
Physics and Contr. Fusion, 36: 1037, 1994.

[20] A. Thyagaraja. Sources of nonadiabaticity in tokamak turbulence. Physica
Scripta, 47: 266, 1993.

[21] A. Thyagaraja. Direct numerical simulations of two-fluid plasma turbulence.
Journal de Physique IV, C6, 5: 105, 1995.

[22] A. Thyagaraja. Global numerical simulations of turbulence and transport in a
tokamak. Invited paper, Proceedings International Joint Varenna-Lausanne
Workshop on Fusion Plasmas, 1996.

[23] B.A. Carreras, K. Sidikman, P.H. Diamond, P.W. Terry and L. Garcı́a. Theory
of shear flow effects on long-wavelength drift wave turbulence. Phys. Fluids, B
4: 3115, 1992.

[24] E. Ascası́bar, C. Alejaldre, J. Alonso, et al. Initial operation of the TJ-IU
torsatron and theoretical studies for the flexible heliac TJ-II. Plasma Phys. and
Contr. Nucl. Fusion Research, IAEA-CN-60/A6-1, 1: 749, 1994.

[25] M.A. Pedrosa, C. Hidalgo, B.Ph. van Milligen, E. Sánchez, R. Balbı́n, I.
Garcı́a-Cortés, H. Niedermeyer and L. Giannone. Statistical properties of
turbulent transport and fluctuations in tokamak and stellarator devices. Proc.
23rd Eur. Conf. Kiev, 1996.

[26] B.A. Carreras, C. Hidalgo, E. Sánchez, M.A. Pedrosa, R. Balbı́n, I. Garcı́a-
Cortés, B.Ph. van Milligen, D.E. Newman and V.E. Lynch. Fluctuation-
induced flux at the plasma edge in toroidal devices. Phys. Plasmas, 3: 2664,
1996.

[27] R.J. Taylor, M.L. Brown, B.D. Fried, H. Grote, J.R. Liberati, G.J. Morales, P.
Pribyl, D. Darrow and M. Ono. H-Mode behavior induced by cross-field
currents in a tokamak. Phys. Rev. Lett., 63: 2365, 1989.

[28] G.R. Tynan. Ph.D. Thesis. School of Engineering, University of California, Los
Angeles, 1991.

[29] G.R. Tynan, L. Schmitz, R.W. Conn, R. Doerner and R. Lehmer. Steady-state
convection and fluctuation-driven particle transport in the H-mode transition.
Phys. Rev. Lett., 68: 3032, 1992.

262 B.Ph. van Milligen



7

Transfers and fluxes of wind kinetic energy between
orthogonal wavelet components during atmospheric

blocking
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Abstract

Atmospheric blocking is an irregularly recurring anomalous state of the

atmospheric circulation which is large and spatially localized. Atmospheric

blocking during three unusual winter months is studied by multiresolution

analysis and a new periodic wavelet-based adaptation of traditional Fourier

series-based energetics. New forms of the transfer functions of kinetic energy

with the mean and eddy parts of the atmospheric circulation are introduced.

These quantify the zonally localized conversion of energy between scales. A

new accounting method for wavelet-indexed transfers permits the introduc-

tion of a physically meaningful zonally localized scale flux function. These

techniques are applied to National Meteorological Center data. Blocking is

found to be largely described by just the second-largest scale part of the

multiresolution analysis. New support is found for the hypothesis that block-

ing is partially maintained by a particular kind of upscale cascade.

Specifically, in both Atlantic and Pacific blocking cases there is a downscale

(upscale) cascade west (east) of the block.

7.1 Introduction

Although wavelet analysis in the time domain has been applied to atmo-

spheric boundary layer turbulence (e.g. [8]) and climatic time series (e.g. [3,

15, 17]), and in the space domain to numerically simulated turbulence [7, 9,

18], there has not been any application to observed global synoptic meteor-

ological data. A broad review of wavelets applied to turbulence is presented

by Farge et al., this volume, Chapter 4. A collection of blocking studies is

contained in [1]. During blocking, the normal progression of weather is

locally inhibited. A definition of blocking is presented in Section 7.2.
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Because of the compact organization of the block structure, wavelet-based

analysis techniques are called for, rather then Fourier analysis. After a review

of more conventional analyses, new forms of kinetic energy transfer and flux

functions are introduced in Section 7.3. Section 7.4 presents the results of

these analyses applied to blocking and nonblocking data.

7.2 Data and blocking description

The data for this study are the wind components u (eastward), v (northward)

and geopotential height Z (� g�1�, the height at which a given specific

gravitational potential energy, relative to mean sea level, � would be attained

if specific gravitational force were fixed at its global mean sea level value g)

from National Meteorological Center (NMC) global analyses (e.g. [24]).

Each of these variables depends on the independent coordinates longitude

�, latitude ’, pressure level p and time t. (The atmosphere is very close to

hydrostatic equilibrium, in which case p may be taken as an independent

coordinate instead of geometric height, which simplifies the mathematics

and the data analysis.) The original coordinate grid isy

�l ¼ �’ðl � 1Þ ¼ 0; � � � 3608; l ¼ 1; � � � 145

’m ¼ �’ðm� 1Þ ¼ 0; � � � 908; �’ ¼ 2:58; m ¼ 1; � � � 37

ps ¼ 10; 15; 20; 25; 30; 40; 50; 70; 85; 100 kPa

ti ¼ �tði � 1Þ ¼ 0; � � � 89:5d; �t ¼ :5d; i ¼ 1; � � � I ¼ 180;

t1 ¼
:
1978Dec: 1; 0 UTC:

Originally the � and ’ grid spacings were equal. Since the analysis requires

grid size to be a power J of 2, the longitudes were cubically interpolatedz

down to the periodic grid

�l ¼ ��ðl � 1� 2J�1Þ; �� ¼ 21�J�; l ¼ 1; � � � 2J þ 1 ¼ 129; ð7:1Þ

J � blog2 144c ¼ 7 chosen to minimize interpolation artifacts. (bxc � greatest

integer no greater than x.) The times i ¼ 57; 95; 110; 179 were lost by NMC,

and i ¼ 12; 20; 23 contained a few physically unacceptable miscalculated u, v

values at certain p. All fields at these times were replaced using

Ai ! 2�1ðAi�1 þ Aiþ1Þ. (Henceforth dependence on discrete �, ’, p, t may

be indicated by the respective positive indices l, m, s, i, and single indices of
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yUTC stands for universal time coordinate.
zInterpolation program rgrd1u.f documented at http://www.scd.ucar.edu/softlib/REGRIDPACK.html.



one coordinate may imply independence or simply notationally suppressed

dependence on other coordinates, depending on the context.)

The three months of these data were marked by record or near-record cold

weather in the USA, associated with quasi-persistent anomalous high pres-

sure systems known as blocks [6, 23, 25]. There were five blocking events of 7

to 13 d duration [12]. In the present study the blocking events are taken

directly from [12]. A blocking event was (somewhat arbitrarily) taken as a

t-interval T longer than 7 d throughout which the longitudinal crest
808
558fZð�mðtÞ; p7; tÞg � max�

808
558fZð�; p7; tÞg at p7 ¼ 50 kPa exceeds the zonal

mean 808
558
fZ0ðp7; tÞg (7.2) by more than 250 m, and �mðtÞ is continuous, where

808
558fAg �

X808N
’m¼558N

cos’m

0@ 1A�1 X808N
’m¼558N

Am cos ’m:

Let us define a blocking indicator functiony 1bi � 1� 1ni which takes the value

1 if there exists T 3 ti, and 0 otherwise. Specific indicators 1A and

1P ¼ 1b � 1A correspond to crests in the vicinities of the eastern Atlantic

and Pacific oceans, respectively.z The very definition of blocking is still a

subject of much debate [16]. Part of the present study is aimed at character-

izing blocking using multiresolution analysis techniques.

7.3 Analysis

This section presents several analysis techniques. The reader may wish to skip

directly from Section 7.3.1 to Section 7.4.1 to acquire a rough picture of the

blocking phenomenon motivating this research. Section 7.3.2 introduces the

physical laws governing the system, and Sections 7.3.3 and 7.3.4 review tradi-

tional analyses, essentially an application of traditional turbulence statistical

and spectral analyses applied to the special case of the earth’s atmosphere. The

relevent tools of basic wavelet analysis are reviewed in Section 7.3.5, and

readers may skip over the previous three sections to here, and hence to

Section 7.4.2. Section 7.3.6 generalizes the traditional analyses, and finally

Section 7.3.7 introduces a useful manipulation of wavelet-indexed structures

to provide a measure of localized flux across scales.
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yRoman font is used to distinguish labels such as m,n,s from indices such as m; n; s.
zFor these data blocks appeared nowhere else, which is consistent with climatological studies.



7.3.1 Conventional statistics

The zonal mean and zonal standard deviation are

A0 � 2�J
X2J
l¼1

Al; �A �

��
1� 2�J

��1�
A2
� �

0
�A2

0

��1=2

: ð7:2Þ

Define blocking and nonblocking averagesy

Ab
� I�1b

XI
i¼1

Ai1
b
i ; An

� I�1n

XI
i¼1

Ai1
n
i ; ð7:3Þ

where the total number of blocking times is Ib �
PI

i¼1 1
b
i ¼ IA þ IP ¼ I � In.

Blocking standard deviations would be

�bA �

��
1� I�1b

��1�
A2
� �b

� Ab
� �2��1=2

;

and similarly for �n.

7.3.2 Fundamental equations

Assuming the data are samples of differentiable fields, the laws of physics

may be applied to obtain equations governing those fields, and conserved

quantities useful for diagnosing the atmospheric state. Generally speaking,

conserved quantities are interesting because they constrain the available state

space of a dynamical system. Dissipative systems such as the atmosphere may

create locally organized structures in one quantity by sufficiently increasing

the entropy of another [19]. While the governing partial differential equations

admit several special kinds of invariants, this study shall be limited to the

most familiar one, kinetic energy (henceforth KE).

For the rest of Section 7.3, to simplify equations let the units of length and

time�1 be the earth’s radius a and angular speed �, respectively. Thus the

previously introduced quantities are symbolized without physical units by the

redefinitions ðu; vÞ  ða�Þ�1ðu; vÞ, � ða�Þ�2�, t �t. To a good

approximation for the present situation, the time evolution of u and v,

assuming �� a�1��2g to avoid factors of ð1þ a�2Z2
Þ
�1=2, are given by

the horizontal momentum conservation equations (derived from Newton’s

Second Law, neglecting the Coriolis and metric terms involving vertical

motion),
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yA stands for any field except 1.



ut ¼� sec ’uu� � vu’� !upþv 2 sin’þtan ’uð Þ�sec’���X; ð7:4Þ

vt ¼ � sec’uv� � vv’ � !vp � u 2 sin’þ tan ’uð Þ ��’ � Y; ð7:5Þ

where subscripts t, �, ’ and p stand for the corresponding partial derivatives.

In isobaric coordinates, vertical motion is described by !, denoting the rate

of change (with respect to t) of a fluid element’s pressure. The mass conti-

nuity equation, !p ¼ � sec’ u� þ ðcos ’vÞ’

� �
, diagnoses !. The hydrostatic

equilibrium condition for a perfect gas, �p ¼ �p
�1T , diagnoses � in terms of

air temperature, ða�Þ2R�1T . The thermodynamical energy conservation

equation (derived from the First Law of Thermodynamics)

Tt ¼ � sec’uT� � vT’ � !Tp þ �p
�1!T þH ð7:6Þ

predicts T . Other parameters are the frictional westward and southward

accelerations a�2X and a�2Y , the dry atmospheric isobaric specific heat

��1R, the specific diabatic heating rate ��1a2�3H and the dry atmospheric

gas constant R. These equations may be found e.g. as equations (6.1–5) of

[13], and are the starting point for countless analyses and predictions of

synoptic- to global-scale atmospheric circulation.

7.3.3 Review of statistical equations

Introducing the operators

ð Þ � ð2�Þ�1
Z �

��

ð Þd�; ð Þ
?
� ð Þ � ð Þ; ð7:7Þ

Saltzman re-derived from (7.4–7.5) an expression for uut þ vvt � u ut � v vt
and hence the evolution equation for mean eddy kinetic energy [20]

Ke � 2�1u?2 þ v?2 :

Ket ¼� sec ’ cos ’v2�1 u?2 þ v?2
� �� �

’
� !2�1 u?2 þ v?2

� �� �
p

ð7:8Þ

� u?v? cos’ sec ’uð Þ’ � v?v?v’ ð7:9Þ

� u?!?up � v?!?vp þ u?u? tan’v ð7:10Þ

� sec ’u?��
? � v?�’

? � u?X? � v?Y?: ð7:11Þ

The terms (7.8) represent horizontal and vertical fluxes of Ke, which vanish

under integration over a closed domain, and so include fluxes from outside

any open domain considered. The terms (7.9–7.10) represent KE transfer

between the mean flow u; v and the all the eddies, appearing in the

Reynolds stress components u?v?; v?v?; u?!?; v?!?; u?u?. The first two terms

of (7.11) give the conversion between potential and KE, while the last two
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terms of (7.11) measure the frictional energy dissipation. Physically, (7.8–

7.11) describe the evolution of KE associated with the collection of zonally

localized meteorological phenomena such as storms and quasi-persistent low

pressure systems.

7.3.4 Review of Fourier based energetics

It is desirable to resolve the eddy processes described by (7.8–7.11) into

contributions from atmospheric structures of distinct scales. Traditionally

this is done with the Fourier series representation

u ¼
X1

n¼�1

buunFn; buun � uF�n; Fnð�� �Þ � e�n�; � �
ffiffiffiffiffiffiffi
�1
p

: ð7:12Þ

In Section 7.3.6 the advantages of applying wavelet analysis to this problem

will be shown, but first comes some review. Saltzman decomposed

Ke ¼
X1
n¼1

Ken; Ken �buunbuu�n þbvvnbvv�n; ð7:13Þ

and using (7.4–7.5) to express 2Reðbuu�nbuunt þbvv�nbvvntÞ, introducedy
Kent ¼ LS

n þMn þ Cn �Dn; ð7:14Þ

where the present author writes the terms in the formz

LS
n � �2Re

�
sec’ ðuu�Þ� þ ðu

�v cos ’Þ’

� �
þ ðu�!Þp � tan ’uv�

� �b
n
buu�n

þ sec’ ðuv�Þ� þ ðv
�v cos’Þ’

� �
þ ðv�!Þp þ tan ’uu�

� �b
n
bvv�n� ð7:15Þ

Mn � �2Re buu�nbvvn cos’ðsec ’ �uuÞ’ þbvv�nbvvn �vv’�
ð7:16Þ

þbuu�nb!!n �uup þbvv�nb!!n �vvp �buu�nbuun tan ’ �vv� ð7:17Þ

Cn � �2Re sec ’�nbuu�nb��n þbvv�nc�’�’n

� �
ð7:18Þ

¼ �2Re p�1b!!�nbTTn þ sec ’ cos ’bvv�nb��n

� �
’
þ b!!�nb��n

� �
p

� �
; ð7:19Þ

Dn � 2Re buu�nbXXn þbvv�nbYYn

� �
: ð7:20Þ
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yL is denoted by T in the turbulence literature.
z(7.4–7.5), (7.6), (7.8–7.11), (7.12), (7.13), (7.14–7.20) correspond to Saltzman’s equations (1–2), (5), (23),
(29,30), (45,46) and (47,48) respectively [20].



Note that each of the terms in (7.16), (7.17), (7.18, 7.20) corresponds to a

term in (7.9), (7.10) and (7.11) respectively, but it is not clear what part of

(7.15) corresponds to (7.8). Saltzman showed thatZ ’N

’S

Z ps

0

X1
n¼1

LS
ndp d sin ’ ¼ 0; ð7:21Þ

where ps is the surface pressure, for ’N ¼ �’S ¼ �=2, and later suggested a

reformulation of (7.15) for which the equivalent of (7.21) held for arbitrary

’N;S, neglecting a term involving !p [14]. These null sums reflect the fact that

nonlinear interactions act to transfer energy between wavenumbers n, but

create or destroy no net energy. Hansen [11] has derived a formulation which

this author writes as

LS
n ¼ LH

n þ Bkhn þ Bkvn þNkhn þNkvn; ð7:22Þ

cos ’LH
n � Re

 �
u?u?� þ u?u?ð Þ� þ v@’; u

� 	
þ !@p; u
� 	

� 2 sin’u?v?
�b
n

buu�n
þ

�
u?v?� þ u?v?ð Þ� þ v@’; v

� 	
þ !@p; v
� 	

þ 2 sin ’u?u?
�b
n

bvv�n
!
;ð7:23Þ

Bkhn � � sec’ cos ’vKen

� �
’
; Bkvn � � !Ken

� �
p
; ð7:24Þ

Nkhn � � sec’Re
�
cos’ du?v?u?v?nbuu�n þdv?v?v?v?nbvv�n� ��

’
; ð7:25Þ

Nkvn � �Re du?!?u?!?nbuu�n þ dv?!?v?!?nbvv�n� �
p
; ð7:26Þ

A@x;B½ � � cos’A? B?x � B?@xð Þ:

The advantages of this formulation are that
X1
n¼1

LH
n ¼ 0 ð7:27Þ

for every individual ’ and p, and that the terms (7.24–7.26) correspond to

(7.8), so that LH
n (term (7.23)) better isolates the wave–wave interactions from

the boundary effects (7.24–7.26) of an open domain.
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7.3.5 Basic concepts from the theory of wavelet analysis

In this study the interesting dependence is on �, a 2�-periodic coordinate, so

in this subsection periodic orthogonal wavelet analysis is introduced. Any

periodic, continuous or absolutely integrable, function Að�Þ may be

expanded in a periodic orthonormal wavelet basis,y

A ¼ Aþ
X1
j¼0

eAAj; eAAj �
X2j
k¼1

eAAjk 
per
jk ; ð7:28Þ

eAAjk � A per
jk ¼

X1
n¼�1

bAA�nd per
jk 
per
jk n

; ð7:29Þ

 per
jk ð2�xÞ � 2j=2

X1
n¼�1

 2jðxþ nÞ � kþ 1
� �

; ð7:30Þ

 per
jk  

per
j0k0 ¼ �j�j0�k�k0;  per

jk ¼ 0: ð7:31Þ

The Parseval Identity implies (recalling (7.7))

A?B? ¼
X1
j¼0

X2j
k¼1

eAAjk
eBBjk: ð7:32Þ

There are many possible ‘mother wavelets’  on the real line which generate

such a representation. The  used here cannot be written in terms of explicit

functions, but is defined by the solution � of the functional dilation equation

�ðxÞ � 21=2
X1

k¼�1

hk�ð2x� kÞ; ð7:33Þ

 ðxÞ � 21=2
X1

k¼�1

ð�1ÞkhDþ1�k�ð2x� kÞ: ð7:34Þ

Daubechies has shown that, with certain requirements on the sequence h,

solutions exist which have compact support in x, smoothness (roughly, the

highest order of existing derivative), and number of vanishing moments

which all increase roughly linearly with the support length D of h [5]. This

study uses the Daubechies-20 wavelet, with only D ¼ 20 nonzero hk. The  
per
jk

are centred approximately at �jk � 2�ð2�jðk� 1Þ � 2�1Þ ¼ �ljk , where

ljk � 2J�jðk� 1Þ þ 1 ð7:35Þ
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y(7.28–7.32) all follow immediately from Section 9.3 of [5].



indicates the center on the grid (7.1). Figure 7.1 shows the  per
jk in an arrange-

ment which clarifies later figures.

Periodic wavelet analysis can also be visualized in the Fourier domain; thed per
jk 
per
jk n

are shown in Figure 7.2. The magnitude jd per
jk 
per
jk n
j is independent of k for a

given j, and the bandpass bandcenter and bandwidth are both seen to

increase with j, in accordance with the Heisenberg principle, as the spatial

resolution increases (Figure 7.1). The phase arg d per
jk 
per
jk n

is just a shift mod 2� of
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Fig. 7.1. Wavelet basis functions  per
jk for j ¼ 1; � � � J � 1 ¼ 6, as a function of �.

There are 2j basis functions at resolution j. The curves are offset to avoid over-
lapping, and only the nonvanishing parts are plotted. Dotted lines show the offsets.
Each function has mean zero.



21�j�ð1� kÞn from the phase of the continuous Fourier transform of  at

2�jn, as can be seen from dð7:30Þð7:30Þn.

In practice, given 2J discrete samples Að�JkÞ of A, then estimates of A and

the 2J � 1 coefficients eAAjk, j ¼ 0; � � � J � 1, k ¼ 1; � � � 2j may be obtained in

only Oð2JÞ calculations involving just h, without ever having to evaluate  per
jk .

This discrete wavelet transform satisfies the discrete analogs of all the previous

equations, just replacing the operator ð Þ by (7.2). Since both  per
jk and d per

jk 
per
jk

are localized, so eAAjk selects the contribution to A from position � 2�jk and
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Fig. 7.2. Wavelet basis function Fourier coefficients d per
jk n per
jk n for j ¼ 1; . . . J � 1 ¼ 6, as

a function of n (abscissa) and k (ordinate). Grayscale indicates

ðarg d per
jk n per
jk nÞj

d per
j: n per
j: nj=max jd per

j::
 per
j::
j from �� (dark) to � (light).



scale � 2�j. The set fAg
SJ�1

j¼0 f
eAAjg defines a multiresolution analysis of A. It is

essentially a sophisticated kind of bandpass filtering, a more familiar techni-

que to climatologists [2, 21].

7.3.6 Energetics in the domain of wavelet indices (or any orthogonal basis)

The advantage of the wavelet over the Fourier formulation of energetics is

the interpretation. As in the Fourier case, the nonlinear interactions between

particular scales can be identified; but now the particular locations of the

interacting scales are also represented, at least within a resolution corre-

sponding to the scale. This information is not available in the Fourier repre-

sentation.

To derive the wavelet form, first note that

Kejk � 2�1 euujk2 þevvjk2� �
; Ke ¼

X1
j¼0

X2j
k¼1

Kejk ð7:36Þ

decomposes the eddy KE into contributions from distinct positions and

scales. In his modification of the Fourier basis formulation mentioned

above, Saltzman suggested collecting half the trilinear terms to form bound-

ary fluxes, explicitly separating the nonlinear interactions which vanish under

integration over a closed domain [14]. This same step was generally formu-

lated in the Fourier basis energetics development of Hansen [11]. Following

them, from (7.4–7.5) an expression foreuujkeuujkt þevvjkevvjkt leads to
Kejkt ¼ Ljk þ Bkhjk þ Bkvjk þNkhjk þNkvjk þMjk þ Cjk þ Bghjk þ Bgvjk �Djk;

ð7:37Þ

cos ’Ljk � �2
�1

 �
u?u?� þ u?u?ð Þ� þ v@’; u

� 	
þ !@p; u
� 	

� 2 sin ’u?v?
�e
jk

euujk
þ

�
u?v?� þ u?v?ð Þ� þ v@’; v

� 	
þ !@p; v
� 	

þ 2 sin ’u?u?
�e
jk

evvjk
!
ð7:38Þ

Bkhjk � � sec’ cos ’vKejk

� �
’
; Bkvjk � � !Kejk

� �
p
; ð7:39Þ

Nkhjk � �2
�1 sec’

�
cos’

�gu?v?u?v?jkeuujk þgv?v?v?v?jkevvjk��
’

; ð7:40Þ
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Nkvjk � �2
�1
�gu?!?u?!?jkeuujk þ gv?!?v?!?jkevvjk�

p
; ð7:41Þ

Mjk � � cos ’euujkevvjk sec ’uð Þ’ �evvjkevvjkv’ ð7:42Þ

�euujke!!jkup �evvjke!!jkvp þ tan ’euujkeuujkv; ð7:43Þ

� sec ’ð ~uujkeu�u�jk þ ~vvjkev�v�jkÞ �uu;
Cjk � �p

�1e!!jk
eTTjk; ð7:44Þ

Bghjk � � sec’ cos ’evvjke��jk

� �
’
� sec ’ euujkf����jk þ eu�u�jke��jk

� �
;

Bgvjk � � e!!jk
e��jk

� �
p
; ð7:45Þ

Djk � �euujkeXXjk �evvjkeYYjk: ð7:46Þ

Again, there is a one to one correspondance between the terms (7.39–7.41),

(7.42–7.43), (7.44–7.46) and (7.8), (7.9–7.10), (7.11) respectively: the physical

processes have been resolved in both location and scale. The fact (7.27) that

wave–wave interactions create or destroy no net energy is now expressed by

X1
j¼0

X2j
k¼1

Ljk ¼ 0; and
X1
j¼0

X2j
k¼1

Mjk ¼ ð7:9; 7:10Þ; ð7:47Þ

the total KE transfer from the mean flow to all the eddies.y

The above equations would be obtained for any orthogonal basis satisfying

analogs of (7.28, 7.29, 7.32) the jk indices may be thought of as a single

index.z

7.3.7 Kinetic energy localized flux functions

Adapting the Fourier-based approach of [22], it is useful to construct a

measure Fjk of the total flux of KE to scale j from larger scales j0 < j, localized
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yAlthough in the Fourier basis it is simple to expand the nonlinear terms into convolutions, and usecA�A�n ¼ �nbAAn, in the wavelet basis it is simpler to perform the products and @� operations before the
transform. In order to retain (7.46) to a good approximation, a 10th order scheme

A�ð�lÞ ¼ ð��Þ
�1
X5
l 0¼�5

�l 0Að�lþl 0 Þ þOðð��Þ10Þ ð7:48Þ

was used, with �l ¼ ���l ¼
�1
1260 ;

5
504 ;

�5
84 ;

5
21 ;
�5
6 ; � � � ½4�. A first order scheme was used for A’.

zNote that only the properties (7.28, 7.29, 7.32) were used to derive equations (7.37–7.45), that is not any
uniquely ‘wavelet’ property such as (7.30, 7.33, 7.34). In the Fourier case, Saltzman used the multi-
plication theorem to advantage, a consequence of FnFn 0Fn 00 ¼ �nþn 0þn 00 . There is no similar identity for
wavelets, although  per

jk  
per
j 0k 0 

per
j 00k 00 is extremely sparse, and the Parseval corollary (7.32) still holds. For this

reason all the trilinear terms are calculated by multiplication before wavelet transform.



at k. Local downscale (upscale) KE cascades correspond to Fjk > 0 ð< 0Þ. The

Fourier approach definesy

Fn � �
Xn
n 0¼1

Ln 0; F0 � 0: ð7:49Þ

The wavelet construction proceeds as follows. The 2J � 1 elements Ljk form a

pyramidal tableau with 2j elements at level j. The author introduces a rec-

tangular J � 2J�1 matrix equivalence (recalling (7.35))

Ljð�2lÞ � 2j�Jþ1LjKj2l
; Ljk ¼ 2J�j�1Ljð�ljkþ1Þ; ð7:50Þ

Kjl � 2j�Jðl � 1Þ þ 1

 �

¼ 2jðð2�Þ�1�l þ 2�1Þ þ 1

 �

; ð7:51Þ

which is normalized to have the property
P2J�1

l¼1 Ljð�2lÞ ¼
P2j

k¼1 Ljk; which

preserves the sum over the spatial index at each scale, but makes the left

sum limits independent of scale.

To illustrate, for J temporarily taking the value 3, the Ljk tableau is

L01

L11 L12

L21 L22 L23 L24

Then by (7.50) the elements Ljð�2lÞ form

4�1L01 4�1L01 4�1L01 4�1L01

2�1L11 2�1L11 2�1L12 2�1L12

L21 L22 L23 L24

The present author independently introduced a KE local scale flux function

[10]z
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yF is denoted by � in the turbulence literature.
zThis may also be written Fjk ¼ �2

�j Pj
j0¼0 2

j 0LjKðj0�jþJÞk
, but it is clearer, and computationally faster, to use

the equation in the main text. However the latter form is proportional to an essentially equivalent for-
mulation introduced earlier by Meneveau [18].



Fjð�2lÞ � �
Xj
j0¼0

Lj0 ð�2lÞ;

(cf. (7.49).) By (7.47) and the choice of normalization,

lim
J"1

X2J�1
l¼1

FJ�1ð�2lÞ ¼ 0: ð7:52Þ

The rearrangement (7.50) (or an equivalent energetic bookkeeping) is neces-

sary so that in the
Pj

j0¼0 no energy at larger scale ðj0; k0Þ is ‘double counted’

for different k. Also, the Kjl is defined so that only those elements with k0

accounting (at resolution j 0) for the same location as �2l will contribute to

Fjð�2lÞ. This makes Fjð�2lÞ a meaningfully local flux function.

Once calculated for each ’, p, t, the statistics described in (7.3) may be

applied to ðM;L;FÞjk. Other useful operations arey

fAg �
X808N

’m¼308N
cos ’m

0@ 1A�1 X808N
’m¼308N

Am cos ’m ð7:53Þ

andz hAi � g�1
P10

s¼1 As�ps: The quantities hðM;L;FÞjki are then in W m�2.

7.4 Results and interpretation

7.4.1 Time averaged statistics

Figure 7.3 shows the fields Zn;b at 70 kPa} superposed on the continental

coastlines. The blocking conditions are clearly evidenced by the unusually

strong ridges in the Atlantic and Pacific cases compared to the nonblocking

cases. The blocks themselves are visible as localized high-Z structures (light

grayscale) protruding} northward from the tropics, resembling the nonlinear

phenomenon of breaking waves on a fluid surface.
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y A lower limit 308N is used to reduce the meridional boundary fluxes Bkh and Nkh. Earlier the lower limit
558N was used to focus on the block region.
z�p1 � p2 � p1, �ps � 2�1ðpsþ1 � ps�1Þ ðs ¼ 2; � � � 9Þ, �p10 � p10 � p9, so that

P10
s¼1 �ps ¼ 100 kPa, about

1 atmosphere.
}70 kPa is convenient for comparing with [6, 23, 25], while the more representative 50 kPa was used for
diagnosis in Section 7.2.
}At lower p (higher altitude) these structures are cut off from the tropics.



Figure 7.4 shows �n;bZ superposed on the continental coastlines. The mainly

diagonal structure of �nZ is a result of the typical eastward-poleward progres-

sion of synoptic weather patterns such as the winter storm tracks seen here.

Such diagonal structure is noticeably absent from �bZ. Blocking is so-named

for this reason: the progression of synoptic weather patterns is blocked.

Instead of progressive (eastward translating) structures, what makes up the

variance during blocking are small regions of (transient) ‘eddy’ activity in the

vicinity of the block. There are two maxima of �AZ , over the southern tip of
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Fig. 7.3. Zn (top), ZA (middle), ZP (bottom), value in Dm (10m) indicted in gray-
scale from dark (lows) to light (highs). All fields at p ¼ 70 kPa as a function of �
(abscissa) and ’ (ordinate).



Greenland and western Russia, that is, one on each side of the ridge in ZA

over Norway, Fig. 7.3. Similarly �PZ has several local maxima flanking the

ridge of ZP over Alaska, one just east of Japan and several along eastern

Canada. These results are consistent with the idea that large blocking struc-

tures are supported energetically by smaller eddies around them. This will be

investigated systematically in Section 7.4.3.

The zonal statistics ðu0; v0; �u; �vÞ
n;b are shown in Fig. 7.5. The jet stream is

clearly seen in u0 as a maximum near ð’; pÞ ¼ ð308N; 20 kPaÞ. The pattern of

�bðu;vÞ shows a bifurcation during blocking, consistent with the splitting of the

jet stream around the block’s anomalous high Z often observed then.
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Fig. 7.4. �nZ (top), �AZ (middle), �PZ (bottom), as in Fig. 7.3.



7.4.2 Time dependent multiresolution analysis at fixed ð’; pÞ

From Fig. 7.3, the ’ ¼ 658N line was judged to be a reasonably representa-

tive latitude to discriminate blocking from nonblocking, since it cuts through

the block structure. The Hovmöller diagram of Zð�; 658N; 70 kPa; tÞ is

shown in Fig. 7.6. In such a figure, upper-left to lower-right diagonal struc-

tures are typical of progressive synoptic weather patterns. Vertical structures
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Fig. 7.5. ðu; vÞ0 (left), �0ðu; vÞ (right), for cases n (top), A (middle), P (bottom).
Grayscale is value of u-statistics, m s�1, contour intensity, the value of v-statistics,
v0 by 0.1m s�1 up to 1m s�1 (left), �0ðvÞ by 1m s�1 up to 19m s�1 (right). All fields
depend on ’ (abscissa) and p (ordinate).



indicate stationary features, and conversely almost-horizontal structures

indicate very rapidly moving features. A curve parallel to the main diagonal

corresponds to a speed of t�1I 2�a cos 658 	 8 kmh�1. The light regions of this

figure very clearly depict four blocking events in the expected t-intervals

½0; 6:5�; ½19; 26:5�; ½44; 56:5�; ½77; 83� d near the Atlantic (near � ¼ 0) and

one in ½28:5; 40� d near the Pacific (near � ¼ �1508) [12]. The third

Atlantic blocking event is very strong, and clearly moves in a retrograde

manner (upper-right to lower-left). Apart from these features it is difficult

to extract other insight from the complicated patterns. There is a range of
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Fig. 7.6. Hovmöller diagram of Zð�; 658N, 70 kPa,tÞ (Dm), grayscale. Abscissa is �,
ordinate t (d), advancing downwards. Dotted, dash-dotted and dashed lines indicate
the onset t of nonblocking, Atlantic and Pacific blocking t-intervals, respectively.



scales displayed, since there are both regions with many close contour curves

and broad, more uniform areas.

To be able to determine more from this figure, a multiresolution analysis

(Section 7.3.5) was performed for each t: Zð�; tÞ ¼
PJ�1

j¼0
eZZjð�; tÞ,eZZjð�; tÞ ¼

P2j

k¼1
eZZjkðtÞ 

per
jk ð�Þ. Figure 7.7 shows the result. The sum of the

six panels in Figure 7.7 reproduces Figure 7.6. Each panel labeled ‘MRA j’

shows a field eZZjð�; tÞ generated by the linear combination of 2j basis functions

 per
jk and coefficients eZZjk, as in (7.28). The j ¼ 1 (second-largest scale, 1

2) level

Transfers of KE between wavelet components during blocking 281

Fig. 7.7. Hovmöller diagram of multiresolution analysis of Zð�; 658N, 70 kPa,tÞ
(Dm), as in Fig. 7.6. Each panel labeled ‘MRA j’ corresponds to expansionseZZjð�; tÞ (7.28) in  

per
jk .



by itself clearly shows the same blocking ridge pattern as Fig. 7.6. This

suggests that information encoded in just the two numbers eZZ11 and eZZ12

may describe the presence of blocking, at least for these data. The intermedi-

ate scales 2�j ¼ 1
4 ;

1
8 ;

1
16 capture patterns associated with synoptic meteorol-

ogy, from Atlantic-size (j ¼ 2) down to Hudson Bay-size (j ¼ 4). Generally

speaking, there are more progressive structures evident during nonblocking.

For example: eZZ2 for � < 0 (western hemisphere) during the first nonblocking

interval, ½7; 18:5� d, and for 0 < � < 1008 (over Europe and Russia) during

the fourth nonblocking interval, ½57; 76:5� d; eZZ3 at these times and also

globally during the fifth nonblocking interval, ½83:5; 89:5� d. Such progressive

structures are absent from eZZ1, except for transitions from one mode to

another, e.g. from k ¼ 1 (western) to k ¼ 2 (eastern hemisphere) close to

the transition times (jumps in 1b) 27 d and 57 d.y

To investigate whether the presence of blocking might be described by just

the two coefficients eZZ11 and eZZ12, their time series are presented Fig. 7.8. For

the most part, the curves tend to stay at large amplitudes, apart from each

other during blocking, and to approach each other at small amplitudes

during nonblocking. As might be expected, the eastern and western hemi-

sphere wavelet modes exchange signs during the Pacific blocking relative to

the Atlantic blocking.

The evolution of eZZ1kðtÞ, k ¼ 1; 2, can also be described in a dynamical

phase space, Fig. 7.9. Here it may be seen that Atlantic blocking is roughly

characterized by counterclockwise, eZZ11 > 0 leading eZZ12 < 0 orbits in the

fourth quadrant, while Pacific blocking is characterized by clockwise,eZZ11 < 0 lagging eZZ12 > 0 orbits in the second quadrant. Nonblocking points

cluster nearer to the origin in all quadrants. The empty regions enclosed by

the orbits suggest instabilities, although either longer time series or projection

onto higher-dimensional phase space, or both, would be required to confirm

this. If such diagnostic qualities were robust for more data, they could be

useful in predicting blocking, an outstanding problem in extended-range

weather prediction.
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yIt should be noted that there are exceptions to these observations. That is, occasionally eZZ3 or eZZ4 may
appear stationary during nonblocking, or progressive during blocking.
Also, the apparent low-amplitude (a few m), small scale (j > 4) stationary structures over the eastern
USA and Europe seem unphysical. These are probably artifacts, but not unique to this analysis; almost
identical patterns are seen in Fourier band-pass filtering (i.e., Zbp

j ð�; tÞ �
P
jnj¼2j
2jþ1�1bZZnðtÞFnð�Þ for high j) of

this data (not shown). The stationary structures are aligned with mountain ranges, but the disturbance
amplitudes are probably smaller than the original sensor sensitivity and so probably indicate mountain-
generated artifacts from the NMC analysis procedure.



7.4.3 Kinetic energy transfer functions

Table 7.1 contains some numerical results of the analyses. The I� are the

observation counts of the various states. The �
PJ�1

j¼0

P2j

k¼1 fhMjkig are the

transfers of KE to the mean flow from all eddies. Although not below

machine precision, the
PJ�1

j¼0

P2j

k¼1fhLjkig are negligible.
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Table 7.1. Numerical results

Blocking state

Non- Atlantic Pacific

I 87 69 24XJ�1
j¼0

X2j
k¼1

fhLjkigðmWm�2Þ 0.5 2.9 �0:4

XJ�1
j¼0

X2j
k¼1

fhMjkigðmWm�2Þ 16.1 90.8 �317:0

Fig. 7.8. Time series of eZZ11 (dark curve) and eZZ12 (light curve, Dm), at
ð’; pÞ ¼ ð658N; 70 kPaÞ. Abscissa is t (d). Dash-dotted, solid and dashed curves
indicate nonblocking, Atlantic and Pacific blocking, respectively.



The global KE transfer function statistics fhðM;LÞn;bjk ig are presented in

Figs. 7.10–7.13. Each panel of these four figures, as well as of Figs. 7.15–

7.20, is labeled by resolution j, with 2j abscissa values k for location.

