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Wavelets in Physics

This book surveys the application of the recently developed technique of the wavelet
transform to a wide range of physical fields, including astrophysics, turbulence,
meteorology, plasma physics, atomic and solid state physics, multifractals occurring
in physics, biophysics (in medicine and physiology) and mathematical physics. The
wavelet transorm can analyse scale-dependent characteristics of a signal (or image)
locally, unlike the Fourier transform, and more flexibly than the windowed Fourier
transform developed by Gabor 50 years ago. The continuous wavelet transform is
used mostly for analysis, but the discrete wavelet transform allows very fast
compression and transmission of data and speeds up numerical calculation, and is
applied, for example, in the solution of partial differential equations in physics. This
book will be of interest to graduate students and researchers in many fields of
physics, and to applied mathematicians and engineers interested in physical
application.

J. C. van DEN BERG studied physics and mathematics at the University of
Amsterdam. He graduated in high energy physics, doing some work on the
automatization of the analysis of bubble chamber films exhibiting the paths of
elementary particles in collision experiments. He later took a degree in philosophy of
science and logic at the same university, doing his masters thesis on quantum logic.
He became a mathematics instructor at Wageningen University in 1973 and is now
an Assistant Professor of Applied Mathematics at the Biometris group of
Wageningen University and Research Center.

After being interested in the foundations of quantum mechanics for many years,
he moved on to non-linear dynamics, especially the concept of multifractals and the
difficulties of analysing them. In the writings of Alain Arnéodo on multifractals, he
came across the wavelet transform for the first time, taking his first technical course
on the subject in 1991 at the CWI in Amsterdam. Soon after, discovering the
pioneering works of Marie Farge in turbulence and Gerald Kaiser in
electromagnetism, he became convinced that wavelets were important for physics at
large. Gradually wavelets overshadowed all his other interests and have remained a
main focus ever since. This book is a result of that continuing interest and he hopes it
may stimulate others to explore the possibilities of the new tools wavelet analysis
continues to deliver.
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Preface to the paperback edition

Since the hardback edition of this book was put together wavelets have
continued to flourish both in mathematics and in applications in ever more
diverse branches of science and engineering. A standard library electronic
alert system now easily produces more than fourteen hundred references to
papers per year, developing or using wavelet techniques. These are pub-
lished in a very broad array of journals. Here we can point to only a few of
the recently developed methods, in particular as they have been used in
physics.

In recent years many variations on the wavelet theme have appeared. One
tries to go ‘beyond wavelets’. In this context there is a whole family of new
animals in the wavelet zoo. Its members carry names like bandelets, beamlets,
chirplets, contourlets, curvelets, fresnelets, ridgelets . . . These are new bases or
frames of functions, customized to handle 2D or 3D data processing better.
In [23] for example, it is explained how ridgelets and curvelets can be used in
astrophysics. It turns out that noise filtering, contrast enhancement and
morphological component analysis of galaxy images are performed much
better by a skilful combination of the new transforms than by mere wavelet
transforms. More examples can be found on the ‘curvelet homepage’ [24],
maintained by J.L. Starck.

It seems that the applications of the discrete wavelet transform (DWT) far
outnumber those of the continuous wavelet transform (CWT), although the
latter started the modern development of wavelet theory in the early eighties.
Of the more than two hundred books on wavelet theory that have been
published since the early nineties, most are focussed on the DWT and some-
times omit to mention the CWT altogether. This, I think, is unfortunate
because both transforms have a lot to offer. A drawback of the CWT is
that its computation is much more time consuming than that of the DWT.
However, progress has been made in this area too. For example, in [20] a fast

Xvil



XVviil List of contributors

algorithm is described for the computation of the CWT at any real scale a
and integer time localization b.

The 2D CWT described in detail in Ch. 2 has been further developed by
J.-P. Antoine et al. and now also covers the case of wavelets living on a
sphere instead of on a flat plane [1], [2]. These spherical wavelets have been
used for instance in astrophysics [4], and also in the recently emerged field of
cosmic topology [21], the study of the global shape of the universe. How
much richer the world of the 2D transform has become since Ch. 2 was
written the reader may see in great detail in the volume especially devoted
to this topic [3].

In turbulence studies M. Farge, the earliest promotor of wavelet methods
in that field, together with K. Schneider and N. Kevlahan proposed the
method of Coherent Vortex Simulation (CVS), initially applied to 2D flows,
which is already briefly mentioned here in Ch. 4, p. 189. This method was
much further developed in the following years, and was recently applied also
to 3D flows [7]. More results of Farge and her increasingly productive team,
which she set up together with K. Schneider, can be found at [§].

The Wavelet Transform Modulus Maximim (WTMM) method and its use
for the computation of singularity spectra of multifractals, pioneered by
A. Arnéodo’s group and described here in Ch. 9, has recently been extended
to image analysis [5] and to 3D fields [19]. Another application continuing to
produce interesting results is the wavelet-based study of correlations in DNA
[6].

The authors of Ch. 10, using wavelet techniques for the study of cardiac
dynamics, more recently also adopted the WTMM method [15], [12] to
expose the multifractal character of cardiovascular and several other
human physiological signals.

It is of interest to note here that M. Haase and B. Lehle [13], using wavelets
that are derivatives of the Gaussian function, have been able to derive differ-
ential equations for the maxima lines used in the WTMM method. Thus they
produce an algorithm for the singularity spectra that is more accurate. More
applications can be found at [14].

A. Fournier has advanced the research described in Ch. 7 in at least three
ways: by establishing the wavelet-energetics interpretation for idealized fluid
models [9], by enlarging the observational dataset to obtain statistically sig-
nificant results [10] and by inventing customized representations of blocking
using ‘best shift” wavelets [11].

Let me finish by mentioning some interesting recent examples not directly
related to the material of this volume. An application to chaos control was
published by G. W. Wei et al. [25]. They study a set of chaotic Lorenz
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oscillators, synchronized by nearest neighbour couplings. Using wavelets to
decompose the coupling matrix, they show they can vastly reduce the mini-
mally necessary coupling strength for synchronization to occur.

A. Romeo et al. [22] published an appealing N-body simulation of disc
galaxies, where N ranges between 10° and 9 x 10°, in which the initial sym-
metry is broken after initial fluctuations have been amplified sufficiently by
gravitational instability. They show that their use of wavelets to denoise the
calculation at each timestep makes their simulations become equivalent to
simulations with two orders of magnitude more bodies. Their wavelet
method is expected to produce a comparable improvement in performance
for cosmological and plasma simulations.

G. Kaiser, well known for his book on wavelets [16], has extended his very
interesting programme of finding ‘physical wavelets’, i.e. wavelets that are
also solutions of physical equations such as the Maxwell equations or the
wave equation. Initially these were solutions of source-free equations, but
now sources have been included in the treatment as well [17].

There are many more interesting recent examples, but reasons of space
unfortunately force me to stop here. I hope I have made it clear that wavelets
are continuing to inspire physicists in many disciplines to improve existing
methods and to explore new territory as well.

At the beginning of this year the wavelet community witnessed the
relaunch, after one year of silence, of its popular electronic news bulletin
the Wavelet Digest [18], started by Wim Sweldens in 1992, in a modernized
format, with an enlarged readership of about 20,000 people, a sure sign, I
think, of the vigour of the wavelet enterprise.

HANS VAN DEN BERG
Wageningen University and Research Centre
April 2003
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Preface to the first edition

Why should physicists bother about wavelets? Why not leave them to the
mathematicians and engineers?

Physicists are sometimes reluctant to learn about wavelets because they
cannot be interpreted in physical terms as easily as sines and cosines and their
frequencies. This is understandable enough: the ‘harmonic oscillator’ has
been with us for more than three centuries, and continues to play its impor-
tant role. But as we hope to show in the chapters that follow, wavelets can
also be of great help in uncovering the presence or absence of certain fre-
quencies in a physical phenomenon. Wavelet analysis is not replacing fre-
quency analysis, but is rather an important refinement and expansion of it:
Fourier analysis analyses a signal globally, whereas wavelet analysis looks
into the signal locally.

Let us illustrate this is in musical terms. If you listen to a classical
symphony you hear several parts, usually three to four. Each of them
has its own main key: e.g. C minor, Eb major, etc. The Fourier power
spectrum of the symphony will of course reveal the dominating keys:
groundtones, and their harmonics. Frequencies of other chords which
occur more fleetingly during modulations and variations in the piece of
music, will also show up. If you would play the parts in a different order,
the power spectrum would not change at all, but to the listener it becomes
a very different piece, and more so if you interchange parts within the
parts, at an ever finer scale: you have changed the musical score drasti-
cally. A musical score is a still coarse (the ear catches much more infor-
mation than the composer writes down in the score) but time-localized
frequency analysis of the symphony. This is what a wavelet analysis also
supplies you with: it not only gives the main frequencies used, but also, in
contrast to the Fourier Transform, indicates when they occur, and what

XX1
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their duration is. In the words of Lau and Went (Ch. 1, ref. 18) wavelets
‘make a time series sing’.

To be fair, this was already tried with some success in Fourier analysis
also: as explained by Antoine in Chapter 1, in 1946 Gabor introduced the
Windowed Fourier Transform, by placing a Gaussian time window with
constant width over the signal to be analysed, and shifting the window
through the signal. Wavelets, springing up in the early 1980s, generalize
this in two respects: there is a large and ever growing family of different
wavelet functions, and their time resolution is not fixed, but is variable
with the frequency, so that high frequencies have a better time resolution.
Moreover, one has been able to construct orthonormal bases for many dif-
ferent types of wavelets. Instead of considering signals f(¢) to be composed of
everlasting oscillations (Fourier Transform) or oscillations within a fixed
time window (Windowed Fourier Transform) one considers the signal as
being composed of oscillations which arise and die out in time, more rapidly
the higher their frequencies. The Wavelet Transform uses a time window
which may be shortened or stretched adaptively, thus giving much more
flexibility in representing non-stationary signals. This is why the Wavelet
Transform is sometimes called a mathematical microscope: it allows you to
‘zoom’ in and out at any desired magnification (inversely proportional to the
scale), at any point of time in the signal. It is precisely this kind of flexibility
that makes the Wavelet Transform such a useful and efficient analysis tool.
Of course the transform can also be performed in two (image analysis) and
more dimensions, and even in space-time.

A further reason to learn about wavelets is that wavelets are fast. How
fast? For a one-dimensional signal with »n data points the Fourier Transform
requires ~ n’ operations. This was reduced by the Fast Fourier Transform to
~ nlogn, which after its implementation in software packages, made the
application of Fourier analysis an industry in many fields of science and
technology. Orthornormal wavelets reduce this even further: here one
needs only ~ ¢n computations where the constant ¢ depends only on the
type of wavelet used. As already mentioned, wavelets exist in a variety of
shapes and one can pick any particular one to work with according to one’s
need. This is in marked contrast to Fourier analysis, where everything is
always analysed in terms of sines and cosines. The computational efficiency
is fine for data compression and transmission, and for numerical calculations,
and turns out to produce more accurate and/or faster solutions for partial
differential equations occurring in physics, as the reader will see for instance
in Chapter 4 and Chapter 8.
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Every student learning about the Fourier Transform and the power spec-
trum should now at least be made aware of some of the possibilities wavelets
have to offer. From scientists of various disciplines one still sometimes hears
the complaint that the mathematics of wavelets is so much more complicated
than Fourier analysis that they don’t really want to try. This feeling is caused
partly because the first generation of good books about the subject is thor-
oughly mathematical. But the time has arrived that undergraduate books are
appearing to serve those people who have only basic mathematical training.
To mention only one here: R. Todd Ogden’s little book (see Ch. 1), ref. 26).
Moreover journals in many fields have published tutorials that deal with the
mathematical basics only. Also there are now quite a number of software
toolboxes available which can give the beginner a hands-on feeling for the
subject without a deep mathematical understanding. The reader will find
more on this material in the last paragraphs of Chapter 1 and the references
therein.

The first time I myself met wavelets was in 1991, when I read work by
Arneodo, Holschneider and others, about the analysis of (multi)fractal mea-
sures arising in certain non-linear dynamical systems. My understanding of it
was much stimulated by a wavelet course given at the Amsterdam Center of
Mathematics and Computer Science at the end of 1991. The closing lecture
was given by Michiel Hazewinkel: ‘Wavelets Understand Fractals’. He
reported on the work by those scientists, and since that lecture I was hooked
onto wavelets. Arneodo and Holschneider both contribute to this volume
(Ch. 9 and Ch. 11). One of the other speakers in the course was Tom
Koornwinder, who later introduced me further into the theory of wavelets.
During that period he came up with the suggestion that I produce a book like
the present one, for which I am still grateful to him. I soon became aware of
the use of wavelets in other areas of physics, in particular by Farge, in
turbulence research, and by Kaiser in electromagnetism (applications in
radar) and acoustics. Farge and some of her colleagues contribute Chapter
4 of this work, whereas Kaiser’s investigations are published in the second
part of his fine textbook on wavelets (Ch. 1, ref. 16).

The material you find in this book does not by any means exhaust the
applications of wavelets in physics, but I do hope that the reader finds
representative examples of good work in this area, and that it stimulates
further exploration and application in the fields covered, and elsewhere.
Before the book starts, Chapter 0 gives you a brief ‘guided tour’ through
the chapters.
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The reader might want to jump right into the book, but I decided to give a
guided tour (which one may leave and rejoin at will of course) through the
chapters, to whet the reader’s taste.

Antoine opens in Chapter 1 with a brief survey of the basic properties of
wavelet transforms, both continuous (CWT) and discrete (DWT). In the
latter case one learns about the intuitively very appealing concept of multi-
resolution analysis. Section 1.4 looks ahead to the two- and more-dimensional
versions, and summarily brings out connections with well known symmetry
groups of physics, and the theory of coherent states.

In the second chapter, also by Antoine, the 2-D wavelet transform is trea-
ted. Here the characterization as mathematical microscope must be further
qualified, because it misses the new and important property of orientability of
the 2-D wavelets, which the 1-D case lacks. A real-world microscope is not
more sensitive in one direction than in another one, it is ‘isotropic’. But the
mathematical microscope as embodied in 2-D wavelets has an extra feature:
these wavelets can be designed in such a way that they are directionally selec-
tive. Apart from dilation and translation, one can now also rotate the wavelet,
which makes possible a sensitive detection of oriented features of a signal (a 2-
D image). In many texts the 2-D case is still limited to the DWT, and the
wavelets are usually formed by taking tensor products of 1-D wavelets in the x
and y-direction, thereby giving preference to horizontal, vertical and diagonal
features in the plane. The continuous case is described here in some detail, first
because it admits interesting physical applications, such as measuring the
velocity field of a 2-D turbulent flow around an obstacle, the disentangling
of a superposition of damped plane waves under water produced by a source
above the water surface, fault detection in geology, analysis of spectra, con-
trast enhancement of images. By using the scale-angle measure one can exhibit
symmetries of objects. Another neat example under development is the
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detection of Einstein rings by using an annular-shaped wavelet at a fixed scale,
leading to, e.g., distance measurements of quasars. The second reason to
devote much attention to the 2-D CWT is that the mathematical background,
as mapped out in section 2.4, brings out the connections with group repre-
sentations and coherent states, both used in physics long before wavelets came
into the picture. It turns out that wavelets are the coherent states associated to
the similitude groups (Euclidean groups with dilations). This section is math-
ematically somewhat more abstract than the rest of the chapter. The impor-
tance of it is that it is shown here, how one can extend the CWT to other
‘spaces’, such as 3-D space, the sphere, and to space-time (‘kinematical’ wave-
lets used in motion tracking, including relativistic effects (using wavelets asso-
ciated to the Galilei or Poincaré group resp.). Also some applications of the 2-
D DWT are indicated.

In Chapter 3 we turn to applications on the largest scale in the Universe:
Bijaoui describes a wide variety of applications in astrophysics and observa-
tional cosmology. The wavelet transform is a very good tool to study power-
law signals, and these occur in many astrophysical sources, such as the light
intensity of the solar surface, the brightness of interstellar clouds, or galaxy
distributions from galaxy counts. Often the power law behaviour is exhibited
by statistical correlation functions, so in many applications there is a combi-
nation of statistical techniques with wavelet methods. Cluster analysis of
galaxies for instance, was much improved. Image compression is frequently
needed in astronomy. Much work was done on Hubble Space Telescope
(HST) images and astronomical aperture synthesis. The DWT is not only
used in the form resulting from multiresolution analysis, but also by other
methods: the ‘a trous algorithm’, and the ‘pyramidal transform’ are used for
image restoration and analysis. Denoising images also receives a good deal of
attention: criteria to establish the notion of ‘significant coefficient’ were
developed. Connected with that is the problem of deconvolving an observed
signal (image) to obtain the true object signal: that is the signal before it is
convolved with the response function (called the ‘point spread function’ in
optics) of the measuring apparatus. Multiresolution techniques yield a good
reduction of resolution here, especially for HST data. To obtain an auto-
mated image analysis for astronomical images, one needs a so called ‘vision
model’: a protocol of operations to analyse the image. The classical examples
of this were based on edge detection, but this is not adequate to recognize
astronomical objects accurately. In a typical image one can see point-like
sources (stars), quasi-point-like objects (double stars, faint galaxies...) and
complex diffuse structures (galaxies, nebulae, clusters...). The multiscale
vision model developed here is able to optimize the detection of objects,
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because it yields a background mapping adapted to a given object. The ear-
lier methods were only suited to stars of quasi-stellar sources with a slowly
varying background. Since in the multiscale approach the notion of sub-
object is defined, much more complex structures can be analysed.

From astronomical scales down to microscopically small scales one finds
turbulence, naturally occurring or man-made. The study of fully developed
(high Reynolds number) turbulence by means of the wavelet transform is
presented by Farge et al. in Chapter 4. The authors argue that part of the
reason the subject has not undergone fundamental progress for a long time is
that point measurements are used to compute averages in the statistical
theory, and also because one keeps thinking in terms of Fourier modes.
Thus the presence of coherent structures (here defined as local condensations
of the vorticity field which survive much longer than the typical eddy turn-
over time) is missed, although these are observed in physical space, and their
role seems essential in the dynamics. The classical theory of turbulence is not
able to see the coherent structures, because they are only felt in the high order
statistical moments of the velocity increments in the flow, which have been
measured only relatively recently and turn out not to obey Kolmogorov’s
theory. Wavelets can play a role in separating the coherent components from
the incoherent components of turbulent flows, so that one can arrive at new
conditional averages, replacing the classical ensemble averages. Fourier space
analysis is not capable of this disentanglement, because it averages over space
and thus loses local information. The coherent structures correspond to
spatio-temporally quasi-singular structures, and thus the use of wavelets to
analyse isolated or dense distributions of singularities is brought out, a sub-
ject that will be dealt with in extenso in Arneodo et al’s Chapter 9. The
separation of coherent structures and random background flow allows new
proposals in the modelling of turbulence in which one may expect to be able
to explore back and forth transfers of energy between coherent components
and the background of the flow. Similar transfers are estimated from real-
world global atmospheric data (albeit outside the turbulent regime) by
Fournier in Chapter 7. Also in stochastic models of turbulence wavelets
are beginning to be used.

Wavelet bases are also increasingly being used to solve partial differential
equations numerically. Section 4.6 describes some examples in the literature
and presents in some detail algorithms to solve the two-dimensional Navier—
Stokes equations.

Coherent structures are also the subject of Chapter 5 by Hudgins and
Kaspersen. They focus on the case of cylinder wake flow, and compare the
performance of conventional as well as wavelet-based coherent structure
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detector algorithms. This performance is measured by two statistics: the
probability of detection Pp, and the false alarm-rate Pp,, that is the prob-
ability that a detection will be reported when the relevant event is in fact not
present. These quantities are dependent, and this dependence can be para-
metrized, giving rise to a plot of Pp vs. Pr,. The authors test their algorithms
on a particular kind of coherent structure called a burst: an outrush from the
wall, during which the transverse velocity is positive while the streamwise
velocity temporarily falls below its mean value. Three conventional detectors
are described, and two different wavelet detectors are introduced.
Comparison of the results then shows that wavelet methods perform better
than the conventional ones, and for high detection rates the second wavelet
method outperforms all of the others.

Van Milligen aims at getting a grip on the non-linearity aspect of turbu-
lence in Chapter 6. He defines the notions of bispectrum and bicoherence
based on wavelets. The bicoherence is a measure of the amount of phase
coupling that occurs in a signal or between two signals, which means that if
two frequencies are simultaneously present in the signal(s) along with their
sum (or difference), the sum of the phases of these frequency components is
constant in time. Since the wavelet version of these notions is based on
integration over a short time interval, temporal variations in phase coupling
(intermittent behaviour) can be revealed. Two possible interpretations of the
bicoherence are presented: one in terms of coherent structures passing by the
observation point, and another one in terms of a coupling constant in a
quadratic wave-interaction model. The usefulness of these concepts is first
demonstrated in numerical examples: two coupled van der Pol oscillators
exhibiting chaos, and then two models for plasma turbulence. It turns out
that one can perform detailed spectral analysis on turbulence simulations
although only short data series are available (due to CPU-time limitations)
rendering Fourier analysis impracticable or impossible. In the last section
van Milligen analyses in detail data from torsatron and tokamak plasma
experiments.

Turning away from turbulence, in Chapter 7 we find an application, by
Fournier, of wavelets to an anomalous state of the earth’s atmosphere,
namely blocking. This is a period of time during which the normal progres-
sion (approximately eastward translation) of weather patterns is locally
inhibited. It is associated with a quasi-persistent anomalous high pressure
system. Fournier reviews the equations derived by Saltzman for the evolution
of the mean kinetic energy of eddies. The contributions to this from atmo-
spheric structures of distinct scales are conventionally resolved by (truncated)
Fourier series representations. This is replaced here by an analysis in terms of
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a periodic orthonormal wavelet basis. In terms of these it is possible to
construct scale dependent transfer and flux functions of kinetic energy at a
certain location. These new concepts are then applied to real-world data from
the National Meteorological Center: wind components u (eastward) and v
(northward) and the ‘geopotential height’ Z. Analysis of these data tells us
that blocking is largely described by the largest scale part of the multiresolu-
tion analysis, and new support is found for the hypothesis that blocking is
partially maintained by a particular kind of inverse energy cascade (going
from smaller to larger scales).

Scaling down to very small distances brings us to applications of wavelets
in the domains of atomic and solid state physics. In Chapter 8, Antoine ez al.
start with the case of the generation of light emission resulting from the
exposure of atoms to a strong laser pulse. Odd harmonics of the laser fre-
quency are emitted, and in order to understand the mechanism of emission
better one would like to know for instance when the harmonics are emitted
during the optical cycle, and what the time evolution is during the laser pulse.
Standard spectral analysis cannot answer these questions. For atomic hydro-
gen the emission is investigated by both the Gabor Transform (Windowed
Fourier Transform) and the Wavelet Transform, yielding time profiles of
each individual harmonic. Analysis of these profiles leads to the conclusion
that harmonic emission takes place only when the electron is close to the
nucleus. The authors emphasize that in this type of analysis the Gabor trans-
form and the wavelet transform are not each others competitors, but rather
they supply complementary information, depending on the exact physical
problem one studies. A further development on the basis of these results
may be the temporal control of the harmonic emissions by tuning the polar-
ization of the laser, eventually allowing the production of intense attosecond
(1078 ) pulses. For the case of multi-electronic wave functions orthogonal
wavelet bases on (0, co) are being proposed as a basis for the radial part of
the wave function, allowing improvements over more conventional Hartree—
Fock methods. A combination of wavelet transforms and conventional tech-
niques also allowed a better calculation of energy levels in atoms.

In the second part of the chapter Antoine et al. deal with electronic struc-
ture calculations in solid state physics. Here both non-orthogonal and ortho-
gonal wavelet bases have been applied successfully, and the recently
developed second generation wavelets, used in a biorthogonal basis (see
Ch. 1) have been used to solve a 3-D atomic Coulomb problem, namely
the Poisson equation for the potential of, for instance, a uranium dimer.
The potential is obtained with 6 significant digits throughout the region of
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interest. In the last section of this chapter the use of 2-D wavelet bases to a 2-
D phenomenon, the Fractional Quantum Hall Effect, is explored.

The last three chapters all deal with phenomena in which scaling is of
central importance.

Arneodo et al. show in Chapter 9 how wavelets can be applied to analyse
the scaling properties of multifractal signals which have densely packed sin-
gularities of varying strengths. When a signal possesses a single isolated
singularity at x,, with strength, a(x,) (mathematicians call this the Holder
exponent), this property is reflected in the behaviour of the wavelet transform
at that location, and a(x,) can therefore be extracted from, a log-log plot of
the wavelet transform amplitude versus the scale. The dense packing of
singularities in a multifractal signal makes straightforward application of
this impossible. In order to analyse multifractal signals, a method not invol-
ving wavelets, called the thermodynamical formalism was developed more
than a decade ago. It enables one to calculate the spectrum of singularities,
the f(«) spectrum, by statistical means. Before the advent of wavelets this
spectrum could be determined for singular measures only, but as the authors
show, by using wavelets one can extend this to singular functions as well,
thereby making the method applicable to any experimental signal.

Roughly speaking a (multi)fractal function is non-smooth in all or a large
part of its domain, thus making traditional analytical (calculus) methods
inadequate to analyse it. Unfolding the function in the wavelet domain
restores the applicability of these methods. In particular, the wavelet trans-
form modulus maxima (WTMM) are used to obtain a skeleton of the function,
which provides a partition allowing the merging of the WTMM method with
the thermodynamical formalism, so that the singularity spectrum can be
determined. This remedies some defects of classical ‘box counting’ for mea-
sures, and of the ‘structure function’ method used for turbulent signals.

In a further development the WTMM skeleton method is used to address
the ‘inverse fractal problem’: if a fractal object is produced by a dynamical
system, can one then extract enough information from the object to recover
the dynamical system that produced it? This is a big problem if stated in such
generality, but as the authors show, one can solve this for instance in the case
when the dynamics is generated by ‘cookie-cutter maps’.

Finally the method is applied to the analysis of diffusion-limited-aggrega-
tion (DLA) processes, and it is shown how one uncovers the ‘Fibonacci
multiplicative process’ responsible for the branching morphology of the clus-
ters formed by DLA. This is a remarkable result, given the geometrically
featureless random walk process that generates the clusters.
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The method as described in this chapter is being further developed, as
Farge et al. mention in Ch. 4, and has also been applied for instance to
the analysis of DNA nucleotide sequences (Ch. 10, ref. 81).

The application of wavelets in medicine and biology has proliferated in
many different directions, witness the reference list to Chapter 10, by Ivanov
et al. One area is the study of physiological time series, which generally have
a non-stationary character. The specific case analysed here is the comparison
between time series of heart beat intervals in healthy human individuals, and
in patients suffering from sleep apnea. The authors develop the cumulative
variation amplitude analysis (CVAA), consisting of a sequential application of
the wavelet transform and the Hilbert transform. The first step is to take
analysing wavelets that are able to eliminate the influence of linear and low-
degree polynomial trends in a signal s(¢) (the derivatives of the Gaussian
supply wavelets that can do this), keeping only in sight the variations of
patterns of a certain duration a of interest. By fixing the scale parameter of
the wavelet transform one obtains again a 1-D signal, say s,(¢), expressing
how strongly patterns with a certain duration around the value a are present
within the signal. It is the variations in this strength which are of interest. The
Hilbert Transform, applied to the signal s,(¢) enables one to calculate an
‘instantaneous amplitude’ of that signal, which is an envelope of it. By count-
ing how often in s,(7) a given instantaneous amplitude occurs, one obtains a
distribution of instantaneous amplitude values which tells one what the rela-
tive length (total duration in the entire signal) of an ‘a-scale pattern’ with a
given amplitude is. Every individual has its own amplitude distribution, but it
turns out that they are scaling copies of a common distribution, at least in
groups of healthy patients. Thus by rescaling individual ‘healthy distribu-
tions’, one can collapse them on their common distribution. Moreover this
collapse repeats itself, in healthy individuals, for many different values of a.
The collapse fails, however, in groups of subjects suffering from sleep apnea.
These two groups can thereby be distinguished from one another. (Applying
the Hilbert Transform directly to s(z) itself fails to bring this out.) The
authors describe how one may attempt to develop this result further into a
tool to separate healthy from abnormal cardiac dynamics for an individual,
thus setting up a diagnostic. Finally the relation of the scaling property with
the non-linear dynamics of the heartbeat control mechanism is discussed.

The last chapter, by Guérin and Holschneider, concerns the description of
intermittency in the time evolution of a system. They define the concept of a
lacunarity dimension which quantifies the notion of intermittent behaviour.
This is the only chapter where detailed mathematical proofs are presented,
but we have relegated them to the Appendix so that the flow of the argument
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is not interrupted. Intermittency is a concept that has been mentioned many
times already in previous chapters, but only qualitatively. If you think of a
particle recurring intermittently in a region A of phase space, its presence in A
can be described by a function /(¢) = x 4(x(¢)), where x(7) is the trajectory in
phase space, and yx 4 is the characteristic function of 4, registering whether or
not x(¢) is in the region A. If one knows the dynamics x(z) over a time interval
[0, T'], one can calculate the fraction of T the particle spends in A, by taking
the time average of A(¢) over this interval. If this fraction converges to a finite
constant as T — oo, this limit can be interpreted as a rate of presence in
region A. By considering not just the average of /(¢), but also its higher
moments, the authors find the definition of the lacunarity dimension. So
far, no wavelets. This definition is then applied to the case of time evolution
of a system obeying the Schrédinger equation with a time independent
Hamiltonian. The function /A(7) is now the probability to find the system in
a certain region of space. The lacunarity dimension can be calculated if A(?) is
known over a very large time span, but this may be too long for measure-
ments. It turns out that one can circumvent this by using wavelets to define
the generalized wavelet dimensions of the Hamiltonian’s spectral measure. The
latter can be determined from time independent data which are known about
the system. The main theorem of the chapter establishes that the lacunarity
dimension of the time evolution generated by the Schrédinger equation is
obtainable from the generalized wavelet dimensions of the spectral measure
of the Hamiltonian. Thus the long time chaotic behaviour of the system and
small scale spectral properties of the Hamiltonian are strictly related.

This ends our guided tour. I hope it has aroused your curiosity enough to
take a closer look into the chapters that follow.
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Abstract

We review the general properties of the wavelet transform, both in its con-
tinuous and its discrete versions, in one or more dimensions. We also indicate
some generalizations and applications in physics.

1.1 What is wavelet analysis?

Wavelet analysis is a particular time- or space-scale representation of signals
which has found a wide range of applications in physics, signal processing
and applied mathematics in the last few years. In order to get a feeling for it
and to understand its success, let us consider first the case of one-dimensional
signals.

It is a fact that most real life signals are nonstationary and usually cover a
wide range of frequencies. They often contain transient components, whose
apparition and disparition are physically very significant. In addition, there is
frequently a direct correlation between the characteristic frequency of a given
segment of the signal and the time duration of that segment. Low frequency
pieces tend to last a long interval, whereas high frequencies occur in general
for a short moment only. Human speech signals are typical in this respect:
vowels have a relatively low mean frequency and last quite long, whereas
consonants contain a wide spectrum, up to very high frequencies, especially
in the attack, but they are very short.

Clearly standard Fourier analysis is inadequate for treating such signals,
since it loses all information about the time localization of a given frequency
component. In addition, it is very uneconomical: when the signal is almost
flat, i.e. uninteresting, one still has to sum an infinite alternating series for
reproducing it. Worse yet, Fourier analysis is highly unstable with respect to
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perturbation, because of its global character. For instance, if one adds an
extra term, with a very small amplitude, to a linear superposition of sine
waves, the signal will barely be modified, but the Fourier spectrum will be
completely perturbed. This does not happen if the signal is represented in
terms of localized components.

For all these reasons, signal analysts turn to time-frequency (TF) represen-
tations. The idea is that one needs two parameters: one, called @, characterizes
the frequency, the other one, b, indicates the position in the signal. This
concept of a TF representation is in fact quite old and familiar. The most
obvious example is simply a musical score!

If one requires in addition the transform to be linear, a general TF trans-
form will take the form:

s(x) +— S(a, b) = /_OO Y (x) s(x) dx, (1.1)

where s is the signal and v, the analysing function. Within this class, two TF
transforms stand out as particularly simple and efficient: the Windowed or
Short Time Fourier Transform (WFT) and the Wavelet Transform (WT).
For both of them, the analysing function v, is obtained by acting on a basic
(or mother) function ¥, in particular b is simply a time translation. The
essential difference between the two is in the way the frequency parameter
a is introduced.

(1) Windowed Fourier Transform:

Vap(x) = &/ y(x = b). (1.2)

Here ¢ is a window function and the a-dependence is a modulation (1/a ~
frequency); the window has constant width, but the lower a, the larger the
number of oscillations in the window (see Figure 1.1 (left))

(2) Wavelet transform:

1 x—>b
wab(x):%w< a > (13)

The action of a on the function ¢ (which must be oscillating, see below) is a
dilation (¢ > 1) or a contraction (a < 1): the shape of the function is
unchanged, it is simply spread out or squeezed (see Figure 1.1 (right)).

The WFT transform was originally introduced by Gabor (actually in a dis-
cretized version), with the window function i taken as a Gaussian; for this
reason, it i1s sometimes called the Gabor transform. With this choice, the
function v, is simply a canonical (harmonic oscillator) coherent state [17],
as one sees immediately by writing 1/a = p. Of course this book is concerned
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1/a ~ frequency

p D
high a<l
medium / a=1
low a>1
L L

b b

Fig. 1.1. The function ,,(x) for increasing values of 1/a ~ frequency, in the case of
the Windowed Fourier Transform (left) and the wavelet transform (right).

essentially with the wavelet transform, but the Gabor transform will occa-
sionally creep in, as for instance in Chapter 8.

One should note that the assumption of linearity is nontrivial, for there
exists a whole class of quadratic, or more properly sesquilinear, time-fre-
quency representations. The prototype is the so-called Wigner—Ville trans-
form, introduced originally by E.P. Wigner in quantum mechanics (in 1932!)
and extended by J. Ville to signal analysis:

W.(a, b) = f ¥/ s(b _ g) s(b + g) dx. (1.4)

Further information may be found in [6, 11].
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1.2 The continuous WT

Actually one should distinguish two different versions of the wavelet trans-
form, the continuous WT (CWT) and the discrete (or more properly, discrete
time) WT (DWT) [10,14]. The CWT plays the same role as the Fourier
transform and is mostly used for analysis and feature detection in signals,
whereas the DWT is the analogue of the Discrete Fourier Transform (see for
instance [4] or [29]) and is more appropriate for data compression and signal
reconstruction. The situation may be caricatured by saying that the CWT is
more natural to the physicist, while the DWT is more congenial to the signal
analyst and the numericist. This explains why the CWT will play a major part
in this book.

The two versions of the WT are based on the same transformation for-
mula, which reads, from (1.1) and (1.3):

S(a, by =a '? /oo w(x;b) s(x) dx, (1.5

where a > 0 is a scale parameter and » € R a translation parameter.
Equivalently, in terms of Fourier transforms:

S(a, b) = a'? / h ¥ (aw) 5 (w)e™ do. (1.6)

In these relations, s is a square integrable function (signal analysts would say:
a finite energy signal) and the function ¥, the analysing wavelet, is assumed
to be well localized both in the space (or time) domain and in the frequency
domain. In addition i must satisfy the following admissibility condition,
which guarantees the invertibility of the WT:

/ ¥ (o)) %T < 0. (1.7)

In most cases, this condition may be reduced to the requirement that i has
zero mean (hence it must be oscillating):

/OO W(x) dx = 0. (1.8)

In addition, v is often required to have a certain number of vanishing
moments:

/Ooxnlp(x)dx=0,n:O,l,...,N. (1.9)

—00
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This property improves the efficiency of i at detecting singularities in the
signal, since it is blind to polynomials up to order M.

One should emphasize here that the choice of the normalization factor
a "% in (1.3) or (1.5) is not essential. Actually, one often uses instead a factor
a~! (the so-called L' normalization), and this has the advantage of giving
more weight to the small scales, i.e. the high frequency part (which contains
the singularities of the signal, if any). The choice 2 makes the transform
unitary: ||Y | = ||¥|| and also ||S|| = ||s||, where || - || denotes the L? norm in
the appropriate variables (the squared norm is interpreted as the total energy
of the signal).

Notice that, instead of (1.5), which defines the WT as the scalar product of
the signal s with the transformed wavelet ¥, S(a, b) may also be seen as the
convolution of s with the scaled, flipped and conjugated wavelet

Vu(x) = a ' Y(=x/a) :
S(a, b) = (¢, * s)(b) = / ~ V(b — x) s(x) dx. (1.10)

In other words, the CWT acts as a filter with a function of zero mean.

This property is crucial, for the main virtues of the CWT follow from it,
combined with the support properties of . Indeed, if we assume v and 17; to
be as well localized as possible (but respecting the Fourier uncertainty prin-
ciple), then so are the transformed wavelets v, and fp\ab. Therefore, the WT
st— S performs a local filtering, both in time (b) and in scale (a). The trans-
form S(a, b) is nonnegligible only when the wavelet v, matches the signal,
that is, the WT selects the part of the signal, if any, that lives around the time
b and the scale a.

In addition, if 1} has an essential support (bandwidth) of width €2, then lﬁab
has an essential support of width /a. Thus, remembering that 1/a behaves
like a frequency, we conclude that the WT works at constant relative band-
width, that is, Aw/w = constant. This implies that it is very efficient at high
frequency, i.e. small scales, in particular for the detection of singularities in
the signal. By comparison, in the case of the Gabor transform, the support of
1//761,, keeps the same width Q@ for all a, that is, the WFT works at constant
bandwidth, Aw = constant. This difference in behaviour is often the key
factor in deciding whether one should choose the WFT or the WT in a
given physical problem (see for instance Chapter 8).

Another crucial fact is that the transformation s(x)i—S(a,b) may be
inverted exactly, which yields a reconstruction formula (this is only the
simplest one, others are possible, for instance using different wavelets for
the decomposition and the reconstruction):
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o) lo/e) d
s(x) = ¢! [_ db /0 a—f Vop(0)S(a, b), (1.11)

where ¢, is a normalization constant. This means that the WT provides a
decomposition of the signal as a linear superposition of the wavelets v, with
coefficients S(a, b). Notice that the natural measure on the parameter space
(a, b) is dadb/d?, and it is invariant not only under time translation, but also
under dilation. This fact is important, for it suggests that these geometric
transformations play an essential role in the CWT. This aspect will be dis-
cussed thoroughly in Chapter 2.

All this concerns the continuous WT (CWT). But, in practice, for numer-
ical purposes, the transform must be discretized, by restricting the parameters
a and b in (1.5) to the points of a lattice, typically a dyadic one:

Sy =27"* / v(Q7x —k)s(x)dx, j keZ. (1.12)

Then the reconstruction formula (1.11) becomes simply

S =D Sik Yra), (1.13)

jkeZ

where the function @; may be explicitly constructed from v; ;. In this way,
one arrives at the theory of frames or nonorthogonal expansions [9, 10],
which offer a good substitute to orthonormal bases. Very general functions
Y satisfying the admissibility condition (1.7) described above will yield a
good frame, but not an orthonormal basis, since the functions
Y e(x) = 212y(2/x —k),j, k € Z} are in general not orthogonal to each
other!

Yet orthonormal bases of wavelets can be constructed, but by a totally
different approach, based on the concept of multiresolution analysis. We
emphasize that the discretized version of the CWT just described is totally
different in spirit and method from the genuine DWT, to which we now turn.
The full story may be found in [10], for instance.

1.3 The discrete WT: orthonormal bases of wavelets

One of the successes of the WT was the discovery that it is possible to
construct functions y for which {y;,/, k € Z} is indeed an orthonormal
basis of L*(R).
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In addition, such a basis still has the good properties of wavelets, including
space and frequency localization. Moreover, it yields fast algorithms, and this
is the key to the usefulness of wavelets in many applications

The construction is based on two facts: first, almost all examples of ortho-
normal bases of wavelets can be derived from a multiresolution analysis, and
then the whole construction may be transcribed into the language of digital
filters, familiar in the signal processing literature.

A multiresolution analysis of L*(R) is an increasing sequence of closed
subspaces

.cVL,cV ,,cVycV,chc..., (1.14)

with ﬂ = {0} and UJ cz V;densein L*(R) (loosely speaking, this means
lim;_, o V L (R)), and such that

(D) f(x) e V; & f(2x) € Vi
(2) there exists a function ¢ € V,, called a scaling function, such that the family
{¢p(x — k), k € Z} is an orthonormal basis of V.

Combining conditions (1) and (2), one gets an orthonormal basis of V,
namely {¢; ;(x) = V2P x — k), k € Z}. Note that we may take for ¢ a real
function, since we are dealing with signals.

Each V; can be interpreted as an approximation space: the approximation
of f e L2(IR) at the resolution 27 is defined by its projection onto V;, and the
larger j, the finer the resolution obtained. Then condition (1) means that no
scale is privileged. The additional details needed for increasing the resolution
from 27 to 27U*D are given by the projection of f onto the orthogonal

complement W, of V; in V;,

Vie W; =V, (1.15)
and we have:

’® =g w, (1.16)

jeZ

Equivalently, fixing some lowest resolution level j,, one may write

PR =V, ® (EB W,) (1.17)
JZJo

Then the theory asserts the existence of a function , called the mother

wavelet, explicitly computable from ¢, such that {y; (x) = 2/ 21//(2f x —k),

j, k € Z) constitutes an orthonormal basis of L*(R): these are the orthonormal

wavelets.
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The construction of i proceeds as follows. First, the inclusion V, C V;
yields the relation (called the scaling or refining equation):

¢ =2 Y hpQx—n),  hy =10, (1.18)

n=—00

Taking Fourier transforms, this gives

B(w) = my(w/2)P(w/2), (1.19)
where
mo(w) = %:w e (1.20)

is a 2m-periodic function. Iterating (1.19), one gets the scaling function as the
(convergent!) infinite product

Pw) = 2m) T | me27w). (1.21)
j=1
Then one defines the function ¢ € W, C V| by the relation
V() = ¢ my(w/2+7) §(w/2), (1.22)
or, equivalently
Y =v2 Y (=" hoig(2x — ), (1.23)

and proves that the function ¥ indeed generates an orthonormal basis with
all the required properties.

Various additional conditions may be imposed on the function v (hence on
the basis wavelets): arbitrary regularity, several vanishing moments (in any
case, ¥ has always mean zero), symmetry, fast decrease at infinity, even
compact support. The technique consists in translating the multiresolution
structure into the language of digital filters. Actually this means nothing
more than expanding (filter) functions in a Fourier series. For instance,
(1.19) means that my(w) is a filter (multiplication operator in frequency
space), with filter coefficients /,. Similarly, (1.22) may be written in terms
of the filter m(w) = " my(w + 7). (Notice that this particular relation
between my, m;, together with the identity |mo(a))|2 + |m1(a))|2 =1, define
what electrical engineers call a Quadrature Mirror Filter or QMF.) Then
the various restrictions imposed on  translate into suitable constraints on
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the filter coefficients £,,. For instance, ¥ has compact support if only finitely
many /£, differ from zero.

The simplest example of this construction is the Haar basis, which comes
from the scaling function ¢(x) = 1 for 0 < x < 1 and 0 otherwise. Similarly,
various spline bases may be obtained along the same line. Other explicit
examples may be found in [5] or [10].

In practical applications, the (sampled) signal is taken in some V,, and
then the decomposition (1.17) is replaced by the finite representation

J-1
V=V, ® (EB Wj> (1.24)

J=o

Figure 1.2 shows an example (obtained with the MATLAB Wavelet Toolbox
[3]) of a decomposition of order 5, namely

VO = V_5 @ W_5 @ W_4 @ W_3 @ W_2 @ W—l' (125)

As we just saw, appropriate filters generate orthonormal wavelet bases.
However, this result turns out to be too rigid and various generalizations
have been proposed (see [25] for details).

(1) Biorthogonal wavelet bases:
As we mentioned in Section 1.2, the wavelet used in the CWT for reconstruc-
tion need not be the same as that used for decomposition, the two have only to
satisfy a cross-compatibility condition. The same idea in the discrete case leads
to biorthogonal bases, i.e. one has two hierarchies of approximation spaces, V;
and V;, with cross-orthogonality relations. This gives a better control, for
instance, on the regularity or decrease properties of the wavelets.
(1) Wavelet packets and the best basis algorithm:
The construction of orthonormal wavelet bases leads to a special subband
coding scheme, rather asymmetrical: each approximation space V; gets further
decomposed into V;_; and W;_;, whereas the detail space W; is left unmodified.
Thus more flexible subband schemes have been considered, called wavelet pack-
ets; they provide rich libraries of orthonormal bases, and also strategies for
determining the optimal basis in a given situation [7, 32].
(iii) The lifting scheme:
One can go one step beyond, and abandon the regular dyadic scheme and the
Fourier transform altogether. The resulting method leads to the so-called sec-
ond-generation wavelets [31], which are essentially custom-designed for any
given problem.
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Decomposition at level 5: s=a5+d5+d4 +d3 +d2 +d1 .
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Fig. 1.2. A decomposition of order 5. The signal s lives in V), and it is decomposed
into its approximation as € V_s and the increasingly finer details d; € W_,
j=543,2,1.

1.4 The wavelet transform in more than one dimension

Wavelet analysis may be extended to 2-D signals, that is, in image analysis.
This extension was pioneered by Mallat [19, 20], who developed systemati-
cally a 2-D discrete (but redundant) WT. This generalization is indeed a very
natural one, if one realizes that the whole idea of multiresolution analysis lies
at the heart of human vision. In fact, most of the concepts are indeed already
present in the pioneering work of Marr [22] on vision modelling. As in 1-D,
this discrete WT has a close relationship with numerical filters and related
techniques of signal analysis, such as subband coding. It has been applied
successfully to several standard problems of image processing. As a matter of
fact, all the approaches that we have mentioned above in the 1-D case have
been extended to 2-D: orthonormal bases, biorthogonal bases, wavelet pack-
ets, lifting scheme. These topics will be discussed in detail in Chapter 2.
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However, the continuous transform may also be extended to 2 (or more)
dimensions, with exactly the same properties as in the 1-D case [2, 26]. Here
again the mechanism of the WT is easily understood from its very definition
as a convolution (in the sense of (1.10)):

S(a, 6, b) ~ / XY@ r G —b)s(X), a>0,0<80<2mbeR (1.26)

where s is the signal and v is the analysing wavelet, which is translated by 5,
dilated by a and rotated by an angle 6 (r_, is the rotation operator). Since the
wavelet ¥ is required to have zero mean, we have again a filtering effect, i.e.
the analysis is local in all four parameters a, 6, b, and here too it is particu-
larly efficient at detecting discontinuities in images.

Surprisingly, most applications have treated the 2-D WT as a ‘mathema-
tical microscope’, like in 1-D, thus ignoring directions. This is particularly
true for the discrete version. There, indeed, a 2-D multiresolution is simply
the tensor product of two 1-D schemes, one for the horizontal direction and
one for the vertical direction (in technical terms, one uses only separable
filters). However the 2-D continuous WT, including the orientation parameter
0, may be used for detecting oriented features of the signal, that is, regions
where the amplitude is regular along one direction and has a sharp variation
along the perpendicular direction, for instance, in the classical problem of
edge detection. The CWT is a very efficient tool in this respect, provided one
uses a wavelet which has itself an intrinsic orientation (for instance, it con-
tains a plane wave). For this reason, a large part of Chapter 2 will be devoted
to the continuous WT and its applications.

For further extensions of the CWT, it is crucial to note that the 2-D
version comes directly from group representation theory, the group in this
case being the so-called similitude group of the plane, consisting of transla-
tions, rotations and global dilations [26]. Note that the 1-D CWT may also be
derived from group theory [10], in that case from the so-called ‘ax + b’ group
of dilations and translations of the line.

What we have here is in fact a general pattern. Consider the class of finite
energy signals living on a manifold Y, i.e. s € L*(Y, dn) = H. For instance,
Y could be space R”, the 2-sphere S, space-time R x R or R? x R, etc.
Suppose there is a group G of transformations acting on Y, that contains
dilations of some kind. As usual, this action will be expressed by a unitary
representation U of G in the space H of signals. Then, under a simple tech-
nical assumption on U (‘square integrability’), a wavelet analysis on Y,
adapted to the symmetry group G, may be constructed, following the general
construction of coherent states on Y associated to G [1]. This technique has
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been implemented successfully for extending the CWT to higher dimensions
(in 3-D, for instance, one gets a tool for target tracking), the 2-sphere (a tool
most wanted by geophysicists) or to space-time (time-dependent signals or
images, such as TV or video sequences), including relativistic effects (using
wavelets associated to the affine Galilei or Poincaré group). This general
approach will be described with all the necessary mathematical details in
Chapter 2.

It is interesting to remark that the CWT was in fact designed by physicists.
The idea of deriving it from group theory is entirely natural in the framework
of coherent states [1, 17], and the connection was made explicitly from the
very beginning [12, 13]. In a sense, the CWT consists in the application of
ideas from quantum physics to signal and image processing. The resulting
effect of cross-fertilization may be one of the reasons of its richness and its
success.

1.5 Outcome

As a general conclusion, it is fair to say that the wavelet techniques have
become an established tool in signal and image processing, both in their
CWT and DWT incarnations and their generalizations. They are being incor-
porated as a new tool in many reference books and software codes. They
have distinct advantages over concurrent methods by their adaptive charac-
ter, manifested for instance in their good performances in pattern recognition
or directional filtering (in the case of the CWT), and by their very economical
aspect, achieved in impressive compression rates (in the case of the DWT).
This is especially useful in image processing, where huge amount of data,
mostly redundant, have to be stored and transmitted.

As a consequence, they have found applications in many branches of
physics, such as acoustics, spectroscopy, geophysics, astrophysics, fluid
mechanics (turbulence), medical imagery, atomic physics (laser—atom inter-
action), solid state physics (structure calculations), .... Some of these
results will be reviewed in the subsequent chapters. For additional informa-
tion, see [24].

Thus we may safely bet that wavelets are here to stay, and that they have a
bright future. Of course wavelets don’t solve every difficulty, and must be
continually developed and enriched, as has been the case over the last few
years. In particular, one should expect a proliferation of specialized wavelets,
each dedicated to a particular type of problem, and an increasingly diverse
spectrum of physical applications. This trend is only natural, it follows from
the very structure of the wavelet transform — and in that respect the wavelet
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philosophy is exactly opposite to that of the Fourier transform, which is
usually seen as a universal tool.

Finally a word about references. The literature on wavelet analysis is
growing exponentially, so that some guidance may be helpful. As a first
contact, an introductory article such as [29] may be a good suggestion, fol-
lowed by the the popular, but highly successful book of Burke Hubbard [4].
Slightly more technical, but still elementary and aimed at a wide audience,
are the books of Meyer [25] and Ogden [27]. While the former is a nice
introduction to the mathematical ideas underlying wavelets, the latter focuses
more on the statistical aspects of data analysis. Note that, since wavelets have
found applications in most branches of physics, pedestrian introductions on
them have been written in the specialized journals of each community (to give
an example, meteorologists will appreciate [18]).

For a survey of the various applications, and a good glimpse of the chron-
ological evolution, there is still no better place to look than the proceedings
of the three large wavelet conferences, Marseille 1987 [8], Marseille 1989 [23]
and Toulouse 1992 [24]. Finally a systematic study requires a textbook.
Among the increasing number of books and special issues of journals appear-
ing on the market, we recommend in particular the volumes of Daubechies
[10], Chui [5], Kaiser [16] and Holschneider [14], the collection of review
articles in [30] and several special issues of IEEE journals [15,28]. In parti-
cular, [3] gives a useful survey of the available software related to wavelets.
Another good choice, complete but accessible to a broad readership, is the
recent textbook of Mallat [21].
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The 2-D wavelet transform, physical applications
and generalizations

J.-P. ANTOINE
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Université Catholique de Louvain, Belgium

Abstract

We begin with a short review of the 2-D continuous wavelet transform
(CWT) and describe a number of physical applications. Then we discuss
briefly the mathematical background, namely coherent states derived from
group representations, and we show how it allows a straightforward exten-
sion to more general situations, such as higher dimensions, wavelets on the
sphere or time-dependent wavelets. We conclude with a short outline of the 2-
D discrete wavelet transform, some generalizations and a few physical appli-
cations.

2.1 Introduction

As we have seen in Chapter 1, both the continuous wavelet transform (CWT)
and the discrete wavelet transform (DWT) may be extended to two dimen-
sions. Here also, many applications have been developed, in various branches
of physics and in image processing. As in the 1-D case, the CWT is better
adapted to analysis, for instance the detection of specific features in an image.
This is true, in particular, for oriented features, if one uses a wavelet which is
directionally selective. On the other hand, the strong point of the DWT is
data compression, notably in transmitting or reconstructing a 2-D signal after
processing (e.g. denoising).

We will spend most of the present chapter discussing the 2-D CWT, for
two reasons. First, it admits a number of interesting physical applications,
that we will describe in Section 2.3. The second motivation is that its math-
ematical background, namely group representation theory (Section 2.4), sug-
gests a straightforward extension to more general situations, such as wavelets
in higher dimensions, or on manifolds (a sphere, for instance), or time-
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dependent wavelets, a promising tool for motion tracking (Section 2.5). We
will also discuss the DWT in 2 dimensions (Section 2.6), but our analysis will
be rather brief, because a full treatment requires the language and techniques
of signal processing (filter theory), which are in general more familiar to
electrical engineers than to physicists. Moreover, the 2-D DWT is mostly
used in image processing, which is not the main thrust of the present book.

2.2 The continuous WT in two dimensions
2.2.1 Construction and main properties of the 2-D CWT

We begin by reviewing briefly the basic properties of the CWT in 2 dimen-
sions, which are completely analogous to those discussed in Chapter 1 for the
1-D case (a detailed mathematical discussion is given in Section 2.4).

We consider 2-D signals of finite energy, represented by complex-valued,
square integrable functions s € L*(R?, @*%). This condition may be relaxed,
to allow, for instance, a plane wave or a § function. In practice, a black and
white image will be represented by a bounded non-negative function:
0<s(X)<M, V¥ € R* (M > 0), the discrete values of s(¥) corresponding to
the level of gray of each pixel.

Given a signal s € L*(R?, d°X), we may transform it by translation, rota-
tion and global dilation [70]. This gives, in position and momentum (or
spatial frequency) space, respectively:

5,4 5(X) = als ailr,9<)? - 5)) (2.1
SHR) = ae PR (ar_y(k), 2.2)

In these relations, b € R? is the translation parameter, ¢ > 0 the dilation, and
r_g(0 < 6 < 2m) denotes the familiar 2 x 2 rotation matrix. As usual, the hat
denotes a 2-D Fourier transform [27]. Clearly, the correspondence s1— 8.0
is a unitary map.

By definition, a wavelet is a complex-valued function ¥ € L*(R?, d*X) satis-
fying the admissibility condition

&’k ~ -
= 2 2 - 2 . 2
¢y = (2m) /|k|2|w(k>| <00 23)

If v is regular enough (¥ € L'(R?) N L*(R?) suffices), the admissibility con-
dition simply means that the wavelet has zero mean:
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Y0)=0 / Y(F) d°% = 0. (2.4)

Clearly the map si— s 0.5 Preserves the admissibility condition (2.3). Hence
any function ¢ _, obtalned from a wavelet i by translation, rotation or
dilation is again d wavelet. Thus the given wavelet Y generates the whole
family {y 0F (a>0,60¢€]0,2n), be IR2)} It is easily seen that the linear span
of this famlly is dense in L*(R?). In the sequel we will denote by G this 4-
dimensional parameter space.

As we will see in Section 2.4, the whole construction has a group-theore-
tical backbone. The parameter space G is in fact the so-called similitude group
of the plane, composed precisely of translations, rotations and dilations, and
the 2-D CWT may be derived from a unitary representation of it.

Given a signal s € L*(R%), its CWT with respect to the wavelet y is:

S(a,0,b) = (W, 508 =a! / W@ r_g(x — b)) s(¥) d°% (2.5)
—a / Pk Gar_y(0) TK) d*k. (2.6)

The properties of the wavelet transform are best expressed in terms of the
map W, : SI—)C]/_II/ ’S. They may be summarized as follows [6, 69, 70].

e W, is linear, contrary, for instance, to the Wigner—Ville transform, which is
bilinear.

e W, is covariant under translations, dilations and rotations.

[ ] lef conserves norms.

/// dadedzb 1S(a, 6, b)|* = /dzx s(%))?, 2.7)

. Wy is an isometry from the space of signals into the space of transforms,
Wthh is a closed subspace of L*(G, dg), where dg = a3dadéd®b is the natural
measure on G.
e As a consequence, the map W), is invertible on its range, and the inverse trans-
formation is simply the adjoint of W,,. This means that the signal s(X) may be
reconstructed exactly from its transform S(a, 6, b)

L d - R -
s(X) = ¢! / f / a—?d@dzb ¥, 4 5(%) S(a,6,b). (2.8)

In other words, the 2-D wavelet transform provides a decomposition of the signal
in terms of the analysing wavelets 1//0’9’5 , with coefficients S(a, 0, l;). As in 1-D
[54], one can also reconstruct the signal by resumming only over scales and angles
(provided the analysing wavelet satisfies a slightly stronger admissibility condi-
tion):
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s(X) ~ /[ d—zdé S(a, 0, X). 2.9
a

e The projection from L? (G, dg) onto the range of W, the space of wavelet trans-
forms, is an integral operator whose kernel K(d', 6, b'|a, 6, b) is the autocorrela-
tion function of v, also called reproducing kernel:

K(d.0.81a.0.b) = c;' (W, 51V, 5 (2.10)

Therefore, a function f € Lz(G, dg) is the wavelet transform of a certain signal iff
it verifies the reproduction property:

£d.,0,b) = / f / d—fdedzé K(d,0,ba,0,b)f(a,6,b). @2.11)
a

2.2.2 Interpretation of the CWT as a singularity scanner

In order to get a physical interpretation of the CWT, we notice that in signal
analysis, as in classical electromagnetism, the L> norm is interpreted as the
total energy of the signal. Therefore, the relation (2.7) suggests to interpret
|S(a, 6, b)| as the energy density in the wavelet parameter space.

Assume now, as in 1-D, that the wavelet v is fegrly well localized both in
position space (X) and in spatial frequency space (k). Then so does the trans-
formed wavelet ¥, 0.5 with effective support suitably translated by b, rotated
by 0 and dilated by a. Because (2.5) is essentially a convolution with a func-
tion ¥ of zero mean, the transform S(a, 0, b) is appreciable only in those
regions of parameter space (a, 6, b) where the signal is: we get an appreciable
value of S only where the wavelet i, - ‘matches’ the features of the signal s.
In other words, the CWT acts on a 31gnal as a local filter in all 4 variables
a, 0, b: S(a, 0, b) ‘sees’ only that portion of the signal that ‘lives” around a, 6, b
and filters out the rest. Therefore, if the wavelet is well localized, the energy
density of the transform will be concentrated on the significant parts of the
signal. This is the key to all the approximation schemes that make wavelets
such an efficient tool.

Let us make more precise the support properties of ¥. Assume y and {p\ to
be as well localized as possible (compatible with the Fourier uncertainty
property), that is, ¥ has for essential support (i.e. the region outside of
which the function is numerically negligible) a ‘disk’ of diameter 7', centred
around 0 while 1// has for essential support a ‘disk’ of dlameter Q, centred
around k Then, for the transformed wavelets wa’ i and w - we have,
respectively:

. €SS supp wa,e,b” is a ‘disk’ of diameter ~ aT around I;, rotated by ry;
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. €8S supp @ o 18 a ‘disk’ of diameter >~ Q/a around Iga /a, rotated by r,.

Notice that the product of the two diameters is constant. Thus the wavelet
analysis operates at constant relative bandwidth, Ak/k = const,
where k = |k|. Therefore, the analysis is most efficient at high frequencies
or small scales, and so it is particularly apt at detecting discontinuities in
images, either point singularities (contours, corners) or directional features
(edges, segments).

In addition to its localization properties, the wavelet v is often required to
have a certain number of vanishing moments. This condition determines the
capacity of the WT to detect singularities. Indeed, if ¢ has all its moments
vanishing up to order n > 1 (by the admissibility condition (2.4), the moment
of order 0 must always vanish),

fX“y YR d*X =0, 0<a+p<n, (2.12)

then the WT is blind to polynomials of degree up to #n, that is, the smoother
part of the signal. Equivalently, it detects singularities down to the (n 4 1)th
derivative of the signal.

All together, as in the 1-D case, the 2-D wavelet transform may be inter-
preted as a mathematical, direction selective, microscope, with optics 1,
magnification 1/a and orientation tuning parameter 6 [19]. Two features
must be emphasized here: the magnification 1/a is global, independently of
the direction, and there is the additional property of directivity, given by the
rotation angle 6.

2.2.3 Practical implementation: the various representations

The first problem one faces in practice is that of visualization. Indeed
S(a,0,b) 1s a function of four variables: two position variables
b = (b, b,) € R*, and the pair (,6) € R} x [(0,27) = R\ {0}.

In the 1-D case [37, 61], a~! defines the frequency scale, thus the full
parameter space of the 1-D WT, the time-scale half plane, is in fact a
phase space, in the sense of Hamiltonian mechanics (for a 1-D mechanical
system, the phase space is the time-frequency plane, or the position-momen-
tum plane, with canonical coordinates (g, p)). Exactly the same situation
prevails in 2-D: the pair (¢ ',6) plays the role of spatial frequency (or
momentum), expressed in polar coordinates, and so the full 4-dimensional
parameter space of the 2-D WT may be interpreted as a phase space. This
interpretation, which actually extends to higher dimensions (see Section
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2.5.1), is borne out by mathematical analysis, using the group-theoretical
framework discussed in Section 2.4 (one computes the coadjoint orbits of
the similitude group) [4, 9].

Now, to compute and visualize the full CWT in all four variables is hardly
possible. Therefore, in order to obtain a manageable tool, some of the vari-
ables, a, 6, b, by must be fixed. In other words, one must restrict oneself to a
section of the parameter space. There are six possible choices of two-dimen-
sional sections, but the geometrical considerations made above indicate that
two of them are more natural: either (a, 6) or (b, b,) are fixed, and the WT is
treated as a function of the two remaining variables. The corresponding
representations have the following characteristics [4].

(1) The position or aspect-angle representation: a and 0 are fixed and the CWT is
considered as a function of position b alone (this amounts to taking a set of
snapshots, one for each value of (a, 0)). Alternatively, one may use polar coor-
dinates, in which case the variables are interpreted as range |5| and perception
angle «, a familiar representation of images.

(2) The scale-angle representation: for fixed l;, the CWT is considered as a function
of scale a and anisotropy angle 6, i.e. of spatial frequency. In other words, one
looks at the full CWT as through a keyhole located at l;, and observes all scales
and all directions at once.

The position representation is the standard one, and it is useful for the
general purposes of image processing: detection of position, shape and con-
tours of objects; pattern recognition; image filtering by resynthesis after elim-
ination of unwanted features (for instance, noise). The scale-angle
representation will be particularly interesting whenever scaling behaviour
(as in fractals) or angular selection is important, in particular when direc-
tional wavelets are used. In fact, both representations are needed for a full
understanding of the properties of the CWT in all four variables. And both
will be seen at work in the various applications described in Section 2.3.

For the numerical evaluation, in particular for exploiting the reconstruc-
tion formula (2.8), one has to discretize the WT. In either representation, a
systematic use of the FFT algorithm will lead to a numerical complexity of
3N;N,log(N{N,), where Ny, N, denote the number of sampling points in the
variables (b, b,) or (a, 0). In the former case, the geometry is Cartesian and a
square lattice will give an adequate sampling grid. In the latter, the repre-
sentation is in polar coordinates, and the discretization must naturally be
logarithmic in the scale variable ¢ and linear in the anisotropy angle 6.

In addition to these two familiar representations, there are four other two-
dimensional sections, obtained by fixing two of the four variables (a, 6, |b|, @),
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and analysing the CWT as a function of the remaining two. Among these, the
angle-angle representation might be useful for applications [8]. Here one fixes
the range |b| and the scale a and considers the CWT at all perception angles «
and all anisotropy angles 6. This case is particularly interesting, because the
parameter space is now compact (it is a torus) and the discretization easy
(linear) in both variables.

One may also consider three-dimensional sections, for which a single vari-
able is fixed. Suppose, for instance, the anisotropy angle is fixed, or that it is
irrelevant, because the wavelet is rotation invariant. Then the transform is a
function of position and scale. This representation is optimal for detecting
the presence of coherent structures, that is, structures that survive through a
whole range of scales. Examples may be found, for instance, in astrophysics
(hierarchical structure of galaxy clusters and superclusters) [77] or in the
analysis of turbulence in fluid dynamics [47, 48]. Further information on
these two topics will be found in Chapters 3 and 4, respectively.

2.2.4 Choice of the analysing wavelet

The next step is to choose an analysing wavelet 1. At this point, there are two
possibilities, depending on the problem at hand, namely isotropic or direc-
tional wavelets.

(1) Isotropic wavelets:
If one wants to perform a pointwise analysis, that is, when no oriented features
are present or relevant in the signal, one may choose an analysing wavelet ¥
which is invariant under rotation. Then the 6 dependence drops out, for
instance, in the reconstruction formula (2.8). A typical example is the isotropic
2-D Mexican hat wavelet.

(ii) Anisotropic wavelets:
When the aim is to detect directional features in an image, for instance to
perform directional filtering, one has to use a wavelet which is not rotation
invariant. The best angular selectivity will be obtained if v is directional,
which means that its (essential) support in spatial frequency space is contained
in a convex cone with apex at the origin. Typical directional wavelets are the
2-D Morlet wavelet or the Cauchy wavelets.

Let us examine in more detail some examples of wavelets of each kind.

2.2.4.1 Isotropic wavelets

The 2-D Mexican hat or Marr wavelet: In its isotropic version, this is simply
the Laplacian of a Gaussian:
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V(%) = (2 — I3 exp(—3I3X1%) = —A exp(—1%[%). (2.13)

This is a real, rotation invariant wavelet, originally introduced in [64]. There
exists also an anisotropic version, obtained by replacing in (2.13) X by AX,
where A is an anisotropy matrix. However, this wavelet still acts as a second
order operator and detects singularities in all directions and it is of little use
in practice. Hence the Mexican hat will be efficient for a fine pointwise
analysis, but not for detecting directions. On the other hand, one may also
use higher order Laplacians of the Gaussian,

PI(R) = (—A)" exp(—L7). (2.14)

For increasing n, these wavelets have more and more vanishing moments,
and are thus sensitive to increasingly sharper details. An interesting tech-
nique, pioneered in 1-D by A. Arnéodo et al. [20], is to analyse the same
signal with several wavelets ¥, for different n. The features common to all
the transforms surely belong to the signal, they are not artefacts of the
analysis.

Difference wavelets: Many other wavelets (or filters) have been proposed in
the literature, often designed for a specific problem. An interesting class
consists of wavelets obtained as the difference of two positive functions,
for instance a single function /# and a contracted version of the latter. If &
is a smooth non-negative function, integrable and square integrable, with all
moments of order one vanishing at the origin, then the function ¥ given by
the relation :

VE) =a 2 he ') —hF) O<a<l) (2.15)

is easily seen to be a wavelet satisfying the admissibility condition (2.4). Such
difference wavelets have the additional advantage that they lead to interest-
ing and fast algorithms [46]. We will come back to this point in Section
2.2.54.

A typical example is the ‘Difference-of-Gaussians’ or DOG wavelet,
obtained by taking for /& a Gaussian

Yo (®) = a2 e W _ 2 (0 g < 1), (2.16)

The DOG filter is a good substitute for the Mexican hat (for ' = 1.6, their
shapes are extremely similar), frequently used in psychophysics works [39,
41]. Notice that 4, and thus also i, need not be isotropic.
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2.2.4.2 Directional wavelets

If one wants to detect oriented features (segments, edges, vector field,. ..), one
needs a wavelet which is directionally selective. To be precise, we will say that
a glven wavelet ¥ is directional if the effective support of its Fourier trans-
form 1/r is contained in a convex cone in spatial frequency space {k} with apex
at the origin, or a finite union of disjoint such cones (in that case, one will
usually call  multidirectional). A review of directional wavelets and their use
may be found in [11].

This definition may require a word of justification. According to (2.6), the
wavelet acts as a filter in k-space (multiplication by the function fp\ ). Suppose
the signal s(X) is strongly oriented, for instance a long segment along the x-
axis. Then its Fourier transform (k) is a long segment along the k,-axis. In
order to detect such a signal, with a good directional selectivity, one needs a
wavelet ¥ supported in a narrow cone in k-space. Then the WT is negligible
unless 1’/; (k) is essentially aligned onto §(k): directional selectivity demands to
restrict the support of 1’/;, not . The corresponding standard practice in
signal processing is to design an adequate filter in the frequency domain
(high pass, band pass, ...). In addition, there are cases (magnetic resonance
imaging, for instance) where data are acquired in k-space (then called the
measurement space) and the image space is obtained after a FT: here again
directional filtering takes place in k-space.