Comparing Atlantic blocking to nonblocking, Figs. 7.10–7.11, the following

observations suggest eddies feeding energy to the block. The second-largest

scale, eastern hemisphere part ðj; kÞ ¼ ð1; 2Þ gains KE mainly from the mean

flow. At the scale 1
4 ðj ¼ 2Þ there is a loss to both mean and eddies just to the

west (upstream) of the block (k ¼ 2), resulting in a gain fhLA
23ig to a large

eddy at the block location ðk ¼ 3Þ. (Throughout this chapter, block location

in k, at a given resolution j, is indicated by a white bar.) Similarly the j ¼ 3

scale shows enhanced KE losses to the mean ðfhMA
34igÞ and eddy ðfhLA

3kig,

k ¼ 4; 5Þ flows just upstream of the block, accompanied by smaller losses

to the mean for j ¼ 4; 2 < k < 10. The smaller scales j ¼ 5; 6 contain negli-

gible transfers (less than 50mWm�2). There are sharply positive fhFA
jk ig (not

shown) just upstream of the block, with broad negative fhFA
jk ig to the block’s

east (downstream).
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Fig. 7.9. ðeZZ11; eZZ12Þ phase space (Dm). Dash-dotted, solid and dashed curves for n, A
and P, respectively. Markers * for nonblocking, � for blocking. Initial blocking times
(d) are labelled. Every sixth day an arrow to the right of the trajectory shows the
direction of dðeZZ11; eZZ12Þ/dt.



For the Pacific block, Figs. 7.12–7.13, at the second-largest scale there is a

loss ðfMP
12igÞ to the mean flow downstream ðk ¼ 2Þ accompanied by a larger

gain (fhLP
11ig) from the eddies upstream ðk ¼ 1Þ. At j ¼ 2 (scale 1

4) there is a

gain fhMP
21ig from the mean at the block ðk ¼ 1Þ and a loss fhMP

24ig to the

mean upstream of the block ðk ¼ 4Þ. For the eddy contribution, there are
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Fig. 7.10. fhMn
jkig and fhM

A
jkig, (dashed and solid curves respectively, W m�2). Each

panel shows the 2j values fhMjkig corresponding to scale 2�j of expansion (7.28). The
abscissae are k, where each sequence k ¼ 1; . . . 2j corresponds to the locations �jk
covering the entire circle, at resolution j. Negative ordinates are emphasized by a
gray background. The block longitude �bm is indicated by a white bar extending up
from the abscissa.



large gains again at the block ðk ¼ 1; 4Þ accompanying losses elsewhere,

especially from just downstream of the block ðk ¼ 2Þ. The mean flow feeds

KE downstream of the block at the 1
8 scale ðj ¼ 3; k ¼ 4Þ, while the eddy flow

removes KE at this scale everywhere but just at the block (k ¼ 1).y Most of

the smaller scale mean transfers are negligible, but there are some significant

eddy transfers located away from the block at j ¼ 4, k ¼ 5; 8. Although
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7.11. fhLn;A
jk ig, as in Fig. 7.10.

yAnd curiously, also at the Atlantic block’s location ðk ¼ 5Þ, inactive at this time in the data.



fhFP
jkig (not shown) is positive downstream of the block and negative at the

block, not unlike fhFA
jk ig, fhF

P
jkig is different in that the negative sector is only

slightly broader than the positive sector, and lies more coincident to the block

instead of distinctly upstream.

The content of Figs. 7.10–7.13 is summarized in the first two rows of Fig.

7.14, which depict fhðM;LÞn;A;Pj ð�2lÞig. All the remarks made about Figs.

7.10–7.13 also pertain here, but this condensed representation less vividly

shows the value of small transfers. The zonally (i.e. longitudinally) local

Transfers of KE between wavelet components during blocking 287

7.12. fhMn;P
jk ig, as in Fig. 7.10.



flux functions fhFn;a;P
j ð�2lÞig (third row of Fig. 7.14) reveal a similarity

between both Atlantic and Pacific blocking as viewed in space and scale

simultaneously. Observe that (7.52) is obeyed. For both locations of blocks,

there is a �-interval with positive fhFb
j ð�2lÞig for larger j on the west

(upstream), and another �-interval with negative fhFb
j ð�2lÞig (very strong in

the Pacific case), at or just downstream of the block. That is, there are a

localized downscale KE cascade upstream of the block, and a localized upscale
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7.13. fhLn;P
jk ig, as in Fig. 7.10.



KE cascade downstream of the block. In the Pacific case there are also loca-

lized downscale cascades further downstream of the block.

Still more detailed insight may be gained by inspecting the ’-dependence,

but the reader also may skip to Section 7.5 now. Figures 7.15–7.20 show
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Fig. 7.14. fhðM;L;FÞn;A;Pj ð�2lÞig (grayscale, W m�2). The same grayscale value map is
used for n,A,P. Rows are M;L;F; columns are nonblocking, Atlantic and Pacific
blocking, respectively. Abscissae are longitude �, ordinates resolution j, increasing
downwards. The white dots indicate the block longitude �bm.



hðM;LÞn;bjk i. The ’-averaging operation (7.53) applied to these figures yields

the previous figures. In these figures the � indicates the block longitude �bm,

and block latitude, the latter estimated as the greatest ’m for which����Zb
ð�bm; ’m; 70kPaÞ � Zb

ð�bm; ’m�1; 70kPaÞ

���� < 1m ð7:54Þ
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Fig. 7.15. Nonblocking hMn
jki (grayscale, W m�2), as a function of location k

(abscissa) and ’ (ordinate).



which is a measure of the northernmost vanishing of the geostrophic wind

zonal component.

To provide geographical reference and indicate the relevance of j, the

continental boundary curves are drawn, following a resolution reduction

Aj � A0 þ
Pj�1

j 0¼0
eAAj 0 of the topography/bathymetry, which retains only the

less resolved, j 0 < j structure. The smoothed boundaries illustrate that loca-

tion and shape are j-dependent in a multiresolution analysis. The
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7.16. Nonblocking hLn
jki, as in Fig. 7.15, only different grayscale value map.



ðj; kÞ ¼ ð1; 2Þ gains seen in Figs. 7.10–7.11 from both mean and eddy flows

are also similar in Figs. 7.17–7.18, which show their ’-dependence. The mean

and eddy flows feed (1, 2) north and south of the Atlantic block (Fig. 7.3

middle), around ’ ¼ 758N and 358N (near the jet stream), while the mean

also draws from (1, 2) south of it, around ’ ¼ 558N. Although the losses

from ð2; 2Þ just upstream of the block occur around the same ’ in the south

for both mean and eddy transfers, the eddy gain to ð2; 3Þ occurs in the north,
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Fig. 7.17. Atlantic blocking hMA
jki, as in Fig. 7.15, same grayscale value map. The �

indicates the block longitude �bm and latitude (7.54).



just downstream of an eddy loss. The j ¼ 3; 4 scales show much spatial

structure, with gains and losses side-by-side, especially for hLA
jki. This zonal

structure is not easily available to Fourier energetics analyses, since the latter

discard phase information. The ’-dependence of hFA
jk i (not shown) indicates

that both the downscale and upscale cascades occur well north of the block.
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Fig. 7.18. Atlantic blocking hLA
jki, as in Fig. 7.16, same grayscale value map. The �

indicates the block longitude �bm and latitude (7.54).



The ’-picture of hðM;LÞP1ki in Figs. 7.19–7.20 shows between 508 and 658N
the same western gains as Figs. 7.12–7.13, but also reveals strong losses to

eddies in the east, to the north of the block. Other sources and sinks, local in

’, are visible at j ¼ 3; 4. Again in contradistinction to the Atlantic case, the

cascades exhibited by hFP
jki (not shown) are more to the south, further from

the block.
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7.19. Pacific blocking hMP
jki, as in Fig. 7.15, same grayscale value map.



7.5 Concluding remarks

Atmospheric blocking, like all nonlinear meteorological phenomena, involves

the interaction of a range of scales. Blocks are localized structures, which are

not well represented by truncated Fourier analysis, since the Fourier coeffi-

cients of �-localized structures decay very slowly with increasing wavenumber

n. This suggested to the author to translate the traditional Fourier analysis
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7.20. Pacific blocking hLP
jki, as in Fig. 7.16, same grayscale value map.



based atmospheric energetics [20] into a periodic orthogonal wavelet based

energetics.

First of all, it was found that the second-largest scale (hemisphere) wavelet

terms of a multiresolution analysis of geopotential height Z largely describe

the state of blocking as defined here. The density and trajectory of these

terms in phase space may provide clues to eventually understanding and

predicting blocking.

The wavelet-indexed KE transfer and flux functions simultaneously repre-

sent activity localized in space and scale, an advantage over Fourier-based

analogs, which represent global activity between scales. Applying this tech-

nique to the blocking and nonblocking data reveals new energetic character-

istics of the phenomenon. In general, the eddy source term hLb
jki feeds KE to

the block location at large scales, and extracts it from neighboring locations

at intermediate scales. This supports the heuristic idea that blocks are main-

tained by an upscale KE energy cascade.

Depending on location, the transfer and flux to smaller scales can have

either sign. Specifically, the analysis reveals downscale (upscale) cascades

west (east) of the block.

The mean flow KE source (hMb
jki) also generally feeds the block location at

large scale. The Atlantic and Pacific cases were more dissimilar for hMjki than

for hLjki, so the former characteristic is more difficult to interpret.

This technique may be extended to include space-scale budgets for avail-

able potential energy, enstrophy, and other quantities. These calculations are

in preparation.
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Université Catholique de Louvain, Belgium

P h . ANTO INE a n d B . P I RAUX

Laboratoire de Physique Atomique et Moléculaire,
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Abstract

In the field of atomic and solid state physics, wavelet analysis has been

applied so far in three different directions: (i) time–frequency analysis of

harmonic generation in laser–atom interactions; (ii) ab initio electronic struc-

ture calculations in atoms and molecules; and (iii) construction of localized

bases for the lowest Landau level of a 2-D electron gas submitted to a strong

magnetic field. We survey these three types of applications, with more

emphasis on methods than on precise results.

8.1 Introduction

There are two ways in which wavelets could play a role in atomic physics and

possibly in solid state physics.

First one may envisage them as physical objects, namely quantum states or

wave functions. It is commonplace to remark that coherent states (CS) have a

privileged role in atomic physics. Laser–atom interactions, revival phenom-

ena, Rydberg wave packets and various semi-classical situations are all

instances in which a coherent state description is clearly well-adapted. Of

course, what is implied here are canonical CS, associated to the harmonic

oscillator or the electromagnetic field [36]. But wavelets are also coherent

states, namely those associated to the affine groups in various space dimen-

sions, as we have seen in Chapter 2 (see [1] for a review on coherent states).

Thus wavelets could well be thought of as convenient substitutes for cano-

nical CS. However, this suggestion is still speculative at the present moment,

very little has been achieved in this direction.
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Actually there have been so far only a few applications of wavelets in

atomic physics and in solid state physics, and in all cases they were used as

a mathematical tool. We will survey these applications in the present chapter,

with more emphasis on methods than on actual results. More precisely, we

will describe three main directions of research.

(1) When an atom is hit by a very intense, ultra-short laser pulse, it may emit light,

in the form of harmonics of the incident electromagnetic field. The time profile

of the emission spectrum reveals new information on the dynamics of this

interaction process. Clearly, this time profile is out of reach of the traditional

Fourier spectral methods, a time–frequency analysis is required. This phenom-

enon has received recently much attention, both experimentally and theoreti-

cally, although the numerical simulations are mostly limited to one-electron

atoms. Notice that both the Continuous Wavelet Transform (CWT) and the

Windowed Fourier Transform (just another name for canonical CS!) have been

used.

(2) Both the extension of these phenomena to multi-electron atoms and the self-

consistent electronic structure calculations (Hartree–Fock and generalizations)

require the use of appropriate orthogonal bases for the description of the radial

part of wave functions. Here (discrete) wavelet bases (or even frames) could

adequately replace traditional plane waves or atomic orbital (LCAO) bases.

The reason is that orthogonal wavelet bases with good localization properties

will minimize the number of terms required for an accurate calculation of wave

functions and related observable quantities. This program has been fulfilled in

ab initio electronic structure calculations, in atoms, molecules and crystals. The

crucial feature is the narrow support of the wavelets constituting an orthonor-

mal basis. This is in fact the most active line of research with wavelets in solid

state physics.

(3) Another application in solid state physics deals with a two-dimensional physical

system, namely an electron gas submitted to a strong magnetic field, the set-up

of the quantum Hall effect. Here wavelets yield various bases for the lowest

Landau level, a necessary step for the description of the fractional quantum

Hall effect.

Except for some marginal cases, these three topics are the most significant

applications of wavelets in atomic and solid state physics. In our opinion,

they are sufficiently promising to establish the credentials of wavelet methods

in those fields of physics. Both the CWT, as a precise time-frequency analysis

tool, and discrete (bi)orthogonal wavelet bases offer great potential for novel

physical applications.
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8.2 Harmonic generation in atom–laser interactions

8.2.1 The physical process

When an atom is exposed to a strong laser pulse, two competing processes

may occur, the ionization of the atom and the emission of light. This emission

process results from the oscillations of the atomic dipole at frequencies which

are odd multiples (odd harmonics) of the driving field frequency (even har-

monics are forbidden by parity conservation). Harmonic generation provides

an efficient source of coherent soft X-rays [44], which explains the potential

interest of the phenomenon for applications. Now for a full understanding of

the emission mechanism, one would like to answer questions like: When are

harmonics emitted during the optical cycle? What is the time evolution of the

emission during the laser pulse? . . . . Clearly, this is beyond standard spec-

tral methods, a time–frequency analysis is needed here.

Let us consider for simplicity the case of atomic hydrogen exposed to

a strong laser pulse whose electric field is described classically as:

E ¼ E0ðtÞ cos!t; where E0 is the pulse envelope. The atomic response to

such a pulse is highly nonlinear, which leads to various unexpected phenom-

ena. One of them is the emission by the atom of high order harmonics of the

driving field. According to the semiclassical interpretation [18, 39], this har-

monic generation results from the following two-step mechanism. The elec-

tron tunnels through the potential barrier formed by the combined Coulomb

and electromagnetic (e.m.) fields. When it is outside, it is accelerated by the

laser e.m. field and may be driven back to the residual ion. There, it may

either be scattered, or recombine back into the ground state, emitting a

harmonic photon. This interpretation is supported by quantum-mechanical

models [41], in which the time-dependent dipole moment is expressed as the

sum of the contributions from the electron trajectories in the continuum.

The resulting emission spectrum exhibits characteristic features which

depend on the laser intensity. At low laser intensity, the spectrum of the

emitted radiation decreases rapidly for increasing harmonic order, as

expected. At high laser intensity, the spectrum changes drastically: after a

rapid decrease for the first orders, it exhibits a long plateau, followed by a

sharp cut-off. A spectacular example is given in Figure 8.1. Experimentally,

harmonic orders as high as the 135th order have been observed with a Nd-

Glass laser, which corresponds to a wavelength of 7.8 nm, i.e. in the soft X-

ray (XUV) regime [43, 46]. The nonlinear character of the atomic response is

manifested, for instance, by the fact that, in the spectrum of Figure 8.1, all

the harmonics from the 69th to the 109th have almost equal intensity (hence

the word ‘plateau’), whereas the following ones drop dramatically.
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In the low intensity regime, the atomic response may be calculated by

perturbation theory. But in the intense field regime, where the external

field is of the same order or higher than the binding atomic field, nonpertur-

bative methods are needed. A possible approach consists in solving (numeri-

cally) the time-dependent Schrödinger equation [38]. Atomic dipoles

calculated by this method may be analysed with the standard Fourier spectral

method, and the corresponding harmonic spectra exhibit the global features

described above. However, a time–frequency analysis provides a deeper

understanding of the mechanism: it allows to determine the time profile of

each individual harmonic and from this one may deduce that harmonic

emission takes place only when the electron is close to the nucleus.

8.2.2 Calculation of the atomic dipole for a one-electron atom

As mentioned above, the primary cause of harmonic emission is that the

electron of the atomic hydrogen oscillates back and forth under the influence

of the laser field, hence creates a dipole moment dðtÞ. Then, according to the

Larmor formula, the energy radiated between frequencies ! and !þ d! is

proportional to jbaað!Þj2, where baað!Þ is the Fourier transform of the dipole

acceleration aðtÞ ¼ €ddðtÞ. Therefore the problem consists in calculating
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Fig. 8.1. Harmonic spectrum obtained in He for � ¼ 1053 nm and a laser intensity of
3� 1014 Wcm�2; in this case, the first harmonics up to about the order 67 are filtered
out. Note the sharp cut-off around the order 113 (from [51]).



(numerically) the acceleration aðtÞ from the time-dependent Schrödinger

equation:

i
@

@t
 ðr; tÞ ¼ ðHat þ AðtÞ � pÞ ðr; tÞ: ð8:1Þ

Here, Hat is the atomic Hamiltonian, p is the electron momentum, the vector

potential A is written in the dipole approximation, i.e. Aðr; tÞ ¼ AðtÞ depends

on time only, and is treated as a classical variable, and finally the quadratic

term A
2 has been gauged away. It is convenient to take the vector potential

along the z-axis:

AðtÞ ¼ AoðtÞ sin!Lt êez;

where AoðtÞ is the envelope of the pulse and !L the laser frequency. Notice

that the shape of the pulse influences considerably the harmonic emission. In

terms of the solution  ðr; tÞ of the Schrödinger equation (8.1), the atomic

dipole along the z-axis reads

dðtÞ ¼ h ðr; tÞ j z j  ðr; tÞi: ð8:2Þ

Using Ehrenfest’s theorem, the corresponding acceleration may be written

as:

aðtÞ ¼ €ddðtÞ ¼ �h ðr; tÞ j
z

r3
j  ðr; tÞi þ

@Az

@t
: ð8:3Þ

The next step is to expand  ðr; tÞ in an appropriate basis. For obvious rea-

sons, one takes spherical harmonics for the angular part. As for the radial

part, a convenient choice is a Coulomb Sturmian basis fSnlðrÞg, because of its

good convergence properties [50]. Notice that complex Sturmian functions

are required, in order to reproduce the correct asymptotic behaviour (out-

going wave) of the wave function [34]. Thus we write:

 ðr; tÞ ¼
X
nlm

anlðtÞ
SnlðrÞ

r
Ym

l ð�; ’Þ: ð8:4Þ

Inserting the expansion (8.4) into the Schrödinger equation (8.1), one obtains

a set of first order differential equations for the coefficients anlðtÞ, that can be

readily solved numerically (but without approximation), to yield the dipole

acceleration aðtÞ. A typical result is shown in Figure 8.2. The dipole accel-

eration presents a region of rapid oscillation, starting well before the max-

imum of the pulse (taken as the origin of time) is reached. This region

corresponds to the generation of harmonics, as will be confirmed by the

time–frequency analysis.
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8.2.3 Time–frequency analysis of the dipole acceleration: H(1s)

Taking now the Fourier transform baað!Þ of the dipole acceleration aðtÞ, one

obtains the power spectrum. Figure 8.3 shows two typical spectra. The left

one corresponds to a rather low frequency e.m. field (!L ¼ 0:047 a.u.) and

moderate intensity. The spectrum exhibits a large number of odd harmonics

of the laser frequency, which form a long ‘plateau’, with a sharp cutoff

beyond ! ¼ 33!L. On the right, we show the spectrum corresponding to

the high intensity pulse of Figure 8.2. Of course, no time localization is

provided. When is each harmonic emitted? What is its time profile?

Answering those questions requires a time–frequency analysis of the accel-

eration, as discussed in Chapter 1, section 1.1:

aðtÞ 7! ~aað�; �Þ ¼

Z 1
�1

g��ðtÞ aðtÞ dt: ð8:5Þ

In this expression � > 0 is the scale parameter and � the time parameter

(usually denoted a and b, respectively, as in Chapter 1). Two types of

time–frequency analysis have been used in the present problem, namely

. a Gabor transform, corresponding to g��ðtÞ ¼ eit=� e�
1
2ðt��Þ

2

(g��ðtÞ is then a canonical coherent state)

. a wavelet transform, with a (truncated) Morlet wavelet gðtÞ ¼ ei!ote�t
2=2 and

g��ðtÞ ¼ �
�1=2gð��1ðt� �ÞÞ.
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Fig. 8.2. Acceleration of the atomic dipole as a function of time (both in atomic
units). This dipole is the result of the interaction of atomic hydrogen with a strong
laser pulse of frequency !L ¼ 0:118 atomic units. The pulse envelope AoðtÞ is
Gaussian and its full width at half maximum is 20 optical cycles. The peak intensity
is 2� 1015 Wcm�2.



The information contained in the function ~aað�; �Þmay be exploited according

to several different strategies. First, one may calculate the emission strength

as a function of time, for a given frequency, that is, one evaluates ~aað�; �Þ for

fixed �. One can also estimate the instantaneous frequency of emission of a

given harmonic, as a function of time (�). Alternatively, one may determine

the full harmonic spectrum for a fixed time � ¼ to, that is, consider ~aað�; toÞ as

a function of �.

This technique has been applied successfully in the case of a hydrogen

atom, both in its ground state and in the metastable state 2s, or a simplified

model thereof (two-level atom), and considerable insight has been gained in

the physical mechanism of harmonic generation. Let us give some details on

the various aspects of the analysis.

8.2.3.1 Time dependence of harmonic emission in H(1s)

Let us begin with a hydrogen atom in its ground state. According to the

semiclassical description, the so-called two-step model [18, 39], harmonic

emission takes place only when the electron is close to the nucleus (see

Section 8.2.1). Using a time–frequency analysis at fixed frequency, with a

window whose bandwidth is smaller than 2!L, one is able to estimate the time

profile of individual harmonics in the emitted radiation, as indicated by the

following results.
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Fig. 8.3. (Left) Power spectrum (arbitrary units) as a function of harmonic order, in
the case of the interaction of atomic hydrogen with a laser pulse of frequency
!L ¼ 0:047 a.u. and (low) peak intensity 1014 Wcm�2. The pulse has a 4 optical
cycle sine-square turn-on and -off and a flat top of 16 optical cycles. (Right)
Harmonic spectrum of the high intensity pulse of Fig. 8.2.



(i) Time profile of harmonics: Choosing for � in (8.5) the inverse of a fixed odd

multiple of the laser frequency, one obtains the time profile of the corre-

sponding harmonic [3]. First, a Gabor analysis yields the global shape of

each harmonic (Figure 8.4, left). Two interesting points are visible on this

picture. First, the emission of each harmonic starts at a given characteristic

time, which depends on the laser intensity. Then, as their order increases, the

harmonics are emitted during shorter time intervals. This implies that the

linewidth of higher harmonics should broaden with their order. The fact that

harmonic emission stops before the field has reached its maximum amplitude

(in t ¼ 0) is due to the rapid excitation and ionization of the atom. This effect

has been observed experimentally [52].

The picture may be refined by using a wavelet analysis (using a Morlet

wavelet). Figure 8.4 (right) shows the time profile of the 9th harmonic of

the same pulse. A fine structure appears, which is 2!L-periodic, in agree-

ment with the semiclassical interpretation. Notice that, since the time

resolution is better than half the optical period, the filter bandwidth is

larger than 2!L. Therefore several harmonics are accepted simultaneously

by the filter.

The same technique reveals also how the time profile depends on the

position of the harmonic in the spectrum. Take for instance the case

depicted in Figure 8.3 (left), which corresponds to a low frequency regime
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Fig. 8.4. (Left) Time profile (from Gabor analysis) of the odd harmonics (1 – 9)
produced as a result of the interaction of atomic hydrogen with the same laser pulse
as in Fig. 8.2 (time is in atomic units). (Right) Time profile (from wavelet analysis) of
the 9th harmonic emitted in the same pulse. Note that the frequency bandwidth of
the pulse exceeds in this case 2!L.



(!L ¼ 0:047 a.u.). The wavelet analysis shows that the time profile of

harmonic 21, in the plateau (a), and that of harmonic 39, in the cutoff

(b), are totally different (see Figure 8.5) [6]. The emission process is clearly

more complex in the first case. In the case of a harmonic beyond the

cutoff, one sees only one peak per half optical cycle. On the contrary,

the time profile of harmonic 21 has two peaks for each half optical cycle.

This behaviour is in agreement with the quantum-mechanical model of

Lewenstein et al. [41], at least in the limit of high field and low frequency

(the high frequency case is also interesting, but physically more complex).

In the cutoff, there is only one electron trajectory contributing to the

emission [42]. As a result, the decrease in the spectrum beyond the cutoff

is very smooth and regular. By contrast, in the plateau where several

electron trajectories lead to the same harmonic, the resulting interference

leads to a highly structured spectrum as function of the harmonic order

[42]. For instance, the presence of two peaks per half optical cycle in

harmonic 21 reflects the existence of two return times contributing to

the emission of the same harmonic, that is, two interfering electron tra-

jectories. By analysing the harmonic emission in the time domain rather

than in the frequency domain, the contributions of the different electron

trajectories in the continuum are naturally separated [5]. In addition, the

wavelet analysis also reveals a good agreement between the time-depen-

dent Schrödinger equation model and the strong field approximation

(SFA) model, for harmonics close to or beyond the cutoff [6].
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Fig. 8.5. (Left) Time profile (from wavelet analysis) of harmonic 21 (in the plateau)
for the same conditions as in Fig. 8.3 (left); time is measured in optical periods.
(Right) The same for harmonic 39.



(ii) Temporal control of harmonic emission: In the semiclassical description,

the electron emits harmonics when it is close to the nucleus. Therefore, the

harmonic emission may be controlled if one uses a laser beam with a time-

varying polarization. When the polarization is linear, the electron oscillates

back and forth, hence it comes periodically close to the nucleus, and harmo-

nics are emitted. When the polarization is elliptic or circular, the electron

stays far away and harmonic generation is suppressed. This polarization

effect is demonstrated in Figure 8.6, which shows in parallel: (left) the time

evolution of the harmonic 9, and (right) the projection of the full wave

function on the bare 1s state of atomic hydrogen [4]. The latter measures

the probability of the electron being close to the nucleus. Hence it oscillates

when the field is linearly polarized, but remains constant in the circular or

elliptic cases. As expected, the two curves are in perfect correspondence: the

harmonic is totally suppressed when the polarization of the laser beam is

circular and it reaches its maxima precisely when the polarization is linear.

In fact, this effect may be exploited further. It has been demonstrated on

the basis of the strong field approximation (SFA), that the time profile of the

harmonic emission consists of a regular attosecond pulse train [5] (1 attose-

cond = 10�18s). By using a polarization which is linear during a very short

period in place of a fixed polarization, it should be possible to select one of
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Fig. 8.6. The polarization effect. (Left) Intensity of the 9th harmonic as a function of
time (in atomic units) in the case where the atom is exposed to two perpendicularly
polarized laser pulses of 1014 Wcm�2. The photon energies are 0.118 and 0.110
atomic units, respectively. Both pulses have a flat top and sine-square turn-on and
-off. The total duration of the pulse is 20 optical cycles. (Right) Corresponding 1s
population, measured by the projection of the full wave function on the bare 1s state
of atomic hydrogen (from [4]).



these attosecond pulses of the train. This scheme opens the route to the

production of a single intense attosecond pulse.

8.2.3.2 Harmonic emission in H(2s)

The same space localization effect of the harmonic generation takes place if

the hydrogen atom is initially in the metastable state 2s [3]. When the latter

interacts with a high intensity laser pulse, the system is excited into a linear

superposition of many Rydberg states (mainly 8p, 9p and 10p). As a result,

ionization is significantly suppressed and hence the atomic dipole does not

vanish at the end of the interaction with the pulse. A similar situation occurs

in H(1s), at low intensity, but the dynamics is much more complex now,

because of the excitation of many atomic states. In order to get an insight

into the time evolution of the process, we look again at the time profile of a

typical harmonic (the third one), obtained by a Gabor analysis and shown in

Figure 8.7(a). The curve shows two pronounced maxima. The left one corre-

sponds to the emission of the harmonic. However the second one (around

1300 a.u.) is due to an atomic frequency which is almost degenerate with

3ò!L and is present during the free evolution of the dipole after the interac-

tion with the pulse. This interpretation is confirmed by an analysis of the

population dynamics. We present in Figure 8.7(b) the time evolution of the 1s

population (measured again by the projection of the total wave function on

the 1s bare atomic state). This population is significant only at two moments:

around 1000 a.u. before the maximum of the pulse and then again after
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Fig. 8.7. (Left) Time profile (in atomic units) of the third harmonic emitted by atomic
hydrogen initially in its 2s state and exposed to a Gaussian pulse of intensity 2� 1014

Wcm�2 and width 20 optical cycles, and laser frequency !L ¼ 0:118 a.u. (Right) 1s
population as a function of time for the same situation (from [3]).



interaction. In the first region, the 1s population oscillates with frequency

2!L around its average, which corresponds to the back and forth oscillation

of the electron through the central region of the atom, and the concomitant

emission of the harmonic. As for the second region, it manifests a rapid

exchange of population between the 1s state and excited states, with no

harmonic emission.

8.2.3.3 Instantaneous frequency of emission

Actually, the frequencies of the harmonics are exact odd multiples of the

frequency of the driving field only if the laser intensity remains constant.

On the contrary, when the laser intensity increases, the frequencies are

slightly above the exact multiples of !L (blueshift). To visualize that effect,

we take a linear ramp as the pulse shape, which produces a long plateau, up

to 41!L. On this spectrum, we perform a Gabor analysis rather than a

wavelet one, in order to get a time resolution that is independent of the

harmonic order. Then all the harmonics have the same behaviour: the

Gabor coefficient grows rapidly in time (� intensity) and then reaches a

saturation intensity with some oscillations. For a given harmonic, the instan-

taneous frequency of emission is given by the time derivative d
d� �ð�; �Þ of the

phase �ð�; �Þ of the corresponding Gabor coefficient. This notion is familiar

in wavelet analysis, since it plays an essential role in the determination of

spectral lines [20], but applies in the Gabor case as well. The computation

fully confirms the effect: each harmonic is slightly blueshifted up to the

moment (indicated by an arrow) when it reaches the saturation plateau

(Figure 8.8) [54].

8.2.3.4 Harmonic spectrum at fixed time

Alternatively, one may choose a fixed time � ¼ to and determine the full

harmonic spectrum. The computation has been performed on a two-state

model for the atom, both with a Gabor analysis [24], and with a wavelet

analysis [21]. The two methods yield very similar results, except that the

Gabor spectrum contains more noise, which is due to the presence of the

so-called hyper-Raman lines. For the wavelet case, two different wavelets

have been used, the standard Morlet wavelet and another one, of compact

support, which may have independent interest. This new wavelet is defined

as:

FðtÞ ¼
1
2 e

it 1þ cos t=Nð Þ½ �; t 2 ½�N�;N��:
0; otherwise

�
ð8:6Þ
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Here N is an integer, which gives the number of oscillations of FðtÞ within its

support (it is clear that one needs here a wavelet that oscillates rather fast, a

Mexican hat, for instance, would be totally inadequate; typically one takes

N ¼ 30). Two examples of spectra are shown in Figure 8.9, taken respectively

with an F wavelet (a) and a Morlet wavelet (b). As can be seen, there is no

significant difference between the two spectra. This confirms that, here as in

general, it is not the particular choice of the wavelet that matters, but rather

the fact that its shape and the parameters chosen match closely the signal.

8.2.3.5 Which time–frequency method?

It is clear from this discussion that a time–frequency analysis is essential here.

Harmonic generation is a highly nonstationary process, whose temporal evo-

lution sheds much light on the actual physical phenomenon. This informa-

tion is obviously inaccessible to the standard Fourier technique. In addition,

as we pointed out already in Chapter 1, Fourier analysis is highly unstable

with respect to perturbation, because of its global character. The remedy is to
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Fig. 8.8. Time derivative of the phase of the Gabor coefficients for ��1 ¼ 23!L (lower
part) and 31!L (upper part). The pulse is a linear ramp of 20 optical cycles and a
maximum intensity of 1014 Wcm�2. The arrows indicate the times when each har-
monic reaches the saturation plateau (from [54]).



F
ig
.
8
.9
.
T
h
e
fu
ll
h
a
rm

o
n
ic

sp
ec
tr
u
m

(w
a
v
el
et

tr
a
n
sf
o
rm

o
f
th
e
d
ip
o
le

a
cc
el
er
a
ti
o
n
)
em

it
te
d
b
y
a
tw

o
-l
ev
el

a
to
m

ex
ci
te
d
b
y
a

la
se
r
p
u
ls
e
o
f
in
te
n
si
ty

8
:8
�

1
0
1
3
W
cm
�
2
,
a
t
ti
m
e
t o
�
�
¼

8
0
o
p
ti
ca
l
cy
cl
es
:
(a
)
w
it
h
th
e
w
a
v
el
et

F
o
f
E
q
.
(8
.6
);
(b
)
w
it
h
a
M
o
rl
et

w
a
v
el
et

(p
ri
v
a
te

co
m
m
u
n
ic
a
ti
o
n
fr
o
m

S
.
D
e
L
u
ca
).



represent the signal in terms of localized components, such as Gabor func-

tions or wavelets.

Then a natural question is the choice between wavelets and a Gabor ana-

lysis. Globally, the two methods give similar results, provided the time reso-

lution or the bandwidth of the analysing functions are identical. However,

wavelet analysis is more appropriate if we want to study simultaneously the

time profile of several frequencies, keeping the same analysing function. This

results of course from the well-known property of wavelets, that �!=! is

constant. As far as harmonic generation is concerned, a wavelet analysis is

preferable in the following two cases: (i) for studying very high order har-

monics with a time resolution better than the optical cycle, and (ii) when the

atomic structure plays a more crucial role; in that case, hyper-Raman lines

resulting from atomic transitions may occur in very short time intervals

during the interaction with the pulse [3]. On the other hand, it may be

inconvenient to make the time resolution depend on the frequency. For

example, in order to demonstrate the slight blueshift of the harmonic fre-

quency (Section 8.2.3.3), the time resolution has to be much larger than the

optical period since the shift is much smaller than 2!L, but it should be the

same for all harmonics.

So the answer to the question, wavelets or Gabor?, depends essentially on

the physics of the problem at hand. The crucial choice is not that of a

particular approach, Gabor or wavelets, or even that of a particular analys-

ing function, what really matters is that the parameters of the analysing

function be well-adapted to the signal. The case of the fixed time analysis

of Section 8.2.3.4 is another confirmation. The conclusion is that both meth-

ods are needed in fact.

8.2.4 Extension to multi-electron atoms

The analysis of the interaction between a laser pulse and a one-electron atom,

discussed in this section so far, rests on the possibility of solving numerically

the time-dependent Schrödinger equation. The resulting wave function is

then used to estimate various phenomena such as harmonic generation, as

discussed above, but also multiphoton ionization, excitation of Rydberg

wave packets, etc. In all these cases, the physical processes are complex

and largely transient, so that a time–frequency analysis is necessary for a

detailed description. Both the CWT and the Gabor analysis prove useful in

this respect, as they provide otherwise inaccessible information that comple-

ments the traditional tools of atomic physics.
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All that is even more true and interesting for two electron atoms, such as

He or H�. But now the situation is much more complicated, because of the

correlation between the two electrons. It becomes very hard to solve directly

the time-dependent Schrödinger equation and calculate a reasonable two-

electron wave packet �ðr1; r2; tÞ, although a clever choice of coordinates

may considerably alleviate the difficulty. Few results have been obtained so

far. A case in point is a recent paper [40], which treats the case of harmonic

generation and ionization from a one-dimensional two-electron He atom.

Their conclusion is that, at least for a limited range of laser frequency and

intensity, the harmonic generation spectrum in essentially the same as in the

one-electron case (for higher intensity, double ionization becomes predomi-

nant). This result offers hope that the time–frequency method may be useful

to a much wider range of physical situations than those analysed so far.

However, the full three-dimensional problem is still intractable. The diffi-

culty is to find an appropriate basis for expanding the two-electron wave

function, in such a way that numerical methods converge fast enough. In

fact, only the radial part is subject to discussion, since one likes to keep the

spherical harmonics for the angular part, so as to take advantage of the

Racah algebra. One may think of several candidates for a good radial

basis, such as generalized Sturmian functions, multiresolution-based ortho-

gonal or bi-orthogonal wavelet bases, or even various kinds of frames, for

instance those derived from Schrödinger coherent states. But in fact this a

particular instance of a more general problem, namely the construction of

multi-electronic wave functions, that we now discuss.

8.3 Calculation of multi-electronic wave functions

In any atomic process, the cross-section to be computed is proportional to

jhf j Hint j iij
2, where Hint is the interaction Hamiltonian. The initial state j i i

and the final state jf i are atomic states, possibly coupled to a continuum

electronic state, in the case of an ionization process. As we have seen in

Section 8.2, one may apply various approximations to the interaction

Hamiltonian, such as the dipole approximation, the classical treatment of

the e.m. field, etc. But the hard problem is to compute the initial and final

wave functions. Many standard techniques are available for this purpose,

such as variational methods, but the key ingredient is the expansion of the

wave function into a suitable basis. Here again, the angular part will be

described by spherical harmonics, only the radial part must be found. As

mentioned above, a possibility is to use an orthogonal wavelet basis on

½0;1�.
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Of course, what we have here is a different use of wavelets, namely as

convenient bases for expanding solutions of a partial differential equation.

This is a familiar situation, for instance in the resolution of nonlinear PDEs

[45]. The advantage of wavelets, as compared to usual bases, resides in their

good localization properties. Let us go into some detail.

8.3.1 The self-consistent Hartree–Fock method (HF)

One of the best answers to such questions is given by the self-consistent

methods, namely the well-known Hartree–Fock method and its descendants.

We shall sketch it very briefly here in order to give some feeling for the

technique and the possible use of wavelets for improving it. Further details

may be found in standard textbooks, e.g. [15].

The basic idea is to obtain the wave function � for an atom with N

electrons by a variational computation

�h� j Hat j �i ¼ 0; ð8:7Þ

where Hat denotes the atomic Hamiltonian. The total antisymmetry of �

(Pauli principle) is enforced by taking it as a Slater determinant of one-

electron wave functions:

� ¼
1

N!

�1ð1Þ . . . �1ðNÞ

..

. ..
.