According to this definition, the anisotropic Mexican hat is not directional,
since the support of 1’/7,, is centred at the origin, no matter how big its aniso-
tropy is; and, indeed, detailed tests confirm its poor performances in selecting
directions [4].

The 2-D Morlet wavelet: This is the prototype of a directional wavelet:
Yu(F) = explik, - %) exp(— 41 AF), (2.17)
(k) = Ve exp(= 5147 (k — k,)I). (2.18)

The parameter lgo is the wave vector, and A = diagle /%, 1],e>1,isa2 x 2
anisotropy matrix. As in 1-D, we should add a correction term to (2.17) and
(18) to enforce the admissibility condition IEM(O) = 0. However, since it is
numerically negligible for |k,| > 5.6, we have dropped it altogether. The
modulus of the (truncated) wavelet v, is a Gaussian, elongated in the x
direction if € > 1, and its phase is constant along the direction orthogonal
to k,. Thus the wavelet ¥,, smoothes the signal in all directions, but detects
the sharp transitions in the direction perpendicular to k,. In Fourier space,
the effective support of the function 1//;M is an ellipse centred at k, and elon-
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gated in the k, direction, thus contained in a convex cone, that becomﬁes
narrower as € increases. Hence the angular selectivity increases with |k,|
and with the anisotropy € and the best selectivity will be obtained by taking
k, parallel to the long axis of the ellipse, that is, k, = (0, k,). The function @M
with € = 5, is shown (in perspective and in level curves) in Figure 2.1 (left).

Cauchy wavelets: In order to achieve a genuinely oriented wavelet, it suffices
to consider a smooth function wc(k) with support in a strictly convex cone C
in spatial frequency space, with apex at the origin, and behaving inside C as
P(ky, ky)e™ ki with 7 € C, or P(k,, ky)e” e , where P(.) denotes a polynomial
in two Varlables A typical example is the famlly of Cauchy wavelets, that we
now describe.

For simplicity, we consider a cone symmetric with respect to the positive
k-axis, namely C = C(—au, @) = {k eR| —a< argk < a}, the convex cone
determined by the unit vectors e_a, e,. The dual cone, also convex, is
C(—a, &) = {keR2|k k/>0 VK € C(—a, @)}, where G =-—a+m/2. and
therefore e_, - €; = €, - é_5 = 0. Given the fixed vector 77 = (n,0),n > 0, we
define the Cauchy wavelet in spatial frequency variables [9, 11, 13]:

790 = | -8 (ke kR e Cl—a, ) (2.19)
" 0, otherwise.

The Cauchy wavelet xlrﬁ )(k) is strictly supported in the cone C(—«, «) and the
parameters /, m € N* give the number of vanishing moments on the edges of
the cone. An explicit calculation yields the following result:

YOF) = const. (Z-&,) " (F-é_) ", (2.20)

where we have introduced the complex varlable I=X+ineR+ iC. We
show in Figure 2.1 (right) the wavelet W44 (k) for C = C(—10°,10°); this is
manifestly a highly directional filter.

The construction generalizes in a stralghtforward way to any convex cone
C(a, B) [9, 11, 13]. In addition, if one lets 7 vary in the dual cone C(,B a), then
the wavelet wlm)(x) is the boundary value of a function 1//551) (z), holomorphic
in the tube IR2 + iC. This follows from general theorems [78, 79], since the
function w,m(k) has support in the convex cone C = C(«, ) and is of fast
decrease at infinity.

Note also that other wavelets, although not directional in the sense of the
above definition, may have some capabilities of directional filtering. Such are,
for instance, the gradient wavelets 9, exp(—|X|*) or 0,0y, exp(—|%|°). The latter,
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Fig. 2.1. Two 2-D directional Wavelets (Left) The Morlet wavelet (e = 5, k, = 6).
(Right) The Cauchy wavelet I//44 for C = C(—10°,10°). The top row shows the real
part of v in position space, the other two the wavelet tp in spatial frequency space,
in 3-D perspective (centre) and in level curves (bottom). For the Morlet wavelet
(bottom left), the segment represents the vector k,.
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in particular, looks promising for the detection of corners in a contour, as we
will discuss in Section 2.3.1.1.

2.2.5 Evaluation of the performances of the CWT

Given a wavelet, what is its angular and scale selectivity (resolving power)?
What is the minimal sampling grid for the reconstruction formula (2.8) that
guarantees that no information is lost? The answer to both questions resides
in a quantitative knowledge of the properties of the wavelet, that is, the tool
must be calibrated.

To that effect, one takes the WT of particular, standard signals. Three such
tests are useful, and in each case the outcome may be viewed either at fixed
(a, 0) (position representation) or at fixed b (scale-angle representation).

e Point signal: for a snapshot at the wavelet itself, one takes as the signal a delta
function, i.e. one evaluates the impulse response of the filter:

(W, 0518 =a” W@ r_o(=b)). 2.21)

o Reproducing kernel: taking as the signal the wavelet  itself, one obtains the
reproducing kernel K, which measures the correlation length in each variable
a,0,b:

¢y K(a,0.b11,0,0) = (¥, , s1p) =a”' / Wa'r_o(F — b)) Y(3) d°K. (2.22)

e Benchmark signals: for testing particular properties of the wavelet, such as its
ability to detect a discontinuity or its angular selectivity in detecting a particular
direction, one may use appropriate ‘benchmark’ signals.

2.2.5.1 The scale and angle resolving power

Suppose the wavelet ¥ has its effective support in spatial frequency in a
vertical cone of aperture Ag, corresponding to k = (0, k,). The width of w
in the x and y directions is given by 2wy, resp. 2w,:

1 20 1.2\ 1 2:|1/2 [ 27 ]1/2
T U " /
(2.23)

nE
191

Then the wavelet 1/#\ is concentrated in an ellipse of semi-axes w,, w,, and its
radial support is k, —w,, < |k| < k, + w,. Thus the scale width or scale resol-
ving power (SRP) of v is defined as:
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ko +w,

SRP(y) = o
0 y

(2.24)

In the same way, one defines the angular width or angular resolving power
(ARP) by considering the tangents to that ellipse. Then a straightforward

calculation yields:
JkE — w%
ARP(Y) =2cot™ ' ——~ ~ Ag. (2.25)

Wy

For instance, if ¢ is the (truncated) Morlet wavelet (2.17), one obtains:

SRP(Y,,) = % ARP(Y,) = 2cot™ ! \Je(k2 — 1), (2.26)

and, for k, > 1:
ARP(,,) = 2cot™ (k,/€). (2.27)

This last expression coincides with the empirical result of [4]: the angular
sensitivity of ¥,, depends only on the product &, /€. Notice also that the SRP
is independent of the anisotropy factor .

If ¢ is the Cauchy wavelet (2.19) with support in the cone C(—«, «), the
ARP is simply the opening angle 2« of the supporting cone.

2.2.5.2 The reproducing kernel and the resolving power of the wavelet

A natural way of testing the correlation length of the wavelet is to analyse
systematically its reproducing kernel. Let the effective support of the wavelet
¥ in spatial frequency be, in polar coordinates, Ap and Ag. Then an easy
calculation [9] shows that the effective support of K 1is given by
- (A,o)_l <a < d" = Ap for the scale variable, and —A¢ <0 < Ag
for the angular variable. Thus we may define the wavelet parameters (or
resolving power) Ap, Ay in terms of the parameters Aa, A6 of K, as:

. scale resolving power (SRP):  Ap = Aad = /uy/Anin;
. angular resolving power (ARP): Agp = %A@.

In this way, one may design a wavelet filter bank {Eui’gg (lg)}, which yields a
complete tiling of the spatial frequency plane, in polar coordinates [6, 9].
Clearly this analysis is only possible within the scale-angle representation.
Thus it requires the use of the CWT, and it is outside of the scope of the
DWT, which is essentially limited to a Cartesian geometry (see Section 2.6).
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2.2.5.3 Calibration of a wavelet with benchmark signals

The capacity of the wavelet at detecting a discontinuity may be measured on
the (benchmark) signal consisting of an infinite rod (see [4] for the full dis-
cussion). The result is that both the Mexican hat and the Morlet wavelet are
efficient in this respect.

For testing the angular selectivity of a wavelet, one computes the WT of a
semi-infinite rod, sitting along the positive x-axis, and modelled as usual with
a delta function:

s(X) = 9(x) 8(»), (2.28)

where 9(x) is the step function. Let us take first a Morlet wavelet with € = 5,
oriented at an angle 6, and compute the CWT of s as a function of x. The
result is that v, detects the orientation of the rod with a precision of the
order of 5°. Indeed, for 0 < 5°, the WT is a ‘wall’, increasing smoothly from
0, for x < =5, to its asymptotic value (normalized to 1) for x > 5. Then, for
increasing misorientation 6, the wall gradually collapses, and essentially dis-
appears for 6 > 15°. Only the tip of the rod remains visible, and for large
0 (0 > 45°), it gives a sharp peak.

Essentially the same result is obtained with a Cauchy wavelet supported in
a cone of opening angle ARP = 20°. Conversely, for a fixed misorientation
angle 6 = 20°, the Cauchy wavelet yields the same selectivity for ARP < 20°
(Figure 2.2). On the contrary, the same test performed with an anisotropic
Mexican hat gives a result almost independent of 8. The conclusion is that the
Morlet and the Cauchy wavelets are highly sensitive to orientation, but the
Mexican hat is not.

Let now the signal be a segment. If one uses a Morlet or a Cauchy wavelet
as above, the WT reproduces the segment if the misorientation A¢ between
the signal and the wavelet is smaller than 5°, but the segment becomes essen-
tially invisible for A¢ > 15°, except for the tips (these are point singularities).
In the end, the image of the segment reduces to two peaks corresponding to
the two endpoints. This is exactly the property used crucially in the measure-
ment of the velocity field of a turbulent fluid (see Section 2.3.2.1 below).

One may remark that the precision mentioned here is obtained with the
modulus of the WT. In fact, if the wavelet is complex (like v,,), one may also
exploit the phase of the WT, and it gives a higher precision yet [4]. But this is
practical only on academic signals, real data are in general too noisy and only
the modulus is useful.
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Fig. 2.2. Testing the angular selectivity of the Cauchy wavelet 1?;44 with the semi-
infinite rod signal. The two figures show the modulus of the CWT as a function of X.
(Top) For fixed ARP =20° and various values of the misorientation angle 6.
(Bottom) For a fixed misorientation angle & = 20° and various values of the ARP.
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Another way of comparing the angular selectivity of the two wavelets is to
analyse a directional signal in the angle-angle representation («, 6) described
above. The result confirms the previous one [8].

2.2.5.4 Discretization of the CWT

The reproduction property (2.11) means that the information contained in
the WT S(a, 0, b) is highly redundant. This redundancy may be eliminated
(this is the basic idea behind the discrete WT), or exploited, either under the
form of interpolation formulas or for discretizing the reconstruction formula
(2.8), as needed for numerical evaluation. The integral is replaced by a sum
over a discrete (but infinite) family of wavelets wa,, 6.5 which can be chosen
in such a way that no information is lost:

BV =D "V, 45 B S@. b, by). (2.29)
Jkl

Such an overcomplete family is called a frame, according to the terminology
introduced by Duffin and Schaefer [43] in the context of nonharmonic
Fourier series. Its existence for specific wavelets may be proven along the
same lines as in the 1-D case [36, 37, 38] with similar results [69, 70]. In
practical applications, the infinite sum will be truncated (a few terms will
often suffice) and the approximate reconstruction so obtained is numerically
stable [37, 38].

The problem, of course, is how to choose the sampling grid in an optimal
fashion. The 2-D wavelet transform too obeys sampling theorems, that give
lower bounds on the density of sampling points, like the standard Shannon
theorem of signal analysis, only more complicated. Nevertheless, in practice,
the sampling points are quite often fixed empirically. For the (a, 6) variables,
in particular, they are mostly chosen on the basis of biological considerations
or symmetry requirements [39, 60, 61, 63]. Now the CWT described here
offers a quantitative solution of this sampling problem. As we have seen
above, a systematic exploitation of the reproducing kernel K leads to a
minimal dicretization grid as needed for the numerical evaluation of the
reconstruction integral (2.8).

Besides the full discretization described here, and a fortiori the discrete WT
that we will describe in Section 2.6, there is an intermediate procedure, intro-
duced in [46], under the name of (continuous) wavelet packets. It consists of
discretizing the scale variable alone, on an arbitrary sequence of values (not
necessarily powers of a fixed ratio). This leads to difference wavelets, as
mentioned in Section 2.2.4.1, but more important, to fast algorithms that
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could put the CWT on the same footing as the DWT in terms of speed and
efficiency, for example in reconstruction problems.

2.3 Physical applications of the 2-D CWT

The 2-D CWT has been used by a number of authors, in a wide variety of
physical problems [34, 67, 68]. In all cases, its main use is for the analysis of
images. It can be used for the detection of specific features, such as a hier-
archical structure, edges, filaments, contours, boundaries between areas of
different luminosity, etc. Of course, the type of wavelet chosen depends on
the precise aim. An isotropic wavelet (Mexican hat) suffices for pointwise
analysis, but an oriented wavelet (Morlet, Cauchy) is more efficient for the
detection of oriented features in the signal, that is, regions where the ampli-
tude is regular along one direction and has a sharp variation along the
perpendicular direction.

2.3.1 Pointwise analysis

2.3.1.1 Contour detection, character recognition

Exactly as in the 1-D case, the WT is especially useful to detect discontinuities
in images, for instance the contour [4, 70] or the edges of an object [53, 65].
For that purpose, an isotropic wavelet may be chosen, such as the radial
Mexican hat v, given in (2.13). In that case the effect of the WT consists of
smoothing the signal with a Gaussian and taking the Laplacian of the result.
Thus large values of the amplitude will appear at the location of the discon-
tinuities, in particular the contour of objects (which is a discontinuity in
luminosity).

In order to test this property, we compute the WT of a simple object,
namely a set with the shape of a thick letter ‘A’, represented by its character-
istic function, for various values of the scale parameter a (Figure 2.3). Then,
for large values of a, the WT sees only the object as a whole, thus allowing
the determination of its position in the plane. When « decreases, increasingly
finer details appear. In this simple case, the WT vanishes both inside and
outside the contour, since the signal is constant there, and thus only the
contour remains, and it is perfectly seen at ¢ = 0.075. Of course, if one
takes values of a that are too small, numerical artefacts (aliasing) appear
and spoil the result. We notice that the exterior contour is a sharp negative
‘wall’, whereas the interior contour is a positive one. The same effect would
appear in 1-D if one would consider, for instance, the full WT of a square
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Fig. 2.3. CWT of a thick letter ‘A’, with a Mexican hat and ¢ = 0.075, in level curves
and in 3-D perspective.

pulse: the jump from 0 to 1 gives a negative minimum followed by a sharp
positive maximum, and the jump from 1 to 0 gives the opposite pattern. Note
also that the corners of the figure are highlighted in the WT by sharp peaks.
The amplitude is larger at these points, since the signal is singular there in two
directions, as opposed to the edges. In addition the WT detects the convexity
of each corner. The six convex corners give rise to positive peaks, whereas the
concave ones yield a negative peak. Here we see the advantage of using a real
wavelet and plotting the WT itself, not its modulus, which is a frequent
practice.

This exercise leads to an algorithm for automatic character recognition [§].
The letter ‘A’, for instance, is entirely characterized by the succession of its 12
corners and a logical flag (concavity or convexity) for each of them. The
algorithm consists in locating the local maxima of the CWT and eliminating
everything else by thresholding, and it is able to detect an ‘A’ unambiguously.
Actually, since only the corners are needed, we may as well use a wavelet that
sees only the corners, not the edges. Typically, a directional wavelet (when
misaligned), or a real wavelet such as the gradient wavelets 9, exp(—|X|*) or
3.9, exp(—|X[*).

This simple technique may be further improved by adding some denoising
and inclusion of a second wavelet capable of dealing with letters of arbitrary
shape (for instance, a ring-shaped wavelet sensitive to circular shapes). In
addition, the automatic recognition device will need some training. An ele-
gant solution would then be to use the simple wavelet treatment as a pre-
processing for some sort of ‘intelligent’ device, such as a neural network.
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2.3.1.2 Analysis of 2-D fractals

By definition, a fractal, be it in 1-D or in 2-D, is self-similar under dilation,
either globally (genuine fractal) or locally (multifractal). Hence the CWT is a
natural tool for analysing it, and there is an abundant literature on the
subject. Notice that the continuous version of the WT is essential here,
since the characteristic scaling ratio is unknown a priori.

In fact, a fractal is in general a very irregular object (for instance, its
support may be a Cantor-like set), hence it should be represented by a mea-
sure, rather than a function. Fortunately the CWT may be extended corre-
spondingly [18, 19]. Let u be a fractal measure on R>. Then its CWT with
respect to the wavelet v is defined as

T(a,0,b) = / W(ar_y(F — b)) du(®). (2.30)

Assume now that the measure has the following scaling behaviour around the
point X,:

w(B(Fg, 16)) ~ A% (B(Zp, €)), A >0, (2.31)

where B(X,, €) is a ball of radius € around X, and «(x,) is the local scaling
exponent. Then it is easily shown that the WT scales in the same way:

T(0a, 0, %, + Ab) ~ 2% T(a,0,%, +b), +— 0. (2.32)

This relation is the key to the wavelet analysis of fractals. For instance, the
local exponent «(X,) may be obtained by plotting log | T'(a, 8, b) | vs. loga,
for a small enough. This would suffice for an exact (global) fractal, such as a
numerical snowflake. But most fractals exhibit the scaling behaviour (2.31)
only in the average. Thus a second essential ingredient in fractal analysis is
the use of techniques borrowed from statistical mechanics (as a matter of
fact, the standard ‘box counting’ method is already of a statistical nature).
This leads to the so-called thermodynamical formalism of fractal analysis
developed systematically by Arnéodo and his group in Bordeaux, and
which is the subject of Chapter 9.

This approach has been applied successfully to a wide variety of examples
[18, 19], that cover both artificial fractals (numerical snowflakes, diffusion
limited aggregates) and natural ones (electrodeposition clusters, various
arborescent phenomena, clouds). In addition to the standard numerical
method, these authors have designed an ingenious hardware version, called
the Optical WT and based on Fraunhofer diffraction, a familiar tool in
optics. This approach amounts to obtaining the WT with a binary approx-
imation to the isotropic Mexican hat.
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With both techniques, the method permits the measurement of the fractal
dimensions and the unravelling of universal laws (mean angle between
branches, azimuthal Cantor structures, etc.). It should be remarked that
the analysis uses exclusively an isotropic wavelet (usually a 2-D Mexican
hat), and thus there is no 6 dependence in (2.32). However, this may not
be the end of the story. Indeed we shall exhibit in Section 2.3.2.2 below a
fractal (‘twisted snowflake’) whose structure requires a directional wavelet for
its complete determination.

2.3.1.3 Shape recognition and classification of patterns

The characterization of a 2-D shape from its outlines is an important pro-
blem in several applications of image analysis, such as character recognition,
machine parts inspection for industrial applications, characterization of
biological shapes such as chromosomes and neural cells, and so on.
Furthermore, in the field of human vision and perception, 2-D shape analysis
also plays a central role in psychophysics and neurophysiology.

There are two general approaches to shape characterization: region based,
which deals with the region in the image corresponding to the analysed
object; and boundary based, where the shape is characterized in terms of its
silhouette. In both cases, 2-D wavelets may be used directly, as discussed
above. But, for the second approach, there is an alternative, which consists of
representing the shape by the complex signal that describes its boundary, and
applying the 1-D CWT to this signal [10]. This leads to the so-called W-
representation, which allows an easy way of performing a number of standard
tasks (for instance, in machine vision), such as detection of dominant points,
shape partitioning, natural scales analysis. Notice that an essential ingredient
of the analysis is the wavelet-based fractal analysis discussed above.

2.3.1.4 Analysis of astronomical images

Astronomical images have two characteristics. They superpose objects living
at very different distances (nearby stars, galaxies, quasars, galaxy clusters),
and they are very noisy (in particular the bright sky represents noise). A 2-D
wavelet analysis is useful on both counts and it has been exploited system-
atically by A. Bijaoui and his group in Nice. Applications include the un-
ravelling of the hierarchical structure of a galactic nebula, or that of the
universe itself (galaxy counts, detection of galaxy clusters or voids), and
the removal of the background sky, with a technique similar to that used
in 1-D for the subtraction of unwanted lines or noise in spectra [55]. Here
too, statistical techniques play an essential role. A systematic presentation
will be found in Chapter 3.
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A new application under development [24] is the detection of Einstein
gravitational arcs in cosmological pictures. Whenever the light from a distant
bright object (a quasar) is seen through a galaxy, the latter behaves as a
gravitational lens, so that the point source appears as a ring, or a portion
of a ring (‘arclet’), if the alignment is not exact. By measuring the radius of
that ring, one may infer the distance of the source. This may be done in two
steps. The centre of the arc is obtained with an annular-shaped wavelet,

(k) ~ e IK=0), (2.33)

used at a rather large scale (e.g. a = 2). This determination is quite robust to
noise, in particular spurious bright points, that mimic nearby stars. The arc
itself is obtained with a Mexican hat, at a smaller scale (e.g. a = 0.5). By
superposing the two transforms and applying a severe thresholding (up to
95%) for eliminating the noise, one obtains an image with three bright spots:
two points of the arc, around the endpoints, and the centre of the corre-
sponding circle. From this one can reconstruct the arc unambiguously, and
thus one obtains a tool for measuring in a simple way the distance of quasars,
for instance.

2.3.2 Applications of directional wavelets

As a consequence of their good directional selectivity, the Morlet and Cauchy
wavelets are quite efficient for directional filtering. In order to illustrate the
point, we analyse in Figure 2.4 a pattern made of rods in many different
directions (top). Applying the CWT with a fixed direction, here horizontal,
selects all those rods with roughly the same direction (bottom left), whereas
the other ones, which are misaligned, yield only a faint signal corresponding
to their tips, in agreement with the behaviour discussed above. Since this is in
fact noise, one performs a thresholding to remove it, thus getting a clear
picture (bottom right). In this way, one can count the number of objects
that lie in any particular direction.

2.3.2.1 Application in fluid dynamics

Wavelets have been successfully applied to the analysis of 2-D developed
turbulence in fluids, especially localization of small scales in the distribution
of energy or enstrophy [48]. This topic is described in Chapter 4. We describe
here two other applications of 2-D wavelets in fluid dynamics, which both
rely on the possibility of directional filtering with directional wavelets as
described above.
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Fig. 2.4. Directional filtering with a Cauchy wavelet (4RP = 20°) oriented at 6 = 0°.
(Top) the pattern; (bottom left) the CWT; (bottom right) the same after thresholding
at 25%.

Measuring a velocity field: In the first example [82, 83], the aim is to measure
the velocity field of a 2-D turbulent flow around an obstacle. Velocity vectors
are materialized by small segments, by the technique of discontinuous tra-
cers. Tiny plastic balls are seeded into the flow and two successive pictures are
taken, both with a short exposure time, but the first one shorter. In this way
one gets a ‘dot-bar’ signature for each tracer, which materializes the direction
and the length of the local velocity. Then the WT with a Morlet wavelet is
computed twice. First the WT selects those vectors that are closely aligned
with the wavelet. Then the analysis is repeated with a wavelet oriented in the
orthogonal direction, thus completely misoriented with respect to the selected
vectors. Now the WT sees only the tips of the vectors and their length may be
easily measured. The same two operations are then repeated with various
successive orientations of the wavelet. Using appropriate thresholdings, the




The 2-D wavelet transform 45

complete velocity field may thus be obtained, in a totally automated fashion,
with an efficiency sensibly better than with more traditional methods. Notice
that the analysis gives in principle both the modulus and the phase of the
WT. But here, contrary to the simple applications like contour detection [4],
the phase cannot be exploited, the data are too noisy. Thus one loses some
precision on the orientation. Nevertheless, the method is remarkably effi-
cient.

Disentangling of a wave train: A second example originates from underwater
acoustics. When a point source emits a sound wave above the surface of
water, the wave hitting the surface splits into several components of very
different characteristics (called respectively ‘direct’, ‘lateral’ and ‘transient’).
The resulting wave train is represented by a linear superposition of damped
plane waves, and the goal is to measure the parameters of all components.
This phenomenon has been analysed successfully with the WT both in 1-D
[75] and in 2-D [9], and the extension to a 3-D version is straightforward. The
signal representing the underwater wave train is taken as a linear superposi-
tion of damped plane waves:

N d - 7 S
[ =) ¢, e, (2.34)
n=1

where, for each component, Ign is the wave vector, l:, is the damping vector,
and ¢, a complex amplitude. Then, using successively the scale-angle and the
position representations described in Section 2.2.3, one is able to measure all
the 6N parameters of this signal with remarkable ease and precision.

The method proceeds in three steps and uses explicitly the phase space
interpretation. First one computes the CWT of the signal (2.34) with a
Morlet wavelet. By linearity, the result is the linear superposition of the
contributions of the various components. Moreover, each component is the
product of two factors, where the first one depends on & only and the second
one on (a, 6) only:

N
F(a.0,b) =Y c; F,(a.0). (2.35)
n=1

Now we go to the scale-angle representation and consider the WT (2.35) for
fixed b. Then a straightforward calculation shows that, for each term in this
superposition, a_lﬁn(a, f) admits a unique local maximum. Suppose that
these local maxima are well separated. Then, barring some interference
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effects (which may often be alleviated by increasing the selectivity of the
wavelet), one may write:

N
|F(a.0.b) = ) Iz, | 1Ey(a. O)l. (2.36)
n=1

One then reverts to the position representation, choosing for (a, 6) succes-
sively each of the maxima. Then the filtering effect of the CWT essentially
eliminates all components except the nth one, which is then easy to treat. In
this way, one is able to measure easily all the 6 N parameters of the signal.

2.3.2.2 Detection of symmetries

The directional selectivity of a wavelet may also be used for evaluating the
symmetry of a given pattern. Let S(a, 0, b) be the wavelet transform of an
object with respect to the Cauchy wavelet. Define the following positive
valued function, called the scale-angle measure of the signal:

n(a, 0) = f b |S(a, 6, b))% (2.37)

This quantity may also be viewed as a partial energy density in the scale and
angle variables, that is, in spatial frequency space, according to the phase
space interpretation of the CWT given in Section 2.2.3. This is different from
the scale-angle representation, where the position parameter b is fixed [9].
Here, on the contrary, u, averages over all points in the plane, thus eliminat-
ing the dependence on the point of observation. For any signal of finite
energy, it is clear that u, is a continuous bounded function of (a, 6).

We begin with a simplified version and eliminate the scale dependence by
integrating over a, thus ending with a function «, of the rotation angle only,
called the angular measure of the object. In general, ay(6) is 2m-periodic. But
when the analysed object has rotational symmetry n, that is, it is invariant
under a rotation of angle 27”, then «g is in fact 27”—peri0dic. Note that, for
n = 2, there are two different operations of order 2, rotation of 7 and reflec-
tion (mirror symmetry), which may also be seen as a rotation of 7 around an
axis lying in the plane of the figure (Ox or Oy). To give a simple example,
consider three geometrical figures: a square, a rectangle and a regular hexa-
gon [13, 15]. The square and the hexagon have symmetry n = 4 and n = 6,
respectively, and thus their angular measures show four, resp. six equal
peaks. The width of these peaks is simply the aperture of the support cone
(i.e. the ARP) of the wavelet (Figure 2.5). The case of the rectangle is more
interesting. It has symmetry n = 2 x 2 (two mirror symmetries, or rotations
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Fig. 2.5. Angular measure of regular figures obtained with a Cauchy wavelet
(ARP = 20°): a square (left) and a rectangle, with side ratio 2:1 (right).

by m around both Ox or Oy), and that is reflected on the graph of its angular
measure: there are two large peaks corresponding to the longest edges and
two smaller peaks corresponding to the shortest ones, and the ratio 2:1
between the two equals that of the lengths of the corresponding edges (to
be sure, the wavelet catches the direction of the edges, not that of the corners,
so that indeed the maxima of «, are again at 6 = 0°,90°, 180°, 270°, just as
for the square, but now the amplitudes are different).

This technique also allows one to identify the symmetries of quasi-lattices
or tilings. For instance, the angular measure of a Penrose tiling reveals its
local 10-fold symmetry, namely «, is a 7w/5-periodic function of 6 (Figure 2.6,
top left). Actually one may go further and uncover the combined rotation-
dilation symmetry of the tiling, using the full scale-angle measure w,. This
function is again m/5-periodic in 6, which reflects the 10-fold symmetry
(Figure 2.6, top right). But there are in fact rwo sets of ten maxima, for
two different scales loga; = —2.6 and loga, = —2.3, and shifted by 36°.
This means that the tiling has, in addition to its 10-fold symmetry, a com-
bined rotation-dilation symmetry. It is invariant under a rotation by 36°,
followed by a dilation by a factor a;/a,. In order to determine the two
characteristic scales, one may use the skeleton of w, (lines of local maxima
[40]), or use a wavelet which is sharply peaked in frequency, such as a
Gaussian Cauchy wavelet, as was done in Figure 2.6 (bottom). To illustrate
the point, we show in Figure 2.7 the analysis of a ‘twisted snowflake’. This
means a mathematical snowflake [18, 19] with the following modified con-
struction rule: upon each downscaling by a factor of 3, the figure is turned by
36°. The scale-angle measure of this object shows precisely the combined
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Fig. 2.6. (Top left) A Penrose tiling. (Top right) The angular measure «,(6) reveals
the 10-fold local symmetry, through the m/5-periodicity. (Bottom) The full scale-
angle measure u,(a, ) shows the combined rotation-dilation symmetry. Both mea-
sures are obtained with a Gaussian Cauchy wavelet, and only a half-cycle [0, n] is
shown.

symmetry. The set of 4 maxima at a given scale a, is reproduced, at scale
a,/3, but translated in 6 by 36°. And reconstructing the WT at the values
(a, ) corresponding to these maxima yields successive approximations of the
original signal.

Incidentally, these examples show why it is safer to integrate over all scales
in order to isolate the angular behaviour, rather than to fix a certain scale
a = a, and consider u (a,, 6). If a, coincides with one of the characteristic
scales, ay, as, .. ., the result is correct, but if a, falls in between, no maximum
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Fig. 2.7. Analysis of the twisted snowflake. (Left) the pattern; (Right) the scale-angle
measure; the links indicate pairs of points which are related by the combined rotation
(36°) and inflation symmetry by a factor of 3.

will be seen, and the symmetry is not detected. The effect is shown in Figure
2.8 for the Penrose tiling of Figure 2.6.

This technique permits one to determine, in a straightforward way, the
(possibly hidden) symmetries of a given pattern. This applies to a genuine
lattice, but also to a quasi-lattice, for which the symmetry is only local, for
instance the diffraction spectrum of a quasi-crystal. Thus we expect interest-
ing physical applications, either in the field of crystallography, or in texture
analysis and classification.

2.3.2.3 Geophysics: fault detection

An interesting application of directional wavelets to geology has been
initiated recently [71]. The object to be analysed is a system of geological
faults, with shows a self-similar behaviour over scales from a few metres to
hundreds of kilometres. This explains the use of the multifractal formalism
for analysing such a system. What the authors propose here is a continuous
wavelet analysis, with directional wavelets, combined with a multifractal
analysis. The motivation for this choice is that the relevant information to
be measured is the anisotropy of the fault field, and the variation of this
anisotropy with scale. Unfortunately, the authors use only an anisotropic
Mexican hat, which has rather poor directional selectivity, and this makes
their results less convincing. Clearly such an analysis should be performed
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Fig. 2.8. The scale-angle measure of the Penrose tiling from Figure 2.6, for fixed
values a, of the scale: (Left) for loga, = —2.6, the periodicity is obvious; (Right) for
loga, = —2, between two lines of maxima, the symmetry is not seen.

with a genuine directional wavelet, such as a Morlet or a Cauchy wavelet,
and a much better precision is likely to result.

2.3.2.4 Determination of textures

The determination and classification of textures in images is an old and
difficult problem, with many potential applications. Because most textures
are oriented, it is natural to try and use 2-D directional wavelets for attacking
the problem. Actually, some proposals have been made with the discrete WT,
but, since directions are essential, the CWT is certainly better adapted.
Indeed some progress on the texture problem has been achieved recently
along these lines [S1, 59]. One of the key steps is the generalization to 2-D
of the algorithm for measuring the instantaneous frequency of the signal
(which becomes here the local wave vector) and the systematic use of the
ridge or skeleton of the CWT, both familiar in the analysis of spectra (asymp-
totic signals) [40]. Although the results belong more to image processing, the
method per se is interesting, which justifies its presence in this review.

2.3.3 Local contrast: a nonlinear extension of the CWT

The intensity of light around us varies considerably, in fact by several orders
of magnitude. Our visual system is well adapted to this situation. Indeed it
analyses the spatial organization of the luminous field by relying on the
contrast of objects and figures contained in the images. Intuitively, contrast
is defined as the ratio between a variation of luminance and a reference level
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of luminance, i.e. a quantity of the form AL/L, where L is the luminance
level. The problem is to find a quantitative definition of contrast.

To that effect, one notices two facts. First the concept of multiscale ana-
lysis with functions of constant shape is commonly used in vision research
[64]. This suggests to use the wavelet transform for describing the variations
of luminance. Now the WT is a space-scale analysis, and the spatial extension
of the wavelets is characterized explicitly by their scale factor. Thus it is
possible to define at each scale a different normalization, similar to a local
average. So one is led to the notion of local contrast, defined by combining
the wavelet transform with an adaptive normalization [3, 44]. The latter will
be obtained by projecting the signal, at a given scale, on a local weight
function, chosen with the same localization properties as the wavelets. This
local mean value will be called luminous level: this is the background against
which luminance variations are measured, and the WT may be interpreted as
a representation of these luminance variations within an image. The resulting
contrast analysis is nonlinear, but it presents several advantages. It is parti-
cularly well adapted to the processing of positive signals. It also yields a
multiplicative reconstruction process, which preserves positivity. Let us
give some details and an example of application.

Let / be a nonnegative, rotation invariant, function h € L'(R*) N L*(R?),

normalized to ||/]|;1 = 1. An image is represented by a nonnegative function
f. Then the luminous level with respect to the weight function /4 is defined as
MI16) = (h,j1f), 55 = a”h(a” - B)). (2.38)

Note that we use throughout the L' normalization, that is, h ; instead of the
usual /4 g This is more natural in this context, since all the functlons h ; have
the same L' norm.

Then we define the local contrast as the ratio of the CWT to the corre-
sponding luminous level (the wavelet i is assumed to be also rotation invar-

iant):

Fub) Wl Wl
M) Gl Sl

where again Fa(l;) = (%’ ;If) 1s the CWT of f with the L' normalization (but
the local contrast is independent of the normalization). In order to make
sense, this definition requires that the support of iy be contained in the sup-
port of h. The local contrast is nonlinear, but its behaviour is controlled by an
integral condition. Large absolute values of contrast imply the existence of a
region where the luminance signal is very small. A typical example, very

C,If1(b) = (2.39)
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natural in the study of vision, is to take for # a Gaussian and for vy a Mexican
hat.

But one can do better and take for v the difference wavelet associated to £,
as given in (2.15). Then the local contrast becomes

~

- h -
@W@=QWW—L (2.40)

(h, ;1)

and the existence condition is simply that the support of / be star-shaped.

This formula in turn leads to a multiplicative reconstruction scheme.
Indeed, estimates of the luminous level at smaller and smaller scale factors
a may be considered as smoothened versions of the image with progressively
contracted weight functions /. Then, as for the WT, the approximation of a
function at a given scale may be written in terms of the approximation at a
larger scale and the complementary signal :

Maa[f] = Ma[f] : (Ca[f] + l)v
M 2 lf1= Mulf1- (Cool/T+ 1) (2.41)
= Maa[f] : (Ca[f] + 1) ) (Caot[f] + 1)’

and by recurrence:
Mo [f 1= Mulf1- (Colf 1+ 1) .. (Cp 1+ D). (2.42)

M ,»[f] is the nth resolution approximation of f, it is the image as seen
through the smoothing function / contracted by a factor aa” (a < 1). One
notices the obvious analogy with the usual multiresolution analysis (Section
2.6). The formalism may be generalized further to the so-called infinitesimal
contrast analysis developed in [46].

This technique may be applied for improving the contrast in any kind of
images. An example of application to a photograph was given in [3]. Here we
show one with a medical image (Figure 2.9). The image f is decomposed over
N contrast levels, as in (2.42), using the couple Gaussian-DOG. For each
level j, one defines the contrast chart as the modulus of the local contrast,

Mb) = |Gyl 1B), j=1,...,N. (2.43)

Then one interprets the product of the N charts, S(g) = ]_[JN: ; M_]-(l;) as a
measure of the correlation between the successive scales of the image at the
point b. After thresholding, one obtains a binary image or mask. The latter is
used in medical imagery, for instance, as a preprocessing to more sophisti-
cated algorithms. It is taken as a priori knowledge and helps to reduce the
amount of computation.
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Fig. 2.9. Contrast analysis of a medical image. (Top left) The original image. (Top
right) The CWT with a Mexican hat (j = —1). (Bottom left) The contrast chart
M(b), j = —1. (Bottom right) The resulting binary image. Many more details are
seen on the two bottom images than on the ordinary CWT.

2.4 Continuous wavelets as affine coherent states
2.4.1 A general set-up

As we have seen in Chapter 1, the natural geometry of the (a, b)-half-plane
R? is not the usual Euclidean one. Indeed the measure dadb/a* is invariant
not only under time translation, but also under dilation. The reason behind
these facts and the nice properties described above is to be found in group
representation theory. The natural operations on a 1-D signal are precisely
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time translations and dilations, and these together constitute the affine group
G, of the line. Then the relation:

(U(a, )x) =fip(x) = a2 fa (x = b)), a#0, beR, (2.44)

defines a unitary irreducible representation of G, in the Hilbert space LA(R)
of finite energy signals. This means that, for every g = (a,b) € G, U(g)isa
unitary operator and one has, for any g, g’ € Gy

. U(g)llJ(g’) = U(gg)
e Ug )=U@®
e U(e) =1, where e = (1, 0) denotes the unit element of G-

In addition, L*(R) contains no subspace invariant under U, except the trivial
one {0}. Furthermore, and this is the crucial feature, the representation U is
square integrable, that is, there exists at least one (and in fact a dense set of)
admissible vectors, i.e. vectors i such that the matrix element (U(a, b)¥|v) is
square integrable over the group, with respect to the natural measure, namely
da db/az. Now a straightforward calculation shows that

—+00

/ (U A L& oy / P 2. (2.45)
Gy a —00 |(1)|

Comparing (2.45) with Eq. (1.7) in Chapter 1, one sees that the two notions

of admissibility we have introduced indeed coincide.

Of course, true dilations should be positive, i.e. one should restrict oneself
to @ > 0. This defines a subgroup of Gy, called the ‘ax + b’ group or con-
nected affine group G of the line. When restricted to G, the representation
U becomes reducible and splits into two irreducible components, correspond-
ing to the subspaces Hy = {f € LA(R), f(w) = 0 for oS0}, called Hardy sub-
spaces in the mathematical literature. Then a function /" € H, (resp. H_) has
an analytic extension into the whole upper (resp. lower) half-plane [27, 78].
An element of H, is called an analytic signal, and a progressive one if, in
addition, f(w) is real.

Choosing H,, the restriction U, of the representation U is unitary, irre-
ducible and square integrable, and from this fact follow all the mathematical
properties of the 1-D CWT similar to those described in Section 2.2.1: covar-
iance, norm conservation (2.7), inversion formula (2.8), reproducing kernel
(2.11). This is of course no accident! It simply reflects the fact that the 1-D
CWT is a particular case of the general theory of coherent states associated to
group representations [1, 2]. This observation is of central importance, for it
is this approach that allows a natural and easy extension of the I-D CWT to
higher dimensions.
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Now the question is, where does the appropriate group come from? As so
often in physics, the answer lies in the notion of symmetry. Suppose indeed
that the signal possesses certain symmetry properties. It is natural to build
these into the wavelet transform itself, and this clearly requires the use of the
continuous approach. From this there emerges a general pattern, that we
now describe.

Consider the class of finite energy signals living on a manifold Y, i.e.
= LZ(Y ,dn) = H. For instance, Y could be space R", the 2-sphere Sz,
space-time R x R or R> x R, etc. Quite naturally, the measurement of a
signal is represented by a continuous linear functional on the space of signals,
that is, in the present case, an inner product si— (i | 5). Notice that, if we
were to restrict the signals to smooth functions on Y, measurements would be
represented by distributions of some kind over Y.

Suppose there is a group G of transformations acting (transitively) on
Y yi— gD, with gle'V]l =gg'D], e[yl =y, and for any pair y,)" €Y,
there is at least one g € G such that g[y] =)'. Assume the group G acts
linearly on signals. Then the very notion of symmetry requires that U should
be a unitary representation of G in the space H of signals:

(U(g)slU(g)s') = (sl5'), Vg € G, 5,5 € M. (2.46)

Then, in order to get a wavelet analysis on Y, adapted to the symmetry group
G, three conditions must be met:

(1) G contains dilations of some kind.

(2) U is irreducible.

(3) U is square integrable, 1.e. there exists at least one nonzero vector v € H, called
admissible, such that the matrix element (U(g)y|y) is square integrable as a
function on G.

Under these three conditions, a G-adapted wavelet analysis on Y may be
constructed, following the general construction of coherent states on Y asso-
ciated to G, that we now sketch (see [1, 2] for details).

2.4.2 Construction of coherent states from a square integrable group
representation

2.4.2.1 Definitions and main properties

Let H = L*(Y, du) be the space of finite energy signals on a manifold Y, and
assume there is a transformation group G acting on Y, with a continuous
unitary irreducible representation U in H. Assume furthermore that the
representation U is square integrable.
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Choose a fixed admissible vector ¥ € H (the analysing wavelet). Then the
wavelets are the vectors ¥, = U(g)¥ € H (g € G), and the corresponding con-
tinuous wavelet transform (CWT) is defined as:

Sy(8) = (Ygls) (2.47)

Introduce again the linear map W, :H — L*(G,dg) given by
(Wys)(g) = CJI/ZSw(g), where

ey = /G (Uy1)|* dg (2.48)

and dg denotes the natural measure on G. Then the CWT has the following
properties [1, 2], that match exactly those described in Section 2.2.1.

(1) Norm conservation:
' [ 1800 de= [ 1OIF duir), (2.49)

i.e. W, is an isometry; hence its range, the space of wavelet transforms, is a
closed subspace H,, of L*(G, dg).

(2) By (1), W, may be inverted on its range by the transposed map, which gives the
reconstruction formula:

s0) = ¢! /G Sy(@)V, ) dg. (2.50)

(3) The projection from L*(G,dg) onto H, is an integral operator with kernel
K(g, )= c@l(x//gllpgr), that is, the auto-correlation function of v, also called
a reproducing kernel; in other words, a function f € L*(G, dg) is a WT iff it
satisfies the reproducing relation:

1@ =" [ W) de. @.51)
(4) The CWT is covariant under the action of the group G:

W, lU()slg,) = (Wys)(g 'g,), Vg e G. (2.52)

Now it may happen that the analysing wavelet ¥ has a nontrivial isotropy
subgroup H,, up to a phase, i.e.

Uhyy = Py, h e Hy. (2.53)

In this case, the whole construction may be performed [1, 2] under a slightly
less restrictive condition (the representation U need only to be square integr-
able on the coset space X' = G/H,). Then one obtains wavelets indexed by
the points of X, namely ¢, = U(o(x))¥(x € X), where o : X — G is an arbi-
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trary section. We will encounter this situation both in the 2-D and in the 3-D
case. In fact one can go one step further, and extend the whole construction
to the case of an arbitrary coset space X = G/H, where H is not the stability
subspace of any vector v, but this will not concern us in this chapter. The
interested reader may find the detailed theory in the review [1] and papers
quoted there.

As a final remark before discussing examples, we may add that the whole
machinery rests upon the postulated existence of an admissible vector 1,
taken as analysing wavelet, but nothing so far tells us how to choose it. In
the case of coherent states associated to simple Lie groups, Perelomov [72]
gives a criterion, in terms of maximal weight vectors, familiar in the repre-
sentation theory of Lie algebras (for instance, in the case of the rotation
group SO(3), this method yields the extreme spherical harmonics Y(6, ¢),
which then lead to the spin coherent states used in quantum optics [58]). In
general, however, there is no systematic result and the best clue is to try and
mimic the familiar wavelets, such as the Mexican hat or the Morlet wavelet,
as we shall see in several cases below.

2.4.2.2 Examples: the 1-D and 2-D CWT

This formalism is general enough to design a symmetry-adapted CWT in all
cases of physical interest, while, of course, reproducing the familiar 1-D
CWT discussed above. First, one should notice that the Weyl-Heisenberg
group, which consists of phase space translations (translations and modula-
tions), yields the WFT. Indeed the relation (1.2) in Chapter 1 defines a uni-
tary irreducible representation of that group into the space L*(R, dx) of finite
energy signals, and that representation is square integrable, as can be shown
by a direct verification. The corresponding wavelets are called gaborettes in
the wavelet community, while quantum physicists call them canonical coher-
ent states [1, 2, 58].

As for the 2-D case, the relevant group is the so-called similitude group of
the plane (or Euclidean group with dilations), SIM(2) = R* x (R} x SO(2))
which consists of translations, rotations and global dilations (technically, x
denotes a semidirect product). Then the relation

(U@, 0,b))3) =5, , #3) = a” s(a”" r_y(% — b)), (2.54)
defines the natural representation of S/M(2) in the Hilbert space Lz(Rz, d*x),

and it is unitary and irreducible (it is actually the only one, up to unitary
equivalence, as can be shown by the familiar method of induced representa-
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tions). Furthermore, U is also square integrable (with respect to the natural
measure dg = a >dad6 d*b), and one has the relation

d - -
/ / / A6 H (U, 0, DY = ¢y I, (2.55)

where ¢, is the constant defined in (2.3). From this, we see that all the
properties of the 2-D CWT described in Section 2.2.1 are simply the parti-
cularization to the group SIM(2) of those listed above. Notice that, if the
wavelet ¥ is isotropic, its stability subgroup Hy, is the rotation group SO(2),
and the wavelet transform is a function of (a, b) € SIM(2)/SO(2) only. Thus,
as announced, all the aspects of the 2-D CWT are indeed rooted in group
representation theory.

In the following sections, we will apply the same technique and obtain the
extension of the CWT to 3 space dimensions, to the 2-sphere and similar
manifolds, and also to space-time (time-dependent signals or images, such as
TV or video sequences), including relativistic effects (using wavelets asso-
ciated to the affine Galilei or Poincaré group).

2.4.2.3 Application: minimal uncertainty wavelets

As is well-known [58, 72], the canonical coherent states have the character-
istic property of minimal uncertainty, which means that they saturate the
inequality in the Heisenberg uncertainty relations, and this is interpreted as
a semi-classical behaviour. What about wavelets, which are the coherent
states associated to the similitude groups?

According to the standard discussion in quantum mechanics textbooks [32,
52], two observables of a quantum system, represented by self-adjoint opera-
tors A and B, obey the uncertainty relation

AA.AB > 1|{[4, B])|, (2.56)

where Ad = A,A4 = V(A42%) — (4)* denotes the variance of A in the state ¢
and (C) = (¢|C¢) is the average of the operator C in the state ¢. The state ¢
is said to have minimal uncertainty if equality holds in (2.56), which happens
iff

(A = (A)¢ = —ir,(B — (B))¢p, (2.57)

for some A, > 0.

In order to apply this concept to 2-D wavelets, we consider the infinitesi-
mal generators of the transformation (2.54) or its equivalent (2.2) in k-space,
and denote them by P; and P, for translations, D for dilations and J for
rotations. Among these, there are four non-zero commutators, namely
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[D, P\l =iPy, [J,P]=—iP,, [D,P]=iPy, [J,P]=iP,, (2.58)

but the first two transform into the last two under a rotation by /2. Thus it
is enough to consider the uncertainty relations for the first pair:

AD.AP =[Pl AJAP, = L[(P). (2.59)

Then, according to (2.57), a vector E saturates these inequalities iff it satisfies
the following system of equations

(D + i)LIPI)‘Z(E) = (<D> + l')»1<P1>)lﬁ/:(l§) ()\1’ )»2 > 0). (2.60)
(J + ik PY)Y(k) = ((J) + ido(P1)Y(k)

Solving this system of partial differential equations in polar coordinates, one
finally obtains that a real wavelet v is minimal with respect to the commu-
tation relations (2.58) iff it is of the form

W) = ¢ 3, (&) 1K1 752 (e >0, & > 0), 2.61)

where , is the characteristic function (possibly smoothed) of a convex cone C
in the half-plane k, > 0. We may now impose some degree of regularity
(vanishing moments) at the boundary of the cone, by taking an appropriate
linear superposition of such minimal wavelets 1//; Thus we obtain finally:

V) = e x, (k) Fe) e *2 . (3 > 0) (2.62)

where F (lg) is a polynomial in k., k,, vanishing at the boundaries of the cone
C, including the origin. Clearly a Cauchy wavelet with 7 = ¢, is of this type.

Other minimal wavelets may be obtained if one includes commutators
with elements of the enveloping algebra, i.e. polynomials in the generators.
For instance, taking the commutator between D and the Laplacian
—A =P} + P3, one finds a whole family of minimal isotropic wavelets,
among them all powers of the Laplacian, A", acting on a Gaussian [12].
For n = 2, this gives the 2-D isotropic Mexican hat [35].

2.5 Extensions of the CWT to other manifolds
2.5.1 The three-dimensional case

Some physical phenomena are intrinsically multiscale and three-dimensional.
Typical examples may be found in fluid dynamics, for instance the appear-
ance of coherent structures in turbulent flows, or the disentangling of a wave
train in (mostly underwater) acoustics, as discussed above. In such cases, a
3-D wavelet analysis is clearly more adequate and likely to yield a deeper
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understanding [21]. Hence we will also describe briefly the 3-D CWT, follow-
ing the general pattern of the previous section.

Given a 3-D signal s € L*(R?, 4°X),with finite energy, one may act on it by
translation, dilation and rotation:

5,50 = U@, r(y), BsI® = a s ' ry) " E = b)), (2.63)

where a > 0, y € SO(3), b e R’ and r(y) € SO(3) is a 3 x 3 rotation matrix.
The element y € SO(3) may be parametrized, for instance, in terms of three
Euler angles. These three operations generate the 3-D Euclidean group with
dilations, that is, the similitude group of R*, SIM(3) = R® x (R} x SO(3)).
Then (2.63) is a unitary representation of SIM(3) in L*(R?, d°X), which is
irreducible and square integrable, hence it generates a CWT exactly as before.

Wavelets are taken in Lz([RZ3, d35c') and the admissibility condition is now

-
PP K < . (2.64)
|k|?

Also the two familiar wavelets have a 3-D realization.

o The 3-D Mexican hat is given by
V(%) = (3 — |43) exp(— L1 43]), (2.65)

where 4 = diag[el_l/z, 62_1/2, 1], € > 1,6, > 1,is a 3 x 3 anisotropy matrix.
We distinguish three cases:

(1) if €; # €, # 1, one has the fully anisotropic 3-D Mexican hat (the stability
subgroup H,, is trivial);

(2) if €, =€, =1, one has the isotropic, SO(3)-invariant, 3-D Mexican hat
(H, = SOB3));

(3) if ¢, = €, = € # 1, the wavelet is axisymmetric, i.e., SO(2)-invariant, but not
isotropic (Hy = SO(2)).

o The 3-D Morlet wavelet is given by

W) = exp(ik, - %) exp(— L] 4%)), (2.66)

where A is the same 3 x 3 anisotropy matrix as in the first example. Here again,
for €, = ¢; =€ # 1 and k, along the z-axis, the wavelet ¢ is invariant under
SO(2).

Then, given a signal s € L*(R?), its CWT with respect to the admissible
wavelet ¥ is given as

S(a, y,b) = a / W(a='r(y) " (3 — b)) s(F) d°. (2.67)
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As compared with (2.5), the only differences are in the normalization factors
and the rotation matrices. Since the structure of the formulas is the same as
before, so is the interpretation and the consequences (local filtering, reprodu-
cing kernel, reconstruction formula, etc.). Thus the CWT (2.67) may be
interpreted as a mathematical camera with magnification 1/a, position b
and directional selectivity given, in the axisymmetric case, by the rotation
parameters @ = (6, ¢). As for the visualization, the full CWT S(a, y, b) is a
function of 7 variables. However, if the wavelet ¢ is chosen axisymmetric,
Le. SO(2)-invariant, S depends on 6 variables only, a>0,
w e §* ~ SO(3)/SO(2), the unit sphere in R, and b € R’. In this case
again, (¢~ ', @) may be interpreted as polar coordinates in spatial frequency
space. This is in fact true in any number of dimensions. It follows that, here
too, there are two natural representations for the visualization of the WT: the
position representation (¢, @ fixed) and the scale-orientation (or spatial fre-
quency) representation (b fixed). Of course, there are many other posssible
representations that may be useful.

In conclusion, let us discuss briefly a simple example, the detection of 3-D
objects in a cluttered medium. We consider a scene with 3-D objects (targets)
immersed in a cluttered medium, modelled by the signal:

N
() =Y 5u(®) + n(3), (2.68)
m=1

where s,,(X) denotes the density of the target m, and n(x) the density of the
medium. Since the density of the targets is very different from that of the
medium, there will be a high density gradient at the boundary between the
objects and the medium. In this situation, the wavelet transform S(a, 6, ¢, b)
may be used to extract the 3-D objects and determine their characteristics,
position (range and orientation) and spatial frequency. Further details may
be found in [7], where a detailed strategy is explained for the 2-D version of
the same problem.

2.5.2 Wavelets on the 2-sphere

There are several applications where data to be analysed are defined on a
sphere, in geophysics or astronomy, of course, but also in statistics. If one is
interested only in very local features, one may ignore the curvature and work
on the tangent plane. But when global aspects become important (description
of plate tectonics on the Earth, for instance), one needs a genuine general-
ization of wavelet analysis to the sphere. Several authors have attacked this
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problem, with various techniques. On the discrete side, an efficient solution
has been obtained by Schroder and Sweldens [76] with the so-called lifting
scheme (see Section 2.6.2.4 below), but this obviously misses the particular
symmetry of the sphere. A continuous approach was developed by
Holschneider [56], with several ad hoc assumptions. It turns out that the
general formalism developed in [1, 2] and sketched in the previous section
yields an elegant solution to the problem [16], and in particular allows one to
derive all the assumptions of [56].

Although the discussion is too technical to be described here, it is inter-
esting to outline the main ideas, because they lead to significant generaliza-
tions. As usual, finite energy signals are taken as square integrable functions
on the 2-sphere $? ~ SO(3)/SO(2). The natural operations on such signals
are translations (on the sphere) and local dilations. The former are given by
rotations from SO(3). Dilations around the North Pole are obtained by
considering ordinary dilations in the tangent plane and lifting them to S?
by stereographic projection from the South Pole. As for dilations around any
other point, it suffices to bring it to the North Pole by a rotation, perform the
dilation and go back by the inverse rotation. Obviously translations and
dilations do not commute. However, the only group that can be obtained
by combining only SO(3) and the dilation group R} is their direct product,
which cannot be the ‘similitude’ group of the sphere.

A way out of this difficulty [16] is to embed the two groups into the
Lorentz group SO,(3, 1), which acts transitively on S*. Then one is in the
general situation described in Section 2.4.2.1 and the machinery developed in
[1, 2] may be used. In this way one can indeed set up a theory of wavelets on
S?, which coincides with that of [56]. In addition, this CWT on the sphere has
the expected Euclidean limit, that is, as the radius of the sphere increases to
0o, the whole wavelet analysis on the sphere goes into the usual wavelet
analysis in the plane (in this case, the tangent plane at the North Pole).
Moreover, the limiting process may be performed entirely in group-theore-
tical language, using the technique known as group contraction.

The whole scheme may be generalized to higher dimensions, essentially
verbatim. It can also be extended to other setups, for instance a CWT on a
two-sheeted hyperboloid. In R?, this means H> = SO,(2, 1)/SO(2), and the
stereographic projection from either ‘pole’ is available, mapping one sheet
onto the interior of the unit disk in the plane tangent to the other pole, and
the other sheet onto the exterior. Now this suggests a further generalization.
In both cases, S? as well as Hz, the unit disk, image of one sheet or one
hemisphere, is a classical domain. Also the stereographic projection has a
group-theoretical origin [72]. This paves the way to the generalization of the
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CWT to a whole class of homogeneous spaces (Riemannian symmetric
spaces).

2.5.3 Wavelet transform in space-time

2.5.3.1 Kinematical wavelets

An important aspect of signal and image processing is the analysis of time-
dependent or moving signals, e.g. in television, and the CWT may be
extended to this case too [45]. We consider first motion on the line. Finite
energy signals are taken as functions s(x, 7) € L*(R x R, dxdr). The natural
transformations on such a signal are translations and dilations in space and
time independently, (x, #)i—(a;x + by, agt + by). However it is more conve-
nient to replace the two independent dilations a;, aq by a global dilation a
and a so-called speed-tuning transformation ¢, defined as:
s(x, 1) 1— ails(a”x, ailt), a>0;

(2.69)
s(x, 1) = s(c?x, V%), e > 0.

This transformation comes from the physiological characteristics of motion
perception by our visual system: in order to be visible, fast moving objects
must be wide, and narrow objects must move slowly (for a typical example,
think of the inscriptions on a departing train carriage).

Combining the transformation (2.69) with space and time translations, we
obtain the affine group of space-time. This group has a natural unitary
irreducible representation in L*(R x R, dx di):

s €
[U(a, c, by, by, €)s)(x, t) = ! s(£ (x —by), ﬂ(l - bo)), (2.70)
a \ a a\/c
where (bg, b;) denote space-time translations and € € {0, 1} corresponds to
time-reflection (this additional operation is needed for irreducibility). In addi-
tion, the representation U is square integrable. A wavelet v is admissible iff it
satisfies the condition

-~ 2
/ M dk dw < 0. (2.71)
kel

From here on, everything follows exactly the general pattern. Thanks to the
filtering property in « and ¢, the resulting CWT (called kinematical) is effi-
cient in detecting moving objects: the dilation parameter « catches the size of
the target, while the new parameter ¢ adjusts the speed of the wavelet to that
of the target. Thus the spatio-temporal CWT is a tool for motion tracking.
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Clearly there are plenty of applications in which such a technique might be
used.

The extension of these considerations to higher dimensions is straightfor-
ward. First, in n dimensions, the dilation and speed tuning operations (2.69)
become:

-1 1/(n+1)x

Xi—=a ¢ t—a ety (2.72)

Then one has to add rotations, as usual, and follow the general pattern.

2.5.3.2 Relativistic wavelets

The kinematical wavelets just described may not always be sufficient, depend-
ing on the type of signal to be analysed. One may wish to consider a specific
form of movement, i.e. choose a particular relativity group. Three examples
may be of interest (we begin again with one space dimension).

(1) Galilean wavelets: here we add to the transformations discussed above the
Galilei boosts, thus getting (x,f) — (a;x + vt + by, agt + by). The resulting
group G called the affine Galilei group, is quite complicated. It has a natural
unitary representation in the space of finite energy signals, which splits into the
direct sum of four irreducible ones. And each of these is square integrable, so
that wavelets may be constructed in the usual way. In addition, more restricted
wavelets may be obtained by taking as parameter space various quotient spaces
G“fff/H , where H is not the stability subgroup of the basic wavelet. Again this
construction requires the more general formalism, described in Section 2.4.2.1
[1,2].

(i1) Schrodinger wavelets: one obtains an interesting subclass of the previous one by
imposing the relation @y = a7, so that the transformations leave invariant the
Schrodinger (or the heat) equation. Again there are two unitary irreducible
representations, both square integrable on the (Schrédinger) subgroup. Thus
again a CWT is at hand, which may prove useful for describing, for instance,
the motion of quantum particles on the line.

(iii) Poincaré wavelets: in order to get a CWT in the relativistic regime, it suffices to
replace Galilei transformations by Poincaré ones, while of course imposing the
relation ay = a; to space and time dilations. The resulting affine Poincaré group
has a square integrable unitary irreducible representation, defined on the solid
future light cone. The Poincaré wavelets might be useful, for instance, in the
presence of electromagnetic fields.

Of course, this analysis extends in a straightforward way to higher dimen-
sions, just by adding rotations.
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2.6 The discrete WT in two dimensions

As mentioned in Chapter 1, a key step in the success of the 1-D discrete WT
was the discovery that almost all examples of orthonormal bases of wavelets
may be derived from a multiresolution analysis, and furthermore that the
whole construction may be translated into the language of (QMF) filters. In
the 2-D case, the situation is exactly the same, as we shall sketch in this
section. Further information may be found in [38] or [66].

2.6.1 Multiresolution analysis in 2-D and the 2-D DW'T

The simplest approach consists of building a 2-D multiresolution analysis
simply by taking the direct (tensor) product of two such structures in 1-D,
one for the x direction, one for the y direction. If {V}, j € Z} is a multiresolu-
tion analysis of L*(R), then {V =V,®V;,je Z} is a multlresolutlon analysis
of L*(R?). Writing again V @ W = /+1, it is easy to see that this 2-D
analysis requires one scahng functlon ®(x, ¥) = ¢(x) dp(»y), but three wave-
lets:

V'(x, y) = p(x) Y(»)
W(x, y) = Y(x) ¢(») (2.73)
W (x, y) = Y(x) Y().

As the notation suggests, W detects preferentially horizontal edges, that is,
discontinuities in the vertical direction, whereas W’ and W¥ detect vertical and
oblique edges, respectively. Indeed, for j =1, the relation V, =V, ® W,
yields:

Vi=rPery
=" e Wi ey e wy)
=P e v e P e w e’ e ) e (wY @ wy)
= Vo @ W,

where ¥, = Véx) ® Véy) > ¢(x)p(y) and W, is the direct sum of the three
other products, generated by the three wavelets given in (2.73), respectively
F rom these three wavelets, one gets an orthonormal basis of V by defining
(x V) = ¢ (x)p;/(»), k, [ € Z}, and one for W in the same way, namely
{\IJ?;’ (x,y),a =h,v,d and k,[ € Z}. Clearly thls construction enforces a
Cartesian geometry, with the horizontal and the vertical directions playing
a preferential role. This is natural for certain types of images, such as in
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television, but is poorly adapted for detecting edges in arbitrary directions.
Other solutions are possible, however (see below).

As in the 1-D case, the implementation of this construction rests on a
pyramidal algorithm introduced by Mallat [60, 61]. The technique consists
of translating the multiresolution structure into the language of QMF filters,
and putting suitable constraints on the filter coefficients 4,. For instance, v
has compact support if only finitely many /4, differ from zero.

2.6.2 Generalizations

It turns out that the scheme based on orthonormal wavelet bases is too rigid
for most applications and various generalizations have been proposed. We
discuss some of them.

2.6.2.1 Biorthogonal wavelet bases

In the CWT, the wavelet used for reconstruction need not be the same as that
used for decomposition, they have only to satisfy a cross-compatibility con-
dition [38]. The same idea in the discrete case leads to biorthogonal bases [31],
i.e. one has two hierarchies of approximation spaces, {V;} and {I7j}, with
cross-orthogonality relations. In 1-D, the construction goes as follows, and
the extension to 2-D proceeds as above. Start with a scale of closed subspaces
{V;}, assuming only the existence of a scaling function ¢ € V}, such that its
integer translates {¢,(x) = ¢(x — k), k € Z} form a Riesz (or unconditional)
basis of V. Then, instead of orthogonalizing this basis, which would lead to
the construction of an o.n. wavelet basis, one takes the dual basis {d;k}, that is,
the vectors defined by the relation (d)kldv),) = §;;. Let 170 denote the closed
subspace generated by {qu, k € Z}. Then the same construction is repeated
for each j, using the dilation invariance of the scale {};}. The outcome is a
multiresolution scale {V} with exactly the same properties. Next, for each

j € Z, one defines a subspace W, by the two conditions W; C V;;; and
W L V and similarly W C V+1 and W L V;. In this way one obtains
two sequences of subspaces {W;} and {W} W1th bases (V. ), k € Z},
{lp] ], k € Z}, respectively, which are mutually orthogonal:

(%,khb/,k’) = 88k (2.74)

In terms of these bases, one gets two types of expansion formulas, for any
f € L*(R):
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F=>" Wl v

JjkeZ
= D Wl Vi (2.75)
j.keZ

The resulting scheme is much more flexible and is probably the most efficient
one in practical applications. For instance, it gives a better control on the
regularity or decrease properties of the wavelets [31].

2.6.2.2 Wavelet packets and the best basis algorithm

As mentioned already in Chapter 1, the construction of orthonormal wavelet
bases leads to a special subband coding scheme, rather asymmetrical: each
approximation space V; gets further decomposed into V;_; and W;_,
whereas the detail space W; is left unmodified. Thus more flexible subband
schemes have been considered, called wavelet packets, where both subspaces
Vi_y and W,_, are decomposed at each step [33, 66, 81]. Such a scheme
provides rich libraries of orthonormal bases, and also strategies for determin-
ing (using entropic criteria) the best basis in a given situation. Another gen-
eralization of the strict orthonormal wavelet scheme has been developed by
Coifman and Meyer, starting from the so-called Malvar wavelets (see [29] or
[66]). This scheme, in a sense, is halfway between the wavelet and the wind-
owed Fourier transforms, and it offers also more flexibility and efficiency, for
instance in the analysis of speech signals.

2.6.2.3 More isotropic 2-D wavelets

The tensor product scheme privileges the horizontal and the vertical direc-
tions; more isotropic wavelets may be obtained, either by superposition of
wavelets with specific orientation tuning [64], as we did above with the CWT,
or by choosing a different way of dilating, using a nondiagonal 2-D dilation
matrix, which amounts to dilating by a noninteger factor [37]. Consider, for
instance, the following dilation matrices:

The matrix Dy correspond to the usual dilation scheme by powers of 2,
whereas D; and D, lead to the so-called ‘quincunx’ scheme [49]. In the
standard scheme, a unit square is dilated, in the transition j — j+ 1, to
another square, twice bigger, with the same orientation. This means that
three kinds of additional details have to be supplied, horizontal, vertical
and oblique (see Figure 2.10, left). By contrast, the same operation in the
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Fig. 2.10. Unit cell at successive resolutions: (Left) for the ‘Cartesian’ scheme;
(Right) for the ‘quincunx’ scheme.

‘quincunx’ scheme leads to a square circumscribed to the original one, that is,
rotated by 45° and larger by a factor /2, so that only one kind of additional
details is necessary (Figure 2.10, right). Indeed only one wavelet is needed in
this scheme, instead of three. This is consistent with a result of Meyer, accord-
ing to which the number of independent wavelets needed in a given multi-
resolution scheme equals (] det D| — 1), where D is the dilation matrix used.

2.6.2.4 Second-generation wavelets

As indicated in Chapter 1, one can go further and abandon the regular dyadic
scheme and the Fourier transform altogether. Using the ‘lifting scheme’, one
obtains the so-called second-generation wavelets [80]. The same scheme
applies in 2-D as well. For instance, Schroder and Sweldens [76] have applied
it to the design of wavelets on the sphere, with a very convincing application
to the reproduction of coastlines on a terrestrial globe.

2.6.2.5 Integer wavelet transforms

In their standard numerical implementation, the classical (discrete) WT con-
verts floating point numbers into floating point numbers. However, in many
applications (data transmission from satellites, multimedia), the input data
consists of integer values only and one cannot afford to lose information:
only lossless compression schemes are allowed. Recent developments have
produced new methods that allow one to perform all calculations in integer
arithmetic [30].

2.6.3 Physical applications of the DWT

As with other methods, wavelet bases may be applied to all the standard
problems of image processing. The main problem of course is data compres-
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sion, and for achieving useful rates one has to determine which information is
really essential and which one may be discarded with acceptable loss of image
quality. Significant results have been obtained in the following directions:

e Representation of images in terms of wavelet maxima [63], as a substitute for the
familiar zero-crossing schemes [64];

e In particular, application of this maxima representation to the detection of edges,
and more generally detection of local singularities [62];

e Image compression and coding using vector quantization combined with the WT
[17];

e Image compression, combining the previous wavelet maxima method for contours
and biorthogonal wavelet bases for texture description [50];

e Image and signal denoising, by clever thresholding methods [42].