�Nð1Þ . . . �NðNÞ

�������
�������;

where �iðjÞ is a one-electron wave function (‘orbital’) of the jth electron. It has

the form

�iðr; spinÞ ¼
1

r
PnlðrÞY

ml

l ð�; ’Þ�ms
; ð8:8Þ

where Y
ml

l is a spherical harmonic (thus allowing the Racah algebra for

angular momentum), �ms
is a spin orbital, PnlðrÞ is an unknown radial

function and i � ðn; l;ml;msÞ is a collective quantum number ðms ¼

� 1
2 ; ml ¼ �l; . . . l; l ¼ 0; 1; . . . n� 1; n ¼ 1; 2; . . .Þ. One usually imposes

orthonormality conditions

h�i j �ji ¼ �ijZ 1
0

PnlðrÞPn0l0 ðrÞ dr ¼ �nn0�ll0

and thus we rewrite the variational equation (8.7) with Lagrange multipliers

f�ijg:
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� h� j Hat j �i þ
X
i<j

�ijh�i j �ji

( )
¼ 0: ð8:9Þ

Inserting the ansatz (8.8) into (8.9), one obtains the so-called Hartree–Fock

(HF) equations that determine the radial functions fPnlðrÞg:

d2

dr2
�
lðl þ 1Þ

r2
þ
2

r
½Z � Yðnl; rÞ � Enl�

( )
PnlðrÞ �

2

r
Xðnl; rÞ ¼

¼
X
n0

�nln0l Pn0lðrÞ: ð8:10Þ

In this equation, Y is called the direct term and represents a local (spherical)

potential, whereas the so-called exchange term X is nonlocal. These terms

have the following form:

Yðnl; rÞ ¼
X
n0l0

X
k

ynl;n0l0 Y
k
ðnl; n0l0; rÞ

Xðnl; rÞ ¼
X
n0l0

X
k

xnl;n0l0 Y
k
ðnl; n0l0; rÞPn0l0 ðrÞ

where ynl;n0l0; xnl;n0l0 are coefficients obtained from the angular momentum

algebra and

Yk
ðnl; n0l0; rÞ ¼

Z 1
0

rk<

rkþ1>

Pnlðr
0
ÞPn0l0 ðr

0
Þ dr0; ð8:11Þ

r< ¼ minðr; r0Þ; r> ¼ maxðr; r0Þ:

Because of the exchange term X, (8.10) is a system of coupled, nonlinear

equations in the unknown functions Pnl.

The usual technique consists in choosing for Pnl a simple trial function and

solving the HF equation (8.10) by iteration. Typical choices are a Gaussian

or a Slater function rn�1e��r. In general, many terms are needed in the expan-

sion, which makes the method cumbersome or forces drastic truncations,

thus leading to unrealistic results.

The alternative possibility that we consider here is to take instead for Pnl

the elements of a suitable orthonormal wavelet basis. The idea is that the

good localization properties of such bases may reduce considerably the num-

ber of terms needed. So far, however, this program is still purely speculative,

even for two-electron systems. Yet essentially the same approach has been

used successfully in the field of solid state physics, for calculating the electro-

nic structure of various materials. We will discuss these results in the next
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section. Before that, we conclude our discussion of the self-consistent meth-

ods by indicating two possible extensions.

8.3.2 Beyond Hartree–Fock: inclusion of electron correlations

Clearly the HF approximation is too drastic and has to be improved by

taking electron correlations into account. Atomic physicists have developed

many methods to that effect, such as Configuration Interaction, the many-

body perturbation theory, the R-matrix theory or the Multiconfiguration

Hartree–Fock (MCHF) method [15]. Some of these methods are limited to

correlations among discrete states, other ones include continuum states as

well. In some cases at least (MCHF, for instance), the net result is to produce

a wave function which is more concentrated around the origin, thus oscillates

faster – and is therefore more likely to be well represented by wavelets. The

computation usually requires a large number of terms. But again, considering

the good localization properties of wavelets and their oscillatory behaviour,

one may hope to reduce significantly the number of terms and accelerate the

computation.

8.3.3 CWT realization of a 1-D HF equation

At the other extreme, a different wavelet method has been proposed recently

[25] for studying the HF equation, albeit in a simplified one-dimensional

version. The idea is to use the CWT in the same way as a Fourier or a

Laplace transform, for obtaining a different realization of the differential

equation to be solved.

One starts from the radial HF equation for the hydrogen atom, and

extends it to R by antisymmetry, x 7! � x. Thus one obtains a 1-D differ-

ential equation:

�
1

2
f 00ðxÞ �

f ðxÞ

jxj
¼ Ef ðxÞ; f 2 L2

ðR; dxÞ: ð8:12Þ

Choosing as analysing wavelet the first derivative of a Gaussian,

wðxÞ � �x e�x
2=2, one takes the CWT of the two sides of (8.12), namely,

with the usual notations ða > 0; b 2 RÞ:

f ðxÞ 7! ~ff ða; bÞ � hwab j f i:

The result is a complicated integro-differential equation in the variables a and

b, that one solves by iteration. The result is a marked improvement over the

standard Slater or Gaussian inputs (the comparison is easy, since the exact
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solution is known!). One may of course object that the situation treated in

this model is too simplified and bears little resemblance to the real physical

problem, but the idea looks nevertheless interesting.

As a final remark, we may note that the same authors [26] have also

studied the 1-D HF equation (8.12) by expressing it into an orthonormal

wavelet basis and applying the fast wavelet transform [14]. Again their results

compare favourably with those of a Slater basis. Actually this technique of

exploiting the fast convergence of the wavelet algorithm in HF calculations

has been used by several authors, as we will see in Section 8.5.3.

8.4 Other applications in atomic physics

8.4.1 Combination of wavelets with moment methods

For concluding this survey of possible applications of wavelets to atomic

physics, we discuss briefly a new method for calculating energy levels in

atoms, based on a clever combination of the WT with the well-known

method of moments [32, 33].

In the simplest case, consider a one-dimensional Schrödinger eigenvalue

equation, with a potential VðxÞ:

�
d2

dx2
�ðxÞ þ VðxÞ�ðxÞ ¼ E�ðxÞ: ð8:13Þ

The wavelet transform of �ðxÞ with respect to the Mexican hat wavelet

 ðxÞ ¼ ð1� x2Þ expð�1=2x2Þ reads:

W�ða; bÞ ¼ Na�1=2
Z þ1
�1

�ðxþ bÞ ð1� ðx=aÞ2Þ e�x
2=2a2 dx: ð8:14Þ

Introducing the moments

	b;
ðpÞ �

Z þ1
�1

xp�ðxþ bÞ e�
x
2

dx; p � 0; ð8:15Þ

one may express the WT (8.14) as a linear combination of moments:

W�ða; bÞ ¼ Nð2
Þ1=4½	b;
ð0Þ � 2
	b;
ð2Þ�; with 
 � 1=2a2: ð8:16Þ

On the other hand, these moments satisfy a first order differential equation in


:

@

@

	b;
ðpÞ ¼ �	b;
ðpþ 2Þ: ð8:17Þ
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The crucial point is that, if the potential VðxÞ is a rational fraction (or may be

transformed into one), then all the moments are linear combinations of the

first ð1þmsÞ among them, the so-called initialization or missing moments.

Inserting the corresponding expression into (8.17), one obtains a coupled set

of linear differential equations in 
:

@

@

	b;
ðiÞ ¼

Xms

j¼0

Mijð
; b;EÞ	b;
ðjÞ; 0 	 i 	 ms: ð8:18Þ

These equations may be integrated numerically, provided one has the value E

of the ground state energy and the starting values 	b;0ðpÞ, corresponding to

the infinite scale limit a ¼ 1. Precisely, the Eigenvalue Moment Method

(EMM), developed by Handy, Bessis and Morley [31], is able to give these

initial data. Thus, the EMM yields the wavelet transform W�ða; bÞ of the

unknown wave function �ðxÞ, which may then be obtained by a standard

reconstruction formula (see Eq.(1.10) in Chapter 1, and more generally any

textbook on wavelets, e.g. [19]).

This method, or variants thereof, has been applied in [32, 33] to the com-

putation of energy levels and wave functions for a variety of one-dimensional

potentials: the quartic anharmonic oscillator, the rational fraction

VðxÞ ¼ gx6ð1þ �x2Þ�1, the Coulomb potential. In addition, the method

probably extends to two or three dimensions. The results obtained in 1-D

are reasonably good (the precision may be increased with more numerical

effort), but, more important, this method introduces a totally new idea in the

wavelet picture, which once again consists in combining wavelet techniques

with existing methods. As such, this technique offers interesting perspectives

for the future.

8.4.2 Wavelets in plasma physics

Since the physics of plasmas may be considered as a branch of atomic phy-

sics, it is appropriate to mention here an innovative application of the CWT

to the analysis of intermittency in fusion plasmas [56]. Once again, the inter-

esting methodological point is the combination of wavelet methods with a

standard technique, in this case, bispectral methods. More precisely, the

notion of bicoherence, which is a measure of the amount of phase coupling

that occurs in the signal. Typically one studies the so-called wavelet bispec-

trum of a given signal sðtÞ, namely the function

BW
ða1; a2Þ ¼

Z
Sða; �ÞSða1; �ÞSða2; �Þ d�; ð8:19Þ
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the integral being taken over a finite time interval �1 	 � 	 �2, and the fol-

lowing frequency sum rule holds

1

a
¼

1

a1
þ

1

a2
: ð8:20Þ

The new point here consists in using the CWT of the signal in this definition,

instead of its Fourier transform. Two remarks are in order here. First, this

technique requires a complex wavelet, such as the Morlet wavelet, as always

when phase information is essential. Second, the sum rule (8.20) can only be

enforced if all frequencies are available, that is, if the continuous WT is used.

Dyadic frequencies cannot in general satisfy the relation.

Using this tool in statistical analysis, one may detect the presence of inter-

mittency and structure in the turbulent fusion plasmas [56]. A comprehensive

description of this approach is contained in Chapter 6 of the present volume.

8.5 Electronic structure calculations

8.5.1 Principle

A basic problem in condensed-matter physics is the ab initio calculation of

the electronic structure of a given material (ground state energy, wave func-

tion, etc.) Now, since the crystal is a 3-D periodic structure, it suffices to

describe the electronic structure around a single lattice site and apply a Bloch

transformation. Thus one comes back to the study of the electronic structure

of a single atom or molecule, that is, to the problem discussed in Section 8.3.

As explained there, the key is to find a good orthonormal basis, consisting of

functions well adapted to the problem. Two standard methods are popular

among chemists.

. LCAO bases (Linear Combination of Atomic Orbitals), based for instance on

Slater or Gaussian orbitals. The method yields a good description of the electro-

nic structure with relatively few terms, but it is difficult to improve it system-

atically (improving the LCAO method is sometimes described as an art!). In

addition the expression for the forces is extremely complicated.

. Plane wave bases. These two difficulties disappear, but a priori plane waves are not

suited for describing localized objects, since all information on space localization

is lost. Yet the electronic structure of an atom is highly inhomogeneous in space,

the wave function oscillates much more rapidly close to the nucleus. As a con-

sequence a large number of terms is needed for describing the small inner region,

but this increased precision is not necessary elsewhere.
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In order to combine the advantages of the two methods, one should use a

basis of localized functions, that allows to vary the precision according to the

local electronic density. That suggests a wavelet basis, since wavelets are well

localized, and adapt automatically to the scale of the object to be represented

(the so-called automatic zoom effect). Several research groups have per-

formed such an analysis, with different types of discrete wavelets, and we

shall quickly review them.

8.5.2 A non-orthogonal wavelet basis

The first attempt [16] was based on a non-orthogonal multiresolution basis

and its approximation by Gaussians and Mexican hats. The idea is to con-

sider a multiresolution scale in three dimensions, fVj; j 2 Zg 
 L2
ðR

3
Þ, as

described in Chapter 1, Section 1.3, but without the assumption of orthogon-

ality:

Vjþ1 ¼ Vj
_þþWj; ð8:21Þ

where _þþ denotes a direct sum, not necessarily orthogonal (hence the decom-

position in (8.21) is still unique). The interpretation is the usual one: Vj

describes the approximation at resolution 2j, and Wj the additional details

needed for passing from the resolution 2j to the finer resolution 2jþ1. Thus

one gets, as in Eq.(1.17):

L2
ðR

3
Þ ¼ Vjo

_þþ
X
j�jo

Wj

 !
; ð8:22Þ

where jo corresponds to the lowest resolution considered and
P

denotes

again a direct sum. Then one chooses two orthogonal bases, localized around

the nodes of a fixed 3-D lattice:

f�jnðrÞg 2 Vj and f jnðrÞg 2Wj; ð8:23Þ

where n denotes a lattice point and j 2 Z. From (8.22), the practical expan-

sion of a general wave function into these bases reads:

f ðrÞ ¼
X
n

ajon�jonðrÞ þ
Xjmax

j¼jo

X
n

djn jnðrÞ ð8:24Þ

In this truncated expansion, �jon is a scaling function,  jn is a wavelet, both

centred around the lattice point n; and jmax is the finest resolution, corre-

sponding to the desired precision. This expansion still has an infinite number

of terms, since n runs over the whole lattice. However, both �jn and  jn are
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supposed to be well localized, so one has to keep only those functions which

have significantly large coefficients ajon, resp. djn, for the problem at hand.

This means that one allows different resolutions for different localized

regions. In particular, since the electronic wave function oscillates more

rapidly in the atomic core region, one should add higher resolution scales j

in the core region, where the precision must be higher, but only there.

Globally the number of terms is thus considerably reduced.

The technique introduced in [16] for practical calculations runs as follows.

. One starts at resolution jo ¼ 0 with a cubic lattice L0, of lattice spacing do small

enough (the final basis should be a sufficiently tight frame). Then, for each resolu-

tion j ¼ 1; 2 . . . ; jmax, one considers the refined lattice Lj of spacing 2�jdo. The

successive basis functions will be localized on the nodes of the finest lattice Ljmax
,

with no overlap between different resolutions. Notice that this lattice is fixed in

space, independently of the position of the atomic nuclei.

. In order to adapt the resolution to the electronic density, one draws around each

nucleus a sequence of concentric spheres Sj of radii rj ¼ 2�jr0; j ¼ 0; . . . ; jmax.

Then the finite (approximate) basis consists of the following functions: (i) scaling

functions �0n centred on the nodes of L0 localized inside S0; (ii) wavelets  0n on

the nodes of L0 localized inside S1, (iii) wavelets  1n on the nodes of L1 n L0

localized inside S2; and so on until j ¼ jmax. This arrangement is schematized in

Figure 8.10 in a 2-D version.
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Fig. 8.10. The geometrical arrangement of [16] in a 2-D version. (left) The lattice L0,
corresponding to the resolution j ¼ 0 (open circles) and the nodes of L1 n L0, corre-
sponding to j ¼ 1 (black circles). (right) The spheres S1 and S2, both centred on an
atomic nucleus (lozenge), and containing centres of wavelets with j ¼ 0 and j ¼ 0; 1,
respectively.



The net result is a highly flexible finite basis, with higher resolutions intro-

duced only where they are needed, namely close to the nuclear cores.

The next problem is to choose basis functions which are both efficient and

simple to work with. Cho et al. [16] use Gaussians for �0;n and Mexican hat

wavelets for  j;n. Strictly speaking, this choice is not allowed, since these

functions do not generate an orthogonal basis, but only a tight frame [19].

However they give an extremely good approximation to such a basis, as

results from the following argument [9].

The crucial input in the construction of a wavelet basis is the pair m0;m1 of

2�-periodic functions defining the two-scale relations, for the scaling function

and the wavelet, respectively (see [19] and Chapter 1, section 1):b��ð2!Þ ¼ m0ð!Þb��ð!Þ; b  ð2!Þ ¼ m1ð!Þb��ð!Þ ð8:25Þ

(in the orthogonal case, one usually takes m1ð!Þ ¼ m0ð!þ �Þe
i!). According

to [17, Theorem 5.16], the decomposition (8.21) is unique (but without ortho-

gonality in general) iff

m0ð!Þm1ð!þ �Þ �m1ð!Þm0ð!þ �Þ 6¼ 0; for all ! 2 ½0; 2�Þ: ð8:26Þ

Cho et al. [16] choose the following functions :

m0ð!Þ ¼
X
j2Z

exp �
3

2
�2ð!� 2�jÞ2

� �
;

m1ð!Þ ¼ �e
i! !� 2�

!þ �

2�

h i� �2
m0ð!Þ;

where [.] denotes the integer part function. It is readily seen by direct com-

putation that these functions satisfy the criterion (8.26), thus guaranteeing a

unique decomposition (8.21). Furthermore, and this is the interesting point,

for � ¼ 1:35, m0 and m1 generate a scaling function �ðxÞ and a ‘wavelet’  ðxÞ

that match, respectively, a Gaussian GðxÞ and a Mexican hat �G00ðxÞ within

an absolute error of 10�10. This is indeed a good approximation, which tends

to confirm the practical efficiency of the tight frame based on the Mexican

hat wavelet.

As a test, the method is applied to the hydrogen atom [16]. The best result

is that the (known) ground state radial wave function is reproduced within

0.3% with an 85 function basis (jmax ¼ 1; ro ¼ 2 a.u.). What is more convin-

cing, the ground state energies of all elements, from hydrogen to uranium,

may be estimated within 3% using a single 67 function basis, with jmax ¼ 10.

Next the total energy of a hydrogen molecular ion Hþ2 is calculated as a

function of the separation R between the two protons. With a basis of 141

to 167 functions (depending on R), the exact values are reproduced within
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1%. Finally, the analysis is extended [8] to the full carbon atom, in the local

density approximation [37], and it yields again rather accurate energies and

wave functions.

The conclusion is that a (quasi-)wavelet basis offers a very good alternative

to standard methods for calculating the electronic structure of atoms or

molecules, because it allows to vary the spatial resolution with space, con-

trary to the LCAO or plane wave methods. The analysis extends immediately

to periodic systems by introducing a Bloch transformation. But, of course,

the precision obtained in this approach is not entirely satisfactory.

One reason is the conflict between the spherical geometry of the atom and

the Cartesian geometry of the lattice used in the wavelet expansion. Some

progress in this direction has been made in the recent work of the MIT group

[10], with a more isotropic scheme based on the so-called interpolets and

combining wavelets with finite element methods (see also [7]). Another

improvement, due to the same group, consists of combining wavelets with

traditional multigrid methods, which also allow to vary the spatial resolution.

Thus once again, the lesson is that wavelets yield optimal results when they

are combined with standard methods, well adapted to the problem at hand

(and usually the result from a long practice).

8.5.3 Orthogonal wavelet bases

Instead of the non-orthogonal scheme of [16], several groups have considered

genuine orthonormal wavelet bases, e.g. Daubechies or Meyer bases. Once

again, the key to efficiency lies in a clever selection of the most significant

expansion coefficients.

8.5.3.1 Diagonalizing the LDA Hamiltonian in a Daubechies basis

Wei and Chou [57] essentially diagonalize the Hamiltonian in the local den-

sity approximation (LDA [37]), based on the Kohn–Sham equation (instead

of the Schrödinger equation) :

�
�h
2

2m
�þ V ½r; �ðrÞ�

 !
 nðrÞ ¼ 
n nðrÞ; ð8:27Þ

where �ðrÞ ¼
P

n fnj nðrÞj
2 is the local electronic density and V ½r; �ðrÞ� an

effective potential. The idea is to expand the solution of the effective equation

(8.27) in a suitable wavelet basis, so as to get a small number of significant

coefficients (the same numerical exigence underlies the solution of the

Schrödinger equation described in Section 8.2). The authors of [57] choose

a Daubechies D6 wavelet basis of compact support, which generates a 3-D
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orthonormal basis by a threefold tensor product. Physical quantities are then

calculated in this basis, using fast wavelet transform algorithms. For

instance, they evaluate matrix elements of the Hamiltonian,
R
 l H  md

3x,

where  l stands for the wavelet basis vectors, and in particular potential

terms
R
 l U  md

3x, where U may be a local potential (ionic, Hartree or

exchange-correlation) or a nonlocal separable pseudopotential. The grid is

the standard multiresolution grid, and its position relative to the centres of

the atoms is essentially irrelevant. As compared to [16], no artificial cutoff is

put by hand, the rapid convergence of the calculation follows from the small-

ness of the compact support of the D6 wavelet, which yields sparse matrices.

With this technique, one computes [57] the total energies for a (fictitious)

hydrogen atom and for a dimer molecule, H2 or O2 (as a function of the bond

length). In all cases, the method requires relatively few basis functions (1000

or 2000) as compared to the plane wave method (� 8700), with similar

results. Thus it offers hope for a serious improving of standard calculations.

One may remark, however, that the plane wave calculation that serves for

comparison has not been optimized (for instance, the energy cutoff of 100 Ry

on the pseudopotential is abnormally high, and thus leads to a larger number

of terms than necessary), so that the improvement reported may be smaller

than claimed. Also the case of small diatomic molecules is specially unfavour-

able for a plane wave basis (too much void in the supercell). It is plausible

that the two methods would have similar performances for larger molecules

[28].

8.5.3.2 Molecular dynamics algorithm in a Daubechies basis

Tymczak and Wang [55] also use a 3-D Daubechies wavelet basis for per-

forming electronic structure calculations in a local density approximation,

starting again from the Kohn–Sham equation (8.27). However, instead of

trying to squarely diagonalize the Kohn–Sham Hamiltonian in the wavelet

basis, as the previous authors, they resort to a standard algorithm of mole-

cular dynamics (Car–Parrinello) to obtain the eigenfunctions iteratively (this

algorithm is similar to the dynamic simulated annealing method familiar in

statistical mechanics). Of course, as in the other approaches, the key point for

combining speed and precision of the calculation is to select adequately the

most significant wavelet coefficients to be kept. In order to do so, one may

exploit the self-similar behaviour of wavelet coefficients: from each scale to

the next finer one, all coefficients are multiplied by a common small factor

(which gets smaller for an increasing number of vanishing moments of the

wavelet). Hence those coefficients that are negligible at a given scale lead to

negligible ones at finer scales, no significant coefficients reemerge. Then,
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combining the selection of significant wavelet coefficients and the Car–

Parrinello algorithm at each successive scale, from coarse to fine, one obtains

fast convergence to the approximate eigenvalues and reasonably good values

for the latter. Both the convergence and the compression rates (percentage of

coefficients being kept) increase with the grid size, and so does the advantage

of the method over the conventional plane wave approach. Only simple

systems are treated in [55], namely the 3-D harmonic oscillator, the hydrogen

atom, and the LDA to the helium atom and the hydrogen dimer H2.

However, the method seems powerful enough for attacking real multi-elec-

tron systems.

8.5.3.3 Galerkin method in a Meyer basis

Yamaguchi and Mukoyama [58] solve the radial Schrödinger equation by a

variational (Galerkin) method, using an effective one-electron local potential

and extending the equation to R by antisymmetry x 7! � x, as in Section

8.3.3. In order to formulate the variational equations (see Section 8.3), they

expand the wave function into an antisymmetrized Meyer wavelet basis (C1,

symmetric, all moments vanishing, but noncompact support), keeping only

the most significant terms, as usual. By this technique they compute energy

eigenvalues and wave functions for hydrogen, neon and argon atoms, and

continuum wave functions (corresponding to pseudostates) for the argon

atom. As a test of the numerical quality of their wave functions, they calcu-

late, respectively, radiative transition rates in neon and argon atoms, and

partial photoionization rates for an argon atom in its 1s, 2s and 3s state. The

results are in excellent agreement with those obtained by the traditional

Hartree–Fock–Slater method. However, one may notice that a large number

of basis vectors is necessary for a good precision (475 for Ar), especially for

the excited states (3s, 3p), which are much less localized.

An interesting remark is that each type of atomic state (lower bound state,

Rydberg state, continuum state) has a characteristic distribution in the wave-

let parameter space. This permits one to choose for each kind of physical

process an adequate trial function before performing the variational proce-

dure.

8.5.4 Second generation wavelets

The Daubechies wavelets used in [55] and [57] have compact support, which

is numerically convenient, but they are not very smooth, and this becomes a

drawback when it comes to solving differential equations, for instance diag-

onalizing a Laplacian. An elegant way of avoiding this problem is to use
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biorthogonal wavelets, which offer the most flexible version of wavelet tech-

niques, and are also the most widely used in the wavelet community.

In the case of quantum physics applications, this step was made very

recently in a paper by Goedecker and Ivanov [27], in which they treat the

full Coulomb problem by pure wavelet methods. Namely they solve the

Poisson equation �V ¼ 4��, by expanding both the potential V and the

electronic density � in a biorthogonal basis, in the present case a second

generation wavelet basis (8th order lifted Lazy wavelet) [53]. Varying the

resolution according to the electronic density, as in [16], and using BCR

fast wavelet algorithms [14], they obtain rather spectacular results, definitely

improving upon [57]. For instance, they are able to treat the potential arising

from a fully 3-D all-electron uranium dimer. To give an idea of the power of

the method, this problem involves length scales that differ by more than 3

orders of magnitude, and so does the potential. The resolutions involved

differ by 7 orders of magnitude, and the potential is obtained with 6 signifi-

cant digits throughout the whole region. As far as we know, this is the most

successful application so far of wavelet methods in an atomic structure cal-

culation.

8.6 Wavelet-like orthonormal bases for the lowest Landau level

As mentioned already, the electronic structure calculations described in the

previous section give information on the bulk properties of solids, via a Bloch

transformation [10]. Besides these calculations, wavelets have found applica-

tions in two other problems of condensed-matter physics.

The first one is a striking similarity between wavelets and Wannier func-

tions of a 1-D crystal [35]. The context is the study of inflation, which means

the following. Any one-dimensional periodic system of period a may be

viewed as a 2a-periodic system. The question is, how does the dynamics

change? In particular, how do Bloch and Wannier functions transform

under inflation? It turns out that both types of functions obey two-scale

relations, characteristic of multiresolution wavelets [17, 19]. In particular,

the Wannier functions of a free electron in the 1-D periodic system coincide

with the Littlewood–Paley wavelets (see Section 8.6.3.2). It remains to be seen

whether this is a mere curiosity or physically useful information.

The other application pertains to a 2-D electron gas submitted to a strong

magnetic field, that is, the system in which the Quantum Hall Effects (integer

or fractional) take place. We will devote the rest of this section to this

problem and the promising role of wavelets in that context.
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8.6.1 The Fractional Quantum Hall Effect setup

The system considered in the Fractional Quantum Hall Effect (FQHE) is a

(quasi)-planar gas of electrons in a strong magnetic field perpendicular to the

plane (see [48] for a review and the original references). The first problem to

tackle is to find the ground state of the system. As in the electronic structure

calculations described in Section 8.5, the key physical parameter is the elec-

tron density, which is measured by the so-called filling factor �. As shown in

[11], good energy values are obtained for small ð0 < � < 1
5Þ or high ð

4
5 < � < 1Þ

electron densities with a Hartree–Fock description of a system of N two-

dimensional electrons.

The first step in the HF procedure is to select an adequate wave function

for a single electron in the magnetic field. As it is well known [48], the energy

levels, the so-called Landau levels, are infinitely degenerate, and there arises

the problem of finding a good basis in the corresponding Hilbert subspace. In

particular, the ground state belongs to the lowest Landau level (LLL). A

general method has been proposed for constructing an orthogonal basis

for the LLL, starting from standard 1-D orthogonal wavelet bases [2, 12,

13]. We will describe this construction below, but we shall first recall the

physical background of the problem.

Consider a single electron confined in the xy-plane and subjected to a

strong magnetic field in the z-direction. In the symmetric gauge, the

Hamiltonian reads (we use units such that �h ¼M ¼ ej ~HHj=c ¼ 1):

Ho ¼
1

2
ðpx � y=2Þ2 þ

1

2
ðpy þ x=2Þ2: ð8:28Þ

Introducing the canonical variables

P0 ¼ px � y=2; Q0 ¼ py þ x=2; ð8:29Þ

this can be written in the form of the Hamiltonian of a harmonic oscillator:

Ho ¼
1
2 ðQ

02
þ P02Þ: ð8:30Þ

Therefore the eigenstates of the Hamiltonian (8.28) can be found explicitly,

and they have the following form:

�mnðx; yÞ � eðx
2
þy2Þ=4
ð@x þ i@yÞ

m
ð@x � i@yÞ

ne�ðx
2
þy2Þ=2; m; n ¼ 0; 1; 2; . . . ;

ð8:31Þ

corresponding to the eigenvalues Emn � En ¼ nþ 1=2: Thus the energy levels

are all degenerate in m, so that the ground level (LLL) is spanned by the set

f�m0ðx; yÞg, which forms an orthonormal basis. However these wave func-
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tions are not very well localized, since the mean value of the distance from the

origin, r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, increases with m. Yet the physics of the problem

requires that the wave functions be fairly well localized, since the system

tends, as T ! 0, to the configuration of the Wigner crystal, that is, a trian-

gular lattice [11]. Thus the basis f�m0ðx; yÞg of the LLL is inadequate for the

present purposes.

8.6.2 The LLL basis problem

In order to find another basis of eigenfunctions, orthogonal or not, spanning

the same energy level, one may use the method introduced in [11], which is

based on a technique introduced by Moshinsky and Quesne [49]. The trans-

formation (8.29) can be seen as a part of a canonical transformation from the

variables x; y; px; py into the new ones Q;P;Q0;P0; where

P ¼ py � x=2; Q ¼ px þ y=2: ð8:32Þ

These operators satisfy the following commutation relations:

½Q;P� ¼ ½Q0;P0� ¼ i; ð8:33Þ

½Q;P0� ¼ ½Q0;P� ¼ ½Q;Q0� ¼ ½P;P0� ¼ 0: ð8:34Þ

Then a wave function in the ðx; yÞ-space is related to its PP0-expression by the

formula

�ðx; yÞ ¼
eixy=2

2�

ZZ
R

2
eiðxP

0
þyPþPP0Þ�ðP;P0Þ dPdP0: ð8:35Þ

In virtue of the expression (8.30) of Ho, the Schrödinger equation

Ho� ¼
1
2 ðQ

02
þ P02Þ� ¼ E� admits factorized solutions �ðP;P0Þ ¼

f ðP0ÞhðPÞ. Thus the ground state wave function of (8.30) must have the form

�0ðP;P
0
Þ ¼ f0ðP

0
ÞhðPÞ; ð8:36Þ

where f0ðP
0
Þ ¼ ��1=4e�P

02=2, and the function hðPÞ is arbitrary, which mani-

fests the infinite degeneracy of the LLL.

Depending on the choice of hðPÞ, several types of bases for the LLL may be

obtained, according to the following general scheme. Inserting (8.36) into the

integral (8.35), the Gaussian integration on P0 can be performed exactly.

Next, taking a wave function �nðP;P
0
Þ ¼ f0ðP

0
Þ hnðPÞ, where fhnðPÞg is an

arbitrary basis in L2
ðRÞ, we define:

hð2Þn ðx; yÞ ¼
eixy=2ffiffiffi
2
p
�3=4

Z 1
�1

eiyPe�ðxþPÞ
2=2 hnðPÞ dP: ð8:37Þ
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Then the set fhð2Þn ðx; yÞg is a basis for the LLL, and it is orthonormal iff

fhnðPÞg is orthonormal in L2
ðRÞ. This follows from the canonicity of the

change of variables given in Eqs. (8.29), (8.32) or simply by an explicit

calculation of the matrix element hhnjhmi, using the integral (8.37). Several

examples of this construction have been presented in the literature.

(1) Bagarello et al. [11] choose for the ground state a Gaussian h0ðPÞ ¼ f0ðPÞ, which

yields, by (8.37), hð2Þ0 ðx; yÞ ¼ �00ðx; yÞ � exp�ðx2 þ y2Þ=4. Then they construct

a complete set of basis functions of the LLL by acting on �00ðx; yÞ with the so-

called magnetic translation operators. The resulting basis vectors have

Gaussian localization around the sites of a regular two-dimensional lattice,

and thus the basis is lattice-translation invariant. However, each vector has a

well-defined, fixed (essential) support, so that there is no possibility of modify-

ing the mutual overlap for fixed electron density. In addition, this basis is not

orthogonal, since coherent states are in general not mutually orthogonal.

Enforcing orthogonality (by the Gram–Schmidt method, for instance) spoils

much of the simplicity of the basis functions, and in particular the localization

properties for intermediate fillings and the lattice-translation invariance

property.

(2) In order to keep the good localization properties and some sort of translation

invariance, Ferrari [23] has constructed an orthonormal basis for the LLL by

taking infinite superpositions of the above (coherent) states. The resulting basis

vectors are Bloch functions, which may be made translation invariant over the

nodes of a given lattice, typically triangular or hexagonal (remember that the

Wigner crystal is a triangular lattice). Clearly this basis describes very well the

two-dimensional low-density system of electrons of the FQHE, but its construc-

tion is rather involved and ad hoc.

(3) Since one wants basis wave functions which are both well localized and ortho-

gonal, obvious candidates are orthogonal wavelets. They do enjoy good loca-

lization properties, and the latter are easily controlled by varying the scale

parameter, in contrast to the Gaussian-like functions of [11]. In addition, the

physical problem has an intrinsic hierarchical structure [29, 30]. In particular,

the filling factor may take arbitrary rational values, and this suggests a fractal

behaviour, as remarked recently [47]. All this points again to wavelets. In the

next section, we will review several examples of this construction, as proposed

in [2, 12, 13].

8.6.3 Wavelet-like bases

8.6.3.1 The Haar basis

Let us look first at the LLL basis generated by the Haar wavelet basis [19].

Since the mother wavelet hðxÞ is a discontinuous function, its localization in
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frequency space is poor, it decays as !�1. However, the transformation (8.37)

is not a Fourier transform, hence it is not clear a priori that the corresponding

functions fh
ð2Þ
jk ðx; yÞg will also have a poor localization in both variables. In

fact it is not the case, as can be seen by investigating the asymptotic beha-

viour of the basis functions.

Using standard results on Gaussian integrals, one finds for the ground

state wave function:

H00ðx; yÞ ¼
e�ixy=2e�y

2=2

2�1=4
f2�ðx� iyþ 1=2Þ ��ðx� iyÞ ��ðx� iyþ 1Þg;

ð8:38Þ

where

�ðzÞ ¼ erfðz=
ffiffiffi
2
p
Þ ¼

2ffiffiffi
�
p

Z z=
ffiffi
2
p

0

e�t
2

dt; z 2 C:

Using the asymptotic expansion of the error function, we get, for

jxj; jyj � 1 :

H00ðx; yÞ ’
eixy=2e�x

2=2

2�1=4

ffiffiffi
2

�

r
1

x� iy
þ

e�1=2�xþiy

x� iyþ 1
� 2

e�1=8�ðx�iyÞ=2

x� iyþ 1=2

 !
; ð8:39Þ

which displays the Gaussian localization of the wave function in the variable

x and the rather poor one in y (decay as y�1). This behaviour is confirmed in

Figure 8.11 (left), which shows the modulus of H00ðx; yÞ in a 3-D perspective.

Clearly the function H00ðx; yÞ is much better localized in the x variable than

in y.

An analogous behaviour can be obtained for the generic functionHjkðx; yÞ,

which may also be calculated exactly. Using (8.37), it is easily seen that the

asymptotic behavior of hð2Þn ðx; yÞ in x is governed by the asymptotic beha-

viour of hnðPÞ, and the one in y by that of the Fourier transform of hnðPÞ.

Since in the present case, hjkðPÞ has compact support, we expect Hjkðx; yÞ to

be strongly localized in x and delocalized in y, and that its decay in x gets

faster for smaller j. This is indeed the case, as may be seen on the figures

presented in [12].

8.6.3.2 The Littlewood–Paley and other wavelet bases

Another simple example of an orthonormal wavelet basis in L2
ðRÞ, also

coming from MRA, is the Littlewood–Paley basis [19], generated from the

mother wavelet
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�ðxÞ ¼ ð�xÞ�1ðsin 2�x� sin�xÞ: ð8:40Þ

The behaviour of this function is complementary to that of the Haar wavelet:

it has a compact support in frequency space but it decays like 1=x in config-

uration space.

An analogous complementary behaviour is found also for the correspond-

ing LLL wave functions. They are exponentially localized in the y-variable,

while in the other variable they behave like 1=x. This is manifest on the

asymptotic behaviour of �00ðx; yÞ for jxj; jyj � 1. By the same method as

before, one finds:

�00ðx; yÞ ’
e�ixy=2e�y

2=2

2�5=4
�

e2�ðyþixÞe�2�
2

j2�� y� ixj
þ
e�ðyþixÞe��

2=2

j�� y� ixj

(

�
e�2�ðyþixÞe�2�

2

j2�þ yþ ixj
þ
e��ðyþixÞe��

2=2

j�þ yþ ixj

)
; ð8:41Þ

which displays the exponential decay of j�00ðx; yÞj in y and the slow decay in

x, as observed in Figure 8.11 (right).

Similar considerations can be made for the LLL bases obtained by (8.37)

from other 1-D wavelet orthonormal bases; for instance [12], the following.

. The Journé basis, which does not come from MRA (see [19], p. 136). This case is

very similar to the Littlewood–Paley basis, since here too the mother wavelet has

compact support in frequency space.

. Spline bases, for instance the order 1 splines, coming from the triangle or ‘tent’

function as scaling function.
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8.6.3.3 Outcome

In conclusion we may say that the orthonormal bases obtained so far are not

yet sufficient for a good solution of the LLL problem, except at very low

electron density. However, the construction sketched above suggests a gen-

eral method for designing good bases, with localized functions and respecting

the symmetry of a given lattice, for instance, a triangular lattice. This goes in

the right direction, since the whole QHE may be characterized as the trans-

port of electrons in a (local) Wigner crystal [47]. The most promising point of

such wavelet bases is the possibility of controlling the width of the (essential)

supports, hence the overlap between basis functions at neighbouring points,

with help of the scaling parameter.

8.6.4 Further variations on the same theme

In a further paper, Bagarello [13] has investigated another aspect of the trial

wave function introduced in [11] for a two-dimensional system of electrons in

Coulomb interaction. Namely he compares the ground state energy given by

harmonic oscillator wave functions with that obtained with particular wave-

lets. It turns out that the latter always give results that can easily be inter-

preted as localization properties of the wave function.

Consider an N-electron system in R
2, with Hamiltonian

H ¼
XN
i¼1

HoðiÞ þ
1

2

X
i 6¼j

1

jri � rjj
ð8:42Þ

Ho ¼
1

2
ðp2x þ x2Þ þ

1

2
p2y þ pxpy: ð8:43Þ

Then, under the following canonical transformation:

Q ¼ px þ py; P ¼ �x;
Q0 ¼ py; P0 ¼ x� y;

ð8:44Þ

the free Hamiltonian turns into that of a harmonic oscillator, as before:

Ho ¼
1
2 ðQ

2
þ P2
Þ; ð8:45Þ

and again one has an integral transform relating the QQ0 wave function to

the original one:

�ðx; yÞ ¼
1

2

ZZ
R

2
ei½Q

0
ðx�yÞþQx� �ðQ;Q0Þ dQdQ0: ð8:46Þ

Here also the free Schrödinger equation admits factorized solutions
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�ðQ;Q0Þ ¼ ��1=4 e�Q
2=2 �ðQ0Þ; ð8:47Þ

where �ðQ0Þ is an arbitrary function. Choosing for the latter various basis

functions, such as elements of the Littlewood–Paley, Haar or harmonic oscil-

lator basis, one may compute the ground state energy Ec of the N-electron

system, with the wave function taken again as a Slater determinant, in the

familiar Hartree–Fock manner. Actually Ec is the sum of two terms, the

direct one and the exchange term (see Section 8.3.1), but the latter is much

smaller and may be neglected. As a preparation for the FQHE, one should

also consider the electrons localized on the nodes of a lattice generated by

magnetic translations, as explained in the preceding section.