Some applications are less conventional. For instance, a technique based
on the biorthogonal wavelet bases [31] has been adopted by the FBI for
the identification of fingerprints. The advantages over more conventional
tools are the ease of pattern identification and the superior compression
rates, which allows one to store and transmit a much bigger amount of
information in real time. The full story may be found in [28]. Another
striking application is the deconvolution of noisy images from the Hubble
Space Telescope, by a technique combining the DWT with a statistical
analysis of the data [25, 26, 73]. The results compare favourably in quality
with those obtained by conventional methods, but the new method is
much faster. One should also quote a large amount of work under devel-
opment in the field of High Definition Television, where wavelet techni-
ques are being actively exploited; here again the huge compression rates
make them specially interesting.

As for applications of the multidimensional DWT more specifically
oriented to physics, we like to mention two. The first one is in quantum
field theory (although it was done before the wavelet techniques were
born): various perturbation expansions (the so-called ‘cluster expansion’)
used in the analysis of Euclidean field theory models are in fact discrete
wavelet expansions [22]. Actually the summation over scales, indexed by j,
was originally motivated by renormalization group arguments. In the same
domain, we may note that wavelet bases have been used also ([23] and
references therein) for estimating the time evolution of solutions of some
wave equations (Klein-Gordon, Dirac, Maxwell or the wave equation), or
even to expand solutions of the equations in terms of dedicated ‘wavelets’
(although the functions introduced in the last case seem rather far away from
genuine wavelets [57]).
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The other application resorts to solid state physics, namely the Quantum
Hall Effect (quantization of the electric conductivity) that occurs when a 2-D
electron gas is submitted to a strong transverse magnetic field. Here ortho-
normal wavelet bases may be used for generating localized orthonormal
bases for the lowest Landau level, a necessary step towards the analysis of
the Hall effect [S]. This is discussed in detail in Chapter 8.

2.7 Outcome: why wavelets?

As in 1-D signal analysis, wavelet techniques have become an established tool
in image processing, both in their CWT and DWT incarnations and their
generalizations. We want to emphasize here that the CWT and the DWT
have almost opposite properties, hence their ranges of application differ
widely too. The CWT is very efficient at detecting specific features in signals
or images, such as in pattern recognition or directional filtering. On the other
hand, the DWT and its generalizations are extremely fast and economical,
they yield for instance impressive data compression rates, which is especially
useful in image processing, where huge amounts of data, mostly redundant,
have to be stored and transmitted.

Both are powerful and flexible tools, and have become a significant element
in the standard toolbox of image processing. Indeed they find their way into
increasingly many reference books and software codes. In addition, they have
found applications in many branches of physics, such as acoustics, geophy-
sics, astrophysics, fluid mechanics (turbulence), medical imagery, solid state
physics, quantum field theory, . . . .

What distinguishes wavelet analysis from more conventional techniques
are its simplicity and its adaptive character. The algorithm is as simple,
and mathematically justified, as the familiar Fourier transform and its var-
iants (WFT). It is also extremely economical, thanks to the automatic zoom
effect. The WT selects the most signicant parts of the signal (in position scale
and direction) and is negligible elsewhere. As a consequence, it is extremely
stable against approximations. Clearly wavelets are here to stay, and one
should expect an increasingly diverse spectrum of physical applications. An
important point is that wavelets should not be taken as a replacement of
conventional techniques, but as an additional tool, that reveals different
aspects of a problem. The most probable trend for the future is towards
more merging of wavelet ideas with traditional ones, resulting in specialized
tools, optimized for a particular type of problem. This aspect will appear in
many of the subsequent chapters.
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Abstract

The wavelet transform is used in astrophysics for many applications. Its use
is connected to different properties. The Time-Frequency analysis results
from the two-dimensional feature of this transform. Some interesting appli-
cations were performed on nonstationary astrophysical signals. Many astro-
physical results were obtained by this analysis, either on quasi regular
variables, and on chaotic light curves. Solar time series have been also care-
fully analysed by the wavelet transform. New results have been obtained for
series with identified periods (sunspots, diameter, irradiance, chromospheric
oscillations) and for chaotic signals (magnetic activity).

Astronomers have exploited the wavelet transform for image compression.
Many packages are proposed with significant gains. Some full sky surveys are
available now with images compressed by the wavelet transform. Filtering
and restorations are derived from this scale-space analysis. Some threshold-
ing rules furnish adapted filtering. The restoration is connected to an
approach for which we progressively extract the most energetic features.
This may be related to the notion of multiscale support. Many applications
were done for Hubble Space Telescope (HST) images or for astronomical
aperture synthesis. The ability of the wavelet transform to localize an object
in scale-space led also to applying this transform to the detection and to the
analysis of astronomical sources. A multiscale vision model was developed by
our group, which allows one to detect and to characterize all the sources of
different sizes in an astronomical image. Many applications of image analysis
were performed on different astrophysical sources, and specifically the ones
having a power-law correlation, i.e. a fractal-like behaviour: molecular
clouds, infrared cirrus, clumpy galaxies, comets, X-ray clusters, etc. Our
main applications are related to the study of the Large-Scale structure of
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the Universe, generally from galaxy counts. The nature of the data leads us to
develop specific statistical analyses. In the Universe, the distribution of mat-
ter has a correlation function with a power law, so the wavelet transform is
well suited to analyse it. Many astronomical sources have this behaviour, and
fractal analyses were also applied. The same method was successfully applied
to the determination of asteroid families. The wavelet transform was also
used for the determination of the singularity spectrum. A new statistical
indicator for testing cosmological scenarios was obtained from the morphol-
ogy in the wavelet space at different scales.

The wavelet transform is a tool widely used today by astrophysicists, but
they do not apply only the discrete transform resulting from the multiresolu-
tion analysis but a large range of discrete transforms: Morlet’s transform, for
time-frequency analysis, the @ trous algorithm and the pyramidal transform
for image restoration and analysis, pyramidal with Fourier transform for
synthesis aperture imaging. Physical constraints generally play an important
part in applying a given discrete transform.

3.1 Introduction

The wavelet transform was originally designed to study nonstationary signals.
The usual astrophysical signals are quite regular so that the need of this kind of
transform was not evident. Astronomers possessed many other tools for image
processing, so that it did not seem necessary to implement this new transform
for their needs. But, thanks to its covariance under dilations, the wavelet trans-
form appeared rapidly as the best tool to study power-law signals. These can be
observed in different situations: the light intensity of the solar surface, the
brightness of interstellar clouds, or galaxy distribution from counts. This
last item plays an important role in cosmological research so that it was
soon found interesting to apply the wavelet transform to this subject.

Galaxy distribution is studied from galaxy counts, which are neither a
signal nor an image but a list (a catalogue in astronomical literature) of
positions in two or three dimensions. We have to process these catalogues
in order to extract the different components, ranging from groups to clusters
of galaxies. The existence of a power law for the two-point correlation reflects
the observation of a hierarchical structure, small groups are contained in
larger ones, and so. The wavelet transform would be able to detect and
characterize these groups.

This application of the wavelet transform to cluster analysis was new when
I started with my collaborators on this problem [85]. Previously, the wavelet
transform was only applied to signals but rarely on images. This has led us to
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examine many problems related to the coefficient statistic, the object defini-
tion and their reconstruction. We saw that this point of view allowed us to
develop a new way to process images for different cases of noise, with many
applications to image registration, restoration and analysis.

Since our pioneer paper in astrophysics, many groups of astrophysicists
have applied the wavelet transform for many other purposes, times series,
image restoration, image compression, object detection, fractal analysis, etc.
In this chapter I will try to give an overview of these applications, but I will
also describe some of our own specific work on image restoration, image
analysis and the study of the large scale structure of the Universe.

3.2 Time—frequency analysis of astronomical sources
3.2.1 The world of astrophysical variable sources

The night sky seems to be immutable but an important fraction of astrophy-
sical sources are variable. They can be variable in radiation flux, but they can
also exhibit a regular change of their radial velocity or line profiles of their
spectra. Different behaviours were found in the variations, from a large
increase of the flux by a factor 10° (supernovae) to about 10* (classical
novae), smaller and very regular variations (cepheids, eclipse binaries) or
intermediate situations with variables showing quasi regular variations (RR
Lyrae variables) to eruptive variables without any periodic behaviour.

This wide range of situations is the same for all the observed wavelengths.
Pulsars show very periodic variations in radio wavelengths while quasars
have a chaotic behaviour. The Gamma Ray Bursts (GRB) are one of the
greatest astrophysical enigmas today. They are characterized by a large flux
of gamma rays detected during a few seconds. They seem to be sources
located at cosmological distances.

Temporal variations can be also detected in solar signals. With very accu-
rate measurements, the spatial instrument ACRIM has detected irregular
variations of the flux [108]. The solar radius seems to show also faint varia-
tions [107]. The classical solar cycle is associated with the number of solar
spots. A quasi regular cycle of 11 years was found in the nineteenth century,
but irregularities exist too. The radial velocity exhibits also faint variations, a
5 mn. oscillation phenomenon was discovered in the 1960s [59]. With very
accurate techniques many lines around this frequency were separated, giving
fundamental information about the internal structure of the Sun. This tech-
nique was also applied to other astrophysical objects, Jupiter, Procyon and
solar-like stars, and similar results were obtained [67].
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3.2.2 The application of the Fourier transform

The first purpose for analysing astrophysical signals has to do with the
determination of the periods. If a signal is strictly periodic, and if it is
observed regularly during many periods, there is no problem to determine
the period correctly. One estimates the time between the first and the last
maximum and divides it by the number of periods. But this situation is quite
idyllic in astronomy since:

e astronomical signals are almost never strictly periodic;

e measurements are noisy;

e the sampling is very irregular. This is due to the night and day alternation, to
weather conditions, and to other observational constraints. Generally the sam-
pling is done in a window W(¢), which is constituted by a set of square functions.

The Fourier transform is the tool used for analysing the variable astrophy-
sical signals. Its accuracy is limited by the sampling and the noise. Let us
consider a function f(¢) in a window W(r). We get the observed function

F(@)=f().W(), (3.1)

which corresponds in the Fourier space to:

F) =f () x W(v), (3.2)

where * is the convolution symbol. Let us consider now the case of a single
square window of size T. W(v) is the function ";’}{ Y, so the original Fourier
spectrum is smoothed with this function. We make the following remarks.

e If the signal is really periodic, f (v) is a sum of Dirac distributions §(v — v;), but we
observed a set of functions “j’f}{v(”v”)') The observed peaks have a width of 1/T.
The window size limits the capability for observing the deviation from periodicity.

e The sinc function is known to have a very slow convergence, and, as a conse-
quence, many bumps are observed near a bright peak. They can be reduced by
applying a nonsquare window W(¢) to the data. Many windows were designed to
reduce the bumps, but they cause a faint loss in frequency resolution. A Gaussian
window is considered to be a good compromise between bumps and resolution.

e If the Fourier transform of a signal F(¢) shows peaks of 1/7 width the signal can
be considered as periodic on this time interval 7. On the other hand, if the width
is greater than 1/7 that means that the signal is not periodic, the observation time
is greater than the coherence time: the phase changes slowly, or the amplitude
decreases and a new wave packet appears, etc. The width could be also due to the
existence of real secondary peaks around the main one.

In case the Fourier analysis displays peaks compatible with the observational
window, the application of another tool does not seem to be useful. For
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peaks wider than 1/7, this analysis does not take into account all the infor-
mation, and we have to apply a transform which takes fully into account the
observed phenomena.

3.2.3 From Gabor’s to the wavelet transform

The Gabor transform [38] was the first designed operator which enables one
to perform a time—frequency analysis. With this transform, a windowed
Fourier transform is performed around each time 7, which leads to a 2D
function é(t, v). By fixing ¢, the frequency content at this time is obtained,
and by fixing v one gets the variations of the signal at this frequency with the
time. In order to reduce the bumps, a sliding Gaussian window is applied.
The window width T, delimits the time resolution, while the frequency reso-
lution is equal to 1/T,,. When we increase T, we reduce the precision in time,
but we increase it in frequency, while the product of the two resolutions is
constant. The time—frequency plane is divided in identical tiles of (TW,TLW)
size.

In the Gabor transform the time resolution is independent of the fre-
quency. If the peak widths in the observed signal do not have the same
size, this analysis is not optimal. For many signals the width depends on
the frequency; the larger the period, the larger must be the window size.
With this assumption we are led to the Morlet continuous wavelet transform
[66]. With this transform the time—frequency plane is divided in tiles the size
of which varies with the frequency. If the frequency resolution §v is kv, where
k is a free parameter which depends on the required resolution, then the time
resolution is 3.

Taking into account its derivation, the wavelet transform is interesting for
a signal for which the natural width of the frequency peaks is proportional to
the frequency. If this is not the case, the resulting analysis would not be
optimal.

3.2.4 Regular and irregular variables

The first astrophysical paper on the application of the Morlet wavelet trans-
form to astrophysical time series was an analysis of pulsating white dwarfs
[41]. The authors found amplitude variations for most detected oscillations
with periods of modulation as long as or greater than the time intervals of the
observation windows. For this case, where the spectral lines are quite well
defined, a Gabor transform should lead to the same conclusions.
Nevertheless a better time—frequency analysis was required, and Morlet’s
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wavelet carries out such an analysis with a constant shape pattern. Their
analysis allows them to deduce a periodic transfer of energy between two
pulsation modes.

This type of analysis was further developed by a group working on so-
called semiregular variables (SR) [101], a class of stars the luminosity of which
exhibits irregular oscillations. After applying a Fourier analysis to determine
the periods, they analysed the flux intensity variations with the wavelet trans-
form. Using simulations they have investigated the link between the time-
dependent phenomena and physical variations (amplitude or frequency mod-
ulations) [102]. They had first shown by a wavelet analysis that the two
shorter frequencies of a semiregular variable were unstable, as observed in
several other SR-type variable stars [101]. In a recent paper [100] they con-
firm the interest of this analysis on another semiregular variable V Bootis.
Using the ridge technique [43] they showed that the amplitude of the longer
period strongly decreased while the amplitude of the shorter one seems to
remain stable.

The previous works on semiregular variables could have been also done by
the Gabor transform. This tool is being used, with a confusion often occur-
ring between the Gabor and the wavelet transforms [19] [20]. The authors
processed the light curve of a peculiar A star. The transform shows unusual
evolution over the duration of the observation, which cannot be explained by
a beating mechanism of nearby frequencies. The last application on quite
regular variable stars concerns cataclysmic variables observed with the high
speed UV photometer of the Hubble Space Telescope [84]. A low-frequency
flickering was detected by this technique, but the main astrophysical result
concerns the detection of rapid UV quasi-periodic oscillations in the star VV
Pup, related to shock oscillations in its accretion column.

3.2.5 The analysis of chaotic light curves

Previous time series processing has shown the necessity of analysing some
light curves with a time-frequency tool. Some light curves of astrophysical
sources often exhibit chaotic behaviour, characterized by long-term depen-
dencies and a so-called } spectrum over a wide energy range. Due to the slow
decay of the correlation function, information is present at all scales, and,
consequently, the wavelet transform is always the favourite tool.

The first application was done on the flux data of a double quasar by
Hjorth et al. [47]. The quasar is seen double due to the gravitational lensing
of an angularly close galaxy. The time delay between the two fluxes is due to
the travel path difference. With an available model of the lensing, its measure
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allows one to estimate the Universe expansion rate (i.e. the Hubble constant).
From the wavelet analysis the authors have shown that the discrepancies
between the previous analyses could be due to the choice of the reduction
method. In this signal, no frequency can be determined, so that the wavelet
transform is well suited in allowing us a better temporal resolution and
localization of the multiple scales of the signal.

Scorpio X-1 is a chaotic variable source in X-ray. Scargle et al. [83] have
studied the flux variations with an orthogonal wavelet transform, the Haar
transform. They have computed the scalogram, i.e. the mean energy of the
wavelet coefficients for each scale, and they have shown that the chaotic
variability of the source Scorpio X-1 agrees well with the accretion model
called dripping handrail. The detected quasi-periodic oscillations and the very
low frequency noise are produced by radiation from blobs with a wide size
distribution, resulting from accretion and subsequent diffusion of hot gas.

Another original work was done by Norris et al. [70] on the flux data of the
Gamma Ray Bursts (GRB), in order to test a cosmological time dilation. In
this application the wavelet transform allowed them to rescale all bursts to
fiducial levels of peak intensity. They have shown that the dilation operates
over a broad range of time scales. If the results are consistent with bursts
being at cosmological distances, they conclude that alternative explanations
arising from the nature of the physical processes are still possible.

The GRB flux curves exhibit a large variation in time scale, from seconds
to minutes; the zero crossings in the wavelet transform have been used to
classify GRB [6]. This information, added to a set of other characteristics,
leads to separating these objects into 2-3 classes using a self organizing
neural network.

3.2.6 Applications to solar time series

Using a wavelet analysis, new variations in the solar cycle were displayed [71].
The periods determined by this approach are in agreement with the ones
previously detected. Some long periods in the cycle were also studied.

A comparison between the Fourier transform and wavelets was done by
Vigouroux and Delache [107]. They studied the solar radius measurements
obtained at the CERGA solar astrolab. These measurements were noisy and
not regularly sampled. After resampling and estimating the error bars, they
processed them by a Monte-Carlo method to determine the distribution of
the Fourier and the wavelet coefficients after applying a Daubechies ortho-
gonal transform [27]. They showed that the description which leads to the
minimum of parameters corresponds to the wavelet transform rather than the
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Fourier transform. They extended their analysis to the historical sunspot
numbers [108]. They slightly modified the method and showed the interest
of the wavelet transform which has the capability of taking care of unequal
error bars.

Bocchialini and Baudin [18] obtained new information on chromospheric
oscillations from the application of a Morlet wavelet analysis to observations
of the quiet Sun. The temporal behaviour was described in two kinds of
regions, a magnetic element network, and a nonmagnetic intra-network
cell. Thanks to the wavelet transform they determined the duration of the
chromospheric wavetrains. They estimated the correlation between the oscil-
lations in two spectral lines.

In the above papers on the solar time-series, the wavelet transform is
applied in different forms, and its advantages compared to the Fourier or
the Gabor transforms are not trivial. But solar series may show also a chaotic
behaviour. This is the case for the magnetic activity. Komm [52] and
Lawrence et al. [56] applied the wavelet transform to measure the scaling
and the intermittency properties. Komm applied to the series an orthogonal
wavelet transform and determined a fractal dimension of 1.7, while Lawrence
et al. carried out a wavelet spectral analysis with a Morlet wavelet transform.
The number of samples was large, 16 000, spread over many decades. They
have shown a power-law variation of the magnetic activity on more than two
decades (2 years to 2 days or less). They interpret this result as an indication
of a generic turbulence structuring the magnetic fields as they rise through the
convective zone.

3.3 Applications to image processing
3.3.1 Image compression

Richter [37] [78] introduced the old Haar transform [45] to compress astro-
nomical images a decade before the emergence of the wavelet transform and
the multiresolution analysis [63]. The corresponding wavelet function is equal
to 1 on [0, %[ and to —1 on [%, 1[. The Haar transform was applied to image
processing in the 1970s [75], but its 2D extension was different from the
multiresolution one. Richter has developed the two-dimensional transform
resulting from the multiresolution analysis and called it the H-Transform.
Their approach was simple, the values corresponding to closest pixels are
correlated, so that the main information is carried by the differences. They
developed a tool named HCOMPRESS which is based on the following elements.

e Compute the 2D Haar transform.
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e Estimate the variance due to the noise at each scale.

e Divide the wavelet coefficients by a value which depends on the variance and on
the required compression factor.

e Keep only the integer part with optimal storage using a 4-bit code [112] [50].

This method was applied to compress the Digital Sky Survey, which results
from a scan done at the Space Telescope Science Institute of images of the
whole sky [113]. Press [76] has introduced the Daubechies filter of length 4.
The compression and uncompression algorithms take more time than
HCOMPRESS and the quality of the resulting measurements is generally less
than those obtained with the simple Haar transform for astronomical images.
This could be due to the characteristics of these images, mainly compound of
peaks due to the stars. The correlation length is very short, and it is not
relevant to process the data with long filters.

For control during astronomical observations it is essential to have a
correct idea of the transmitted images as fast as possible. HCOMPRESS is
well adapted to this progressive transmission of the information. The
image is restored, and displayed, scale by scale, from the largest scale to
the smallest one. Such a modified software was implemented [111] and can
be used for remote observing or for access to remote image archives. After
less than 1% of the data has been received, the image is visually similar to the
original, allowing the user to verify it, and to stop the transmission if neces-
sary.

Unfortunately the restored images display large fields (blocks) of con-
nected pixels having the same value with discontinuities between them.
These blocking effects are due to null values of the thresholded coefficients
of the Haar transform. Richter proposed an improvement using a Kalman
filtering [79], while White [112] solved this problem by interpolation. With
Bobichon [17] we have shown that another improvement is obtained by
restoring taking into account a regularization constraint. The inversion is
not the inverse Haar transform, but an iterative algorithm resulting from
the constraints. We have also implemented more regular biorthogonal trans-
forms, resulting from the B-spline scaling function. Taking into account the
regularization constraint, the quality of the results is also less than the one
obtained by the Haar transform.

The pyramidal median transform [96] is similar to the pyramidal wavelet
transform [11] (see appendix B), the low-pass linear filtering being replaced
by a median filtering. Starck et al. have achieved a method based on this
transform to perform simultaneously a noise suppression and a compression
[96]. This technique is also well adapted for progressive transmission.
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3.3.2 Denoising astronomical images

3.3.2.1 First approaches

Since the first papers on the wavelet transform appeared, it has been shown
that this tool was very useful for denoising, thanks to its capabilities to
locally separate the signal from the noise. Astronomical images are particu-
larly noisy, so that this advantage seems to be very important, and much
work was done to create software for denoising astronomical images using
the wavelet transform. Many different strategies were applied in order to take
into account the noise properties and the aliasing.

Cappacioli et al. [24] developed a method based on the Haar transform for
filtering spectrograms and images (see also [79] [61]). Kalman filtering was
introduced in order to reduce the block effects resulting of zeroing wavelet
coefficients. Donoho’s wavelet shrinking [31] was based on a multiresolution
analysis [63] and a Daubechies orthonormal basis [27]. We have applied this
method and found a lot of artifacts, generated by the aliasing introduced in
this approach. The multiresolution analysis is an unredundant transform. At
each scale the sampling is divided by two in order to keep the same number of
coefficients. The signal is perfectly restored with the full set of data. If we
threshold, at each scale we have an aliasing and that will lead necessarily to
artifacts near discontinuities and peaks. Lorenz et al. [61] reduced these
features by applying a Kalman filtering, but it is possible to remove them
by a regularization constraint such as we have proposed for the decompres-
sion with the Haar transform [17]. These procedures are complicated, some
artifacts always remain from this analysis, making a redundant transform
preferable.

Denoising depends on the noise statistic, and the coefficient thresholding
must take this into account. This led our group to introduce the notion of
significant coefficients.

3.3.2.2 Decision theory and significant coefficients

If the image is locally uniform we can compute the probability density func-
tion (PDF) p(W) of the wavelet coefficient . Then we introduce a statistical
meaning of the observed value from classical decision theory [44]. H, is the
hypothesis that at the scale i the image is constant in the neighbourhood of
the pixel (k, /). For a positive coefficient W, the H, rejection depends on the
probability p(W):

—+00
P = Prob(w > W(i, k, 1)) = / p(w)dw (3.3)
W (i Je,1)
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For a negative coefficient we examine:

Wi k,I)

P = Prob(w < W(i, k, 1)) = f p(w)dw 3.4
—00

We fix a decision level €. If P > ¢, H, is not excluded at level ¢, and therefore

the coefficient value may be due to the noise. On the other hand, if P < €, we

cannot conclude that the value results only from the noise and H, must be

rejected at this decision level. We say that we have detected a significant

coefficient.

The number of significant coefficients depends on the decision level €. If we
choose € = 0.001, 0.1% of the coefficients are statistically identified as sig-
nificant even if we have only noise. These false detections will generate arti-
facts on further processing. If we choose a fainter decision level, i.e. 10_6,
very few artifacts will remain, but a large part of the real information will be
missed. We must find a compromise between the false alarms and the misses.
This compromise depends on the cost of a false alarm and of a miss.
Generally we have chosen € = 107 in our processing.

3.3.2.3 The PDF of the wavelet coefficients

The PDF of the wavelet coefficients depends on the noise process. We assume
generally that we have stationary Gaussian white noise for the image. In the
case of Poisson noise, we can transform the pixel intensity #n by Anscombe’s
Transform [2]:

x=2/n+13 (3.5)

Then we process the data x as a Gaussian variable of variance 1. This
transform gives correct results for photon counts greater than about 10 per
pixel, which is generally the case. For galaxy counts, we have also examined
the case of a fainter density for which Anscombe’s transform is not available.
Another method was given for determining the PDF [86].

For CCD observations, the noise is described by the sum of a Gaussian
and a Poisson variable, and we generalize Anscombe’s transform, which
leads also to a variable with a constant variance 1 which is processed as a
Gaussian one [68].

2 3
x:—\/ozn+—oz2+02—ozg (3.6)
o 8

« is the coding step, g is the background value and o the standard deviation
of the Gaussian noise.
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We have examined the case of Rayleigh variables [16], which are obtained
from Synthetic Aperture Radar. This instrument allows one to get images of
the Earth and near planets and satellites in centimetric wavelengths.
Unfortunately these images are affected by the so-called speckle noise, due
to the coherent lighting. The distribution of the amplitude p follows a
Rayleigh law:

2

Lo _
p(p)=;e 27 (3.7

where o is a parameter which is characteristic of the ground rugosity. The
PDF of the wavelet coefficients is derived from numerical experiments.

We have shown [16] that it is better to process the energy (o°) instead of the
amplitude, which leads us to examine the PDF of the wavelet coefficients of
an exponential process. This PDF is also determined by numerical simula-
tions.

It is easy to estimate the PDF of the wavelet coefficients in the case of
Gaussian noise. This can be done analytically but simulation is easier. We
compute the image of a simulated Gaussian noise with a variance 1. Then we
compute its discrete wavelet transform and estimate the standard deviation
o,(i) at each scale. For the image to be processed, the standard deviation o(1)
is estimated from the histogram of the wavelet coefficients W (1, k, [). At this
scale, the wavelet coefficient values essentially result from the noise. Knowing
the variation of the noise with the scale from the simulation we deduce the
o(i) set.

3.3.2.4 Denoising by using the significant coefficients

In a first approach with Starck [92], we have carefully examined this problem
applying the a trous (with holes) algorithm [49] [15] for which the wavelet
transform is computed scale by scale without decimation (appendix A). We
have proposed four methods:

e a Wiener-like technique, which corresponds to a stationary Wiener filter done in
the wavelet space;

e a hierarchical Wiener filtering, for which we take into account the correlation
between the coefficients from one scale to the following one;

e an adaptive filtering which corresponds to Donoho’s method, but with a redun-
dant transform;

e hierarchical adaptive filtering for which the threshold depends on the wavelet
coefficient in the previous plane.

Using a multiresolution quality criterion, the results pleaded for the hierarch-
ical Wiener filtering, which led to the minimum of artifacts.
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Due to the redundancy of the wavelet transforms, all the developed algo-
rithms were iterative leading to an image F at iteration n. In order to reduce
the residual artifacts we assume that the difference R”” between the observed
image F and F® must be similar to noise [90] [95]. Consequently, a necessary,
but not sufficient, condition holds in the lack of detection of significant
coefficients in the R"™ wavelet transform.

We build a Boolean image M (i, k, /) such that M(i, k, /) = 1 if the wavelet
coefficient W (i, k, [) is significant; and M (i, k, /) = 0 in the opposite case. This
mask corresponds also to a volume V' of the wavelet transform, the one
where the wavelet coefficients are significant. We can reconstruct the image
from the significant set. If F(Z, k, /) designs the smoothed image at the largest
scale I, we can restore the image by the expression:

Fle,l)=F(I.k.D)+> Wik (3.8)
1,1

If we do not threshold, the reconstruction is exact. In the opposite case, we
write:

FOUe, 1) = F(I k, )+ Y M(i.j. YW (i. k. ]) (3.9)
1,1

Then if we get the wavelet transform of FO(k,/) we get another set
VO, k, 1) which is different from the set W(i, k, I) even for the significant
coefficients. This deviation is due to the redundancy of the a trous wavelet
transform. By consequence, F(k,/) — F (0)(k, /) may show significant differ-
ences. This remark leads to the algorithm described in appendix C [23].

Bendjoya et al. [8] have applied also thresholding in a redundant wavelet
transform space for denoising the profile of Saturn’s rings, from data taken
by Voyager 2. In their approach a coefficient statistic was done on the data,
scale by scale, without taking into account white Gaussian noise.

Oosterloo [72] has developed a similar adaptive wavelet smoothing in a
data cube resulting from synthetic observations obtained with a radio inter-
ferometer.

3.3.3 Multiscale adaptive deconvolution

This classical problem has played an important part recently in enhancing the
observations taken with the Hubble Space Telescope (HST), before its
refurbishment. We write:

F=0xP+N (3.10)
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where O designs the true object distribution, P is the response function which
is called the point spread function (PSF) in image processing and N the noise.
A large number of methods were proposed to get O knowing F. This opera-
tion called deconvolution depends upon:

e the PSF P: if P has frequency holes, regularization techniques are necessary;

e the noise NV: the methods are not the same for Gaussian, Poisson, or another kind
of noise;

e the statistical properties of the object O. We do not use the same method to
deconvolve remote sensing images, with building edges, or diffuse galaxies.

The application of multiresolution techniques for deconvolution is widely
connected to the nature of astronomical objects. Many authors have devel-
oped different techniques, with or without redundancy. Bendinelli [7] first
introduced a multiscale approach using Gabor expansions in series of ele-
mentary Gaussians. With Starck [92] [93] we have derived a deconvolution
technique based on a wavelet transform associated with the PSF. The resolu-
tion increased but this algorithm was only adapted to a quite regular PSF,
which was not the case for the HST. So we have developed a simpler idea
connected to the denoising method described above. Our algorithm [15, 58] is
based on the formulation of classical restoration algorithms:

0" Dk, 1) = GO (k, 1), R"(k, ) (3.11)

where G(O, R) may be:

Van Cittert [114] G(O, R) = O + R;

Fixed step gradient [54] G(O, R) = O 4+ P x R, where P is the joint operator related
to the PSF (f’(k, l) = P(—k, —=I)), and « a parameter which is easily estimated;

Lucy [62] G(O, R) = O + O(L5) » P.

The algorithm is similar to the smoothing one [15], and it is described in
appendix D.

In Figure 3.1 a simulated astronomical image is plotted. It was convolved
by a given PSF and a Gaussian noise was added. The bottom images show
the restoration by the Lucy algorithm and by the proposed modified one.
Automated analysis software was applied to the two images, allowing us to
compare the results to the initial image:

e the noise suppression helps the object detection;

e the position accuracy is improved by this technique;

e the Signal to Noise ratio is only reduced of 3.5 dB for our method, while it is
reduced by 10dB using Lucy.
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Fig. 3.1. Results of the simulation (isophotal display). At the top: left, the simulated
image; and right, this image after the convolution with the PSF and the noise addi-
tion. At the bottom: left, the restored image by Lucy’s method; and right, the one
obtained with the proposed method (from [15]).

Some processing was done for HST images [68], for CCD ground based
observations [5], and for deconvolution of X-ray images [105]. Other authors
have developed methods based on the multiresolution analysis [80]. A multi-
scale support constraint is introduced interactively, by the user, in a first
approach. An automated determination of the optimal mask is then intro-
duced.

3.3.4 The restoration of aperture synthesis observations

With an interferometer with two telescopes we measure directly the ampli-
tude of the Fourier transform of the image at a given 2D spatial frequency
(u, v). By combining the information from three telescopes the phase can also
be obtained, so that the image is directly sampled in the Fourier space. But
the measurements need specific positions of the telescope, and the sampling
in the Fourier space is necessarily irregular. The image, called the dirty map,
is obtained by a simple inverse Fourier transform of the data, and the PSF,
named the dirty beam, by an inverse Fourier transform of the frequency
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coverage. The presence of secondary lobes in the dirty beam creates large
artifacts in the dirty map and deconvolution is necessary. This image restora-
tion problem has led to the development of many different methods.
Generally, radio astronomers apply the CLEAN algorithm [48] for which
detected point-like sources are iteratively subtracted.

Wakker and Schwarz [110] have introduced the concept of Multi-
Resolution Clean (MRC) in order to alleviate the difficulties with CLEAN
for extended sources. The MRC approach consists of building two intermedi-
ate images, the first (called the smooth map) by smoothing the data to a
lower resolution with a Gaussian function, and the second (called the differ-
ence map) by subtracting the smoothed images from the original data. Both
images are then processed separately. By using a standard CLEAN on them,
a smoothed clean map and difference clean map are obtained. The recombi-
nation of these two maps gives the clean map at full resolution.

Let us consider an image characterized by its intensity distribution F(x, y).
If w}F ) are the wavelet coefficients of the image F at the scale j, we get:

W, v) = W0, v) (3.12)

where W;P) are the wavelet coefficients of the PSF at the scale j. We decon-

volve each wavelet plane of the image by the wavelet plane of the PSF by
using the classical algorithm CLEAN to obtain the clean wavelet map. If B is
the ideal PSF(clean beam) and L; is the list of peaks found by CLEAN at the
resolution j, the estimation of the wavelet coefficients of the object is:

w0 ) = LyowP(x, ) (3.13)

The clean map at full resolution is found by the reconstruction algorithm. We
apply CLEAN to each plane of the wavelet transform. This allows us to
detect at each scale the significant structures. An optimization of the height
of the CLEAN peaks is further obtained, in order to get an image which is
fully compatible with the observations.

Some astronomical applications were done for restoring stellar images
from observations done by speckle interferometry [97]. Yan and Peng [114]
have also applied this wavelet approach from radio observations, and they
have shown its power.

3.3.5 Applications to data fusion

Today the same source is often observed at different wavelengths, and at
different epochs. The comparison of these observations requires adapted
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image fusion tools. The fusion is usually based on the pixel values. But many
phenomena may reduce the quality of this approach, and specifically the
existence of a background, and a difference in resolution.

The wavelet transform splits the information along the scale axis, so that
the data fusion may be done scale by scale. Consequently the variations in
resolution are easy to take into account, scale by scale. The wavelet function
has a null mean, and the background variations are automatically removed.

Data fusion in the wavelet transform space presents many advantages. We
have given an application for optimal image addition [13]. The image regis-
tration was done by taking into account the information in the wavelet
transform space. For each scale and for each image we estimated weights
which account for the signal level and the standard deviation due to the
noise. This method was applied also for registering remote sensed images
[29]. A comparison of wavelet coefficients allows us to detect faint variations
at a given scale for a set of images.

This approach could be applied to many other fields, such as biology,
medicine, surveillance or industrial imaging, for geometrical registration
and for detection of variable phenomena at a given scale.

3.4 Multiscale vision
3.4.1 Astronomical surveys and vision models

Astronomical images contain typically a large set of point-like sources (stars),
some quasi point-like objects (faint galaxies, double stars,...) and some com-
plex and diffuse structures (galaxies, nebulous, planetary nebulae, clusters,
etc.). A vision model is defined by the sequence of operations required for
automated image analysis. Astronomical images need specific analyses which
take into account the scientific purpose, the characteristics of the objects and
the existence of hierarchical structures.

The classical vision model for robotic and industrial images is based on
edge detection. We have applied this concept to astronomical imagery [14].
We chose the Laplacian of the intensity as the edge line. The results are
independent of large scale spatial variations, such as those due to sky back-
ground. The main disadvantage of the resulting model lies in the difficulty of
getting a correct object classification: astronomical sources cannot be accu-
rately recognized from their edges.

Many reduction procedures were built using a model for which the image is
the sum of a slowly varying background with superimposed small scale
objects [98] [88] [104] [53]. We created first a background mapping [10].
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For that purpose we need to introduce a scale: the background is defined in a
given area. Each pixel with a value significantly greater than the background
is considered to belong to a real object. The same label is given to each
significant pixel belonging to the same connected field. For each field we
determine the area, the position, the flux and some pattern parameters.
Generally, this procedure leads to quite accurate measurements, with correct
detection and recognition. The model works very well for poor fields. If it
is not the case, a labelled field may correspond to many objects. The back-
ground map is done at a given scale: larger objects are removed. Smoothing is
only adapted to star detection, not to larger objects.

The classical vision models fail to yield a complete analysis of astronomical
images because they are based on a single spatial scale for the adapted
smoothing and background mapping. They are only suited to stars or
quasi stellar sources with a slowly varying background. The multiscale ana-
lysis has allowed us to get a background adapted to a given object and to
optimize the detection of objects with different size.

3.4.2 A multiscale vision model for astronomical images

3.4.2.1 Object definition in the wavelet transform space

An object has to be defined in the wavelet transform space (WTS). In the
image, an object occupies a physically connected region and each pixel of this
region can be linked to the others. The connectivity in the direct space has to
be transported to the WTS. All structures form a 3D connected set which is
hierarchically organized: the structures at a given scale are linked to smaller
structures of the previous scale. This set gives the description of an object in
the WTS. The steps of the multiscale model can now be defined.

After applying the wavelet transform to the image, a thresholding in the
WTS is performed in order to identify the statistically significant pixels.
These pixels are regrouped in connected fields by a scale by scale segmenta-
tion procedure, in order to define the object structures. Then, an interscale
connectivity graph is established. The object identification procedure extracts
each connected sub-graph that corresponds to 3D connected sets of pixels in
the WTS and, by referring to the object definition, the sub-graph which can
be associated with the objects. From each set of pixels an image of the object
can be reconstructed using reconstruction algorithms. Finally, measurement
and classification operations can be carried out.
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3.4.2.2 Scale by scale segmentation and the interscale relation

After thresholding, the region labelling is done by a classical growing tech-
nique. At each scale, neighbouring significant pixels are grouped together to
form a segmented field. A label n > 0 is assigned to each field pixel. If a pixel
is not significant, it does not belong to a field and its label is 0. We denote by
L(i, k, ]) the label corresponding to the pixel (k, /) at scale i and by D(i, n) a
segmented field of label n at the same scale.

Now we have to link the fields labelled at a given scale to the ones belong-
ing to the following scale, in order to construct a graph from which we can
extract the objects. Let us consider the fields D(i, n) at scale i and D(i + 1, m)
at scale i + 1. The pixel coordinates of the maximum coefficient W(i, k; ,,, I; ,,)
of D(i,n) are (k;,,1;,). D(i,n) is said to be connected to D(i + 1, m) if the
maximum position belongs to the field D(i + 1, m), 1.e L(i+ 1, k;,, [;,) = m.
With this criterion of interscale neighbourhood, a field of a given scale is linked
to at most one field of the upper scale. So we have a set of fields D(i, n) and a
relation R:

DG, m)RDG+1,m) if  Li+1k,.l,)=m (3.14)

This relation leads us to build the interscale connectivity graph whose sum-
mits correspond to the labelled fields. Statistically, some significant structures
can be due to the noise. They contain very few pixels and are generally
isolated, i.e they are connected to no field at upper and lower scales. So, to
avoid false detection, the isolated fields are removed from the initial inter-
scale connection graph.

3.4.2.3 The object identification

An object is associated with each local maximum of the image wavelet trans-
form. For each field D(i, n) of the interscale connection graph, its highest
coefficient W(i, k; ,, [;,) is compared with the corresponding coefficients of
the connected fields of the upper scale, W(i+1,k,,/,) and lower scale,
Wi —1,k_,1).

If wWi—-1,k_,1.)<W(,ki,l, and W ki, [l;,)>W(i+1 kL),
D(i, n) corresponds to a local maximum of the wavelet coefficients. It defines
an object. No other fields of the scale i are attributed to the object; D(i, n)
concentrates the main information which permits the object image to be
reconstructed. Only the fields of the lower scales connected to D(i, n) are
kept. So the object is extracted from larger objects that may contain it. On
the other hand, some of these fields may define other objects. They are sub-
objects of the object. To get an accurate representation of the object cleaned
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of its components, the fields associated with the sub-objects cannot be
directly removed; as experiments show, their images will have to be restored
and subtracted from the reconstructed global image of the object. By con-
struction, D(i, n) is the root of a sub-graph which defines a tree noted 7. 7
expresses the hierarchical overlapping of the object structures.

3.4.2.4 The object image reconstruction

Let us consider an object (or a sub-object) O previously defined and its
associated tree 7. The object corresponds to a set of wavelet coefficients V
defined on a 3D support S in WTS:

0= {V(i,k, 1), for (i,k,[) € S} (3.15)
where
S ={(i, k, [) such that W(i, k,[) € D(i, n) element of 7T} (3.16)

F is an image and W is its corresponding wavelet transform. F can be
considered as a correct restored image of the object O if:

Vi, k)= W@, k1) Y0k eS (3.17)

Let us denote by Pg the projection operator in the subspace S and by WT
the operator associated with the wavelet transform. We can write:

Y = (Ps o WT)(F) = A(F) (3.18)

We have to solve the inverse problem which consists of determining F
knowing 4 and V. We minimize the distance ||V — A(F)| leading to:

A(V) = (4 o A)(F) (3.19)

The initial equation (3.18) is modified with the introduction of A, the
adjoint operator associated with A. A is applied to a wavelet transform W
and gives an image F. The equation (3.19) is solved either by the gradient
algorithm [12] or by the conjugate gradient algorithm [82] which improves the
restoration quality and the convergence speed.

The previous vision scheme has also been applied to a pyramidal wavelet
transform. The interscale connectivity graph is determined taking into
account the decimation from one scale to the following one. The restoration
algorithm is derived from the conjugate gradient algorithm.
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3.4.2.5 Applications to astronomical images

We test the multiscale models on the image L.384-350 (see Figure 3.2) corre-
sponding to the galaxy 384350 of the Surface photometry catalogue of ESO-
Uppsala galaxies.

We performed a 7-scales wavelet transform of L384-350, and 58 objects are
detected. The restored image with the a trous algorithm, made of the recon-
structed images of each object, is given in Figure 3.2. The restored image of
the central galaxy is plotted in Figure 3.3. A sub-object of the galaxy, which
corresponds to a spiral arm, has been extracted; its image is shown in the
same figure.

In the case of simple objects of small size, usual astronomical imagery
methods and the multiscale model give very close results [82]. But, the multi-
scale model permits not only point-like objects to be identified but also
objects which are much more complex (for instance the central galaxy of
L.384-350). Such objects with their structure hierarchy can be decomposed
by our model thanks to the notion of sub-object.

3.4.3 Applications to the analysis of astrophysical sources

Many applications of the wavelet transform have been done on the analysis
of astrophysical sources by different approaches. Our vision model is too
recent to have been currently applied, but similar ideas were partly imple-
mented.

The fractal behaviour of interstellar clouds was one of the specific applica-
tions of the wavelet transform in astrophysics. Gil and Henriksen [39] first

" ’ L

Fig. 3.2. Image of L384-350 and the restored image (from [82]).
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Fig. 3.3. Restored images of the galaxy object and one of its sub-object (from [82]).

analysed the *CO spectral data of the outflow region of a molecular cloud.
The fractal Hausdorff dimension was obtained for some specific regions. The
wavelet transform was applied with a Mexican hat. A deeper analysis led
them to believe that a substantial quantity of gas is present between the
emission peaks.

From observations obtained with the infrared satellite IRAS, a similar
analysis was done on the 60 and 100 um emissions at high galactic latitudes
[1]. A local spectral index was obtained for each pixel. Its map is more
homogeneous than the brightness map.

Langer et al. [55] have used a Laplacian pyramid transform for analysing
molecular clouds. This transform can be considered as a discrete wavelet
transform with four wavelets. They identified all the components, with posi-
tive coefficients for fragments or clumps, and with negative ones for cavities
or bubbles. A hierarchical structure was shown. The studied cloud seems to
be more chaotic than that predicted for incompressible turbulence, probably
because of the importance of long-range gravitational forces, the compressi-
bility of clumps and the presence of turbulent dissipation.

A 1D application was done by Lepine et al. [60] [65] for analysing discrete
stochastic components found on emission lines in Wolf-Rayet stars. This
allowed them to identify a dominant scale. The wavelet power spectrum
was used to verify the consistency of the data with a model based on scaling
laws.

Coupinot et al. [26] have developed a multiscale method for analysing
complex objects. They showed by numerical simulations that they obtained
an available photometric accuracy. They applied their method on different
sources. On high angular resolution images of the galaxy M31 they succeeded



Wavelets and astrophysical applications 99

in detecting new faint globular clusters [3]. For a clumpy irregular galaxy
they extracted about twenty clumps [46]. Using a model, they deduced the
age and the mass of these structures. Evidence from the self-propagating star
formation mechanism was derived.

Bendjoya et al. [8] [89] applied a 1D wavelet transform for the analysis of
rings of Saturn and Uranus [74]. They showed their hierarchies, and they
identified the components. The nuclei of comets have also been studied using
a multiscale analysis [69].

Clusters of galaxies include three components: galaxies, an intracluster
medium made of hot gas radiating in the X-ray window, and an amount
of dark matter. The baryonic matter is mainly in the form of ionized hydro-
gen, which appears in images obtained in the X-ray bands by satellites like
Einstein or ROSAT. A subclustering has been found in many clusters [32]
[36] and its analysis is of great importance in establishing the dynamical state
of the cluster of galaxies. Multiscale approaches based on the wavelet trans-
form have contributed to quantify this subclustering [35]. The correlation
between the subclusterings and the gravitational potential wells must be
stated precisely.

In Figure 3.4 the raw image of ABCG 2256 taken with the ROSAT PSPC
detector is plotted. In Figure 3.5 its reconstructed image from its significant
components shows the matter organization. The substructures found with the
wavelet transform at different scales are superimposed in Figure 3.6. This
study has been done on a set of clusters of galaxies and it raised the question
of the validity of the hydrodynamic equilibrium hypothesis of the gas in the
potential well [87].

Today, structural features are identified and measured on X-ray images by
a multiscale analysis [42] [109] [30]. The wavelet transform is also used for
detecting new X-ray clusters [81] [103].

3.4.4 Applications to galaxy counts

The complexity of the distribution of galaxies and of clusters of galaxies is
now clearly established up to scales of 50 Mch (with a Hubble constant
=100 km s~' Mpc™!) [4]. Valuable information on the three-dimensional
clustering of galaxies is provided by wide-angle redshift surveys, such as
the Center for Astrophysics (hereafter CfA) redshift survey slices [51]. The

T The parsec (pc) is the current astronomical unit of distance. Its value is approximatively 3.26 light-
years.
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Fig. 3.4. Raw image of ABCG 2256 taken with the ROSAT PSPC (from [87]).

Fig. 3.5. Reconstructed image of ABCG 2256 after a wavelet analysis (from [87]).

main feature of the galaxy distribution is the departure from homogeneity at
all scales within reach. The topology of the distribution is characterized by a
complex network of structures, 1D filaments [40] or 2D sheets [28]. The high-
density structures appear to connect clusters of galaxies and to delineate large
spherical regions which are devoid of bright galaxies: voids are frequent
events of the distribution.
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Fig. 3.6. Isocontours of two wavelet images of ABCG 2256. Full thin line, at 4 pixel
scale, full thick line at 2 pixel scale, dashed line the restored image (from [87]).

Various statistical methods have been used to detect local structures and to
discriminate among theoretical models. Generally the statistical indicators
provide an objective way to compare observational data with numerical
simulations, but they measure only an average value of the parameter used
to characterize the distribution of galaxies. The wavelet transform provides a
space-scale analysis in which both over- and under-dense structures are
detected according to their typical size.

In Figure 3.7 we have superimposed the positions of a part of the CfA
catalogue with the limit curves of the significant positive wavelet coefficients
at different scales. For each scale we compute a wavelet coefficient image,
then we threshold it taking into account a threshold statistical level, here
equal to 0.001. The superimposed curves show clearly the hierarchy of struc-
tures formed by the galaxies. In Figure 3.8 we show the same plot where the
negative significant pixels and the voids appear distinctly. The wavelet ana-
lysis allowed us for the first time to objectively detect and to locate voids in
the CfA slice and to replace the often used subjective visual criteria with
quantitative parameters [86].

This approach was applied to other catalogues of cosmological interest
and always showed a hierarchically structured distribution of objects [23].
A full description of the large structure was done around the South Galactic
Pole, leading to the identification of clusters and superclusters of galaxies [33]
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Fig. 3.7. Map of the significant over-dense structures. The lines define areas corre-
sponding to a statistical level 0.005. Four scales are plotted. For a given structure, the
contours enclosing the larger areas correspond to the larger wavelet scales (from [86]).

[34]. Larger structures were also obtained by analysing the distribution of the
clusters of galaxies [22].

This method for identifying hierarchical groups has also been adapted to
the analysis of the distribution of asteroids in the space of dynamical para-
meters [9]. A new decomposition of asteroids in dynamical families was done
and compared successfully to a classical cluster analysis [25].

A continuous wavelet transform, with a so-called Mexican hat wavelet,
was applied on the radial velocity of galaxies in order to determine an irrota-
tional velocity field [77]. The application of this method to cosmic velocity
fields allows one to derive the potential or, similarly, any linear function on
the vectorial field.

3.4.5 Statistics on the large-scale structure of the Universe

Obviously the analysis of the scalogram obtained on the the galaxy distribu-
tion may disclose information on the fractality of the Universe. Many diffi-
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Fig. 3.8. Map of the significant underdense structures. The statistical threshold of
detection is 0.005. The two plotted contours correspond to wavelet scales 350 km s~
and 700km s~! (from [86]).

culties remain in interpreting the results: bias due to the Poisson noise, velo-
city dispersion in bound gravitational structures, homogeneity in the object
selection, etc. Applying such an analysis, Martinez et al. [64] found the
existence of different exponents showing the multifractal nature of the dis-
tribution of galaxies.

The spectrograms of the quasi stellar objects (QSO) exhibit a large set of
fine absorption lines which have been identified as the redshifted Lyo absorp-
tions of hydrogen galactic halos along the sight line. This Ly« forest became
a fundamental marker of the large-scale structures. Pando and Fang [73]
applied a Daubechies wavelet transform for analysing these data.
Clustering was identified on scales similar to the one of the cluster of galaxies.
The intensity of this clustering seems to decrease with the distance.

The correlation function is not sufficient to separate between cosmological
scenarios. Bromley [21] has proposed an approach based on the histogram of
the wavelet coefficients. We derived a new statistical indicator for that pur-
pose, based on a morphological parameter of the structures detected by the
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wavelet transform. We implemented on a Connection Machine CM-200 an #-
body simulation program corresponding to different classical scenarios [58].
In Figure 3.9 we show a simulation with a Cold Dark Matter (CDM) scenario
while the Hot Dark Matter (HDM) is given in Figure 3.10. It can be seen
clearly that the CDM scenario favours clustered structures while the HDM
favours filamentary ones. An objective method is necessary to characterize
the structures.

We applied our vision model to 3D images resulting from simulations.
After the structure identification, we quantify the morphological properties
by the shape parameter:

V(a)

L(a) = 36m )

(3.20)

where V' (a) and S(a) are the volume and the surface of a structure at scale a.
The mean of L(a) gives a description of the deviation from sphericity at the
scale a. In Figure 3.11 the results obtained for the two scenarios are plotted.
Error bars are given by the variance on < L(a) > obtained with five simula-
tions for each scenario. It appears clearly that the CDM scenario is made of
structures of almost spherical shape with a slight variation towards the elon-

Fig. 3.9. Numerical simulation of the CDM universe on a 128" grid (the physical size
of the box is 192Mpc) (from [58]).
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Fig. 3.10. Numerical simulation of the HDM universe (from [58]).
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Fig. 3.11. Variation of the sphericity indicator with the scale for the structures
generated from the CDM and HDM cosmological scenarios (from [58]).
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gated ones, while the HDM scenario is made of elongated structures even at
very small scales.

This new indicator, based on the morphology of structures in the wavelet
space, was applied on observational data, the CfA catalogue [57], or the
Abell cluster of galaxies [22] and tends to favour an intermediate scenario.

3.5 Conclusion

The wavelet transform is used more and more often for astrophysical data
analysis. Its main domain of applications consists essentially of nonstation-
ary processes which exhibit long range correlations. We often observe this
situation in astrophysical data, either for time series (solar granulation, dis-
tribution of the magnetic fields, quasar flux, GRB, etc.), for images (mole-
cular clouds, galaxies, comets, X-ray cluster of galaxies, etc.) and also for
astronomical catalogues (spatial distribution of galaxies, distribution of
asteroids in a dynamical parameter space, etc.).

As we have shown in this chapter, the astrophysicists have applied differ-
ent discrete wavelet transforms: Morlet’s transform, for time-frequency ana-
lysis, the a trous algorithm and the pyramidal transform for image
restoration and analysis, pyramidal with Fourier transform for synthesis
aperture imaging. The choice is determined by the problem. For example
image compression needs a compact representation, consequently the multi-
resolution analysis is a priori the most suitable tool for this application.
Aliasing must be avoided for analysis and if we have no problem with mem-
ory or computing time, the a trous algorithm is the best, and if that is not the
case, a pyramidal transform would be better than the multiresolution analy-
sis. For times series, often the phase is required, so a Morlet or a Gabor
transform is indicated.

Nevertheless, the sampling, the compactness in the direct space and the
regularity of the wavelet are the main elements that the astrophysicist has to
take care of in applying a given discrete wavelet transform. With my colla-
borators I did not apply the multiresolution analysis which provides an
unredundant image representation, but I used instead the wavelet transform
as a set of pass-band filters. So our use of this transform was characterized by
the following.

o The use of the a trous algorithm, in order to keep the same sampling for each
scale.

e The use of a quasi isotropic wavelet, so that no direction is privileged by this
analysis.
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e A wavelet with no positive bumps, of course outside the central peak. Since the
wavelet function has a null mean, it has necessarily at least one negative bump:
significant negative coefficients may result of significant positive structures, but no
other positive structures must be detected around a positive peak.

e A decision rule based on the PDF of the wavelet coefficient for a uniform image is

applied. We can estimate the probability of a given structure to be due to the

noise.

The groups and the voids are detected by the same objective procedure.

We detect a group or a void superimposed on a background.

The image of each structure can be restored by application of partial restoration.

The structures are characterized by an indicator based on the morphology in the

wavelet transform space.

Many wavelet packages are now available, some of them are accessible by
anonymous FTP. A large part of our work is now integrated in the SADAM
(Systeme d’Analyse des Données Astronomiques Multiéchelles) package devel-
oped in the framework of a collaboration between our group and Starck’s
one at the CEA [91]. The methods and the algorithms implemented in this
package are described in a book which will allow the physicists to apply our
multiscale methods [94].

Appendices to Chapter 3
A. The a trous algorithm

Let us consider the 1D algorithm. The sampled data are considered as the
scalar product of the image function f(x) with the translated scaling func-
tions ¢(x — k):

(0, k) = (f(x), p(x — k)) (3.21)
Let us consider the scalar products at the scale i
) 1 x—k
(i, k) = (01, 6C5) (3.22)
If ¢(x) satisfies the dilation equation [99]:

19(3) = Z h(n)p(x — n) (3.23)

¢(i, k) can be iteratively computed according to the relation:

c(i, k)= h(m)c(i — 1,k +2""n) (3.24)
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We choose the cubic central B-spline B;(x) with h(n) = {1z ;3 5; &)
(=2 <= n <2) and we use the wavelet resulting from the difference between

two successive approximations:
w(i, k) = c(i — 1, k) — c(i, k) (3.25)

Hence we get an easy reconstruction algorithm by adding all the wavelet
images with the smoothest one. The n-dimensional algorithm works with
separable B-splines for the successive approximations. The B;(x) function
is close to a Gaussian function and the results are quasi isotropic.

We notice that this wavelet function has no positive bumps, i.e. the origin
is the maximum. This point is essential since bumps lead to rings around each
field.

B. The pyramidal algorithm

Let us consider again the 1D algorithm. We start with the same sampled
data ¢(0, k) but the scalar products at the scale i are:

(i, k) = 2i< 1), ¢(§ — k)> (3.26)

The sampling step is then 2, and the number of coefficients are reduced by a
factor 2 from one step to the following one. Taking into account the dilation
equation c(i, k) can be iteratively computed according to the relation:

c(i. k) ="y h(n)c(i — 1,2k + n) (3.27)

We choose again the cubic central B-spline B;(x) and the wavelet results
also from the difference between two successive approximations, but we have
to take into account the decimation, i.e. the reduction by a factor 2 of the
sampling. So we introduce the approximation before this operation by:

&(i.k) ="y h(m)c(i — 1,k + n) (3.28)

and the wavelet coefficients are:
w(i, k) =c(i—1,k) — c(i, k) (3.29)

The reconstruction algorithm, based on an iterative scheme, is less trivial.
The n-dimensional algorithm works also with separable B-splines for the
successive approximations.
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C. The denoising algorithm

(1) Set n =0;
(i1) determine the significant coefficients, and consequently the mask M(i, k, [);
(iii) restore the image F™ for the significant coefficients and the last smoothed
image;
(iv) compute the residue R"” = F — F";
(v) compute the wavelet transform V™ of the residue;
(vi) keep the significant values and reconstruct the significant residue R™ from this
set;
(vii) if the significant residue is negligible, stop;
(viii) otherwise, add the significant residue to the previous restored image in order to
get F(n+l);
(ix) increment n and return to point (iv).

At the end, no significant difference may be detected between the original
image and the restored one. That needs between 6—10 iteration steps. Some
variants are possible. We see that the set of significant wavelet coefficients is
modified during the iterative process. We can process differently, by modify-
ing the wavelet coefficients outside the mask M(i, k, [), in order to get the
correct solution. In another method, we reconstruct the image by applying a
fixed step or a conjugate gradient. The application of a given variant depends
on the purpose.

D. The deconvolution algorithm

(1) set n = 0;

(i) set 0 = 0;

(iii) restore the image F" = 0™ ® P;

(iv) compute the residue R" = F — F®;

(v) compute the significant residue R";

(vi) if the significant residue is negligible, stop;
(vii) otherwise, get 0"V = G(O"™, R™);
(viii) increment n and return to point (iii).

Some variants are also possible, by taking into account only the significant
coefficients of the original image F(k, /).
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Abstract

We have used wavelets to analyse, model and compute turbulent flows. The
theory and open questions encountered in turbulence are presented. The
wavelet-based techniques that we have developed to study turbulence are
explained and the main results are summarized.

4.1 Introduction

In this chapter we will summarize the ten years of research we have done to
try to better understand, model and compute fully developed turbulent flows
using wavelets and wavelet packets. Fully developed turbulence is a highly
nonlinear regime (very large Reynolds number tending to infinity) and is
distinct from the transition to turbulence (low Reynolds number). We have
chosen to present a personal point of view concerning the current state of our
understanding of fully developed turbulence. It may not always coincide with
the point of view of other researchers in this field because many issues we are
addressing in this chapter are still undecided and highly controversial. This
paper is a substantially revised and extended version of: Wavelets and
Turbulence by Farge, Kevlahan, Perrier and Goirand which appeared in
Proceedings of the IEEE, vol. 84, no. 4, April 1996, pp. 639-669.

After more than a century of turbulence study [30], [173], no convincing
theoretical explanation has produced a consensus among physicists (for a
historical review of various theories of turbulence see [160], [158], [72],
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[91]). In fact, a large number of ad hoc ‘phenomenological’ models exist that
are widely used by fluid mechanicians to interpret experiments and to com-
pute many industrial applications (in aeronautics, combustion, meteorol-
ogy . . .) where turbulence plays a role. For these models there is no need
to suppose the universality of turbulence since they are not derived from first
principles. Their predictions are compared with experiments, such as wind
tunnel measurements, in order to tune the parameters necessary to match the
model to the observations. This procedure is done case by case, for a given
type of turbulent flow and for a given geometry of the internal or external
boundaries. Actually, it is still not known whether fully developed turbulence
has the universal behaviour (independence from initial and boundary condi-
tions) which is generally assumed in the limit of small scales. Already in 1979
one of us (M.F. [69]) expressed reservations about our understanding of
turbulence and thought that we did not yet know the pertinent questions
to ask in order to guide research in this field. Nearly twenty years of work on
the subject have persuaded her that we have not yet identified the appropriate
objects, by which we mean the structures and elementary interactions, from
which it will be possible to construct a satisfactory theory of turbulence.
Turbulent flows are chaotic, i.e. sensitive to initial conditions, therefore we
are looking for a statistical theory, but the classical averages used at present
do not appear to be adequate. This point has been beautifully discussed in a
conference given in 1956 by Kampé de Fériet [112], where he rightly con-
cluded that:

In order to become really useful to research in turbulence theory, the statistical
definition of the average still requires, we believe, that the theory of the integration
of Navier—Stokes equations should have made substantial progresses.

This remark is as pertinent today as it was in 1956.

In our opinion, our present ignorance of the elementary physical mechan-
isms at work in turbulent flows arises in part from the fact that we perform
averages using point measurements and also because we analyse them in
terms of correlations or Fourier modes. This problem has already been
pointed out by Zabusky [208] when he wrote:

In the last decade we have experienced a conceptual shift in our view of turbulence.
For flows with strong velocity shear . . . or other organizing characteristics, many
now feel that the spectral description has inhibited fundamental progress. The next
‘El Dorado’ lies in the mathematical understanding of coherent structures in weakly
dissipative fluids: the formation, evolution and interaction of meta-stable vortex-like
solutions of nonlinear partial differential equations.
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By using point measurements or the Fourier representation, we probably
miss the point, because these classical methods ignore the presence of the
coherent vortices that one observes in physical space and whose dynamic role
seems essential. As Hans Liepmann, successor to Von Karman as director of
the Aeronautical Laboratory of Caltech, likes to comment [141], in turbu-
lence research we are like the drunk man who has lost his keys in a dark alley,
but who finds it easier to search for them under the street light. Everyone
knows that turbulence has to do with vortex production and interaction. This
is even embedded in the Latin etymology of the word ‘turbulence’: turba for
crowd and rurbo for vortex. Namely, a turbulent flow can be described as ‘a
crowd of vortices in nonlinear interaction’. However, because we do not have
a good enough theoretical grasp of the structure of these vortices, on the
mechanism of their production by nonlinear instabilities in shear-layers, on
their long-range collective dynamics and their nonlinear interactions, we
prefer to forget about them and content ourselves with studying turbulence
as far as possible from regions where vortices are produced, in particular, as
far as possible from solid walls.

This approach has led turbulence research for the last fifty years to explore
the unphysical academic case of statistically stationary, homogeneous and
isotropic turbulence, which, under those hypotheses and neglecting the essen-
tial effect of walls in considering periodic boundary conditions, represents
turbulent fields in terms of Fourier modes and predict the scaling properties
of ensemble averages. To construct this theory one needs to suppose that the
injection of energy is confined to the low wavenumbers, and that the dissipa-
tion of energy is confined to the high wavenumbers. This assumption allows
us to define an intermediate range of wavenumbers, called the inertial range,
where the flow behaves in a conservative manner, which then enables us to
predict the scaling of the energy spectrum in this range. Unfortunately these
hypotheses are incompatible with the local production of vorticity in bound-
ary layers or shear layers, due to the duality between physical localization
and spectral localization: if you have one you cannot have the other and vice
versa (Heisenberg’s uncertainty principle). The same remark holds for the
dissipation of energy. Incidentally, we are convinced that this lack of physical
soundness of the statistical theory proposed in 1941 by Kolmogorov [117]
[118], [119], and developed by Batchelor [16], explains why G. 1. Taylor had
never been convinced by this redirection of turbulence research, where the
dynamics of individual turbulent flow realizations, resulting from vortex
interactions, is not taken into account. In fact, as early as 1938 Taylor had
already recognized the importance of vortices in turbulence when he wrote
[190]:
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The fact that small quantities of very high frequency disturbances appear, and
increase as the speed increases, seems to confirm the view frequently put forward
by the author that the dissipation of energy is due chiefly to the formation of very
small regions where the vorticity is very high.

Nowadays if we want to refocus turbulence research towards a more phy-
sical and dynamical approach valid also for inhomogeneous flows, we should
take up the challenge proposed by Hans Liepmann during a workshop we
organized in February 1997 in Santa Barbara:

As long as we are not able to predict the drag on a sphere or the pressure drop in a
pipe from first principles (namely from continuous, Newtonian, incompressible
assumptions, without any other complications), we will not have made it!” [142].

As astonishing as it may seem, these two very ‘simple’ and basic problems
are still open and should be taken as a serious challenge. Our conviction is
that the wavelet representation, because it keeps track of both position and
scale, can help us to address these problems, in combining dynamical and
statistical approaches to improve our understanding of fully developed tur-
bulence and propose new turbulence models.

As far as we know, we have been the first to introduce wavelets to analyse
turbulence in two [81], [77] and then three dimensions [75], to design ortho-
gonal wavelet algorithms to solve nonlinear PDEs [165], to use wavelets and
wavelet packets to extract coherent vortices out of turbulent flows [74], to
solve the Navier—Stokes equations in a wavelet basis [96], [41], and to locally
force turbulent flows using wavelets [185]. We apply the wavelet transform to
decompose the vorticity field onto a set of smooth functions with compact (or
quasi-compact) support and thus permit a representation in both space and
scale. The choice of vorticity for both two- and three-dimensional turbulent
flows, rather than velocity, matters because vorticity is, from a dynamical
point of view (considering Helmholtz’s and Kelvin’s theorems), the essential
field which triggers the evolution of velocity. We share the views of Chorin
[43], [44] who has been advocating for 25 years the importance of vorticity for
the computation of turbulent flows.

We are convinced that the wavelet transform is an appropriate tool, not
only for analysing and interpreting experimental results, but also for attempt-
ing to construct a more satisfactory statistical theory, design new turbulence
models and define new numerical methods to compute fully developed tur-
bulent flows. Moreover, the unconditional approximation property of the
wavelet representation may help us to compute high Reynolds number
flows presenting a strong intermittency, to replace periodic boundary condi-
tions by more physical ones, and to simulate the local production of vortices
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at the walls or in shear layers, while controlling the quality (local resolution
and smoothness) of the approximation. This is the program we will expose in
this chapter. We will discuss the results we have obtained in the last ten years,
but it is still very much work in progress and ten more years will be needed
before its potential can be confirmed or denied.

Our chapter is organized as follows. We first state the problem of turbu-
lence and the main open questions. We then focus on how wavelets can be
used to answer these questions. We present fractal and multifractal analysis,
turbulence analysis and turbulence modelling, and finally the use of wavelets
to numerically solve the Navier—Stokes equations. In conclusion, we present
several perspectives and point out where new methods need to be developed
in order to improve our understanding of fully developed turbulence.

4.2 Open questions in turbulence
4.2.1 Definitions

Turbulence is a highly unstable state of fluid flows, where by fluids we mean
continuously movable and deformable media. Liquids, gases and plasmas are
considered to be fluids when the scale of observation is much larger than the
molecular mean free path. Turbulence is characterized by the Reynolds num-
ber, which is the ratio of the nonlinear inertial forces, responsible for the flow
instability, to the linear dissipative damping, which converts kinetic energy
into thermal energy. We will focus on ‘fully developed turbulence’, namely
the limit of very large Reynolds numbers, which corresponds to, either very
large velocities (strong advection), and/or very small viscosity (weak dissipa-
tion, which tends to a constant as the Reynolds number tends to infinity),
and/or very large turbulent scales. For flows encountered in hydraulics and
naval engineering Reynolds numbers are of the order of 107 to 10, in aero-
nautics (engines, airplanes, shuttles) 10° to 10%, in meteorology and oceano-
graphy 10% to 10'%, and in astrophysics larger than 10'%.

While the dissipation term is optimally represented in Fourier space
because Fourier modes diagonalize the Laplacian operator (for periodic
boundary conditions or unbounded domains), the nonlinear advective term
is very complicated in Fourier space where it becomes a convolution, i.e. all
Fourier modes are involved and coupled. As fully developed turbulence cor-
responds to flows where nonlinear advection is dominant, i.e. is larger than
linear dissipation by a factor of the order of Reynolds number, it is obvious
that the Fourier representation is inadequate for studying and computing



122 M. Farge, N.K.-R. Kevlahan, V. Perrier and K. Schneider

flows in this large Reynolds limit. We need to find a mathematical tool to
optimally solve the nonlinear advection term, in the same way as the Fourier
transform is the most economical representation to solve the linear dissipa-
tion term for the rather unphysical case of periodic boundary conditions.
Surprisingly, however, all classical methods in turbulence rely on the
Fourier representation, which is inappropriate for the nonlinear advection
term. For a review of these methods the best references are Monin and
Yaglom [158] for the statistical theory of three-dimensional turbulence and
Kraichnan and Montgomery [123] for the statistical theory of two-dimen-
sional turbulence.

Turbulence remains an unsolved problem because our traditional concep-
tual and technical tools are inadequate. For instance, classical Hamiltonian
mechanics describes steady states of conservative systems, but turbulent
flows are non-stationary and dissipative. Classical dynamics only solves
systems with a few degrees of freedom, while fully developed turbulent
flows have a very large, perhaps even infinite, number of degrees of free-
dom. Classical statistical theories deal with closed reversible systems in
thermal equilibrium, but turbulent flows are open irreversible systems out
of thermal equilibrium. Classical mathematical methods solve linear differ-
ential equations, but cannot integrate analytically the nonlinear partial
differential equations encountered in the study of turbulence (apart from
a very few cases for which an appropriate transform allows to reformulate
the problem as a linear one, such as Burgers’ equation using the Hopf-
Coles transform). In fact, even the existence and uniqueness of solutions of
the Navier—Stokes equations describing the fluid motions is an unsolved
problem when nonlinear advection becomes dominant, i.e. in the fully
developed turbulent regime. We should mention here recent mathematical
results which give, using multi-scale (Paley—Littlewood) decomposition, a
global existence theorem [35] and a global unicity theorem [98] for Navier—
Stokes equations in IR® if initial conditions are sufficiently oscillating (in a
Besov norm sense). Some other mathematical attempts have been made
using divergence free vector wavelets [86], [19], but in all cases these proofs
are done in an unbounded space. However, physical fluid flows are
bounded either internally or externally, and we still do not know what is
the optimal functional space for describing real turbulent flows.

In summary, the theory of fully developed turbulence is in what we may
call a pre-scientific phase, because we do not yet have an equation, nor a set
of equations, that could be used to efficiently compute turbulent flows. The
incompressible Navier—Stokes equations, which are the fundamental equa-
tions of fluid mechanics, are not the right ones for turbulence because their
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computational complexity becomes intractable for large Reynolds number
flows. However, in this limit it should then be possible, as it is done in
statistical mechanics, to define averaged quantities which would be the
appropriate variables to describe turbulence and then find the corresponding
transport equations to compute the evolution of these new quantities.
Likewise, the Navier—Stokes equations can be derived from the Boltzmann
equation by considering appropriate limits (Knudsen and Mach numbers
tending to zero [11], [12]) and appropriate averaging procedures to define
new coarse-grained variables (velocity and pressure) and associated transport
coefficients (viscosity and density); the turbulence equations should be
derived as a further step in this hierarchy of embedded approximations,
but this scientific programme may be impaired by the possible non-univers-
ality of turbulence, which remains an essential question to address.

More precisely, it is easier to define the appropriate parameters to go
from Boltzmann to Navier—Stokes than from Navier—Stokes to turbulence
equations. In the first case only a linear averaging procedure is needed,
while in the second case we have to find an appropriate nonlinear proce-
dure, namely some conditional averaging which depends on each flow rea-
lization. For this we should first identify the dynamically active structures
constituting turbulent flows, classify their elementary interactions and
define the averaging procedures needed to construct appropriate statistical
observables. Wavelet analysis is a good tool for exploring this conditional
averaging and for seeking an atomic decomposition of phase space, defined
in both space and scale. Tennekes and Lumley in 1972 [191] had already the
intuition of such a phase-space decomposition when they proposed to con-
sider a turbulent flow as a superposition of Gaussian-shaped wave packets,
they were calling ‘eddies’; but we know since Balian’s theorem [10] that we
cannot build orthogonal bases with such functions. This is why we propose
to use instead wavelet or wavelet packet bases to study how phase-space
‘atoms’ exchange energy, or other important dynamical quantities, during
the flow evolution and possibly combine to form phase-space ‘molecules’,
such as coherent structures.

Wavelets may supply new functional bases better adapted to represent and
compute turbulent flows, i.e. to extract their elementary dynamical entities,
perform the appropriate averages on them, and predict the evolution of these
statistical quantities. We still hope that there will be enough universality in
the behaviour of these phase-space ‘molecules’ so that we can find a general
theory and a set of equations to describe their evolution, but this may well be
an unrealistic goal.
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4.2.2 Navier—Stokes equations

The fundamental equations of the dynamics of an incompressible (constant
density) and Newtonian (rate of strain proportional to velocity gradients)
fluid are the Navier—Stokes equations:

P 1
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plus initial and boundary conditions,

where ¢ is the time, v the velocity, P the pressure, F the resultant of the
external forces per unit of mass, p a constant density and v a constant kine-
matic viscosity.

The mathematical difficulty of the Navier—Stokes equations arises from the
fact that the small parameter v, which tends to zero in the limit of infinite
Reynolds numbers, i.e. for fully developed turbulent flows, appears in the
term containing the highest-order derivative, namely the dissipation term
vV2v. Thus the character of the equations changes as v tends to zero, since
in this limit it is the nonlinear advection term (v - V)v which dominates. This
singular limit seems similar to the semi-classical limit of quantum mechanics
when the Planck’s constant tends to zero; incidentally Planck’s constant has
the same dimension as kinematic viscosity. When v =0, i.e. for infinite
Reynolds numbers, the Navier—Stokes equations are called Euler’s equations.

One of the physical difficulties of the Navier—Stokes equations comes from
the incompressibility condition, namely the divergence-free requirement
imposed by equation (4.2), which implies that the speed of sound is infinite.
In this case any local perturbation is instantaneously transmitted throughout
the whole domain. This requirement seems too drastic and quite unphysical
because the speed of sound is large in real flows but never infinite. In the
future we may prefer to consider instead weakly compressible Navier—Stokes
equations to simplify the computation of turbulent flows and represent their
local behaviour more accurately. Moreover, on physical grounds Euler’s
equations are unrealistic because the limit v = 0 contradicts the fluid hypoth-
esis, which supposes that the system is locally close to thermodynamical
equilibrium due to molecular collisions (which implies macroscopic dissipa-
tion).

Taking the curl of equations (4.1) and (4.2) gives the equation of vorticity
o, the curl of velocity,

dm

§+(v-V)w=(w.V)v+vvzw+vXF. 4.3)
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In three dimensions this equation shows that vortex tubes may be stretched
by velocity gradients, a mechanism which has been proposed to explain the
transfer of energy towards the smallest scales of the flow. In two dimensions
the vortex stretching term becomes zero, because the vorticity is then a
pseudo-scalar o = (0, 0, w) perpendicular to the velocity gradients. The vor-
ticity, and its infinitely many moments, are therefore Lagrangian invariants
of the flow (Helmholtz’s theorem). In this case there is no vortex stretching and
energy cannot cascade towards the smallest scales, but tends to accumulate into
the largest scales, the so-called inverse energy cascade [121], [15], while enstro-
phy (vorticity squared) instead cascades towards the smallest scales where it
accumulates.

4.2.3 Statistical theovies of turbulence

The first statistical method to analyse turbulent flows was proposed in 1894
by Reynolds [174] who assumed that turbulent flows can be separated into
mean fields and fluctuations. He decomposed the velocity field v(x) into a
mean contribution o; plus fluctuations v/ and rewrote the Navier-Stokes
equations to predict the evolution of v;, which gives the Reynolds equations

o5, o5, 10P 8 [ 9 ——\ -
Wi 5. % Wi _ ) + E. 4.4
a0 Vo, T paw o, (” v ) 4 @4)

3xj

To obtain the time evolution of the mean velocity v; i one should compute the
second order moment of the velocity fluctuations v/, 7, called the Reynolds
stress tensor, which in fact depends on the third order moment vvjv), vy (i, J, and
k are dummy indices), which depends on the fourth order moment, and SO on
ad infinitum . This is the closure problem: there are more unknowns than
equations and, to solve the hierarchy of Reynolds equations, the traditional
strategy is to introduce another equation, or system of equations, chosen
from some a priori phenomenological hypotheses, to close the set of equa-
tions.

For instance, to close the hierarchy of Reynolds equations, Prandtl intro-
duced a characteristic length scale for the velocity fluctuations, called the
mixing length, which led him to rewrite the Reynolds stress tensor term as
a turbulent diffusion. Following an hypothesis proposed by Boussinesq [30],
and by analogy with molecular diffusion which smoothes velocity gradients
for scales smaller than the molecular mean free path, Prandtl assumed that
there exists a turbulent diffusion which regularizes the mean velocity gradi-
ents for scales smaller than the mixing length. Unfortunately this hypothesis
is wrong because, contrary to molecular diffusion which is decoupled from
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the large scale motions and can then be modelled by a linear operator
(Laplacian) with an appropriate transport coefficient (viscosity), turbulent
motions interact nonlinearly at all scales and there is no spectral gap to
decouple large scale motions from small scale motions. This is a major
obstacle faced by all turbulence models and therefore the closure problem
remains open. This is also the reason why renormalization group techniques
[207], nonlinear Galerkin numerical methods [149] and Large Eddy
Simulation (LES) [135] have not yet lived up to their promises. An important
direction of research is to find a new representation of turbulent flows in
which there is a gap, decoupling motions out of equilibrium from well ther-
malized motions, which can then be modelled. Such a separation seems only
possible with a nonlinear closure, based on conditional averages which
depend on the local behaviour of each flow realization. We have proposed
to use nonlinear wavelet filters for this (see section 4.5.2).

Taylor [189], under the influence of Wiener with whom he was in corre-
spondence [18] since his famous paper on turbulent diffusion [188], proposed
in 1935 to characterize turbulent fields by their correlation functions, in
particular by the Fourier transform of their two-point correlation function
which gives their energy spectrum. This relies on Wiener—Khinchin’s theo-
rem, which states that the modulus of the Fourier transform of one realiza-
tion of a stationary and ergodic random process in IR" is the same as the
Fourier transform of the two-point correlation function of this process.
Twenty years before, Einstein [62] had outlined the same method to charac-
terize fluctuating data, but he was not followed at the time [206]. To simplify
the computation of correlation functions, Taylor made the hypothesis of
statistical homogeneity and isotropy of turbulent flows, supposing that the
averages are invariant under both translation and rotation. In the 1930s
Gebelein proposed applying the probability theory of Kolmogorov to hydro-
dynamics, a method later developed by Kolmogorov himself and his student
Obukhov [161], who published in 1941 three key papers on the statistical
theory of fully developed turbulence. Kolmogorov [117], [118], [119] studied
the way in which the energy density of the two-point correlation of a turbulent
flow in three dimensions is distributed among the different wavenumbers. This
type of approach is common in statistical mechanics, but a difficulty arises
here from the fact that turbulent flows are open thermodynamical systems,
due to the injection of energy by external forces and its dissipation by viscous
frictional forces. To resolve this difficulty Kolmogorov supposed that external
forces act only on the largest scales while frictional forces act only on the
smallest scales, which, in the limit of very large Reynolds numbers, leaves an
intermediate range of scales, called the inertial range, in which energy is
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conserved and only transferred from large to small scales at a rate € which is
supposed to be constant. But this cascade of energy is supposed for ensemble
averages and not for an individual flow realization; moreover, this cascade
hypothesis is only phenomenological and has never been proved from first
principles. Following Taylor [189], Kolmogorov supposed that turbulent
flows are statistically homogeneous and isotropic; as a consequence of these
two hypotheses and using Navier—Stokes equations, von Karman and
Howarth [113] have shown that the skewness, namely the departure from
Gaussianity of the velocity increment probability distribution, is a non-zero
constant. All these assumptions lead Kolmogorov to propose the K41 model,
which predicts the following energy spectrum scaling, known as the k=% law

E(k) = CEPk™13 (4.5)

where k is the modulus of the wavenumber averaged over directions and C is
called Kolmogorov’s constant. Classically in turbulence k is interpreted as
the inverse of a scale, but this is only true for averaged fields of statistically
homogeneous and isotropic flows.

Landau criticized Kolmogorov’s hypothesis of a constant rate of energy
transfer € independent of the scale, arguing that the dissipation field should
also be considered random. Following this remark, and due to observational
evidence of small-scale intermittency introduced by Townsend in 1951 ([194],
[195]), Kolmogorov proposed to model the energy transfer as a multiplicative
random process where only a fraction g8 of energy is transferred from one
scale to another. Assuming that the probability density of the dissipation field
varies randomly in space and time with a log-normal law, this led him to
propose the K62 model which predicts the following energy spectrum scaling
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where k; is the wavenumber at which energy is injected (inverse of the inte-
gral length scale).

Kolmogorov 1962’s paper opened a debate, which is still very lively today,
but which was already very well addressed 24 years ago by Kraichnan [122]
when he wrote in 1974:

The 1941 theory is by no means logically disqualified merely because the dissipation
rate fluctuates. On the contrary, we find that at the level of crude dimensional
analysis and eddy-mitosis picture the 1941 theory is as sound a candidate as the
1962 theory. This does not imply that we espouse the 1941 theory. On the contrary,
the theory is made implausible by the basic physics of vortex stretching. The point is
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that this question cannot be decided a priori; some kind of non-trivial use must be
made of the Navier—Stokes equation.

Kraichnan claims that one needs to understand the generic dynamics of
Navier—Stokes equation before constructing a statistical theory able to take
into account intermittency:

If the Kolmogorov law E(k) o k=>*7* is asymptotically valid, it is argued that the
value u depends on the details of the nonlinear interaction embodied in the Navier—
Stokes equations and cannot be deduced from overall symmetries, invariances and
dimensionality [122].

To his criticism of Kolmogorov 62’s theory, Kraichnan added:

Once the 1941 theory is abandoned, a Pandora’s box of possibilities is open. The
1962 theory of Kolmogorov seems arbitrary, from an a priori viewpoint [ . . . ]. We
make the point that even in the general framework of some kind of self-similar
cascade, and of intermittency which increases with the number of cascade steps,
the 1962 theory is only one of many possibilities [122].

Kraichnan also commented on the fact that Kolmogorov 41’s theory has
proved to be valid even in cases where its hypotheses are not satisfied:

Kolmogorov’s 1941 theory has achieved an embarrassment of success. The -5/3
spectrum has been found not only where it reasonably could be expected, but also
at Reynolds numbers too small for a distinct inertial range to exist as in boundary
layers and shear flows where there are substantial departures from isotropy, and such
strong effects from the mean shearing motion that the stepwise cascade appealed to
by Kolmogorov is dubious [122].

For two-dimensional turbulence there is a statistical theory similar to
Kolmogorov’s theory which has been proposed by Kraichnan in 1967 [121]
and then developed by Batchelor in 1969 [15]. This theory takes into account,
in addition to the conservation of energy in the inertial range, the conserva-
tion of enstrophy (integral of vorticity squared), which is true only in dimen-
sion two. Making the same kind of hypotheses as Kolmogorov, they
predicted a direct enstrophy cascade, from large to small scales, giving a
k=3 energy spectrum, and an inverse energy cascade, from small to large
scales, giving a k~>/3 energy spectrum. The problem is that the energy spectra
obtained from numerical simulations are in most cases steeper than the pre-
dicted k. There is another more recent statistical theory proposed by
Polyakov [170] which takes into account, in addition to the energy conserva-
tion, the conservation of infinitely many moments of vorticity in two dimen-
sions, which led him to predict different scaling laws depending on the way
energy is injected; thus, Polyakov’s theory is not universal. In fact the same
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non-universal behaviour of forced two-dimensional turbulence is also
observed in numerical simulations [128].

Since the pioneering works of Onsager [163] and Joyce & Montgomery
[111], there are several statistical theories for decaying two-dimensional tur-
bulence [178], [152], [179], [54], [180], [67] which are not based on structure
functions nor Fourier representation. These theories, unlike those of
Kraichnan and Polyakov, do not discard the spatial flow structure. For a
recent review of these theories a good reference is [148]. Onsager’s theory
assumes that all vorticity is concentrated into a finite number of point vor-
tices and predicts that there exist negative temperature states; more precisely
it predicts that high energy states can be favoured compared to low energy
states, contrary to classical statistical physics. These negative temperature
states correspond to the clustering of same-sign vortices characteristic of
the inverse energy cascade of two-dimensional turbulence. But the extension
of Onsager’s approach to describe continuous vorticity fields, involving infi-
nite number of degrees of freedom and therefore infinite Liouville measure,
leads to a highly singular limit which has been overcome only recently using
large deviation probabilities and maximum entropy techniques. This new
theory, due independently to Robert [179], [180] and Miller [152], predicts
for decaying 2D turbulent flows (i.e. in the absence of external forces) final
stationary states characterized by a functional relation between coarse-
grained vorticity and streamfunction. This relation is called the coherence
function and it seems to be verified for strong mixing situations, such as two-
dimensional shear layers or vortex merging [187].

In the case of 3D forced homogeneous turbulent flows Chorin proposed a
new statistical theory [45], [46], which is a generalization to 3D of the 2D
vortex equilibrium theory initiated by Onsager [163]. The small-scale struc-
ture is described as a perturbation of an ensemble of vortices in thermal
equilibrium (by ‘equilibrium’ Chorin means ‘Gibbsian equilibrium’ and not
‘statistical steady state’). This theory recovers the Kolmogorov spectrum and
proposes an explanation for the origin of intermittency.

4.2.4 Coherent structures

Since the beginning of turbulence research there has been, alongside the
statistical approach based on ensemble averages, a tendency to analyse
each flow realization separately. This led to the recognition that turbulence
contains coherent structures, even at very large Reynolds numbers [110].
Examples of coherent structures include the vortices observed by Roshko
in 1961 at a Reynolds number of 10’ [182], the horseshoe vortices observed
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in turbulent boundary layers and mixing layers [38], [181], and the vorticity
tubes (often called filaments) [49], [32] observed in statistically homogeneous
flows. Coherent structures are defined as local condensations of the vorticity
field which survive for times much longer than the eddy turnover time char-
acteristic of the turbulent fluctuations.

The vorticity field is easy to visualize in numerical experiments, but very
difficult to visualize in laboratory experiments; therefore, one usually
observes the pressure field instead. Indeed, if we take the divergence of equa-
tion (4.1) we obtain

2V2P/p+ s —w* =2V - F, (4.8)

where 5% = %(aivj + 9;v;) is the rate of strain which controls dissipation. This
equation shows that vorticity concentrations, corresponding to coherent
structures, are sources of low pressure, while strained regions, corresponding
to dissipation, are sources of high pressure. Couder et al. [49], [32] recently
measured the probability distribution function (estimated through a histo-
gram) of pressure and showed that for the large negative pressures it is
exponential, while for the pressures around zero it is Gaussian. In other
words, the coherent structures, which are characterized by strong depres-
sions, are responsible for the non-Gaussian behaviour of turbulent flows,
which is consistent with observations made before by Van Atta and
Antonia [197] from measurements of the spatial gradients of velocity. This
has also been shown by Abry er al. [2], [3] using wavelet techniques to
separate the coherent structures from the background flow in a one-dimen-
sional cut of pressure signal.

The mere existence of finite (and quite small) number of coherent struc-
tures [203] may invalidate the ergodic hypothesis, which is an essential ingre-
dient of any statistical theory, necessary to replace ensemble averages by
space averages. Then, according to Taylor’s hypothesis, which requires that
fluctuating velocities should be much smaller than the mean velocity, space
averages can be replaced by time averages, which are easier to obtain in
laboratory experiments. As far as we know, almost all existing laboratory
results measuring the turbulence energy spectrum rely on Taylor’s hypoth-
esis. We are therefore sceptical of their validity when the coherent structures
produce rare but intense velocity fluctuations. In this case, even though the
the velocity fluctuations remain in average small compared to the mean
velocity, coherent structures produce bursts which exceed the mean value
and it is dubious that time and space averages can then be interchanged.

Concerning numerical experiments, we interpret the energy spectrum, and
its inertial range power-law form, as characteristic of the random processes
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responsible for turbulence. However in practice we analyse only one flow
realization because in most simulations the correlation length is of the
order of the size of the computational periodic domain. In this case a
power-law behaviour could be interpreted as indicating the presence of
some quasi-singular structures in the flow, and not as a proof of its random
dynamics. This new point of view led Saffman [183] to interpret the energy
power-law behaviour as resulting from the presence of vorticity fronts. Later
Farge and Holschneider [76] proposed another interpretation based on the
emergence of cusp-like coherent structures. In the limit of an infinite
Reynolds number, these vorticity cusps will tend to point vortices, which
correspond to the limit case of negative temperature states [34]. The wavelet
transform, because it measures the local scaling of a field, is the appropriate
tool for verifying these different interpretations in relating the power-law
scaling of the energy spectrum to the shape of possible singularities.

Today we still do not have a complete theory to explain the formation and
persistence of coherent structures, and we shall have to content ourselves
with a qualitative description of their behaviour. This is more evidence
that we may still be in a pre-scientific phase, having as yet only a limited
grasp of the nature of turbulence. The new point of view is to consider that
coherent structures are generic to turbulent flows, even at very high Reynolds
numbers, and that they probably play an essential role in their intermittency.
Indeed, several wind tunnel experiments [17], [5] have shown that the energy
associated with the smallest scales of turbulent flows is not distributed den-
sely in space and time. This has led various authors to conjecture that the
support of the set on which dissipation occurs should be fractal [147], [92], or
multifractal [164]. It is now thought, but not proven, that the time and space
intermittency of turbulent flows is related to the presence of coherent struc-
tures [75]. This is still an open question and wavelet analysis seems to be one
of the appropriate techniques to answer it.

The classical theory of turbulence is blind to the presence of coherent
structures because their spatial support is small in the inertial range.
Therefore low-order statistical moments are insensitive to them and charac-
terize only the background flow whose spatial support is on the contrary
dense in the inertial range. Moreover, in three-dimensional flows coherent
structures (vorticity tubes often called filaments) are highly unstable [49] and
therefore their temporal support is also small. Consequently, the presence of
coherent structures only affects the high-order statistical moments of the
velocity increments which are more sensitive to rare and extreme events
(large deviations). The high-order structure functions have been measured
only recently [5], because their calculation requires very long data sequences.
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They do not follow Kolmogorov’s theory which predicts a linear dependence
of the scaling exponent of the velocity structure functions on their order. Van
der Water [199] has observed that there are in fact two distinct nonlinear
dependencies for odd and for even orders, which may be interpreted in terms
of the multi-spiral model of Vassilicos [198].

It is important to provide statistical predictions based on coherent structure
models. It has been shown by Min, Mezic and Leonard [153] that a system of
singular vortex elements in two dimensions and three dimensions possesses
statistics that deviate from Gaussian and that the probability density func-
tions (PDFs) of velocity derivatives are non-Gaussian with a Cauchy distribu-
tion. The experimental evidence of similar findings is contained in the work of
Goldburg and collaborators [193] in which the Cauchy distribution, predicted
in [153] as a consequence of 1/r velocity decay of a singular vortex, is seen for
the region of small velocity differences. The results of [153] also indicate that
the tails of PDFs are determined by the structure of vortex cores.

In conclusion, we have shown [83] that the presence of coherent structures is
responsible for the non-Gaussian statistics of fully developed turbulent flows
in two dimensions, and we conjecture that this will still be valid in three
dimensions. Due to the sensitivity to initial conditions of turbulent flows,
any theory of turbulence should be statistical. But, before being able to con-
struct a new statistical theory of turbulence, we need to find new types of
averages able to preserve the information associated with coherent structures
and therefore take into account the intermittency of turbulent flows. Wavelets
can play a role there in separating the coherent (non-Gaussian) components
from the incoherent (Gaussian) components of turbulent flows, in order to
devise new conditional averages to replace the classical ensemble averages.
This method will lead to new turbulence models based on the fact that the
coherent components, namely the vortices, are out of statistical equilibrium,
while on the contrary we can define a Gaussian equilibrium state for the
incoherent components which correspond to the well-mixed background
flow. Therefore this method to compute turbulent flows combines a determi-
nistic approach, to solve the dynamical system describing the vortex motions,
and a statistical approach, to model the effect of the background flow.

4.3 Fractals and singularities
4.3.1 Introduction

According to Kolmogorov’s K41 model, turbulence in the inertial range has
a power law energy spectrum (4.5), and thus does not have a characteristic
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length scale. Therefore turbulence in this range of length scales looks similar
at any magnification and can be described as self-similar. According to
experimental observations, however, turbulence is also characterized by
quasi-singular structures such as vortices and is intermittent (quantities
such as energy dissipation vary greatly in time and space). A quasi-singular
structure is one that appears singular until the dissipation scale at which the
smoothing effect of viscosity becomes important. In fact the theoretical k3
inertial range energy spectrum predicted by Kolmogorov’s theory implies
that some sort of quasi-singular distribution of velocity and vorticity must
be present in turbulent flows [106], [154], [101]. This quasi-singular distribu-
tion could be the result of a set of quasi-singular structures (e.g. vortices), or
due to a particular statistical distribution of structures (independently of their
smoothness). One of the difficulties in turbulent flow analysis is how to
disentangle these different contributions from the overall statistics.

It remains an open question whether this quasi-singular behaviour is due
to the randomness of turbulent motions resulting from their chaotic
dynamics or to the presence of localized quasi-singular structures resulting
from an internal organization of the turbulent motions. Kolmogorov’s the-
ory is based on ensemble averages, but in using them we are unable to
disentangle these two hypotheses. Ensemble averages should be replaced by
an analysis of turbulence for each realization and be based on the local
measurements and statistics of singularities for which we need effective
ways of detecting and characterizing quasi-singularities in turbulent signals.

The types of possible singularities in the turbulent velocity or vorticity may
be divided into two classes: cusps (i.e. non-oscillating singularities in which
the function or one of its derivatives approaches infinity at a certain point,
e.g. 1/x) and spirals (i.e. oscillating singularities in which the frequency of
oscillation approaches infinity at a certain point, e.g. sin(1/x)). Figure 4.6
shows an example of a two-dimensional flow containing both cusps and a
spiral (a cut through the spiral is an oscillating singularity over a certain
range of length scales.) Likewise the distribution of singularities in turbulence
may also be divided into two classes: isolated (singularities at a finite number
of points) and dense (singularities at an infinite number of points in a finite
area). Dense distributions of singularities are called fractals and are charac-
terized by one (monofractal) or more (multifractal) fractal dimensions char-
acterizing their scaling properties. Figure 4.1a shows a typical fractal signal.
Note that fractals may contain both cusp and spiral type singularities.
Turbulence might contain both fractal and isolated distributions of singula-
rities, and spiral and cusp types of singularities. Figure 4.1b shows a spiral
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Fig. 4.1. Different types and combinations of s1ngular1t1es (a) A fractal signal with
energy spectrum E(k) oc k3. (b) A spiral with fractal noise (both noise and spiral
have the same energy spectrum E(k) oc k™ )

type singularity with fractal noise superimposed; both the noise and the spiral
have the same energy spectrum scaling in k3

This section is concerned with wavelet-based techniques for calculating
quantities such as energy spectra, structure functions, singularity spectra
and fractal dimensions. These subjects are connected by the fact that they
all measure the local regularity of the signal (i.e. the strength of singularities
in the signal). For example, the slope of the usual Fourier energy spectrum of
a signal containing only isolated cusp singularities is determined by the
strongest singularity [211]. The advantage of the wavelet transform is that
it is able to analyse locally the singular behaviour of a signal. One can then
use this local information to construct statistics describing the distribution
and type of singularities (e.g. multifractals), and define local or conditionally



Turbulence analysis, modelling and computing using wavelets 135

averaged versions of traditional diagnostics such as the energy spectrum and
structure functions. We are primarily concerned with cusp type singularities
(either isolated or dense), although we also discuss methods for distinguish-
ing between signals containing isolated spirals and dense fractal signals.

In subsection 4.3.2 we review the mathematical results on one of the key
properties of wavelet transforms: their ability to detect and characterize
singular structures. We then describe three related applications which rely
on this property: calculation of local energy spectra, structure functions
(subsection 4.3.3) and the singularity spectra which characterize multifractals
(subsection 4.3.5). These wavelet methods generally require the assumption
that the singularities of the signal are isolated. Because isolated spirals are
likely to be present in turbulence (see on Figure 4.6 the production of spiral-
ing vorticity filaments by vortex merging) it is essential to have a method of
determining which sort of singularity a signal contains. In subsection 4.3.6 we
review a different wavelet-based method for distinguishing between signals
containing isolated spirals and purely fractal signals (the two types of signal
most likely to be observed in a turbulent flow). Each section gives a practical
review of the method and briefly summarizes some results that have been
obtained for turbulence data. Formulating these techniques in terms of wave-
let transforms brings out the connections between them as well as providing
new information, and this point is emphasized throughout this section.

4.3.2 Detection and characterization of singularities

The most useful property of the wavelet transform is its ability to detect and

accurately measure the strength (given by the Holder exponent) of individual

singularities in a signal. We will first give a definition of the Holder exponent.
A function f(x), such that

f:R— IR (4.8)

is said to belong to the Holder space C* for « a positive non-integer if there
exists a constant C such that, for each x;, there exists a polynomial P of order
less than « such that

[ (x) = P(x — xo)| < Clx — xo|". (4.9)

f is said to have the Holder exponent «(xy) at point x, if
a(xo) = sup{f > 0/f € C’(xy)}. The exponent a(x,) therefore measures the
smoothness of the function f(x) near x,: the larger a(x;) is, the smoother
or more regular the function f(x) is near x,, while the smaller a(x,) is, the
rougher or more singular the function is. If the Holder exponent is less than
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one, there is an actual singularity of the function at x, (or a quasi-singular
behaviour near x, over a certain range of length scales if one is measuring a
physical quantity like vorticity or velocity).

It is important to note that equation (4.9) does not hold for oscillating
singularities because in this case the Holder exponent increases by more than
one when the function is integrated. This anomalous behaviour is due to the
fact that there are an infinite number of accumulating oscillations in the
neighbourhood of such a singularity.

Consider the L' norm wavelet transform (which conserves the L' norm of
a function)

fite,r) = % /_ f(x/)w<¥> dx', (4.10)

The wavelet transform is thus a two-dimensional function in position x and
scale r > 0. Mallat and Hwang [146] have shown that singularities in f(x)
produce a maximum in the modulus of the wavelet transform [fl(x, r)| and
that following the position of a wavelet modulus maximum as r — 0 gives the
position x, of the singularity. Furthermore, each singularity has an asso-
ciated ‘influence cone’ defined by

|x — xo| < Cr, (4.11)

and, if the singularity is an isolated cusp, then the wavelet transform modulus
for all points within the influence cone is

fi(x, )] < A0, 4.12)

provided that at least the first n > a(xy) moments of the analysing wavelet
¥(x) vanish, where the n” moment is defined by the integral

+00
/ xX"y(x)dx. (4.13)
—0oQ0
Equation (4.12) shows that the Holder regularity a(x,) can be found from the
slope of the graph of log Uzl(x, r)| versus logr at a position x satisfying
inequality (4.11). When several singularities are present only the non-over-
lapping parts of the cones associated with each singularity satisfy (4.12).
Intuitively, it is the self-similar scaling property of the wavelet which allows
the wavelet transform to measure the rate of self-similar narrowing with
decreasing scale, characterizing the strength of a cusp singularity.

If the singularity is not isolated and there is only one zero-crossing of the
wavelet transform near x;, one can find the regularity in the left and right
neighbourhoods of x; by measuring the decay of the wavelet coefficient
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modulus along maxima lines of the wavelet transform to the left and right of
the influence cone of x,.

In practice, such graphs of log [/;l(x, r)| versus logr contain oscillations
superimposed on the power-law behaviour which can make it difficult to
determine the slope at larger scales. Vergassola and Frisch [200] showed
that these oscillations are necessarily present for any self-similar random
process whether or not the signal is multifractal (the lacunarity of multi-
fractal signals should also produce oscillations). These oscillations can be
reduced by finding the average decay of the wavelet coefficient modulus
along many lines in the influence cone, or by averaging the decay along
vertical lines at many different points (e.g. one may be interested in the
conditionally averaged scaling of points in regions of irrotational straining,
see Figure 4.2). Arnéodo, Bacry and Muzy [6] have suggested that the devia-
tions from a strict power-law may be reduced by measuring the decay of the
modulus of the wavelet transform along the line of maximum modulus within
the influence cone.

The analysis of signals containing spiral singularities, either isolated (e.g.
sin(1/]x — xp|)) or fractal (e.g. the Riemann—Weierstrass function), is more
complicated because the worst singular behaviour of a spiral singularity
appears outside the cone of influence. In this case one measures the decay
as r — 0 of the modulus of the wavelet transform along the set of points
which are general maxima outside the cone of influence (i.e. maxima in both
the position and scale directions). This gives an upper bound on the Hoélder
exponent, but in general one has to use lines of maximum modulus both
inside and outside the cone of influence to fully determine the singular beha-
viour of an oscillating singularity.

Arnéodo, Bacry and Muzy [7] have recently carried out work defining two
wavelet-based exponents that measure the strength of an oscillating singu-
larity. They find that the faster the frequency increases, the more irregular its
derivative. In general, oscillating behaviour appears in fractal objects that are
self-similar under non-hyperbolic mappings, e.g. the Riemann—Weierstrass
function or the Farey-tree partitioning of rationals.

4.3.3 Energy spectra

The Fourier energy spectrum has been one of the most popular techniques
for turbulence analysis, indeed traditional turbulence theory was constructed
in Fourier space [16]. The energy spectrum E(k) of a one-dimensional func-
tion f(x) is the Fourier transform of its two-point correlation, which is equal
(Wiener—K hinchin’s theorem) to
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1 =«
E(k) =5 f (k) for k=0 (4.14)
T

where (%) signifies Fourier transform. Note that when analysing turbulence
velocity signals one should ensemble average the energy spectra from many
realizations. In practice, one assumes ergodicity and averages only one flow
realization split into many pieces whose lengths are larger than the integral
scale (which is the largest correlated scale in a turbulent signal). In traditional
turbulence theory only the modulus of the Fourier transform is used (e.g. the
energy spectrum) and thus the phase information is lost. This is probably a
major weakness of the traditional way of analysing turbulence since it
neglects any spatial organization of the turbulent velocity field.

The wavelet transform extends the concept of energy spectrum so that one
can define a local energy spectrum E(x, k) using the L? norm wavelet trans-
form (which conserves the L? norm of a function) rather than the L' norm
used in subsection 4.3.2 (i.e. the wavelet transform is normalized by 1 /r%
rather than by 1/r and the resulting function is designated by f instead of fl)

9

where k is the peak wavenumber of the analysing wavelet ¥ and

+00 1.7 k 2
cy = fo "”Iiz)' d’k. (4.16)

2

E(x, k) = for k>0 (4.15)

2C1//k0

By measuring E(x, k) at different places in a turbulent flow one might
estimate what parts of the flow contribute most to the overall Fourier
energy spectrum and how the energy spectrum depends on local flow con-
ditions. For example, one can determine the type of energy spectrum con-
tributed by coherent structures, such as isolated vortices, and the type of
energy spectrum contributed by the unorganized part of the flow called
background flow.

Since the wavelet transform analyses the flow into wavelets rather than sine
waves it is possible that the mean wavelet energy spectrum may not always
have the same slope as the Fourier energy spectrum. Perrier, Philipovitch and
Basdevant [166] have shown, however, that the mean wavelet spectrum E(k)

~ +OO ~
E(k) = /O E(x, k)dx (4.17)

gives the correct Fourier exponent for a power-law Fourier energy spectrum
E(k) o kP provided that the analysing wavelet has at least n > (8 — 1)/2
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vanishing moments. This condition is obviously the same as that for detecting
singularities derived in the previous section since S = 1 + 2« for isolated
cusps. Thus, the steeper the energy spectrum the more vanishing moments
of the wavelet we need. The inertial range in turbulence has a power-law
form. The ability to correctly characterize power-law energy spectra is there-
fore a very important property of the wavelet transform (which is of course
related to its ability to detect and characterize singularities).

Note that if the singularities are all isolated then the exponent of the
Fourier energy spectrum is determined by the strongest singularity « of the
signal [211]

E(k) = Ck=2@*D, (4.18)

where C is a constant. If the singularities are spirals and/or are not isolated
then the strongest singularity sets a lower bound on the exponent of the
energy spectrum [211]

E(k) < Ck™. (4.19)

The way the dense singularities accumulate can make the signal effectively
more singular, decreasing the magnitude of the exponent of the energy spec-
trum by up to 2. Because they are both controlled in the same way by
singularities, the wavelet energy spectrum can be thought of as a sort of
local Fourier transform.

The mean wavelet energy spectrum E(k) is a smoothed version of the
Fourier energy spectrum E(k). This can be seen from the following relation

between the two spectra
~ (kok'
(%)

which shows that the mean wavelet spectrum is an average of the Fourier
spectrum weighted by the square of the Fourier transform of the analysing
wavelet shifted at wavenumber k. Note that the larger k is, the larger the
averaging interval, because wavelets are passband filters at AT," constant. This
property of the mean wavelet energy spectrum is particularly useful for
turbulent flows. The Fourier energy spectrum of a single realization of a
turbulent flow is too spiky to be useful, but one can measure a well-defined
slope from the mean wavelet energy spectrum.
The Mexican hat wavelet

2
dK’ (4.20)

- 1 +00 ,
E(k) = ek fo E(K)

(k) = k* exp(—k*/2) (4.21)
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has only two vanishing moments and thus can correctly measure energy
spectrum exponents up to S < 5. Only the zeroth order moment of the
Morlet wavelet

J) = 5-exp(—k — kyP/2) for k>0

(k) =0 for k <0 (4.22)
is zero, but the higher n™ order moments are very small (o 1},exp(—k12p/2))
provided that k,, is sufficiently large. Therefore the Morlet wavelet transform
should give accurate estimates of the power-law exponent of the energy
spectrum at least for approximately 8 < 7 (if ky, = 6).

Perrier, Philipovitch and Basdevant [166] present a family of new wavelets
with an infinite number of cancellations

7,(k) = o, exp (—% (k2 + i)) n>1, (4.23)

k2n

where «, is chosen for normalization. The wavelets defined in (4.23) can
therefore correctly measure any power-law energy spectrum. Furthermore,
these wavelets can detect the difference between a power-law energy spectrum
and a Gaussian energy spectrum (E(k) o exp(—(k/ko)z)). It is important to be
able to determine at what wavenumber the power-law energy spectrum
becomes exponential since this wavenumber defines the end of the inertial
range of turbulence and the beginning of the dissipative range.

The first measurements of local energy spectra in three-dimensional turbu-
lence were reported by Farge er al. [75] and Meneveau [150]. Meneveau used
the discrete wavelet transform to measure local energy spectra in experimen-
tal and Direct Numerical Simulation (DNS) flows and found that the stan-
dard deviation of the local energy (a measure of the spatial fluctuation of
energy) was approximately 100% throughout the inertial range. Meneveau
also calculated the spatial fluctuation of 7'(k) which measures the transfer of
energy from all wavenumbers to wavenumber k. On average 7'(k) is negative
for the large scales and positive for the small scales, indicating that in three-
dimensional turbulence energy is transferred from the large scales to the
small scales where it is dissipated (in agreement with Kolmogorov’s [117],
[118], [119] model of turbulence). Meneveau found, however, that at many
places in the flow the energy cascade actually operates in the opposite direc-
tion, from small to large scales, indicating a local inverse energy cascade (also
called back-scattering). This local spectral information, which links the phy-
sical and Fourier space views of turbulence, can only be obtained using the
wavelet transform but not with the Fourier transform.



Turbulence analysis, modelling and computing using wavelets 141

4.3.4 Structure functions

Another fundamental quantity in the classical theory of turbulence [117] is
the p™ order structure function S,(r)

1 L
50 =7 [ 1701 =fs+np s 4.24)

where L >> r is the length of the signal, and L must be long enough so that
S,(r) does not change if L is increased (and thus the increments of / should be
stationary in x). The velocity signal of a turbulent flow varies in both space
and time and between different realizations of the flow. Thus the integral in
(4.24) should, in general, be replaced by a suitably defined ensemble average
in order to calculate the structure function of turbulent velocities. To justify
the use of space or time averages instead of ensemble averages (over different
realizations of the flow), one supposes that the turbulent flow motions are
ergodic, which is an unvalidated hypothesis and is probably wrong for two-
dimensional turbulence [203]. If the energy spectrum exponent S is in the
range 1 < 8 < 3 (as is usually the case for the inertial range of turbulence) the
velocity increments are a stationary function even though the velocities them-
selves are not [51]; this is a good reason to work with velocity increments
rather than the velocities themselves since stationarity is necessary in order to
justify estimating a quantity by averaging. The larger p the more S,(r) is
dominated by extreme events. Thus the p” order structure function charac-
terizes more and more extreme events as p increases.

If f(x) is self-similar then, just as in the case of the energy spectrum, the
structure functions will have a power-law dependence on the scale r

S,(r) = r?). (4.25)

The first order structure function ¢(1) provides a measure of the smoothness
of f(x), and in fact ¢(1) is related to the box dimension Dy of the graph of

S()
Dp=2—1¢(1) (4.26)

where D measures the space-fillingness of f(x). The second order structure
function is related to the energy spectrum by

B=c2)+1. (4.27)

The Kolmogorov theory [117] showed that the inertial range of turbulence
has 8 =5/3, or equivalently that

¢(p) =p/3, (4.28)



142 M. Farge, N.K.-R. Kevlahan, V. Perrier and K. Schneider

however experiments [5] have shown that the structure function exponents
increase more slowly than linearly with p for p > 5, contradicting
Kolmogorov’s 1941 theory. The cause of this difference is generally thought
to be the fact that the energy dissipation e(x) = (du(x)/dx)’ is intermittent in
space, i.e. it varies greatly from place to place.

The velocity increment Af(x, r) = |f(x) — f(x + r)| is equivalent to a wave-
let transform with DOD (difference of Diracs) wavelet y¥rp(x) = 8(x + 1)
—38(x). In fact Jaffard [107] has shown that the exponent n(p) defined by

~ |
S0 =1 /0 If (x, ) dx ~ 1P (4.29)

is the same as ¢(p) provided p > 1 and ¢(p) < p, no matter what wavelet is
used. The wavelet-based method of calculating the structure functions unifies
the analysis of structure functions with the calculation of energy spectra and
the strength of local singularities. If one uses a wavelet with a sufficient
number of vanishing moments, then the wavelet-based structure function
Sp(r) should also be more sensitive to larger « singularities since the equiva-
lent wavelet for the structure function, which is the Haar wavelet 5 (x), has
only one vanishing moment. By changing from an integral to a sum over
wavelet maxima we circumvent the divergence of the integral for negative p
and thus one can extend the definition of structure functions to include
negative ps (as in Arnéodo, Bacry and Muzy’s [6] Wavelet Transform
Modulus Maximum method discussed in the following section).

The wavelet-based version of the structure function allows us to see
directly how the structure function is determined by the singular behaviour
of f(x). From equation (4.12) the wavelet transform modulus is proportional
to r**@ and thus, since r <« L, the stronger singularities contribute most to
the higher order structure functions and least to the lower order structure
functions. In other words, the value of ¢(p) is determined mostly by the
stronger singularities for large ps and mostly by the weaker singularities
for small ps.

Davis, Marshak and Wiscombe [51] point out that the ‘dissipation’ of a
discrete function f}, &; = |f; — f;_1|, 1s in fact a measure. Because ¢; is a mea-
sure, the generalized dimension D(p) of f(x) can be calculated from the
exponent K(p) of the structure function of &(x),

D(p)=1- K—(p) (4.30)

p—1
The generalized dimension D(p) is the dimension of the set containing the
singularities that contribute most to the p” order structure function. Because
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e(x) is a homogeneous variable (for 1 < 8 < 3) we have 0 < B,(xg) < 1 and
thus —1/2 < a(xy) < 0. Because a(xy) < 0 the dissipation contains actual
singular behaviour (the dissipation tends to infinity).

In general terms the exponents ¢(p) characterize the homogeneity of the
field, while the exponents K(p) characterize the singularity of the field. One
can learn a great deal about the behaviour of a signal from the variability of
¢(p) and K(p) and from the value of the first structure function exponents (1)
and K(1). This information is summarized in Table 4.1.

Davis, Marshak and Wiscombe [51] introduced the ‘mean multifractal
plane’ defined as the plane with coordinates given by the most informative
exponents 0 < ¢(1)=2—Dp <1 and 0 < ‘fl—llf(l) =1—-D(1) <1 (where Dy
is the fractal dimension and D(1) is by definition the information dimen-
sion). The position of a particular flow or model on the mean multifractal
plane is a good indicator of its self-similar characteristics. The higher the
flow’s ‘il—I’f(l) component the more intermittent and multifractal it is, and the
higher the flow’s ¢(1) component, the smoother and less stationary it is.
Experimental turbulent velocity fields lie in the centre of the mean multi-
fractal plane. Turbulence models, however, tend to lie along the boundaries
of the multifractal plane: purely multiplicative cascade models (such as
S-functions) liec on the ‘jl—’[f(l) axis and purely additive models (such as
fractional Brownian motion) lie on the ¢(1) axis! This clearly indicates
that the current turbulence models do not represent correctly the self-
similar structure of turbulent flows.

4.3.5 The singularity spectrum for multifractals

In order to characterize a multifractal function it is necessary to calculate its
singularity spectrum. The singularity spectrum D(«) may be defined as the
Hausdorff (or ‘fractal’) dimension of the set of points with Holder exponent
o

D(a) = Dplx, a(x) = al. (4.31)

Note that this definition is equally valid for multifractal functions and mea-
sures. The singularity spectrum of a monofractal has only one point, e.g. the
singularity spectrum of the fractional Brownian signal B, ;(x) which has a
k3 energy spectrum is D(a = 1/3) = 1 (the function B 3(x) is singular every-
where with o = 1/3), while the singularity spectrum of a multifractal is a
curve.

Parisi and Frisch [164] found a way of estimating the singularity spectrum
from the Legendre transform of the structure function exponents Z(p)
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Table 4.1. Properties of a signal from the behaviour of the
exponents of its structure function {(p) and the structure
function of the modulus of its derivative K(p)

Value of structure function Type of signal
2(1)=0 stationary, Dy = 2
() =1 noiseless, Dy = 1
E1)=0 weak variability
%(l) =1 §-function
Z(p) variable non-stationary multifractal
¢(p) constant non-stationary monofractal
K(p) variable stationary multifractal
K(p) constant stationary monofractal
D(x) = irl}f(poz —tp)+1) (4.32)

where, as explained in subsection 4.3.4, ¢(p) may be calculated using the
wavelet transform.

Equation (4.32) can be derived heuristically by noticing that near a singu-
larity of order «

I (x, 1) ~ 1, (4.33)

where we have used equation (4.12) and have written o = a(x,) for simplicity.
Now, if the dimension of the points with singularity « is D(«) then there are
about 7@ ‘poxes’ (in this case wavelets) with the scaling (4.33) in each
interval r, so that the total contribution to the integral (4.29) is r*~? @+
To leading order the magnitude of the integral is given by the largest con-
tribution so that

(p) = inflap — D(@) + 1). (4.34)

Since ¢(p) is concave, formula (4.32) can be obtained by an inverse Legendre
transform.

However, Jaffard [107] proved mathematically that structure function cal-
culations of the singularity spectrum can, in general, only set an upper bound
on D(x) and he gave some counterexamples where such calculations give
completely misleading answers.

Arnéodo, Bacry and Muzy [6] have developed a method for calculating the
singularity spectrum called the Wavelet Transform Modulus Maximum
(WTMM) method. This method is closely related to the calculation of struc-
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ture functions by wavelet transforms except that, instead of integrating (or
summing in case of discretely defined functions) the wavelet transform over
all positions, one only sums the wavelet transforms located at maxima, i.e.

=) (sup f(x, r/)|p>, (4.35)

1eL(r) \(»")

where / is a maxima line of the wavelet transform modulus on [0, ] and
sup(, ) means that the supremum is taken for (x, ') on [ (so that ¥ <r).
The wavelets are in fact playing the role of ‘generalized boxes’ in a new form
of the standard box-counting algorithm used to estimate fractal dimensions
D(a). Summing only over the wavelet modulus maxima makes sense since, as
Mallat and Hwang [146] showed, most of the information in the wavelet
transform is carried by the wavelet maxima lines. Furthermore, because
one does not sum over places where the wavelet modulus is zero, ip(r) is
also defined for p < 0 as well as for p > 0. Note that the structure function
methods are defined only for p > 0.

Arnéodo, Bacry and Muzy draw the analogy with statistical thermody-
namics and interpret flp(r) as a ‘partition function’ (see Table 4.2).

If f(x) is a self-similar function then flp(r) oc r™ and the singularity spec-
trum can be found by calculating the Legendre transform

D(a) = inf(pa — 7(p)). (4.36)
)4

To avoid technical problems associated with calculating the Legendre trans-
form in (4.36) Arnéodo, Muzy and Bacry [6] recommend an alternative way
of finding D(«) (see their paper for details).

Jaffard [107] proved mathematically that the WTMM method, unlike the
structure function methods, gives the correct singularity spectrum for all p
provided it is slightly modified. Indeed a problem might arise if the wavelet
modulus maxima are too close together; in that case the sum in an interval of
width » must be restricted to the largest maxima. Jaffard also showed that
even the modified WTMM method fails if the function f(x) contains too
many oscillating singularities.

Arnéodo, Bacry and Muzy [6] found the relation between t(p) and ¢(p)
from their respective definitions in terms of D(«), but given the limitations of
equation (4.32), it is perhaps better (and more intuitive) to find the connec-
tion directly through the structure functions. In terms of discrete signals, the
wavelet transform-based calculation of the structure function (4.29) becomes
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Table 4.2. Analogies between statistical thermodynamics
and the Wavelet Transform Modulus Maximum method
for multifractals

Thermodynamic parameter Multifractal parameter
Temperature :zfl
Partition function %,(r)
Free energy (p)
Entropy D(a)
- 1 - )
Sy = D V.0l (4.37)
j=LN

Each cone of influence of width r must contain only maxima lines with the
same scaling (since the scaling r** is the same for all points within the
influence cone of point x,) and if the function is everywhere singular all
intervals of size r must contain at least one maxima line. If one follows
Jaffard’s [107] refinement to WTMM, and only counts one maximum for
each interval of length r, then the number of terms in the sum must be
proportional to N/r. Therefore, if the wavelet moduli are only summed
over their maxima the structure function becomes

- 1 ~ 1 -
S,(r) = N—/",;@(if% If (x;, r)|f’> = 577 2l (4.38)

We thus find that the relation between the structure function exponents Z(p)
and the WTMM ‘free energy’ exponents t(p) is

¢p)=t(p)+ 1. (4.39)

Note that equation (4.39) only holds if the function f(x) has singularities
everywhere and WTMM is modified by only counting one wavelet modulus
maximum for each interval of length r.

Arnéodo, Bacry & Muzy [6] applied the WTMM method to single point
high Reynolds number (the Taylor scale based Reynolds number is
R, = 2720) velocity data obtained by Gagne [99] from the wind tunnel of
ONERA at Modane. The self-similar inertial range follows the Kolmogorov
E(k) ~ k3 law for almost three decades. The WTMM analysis was carried
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out for this inertial range of scales on a section of data 100 integral (energy
containing) scales long.

The histogram of singularities a(x,) in the turbulence data was found to be
quite wide and centred about the Kolmogorov value @ = 1/3. Surprisingly, at
some places in the flow « is negative which implies actual singular behaviour
(velocity tending towards infinity). These negative o values may be spurious
or may indicate the (rare) presence of strong vortices. The function ©(p) is
convex which suggests that the regularity of the flow varies greatly from place
to place. The singularity spectrum is peaked at the Kolmogorov value
Umax (P = 0) = 0.335 £ 0.005 with D(ap,c) = 1.000 £ 0.001. This result indi-
cates that the signal is fractal everywhere because the fractal support of
D(o,y) 18 equal to its topological dimension (i.e. the dimension of the signal,
which is 1).

4.3.6 Distinguishing between signals made up of isolated and dense
singularities

Although the inertial range of turbulence has a self-similar structure, not all
self-similar functions are fractal; in fact some of the most physically plausible
turbulence structures, the spiral vortices, can generate self-similar oscillating
singularities with a non-trivial box-counting dimension (a technique to esti-
mate the Hausdorff or fractal dimension). The conclusion drawn by
Arnéodo, Bacry and Muzy [6] that turbulence is everywhere singular with
a multifractal structure may be invalid if the turbulent velocity signal they
analysed contains oscillating singularities. Because the WTMM method is
only valid for signals that contain dense distributions of cusp type singula-
rities, one should first try to determine whether a signal has isolated oscillat-
ing singularities before attempting to use the WTMM method.
Unfortunately, the difference between signals containing singularities every-
where (‘fractals’) and signals containing a large number of isolated oscillating
singularities (isolated ‘spirals’ in multi-dimensions or isolated ‘chirps’ in one
dimension, see Figure 4.1) is not obvious: both signals can have non-trivial
box-counting dimensions.

Kevlahan and Vassilicos [115] developed two methods for distinguishing
between isolated spiral and fractal signals based on the wavelet transform.
In fact their method only distinguishes between isolated and dense singula-
rities, however isolated cusp singularities have a trivial box-counting dimen-
sion and thus can be distinguished from fractal signals on the basis of box-
counting dimension alone. The first method takes advantage of the fact that
the singularities in a fractal are dense (there are singularities at an infinite
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number of points, see Figure 4.1), whereas the singularities in an isolated
spiral signal are isolated (the signal contains oscillating singularities only at
the centres of spirals). If one averages the wavelet transforms of many reali-
zations, or different data segments (separated by more than one integral scale
L in order to be decorrelated) together, one can prove that the average
wavelet transform modulus <Uz(x, r)|> decays differently for the two types
of singularity

as <U‘~(x, r)|> x Nﬁl/zlf(xo, r)| for fractal signals, (4.40)
but
as <[f(x, r)|> o'e [f~(x0, r)l, r<L/N for spiral signals, (4.41)

where N is the number of realizations or of decorrelated segments averaged
together and L is the length of each segment. Thus, the average wavelet
transform of the random phase fractal signal is N~/ times a single realiza-
tion, while that of the spiral signal does not depend, below a certain scale, on
the number of realizations. The difference in the behaviour of U;(x, r)|) is
striking, and provides a diagnostic for determining whether a signal contains
spiral-type singularities or not. This method was applied to the Gagne [99]
turbulence data. The results were inconclusive, perhaps due to insufficient
resolution near expected spiral scales or rarity of spiral vortices passing near
the pointwise velocity probe.

The second method for distinguishing between isolated spiral and fractal
singularities derives from the observation that the spatial fluctuation of wave-
let energy E(x, k) (measured by the standard deviation &(k) of E(x,k)) is
independent of wavenumber for a random phase fractal signal, but increases
with wavenumber for a spiral signal with the same energy spectrum. Analysis
of the turbulent signal shows that (k) increases with wavenumber (although
at a slower rate than for the purely spiral test signal), indicating that turbu-
lence probably contains some sort of isolated oscillating singularities. This
conclusion should be borne in mind when interpreting the results of multi-
fractal analyses of turbulence.

4.4 Turbulence analysis
4.4.1 New diagnostics using wavelets

It is impossible to define a local Fourier spectrum, because Fourier modes are
non-local, but it is possible to define a local wavelet spectrum, since wavelets
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are localized functions. Actually, due to the inherent limitation of the uncer-
tainty principle stating that there is a duality between spectral and spatial
selectivity, we should be aware that the spectral accuracy will be poor in the
small scales and that the spatial accuracy will be poor in the large scales.

Since turbulent flows are either two-dimensional or three-dimensional, in
the following section we will use the two-dimensional continuous wavelet
transform. Let us consider a two-dimensional scalar field f(x) and a two-
dimensional real isotropic wavelet y¥(x). We generate the family v, (x') of
wavelets, translated by position parameter x € IR?, and dilated by scale para-
meter r € IR", all having the same L? norm

Yo (x) = rlw(x/ - x). (4.42)
The two-dimensional wavelet transform of f(x) is
Py = [ S ) @43)
The local wavelet spectrum of f(x) is defined as
E(x,r) = ﬁ £ (e, ) (4.44)

A characterization of the local ‘activity’ of f(x) is given by its wavelet inter-
mittency /(x, r), which measures the local deviation from the mean spectrum
of f at each position x and scale r, defined as follows

_ e
Jge | f(x, ) d*x

Another measure of interest for turbulence is the wavelet Reynolds number
Re(x, r), given by

I(x,r) (4.45)

Re(x.r) = f‘("; r (4.46)

where r is the scale parameter, v the kinematic viscosity of the fluid, and # the
root mean square value of the velocity field contribution at position x and
scale r defined as

3 1/2
ii(x, r) = (C%Z iti(x, r>|2) , (4.47)
i=1

with the constant
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d2
2
Co= [ 1P, 4.49)

The expectation is that at large scales r ~ L, the wavelet Reynolds number
should coincide with the usual large-scale Reynolds number Re = UL/v,
where U is the r.m.s. turbulent velocity and L is the integral scale, which is
the energy containing scale of the flow. In the smallest scales (say r ~ n,
where 71 is the Kolmogorov scale of the flow which characterizes the high
wavenumber limit of the inertial range where dissipation becomes signifi-
cant), one expects this wavelet Reynolds number to be close to unity when
averaged spatially. The question we want to address here is the variability of
such a wavelet Reynolds number defined in space and scale: are there loca-
tions where such a Reynolds number in the small scales is much larger than
elsewhere, and how do such regions correlate with regions of small-scale
activity in the flow? Actually Re(x, r) gives an unambiguous measure of the
nonlinear activity at small scales (or at any desired scale), because regions of
high wavelet Reynolds number correspond to regions of strong nonlinearity.

Concerning the computation of energy and enstrophy transfers and fluxes,
we should be aware that the results depend on the functional basis we con-
sider. Indeed, due to Heisenberg’s uncertainty principle, each representation
measures different types of transfers and fluxes. In Fourier space one com-
putes transfers between different independent wavenumber bands, which
detect the modulations and resonances excited under the flow dynamics. In
wavelet space one computes exchanges between different locations and dif-
ferent scales, which detect instead advections and scalings. But one should
never forget that in wavelet space spatial resolution is bad in the large scales
and good in the small scales, while, by duality, space resolution is good in the
small scales but bad in the large scales. In an orthogonal wavelet basis,
although all wavelets are independent in space and scale, they are not neces-
sarily independent in wavenumber. In an orthogonal wavelet packet basis all
wavelet packets are independent in space, scale and wavenumber, but their
Fourier spectrum may present several peaks at distant wavenumbers and
they may be quite delocalized in wavenumber space; therefore wavelet pack-
ets are not appropriate to precisely measure transfers between different wave-
number bands. This is the reason why a comparison between transfers
computed in wavelets, wavelet packets and Fourier modes is misleading:
these three diagnostics do not measure the same quantities!
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4.4.2 Two-dimensional turbulence analysis

Unlike the velocity field, the vorticity field is invariant with respect to uni-
form rectilinear translations of the inertial frame (Galilean invariance). The
dependence of streamlines and streaklines on the reference frame causes
considerable difficulties in the study of fluid flows, particularly in observing
and defining vortices. In fact, due to its Galilean invariance, vorticity is the
most suitable field for tracking the dynamics of turbulent flows, in both two
and three dimensions. Moreover, due to Helmholtz’s theorem stating the
Lagrangian conservation of vorticity in 2D and of vortex tubes in 3D, we
are convinced that vorticity is, for both 2D and 3D flows, the fundamental
field whose evolution controls all other relevant fields; the importance of
vorticity has been advocated for years by Saffman [184] and Chorin [44].
We think that turbulence analysis, modelling and computing should be
based on a segmentation of the vorticity field into coherent vortices (or
vortex tubes in 3D) and random background of vorticity filaments (namely
1D structures embedded in 2D or 3D) produced by the nonlinearly interac-
tions between the coherent vortices. The vorticity field is directly accessible
from numerical simulations, but is difficult to obtain from laboratory experi-
ments. This is why we will now focus on vorticity fields obtained from direct
numerical simulation (DNS) results. The drawback with DNS, i.e. the inte-
gration of Navier—Stokes equations without any ad hoc turbulence model-
ling, is that current supercomputers are only able to compute low Reynolds
number flows (up to a few thousand).

Let us show an example of a wavelet analysis of an instantaneous vorticity
field computed using the Navier—Stokes equations [168], [71]. We segment it
into three regions using the Weiss criterion [202], [63], namely into rotational
regions corresponding to the coherent structures, strongly strained regions
corresponding to the shear layers surrounding the coherent structures, and
weakly strained regions corresponding to the background flow made of vor-
ticity filaments (these vorticity filaments encountered in two-dimensional
turbulence are not the same dynamical objects as the vorticity tubes encoun-
tered in three-dimensional turbulence and often called filaments). We then
decompose the vorticity field into a continuous wavelet representation using
an isotropic (Hermite) wavelet to integrate in space the wavelet coefficients
for each type of region. This decomposition is in fact a conditional statistical
analysis because the energy spectrum is computed separately for each type of
region. The energy spectrum of the coherent structure regions tends to scale
as k>, the sheared regions as k~* and the background regions as k=3 (F igure
4.2). We found [80], [168], [73] that each region has energy throughout the
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inertial range and therefore there is no scale separation. This is why the
Fourier representation cannot disentangle these different regions.

The scaling of the coherent structures seems compatible with the cusp-like
model for vortices proposed by Farge and Holschneider [76], the scaling of
the shear layers seems compatible with the vorticity fronts model proposed
by Saffman [183] and only the scaling of the homogeneous background
regions seems to verify the Batchelor—Kraichnan prediction for 2D homo-
geneous isotropic turbulence [121]. From this analysis we confirm that there
is no universal power-law scaling for two-dimensional turbulent flows; the
slope of the Fourier energy spectrum varies with the density of coherent
structures (their number per unit area in 2D and per unit volume in 3D),
which depends on initial conditions and forcing (energy injection by external
forces). We have then conjectured [80] that there may be a universal scaling
for each region of the flow considered separately, but this has not yet been
proven. Extensive wavelet analysis of very different types of turbulent flows
would be necessary to check this conjecture.

A key question, which remains open, is the following: is there a generic
shape (namely a typical vorticity distribution) for coherent structures? The
answer to this question influences our analysis, in particular our interpreta-
tion in terms of scale, because the notion of scale is intrinsically linked to the
generic shape we assume for the coherent structures. A prioris are as essential
in statistical analysis as hypotheses are in modelling: we should state them
clearly, otherwise our results would be nonsensical. For instance, without a
definition of vortex shape the notion of vortex size and vortex circulation
would be meaningless. A misunderstanding has persisted for years in the field
of turbulence due to the identification of scale with the inverse wavenumber,

Fig. 4.2. Conditional wavelet spectra (this computation was done in collaboration
with Thierry Philipovitch). (Colours referred to in this caption are shown at
www.cambridge.org/resources/0521533538) (a) Vorticity field. In red: elliptic regions,
dominated by rotation (antisymmetric part of the stress tensor Vv), which correspond
to the coherent vortices. In blue: hyperbolic regions, dominated by strain (symmetric
part of the stress tensor Vv), which correspond to the incoherent background flow. (b)
Coherent vortices where rotation dominates. (c) Shear layers where strain and strong
velocity dominate. (d) Background flow where strain and weak velocity dommate (e)
Energy spectra. In black: Fourier energy spectrum, which tends to scale as k~*° in the
inertial range. In dark blue: wavelet energy spectrum, Wthh is a smooth approxima-
tion of the Fourier spectrum and tends to scale as k~*°. In red wavelet energy
spectrum of the coherent vortices, which tends to scale as k . In green: wavelet
energy spectrum of the shear layers, which tends to scale as K~ In llght blue: wavelet
energy spectrum of the background flow, which tends to scale as k>
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which is true only if one assumes a wave-like shape for the vorticity field.
Conversely, in other papers one encounters different implicit models of
coherent structures (point vortices [203], vortex patches [127], Gaussian vor-
tices [144], or cusp-like vortices [76]), which indeed condition our statistical
analysis. Therefore one first needs a method to extract coherent structures
out of turbulent flows in order to study them individually. The classical
method consists of thresholding the vorticity field and identifying as coherent
vortices all regions where vorticity is larger than this threshold. However, the
spectral information is then lost due to the discontinuity introduced by the
threshold. We have proposed instead [74], [80] two new methods based on the
continuous wavelet representation, which preserves the smoothness of the
vorticity field and therefore its spectrum.

These methods depend on the choice of the analysing wavelet (although
this dependance is weak) and ideally we should use a wavelet which is a local
solution of the linearized Navier—Stokes equations, namely a solution of the
heat equation, such as any isotropic and smooth distribution of vorticity.
This is why we propose to use two-dimensional Hermite wavelets (derivatives
of the Gaussian), which are solutions of the heat equation. The higher the
derivative, the better the cancellations and the more sensitive the wavelet will
be to quasi-singular vortices, however its spatial selectivity will not be as
good as for low order derivative wavelets. In two examples shown in this
chapter (Figures 4.2 and 4.5) we use Marr’s wavelet which is the Laplacian of
the Gaussian.

The new approach we have proposed is to decompose turbulent flows
into coherent and inhomogeneous components versus incoherent and
homogeneous components. This decomposition should be performed for
each flow realization before averaging, because these two classes of com-
ponents correspond to different statistical distributions and present differ-
ent scaling laws. The first method to perform this decomposition consists
of extracting the coherent structures by retaining only the wavelet coeffi-
cients inside the influence cones (namely the spatial support of the wave-
lets) attached to the local maxima of the vorticity field corresponding to
the centres of the coherent structures; the wavelet coefficients outside the
influence cones are discarded before reconstructing the coherent compo-
nents of the vorticity field [80]. We can also extract just one coherent
structure, analyse its shape, and compute its coherence function, namely
the pointwise relation between vorticity and streamfunction, to check if it
corresponds to the stationary states predicted by Montgomery’s [111] or
Robert’s [178], [179], [180] statistical theories. The second method to split
the flow into coherent and incoherent components consists of retaining
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only the wavelet coefficients which are larger than a given threshold and
to discard all other coefficients before reconstructing the coherent vorticity
field. We have thus extracted the coherent structures (corresponding to the
wavelet coefficients larger than the threshold) from the background flow
(corresponding to the weaker wavelet coefficients). By computing the
Fourier spectrum of these two fields we have confirmed our previous
analysis: the energy spectrum of coherent structures tends to scale as
k> and that of the background field as k=3 [74], [80], thus recovering
the scaling predicted by the statistical theory of homogeneous 2D turbu-
lence [121]. This confirms the conjecture stating that the coherent struc-
tures are responsible for the intermittency of 2D turbulent flows. We think
this conjecture is also true for 3D turbulent flows.

Inspired by Donoho’s theorem for optimal denoising [58], we have recently
proposed [83] the threshold @7 = (2 < ® > log, N)"/? to select the wavelet
coefficients to be retained to extract coherent structures. This threshold
depends only on the variance of the vorticity field < > > and on the number
of grid-point samples of the vorticity field N, without any adjustable para-
meter. For statistically steady turbulent flows, whose variance is by definition
stationary, this threshold remains constant during the whole time evolution.
Using this method we have analysed decaying [82], wavelet forced [83] and
Fourier forced 2D turbulent flows [84] (see Figure 4.3). For these three dif-
ferent types of turbulent flows we have observed that the coherent compo-
nents, obtained from the wavelet coefficients of vorticity larger than the
threshold @7, have non-Gaussian vorticity and velocity PDFs, while the inco-
herent components, obtained from the wavelet coefficients of vorticity smaller
than the threshold @7, have Gaussian PDFs [83], [82], [84] (see Figures 4.3f
and 4.10d). There is still some hope of finding universal statistical distribu-
tions for each component taken separately, and we may be able to propose
new turbulence models based on the Gaussianity of the background flow.
Even if such a universal distribution exists for the coherent structures, we
would still need to calculate the dynamics of these structures in detail because
they remain out of equilibrium (unlike the background).

Using the wavelet segmentation technique we have just described, we ana-
lysed a 2D forced turbulent flow computed with 256> Fourier modes, and
found that only 0.7% of the wavelet modes retain 94.3% of the total enstro-
phy and 99.2% of the total energy. These modes correspond precisely to the
coherent structures as exhibited on the coherence scatter plot (Figure 4.3d).
These coherent modes are responsible for the PDFs of the total vorticity and
velocity fields, while the incoherent modes (corresponding to the 99.3%
remaining wavelet coefficients) have a Gaussian PDF, with a flatness 3 and
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a much smaller variance than that of the total fields (Figure 4.3f). On the
contrary the incoherent background flow is responsible for the energy spec-
trum scaling in the high-wavenumbers (Figure 4.3g), because the contribu-
tion of the coherent modes to the small scales are too localized to be detected
by the two-point correlation (whose Fourier transform gives the energy spec-
trum). We have also shown that the coherent modes are responsible for the
total flow dynamics because they trigger the total velocity field. The incoher-
ent modes are passively advected by the coherent velocity, because the inco-
herent velocity field generated by the background flow is nearly zero (Figure
4.3b). For all these reasons we think that the coherent modes are essential,
and that analysing of turbulent flows in terms of energy spectrum scaling in
the high-wavenumbers alone is misleading, and one should also consider the
PDFs of vorticity and velocity.