Calculations of this type are presented in [13] for N ¼ 2 (this case already

displays the general features) and several configurations. For instance, two

electrons localized at the origin (with different wave functions, otherwise the

Slater determinant would vanish identically); or two electrons on the y-axis,

separated by a magnetic translation. In both cases, the value obtained for the

energy of the trial ground state shows that the wavelet wave function is better

localized than the harmonic oscillator wave function.

All these results strongly suggest that wavelet bases, localized around the

nodes of the triangular Wigner crystal, may be extremely useful for finding

the ground state wave function of the FQHE.

8.7 Outcome: what have wavelets brought to us?

Looking in retrospect at the discussion above, we may conclude that wavelets

can be used profitably in various problems in atomic physics and in solid

state physics, under different aspects and for different purposes. For instance,

we may state the following.

. The detailed description and physical understanding of harmonic generation (and

similar transient phenomena) is inaccessible to standard spectral methods, it

requires a time–frequency representation, by wavelets or Gabor analysis.

. The computation of N-electron atomic wave functions (HF and relatives)

demands a good orthogonal basis on the half line R
þ, and a wavelet basis

seems well-adapted.

. Finally, there is the possibility of using 2-D orthogonal wavelet bases for the

description of 2-D phenomena in solid state physics, such as the FQHE.

In all these applications, the key property of wavelets is their good loca-

lization, both in space and in frequency, and the possibility of controlling it

by scaling (the automatic zooming property). This property permits, for

instance, to vary the precision of electronic structure calculations in space,
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depending on the value of the local electronic density. The net result is a

reduction of the number of terms required for the expansion of wave func-

tions in the chosen bases. This is analogous to the higher compression rates

achieved with wavelet bases in the synthesis and transmission of signals.

As a final point, we may remark that all the applications described in this

chapter consider the WT as a mathematical tool, whereas wavelets might also

be used as genuine physical entities, exactly as coherent states – which they

are after all! Many interesting phenomena could be described in that lan-

guage (Rydberg atoms, semiclassical limit, revivals, . . .). Finally there is also

the possibility to use different wavelets, such as the CS associated to the

Schrödinger group [22].

Our conclusion will be that the applications of wavelets in atomic physics

and in solid state physics are a new field (it is characteristic that most of the

papers quoted in this chapter have appeared in the past two years). Many

promising results have been obtained already, much work remains to be

done, and hopes for progress are reasonably well-founded. In addition, it

is likely that new applications in various domains of quantum (or classical)

physics will be found in the near future.
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Abstract

The multifractal formalism originally introduced to describe statistically the

scaling properties of singular measures is revisited using the wavelet trans-

form. This new approach is based on the definition of partition functions

from the wavelet transform modulus maxima. We demonstrate that very

much like thermodynamic functions, the generalized fractal dimensions Dq

and the f ð�Þ singularity spectrum can be readily determined from the scaling

behaviour of these partition functions. We show that this method provides a

natural generalization of the classical box-counting techniques to fractal

signals, the wavelets playing the role of ‘generalized boxes’. We illustrate

our theoretical considerations on pedagogical examples, e.g., devil’s stair-

cases and fractional Brownian motions. We also report the results of some

recent applications of the wavelet transform modulus maxima method to

fully developed turbulence data. Then we emphasize the wavelet transform

as a mathematical microscope that can be further used to extract microscopic

information about the scaling properties of fractal objects. In particular, we

show that a dynamical system which leaves invariant such an object can be

uncovered from the space-scale arrangement of its wavelet transform mod-

ulus maxima. We elaborate on a wavelet based tree matching algorithm that

provides a very promising tool for solving the inverse fractal problem. This

step towards a statistical mechanics of fractals is illustrated on discrete per-

iod-doubling dynamical systems where the wavelet transform is shown to

reveal the renormalization operation which is essential to the understanding

of the universal properties of this transition to chaos. Finally, we apply our

technique to analyse the fractal hierarchy of DLA azimuthal Cantor sets
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defined by intersecting the inner frozen region of large mass off-lattice diffu-

sion-limited aggregates (DLA) with a circle. This study clearly lets out the

existence of an underlying multiplicative process that is likely to account for

the Fibonacci structural ordering recently discovered in the apparently dis-

ordered arborescent DLA morphology.

9.1 Introduction

In the real world, it is often the case that a wide range of scales is needed to

characterize physical properties. Actually, multi-scale phenomena seem to be

ubiquitous in nature. A paradigmatic illustration of such a situation are

fractals which are complex mathematical objects that have no minimal nat-

ural length scale. The relevance of fractals to physics and many other fields

was pointed out by Mandelbrot [1, 2] who demonstrated the richness of

fractal geometry and stimulated many theoretical, numerical and experimen-

tal studies. There are many phenomena in physics that are characrerized by

complicated singular measures or singular functions exhibiting self-similar

scaling properties [3–12]. In particular, scale invariance is commonly encoun-

tered in the context of critical phenomena [13, 14] where the divergence of the

correlation length leads to universality. Systems maintained far from equili-

brium [15, 16] also display scale invariance in the way they organize spatially

as well as in their dynamical evolution [3–12, 17–21].

The aim of a quantitative theory of fractal objects is to provide mathe-

matical concepts and numerical tools for the description of the scaling prop-

erties of these objects based on some limited amount of information. For

fractal objects which display a recursive hierarchical structure, the knowledge

of a few steps of refinement of the object is sufficient for carrying on the

refinement ad infinitum [1, 2]. Unfortunately, fractals that appear in nature

do not generally exhibit, at least at the first glance, such a well ordered

architecture. There are two levels of description that one can hope to achieve

which are formally and computationally equivalent to thermodynamics and

statistical mechanics in the theory of many-body systems [22]. On the one

hand, one can seek for a global thermodynamic characterization of a fractal

object as seen as a macroscopic system in terms of intensive variables (tem-

perature, pressure, . . . ) and thermodynamic functions (free energy,

entropy, . . . ) [23–25]. On the other hand, one can look for microscopic

information about the local scaling properties of fractals in order to define

the equivalent of the Hamiltonian from which statistical mechanics tells us

how to calculate these thermodynamic functions [26–28]. This amounts to

solve what is called the inverse fractal problem, i.e., to extract from the data a
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dynamical system (or its main characteristics) which accounts for the con-

struction rule in the sense that it leaves the object invariant.

Recently, a phenomenological approach to the characterization of fractal

objects has been proposed and advanced: the multifractal formalism [29, 30].

In its original form, this aproach is essentially adapted to describe statistically

the scaling properties of singular measures [19, 26–28, 30–37]. Notable exam-

ples of such measures include the invariant probability distribution on a

strange attractor [30, 34, 36], the distribution of voltage drops across a ran-

dom resistor network [3, 6, 7, 12], the distribution of growth probabilities

along the boundary of diffusion-limited aggregates [7, 8, 38] and the spatial

distribution of the dissipation field of fully developed turbulence [19, 29–41].

The multifractal formalism consists in considering a fractal measure as a

‘multi-singularity’ system. More specifically, a fractal measure can be decom-

posed into interwoven sets which are characterized by their singularity

strength � and their Hausdorff dimension f ð�Þ [30]. The so-called f ð�Þ singu-

larity spectrum has been shown to be intimately related to the generalized

fractal dimensions Dq [42–46]. The link between the multifractal formalism

and thermodynamics can be understood as follows: the variables q and

�ðqÞ ¼ ðq� 1ÞDq play the same role as the inverse of temperature and the

free energy, while the Legendre transform f ð�Þ ¼ minq½q�� �ðqÞ� indicates

that instead of the energy and the entropy, we have � and f ð�Þ as the thermo-

dynamic variables conjugated to q and �ðqÞ [33–35, 47]. Most of the rigorous

mathematical results concerning the multifractal formalism have been

obtained in the context of dynamical system theory [34, 36]. It has recently

been developed into a powerful technique accessible also to experimentalists.

Successful applications have been reported in various fields and the perti-

nence of the multifractal approach seems, nowadays, to be well admitted in

the scientific community at large.

However, in physics as well as in other applied sciences, fractals appear not

only as singular measures, but also as singular functions. The examples range

from graphs of various kinds of random walks, e.g., Brownian signals [48,

49], to financial time series [50–52], to geologic shapes [1, 53], to rough

interfaces developing in far from equilibrium growth processes [11], to tur-

bulent velocity signals [54, 55] and to DNA ‘walk’ coding of nucleotide

sequences [56]. There have been several attempts to extend the concept of

multifractality to singular functions [29, 57]. In the context of fully developed

turbulence, the multiscaling properties of the recorded turbulent velocity

signals have been investigated by calculating the moments

Spð‘Þ ¼ h�vp‘i � ‘
�p of the probability density function of longitudinal velo-

city increments �v‘ðxÞ ¼ vðxþ ‘Þ � vðxÞ over inertial separation [54, 55]. By
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Lengendre transforming the scaling exponents �p of the structure functions

Sp of order p, one expects to get the Hausdorff dimension DðhÞ of the subset

of R for which the velocity increments behave as �v‘ � ‘
h [29]. In a more

general context, DðhÞ will be defined as the spectrum of Hölder exponents of

the singular signal under study and thus will have a similar status to the f ð�Þ

singularity spectrum for singular measures [58]. But there are some funda-

mental limitations to the structure function approach which intrinsically fails

to fully characterize the DðhÞ singularity spectrum [58–61]. Actually, only the

singularities of Hölder exponents 0 < h < 1 are potentially amenable to this

method; singularities in the derivatives of the signal are not identified.

Moreover it has fundamental drawbacks which may introduce drastic bias

in the estimate of the DðhÞ singularity spectrum, e.g., divergencies in Spð‘Þ for

p < 0.

Our purpose here, is to elaborate on a novel strategy that we have recently

proposed and which is likely to provide a thermodynamics of multifractal

distributions including measures and functions [59–63]. This approach relies

on the use of a mathematical tool introduced in signal analysis in the early

1980s: the wavelet transform [64–70]. The wavelet transform has been proved

to be very efficient to detect singularities [71–74]. In that respect, it is, a

priori, a rather promising technique to study fractal objects [75–81]. Since

a wavelet can be seen as an oscillating variant of the characteristic function of

a box (i.e., a ‘square’ function), we will show, as a first step, that one can

generalize in a rather natural way the multifractal formalism by defining

some partition functions in terms of the wavelet coefficients [59–63, 82]. In

particular, by choosing a wavelet which is orthogonal to polynomial beha-

viour up to some order N, one can make the wavelet transform blind to

regular behaviour, remedying in this way one of the main failures of the

classical approaches (e.g., the box-counting method in the case of measures

and the structure function method in the case of functions). The other funda-

mental advantage of using wavelets is that the skeleton defined by the wavelet

transform modulus maxima [74] provides an adaptative space-scale partition

of the fractal distribution under study from which one can extract the DðhÞ

singularity spectrum via the scaling behaviour of some partition functions

defined on this skeleton [59–63, 82].

As a second step, we will demonstrate that the wavelet transform can be

further considered to collect additional information concerning the hierarchy

that governs the spatial distribution of the singularities of a fractal object. The

wavelet transform can be used as a mathematical microscope [71, 75–81];

increasing the magnification one gains insight into the intricate internal struc-

ture of these objects. In this context, we will elaborate on a wavelet based tree
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matching algorithm which provides a very attractive method for solving the

inverse fractal problem [82–84]. This method amounts to extracting from the

wavelet transform modulus maxima skeleton, a one-dimensional map which

accounts for the construction process of the considered fractal. In that pros-

pect, it constitutes a very promising alternative methodology to the

approaches developed in the theory of Iterated Function Systems (IFS) [85–

87]. Along the line of the analogy with the physics of multi-body systems, this

microscopic description of multifractals is the counter-part of classical statis-

tical mechanics based on the knowledge of the Hamiltonian of the system.

9.2 The multifractal formalism

The multifractal formalism has been introduced to provide a statistical

description of singular measures in terms of thermodynamic functions such

as the generalized fractal dimensions Dq and the f ð�Þ singularity spectrum

[30–37]. In this section, we review both the microcanonical method of com-

puting the f ð�Þ singularity spectrum directly from the data and the canonical

method which consists in determining f ð�Þ from the estimation of the Dqs.

9.2.1 Microcanonical description

9.2.1.1 The fð�Þ singularity spectrum

Usually, when dealing with fractal objects on which a measure � is defined,

the dimension D is introduced to describe the increase of the mass � ðBxð�ÞÞ

with size �:

�ðBxð�ÞÞ ¼

Z
Bxð�Þ

d�ðyÞ � �D; ð9:1Þ

where Bxð�Þ is the ball centred at x and of size � (in R; Bxð�Þ is an �-inteval).

In general, however, fractal measures display multifractal properties in the

sense that they scale differently from point to point. Then one is led to

consider local scaling behaviour [30, 46, 88]:

�ðBxð�ÞÞ � �
�ðxÞ; ð9:2Þ

where the exponent �ðxÞ represents the singularity strength of the measure �

at the point x. The smaller the exponent �ðxÞ, the more singular the measure

around x and the ‘stronger’ the singularity. Let us note that the prefactor in

the right-hand side of Eq. (9.2) can be a function of � which varies slower

than any power of �. The f ð�Þ singularity spectrum describes the statistical
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distribution of the singularity exponent �ðxÞ. If we cover the support of the

measure � with balls of size �, the number of such balls that scale like ��, for a

given �, behaves like [30, 37]:

N�ð�Þ � �
�f ð�Þ: ð9:3Þ

Thus f ð�Þ describes how the ‘histogram’ N�ð�Þ varies when � goes to zero. In

the limit �! 0þ, f ð�Þ is defined as the Hausdorff dimension of the set of all

points x such that �ðxÞ ¼ � [34, 36]:

f ð�Þ ¼ dHfx 2 supp �; �ðxÞ ¼ �g: ð9:4Þ

At this point one can distingish two main classes of singular measures.

Homogeneous measures [1, 2, 30, 46, 89] are characterized by a singularity

spectrum supported by a single point ðð�Þ0; f ð�0ÞÞ: only one ‘sort’ of singu-

larity is present in the measure. Multifractal measures [30–37, 46, 47] involve

singularities of different strengths; in this case the f ð�Þ spectrum has generally

a single humped shape which extends over a finite interval ½�min; �max�, where

�min (resp. �max) correspond to the strongest (resp. weakest) singularities.

For singular measures which possess a recursive multiplicative structure,

the f ð�Þ singularity spectrum can be calculated analytically [30]. But this is

not the case in general and one must have recourse to numerical algorithms

for computing the f ð�Þ spectrum. The most natural way would consist in

scanning the support of �, measuring �ðxÞ at each point x by estimating the

slope of the curve ln�ðBxð�ÞÞ as a function of ln �; then by using the so-called

box-counting method [46, 88, 90], one could try to compute the fractal dimen-

sion f ð�Þ of the subset of points where the measure scales with the exponent

�. However, such a method would lead to dramatic errors since, for any �,

�ðBxð�ÞÞ takes into account a lot of points with very different singularity

exponents. Moreover the presence of oscillations in the log-log plot proce-

dure makes extremely unstable the estimate of �ðxÞ on a finite range of scales

[90, 91]. One can use a slightly different method called the histogram method

[46, 90–92]. It consists in covering the support of the measure � with balls

fBið�Þgi of size �. For each ball Bið�Þ, we define the exponent

�ið�Þ ¼ ln�ðBið�ÞÞ= ln �. This exponent is like a singularity exponent ‘seen’

at the scale �. Then, if N�ð�Þ is the histogram of the values f�ið�Þgi, f ð�Þ

can be computed using Eq. (9.3). Even though the histogram method is stable

under certain conditions, the convergence when � goes to 0þ is very slow [90].

In most cases, the range of scales available in the numerical data is too small

and this method leads to rather approximate results because of scale depen-

dent prefactors. This is due to the fact that this method is based on the

computation of scaling exponents which represent ‘local’ quantities that
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can vary a lot from one point to another. Basically, this is a characteristic

deficiency of this microcanonical description which intrinsically suffers from

finite-size effects [46, 90–96].

9.2.1.2 The generalized fractal dimensions

The generalized fractal dimensions Dq [42–46], which correspond to scaling

exponents for the qth moments of the measure �, provide an alternative

description of singular measures. Once again, if we cover the support of �

with boxes Bið�Þ of size �, one can define a series of exponents �ðqÞ from the

scaling behaviour of the partition function:

Zðq; �Þ ¼
XNð�Þ
i¼1

�q
i ð�Þ; ð9:5Þ

where �i ¼ �ðBiÞ�ÞÞ. In the limit �! 0þ, Zðq; �Þ behaves as a power law:

Zðq; �Þ � ��ðqÞ: ð9:6Þ

The spectrum of generalized fractal dimensions is obtained from the knowl-

edge of the exponents �ðqÞ by the following relation [43–45]:

Dq ¼ �ðqÞ=ðq� 1Þ: ð9:7Þ

For certain values of q one can recognize well known quantities. D0 cor-

responds to the capacity (box dimension) [97] of the support of �. D1 char-

acterizes the scaling behaviour of the information Ið�Þ ¼
P

i �ið�Þ ln�ið�Þ: it is

called the information dimension [42]. Moreover, for q integer � 2, the Dqs

can be related to the scaling behaviour of the q-point correlation integrals

[43–45]. In fact, it is easy to see that varying q in Eq. (9.5) amounts to

characterize selectively the nonhomogeneity of the measure, positive q 0s

accentuate the ‘densest’ regions while negative q 0s accentuate the ‘smoothest’

ones.

Let us see how one can relate the f ð�Þ singualrity spectrum to the

�ðqÞ ¼ ðq� 1ÞDq spectrum. At the scale �, if we consider that the distribution

of the � 0s is of the form �ð�Þ��f ð�Þ and if we use this expression in Eq. (9.5), it

follows [29, 30]:

Zðq; �Þ �

Z
�ð�Þ�q��f ð�Þd�: ð9:8Þ

In the limit �! 0þ, this sum is dominated by the term �min�ðq��f ð�ÞÞ. Then,

from the definition of �ðqÞ, one obtains

�ðqÞ ¼ min
�
ðq�� f ð�ÞÞ: ð9:9Þ
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Thus the �ðqÞ spectrum, and in turns the Dqs, are obtained by Legendre

transforming the f ð�Þ singularity spectrum. When f ð�Þ and Dq are smooth

functions, the relation (9.9) can be rewritten in the following way:

q ¼ df =d�;
�ðqÞ ¼ q�� f ð�Þ:

�
ð9:10Þ

This relationship is a natural consequence of a deep analogy with thermo-

dynamics [26–28, 33–36, 47, 89]. As just pointed out, q can be identified with

a Boltzmann temperature ð� ¼ 1=kTÞ which allows us to examine the differ-

ent self-similarity phases of our multi-singularity measure system. The limit

�! 0þ can be seen as the thermodynamic limit of infinite volume

(V ¼ ln 1=�!þ1Þ. Then by identifying �i ¼ � ln�i= lnð1=�Þ to the energy

Ei per unit of volume of a microstate i, one can rewrite the partition function

(9.5) under the familiar form:

Zð�Þ ¼
X
i

expð��EiÞ: ð9:11Þ

From the definition (9.3), f ð�Þ ¼ lnN�ð�Þ= lnð1=�Þ plays the role of the

entropy (per unit of volume). Similarly, since the partition function can be

reexpressed as an exponential times a free energy (by convention we absorb

the temperature dependence in the free-energy function itself), �ðqÞ can be

identified to the free energy Fð�Þ (per unit of volume).

The computation of the f ð�Þ curve can thus be understood as the compu-

tation of the entropy versus internal energy curve of a multi-body system.

When using a single dominant term approximation in evaluating the integral

in Eq. (9.8) via steepest descent, one explicitly computes thermodynamic

averages via microcanonical ensembles [22]. This assumes that the most prob-

able value is also the average value and is correct only in the thermodynamic

limit. The severe finite-size effects encountered when computing the f ð�Þ

singularity spectrum with the histogram method arise precisely due to this

assumption [46, 90–96] and can be taken care of using a canonical method as

explained below.

9.2.2 Canonical description

The canonical counterpart of the microcanonical method described in

Section 9.2.1, consists in computing the f ð�Þ spectrum as the Legendre trans-

form of the �ðqÞ exponents extracted from the scaling behaviour of the parti-

tion function defined in Eqs. (9.5) and (9.6) [30–37]. Explicitly, this amounts

to considering the quantities � and f ð�Þ as mean quantities defined in a
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canonical ensemble, i.e. with respect to their Boltzmann weights [26–28, 33,

95, 96]:

�iðq; �Þ ¼
�q
i ð�ÞP

j �
q
j ð�Þ
¼

e��EiðVÞ

Zð�;VÞ
: ð9:12Þ

Then one computes expectation values:

h�iðqÞ ¼
X
i

ln�ið�Þ

ln �
�iðq; �Þ: ð9:13Þ

It is easy to see that h�iðqÞ is related to the scaling exponents �ðqÞ of the

partition function Zðq; �Þ (Eq. (9.6)) in the following way:

h�iðqÞ ¼ @�ðqÞ=@q: ð9:14Þ

In addition, if f ðqÞ is defined by

f ðqÞ ¼
X
i

�iðq; �Þ
ln�iðq; �Þ

ln �
; ð9:15Þ

then one has

f ¼ qh�iðqÞ � �ðqÞ: ð9:16Þ

Eqs. (9.14) and (9.16) provide a relationship between a mean entropy f and

an average singularity strength h�i as implicit functions of the temperature

parameter q. These thermodynamic relations clearly demonstrate that the

f ð�Þ singularity spectrum can be determined by first computing �ðqÞ and

then Legendre transforming it in order to get a canonical average of the

entropy. In the thermodynamic limit �! 0þ, one recovers the ‘principle of

ensemble equivalence’, i.e. the canonical f ð�Þ equals the microcanonical f ð�Þ

singularity spectrum.

From a practical point of view, there are however some difficulties in the

actual computation of �ðqÞ ¼ ðq� 1ÞDq. These difficulties mainly arise from

intrinsic properties of fractals, namely, lacunarity [1] and nonhomogeneity

[30, 46, 89]. Lacunarity manifests itself as intrinsic oscillations in the usual

linear regressions of the log-log procedure used to extract �ðqÞ from the

scaling behaviour of the partition function Zðq; �Þ [90, 91, 98–100].

Multifractality requires the simultaneous characterization of the most con-

centrated ðDþ1Þ and the most rarified ðD�1Þ regions of the support of �

which is a rather difficult task because of poor sampling statistics. Moreover,

the Legendre transform (Eqs. (9.14) and (9.16)) requires first a smoothing of

the �ðqÞ curve. This procedure has a main disadvantage. The smoothing

operation prevents the observation of any non-analycity in the curves �ðqÞ
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and f ð�Þ and the interesting physics of phase transitions in the scaling proper-

ties of a fractal measure [33, 46, 101] can be completely missed. In that

respect, Eqs. (9.13) and (9.15) provide an alternative definition of the singu-

larity spectrum which can be used to compute the f ð�Þ curve directly from the

experimental data without the intermediate explicit Legendre transform of

the (free energy) �ðqÞ curve.

9.3 Wavelets and multifractal formalism for fractal functions

There have been some attempts to generalize the multifractal formalism to

self-affine functions [29, 57]. The structure function method [54, 55] is a very

interesting first step in this direction despite some intrinsic fundamental lim-

itations [58–61] which explain why a thermodynamic description of fractal

signals is still missing. Our goal, in this section, is to demonstrate that the

wavelet transform [64–70] is the appropriate technical tool needed to process

a ‘multi-singularity’ function system.

9.3.1 The wavelet transform

The wavelet transform is a mathematical technique introduced for analysing

seismic data and accoustic signals [102, 103]. Since then, it has been the

subject of considerable theoretical developments and practical applications

in a wide variety of fields [64–70]. The wavelet transform (WT) of a function s

consists in decomposing it into elementary space-scale contributions, asso-

ciated to the so-called wavelets which are constructed from one single func-

tion, the analysing wavelet  , by mean of translations and dilations. The WT

of s is defined as [102, 103]:

W ½s�ðb; aÞ ¼
1

a

Zþ1
�1

 
x� b

a

� �
sðxÞdx; ð9:17Þ

where a 2 R
þ� is a scale parameter, b 2 R is a space parameter and  is the

complex conjugate of  . The analysing wavelet  is generally chosen to be

well localized in both space and frequency. Usually,  is only required to be

of zero mean but, for the particular purpose of singularity tracking that is of

interest here, we will further require  to be orthogonal to some low-order

polynomials [71–74]:
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Zþ1
�1

xm ðxÞdx ¼ 0; 8m; 0 � m < n : ð9:18Þ

There are almost as many analysing wavelets as applications of the WT. A

class of commonly used real-valued analysing wavelets which satisfies the

above condition is given by the successive derivatives of the Gaussian func-

tion [90]:

 ðNÞðxÞ ¼
dN

dxN
e�x

2=2; ð9:19Þ

for which n ¼ N.

9.3.2 Singularity detection and processing with wavelets

The strength of a singularity of a function is usually defined by an exponent

called Hölder exponent. The Hölder exponent hðx0Þ of a function s at the

point x0 is defined as the largest exponent such that there exists a polynomial

PnðxÞ of order n satisfying [62, 72–74]:

jsðxÞ � Pnðx� x0Þj � Cjx� x0j
h; ð9:20Þ

for x in a neighbourhood of x0. If hðx0Þ 2�n; nþ 1½, one can easily prove that s

is n times but not nþ 1 times differentiable at the point x0. The polynomial

PnðxÞ corresponds to the Taylor series of s around x ¼ x0, up to the order n.

Thus hðx0Þ measures how irregular the function s is at the point x0. The

higher the exponent hðx0Þ, the more regular the function s.

This definition of the singularity strength naturally leads to a generaliza-

tion of the f ð�Þ singularity spectrum introduced for fractal measures (Eq.

(9.4)). Henceforth we will denote DðhÞ the Hausdorff dimension of the set

where the Hölder exponent is equal to h [58–63, 82]:

DðhÞ ¼ dHfx; hðxÞ ¼ hg; ð9:21Þ

where h can take, a priori, positive as well as negative real values (e.g., the

Dirac distribution �ðxÞ corresponds to a Hölder exponent hð0Þ ¼ �1Þ.

Remark. The results reported in this work apply to fractal distributions,

including measures and functions. However, we will consider only distribu-

tions whose singularities are not oscillating, i.e., satisfying 8x, f 0 ¼ df =dx is

Hölder h� 1 iff f is Hölder h [74].
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If one uses an analysing wavelet  that satisfies the condition (9.18), the

local behaviour of s in Eq. (9.20) is mirrored by the wavelet transform which

locally behaves like [62, 71–74]:

W ½s�ðx0; aÞ � ahðx0Þ; ð9:22Þ

in the limit a! 0þ, provided n satisfy n > hðx0Þ. Therefore, one can

extract the exponent hðx0Þ from a log-log plot of the WT amplitude versus

the scale a. Moreover, if n < hðx0Þ (e.g., s 2 C1 at x0), one could prove that

we would still get a power law behaviour but with a scaling exponent n :

W ½s�ðx0; aÞ � an : ð9:23Þ

Thus, around a given point x0, the faster the wavelet transform decreases

when the scale a goes to zero, the more regular s is around that point.

9.3.3 The wavelet transform modulus maxima method

The situation is somewhat more intricate when investigating fractal func-

tions. The characteristic feature of these singular signals is the existence of

a hierarchical distribution of singularities [59–63, 71, 82]. Locally, the Hölder

exponent hðx0Þ is then governed by the singularities which accumulate at x0.

This results in unavoidable oscillations around the expected power-law

behaviour of the WT amplitude [58–60, 104, 105]. The exact determination

of h from log-log plots on a finite range of scales is therefore somewhat

uncertain. Of course, there have been many attempts to circumvent these

difficulties [104–106]; nevertheless, there exist fundamental limitations

(which are not intrinsic to the WT technique) to the local measurement of

the Hölder exponents of a fractal function [58–60]. Therefore the determina-

tion of statistical quantities like the DðhÞ singularity spectrum requires a

method which is more feasible and more appropriate than a systematic inves-

tigation of the WT local scaling behaviour as experienced in Refs. [104, 105].

9.3.3.1 Determination of the singularity spectrum of fractal functions from

wavelet analysis

A natural way of performing a multifractal analysis of fractal functions

consists in noticing that a wavelet  can actually be seen as an oscillatory

variant of the box function 	j0;1j (i.e., the characteristic function of the inter-

val ½0; 1�). Indeed, �ðBxð�ÞÞ in Eq. (9.1), is nothing but the ‘wavelet transform’

of � using 	 as the analysing wavelet. In this way, Eq. (9.22) can be seen as a

generalization of Eq. (9.2), in the sense that when using our freedom in the

choice of the ‘generalized box’ analysing wavelet, one can hope to get rid of
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possible smooth behaviour that could mask the singularities or perturb the

estimate of their strength h (let us note that nx ¼ 0, which means that only

negative Hölder exponents h < 0 are amenable to box-counting techniques).

Our aim in this section is to revisit the multifractal formalism described in

Section 9.2, substituting the box functions by wavelets.

A simple method would thus rely on the following definition of the parti-

tion functions in terms of wavelet coefficients [59–63, 71]:

Zðq; aÞ ¼

Z
jW ½s�ðx; aÞj

qdx; ð9:24Þ

where q 2 R. This would be a rather naive generalization of Eq. (9.5) since

nothing prevents W ½s�ðb; aÞ from vanishing at some points ðb; aÞ of the

space-scale half-plane. The partition function would then diverge for q < 0.

One thus needs to define the equivalent of a covering of the signal in terms of

wavelets.

The wavelet transform modulus maxima (WTMM) method [59–63, 82]

consists in changing the continuous sum over space in Eq. (9.24), into a

discrete sum over the local maxima of jW ½s�ðx; aÞj considered as a function

of x. In Figure 9.1, we show the space-scale arrangement of the WTMM of

the devil’s staircase (i.e. the distribution function sðxÞ ¼ �ð½0; x�Þ of the uni-

form measure lying on the triadic Cantor set). These WTMM are disposed on

connected curves called maxima lines [74]. let us define Lða0Þ as the set of all

the maxima lines that exist at the scale a0 and which contain maxima at any

scale a � a0. An important feature of these maxima lines is that, each time the

analysed signal has a local Hölder exponent hðx0Þ < n , there is at least one

maxima line pointing towards x0 along which Eq. (9.22) holds [59–63, 74]. In

the case of fractal signals, we thus expect that the number of maxima lines

will diverge in the limit a! 0þ. In fact, as emphasized in Refs. [59, 60], the

branching structure of the WTMM skeleton in the ðx; aÞ half-plane, enlight-

ens the hierarchical organization of the singularities. This is clearly illustrated

in Figure 9.1d where the WTMM skeleton of the devil’s staircase shown in

Figure 9.1a, is a tree whose branching structure reveals the construction rule

of the triadic Cantor set: at the scale a ¼ a03
�n, each one of the k02

n WT

modulus maxima simultaneously bifurcates into two new maxima (k0 is a

constant which depends upon the analysing wavelet  ).

The WTMM method consists in taking advantage of the space-scale par-

titioning given by this skeleton to define the following partition functions

[59–63, 82]:
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Zðq; aÞ ¼
X
‘2LðaÞ

sup
ðx;a 0Þ2‘

jW ½s�ðx; a
0
Þj
q

 !
; ð9:25Þ

where q 2 R. As compared to Eq. (9.5), the analysing wavelet  plays the role

of a generalized box, the scale a defines its size (� in Eq. (9.5)), while the

WTMM skeleton indicates how to position our ‘oscillating boxes’ to obtain a

partition at the considered scale. Without the ‘sup’ in Eq. (9.25), one would

have implicitly considered a uniform partition with wavelets of the same size

a (Figure 9.2a). As illustrated in Figure 9.2b, the ‘sup’ can be regarded as a

way of defining a scale-adaptative partition which will prevent divergences

from showing up in the calculation of Zðq; aÞ for q < 0.

One can again define the (free energy) exponents �ðqÞ from the scaling

behaviour of the partition functions:
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Fig. 9.1. Continuous wavelet transform of the devil’s staircase corresponding to the
uniform triadic Cantor set. (a) Graph of the function. (b) Wavelet transform com-
puted with the analysing wavelet  ð1Þ; the amplitude is coded, independently at each
scale a, using 32 grey levels from white ðW ½s�ðx; aÞ < 0Þ to black ðmaxx W ½s�ðx; aÞÞ.
(c) Definition of the modulus maxima at a given scale a0 corresponding to the dashed
line in (b). (d) The skeleton of the wavelet transform, i.e., the set of all the maxima
lines. In (b) and (d) the large scales are at the top.



Zðq; aÞ � a�ðaÞ: ð9:26Þ

Then, by using both the behaviour of the WT along the maxima lines (Eq.

(9.22)) and the definition (9.21) of the DðhÞ singularity spectrum, one can

show that in the thermodynamic limit a! 0þ, DðhÞ, like the entropy, can be

computed by Legendre transforming �ðqÞ:

DðhÞ ¼ min
q
ðqh� �ðqÞÞ: ð9:27Þ

As pointed out in Section 9.2.2, in the framework of this canonical descrip-

tion, one can avoid some practical difficulties that occur when directly per-

forming the Legendre transform of �ðqÞ, by first computing the following

Boltzmann weights from the WTMM [81, 82]:

bWW ½s�ðq; ‘; aÞ ¼
jsupðx;a 0Þ2‘W ½s�ðx; a

0
Þj
q

Zðq; aÞ
; ð9:28Þ

where Zðq; aÞ is the partition function defined in Eq. (9.25). Then one com-

putes expectation values (e.g. Eqs. (9.13) and (9.15)):

hðq; aÞ ¼
X
‘2LðaÞ

ln sup
ðx;a 0Þ2‘

W ½s�ðx; a
0
Þ

�����
����� bWW ½s�ðq; ‘; aÞ; ð9:29Þ

and
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Fig. 9.2. Representation of the uniform and scale-adapted partitions. (a) Uniform
partition: Zðq; aÞ involves wavelets of the same size a. (b) Scale-adapted partition:
Zðq; aÞ involves wavelets of different sizes a 0 � a. The large scales are at the top.



Dðq; aÞ ¼
X
‘2LðaÞ

bWW ½s�ðq; ‘; aÞ ln bWW ½s�ðq; ‘; aÞ; ð9:30Þ

from which one extracts hðqÞ ¼ hðq; aÞ= ln a and DðqÞ ¼ Dðq; aÞ= ln a, and

therefore the DðhÞ singularity spectrum.

Remark. It is worth pointing out the meaning of �ðqÞ for some specific values

of q [58]. In full analogy with standard box-counting arguments, ��ð0Þ can be

identified to the capacity of the set of singularities of s:��ð0Þ ¼ dcðfx; hðxÞ

< þ1gÞ. �ð1Þ is related to the capacity of the graph G of the considered

function: dcðGÞ ¼ maxð1; 1� �ð1ÞÞ. Finally �ð2Þ is related to the scaling expo-

nent � of the spectral density, bSS ðkÞ ¼ jbss ðkÞj2 � k��, with � ¼ 2þ �ð2Þ.

9.3.3.2 Application of the WTMM method to recursive fractal functions

The class of fractal and multifractal signals that possess an exact recursive

structure provides analytically tractable cases. It is thus well adapted to test

the efficiency of the WTMM method. The devil’s staircases and more gen-

erally the characteristic functions of singular measures can be used as a

guinea-pig for our approach [58–62, 82], since one can easily show that the

partition function scaling exponents �ðqÞ (Eq. (9.26)) are identical to the

spectrum ��ðqÞ of the underlying measure � (Eq. (9.6)). In Figure 9.3 we

report the results of the analysis of the triadic devil’s staircase (Figure

9.1a). The partition functions Zðq; aÞ are computed from the WTMM skele-

ton (Figure 9.1d) of this continuous and almost everywhere constant signal.

Figure 9.3a displays some plots of log2Zðq; aÞ versus log2 a for different

values of q. Besides the presence of periodic oscillations of period log2 3

which reflects the invariance of the Cantor set under discrete dilations by a

factor 3, these plots clearly display a linear behaviour on the whole range of

scales and this for any q. Using a linear regression fit, we then obtain the

slopes �ðqÞ of these graphs. As shown in Figure 9.3b, �ðqÞ follows a linear

curve, the slope of which provides an accurate estimate of the unique Hölder

exponent h ¼ @�=@q ¼ ln 2= ln 3, which characterizes the uniform triadic

Cantor set. Actually, the data in Figure 9.3b are in remarkable agreement

with the theoretical result �� ¼ ðq� 1Þ ln 2= ln 3. This result is corroborated in

Figure 9.3c where hðqÞ is determined, for different values of q, by plotting

hðq; aÞ versus log2 a (Eq. (9.29)). The slope of these graphs is h ¼ ln 2= ln 3,

independently of q. Then, by Legendre transforming �ðqÞ (Eq. (9.27)), one

gets, up to the experimental uncertainty, that the singularity spectrum

reduces to a single point Dðh ¼ ln 2= ln 3Þ ¼ ln 2= ln 3, i.e., the Hausdorff

dimension of the triadic Cantor set [59–62, 82]. Let us note that although
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this example could seem too ‘simple’, it is a basic example for which the use

of the WT maxima lines to partition the signal is crucial. Indeed, as the

singularities of s are lying on a set of Lebesgue measure 0, a continuous

sum (Eq. (9.24)) over the whole domain ½0; 1� would lead to drastic errors

[61].

We have reproduced this multifractal analysis for generalized devil’s stair-

cases associated to self-similar signed measures [59–62, 82]. For example, let

us consider the measure � constructed recursively as follows: at each step of

the construction, each interval is divided into 4 sub-intervals of same length

on which we distribute respectively the weights p1 ¼ 0:69, p2 ¼ �p3 ¼ 0:46

and p4 ¼ 0:31ð
P4

i¼1 pi ¼ 1Þ. Let us note that in the case of a distribution

function of a signed measure, the relation �ð1Þ ¼ 0 does not hold a priori
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Fig. 9.3. Determination of the multifractal spectra of the devil’s staircase associated
to the uniform triadic Cantor set using the WTMM method. (a) log2Zðq; aÞ=ðq� 1Þ
versus log2 a. (b) �ðqÞ versus q; the solid line corresponds to the theoretical curve
�ðqÞ ¼ ðq� 1Þ ln 2= ln 3. (c) Determination of the exponents hðqÞ; hðq; aÞ is plotted
versus log2 a according to Eq. (9.29). (d) DðhÞ versus h. The analysing wavelet is  ð1Þ.



since the ‘norm’
P
LðaÞ jW ½s�ðb‘ðaÞ; aj is no longer conserved through the

scales. Indeed 1� �ð1Þ is the fractal dimension of the graph of the function.