Another application of the wavelet representation in turbulence is to
design new types of forcing for numerical simulations. The method, proposed
by Schneider and Farge [185] consists of injecting energy and enstrophy at
each time step, but only into the wavelet coefficients inside the influence cone
corresponding to a given location. Depending on the type of forcing we want,
we could either excite the same vortices or randomly select new vortices at
each time step. Forcing is currently done in Fourier space and is rather
unphysical, while wavelet-based forcing could simulate the production of
vorticity in boundary layers or shear layers, which is a local process. This
is another promising application of wavelet techniques for turbulent flow

Fig. 4.3. Wavelet compression of vorticity. (a) The vorticity. (b) The modulus of
velocity. (c) The streamfunction. (d) The coherence scatter plot. (e) Cut of vorticity
(f) PDFs of velocity and vorticity. (g) Energy spectrum.

The solid lines correspond to the total vorticity w, the dashed lines to the coherent
part w., and the dotted lines to the incoherent part w_.

We observe that only 0.7% of the total number of wavelet coefficients are suffi-
cient to represent all coherent structures, while the remaining 99.3% correspond to
the incoherent background flow, which is much weaker and homogeneous. The
coherent vorticity w. contains 94.3% of the total enstrophy. Moreover, the velocity
associated with the coherent structures v. is quasi-identical to the total velocity v
and contains 99.2% of the total energy. As for the coherent stream function, W_ is
perfectly identical to the total stream function W. The fact that the coherence scatter
plot of the background F_ is isotropic proves that our method has extracted all
coherent structures. The PDFs of velocity and vorticity show that only 0.7% of
the wavelet coefficients are sufficient to capture the non-Gaussian one-point statis-
tical distribution of vorticity, while the remaining 99.3% have a Gaussian distribu-
tion. The energy spectrum, on the contrary, is dominated by the background at small
scales and therefore is insensitive to coherent structures, because they are too loca-
lized in the small scales to affect the energy spectrum (which is the Fourier transform
of the two-point correlation function) in the high wavenumbers. Parts (a) to (d) of
this figure are also shown at www.cambridge.org/resources/0521533538.
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simulation (the results obtained with this wavelet forcing method are dis-
cussed in section 4.6.4.3 and shown on Figure 4.10).

4.4.3 Three-dimensional turbulence analysis

We have analysed different flow fields resulting from direct numerical simu-
lations of three-dimensional turbulent flows [75], using the complex-valued
Morlet wavelet, which plays the role of a numerical polarizer due to its
angular selectivity, and whose complex modulus directly measures the energy
density. We have first studied the temperature, velocity and pressure fields of
a channel flow near the wall and have used the wavelet intermittency to
pinpoint the regions of the flow dominated by strong nonlinear dynamics,
corresponding to locally stronger wavelet Reynolds numbers. It appears that
the most intermittent regions are correlated with those of large vertical velo-
city, corresponding to ejections from the boundary layer. We have found that
temperature behaves as a passive scalar almost everywhere, except in these
very localized ejection regions. We have also observed that there is no return
to isotropy in the small scales, contradicting one of the hypotheses of the
statistical theory of turbulence, which supposes that turbulent flows become
homogeneous and isotropic at small scales.

We have then analysed the vorticity, velocity and a passive scalar in a
temporal mixing layer after the mixing transition. We have found that wavelet
intermittency is very strong, up to 120, in the collapsing regions where the ribs
(streamwise vorticity tubes produced by a three-dimensional instability) are
stretched and engulfed into the primary spanwise vortex (produced by a two-
dimensional Kelvin—Helmholtz instability). On the other hand, the wavelet
intermittency in the braids, i.e. outside the spanwise vortex, remains very low,
not exceeding 5. We have also noticed in this case and contrarily to the
channel flow, a return to isotropy in the small scales. From the local spectrum
of the vertical vorticity we have observed that the collapsing regions have a
spectral slope much shallower than the one of the braid regions; this departure
from the space average wavelet spectrum increases with the scale and confirms
the strong intermittency of the mixing layer. If we extrapolate the observed
slopes, we conjecture that intermittency should increase with Reynolds num-
ber. We have then visualized the iso-surfaces of the wavelet Reynolds number,
which can be interpreted as surfaces of iso-nonlinearity in the flow. The peaks
on these iso-surfaces, which are associated with the most unstable regions, are
located in the primary vortex core; this confirms our previous conclusions
concerning the concentration of small-scale nonlinear activity there, due to
the stretching of the ribs rolled around the primary vortex. We have also
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shown that the Kolmogorov scale, corresponding to the iso-surface
Re(x,r) ~ 1 where linear dissipation balances nonlinear advection, varies
with location, being at much smaller scales in the vortex core than in the
braids, with a scale variation of four octaves. This means that there may
also be some (spatially localized) dissipation at scales belonging to the inertial
range. This observation contradicts Kolmogorov’s hypothesis of non-dissipa-
tive energy transfers in the inertial range, but is in agreement with Castaing’s
theory of turbulence [36], [37], with Frisch and Vergassola’s [93] multifractal
model and with Benzi et al’s [21] extended self-similarity model, which
assume a weak dissipation in the inertial range.

For shear flows, such as the channel flow or the mixing layer we have
studied, there is a clear correlation between large-scale events and small-
scale activity, due to the presence of coherent structures. Wavelet analysis
has been an essential tool for identifying them as wavelet phase-space regions
correlated in both space and scale, where intermittency decreases with scale
[75]. We conjecture that for large Reynolds numbers these regions may
become more and more localized and very intense in small-scale enstrophy.
Therefore they correspond to rare but strong events, which are susceptible to
develop singularities at very large Reynolds numbers. For the mixing layer
these quasi-singular regions correspond to collapsing events, where the ribs
are stretched and accumulated inside the primary vortex core, while for the
channel flow these regions correspond to the tip of the hairpin vortices ejected
from the wall boundary layer. According to the Cafarelli-Kohn—Nirenberg
theorem [33], singularities of Navier—Stokes equations, if they exist, should be
at most a set of Hausdorff measure one in space-time for any Reynolds
numbers, which confirms the fact that they could only be rare events to
which standard statistical tools, such as two-point correlation and energy
spectrum, remain insensitive. Incidentally if we want to look for quasi-singu-
larities in three-dimensional turbulent flows it may be better to use a space-
time continuous wavelet transform, whose theory has been initiated by Duval-
Destin and Murenzi [61], but has not yet been sufficiently developed.

4.5 Turbulence modelling

We will now reconsider the closure problem mentioned in subsection 4.2.3,
taking advantage of the new observations we have made of turbulent flows,
and in particular the dynamical role of coherent structures, thanks to the
wavelet analysis.
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4.5.1 Two-dimensional turbulence modelling

To compute turbulent flows we must separate the active components,
responsible for their chaotic behaviour (namely sensitivity to initial condi-
tions), from the passive components, which are advected by the velocity
field resulting from the overall coherent structure motion. The active com-
ponents are not in thermal equilibrium, while the passive components are
well thermalized. Therefore the active components should be computed
explicitly, while the passive components can be modelled by some ad hoc
parametrization.

Classical numerical techniques (Galerkin methods [103], Large Eddy
Simulation [133], [175], [135] and Nonlinear Galerkin methods [149]) assume
that the active components are the low-wavenumber Fourier modes, or the
scales resolved by the computational grid, while the passive components are
the high-wavenumber Fourier modes, or the sub-grid scales. This scale separ-
ability of the turbulent dynamics is assumed to be true in both two and three
dimensions.

We have shown [204] that a compression in the wavelet or wavelet packet
representation extracts the coherent structures out of the background flow,
while the same amount of compression done in the adapted local cosine
(Malvar) representation, which is a type of windowed Fourier basis, does
not have this property (Figure 4.4). Indeed, the more you compress in
Fourier or windowed Fourier representations, the more you smooth the
coherent structures, and consequently lose their enstrophy, destroy their
phase information, and introduce parasitic wiggles in the background.
Indeed, the more you compress, the larger the effect of the analysing func-
tion. Therefore wavelets and wavelet packets, being localized functions, tend
to separate coherent structures from the background flow (Figure 4.4a),
while Fourier and windowed Fourier, being non-localized functions, tend
to smear coherent structures into the background flow (Figure 4.4b).

We have shown [74], using nonlinear wavelet packet compression, that
there is no scale separability in two-dimensional turbulence; we conjecture
that this result is also true in 3D turbulence. To prove this we have computed
the time evolution of a two-dimensional turbulent flow which we use as our
high-resolution reference flow. We have then compressed the initial vorticity
field in two ways: either by retaining only the lower wavenumber Fourier
modes, or by selecting the strongest (in L>-norm) wavelet packet coefficients.
We found that for a compression ratio of 200 the wavelet packet representa-
tion preserves, in a statistical sense (namely the energy spectrum is well
predicted), the reference flow evolution while the Fourier representation



162 M. Farge, N.K.-R. Kevlahan, V. Perrier and K. Schneider

S iR S M
(c) Vorticity compressed
in an adapted local cosine basis

(b) Verticity compressed
in a wavelet packet basis

3e+06
2e+06 adapted local cosines
wavelet packets — Figure 4
Comparison between
wavelet packet and
16406 ] adapted local cosine
compression
0

0 200 400 600 800 1000

(d) Amount of enstrophy retained
for each compression



Turbulence analysis, modelling and computing using wavelets 163

leads to a statistically different solution. This conclusion is not surprising,
considering the existence of an inverse energy cascade in two-dimensional
turbulence which implies that the high-wavenumber Fourier modes remain
active and affect the evolution of the low-wavenumber modes. The implica-
tion of this behaviour should be implemented in turbulence models, because
we now have wavelet-based numerical methods to replace grid-point or
Fourier representations and integrate Navier—Stokes equations (see 4.6).

In the same paper [74] we showed that there is a possible separability
between active modes, namely the coherent structures corresponding to the
strong wavelet packet coefficients, and passive modes, namely the vorticity
filaments of the background flow corresponding to the weak wavelet packet
coefficients. Both components are multi-scale, which is why the Fourier
representation is not able to disentangle them and a fortiori to model
them. According to Weiss analysis [202] the coherent structures correspond
to elliptic regions (nearby fluid trajectories remain nearby) where rotation
«® dominates strain 5%, while the background flow corresponds to hyper-
bolic regions (two nearby fluid trajectories separate exponentially) where
strain s* dominates rotation o”. In the elliptic regions the wavelet Reynolds
number Re(x,r) is larger than one, while in the hyperbolic regions it is
smaller than one, which indicates that the background flow is actually
laminar (Figure 4.5).

We have shown ([83], [82], [84]) that probability distribution functions
(PDF) of the vorticity and velocity fields associated to the coherent struc-
tures are non-Gaussian, while they are Gaussian for the background flow
(Figure 4.3). Therefore the coherent structures are out of thermal equili-
brium, while the background flow has already thermalized due to the very
strong mixing resulting from the strain imposed by the coherent structures.
Therefore the probability distributions of the background flow are station-
ary and do not depend on the spatial configuration of the coherent struc-
tures. We should then be able to model the incoherent background flow by

Fig. 4.4. Comparison between wavelet packet and adapted local cosine compression
(this computation was done in collaboration with Echeyde Cubillo). (a) The uncom-
pressed vorticity field computed with 128 modes. (b) The vorticity field recon-
structed from the 70 strongest wavelet packet coefficients, which contain 90% of
the enstrophy. (c) The vorticity field reconstructed from the 425 strongest adapted
local cosine coefficients, which contain 90% of the total enstrophy. (d) Enstrophy
contained in the retained coefficients versus their number. We observe, for instance,
that 70 wavelet packet coefficients retain 90% of the total enstrophy, while 70
adapted local cosine coefficients retain only 50% of the total enstrophy. This figure
is also shown at www.cambridge.org/resources/0521533538.
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an ad hoc stochastic process having the same enstrophy and the same
statistics, in particular the same spectral slope, or using simple turbulence
models (Boussinesq, Smagorinsky or k — € [155]), whereas the coherent
structures should be explicitly computed in wavelet phase-space. A possible
direction would be to construct a wavelet or wave packet frame (namely a
quasi-orthogonal basis) made of local solutions of the linearized Navier—
Stokes equations (namely any isotropic smooth function, such as the
Mexican hat). We do not yet know how to construct it, nor to compute
Navier—Stokes equations in it, although we know how to compute Navier—
Stokes equations in an orthogonal wavelet basis (see 4.6), which is a pro-
mising first step in the same direction.

We have also shown [114] that the presence of coherent structures inhibits the
nonlinear instability of the background flow, namely the formation of new
coherent structures. Using the wavelet packet representation to extract the
coherent structures we then computed the evolution of the remaining back-
ground flow, in the absence of coherent structures, and observed the emergence
of new ones out of it (Figure 4.6). Actually when coherent structures are pre-
sent, they impose a strain on the background flow, which then inhibits the
formation of new coherent structures, and therefore there is no energy or
enstrophy backscatter from the incoherent to the coherent components of
two-dimensional flows. The next step to validate this observation will be to
compute the different transfers between coherent and incoherent components
of the flow (namely from coherent structures to coherent structures, from
coherent structures to background, from background to coherent structures
and from background to background) and check that there is no transfer from
background to coherent structures. If this is confirmed, there will be a possible
wavelet separability between the coherent and incoherent flow components and
we may then be able to propose new turbulence models based on this property.

Fig. 4.5. Wavelet Reynolds number (this computation was done in collaboration
with Thierry Philipovitch). (a) Velocity field computed with resolution 128> (Ax = 1
unit length between two grid-points). (b) Wavelet Reynolds number at scale 64Ax,
which fluctuates between 148 and 2700 with a mean value of 1713. (c) Wavelet
Reynolds number at scale 20Ax, which fluctuates between 31 and 578 with a
mean value of 365. (d) Wavelet Reynolds number at scale 8 Ax, which fluctuates
between 1 and 27 with a mean value of 17. (¢) Wavelet Reynolds number at scale
2Ax, which fluctuates between 0 and 3 with a mean value of 2. This figure is also
shown at www.cambridge.org/resources/0521533538.
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Fig. 4.6. Dynamical analysis of coherent structures and incoherent background flow.
(Colours referred to in this caption are shown at www.cambridge.org/resources/
0521533538) (a) Total vorticity at ¢t = 30 computed with a resolution 10242, (b)
Vorticity corresponding to the coherent vortices alone at ¢z = 30. They are made
up of 31 strong wavelet packet coefficients which contain 83% of the total enstrophy.
(c) Energy spectra at r = 30. In green: the total energy spectrum. In red: the coherent
vortices energy spectrum. In blue: the filament energy spectrum. (d) Vorticity corre-
sponding to the filaments alone at ¢ = 30. They are made up of 1 048 545 weak
wavelet packet coefficients which contain 17% of the total enstrophy. (e)
Integration of the total vorticity until # = 120. (f) Integration of the coherent vortices
alone until # = 120. (g) Energy spectra at r = 120. In green: the total energy spec-
trum. In red: the coherent vortices energy spectrum. In blue: the filament energy
spectrum. (h) Integration of the filaments alone until # = 120.
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4.5.2 Three-dimensional turbulence modelling

The assumption that the high-wavenumber Fourier modes are slaved to the
active low-wavenumber Fourier modes, is probably also wrong for three-
dimensional turbulence due to the evidence of energy backscattering [55],
[54], [56], [129], [169], i.e. inverse energy transfer from small to large scales,
resulting from the presence of organized structures which locally interact and
transfer energy to larger scales. We should take this observation with caution
knowing that the amount of backscattering observed depends sensitively on
the sharpness of the spectral filter used. There are two other reasons to
explain why the assumption that the high-wavenumber modes are slaved to
the low-wavenumber modes is not valid and should be revised.

The first reason comes from the fact that we do not have any universal
theory of turbulence aside from the statistical theory which deals with homo-
geneous and isotropic ensemble averages, while numerical simulations com-
pute one flow realization at the time (at the highest resolution possible with
present supercomputers) and not ensemble averages (which will require too
many computations to obtain several realizations of the same turbulent flow).
Actually each flow realization is, unlike an ensemble average, highly inho-
mogeneous due to the presence of coherent structures. As we have shown in
performing wavelet analyses of two- and three-dimensional turbulent flows,
coherent structures are multi-scale and, through their mutual nonlinear inter-
actions, are responsible for inverse energy transfers. If the computational grid
1s too coarse, its resolution is insufficient to accurately compute these trans-
fers. Likewise subgrid-scale parametrization is only able to model direct
transfers (from resolved to unresolved scales) and inverse transfers (from
unresolved to resolved scales) in a statistical sense, assuming homogeneity,
but cannot exactly compute the tranfers for the given inhomogeneous flow
realization one integrates. In fact backscattering is a major unresolved draw-
back of current numerical methods, which will last as long as they will be
unable to separate the coherent structures from the background flow and
take into account the parametrization of homogeneous turbulent compo-
nents separately from the inhomogeneous components. This difficulty
comes from the fact that both components are multi-scale and therefore
low-pass filters are inadequate here.

The second reason comes from the fact that our current numerical methods
are defined, either in grid-point, finite element or Fourier representation, and
are unable to compute multi-scale objects with a small number of coefficients.
This would be possible using either adapted multi-grid or wavelet numerical
methods. Multi-grid techniques were proposed 20 years ago by Achi Brandt
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[31] for solving elliptic problems, such as the diffusion equation; they were
then adapted to quasi-stationary problems, but do not seem yet optimal to
solve time-dependent problems. Actually the multi-grid approach is similar
to a wavelet approach using a Haar wavelet, which is very well localized in
physical space and corresponds to a set of embedded grids, but which is too
delocalized in spectral space and tends to produce large errors in the higher
order derivatives of the solution. As far as we know, locally refined multi-grid
techniques have been tried for the Navier—Stokes equations, but not yet in
the turbulent regime.

One possible approach is to use the wavelet Reynolds number to split the
Navier—Stokes equations at each time step into advection and diffusion
operators, which will be solved separately using the most appropriate numer-
ical method and turbulence parametrization for each operator. Namely, the
advection term should be computed only where Re(x,r) > O(1), and the
diffusion term where Re(x, r) < O(1). This method makes sense only if the
flow is computed either in a multi-grid or in a wavelet representation (see
section 4.6).

Actually, as we have already said, the Navier—Stokes equations are com-
putationally intractable for the large Reynolds number limit which corre-
sponds to fully developed turbulent flows. Although the use of wavelets
may improve current numerical methods of solving the Navier—Stokes equa-
tions (see section 4.6), a more promising direction may be to look for a new
set of equations specific to the turbulent regime. Such equations would be
written in terms of a small number of new variables corresponding to the
degrees of freedom attached to the coherent structures. As a consequence of
this drastic reduction of degrees of freedom to compute, these new equations
may break some of the symmetries of Euler or Navier—Stokes equations. This
is analogous to the way in which Boltzmann’s equation, describing the
macroscopic level, breaks the time reversibility of Newton’s equation,
describing the microscopic level. For modelling turbulent flows we ought
to go one step further in the hierarchy of embedded equations going from
Boltzmann’s to Navier—Stoke’s and define a new ‘organized’ level emerging
out of the thermalized background flow.

4.5.3 Stochastic models

The idea is to find stochastic models of turbulence that mimic the behaviour
of Navier—Stokes equations at high Reynolds numbers, but which would be
easier to solve numerically, and perhaps even analytically. These models
could then be used to study some properties of turbulent flows, such as
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energy spectrum, probability density functions, intermittency and departure
from Kolmogorov’s scaling.

The first attempt was done in 1974 by Desjanski and Novikov [52] who
devised a so-called shell model where the Navier—Stokes equations were
represented on a discrete set of wavenumbers in Fourier space, each
Fourier shell corresponding to one octave. The coupling between different
octaves was supposed to be local in Fourier space and energy was transferred
only from large to small scales. Such shell models, sometimes also called
cascade models, are still popular because with them it is easy to obtain
very large inertial range, up to Reynolds numbers 10'°, at a limited computa-
tional cost. The number of degrees of freedom needed to compute three-
dimensional Navier—Stokes equations by standard direct simulations scale
as Re’*, whereas they scale as Re for shell models. The weak point of
shell models is that the vectorial structure of Navier—Stokes equations is
lost, the incompressibility condition is not satisfied and they do not give
accurate information on the spatial structure of the flow.

In 1981 Zimin [209], [90], [210] proposed another model, called the hier-
archical model, defined in both space and scale. He projected the three-dimen-
sional Navier—Stokes equations onto Littlewood—Paley basis and discretized
them by octaves, considering a limited number of vortices for each octave, few
in the large scales and more in the small scales in accordance to Heisenberg’s
uncertainty principle. He then assumed that each vortex is advected by the
velocity field of the larger vortices, which lead him to propose a set of semi-
Lagrangian wavelets to compute the flow evolution. This impressive work
foreshadowed the wavelet decomposition, and has since been developed by
Frick [89], [88], [8]. Hierarchical models are more physical than shell models
because they also take into account the vortex motions, but they are still not
very realistic from a physical standpoint because they neglect the vortex
deformation which is responsible for energy transfers and subsequent dissipa-
tion. Recently Eyink [68] has criticized this approach in showing that semi-
Lagrangian wavelets do not remove the effect of large-scale convection to the
energy transfers and therefore do not guarantee their locality in wavenumber
space. This is again due to Heisenberg’s uncertainty principle and is related to
the fact that it is impossible to compare transfers between wavenumbers and
transfers between scales (this point has already been discussed in section 4.4).

Ideas on turbulence evolve at a very slow pace. As an example of this, let us
quote what Liepmann wrote in the proceedings of the turbulence conference
held in Marseille in 1961 [140]:
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The success of the spectral representation of turbulent fields is due, after all, not to
the belief in the existence of definite waves but to the possibility of representing quite
general functions as Fourier integrals. In the application to stochastic problems the
usefulness of the Fourier representation stems essentially from their translational
invariance. Consequently, really successful models for representing turbulent shear
flows will require far broader invariance considerations. It is clear that the essence of
turbulent motion is vortex interaction. In the particular case of homogeneous
isotropic turbulence this fact is largely masked, since the vorticity fluctuations
appear as simple derivatives of the velocity fluctuations. In general this is not the
case, and a Fourier representation is probably not the ultimate answer. The pro-
posed detailed models of an eddy structure represent, I believe, a groping for an
eventual representation of a stochastic rotational field, but none of the models
proposed so far has proven useful except in the description of a single process.

These remarks, written 37 years ago, are still very pertinent and define the
direction we should take for future research in turbulence.

Nowadays, using wavelets we can construct more elaborate stochastic
processes. As Liepmann has perceived we should be able to synthesize sto-
chastic rotational fields, built from a set of randomly translated, rotated and
dilated elementary vortices, which should have the same non-Gaussian
statistics as those observed for two- and three-dimensional turbulent flows
(see Figure 4.3). Recently Elliott and Majda [64], [65] have used wavelets to
build a Gaussian, stationary and self-similar stochastic process for synthesiz-
ing turbulent velocity fields satisfying Taylor’s hypothesis and displaying
Kolmogorov’s energy spectrum. Using these synthetic velocity fields they
recover Richardson’s law for scalar pair dispersion [66]. It is well-known
that the Gaussian hypothesis is incompatible with the turbulence cascade
(Skewness being non zero [113]), but their method may be useful to model
the background flow, which, contrary to coherent structures, may present
Gaussian statistics, although this point is still very controversial [192].

4.6 Turbulence computation
4.6.1 Direct numerical simulations

The direct numerical simulation of turbulent flows, based on the integration
of the Navier—Stokes equations at high Reynolds number without any sub-
grid turbulence model, requires a very large number of degrees of freedom.
This number increases like Re in two dimensions and like Re”* in three
dimensions. Among the numerous Eulerian and Lagrangian numerical
schemes, one may identify two different points of view: spectral and physical.

The first long-time simulations of two-dimensional turbulent flows [14],
[143], [22] were based on spectral methods, i.e. Fourier decomposition, and
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had a resolution of 512%. More recently, resolutions of 4096> have been
calculated [42], but even these high-resolution simulations cannot attain rea-
listic Reynolds numbers which are several orders of magnitude larger. The
observation of the formation of coherent structures in both laboratory and
numerical experiments lead to the recognition of the important dynamical
role played by vortices in turbulent flows and resulted in the development of
Lagrangian methods ([1], e.g. vortex methods [134], [47] or contour dynamics
methods [127]) which follow the motion of each vortex, but which are impre-
cise concerning the background flow between the vortices. Finite-element,
-difference or -volume methods allow mesh refinement in regions of the
flow where small structures appear, for instance in the boundary layer of
an obstacle; unfortunately automatic adaptive refinement requires post-pro-
cessing to follow these small structures.

Wavelet bases, in the context of the numerical simulation of PDEs (partial
differential equations), appear to be a good compromise between spectral
methods (precise, but expensive), contour dynamics (which automatically
follow coherent structures, but not the background flow) and finite element
or finite difference methods (local in space, of low order and therefore not
precise). Wavelet methods have already been used to solve Burgers’ equation
in one [9], [104] and two dimensions [25], Stokes’ equation in two dimensions
[196], the Kuramoto—Sivashinsky equation [159], Benjamin-Davis—Ono—
Burgers’ equation [87], the heat equation in two dimensions [40], some reac-
tion-diffusion equations in one and two dimensions [94], [29], [28], the non-
linear Schrodinger equation [100], Euler’s equation [172] and Navier—Stokes’
equation in two dimensions [41], [96].

4.6.2 Wavelet-based numerical schemes

The localization of wavelet bases, both in space and scale, leads to an effective
nonlinear compression of the solution as well as of the operators involved in
equations (4.3). Such a sparse representation is obtained by performing non-
linear thresholding of the wavelet coefficients of the solution and of the
matrices representing the operators, i.e. those coefficients with absolute
value below a given threshold are set to zero. This thresholding can be jus-
tified by theoretical results [53] and verified by numerical experiments.

The sparsity of the wavelet expansion of a given function is linked to its
local smoothness: where the function is smooth, the corresponding wavelet
coefficients decrease with scale. This fact is related to the characterization of
point-wise Holder spaces [108], [105] (see subsection 4.3). Recall that for the
Fourier decomposition, the decay of the coefficients depends on the global
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regularity of the function [211]. Another important property of wavelets is
the nonlinear approximation of functions: the approximation error between a
function and its wavelet series taken as the N largest coefficients (in a given
norm) can be estimated, in some Lebesgue space, by a (negative) power of N
which depends on the smoothness, or non-smoothness, of this function. This
result follows from the characterization of Sobolev and Besov spaces by
means of wavelet coefficients [151], [53], [58]. Note that the nonlinear wavelet
approximation of a given function is associated with a grid in physical space
which is refined where there are singularities of this function. A comparison
of Fourier versus wavelet and wavelet packet nonlinear compression for a
turbulent vorticity field is shown in Figure 4.7. We observe that the wavelet
packet compression is the most efficient, both in terms of the minimal num-
ber of coefficients used and the quality of the approximation.

Another important consequence of the simultaneous localization in space
and scale of wavelet bases is that many pseudo-differential operators and
their inverse have a sparse representation, i.e. are almost diagonal or have a
typical finger structure, depending on the employed (i.e. non-standard or
standard) form [24]. This is the case for the gradient operators and the
heat kernel. For a theoretical justification in the general context of
Calderon—-Zygmund operators we refer the reader to [151]. As an example,
the discretized heat kernel (on a 1024° grid) is projected onto a wavelet basis
and we observe that only 9.5 % of the coefficients are greater than 107°,
absolute value to be compared to the largest eigenvalue which is order 1,
instead of 21 % for a finite difference projection.

These two fundamental properties (compression of the solution and of the
operator) allow us to define adaptive wavelet-based numerical schemes for
solving nonlinear PDEs. By neglecting small coefficients in the solution and/
or in the operator’s wavelet representation, each step of the algorithm is
based on approximate but fast matrix-vector products computed in wavelet
space. Note that the schemes based on scaling functions (often deliberately
confused with wavelets) [102], [124], [87] instead of wavelet functions are no
more efficient than classical finite element methods on a regular grid!
Theoretical error and stability estimates for some particular wavelet schemes

Fig. 4.7. Nonlinear compression of a vorticity field. In each case the reconstructions
using the strong coefficients (containing 95% of the total enstrophy) are displayed
on the left, and using the weak coefficients (containing 5% of the total enstrophy)
are displayed on the right. (a) Uncompressed vorticity field computed with a resolu-
tion of 512%. (b) Compression in a Fourier basis (813 strong coefficients).
(c) Compression in a wavelet basis (338 strong coefficients). (d) Compression in a
wavelet packet basis (156 strong coefficients). This figure is also shown at
www.cambridge.org/resources/0521533538.
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may also be derived [24], [50], [26]. A scaling function scheme for solving the
Euler equations has already been developed by Qian and Weiss [172].

4.6.3 Solving Navier—Stokes equations in wavelet bases

Before presenting wavelet-based numerical schemes to solve the Navier—
Stokes equations, we should mention a very interesting direction which con-
sists of simplifying the Navier—Stokes equations by re-writing them in an
appropriate wavelet basis. Jacques Lewalle has shown that some continuous
wavelets, namely the Hermitian wavelets (derivatives of the Gaussian), sim-
plify the resolution of the linear term and allow a simpler convolution for-
mula for the nonlinear term [136], [137]. He has found that the first derivative
of the Gaussian gives a Hamiltonian form of the diffusion equation, where
dissipation is replaced by spectral transport, namely Hermitian wavelets are
propagators for the diffusion equation [138].

The first adaptive wavelet schemes for the Navier—Stokes equations have
been derived by Charton and Perrier [39] and Frohlich and Schneider [96].
Different approaches can be used to solve the two-dimensional Navier—
Stokes equations. We will focus here on the two recently developed wavelet
schemes for solving Navier—Stokes equations: the algebraic wavelet method
of Charton and Perrier [41] and the Petrov—Galerkin scheme of Frohlich and
Schneider [96, 97]. Both methods are based on the discrete wavelet transform
and take advantage of the nonlinear compression of the operators and the
solution.

Apart from the above Eulerian schemes another possible approach would
be to develop Lagrangian-type wavelet methods, based on the continuous
wavelet transform. The travelling wavelet method in which wavelets behave
like particles evolving in phase-space coordinates has been proposed in 1990
by Basdevant, Holschneider and Perrier [13]. The travelling wavelet method
looks for an approximate solution of equation (4.50) (see below), which is a
finite sum of N wavelets evolving in phase-space:

= — bi(1)

o(x, )~y l(z)w( o0 ) a; >0, (4.49)
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where ¢ is the wavelet and ¢;, a;, b;, are respectively the time dependent

amplitude, scale and position parameters.

This method works well for linear equations, such as the convection-diffu-
sion equation, and also for the Korteweg—de-Vries equation. It has also been
applied to the study of the formation of galaxies [20]. However, in the nonlinear
case the method encounters technical difficulties which have not yet been com-
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pletely overcome. These difficulties arise when two wavelets approach each
other in phase-space which leads to a ‘phase-space atom collision’.

Now let us consider the two-dimensional Navier—Stokes equations written
in terms of vorticity and stream function, which are scalars

0
—w+v-Vw=vV2w+F,X€[Oal]zvl>0
ot o v (4.50)
Vzlllza), v=\—7,+—).
ay ox

We complete the problem with periodic or Dirichlet or Neumann boundary
conditions and a suitable initial condition.

By introducing a classical semi-implicit time discretization and a time step
8t, and setting " (x) ~ w(x, ndr) to be the approximate solution at time néz,
equation (4.50) is replaced, for example (for notational ease we take here the
simplest, but unstable, time scheme), by

(1 —v8tV)" ! = 0" + 81(f" — V" - V")
V2\Dn+1 — a)n+l’ Un+1 — (_ay\_pn—&—l’ +8len+l)’ (4.51)
with f =V x F.

The spatial discretization is then performed by approximating, at time nst, "
by a function ’; belonging to a finite dimensional subspace V; obtained from
a multiresolution analysis (V) of the space L*([0, 1]).

At this point the algebraic method of Charton and Perrier differs signifi-
cantly from the Petrov—Galerkin scheme of Frohlich and Schneider. The
method proposed by Charton and Perrier [41] starts with a finite difference
scheme on a regular Cartesian grid. Wavelets are then used to speed up the
solution procedure by compression of the discrete inverse operator and the
actual solution during the time advancement. Furthermore, operator split-
ting by means of an ADI (Alternating Direction Implicit) technique is intro-
duced. The two-dimensional wavelet basis employed relies on a tensor
product of two one-dimensional multiresolution analyses. The method pro-
posed by Frohlich and Schneider [97, 96] uses a two-dimensional multireso-
lution analysis as the projection basis. In this case the inverse operator is
applied during the time advancement, using special test functions.

We will attempt to clarify the principle of these wavelet methods. The
spatial approximation can be either of collocation type, i.e. grid-point values,
or of Galerkin type, i.e. a projection onto a basis. The transformation
between the single level representation of a function, i.e. its values at regular
collocation points, and a multi-level wavelet Galerkin representation uses an
orthogonal wavelet transform. However, problems arise with adaptive
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schemes because it is difficult to take advantage of the sparsity of the wavelet
decomposition when going back and forth between grid point and wavelet
representations. Let us be more precise, and consider the one-dimensional
case. Suppose that dim ¥, = 2’7. Then the function &' can be expanded onto
the scaling function basis (single level representation) (¢ x)i—o.0/—1 Of V;

271
Wj(X) =Y &gy i), (4.52)
k=0

or onto a wavelet basis (¥; x)o<j<s k=021 of V

J—12-1

() =D dl(x) + . (4.53)

Jj=0 k=0

The transition between both representations is done by the orthogonal wave-
let transform (Mallat’s algorithm).

In the collocation method, the function  is naturally associated with a
regular grid (x; = k2ﬁ])k:0,2f—1 of [0, 1] and its corresponding collocation
values wj(x;). Often, by using properties of scaling functions ¢, one can
identify

Wy () = 272 (4.54)

The wavelet Galerkin method is based on the wavelet coefficients d;';, and
in practice uses only a few (non-negligible) coefficients larger than a given
threshold &: {a"}fk; |d}fk| > ¢}. Mallat’s fast wavelet algorithm works well for
regular grids, but is not efficient for irregular grids made up of irregularly
spaced grid points x; corresponding to the ‘centres’ of wavelets ¥, for
which the coefficients of wj(x;) satisfy |d/;| > e. To avoid this problem,
one can introduce in many cases, an interpolating function of V; [201] and
adapt Mallat’s fast wavelet algorithm [95], [97]. Another way to overcome
this problem is to directly construct the interpolating scaling functions ¢,
and the corresponding interpolating wavelet basis ¥, [57], [25]. Finally, one
can also construct an adaptive multiresolution analysis [171], [4].

The algorithm (4.51) for solving the two-dimensional Navier—Stokes equa-
tions can now be split into four steps which we will discuss below: (1) time-
stepping of the heat equation, (2) solving a Poisson equation, (3) computing
the nonlinear term, (4) imposing the boundary conditions.

4.6.3.1 The heat equation solution

Let us consider the discretized heat equation
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The biorthogonal approach introduced in [139], [126], [94], [97] consists of
building a biorthogonal system from a classical wavelet basis ¥; ., first setting

O =(1- V51V2)71Wj,k, (4.56)

with suitable hypotheses on . Then a system 9},,( biorthogonal to 6, is
constructed, and solving equation (4.55) reduces to the change of basis

(@ W) = (@"10,4) + 8H{F"16;.1), (4.57)

where the notation (|) denotes scalar product. The functions 6, ; and 67,,( are
called vaguelettes and have localization properties similar to those of wave-
lets [151]. This approach avoids assembling and solving a linear system. For
the collocation projection operator-adapted cardinal functions [97] have been
constructed which allow the construction of efficient interpolatory quadra-
ture formulas. The decomposition of the right hand side of equation (4.57)
can then be calculated using the fast adaptive vaguelette decomposition of
[97] based on a hierarchical subtraction strategy. This approach has been
used for one- and two-dimensional problems.

The Galerkin approach is to project (4.55) onto a classical, orthogonal or
biorthogonal, wavelet basis (v/; ) of the space V,;. We can write

(@ 17.00), = K (@] + 81 194)) (4.58)
where

Kgaga = (1= v8tV2) g 1y o) (4.59)

is the heat kernel, which is almost diagonal, as explained in section 4.6.2. This
step is based on approximated, but fast, matrix-vector products. An easy way
to reduce the previous two-dimensional system to several one-dimensional
systems is to use a tensor wavelet basis (%,k(x)-lﬂ/,k/(y)) and to split the two-
dimensional heat kernel into two one-dimensional operators

_ ¥ >
(1 — v81v?) lw(l—vét@) 'a —vétﬁ) ! (4.60)

as in ADI methods. Such a method is applied in [40], [41].

4.6.3.2 The Poisson equation
The solution of the Poisson equation

(4.61)
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can be obtained using a pseudo-transient technique, i.e. calculating the steady
state solution of the heat equation, which, as in ADI methods, is reached in
only a few iterations by considering iterated powers K" of the heat kernel K
(4.59) which become sparser with n [40].

An alternative approach, proposed by Jaffard [108], is to consider the well-
conditioned system

PAPP (W5 190)) = P 1W5)) s (4.62)

where A is the Galerkin matrix of the Laplacian in a wavelet basis:
AGw.i k) = (V_zwjyklegkr) and P is the diagonal preconditioning matrix:
P i k) = 27'8; 78 » in one dimension (in two dimensions this should be
modified according to the chosen 2D wavelet basis). Jaffard proved that the
condition number of PAP does not depend on the dimension of the system.
Then the solution of (4.62) can be reached in a few iterations by a classical
conjugate gradient method.

The biorthogonal approach is also possible using operator-adapted
biorthogonal vaguelettes for homogeneous operators, i.e. 6, = (Vz)_lt//j,k
and éj’k = sz//j,k. The solution of the Poisson equation then reduces to a
change of basis, analogously to the case of the heat equation.

4.6.3.3 The nonlinear term

The nonlinear term ¢" - Yo" can be computed either by a collocation or by a
Galerkin method. The collocation (also called pseudo-wavelet by analogy
with pseudo-spectral) method can be sketched as follows: starting from the
wavelet coefficients of o" we obtain the values of " on a locally refined grid
through an inverse wavelet transform. Solving the Poisson equation with one
of the methods described in the previous section, we get the wavelet coeffi-
cients of the stream function W". Applying an inverse wavelet transform, the
stream function is reconstructed on a locally refined grid. Subsequently, the
velocity v and V" are calculated using finite differences on an adaptive grid.
Then the scalar product v - Vo' is calculated at each grid point. Finally, the
wavelet coefficients of the nonlinear term are obtained by a wavelet trans-
form. However, in the bi-orthogonal approach the right hand side of the first
equation of (4.51) is summed up on the adaptive grid in physical space and
then the wavelet coefficients of the vorticity "' are calculated using the
adaptive vaguelette decomposition. This collocation method requires a fast
wavelet transform between grid points and sparse coefficients sets. This pro-
blem was mentioned in the previous section. Frohlich and Schneider [97], [95]
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have developed such a wavelet transform for lacunary bases which enables
the adaptive evaluation of terms of the form f(w) without derivatives. This
method has been applied for the full adaptive discretization of reaction-dif-
fusion problems [28]. The algorithm described above will enable the adaptive
evaluation of the convective term.

On the other hand, a Galerkin method works only in the wavelet coeffi-
cient space, avoiding transforms between physical and wavelet space [23].
The nonlinear term is then written as a convolution of the wavelet coefficients
of v" and vo"; these convolutions involve triple wavelet connection coeffi-
cients of the form W_il,kle/'z,szi;,k;)' A priori the complexity of such a cal-
culation is very large, but the method can be competitive for two reasons.
First, since the wavelets are localized both in space and scale, connection
coefficients vanish when two of the three wavelets are separated either in
scale or space. Hence, only a limited number of terms in the convolution
are significant. Secondly, the method can handle adaptive description of the
fields, i.e. the convolution can be restricted to the significant components of
the flow [167].

Let us mention that at the moment the nonlinear term is computed by a
collocation method either on a regular grid [41], [96], or on an adapted grid
[28].

4.6.3.4 The boundary conditions

Boundary conditions are in general included in the definition of the spaces
(V))jez when constructing the multiresolution analysis. The simplest and
most popular (due to the development of Fourier spectral methods) are
periodic boundary conditions for which periodic wavelets, in one or several
dimensions, can be easily constructed [165]. For Dirichlet or Neumann
boundary conditions, compactly supported bases have recently been con-
structed in one dimension [48], [156], [157], and these bases are also asso-
ciated to fast orthogonal wavelet transforms, like for the periodic case. They
can easily be included in some of the previous algorithms, since the extension
to cubic domains in several dimensions is trivial using tensor products of
wavelets (in practice all two-dimensional orthogonal wavelet bases are tensor
products, which raises the problem of the lack of isotropy).

One should also mention the existence of divergence-free wavelet bases
[131], [130], which can be used for the velocity-pressure formulation of
Navier—Stokes equation (4.1) and automatically take into account the incom-
pressibility condition [196].
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4.6.4 Numerical results

To illustrate the previously described adaptive wavelet methods we present
some numerical results for two different cases, i.e. a strong nonlinear inter-
action of three vortices and a decaying turbulent flow. For comparison a
classical pseudo-spectral method serves as a reference. Furthermore in order
to study statistically stationary turbulent flows we discuss results computed
with a recently developed wavelet based forcing method [185]. In all compu-
tations presented below the method of Froélich and Schneider [96] using cubic
spline wavelets of Battle-Lemarié type have been used.

4.6.4.1 Three vortex interaction

As a prototype for vortex merging we consider the strong nonlinear interac-
tion of three Gaussian vortices [186]. This is an important test case, because
the flow dynamics is highly nonlinear, but not yet chaotic (although the
motion of four vortices would be). This allows us to compare in a determi-
nistic manner the time evolution of the solution computed with different
numerical schemes, presenting different truncation errors (here we will com-
pare a pseudo-Fourier scheme and a pseudo-wavelet scheme) with the same
number of nodes. As soon as the dynamics of the system one computes
becomes chaotic, namely sensitive to initial conditions and therefore to
numerical errors, it becomes tricky to compare the predictions of different
numerical schemes. A ‘deterministic comparison’ (based on the L>-norm of
the difference between two solutions computed with two different schemes)
works well for laminar flows, but it should be replaced by a ‘statistical com-
parison’ as soon as the dynamics becomes chaotic (namely beyond the onset of
the transitory regime). The choice of the appropriate statistical diagnostics has
been addressed for several years by Farge and Wickerhauser [74], [205], but is
still an open issue, not yet sufficiently discussed in the numerical analysis
literature.

For details on the numerical simulation we refer the reader to Schneider,
Kevlahan and Farge [186]. The initial condition is given by the superposition
of two  positive and one  negative Gaussian  vortices,
w(x,y) = Z?:l Ajexp (—((x — x> + (v — y)P)/o?) with amplitudes A, =
Ay = —2A; = w and o; = 1/7. The maximum resolution of the computation
corresponds to a finest scale J =8 which is equivalent to 2567 possible
degrees of freedom. As threshold for the adaptive method [97] we used
e =107° ie. only wavelet coefficients with absolute value larger than e
have been computed.
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Fig. 4.8. Simulation of the merging of three vortices at times ¢ = 10, 20, 30, 40. (a)
Vorticity field, reference pseudo-spectral method. (b) Vorticity field, adaptive wave-
let method. (¢c) Wavelet coefficients used in the adaptive wavelet method. (d)
Comparison of Fourier energy spectra for the pseudo-spectral and adaptive
pseudo-wavelet methods (note that the two curves are identical). This figure is
also shown at www.cambridge.org/resources/0521533538.
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In Figure 4.8 we show the vorticity field for the reference pseudo-spectral
method and the adaptive pseudo-wavelet method with the corresponding
computed wavelet coefficients (dark entries) for different instants. We
observe that during the interaction small scale components are produced,
which is directly reflected in the active (i.e. the strongest) wavelet coefficients.
At t = 0 the vorticity field is highly regular and the strongest wavelet coeffi-
cients (namely those larger than a given threshold) represent only 3 % of the
total. At later times the number of active coefficients increases to 20 %, i.e.
we still have a compression of a factor 5. The comparison of the vorticity
fields with the pseudo-spectral method, see Figure 4.8, shows no significant
difference. If we look at the energy spectra at ¢t = 40 we can observe quanti-
tatively that all relevant scales, in particular the small ones, are well resolved.
However, as the fine resolution is only required locally, the number of
degrees of freedom has in comparison to the pseudo-spectral method been
reduced by a factor 5.

Let us mention that at the moment both existing adaptive pseudo-wavelet
methods [41, 97, 96] are not yet more efficient in terms of computing time
than a classical, well-optimized, pseudo-spectral method. In principle the
adaptive wavelet methods have a computational complexity of order
O(N,;), where N,,; denotes the number of the degrees of freedom adapted
to the solution. In comparison the pseudo-spectral methods are of order
O(N,elogyN,,e) complexity, where N,,, denotes the number of degrees of
freedom on the regular grid. The actual numerical cost depends directly on
the constant multiplying the order term. At the moment this factor is rather
high for the adaptive wavelet methods. Therefore for simulations at moderate
resolutions, such as N = 128> or 256, the adaptive pseudo-wavelet methods
cannot yet outperform the classical spectral methods, although their opera-
tion count scales slower, as O(N) instead of as O(N log,N). But we have
some hope to be able to significantly reduce the time step needed with the
adaptive wavelet code, due to the fact that the retained coefficients are
attached to vortices, namely locations of strong vorticity but weak transla-
tional velocity. Therefore the CFL (Courant—Friedrich-Lewy) criterion,
defining the largest time step to guarantee stability for an explicit time
scheme, can be based on a much larger spatial step than the smallest scale
computed by the adaptive wavelet scheme [85].

4.6.4.2 Freely decaying turbulence
For the computation of freely decaying turbulence one typically uses a sta-
tistical initial condition, generated by means of a Gaussian random distribu-
tion and imposing a given energy spectrum. Here we used a broad band
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spectrum of the form E(k) = ck?/(ko® + k°®) exp(—k*/k,?) with k, = 10 and
k, = 80. The constant ¢ has been chosen such that the total kinetic energy
was equal to 1/2. The maximal resolution was 256> numbers of degrees of
freedom, with v = 10>, Using a classical pseudo-spectral method we calcu-
lated the solution up to # = 4 corresponding to 12 initial eddy turnover times.
The resulting vorticity field, exhibiting coherent structures and a smooth
spectrum with an inertial range, was then taken as initial condition for the
adaptive wavelet calculation and therefore we assigned the time ¢ = 0. The
threshold for the wavelet coefficients was ¢ = 5- 107°. In Figure 4.9 we give
an example of the vorticity field at ¢+ = 2 for the pseudo-spectral method and
the adaptive wavelet method with the corresponding wavelet coefficients
which have been computed. As observed in the case of the three vortices,
the wavelet solution does not exhibit a visible difference with respect to the
spectral method. However, out of the total 256° wavelet coefficients, only
about 20 % have been used during the calculation of the solution. The energy
spectrum also does not deviate significantly from the reference, thus we may
conclude that all scales are well-resolved with only 1/5th of the possible
degrees of freedom. We should mention that the resolution of the present
calculations with 256 is fairly small. Since for higher resolutions larger
Reynolds number flows can be computed, the compression rate of the wave-
let representation will increase due to the greater intermittency of the flow.
Therefore the impact of adaptive wavelet methods will become particularly
attractive for high Reynolds number flows.

4.6.4.3 Wavelet-forced turbulence

The numerical simulation of turbulent flows has been performed considering
two different regimes: either the freely decaying regime, where the flow is
excited initially and its evolution is computed without any forcing, or the
forced regime, where the flow is excited in such a way that it reaches a
statistically steady state for which the dissipation must be compensated by
the forcing. The advantage of the freely decaying regime is that it depends
only on the flow’s intrinsic nonlinear dynamics, with the hope of thus obser-
ving a universal behaviour. The problem with this method is that it never
reaches a statistically steady state because energy or enstrophy tends to decay
in time. The advantage of the forced regime is that the turbulent flow reaches
a statistically steady state, but this state depends on the kind of forcing
performed [14], which precludes a universal turbulent behaviour.
Classically, two forcing schemes are used which both operate in Fourier
space. Either a negative dissipation within a given wavenumber band, with a
complex amplification coefficient which depends on the wavenumber, or a
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Fig. 4.9. (a) Vorticity field of the freely decaying turbulence simulation at time ¢ = 2
for the reference pseudo-spectral method. (b) The vorticity field at t =2 for the
adaptive wavelet method. (¢c) The Fourier energy and enstrophy spectra for the
two methods. (d) The corresponding wavelet coefficients used by the adaptive wave-
let method. This figure is also shown at www.cambridge.org/resources/0521533538.

white or coloured noise in time with a prescribed isotropic spectral distribu-
tion, strongly peaked in the vicinity of a given wavenumber, with random
phases. Neither of the two schemes is a satisfactory model because they inject
energy and enstrophy locally in Fourier space and therefore non-locally in
physical space. This forcing mechanism is neither intrinsically related to the
flow’s chaotic dynamics, nor simulates the production of enstrophy on walls
and in shear layers, which is local in physical space and therefore broad-band
in Fourier space. Another drawback of such a forcing is that the scale of the
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coherent vortices produced by the nonlinear dynamics of the flow is imposed
by the scale at which the forcing is done.

To overcome these drawbacks of the Fourier forcing, a wavelet forcing
scheme has been proposed by Schneider and Farge [185], which excites vor-
tices locally in physical space and as smoothly as possible (in order to avoid
creating any unphysical discontinuities in the vorticity field), without affect-
ing the background. This wavelet forcing is based on the fact that vortices
produced in two-dimensional turbulent flows correspond to the strongest
wavelet coefficients of the vorticity fields, while the remaining weaker coeffi-
cients correspond to the residual background flow [81], [70], [71], [79].
Therefore it injects enstrophy only into the strongest wavelet coefficients,
hence in an inhomogeneous way, in order to excite the vortices without
affecting the background flow. This procedure does not interfere with the
emergence of vortices and does not impose a scale on them, contrary to the
Fourier forcing. The distribution and size of the vortices depend only on the
intrinsic nonlinear dynamics of the flow.

For the numerical results presented here both energy and enstrophy are
kept steady during more than 60 eddy turn over times. Figure 4.10a displays
the vorticity field in a stationary regime at different instants showing that
neither the energy spectrum (Figure 4.10c) nor the PDF of vorticity (Figure
4.10d) change significantly in time. The vortices present in the initial condi-
tion become more circular and well isolated during the flow evolution
because they are better able to withstand the mutual strain due to the addi-
tional enstrophy injected into them. We observe that the slopes of the spectra
(see Figure 4.10c) are much steeper (close to k~°) than the k> law predicted
by the statistical theory of homogeneous turbulence. This discrepancy, as
observed for other types of forcing [14], confirms the fact that the spectral
behaviour of two-dimensional turbulent flows is not universal, but instead
depends on the forcing. In Figure 4.10b we observe that the spatial support of
the active wavelet coefficients decreases with the scale, which reveals a strong
intermittency of the flow. Consequently the vorticity field is efficiently com-
pressed in a wavelet basis, because only about 20% of the 128 coefficients
are needed to represent the flow dynamics. We also show that the PDF of
vorticity (Figure 4.10d) is Gaussian for the weak values, corresponding to the
background flow, and presents non-Gaussian tails for the strong values,
corresponding to the vortices.

In the work presented here, we only excite the vortices produced by the
flow’s nonlinear dynamics. We can also use the same wavelet forcing to create
new vortices by injecting enstrophy locally in the regions of the background
flow where the strain (imposed by the coherent structures to the background
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Fig. 4.10. Temporal evolution of the wavelet-forced turbulence simulation. (a) The
vorticity field at £ =0, 60, 120. (b) The wavelet coefficients used at ¢ =0, 60, 120. (c)
The Fourier energy and enstrophy spectra at ¢ =0, 60, 120. (d) The PDF of vorticity
at t= 0, 60, 120. This figure is also shown at www.cambridge.org/resources/

0521533538.
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flow) becomes weaker than the background vorticity, this in order to simulate
the formation of new vortices by instabilities, such as the Kelvin—Helmholtz
instability.

4.7 Conclusion

The main factor limiting our understanding of turbulent flows is that we have
not yet identified the structures responsible for its chaotic and therefore
unpredictable behaviour. Based on laboratory and numerical experiments,
we think that coherent vortices are these elementary objects, from which we
may be able to construct a new statistical mechanics and define new equations
appropriate for computing fully developed turbulent flows.

The quasi-singular vortices encountered in turbulent flows are, by their
nature, very rare. In fact, the Cafarelli, Kohn and Nirenberg theorem [33]
shows that singular structures, if they exist, must be of Hausdorff measure
one in space-time. Most of the statistical diagnostics presently used to analyse
turbulent flows are low order statistics and thus insensitive to rare events,
while the effect of coherent structures appears only in the higher order sta-
tistics. An example of this is the fact that the two-point structure function
follows Kolmogorov’s 1941 law (which assumes a homogeneous structureless
and non-intermittent flow), while the higher order structure functions depart
strongly from this law. This deviation is due to the fact that turbulent flows
are highly intermittent, and we think that this intermittency is due to the
nonlinear interaction of coherent vortices, which correspond to strong but
rare events. To efficiently analyse the role of coherent structures in turbulent
flows one requires either a high order statistical method or some conditional
averaging.

Using a wavelet representation instead of a Fourier representation mini-
mizes the restrictions on the basis functions enlarging them from Sobolev
(measuring global smoothness) to Hoélder and Besov (measuring local
smoothness) spaces. Moreover, the Fourier spectrum used by the present
statistical theory of turbulence is not the appropriate way to analyse the
physical structure of a turbulent flow, because it loses all spatial information
which is present only in the phase of the Fourier coefficients. Since the
Fourier spectrum is by definition the Fourier transform of the two-point
velocity correlation (which is by Wiener—Khinchin’s theorem the modulus
of the Fourier transform of velocity), the phase is lost. Furthermore, the
Fourier energy spectrum is sensitive to only the strongest isolated singularity
in the flow, and even then can give no information about the form or location
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of this singularity. In short, Fourier space analysis is unable to disentangle
coherent vortices from the rest of the flow.

The complementary simultaneous space and scale information provided by
the wavelet representation makes it an appropriate tool for identifying and
analysing coherent vortices in turbulent flows. The wavelet transform can be
used to segment the vorticity field into coherent and incoherent components
as the first stage in a conditional sampling algorithm. Such a segmentation
method respects Galilean invariance because it is performed on the vorticity
field and not on the velocity field. A local wavelet analysis can also give the
strength and form of all quasi-singular isolated vortices and separate them
from the background flow.

Different wavelet techniques must be used depending on whether the flow
contains oscillating (e.g. spiral) or non-oscillating (e.g. cusp) type singulari-
ties, and whether it contains isolated (e.g. a single cusp or spiral) or dense
(e.g. fractal) distributions of singularities. For example, the current wavelet-
based methods for determining the singularity spectrum of a multifractal
work only if the signal does not contain oscillating singularities.
Turbulence may contain both types of singularities in either dense or isolated
distributions. It is therefore important to determine from the beginning
whether a given turbulence signal contains oscillating singularities and how
these singularities are distributed. This classification is possible using a wave-
let-based diagnostic.

In section 4.3 we reviewed the wavelet-based methods for detecting and
analysing the singular structure of a signal. We saw that these methods are
useful, not only because they provide new information which cannot be
obtained using other methods, but also because they formally unify a wide
range of previously disparate approaches. For instance the wavelet-based
method of calculating the structure functions unifies their analysis with the
calculation of energy spectra and the strength of local singularities.
Furthermore, wavelets play the role of ‘generalized boxes’ in a new form of
the standard box-counting algorithm used to estimate fractal dimensions. This
algorithm brings out the intimate relationship between structure functions and
multifractals. These techniques have been applied to analyse turbulent signals.

In section 4.4 we showed that wavelet analysis has been an essential tool for
identifying coherent structures as phase-space regions correlated in both space
and scale, and for studying their scaling properties. This method has helped to
relate the intermittency of turbulent flows to the presence of organized coher-
ent vortices, and explained why the predictions of the statistical theory of
turbulence are not verified for high-order statistics. The wavelet representa-
tion has also been used to compute the transfers of energy and of enstrophy
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between coherent and incoherent components of turbulent flows. Wavelet
extraction of coherent structures has shown that they have non-Gaussian
one-point PDFs, while the background has Gaussian one-point PDFs.

In section 4.5 we reviewed several applications of wavelets for turbulence
modelling. In particular, we showed that the wavelet representation, asso-
ciated with nonlinear filtering, extracts the coherent vortices in a computa-
tionally efficient way. Turbulent motions are non-separable in the Fourier
representation, while a wavelet representation is able to provide such separ-
ability. Based on the analysis mentioned above, we expect a separation in
wavelet coordinates between organized vortices (having non-Gaussian sta-
tistics) to be explicitly computed, and background flow (having Gaussian
statistics) to be modelled by an appropriate stochastic process. This decom-
position is the basis of a new way of numerically simulating turbulent flows
called Coherent Vortex Simulation (CVS) [84], and possibly other kinds of
intermittent phenomena having similar statistics.

In section 4.6 we summarized the progress that has been made in actually
computing partial differential equations in wavelet space. Numerous promis-
ing experiments have been carried out using wavelets on Burgers’ equation in
one or two dimensions, heat equation or Stokes equation in two dimensions
and Navier—Stokes equations in two dimensions. All these experiments have
shown that wavelet approaches are valid, although they are still computa-
tionally expensive.

In conclusion, we think that the wavelet functional representation may be
the proper tool for building a statistical mechanics of turbulence based on the
identification of elementary dynamical structures from the observational data
we have. This theory may replace the present Fourier-based statistical theory
of turbulence which relies on the symmetries of the Navier—Stokes equations,
but is unable to treat near-wall regions where turbulence is produced by
instabilities and symmetries are broken. We are now convinced that the
Navier—Stokes equations are not the practical model equations to compute
large Reynolds number flows. Indeed in this limit, there is probably some
symmetry breaking associated with the production of coherent structures out
of the random background flow in shear layers.

Turbulence research is a kind of tragi-comedy — tragic due to its military
(atomic bomb, missiles, fighter airplanes) applications — and comic because
at each generation we seem fated to rediscover old ideas. For instance, our
understanding of dissipation and turbulence modelling is the same as what
Richardson was suggesting 68 years ago when he wrote
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Diffusion is a compensation for neglect of detail. By an arbitrary choice we try to
divide motions into two classes: (a) Those which we treat in detail. (b) Those which
we smooth away by some process of averaging [177],

and the program we develop corresponds to the prescription for turbulence
research proposed 48 years ago by Dryden when he wrote: ‘It is necessary to
separate the random processes from the non-random element’ [60]. This
corresponds precisely to what we do: we split each flow realization between
rare events out of statistical equilibrium (the coherent vortices) that we com-
pute as a nonlinear dynamical system, and random events in Gaussian sta-
tistical equilibrium (the incoherent background flow produced by the
nonlinear interactions between coherent vortices) which can be modelled
by a Gaussian stochastic process.

Wavelets, as a new mathematical tool, bring new insights to evaluate
current methods and we hope that they will lead to a better understanding
of turbulent flows. But, knowing the past difficulties encountered in this field,
we should not be overly optimistic, nor should we oversell wavelets. As
Robert Sadourny likes to say ironically: ‘Wavelets? You mean this new
approach which will waste another 20 years of turbulence research!’.
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Abstract

The energy cascade found in fully developed fluid turbulence is believed to
originate as large-scale organized motions called coherent structures. The
process of detecting, locating, and tracking these coherent structures is there-
fore of central importance to the continued study of turbulence. A number of
researchers have applied wavelet-based methods to the problem of coherent
structure detection, and significant performance improvements over other
existing methods have already been reported.

In this paper, we compare the performance of various conventional as well
as wavelet-based detector algorithms for cylinder wake flow data. The result-
ing ROC curves quantitatively demonstrate the effectiveness of wavelet meth-
ods. The detections are then used to form conditional averages of the velocity
time-series, revealing their underlying physical structure.

5.1 Introduction

Recently, advances in the theoretical understanding and implementation of
wavelets have led to their increased use in analysis and signal processing.
Wavelet methods can be very effective in the study of non-stationary phe-
nomena [7], and have thus sparked a concerted interest in applying them to
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the analysis of turbulent flows in general, and to the detection of coherent
structures in particular [8].

It is possible that some coherent structure detectors are better suited for
certain types of turbulent flows, or operate most effectively under specific
conditions. As the numbers and types of detectors grow, it becomes increas-
ingly important to measure their relative performance in quantitatively
meaningful ways. In this chapter, we describe an approach to the comparison
of detector algorithms by means of the Receiver Operating Characteristic
(ROC) curves, and demonstrate the utility of this method for the case of
cylinder wake flow. The resulting detections are then used to form condi-
tional averages from the velocity time-series data, so that the precise mor-
phology of the coherent structures can be studied in detail. For additional
discussion regarding the theoretical basis for such conditional averages, see
Chapter 4 by Farge et al. in this volume.

In the early decades of the twentieth century turbulence was considered
to be a purely stochastic process, and well defined statistical quantities
for turbulent flows were measured. In 1895, Reynolds [21] became the
first to divide the flow into its mean and fluctuating parts. By doing this
he was able to derive what is called the Reynolds averaged Navier Stokes
equations. These equations show that the fluctuating part of the velocity
gives rise to convective stress terms which are of great importance in
turbulent flows. Based on the assumption that the turbulent scales inter-
act randomly, Prandtl [20] and Taylor [23] introduced the eddy viscosity
model.

Probably the first investigator to realize that turbulent flows contain
non-random structures was Townsend [25]. He found that turbulent
motion includes a system of large convecting eddies with sizes comparable
to the outer scales of the flow. Townsend further discovered that these
eddies are much larger than those which contain most of the turbulent
energy, and observed that they had a deterministic form. These findings
were probably the main trigger for the present great interest in the nature
of coherent structures. While there is no consensus on exactly how to
define a coherent structure, flow visualizations made by Kline et al. [16]
as well as others have shown that coherent structures physically exist, and
that they underlie the random three-dimensional vorticity that charac-
terizes turbulence. This means for example that a turbulent shear flow
can be decomposed into a sum of coherent structures and incoherent
turbulence. Consider the Reynolds momentum equations as discussed by
Tennekes and Lumley [24]:
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This equation relates the mean flow U, to the pressure P. The Reynolds shear
stress, which appears in the fluctuating terms %% (—puu;) on the right-hand
side of (5.1) would identically vanish if the velocity components were uncor-
related random variables. However, it is known that the shear stress —puv is
always negative.

It is generally accepted that large scale coherent structures are responsible
for the transport of significant amounts of mass, heat and momentum. On
the other hand, they do not necessarily possess high levels of kinetic energy
[12]. Although there remains some disagreement about this, turbulent kinetic
energy is primarily associated with incoherent turbulence. Coherent struc-
tures in the wake of a solid body have been shown by Zhou [26] to measur-
ably contribute to both #?> (10-20%) and v*> (40-60%), where we use an
overline, e.g., %, to indicate time averaging. They are also responsible for
most of the turbulent shear stress, wo: indeed, recent studies by Krogstad
and Kaspersen [17] have shown that they contribute as much as 70% to the
total. Advances in the physical understanding of these processes will surely be
aided by experimental measurements of coherent structures, which in turn
depend on effective methods for detection.

Drag is a force which occurs in all moving fluids. This frictional, dissipative
force is due to viscosity, and converts kinetic energy into heat. The potential
for reducing its effects would be of great value in many industrial problems.
In the last few years there has been a growing interest in trying to control and
manipulate coherent structures for the purpose of reducing drag and/or heat
transfer. Direct numerical simulations of channel flow at low Reynolds num-
bers have shown that active control of coherent structures could reduce drag
by as much as 50% [19]. If regions of high fluid friction can be reliably
identified in real-time, they might be controlled either by injection or suction
of fluid. Active control of coherent structures is of course strongly dependent
on the algorithm used to detect them. Therefore, it is of great interest to find
a method to evaluate the relative performance of various detection algo-
rithms.

Several authors have tried to define coherent structures, and some defini-
tions are more nebulous than others. In Robinson [22], a coherent structure is
defined as a ‘three-dimensional region of the flow over which at least one

[0;; — puzz; ], where (5.1
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fundamental flow variable (velocity component, density, temperature, etc.)
exhibits significant correlation with itself or with another variable over a
range of space and/or time that is significantly larger than the smallest
local scales of the flow.” A more specific definition is given by Hussain [13]:
‘A coherent structure is a connected turbulent fluid mass with instanta-
neously phase-correlated vorticity over its spatial extent.” Coherent structures
can be further classified as either bursts or sweeps [18] by their location in the
u — v plane. While the correct definitions for bursts and sweeps are still being
debated in the literature, the reader may wish to think of a burst as a near-
wall ‘streak’ of fluid which moves slowly outward into the boundary layer.
Typically, when this streak reaches a distance of y* & 40 (the quantity y* is a
dimensionless distance, normalized by the ratio of wall shear velocity to the
kinematic viscosity) it suddenly ejects into the outer portion of the boundary
layer. On the other hand, a sweep is a volume of fluid that moves inward
from the outer portion of the boundary layer toward the wall. For a more
complete description of bursts and sweeps, see Bogard and Tiederman (1983)
[4] in which the authors used flow visualization techniques to study their
structure in detail. These fluid entities are physically coherent structures,
and in our analysis we will always seek to detect bursts. In this study we
will adopt the point of view that coherent structures are distributions of fluid
having a large-scale energetic deterministic form, with statistically random
fluctuations superimposed on them. The use of this definition provides us
with a simple mechanism to treat our coherent structures in a mathematically
precise way.

Equally difficult as defining the coherent structures themselves is the pro-
blem of constructing an algorithm to detect them. Many such detector algo-
rithms have been proposed, and it is not surprising that some perform better
than others. Based on this fact there is no doubt that conclusions made about
the dynamics and significance of coherent structures will depend in part on
which detection algorithm is used. This provides additional motivation to test
and compare the various detection algorithms.

The conventional approach to studying coherent structures begins with a
detector — an algorithm for determining when and where a coherent structure
exists in the flow. Because of the relative difficulty in following a given
coherent structure as it convects downstream, we are typically forced to
collect data from specific locations in space, and employ statistical methods
to infer the nature and motion of the structures. Such statistical methods
generally amount to forming ensemble averages conditioned on the detec-
tions, and examining their structure in the mean. In our analysis we start with
standard ensemble averages and combine them with computer-generated
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noise based on the measured statistics of the data. We thus obtain synthetic
data suitable for comparing the statistical performance of each of the detec-
tors.

This chapter is organized as follows: section 5.2 summarizes the main
advantages that wavelets bring to the detection of coherent structures in
fluid turbulence. Section 5.3 describes the experimental details for the data
used in this study. Section 5.4 outlines the overall approach used to quanti-
tatively measure the relative performance of the various detectors, which are
defined in sections 5.5 and 5.6. Our results are discussed in section 5.7, and
summarized in section 5.8.

5.2 Advantages of wavelets

There are several advantages that wavelets bring to the detection of coherent
structures in fluid turbulence. The aim of this paper is to compare and
illustrate several conventional and wavelet methods in a physically mean-
ingful and intuitive way. It will be seen that the general performance of the
wavelet detectors, as measured by their ROC curves, is superior to the non-
wavelet conventional detectors. In fact, we show that the best conventional
method examined in this study is actually a wavelet method, devised long
before the term ‘wavelet’ came into use.

Unlike the Fourier basis, wavelets are analysing functions that are loca-
lized in space but have a variable width. For turbulence studies where the
event scales aren’t necessarily known ahead of time, wavelet analysis can lead
to rapid determination of the relevant scales. Wavelets are short enough to be
able to detect individual events, and do not require periodicity or stationar-
ity. Finally, with the modifications that we will describe, the bivariate wavelet
cross-transform can be made to optimally detect individual pairs of signal
events that are in quadrature , i.c., whose temporal inner product vanishes,’ in
an optimal fashion. This is in contrast to Fourier methods such as the cross-
spectrogram, which provide optimal detection only for one scale.

5.3 Experimental details

The data used in this study were collected in the turbulent wake of a circular
cylinder, where coherent structure generation, often referred to as vortex
shedding , occurs with great regularity. Furthermore, coherent structures
within the wake flow are very distinct, and their existence has been abun-

TPhysically, events in quadrature belong to distinct modes of the system.
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dantly confirmed by many researchers (see for example Bisset, Antonia and
Browne [2]). Fluctuating velocity data are relatively easy to measure under
these circumstances, and can even be used for flow visualization, ibid. These
features make cylinder wake flow data particularly suitable to our investiga-
tion.

The measurements were made in a 0.7m x 1.0 m closed return wind tunnel.
A sketch of the experimental setup is shown in Figure 5.1. The cylinder,
which spanned the test section, had a diameter of d = 23.6 mm, which gave
it a length-to-width ratio of 42.6. All measurements were made at a free
stream velocity of U,, = 13.4m/s, and thus a Reynolds number of ~ 2200
at room temperature. The turbulence level of the undisturbed flow, i.e., the
standard deviation of the fluctuating part of the velocity divided by the local
mean velocity, was less than 0.3%.