Actually, one can prove that in this particular case, �ðqÞ ¼ � ln4ð
P4

i¼1 jpij
q
Þ.

Figure 9.4 displays the distribution function sðxÞ ¼ �ð½0;x�Þ and its wavelet

transform. Figure 9.5 shows the distribution function srðxÞ ¼ �rð½0;x�Þ which

is constructed exactly in the same way as s except that, at each step of the

construction, the order of the weights is chosen randomly. Its WT in Figure

9.5b can be compared to the WT of the deterministic function in Figure 9.4b.

In the case of the random function sr, the partition function is averaged over

the realizations of the random process, i.e.,

Zrðq; aÞ ¼ hZðq; aÞireal � a�rðqÞ: ð9:31Þ

Clearly, as the analytical expression of �ðqÞ does not depend on the specific

order of p1, p2, p3 and p4, one deduces easily that �rðqÞ ¼ �ðqÞ. The results of

the multifractal analysis of s and sr using the WTMMmethod are reported in

Figure 9.6 [59, 60]. As shown in Figure 9.6b, �ðqÞ and �rðqÞ are nonlinear

convex increasing functions. The numerical data for both the deterministic

(�) and the random (~) signal match perfectly the theoretical prediction. The

corresponding DðhÞ spectra are displayed in Figure 9.6d; their single humped

shapes are characteristic of multifractal signals. The support of DðhÞ extends
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Fig. 9.4. (a) Graph of the deterministic generalized devil’s staircase sðxÞ ¼ �ð½0; x�Þ.
(b) Continuous wavelet transform of sðxÞ computed with the first derivative  ð1Þ of
the Gaussian function. Same coding as in Fig. 9.1b. Small scales are at the top.



over a finite interval hmin � h � hmax. This non-uniqueness of the Hölder

exponent is confirmed in Figure 9.6c, where the exponent hðqÞ, computed

directly from Eq. (9.29), clearly evolves from the value hmin ’ 0:28 to

hmax ’ 0:82 when q varies from q ¼ 10 to q ¼ �10. The maximum of the

DðhÞ curve is obtained for q ¼ 0: Dðhðq ¼ 0ÞÞ ¼ ��ð0Þ ¼ DF ¼ 1. The gener-

alized devil’s staircases in Figs. 9.4a and 9.5a are thus singular signals that

display multifractal properties; the fractal dimension of the support of the set

of singularities of these distribution functions is DF ¼ 1.

9.3.4 Phase transition in the multifractal spectra

In the context of thermodynamics, a phase transition corresponds to some

nonanalyticity in the thermodynamic functions, e.g., the free energy and the

entropy [22, 107]. Phase transitions in the multifractal scaling properties of

singular measures are now well documented in the literature [33, 36, 101,

107–111]. In this section we will illustrate this phenomenon on the singularity

spectrum of multifractal functions as induced by the presence of smooth

behaviour [61–63, 82].

In the previous sections, we have pointed out that the WTMM method is

very efficient as far as we use an analysing wavelet with a number n of

The thermodynamics of fractals revisited with wavelets 357

Fig. 9.5. (a) Graph of the random generalized devil’s staircase srðxÞ ¼ �rð½0; x�Þ. (b)
Continuous wavelet transform of srðxÞ computed with the first derivative  ð1Þ of the
Gaussian function. Same coding as in Fig. 9.1b. Small scales are at the top.



vanishing moments which is greater than hmax ¼ maxhfh;DðhÞ 6¼ �1g. Let us

see what happens when this is not possible, e.g., if hmax ¼ þ1. This would

mean that the analysed function is C1 at some points. For the sake of

simplicity, we will assume that the signal f ðxÞ ¼ sðxÞ þ rðxÞ is a superposition

of a multifractal singular part sðxÞ with hmax < þ1 living on a Cantor set

ðsðxÞ is assumed to be constant on each interval on which it is not singular),

and a C1 regular part rðxÞ. Let �sðqÞ and DsðhÞ be the multifractal spectra

which characterize the function f ðxÞ. At each scale a0, the set of maxima lines

Lf ða0Þ of the WT of f can be basically decomposed into two disjoint sets of

maxima lines, Lsða0Þ and Lrða0Þ corresponding to the lines created respec-
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Fig. 9.6. Determination of the multifractal spectra of the devil’s staircases displayed
in Figs. 9.4 and 9.5 using the WTMM method. (a) log2ða

��ð1Þ
Zðq; aÞÞ=ðq� 1Þ versus

log2 a. (b) �ðqÞ versus q; the solid line corresponds to the theoretical prediction. (c)
Determination of the exponents hðqÞ; hðq; aÞ is plotted versus log2 a according to Eq.
(9.29). (d) DðhÞ versus h; the solid line corresponds to the theoretical spectrum. The
analysing wavelet is  ð2Þ. In (b) and (d) the symbols correspond to the data obtained
for the deterministic (�) and the random (~) signal.



tively by sðxÞ (and which are slightly perturbated by the presence of rðxÞÞ and

by the C1 function rðxÞ. It can be established [74] that along each line created

by rðxÞ 2 Lrða0Þ, the WT behaves like W ½r� � an in the limit a! 0þ (Eq.

(9.23)), while along the other maxima lines ð2 Lsða0ÞÞW ½s� � ah provided n 
is larger than the upper bound of the singularity range of sðxÞ. Then, the

partition functions defined in Eq. (9.25) split into two parts [61, 62]:

Zf ðq; aÞ ¼ Zsðq; aÞ þ Zrðq; aÞ � a�sðqÞ þ aqn ; ð9:32Þ

where Zs and Zr are the partition functions corresponding respectively to

summing over the maxima lines in Ls and Lr. Thus one deduces easily that

�ðqÞ ¼ minf�sðqÞ; qn g. In other words, there exists a critical value qcrit < 0 so

that

�ðqÞ ¼
�sðqÞ for q > qcrit;
qn for q < qcrit:

�
ð9:33Þ

One thus predicts the existence of a singularity in the �ðqÞ spectrum. This

nonanalyticity in the function �ðqÞ expresses the breaking of the self-similar-

ity of the singular signal sðxÞ by the C1 perturbation rðxÞ. Below the critical

value qcrit (which is the analogue of the inverse of the transition temperature)

one observes a regular phase, whereas for q > qcrit one switches to the multi-

fractal phase. Let us note that the �ðqÞ spectrum in the ‘C1 phase’ is governed

by the number n of vanishing moments of the analysing wavelet. Therefore,

checking whether �ðqÞ is sensitive to some change in the order n of  ,

constitutes a very good test for the presence of highly regular part in the

signal [61, 62].

This phase transition phenomenon is illustrated in Figure 9.7. The ana-

lysed function f ðxÞ is the sum of rðxÞ ¼ R sinð8
xÞ and a generalized devil’s

staircase sðxÞ which is the distribution function of a measure nonuniformly

distributed on the triadic Cantor set with the weights p1 ¼ 0:6 and p2 ¼ 0:4.

The function f ðxÞ is represented in Figure 9.7a. The �ðqÞ and DðhÞ spectra

computed with the WTMM method are displayed in Figures 9.7b and 9.7c

respectively. The data obtained for �ðqÞ when using two different analysing

wavelets  ð1Þ ðn ¼ 1Þ and  ð2Þ ðn ¼ 2Þ are in remarkable agreement with the

theoretical spectrum DsðhÞ for q > Qcritðn Þ. For q � qcrit ðn Þ, however, DðhÞ

displays a linear fall off towards the limiting value h ¼ 1 for  ð1Þ and h ¼ 2

for  ð2Þ (indeed h ¼ N for  ðNÞ) where D vanishes. This linear part is tangent

to the theoretical DsðhÞ spectrum (dashed line) and has a slope equal to

qcrit ðn Þ. This is the signature of the phase transition phenomenon described

above [61–63].
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Remark 1. Since the wavelet coefficients behave like an along the maxima

lines created by the C1 function, by choosing n large enough and/or choos-

ing a numerical threshold below which any local maximum is not considered,

one can remove all the C1 maxima lines in LrðaÞ and thus numerically

‘restore’ the self-similarity of sðxÞ. The whole �sðqÞ and DsðhÞ spectra can

then be estimated.

Remark 2. If one considers the analysing wavelet �ð1Þ ¼ �ðx� 1Þ � �ðxÞ, the

wavelet transform is nothing else than the increments used in the structure

function method: �s‘ðxÞ ¼ sðxþ ‘Þ � sðxÞ ¼W�ð1Þ ½s�ðx; ‘Þ. Since n�ð1Þ ¼ 1, this

explains why this method fails to capture singularities with Hölder exponents

h 62 ½0; 1�.

9.4 Multifractal analysis of fully developed turbulence data

The central problem of three-dimensional fully developed turbulence is the

energy cascading process. It has resisted all attempts at a full understanding
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Fig. 9.7. WTMM analysis of a signal which is not singular on some intervals. (a)
Graph of the signal f ðxÞ ¼ sðxÞ þ rðxÞ, with rðxÞ ¼ R sinð8
xÞ and sðxÞ is a multi-
fractal devil’s staircase (see text). (b) �ðqÞ vs q as obtained with  ð1Þ ððoÞ and (~)),
 ð2Þ ððoÞ and (�)) and  ð4Þ ððoÞ and (&)); the solid lines correspond to the theoretical
predictions (Eq. (9.33)); the dashed line is the part q < qcrit of �sðqÞ. (c) DðhÞ vs h from
the Legendre transform of �ðqÞ; the symbols are the same as in (b).



or mathematical formulation. The main reasons for this failure are related to

the large hierarchy of scales involved, the highly nonlinear character inherent

in the Navier-Stokes equations and the spatial intermittency of the dynamical

active regions [40, 41, 112]. In this context, statistical and scaling properties

have been the basic concepts used to characterize turbulent flows [113]. One

of the striking signatures of the so-called intermittency phenomenon, is the

non-Gaussian statistics at small scales. The energy transfer towards small

scales is related to the non-zero skewness of the probability distribution

function (PDF) of the velocity increments and the large flatness of the

PDF (kurtosis) corresponds to the presence of strong bursts in the energy

dissipation. This fine-scale intermittency is responsible for some departure to

the classical k�5=3 theory of Kolmogorov [114] which neglects the presence of

fluctuations in the energy transfer. Mandelbrot [39] was the first one to

advocate the use of fractals in turbulence. Some of his early multiplicative

cascade models contain all the ingredients of the multifractal formalism

described in Section 9.2. During the past few years, considerable effort has

been devoted to the multifractal analysis of high Reynolds number turbu-

lence [40, 41]. But the problem of comparing the predictions of multifractal

cascade models [31, 39, 115–118] with experimental data comes from the fact

that three-dimensional processing of turbulent flows is at the moment feasible

only for numerical simulations which are unfortunately limited in Reynolds

numbers to regimes where the scaling just begins to manifest itself. Present

experimental techniques have access to the two-dimensional structure of

passive scalars [119, 120] and only to the one-dimensional cuts of the velocity

field [54, 55, 121, 122]. Here, we are only interested in the statistical analysis

of single-point data based on hot-wire techniques in the presence of a mean

flow (wind tunnels, jets, etc. . . .).

Very recently, there has been increasing interest in applying the wavelet

analysis to turbulence data [123]. In this section, we report on the first such

analysis performed on single point velocity data from high Reynolds number

3D turbulence [77, 104]. The data were obtained by Gagne and collaborators

[54, 55, 121, 122] in the large wind tunnel S1 of ONERA at Modane. The

Taylor scale based Reynolds number is R� ¼ 2720 and the extent of the

inertial range following approximately the Kolmogorov k�5=3 law is almost

three decades (integral scale ‘0 ¼ 15m, dissipation scale ‘d ¼ 0:3mm). The

results reported here concern the analysis in the inertial range of about 100

integral length scales of the recorded experimental signal.
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9.4.1 Wavelet analysis of local scaling properties of a turbulent velocity

signal

The application of the continuous WT to investigate the local scaling expo-

nent fluctuations that characterize the multifractal nature of a turbulent

velocity field at inertial range scales has been initiated in Ref. [104]. Figure

9.8 illustrates the wavelet transform of a sample of the velocity signal of

length of about two integral scales. The WTMM sekeleton in Figure 9.8c

is actually hardly distinguishable from the WTMM arrangement obtained in

Figure 9.9c for a fractional Brownian signal B1=3ðxÞ which has a k�5=3 power

spectrum like the turbulent signal. However, when using the additional infor-

mation given by the WT amplitude in Figures 9.8b and 9.9b respectively, this

discrimination becomes easier. By analysing the behaviour of W ½s�ðx; aÞ

versus a along the WTMM lines, one can estimate the value of the local
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Fig. 9.8. Continuous wavelet transform analysis of fully developed turbulence from
wind tunnel data. (a) The turbulent velocity signal over about two integral length
scales. (b) WT of the turbulent signal; the amplitude is coded like in Fig. 9.1b. (c)
WTMM skeleton. The analysing wavelet is  ð2Þ. In (b) and (c) the small scales are at
the top.



Hölder exponent hðxÞ according to Eq. (9.22). Regardless of some fluctua-

tions due to finite size effects [106], the Hölder exponent of the Brownian

signal B1=3ðxÞ does not depend on x: h ¼ H ¼ 1=3. In contrast, for the tur-

bulent velocity signal, h is actually found to fluctuate in a wide range between

�0:3 and 0.7 [60, 104], thereby suggesting that the multifractal picture pro-

posed by Parisi and Frisch [29] is appropriate. Statistically, the most frequent

exponents are close to the Kolmogorov value h ¼ 1=3. Let us stress the

observation of negative exponents down to �0:1 and beyond, which corre-

spond to rare but very active events. Negative exponents do not seem to have

been previously reported in the literature. One interpretation tossed in Ref.

[104] is the occasional passage nearby the probe of slender vortex filaments of

the sort observed in recent experiments [124, 125] and 3D numerical simula-

tions [126–130].
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Fig. 9.9. Continuous wavelet transform of a Brownian signal. (a) A realization of the
fractional Brownian motion B1=3. (b) WT of the Brownian signal; same coding as in
Fig. 9.1b. (c) WTMM skeleton. The analysing wavelet is  ð2Þ. In (b) and (c) the small
scales are at the top.



9.4.2 Determination of the singularity spectrum of a turbulent velocity signal

with the WTMM method

In Figure 9.10 are shown the results of the multifractal analysis of the

Modane turbulent velocity signal performed with the WTMM method [59,

60, 63]. The analysis of the Brownian signal B1=3ðxÞ is shown for comparison.

As reported in Figure 9.10c, when plotted versus q, the scaling exponent �ðqÞ

of the partition function Zðq; aÞ (Eq. (9.25)) obtained for the Gaussian pro-
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Fig. 9.10. WTMM measurement of the �ðqÞ and DðhÞ spectra of both the Modane
turbulent velocity signal and the Brownian signal B1=3. Determination of the expo-
nent hðqÞ from Eq. (9.29) for (a) the turbulent velocity signal and (b) the Brownian
signal B1=3. (c) �ðqÞ vs q; the symbols (�) and (~) correspond to the turbulent and
Brownian signals respectively; the symbols (x) correspond to �ðqÞ ¼ �q � 1 obtained
when computing the scaling exponents �q with the structure function method. (d)
DðhÞ vs h; the solid line corresponds to the average singularity spectrum obtained
from dissipation field data via the Kolmogorov scaling relation (9.34). The results
reported in this figure concern the analysis in the inertial range of about 100 integral
length scales of the turbulent velocity signal. The analysing wavelet is  ð2Þ.



cess, remarkably falls on a straight line �ðqÞ ¼ q=3� 1 of slope h ¼ 1=3.

From the Legendre transform (Eq. (9.27)) of the data for �ðqÞ, one gets

DðhÞ ¼ 1. Thus, as expected theoretically [48, 49] we find that the

Brownian signal is everywhere singular with a unique Hölder exponent

h ¼ 1=3.

In contrast to the fractional Brownian motion ((~)) in Figure 9.10c), the

�ðqÞ spectrum obtained for the experimental turbulent signal ((�) in Figure

9.10c) unambiguously deviates from a straight line. Let us note that the

results previously derived with the structure function method ð�ðqÞ ¼ �q � 1

for q > 0 exclusively) [55, 121] are in good agreement ((x) in Figure 9.10c)

with the nonlinear behaviour of �ðqÞ found with the WTMM method. The

values of h ¼ @�ðqÞ=@q when varying q from þ30 to �30 range in the interval

½0:10; 0:62�. This result is corroborated by the scaling behaviour of hðq; aÞ

(Eq. (9.29)) which clearly depends on q in Figure 9.10a, on the opposite to

what is observed in Figure 9.10b for the fractional Brownian motion B1=3ðxÞ.

The corresponding DðhÞ singularity spectrum obtained by Legendre trans-

forming �ðqÞ is shown in Figure 9.10d. Its characteristic single humped shape

over a finite range of Hölder exponents ðh 2 ½0:11; 0:60�Þ is a clear signature

of the multifractal nature of the turbulent velocity signal. For q ¼ 0,

the largest dimension is attained for singularities of exponent

hðq ¼ 0Þ ¼ 0:335� 0:005, i.e., a value which is very close to the

Kolmogorov prediction h ¼ 1=3. Moreover, the correspnding maximum of

the DðhÞ curve, Dðhðq ¼ 0ÞÞ ¼ ��ð0Þ ¼ 1:000� 0:001 does not deviate sub-

stantially from DF ¼ 1. This suggests that the turbulent signal could be

everywhere singular. This possibility seems to be confirmed by the robustness

of the DðhÞ data with respect to changes in the shape of the analysing wavelet:

similar quantitative estimates of the �ðqÞ and DðhÞ spectra are obtained when

using the first ð ð1ÞÞ, the second ð ð2ÞÞ and the fourth ð ð4ÞÞ derivative of the

Gaussian function and no wavelet dependent phase transition of the type

described in Section 9.3.4 is observed.

In Figure 9.10d, the DðhÞ singularity spectrum of the wind tunnel velocity

signal is compared to a solid curve which actually corresponds to a common

fit of dissipation field data at lower Reynolds number [41]. This curve has

been deduced from the experimental average f ð�Þ spectrum of the energy

dissipation �ðxÞ ¼ ðdv=dxÞ2 (considered as a measure) of laboratory and

atmospheric turbulent flows by using the local Kolmogorov scaling relation

[131]:
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; ð9:34Þ

where ’ means that the two quantities have the same scaling laws. The fact

that, for similar statistical samples, one cannot discriminate between these

two singularity spectra within the experimental uncertainty, can be inter-

preted a posteriori as an experimental verification of the above

Kolmogorov hypothesis. This observation can be understood also as an

experimental confirmation of the universality of the multifractal singularity

spectrum of fully developed turbulence with respect to Reynolds number.

However, it is clear that considerable further work is needed to get definitive

conclusions. In particular, long term statistical analysis must be carried out in

order to capture more accurately the latent part ðDðhÞ < 0Þ [132] of the

singularity spectrum, including possible violent rare events (rare as compared

to the integral scale l0) corresponding to singularities of negative Hölder

exponents. This WT analysis is likely to provide crucial information about

the conjectured interpretation of these very energetic localized events in terms

of the slender vortex filaments recently observed in hydrodynamic laboratory

experiments [133].

9.5 Beyond multifractal analysis using wavelets

The issue of carrying out a statistical mechanics of fractal objects has been

mainly addressed in the context of dynamical system theory [26–28, 33–36,

47]. In particular Feigenbaum has shown that the microscopic information

about a deterministic multiplicative dynamical system and its scaling proper-

ties is contained in the so-called scaling function [134, 135], which describes

the scaling or contractions of the various elements of the attractor in time.

This scaling function can be seen as the analogue of the Hamiltonian. From

the knowledge of this function one can use the transfer matrix technique [26–

28] to compute the thermodynamic functions of interest, i.e., the partition

function exponents �ðqÞ (Eq. (9.26)) and the DðhÞ singularity spectrum (Eq.

(9.27)).

On a more general ground, for any fractal object that can be observed in

nature, there is a need to go beyond simple statistical averages and eventually

to extract some ‘microscopic’ information about their underlying hierarchical

structure. In many cases, the self-similarity properties of fractal objects can

be expressed in terms of a dynamical system which leaves the object invar-

iant. The inverse problem consists in recovering this dynamical system (or its
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main characteristics) from the data representing the fractal object. This pro-

blem has been previously approached within the theory of Iterated Function

Systems (IFS) [85–87]. But the methods developed in this context are based

on the search of a ‘best fit’ within a prescribed class of IFS attractors (mainly

linear homogeneous attractors). In that sense, they approximate the self-

similarity properties more than they reveal them. In this section, we show

that, in many situations, the space-scale representation of the wavelet trans-

form of a fractal object can be used to extract some dynamical system which

accounts for its construction process [83, 84].

9.5.1 Solving the inverse fractal problem from wavelet analysis

The class of fractal objects we will use to carry out our demonstration are the

invariant measures of ‘cookie-cutters’. A cookie-cutter [36] is a map on

A ¼ ½0; 1� which is hyperbolic ðjT 0jÞ > 1Þ and so that T�1ðAÞ is a finite

union of s disjoint subintervals ðAkÞ1�k�s of A. For each k, Tk ¼ T jAk
is a

one to one map on A. An invariant measure � associated to T is a measure

which satisfies � 	 T�1 ¼ �. We will suppose that � is multiplicatively dis-

tributed on A:

� 	 T�1k ¼ pk�; 8k 2 f1; . . . ; sg; ð9:35Þ

where
P

pk ¼ 1. These self-similar measures are also referred to as Bernoulli

invariant measures of expanding Markov maps [34]. These measures have

been the subject of considerable mathematical interest [34, 36, 62].

Practically, they have been widely used for modelizing a large variety of

highly irregular physical distributions; notable examples include strange

repllers which characterize transient behaviour of nonlinear dynamical sys-

tems [36] and the spatial distribution of the dissipation field in fully developed

turbulent flows [19, 41].

The 1D continuous wavelet transform of a measure � according to the

analysing wavelet  is defined as [75, 76, 78–82]:

W ½��ðb; aÞ ¼

Z
A

 
x� b

a

� �
d�; ð9:36Þ

where a 2 R
þ� is the scale parameter and b 2 R is the space parameter. As we

have seen  is usually chosen to have some vanishing moments, up to a

certain order, so that it is orthogonal to possible regular (i.e. polynomial)

behaviour of �. In the particular case of invariant measures of cookie-cutters,

there is no such behaviour so we will use a simple ‘smoothing wavelet’
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 ð0Þ ¼ expð�x2Þ. By combining Eqs. (9.35) and (9.36), a straightforward cal-

culation at the first order in a ða
 1Þ leads to the following ‘self-similarity’

relation [62, 82]:

W ½��ðb; aÞ ¼
1

pk
W ½��ðT

�1
k ðbÞ;T

�1 0

k ðbÞaÞ; 8k 2 f1; . . . ; sg; ð9:37Þ

where T�1
0

k is the first derivative of T�1k . This relation can be interpreted as

describing the self-similarity properties of the wavelet transform itself in the

ðb; aÞ half-plane [75, 76, 78–82]. Our goal is to study the self-similarity prop-

erties of � through those of its wavelet transform W ½��. For that purpose,

we are not going to deal with the whole wavelet transform but only with its

restriction to the local maxima of its modulus (see Figure 9.1d). In fact, one

can easily prove that the self-similarity relation (9.37) still holds when

restricted to the set of modulus maxima of the WT. For more details, we

refer the reader to our previous work in Refs. [62, 83, 84] and to a recent

preprint by W.L. Hwang and S. Mallat [136] where an alternative approach

to recover the self-similarity parameters through a voting procedure based on

Eq. (9.37) is reported.

9.5.1.1 Linear cookie-cutters

For the sake of simplicity we will first consider the case of linear cookie-

cutters such that the T�1k ’s, are linear, i.e., T�1k ðxÞ ¼ rkxþ tk, where rk < 1.

Then the self-similarity relation (9.37) becomes [83, 84]:

W ½��ðb; aÞ ¼
1

pk
W ½��ðrkbþ sk; rkaÞ; 8k 2 f1; . . . ; sg: ð9:38Þ

The meaning of this relation is illustrated in Figure 9.11, for the particular

model parameters: s ¼ 2, p1 ¼ 0:7, p2 ¼ 0:3, T1ðxÞ ¼ 5x=3 and

T2ðxÞ ¼ 5x� 4. The corresponding invariant measure is shown in Figure

9.11a. As previously noticed, one can see that the part of the space-scale

plane displayed in Figure 9.11b (the entire rectangle ½0; 1���0; a0�Þ is ‘similar’

to the two rectangles delimited by the dashed lines ð½0; 3=5���0; 3a0=5� and

½4=5; 1���0; a0=5�Þ, up to a global rescaling of the modulus of the wavelet

transform. Let us describe on this particular example our technique for reco-

vering from the wavelet transform modulus maxima, the discrete (cookie-

cutter) dynamical system T . We call bifurcation point any point in the space-

scale plane located at a scale where a maxima line appears and which is

equidistant to this line and to the closest longer line. The bifurcation points

at coarse scales are displayed in Figure 9.11b using the symbols (�). They lie

on a binary tree whose root is the bifurcation point at the coarsest scale. Each
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Fig. 9.11. (a) Invariant measure of the two branch cookie-cutter T1ðxÞ ¼ 5x=3,
T2ðxÞ ¼ 5x� 4, distributed with the weights p1 ¼ 0:7; p2 ¼ 0:3 on the interval
½0; 1�. (b) Position in the ðx; aÞ half-plane of the local maxima of the modulus of
the wavelet transform of the measure shown in (a), using a Gaussian analysing
wavelet; the large scales are at the top. According to the self-similarity relation
(Eq. (9.38)), the maxima line arrangement in the two dashed rectangles is the
same as in the original rectangle. The bifurcation points associated to each rectangle
are represented by the symbols (�). Arrows indicate the matching of these bifurcation
points according to the self-similarity relation (9.38). (c) 1D map that represents the
position xn�1 of an order n� 1 bifurcation point versus the position xn of
the associated order n bifurcation point following the tree matching defined in
(b). The graph of this map corresponds exactly to the original cookie-cutter.
(d) Histogram of scale ratios r ¼ an=an�1 between the scales of two associated
bifurcation points. (e) Histogram of amplitude ratios p ¼ jW ½��ðxn; anÞj=
jW ½��ðxn�1; an�1Þj computed from two associated bifurcation points.



bifurcation point defines naturally a subtree which can be associated to a

rectangle in the space-scale half-plane. This root corresponds to the original

rectangle ½0; 1���0; a0�, whereas its two sons correspond to reduced copies

delimited by the dashed lines. As illustrated in Figure 9.11b, the self-similar-

ity relation (Eq. (9.38)) amounts to matching the ‘root rectangle’ with one of

the ‘son rectangles’, i.e., the whole tree with one of the subtrees. More gen-

erally, this relation associates any bifurcation point ðxn; anÞ of an order n

subtree to its hierarchical homologous ðxn�1; an�1Þ of an order n� 1 subtree.

It follows from Eq. (9.38) that xn ¼ rkxn�1 þ sk and an ¼ rkan�1. Thus by

plotting xn�1 versus xn, one can expect to recover the original cookie-cutter

T . This reconstructed 1D map is displayed in Figure 9.11c. As one can see,

the two branches T1 and T2 of the cookie-cutter T provide a remarkable fit of

the numerical data. Let us point out that the nonuniform repartition of the

data points on the theoretical curve results from the lacunarity of the mea-

sure induced by the ‘hole’ between the two branches T1 and T2. In Figure

9.11d, we show the histogram of the (contracting) scale ratio values between

the scales of two bifurcation points of successive generations, r ¼ an=an�1, as

computed when investigating systematically the WTMM skeleton. As

expected, it displays two peaks corresponding to the slopes r1 ¼ 3=5 and

r2 ¼ 1=5 of T�11 and T�12 respectively. Note that the peak corresponding to

the smallest value of r is lower than the other one; this is a direct consequence

of the finite cut-off we use in our wavelet transform calculation at small

scales. On a finite range of scales, the construction process involves less

steps with the smallest scale ratio r2 than steps with the largest one r1.

(The so-computed histogram can be artificially corrected in order to account

for these finite size effects, by plotting NðrÞ lnð1=rÞ instead of NðrÞ:) Figure

9.11e displays the histogram of amplitude ratio values p ¼

jW ½��ðxn; anÞj=jW ½��ðxn�1; an�1Þj; one clearly distinguishes two peaks in

good agreement with the weights p1 ¼ 0:7 and p2 ¼ 0:3.

At this point, let us mention that the distribution NðrÞ of scale ratios is in a

way redundant with the 1D map, since it is basically made of two Diracs

located at the inverse of the slopes of the two branches of this piece-wise

linear map. On the contrary, the distribution NðpÞ of amplitude ratios brings

a very important piece of information which is not present in the 1D map: the

repartition of the weights at each construction step. When this repartition is

uniform, we get a histogram NðpÞ which reduces to a single point p ¼ 1=2.

When the repartition is not uniform, as in Figure 9.11, one can furthermore

study the joint law of p with r in order to find out the specific ‘rules’ for

associating a p with a r.
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Now, having extracted the analogue of the Hamiltonian, i.e. the dynamical

system which accounts for the exact recursive structure of the considered

measure, one can compute analytically the generalized fractal dimensions

Dq (Eq. (9.7)) and the f ð�Þ singularity spectrum (Eq. (9.16)) using the follow-

ing partition function:

Gðq; �; rÞ ¼
Xs
i¼1

p
q
i =r

�
i ; ð9:39Þ

where r ¼ max ri. As pointed out in Ref. [30], for such measures, this parti-

tion function at the first level of refinement will generate all the others at finer

levels:

Gðq; �; rnÞ ¼ Gðq; �; rÞn: ð9:40Þ

In the spirit of the original definition of Hausdorff [137], the dimensions Dq

are obtained on requiring the partition function to be of the order of unity:

Gðq; �; rÞ ¼ 1: ð9:41Þ

In the case illustrated in Figure 9.11, Dq ¼ �ðqÞ=ðq� 1Þ are obtained by sol-

ving the implicit equation:

ð0:7Þqð53Þ
�
þ ð0:3Þq5� ¼ 1: ð9:42Þ

Then by Legendre transforming �ðqÞ one gets the f ð�Þ singularity spectrum.

Remark. In the case where s is no longer equal to 2, one can easily adapt the

wavelet based technique by trying to match not only the root bifurcation

point on its sons but also on its grandsons and so on [83, 84] . . . For

instance, in the case s ¼ 3, we will match the root with one of its sons and

with each of the two sons of its other son. The general algorithm uses a ‘best

matching’ procedure so that it automatically performs the matching which is

the most consistent (e.g., so that the different derivatives of W ½�� follow the

same self-similarity rules as W ½��). Thus the algorithm is not looking for a

given number s of branches that the user would have guessed a priori, it

automatically comes up with the ‘best’ value of s. In Figure 9.12 are

shown the 1D map and the histograms of scale and amplitude ratios obtained

in the linear case where s ¼ 3, p1 ¼ p2 ¼ p3 ¼ 1=3 and r1 ¼ 0:2, r2 ¼ 0:3,

r3 ¼ 0:5. All these values are very accurately recovered by our algorithm.

Let us notice that we have considered in this work only measures which do

not involve any ‘memory’ effect in their hierarchical structure. i.e., the suc-

cessive (backward) iterations always consist in applying the same dynamical

system T , independently of the previous iterations. However, in a certain
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way, a memory component can be accounted by increasing the number s of

branches of a ‘no-memory’ map T . As illustrated in Figure 9.12, this class of

dynamical systems is directly amenable to our WT algorithmic procedure.

Nevertheless, it is important to emphasize that it is meaningless to look for

dynamical systems with a rather high number of branches; generally, there

would not be enough scales in the data in order to ensure the theoretical

validity of the outcoming discrete map.

9.5.1.2 Nonlinear cookie-cutters

In the former examples, we have described our wavelet based technique to

solve the inverse fractal problem for piece-wise linear cookie-cutters. Since

locally in the space-scale plane, the self-similarity relation (9.37) looks like

Eq. (9.38), we can apply exactly the same technique for nonlinear expand-

ing maps [83, 84]. Let us point out that the hyperbolicity condition is a

priori required for the first derivative of T�1k involved in the right-hand side

of Eq. (9.37) to be finite. Figure 9.13 displays the 1D map extracted from

the WTMM skeleton of the uniform Bernoulli measure associated to a

nonlinear cookie-cutter made of two inverse hyperbolic tangent branches.

Once again, the numerical results match perfectly the theoretical curve. In

this case, the histogram of amplitude ratios is still concentrated at a single

point p ¼ 1=2. But the histogram of scale ratios NðrÞ involves more than

simply two scale ratios as before, since the non-linearity of the map implies

that new scale ratios are actually operating at each construction step. This
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Fig. 9.12. (a) Inverse problem for the invariant measure of the three branch cookie-
cutter T1ðxÞ ¼ 5x, T2ðxÞ ¼ 10x=3� 2=3;T3ðxÞ ¼ 2x� 1, distributed with equal
weights p1 ¼ p2 ¼ p3 ¼ 1=3 on the interval ½0; 1�. (b) Histogram of scale ratios
r ¼ an=an�1. (c) Histogram of amplitude ratios p ¼ jW ½��ðxn; anÞj=jW ½��
ðxn�1; an�1Þj.



explains the thickness of the two peaks observed in Figure 9.13b. A careful

analysis of the fine structure of this histogram would require the investiga-

tion of a large number of construction steps; but this out of the scope of

the present study.

9.5.2 Wavelet transform and renormalization of the transition to chaos

As a first step towards fully developed turbulence, the transition to chaos in

dissipative systems [17, 18] presents a strong analogy with second-order

phase transitions [138–141]. Among the different scenarios from ordered to

disordered temporal patterns, the most popular are undoubtedly the cascade

of period-doubling bifurcations [134, 135, 142–144] and the transition to

chaos from quasiperiodicity with irrational winding numbers [145–147]. In

this section, we will focus on the period-doubling scenario and we refer the

reader to our original work in Refs. [75, 76, 78] for a preliminary analysis of

the scenario from quasiperiodicity with golden mean winding number.

Dissipative dynamical systems that exhibit the cascade of period-doubling

bifurcations are in practice well modelled by one-dimensional maps with a

single quadratic extremum [142–144, 148] such as the map (Figure 9.14):

xnþ1 ¼ FRðxnÞ ¼ 1� Rx2n; ð9:43Þ

or quadratic maps of the form FRðxÞ ¼ Rxð1� xÞ, R sin
x � � � As one

increases the parameter R which determines the height of the maximum of
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Fig. 9.13. Inverse problem for a non-linear cookie-cutter made of two inverse hyper-
bolic tangent branches. (a) 1D map obtained with the same wavelet transform tree
matching analysis as in Fig. 9.11; the original nonlinear dynamical system (solid
lines) is recovered accurately. (b) Histogram of scale ratios r ¼ an=an�1. (c)
Histogram of amplitude ratios p ¼ jW þ  ½��ðxn; anÞj=jW ½��ðxn�1; an�1Þj.



FR at x ¼ xc ¼ 0, one observes an infinite sequence of subharmonic bifurca-

tions at each stage of which the period of the limit cycle is doubled. This

period-doubling cascade accumulates at Rc ¼ 1:40115 � � � where the system

possesses a 21-orbit that displays scale invariance. Beyond this critical value,

the attractor becomes chaotic, even though there still exist parameter win-

dows of periodic behaviour. As originally emphasized by Feigenbaum [134,

135, 142] and Coullet and Tresser [143, 144], this scenario presents strong

analogy with second-order phase transition in critical phenomena. Above

criticality ðR > RcÞ, the envelope of the Lyapunov characteristic exponent

(which provides a quantitative estimate of chaos) displays a universal

‘order parameter’ like behaviour LðRÞ � ðR� RÞcÞ�, where � is a universal

exponent in the sense that it does not depend on the explicit form of the map

but only on the quadratic nature of its maximum. Below criticality ðR < RcÞ,

the period of the bifurcating cycles is a ‘characteristic time’ which diverges at

the transition according to the scaling law PðRÞ � ðRc � RÞ��, with the same

critical exponent � ¼ ln 2= ln � as for the Lyapunov exponent. This universal

behaviour results from the observation that the bifurcation parameter values

Rn from an orbit of period 2n to an orbit of period 2nþ1, converge to Rc ¼ R1
according to the geometric law ðRc � RnÞ � �

�n, where � ¼ 4:669 � � � for

quadratic maps. Very much like in critical phenomena, these universal prop-

erties can be understood using renormalization group techniques [134, 135,

142–144].
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Fig. 9.14. Sketch of the quadratic map FR defined in Eq. (9.43). In the squares F and
CT, the second iterate Fð2ÞR of this map has a similar shape to FR in the initial square.
This observation is at the origin of the definition of the renormalization operations
RI (Eq. (9.44)) and RII (Eq. (9.45)).



Indeed, at criticality R ¼ Rc, the attractor of the quadratic map (43) exhi-

bits scale invariance: the adherence of the asymptotic orbit of almost all

initial conditions in the invariant interval is a Cantor set. The iterates of

the critical point xc ¼ 0 form this Cantor set, with half of the iterates falling

between Fð3ÞRc
ð0Þ and FRc

ð0Þ, the other half between Fð2ÞRc
ð0Þ and Fð4ÞRc

ð0Þ: At the

next stage of the construction process, each subinterval is again divided into

two subintervals with equal probability and so on. Consequently, the visiting

probability measure is symmetrically distributed with the weights

p1 ¼ p2 ¼ 1=2. The multifractal scaling properties of the corresponding
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Fig. 9.15. (a) Invariant measure associated to the critical period-doubling dynamical
system F� (see text). (b) WTMM skeleton computed with a Gaussian analysing
function. (c) 1D map obtained with our tree matching algorithm; the solid
lines represent the theoretical prediction (Eq. (9.46)). (d) Histogram of scale
ratios r ¼ an=an�1. (e) Histogram of amplitude ratios p ¼ jW þ  ½��
ðxn; anÞj=jW ½��ðxn�1; an�1Þj.



invariant measure (Figure 9.15a), can be understood from the two renorma-

lization operations that have been proposed. The renormalization operation

RI , originally discovered by Feigenbaum [134, 135, 142]:

RI ðFRðxÞÞ ¼ �FRoFRðx=aÞ; ð9:44Þ

indicates that up to some dilation by a scale factor � ¼ 1=FRð1Þ, the second

iterate of FR in the interval noted F in Figure 9.14, looks like FR itself. The

renormalization operation RII introduced by Coullet and Tresser [143, 144]:

RII ðFRðxÞÞ ¼ �
2 FR FR

x

�2
þ 


� �� �
� 


� �
; ð9:45Þ

results from the observation that, up to some translation by 
 and some

dilation by �2, the second iterate FRoFR in the interval noted CT in Figure

9.14, looks like FR in the original interval. The universality of the multifractal

properties of the invariant measure of FRc
[30, 34] is the consequence of the

fact that FRc
belongs to the stable manifolds of the two fixed points ofRI and

RII respectively. The complexity of the ocnstruction rule of the period-

doubling Cantor set is actually contained in this subtle interplay between

RI and RII [134, 135, 142–144]. Ledrappier and Misiurewicz [149] have

succeeded to prove that this measure can be considered as the invaraint

measure obtained by iterating backward the following dynamical system

defined on the interval A ¼ ½F�ð1Þ; 1� :

TðxÞ ¼
T1ðxÞ ¼ x=F�ð1Þ if x 2 ½F�ð1Þ;x

�
�

T2ðxÞ ¼ F�ðxÞ=F�ð1Þ if x 2 ½x�; 1�

�
ð9:46Þ

where

F�ðxÞ ¼ 1� 1:5276 � � � x2 þ 0:1048 � � � x4 þ � � � ð9:47Þ

is the fixed point of the renormalization RI ðF� ¼ RIF�Þ and x� is the point

in A such that F�ðx
�
Þ ¼ x� [134, 135, 142, 148, 150]. Let us point out that, as

compared to the Bernoulli measures distributed on generalized Cantor sets,

the self-similarity properties of the invariant measure of critical period-dou-

bling dynamical systems depend dramatically on the fact that, while T1ðxÞ is

linear (a simple dilation like RI ), the second branch T2ðxÞ is nonlinear (as the

consequence of the fact that RII is not a simple dilation since it involves also

a translation).