Instantaneous velocity signals were measured in both the streamwise and
transverse-vertical directions. For the purposes of this analysis, we decom-
pose each component into its mean and fluctuating parts by writing u(¢) + U,
for the streamwise and v(¢) + V|, for the transverse velocities. An array of
hot-wire anemometers (X-wire probes) was fabricated in-house, and per-
mitted data collection at eight simultaneous equally spaced positions along
the transverse y-direction. The frequency response of each probe was
approximately 15 kHz. The signals were low pass filtered at 5 kHz and
then digitized at 7874 Hz. Each record contained 315 392 samples per channel
for a total sampling time of 40.05 s. A 12-bit 16 channel digitizer board from
R.C. Electronics was employed in conjunction with a 486 Compaq PC. Raw

Fig. 5.1. Sketch of the experimental setup. The flow came from the left, passed
around the circular cylinder, and was measured by the array of anemometers.
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data were then transferred to a Digital Equipment Alpha workstation for
further processing and subsequent tape storage.

Although measurements were made at several positions, we chose to use
data that was taken at a distance of x/d = 8 from the centre of the cylinder.
At this downstream position, near-wake effects like backflow are negligible
while the structures are still very distinct. To better understand the nature of
the fluid flow at this position, it is helpful to visualize the average Reynolds
stresses, pu;u;, as functions of their transverse displacement from the centre-
line. To display these as dimensionless quantities, we have divided by the
density and mean flow speed to obtain @’/ U3, v°/ U3, and ww/UZ (see Figure
5.2). As part of the validation process for our experimental setup, our mea-
surements were compared with other published sources (see [26]) and were
found to be in close agreement. Figure 5.3 shows the mean flow velocity, also
as a function of distance from the centreline.
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5.4 Approach

The task of a detector algorithm is to identify the presence or absence of
some specified deterministic signal that may be corrupted by noise.
Furthermore, if that deterministic signal is present, the aim will be to provide
an estimate of its time-of-arrival. In much of the existing literature, such an
algorithm is called a receiver and its performance is measured by a set of
statistics called the Receiver Operating Characteristics (ROC). For any given
detector functioning under a fixed set of conditions, its ROC statistics are the
probability of detection and the false-alarm rate. The probability of detec-
tion, or Pp, is defined as the likelihood that an event will be properly detected
when presented to the algorithm. The false-alarm rate, Py, is the probability
that a detection will be reported when in fact the event was not present.

The probability of detection and the false-alarm rate are interdependent
quantities. Generally speaking, the detector must make a trade-off between
maximizing P while minimizing Pr,. When this trade-off can be parame-
trized, the result may be displayed as a ROC curve: a plot of Pp vs. Pgy for
various values of the parameter. Typically, a receiver consists of some linear
filter followed by a threshold detector. In that case, both P, and Py, are
parametrized by the threshold level.

5.4.1 Methodology

We will assume that the coherent structures we wish to detect are realizations
of some fixed deterministic function g(f). A velocity signal that we have
available from the instrumentation might be represented by f(¢). This signal
will contain coherent structures located at some random set of times {t,},
along with high levels of additive random noise. If the noise signal is a mean-
zero process €(t), our signal can be written as

fO=e+) gt —1,).

We have at hand several detectors which have been specifically designed to
detect occurrences of g and to provide us with estimates for the 7,s. The
purpose of this study is to quantitatively compare their performance, and
we would like to apply the method of ROC curves to accomplish this. Our
task then becomes to parametrically measure both the probability of detec-
tion and the false-alarm rate for each detector. Unfortunately, we do not
know a priori the form of g, the times {r,}, nor even the precise statistics of

€(1).
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The first step is to analyse the noise so that we can synthesize some of our
own. Then, using synthetic noise (containing no coherent structures) we can
experimentally determine the false-alarm rate function Pr,(0) for each of the
detectors. Next, we obtain an estimate of the function g using the best con-
ditional averages that each detector can provide. We then synthesize as many
data points as we need by generating synthetic noise and placing copies of g
at known locations. Using such data, we then estimate the probability of
detection Pp(6) for each candidate detector.

5.4.2 Estimation of the false-alarm rate

Figure 5.4 shows the measured power spectra and frequency distributions for
the u and v components in the data record. All curves have been normalized:
power spectra by the sample variance, and probability densities by the stan-
dard deviation. The spectral ‘line’ that appears at ~ 125 Hz corresponds to
the rate at which coherent structures are generated in the wake of the cylin-
der. This rate is in agreement with theoretical predictions based on the fluid
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Fig. 5.4. Measured power spectra and frequency distributions for the v and v com-
ponents in the data.
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speed and the dimensions of the cylinder. Its second harmonic is also visible
in the spectrum of v (at &~ 250 Hz). These harmonic components are primarily
associated with the deterministic function g(¢), i.e., the coherent structures.
However, since the signal-to-noise ratio of the data is very low, the distribu-
tion and spectrum of the noise €(f) was simply taken to be that of the data
itself. Therefore, to estimate the spectrum of € we ignored these harmonic
lines and assumed that its spectrum was smooth. Having done that, we then
synthesized pseudo-random noise data that approximated the characteristics
of e while at the same time contained no coherent structures . Figure 5.5 shows
the measured power spectrum and frequency distribution of the synthetically
generated noise.

We assume that the deterministic function g(¢) has support on an interval
of length 7', so that N consecutive realizations of data can be written as

N-1
() =€)+ ) g(t—nT). (5.2)
n=0
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Fig. 5.5. Measured power spectra and frequency distributions for the ¥ and v com-
ponents in the synthetic noise.
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Setting g(¢) = 0 in equation (5.2) above, we then process f(f) with each
detector and determine the maximum value achieved at the filter output
for each interval. Thus, at threshold 6,

# intervals a detection > 0 was observed

Pry(0) = N

is an estimate of the false-alarm rate for that detector.

5.4.3 Estimation of the probability of detection

Next, we will need an estimate for g(z). We assume () to be stationary and
uncorrelated over the time 7', and that the occurrences of g(¢) in the signal
aren’t too close together, i.c.,

m#n = |Tm_fn| >T. (53)

Each detector returns a set of times D = {z,} which we use together with the
noisy time series data f(¢) to estimate g(¢) in the following way. Portions of
the signal f(¢), each having length 7" and centred at one of the times 7, are
excerpted and averaged. This technique is called conditional averaging
because the average is ‘conditioned’ on the detection times. It produces an
estimate of g(¢z) which converges for large numbers of detections:

n 1 n
g=5 S+1) (5.4)

1
N

> et + %)+ g(0)

= g(1) +%Ze(l +1,)

n

— g(0).

By using this estimate of g(¢) in equation (5.2), we generate portions of
data that contain coherent structures. Again, we process f(¢) with each detec-
tor and determine the maximum for each interval. Finally,

Pp(0) ~ # intervals a detection > 6 was observed
N

is an estimate of the probability of detection for that detector.
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5.5 Conventional coherent structure detectors

In this section we summarize some of the methods that have classically been
used for detection and location of coherent structures. A more detailed
description of these algorithms can be found in Kaspersen and Hudgins
[15]. Each such method is equivalent to a definition of coherent structure.
Different detectors use different criteria, and therefore will report different
sets of times. This leads to different conditional averages and consequently
different estimates for the underlying coherent structures.

5.5.1 Quadrant analysis (Q2)

We begin our description of methods for detecting coherent structures with a
simple bivariate example. A burst event is physically associated with an out-
rush of fluid from the wall, during which the transverse velocity is positive
while the streamwise velocity temporarily falls below its mean value. In gen-
eral, the quadrant algorithm can detect large |uv| products in any specific
quadrant of the u—v plane. However, to qualify a coherent event as a burst,
we restrict our attention to the second quadrant. The method is therefore
called ‘Q2’. Define

Qul) = {f(t)og(t) f>0,g>0and (5.5

otherwise.

Let M represent the set of local maxima of Q(7), and for each 6 > 0 define
the detection set as

Dy(0) = {t € M : Qplr) > 6}. (5.6)

In practice, the Q2 algorithm is employed with f = —u and g = +v, which
forces Q_,,(?) to take positive values in the second quadrant of the u—v
plane.

5.5.2 Variable Interval Time Average (VITA)

The Variable Interval Time Average (VITA) algorithm of Blackwelder and
Kaplan [3] is an example of a univariate detector. This method looks for large
and/or abrupt changes in the streamwise velocity by calculating its short-time
variance over a fixed time interval.

For A > 0, define the short-time average of f as

R t+A/2
Fiy =+ f £ d. (5.7)

—A/2
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The short-time variance may then be expressed as

Fy =120 - For. (5.8)

In our analysis, we let M represent the set of local maxima of f (?). Then for
each 0 we define the detection set as

Dyira(6) = {t € M : f(1) > 6}. (5.9)

In terms of wavelets, the above filter can be understood as the lowpass
branch of a perfect reconstruction filter bank for the Haar system. In prac-
tice, the algorithm is applied to the u-component of velocity using A = 10-20
wall time units, which for our data was approximately 2.5 ms.

The first author has demonstrated [9] for an atmospheric boundary layer
over the open ocean that a bivariate wavelet method based on both the u- and
v-velocity components outperforms the corresponding univariate algorithm.
In this study we wish to compare both univariate and bivariate detectors
whenever both methods can reasonably be defined. We therefore offer the
following bivariate version of the VITA algorithm.

Write the short-time covariance as

V(1) = (1) — [(D& (). (5.10)

Let M represent the set of local maxima of Vi, (7), and for each 6 define the
detection set as

Dgi_vita(0) = {t € M : Vi (7) > 6}. (5.11)

For the same reasons as before, this algorithm is employed with /' = —u and
g = +wv which forces V_,,(#) to take positive values in the second and fourth
quadrants of the u—v plane.

The resulting coherent structures can be further discriminated as bursts by
restricting our attention to the second quadrant. In this way, additional
algorithms may be defined in terms of the existing ones. Let

Q={r:f(r) > 0 and g(7) > 0}. (5.12)
Then the VITA + Q detection set is given by
D{i14(6) = Dvira(®) N Q, (5.13)
in other words, those VITA detections which occur in the specified quadrant.
Bursts are detected when we let f = —u and g = +v. Similarly,
DE_yira(®) = Dpi_yvita(®) N Q (5.14)

gives the Bi-VITA detections which qualify according to their quadrant.
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5.5.3 Window Average Gradient (WAG)

The Window Average Gradient (WAG) algorithm was introduced by
Antonia and Fulachier [1] in 1989 as an alternative to VITA. The abrupt
velocity changes associated with coherent structures can be detected by mea-
suring the average gradient over some appropriate window width. Loosely
speaking, Taylor’s hypothesis states that turbulent fluid velocities are practi-
cally constant over any interval of time less than or equal to their size divided
by their convection speed. This assumption allows us to infer the ‘instanta-
neous’ shape of a coherent structure by observing it at a single point in space
as it moves under the influence of fluid convection. We can also use this to
estimate the streamwise spatial gradient by observing its temporal gradient.
Filter the signal f/ according to

- 1 t+A/2 t—0
fo=| [ rwa= [ pe] (5.15)

(40 t—A)2

and let M be the set of local maxima of f For each 6, the set of detection
points is given by

Dwag(6) = {t € M : f(2) > 6). (5.16)

The reader will recognize that the filter employed by the WAG algorithm is
simply the continuous wavelet transform of f using the Haar wavelet at fixed
scale A. As such, it identifies those places where the signal changes over the
characteristic time scale of A. In practice, the algorithm is applied with
f = —u, and with A :%, where & is the boundary layer thickness, and
U, 1s the free-stream Velc;ccity.

The algorithm is easily extended to a bivariate version (Bi-WAG) by defin-
ing f/ and g according to equation (5.15), and letting M represent the set of
local maxima of f(7)g(¢). For each 6 define

Dgi_wac(0) = {t € M : f(1)g(x) > 6). (5.17)

To further qualify the detected events as bursts, we can restrict them to
quadrant II by defining the WAG + Q detection set as

D{ 4(0) = Dwac(®) N Q. (5.18)
Similarly, in the bivariate (Bi-WAG + Q) case,

D wac(® = Dgi_wac(®) N Q. (5.19)
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5.6 Wavelet-based coherent structure detectors

In the previous section it was observed that the WAG detector and all of its
variants employ the Haar wavelet. Specifically, the continuous wavelet trans-
form is used at a single fixed scale. We are now prepared to generalize this
approach. A comprehensive treatment of the subject of wavelets can be found
in [5], [6], [14], and others. Further details regarding wavelet spectra and their
application to detection of coherent structures may be found in [10], [11], and
[8].

Conventional Fourier methods identified the repetition rate to be approxi-
mately 125 Hz. In this analysis we employ a cubic spline wavelet at fixed scale
a = 1/125 Hz. The choice of the cubic spline wavelet provides an excellent
trade-off between short length (which gives good time localization) and high
peak-to-sidelobe ratio (which minimizes filter leakage) while maintaining
phase linearity (by virtue of its symmetry).

5.6.1 Typical wavelet method (psi)

Except for the wavelet itself and the method of selecting the analysis scale,
the wavelet-based detectors described in this section are identical to the
WAG algorithms above. Filter the signal f* according to

Wi(t) = ff(x)iﬁa(x — t)dx, (5.20)

where a is the scale parameter, and the functions

) == u(%)

are defined in terms of an admissible wavelet (7). Let M be the set of local
maxima of W,(7). For each 6 the y-set of detection points is given by

Dy(6) = {t € M : W(x) > 6. (5.21)

The algorithm is applied with f = —u. The bivariate version (Bi-y) defines
W, and W, according to equation (5.20). Let M represent the set of local
maxima of W, (£)W,(t). For each 6 define

Dpi_y(6) = {r € M : WH(D)W,(7) > 6). (5.22)

As before the ¥+ Q and Bi-y + Q detection sets are given by
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DJ(6) = Dy(6) N Q, and (5.23)

D._,(6) = Dy (0) N Q. (5.24)

5.6.2 Wavelet quadrature method (Quad)

Each of the aforementioned detection methods was applied to the data
record, with their thresholds individually adjusted so that the average detec-
tion frequency was equal to the peak in Figure 5.4. Conditional averages
were then formed for both the u and v time series according to equation (5.4),
producing estimates for the deterministic parts of these signals. The resulting
averages are shown in Figure 5.6. The u and v averages are very nearly
periodic, and essentially 90° out-of-phase with each other. This observation
led us to make a refinement of the bivariate wavelet method which we call
wavelet quadrature (Quad).

Both Fourier- and complex wavelet-based methods have been devised to
recover the phase relationship between pairs of signals. (For a detailed treat-
ment of the wavelet cross-transform and its relationship to the Fourier cross-
transform see [9].) But the present problem merely requires a real-valued
signal that responds well to events that are in quadrature.

Like the Haar wavelet, the cubic spline tends to detect the rising edges of a
signal as it changes over a characteristic time scale. These are examples of
anti-symmetric spline wavelets. On the other hand, the quadratic and quartic
splines display even symmetry: they respond maximally to signal events that
are fully symmetric. By employing one symmetric wavelet and one anti-sym-
metric wavelet in a bivariate wavelet detector, we can optimize its perfor-
mance for events that are in quadrature. Additional details regarding the use
of symmetric vs. anti-symmetric wavelets in the context of intermittent tur-
bulence have been discussed by Hagelberg and Gamage in [8].

Let v and v/ represent admissible wavelets possessing odd and even sym-
metry, respectively. Define

Wi(t) = /f(x)z//a(x — t)dx, and (5.25)
W0 = [ o (x ~ na.

Let M represent the set of local maxima of Wf(t)Wg,(t) and for each 0 define
unadrant(g) ={teM: Wf(T)W/g(T) > 0} (526)

In our analysis, we have used the cubic and quartic spline wavelets, respec-
tively. Because of the way these wavelets were chosen, the algorithm no
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Fig. 5.6. (continued) Conditional averages of the u (solid line) and v (dashed line)
velocity signals for each of the detection methods tested.

longer provides clear discrimination to quadrants in the u—wv plane: the
response has been rotated 45° clockwise. This means that we now tend to
detect structures that lie near the v-axis; precisely what is needed to detect
events that are in quadrature. From Figure 5.6, it can be seen that when the
v-velocity is at its positive extremum, the u-velocity is centred on its falling
edge. Therefore, we again apply the algorithm with f = —u and g = +wv.

It is possible to proceed with the mathematical development of the wavelet
quadrature method as a wavelet cross-transform of two signals, using a pair
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of wavelets that are Hilbert transforms of each other [15]. In this sense, it is a
natural extension of the wavelet cross-transform which selectively detects
signals that are 90° out-of-phase with each other.

5.7 Results

Each detector tends to pick out a certain component in the data. All of the
univariate detectors have returned relatively strong harmonic conditional
averages, while their bivariate counterparts appear to have much weaker
responses. The Q2 and wavelet quadrature algorithms (both of which are
inherently bivariate) have also returned large averages. But an algorithm
attempts to identify segments of data that match its criteria, whether or
not they arise from physically meaningful events. The probability that the
algorithm will report a detection in the absence of any coherent structures
determines the false-alarm rate (see section 5.4.1). It is therefore instructive to
examine the response of each of the detectors to an input of random noise. In
Figure 5.7 we display conditional averages of each algorithm’s response to
the synthetic noise data. These control samples were derived in a similar
manner to the averages in Figure 5.6, by adjusting each detector threshold
so that the mean frequency of detection was approximately equal to the
vortex shedding rate in the original data record. The control samples provide
us with clues about precisely what type of structure each method is detect-
ing — at least in the mean. Not surprisingly, those methods with the largest
control responses also returned the greatest conditional averages.
Furthermore, only the WAG + Q, psi+ Q, and Quadrature methods exhibit
any tendency to selectively detect events that are in quadrature.

The measured Pr4(6) and Pp(0) for each detector were combined to form
the respective ROC curves shown in Figure 5.8. Clearly, some of the detec-
tors performed better than others. The wavelet based methods — WAG, psi,
and Quad, are generally superior to the non-wavelet methods — VITA and
Q2. However, each of the univariate algorithms, VITA, WAG, and psi,
benefited by an additional qualification on quadrant II events. The bivariate
versions that we offered for VITA, WAG, and psi, all gave disappointingly
poor results, even when qualified on quadrant II. It should be observed that
the nearly ‘flat’ control averages of VITA, WAG, and psi can be explained by
noting that they respond equally to events in either quadrant II or IV.
However, the fact that quadrant qualification did not appreciably help
their performance indicates an erroneous physical basis.

Turning our attention toward the high detection rates, it can be seen (cf.
bottom right panel of Figure 5.8) that the wavelet quadrature method
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Fig. 5.7. (continued) Control averages of the synthetic signals for each of the detec-
tion methods tested.

outperformed all of the others. To better understand this behaviour, we
computed some new Quadrature conditional averages using only detection
thresholds that fell within a narrow range of values. Specifically, the pos-
sible threshold values were sorted into eight ‘octiles’, and conditional
averages formed for each octile. Figure 5.9 demonstrates that the mor-
phology of the coherent structures depends on the threshold level used to
detect them. First of all, this means that the mathematical model in equa-
tion (5.2) is wrong: the deterministic function is not fixed. Indeed, the
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Fig. 5.8. (continued) Receiver Operating Characteristic (ROC) curves for each of the

detection methods tested.

shape of the coherent structures detected at high threshold levels can be

very different from those at low thresholds, especially in the wu-velocity
component. The shape of the low threshold averages (high detection

rates) is nearly the same as the Quadrature global mean in Figure 5.6,
but the relatively rare high threshold events (low detection rates) are many

times more energetic. However, while the absolute value of the peak wv-
velocity depended somewhat on the threshold level, its overall shape was

virtually constant. This would indicate that the rare, energetic events are
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Fig. 5.9. Special conditional averages taken from Quadrature detections near the

centreline of the wake. These demonstrate that the morphology of the coherent
structures depends on the threshold level used to detect them.

much more closely associated with the streamwise component of motion
than with the transverse component, but that the more common, low-
energy events are essentially a mix of the u- and wv-velocity components
in quadrature. This explains why the Quadrature method works best at
the highest detection rates, while the univariate wavelet method acting
only on the u-component was superior at the lowest detection rates.
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5.8 Conclusions

Several of the most commonly used algorithms for detecting coherent struc-
tures in turbulent flows have been tested in an objective manner by the use of
ROC curves. Wavelet methods have been found to perform better than the
conventional detection methods tested. It was also found that additional
qualification on Q2 events improves the performance of each of the relevant
methods. Finally, at high detection rates the wavelet quadrature method
outperforms all of the others.

Conditional averages from the algorithms tested in this study showed that
the coherent structures were in agreement with a quadrature model. In other
regions of the wake or for other types of flow the quadrature detector may
not be optimal; cf. [9] in which the bivariate wavelet method was superior to
the univariate algorithm for an atmospheric boundary layer. Nevertheless,
for any kind of flow conditional averaging methods which take into account
the phase relationship between the velocity components would be strongly
preferred. Complex-valued wavelets also retain phase information, and
represent another way to implement a detection algorithm. This is in agree-
ment with the findings of Hussain [12] who found that averaging based on
constant phase is preferable.

Finally, the morphology of the coherent structures can be very different at
different threshold levels, even for the fixed test geometry described in this
report. At low threshold levels, the coherent structures are very harmonic,
possess relatively low energy, and their effect is more or less evenly split
between the u- and wv-velocity components. At high thresholds, they are
quite peaked in shape, highly energetic, and their effect is mainly coupled
to the u-velocity.
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Abstract

Two fundamental properties of turbulence are intermittency and non-linear-
ity. They imply that the standard Fourier spectral techniques are inadequate
for its analysis. Spectral analysis based on wavelets provides a means to
handle intermittency. New tools are required to handle non-linearity.

In this chapter, we redesign spectral analysis in terms of wavelet methods,
paying particular attention to statistical stability, error estimates and non-
linearity. The application to both computer simulations and measurements
carried out in fusion plasmas provide some illustrative examples.

6.1 Introduction

Although the phenomenon of turbulence is only partially understood, there
seems to be consensus on several aspects. First, that intermittency is a basic
property of turbulence. This means that the characteristics of the turbulence
(spectral distribution, amplitude etc.) vary on a short time scale. Analysis
techniques that rely on the accumulation of data over time scales larger than
this characteristic time scale will then average out much of the dynamics and
obliterate relevant information (as may occur with Fourier analyses).
Wavelet analysis provides an interesting starting point for redesigning the
standard analysis techniques in order to tackle this problem. In this chapter
we shall redefine some basic Fourier analysis techniques in terms of wavelets,
such as cross coherence. We shall emphasize the need for statistical stability
and provide noise level estimates. Finally, we provide some examples of these
techniques.

Second, it is generally accepted that turbulence only arises in non-linear
systems. Therefore, to understand the nature of turbulence, it is essential to
employ analysis tools that are capable of handling this non-linearity. The
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usual analyses based on (cross-) spectra and (cross-) correlations, essentially
linear analysis techniques, are not adequate. Non-linear analysis tools can be
obtained by generalizing the common spectral analysis methods to higher
order, which then are sensitive to non-linear interactions. In this chapter
we shall focus on the so-called bispectral analysis, a method for the detection
of quadratic interactions.

A definition of the bispectrum and the bicoherence based on wavelet ana-
lysis is given. Statistical stability of the bispectrum — a third-order spec-
trum —is again an important point, so we shall provide noise level
estimates of this quantity. The main application of the bispectrum is the
detection of phase coupling. It is shown how this phase coupling bears rela-
tion to the existence of ‘structure’ in turbulent or chaotic time series.
Reasonable time resolution, relevant to intermittency in some turbulent phe-
nomena, can be achieved.

The meaning of bicoherence is clarified analysing computer-generated
chaotic time series. Then, some results obtained from measurements of tur-
bulence in fusion plasmas are presented. Intermittency is detected, and an
analysis of L/H transitions (Low- to High-confinement mode, a bifurcation
in the behaviour of thermonuclear plasmas) is presented.

6.2 Linear spectral analysis tools

In this section, we shall redefine the traditional spectral analysis tools in
terms of wavelets. In doing so, we shall mostly avoid reference to a specific
type of wavelet, since the definitions are equally valid for all types. Although
the definitions are given for continuous wavelets, extension to discrete wave-
lets is mostly self-evident. Such an extension is not possible, however, for the
higher-order spectra (bicoherence), which will be introduced in section 6.3.
The wavelet analysis is set up in such a way that it forms a natural extension
to Fourier analysis, which will help the interpretation of the wavelet analysis
results.

6.2.1 Wavelet analysis

The Fourier transform of a function f(¢) and its power spectrum are given by:

flw) = / f(e @ di and  Ppw) = ] f(a))(z (6.1)
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A wavelet can be any function W(¢) that satisfies the wavelet admissibility
condition:

cy = 7 “i’(a))‘zlwrlda) < o0 (6.2)

—oQ

The corresponding wavelet family is obtained by means of the scale length
parameter a:

W) = Wifa) 6.3)

Some authors prefer to use the scale number s instead, where s = 1/a. The
scale number s is proportional to the frequency of the wavelet. The factor p is
the normalization choice. In the literature, values of p of 0, 1/2 and 1 are
encountered [1, 2]. In the present work, we choose p = 1/2. Other choices of p
may be motivated by computational efficiency or by wavelet power spectrum
visualization demands, but the choice p = 1/2 implies that the L*-norm of the
wavelet is independent of @, and thus the wavelet analysis forms a natural
extension of Fourier analysis.

As mentioned earlier, most of the definitions we shall be giving are inde-
pendent of the actual wavelet choice. Nevertheless, for concreteness we select
a specific wavelet (the Morlet wavelet) which has the benefit of conceptual
closeness to the Fourier analysis base functions e™"":

W(1) = (dy/m) " 2(exp—i2t] — ¢o) exp[—L(t/d)?] (6.4)

The factor ¢y = exp(—27°d?) is included to guarantee that Eq. (6.2) is
satisfied; even so, due to its numerical smallness for values of d of the
order of 1 it is usually omitted in practice. The normalization is such that
the L*-norm of this wavelet is equal to 1. The parameter d determines the
exponential decay of the wavelet and thus permits a suitable combination of
time- and frequency resolution to be selected. Comparing Egs. (6.1), (6.3) and
(6.4) we assign a frequency w = 2m/a to each scale a. The frequency resolu-
tion of the wavelet W, () is approximately Aw = w/4d (FWHM — Full Width
at Half Maximum). The time resolution is A¢ = 2ad (twice the e-folding
length), given by the decay of the exponential part of the wavelet. Note
that AwAt = 7, independent of either a or d.

The wavelet transform of a function f(¢) is defined by:

Wia, 1) = / F(O V(1 — D) dt (6.5)
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As d increases, frequency resolution improves but time resolution deterio-
rates. Interestingly, for d > 1 the wavelet analysis essentially becomes a
Fourier analysis, for which the frequency resolution is optimal but there is
no time resolution. At the other extreme, d | 0, the wavelet becomes a §-
function, and the wavelet transform yields the original signal — we have opti-
mal time resolution but no frequency resolution. We set d = 1 in the follow-
ing, which is, we believe, a reasonable compromise between frequency and
time resolution, although for specific purposes other choices may be better.
Note that the selected wavelet family is not orthogonal. This implies a certain
redundancy in the wavelet transform coefficients which must be taken into
account upon interpreting the results. This disadvantage is compensated by
the mentioned conceptual closeness to the Fourier transform. The redun-
dancy is actually a necessity when calculating higher-order spectra, as will
become clear later. Even though the wavelets are not orthogonal, the inverse
wavelet transform (for p = 1/2) can be calculated (for almost all ¢) by:

dadt
2

10 == [[wieovie-o (6.6)
which completes the analogy with the Fourier transform.

The wavelet transform W;(a, t) at any given a can be interpreted as a
filtered version of f(r), bandpassed by the filter W,. Usually |W,(a, ‘L’)|
plotted in the (a, r)-plane for visualization purposes (scalogram). In many
instances, the scalogram may be very instructive qualitatively, but provides
no indication as to the statistical significance of the observed features. This
problem will be discussed in section 6.2.2.

As we have tried to make plausible by rather hand-waving arguments, the
wavelet transform can be regarded as a generalization of the Fourier trans-
form. The main advantage over the Fourier transform is that, with a suitable
choice of wavelet W, time-resolved spectra can be calculated. Of course, the
Short-Time (or Windowed) Fourier Transform (basically, chopping the sig-
nal f(¢) in short time intervals and calculating the Fourier transform for each
section [3]) also achieves this. The particular advantage of the wavelet ana-
lysis lies in the fact that the time resolution is variable with frequency, so that
high frequencies have a better time resolution. In other words, we abandon
the rather mathematical idea of considering signals f(¢) to be composed of
‘everlasting” monochromatic oscillations, and replace it by the more physical
idea that the elementary oscillations composing the signal must die out in
time, and more rapidly so the higher their frequency, which seems quite a
natural state of affairs. Thus, one may expect that wavelet analysis is better
adapted than Fourier analysis to the examination of systems with dissipation,
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or more generally non-linear systems, since the analysis functions used (wave-
lets) are more like the actual (short-lived) oscillations occurring in such sys-
tems than Fourier modes. Seen from another perspective, one may consider
the problem of decomposing the oscillations of a system into modes. When
the system is linear and the modes used are eigenmodes of that same system,
the decomposition is likely to reveal much information. However, when the
modes are not eigenmodes, the information is likely to be poorly represented
on the basis of these non-eigenmode functions and each mode coeficient is the
result of a number of eigenmodes — the information is ‘scrambled’. In the
non-linear systems with dissipation we are concerned with here, we know that
in general no eigenmodes exist that allow such a decomposition.
Nevertheless, locally one can often perform a mode decomposition, since in
a local environment of a given point the equations describing the system can
be linearized, provided the non-linearity of the system is not too strong. This
local decomposition is precisely what the wavelet analysis pretends to do, and
this explains the success of the wavelet analysis in turbulence analysis.

6.2.2 Wavelet spectra and coherence

We shall now proceed to reformulate the usual spectral analysis tools in
terms of wavelets. In practice, the analysis usually starts with a signal f(7)
that has been digitally sampled. Therefore, the integral appearing in Eq. (6.5)
should be replaced by a summation. Due to the fact that the wavelet decays
rapidly, it is sufficient to evaluate the integral (sum) from, say, —4ad to +4ad.
This interval depends, of course, on the type of wavelet used. The digitally
sampled signal has a finite record length, implying that the wavelet coeffi-
cients cannot be calculated correctly when  is too close to the record bound-
aries. We simply set the wavelet coefficient to zero when t is less than 4ad
from a record boundary. It will be noted that this distance depends on the
frequency.

One could, of course, take the usual definitions of power spectra, cross
correlations, etc., based on Fourier analysis and simply replace all occur-
rences of Fourier coefficients with wavelet coefficients. That would lead,
however, to highly unstable quantities, varying wildly with time, the practical
value of which is limited. In order to obtain statistical stability while main-
taining time resolution, we integrate (sum) the appropriate combinations
of wavelet coefficients over a (small) finite time interval
T:{Ty—T/2 <t < Ty+ T/2}. As a bonus, this procedure allows the esti-
mation of a noise level which will tell us the statistical significance of the
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obtained results. Apart from that, the definitions are completely analogous to
the usual definitions used in Fourier analysis.
Thus, for example, the wavelet cross spectrum is given by:

Chla, T)) = /T Wi(a, t) Wy(a, 1) dt (6.7)

where f(7) and g(¢) are two time series. We also introduce the delayed wavelet
cross spectrum:

Cila, Ty, At) = /T Wi(a, t) Wy(a, T+ At)dr (6.8)

which is a useful quantity for detecting e.g. structures flowing past two
separated observation points. Note that Cj, is complex and both its phase
and amplitude provide information. The normalized delayed wavelet cross
coherence is:
"
}%&%Aﬂ:mﬂwmﬂ%mw+M%g (6.9)
(W@ﬂmymn+A®

which can take on values between 0 and 1. Usually either T, or At is held
fixed for visualization purposes. Here the wavelet auto-power spectrum is
given by:

Py (a, Ty) = Cy(a, Tp) (6.10)

Note that the wavelet power spectrum can also be written in terms of the
Fourier power spectra of the wavelet and f(r) when T'— oc:

W@:%fmpmﬁww (6.11)

Thus, in this limit the wavelet power spectrum is the Fourier power spectrum
averaged by the power spectrum of the wavelet filter [4].

We shall provide an estimate of the statistical noise level of y, (Eq. (6.9)).
For that purpose, consider Eq. (6.8). In principle, the integration is over all
samples in the interval T (although in practice one may devise a more effi-
cient algorithm based on the considerations that follow). The frequency with
which f(¢) is sampled is @y, = 27fs4mp- Thus, theoretically the wavelet coef-
ficients are determined for each of N = T - f,,,,, samples in the interval 7" and
summed. However, these wavelet coefficients are not all statistically indepen-
dent, since the chosen wavelet family is not orthogonal. Each coefficient is
calculated by evaluating Eq. (6.5). Due to the periodicity a of the wavelets,
two statistically independent estimates of the wavelet coefficients are sepa-
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rated by a time a/2, or by a number of points M(a) = aws,y,,/4m. Thus, the
integral appearing in Eq. (6.8) is carried out over N/M(a) independent esti-
mates of wavelet coefficients. The relative statistical error in the result is
therefore /M (a)/N. Using w = 27/a, we find:

w ~ w wsamp 1 1/2
o(Cre) ~ |Gkl - | 5% (6.12)

Applying similar estimates to the denominator in Eq. (9), one arrives at:

W\ o a)samp 1 172
e(yp) ~ |: - N] (6.13)
It is found that the values of yj, obtained when analysing Gaussian noise
(random data with a Gaussian probability distribution function, P.D.F.)
conform quite well to this prediction. We consider that significant values
of Cj, or yj, should at least be a factor 2 above noise level. Now the advan-
tage of introducing the integration time interval 7" becomes clear: it provides
us with a method to distinguish significant data from noise, something which
is not at all evident for the individual wavelet coefficients, and which has been
a severe point of criticism to the usual wavelet spectral analysis ever since its
introduction. In fact, in the early wavelet papers the statistical fluctuation of
the wavelet coefficients has often been mistaken for significant information.

6.2.3 Joint wavelet phase-frequency spectra

Another way of doing statistics with the wavelet coefficients that is very
informative from a physical point of view is calculating the joint wavelet
phase-frequency probability distribution function (for a motivation of this
technique and a definition in terms of Fourier analysis see [5]). It consists
in calculating the quantity ¢ = Wy (a, t) W,(a, T + At) (being the argument
appearing in the definition of Cf,) for a number of values of @ and z, with
fixed Az. As usual, we define w = 27/a and in addition we define ¢ to be the
phase of ¢. A plot in the (w, ¢)-plane is then made by dividing the frequency
range 0 < © < Wy / 2 and the phase range —m < ¢ < & into bins and scor-
ing how often each bin is ‘hit’. This graph, when normalized so that the sum
over all bins is 1, is referred to as P(¢, w), the joint wavelet phase-frequency
probability distribution function. Another way of calculating consists of not
summing 1 to each bin that is hit, but rather the instantaneous average
wavelet transform value %(|Wf|2+|Wg|2). The resulting graph is S(¢, w),
the joint wavelet phase-frequency spectrum. These graphs provide a marvel-
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lous insight into the frequency-dependent phase relations that may exist
between two signals / and g (usually taken to be two spatially separated
measurements of the same quantity). Moreover, in many cases, depending
on the physical nature of the signals f and g, and under some additional
assumptions (homogeneity of turbulence, see [5]) a relation can be made with
the dispersion relation w(k) for the processes driving the turbulence. For
some examples of this technique, see section 6.4.2.

6.3 Non-linear spectral analysis tools

For the investigation of non-linear systems, proper non-linear spectral ana-
lysis tools are required. Given the importance of non-linearity in chaos and
turbulence, it is surprising how little attention has been paid to the develop-
ment of such tools. The focus has mostly been on statistical tools (referring to
the determination of fractal dimensions, Lyapunov exponents etc.; for a
recent review see [6]), while more recently time- and space-domain analysis
(rather than frequency-domain analysis) has received a surge of interest,
mostly due to wavelet analysis. Nevertheless, non-linear spectral analysis
tools have been around for some time [7, 8, 9, 10] — although their practical
use has always been hampered by the necessity for long time series in order to
obtain statistical stability.

6.3.1 Wavelet bispectra and bicoherence

Basically, the (cross-) bispectrum is a third-order spectrum (in this terminol-
ogy, the usual power spectrum would be a second-order spectrum). Its defini-
tion in terms of Fourier coefficients is By (w,, w,) = f *(w)g(w;)g(w,)), where
w=w| +w, and (-) signifies taking an ensemble average (averaging over
many similar realizations). The interpretation of this quantity will be
explained below in the discussion of the wavelet bispectrum. The point we
wish to make here is that to obtain a statistically significant value of the
bispectrum, the ensemble should consist of at least about 100, and preferably
more, independent realizations, while each realization must consist of, say, at
least 128 points to be able to obtain a spectrum with reasonable resolution.
That means that experimental series must be well over 10* points long"‘,
during which time the experimental conditions must not change appreciably.
Obviously, this is a very severe demand when analysing turbulence that may

TThe demand that the realizations be strictly non-overlapping may be relaxed somewhat.
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be intermittent, and this probably is the reason that the bispectral analysis
has not been very popular or successful until recently.

Wavelet analysis now provides a second opportunity for these higher-order
spectral methods, mainly by reducing the need for long time series. We
replace the idea of the ‘ensemble average’ in the calculation of the bispectrum
by the analogous concept of the time integral, along the lines of section 6.2.2.
We define the wavelet cross bispectrum as in [11, 12]:

B (ay, ay, Ty) = /T Wila, ©) Wylay, ©) W(ap, 1) dt (6.14)
where T is again a short time interval centred at 7| (see section 6.2.2), and
11 1
—=—+— (6.15)

a a ay

(frequency sum-rule). Both the amplitude and the phase of Bj, contain sig-
nificant information.

Now it becomes clear why we have chosen continuous wavelets as the basis
for our analysis. Discrete wavelets provide wavelet coefficients for a set of
scales a, € {2"} [2, 4, 13] (apart from constants), which cannot generally be
combined in the manner of Eq. (6.15).

Likewise, we define the wavelet auto bispectrum

B"(ay, ay, Ty) = By(ay, a, Ty) (6.16)

The squared wavelet cross bicoherence is the normalized squared cross bis-
pectrum:

|B}Z,(a1, ay, To)|2
Jr [Welar, )Welar, 0 dt) Pia, Ty)

(b, @, T))'= ( (6.17)

which can attain values between 0 and 1. Similarly, the squared wavelet auto
bicoherence (henceforth simply referred to as bicoherence) is

(" (a1, ax, T)'= (by(ar. ar. Ty))” (6.18)

The bicoherence is a measure of the amount of phase coupling that occurs
in a signal or between two signals. Again, we assume that we are justified in
setting w = 27/a, i.e. we are using a ‘well-behaved’ wavelet whose Fourier
transform has one well-defined peak frequency, w. Phase coupling is defined
to occur when two frequencies, w; and w,, are simultaneously present in the
signal(s) along with their sum (or difference) frequencies, and the sum of the
phases ¢ of these frequency components remains constant in time. The bico-
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herence measures this quantity and is a function of two frequencies w; and w,
which is close to 1 when the signal contains three frequencies w;, w, and w
that satisfy the relation w; + w, = w and ¢ + ¢, = ¢ + const; if no such
relation is satisfied, it is close to 0. Whereas the bicoherence measures the
fraction of spectral power that is involved in the coupling process, the bis-
pectrum measures the total power and phase. The concept of bicoherence is
further explained in section 6.3.2.

When the analysed signal exhibits structure of any kind whatever, it may be
expected that some phase coupling occurs — for example, to describe a non-
sinusoidally shaped pulse (or pulse train) one needs several Fourier coeffi-
cients with definite phase relations. The definition of bicoherence in terms of
wavelets, Eq. (6.17), is based on an integration over a (short) time interval 7.
Thus, one may be expected to be able to detect temporal variations in phase
coupling (intermittent behaviour) or short-lived structures with a time reso-
lution T, provided the calculation can be shown to be statistically significant
[14]. This point will be discussed in the following.

Note that, in analogy with the wavelet cross coherence, one may also
define the delayed cross bispectrum (and bicoherence) by replacing W,(a, 1)
by W,(a, T+ At) in Eq. (6.14). Further, it is also possible to calculate the
bispectrum from three time series f, g, and / instead of just two. For the sake
of simplicity, we shall not include these possibilities explicitly in the defini-
tions.

It is convenient to introduce the summed bicoherence, which is defined as
(" (a))*= ﬁZ(bw(al, ay))* (here explicit reference to T, has been omitted
for convenience), where the sum is taken over all ¢; and a, such that Eq.
(6.15) is satisfied and s(a) is the number of summands in the summation.
Similarly, the total bicoherence is defined as (b)Y’ = L 3" 3" (b"(a;, a))” where
the sum is taken over all ¢; and a, and S is again the number of terms in the
summation. The factors s(a) and S guarantee that the summed and total
bicoherence are bounded between 0 and 1. These quantities summarize the
information conveniently, as will be seen later.

The squared bicoherence (5" (a;, @»))* is usually plotted in the (w;, w,)-
plane rather than the (a, a;)-plane for ease of interpretation. We allow w,
w, and w to take on negative values in order to be able to represent all sum
and difference combinations of w; and w,. There is no need to represent the
whole plane; firstly, both w;, w, and their sum » must be smaller than the
Nyquist frequency (half the sampling frequency); secondly, because w; and
w, are interchangeable, we may restrict the plot to w; > w,; and finally, the
case (w;, w,) is identical to the case (—w;, —w,) which is therefore not repre-
sented.
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We note that Eq. (6.17) does not provide the only way of normalizing the
bispectrum. For example, a symmetrical definition is possible by replacing
the denominator by Py(ay, To)Pgy(az, Ty)Py(a, T). With such a definition, it
would be sufficient to plot only values w;, w, > 0, which (taking into account
the restrictions mentioned in the previous paragraph) is a triangular region.
There is no strong objection to this; however, we shall see that some impor-
tant information is lost (see section 6.3.2).

We proceed to estimate the error of the bicoherence (Eq. (6.17)) similar to
the way we derived Eq. (6.13). Again we point out that the wavelet bispec-
trum (Eq. (6.14)) is calculated by integrating over a time interval 7', corre-
sponding to N =T -f,, samples. As before, we observe that two
statistically independent estimates of the wavelet coefficients are separated
by a time a/2, or by a number of points M(a) = aws,,,/4w. To be on the safe
side in the estimate of the error in the bispectrum, we say that the number of
independent estimates of wavelet coefficient combinations appearing in Eq.
(6.14) is at least N/ max(M (a)), where the maximum is taken over the values
of a that come into play for the evaluation of a specific value of the squared
bicoherence: {a, ay, az}. An estimate for the statistical noise level in the bis-
pectrum is, therefore:

12
, W sam 1
(B2) ~ By [ @y } 6.19

2-min(|a)1|, |a)2| | —I—a)2|)ﬁ

From which one finds the statistical noise level in the bicoherence, using Eq.
(6.17):

W2\ ~ a)samp l
8<(b ) ) - |:2 . min(|a)1|, ws|, |1 +a)2|)Nj| (620)

Observe that at low frequencies the statistical noise may dominate the
bicoherence, and a significant interpretation must limit itself to (relatively)
high frequencies. Again it is possible to confirm this theoretical estimate by
analysing computer-generated Gaussian noise [12].

6.3.2 Interpretation of the bicoherence

The bicoherence is a complex quantity that contains much information but is
not easy to interpret. We will provide some basic examples here meant to
provide a ‘feeling’ and a guide to interpretation. In sections 6.4 and 6.5 we
shall analyse data from numerical models and measurements. Together, these
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examples will hopefully clarify the significance and usefulness of the bicoher-
ence.
We generate a test signal f(7):

f(t) = A, sin(w,t) + A, sin(w,1) + A, sin(w,) (6.21)

such that the coupling condition w, = o, + w, is satisfied and 4,, 4, and 4,
are constants. Three peaks with amplitude 1 will appear in the (w;, w,)-plane:
one at w; = w,, w, = w,, oNe al w| = w,, W, = —w, and one at w; = Wy,
w, = —w,. This is as true for the bicoherence based on Fourier analysis
[9, 10] as it is for wavelet analysis. However, the coupling condition
w, = w, + o, need only be satisfied to within the frequency resolution to
produce a high value of the bicoherence, which in some cases is a significantly
less strict requirement with wavelet than with Fourier analysis — thus, gen-
erally the wavelet bicoherence graph will show larger ‘blobs’ than the Fourier
bicoherence graphs due to its lower frequency resolution, though the ampli-
tude should be approximately the same (for an example see [12]).

One should be aware that the accuracy of the determination of the phases
of the frequency components decreases rapidly as d gets smaller, since the
smaller d is, the fewer oscillations are sampled (cf. Eq. (6.4)). A reliable phase
determination is essential for a proper determination of the bicoherence.
With the value of d we have chosen to use, d = 1, the wavelet transform
samples about 5 oscillations of each frequency at any given time. Even so, the
phase determination becomes unreliable for frequencies above roughly 95%
of the Nyquist frequency. Therefore, the high values of the bicoherence that
are often seen just below the Nyquist frequency can usually be ascribed to
numerical phantoms.

A test signal that is mostly random noise, except for a short time period in
which phase coupling is generated in the manner of Eq. (6.21), may cause the
Fourier-based bicoherence not to detect the coupling due to the large time
window used in its averaging process, whereas the wavelet bicoherence will
detect the coupling during the relevant time window (provided it has a mini-
mum duration of the order of T'). This feature allows intermittent coupling to
be detected; further, the time when the coupling occurs can be identified
along with the scales of the coupling interaction. An interesting practical
application of the wavelet bicoherence is therefore its use as a detector of
intermittent non-linear behaviour.

Proceeding to a slightly more complex situation, imagine a test signal that
is periodic but non-sinusoidal (e.g. a square wave or a sawtooth). Very strong
coupling will be detected for a wide range of frequencies; wide areas of the
bicoherence graph will show high values. This is as expected, since the non-
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sinusoidal wave can be built up from a number of Fourier components that
are phase-locked with respect to each other. Compare this to a situation
where a non-periodic pulse-train is generated; the pulses ‘arrive’ at intervals
that are randomly distributed around some average. Then the bicoherence
will show ‘ridges’: a wide range of frequencies couples to a single frequency
(which corresponds to the average pulse frequency). Both of these situations
are encountered when analysing turbulent data, and these considerations
may serve as a guide to their interpretation.

It was noted before that the normalization of the bicoherence we have
chosen (Eq. (6.17)) is asymmetric. Nevertheless, usually there is a triple sym-
metry of the three subregions of the bicoherence graph (i.e. {w, > 0},
{wy < 0Aw; > —2w,} and {w, < 0 A w; < —2w,}), which can, however, be
broken. It is observed often that one of the three peaks is significantly higher
than the other two. Due to the symmetry of the numerator in Eq. (6.17), this
asymmetry can only be due to its denominator. In fact, we can conclude that,
during the time interval 7, on average |Wg(a1, T)| and |Wg(a2, r)| do not
simultaneously achieve significant values, causing the time integral of their
squared product to be small (the as are specified with reference to the high
peak). The other two peaks, which are significantly smaller, indicate that
|We(ay, 7)| and |W,(a, 7)|, on the one hand, and |W,(ay, 7)| and |W,(a, 7)|,
on the other hand, do show such a temporal correlation. We interpret these
observations by saying that \Wg(al, r)| and |Wg(a2, 1:)| do not have a direct
causal connection, while |Wg(a, 7)| does show such a connection with
|Wg(a1, r)| and |Wg(a2, ‘L')|, respectively. Thus, while the scales a; and a,
are linearly independent, they interact (non-linearly) through scale a; one
may conjecture that scale a drives scales a; and a,. It should be noted that
the observation of asymmetry in the bicoherence graph does not constitute
proof for this conjecture. Summarizing: if the threefold symmetry in the
bicoherence graph is broken and one peak is significantly higher than the
other two, then the sum frequency belonging to the highest peak is most
likely driving the coupling process. We shall encounter a beautiful example
of this in section 6.4.1. The reverse may also occur: one peak is significantly
lower than the other two, which are of similar height. By an argument ana-
logous but opposite to the one given above, we conclude that it is likely that
in this case the sum frequency belonging to the lowest peak is a consequence
of the interaction of the other two frequencies. An example of this will be
encountered in section 6.4.3. One must be careful applying this reasoning
when harmonics are involved, leading to peaks on the lines w, = —w;/2 (e.g.
due to beat wave phenomena), since in this case two peaks coalesce, making
their individual identification impossible.
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The interpretation of the bicoherence in terms of the underlying physics is,
in general, not straightforward. A simple interpretation is offered by a quad-
ratic coupling model [7, 10, 15], which bears relevance to some elementary
turbulence models. In this model, the coupling between three ‘modes’ or
‘scales’ a, a; and a, is expressed by means of a coupling constant A(a,, a,, 1):

Wia, 1) = Wfq(a, T) + A(ay, ay, ) Welay, ) We(az, T) (6.22)

where the frequency sum-rule (Eq. (6.15)) is satisfied. The component
W})(a, 7) is statistically independent of any other scales ;. This equation
expresses the existence of a (quadratic) relation between the three wavelet
components. When the coupling constant A(a;, a,, T) changes little during
the time T (cf. Eq. (18)), the following equivalence holds:

|bjiar, ar, To)|* P (a, Ty)
[ | Welay, DW(ar, T)|2 dt

|A(ay, ay, Ty)| '~ (6.23)

Thus, the coupling constant in this simple quadratic phase-coupling model
can be determined by evaluating the bicoherence, provided the averaging
time 7 is smaller than the rate of change of the coupling constant.

In summary, we have two possible interpretations of the bicoherence: one
in terms of ‘coherent structures’ (pulses or pulse trains, non-sinusoidal waves)
passing by the observation point and one in terms of a coupling constant in a
dynamical quadratic wave-interaction model. It is not possible to decide from
the bicoherence alone which is the most appropriate interpretation.

More detailed interpretations are possible when data from more than one
observation point are available. For example, two closely spaced observation
points in a turbulent field allow the calculation of the cross bicoherence. This
analysis has two advantages over the single-point measurement: first, any
random noise present in the measurements will be more effectively sup-
pressed provided the two measurements may be considered statistically inde-
pendent; and second, the cross bicoherence decreases when the two points are
separated, such that a determination of the average or typical size of each of
the structures is possible (of course, the fluid velocity along the line connect-
ing the two measurement points has to be taken into account — in some cases
the cross correlation can give an estimate of this quantity).

6.4 Analysis of computer-generated data

The application of new analysis tools to computer-generated data has the
important advantage that all the parameters of the studied system are known,
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so that the results of the interpretation based on the analysis can be checked
against this knowledge and its informative value can be assessed. In the case
of the bicoherence this type of analysis is particularly important, since its use
has been very limited in the past so that little guidance as to its interpretation
is available.

In section 6.4.1 we present an analysis of a chaotic system of coupled
oscillators. Our main interest is of course the application of the analysis
tools we have introduced to turbulence, but we consider chaotic systems to
be illustrative simplifications of full-blown turbulence, possessing some of its
most important characteristics, and therefore a good testing ground for our
analysis tools.

In the following two sections we shall analyse data from numerical experi-
ments that have bearing on turbulence in thermonuclear fusion plasmas. In a
laboratory environment (as opposed to stellar environments), these plasmas
are confined by magnetic fields or inertia, since the temperatures required for
nuclear fusion are higher than any material vessel would withstand. The most
succesful magnetic confinement scheme is the toroidal configuration (which
can be of two general types: tokamak or stellarator), in which a magnetic
field is induced with ring-like magnetic field lines. The ionized particles of the
plasma are bound to these field lines by the Lorentz force, and thus circulate
without colliding with material surfaces. To compensate for drifts in the
necessarily inhomogeneous magnetic field, a second — poloidal, i.e. perpen-
dicular to the main toroidal direction along the ring — field component is
required. Thus the total magnetic field is helical, winds around a ‘magnetic
axis’ and the average helical pitch varies with distance from this axis. The
field lines are embedded in topologically toroidal (doughnut-shaped) sur-
faces. At certain radial intervals the ratio of toroidal to poloidal turns of a
given field line (commonly referred to as ‘safety factor’, ¢) is a rational
number, meaning that the field line connects with itself after a finite number
of turns around the magnetic axis. Such magnetic surfaces are less stable to
radial displacements of field lines than irrational surfaces, and magnetohy-
drodynamic instabilities may occur, leading to field-line reconnection and the
formation of ‘magnetic islands’ — zones of plasma topologically isolated
from the rest of the plasma by a separatrix enclosing the zone of reconnected
field lines. Various such island chains may develop on various rational sur-
faces. The non-linear interaction between these island chains then leads to
field-line stochastization in the intermediate zones. These zones of stochastic
field line behaviour are expected to have a much higher radial heat transport
than the zones that have their magnetic surfaces still intact.
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The situation described above is known as ‘magnetic turbulence’, and is
one of the main candidates for explaining the anomalously high radial heat
transport found experimentally in toroidal fusion devices (i.e. higher than
expected from a ‘neoclassical’ theory based on the assumption of the exis-
tence of unperturbed nested magnetic surfaces [16]). Another candidate is
‘electrostatic’ turbulence, driven by fluctuations of the plasma electric poten-
tial. The abundance of free energy available from the balance between the
high pressure and temperature gradient forces and the confining magnetic
field pressure may drive many other instabilities as well, drift waves being one
of the more important examples. With drift waves, low-frequency ion motion
perpendicular to the magnetic field is accompanied by electron motion along
the field lines to preserve charge neutrality [17]. It will be clear that although
the magnetic field introduces a strong anisotropy, it does not in general lead
to quasi-two-dimensionality of the turbulence. The fundamental three-
dimensional nature of the turbulence, the invalidity of isotropy assumptions
and the large amount of instability drives available make numerical simula-
tion of turbulence in thermonuclear plasmas a very difficult enterprise. The
experimental identification of the main turbulence drive(s) is one of the most
important and unresolved problems in thermonuclear plasma physics.

In sections 6.4.2 and 6.4.3 we analyse two plasma drift wave models, whose
claim to a realistic description of plasma turbulence is limited since they focus
on a single turbulence drive, but still may provide important clues as to how
drift wave turbulence, if and when it occurs, may be recognized.

6.4.1 Coupled van der Pol oscillators

A system of two coupled van der Pol oscillators is one of the simplest numer-
ical models that exhibits chaos in a self-sustaining way, i.e. without external
driving [18]. The system is fully described by the equations:

axl’

o

ov;

% = [81‘ — (v + %‘Xj)z]yf = (xi + ;) (6.24)

The system {i = 1, j = 2} describes the first oscillator, whereas {i = 2,j = 1}
describes the second. When «; = 0, the limit cycles of the uncoupled oscilla-
tors are determined completely by ¢; (i = 1, 2). The parameters «; describe the
non-linear coupling between the oscillators.

The examination of this system presented in [18] proceeds along the stan-
dard lines of chaos analysis. Use is made of spectral analysis, bifurcation
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Table 6.1. System parameters of the coupled
van der Pol oscillators in a periodic and a
chaotic state

System state & & o a
Periodic 1.0 1.0 0.5 —1.75
Chaotic 1.0 1.0 0.5 1.75

diagrams, fractal dimension estimates (a value of around 1.5 was found), etc.
We shall not repeat any of this analysis here, but shall be asking whether
wavelet analysis can provide additional insight into a chaotic system. For
comparison, we also analyse the system in a periodic state. Table 6.1 lists the
choice of control parameters for these two system states.

The Fourier spectrum of the signal x,(¢) in the periodic case is shown in
Figure 6.1a. The very clean spectrum shows only a few peaks with their
harmonics. A section of 153 data points, sampled every At = 0.2 (units see
[18]) and covering about 5 periods of the x, coordinate, was analysed using
the wavelet bicoherence method. The calculation can also be done using a
longer time series as input, but the results would be essentially the same.
The result of the calculation is shown in Figure 6.1b. The strong, straight
horizontal, diagonal and vertical ridges correspond to a frequency of
roughly 0.34, which can be identified in Figure 6.la with the second
peak. Thus, the two dominant peaks in the Fourier spectrum at frequencies
of 0.17 and 0.51 couple with their difference frequency at 0.34. Likewise,
the difference in frequency between the second and the fourth peak,
between the fourth and the sixth peak, etc., is always 0.34, and the same
holds for the odd series of peaks. The difference frequencies between even
and odd peaks (i.e. 0.17) are not reflected in the bicoherence plot, however
(except when coupled to 0.34). It may therefore be conjectured that the odd
peaks are the harmonics of the limit cyle of the oscillators, whereas the even
peaks are due to the coupling interaction between the two oscillators. This
interpretation is reaffirmed by the knowledge that with the combination of
control parameters as given the limit cycle is asymmetric, which means that,
were the coupling constants zero, only odd harmonics would appear [18].
These conjectures receive strong support from the cross bicoherence calcu-
lated from x; and x,. Figure 6.1c shows a diagonal ridge at the same
frequency as in Figure 6.1b (and a second one at a frequency of
0.68 = 2 x 0.34, a harmonic barely visible in Figure 6.1b), but more impor-
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Fig. 6.1. System of two coupled van der Pol oscillators in a periodic state. For a
description of the system and its parameters see text. a) Fourier spectrum of x,(¢).
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Fig. 6.1. b) Bicoherence graph of x,. The bicoherence is calculated from 153 points
covering about five periods. The horizontal and diagonal ridges are due to
the coupling occurring at a frequency of 0.34. This figure is also shown at
www.cambridge.org/resources/0521533538.
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Fig. 6.1. ¢) Cross-bicoherence graph of x; and x,. The graph is similar to b) except for
its lack of symmetry. The asymmetry pinpoints 0.34 as the driving frequency (see text).
This figure is also shown at www.cambridge.org/resources/0521533538.
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tantly it shows a strong asymmetry. Applying the reasoning developed in
section 6.3.2, we conclude that 0.34 is actually the driving frequency
responsible for the coupling. This is an important conclusion, and we stress
that while the previous results only permitted this thesis to be put forward
as a conjecture, now it receives a firm basis. No other techniques are known
to us that allow the identification of the driving frequency in such a simple
and straightforward manner.

The Fourier spectrum of the signal x,(¢) in the chaotic case is shown in
Figure 6.2a. Several peaks are still visible, and some of these are related to
the peaks in the periodic case through a frequency shift. New peaks have
also appeared due to the process of period doubling in the transition to
chaos. The chaos is apparent in the increase of the noisy (broad-band) part
of the spectrum. Figure 6.2b shows the bicoherence as calculated using a
section of 303 data points, sampled every Az = 0.2, that covers about §
pseudo-periods of x,(¢). At first view, there is a striking similarity to Figure
6.1b. The main horizontal and diagonal ridges occur at a frequency of
about 0.25, corresponding to the fourth major peak in Figure 6.2a. This
frequency must therefore be identified with the frequency of 0.34 in Figure
6.1a — the change of control parameters of the coupled system, apart from
introducing chaos, causes an overall frequency downshift with a factor of
0.73. Further it is observed that, although the high-frequency aspect of the
graph has changed little — apart from a reduction in the value of the
squared bicoherence — the low-frequency part is much more complex. The
vertical line indicating the simple coupling at 0.34 of Figure 6.1b has split
into several distinct coherent points at slightly shifted frequencies; observe
the similarity in shape of these three points with the three points at double
the frequency, which is obviously related to the period doubling process.
New couplings have appeared at even lower frequencies (below 0.2), the
biggest of which, at around 0.13, is easily identified as half the main cou-
pling frequency of 0.25, and which is due to the period doubling effect also
apparent in Figure 6.2a. The cross bicoherence shown in Figure 6.2¢ again
confirms, by its asymmetry, the correct interpretation of 0.25 as the main
coupling frequency.

6.4.2 A large eddy simulation model for two-fluid plasma turbulence

Direct numerical simulations of two-fluid plasma turbulence were carried out
with the CUTIE code [19, 20, 21, 22]. The code is used to simulate low-
frequency, relatively long wavelength drift-like fluctuations. It was developed
to simulate tokamak turbulence, but in order to simplify the calculations the
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Fig. 6.2. System of two coupled van der Pol oscillators in a chaotic state. a) Fourier
spectrum of x,(7).
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Fig. 6.2. b) Bicoherence graph of x,, chaotic. The bicoherence is calculated from 303
points covering about eight pseudoperiods. The structure seen bears some similarity
to the one seen in Fig. 6.1b, although it is less intense and more complex at lower
frequencies due to the period doubling that has occurred in the transition to chaos.
The main coupling frequency has been downshifted to 0.25. This figure is also shown
at www.cambridge.org/resources/0521533538.
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Fig. 6.2. ¢) Cross bicoherence graph of x; and x,. The asymmetry seen in Fig. 6.1c
survives in the chaotic régime, permitting the identification of the driving frequency
even in chaos. This figure is also shown at www.cambridge.org/resources/
0521533538.
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geometry used is that of a periodic cylinder rather than that of a torus, and
advantage is taken of the so-called tokamak ordering: a/R <« 1, where « is
the minor radius — (cylinder radius) — and R is the major radius — (of the
corresponding torus) — By < B., i.e. the poloidal field is much smaller than
the toroidal (longitudinal) field, and B8 <« 1, where B is the pressure normal-
ized to the magnetic field pressure. Quasi-neutrality is assumed and standard
two-fluid/Maxwell equations are solved for the seven variables n, (electron
density), T,, T; (electron and ion temperature), V,, (parallel plasma flow), ®,
W and 2 (the electrostatic potential, the poloidal flux function and the par-
allel vorticity), taking account of the appropriate sources and relevant trans-
port coefficients. The system is fully non-linear.

The code was run under the following conditions (typical of the
COMPASS-D tokamak): R = 55cm, a = 23 cm, B. = 2 T, plasma current:
269 kA, initial central safety factor (¢g): 1.6 (related to the field line helicity),
initial central density: 10" ecm™, initial central ion and electron tempera-
tures: 500 eV and Z,; = 1.73 (effective charge number).

In the following we analyse the simulated density fluctuations dn/n,. Data
are taken at various radial positions.

Figure 6.3a shows the wavelet spectrum of the fluctuating density at r =
21.16 cm. The U-shaped edge profile indicates the region beyond which the
calculation of the wavelet transform is not possible due to the proximity of
the data boundaries. Several modes can be distinguished in this figure: steady
modes at 15 kHz and 100 kHz; and a mode at about 200-250 kHz that shows
a beat phenomenon. Analysis of similar data obtained at a higher sampling
rate indicates that this phenomenon is possibly due to the aliasing of a mode
around 750 kHz. A weak and apparently not stationary mode is visible
around 60 kHz. Analysis of the fluctuating density signal at other radii reveal
very similar features.

Figure 6.3b shows the joint wavelet phase-frequency probability distribu-
tion function, calculated from the fluctuating density signals at two radii: r =
18.4 and r = 22.08 cm. The first striking feature that can be observed is that
both steady modes (15 kHz and 100 kHz) show definite radial phase relations
(the phase differences are —2.6 and 0.7 rad, respectively). This implies a very
strong linear radial correlation for these modes. The mode above 200 kHz
shows slightly less clear behaviour. The fact that the phase shift converges to
0 or m at frequencies close to the Nyquist frequency is a consequence of the
impossibility to obtain accurate phase determinations at those frequencies, as
explained in section 6.3.2, and not of any physical effect. The most interesting
feature is seen in the intervals between 20 and 80 kHz, where a partial phase
randomization occurs. The phase of the Fourier auto spectra of either of the
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Fig. 6.3. Analysis of data from the CUTIE numerical turbulence model. a) The
wavelet spectrum of the fluctuating density at » = 21.16 cm. This figure is also
shown at www.cambridge.org/resources/0521533538.
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Fig. 6.3. b) The joint wavelet phase-frequency probability distribution function,
calculated from the fluctuating density signals at two radii: » = 18.4 and r =

22.08 cm. This figure is also shown at www.cambridge.org/resources/0521533538.

two signals used here (not shown) show a m phase jump at 17.6 kHz and
103.5 kHz, indicative of the fact that these frequencies are probably driving
the turbulence. Thus, the feature at 60 kHz is probably due to a non-linear
interaction. The graph as a whole seems indicative of the existence of a low-
dimensional attractor in the strongly non-linear dynamics.
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6.4.3 A long wavelength plasma drift wave model

Another numerical model of drift wave turbulence in plasmas is studied in
this section. This model simplifies the geometry even further to a slab (i.e. a
box-shaped region). The x-coordinate is identified with the radial coordinate
in a torus, the y-coordinate with the poloidal direction and the z-coordinate
with the toroidal direction. The magnetic field does not have a radial (x-)
component and its z-component is fixed while its y-component varies
radially. Thus, a sheared magnetic field is created similar to that in a toka-
mak experiment. The numerical experiment is characterized by the shear
length of the magnetic field, as well as the assumed electron density and
temperature profiles.

The model studies the evolution of the ion density, which is separated in an
average (n;) and a fluctuating (7;) part. With the help of simplifications, such
as the assumption of long wavelengths, an equation is derived for 7; which is
advanced in time. To do so, #; is Fourier-expanded in the toroidal and
poloidal directions and a large number of modes is used to achieve sufficient
accuracy for turbulence studies. In the radial direction, finite differences are
used.

The detailed setup of these calculations is described elsewhere [23]. For the
analysis that follows here, it is sufficient to mention just a few points: distance
and time units are normalized to p,, the ion gyroradius, and 1/%;, the inverse
ion gyrofrequency, respectively. The values of the model parameters have
been chosen to provide a range of unstable modes with 6 < m < 76, where
m 18 the poloidal mode number. The safety factor, ¢, is equal to % at the centre
of the computational box. The standard box size (x-direction) is 60p,, and the
number of unstable modes with resonant surfaces inside the computational
box is about 250. In the calculation, we have included 439 Fourier compo-
nents. The averaged density gradient is fixed, so saturation is caused by
turbulence effects. The numerical data are for the saturated state.

Figure 6.4a shows raw data from this simulation at r = 30.0p, for the time
interval 30.2 x 10* < Q7 < 40.4 x 10*. In these units, the time step is 100.
Figure 6.4b shows the corresponding wavelet power spectrum P". The spec-
trum is nearly featureless except for two small peaks at low frequencies, the
frequencies being of the order of the linear mode frequency. Figure 6.4c
shows the wavelet power spectrum for the whole range of radii available.
The spectra are calculated over the interval 31.1 x 10* < Q7 < 39.4 x 10%.
The whole data time window is not used because the continuous wavelet
transform cannot be evaluated near the data edges. The frequency is given
in inverse time units. The radii are given in units of p,.
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Fig. 6.4. Ton density perturbation of the drift wave model discussed in the text.
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Fig. 6.4. c) Wavelet spectrum vs. radius. The spectrum is broadest at » = 30.0p,. This
figure is also shown at www.cambridge.org/resources/0521533538.
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Figure 6.5a shows the RMS fluctuation level for this simulation, versus
radius. The RMS level peaks at the position of the position of the ¢ :%
rational surface. The wavelet spectrum (Figure 6.4c) broadens where the
RMS level is high. At radial positions where the spectrum is narrow, the
calculation of the wavelet transform suffers from numerical errors at high
frequency. This is important to keep in mind when viewing the results pre-
sented below.

Figure 6.5b shows the total bicoherence vs. radial position for this simula-
tion. Figure 6.5¢ shows the corresponding summed bicoherence as a function
of both sum frequency and radial position. From Figure 6.4c it is apparent
that e.g. the peak in Figure 6.5b at r = 47.5p, is due mainly to the numerical
problems mentioned above and does not correspond to anything physical.

il

0.000 e rrrmre e f e
10 20 30 40 50
radial position ( in ps)

Fig. 6.5. a) Analysis of the ion density perturbation of the drift wave model. a) RMS
fluctuation level of the ion density vs. radius.
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Fig. 6.5. b) Total wavelet bicoherence vs. radial position. The peaks are associated
to, but do not coincide with, the peaks in a). Note the sharp drop in bicoherence at
r = 30.0p,.
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Fig. 6.5. ¢) Summed wavelet bicoherence vs. radial position and sum frequency. The
drawn line (a contour taken from Fig. 6.4c at log(wavelet power) = —10) indicates
roughly up to what frequency the bicoherence may be considered reliable. This figure
is also shown at www.cambridge.org/resources/0521533538.