As a first application of the wavelet based tree matching algorithm described

in Section 9.5.1, to a physical problem, we report in Figure 9.15 the results

obtained when analysing the natural measure associated to the iteration of

the quadratic unimodal map FRðxÞ defined in Eq. (9.43) at the accumulation
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of period-doublings [82–84]. A well defined 1D map with two distinct hyper-

bolic branches is numerically reconstructed in Figure 9.15c. A computation

at a finer resolution would reveal that the left-hand branch is linear with a

slope 1=r ¼ 1=F�ð1Þ ’ �2:5, whereas the right-hand one is nonlinear. A close

inspection of the scale ratio histogram in Figure 9.15d confirms this observa-

tion. The amplitude ratio histogram computed in Figure 9.15e displays a

unique peak at p ¼ 1=2 which suggests that the weights associated to the

two branches of the 1D map are equal: p1 ¼ p2 ¼ 1=2. The critical period-

doubling natural measure can thus be seen as the invariant measure of the

cookie-cutter shown in Figure 9.15c with uniform probability distribution.

The solid lines shown in this figure correspond to the dynamical system

defined in Eq. (9.46). Our numerical data are in remarkable agreement

with the theoretical prediction.

9.6 Uncovering a Fibonacci multiplicative process in the arborescent fractal

geometry of diffusion-limited aggregates

The diffusion limited aggregation (DLA) model introduced by Witten and

Sander [151] about a decade ago, has become the basic paradigm for fractal

pattern forming phenomena [8, 38, 152]. This prototype model mimics two-

dimensional Laplacian growth processes according to the following algo-

rithm: particles originating from far away are added, one at a time, to a

growing cluster via random walk trajectories in the plane. Extensive on-

lattice and off-lattice computer simulations have produced complex branched

fractals that bear a striking resemblance to the tenuous tree-like structures

observed in viscous fingering, electrodeposition, bacterial and neuronal

growths [3–12, 38]. The appealing simplicity of the DLA model and its rele-

vance to various experimental situations have stimulated considerable experi-

mental, numerical and theoretical interest [3–12]. But having regard to the

efforts spent, the progress in capturing the screening mechanisms that govern

DLA growth has been very limited. Actually, only a little is known about the

ramified DLA morphology which is still very mysterious to many extents. In

particular, we do not know whether some structural order is hidden in the

apparently disordered geometry of DLA clusters. More generally, we still

appear to be quite far from a physical understanding of Laplacian growth

phenomena. This explains why, after more than ten years of extensive

inquiry, the DLA model remains one of the most exciting theoretical chal-

lenges in the physics of structure formation.

One of the main obstacles to theoretical progress lies in the lack of struc-

tural characterization of the growing clusters. Most of the previous studies
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have mainly focused on the multifractal analysis of either the DLA geometry

or the growth probability distribution along its boundary [8, 38, 151–155].

But, as pointed out in the previous sections, the estimate of the generalized

fractal dimensions Dq and the f ð�Þ singularity spectrum provides only

‘macroscopic’ statistical information about the self-similarity properties of

fractal objects. The incompleteness of the multifractal description lies in the

fact that, to some extent, the ‘microscopic’ information concerning the hier-

archical architecture of these arborescent morphologies has been filtered

(averaged) out.

To achieve a more elaborated structural analysis of the DLA clusters, we

have recently advocated the use of the continuous 2D wavelet transform [79–

81]. With this mathematical microscope, we have discovered the existence of

Fibonacci sequences in the internal fractal branching of large mass off-lattice

DLA clusters [156–158]. This analysis also reveals that this fascinating hier-

archy is likely to be related to a predominant structural five-fold symmetry

[157]. Our aim here, is to establish the statistical relevance of the golden mean

arithmetic to the structural fractal ordering of DLA clusters. For that pur-

pose, we will use the wavelet based tree matching method presented in

Section 9.5.1 for solving the inverse fractal problem. This method turns

out to be a very efficient tool to extract, directly from one-dimensional

cuts of large mass aggregates, a discrete dynamical system (1D map) which

accounts for their multiplicative construction rule [84]. In this section, we

apply this method to 50 azimuthal Cantor sets obtained by intersecting off-

lattice DLA clusters containing 106 particles (Figure 9.16a) with a circle of
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Fig. 9.16. (a) A 106 particle DLA cluster computed with an off-lattice random walker
model. (b) The inner frozen region delimited by the circle sketched in (a); about 8 104

particles are contained in a disk of radius R ¼ 480 particles sizes.



radius R � Rg=3 (where Rg is the gyration radius) centred at the origin and

that somehow delimits their inner frozen region (Figure 9.16b) [159].

The wavelet transform modulus maxima of an azimuthal DLA Cantor set

are shown in Figure 9.17a. Let us first proceed to a systematic investigation

of the contracting scale ratio r ¼ an=an�1 ð< 1Þ between the scales of two
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Fig. 9.17. WTMM skeleton of a part of the azimuthal Cantor set corresponding to
one main branch of an off-lattice DLA cluster. The analysing wavelet is the Gaussian
function; the large scales are at the top. (a) Symbolic coding of the WTMM skeleton
according to the Fibonacci recursive process; the horizontal lines mark the scales
an ¼ r�n with r� ¼ 0:44. (b) Illustration of the tree-matching algorithm after trans-
forming the bifurcation points (�) in such a way that the symbols A emerge system-
atically on the left. According to the self-similarity relation (9.37), the 2 dashed
rectangles are mapped into the original rectangle. Arrows indicate the matching of
the bifurcation points with the maps TA (——) and TB (- - - -) respectively.

Fig. 9.18 (a) Histogram NðrÞ (——)———— of the values of the scale ratio between two
successive bifurcation points in the WTMM skeletons of 50 DLA azimuthal Cantor
sets. A maximum is observed for r� ¼ 1=�� ’ 0:44 ð�� ’ 2:2Þ: NðrAÞ (————) and
NðrBÞ (- - - -) are the histograms obtained when considering bifurcation points mapped
by TA and TB respectively. (b) The corresponding histograms of amplitude ratio
values NðpAÞ (————) and NðpBÞ (- - - -).



bifurcation points of successive generations in the WTMM skeleton. The

results of the statistical analysis of 50 off-lattice DLA clusters are shown in

Figure 9.18a [156, 159]. The scale ratio histogram NðrÞ displays a maximum

at the value r� ¼ 1=�� ¼ 0:44� 0:03 ð�� ¼ 2:2� 0:2Þ. Let us note that similar

histograms have been obtained by H.L. Hwang and S. Mallat in Ref. [136].

The ‘generations’ of branching are thus expected to occur preferentially at the

scales an ¼ a0r
�n
¼ a0ð0:44Þ

n, where a0 is a macroscopic scale that is deter-

mined by the size of the DLA branch under study. The horizontal lines in the

ð�; aÞ half-plane in Figure 9.17a are drawn as guide marks for those successive

generations.

As seen in Figure 9.17a, by assigning a symbol A or B to each maxima line,

one obtains a coding of the WTMM skeleton that complies with the

Fibonacci recursive process [160]:

A! AB; B! A ð9:48Þ

Thus if one starts with the symbol B at the generation n ¼ 0, one gets A at the

generation n ¼ 1, and successively AB;ABA;ABAAB;ABAABABA . . . The

population Fn at the generation n can be deduced from the populations Fn�1

and Fn�2 at the two preceding generations, according to the iterative law:

Fn ¼ Fn�1 þ Fn�2; ð9:49Þ

with F0 ¼ F1 ¼ 1. A remarkable property of the Fibonacci series

fFng ¼ f1; 1; 2; 3; 5; 8; 13; 21; . . .g is that the ratio of two consecutive

Fibonacci numbers converges to the golden mean �:

lim
n!þ1

Fnþ1=Fn ¼ � ¼ ð1þ
ffiffiffi
5
p
Þ=2 ¼ 1:618 . . . ð9:50Þ

Now, if one uses the general formula established for the WTMM skeletons of

one-scale Cantor sets [82], one gets the following estimate for the fractal

dimension DA
F of the DLA azimuthal Cantor sets [156]:

DA
F ¼

ln�

ln 1=r�
’

ln 1:62

ln 2:2
’ 0:61; ð9:51Þ

where we have identified the branching ratio and the scale ratio to the values

that have been recorded the most frequently in our statistical study, namely �

and 1=r� respectively. This numerical value for DA
F is in good agreement with

our previous measurements based on classical box-counting technique:

DA
F ¼ 0:62� 0:03 [156–158].

The spreading of the histogram in Figure 9.18a around r� � 0:44 indicates

the existence of important fluctuations in the scale ratio value. These fluctua-

tions can be related to some local departure from the Fibonacci structural
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ordering. The presence of these structural defects raises the question of the

statistical pertinence of this Fibonaccian architecture. In Figure 9.19 are

reported the results of a systematic analysis of the WTMM skeletons asso-

ciated to the 240 main DLA branches identified in our statistical sample. The

angular width of each of these branches has been normalized to 1 before

computing the WTMM skeleton. The different histograms represented in

Figure 9.19 correspond to the statistical distribution of the number of

WTMM lines that exist at scales an ¼ r�n ¼ ð0:44Þn for successive genera-

tions. Each of these histograms displays a well defined maximum at the

value Fn given by the Fibonacci series. This is a quantitative confirmation

that the Fibonacci structural ordering is a generic statistical characteristic of

the azimuthal DLA Cantor sets and not some feature recognized on parti-

cular realizations [156–158].

The technique introduced in Section 9.5.1 provides a very attractive

method to push further this analysis and to extract some ‘mean 1D map’

which could explain and quantify the presence of a predominant statistical

Fibonaccian structural hierarchy in the DLA Cantor sets. In order to carry

out this analysis [84, 159], we have first proceeded to a systematic investi-

gation of the symbolic coding of the WTMM skeletons of the azimuthal

Cantor sets. A close inspection of this coding reveals some randomness in

the relative position of the symbols A and B at each bifurcation A! AB.

Out of 1586 bifurcation points for which the coding has been achieved, 747

(47%) correspond to the A branch being on the left and 839 (53%) to the A

branch being on the right. Moreover, the analysis of the correlations

between two successive bifurcation points does not indicate any memory

effect. Actually, within the statistical uncertainty, one cannot distinguish
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Fig. 9.19. Statistical distributions of the number of WTMM lines that exist at scales
an ¼ ð0:44Þ

n for successive generations from n ¼ 1 to 7.



the random occurrence of the symbols A and B at each bifurcation point

from a fair tossing coin.

In order to adapt the tree matching WTMM technique to the presence of

this statistical left-right symmetry, we ‘flip’ the relative position of A and B

whenever the A branch is found on the right of B, so that the skeleton

actually processed is made only of A branches emerging on the left (Figure

9.17b) [84, 154]. Then our tree-matching algorithm consists in extracting the

map T which is made of two branches TA and TB and which leaves �

invariant (i.e. � 	 T�1A ¼ pA� and � 	 T�1B ¼ pB�Þ from the ‘self-similarity’

relation (9.37). The 1D map TðxÞ reconstructed from scanning the 50 azi-

muthal Cantor set WTMM skeletons is shown in Figure 9.20a. The data

points obviously do not fall on a well defined 1D map. However, the set of

data points clearly separates into two distinct ‘noisy’ branches. The solid lines

in this figure correspond to the piece-wise linear 1D map:

TðxÞ ¼
TAðxÞ ¼ �

�
Ax x 2 ½0; r�A�

for
TBðxÞ ¼ �

�
Bðx� 1Þ þ 1 x 2 ½1� r�B; 1�

8<: ð9:52Þ

where ��A � r��1A � 2:2 and ��B � r��1B � ��2A � 4:8. This 1D map is made of

two linear branches whose slopes correspond to the inverse of the prefer-

ential scale ratios found when splitting the histogram NðrÞ in Figure 9.18a

into two histograms NðrAÞ and NðrBÞ. These two histograms account for the

scale ratio fluctuations observed in the WTMM skeletons when one com-
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Fig. 9.20. (a) 1D map extracted from the WTMM skeletons of 50 DLA azimuthal
Cantor sets using the tree matching algorithm described in Fig. 9.17. The solid lines
correspond to the two branches of the linear cookie-cutter (9.52) with the respective
slopes ��A ¼ 2:2 and ��B ¼ �

�2
A ¼ 4:8. (b) ln p versus ln r, where r ¼ an=an�1

(p ¼ jW ½��ðxn; anÞj=jW ½��ðxn�1; an�1ÞjÞ is the ratio between the scales (amplitudes)
of two bifurcation points that are associated by our tree matching algorithm. A
linear regression fit of the data provides a slope � ¼ 0:61� 0:03.



putes the scale ratio for A branches and B branches separately. They both

display a maximum for r�A ¼ 0:44� 0:03 and r�B ¼ 0:21� 0:03 respectively.

The fact that r�B ’ r�2A has a remarkable consequence. A straightforward

computation shows that if this equality holds, then the number of cylinders

(subintervals) of a given size rkA generated by iterating T�1 is exactly the

Fibonacci number Fk [58, 84, 159]. A 1D map model as simple as the piece-

wise linear map (9.52) therefore provides a rather natural understanding of

the origin of the Fibonacci structural hierarchy discovered on individual

realizations (Figure 9.17a). The accumulation of data points around the

solid lines in Figure 9.20a can thus be regarded as a quantitative indication

of the existence of a statistically predominant multiplicative process,

whereas the ‘noise’ around these lines is the signature of the importance

of the structural defects to the Fibonacci ordering. There is moreover some

randomness in this multiplicative process since at each bifurcation point in

the WTMM skeletons, there are as many chances for TðxÞ (A on the left) as

for its ‘flipped’ version bTT ðxÞ ¼ 1� Tð1� xÞ (A on the right) to be iterated

backward.

The WTMM tree matching algorithm gives also access to the histogram of

amplitude ratio values p ¼ jW ½��ðxn; anÞj=jW ½��ðxn�1; an�1Þj. The histo-

grams NðpAÞ and NðpBÞ, corresponding respectively to the histograms of

scale ratios NðrAÞ and NðrBÞ, are shown in Figure 9.18b. Let us note that

for the Bernoulli invariant measures of the piece-wise linear cookie-cutter

model (9.52) to be homogeneous, the respective weights pA and pB, distrib-

uted multiplicatively at each iteration, have to satisfy the requirement

p�A ¼ p�2B . Since p�A þ p�B ¼ 1, one gets exactly p�A ¼ �
�1
’ 0:618 and

p�B ¼ �
�2
� 0:382. Both histograms in Figure 9.18b display a maximum in

very good agreement with those expected values for p�A and p�B. This is an

indication that the DLA azimuthal Cantor sets are likely to be homogeneous

fractals. Furthermore we show in Figure 9.20b that the random variables ln r

and ln p are strongly correlated according to the law p ¼ Cr0:61. This result is

in remarkable agreement with previous WT measurements of the local scal-

ing exponent � ¼ DA
F ¼ 0:61� 0:03 of the DLA azimuthal Cantor sets [157].

The scatter of points around the solid line in Figure 9.20b might explain some

weak multifractal departure from statistical homogeneity as noticed in pre-

vious box-counting calculations [155].

To summarize, we believe that the set of results reported in this work is a

very attractive breakthrough on the main challenge raised by the puzzling

DLA morphology. To our knowledge this is the first time that some statis-

tical evidence for the existence of a multiplicative construction process hidden

in the DLA geometry is reported in the literature. The cookie-cutter T
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defined in Eq. (9.52) accounts for the presence of a statistically predominant

Fibonacci structural ordering. Moreoever, we have shown that there exist

mainly two sources of randomness superimposed to this structural ordering.

The first one results from some (left-right) symmetry in the Fibonacci multi-

plicative process itself. The second one appears as intrinsic noise in the

reconstructed 1D map and can be understood as structural defects in the

Fibonacci fractal hierarchy.

9.7 Conclusion

To summarize, we have presented in this paper a first theoretical step towards

a unified theory of singular distributions, including multifractal measures and

multifractal functions based on wavelet analysis. Indeed we believe that the

WTMM method for determining the singularity spectrum of a fractal signal

is likely to become as useful as the well-known phase portrait reconstruction,

Poincaré section and first return map techniques for the analysis of chaotic

time series [17, 18]. The reported results of a preliminary analysis of a fully

developed turbulent velocity signal show that this method is readily applic-

able to experimental situations. We have also shown that one can further use

the wavelet transform to go beyond this thermodynamic description of frac-

tal objects and eventually to extract from the data some dynamical system

which accounts for its multiplicative hierarchical structure. The reported

application of a wavelet based tree matching algorithm to characterize the

fractal properties of DLA azimuthal Cantor sets has revealed the existence of

a Fibonacci multiplicative process in the apparently disordered arborescent

morphology of DLA clusters. This discovery is a very spectacular manifesta-

tion of the statistical relevance of the golden mean arithmetic to Laplacian

fractal growth phenomena. We are convinced that further applications of this

wavelet based thermodynamics (the WTMM method) and statistical

mechanics (the wavelet based tree matching algorithm for solving the inverse

fractal problem) will lead to similar major breakthroughs in various fields

where multi-scale phenomena are ubiquitous. Applications to hydrodynamic

turbulent dynamics (2D and 3D), critical fluctuations in colloidal systems,

surface roughening in noise driven growth processes and DNA ‘walks’

nucleotide sequences are currently in progress.

In the present study we have mainly focused on fractal objects which are

made of a more or less complicated hierarchy of non-oscillating singularities.

However there are many examples in nature where oscillating singularities

play an important role, e.g., spiral vortices in turbulent flows. In our cano-

nical thermodynamic description of fractal signals involving non-oscillating
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singularities, we have mainly considered the fluctuations in the value of the

Holder exponent h from one maxima line to the next in the WTMM skeleton

since the distance between two adjoining maxima lines behaves systematically

as the scale a of the analysing wavelet. A straightforward calculation shows

that for a spiral-type signal of the form: sðxÞ ¼ x� sinð1=x�Þ, the distance

between two adjoining maxima lines in the WTMM skeleton scales like a’

with ’ ¼ 1=ð�þ 1Þ. In a forthcoming publication, we hope to elaborate on a

grand canonical description which will take also into account the fluctuations

of the exponent ’ in the branching process of the WTMM skeleton. This

extended multifractal formalism is likely to provide a general framework for

a unified thermodynamic theory of a large class of fractal distributions invol-

ving non-oscillating as well as oscillating singularities.
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Abstract

We present a combined wavelet and analytic signal approach to study bio-

logical and physiological nonstationary time series. The method enables one

to reduce the effects of nonstationarity and to identify dynamical features on

different time scales. Such an approach can test for the existence of universal

scaling properties in the underlying complex dynamics. We applied the tech-

nique to human cardiac dynamics and find a universal scaling form for the

heartbeat variability in healthy subjects. A breakdown of this scaling is asso-

ciated with pathological conditions.

10.1 Introduction

The central task of statistical physics is to study macroscopic phenomena

that result from microscopic interactions among many individual compo-

nents. This problem is akin to many investigations undertaken in biology.

In particular, physiological systems under neuroautonomic regulation, such

as heart rate regulation, are good candidates for such an approach, since: (i)

the systems often include multiple components, thus leading to very large

numbers of degrees of freedom, and (ii) the systems usually are driven by

competing forces. Therefore, it seems reasonable to consider the possibility

that dynamical systems under neural regulation may exhibit temporal struc-

tures which are similar, under certain conditions, to those found in physical

systems. Indeed, concepts and techniques originating in statistical physics are

showing promise as useful tools for quantitative analysis of complicated

physiological systems.
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An unsolved problem in biology is the quantitative analysis of a nonsta-

tionary time series generated under free-running conditions [1–3]. The signals

obtained under these constantly varying conditions raise serious challenges to

both technical and theoretical aspects of time series analyses. A central ques-

tion is whether such noisy fluctuating signals contain dynamical patterns

essential for understanding underlying physiological mechanisms.

Representative examples of complex dynamical behaviour under physio-

logic and pathologic conditions are shown in Figure 10.1. Figure 10.1(a)

shows a physiologic cardiac interbeat time series—the output of a spatially

and temporally integrated neuroautonomic control system. The time series

shows erratic fluctuations and ‘patchiness’. These fluctuations are usually

ignored in conventional studies which focus on averaged quantities. In

fact, these fluctuations are still often labelled as ‘noise’ to distinguish them

392 P.Ch. Ivanov et al.

Fig. 10.1. Representative complex physiological fluctuations. Cardiac interbeat inter-
val (normal sinus rhythm) time series of 2000 beats from (a) a healthy subject, (b) a
subject with obstructive sleep apnea, (c) a subject with congestive heart failure and
(d) a sudden cardiac death subject with ventricular fibrillation. Note the nonstatio-
narity (patchiness) of these time series [most apparent in (a) and (b)]. Although these
patches clearly differ in their amplitude and frequency of variations, their quantita-
tive characterization remains an open problem and limits the applicability not only
of traditional methods of analysis and modelling, but also newer techniques based on
‘chaos’ theory.



from the true ‘signal’ of interest. Furthermore, these patterns change with

pathological perturbations (shown in Figures 10.1(b)–10.1(d)). However,

with the recent adaption and extension of methods developed in statistical

physics and nonlinear mathematics, it has been found that the physiological

fluctuations shown in Figure 10.1(a) exhibit an unexpected hidden scaling

structure [4–8]. These findings raise the possibility that understanding the

origin of such temporal structures and their alterations may (i) elucidate

certain basic features of heart rate control mechanisms, and (ii) have practical

value in clinical monitoring.

When analysing complex cardiac fluctuations of the type shown in Figure

10.1(a), we must carefully exclude two obvious explanations for these

observed structures: (i) they are simply an epiphenomenon of random (uncor-

related) trends, or (ii) they are a trivial consequence of the fact that cardiac

function under neuroautonomic control is actually modulated by indepen-

dent mechanisms with many time scales. To address the first possibility,

researchers have recently developed and implemented methods to deal with

the technical issue of nonstationarity in cardiac time series. To test the second

possibility, numerically simulated systems with multiple time scales were

studied, leading to the conclusion that robust scaling structures cannot be

generated trivially from systems modulated by multiple time scales [8].

Instead, certain unique conditions are required to yield the structures

observed. Furthermore, these two ‘mechanisms’ will not account for the

observation of consistent changes in scaling patterns under pathological con-

ditions, where complex nonstationarity and multiple time scale modulation

are also present, but in altered form.

Among the difficulties associated with research on biomedical systems is

not only the extreme variability of the signals but also the necessity of oper-

ating on a case-by-case basis. Often one does not know a priori which infor-

mation is pertinent and on what scale it is located. Another important aspect

of biomedical signals is that the information of interest is often a combina-

tion of features that are well-localized (temporally or spatially) and others

that are more diffuse. As a result, the problems require the use of methods

sufficiently robust to handle events that can be at opposite extremes in terms

of their time–frequency localization. In the past few years, researchers have

developed powerful wavelet methods for multiscale representation and ana-

lysis of signals [9–17]. These new tools differ from the traditional Fourier

techniques in that they localize information in the time–frequency plane and

are especially suitable for the analysis of nonstationary data signals.

Due to the wide variety of signals and problems encountered in medicine

and biology, the spectrum of applications of the wavelet transform has been
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extremely large. It ranges from signal processing analysis of physiological

signals in bioacoustics (e.g., turbulent heart sounds) [18–27], electrocardio-

graphy [28–42], and electroencephalography [43–53] to applications for com-

pression [54–57] and enhancement [58–60] in biomedical imaging, noise

reduction [61–63], detecting microcalcifications in mammograms [64–69],

detection and reconstruction techniques for X-ray tomography [70, 71], mag-

netic resonance imaging [72–75], positron emission tomography [76], human

vision [77–80], and human DNA [81, 82]. Extensive reviews of these applica-

tions have been recently published [83–86].

In this chapter, we present a method to analyse the properties of human

cardiac activity by means of a wavelet transform and analytic signal

approach designed to address nonstationary behaviour [7]. We find a uni-

versal scaling function for the distribution of the variations in the beat-to-

beat intervals for healthy subjects. However, such a scaling function does not

exist for a group with a cardiopulmonary instability due to sleep apnea (a

condition in which breathing abnormalities during sleep affect cardiac activ-

ity). This scaling form allows us to express the global characteristics of a

highly heterogeneous time series of interbeat intervals of each healthy indi-

vidual with a single parameter. We find also that the observed scaling repre-

sents the Fourier phase correlations attributable to the underlying nonlinear

dynamics. This approach has the potential to quantify the output of other

nonlinear biological signals.

10.2 Nonstationary physiological signals

A time series is stationary if its statistical characteristics such as the mean and

the variance are invariant under time shifts, i.e., if they remain the same when

t is replaced by tþ�, where � is arbitrary. Then the probability densities,

together with the moment and correlation functions, do not depend on the

absolute position of the points on the time axis, but only on their relative

configuration [87]. Non-stationarity, an important feature of biological varia-

bility, can be associated with regimes of different drifts in the mean value of a

given signal, or with changes in its variance which may be gradual or abrupt.

Time series of beat-to-beat (RR) heart rate intervals (Figure 10.2(a))

obtained from digitized electrocardiograms are known to be nonstationary

and exhibit extremely complex behaviour [88]. A typical feature of such

nonstationary signals is the presence of ‘patchy’ patterns which change

over time (Figure 10.2(b)). The mechanism underlying this complex heart

rate variability is related to competing neuroautonomic inputs [89, 90].

Parasympathetic stimulation decreases the firing rate of pacemaker cells in
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the heart’s sinus node. Sympathetic stimulation has the opposite effect. The

nonlinear interaction (coupling) of the two branches of the nervous system is

the postulated mechanism for the type of erratic heart rate variability

recorded in healthy subjects [91–93]. We focus our studies on interbeat inter-

val variability as an important tool for elucidating possibly non-homeostatic

cardiac variability because (i) the heart rate is under direct neuroautonomic

control, (ii) interbeat interval variability is readily measured by non-invasive

means, and (iii) analysis of these heart rate dynamics may provide important

diagnostic and prognostic information.

Even under healthy, basal conditions, the cardiovascular system shows

erratic fluctuations resembling those found in dynamical systems driven

away from a single equilibrium state [94]. Do such ‘nonequilibrium’ fluctua-

tions [95] simply reflect the fact that physiological systems are being con-
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Fig. 10.2. (a) Segment of electrocardiogram showing beat-to-beat (RRi) intervals. (b)
Plot of RR-time series vs. consecutive beat number for a period of 6 h (� 2:5� 104

beats). Nonstationarity (patchiness) is evident over both long and short time scales.
(c) Wavelet transform T ðRRÞ of the RR-signal in (b) using the second derivative of
the Gaussian function  ð2Þ as analysing wavelet with scale a ¼ 8 beats.
Nonstationarities related to constants and linear trends have been filtered. (d)
Instantaneous amplitudes AðtÞ of the wavelet-transform signal in (c); AðtÞ calculated
using the Hilbert transform measures the cumulative variations in the interbeat
intervals over an interval proportional to the wavelet scale a.



stantly perturbed by external and intrinsic noise? Or, do these fluctuations

actually contain useful information about the underlying nonequilibrium

control mechanisms?

Traditional approaches – such as the power spectrum and correlation ana-

lysis [96, 97] – are not suited for such nonstationary (patchy) sequences. In

particular, they do not carry information stored in the Fourier phases which

is crucial for determining nonlinear characteristics [98–100].

To address these problems, we develop a method – ‘cumulative variation

amplitude analysis’ (CVAA) – to study the subtle structure of physiological

time series. This method comprises sequential application of a set of algo-

rithms based on wavelet and Hilbert transform analysis.

10.3 Wavelet transform

We first apply the wavelet transform (Figure 10.2(c)), because it does not

require stationarity and it preserves important Fourier phase information.

The wavelet transform [9, 101, 102] of a time series sðtÞ is defined as

T ðt0; aÞ �
1

a

Z þ1
�1

sðtÞ 
t� t0
a

� �
dt; ð10:1Þ

where the analysing wavelet  has a width of the order of the scale a and is

centred at t0. As pointed out in previous chapters, the wavelet transform is

sometimes called a ‘mathematical microscope’ because it allows one to study

properties of the signal on any chosen scale a. For high frequencies (small a),

the  functions have good localization (being effectively non-zero only on

small sub-intervals), so short-time regimes or high-frequency components can

be detected by the wavelet analysis. However, a wavelet with too large a value

of scale a (low frequency) will filter out almost the entire frequency content of

the time series, thus losing information about the intrinsic dynamics of the

system. We focus our ‘microscope’ on a scale a ¼ 8 beats which smooths

locally very high-frequency variations and best probes patterns of duration

30 s to 1 min. The wavelet transform is attractive because it can eliminate

local polynomial behaviour (trends) in the nonstationary signal by an appro-

priate choice of the analysing wavelet  [103].

In our study we use derivatives of the Gaussian function,

 ðnÞ �
dn

dtn
e�

1
2t
2

: ð10:2Þ

The first derivative is orthogonal to segments of the time series with an

approximately constant local average. This results in fluctuations of the

396 P.Ch. Ivanov et al.



wavelet transform values around zero with highest spikes at the positions

where a sharp transition occurs (Figure 10.3(b)). Thus, the larger spikes

indicate the boundaries between regimes with different local average in the

signal, and the smaller fluctuations represent variations of the signal within a

given regime. With increasing wavelet scale a, the fluctuations become

broader and reflect the dominant structures (variations) in the signal

(Figure 10.3(c)) Since  ð1Þ is not orthogonal to linear (non-constant) trends,

the presence of consecutive linear trends (Figure 10.3(d)) in the RR-intervals

will give rise to fluctuations of the wavelet transform values around different

nonzero levels corresponding to the slopes of the linear trends (Figure

10.3(e)). The second derivative  ð2Þ of the Gaussian function and higher

order derivatives can eliminate the influence of linear as well as nonlinear

trends in the fluctuations of the wavelet transform values (Figure 10.3(f)).

The wavelet transform allows one to ‘extract’ from the data particular

features. The object is to probe the variations in the heart rate signal at

different time scales. The particular choice of the derivatives of the

Gaussian function as analysing wavelets allows us to extract these variations.

One can argue that the same can be done by simply subtracting consecutive

interbeat intervals by analysing the increments only, but such standard ana-

lysis does not distinguish healthy from unhealthy cardiac dynamics [5]. The

reason is that the wavelet transform in addition to extracting the variations

over given time-scale in the heart rate signal reduces masking effects of the

nonstationarities since the analysing wavelet is orthogonal to local polyno-

mial trends. The wavelet also filters out the very high-frequency noise in the

original signal, preserving at the same time the sharpness of the edges separ-

ating different patterns in the signal, thus minimizing possibly artificial errors

in the statistical analysis. Moreover, we find that the scale of the wavelet is

crucial for extracting the hidden patterns in the cardiac dynamics. Thus, the

ability of the wavelet transform to probe the signal on different scales is

important for detecting essential features of cardiac dynamics under healthy

as well as pathologic conditions.

The wavelet transform is thus a cumulative measure of the variations in the

heart rate signal over a region proportional to the wavelet scale a, so the

study of the behaviour of the wavelet values can reveal intrinsic properties of

the dynamics masked by nonstationarity.

10.4 Hilbert transform

The wavelet transform signal at a fixed scale (Figure 10.2(c)) shows segments

of different duration and amplitudes. So the next step of the CVAA is to
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Fig. 10.3. Derivatives of the Gaussian function as analysing wavelet extract the
singularities (variations) from a signal with (a) constant and (d) linear trends.
Wavelet transform of the signal in (a) using  ð1Þ as analysing wavelet with (b) smaller
and (c) larger time scale. (e)  ð1Þ and (f)  ð2Þ are used on the signal in (d) at the same
time scale.



extract the amplitudes of the variations in the beat-to-beat signal by means of

an analytic signal approach [96, 104] which also does not require stationarity.

This general approach, based on the Hilbert transform and originally intro-

duced by Gabor [105], unambiguously gives the instantaneous phase and

amplitude for a given signal sðtÞ (in our case the wavelet transform of the

interbeat interval time series) via construction of the analytic signal SðtÞ,

which is a complex function of time defined as

SðtÞ � sðtÞ þ i ~ssðtÞ ¼ AðtÞei�ðtÞ: ð10:3Þ

Here ~ssðtÞ is the Hilbert transform of sðtÞ,

~ssðtÞ ¼ ��1P:V:

Z þ1
�1

sð�Þ

t� �
d� ð10:4Þ

where P.V. means that the integral is taken in the sense of the Cauchy

principal value. The amplitude is defined as

AðtÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðtÞ þ ~ss2ðtÞ

q
ð10:5Þ

and the phase as

�ðtÞ � tan�1 ~ssðtÞ=sðtÞð Þ: ð10:6Þ

The Hilbert transform ~ssðtÞ of sðtÞ can be considered as the convolution of

the functions sðtÞ and 1=�t. This means that the Hilbert transform can be

realized by an ideal filter whose amplitude response is unity, and phase

response is a constant �=2 lag at all frequencies [96]. A harmonic oscillation

sðtÞ ¼ A cos!t is often represented in the complex notation as

A cos!tþ jA sin!t. This means that the real oscillation is complemented

by the imaginary part which is delayed in phase by �=2, and which is related

to sðtÞ by the Hilbert transform. The analytic signal is the direct and natural

extension of this technique, as the Hilbert transform performs the ��=2

phase shift for every frequency component of an arbitrary signal.

Why do we need the instantaneous amplitude (envelope) of the signal?

Suppose that our wavelet transform signal for a given scale consists of two

segments (patches), both being sine waves with the amplitudes A and A0.

Then the values of the signal for the first patch are distributed from �A to

A, and for the second patch from �A0 to A0 (A0 > A).

So the distributions of the data points values along the two patches of the

signal overlap between �A and A. However, if we consider the distributions

of the instantaneous amplitudes of the data points from these two segments,

then they do not overlap; they are, actually, two points, PðAÞ and PðA0Þ with

Wavelets in medicine and physiology 399



values reflecting the number of data points in each segment (Figure 10.4). By

changing the wavelet scale we can learn about the distribution of patches

with different duration.

10.5 Universal distribution of variations

Quantifying the probability distribution of variation amplitudes in the inter-

beat intervals can provide insights into the underlying dynamical processes

because the distribution of interbeat intervals is directly related to the

mechanisms which control heart rate variability. Therefore, by finding con-

sistent features of the distribution which are robust with respect to different

healthy subjects, we can quantify physiologic dynamics. However there are

important technical difficulties which must first be overcome before such

robust features can be found.

Among the possible reasons why an interbeat interval histogram can differ

from case to case are the following. (i) Histograms can differ because they

have different means and standard deviations but follow the same functional

form. (ii) Histograms are described by different functional forms, i.e. they

belong to different classes of processes. The first type of difference is com-

monly observed (especially in physiological data where significant variation

400 P.Ch. Ivanov et al.

Fig. 10.4. Segments of sinusoidal signal with different frequencies and amplitudes
(solid line) and their envelope obtained from Hilbert transform (dashed line).



between individuals is expected) and should be taken care of by properly

‘renormalizing’ (with respect to the mean and standard deviation) the histo-

gram. If we assume that heart rate control mechanisms in healthy subjects

follow the same general set of dynamical rules, then we expect that some

variables of the system’s output will be described by a single, well-defined

distribution function. Functional differences between distributions, on the

other hand, can be a result of altered mechanisms, and could be indicative

of pathological behaviour.

We analysed the distribution of the amplitudes of the beat-to-beat varia-

tions (Figure 10.2(d)) for a group of healthy subjects (N ¼ 18: 5 males and 13

females; age 20–50, mean 34) and a group of subjects [106] with obstructive

sleep apnea [107, 108] (N ¼ 16 males; age 32–56, mean 43). To minimize

nonstationarity due to changes in the level of activity, we begin by consider-

ing night phase (12 p.m.–6 a.m.) records of interbeat intervals (� 104 beats)

for both groups.

Inspection of the distribution functions of the amplitudes of the cumulative

variations reveals marked differences between individuals (Figure 10.5(a)).

These differences are not surprising given the underlying physiological differ-

ences among healthy subjects.

For the healthy group, we find that these distributions are well fit by the

generalized homogeneous form [109] (the Gamma distribution):

Pðx; bÞ ¼
b�þ1

�ð�þ 1Þ
x�e�bx; ð10:7Þ

where b � �=x0, �ð�þ 1Þ is the Gamma function, x0 is the position of the

peak P ¼ Pmax, and � is a fitting parameter (Figure 10.6(a)). A function

Pðx; bÞ is a generalized homogeneous function if there exist two numbers �

and � – called scaling powers – such that for all positive values of the para-

meter �

Pð��x; ��bÞ ¼ �Pðx; bÞ: ð10:8Þ

Generalized homogeneous functions are defined as solutions of this func-

tional equation. One can see that in our case, Pðx; bÞ satisfies (10.8) with

� ¼ �1 and � ¼ 1.