Such numerical problems do not occur if the wavelet power transform coeffi-
cients are sufficiently large. We take the level —10 in Figure 6.4¢ to delimit
the zone with numerical problems; this level is indicated by the line in Figure
6.5c. Examining the remainder of Figs. 6.5b and ¢, one can make the follow-
ing observations. (1) The bicoherence drops sharply at the position of the
q= % rational surface, located at 30p, (whereas neither the RMS value, nor
the spectrum exhibit such a local drop). (2) The maximum of the bicoherence
is at 31p,. (3) Secondary maxima occur, apart from some minor peaks, at
16.5, 24.5, 29.5 and 36.5p,. These positions coincide roughly (but not exactly)
with maxima in the RMS value (see Figure 6.5a). From this, we conclude that
the bicoherence provides information that pertains to an aspect of the tur-
bulence (non-linear, or rather quadratic behaviour) that is not captured by
either of the other methods.

Having established the general interest of this analysis, the next question
must be: how does this information help in understanding turbulence? In the
following, we compare the results from the bicoherence calculation with a
more conventional approach. Figure 6.5d shows the cross correlation, the
weighted average cross coherence and the weighted average cross phase
between one radial position and the next; the weighting being done by the
spectral power (the cross spectra are calculated with the normal FFT). It is
observed that the cross correlation and cross coherence between adjacent
radial positions is generally high, but that around 30p, these quantities
drop. Further, it is observed that the cross phase exhibits a peak around
30.5p,, possibly indicating shear flow. The numerical results also show the
existence of a shear flow layer in this location. Although this analysis is by no
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Fig. 6.5. d) Cross correlation, cross coherence, and cross phase between adjacent
channels. Results are shown at position xp, for the cross analysis between xp, and
(x + 0.5)p,. The cross coherence and phase are computed from FFT (cross) spectra

and are averaged over all frequencies by weighing with the spectral power.

means conclusive, it seems to suggest an explanation of the drop in bicoher-
ence at 30p, in terms of a decorrelation of the turbulence, possibly linked to a
shear flow.

The maximum in the bicoherence at 31p, is related to the presence of a
long-living structure that is highly localized poloidally and radially. This
structure has the (3,2) periodicity and lies close to the ¢ :% surface; such a
structure is visible in a two-dimensional plot of the ion density (cf. Figure
6.5¢), but because of its high spatial localization, it was only discovered after
this analysis indicated the persistence of non-linear couplings over a time
period of many decorrelation times (in [23] it is explicitly stated that coherent
structures were not seen).

For a more detailed analysis we refer to Figure 6.5f, where the full bidi-
mensional bicoherence is shown for a few selected radial positions. First, we
draw attention to the graph corresponding to 30p,. Here the typical beha-
viour of a single mode coupling to broad-band turbulence is visible (horizon-
tal band-like structure), with the main mode frequency around 1.4 x 1074,
Turning now to the graph taken at the maximum of the bicoherence (at 31p,),
one observes that each point of this band-like structure couples, in its turn, to
a range of frequencies, thus nearly filling the two-dimensional plane of the
bicoherence.

To summarize, we have been able to perform a rather detailed spectral
analysis on computer-generated data of a turbulence simulation, for which
(due to CPU-time limitations) only short data series were available, thus
rendering Fourier analysis impracticable, or (in the case of the bicoherence)
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Fig. 6.5. ¢) Two-dimensional graph of 7; in the p — 6 plane. The location of a
small coherent structure is indicated by the arrows. This figure is also shown at
www.cambridge.org/resources/0521533538.
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Fig. 6.5. f) Bicoherence for r = 30.0p, and r = 31.0p,. This figure is also shown at
www.cambridge.org/resources/0521533538.

even impossible. The analysis revealed a rather surprising narrow drop in
non-linear coupling (bicoherence), precisely at the location where the radial
correlation decreases locally and where the radial cross phase shows a peak.
From these observations, we deduced that most likely a local shear flow is
responsible for the observed decorrelation. Finally, the peak in bicoherence
was associated with a small structure in the flow, which was not detected by

other methods.
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6.5 Analysis of plasma edge turbulence from Langmuir probe data
6.5.1 Radial coherence observed on the TJ-1U torsatron

In the present section we will analyse data from the TJ-IU Torsatron [24].
This is a toroidal device in which a hot plasma is confined by magnetic fields
in the manner described at the beginning of section 6.4. The plasmas were
heated by Electron Cyclotron Resonance Heating (ECRH), and have major
radius R =0.6 m, central rotational transform of the magnetic field
t(0) = 0.21, minor radius (@) = 0.1 m, toroidal field By = 0.6 T, and electron
density n, = 5 x 10" m™,

Two Langmuir probes were inserted into the plasma edge region, where
temperatures are sufficiently low to allow this without damaging the probes.
The two probes are separated radially by 1 cm. Each of the two probes has
three tips, aligned perpendicular to the magnetic field and separated poloid-
ally by A =0.2 cm. The probes were designed and positioned to avoid the
shadowing of one probe by another [25] (‘shadow’ referring to the influence
cone of the probe along the direction of the magnetic field). The two extreme
tips of each probe were configured to measure the floating potential, @,
whereas the central tip was set up to measure the ion saturation current,
I,,,. Thus it is possible to estimate the instantaneous radial turbulent flux
for both probes: I'y = 7iEy/Br, using E, = (©,(1) — ®/(2)) /A and 7 o I,
(where x is the fluctuating part of x and the influence of temperature fluctua-
tions is neglected). The signals were sampled at 1 MHz.

Figure 6.6 shows the cross spectrum and radial cross coherence between
the I, signals of the two radially separated probes. The influence of a MHD
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Fig. 6.6. Cross spectrum and cross coherence of I,,. Calculations are made on
measurements from two radially separated probes in the edge zone of a TJ-IU
discharge. Continuous line: average wavelet spectrum; long dashes: wavelet coher-
ence; short dashes: the noise level of the coherence.
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mode is recognized in the peak of the spectrum at about 20 kHz. The cross
coherence peaks at slightly higher frequency (35 kHz).

Figure 6.7 shows the same graph, now calculated for I';. Features similar
to the ones observed in Figure 6.6 can be seen, although at higher frequen-
cies. This frequency shift is easily explained by the fact that I'; is a quadratic
signal. What is most interesting is that the flux does not show a larger radial
correlation than I, (or &Df either, not shown). This seems to indicate that, for
the present type of plasmas at least, the non-linear interactions in the turbu-
lence, if present, do not generate a stronger coherence in the flux than in the
fluctuating density and electric field, which is a hypothesis invoked by some
turbulence models in order to explain the heat losses from thermonuclear
plasmas [26].

Figure 6.8 shows the temporally resolved coherence of I,,. The time reso-
lution is 0.5 ms. The noise level is the same as in Figs. 6.6 and 6.7. The
coherence is highly intermittent and occasionally very high values are
achieved (much higher than the time-average value). This figure illustrates
the necessity of using wavelet techniques for turbulence analysis; whereas
results similar to Figs. 6.6 and 6.7 can be obtained using Fourier techniques,
the intermittent character shown here is only evident from a wavelet analysis.

6.5.2 Bicoherence profile at the L|H transition on CCT

The data analysed in this section are from the Continuous Current Tokamak
(CCT). It was operated with major radius R = 1.5 m, minor radus a = 0.35
m, toroidal field By = 0.25 T, plasma current [, ~ 40 kA, electron density

log, (Spectral power)

Frequency (kHz)

Fig. 6.7. Cross spectrum and cross coherence of I'z. Same as Fig. 6.6 for the instan-
taneous particle flux derived from the probe data (see text). The value of the coher-
ence is smaller than for I, (Fig. 6.6).
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Fig. 6.8. Time-resolved wavelet coherence-versus-time graph of I,,. The coherence is
between two radially separated probes (see text). The noise level is the same as in Fig.
6.6. In several time intervals and at various frequencies the coherence obtains values
far above the time-average value. This figure is also shown at www.cambridge.org/
resources/0521533538.

n,=2x 10" m~=, loop voltage Viep = 1.2 —=1.4 'V, central electron tem-
perature 7,(0) > 150 eV, and central ion temperature 7;(0) > 100 eV. A
transition from L-mode to H-mode confinement was induced by biasing a
small electrode located about 0.1 m inside the limiter radius with respect to
the vessel wall [27].

The H- or High confinement mode is a plasma state characterized by
reduced global heat losses, and is the object of intense study by the fusion
community. A full understanding of the reasons for the transition from the
L- or Low confinement mode to the H-mode is not available. It is believed
that a strong shear in the plasma rotation velocity near the edge (in the
present case caused by the artificially generated radial electric field) may
lead to suppression of turbulence in the plasma edge zone and thus to less
heat losses. This belief is strengthened by the observation of strong density
gradients in the edge zone during the H-mode in many devices. A detailed
understanding of this process seems very important, since it may help to
understand the general problem of confinement and may lead to methods
for controlling the turbulence and thus the heat transport, which eventually
may lead to smaller and cheaper thermonuclear fusion reactors.

For the present study we focus on a single probe from a poloidal Langmuir
probe array [28, 29]. It was configured such that one of the probe tips was
recording the floating potential locally. The sampling rate was 2.5 MHz. The
probe was initially located just outside the last-closed-flux-surface (LCFS).
During H-mode the increasing plasma pressure causes a slow movement of
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the plasma column out towards the low-field side. Thus, when the H-mode
electrode bias is suddenly turned on, the outside midplane probe records a
slow increase in the negative DC floating potential. This enabled a recon-
struction of the radial profile in the H-mode of the quantities measured by
the probe using an estimate of the instantaneous probe position relative to
the LCFS. Knowing the value of the radial electric field E,, the radial posi-
tion r of the probe can be estimated as r = ®,/E,, where @ is the floating
potential measured by the probe. From Doppler shift measurements, we
estimated the electric field to be E, ~ —100 Vem™!. Uncertainties in this
estimate translate into an uncertainty of 30-50% in the absolute recon-
structed position, although the relative position is much more accurate
since E, does not vary significantly during the measurements.

Figure 6.9 shows the RMS values and the wavelet bicoherence of the
measured ion saturation current (/) for the outside midplane probe. The
H-mode period (grey area) shows a slight reduction of the RMS and a
gradual increase of the bicoherence as the plasma moves outward. A broad
range of frequencies is involved in the production of the high bicoherence
around ¢ = 80 ms, with predominance of frequencies around 250 and 500
kHz.

Observations reported earlier for L/H transitions (using reflectometry) [12]
showed an abrupt increase of the bicoherence and decrease of the RMS at the
transition. The difference with the present apparently smooth transition may
be explained by the fact that here the probe location is initially at the LCFS
and moves gradually inward, whereas in the measurements reported earlier

Bicoherence

Time (ms)

Fig. 6.9. Analysis of the saturation current /,,, measured by a Langmuir probe
positioned on the outside midplane at CCT. Long dashes: RMS of [,,. Drawn
line: bicoherence of I,,. Short dashes: noise level of the bicoherence. The grey
area indicates the H-mode period, induced by probe biasing.
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the measurements were taken well inside the LCFS. This would imply that
the gradual change observed is due rather to the existence of a bicoherence
profile than to a slow temporal change.

Performing standard statistical analysis on the outside midplane I, signal,
we calculate the Probability Distribution Function (PDF) before and after
the transition. Calculations are performed on records of 12500 samples after
high-pass digital filtering with a cutoff frequency 1 kHz to remove drifts. We
find that the L-mode PDF is Poisson-like (with skewness S > 1, and kurtosis
K >5), whereas in the H-mode it is more like a Gaussian (0 < S < 1,
3 < K < 4) (Figure 6.10). The deviation from Gaussianity in the L-mode
as contrasted with the near-Gaussianity in the H-mode is consistent with
earlier studies of the relation between the PDF shape of turbulent signals
and plasma conditions [26].

Using the above-mentioned estimate of the probe position, the profile of
wavelet bicoherence was reconstructed during the H-mode phase from the
signal of the outside midplane probe. The result is shown in Figure 6.11,
along with a similar profile obtained from a different but similar discharge.
The reproducibility is surprising. We recall that a high value of the bicoher-
ence may either indicate the presence of non-linear interactions or of (quasi-
static) structure [14]. It is interesting that these features should occur a small
distance inside and not at the LCFS, which is possibly related to the fluid
velocity shear layer at or near the LCFS, which may be decorrelating the
turbulence or modifying the size of coherent structures. The precise meaning
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Fig. 6.10. PDF of the outside midplane 7, signal in the L-mode and the H-mode. L-
mode (65-70 ms): Skewness S = 1.32+0.07, Kurtosis K = 5.94 +0.22; H-mode
(72-77 ms): S =0.154+0.06, K=327+0.11; H-mode (8590 ms): S=
0.67 £0.06, K = 3.83 £0.13.
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Fig. 6.11. H-mode bicoherence profile. Bicoherence profile in the H-mode deduced
from the outside midplane probe signal shown in Fig. 6.9 and an estimate of the
probe position relative to the LCFS (continuous line). Also included is a similar
profile for another, similar discharge (long dashes). The noise level of the bicoher-
ence is indicated by the short-dashed line.

of this maximum of bicoherence about half a centimetre inside the LCFS is as
yet unclear but it seems relevant to H-mode physics.

6.6. Conclusions

The use of wavelets in the analysis of turbulence is a significant step forward
with respect to the traditional spectral analysis. On the one hand, as was
explained in section 6.2.1, the advance is fundamental in the sense that we
liberate ourselves from the obligatory decomposition of signals in modes
which are not eigenmodes of the system (Fourier modes) and which therefore
lead to a scrambling of significant information. Wavelets can be seen as a
local linear decomposition, and this procedure is justified provided the tur-
bulence is not too strong, so that the non-linear equations describing the
turbulence can be linearized locally. On the other hand, wavelets provide
also a practical advance in the sense that they reduce the need for obtaining
long stationary time series in order to obtain sufficient statistics, which is
often not possible experimentally and difficult or expensive numerically.
Thus, as we have illustrated through numerous examples, we have been
able to perform rather complex analyses (e.g. bispectral analysis, which is
sensitive to non-linear interactions) on rather short time series, something
which was not possible before the advent of wavelets.
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Transfers and fluxes of wind kinetic energy between
orthogonal wavelet components during atmospheric
blocking
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New Haven CT 06520-8120, USA

Abstract

Atmospheric blocking is an irregularly recurring anomalous state of the
atmospheric circulation which is large and spatially localized. Atmospheric
blocking during three unusual winter months is studied by multiresolution
analysis and a new periodic wavelet-based adaptation of traditional Fourier
series-based energetics. New forms of the transfer functions of kinetic energy
with the mean and eddy parts of the atmospheric circulation are introduced.
These quantify the zonally localized conversion of energy between scales. A
new accounting method for wavelet-indexed transfers permits the introduc-
tion of a physically meaningful zonally localized scale flux function. These
techniques are applied to National Meteorological Center data. Blocking is
found to be largely described by just the second-largest scale part of the
multiresolution analysis. New support is found for the hypothesis that block-
ing is partially maintained by a particular kind of upscale cascade.
Specifically, in both Atlantic and Pacific blocking cases there is a downscale
(upscale) cascade west (east) of the block.

7.1 Introduction

Although wavelet analysis in the time domain has been applied to atmo-
spheric boundary layer turbulence (e.g. [8]) and climatic time series (e.g. [3,
15, 17]), and in the space domain to numerically simulated turbulence [7, 9,
18], there has not been any application to observed global synoptic meteor-
ological data. A broad review of wavelets applied to turbulence is presented
by Farge et al., this volume, Chapter 4. A collection of blocking studies is
contained in [1]. During blocking, the normal progression of weather is
locally inhibited. A definition of blocking is presented in Section 7.2.

263



264 Aimeé Fournier

Because of the compact organization of the block structure, wavelet-based
analysis techniques are called for, rather then Fourier analysis. After a review
of more conventional analyses, new forms of kinetic energy transfer and flux
functions are introduced in Section 7.3. Section 7.4 presents the results of
these analyses applied to blocking and nonblocking data.

7.2 Data and blocking description

The data for this study are the wind components u (eastward), v (northward)
and geopotential height Z (= g~ '®, the height at which a given specific
gravitational potential energy, relative to mean sea level, ® would be attained
if specific gravitational force were fixed at its global mean sea level value g)
from National Meteorological Center (NMC) global analyses (e.g. [24]).
Each of these variables depends on the independent coordinates longitude
A, latitude ¢, pressure level p and time ¢. (The atmosphere is very close to
hydrostatic equilibrium, in which case p may be taken as an independent
coordinate instead of geometric height, which simplifies the mathematics
and the data analysis.) The original coordinate grid is’

=Ap(l—-1)=0,---360°, [/=1,---145
Om=Ap(m—1)=0,---90°, Ap=25°, m=1,---37

=10, 15, 20, 25, 30, 40, 50, 70, 85, 100 kPa
ti=At(i—1)=0,---89.5d, Ar=.5d, i=1,---1=180,
t; = 1978 Dec. 1,0 UTC.

Originally the A and ¢ grid spacings were equal. Since the analysis requires
grid size to be a power J of 2, the longitudes were cubically interpolatedi
down to the periodic grid

M=A0—-1=2""Y, Aar=2"77 I=1,---27+1=129, (7.1)

J = [log, 144] = 7 chosen to minimize interpolation artifacts. (| x| = greatest
integer no greater than x.) The times i = 57, 95, 110, 179 were lost by NMC,
and i = 12, 20, 23 contained a few physically unacceptable miscalculated u, v
values at certain p. All fields at these times were replaced using
A, - 274, + A;;1). (Henceforth dependence on discrete A, ¢, p, ¢t may
be indicated by the respective positive indices /, m, s, i, and single indices of

i UTC stands for universal time coordinate.
‘LInterpolanon program rgrdlu.f documented at http://www.scd.ucar.edu/softlib/REGRIDPACK .html.
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one coordinate may imply independence or simply notationally suppressed
dependence on other coordinates, depending on the context.)

The three months of these data were marked by record or near-record cold
weather in the USA, associated with quasi-persistent anomalous high pres-
sure systems known as blocks [6, 23, 25]. There were five blocking events of 7
to 13 d duration [12]. In the present study the blocking events are taken
directly from [12]. A blocking event was (somewhat arbitrarily) taken as a
t interval 7 longer than 7 d throughout which the longitudinal crest

o{Z(A (1), p7, 1)} = max, > 55° {Z(A p7, D)} at p; =50 kPa exceeds the zonal
mean 80 AZo(p7, 1)} (7.2) by more than 250 m, and A,,(¢) is continuous, where

—1

. 80°N 80°N
80 _ Z Z
55° {A} = COS @y Am COS @y,
on=55"N 0n=55"N

Let us define a blocking indicator functionT l,t-’ = 1 — 1} which takes the value
1 if there exists 7 5, and 0 otherwise. Specific indicators 1% and
1P = 1° — 12 correspond to crests in the vicinities of the eastern Atlantic
and Pacific oceans, respectively.i The very definition of blocking is still a
subject of much debate [16]. Part of the present study is aimed at character-
izing blocking using multiresolution analysis techniques.

7.3 Analysis

This section presents several analysis techniques. The reader may wish to skip
directly from Section 7.3.1 to Section 7.4.1 to acquire a rough picture of the
blocking phenomenon motivating this research. Section 7.3.2 introduces the
physical laws governing the system, and Sections 7.3.3 and 7.3.4 review tradi-
tional analyses, essentially an application of traditional turbulence statistical
and spectral analyses applied to the special case of the earth’s atmosphere. The
relevent tools of basic wavelet analysis are reviewed in Section 7.3.5, and
readers may skip over the previous three sections to here, and hence to
Section 7.4.2. Section 7.3.6 generalizes the traditional analyses, and finally
Section 7.3.7 introduces a useful manipulation of wavelet-indexed structures
to provide a measure of localized flux across scales.

TRoman font is used to distinguish /abels such as m,n,s from indices such as m, n, s.
For these data blocks appeared nowhere else, which is consistent with climatological studies.
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7.3.1 Conventional statistics

The zonal mean and zonal standard deviation are

172

Ay = 2J§:Al, o, = ((1 - 21)_1((/12)0—/13)) .2
I=1

Define blocking and nonblocking averages'
I I
A=Y 41, A=) A1) (7.3)
i=1 i=1

where the total number of blocking times is /,, = Zle 1? =+ =1—-1,.
Blocking standard deviations would be

= ((-8) (r=()))

and similarly for o".

7.3.2 Fundamental equations

Assuming the data are samples of differentiable fields, the laws of physics
may be applied to obtain equations governing those fields, and conserved
quantities useful for diagnosing the atmospheric state. Generally speaking,
conserved quantities are interesting because they constrain the available state
space of a dynamical system. Dissipative systems such as the atmosphere may
create locally organized structures in one quantity by sufficiently increasing
the entropy of another [19]. While the governing partial differential equations
admit several special kinds of invariants, this study shall be limited to the
most familiar one, kinetic energy (henceforth KE).

For the rest of Section 7.3, to simplify equations let the units of length and
time™' be the earth’s radius ¢ and angular speed 2, respectively. Thus the
previously introduced quantities are symbolized without physical units by the
redefinitions (u, v) < (a2)'(u, v), P « (@)D, 1« Qs To a good
approximation for the present situation, the time evolution of # and v,
assuming ® < ¢ 'Q g to avoid factors of (14 a2Z*) /2, are given by
the horizontal momentum conservation equations (derived from Newton’s
Second Law, neglecting the Coriolis and metric terms involving vertical
motion),

TA stands for any field except 1.
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U, =— Sec puu, — vi,— wi,+v(2sin p+tan pu)—sec p®, — X,  (7.4)

— wv, —u(2sing +tangu) — ¢, — Y, (7.5)

(2

v = — SeC Yuv, — Vv,

where subscripts 7, A, ¢ and p stand for the corresponding partial derivatives.
In isobaric coordinates, vertical motion is described by w, denoting the rate
of change (with respect to 7) of a fluid element’s pressure. The mass conti-

nuity equation, w, = —sec¢(u, + (cos wv)w>, diagnoses w. The hydrostatic
equilibrium condition for a perfect gas, ®, = —p~'T, diagnoses ® in terms of

air temperature, (a2)°’R™'T. The thermodynamical energy conservation
equation (derived from the First Law of Thermodynamics)

T,=—secouT, —vT,—oT,+ kp_ T + H (7.6)

predicts 7. Other parameters are the frictional westward and southward
accelerations ¢Q°X and aQ’Y, the dry atmospheric isobaric specific heat
k'R, the specific diabatic heating rate x'¢*Q’H and the dry atmospheric
gas constant R. These equations may be found e.g. as equations (6.1-5) of
[13], and are the starting point for countless analyses and predictions of
synoptic- to global-scale atmospheric circulation.

7.3.3 Review of statistical equations

Introducing the operators

(H)=@n L Cod =)=, (7.7)

Saltzman re-derived from (7.4-7.5) an expression for uu, + vv, — 4w, — vU;
and hence the evolution equation for mean eddy kinetic energy [20]
K. = 27N 2

K., = —sec (p(cos 27 (u*? + v*z)) — (a)z—l (u** + v*2)>p (7.8)

¢
— u*v* cos g(sec gur),, — v U, (7.9)
— W', — V*0*v, + u'u* tan gv (7.10)
—secou*®,* — v P — X — v Y (7.11)

The terms (7.8) represent horizontal and vertical fluxes of K., which vanish
under integration over a closed domain, and so include fluxes from outside
any open domain considered. The terms (7.9-7.10) represent KE transfer
between the mean flow %, v and the all the eddies, appearing in the
Reynolds stress components u*v*, v*v*, u*w*, v*w*, u*u*. The first two terms
of (7.11) give the conversion between potential and KE, while the last two
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terms of (7.11) measure the frictional energy dissipation. Physically, (7.8—
7.11) describe the evolution of KE associated with the collection of zonally
localized meteorological phenomena such as storms and quasi-persistent low
pressure systems.

7.3.4 Review of Fourier based energetics

It is desirable to resolve the eddy processes described by (7.8-7.11) into
contributions from atmospheric structures of distinct scales. Traditionally
this is done with the Fourier series representation

u= Y u,F, @ =uF_, FOo-m=d" 1=v-1 (7.12)
n=—00

In Section 7.3.6 the advantages of applying wavelet analysis to this problem
will be shown, but first comes some review. Saltzman decomposed

Ke = ZKen’ Ke E’l'zn/l’z—n +6n75—nv (713)

and using (7.4-7.5) to express 2Re(%_,1,,, +0_,D,,), introduced’
Kent:Lrsz+Miz+Cn_Dnv (714)

where the present author writes the terms in the form?

o~

LS = —2Re((sec go((uu*),\ + (u*vcos go)w) + (u*w), — tan §0W*) Uy

o~

+ (sec <p((uv*)k + (v'vcos <p)(/,) + (v'w), + tan <puu*) %L,,) (7.15)
n

M, = —2Re<ﬁ_,ﬁi,1 cos g(sec git),, +V_,U,0, (7.16)
+ Uy @y, + V@, 0, — U, tan gv) (7.17)

C, = —2Re(sec guii_, ®, +a,1q?w> (7.18)
= —2Re(p~'a_,T, + sec <p<cos goﬁ_nan) +(Z5_n$n) >, (7.19)

¢ P
D, = 2Re(i?,nfn +7, ?,,). (7.20)

TL is denoted by 7 in the turbulence literature.
1(7.4—7.5), (7.6), (7.8-7.11), (7.12), (7.13), (7.14-7.20) correspond to Saltzman’s equations (1-2), (5), (23),
(29,30), (45,46) and (47,48) respectively [20].
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Note that each of the terms in (7.16), (7.17), (7.18, 7.20) corresponds to a
term in (7.9), (7.10) and (7.11) respectively, but it is not clear what part of
(7.15) corresponds to (7.8). Saltzman showed that

ON *Ds 0
/ / > Lydpdsing =0, (7.21)
¢s 0 =1

where p, is the surface pressure, for ¢ = —@g = /2, and later suggested a
reformulation of (7.15) for which the equivalent of (7.21) held for arbitrary
@N,s, Neglecting a term involving w), [14]. These null sums reflect the fact that
nonlinear interactions act to transfer energy between wavenumbers #n, but
create or destroy no net energy. Hansen [11] has derived a formulation which
this author writes as

LE = L/I;I + Bkhn + Bkvn + Nkhn + Nkvm (722)

o~

cosgpLy = Re ((u*u*x + (W'u*), + [v0,, u] + [@3,, u] — 2sin <pu*v*) u_,

n

+ (u*v*k + (W), + [v9,, v] + [wd,, v] 4+ 2sin gou*u*) '17_,1),(7.23)

n

By, = —secp(cosgtKe,) . B = —(@Key) (7.24)
Nypy = — sec @Re(cos ¢(LF;*,,’LZ_” + ﬁn’ﬁ_n» , (7.25)
¢
Nkvn = —Re (LF(I\)*H/II_n + Ufa\)*n/’l}—n) ’ (726)
p

[40,, B] = cos pA*(B*, — B*0,).
[o¢]
The advantages of this formulation are that ZL,,H =0 (7.27)
n=1

for every individual ¢ and p, and that the terms (7.24-7.26) correspond to
(7.8), so that LT (term (7.23)) better isolates the wave—wave interactions from
the boundary effects (7.24—7.26) of an open domain.
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7.3.5 Basic concepts from the theory of wavelet analysis

In this study the interesting dependence is on A, a 2z-periodic coordinate, so
in this subsection periodic orthogonal wavelet analysis is introduced. Any
periodic, continuous or absolutely integrable, function A(X) may be

expanded in a periodic orthonormal wavelet basis, "
A=A+ 4, A=) Ay, (7.28)
=0 k=1
A=AV = 30 ALV, (729
n=—oQ
erx) =27 3 (@ (x+n) —k+1), (7.30)
P S e U =0, (7.31)

The Parseval Identity implies (recalling (7.7))

o ¥
ZZ (7.32)
_:0

There are many possible ‘mother wavelets” ¥ on the real line which generate
such a representation. The ¥ used here cannot be written in terms of explicit
functions, but is defined by the solution ¢ of the functional dilation equation

P(x) =22 i hep(2x — k), (7.33)
k=—o00

Y(x) =22 3 (=) hp i px — k). (7.34)
k=—o00

Daubechies has shown that, with certain requirements on the sequence #,
solutions exist which have compact support in x, smoothness (roughly, the
highest order of existing derivative), and number of vanishing moments
which all increase roughly linearly with the support length D of /4 [5]. This
study uses the Daubechies-20 wavelet, with only D = 20 nonzero /4. The

are centred approximately at A = 2727k —1) =27 = Ay, where

Liy=2"7(k-1)+1 (7.35)

%(7.28—7.32) all follow immediately from Section 9.3 of [5].
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indicates the center on the grid (7.1). Figure 7.1 shows the ¥ in an arrange-

ment which clarifies later figures.

__Periodic wavelet analysis can also be visualized in the Fourier domain; the
;’,frn are shown in Figure 7.2. The magnitude |¢;’,frn| is independent of k for a

given j, and the bandpass bandcenter and bandwidth are both seen to

increase with j, in accordance with the Heisenberg principle, as the spatial

resolution increases (Figure 7.1). The phase arg ¥ is just a shift mod 27 of

2atres. 1 4 atres. 2

8 atres. 3 16 atres. 4

32 atres. 5 64 at res. 6

[——

=

-100 0 100 0 100
longitude longitude

Fig. 7.1. Wavelet basis functions yj" for j=1,---J —1=6, as a function of A.
There are 2/ basis functions at resolution j. The curves are offset to avoid over-
lapping, and only the nonvanishing parts are plotted. Dotted lines show the offsets.
Each function has mean zero.
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FT(W_(j,k))
j=1, mag < 0.044 j=2, mag < 0.043

=3, mag < 0.031

j=5, mag <0.015 j=6, mag < 0.011

i o o el i~ o
wavenumber wavenumber

Fig. 7.2. Wavelet basis function Fourier coefficients w?,f\r,, forj=1,...J—1=6,as
a function of n (abscissa) and k (ordinate). Grayscale indicates

— T~

(arg Y5 )IVE |/ max |[y7"| from —x (dark) to 7 (light).

2!'97(1 — k)n from the phase of the continuous Fourier transform of y at
27n, as can be seen from (7/.3\0),1.

In practice, given 2’ discrete samples A(A ;) of 4, then estimates of 4 and
the 27 — 1 coefficients ;ljk, j=0,---J—1, k=1,---2 may be obtained in
only O(27) calculations involving just /, without ever having to evaluate ﬂ:r‘
This discrete wavelet transform satisfies the discrete analogs of all the previous
equations, just replacing the operator () by (7.2). Since both ' and I/Jflfr
are localized, so Ay selects the contribution to 4 from position ~ 27k and
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scale ~ 27/, The set {4} U]{:_OI {Z_ j} defines a multiresolution analysis of A. It is
essentially a sophisticated kind of bandpass filtering, a more familiar techni-
que to climatologists [2, 21].

7.3.6 Energetics in the domain of wavelet indices (or any orthogonal basis)

The advantage of the wavelet over the Fourier formulation of energetics is
the interpretation. As in the Fourier case, the nonlinear interactions between
particular scales can be identified; but now the particular locations of the
interacting scales are also represented, at least within a resolution corre-
sponding to the scale. This information is not available in the Fourier repre-
sentation.

To derive the wavelet form, first note that

o

Koy =2"' (’ajkz +%,k2), Ke=33 Ke (7.36)

Jj=0 k=1

decomposes the eddy KE into contributions from distinct positions and
scales. In his modification of the Fourier basis formulation mentioned
above, Saltzman suggested collecting half the trilinear terms to form bound-
ary fluxes, explicitly separating the nonlinear interactions which vanish under
integration over a closed domain [14]. This same step was generally formu-
lated in the Fourier basis energetics development of Hansen [11]. Following
them, from (7.4-7.5) an expression for i, + ;v leads to

Kejke = Lix + Bxnjx + Biyjx + Ninjk + Nxwjx + M + Cje + Bypjr + By — D,
(7.37)

cos gLy = —27! ((u*u*k + W'u'), + [v0,, u] + [@0,, u] — 2sin (pu*v*) e
jk
+ <u*v*k + W), + [v0,, v] + [wd),, v] + 2sin <pu*u*>

Jjk

%) (7.38)

By = — sec ¢(cos (p@l(ejk)(p, By = —(EKejk)p, (7.39)

Nynjie = —27'sec <p<cos go(ﬁ*jk’it}k + v?&*jﬂjo) , (7.40)
¢
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Niyjk = —2_1<u " iy + VT k) ; (7.41)
M = —cos g kv,k(sec Qi) — VUiV, (7.42)
/k ku kv + tan gu ik ,kv (7.43)

— sec <P(Mjkux_,-k + vjkv,\jk)u,
Civ = =@ T. (7.44)

Bgpjx = —sec go(cosw q)fk)(p — sec (p(ﬁ_,-kdhjk + L'f,\jkd?,-k>,

By = —(5jk5jk)p, (7.45)
Dy = ~ip X — Ty Y. (7:46)

Again, there is a one to one correspondance between the terms (7.39—7.41),
(7.42-7.43), (7.44-7.46) and (7.8), (7.9-7.10), (7.11) respectively: the physical
processes have been resolved in both location and scale. The fact (7.27) that
wave—wave interactions create or destroy no net energy is now expressed by

o) o ¥
> > Ly =0 and Y Y My =(79, 7.10), (7.47)

J=0 k=1 J=0 k=1

the total KE transfer from the mean flow to all the eddies.”

The above equations would be obtained for any orthogonal basis satisfying
analogs of (7.28, 7.29, 7.32) the jk indices may be thought of as a single
index.*

7.3.7 Kinetic energy localized flux functions

Adapting the Fourier-based approach of [22], it is useful to construct a
measure Fj, of the total flux of KE to scale j from larger scales j* < j, localized

Té\lthough}\in the Fourier basis it is simple to expand the nonlinear terms into convolutions, and use
A,, = wnA,, in the wavelet basis it is simpler to perform the products and 9, operations before the
transform. In order to retain (7.46) to a good approximation, a 10 order scheme

5

A0) = (AN Y AQu) +0(AR)") (7.48)
=5
was used, with ¥, = —y_; = 3. 555> 5350 = - - [4]. A first order scheme was used for A,.

+Note that only the properties (7.28, 7.29, 7.32) were used to derive equations (7.37-7.45), that is not any
uniquely ‘wavelet’ property such as (7.30, 7.33, 7.34). In the Fourier case, Saltzman used the multi-
plication theorem to ddVdntdge, a consequence of F,F, F,» =8,,,, . There is no similar identity for
wavelets, although Y5 w5 ), is extremely sparse, and the Parseval corollary (7.32) still holds. For this
reason all the trilinear terms are calculated by multiplication before wavelet transform.
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at k. Local downscale (upscale) KE cascades correspond to F, > 0 (< 0). The
Fourier approach defines’

F,=-) L, F=0. (7.49)

n'=1

The wavelet construction proceeds as follows. The 27 — 1 elements Lj form a
pyramidal tableau with 2/ elements at level j. The author introduces a rec-
tangular J x 277! matrix equivalence (recalling (7.35))

L) =21y, Ly =2"7""Li(x, 10), (7.50)

K;=[270-D+1] =20 '}+2"H+1], (7.51)

which is normalized to have the property Z%: Li(Ay) = 2,2;:1 Lj., which
preserves the sum over the spatial index at each scale, but makes the left
sum limits independent of scale.

To illustrate, for J temporarily taking the value 3, the Lj tableau is

Then by (7.50) the elements L;(A,;) form

4Ly, 4Ly 47'Ly  47'Ly,

7'y, 27'Ly, 27'ty, 27'L,

Ly, Ly, Ly Ly,

The present author independently introduced a KE local scale flux function
[10F

TF is denoted by IT in the turbulence literature.

1This may also be written Fj, = —27/ Z;EO 2 L/Ku’—/w , but it is clearer, and computationally faster, to use
the equation in the main text. However the latter form is proportional to an essentially equivalent for-
mulation introduced earlier by Meneveau [18].
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J
Fi(ha) ==Y LiGhy),
=0
(cf. (7.49).) By (7.47) and the choice of normalization,

2,/—1
lim » F; 1(Ay)=0. 7.52
mo; s-1(21) (7.52)

The rearrangement (7.50) (or an equivalent energetic bookkeeping) is neces-
sary so that in the Z}ZO no energy at larger scale (j', k) is ‘double counted’
for different k. Also, the Kj; is defined so that only those elements with K
accounting (at resolution ;') for the same location as A, will contribute to
Fi(Ay). This makes F;(1,) a meaningfully local flux function.

Once calculated for each ¢, p, f, the statistics described in (7.3) may be
applied to (M, L, F);.. Other useful operations are’

-1

80°N 80°N
{4} = Z COS ¢, Z A, cos ¢, (7.53)
0n=30"N om=30"N

and* (4) = g ! Z:gl AyAp,. The quantities (M, L, F);) are then in W m .

7.4 Results and interpretation
7.4.1 Time averaged statistics

Figure 7.3 shows the fields Z™° at 70 kPa® superposed on the continental
coastlines. The blocking conditions are clearly evidenced by the unusually
strong ridges in the Atlantic and Pacific cases compared to the nonblocking
cases. The blocks themselves are visible as localized high-Z structures (light
grayscale) protruding” northward from the tropics, resembling the nonlinear
phenomenon of breaking waves on a fluid surface.

T A lower limit 30° N is used to reduce the meridional boundary fluxes By, and Ny,. Earlier the lower limit
55°N was used to focus on the block region.

YAD =P =P Apy =27 Pyt = py1) (5 = 20--9), Apyg = pig — po. s0 that Y1) Ap, = 100 kPa, about
1 atmosphere.

%70 kPa is convenient for comparing with [6, 23, 25], while the more representative 50 kPa was used for
diagnosis in Section 7.2.

YAt lower p (higher altitude) these structures are cut off from the tropics.
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average nonblocking Z( 70 kPa )/ Dm

300

latitude

250

300

250

300

latitude

250

-150 -100  -50 0 50 100 150
longitude

Fig. 7.3. Z" (top), zA (middle), Z¥ (bottom), value in Dm (10 m) indicted in gray-
scale from dark (lows) to light (highs). All fields at p = 70 kPa as a function of A
(abscissa) and ¢ (ordinate).

Figure 7.4 shows 0}’1’ superposed on the continental coastlines. The mainly
diagonal structure of o is a result of the typical eastward-poleward progres-
sion of synoptic weather patterns such as the winter storm tracks seen here.
Such diagonal structure is noticeably absent from 3. Blocking is so-named
for this reason: the progression of synoptic weather patterns is blocked.
Instead of progressive (eastward translating) structures, what makes up the
variance during blocking are small regions of (transient) ‘eddy’ activity in the

vicinity of the block. There are two maxima of a%, over the southern tip of
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Fig. 7.4. o3 (top), o*% (middle), o (bottom), as in Fig. 7.3.

Greenland and western Russia, that is, one on each side of the ridge in zA
over Norway, Fig. 7.3. Similarly o has several local maxima flanking the
ridge of Z¥ over Alaska, one just east of Japan and several along eastern
Canada. These results are consistent with the idea that large blocking struc-
tures are supported energetically by smaller eddies around them. This will be
investigated systematically in Section 7.4.3.

The zonal statistics (u, vy, 0,,, av)n'b are shown in Fig. 7.5. The jet stream is
clearly seen in 1, as a maximum near (¢, p) = (30° N, 20 kPa). The pattern of
agw) shows a bifurcation during blocking, consistent with the splitting of the
jet stream around the block’s anomalous high Z often observed then.
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Fig. 7.5. (u, v), (left), oy(u, v) (right), for cases n (top), A (middle), P (bottom).
Grayscale is value of u-statistics, ms~!, contour intensity, the value of wv-statistics,
vo by 0.1ms™" up to 1ms™" (left), oy(v) by Ims™" up to 19ms~"' (right). All fields
depend on ¢ (abscissa) and p (ordinate).

7.4.2 Time dependent multiresolution analysis at fixed (¢, p)

From Fig. 7.3, the ¢ = 65° N line was judged to be a reasonably representa-
tive latitude to discriminate blocking from nonblocking, since it cuts through
the block structure. The Hovmoller diagram of Z(x, 65°N, 70kPa, 1) is
shown in Fig. 7.6. In such a figure, upper-left to lower-right diagonal struc-
tures are typical of progressive synoptic weather patterns. Vertical structures
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Fig. 7.6. Hovmoéller diagram of Z(A, 65° N, 70 kPa,r) (Dm), grayscale. Abscissa is A,

ordinate 7 (d), advancing downwards. Dotted, dash-dotted and dashed lines indicate
the onset ¢ of nonblocking, Atlantic and Pacific blocking #-intervals, respectively.

indicate stationary features, and conversely almost-horizontal structures
indicate very rapidly moving features. A curve parallel to the main diagonal
corresponds to a speed of 771 27ra cos 65° ~ 8§ kmh™!. The light regions of this
figure very clearly depict four blocking events in the expected t-intervals
[0, 6.5], 19, 26.5], [44, 56.5], [77,83] d near the Atlantic (near A = 0) and
one in [28.5,40] d near the Pacific (near A = —150°) [12]. The third
Atlantic blocking event is very strong, and clearly moves in a retrograde
manner (upper-right to lower-left). Apart from these features it is difficult
to extract other insight from the complicated patterns. There is a range of
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scales displayed, since there are both regions with many close contour curves
and broad, more uniform areas.

To be able to determine more from this figure, a multiresolution analysis
(~Section 7.3;5)~ was performed for each . Z(A,f)= ZJ.J:_OI Zj(k, 1),
Zi(x 1) = S ij(t)t/f;’,fr(k). Figure 7.7 shows the result. The sum of the
six panels in Figure 7.7 reproduces Figure 7.6. Each panel labeled ‘MRA j°
shows a field Z(A, 1) gfnerated by the linear combination of 2/ basis functions
¥y and coefficients Zj, as in (7.28). The j = 1 (second-largest scale, 1) level

days > '78/12/1:0

=100 0 100 -100 0 100
longitude longitude

Fig. 7.7. Hovmdller diagram of multiresolution analysis of Z(A, 65° N, 70kPa,r)
(Dm), as in Fig. 7.6. Each panel labeled ‘MRA j* corresponds to expansions

Zi(h 1) (7.28) in i,
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by itself clearly shows the same blocking ridge pattern as Fig. 7.6. This
suggests that information encoded in just the two numbers ZU and Zu
may describe the presence of blocking, at least for these data. The intermedi-
ate scales 27/ =1, 1 L capture patterns associated with synoptic meteorol-
ogy, from Atlantic-size (j = 2) down to Hudson Bay-size (j = 4). Generally
speaking, there are more progressive structures evident during nonblocking.
For example: Zz for A < 0 (western hemisphere) during the first nonblocking
interval, [7, 18.5] d, and for 0 < A < 100° (over Europe and Russia) during
the fourth nonblocking interval, [57,76.5] d; f3 at these times and also
globally during the fifth nonblocking interval, [83.5, 89.5] d. Such progressive
structures are absent from Zl, except for transitions from one mode to
another, e.g. from k =1 (western) to k = 2 (eastern hemisphere) close to
the transition times (jumps in 1°) 27 d and 57 d."

To investigate whether the presence of blocking might be described by just
the two coefficients le and 212, their time series are presented Fig. 7.8. For
the most part, the curves tend to stay at large amplitudes, apart from each
other during blocking, and to approach each other at small amplitudes
during nonblocking. As might be expected, the eastern and western hemi-
sphere wavelet modes exchange signs during the Pacific blocking relative to
the Atlantic blocking.

The evolution of Zlk(l), k=1,2, can also be described in a dynamical
phase space, Fig. 7.9. Here it may be seen that Atlantic blocking is roughly
characterized by counterclockwise, 211 > 0 leading 212 < 0 orbits in the
fourth quadrant, while Pacific blocking is characterized by clockwise,
Zn < 0 lagging le > 0 orbits in the second quadrant. Nonblocking points
cluster nearer to the origin in all quadrants. The empty regions enclosed by
the orbits suggest instabilities, although either longer time series or projection
onto higher-dimensional phase space, or both, would be required to confirm
this. If such diagnostic qualities were robust for more data, they could be
useful in predicting blocking, an outstanding problem in extended-range
weather prediction.

It should be noted that there are exceptions to these observations. That is, occasionally Z; or Z, may
appear stationary during nonblocking, or progressive during blocking.

Also, the apparent low-amplitude (a few m), small scale (j > 4) stationary structures over the eastern
USA and Europe seem unphysical. These are probably artifacts, but not uni(ﬂue _to this analysis; almost
identical patterns are seen in Fourier band-pass filtering (i.e., Z;’p(k, 1) EZZ‘;‘:—Z} Z,(HF,(x) for high j) of
this data (not shown). The stationary structures are aligned with mountain ranges, but the disturbance
amplitudes are probably smaller than the original sensor sensitivity and so probably indicate mountain-
generated artifacts from the NMC analysis procedure.
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Fig. 7.8. Time series of Z“ (dark curve) and 212 (light curve, Dm), at
(¢, p) = (65°N, 70 kPa). Abscissa is ¢ (d). Dash-dotted, solid and dashed curves
indicate nonblocking, Atlantic and Pacific blocking, respectively.

7.4.3 Kinetic energy transfer functions

Table 7.1 contains some numerical results of the analyses. The /. are the
observation counts of the various states. The —ZJ Izk 1 {({M)} are the
transfers of KE to the mean ﬂow from all eddies. Although not below
machine precision, the ZJ ! Zk {{Lj)} are negligible.

Table 7.1. Numerical results

Blocking state

Non- Atlantic Pacific

I 87 69 24
J—1 2

Z{(ij(me—z) 0.5 2.9 —0.4
Jj=0 k=1
J-1 2

(M) }(mWm™) 16.1 90.8  —317.0

i
<)
=
Il
—_
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D20 component phase space of Z(65N,70kPa) / Dm
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Fig. 7.9. (Z,,, Z,,) phase space (Dm). Dash-dotted, solid and dashed curves for n, A
and P, respectively. Markers © for nonblocking, % for blocking. Initial blocking times
(d) are labelled. Every sixth day an arrow to the right of the trajectory shows the
direction of d(Z,,, Z;,)/dt.

The global KE transfer function statistics {{(M, L)?lc’b)} are presented in
Figs. 7.10-7.13. Each panel of these four figures, as well as of Figs. 7.15—
7.20, is labeled by resolution j, with 2/ abscissa values k for location.
Comparing Atlantic blocking to nonblocking, Figs. 7.10-7.11, the following
observations suggest eddies feeding energy to the block. The second-largest
scale, eastern hemisphere part (j, k) = (1, 2) gains KE mainly from the mean
flow. At the scale %(/’ = 2) there is a loss to both mean and eddies just to the
west (upstream) of the block (k = 2), resulting in a gain {(L5)} to a large
eddy at the block location (k = 3). (Throughout this chapter, block location
in k, at a given resolution j, is indicated by a white bar.) Similarly the j = 3
scale shows enhanced KE losses to the mean ({(Mﬁ)}) and eddy ({(L?k)},
k =4,5) flows just upstream of the block, accompanied by smaller losses
to the mean for j = 4,2 < k < 10. The smaller scales j = 5, 6 contain negli-
gible transfers (less than 50 mW m~2). There are sharply positive {(F,»’,?)} (not
shown) just upstream of the block, with broad negative {(F,»/,f)} to the block’s
east (downstream).



Transfers of KE between wavelet components during blocking 285

===
0.2 1
1.2 i
0 SO
1 :
%.45 %@0.2
0.8
-0.4
06 = = = = - - -
06~ ==
0.4
1 2 1 2 3 4

1
4 8 12 16 20 24 28 32 8 16 24 32 40 48 56 64
k k

Fig. 7.10. {{ ‘f}()} and {(sz)}, (dashed and solid curves respectively, W mfz). Each
panel shows the 2/ values {(M)} corresponding to scale 277 of expansion (7.28). The
abscissae are k, where each sequence k = 1,...2 corresponds to the locations At
covering the entire circle, at resolution j. Negative ordinates are emphasized by a
gray background. The block longitude A& is indicated by a white bar extending up

from the abscissa.

For the Pacific block, Figs. 7.12-7.13, at the second-largest scale there is a
loss ({MT)}) to the mean flow downstream (k = 2) accompanied by a larger
gain ({(L}})}) from the eddies upstream (k = 1). At j = 2 (scale %) there is a
gain {(M;l)} from the mean at the block (k = 1) and a loss {(M§4)} to the
mean upstream of the block (kK =4). For the eddy contribution, there are
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large gains again at the block (k = 1,4) accompanying losses elsewhere,
especially from just downstream of the block (kK = 2). The mean flow feeds
KE downstream of the block at the % scale (j = 3, k = 4), while the eddy flow
removes KE at this scale everywhere but just at the block (k = 1)." Most of
the smaller scale mean transfers are negligible, but there are some significant
eddy transfers located away from the block at j =4, k= 5,8. Although

4 8 12 16 20 24 28 32
k

8 16 24 32 40 48 56 64
k

711 {(Ly™), as in Fig. 7.10.

fAnd curiously, also at the Atlantic block’s location (k = 5), inactive at this time in the data.
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7.12. ((M}")}, as in Fig. 7.10.

{(F;)} (not shown) is positive downstream of the block and negative at the
block, not unlike {(Ff,f)}, {(Fji)} is different in that the negative sector is only
slightly broader than the positive sector, and lies more coincident to the block
instead of distinctly upstream.

The content of Figs. 7.10-7.13 is summarized in the first two rows of Fig.
7.14, which depict {{(M, L);’A’P()Ly))}. All the remarks made about Figs.
7.10-7.13 also pertain here, but this condensed representation less vividly
shows the value of small transfers. The zonally (i.e. longitudinally) local
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7.13. (L")}, as in Fig. 7.10.

flux functions {(1‘?]-11’3"P (Ay))} (third row of Fig. 7.14) reveal a similarity
between both Atlantic and Pacific blocking as viewed in space and scale
simultaneously. Observe that (7.52) is obeyed. For both locations of blocks,
there is a A-interval with positive {(Eb(AZ,))} for larger j on the west
(upstream), and another A-interval with negative {(I?,b(kzl))} (very strong in
the Pacific case), at or just downstream of the block. That is, there are a
localized downscale KE cascade upstream of the block, and a localized upscale
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Fig. 7.14. {{((M, L, F )}"A’P (X))} (grayscale, W m_2). The same grayscale value map is

used for n,A,P. Rows are M, L, F, columns are nonblocking, Atlantic and Pacific
blocking, respectively. Abscissae are longitude A, ordinates resolution j, increasing
downwards. The white dots indicate the block longitude 2.

KE cascade downstream of the block. In the Pacific case there are also loca-
lized downscale cascades further downstream of the block.

Still more detailed insight may be gained by inspecting the ¢-dependence,
but the reader also may skip to Section 7.5 now. Figures 7.15-7.20 show
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Fig. 7.15. Nonblocking (Mj}) (grayscale, W m~2), as a function of location k
(abscissa) and ¢ (ordinate).

(M, L)]’.‘k’b). The gp-averaging operation (7.53) applied to these figures yields
the previous figures. In these figures the x indicates the block longitude A}’n,
and block latitude, the latter estimated as the greatest ¢,, for which

Z°0.0 0., 70kPa) — Z°(A2, ¢, |, 70kPa)| < 1 m (7.54)
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7.16. Nonblocking (Lj), as in Fig. 7.15, only different grayscale value map.

which is a measure of the northernmost vanishing of the geostrophic wind
zonal component.

To provide geographical reference and indicate the relevance of j, the
continental boundary curves are drawn, following a resolution reduction
A=Ay + Z;:'_:lo Zj of the topography/bathymetry, which retains only the
less resolved, j" < j structure. The smoothed boundaries illustrate that loca-
tion and shape are j-dependent in a multiresolution analysis. The
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Fig. 7.17. Atlantic blocking (MJ%), as in Fig. 7.15, same grayscale value map. The x
indicates the block longitude A2, and latitude (7.54).

(j, k) = (1, 2) gains seen in Figs. 7.10-7.11 from both mean and eddy flows
are also similar in Figs. 7.17-7.18, which show their ¢-dependence. The mean
and eddy flows feed (1, 2) north and south of the Atlantic block (Fig. 7.3
middle), around ¢ = 75° N and 35° N (near the jet stream), while the mean
also draws from (1, 2) south of it, around ¢ = 55° N. Although the losses
from (2, 2) just upstream of the block occur around the same ¢ in the south
for both mean and eddy transfers, the eddy gain to (2, 3) occurs in the north,
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Fig. 7.18. Atlantic blocking (Lﬁ;), as in Fig. 7.16, same grayscale value map. The x
indicates the block longitude A2 and latitude (7.54).

just downstream of an eddy loss. The j = 3, 4 scales show much spatial
structure, with gains and losses side-by-side, especially for (Lj%). This zonal
structure is not easily available to Fourier energetics analyses, since the latter
discard phase information. The ¢-dependence of (FJQ) (not shown) indicates
that both the downscale and upscale cascades occur well north of the block.



294 Aimeé Fournier

- 1 24 32 16 32 48 64
k k
7.19. Pacific blocking (M};c), as in Fig. 7.15, same grayscale value map.

The ¢-picture of (M, L)} ) in Figs. 7.19-7.20 shows between 50° and 65° N
the same western gains as Figs. 7.12-7.13, but also reveals strong losses to
eddies in the east, to the north of the block. Other sources and sinks, local in
@, are visible at j = 3, 4. Again in contradistinction to the Atlantic case, the
cascades exhibited by (F;;) (not shown) are more to the south, further from
the block.
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7.20. Pacific blocking (L};), as in Fig. 7.16, same grayscale value map.

7.5 Concluding remarks

Atmospheric blocking, like all nonlinear meteorological phenomena, involves
the interaction of a range of scales. Blocks are localized structures, which are
not well represented by truncated Fourier analysis, since the Fourier coeffi-
cients of A-localized structures decay very slowly with increasing wavenumber
n. This suggested to the author to translate the traditional Fourier analysis
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based atmospheric energetics [20] into a periodic orthogonal wavelet based
energetics.

First of all, it was found that the second-largest scale (hemisphere) wavelet
terms of a multiresolution analysis of geopotential height Z largely describe
the state of blocking as defined here. The density and trajectory of these
terms in phase space may provide clues to eventually understanding and
predicting blocking.

The wavelet-indexed KE transfer and flux functions simultaneously repre-
sent activity localized in space and scale, an advantage over Fourier-based
analogs, which represent global activity between scales. Applying this tech-
nique to the blocking and nonblocking data reveals new energetic character-

istics of the phenomenon. In general, the eddy source term (L%) feeds KE to

the block location at large scales, and extracts it from neighb(j)ring locations
at intermediate scales. This supports the heuristic idea that blocks are main-
tained by an upscale KE energy cascade.

Depending on location, the transfer and flux to smaller scales can have
either sign. Specifically, the analysis reveals downscale (upscale) cascades
west (east) of the block.

The mean flow KE source (<M.1bk>) also generally feeds the block location at
large scale. The Atlantic and Pacific cases were more dissimilar for (M) than
for (L), so the former characteristic is more difficult to interpret.

This technique may be extended to include space-scale budgets for avail-
able potential energy, enstrophy, and other quantities. These calculations are
in preparation.
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Abstract

In the field of atomic and solid state physics, wavelet analysis has been
applied so far in three different directions: (i) time—frequency analysis of
harmonic generation in laser—atom interactions; (ii) ab initio electronic struc-
ture calculations in atoms and molecules; and (iii) construction of localized
bases for the lowest Landau level of a 2-D electron gas submitted to a strong
magnetic field. We survey these three types of applications, with more
emphasis on methods than on precise results.

8.1 Introduction

There are two ways in which wavelets could play a role in atomic physics and
possibly in solid state physics.

First one may envisage them as physical objects, namely quantum states or
wave functions. It is commonplace to remark that coherent states (CS) have a
privileged role in atomic physics. Laser—atom interactions, revival phenom-
ena, Rydberg wave packets and various semi-classical situations are all
instances in which a coherent state description is clearly well-adapted. Of
course, what is implied here are canonical CS, associated to the harmonic
oscillator or the electromagnetic field [36]. But wavelets are also coherent
states, namely those associated to the affine groups in various space dimen-
sions, as we have seen in Chapter 2 (see [1] for a review on coherent states).
Thus wavelets could well be thought of as convenient substitutes for cano-
nical CS. However, this suggestion is still speculative at the present moment,
very little has been achieved in this direction.
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Actually there have been so far only a few applications of wavelets in
atomic physics and in solid state physics, and in all cases they were used as
a mathematical tool. We will survey these applications in the present chapter,
with more emphasis on methods than on actual results. More precisely, we
will describe three main directions of research.

(M

(@)

(€)

When an atom is hit by a very intense, ultra-short laser pulse, it may emit light,
in the form of harmonics of the incident electromagnetic field. The time profile
of the emission spectrum reveals new information on the dynamics of this
interaction process. Clearly, this time profile is out of reach of the traditional
Fourier spectral methods, a time—frequency analysis is required. This phenom-
enon has received recently much attention, both experimentally and theoreti-
cally, although the numerical simulations are mostly limited to one-electron
atoms. Notice that both the Continuous Wavelet Transform (CWT) and the
Windowed Fourier Transform (just another name for canonical CS!) have been
used.

Both the extension of these phenomena to multi-electron atoms and the self-
consistent electronic structure calculations (Hartree—Fock and generalizations)
require the use of appropriate orthogonal bases for the description of the radial
part of wave functions. Here (discrete) wavelet bases (or even frames) could
adequately replace traditional plane waves or atomic orbital (LCAQO) bases.
The reason is that orthogonal wavelet bases with good localization properties
will minimize the number of terms required for an accurate calculation of wave
functions and related observable quantities. This program has been fulfilled in
ab initio electronic structure calculations, in atoms, molecules and crystals. The
crucial feature is the narrow support of the wavelets constituting an orthonor-
mal basis. This is in fact the most active line of research with wavelets in solid
state physics.

Another application in solid state physics deals with a two-dimensional physical
system, namely an electron gas submitted to a strong magnetic field, the set-up
of the quantum Hall effect. Here wavelets yield various bases for the lowest
Landau level, a necessary step for the description of the fractional quantum
Hall effect.

Except for some marginal cases, these three topics are the most significant
applications of wavelets in atomic and solid state physics. In our opinion,
they are sufficiently promising to establish the credentials of wavelet methods
in those fields of physics. Both the CWT, as a precise time-frequency analysis
tool, and discrete (bi)orthogonal wavelet bases offer great potential for novel
physical applications.
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8.2 Harmonic generation in atom-laser interactions
8.2.1 The physical process

When an atom is exposed to a strong laser pulse, two competing processes
may occur, the ionization of the atom and the emission of light. This emission
process results from the oscillations of the atomic dipole at frequencies which
are odd multiples (odd harmonics) of the driving field frequency (even har-
monics are forbidden by parity conservation). Harmonic generation provides
an efficient source of coherent soft X-rays [44], which explains the potential
interest of the phenomenon for applications. Now for a full understanding of
the emission mechanism, one would like to answer questions like: When are
harmonics emitted during the optical cycle? What is the time evolution of the
emission during the laser pulse? . . . . Clearly, this is beyond standard spec-
tral methods, a time—frequency analysis is needed here.

Let us consider for simplicity the case of atomic hydrogen exposed to
a strong laser pulse whose celectric field is described classically as:
E = Ey(¢) coswt, where E; is the pulse envelope. The atomic response to
such a pulse is highly nonlinear, which leads to various unexpected phenom-
ena. One of them is the emission by the atom of high order harmonics of the
driving field. According to the semiclassical interpretation [18, 39], this har-
monic generation results from the following two-step mechanism. The elec-
tron tunnels through the potential barrier formed by the combined Coulomb
and electromagnetic (e.m.) fields. When it is outside, it is accelerated by the
laser e.m. field and may be driven back to the residual ion. There, it may
either be scattered, or recombine back into the ground state, emitting a
harmonic photon. This interpretation is supported by quantum-mechanical
models [41], in which the time-dependent dipole moment is expressed as the
sum of the contributions from the electron trajectories in the continuum.

The resulting emission spectrum exhibits characteristic features which
depend on the laser intensity. At low laser intensity, the spectrum of the
emitted radiation decreases rapidly for increasing harmonic order, as
expected. At high laser intensity, the spectrum changes drastically: after a
rapid decrease for the first orders, it exhibits a long plateau, followed by a
sharp cut-off. A spectacular example is given in Figure 8.1. Experimentally,
harmonic orders as high as the 135th order have been observed with a Nd-
Glass laser, which corresponds to a wavelength of 7.8 nm, i.e. in the soft X-
ray (XUV) regime [43, 46]. The nonlinear character of the atomic response is
manifested, for instance, by the fact that, in the spectrum of Figure 8.1, all
the harmonics from the 69th to the 109th have almost equal intensity (hence
the word ‘plateau’), whereas the following ones drop dramatically.



302 J.-P. Antoine, Ph. Antoine and B. Piraux
1.0 - T T T

g1 B85 89 g3

0.8t 73 7 97 o1 4

69 105

109

Signal (au)

115

0.2 r 19 v

0.0 4 L . L
160 140 120 100 80

Wavelength (A)

Fig. 8.1. Harmonic spectrum obtained in He for A = 1053 nm and a laser intensity of
3 x 10" Wem™2; in this case, the first harmonics up to about the order 67 are filtered
out. Note the sharp cut-off around the order 113 (from [51]).

In the low intensity regime, the atomic response may be calculated by
perturbation theory. But in the intense field regime, where the external
field is of the same order or higher than the binding atomic field, nonpertur-
bative methods are needed. A possible approach consists in solving (numeri-
cally) the time-dependent Schrodinger equation [38]. Atomic dipoles
calculated by this method may be analysed with the standard Fourier spectral
method, and the corresponding harmonic spectra exhibit the global features
described above. However, a time—frequency analysis provides a deeper
understanding of the mechanism: it allows to determine the time profile of
each individual harmonic and from this one may deduce that harmonic
emission takes place only when the electron is close to the nucleus.

8.2.2 Calculation of the atomic dipole for a one-electron atom

As mentioned above, the primary cause of harmonic emission is that the
electron of the atomic hydrogen oscillates back and forth under the influence
of the laser field, hence creates a dipole moment d(¢). Then, according to the
Larmor formula, the energy radiated between frequencies w and w + dw is
proportional to |@(w)|?, where @(w) is the Fourier transform of the dipole
acceleration a(f) = cf(t). Therefore the problem consists in calculating
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(numerically) the acceleration a(f) from the time-dependent Schrodinger
equation:

e, 1) = (Hy + AW p)E, ) (5.1

Here, H,, is the atomic Hamiltonian, p is the electron momentum, the vector
potential A is written in the dipole approximation, i.e. A(r, t) = A(¢) depends
on time only, and is treated as a classical variable, and finally the quadratic
term A’ has been gauged away. It is convenient to take the vector potential
along the z-axis:

A(t) = A,(1) sinw;t €.,

where A,() is the envelope of the pulse and w; the laser frequency. Notice
that the shape of the pulse influences considerably the harmonic emission. In
terms of the solution ¥ (r, ) of the Schrédinger equation (8.1), the atomic
dipole along the z-axis reads

d@) = (Y(r,0) | z | ¥(r, 1)). (8.2)
Using Ehrenfest’s theorem, the corresponding acceleration may be written
as:
0A.
ar

a(t) = d(t) = =(wlr. 1) | 5 9(r. ) + (8.3)
The next step is to expand ¥(r, 7) in an appropriate basis. For obvious rea-
sons, one takes spherical harmonics for the angular part. As for the radial
part, a convenient choice is a Coulomb Sturmian basis {S,,(r)}, because of its
good convergence properties [50]. Notice that complex Sturmian functions
are required, in order to reproduce the correct asymptotic behaviour (out-
going wave) of the wave function [34]. Thus we write:

Snl(r)

r

Y, )= a,(l)

nlm

Y['(0. ¢). (8.4)

Inserting the expansion (8.4) into the Schrédinger equation (8.1), one obtains
a set of first order differential equations for the coefficients a,;(¢), that can be
readily solved numerically (but without approximation), to yield the dipole
acceleration a(f). A typical result is shown in Figure 8.2. The dipole accel-
eration presents a region of rapid oscillation, starting well before the max-
imum of the pulse (taken as the origin of time) is reached. This region
corresponds to the generation of harmonics, as will be confirmed by the
time—frequency analysis.
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Fig. 8.2. Acceleration of the atomic dipole as a function of time (both in atomic
units). This dipole is the result of the interaction of atomic hydrogen with a strong
laser pulse of frequency w, = 0.118 atomic units. The pulse envelope A,(7) is
Gaussian and its full width at half maximum is 20 optical cycles. The peak intensity
is 2 x 10" Wem™2.

8.2.3 Time—firequency analysis of the dipole acceleration: H(1s)

Taking now the Fourier transform a{w) of the dipole acceleration a(z), one
obtains the power spectrum. Figure 8.3 shows two typical spectra. The left
one corresponds to a rather low frequency e.m. field (w, = 0.047 a.u.) and
moderate intensity. The spectrum exhibits a large number of odd harmonics
of the laser frequency, which form a long ‘plateau’, with a sharp cutoff
beyond w = 33w,. On the right, we show the spectrum corresponding to
the high intensity pulse of Figure 8.2. Of course, no time localization is
provided. When is each harmonic emitted? What is its time profile?
Answering those questions requires a time—frequency analysis of the accel-
eration, as discussed in Chapter 1, section 1.1:

00

a(t)— a(a, 1) = / o (1) a(t) dt. (8.5)
—00
In this expression « > 0 is the scale parameter and t the time parameter
(usually denoted a and b, respectively, as in Chapter 1). Two types of
time—frequency analysis have been used in the present problem, namely

. 2
e a Gabor transform, corresponding to g,.(f) = /% ¢ 3~

(g4-(?) 1s then a canonical coherent state) ,
e a wavelet transform, with a (truncated) Morlet wavelet g(f) = ¢'e™"/ 2 and

Zor(D) = gl (1 — 7).
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Fig. 8.3. (Left) Power spectrum (arbitrary units) as a function of harmonic order, in
the case of the interaction of atomic hydrogen with a laser pulse of frequency
w, = 0.047 a.u. and (low) peak intensity 10" Wem™2. The pulse has a 4 optical
cycle sine-square turn-on and -off and a flat top of 16 optical cycles. (Right)
Harmonic spectrum of the high intensity pulse of Fig. 8.2.

The information contained in the function a(«, t) may be exploited according
to several different strategies. First, one may calculate the emission strength
as a function of time, for a given frequency, that is, one evaluates a(«, t) for
fixed a. One can also estimate the instantaneous frequency of emission of a
given harmonic, as a function of time (t). Alternatively, one may determine
the full harmonic spectrum for a fixed time t = ¢,, that is, consider a(«, t,) as
a function of .

This technique has been applied successfully in the case of a hydrogen
atom, both in its ground state and in the metastable state 2s, or a simplified
model thereof (two-level atom), and considerable insight has been gained in
the physical mechanism of harmonic generation. Let us give some details on
the various aspects of the analysis.

8.2.3.1 Time dependence of harmonic emission in H(1s)

Let us begin with a hydrogen atom in its ground state. According to the
semiclassical description, the so-called two-step model [18, 39], harmonic
emission takes place only when the electron is close to the nucleus (see
Section 8.2.1). Using a time—frequency analysis at fixed frequency, with a
window whose bandwidth is smaller than 2w, , one is able to estimate the time
profile of individual harmonics in the emitted radiation, as indicated by the
following results.
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(i) Time profile of harmonics: Choosing for « in (8.5) the inverse of a fixed odd
multiple of the laser frequency, one obtains the time profile of the corre-
sponding harmonic [3]. First, a Gabor analysis yields the global shape of
each harmonic (Figure 8.4, left). Two interesting points are visible on this
picture. First, the emission of each harmonic starts at a given characteristic
time, which depends on the laser intensity. Then, as their order increases, the
harmonics are emitted during shorter time intervals. This implies that the
linewidth of higher harmonics should broaden with their order. The fact that
harmonic emission stops before the field has reached its maximum amplitude
(in r = 0) is due to the rapid excitation and ionization of the atom. This effect
has been observed experimentally [52].

The picture may be refined by using a wavelet analysis (using a Morlet
wavelet). Figure 8.4 (right) shows the time profile of the 9th harmonic of
the same pulse. A fine structure appears, which is 2w;-periodic, in agree-
ment with the semiclassical interpretation. Notice that, since the time
resolution is better than half the optical period, the filter bandwidth is
larger than 2w,. Therefore several harmonics are accepted simultancously
by the filter.