Functions describing physical systems near their critical points are known

to be generalized homogeneous functions [110]. Data collapse is among the

key properties of generalized homogeneous functions. Instead of data points

falling on a family of curves, one for each value of b, data points can be made

to collapse onto a single curve given by the scaling function
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Fig. 10.5. (a) Probability distributions PðxÞ of the amplitudes of heart rate variations
x � AðtÞ for a group of 18 healthy adults (after wavelet transform with  ð2Þ and scale
a ¼ 8 beats). Individual differences are reflected in the different average value and
widths (standard deviations) of these distributions. All distributions are normalized
to unit area. (b) Same probability distributions as in (a) after rescaling: PðxÞ by Pmax,
and x by 1=Pmax to preserve the normalization to unit area. This rescaling is equiva-
lent to the scaling procedure discussed in the text (Eq. 10.9), since PðxÞ � Pðx; bÞ and
Pmax / b. We are able to describe the distributions using a single curve, indicating a
robust, consistent scaling mechanism for the nonequilibrium dynamics. (c)
Probability distributions for a group of 16 subjects with obstructive sleep apnea.
We note that the second (rightward) peak (arrow) in the distributions for the sleep
apnea subjects corresponds to the transient emergence of characteristic pathologic
oscillations in the heart rate associated with periodic breathing (Fig. 10.1b). (d)
Distributions for the apnea group after the same rescaling as in (b). These distribu-
tions cannot be well described by a single curve, indicating that the nonequilibrium
dynamics are altered.



~PPðuÞ �
Pðx; bÞ

b
; ð10:9Þ

where the number of independent variables is reduced by defining the scaled

variable u � bx. Our results show that a common scaling function ~PPðuÞ defines

the probability density of the magnitudes of the variations in the beat-to-beat

intervals for each healthy subject. Note that it is sufficient to specify only one

parameter b in order to characterize the heterogeneous heartbeat variations

for each subject in this group.

To test the hypothesis that there is a hidden, possibly universal, structure

to these heterogeneous time series, we rescale the distributions and find for all

healthy subjects that the data conform to a single scaled plot (‘data collapse’)

(Figure 10.5(b)). Such behaviour is reminiscent of a wide class of well-studied

physical systems with universal scaling properties [110, 111]. In contrast, the

subjects with sleep apnea show individual probability distributions that fail

to collapse (Figure 10.5(d)). The collapse of the individual distributions for

all healthy subjects after rescaling their ‘individual’ parameter is indicative of

a ‘universal’ structure. The term ‘universal’ is used in the sense that a closed

mathematical scaling form is established to describe in a unified quantitative

way the cardiac dynamics of all studied healthy subjects.

An analysis of the heart rate dynamics for healthy subjects during the

daytime (noon–6 p.m.) indicates that the observed, apparently universal,

behaviour holds not only for the night phase but for the day phase as well

(Figure 10.6(b)). Semilog plots of the averaged distributions show a systema-

tic deviation from the exponential form (slower decay) in the tails of the

night-phase distributions, whereas the day-phase distributions follow the

exponential form over practically the entire range. Note that the tail of the

observed distribution for the night phase indicates higher probability of

larger variations in the healthy heart dynamics during sleep hours in com-

parison with the daytime dynamics.

We observe for the healthy group good data collapse with a stable scaling

form for wavelet scales a ¼ 2 up to a ¼ 64 (Figure 10.6(c)). However, for very

small scales (a ¼ 1; 2), the group average of the rescaled distributions of the

apnea subjects is indistinguishable from the average of the rescaled distribu-

tions of the healthy group. Thus, very high frequency variations are equally

present in the signals from both groups. Our analysis yields the most robust

results when a is tuned to probe the collective properties of patterns with

duration of � 1
2� 1 min in the time series (a ¼ 8; 10). The subtle difference in

the tail of the distributions between day and night phases is also best seen for

this scale range.
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We note that direct analysis of interbeat interval histograms does not lead

to data collapse or separation between the healthy and apnea group. Such

histograms measured directly for each subject do not converge to a single

representative curve describing healthy dynamics, because the interbeat inter-

val time series is highly nonstationary. Even rescaling the time series to give

all histograms identical means and variances does not lead to a common

curve for the histograms. Moreover, the direct application only of the

Hilbert transform yielding the probability distribution of the instantaneous
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Fig. 10.6. (a) The solid line is an analytic fit of the rescaled distributions of the beat-
to-beat variation amplitudes of the 18 healthy subjects during sleep hours to a stable
Gamma distribution with � ¼ 1:4� 0:1. (b) Data for 6 h records of RR intervals for
the day phase of the same control group of 18 healthy subjects demonstrate similar
scaling behaviour with a Gamma distribution and � ¼ 1:8� 0:1, thereby showing
that the observed common structure for the healthy heart dynamics is not confined
to the nocturnal phase. (c) Group average of the rescaled distributions of the cumu-
lative variation amplitudes for the healthy individuals during nocturnal hours. Note
that the observed Gamma scaling is stable for a wide range of the wavelet transform
scales a.



amplitudes of the original signal does not distinguish clearly healthy from

abnormal cardiac dynamics. Hence, the wavelet transform, with its ability to

be orthogonal to polynomial trends and to probe the signal on different time

scales, proves crucial to extract dynamical properties hidden in the cumula-

tive variations, since different patterns can be observed on different time

scales.

10.6 Wavelets and scale invariance

Differences between healthy and abnormal cardiac dynamics are known to be

reflected in different correlations and power spectra [4–6, 97]. However, it is

currently widely assumed in the literature that the difference in time series of

interbeat intervals in sick and healthy adults lies not in the distribution of the

interbeat variations but rather in their time ordering. This assumption is based

on more conventional studies of interbeat increments [112]. These studies

essentially amount to taking derivatives of the heart rate signal and thus

extracting pointwise characteristics. Also, it has been hypothesized that

even if the interbeat variations are different (e.g. smaller) during illness, the

pattern of heart rate variability might be otherwise very similar to that during

health, so that the interbeat variations for normal and abnormal cardiac

dynamics, once normalized, would have the same distribution. Our study

clearly rejects this hypothesis, showing the presence of scaling in the distribu-

tions of the variation amplitudes for the healthy (Figure 10.5(b)) and a break-

down of this scaling for abnormal dynamics (Figure 10.5(d)). Moreover, the

stability of this scaling form (Figure 10.6(c)) indicates that the underlying

dynamical mechanisms regulating the healthy heart beat have similar statis-

tical properties on different time scales. Such statistical self-similarity is an

important characteristic of fractal objects [98, 113]. The wavelet decomposi-

tion of beat-to-beat heart rate signals can be used to provide a visual repre-

sentation of this fractal structure (Figure 10.7). The wavelet transform, with

its ability to remove local trends and to extract interbeat variations on dif-

ferent time scales, enables us to identify self-similar patterns (arches) in these

variations even when the signals change as a result of background interfer-

ence. Data from sick hearts lack these patterns. Fractal characteristics of the

cardiac dynamics and other biological signals can be successfully studied with

the generalized multifractal formalism based on the wavelet transform mod-

ulus maxima method (WTMM) presented in Chapter 9.

Similar time scale invariance was observed in the experiments of Rodieck

on the interspike intervals of a single neuron cell whose distribution was

analysed by Gerstein and Mandelbrot [114]. For several types of single
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(a)

(b)

(c)

Fig. 10.7. Colour coded wavelet analysis of RR signals. (Colours referred to in this
caption are shown at www.cambridge.org/resources/0521533538.) The x-axis repre-
sents time (� 2000 beats) and the y-axis indicates the scale of the wavelet used
(a ¼ 1; 2; . . . ; 60) with large scales at the top. The brighter colours indicate larger
values of the wavelet amplitudes. (a) The wavelet analysis performed with  ð2Þ (the
Mexican hat) as an analysing wavelet uncovers a hierarchical scale invariance quan-
titatively expressed by the stability of the scaling form on Fig. 10.6(c). This wavelet
decomposition reveals a self-similar fractal structure in the healthy cardiac dynamics
– a magnification of the central portion of the top panel (a) with 200 beats on the x-
axis and wavelet scale a ¼ 1; 2; . . . ; 25 on the y-axis presented in (b) shows identical
branching patterns. (c) Loss of this fractal structure in cases with sleep apnea (lower
panel).



neuron cells Gerstein and Mandelbrot find that the interspike intervals dis-

tributions remain invariant with the time scale. However the heartbeat var-

iations, unlike the single neuron dynamics, represent the integrated output of

spatially and temporally distributed feedback system.

Analysis of the variance of the distributions for healthy cardiac dynamics

at different time scales shows a power law behaviour with an exponent close

to zero. This relates to previous studies reporting long-range anticorrelations

in the heartbeat variations [5]. The findings that correlation functions and

distributions describing physiological systems are not characterized by a

single time scale become more plausible if we consider the survival advantage

conferred upon organisms that evolved with an infinite hierarchy of time

scales compared to organisms that evolved with a single characteristic time

scale. Organisms with a physiologic control system generated by a single time

scale are analogous, formally, to the famous Tacoma Narrows bridge, which

survived many years until by chance a wind storm occurred that happened to

correspond to the characteristic frequency (inverse of the characteristic time

scale). Organisms that have survived millions of years have plausibly evolved

some feature to render them immune from the analogue of the Tacoma

bridge disaster, and this feature would seem to be the absence of any char-

acteristic time scales (compare Figure 10.1(a) with 10.1(b) and 10.1(d), which

show pathologic mode-locking).

10.7 A diagnostic for health vs. disease

We employ the Kolmogorov–Smirnov test to measure how similar two prob-

ability distributions are. A mathematical relation exists which links the

Kolmogorov–Smirnov parameter DðKSÞ to the corresponding statistical sig-

nificance level [115]. The larger the value of DðKSÞ, the more unlikely it is

that the two data sets were obtained from the same probability distribution

(the null hypothesis).

The Kolmogorov–Smirnov test provides a simple measure that is defined

as the maximum value of the absolute difference between two cumulative

distribution functions.

The K–S test is defined as follows.

(i) Once the probability distribution PðxÞ is found for a subject which we want to

compare to a fit P0ðxÞ; the cumulative probability distribution WðxÞ for the

subject is found using the relation

WðxÞ �

Z x

0

Pðx0Þdx0;
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and similarly for the the cumulative probability distribution W0ðxÞ of the fit

P0ðxÞ.

(ii) The absolute difference �WðxÞ � jWðxÞ �W0ðxÞj is found.

(iii) The maximum value of this absolute difference is defined as the K–S parameter

(Figure 10.8(a)): DðKSÞ � max½�WðxÞ�:

Once the distributions for the subjects and a fit for healthy subjects are

found, we apply the K–S test to see how different each subject’s distribution

is from the fit. Comparing the individual distributions of the healthy and

sleep apnea subjects with the reported scaling form (Eq. (10.9)) for the

healthy dynamics, we find that the Kolmogorov–Smirnov test can serve as

a potentially useful tool to separate healthy from abnormal cardiac dynamics

(Figure 10.8(a)). The question of diagnostics motivates us to look more

closely at the first and second moments of the distributions of the variation

amplitudes for both groups. We find that a simple presentation of the values

for these moments can be also effectively used to separate quantitatively the

two groups. We present these results in Figure 10.8(b) – the first and second

moments of the healthy distributions exhibit lower values with good linear fit,

whereas for the apnea group these values are higher and dispersed with

almost no overlap with the healthy data.

10.8 Information in the Fourier phases

Correlation functions measure how the value of some function depends on its

value at an earlier time. Many simple systems in nature have correlation

functions that decay with time in an exponential way. For systems comprised

of many interacting subsystems, physicists discovered that such exponential

decays do not occur. Rather, correlation functions were found to decay with

a power-law form. The implication of this discovery is that in complex sys-

tems, there is no single characteristic time [119, 120]. If correlations decay

with a power-law form, we say the system is ‘scale free’ since there is no

characteristic scale associated with a power law. Since at large time scales a

power law is always larger than an exponential function, correlations

described by power laws are termed ‘long-range’ correlations – they are of

longer range than exponentially-decaying correlations.

In physiological systems, recent work has suggested that such ‘long-range’

power-law correlations occur in a range of physiological systems [118, 121,

122] including, most remarkably, the intervals between successive heartbeats

[5, 6]. The discovery of long-range correlations in these intervals is all the
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more interesting because it appears that these correlations are not present in

certain disease states.

What are the possible adaptive advantages of the apparently far-from-

equilibrium behaviour that appears to characterize the free-running

dynamics of certain neural control systems? First, we note that complex
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Fig. 10.8. (a) The Kolmogorov–Smirnov parameter DðKSÞ and (b) the values of the
first moments (mean and standard deviation �) of the cumulative variation ampli-
tude distributions can be used as a diagnostic of the healthy vs. apnea subjects with
more then 80% true-positive recognition.



erratic fluctuations shown in Figure 10.1(a) are not inconsistent with the

general concept that physiological systems must operate with certain bounds.

However, an intriguing possibility is that these complex nonequilibrium

dynamics, rather than classical homeostatic constancy, may be a mechanism

for maintaining physiologic stability. Such complex multiscale variability

keeps the system from becoming locked to a dominant frequency (mode

locking), a common manifestation of pathologic dynamics (Figure 10.1(b)).

At the same time, long-range fractal correlations underlying these complex

fluctuations may provide an important organizational mechanism for sys-

tems that lack a characteristic spatial or temporal scale. Finally, the intrinsic

‘noisiness’ of far-from-equilibrium dynamics may facilitate coping with

unpredictable environmental stimuli.

However, these fractal correlations detected by Fourier and fluctuation

analysis techniques, ignore information related to the phase interactions of

component modes. The nonlinear interaction of these modes accounts for the

visually ‘patchy’ appearance of the normal heartbeat time series.

To ascertain whether the observed scaling of the distributions for healthy

subjects is an intrinsic property of normal heart beat dynamics, we test the

cumulative variation amplitude analysis on artificially generated signals with

known properties. Our analysis of uniformly distributed random numbers in

the interval ½0; 1� and of Gaussian-distributed noise with and without long-

range power law correlations shows that after the wavelet transform the

amplitude distributions follow the Rayleigh probability distribution

RðxÞ ¼
x

�2

� �
e�x

2=�2 :

This finding agrees with the central limit theorem, which can be expressed as

a property of convolutions (in our case wavelet transforms): the convolution

of a large number of positive functions is approximately a Gaussian function,

and the instantaneous amplitudes of a Gaussian process follow the Rayleigh

probability distribution [87].

We perform parallel analysis on surrogate data obtained from a healthy

subject by Fourier transforming the original time series, preserving the ampli-

tudes of the Fourier transform but randomizing the phases, and performing

an inverse Fourier transform (Figure 10.9(c)). Thus, both the original and

surrogate signals have identical power spectra. Application of the CVAA

method on this surrogate signal results again in a Rayleigh distribution,

whereas the original time series has a distribution with an exponential tail.

This test clearly indicates the important role of phase correlations in the RR

time series. The presence of these correlations is most likely related to the
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Fig. 10.9. (a) Original time series RR as a function of beat number. (b) Wavelet
transform T ðRRÞ of this series. (c) Surrogate signal (RRsur) after phase randomiza-
tion. (d) Wavelet transform of the surrogate signal which is more homogeneous (less
patchy) in comparison with (b). (e) Probability distributions of the amplitudes of
variations after wavelet transform of the original and surrogate signals, as well as the
theoretical Rayleigh distribution. The theoretical Rayleigh agrees with the distribu-
tion of the wavelet transform of the surrogate signal with randomized phases.



underlying nonlinear dynamics [117, 123]. The observed breakdown of this

scaling pattern in the sleep apnea cases – a common and important instabil-

ity of cardiopulmonary regulation – is possibly related to pathological mode

locking associated with periodic breathing dynamics [116].

These tests show that the observed scaling in the variations of interbeat

intervals for healthy dynamics actually represents the Fourier phase correla-

tions. This result is non-trivial since it adds to an ongoing discussion about

whether nonlinear phase interactions are present in healthy cardiac dynamics

[91]. Furthermore, this finding suggests that, for healthy individuals, there

may be a common structure to this nonlinear phase interaction. Also, the

tests demonstrate that the scaling is not an artificial result of our approach in

that it gives the expected results for known processes, i.e., a Rayleigh dis-

tribution for the amplitudes of uniformly distributed random numbers and

for Gaussian noise as well. The basis of this robust temporal structure

remains unknown and presents a new challenge to the understanding of

nonlinear mechanisms of heartbeat control.

10.9 Concluding remarks

(i) Heart rate dynamics under normal conditions display nonequilibrium fluctua-

tions that reveal a remarkable physiological structure when analysed using

wavelets and methods adapted from statistical physics.

(ii) There is a hitherto unknown scaling pattern to interbeat interval variations in

healthy subjects. This finding allows us to express the global characteristics of

the highly heterogeneous heart rate time series of each healthy individual with

only a single parameter. This scaling property cannot be explained by activity,

since we analysed data from subjects during nocturnal hours. Moreover, it

cannot be accounted for by sleep stage transitions, since we found a similar

pattern during day-time hours.

(iii) This scaling is related to the intrinsic nonlinear dynamics of the control

mechanism because it is due to information in the phase relationships. This

information is not in the 1/f power spectrum on which all previous heart rate

scaling is based, and any realistic attempt to model heart rate control will need

to account for this scaling behaviour.

(iv) The reported results are also the first that clearly show a difference in the

distributions of the interbeat variations for normal and abnormal heart

dynamics. However, to observe it, one must:

(a) properly reduce masking effects of nonstationarity;

(b) account for the importance of time scales to reveal hidden scaling.
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In both aspects the wavelet analysis proves superior to other more conven-

tional techniques.

(v) The observation of nonlinear dynamics is not accounted for by traditional

physiological mechanisms and motivates new modelling strategies to under-

stand nonequilibrium control systems under healthy and pathologic condi-

tions.

(vi) The wavelet-based method we present can be applied to other complex, non-

stationary time series.
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[41] L. Reinhardt, M. Mäkijärvi, T. Fetsch, J. Montonen, G. Sierra, A. Martı́nez-
Rubio, T. Katila, M. Borggrefe and G. Breithardt, ‘Predictive value of wavelet
correlation functions of signal-averaged electrocardiogram in patients after
anterior versus inferior myocardial infarction,’ J. Am. Coll. Cardiol. 27, 53–59
(1996)

[42] M. Karrakchou and M. Kunt, ‘Multiscale analysis for singularity detection in
pulmonary microvascular pressure transients,’ Ann. Biomed. Eng. 23, 562–573
(1995)

[43] M. Akay, Y. M. Akay, P. Cheng and H. H. Szeto, ‘Investigating the effects of
opioid drugs on electrocortical activity using wavelet transform,’ Biol. Cybern.
72, 431–437 (1995)

[44] M. Akay, Y. M. Akay, P. Cheng and H. H. Szeto, ‘Time-frequency analysis of
the electrocortical activity during maturation using wavelet transform,’ Biol.
Cybern. 71, 169–176 (1994)

[45] S. J. Schiff, J. Milton, J. Heller and A. L. Weinstein, ‘Wavelet transforms and
surrogate data for electroencephalographic and seizure localization,’ Opt. Eng.
33, 2162–2169 (1994)

[46] S. J. Schiff, A. Aldroubi, M. Unser and S. Sato, ‘Fast wavelet transformation
of EEG,’ Electroencephalogr. Clin. Neurophysiol. 91, 442–455 (1994)

[47] I. Clark, R. Biscay, M. Echeverrı́a and T. Virués, ‘Multiresolution
decomposition of non-stationary EEG signals: a preliminary study,’ Comput.
Biol. Med. 25, 373–382 (1995)

Wavelets in medicine and physiology 415



[48] V. J. Samar, K. P. Swartz and M. R. Raghuveer, ‘Multiresolution analysis of
event-related potentials by wavelet decomposition,’ Brain Cong. 27, 398–438
(1995)

[49] A. W. Przybyszewski, ‘An analysis of the oscillatory patterns in the central
nervous system with the wavelet method,’ J. Neurosci. Methods 38, 245–257
(1991)

[50] E. A. Bartnik and K. J. Blinowska, ‘Wavelets: a new method of evoked
potential analysis [letter],’ Med. Biol. Eng. Comput. 30, 125–126 (1992)

[51] R. Sartenc et al., ‘Using wavelet transform to analyse cardiorespiratory and
electroencephalographic signals during sleep,’ in Proc. IEEE EMBS Workshop
on Wavelets in Med. and Biol. (Baltimore, 1994), pp. 18a–19a

[52] M. Akay and H. H. Szeto, ‘Investigating the relationship between fetus EEG,
respiratory, and blood pressure signals during maturation using wavelet
transform,’ Ann. Biomed. Eng. 23, 574–582 (1995)

[53] L. Senhadji, J. L. Dillenseger, F. Wendling, C. Rocha and A. Kinie, ‘Wavelet
analysis of EEG for three-dimensional mapping of epileptic events,’ Ann.
Biomed. Eng. 23, 543–552 (1995)

[54] A. S. Lewis and G. Knowles, ‘Image compression using the 2-D wavelet
transform,’ IEEE Trans. Image Process 1, 244–250 (1992)

[55] M. Antonini, M. Barland, P. Mathieu and I Danbechies, ‘Image coding using
wavelet transform,’ IEEE Trans. Image Process 1, 205–220 (1992)

[56] J. A. Crowe, N. M. Gibson, M. S. Woolfson and M. G. Somekh, ‘Wavelet
transform as a potential tool for ECG analysis and compression,’ J. Biomed.
Eng. 14, 268–272 (1992)

[57] J. G. Daugman, ‘Complete discrete 2-D Gabor transforms in neural networks
for image analysis and compression,’ IEEE Trans. Acoust., Speech and Signal
Process. 36, 1169–1179 (1988)

[58] A. F. Laine and S. Song, ‘Multiscale wavelet representations for
mammographic feature analysis,’ in Proc. SPIE Conf. Mathemat. Methods in
Med. Imag. 1768, 306–316 (1992)

[59] R. A. Kiltie, J. Fan and A. F. Laine, ‘A wavelet-based metric for visual texture
discrimination with applications in evolutionary ecology,’ Math. Biosci. 126,
21–39 (1995)

[60] D. M. Healy, J. Lu and J. B. Weaver, ‘Two applications of wavelets and related
techniques in medical imaging,’ Ann. Biomed. Eng. 23, 637–665 (1995)

[61] L. M. Lim, M. Akay and J. A. Daubenspeck, ‘Identifying respiratory-related
evoked-potentials,’ IEEE Eng. in Med. and Biol. Mag. 13, 174–178 (1995)

[62] O. Bertrand, J. Bohorquez and J. Pernier, ‘Time-frequency digital filtering
based on an invertible wavelet transform: an application to evoked potentials,’
IEEE Trans. Biomed. Eng. 41, 77–88 (1994)

[63] R. Carmona and L. Hudgins, ‘Wavelet de-noising of EEG signals and
identification of evoked response potentials,’ in Proc. SPIE Conf. Wavelet
Applicat. in Signal and Image Process. II, Vol. 2303 (San Diego, July 1994), pp.
91–104

[64] R. N. Strickland and H. I. Hahn, ‘Detection of microcalcifications in
mammograms using wavelets,’ in Proc. SPIE Conf. Wavelet Applicat. in Signal
and Image Process. II, Vol. 2303 (San Diego, July 1994), pp. 430–441

[65] B. J. Lucier, M. Kallergi, W. Qian, R. A. De Vore, R. A. Clark, E. B. Saff and
L. P. Clarke, ‘Wavelet compression and segmentation of digital
mammograms,’ J. Digit. Imaging 7, 27–38 (1994)

416 P.Ch. Ivanov et al.



[66] W. Qian, M. Kallergi, L. P. Clarke, H. D. Li, P. Venugopal, D. Song and R. A.
Clark, ‘Tree structured wavelet transform segmentation of microcalcifications
in digital mammography,’ Med. Phys. 22, 1247–1254 (1995)

[67] L. P. Clarke, M. Kallergi, W. Qian, H. D. Li, R. A. Clark and M. L. Silbiger,
‘Tree-structured non-liner and wavelet transform for microcalcification
segmentation in digital mammography,’ Cancer Lett. 77, 173–181 (1994)

[68] W. Qian et al., ‘Digital mammography: m-channel quadrature mirror filters
(QMFs) for microcalcification extraction,’ Computerized Med. Imaging and
Graphics 18, 301–314 (1994)

[69] D. Wei, H. P. Chan, M. A. Helvie, B. Sahiner, N. Petrick, D. D. Adler and M.
M. Goodsitt, ‘Classification of mass and normal breast tissue on digital
mammograms: multiresolution texture analysis,’ Med. Phys. 22, 1501–1513
(1995)

[70] M. A. Goldberg, M. Pivovarov, W. W. Mayo-Smith, M. P. Bhalla, J. G.
Blickman, R. T. Bramson, G. W. Boland, H. J. Llewellyn and E. Halpern,
‘Application of wavelet compression to digitized radiographs,’ AJR Am. J.
Roentgenol. 163, 463–468 (1994)

[71] A. H. Delaney and Y. Bresler, ‘Multiresolution tomographic reconstruction
using wavelets,’ IEEE Trans. Image Process. 6, 799–813 (1995)

[72] L. P. Panych and F. A. Jolesz, ‘A dynamically adaptive imaging algorithm for
wavelet-encoded MRI,’ Magn. Reson. Med. 32, 738–748 (1994)

[73] J. B. Weaver, X. Yansun, D. M. Healy, and J. R. Driscoll, ‘Wavelet-encoded
MR imaging,’ Magn. Reson. Med. 24, 275–287 (1992)

[74] J. B. Weaver, X. Yansun, D. M. Healy Jr. and L. D. Cromwell, ‘Filtering noise
from images with wavelet transforms,’ Magn. Reson. Med. 21, 288–295 (1991)

[75] D. M. Healy and J. B. Weaver, ‘Two applications of wavelet transforms in
magnetic resonance,’ IEEE Trans. Inform. Theory 38, 840–860 (1992)

[76] U. E. Ruttimann, M. Unser, D. Rio and R. R. Rawlings, ‘Use of the wavelet
transform to investigate differences in brain PET images between patients,’ in
Proc. SPIE Conf. Mathemat. Methods in Med. Imag. II, Vol. 2035 (San Diego,
July 1993), pp. 192–203

[77] J. G. Daugman, ‘Entropy reduction and decorrelation in visual coding by
oriented neural receptive fields,’ IEEE Trans. Acoust., Biomed. Eng. 36, 107–
114 (1989)

[78] L. Gaudart, J. Crebassa and J. P. Petrakian, ‘Wavelet transform in human
visual channels,’ Applied Optics 32, 4119–4127 (1993)

[79] M. Porst and Y. Y. Zeevi, ‘Localized texture processing in vision: analysis and
synthesis in Batorian space,’ IEEE Trans. Biomed. Eng. 36, 115–129 (1989)

[80] C. Tallon, O. Bertrand, P. Bouchet and J. Pernier, ‘Gamma-range activity
evoked by coherent visual stimuli in humans,’ Eur. J. Neurosci. 7, 1285–1291
(1995)

[81] A. Arneodo, Y. d’Aubenton-Carafa, E. Bacry, P. V. Graves, J. F. Muzy and C.
Thermes, ‘Wavelet based fractal analysis of DNA sequences,’ Physica D 96,
291–320 (1996)

[82] A. A. Tsonis, P. Kumar, J. B. Elsner and P. A. Tsonis, ‘Wavelet analysis of
DNA sequences,’ Phys. Rev. E 53, 1828–1834 (1996)

[83] M. Unser and A. Aldroubi, ‘A review of wavelets in biomedical applications,’
in Proceedings of the IEEE, Vol. 84, No. 4 (1996)

[84] A. Aldroubi and M. Unser, eds., Wavelets in Medicine and Biology (CRC
Press, Boca Raton, 1996)

Wavelets in medicine and physiology 417



[85] M. Akay, ‘Introduction: wavelet transforms in biomedical engineering,’ Ann.
Biomed. Eng. 23, 529–530 (1995)

[86] M. Akay, ‘Wavelets in biomedical engineering,’ Ann. Biomed. Eng. 23, 531–542
(1995)

[87] R. L. Stratonovich, Topics in the theory of random noise, vol. I (Gordon and
Breach, New York, 1981)

[88] R. I. Kitney, D. Linkens, A. C. Selman and A. H. McDonald, Automedica 4,
141–153 (1982)

[89] M. N. Levy, ‘Sympathetic-parasympathetic interactions in the heart,’ Circ.
Res. 29, 437–445 (1971)

[90] M. Malik and A. J. Camm, eds., Heart rate variability (Futura, Armonk NY,
1995)

[91] G. Sugihara, W. Allan, D. Sobel and K. D. Allan, ‘Nonlinear control of heart
rate variability in human infants,’ Proc. Natl. Acad. Sci. USA 93, 2608–2613
(1996)

[92] J. T. Bigger, Jr., C. A. Hoover, R. C. Steinman, L. M. Rolnitzky and J. L.
Fleiss, ‘Autonomic nervous system activity during myocardial ischemia in man
estimated by power spectral analysis of heart period variability,’ Am. J.
Cardiol. 21, 729–736 (1993)

[93] D. C. Michaels, E. P. Matyas and J. Jalife, ‘A mathematical model of the
effects of acetylcholine pulses on sino-atrial pacemaker activity,’ Circ. Res. 55,
89–101 (1984)

[94] C.-K. Peng, S. V. Buldyrev, J. M. Hausdorff, S. Havlin, J. E. Mietus, M.
Simons, H. E. Stanley, and A. L. Goldberger, ‘Nonequilibrium dynamics as an
indispensable characteristic of a healthy biological system,’ Integr. Physiol.
Behavioral Sci. 29, 283–298 (1994)

[95] E. W. Montroll and M. F. Shlesinger, ‘The wonderful world of random walks,’
in Nonequilibrium phenomena II: from stochastics to hydrodynamics, edited by
L. J. Lebowitz and E. W. Montroll (North-Holland, Amsterdam, 1984), pp. 1–
121

[96] D. Panter, Modulation, noise and spectral analysis (McGraw-Hill, New York,
1965)

[97] S. Akselrod, D. Gordon, F. A. Ubel, D. C. Shannon, A. C. Barger, and R. J.
Cohen, ‘Power spectrum analysis of heart rate fluctuation: a quantitative probe
of beat-to-beat cardiovascular control,’ Science 213, 220–222 (1981)

[98] J. B. Bassingthwaighte, L. S. Liebovitch and B. J. West, Fractal Physiology
(Oxford University Press, New York, 1994)

[99] A. Bezerianos, T. Bountis, G. Papaioannou, and P. Polydoropoulos,
‘Nonlinear time series analysis of electrocardiograms,’ Chaos 5, 95–101 (1995)

[100] D. Hoyer, K. Schmidt, R. Bauer, U. Zwiener, M. Köhler, B. Lüthke, and M.
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Abstract

In this chapter, we study some aspects of the chaotic behaviour of the time

evolution generated by Hamiltonian systems, or more generally, dynamical

systems. We introduce a characteristic quantity, namely the lacunarity

dimension, to quantify the intermittency phenomena that can arise in the

time evolution. We then focus on the time evolution of wave packets accord-

ing to the Schrödinger equation with time independent Hamiltonian. We

introduce a set of fractal dimensions constructed by means of the wavelet

transform, the (generalized) wavelet dimensions. We show that the lacunarity

dimension of the wave packets can be obtained via the wavelet dimensions of

the spectral measure of the Schrödinger operator. This establishes a precise

link between the long time chaotic behaviour of the wave packets and the

small scale spectral properties of the Hamiltonian.

11.1 Introduction

In this chapter, we are interested in the characterization of some intermit-

tency phenomena that can arise in chaotic dynamical systems. Our aim is to

introduce parameters to quantify the strength of intermittency in a turbulent

signal. To motivate the discussion, let us begin with a simple example.

Consider a particle whose motion in X � R
n is governed by some

Hamiltonian system

@q

@t
¼
@H

@p
;

@p

@t
¼ �

@H

@q
;
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where qðtÞ 2 R
n and pðtÞ 2 R

n are the conjugate generalized coordinates at

time t. Denote by T�ðXÞ � R
2n the phase space associated to the motion and

xðtÞ ¼ ðqðtÞ; pðtÞÞ the position of the particle in phase space. If the

Hamiltonian H is time independent, the evolution of xðtÞ is given by a flow

�t, that is a one parameter semi-group of transformations

xðtþ sÞ ¼ �tðxðsÞÞ; t; s � 0:

By Liouville’s theorem, the area in phase space is conserved under the

Hamiltonian flow. Precisely, we have for any bounded region A in T�ðXÞ:Z
A

dpdq ¼

Z
�tA

dpdq:

Thus the ‘surface’ measure (this is actually a surface for n ¼ 1) on the phase

space

�ðAÞ ¼

Z
A

dpdq

is invariant under �t. Furthermore, if the phase space T�ðXÞ is compact, then

� is finite.

Now suppose we can evaluate the location of the particle in phase space

periodically in time (with some period say �) by means of some stroboscopic

system, that is we are given a discrete set of values xn ¼ xðn�Þ. The passage

from xn to xnþ1 reads

xnþ1 ¼ FðxnÞ;

where F ¼ �� is the evolution operator over one period. Thus the system

ðT�ðXÞ; �; FÞ is a discrete dynamical system associated to the finite invar-

iant measure �. It follows from the Poincaré recurrence theorem that �-

almost every point of a region in phase space is recurrent. Precisely, for all

A � T�ðXÞ, there is a set B � A with �ðBÞ ¼ �ðAÞ such that for all x0 2 B,

the sequence ðxnþ1Þ returns infinitely many times in A.

Now a natural question arises. How frequently does the particle return to

the same region A of phase space? This can be visualized by forming the

function

hðtÞ ¼ �AðxðtÞÞ;

where �A is the characteristic function of A

�AðxÞ ¼
1 if x 2 A

0 elsewhere:

(
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The recurrent motion of the particle is mirrored in the intermittent behaviour

of hðtÞ (Figure 11.1). The more lacunary this function is, the sparser is the

come back in region A. Thus, the strength of intermittency is characterized by

the degree of lacunarity of hðtÞ.

Now let us state the problem in a more abstract and general framework.

Consider a particle whose motion xðtÞ in some phase space, possibly

unbounded, is given by an arbitrary dynamical system and as before test if

the particle is present or not in some fixed region A by looking at the function

hðtÞ ¼ �AðxðtÞÞ. The physical windowing system which corresponds to the

characteristic function may not be perfect, so it is more natural to take

hðtÞ ¼ ’ðxðtÞÞ, where ’ is some smooth positive function well localized in

region A (Figure 11.2).

At instant T , the fraction of time hhi
T
spent by the particle in region A is

hhi
T
¼

1

T

Z T

0

dt hðtÞ:

If hhi
T
converges toward some finite constant as T !1, the limit can be

interpreted as a rate of presence in region A. If the particle never returns in A,

then hhi
T
� T�1; T !1. In the general case where the particle returns

intermittently in A, we may expect some overall decrease of the form
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Fig. 11.1. Theoretical characteristic function of the motion.

Fig. 11.2. Observed characteristic function of the motion.



hhi
T
� T��; T !1. The scaling may or may not exist. However, we can

always define the following exponents

dþ0 ½h� ¼ lim sup
T!1

log
R T
0 dt hðtÞ

� �
logT

; d�0 ½h� ¼ lim inf
T!1

log
R T
0 dt hðtÞ

� �
logT

:

The problem is that hhi
T
is an average quantity and therefore only gives a

rough idea of the real time evolution. Indeed, for given exponents d�0 ½h�

several scenarios are possible. For instance, think of a particle going further

and further away from its initial localization in phase space so that

hhi
T
� T�1 as T !1 and therefore dþ0 ½h� ¼ d�0 ½h� ¼ 0. Another situation

is a particle wandering somewhere in phase space but returning infinitely

many times in the same region A with more and more time needed for

each come-back in such a way that the fraction of time spent in A still scales

like T�1 whence again dþ0 ½h� ¼ d�0 ½h� ¼ 0.

Thus, it appears that the exponents dþ0 and d�0 are not capable to detect the

intermittent nature of the motion. To get a sharper description, we propose

to consider not only the mean value hhi
T
but also the higher momenta

htmhi
T
¼

1

Tmþ1

Z T

0

dt tm hðtÞ; m ¼ 1; 2; . . .

and the associated upper and lower exponents

dþm ½h� ¼ lim sup
T!1

log
R T
0 dt tm hðtÞ

� �
logT

; d�m ½h� ¼ lim inf
T!1

log
R T
0 dt tm hðtÞ

� �
logT

:

Note that the above exponents are invariant under a time translation

hðtÞ ! hðtþ t0Þ, that is the time origin that we have taken to be 0 can

actually be any arbitrary constant. In the next section, we will prove that

the limit

dlac½h� ¼ lim
m!1

d�m ½h�

m

exists. We will call it lacunarity dimension because it measures, in some sense,

the degree of lacunarity of a positive function. Then, we will focus on a case

of quantum chaos and show that the lacunary character of the time evolution

can be related to fractal spectral properties of the corresponding Hamiltonian

via the fractal wavelet dimensions.
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11.2 The lacunarity dimension

Since the above definition of the lacunarity dimension is not at all intuitive,

let us motivate it by looking at the following simple example.

Example 1 Consider the function:

hðtÞ ¼
X1
n¼0

�ðt� bnÞ;

where �ðtÞ is the Dirac function

�ðtÞ ¼
1 if t ¼ 0;
0 else.

�
This can be seen as the characteristic function of a motion with infinitely

short times of sojourn in some region of recurrence, the bn corresponding to

the successive instants of return. Here, we choose a sequence ðbnÞ which

becomes more and more lacunary as n increases, precisely

bnþ1 � b�n; n!1;

with � > 1 and b0 > 1. In this case, dþm ½h� and d�m ½h� can be computed expli-

citly. Indeed we have, for all T � b0,Z T

0

dt tmhðtÞ ¼
X
bn�T

bmn � bmN; T !1;

where N is the unique integer such that bN � T < bNþ1. The log-log diagram

of the function
R T
0 dt tmhðtÞ is plotted on Figure 11.3. Clearly, it appears that:

dþm ½h� ¼ lim
N!1

log
R bN
0 dt tmhðtÞ

� �
log bN

¼ m;

and

d�m ½h� ¼ lim
N!1

log
R bN
0 dt tmhðtÞ

� �
log bNþ1

¼
m

�
;

that is the upper and lower exponents dþm ½h� and d�m ½h� have different rates of

growth in m. Now this example supplies motivation for the following.

Theorem 11.2.1 Let h be a positive measurable function such that dþ0 ½h� <1.

Then the limit
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dlac½h� ¼ lim
m!þ1

d�m ½h�

m

exists and satisfies 0 � dlac½h� � 1. Moreover, the limit

lim
m!þ1

dþm ½h�

m

also exists and is trivial in the sense that it is either 0 or 1. We call dlac½h� the

lacunarity dimension of h and we say the function h is lacunary if dlac < 1.

Since the proof is quite heavy, although not difficult, we have deferred it to

the appendix.

The example given above to introduce the lacunarity dimension is instruc-

tive but not realistic because the true characteristic function of a motion

cannot be expressed in terms of Dirac functions (the speed of the particle

is finite!). Therefore, the example needs to be refined by taking account of the

time of sojourn in the region of recurrence. We now consider the following.

Example 2 Let hðtÞ be a positive function which can be written as a super-

position of polynomially localized bumps centred at instants bn

hðtÞ ¼
X1
n¼0

’ðt� bnÞ;

where

’ðtÞ ¼ ð1þ jtjÞ�K :

We take K > 1 and again we assume the bn to scale asymptotically like

bnþ1 � b�n; n!1; with � > 1 and b0 > 1. Such a function is illustrated in

Figure 11.4. Straightforward computations lead to the following expressions

for dþm ½h� and d�m ½h�. If m� K þ 1 � m=�, as can occur for small m, then
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dþm ½h� ¼ m and d�m ½h� ¼
m

�
; ð11:2:1Þ

else if m=� � m� K þ 1 (for large m), then

dþm ½h� ¼ m; and d�m ½h� ¼ m� K þ 1: ð11:2:2Þ

If the function ’ is exponentially localized, ’ðtÞ ¼ e�j�tj, we obtain

dþm ½h� ¼ m and d�m ½h� ¼
m
� for all m. The proof is given in the appendix.

Again, we see that the introduction of a weight tm in the averages tends to

separate the upper and lower exponents dþm ½h� and d�m ½h�, at least for the

lowest momenta, and thus makes the lacunarity more visible. Note that

here dþ0 ½h� ¼ d�0 ½h� ¼ 0. Therefore the classical averages
R T
0 dt hðtÞ do not

reveal the chaotic behaviour of the function h, whereas the higher momenta

do. Indeed, the rate of growth of d�m ½h� as m increases in the first regime (small

m) gives access to �. This parameter tells how fast the gaps enlarge with the

time, that is it quantifies the strength of intermittency in the time evolution.

The value of m for which the regime transition occurs gives access to the

parameter K , which measures the accuracy of the bumps, that is the form of

the window ’. In this example, we have a competition between the lacunarity

of the sequence ðbnÞ and the localization of the function ’ðtÞ. When m

increases, the bumps tm’ðtÞ become less and less well separated and so the

lacunarity becomes less and less apparent. This explains why for large m the

exponent d�m ½h� does not depend anymore on the parameter � if ’ is only

polymomially localized. In that case, we have actually dlac½h� ¼ 1 and thus the

lacunary behaviour of hðtÞ is not shown up with our definition. However, we

can observe d�m ½h� / m=� on some range (see Figure 11.5), from which we

deduce that h is lacunary but with a bad localization. Note that the same kind

of problem often arises with fractal dimensions in physics. Some natural

objects can be assimilated to fractals up to a certain scale, but the fractality
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breaks down when one looks at too small a scale. For these objects, the

fractal dimension with a theorical definition is trivial although a certain

scaling law exists in some range of scales.

Now let us make some comments on the choice of the sequence bn. In

the above example, we took the instants of return bn to grow like

bnþ1 � b�n; � > 1; and with this assumption we obtained dlac½h� ¼ 1=� ( at

least for exponentially localized window function ’). This example can

appear somewhat artificial and restrictive. However, in many cases, one

can boil down to this kind of lacunary function by a simple change of

variables. For instance, if the bn grow in a geometrical ratio,

bnþ1 � �bn; n!1; then it is not hard to verify that for exponentially loca-

lized bumps we have dlac½h� ¼ 1 but dlac½h 	 log� ¼ 1=�, that is hðlog tÞ is

lacunary.

We end this section with a negative result which allows us to restrict the set

of lacunary functions.

Proposition 11.2.1 Let hðtÞ be a positive measurable function. If for some

m0 � 0 we have

dþm0
½h� ¼ d�m0

½h� ¼ � > 0;

then dlac½h� ¼ 1, that is h cannot be lacunary.

The proof is given in the appendix. This statement in particular excludes all

the functions hðtÞ satisfying hhi
T
� T�D with 0 < D < 1 to be lacunary,

because in that case dþ0 ½h� ¼ d�0 ½h� ¼ 1�D > 0.
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11.3 Quantum chaos

We will now study the problem of intermittent time evolution in the frame-

work of quantum mechanics. Consider a particle whose motion is now gov-

erned by the Schrödinger equation

@ t

@t
¼ �iH t;

where  t 2 L2
ðR

n
Þ is the wave function of the particle at time t. The

Hamiltonian H is a self adjoint operator acting on the Hilbert space

H ¼ L2
ðR

n
Þ. If H is time independent, the dynamics of this system is given

by the evolution operator e�iHt

 t ¼ e�iHt 0: ð11:3:1Þ

The evolving state  t usually spreads in configuration space and loses its

initial localization. This spreading is estimated by the so-called survival prob-

ability jh tj 0ij
2. More generally, the space time behaviour of the wave

packets can be estimated by comparing  t with some reference state � in

H. Let us define

hðtÞ ¼ jh tj�ij
2: ð11:3:2Þ

This quantity is the probability for the state  t to be in configuration � or

more simply, if � is the characteristic function of some region � � R
n, this is

the probability of finding the particle in region � at time t. Now let us

introduce �: the spectral measure of H associated to  0 and �, uniquely

defined by (see e.g. [6])

h f ðHÞ 0; �i ¼

Z
d�ðxÞ f ðxÞ

for all measurable functions f . From (11.3.1) and (11.3.2) it follows that

hðtÞ ¼ jb��ðtÞj2;
where b�� is the Fourier transform of �

b��ðtÞ ¼ Z d�ðxÞe�itx:

Thus, the evolution of  t is governed by the Fourier transform of the spectral

measure. It is therefore natural to try to relate the long time behaviour of hðtÞ

to the spectral properties of the Hamiltonian. So some heuristic arguments

have been given in [4] supporting the fact that the averages
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hhi
T
¼

1

T

Z T

0

dt hðtÞ

exhibit a scaling behaviour hhi
T
� T�D where D is a fractal dimension of the

measure �, namely the correlation dimension (e.g. [5]). In [2] some new

fractal dimensions have been introduced by means of wavelet transforms,

namely the q-wavelet dimensions 	�q ; q ¼ 1; 2 . . . For these dimensions it has

been shown that the heuristic argument is actually true and that the long time

evolution of hhi
T
is governed by the upper and lower, respectively, 2-wavelet

dimension 	þ2 ½�� and 	
�
2 ½��, also called upper and lower wavelet correlation

dimension. Precisely we have dþ0 ½h� ¼ �	
�
2 ½�� and d�0 ½h� ¼ �	

þ
2 ½��. In the

following, we want to show that an easy generalization of these to the

q�wavelet dimensions makes it possible to express the exponents d�m ½h�, and

consequently the lacunarity dimension dlac½h�, in terms of fractal dimensions

of �. In the next section, we introduce our main tool, the wavelet transform.

Then we define a two parameter set of wavelet dimensions 	�q;m, which we

relate to the exponents d�m ½h�. In order not to get too far off the main flow of

argument, the long or technical proofs have been relegated to the appendix.

11.4 The generalized wavelet dimensions

We now wish to introduce the wavelet dimensions. We will first make some

brief recall on the wavelet analysis and list a few properties that are necessary

for the following. We follow here the notations of [3]. A wavelet is basically a

complex valued function g of zero mean (
R
g ¼ 0), which is well localized

both in real space and Fourier space ( this will soon be made more precise).

The wavelet transform of a complex valued function s with respect to an

analysing wavelet g is given by

Wgsðb; aÞ ¼

Z
dt
1

a
g

t� b

a

� �
sðtÞ

or in Fourier space

Wgsðb; aÞ ¼
1

2


Z
d! ei!bbggða!Þbss ð!Þ; ð11:4:1Þ

where ^ is the usual Fourier transform on SðRÞ

bggð!Þ ¼ Z dx e�i!xgðxÞ:

This is a function over the position-scale half plane H ¼ R
R
þ. Intuitively,

the wavelet transform acts as a filter selecting the details present in s at scale a

430 Ch.-A. Guérin and M. Holschneider



and position b. If we introduce the following notations, to be maintained in

the remainder

gb;aðtÞ ¼
1

a
g

t� b

a

� �
; gaðtÞ ¼

1

a
g

t

a

� �
; ~ggðtÞ ¼ gð�tÞ;

then the wavelet transform may be seen as a convolution

Wgsðb; aÞ ¼

Z
dt gaðt� bÞsðtÞ ¼ ~gga � sðbÞ

or a family of scalar products in R

Wgsðb; aÞ ¼

Z
dt gb;aðtÞsðtÞ ¼ hgb;ajsi:

Thus, the wavelet analysis consists of comparing some function to a family of

dilated and translated versions gb;a of a mother wavelet g. The wavelet synth-

esis of a function T over H with respect to a reconstructing wavelet h is given

by

MhT ðtÞ ¼

Z
da

a
db T ðb; aÞ

1

a
h

t� b

a

� �
:

This is essentially the inverse of the wavelet transform. Now let us introduce

the function spaces on which the wavelet analysis is to be developed. Let SðRÞ

be the Schwartz space of C1 functions ’ which, together with their deriva-

tives, are rapidly decreasing

sup
m;n
j tm@n’ðtÞj <1; for all m; n > 0:

Denote SþðRÞ the subset of Schwartz functions having positive frequencies

only ( b’’ ð!Þ ¼ 0 if ! � 0). For any such function, the Fourier transform is

smoothly vanishing at zero or, what amounts to the same, all the moments

cancel

b’’ ð!Þ ¼ Oð!n
Þ ,

Z
dt tn’ðtÞ ¼ 0; n 2 N:

The reason for taking wavelets with no negative frequencies is that it con-

siderably simplifies the computations and allows nice inversion formulae. Let

us also introduce SðHÞ the space of highly localized functions on the half

plane, that is the functions T ðb; aÞ satisfying

sup
H

jT ðb; aÞjðaþ a�1Þmð1þ jbjÞm <1;

for all m > 0. Then the following holds true
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. if g and s are in SþðRÞ, then Wgs is in SðHÞ;

. if h is in SþðRÞ and T in SðHÞ, thenMhT is in SþðRÞ.

If furthermore the constant

cg;h ¼

Z 1
0

d!

!
bhh ð!Þbgg ð!Þ ð11:4:2Þ

is non-zero, then we have the reconstruction formula

c�1g;hMhWg ¼ 1SþðRÞ; ð11:4:3Þ

where 1SþðRÞ is the identity operator on SþðRÞ. Now, upon reconstructing

with g and analysing with h, we obtain the so-called cross kernel equation,

which relates the wavelet transforms with respect to different wavelets g and

h

Wgsðb; aÞ ¼

Z
da0

a0
db0

1

a0
Pg!h

b� b0

a0
;
a0

a

� �
Whsðb

0; a0Þ;

with Pg!hðb; aÞ ¼ c�1g;hWhgðb; aÞ. If we introduce a (non-commutative) con-

volution on SðHÞ by

T 1 � T 2ðb; aÞ ¼

Z
H

da0

a0
db0

1

a0
T 1

b� b0

a0
;
a

a0

� �
T 2ðb

0; a0Þ;

then the above equation may be more simply rewritten as

Wgsðb; aÞ ¼ Pg!h � Whsðb; aÞ; ð11:4:4Þ

an important equation for the following. Thus, the passage from one wavelet

to another in the half plane is done by convolution with a highly localized

kernel. If � is a Borel measure on R, its wavelet transform with respect to a

wavelet g 2 SþðRÞ is given by

Wg�ðb; aÞ ¼

Z
d�ðtÞ

1

a
g

t� b

a

� �
¼ ~gga � �ðbÞ;

and the cross kernel equation is still valid

Wg�ðb; aÞ ¼ Pg!h � Wh�ðb; aÞ: ð11:4:5Þ

Since we are interested in local properties, we will now only consider finite

Borel measures � on R. This in particular includes the case of functions in

L1
ðRÞ, which can be trivially identified with finite measures. Given some

analysing wavelet g 2 SþðRÞ and some real q � 1, we define
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Gg�ða; qÞ ¼ kWg�ð�; aÞk
q
q ¼

Z
db jWg�ðb; aÞj

q:

The above quantity is finite since by Young’s inequality (see the appendix)

Gg�ða; qÞ ¼ k ~gga � �kq � k�k1k ~ggakq <1:

At small scales, a scaling behaviour of the form Gg�ða; qÞ � a	q can in general

be observed giving rise to the definition of fractal dimensions 	q. This

approach has been developed in [2]. We propose to extend this definition

by introducing a supplementary parameter. For m 2 R, we define the func-

tion

�g�ðt; q;mÞ ¼

Z 1

t

da

a
am Gg�ða; qÞ; ð11:4:6Þ

and look at its small scale behaviour t! 0. Note that �g�ðt; q;mÞ is a

monotone function of t. Therefore, the limit exists, but may be infinite. In

the opposite case when this limit is finite, we rather look at the rate of

convergence by putting

�g�ðt; q;mÞ ¼

Z t

0

da

a
am Gg�ða; qÞ:

To summarize, we have

�g�ðt; q;mÞ ¼ min

Z t

0

da

a
am Gg�ða; qÞ;

Z 1

t

da

a
am Gg�ða; qÞ

� �
:

The generalized wavelet dimensions 	�q;m are now defined by

	þq;m½�� ¼ lim sup
a!0

log�g�ða; q;mÞ

log a
; 	�q;m½�� ¼ lim inf

a!0

log�g�ða; q;mÞ

log a
:

These are intrinsic dimensions of the measures �, as the following theorem

shows.

Theorem 11.4.1 The generalized wavelet dimensions 	�q;m are well defined in the

sense that they do not depend on the analysing wavelet g 2 SþðRÞ, provided

g 6¼ 0.

The proof of this theorem is given in the appendix.

11.5 Time evolution and wavelet dimensions

The generalized wavelet dimensions 	�q;m can be related to the exponents d�m
introduced in section 11.1 in the following way.
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Theorem 11.5.1 Let � be a finite Borel measure on R and let hðtÞ ¼ jb��ðtÞj2.
Then we have for all integer m � 0, provided km=2�̂�ðkÞ =2L2

ðRÞ,

dþm ½h� ¼ �	
�
2;�m½��; and d�m ½h� ¼ �	

þ
2;�m½��; ð11:5:1Þ

The proof is also given in the appendix. An immediate corollary is

dlac½h� ¼ � lim
m!1

	þ2;�m½��

m
: ð11:5:2Þ

This shows that the lacunary long time evolution generated by the

Schr€odinger equation is related to the generalized wavelet dimensions of

the spectral measure of the Hamiltonian H.

We wish to conclude this chapter with some remarks on the bearing of

wavelet dimensions in the above time evolution problem. The reader may

reasonably ask why we introduced complicated fractal dimensions 	�q;m and

the non-intuitive spectral measure � to rewrite a quantity which is already

physically interpretable, namely dlac½h�. The reason is the following. To form

the spectral measure, we need three ingredients: the Hamiltonian itself, the

initial state  0 and the reference state �. Now these are time independent data.

Thus, once the dynamics and the initial state of the system have been given,

the equation (11.5.2) automatically provides the lacunarity dimension of hðtÞ.

On the other hand, to compute directly the lacunarity dimension by means of

the exponents d�m ½h� would require the full knowledge of hðtÞ over a huge time

span, possibly too long for measurements. Moreover, expressing the lacunar-

ity dimension in terms of wavelet dimensions sets up a precise correspon-

dence between the long time evolution of the dynamical system and the

fractal spectral properties of its generator (the Hamiltonian). The next nat-

ural question might be why we use wavelet dimensions and not ‘classical’

fractal dimensions such as the correlation dimension, the box dimension,

etc...The answer is simple: the usual fractal dimensions are not adapted to

characterize signed or complex measures, whereas the wavelet dimensions

are. For instance, the oscillating singularities appearing in ‘chirps’ functions

such as sinðjxj��Þ are not detectable by means of the usual fractal dimensions

whereas the wavelet dimensions can show them up. For positive measures,

however, the wavelet dimensions can in some cases be related to better

known fractal dimensions. In particular, it has been shown in [1] that for

any finite positive measure � we have

	þ2 ½�� ¼ Dþ½�� and 	�2 ½�� ¼ D�½��;
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where Dþ½�� and D�½�� are the upper respectively lower correlation dimension

(see e.g. [5]) of the measure �. Therefore, the lacunarity dimension in the time

evolution can be related to a classical fractal dimension of the spectral mea-

sure if this latter is positive. This is, for example, the case if the reference state

coincides with the initial state, that is � ¼  0 (see section 11.3 for notations).

In the general case of complex spectral measures, the correlation dimension

has to be replaced by the wavelet correlation dimension.
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11.6 Appendix

Proof of theorem 11.2.1 For the purpose of the proof, we introduce the

notations

HðT;mÞ ¼

Z T

1

dt tmhðtÞ

and

�ðT;mÞ ¼
logHðT;mÞ

logT
:

With this notation we have

dþm ½h� ¼ lim sup
T!1

�ðT;mÞ; and d�m ½h� ¼ lim inf
T!1

�ðT;mÞ:

For fixed m, HðT;mÞ is a non-decreasing function of T such that

HðT;mÞ � TmHðT; 0Þ. Therefore,

0 � dþm ½h� � dþ0 ½h� þm;

0 � d�m ½h� � d�0 ½h� þm:
ð11:6:1Þ

On the other hand �ðT;mÞ is, for fixed T , infinitely many times differenti-

able with respect to m. An elementary computation gives for T > 1

@�ðT;mÞ

@m
� 0;

@2�ðT;mÞ

@m2
� 0;
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that is �ðT;mÞ is a non-decreasing convex function of m. Thus, for any

0 � � � 1, we have

�ðT; �mÞ � � �ðT;mÞ þ ð1� �Þ �ðT; 0Þ:

Now we use the inequalities

lim supð f þ gÞ � lim sup f þ lim sup g

lim infð f þ gÞ � lim inf f þ lim sup g

which yield

dþ�m½h� � � d
þ
m ½h� þ ð1� �Þ d

þ
0 ½h�

d��m½h� � � d
�
m ½h� þ ð1� �Þ d

þ
0 ½h�;

and thus

dþ�m½h� � dþ0 ½h�

�m
�

dþm ½h� � dþ0 ½h�

m
;

d��m½h� � dþ0 ½h�

�m
�

d�m ½h� � dþ0 ½h�

m
:

Since any m 0 > m can be expressed as m=� with 0 < � < 1, this means that

ðdþm ½h� � dþ0 ½h�Þ=m and ðd�m ½h� � dþ0 ½h�Þ=m are non-decreasing functions of m.

Now in view of (11.6.1) we have

0 �
d�m ½h� � dþ0 ½h�

m
�

dþm ½h� � dþ0 ½h�

m
� 1:

It follows that the limits limm!1 d�m ½h�=m exist and lie between zero and one.

Finally, let us show that limm!1 dþm ½h�=m is either zero or one. If h is of

compact support, this is evident because in this case d�m ½h� ¼ 0. So we may

suppose that h has unbounded support. Then look at

lim sup
T!1

log
R Tþ1
T dt hðtÞ

� �
logT

:

If the above quantity is a finite constant, say �, then we can find a sub-

sequence ðTnÞ and a constant C > 0 for whichZ Tnþ1

Tn

dt hðtÞ � CT��1
n :

This gives Z Tnþ1

1

tmdt hðtÞ �

Z Tnþ1

Tn

tmdt hðtÞ � CTmþ��1
n ;
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whence dþ0 ½h� þm � dþm ½h� � mþ �� 1 and therefore limm!1 dþm ½h�=m ¼ 1.

In the opposite case where

lim sup
T!1

log
R Tþ1
T dt hðtÞ

� �
logT

¼ �1;

it is not hard to see that
R T
1 dt tmhðtÞ is a convergent integral for all m and

therefore d�m ½h� ¼ 0. This proves the theorem.

Proof of example 2 Take some � 0 with 1 � � 0 � � and some integer N and let

us estimate Z b
�0

N

0

dt tmhðtÞ ¼
X1
n¼0

Z b
�0

N

0

dt tm’ðt� bnÞ:

To this end, let us look separately at each term appearing in the sum. While

n � N, we have for any � > 0Z b
�0

N

0

tm’ðt� bnÞdt ¼

Z b1��n

0

þ

Z b1þ�n

b1��n

þ

Z b
�0

N

b1þ�n

( )
tm’ðt� bnÞdt ¼ I1 þ I2 þ I3:

Using the approximations ’ðtÞ � t�K ; t� 1, we obtain the following esti-

mates

I1 � bðm�Kþ1Þn

I3 � b
� 0ðm�Kþ1Þ
N :

On the other hand we have

c bmð1��Þn � bmð1��Þn

Z b1þ�n

b1��n

’ðt� bnÞdt

� I2

� bmð1þ�Þn

Z b1þ�n

b1��n

’ðt� bnÞdt � C bmð1þ�Þn ;

for some positive constants c and C.

Thus, if we regroup the first N terms of the sum, we obtain

c 0 b

ðm;� 0Þð1��Þ
N �

XN
n¼0

Z b
� 0

N

0

dt tm’ðt� bnÞ � C 0 b

ðm;� 0Þð1þ�Þ
N ð11:6:2Þ

for some other positive constants c0 and C0, where
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ðm; � 0Þ ¼ max � 0ðm� K þ 1Þ; m
� �

:

The contribution of the terms with n > N is negligible becauseZ b
� 0

N

0

dt tm’ðt� bnÞ �

ðb� 0
N

0

dt tm’ðb�
0

N � bnÞ

� b�Kn b
� 0ðmþ1Þ
N 
 b

� 0ðm�Kþ1Þ
N :

Therefore we have

c 00 b

ðm;� 0Þð1��Þ
N �

Z b
� 0

N

0

dt tmhðtÞ � C 00 b

ðm;� 0Þð1þ�Þ
N ;N !1; ð11:6:3Þ

with c 00;C 00 > 0. Since � can be choosen arbitrarily small, it follows that

lim sup
N!1

log
R b� 0

N

0 dt tmhðtÞ

� �
log b�

0

N

¼ lim inf
N!1

log
R b� 0

N

0 dt tmhðtÞ

� �
log b�

0

N

¼

ðm; � 0Þ

� 0
:

This yields the following estimates for dþm ½h� and d�m ½h�

dþm ½h� � sup
1�� 0��


ðm; � 0Þ

� 0
;

d�m ½h� � inf
1�� 0��


ðm; � 0Þ

� 0
:

ð11:6:4Þ

It turns out that the above inequalities are actually equalities. Indeed, fix

some � 0 and some � > 0. For any T > 0, we may find N such that

b�
0

N � T b <�
0
ð1þ�Þ

N . Then

log b�
0

N

logT

log
R b� 0

N

0 dt tmhðtÞ

log b�
0

N

�
log

R T
0 dt tmhðtÞ

logT
�

log b
� 0ð1þ�Þ
N

logT

log
R b� 0 ð1þ�Þ

N

0 dt tmhðtÞ

log b
� 0ð1þ�Þ
N

:

Taking successively the limes superior and inferior, this leads to


ðm; � 0Þ

� 0ð1þ �Þ
� d�m ½h� � dþm ½h� �


ðm; � 0Þð1þ �Þ

� 0
:

Again we may choose � arbitrarily small and since this holds for any � 0 we

have equalities in (11.6.4). Now we have to distinguish different regimes for

m. If m is small enough to have m� K þ 1 � m=�, then 
ðm; � 0Þ ¼ m for all

1 � � 0 � �. Consequently,

dþm ½h� ¼ m; and d�m ½h� ¼
m

�
: ð11:6:5Þ
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If m=� � m� K þ 1, then 
ðm; � 0Þ=� 0 ¼ m=� 0 if 1 � � 0 � m=ðm� K þ 1Þ and


ðm; � 0Þ=� 0 ¼ m� K þ 1 if m=ðm� K þ 1Þ � � 0 � �. This yields

dþm ½h� ¼ m; and d�m ½h� ¼ m� K þ 1: ð11:6:6Þ

The case of exponential localization can be obtained by letting K !1, in

which case (11.6.5) is verified for all m. This concludes the proof.

Proof of proposition 11.2.1 For the proof we need the following lemma, that

we give without demonstration since it is well-known.

Lemma 11.6.1

lim inf
t!0

log sðtÞ

log t
¼ supf� 2 RjsðtÞ � Oðt�Þ; t! 0g;

lim sup
t!0

log sðtÞ

log t
¼ supf� 2 Rjt� � OðsðtÞÞ; t! 0g:

We are now going to show that dþm ½h� ¼ d�m ½h� ¼ �þm for all m � m0.

First suppose m0=0. Then, for all m � 0, we have d�m ½h� � dþm ½h� � mþ �.

Now let � > 0. By lemma 11.6.1, we can find for all � > 0 two positive con-

stants 0 < c < C such that

c T���
�

Z T

1

dt hðtÞ � C T�þ�:

Rewriting this for T1�� in place of T and opposing the sign gives

�C T ð�þ�Þð1��Þ � �

Z T1��

1

dt hðtÞ � �c T ð���Þð1��Þ

and adding line by line the last two inequalities yields

c T���
� C T ð�þ�Þð1��Þ �

Z T

T1��

dt hðtÞ � C T�þ�:

Upon choosing � small enough, we have �� � > ð�þ �Þð1� �Þ and

c T���
�

Z T

T1��

dt hðtÞ � C T�þ�:

Again by lemma 11.6.1, it follows that

lim sup
T!1

log
R T
T1�� dt t

mhðtÞ

logT
¼ lim inf

T!1

log
R T
T1�� dt t

mhðtÞ

logT
¼ �: ð11:6:7Þ
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Now, since
R T
1 dt tmhðtÞ � Tmð1��Þ

R T
T1�� dt t

mhðtÞ, this yields mþ � � dþm ½h� �

d�m ½h� � �þmð1� �Þ. Since � is arbitrary, this shows that dþm ½h� ¼

d�m ½h� ¼ mþ �, in which case the lacunarity dimension is one. If m0 6¼ 0, we

may apply the same reasoning to tm0hðtÞ instead of hðtÞ and the conclusion

follows.

Proof of theorem 11.4.1 Let us begin with some comments on the definition of

the function �g�. The rate of decay of the wavelet transform Wg�ðb; aÞ as

a! 0 (resp. a!1) reflects the behaviour of the Fourier transform �̂� at1

(resp. 0). Precisely, we have

�̂�ð!Þ � Oð!m
Þ; !! 0;)Wg�ðb; aÞ � Oða�m�1Þ; a!1;

�̂�ð!Þ � Oð!m
Þ; !!1;)Wg�ðb; aÞ � Oðamþ1Þ; a! 0

ð11:6:8Þ

uniformly in b. (This is a consequence of (11.4.1).) Thus, if s is in

C1ðRÞ \ L1ðRÞ, then by (11.6.8), Ggsða; qÞ ¼ jjWgsð�; aÞjj
q
q is rapidly decaying

at small scales. It follows that � and �þ s have the same wavelet-dimensions

	�ðq;mÞ. Hence, if we define h�i as the class of equivalence of � modulo

smooth functions ( that is h� 0i ¼ h�i if � 0 � � can be identified to a C1

function), then two measures belonging to the same class h�i have the same

wavelet dimensions. Now, for a given measure �, we always can find � 0 in

h�i whose Fourier transform is flat around 0. It suffices to takes

� 0 ¼ �� � � � with � 2 SðRÞ and �̂�ð!Þ ¼ 1þOð!m
Þ; !! 0; for all m.

Therefore, we may assume that condition (11.6.8) holds when we compute

the wavelet dimensions. In that case, Gg�ða; qÞ is rapidly decreasing at large

scales and we may thus replace
R 1
t by

R1
t in the definition of �g�ðt; q;mÞ, that

is we may set

�g�ðt; q;mÞ ¼

Z 1
t

da

a
am Gg�ða; qÞ:

With this remark in mind, we can begin the proof. Take g and h two analys-

ing wavelets in SþðRÞ. Let us compare �g�ðt; q;mÞ and �h�ðt; q;mÞ as t! 0.

From equation (11.4.5) it follows that with

Ka 0;aðbÞ ¼
1

a 0
Pg!h

b

a 0
;
a

a 0

� �
the passage from Wg� to Wh� reads

Wh�ð�; aÞ ¼

Z 1
0

da 0

a 0
Ka 0;a � Wg�ð�; a

0
Þ:
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However we have to make sure that Ka 0;a is well defined. The only possible

obstruction to this is the constant cg;h as defined in (11.4.2) which may

vanish. (Note that it is never1 for g, h 2 SþðRÞ.) However it cannot vanish

for all the dilated and translated versions g
�;�
¼ ��1gð½� � ��=�Þ of g since this

would merely mean that the wavelet transform of h with respect to g

vanishes, which is impossible for h 6¼ 0. Now replacing g by one of its dilated

and translated versions g�;� amounts to replace Wg�ðb,aÞ by

Wg�;�
�ðb; aÞ ¼

1

�
Wg�

b� �

�
;
a

�

� �
and therefore the dimensions computed with g�;� instead of g are the same.

We therefore may suppose that cg;h 6¼ 0:

Now we have

kWh�ð�; aÞkq ¼

Z
dbjWh�ðb; aÞj

q

� �1=q

�

Z
db

Z 1
0

da 0

a 0
jKa 0;a �Wg�ð�; a

0
ÞðbÞj

� �q� �1=q

�

Z 1
0

da 0

a 0

Z
dbjka 0;a � Wg�ð�; a

0
ÞðbÞjq

� �1=q

by Minkowski’s inequality

¼

Z 1
0

da 0

a 0
kKa 0;a � Wg�ð�; a

0
Þkq

�

Z 1
0

da 0

a 0
kKa 0;ak1kWg�ð�; a

0
Þkq

by Young’s inequality.

On the other hand,

kKa 0;ak1 ¼

Z þ1
�1

db
1

a 0
Pg!h

b

a 0
;
a

a 0

� �
kHða=a 0Þ;

				
with

HðaÞ ¼

Z þ1
�1

db jPg!hðb; aÞj:

This is a non-negative function that is rapidly decaying as aþ 1=a gets large.

Now set
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� ¼

Z 1
0

da 0

a 0
Hða=a 0Þ;

which is a finite constant thanks to the high localization of H, and

d�ða 0Þ ¼ ��1
da 0

a 0
Hða=a 0Þ;

which is a probability measure. Then, using Jensen’s inequality, we obtain

kWh�ð�; aÞk
q
q ¼ �q

Z 1
0

d�ða 0ÞkWg�ð�; a
0
Þkq

� �q

� �q

Z 1
0

d�ða 0ÞkWg�ð�; a
0
Þk

q
q

¼ �q�1

Z 1
0

da 0

a 0
Hða=a 0ÞkWg�ð�; a

0
Þk

q
q: ð11:6:9Þ

Now suppose that we are in the case

lim
t!0

Z 1

t

da

a
am Gg�ða; qÞ ¼ 1:

Then, as was explained in the last remark, we may compute the wavelet

dimension with

�g�ðt; q;mÞ ¼

Z 1
t

da

a
am Gg�ða; qÞ:

With this assumption, (11.6.9) yields

�h�ðt; q;mÞ ¼

Z 1
t

da

a
am kWh�ð�; aÞk

q
q

� Oð1Þ

Z 1
t

da

a
am
Z 1
0

da 0

a 0
Hða=a 0Þ kWg�ð�; a

0
Þk

q
q

¼ Oð1Þ

Z 1
0

da 0

a 0
Hð1=a 0Þ

Z 1
t

da

a
am kWg�ð�; aa

0
Þk

q
q

¼ Oð1Þ

Z 1
0

da 0

a 0
a0�m Hð1=a 0Þ

Z 1
ta 0

da

a
am kWg�ð�; aÞk

q
q:

¼ Oð1Þ

Z 1
0

da 0

a 0
Hð1=a 0Þ�g�ðta

0; q;mÞ

¼ Oð1Þ

Z 1
0

da 0

a 0
Hðt=a 0Þ�g�ða

0; q;mÞ;

that is
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�h�ðt; q;mÞ � Oð1Þ

Z 1
0

da

a
Hðt=aÞ�g�ða; q;mÞ:

As can be easily checked, the same relation holds in the alternative case

�g�ðt; q;mÞ ¼

Z t

0

da

a
am Gg�ða; qÞ:

Since g and h can be exchanged in the above inequality, it follows thaty

�h�ðt; q;mÞ �

Z 1
0

da

a
Hðt=aÞ�g�ða; q;mÞ: ð11:6:10Þ

Note that the integral on the right-hand side is always finite because

�g�ða; q;mÞ is of at most polynomial growth in aþ 1=a whereas H is rapidly

decreasing in aþ 1=a.

Now suppose that �g�ðt; q;mÞ � Oðt�Þ, t! 0, for some �. Then by

(11.6.10), we have

�h�ðt; q;mÞ � Oðt�Þ

Z 1
0

da

a
Hð1=aÞa� � Oðt�Þ; t! 0:

Since g and h can be exchanged in (11.6.10), it follows that, for all �

�h�ðt; q;mÞ � Oðt�Þ , �g�ðt; q;mÞ � Oðt�Þ; t! 0: ð11:6:11Þ

Conversely, suppose that �g�ðt; q;mÞ � Ct�; 0 < t < 1 for some constant

C > 0. Things are here slightly more complicated. Pick some �, 0 < � < 1,

and keep it fixed. For 0 < t < 1 we split the integral of (11.6.10) into three

parts.

�h�ðt; q;mÞ ¼

Z t1þ�

0

þ

Z t1��

t1þ�
þ

Z 1
t1��

( )
da

a
Hðt=aÞ�g�ða; q;mÞ ¼ X1 þ X2 þ X3

In the last term we may estimate �g�ðt; q;mÞ � Oð1Þ and thus

X3 � Oð1Þ

Z 1
1=t�

da

a
Hð1=aÞ

Since HðtÞ is arbitrarily well polynomially localized it follows that X3 ¼ OðtnÞ

for all n > 0.

In X1 we may estimate �g�ðt; q;mÞ � t�p for some p because �g�ðt; q;mÞ is

rapidly decreasing in tþ 1=t and thus
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X1 � Oð1Þt�p
Z t�

0

da

a
Hð1=aÞa�p:

Since H is arbitrarily well polynomially localized the integral is rapidly

decaying and thus again X1 ¼ OðtnÞ for all n > 0.

The remaining contribution is the middle term X2. If �g�ðt; q;mÞ is non-

decreasing, then

X2 ¼

Z t��

t�

da

a
�g�ðat; q;mÞHð1=aÞ

�

Z 1

t�

da

a
Hð1=aÞ�g�ðat; q;mÞ

� �g�ðt
1þ�; q;mÞ

Z 1

t1þ�

da

a
Hð1=aÞ

� �g�ðt
1þ�; q;mÞ

Z 1

0

da

a
Hð1=aÞ

� C 0 t�ð1þ�Þ:

If �g�ðt; a;mÞt is non-increasing, then

X2 �

Z t��

1

da

a
Hð1=aÞ�g�ðat; q;mÞ

� �g�ðt
1þ�; q;mÞ

Z t��

1

da

a
Hð1=aÞ

� �g�ðt
1þ�; q;mÞ

Z 1
1

da

a
Hð1=aÞ

� C 0 t�ð1þ�Þ:

Thus, we have for all � and all � > 0

C t� � �g�ðt; q;mÞ ) t�þ� � C 0 �g�ðt; q;mÞ; ð11:6:12Þ

and also since g and h can be interchanged

C t� � �h�ðt; q;mÞ ) t�þ�Þ � C 0 �g�ðt; q;mÞ; ð11:6:13Þ

Once we have proven (11.6.11), (11.6.12) and (11.6.13), the conclusion

follows from lemma (11.6.1).

Proof of theorem 11.5.1 Take some wavelet g 2 SþðRÞ such that bgg is com-

pactly supported. Again we may suppose in addition that b�� ð!Þ � Oð!m
Þ,
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!! 0 for all m, whence Wg� is rapidly decaying at large scale. A direct

application of Parseval’s equation givesZ þ1
�1

db jWg�ðb; aÞj
2
¼

Z 1
0

d! jbgg ða!Þj2 jb�� ð!Þj2; ð11:6:14Þ

and thus, by a simple exchange of integrationZ
H

da

a
db a�m jWg�ðb; aÞj

2
¼

Z 1
0

da

a
a�mjbggðaÞj2 Z 1

0

d!!m
j�̂�ð!Þj2:

The first integral on the right-hand side is a finite constant, due to the high

localization of ĝg. The second integral is infinite by hypothesis. Then we have

�g�ðT
�1; 2;�mÞ ¼

Z 1
T�1

da

a
a�m

Z þ1
�1

db jWg�ðb; aÞj
2:

By equation (11.6.14), this can be rewritten as

�g�ðT
�1; 2;�mÞ ¼

Z 1
0

d!!mHð!=TÞjb�� ð!Þj2;
with

HðtÞ ¼

Z 1
t

da

a
a�mjbgg ðaÞj2:

Since H is non-negative and of compact support (since bgg is), we can find

numbers � > 0 and � > 0 such that

��½0;��ð!Þ � Hð!Þ � ��½0;��ð!Þ

where �I is the characteristic function of I . Therefore

�

Z �T

0

d!!m
jb��ð!Þj2 � �g�ðT

�1; 2;�mÞ � �

Z �T

0

d!!m
jb��ð!Þj2;

and it follows that

dþm ½jb�� j2� ¼ lim sup
T!1

logð
R
0 d!!m

jb�� ð!Þj2Þ
logT

¼ lim sup
T!1

log�g�ðT
�1; 2;�mÞ

logT

¼ �	�2;�m½��;

and
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d�m ½jb�� j2� ¼ lim inf
T!1

logð
R �T
0 d!!m

jb�� ð!Þj2Þ
logT

¼ lim inf
T!1

log�g�ðT
�1; 2;�mÞ

logT

¼ �	þ2;�m½��:

This concludes the proof.

Some useful inequalities As usual Lp
ðRÞ is the space of measurable functions f

for which

k f kp ¼

Z
dt j f ðtÞjp

� �1
p

<1:

Hölder’s inequality. If f 2 Lp
ðRÞ and g 2 Lq

ðRÞ with 1=pþ 1=q ¼ 1=r, then

we have

k fgkr � k f kpkgkq:

Minkowsky’s inequality. For any p � 1 we have

k f þ gkp � k f kp þ kgkp:

Integral Minkowsky’s inequality. If f ðx; yÞ 2 Lp
ðRÞ 
 Lp

ðRÞ with p � 1,Z
dy

Z
dx f ðx; yÞ

				 				p� �� �1=p

�

Z
dx

Z
dy j f ðx; yÞjp

� �1=p

:

Young’s inequality. If f 2 Lp
ðRÞ and g 2 Lq

ðRÞ with 1=pþ 1=q ¼ 1þ 1=r,

then

jjf � gjjr � jjf jjp jjgjjq

Jensen’s inequality. If � is a probability measure and ’ a convex function,

then we have

’

Z
d�ðtÞ f ðtÞ

� �
�

Z
d�ðtÞ’ 	 f ðtÞ:
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