The same technique reveals also how the time profile depends on the
position of the harmonic in the spectrum. Take for instance the case
depicted in Figure 8.3 (left), which corresponds to a low frequency regime
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Fig. 8.4. (Left) Time profile (from Gabor analysis) of the odd harmonics (1 — 9)
produced as a result of the interaction of atomic hydrogen with the same laser pulse
as in Fig. 8.2 (time is in atomic units). (Right) Time profile (from wavelet analysis) of
the 9th harmonic emitted in the same pulse. Note that the frequency bandwidth of
the pulse exceeds in this case 2w, .
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(w, =0.047 a.u.). The wavelet analysis shows that the time profile of
harmonic 21, in the plateau (a), and that of harmonic 39, in the cutoff
(b), are totally different (see Figure 8.5) [6]. The emission process is clearly
more complex in the first case. In the case of a harmonic beyond the
cutoff, one sees only one peak per half optical cycle. On the contrary,
the time profile of harmonic 21 has two peaks for each half optical cycle.
This behaviour is in agreement with the quantum-mechanical model of
Lewenstein et al. [41], at least in the limit of high field and low frequency
(the high frequency case is also interesting, but physically more complex).
In the cutoff, there is only one electron trajectory contributing to the
emission [42]. As a result, the decrease in the spectrum beyond the cutoff
is very smooth and regular. By contrast, in the plateau where several
electron trajectories lead to the same harmonic, the resulting interference
leads to a highly structured spectrum as function of the harmonic order
[42]. For instance, the presence of two peaks per half optical cycle in
harmonic 21 reflects the existence of two return times contributing to
the emission of the same harmonic, that is, two interfering electron tra-
jectories. By analysing the harmonic emission in the time domain rather
than in the frequency domain, the contributions of the different electron
trajectories in the continuum are naturally separated [5]. In addition, the
wavelet analysis also reveals a good agreement between the time-depen-
dent Schroédinger equation model and the strong field approximation
(SFA) model, for harmonics close to or beyond the cutoff [6].
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Fig. 8.5. (Left) Time profile (from wavelet analysis) of harmonic 21 (in the plateau)
for the same conditions as in Fig. 8.3 (left); time is measured in optical periods.
(Right) The same for harmonic 39.
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(ii) Temporal control of harmonic emission: In the semiclassical description,
the electron emits harmonics when it is close to the nucleus. Therefore, the
harmonic emission may be controlled if one uses a laser beam with a time-
varying polarization. When the polarization is linear, the electron oscillates
back and forth, hence it comes periodically close to the nucleus, and harmo-
nics are emitted. When the polarization is elliptic or circular, the electron
stays far away and harmonic generation is suppressed. This polarization
effect is demonstrated in Figure 8.6, which shows in parallel: (left) the time
evolution of the harmonic 9, and (right) the projection of the full wave
function on the bare 1s state of atomic hydrogen [4]. The latter measures
the probability of the electron being close to the nucleus. Hence it oscillates
when the field is linearly polarized, but remains constant in the circular or
elliptic cases. As expected, the two curves are in perfect correspondence: the
harmonic is totally suppressed when the polarization of the laser beam is
circular and it reaches its maxima precisely when the polarization is linear.
In fact, this effect may be exploited further. It has been demonstrated on
the basis of the strong field approximation (SFA), that the time profile of the
harmonic emission consists of a regular attosecond pulse train [5] (1 attose-
cond = 107'%s). By using a polarization which is linear during a very short
period in place of a fixed polarization, it should be possible to select one of
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Fig. 8.6. The polarization effect. (Left) Intensity of the 9th harmonic as a function of
time (in atomic units) in the case where the atom is exposed to two perpendicularly
polarized laser pulses of 10" Wem™2. The photon energies are 0.118 and 0.110
atomic units, respectively. Both pulses have a flat top and sine-square turn-on and
-off. The total duration of the pulse is 20 optical cycles. (Right) Corresponding 1s
population, measured by the projection of the full wave function on the bare 1s state
of atomic hydrogen (from [4]).
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these attosecond pulses of the train. This scheme opens the route to the
production of a single intense attosecond pulse.

8.2.3.2 Harmonic emission in H(2s)

The same space localization effect of the harmonic generation takes place if
the hydrogen atom is initially in the metastable state 2s [3]. When the latter
interacts with a high intensity laser pulse, the system is excited into a linear
superposition of many Rydberg states (mainly 8p, 9p and 10p). As a result,
ionization is significantly suppressed and hence the atomic dipole does not
vanish at the end of the interaction with the pulse. A similar situation occurs
in H(1s), at low intensity, but the dynamics is much more complex now,
because of the excitation of many atomic states. In order to get an insight
into the time evolution of the process, we look again at the time profile of a
typical harmonic (the third one), obtained by a Gabor analysis and shown in
Figure 8.7(a). The curve shows two pronounced maxima. The left one corre-
sponds to the emission of the harmonic. However the second one (around
1300 a.u.) is due to an atomic frequency which is almost degenerate with
3ow; and is present during the free evolution of the dipole after the interac-
tion with the pulse. This interpretation is confirmed by an analysis of the
population dynamics. We present in Figure 8.7(b) the time evolution of the 1s
population (measured again by the projection of the total wave function on
the 1s bare atomic state). This population is significant only at two moments:
around 1000 a.u. before the maximum of the pulse and then again after
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Fig. 8.7. (Left) Time profile (in atomic units) of the third harmonic emitted by atomic
hydrogen initially in its 2s state and exposed to a Gaussian pulse of intensity 2 x 10'*
Wcem™ and width 20 optical cycles, and laser frequency w, = 0.118 a.u. (Right) 1s
population as a function of time for the same situation (from [3]).
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interaction. In the first region, the 1s population oscillates with frequency
2w; around its average, which corresponds to the back and forth oscillation
of the electron through the central region of the atom, and the concomitant
emission of the harmonic. As for the second region, it manifests a rapid
exchange of population between the 1s state and excited states, with no
harmonic emission.

8.2.3.3 Instantaneous frequency of emission

Actually, the frequencies of the harmonics are exact odd multiples of the
frequency of the driving field only if the laser intensity remains constant.
On the contrary, when the laser intensity increases, the frequencies are
slightly above the exact multiples of w; (blueshift). To visualize that effect,
we take a linear ramp as the pulse shape, which produces a long plateau, up
to 4lw;. On this spectrum, we perform a Gabor analysis rather than a
wavelet one, in order to get a time resolution that is independent of the
harmonic order. Then all the harmonics have the same behaviour: the
Gabor coefficient grows rapidly in time (~ intensity) and then reaches a
saturation intensity with some oscillations. For a given harmonic, the instan-
taneous frequency of emission is given by the time derivative %qﬁ(a, 7) of the
phase ¢(a, 7) of the corresponding Gabor coefficient. This notion is familiar
in wavelet analysis, since it plays an essential role in the determination of
spectral lines [20], but applies in the Gabor case as well. The computation
fully confirms the effect: each harmonic is slightly blueshifted up to the
moment (indicated by an arrow) when it reaches the saturation plateau
(Figure 8.8) [54].

8.2.3.4 Harmonic spectrum at fixed time

Alternatively, one may choose a fixed time t = ¢, and determine the full
harmonic spectrum. The computation has been performed on a two-state
model for the atom, both with a Gabor analysis [24], and with a wavelet
analysis [21]. The two methods yield very similar results, except that the
Gabor spectrum contains more noise, which is due to the presence of the
so-called hyper-Raman lines. For the wavelet case, two different wavelets
have been used, the standard Morlet wavelet and another one, of compact
support, which may have independent interest. This new wavelet is defined
as:

L1 +cos(t/N)], te€[~Nm, Nxl.

. 8.6
0, otherwise (8.6)

F() = {
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Fig. 8.8. Time derivative of the phase of the Gabor coefficients for o' = 23w, (lower

part) and 31w, (upper part). The pulse is a linear ramp of 20 optical cycles and a
maximum intensity of 10" Wem™. The arrows indicate the times when each har-
monic reaches the saturation plateau (from [54]).

Here N is an integer, which gives the number of oscillations of F(7) within its
support (it is clear that one needs here a wavelet that oscillates rather fast, a
Mexican hat, for instance, would be totally inadequate; typically one takes
N = 30). Two examples of spectra are shown in Figure 8.9, taken respectively
with an F wavelet (a) and a Morlet wavelet (b). As can be seen, there is no
significant difference between the two spectra. This confirms that, here as in
general, it is not the particular choice of the wavelet that matters, but rather
the fact that its shape and the parameters chosen match closely the signal.

8.2.3.5 Which time—frequency method?

It is clear from this discussion that a time—frequency analysis is essential here.
Harmonic generation is a highly nonstationary process, whose temporal evo-
lution sheds much light on the actual physical phenomenon. This informa-
tion is obviously inaccessible to the standard Fourier technique. In addition,
as we pointed out already in Chapter 1, Fourier analysis is highly unstable
with respect to perturbation, because of its global character. The remedy is to
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represent the signal in terms of localized components, such as Gabor func-
tions or wavelets.

Then a natural question is the choice between wavelets and a Gabor ana-
lysis. Globally, the two methods give similar results, provided the time reso-
lution or the bandwidth of the analysing functions are identical. However,
wavelet analysis is more appropriate if we want to study simultaneously the
time profile of several frequencies, keeping the same analysing function. This
results of course from the well-known property of wavelets, that Aw/w is
constant. As far as harmonic generation is concerned, a wavelet analysis is
preferable in the following two cases: (i) for studying very high order har-
monics with a time resolution better than the optical cycle, and (ii) when the
atomic structure plays a more crucial role; in that case, hyper-Raman lines
resulting from atomic transitions may occur in very short time intervals
during the interaction with the pulse [3]. On the other hand, it may be
inconvenient to make the time resolution depend on the frequency. For
example, in order to demonstrate the slight blueshift of the harmonic fre-
quency (Section 8.2.3.3), the time resolution has to be much larger than the
optical period since the shift is much smaller than 2w,, but it should be the
same for all harmonics.

So the answer to the question, wavelets or Gabor?, depends essentially on
the physics of the problem at hand. The crucial choice is not that of a
particular approach, Gabor or wavelets, or even that of a particular analys-
ing function, what really matters is that the parameters of the analysing
function be well-adapted to the signal. The case of the fixed time analysis
of Section 8.2.3.4 is another confirmation. The conclusion is that hoth meth-
ods are needed in fact.

8.2.4 Extension to multi-electron atoms

The analysis of the interaction between a laser pulse and a one-electron atom,
discussed in this section so far, rests on the possibility of solving numerically
the time-dependent Schrodinger equation. The resulting wave function is
then used to estimate various phenomena such as harmonic generation, as
discussed above, but also multiphoton ionization, excitation of Rydberg
wave packets, etc. In all these cases, the physical processes are complex
and largely transient, so that a time—frequency analysis is necessary for a
detailed description. Both the CWT and the Gabor analysis prove useful in
this respect, as they provide otherwise inaccessible information that comple-
ments the traditional tools of atomic physics.
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All that is even more true and interesting for two electron atoms, such as
He or H™. But now the situation is much more complicated, because of the
correlation between the two electrons. It becomes very hard to solve directly
the time-dependent Schrodinger equation and calculate a reasonable two-
electron wave packet W(r;,r,, 7), although a clever choice of coordinates
may considerably alleviate the difficulty. Few results have been obtained so
far. A case in point is a recent paper [40], which treats the case of harmonic
generation and ionization from a one-dimensional two-electron He atom.
Their conclusion is that, at least for a limited range of laser frequency and
intensity, the harmonic generation spectrum in essentially the same as in the
one-electron case (for higher intensity, double ionization becomes predomi-
nant). This result offers hope that the time—frequency method may be useful
to a much wider range of physical situations than those analysed so far.

However, the full three-dimensional problem is still intractable. The diffi-
culty is to find an appropriate basis for expanding the two-electron wave
function, in such a way that numerical methods converge fast enough. In
fact, only the radial part is subject to discussion, since one likes to keep the
spherical harmonics for the angular part, so as to take advantage of the
Racah algebra. One may think of several candidates for a good radial
basis, such as generalized Sturmian functions, multiresolution-based ortho-
gonal or bi-orthogonal wavelet bases, or even various kinds of frames, for
instance those derived from Schrodinger coherent states. But in fact this a
particular instance of a more general problem, namely the construction of
multi-electronic wave functions, that we now discuss.

8.3 Calculation of multi-electronic wave functions

In any atomic process, the cross-section to be computed is proportional to
| Hpyy | i)|*, where H,,, is the interaction Hamiltonian. The initial state | i)
and the final state |f') are atomic states, possibly coupled to a continuum
electronic state, in the case of an ionization process. As we have seen in
Section 8.2, one may apply various approximations to the interaction
Hamiltonian, such as the dipole approximation, the classical treatment of
the e.m. field, etc. But the hard problem is to compute the initial and final
wave functions. Many standard techniques are available for this purpose,
such as variational methods, but the key ingredient is the expansion of the
wave function into a suitable basis. Here again, the angular part will be
described by spherical harmonics, only the radial part must be found. As
mentioned above, a possibility is to use an orthogonal wavelet basis on
[0, o).
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Of course, what we have here is a different use of wavelets, namely as
convenient bases for expanding solutions of a partial differential equation.
This is a familiar situation, for instance in the resolution of nonlinear PDEs
[45]. The advantage of wavelets, as compared to usual bases, resides in their
good localization properties. Let us go into some detail.

8.3.1 The self-consistent Hartree—Fock method (HF)

One of the best answers to such questions is given by the self-consistent
methods, namely the well-known Hartree—Fock method and its descendants.
We shall sketch it very briefly here in order to give some feeling for the
technique and the possible use of wavelets for improving it. Further details
may be found in standard textbooks, e.g. [15].

The basic idea is to obtain the wave function ¥ for an atom with N
electrons by a variational computation

(W | Hy | W) =0, (8.7)

where H, denotes the atomic Hamiltonian. The total antisymmetry of W
(Pauli principle) is enforced by taking it as a Slater determinant of one-
electron wave functions:

. ¢1(1) ... &)

v=—| .

N! . . ’
on(1) ... on(N)

where ¢;(j) is a one-electron wave function (‘orbital’) of the jth electron. It has
the form

. 1 m
¢i(r, spin) = — Py (1) Y;(0, @) xon, (8.8)

where Y/ is a spherical harmonic (thus allowing the Racah algebra for
angular momentum), x, 1is a spin orbital, P,(r) is an unknown radial
function and i=(n,/,m;, m;) is a collective quantum number (m, =
+1my=—1,...1; [=0,1,...n—1; n=1,2,...). One usually imposes
orthonormality conditions

(@i | ) =8

o]
/ o) Py () dr = 8,081
0

and thus we rewrite the variational equation (8.7) with Lagrange multipliers
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8{<\D|Hm | W>+ZA,-,<¢1-|¢>,->} =0. (8.9)
i<j

Inserting the ansatz (8.8) into (8.9), one obtains the so-called Hartree—Fock
(HF) equations that determine the radial functions {P,;(r)}:

2
{d—z - @ +%[Z — Y(nl;r)— En/]}Pn/(") - gX(nl; r) =
dr r r r

- Z Antn't Pﬂ’l(”)- (810)

In this equation, Y is called the direct term and represents a local (spherical)
potential, whereas the so-called exchange term X is nonlocal. These terms
have the following form:

Y(l:r) =Yy Yol 15 7)

nl  k
X(nl;r) =YY" Xy Yo W15 )Py (1)
nl  k

where 1, X,y are coefficients obtained from the angular momentum
algebra and

oo Lk
Yl W'l ) = /0 ’Z% PP, (¥ dr, (8.11)

r_ =min(r, ), r. =max(r,r).

Because of the exchange term X, (8.10) is a system of coupled, nonlinear
equations in the unknown functions P,;.

The usual technique consists in choosing for P,; a simple trial function and
solving the HF equation (8.10) by iteration. Typical choices are a Gaussian
or a Slater function /"~'e™*". In general, many terms are needed in the expan-
sion, which makes the method cumbersome or forces drastic truncations,
thus leading to unrealistic results.

The alternative possibility that we consider here is to take instead for P,
the elements of a suitable orthonormal wavelet basis. The idea is that the
good localization properties of such bases may reduce considerably the num-
ber of terms needed. So far, however, this program is still purely speculative,
even for two-electron systems. Yet essentially the same approach has been
used successfully in the field of solid state physics, for calculating the electro-
nic structure of various materials. We will discuss these results in the next
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section. Before that, we conclude our discussion of the self-consistent meth-
ods by indicating two possible extensions.

8.3.2 Beyond Hartree—Fock: inclusion of electron correlations

Clearly the HF approximation is too drastic and has to be improved by
taking electron correlations into account. Atomic physicists have developed
many methods to that effect, such as Configuration Interaction, the many-
body perturbation theory, the R-matrix theory or the Multiconfiguration
Hartree—Fock (MCHF) method [15]. Some of these methods are limited to
correlations among discrete states, other ones include continuum states as
well. In some cases at least (MCHF, for instance), the net result is to produce
a wave function which is more concentrated around the origin, thus oscillates
faster — and is therefore more likely to be well represented by wavelets. The
computation usually requires a large number of terms. But again, considering
the good localization properties of wavelets and their oscillatory behaviour,
one may hope to reduce significantly the number of terms and accelerate the
computation.

8.3.3 CWT vrealization of a 1-D HF equation

At the other extreme, a different wavelet method has been proposed recently
[25] for studying the HF equation, albeit in a simplified one-dimensional
version. The idea is to use the CWT in the same way as a Fourier or a
Laplace transform, for obtaining a different realization of the differential
equation to be solved.

One starts from the radial HF equation for the hydrogen atom, and
extends it to R by antisymmetry, x i— — x. Thus one obtains a 1-D differ-
ential equation:

—%f”(x) —% = Ef(x), [ e L*(R,dy). (8.12)
Choosing as analysing wavelet the first derivative of a Gaussian,
w(x) ~ —xe "/, one takes the CWT of the two sides of (8.12), namely,
with the usual notations (a > 0, b € R):

L) f(a, b) = (wa | ).

The result is a complicated integro-differential equation in the variables « and
b, that one solves by iteration. The result is a marked improvement over the
standard Slater or Gaussian inputs (the comparison is easy, since the exact
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solution is known!). One may of course object that the situation treated in
this model is too simplified and bears little resemblance to the real physical
problem, but the idea looks nevertheless interesting.

As a final remark, we may note that the same authors [26] have also
studied the 1-D HF equation (8.12) by expressing it into an orthonormal
wavelet basis and applying the fast wavelet transform [14]. Again their results
compare favourably with those of a Slater basis. Actually this technique of
exploiting the fast convergence of the wavelet algorithm in HF calculations
has been used by several authors, as we will see in Section 8.5.3.

8.4 Other applications in atomic physics
8.4.1 Combination of wavelets with moment methods

For concluding this survey of possible applications of wavelets to atomic
physics, we discuss briefly a new method for calculating energy levels in
atoms, based on a clever combination of the WT with the well-known
method of moments [32, 33].

In the simplest case, consider a one-dimensional Schrodinger eigenvalue
equation, with a potential V'(x):

42

e Y(x) + V(x)¥(x) = EV(x). (8.13)

The wavelet transform of W(x) with respect to the Mexican hat wavelet
U(x) = (1 — x?) exp(—1/2x?) reads:

i [T 2 2 )24
W\W(a, b) = Na~ "/ / W(x +b) (1 — (x/a)?)e™™ > dx. (8.14)
—00
Introducing the moments
—+00 )
Wb, (p) = / X W(x+b)e " dx, p>0, (8.15)
one may express the WT (8.14) as a linear combination of moments:
WW(a, b) = N2y)'" 1y, 0) = 2yp5, )], with y =1/2a>.  (8.16)
On the other hand, these moments satisfy a first order differential equation in

2

ad
afyub,y(p) = —Ipy(p +2). (8.17)
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The crucial point is that, if the potential }'(x) is a rational fraction (or may be
transformed into one), then all the moments are linear combinations of the
first (1 + my) among them, the so-called initialization or missing moments.
Inserting the corresponding expression into (8.17), one obtains a coupled set
of linear differential equations in y:

9

gy o) = D My(y, b, E) py (), 0 < i < my. (8.18)
Jj=0

These equations may be integrated numerically, provided one has the value £
of the ground state energy and the starting values p ¢(p), corresponding to
the infinite scale limit ¢ = co. Precisely, the Eigenvalue Moment Method
(EMM), developed by Handy, Bessis and Morley [31], is able to give these
initial data. Thus, the EMM yields the wavelet transform WW(a, b) of the
unknown wave function ¥(x), which may then be obtained by a standard
reconstruction formula (see Eq.(1.10) in Chapter 1, and more generally any
textbook on wavelets, e.g. [19]).

This method, or variants thereof, has been applied in [32, 33] to the com-
putation of energy levels and wave functions for a variety of one-dimensional
potentials: the quartic anharmonic oscillator, the rational fraction
V(x) = gx®(1 + Ax»)~", the Coulomb potential. In addition, the method
probably extends to two or three dimensions. The results obtained in 1-D
are reasonably good (the precision may be increased with more numerical
effort), but, more important, this method introduces a totally new idea in the
wavelet picture, which once again consists in combining wavelet techniques
with existing methods. As such, this technique offers interesting perspectives
for the future.

8.4.2 Wavelets in plasma physics

Since the physics of plasmas may be considered as a branch of atomic phy-
sics, it is appropriate to mention here an innovative application of the CWT
to the analysis of intermittency in fusion plasmas [56]. Once again, the inter-
esting methodological point is the combination of wavelet methods with a
standard technique, in this case, bispectral methods. More precisely, the
notion of bicoherence, which is a measure of the amount of phase coupling
that occurs in the signal. Typically one studies the so-called wavelet bispec-
trum of a given signal s(z), namely the function

B"(a, ay) = f S(a, 7) S(ay, 7) S(ay, ) d-, (8.19)
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the integral being taken over a finite time interval 7; < 7 < 1,, and the fol-
lowing frequency sum rule holds

L (8.20)

The new point here consists in using the CWT of the signal in this definition,
instead of its Fourier transform. Two remarks are in order here. First, this
technique requires a complex wavelet, such as the Morlet wavelet, as always
when phase information is essential. Second, the sum rule (8.20) can only be
enforced if all frequencies are available, that is, if the continuous WT is used.
Dyadic frequencies cannot in general satisfy the relation.

Using this tool in statistical analysis, one may detect the presence of inter-
mittency and structure in the turbulent fusion plasmas [56]. A comprehensive
description of this approach is contained in Chapter 6 of the present volume.

8.5 Electronic structure calculations
8.5.1 Principle

A basic problem in condensed-matter physics is the ab initio calculation of
the electronic structure of a given material (ground state energy, wave func-
tion, etc.) Now, since the crystal is a 3-D periodic structure, it suffices to
describe the electronic structure around a single lattice site and apply a Bloch
transformation. Thus one comes back to the study of the electronic structure
of a single atom or molecule, that is, to the problem discussed in Section 8.3.
As explained there, the key is to find a good orthonormal basis, consisting of
functions well adapted to the problem. Two standard methods are popular
among chemists.

® LCAO bases (Linear Combination of Atomic Orbitals), based for instance on
Slater or Gaussian orbitals. The method yields a good description of the electro-
nic structure with relatively few terms, but it is difficult to improve it system-
atically (improving the LCAO method is sometimes described as an art!). In
addition the expression for the forces is extremely complicated.

® Plane wave bases. These two difficulties disappear, but a priori plane waves are not
suited for describing localized objects, since all information on space localization
is lost. Yet the electronic structure of an atom is highly inhomogeneous in space,
the wave function oscillates much more rapidly close to the nucleus. As a con-
sequence a large number of terms is needed for describing the small inner region,
but this increased precision is not necessary elsewhere.
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In order to combine the advantages of the two methods, one should use a
basis of localized functions, that allows to vary the precision according to the
local electronic density. That suggests a wavelet basis, since wavelets are well
localized, and adapt automatically to the scale of the object to be represented
(the so-called automatic zoom effect). Several research groups have per-
formed such an analysis, with different types of discrete wavelets, and we
shall quickly review them.

8.5.2 A non-orthogonal wavelet basis

The first attempt [16] was based on a non-orthogonal multiresolution basis
and its approximation by Gaussians and Mexican hats. The idea is to con-
sider a multiresolution scale in three dimensions, {V;;j € Z} C L*(R%), as
described in Chapter 1, Section 1.3, but without the assumptlon of orthogon-
ality:

Viel = Vit W, (8.21)

where + denotes a direct sum, not necessarily orthogonal (hence the decom-
position in (8.21) is still unique). The interpretation is the usual one: V;
describes the approximation at resolution 2/, and W; the additional detalls
needed for passing from the resolution 2’ to the ﬁner resolution 2*!. Thus
one gets, as in Eq.(1.17):

L*(R%) = Vjﬁ-(Z VVJ), (8.22)
JZJo
where j, corresponds to the lowest resolution considered and )  denotes

again a direct sum. Then one chooses two orthogonal bases, localized around
the nodes of a fixed 3-D lattice:

{onM} e V; and  {Yu()) e W), (8.23)

where n denotes a lattice point and j € Z. From (8.22), the practical expan-
sion of a general wave function into these bases reads:

jma X

f(r) = Z QjaBjn(®) + ) () (8.24)

—] b, M

In this truncated expansion, ¢; , is a scaling function, v, is a wavelet, both
centred around the lattice point n, and j,,, is the finest resolution, corre-
sponding to the desired precision. This expansion still has an infinite number
of terms, since n runs over the whole lattice. However, both ¢;, and ¥, are
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supposed to be well localized, so one has to keep only those functions which
have significantly large coefficients g; ,, resp. dj,, for the problem at hand.
This means that one allows different resolutions for different localized
regions. In particular, since the electronic wave function oscillates more
rapidly in the atomic core region, one should add higher resolution scales j
in the core region, where the precision must be higher, but only there.
Globally the number of terms is thus considerably reduced.

The technique introduced in [16] for practical calculations runs as follows.

e One starts at resolution j, = 0 with a cubic lattice L, of lattice spacing d, small
enough (the final basis should be a sufficiently tight frame). Then, for each resolu-
tion j=1,2...,q one considers the refined lattice L; of spacing 27d,. The
successive basis functions will be localized on the nodes of the finest lattice L;
with no overlap between different resolutions. Notice that this lattice is fixed in
space, independently of the position of the atomic nuclei.

e In order to adapt the resolution to the electronic density, one draws around each
nucleus a sequence of concentric spheres S; of radii r; = 2710, 7 =0, ..\ -
Then the finite (approximate) basis consists of the following functions: (i) scaling
functions ¢, centred on the nodes of L, localized inside Sy; (i) wavelets v, on
the nodes of L, localized inside S, (iii) wavelets v, on the nodes of L;\ L,
localized inside S,; and so on until j = j,,,.. This arrangement is schematized in
Figure 8.10 in a 2-D version.
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Fig. 8.10. The geometrical arrangement of [16] in a 2-D version. (left) The lattice L,
corresponding to the resolution j = 0 (open circles) and the nodes of L; \ L, corre-
sponding to j = 1 (black circles). (right) The spheres S; and S,, both centred on an
atomic nucleus (lozenge), and containing centres of wavelets with j =0 and j = 0, 1,
respectively.
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The net result is a highly flexible finite basis, with higher resolutions intro-
duced only where they are needed, namely close to the nuclear cores.

The next problem is to choose basis functions which are both efficient and
simple to work with. Cho et al. [16] use Gaussians for ¢, and Mexican hat
wavelets for ;. Strictly speaking, this choice is not allowed, since these
functions do not generate an orthogonal basis, but only a tight frame [19].
However they give an extremely good approximation to such a basis, as
results from the following argument [9].

The crucial input in the construction of a wavelet basis is the pair m, m; of
2n-periodic functions defining the two-scale relations, for the scaling function
and the wavelet, respectively (see [19] and Chapter 1, section 1):

PQ2w) = my(w)p(@),  Y(2w) = m(w)p(w) (8.25)

(in the orthogonal case, one usually takes m;(w) = mg(w + 7)e'). According
to [17, Theorem 5.16], the decomposition (8.21) is unique (but without ortho-
gonality in general) iff

mo(w)ym;(w + ) — my(w)ymy(w + 7) # 0, for all w € [0, 27). (8.26)

Cho et al. [16] choose the following functions :

o) =3 exp( =30 - 2177 ),

jeZ

® + T\ 2

my(w) = —ei‘”(a) — 271[ 7 ]) my(w),

where [.] denotes the integer part function. It is readily seen by direct com-
putation that these functions satisfy the criterion (8.26), thus guaranteeing a
unique decomposition (8.21). Furthermore, and this is the interesting point,
for o = 1.35, my and m; generate a scaling function ¢(x) and a ‘wavelet’ ¥ (x)
that match, respectively, a Gaussian G(x) and a Mexican hat —G"(x) within
an absolute error of 107'°. This is indeed a good approximation, which tends
to confirm the practical efficiency of the tight frame based on the Mexican
hat wavelet.

As a test, the method is applied to the hydrogen atom [16]. The best result
is that the (known) ground state radial wave function is reproduced within
0.3% with an 85 function basis (j,,, = 1,7, = 2 a.u.). What is more convin-
cing, the ground state energies of all elements, from hydrogen to uranium,
may be estimated within 3% using a single 67 function basis, with j,,,,. = 10.
Next the total energy of a hydrogen molecular ion Hj is calculated as a
function of the separation R between the two protons. With a basis of 141
to 167 functions (depending on R), the exact values are reproduced within
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1%. Finally, the analysis is extended [8] to the full carbon atom, in the local
density approximation [37], and it yields again rather accurate energies and
wave functions.

The conclusion is that a (quasi-)wavelet basis offers a very good alternative
to standard methods for calculating the electronic structure of atoms or
molecules, because it allows to vary the spatial resolution with space, con-
trary to the LCAO or plane wave methods. The analysis extends immediately
to periodic systems by introducing a Bloch transformation. But, of course,
the precision obtained in this approach is not entirely satisfactory.

One reason is the conflict between the spherical geometry of the atom and
the Cartesian geometry of the lattice used in the wavelet expansion. Some
progress in this direction has been made in the recent work of the MIT group
[10], with a more isotropic scheme based on the so-called interpolets and
combining wavelets with finite element methods (see also [7]). Another
improvement, due to the same group, consists of combining wavelets with
traditional multigrid methods, which also allow to vary the spatial resolution.
Thus once again, the lesson is that wavelets yield optimal results when they
are combined with standard methods, well adapted to the problem at hand
(and usually the result from a long practice).

8.5.3 Orthogonal wavelet bases

Instead of the non-orthogonal scheme of [16], several groups have considered
genuine orthonormal wavelet bases, e.g. Daubechies or Meyer bases. Once
again, the key to efficiency lies in a clever selection of the most significant
expansion coefficients.

8.5.3.1 Diagonalizing the LDA Hamiltonian in a Daubechies basis

Wei and Chou [57] essentially diagonalize the Hamiltonian in the local den-
sity approximation (LDA [37]), based on the Kohn—Sham equation (instead
of the Schrodinger equation) :

2
(—'j—mA VI p(r)]> Vi) = €10, 3.27)
where p(r) =), oW, ()% is the local electronic density and V[r; p(r)] an
effective potential. The idea is to expand the solution of the effective equation
(8.27) in a suitable wavelet basis, so as to get a small number of significant
coefficients (the same numerical exigence underlies the solution of the
Schrédinger equation described in Section 8.2). The authors of [57] choose
a Daubechies D6 wavelet basis of compact support, which generates a 3-D
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orthonormal basis by a threefold tensor product. Physical quantities are then
calculated in this basis, using fast wavelet transform algorithms. For
instance, they evaluate matrix elements of the Hamiltonian, [, H v,d’x,
where ; stands for the wavelet basis vectors, and in particular potential
terms [y, U ¥,,d°x, where U may be a local potential (ionic, Hartree or
exchange-correlation) or a nonlocal separable pseudopotential. The grid is
the standard multiresolution grid, and its position relative to the centres of
the atoms is essentially irrelevant. As compared to [16], no artificial cutoff is
put by hand, the rapid convergence of the calculation follows from the small-
ness of the compact support of the D6 wavelet, which yields sparse matrices.

With this technique, one computes [57] the total energies for a (fictitious)
hydrogen atom and for a dimer molecule, H, or O, (as a function of the bond
length). In all cases, the method requires relatively few basis functions (1000
or 2000) as compared to the plane wave method (~ 8700), with similar
results. Thus it offers hope for a serious improving of standard calculations.
One may remark, however, that the plane wave calculation that serves for
comparison has not been optimized (for instance, the energy cutoft of 100 Ry
on the pseudopotential is abnormally high, and thus leads to a larger number
of terms than necessary), so that the improvement reported may be smaller
than claimed. Also the case of small diatomic molecules is specially unfavour-
able for a plane wave basis (too much void in the supercell). It is plausible
that the two methods would have similar performances for larger molecules
[28].

8.5.3.2 Molecular dynamics algorithm in a Daubechies basis

Tymczak and Wang [55] also use a 3-D Daubechies wavelet basis for per-
forming electronic structure calculations in a local density approximation,
starting again from the Kohn—-Sham equation (8.27). However, instead of
trying to squarely diagonalize the Kohn—Sham Hamiltonian in the wavelet
basis, as the previous authors, they resort to a standard algorithm of mole-
cular dynamics (Car—Parrinello) to obtain the eigenfunctions iteratively (this
algorithm is similar to the dynamic simulated annealing method familiar in
statistical mechanics). Of course, as in the other approaches, the key point for
combining speed and precision of the calculation is to select adequately the
most significant wavelet coefficients to be kept. In order to do so, one may
exploit the self-similar behaviour of wavelet coefficients: from each scale to
the next finer one, all coefficients are multiplied by a common small factor
(which gets smaller for an increasing number of vanishing moments of the
wavelet). Hence those coefficients that are negligible at a given scale lead to
negligible ones at finer scales, no significant coefficients reemerge. Then,
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combining the selection of significant wavelet coefficients and the Car—
Parrinello algorithm at each successive scale, from coarse to fine, one obtains
fast convergence to the approximate eigenvalues and reasonably good values
for the latter. Both the convergence and the compression rates (percentage of
coefficients being kept) increase with the grid size, and so does the advantage
of the method over the conventional plane wave approach. Only simple
systems are treated in [55], namely the 3-D harmonic oscillator, the hydrogen
atom, and the LDA to the helium atom and the hydrogen dimer H,.
However, the method seems powerful enough for attacking real multi-elec-
tron systems.

8.5.3.3 Galerkin method in a Meyer basis

Yamaguchi and Mukoyama [58] solve the radial Schrédinger equation by a
variational (Galerkin) method, using an effective one-electron local potential
and extending the equation to R by antisymmetry x i— — x, as in Section
8.3.3. In order to formulate the variational equations (see Section 8.3), they
expand the wave function into an antisymmetrized Meyer wavelet basis (C,
symmetric, all moments vanishing, but noncompact support), keeping only
the most significant terms, as usual. By this technique they compute energy
eigenvalues and wave functions for hydrogen, neon and argon atoms, and
continuum wave functions (corresponding to pseudostates) for the argon
atom. As a test of the numerical quality of their wave functions, they calcu-
late, respectively, radiative transition rates in neon and argon atoms, and
partial photoionization rates for an argon atom in its 1s, 2s and 3s state. The
results are in excellent agreement with those obtained by the traditional
Hartree—Fock—Slater method. However, one may notice that a large number
of basis vectors is necessary for a good precision (475 for Ar), especially for
the excited states (3s, 3p), which are much less localized.

An interesting remark is that each type of atomic state (lower bound state,
Rydberg state, continuum state) has a characteristic distribution in the wave-
let parameter space. This permits one to choose for each kind of physical
process an adequate trial function before performing the variational proce-
dure.

8.5.4 Second generation wavelets

The Daubechies wavelets used in [55] and [57] have compact support, which
is numerically convenient, but they are not very smooth, and this becomes a
drawback when it comes to solving differential equations, for instance diag-
onalizing a Laplacian. An clegant way of avoiding this problem is to use
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biorthogonal wavelets, which offer the most flexible version of wavelet tech-
niques, and are also the most widely used in the wavelet community.

In the case of quantum physics applications, this step was made very
recently in a paper by Goedecker and Ivanov [27], in which they treat the
full Coulomb problem by pure wavelet methods. Namely they solve the
Poisson equation AV = 4mp, by expanding both the potential ' and the
electronic density p in a biorthogonal basis, in the present case a second
generation wavelet basis (8th order lifted Lazy wavelet) [53]. Varying the
resolution according to the electronic density, as in [16], and using BCR
fast wavelet algorithms [14], they obtain rather spectacular results, definitely
improving upon [57]. For instance, they are able to treat the potential arising
from a fully 3-D all-electron uranium dimer. To give an idea of the power of
the method, this problem involves length scales that differ by more than 3
orders of magnitude, and so does the potential. The resolutions involved
differ by 7 orders of magnitude, and the potential is obtained with 6 signifi-
cant digits throughout the whole region. As far as we know, this is the most
successful application so far of wavelet methods in an atomic structure cal-
culation.

8.6 Wavelet-like orthonormal bases for the lowest Landau level

As mentioned already, the electronic structure calculations described in the
previous section give information on the bulk properties of solids, via a Bloch
transformation [10]. Besides these calculations, wavelets have found applica-
tions in two other problems of condensed-matter physics.

The first one is a striking similarity between wavelets and Wannier func-
tions of a 1-D crystal [35]. The context is the study of inflation, which means
the following. Any one-dimensional periodic system of period ¢ may be
viewed as a 2a-periodic system. The question is, how does the dynamics
change? In particular, how do Bloch and Wannier functions transform
under inflation? It turns out that both types of functions obey two-scale
relations, characteristic of multiresolution wavelets [17, 19]. In particular,
the Wannier functions of a free electron in the 1-D periodic system coincide
with the Littlewood—Paley wavelets (see Section 8.6.3.2). It remains to be seen
whether this is a mere curiosity or physically useful information.

The other application pertains to a 2-D electron gas submitted to a strong
magnetic field, that is, the system in which the Quantum Hall Effects (integer
or fractional) take place. We will devote the rest of this section to this
problem and the promising role of wavelets in that context.
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8.6.1 The Fractional Quantum Hall Effect setup

The system considered in the Fractional Quantum Hall Effect (FQHE) is a
(quasi)-planar gas of electrons in a strong magnetic field perpendicular to the
plane (see [48] for a review and the original references). The first problem to
tackle is to find the ground state of the system. As in the electronic structure
calculations described in Section 8.5, the key physical parameter is the elec-
tron density, which is measured by the so-called filling factor v. As shown in
[11], good energy values are obtained for small (0 < v < 1) orhigh G <v < 1)
electron densities with a Hartree—Fock description of a system of N two-
dimensional electrons.

The first step in the HF procedure is to select an adequate wave function
for a single electron in the magnetic field. As it is well known [48], the energy
levels, the so-called Landau levels, are infinitely degenerate, and there arises
the problem of finding a good basis in the corresponding Hilbert subspace. In
particular, the ground state belongs to the lowest Landau level (LLL). A
general method has been proposed for constructing an orthogonal basis
for the LLL, starting from standard 1-D orthogonal wavelet bases [2, 12,
13]. We will describe this construction below, but we shall first recall the
physical background of the problem.

Consider a single electron confined in the xy-plane and subjected to a
strong magnetic field in the z-direction. In the symmetric gauge, the
Hamiltonian reads (we use units such that =M = elﬁ |/c=1):

1 ]
=—(p, — /2’ + 5y + x/2)°. (8.28)

H
4 2

Introducing the canonical variables
P =p.—y/2, O =p, +x/2, (8.29)
this can be written in the form of the Hamiltonian of a harmonic oscillator:
H,=10"+P?. (8.30)

Therefore the eigenstates of the Hamiltonian (8.28) can be found explicitly,
and they have the following form:

D, (. 1) ~ &5 PVA@ i) (3, —i0,)'e P min=0,1,2,...,
(8.31)
corresponding to the eigenvalues E,,, = E, = n+ 1/2. Thus the energy levels

are all degenerate in m, so that the ground level (LLL) is spanned by the set
{®,,0(x, »)}, which forms an orthonormal basis. However these wave func-
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tions are not very well localized, since the mean value of the distance from the
origin, r = /x> +)?, increases with m. Yet the physics of the problem
requires that the wave functions be fairly well localized, since the system
tends, as T — 0, to the configuration of the Wigner crystal, that is, a trian-
gular lattice [11]. Thus the basis {®,,o(x, y)} of the LLL is inadequate for the
present purposes.

8.6.2 The LLL basis problem

In order to find another basis of eigenfunctions, orthogonal or not, spanning
the same energy level, one may use the method introduced in [11], which is
based on a technique introduced by Moshinsky and Quesne [49]. The trans-
formation (8.29) can be seen as a part of a canonical transformation from the
variables x, y, p,, p, into the new ones Q, P, Q', P, where

P=p,—x/2, Q=p.+y/2 (8.32)

These operators satisfy the following commutation relations:
[0, P]=[Q, P] =1, (8.33)
[0,P1=[0, Pl=[0,Q1=[P, P]=0. (8.34)

Then a wave function in the (x, y)-space is related to its PP'-expression by the
formula
eixy/2

D(x,y) = —5— / /R 2 SEHPAPP) gy p Py dPdP. (8.35)

27

In virtue of the expression (8.30) of H,, the Schrodinger equation
H\W = %(Q’2 + PP)W =EV admits factorized solutions W(P,P)=
f(P)h(P). Thus the ground state wave function of (8.30) must have the form

(P, P') = fo(P)h(P), (8.36)

where fy(P) =" 4o P’ 2. and the function h(P) is arbitrary, which mani-
fests the infinite degeneracy of the LLL.

Depending on the choice of 4(P), several types of bases for the LLL may be
obtained, according to the following general scheme. Inserting (8.36) into the
integral (8.35), the Gaussian integration on P’ can be performed exactly.
Next, taking a wave function ¥, (P, P") = f,(P") h,(P), where {h,(P)} is an
arbitrary basis in L*(R), we define:

ixy/2 0o 2
P x, y) = én3 5 / M CHD 2 (PP, (8.37)

—00
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Then the set {hff)(x, y)} is a basis for the LLL, and it is orthonormal iff
{h,(P)} is orthonormal in L*(R). This follows from the canonicity of the
change of variables given in Eqgs. (8.29), (8.32) or simply by an explicit
calculation of the matrix element (4,|4,,), using the integral (8.37). Several
examples of this construction have been presented in the literature.

)

(@)

(©)

Bagarello et al. [11] choose for the ground state a Gaussian /y(P) = fy(P), which
yields, by (8.37), hgz)(x, ) = Dpo(x, y) ~ exp —(x2 +y2)/4. Then they construct
a complete set of basis functions of the LLL by acting on ®(x, y) with the so-
called magnetic translation operators. The resulting basis vectors have
Gaussian localization around the sites of a regular two-dimensional lattice,
and thus the basis is lattice-translation invariant. However, each vector has a
well-defined, fixed (essential) support, so that there is no possibility of modify-
ing the mutual overlap for fixed electron density. In addition, this basis is not
orthogonal, since coherent states are in general not mutually orthogonal.
Enforcing orthogonality (by the Gram—Schmidt method, for instance) spoils
much of the simplicity of the basis functions, and in particular the localization
properties for intermediate fillings and the lattice-translation invariance
property.

In order to keep the good localization properties and some sort of translation
invariance, Ferrari [23] has constructed an orthonormal basis for the LLL by
taking infinite superpositions of the above (coherent) states. The resulting basis
vectors are Bloch functions, which may be made translation invariant over the
nodes of a given lattice, typically triangular or hexagonal (remember that the
Wigner crystal is a triangular lattice). Clearly this basis describes very well the
two-dimensional low-density system of electrons of the FQHE, but its construc-
tion is rather involved and ad hoc.

Since one wants basis wave functions which are both well localized and ortho-
gonal, obvious candidates are orthogonal wavelets. They do enjoy good loca-
lization properties, and the latter are easily controlled by varying the scale
parameter, in contrast to the Gaussian-like functions of [11]. In addition, the
physical problem has an intrinsic hierarchical structure [29, 30]. In particular,
the filling factor may take arbitrary rational values, and this suggests a fractal
behaviour, as remarked recently [47]. All this points again to wavelets. In the
next section, we will review several examples of this construction, as proposed
in [2, 12, 13].

8.6.3 Wavelet-like bases
8.6.3.1 The Haar basis

Let us look first at the LLL basis generated by the Haar wavelet basis [19].
Since the mother wavelet /(x) is a discontinuous function, its localization in
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frequency space is poor, it decays as w . However, the transformation (8.37)
is not a Fourier transform, hence it is not clear a priori that the corresponding
functions {h/(,f)(x, y)} will also have a poor localization in both variables. In
fact it is not the case, as can be seen by investigating the asymptotic beha-
viour of the basis functions.

Using standard results on Gaussian integrals, one finds for the ground
state wave function:

—ixy/2 —*/2

Py 2E(x—iy+1/2)— E(x—1iy)— B(x — iy + 1)},

(8.38)

Hy(x,y) =

where

f(z//2) = — I C
E(z) =erf(z 2:—/ e dt, zeC.
(2) (z/V2) 77,

Using the asymptotic expansion of the error function, we get, for
Xl Iyl >1:

/2 efxz /2 \/5 1 o~ 1/2x iy o 1/8=(x—i»)/2
H, , V) — -2 ,  (8.39
00(x. 7) 2174 b/ x—iy+x—iy+1 x—iy+1/2 (8.39)

which displays the Gaussian localization of the wave function in the variable
x and the rather poor one in y (decay as y~'). This behaviour is confirmed in
Figure 8.11 (left), which shows the modulus of Hy,(x, y) in a 3-D perspective.
Clearly the function Hyy(x, y) is much better localized in the x variable than
in y.

An analogous behaviour can be obtained for the generic function Hj.(x, y),
which may also be calculated exactly. Using (8.37), it is easily seen that the
asymptotic behavior of 4?(x, y) in x is governed by the asymptotic beha-
viour of /,(P), and the one in y by that of the Fourier transform of /,(P).
Since in the present case, /1;(P) has compact support, we expect Hj(x, y) to
be strongly localized in x and delocalized in y, and that its decay in x gets
faster for smaller j. This is indeed the case, as may be seen on the figures
presented in [12].

8.6.3.2 The Littlewood—Paley and other wavelet bases
Another simple example of an orthonormal wavelet basis in L*(R), also
coming from MRA, is the Littlewood—Paley basis [19], generated from the
mother wavelet
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W(x) = (x) " (sin 27x — sin 7x). (8.40)

The behaviour of this function is complementary to that of the Haar wavelet:
it has a compact support in frequency space but it decays like 1/x in config-
uration space.

An analogous complementary behaviour is found also for the correspond-
ing LLL wave functions. They are exponentially localized in the y-variable,
while in the other variable they behave like 1/x. This is manifest on the
asymptotic behaviour of Wy(x, ) for |x|, [y| > 1. By the same method as
before, one finds:

—ix _;2 ix) — 2 )7 7
e z.\y/Ze V)2 e27r(}+z.x)e 27 en(}—i—l.‘c)e /2

Woo(x, y) =~ —
00(X, ) 27574 27—y —ix| |m—y—ix|

— iy — 2 — Iy — 2
e 2no+u)e 2 e 710+1,x)e /2

_ 4+ : 8.41
|27 4+ y + ix| |+ y + ix| ( )

which displays the exponential decay of |W(x, v)| in y and the slow decay in
x, as observed in Figure 8.11 (right).

Similar considerations can be made for the LLL bases obtained by (8.37)
from other 1-D wavelet orthonormal bases; for instance [12], the following.

o The Journé basis, which does not come from MRA (see [19], p. 136). This case is
very similar to the Littlewood—Paley basis, since here too the mother wavelet has
compact support in frequency space.

e Spline bases, for instance the order 1 splines, coming from the triangle or ‘tent’
function as scaling function.

Fig. 8.11. 3-D perspective view of the modulus of the lowest LLL basis functions; the
x-axis runs from left to right, the y-axis from front to back. (Left) The Haar function
Hyy(x, y). (Right) The Littlewood—Paley function Wy(x, y).
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8.6.3.3 Outcome

In conclusion we may say that the orthonormal bases obtained so far are not
yet sufficient for a good solution of the LLL problem, except at very low
electron density. However, the construction sketched above suggests a gen-
eral method for designing good bases, with localized functions and respecting
the symmetry of a given lattice, for instance, a triangular lattice. This goes in
the right direction, since the whole QHE may be characterized as the trans-
port of electrons in a (local) Wigner crystal [47]. The most promising point of
such wavelet bases is the possibility of controlling the width of the (essential)
supports, hence the overlap between basis functions at neighbouring points,
with help of the scaling parameter.

8.6.4 Further variations on the same theme

In a further paper, Bagarello [13] has investigated another aspect of the trial
wave function introduced in [11] for a two-dimensional system of electrons in
Coulomb interaction. Namely he compares the ground state energy given by
harmonic oscillator wave functions with that obtained with particular wave-
lets. It turns out that the latter always give results that can easily be inter-
preted as localization properties of the wave function.

Consider an N-electron system in R?, with Hamiltonian

N
1 1
H=Y H,()+= 8.42
; D+5D (8.42)
i= i#j J
1 1
Hy =5 (s + %) + 50y + Paby- (8.43)

Then, under the following canonical transformation:

0 = px+pyv P = —X,
0 = P P o= x—y, (8.44)

the free Hamiltonian turns into that of a harmonic oscillator, as before:
H, =10+ P, (8.45)

and again one has an integral transform relating the QQ’ wave function to
the original one:

W(x, y) = % / /R 2 NI+ (0. 0')dO dO'. (8.46)

Here also the free Schrodinger equation admits factorized solutions
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O(Q, Q) =" 02 ¢(Q), (8.47)

where ¢(Q’) is an arbitrary function. Choosing for the latter various basis
functions, such as elements of the Littlewood—Paley, Haar or harmonic oscil-
lator basis, one may compute the ground state energy E, of the N-electron
system, with the wave function taken again as a Slater determinant, in the
familiar Hartree—-Fock manner. Actually E, is the sum of two terms, the
direct one and the exchange term (see Section 8.3.1), but the latter is much
smaller and may be neglected. As a preparation for the FQHE, one should
also consider the electrons localized on the nodes of a lattice generated by
magnetic translations, as explained in the preceding section.

Calculations of this type are presented in [13] for N = 2 (this case already
displays the general features) and several configurations. For instance, two
electrons localized at the origin (with different wave functions, otherwise the
Slater determinant would vanish identically); or two electrons on the y-axis,
separated by a magnetic translation. In both cases, the value obtained for the
energy of the trial ground state shows that the wavelet wave function is better
localized than the harmonic oscillator wave function.

All these results strongly suggest that wavelet bases, localized around the
nodes of the triangular Wigner crystal, may be extremely useful for finding
the ground state wave function of the FQHE.

8.7 Outcome: what have wavelets brought to us?

Looking in retrospect at the discussion above, we may conclude that wavelets
can be used profitably in various problems in atomic physics and in solid
state physics, under different aspects and for different purposes. For instance,
we may state the following.

o The detailed description and physical understanding of harmonic generation (and
similar transient phenomena) is inaccessible to standard spectral methods, it
requires a time—frequency representation, by wavelets or Gabor analysis.

e The computation of N-electron atomic wave functions (HF and relatives)
demands a good orthogonal basis on the half line R", and a wavelet basis
seems well-adapted.

e Finally, there is the possibility of using 2-D orthogonal wavelet bases for the
description of 2-D phenomena in solid state physics, such as the FQHE.

In all these applications, the key property of wavelets is their good loca-
lization, both in space and in frequency, and the possibility of controlling it
by scaling (the automatic zooming property). This property permits, for
instance, to vary the precision of electronic structure calculations in space,
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depending on the value of the local electronic density. The net result is a
reduction of the number of terms required for the expansion of wave func-
tions in the chosen bases. This is analogous to the higher compression rates
achieved with wavelet bases in the synthesis and transmission of signals.

As a final point, we may remark that all the applications described in this
chapter consider the WT as a mathematical tool, whereas wavelets might also
be used as genuine physical entities, exactly as coherent states — which they
are after alll Many interesting phenomena could be described in that lan-
guage (Rydberg atoms, semiclassical limit, revivals, . . .). Finally there is also
the possibility to use different wavelets, such as the CS associated to the
Schrédinger group [22].

Our conclusion will be that the applications of wavelets in atomic physics
and in solid state physics are a new field (it is characteristic that most of the
papers quoted in this chapter have appeared in the past two years). Many
promising results have been obtained already, much work remains to be
done, and hopes for progress are reasonably well-founded. In addition, it
is likely that new applications in various domains of quantum (or classical)
physics will be found in the near future.
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Abstract

The multifractal formalism originally introduced to describe statistically the
scaling properties of singular measures is revisited using the wavelet trans-
form. This new approach is based on the definition of partition functions
from the wavelet transform modulus maxima. We demonstrate that very
much like thermodynamic functions, the generalized fractal dimensions D,
and the f(«) singularity spectrum can be readily determined from the scaling
behaviour of these partition functions. We show that this method provides a
natural generalization of the classical box-counting techniques to fractal
signals, the wavelets playing the role of ‘generalized boxes’. We illustrate
our theoretical considerations on pedagogical examples, e.g., devil’s stair-
cases and fractional Brownian motions. We also report the results of some
recent applications of the wavelet transform modulus maxima method to
fully developed turbulence data. Then we emphasize the wavelet transform
as a mathematical microscope that can be further used to extract microscopic
information about the scaling properties of fractal objects. In particular, we
show that a dynamical system which leaves invariant such an object can be
uncovered from the space-scale arrangement of its wavelet transform mod-
ulus maxima. We elaborate on a wavelet based tree matching algorithm that
provides a very promising tool for solving the inverse fractal problem. This
step towards a statistical mechanics of fractals is illustrated on discrete per-
1od-doubling dynamical systems where the wavelet transform is shown to
reveal the renormalization operation which is essential to the understanding
of the universal properties of this transition to chaos. Finally, we apply our
technique to analyse the fractal hierarchy of DLA azimuthal Cantor sets
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defined by intersecting the inner frozen region of large mass off-lattice diffu-
sion-limited aggregates (DLA) with a circle. This study clearly lets out the
existence of an underlying multiplicative process that is likely to account for
the Fibonacci structural ordering recently discovered in the apparently dis-
ordered arborescent DLA morphology.

9.1 Introduction

In the real world, it is often the case that a wide range of scales is needed to
characterize physical properties. Actually, multi-scale phenomena seem to be
ubiquitous in nature. A paradigmatic illustration of such a situation are
fractals which are complex mathematical objects that have no minimal nat-
ural length scale. The relevance of fractals to physics and many other fields
was pointed out by Mandelbrot [1, 2] who demonstrated the richness of
fractal geometry and stimulated many theoretical, numerical and experimen-
tal studies. There are many phenomena in physics that are characrerized by
complicated singular measures or singular functions exhibiting self-similar
scaling properties [3—12]. In particular, scale invariance is commonly encoun-
tered in the context of critical phenomena [13, 14] where the divergence of the
correlation length leads to universality. Systems maintained far from equili-
brium [15, 16] also display scale invariance in the way they organize spatially
as well as in their dynamical evolution [3-12, 17-21].

The aim of a quantitative theory of fractal objects is to provide mathe-
matical concepts and numerical tools for the description of the scaling prop-
erties of these objects based on some limited amount of information. For
fractal objects which display a recursive hierarchical structure, the knowledge
of a few steps of refinement of the object is sufficient for carrying on the
refinement ad infinitum [1, 2]. Unfortunately, fractals that appear in nature
do not generally exhibit, at least at the first glance, such a well ordered
architecture. There are two levels of description that one can hope to achieve
which are formally and computationally equivalent to thermodynamics and
statistical mechanics in the theory of many-body systems [22]. On the one
hand, one can seck for a global thermodynamic characterization of a fractal
object as seen as a macroscopic system in terms of intensive variables (tem-
perature, pressure, ... ) and thermodynamic functions (free energy,
entropy, . . . ) [23-25]. On the other hand, one can look for microscopic
information about the local scaling properties of fractals in order to define
the equivalent of the Hamiltonian from which statistical mechanics tells us
how to calculate these thermodynamic functions [26-28]. This amounts to
solve what is called the inverse fractal problem, i.e., to extract from the data a
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dynamical system (or its main characteristics) which accounts for the con-
struction rule in the sense that it leaves the object invariant.

Recently, a phenomenological approach to the characterization of fractal
objects has been proposed and advanced: the multifractal formalism [29, 30].
In its original form, this aproach is essentially adapted to describe statistically
the scaling properties of singular measures [19, 26-28, 30-37]. Notable exam-
ples of such measures include the invariant probability distribution on a
strange attractor [30, 34, 36], the distribution of voltage drops across a ran-
dom resistor network [3, 6, 7, 12], the distribution of growth probabilities
along the boundary of diffusion-limited aggregates [7, 8, 38] and the spatial
distribution of the dissipation field of fully developed turbulence [19, 29-41].
The multifractal formalism consists in considering a fractal measure as a
‘multi-singularity’ system. More specifically, a fractal measure can be decom-
posed into interwoven sets which are characterized by their singularity
strength « and their Hausdorff dimension f(«) [30]. The so-called f(«) singu-
larity spectrum has been shown to be intimately related to the generalized
fractal dimensions D, [42-46]. The link between the multifractal formalism
and thermodynamics can be understood as follows: the variables ¢ and
©(q) = (¢ — 1)D, play the same role as the inverse of temperature and the
free energy, while the Legendre transform f(o) = min,[ga — 7(¢)] indicates
that instead of the energy and the entropy, we have « and f(«) as the thermo-
dynamic variables conjugated to ¢ and t(g) [33-35, 47]. Most of the rigorous
mathematical results concerning the multifractal formalism have been
obtained in the context of dynamical system theory [34, 36]. It has recently
been developed into a powerful technique accessible also to experimentalists.
Successful applications have been reported in various fields and the perti-
nence of the multifractal approach seems, nowadays, to be well admitted in
the scientific community at large.

However, in physics as well as in other applied sciences, fractals appear not
only as singular measures, but also as singular functions. The examples range
from graphs of various kinds of random walks, e.g., Brownian signals [48,
49], to financial time series [50-52], to geologic shapes [1, 53], to rough
interfaces developing in far from equilibrium growth processes [11], to tur-
bulent velocity signals [54, 55] and to DNA ‘walk’ coding of nucleotide
sequences [56]. There have been several attempts to extend the concept of
multifractality to singular functions [29, 57]. In the context of fully developed
turbulence, the multiscaling properties of the recorded turbulent velocity
signals have been investigated by calculating the moments
S,(€) = (dv,t) ~ 27 of the probability density function of longitudinal velo-
city increments dv,(x) = v(x 4+ £) — v(x) over inertial separation [54, 55]. By
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Lengendre transforming the scaling exponents ¢, of the structure functions
S, of order p, one expects to get the Hausdorff dimension D(%) of the subset
of R for which the velocity increments behave as dv, ~ €' [29]. In a more
general context, D(h) will be defined as the spectrum of Holder exponents of
the singular signal under study and thus will have a similar status to the f(«)
singularity spectrum for singular measures [58]. But there are some funda-
mental limitations to the structure function approach which intrinsically fails
to fully characterize the D(h) singularity spectrum [58—61]. Actually, only the
singularities of Holder exponents 0 < /# < | are potentially amenable to this
method; singularities in the derivatives of the signal are not identified.
Moreover it has fundamental drawbacks which may introduce drastic bias
in the estimate of the D(/) singularity spectrum, e.g., divergencies in S,(¢) for
p <0.

Our purpose here, is to elaborate on a novel strategy that we have recently
proposed and which is likely to provide a thermodynamics of multifractal
distributions including measures and functions [59—63]. This approach relies
on the use of a mathematical tool introduced in signal analysis in the early
1980s: the wavelet transform [64—70]. The wavelet transform has been proved
to be very efficient to detect singularities [71-74]. In that respect, it is, a
priori, a rather promising technique to study fractal objects [75-81]. Since
a wavelet can be seen as an oscillating variant of the characteristic function of
a box (i.e., a ‘square’ function), we will show, as a first step, that one can
generalize in a rather natural way the multifractal formalism by defining
some partition functions in terms of the wavelet coefficients [59—-63, 82]. In
particular, by choosing a wavelet which is orthogonal to polynomial beha-
viour up to some order N, one can make the wavelet transform blind to
regular behaviour, remedying in this way one of the main failures of the
classical approaches (e.g., the box-counting method in the case of measures
and the structure function method in the case of functions). The other funda-
mental advantage of using wavelets is that the skeleton defined by the wavelet
transform modulus maxima [74] provides an adaptative space-scale partition
of the fractal distribution under study from which one can extract the D(h)
singularity spectrum via the scaling behaviour of some partition functions
defined on this skeleton [59-63, 82].

As a second step, we will demonstrate that the wavelet transform can be
further considered to collect additional information concerning the hierarchy
that governs the spatial distribution of the singularities of a fractal object. The
wavelet transform can be used as a mathematical microscope [71, 75-81];
increasing the magnification one gains insight into the intricate internal struc-
ture of these objects. In this context, we will elaborate on a wavelet based tree
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matching algorithm which provides a very attractive method for solving the
inverse fractal problem [82—84]. This method amounts to extracting from the
wavelet transform modulus maxima skeleton, a one-dimensional map which
accounts for the construction process of the considered fractal. In that pros-
pect, it constitutes a very promising alternative methodology to the
approaches developed in the theory of Iterated Function Systems (IFS) [85—
87]. Along the line of the analogy with the physics of multi-body systems, this
microscopic description of multifractals is the counter-part of classical statis-
tical mechanics based on the knowledge of the Hamiltonian of the system.

9.2 The multifractal formalism

The multifractal formalism has been introduced to provide a statistical
description of singular measures in terms of thermodynamic functions such
as the generalized fractal dimensions D, and the f(a) singularity spectrum
[30-37]. In this section, we review both the microcanonical method of com-
puting the f(«) singularity spectrum directly from the data and the canonical
method which consists in determining f(«) from the estimation of the D,s.

9.2.1 Microcanonical description

9.2.1.1 The f(a) singularity spectrum

Usually, when dealing with fractal objects on which a measure w is defined,
the dimension D is introduced to describe the increase of the mass u (B,(¢€))
with size e:

(B, (€)) = du(y) ~ €, O.1)
B.(e)
where B, (¢) is the ball centred at x and of size € (in R, B, (¢) is an e-inteval).
In general, however, fractal measures display multifractal properties in the
sense that they scale differently from point to point. Then one is led to
consider local scaling behaviour [30, 46, 88]:

1(B.(e) ~ e, 9.2)

where the exponent «(x) represents the singularity strength of the measure p
at the point x. The smaller the exponent «(x), the more singular the measure
around x and the ‘stronger’ the singularity. Let us note that the prefactor in
the right-hand side of Eq. (9.2) can be a function of € which varies slower
than any power of €. The f(«) singularity spectrum describes the statistical



344 A. Arneodo, E. Bacry and J.F. Muzy

distribution of the singularity exponent «(x). If we cover the support of the
measure u with balls of size €, the number of such balls that scale like €%, for a
given «, behaves like [30, 37]:

N () ~ /@, 9.3)

Thus f(«) describes how the ‘histogram’ N,(¢) varies when € goes to zero. In
the limit € — 07, f(«) is defined as the Hausdorff dimension of the set of all
points x such that a(x) = « [34, 30]:

fl@) =dy{x € supp p, a(x) = a}. 94

At this point one can distingish two main classes of singular measures.
Homogeneous measures [1, 2, 30, 46, 89] are characterized by a singularity
spectrum supported by a single point ((«),, f()): only one ‘sort’ of singu-
larity is present in the measure. Multifractal measures [30-37, 46, 47] involve
singularities of different strengths; in this case the f(«) spectrum has generally
a single humped shape which extends over a finite interval o, ¥ max], Where
Qin (resp. o) correspond to the strongest (resp. weakest) singularities.

For singular measures which possess a recursive multiplicative structure,
the f(«) singularity spectrum can be calculated analytically [30]. But this is
not the case in general and one must have recourse to numerical algorithms
for computing the f(«) spectrum. The most natural way would consist in
scanning the support of u, measuring «a(x) at each point x by estimating the
slope of the curve In u(B,(¢€)) as a function of In ¢; then by using the so-called
box-counting method [46, 88, 90], one could try to compute the fractal dimen-
sion f(«) of the subset of points where the measure scales with the exponent
a. However, such a method would lead to dramatic errors since, for any e,
w(B,(€)) takes into account a lot of points with very different singularity
exponents. Moreover the presence of oscillations in the log-log plot proce-
dure makes extremely unstable the estimate of «(x) on a finite range of scales
[90, 91]. One can use a slightly different method called the histogram method
[46, 90-92]. It consists in covering the support of the measure u with balls
{Bi(¢)}; of size e. For each ball Bj(¢), we define the exponent
a;(€) = In u(B;(¢))/ Ine. This exponent is like a singularity exponent ‘seen’
at the scale €. Then, if N,(¢) is the histogram of the values {&;(€)};, f()
can be computed using Eq. (9.3). Even though the histogram method is stable
under certain conditions, the convergence when € goes to 07 is very slow [90].
In most cases, the range of scales available in the numerical data is too small
and this method leads to rather approximate results because of scale depen-
dent prefactors. This is due to the fact that this method is based on the
computation of scaling exponents which represent ‘local’ quantities that
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can vary a lot from one point to another. Basically, this is a characteristic
deficiency of this microcanonical description which intrinsically suffers from
finite-size effects [46, 90-96].

9.2.1.2 The generalized fractal dimensions

The generalized fractal dimensions D, [42-46], which correspond to scaling
exponents for the gth moments of the measure u, provide an alternative
description of singular measures. Once again, if we cover the support of
with boxes B;(¢) of size €, one can define a series of exponents 7(g) from the
scaling behaviour of the partition function:

N(e)

Z(q.) =) _ui(e). (9-5)
i=1

where ; = w(B))e)). In the limit € — 07, Z(g, €) behaves as a power law:
Z(q, €) ~ €. 9.6)

The spectrum of generalized fractal dimensions is obtained from the knowl-
edge of the exponents t(g) by the following relation [43—45]:

Dy =t(q)/(q = D). 9.7

For certain values of ¢ one can recognize well known quantities. Dy cor-
responds to the capacity (box dimension) [97] of the support of u. D; char-
acterizes the scaling behaviour of the information 7(e) = ), u;(€) In p;(€): it is
called the information dimension [42]. Moreover, for ¢ integer > 2, the D s
can be related to the scaling behaviour of the g-point correlation integrals
[43-45]. In fact, it is easy to see that varying ¢ in Eq. (9.5) amounts to
characterize selectively the nonhomogeneity of the measure, positive ¢'s
accentuate the ‘densest’ regions while negative ¢’s accentuate the ‘smoothest’
ones.

Let us see how one can relate the f(«) singualrity spectrum to the
©(q) = (¢ — 1)D, spectrum. At the scale ¢, if we consider that the distribution
of the a’s is of the form p(ar)e 7® and if we use this expression in Eq. (9.5), it
follows [29, 30]:

Z(q, €) ~ f p()el“ @ . (9.8)

In the limit € — 07, this sum is dominated by the term Mina@@=/(@) Then,
from the definition of t(¢), one obtains

(q) = min(go — /(). 9.9)
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Thus the t(¢g) spectrum, and in turns the D,s, are obtained by Legendre
transforming the f(c) singularity spectrum. When f(a) and D, are smooth
functions, the relation (9.9) can be rewritten in the following way:

q =df/da,
{ ©(q) = qa — f(@). (9.10)

This relationship is a natural consequence of a deep analogy with thermo-
dynamics [26-28, 33-36, 47, 89]. As just pointed out, ¢ can be identified with
a Boltzmann temperature (8 = 1/kT) which allows us to examine the differ-
ent self-similarity phases of our multi-singularity measure system. The limit
€ — 0" can be seen as the thermodynamic limit of infinite volume
(V=Inl/e - 4+00). Then by identifying o; = —In w,;/ In(1/€) to the energy
E; per unit of volume of a microstate i, one can rewrite the partition function
(9.5) under the familiar form:

Z() = ) exp(~PE). 9.11)

From the definition (9.3), f(«) =InN,(¢)/In(1/€) plays the role of the
entropy (per unit of volume). Similarly, since the partition function can be
reexpressed as an exponential times a free energy (by convention we absorb
the temperature dependence in the free-energy function itself), 7(g) can be
identified to the free energy F(B) (per unit of volume).

The computation of the f(«) curve can thus be understood as the compu-
tation of the entropy versus internal energy curve of a multi-body system.
When using a single dominant term approximation in evaluating the integral
in Eq. (9.8) via steepest descent, one explicitly computes thermodynamic
averages via microcanonical ensembles [22]. This assumes that the most prob-
able value is also the average value and is correct only in the thermodynamic
limit. The severe finite-size effects encountered when computing the f(«)
singularity spectrum with the histogram method arise precisely due to this
assumption [46, 90-96] and can be taken care of using a canonical method as
explained below.

9.2.2 Canonical description

The canonical counterpart of the microcanonical method described in
Section 9.2.1, consists in computing the f(«) spectrum as the Legendre trans-
form of the 7(g) exponents extracted from the scaling behaviour of the parti-
tion function defined in Egs. (9.5) and (9.6) [30-37]. Explicitly, this amounts
to considering the quantities @ and f(«) as mean quantities defined in a
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canonical ensemble, i.e. with respect to their Boltzmann weights [26-28, 33,
95, 96]:

—BE(V
[ _ ™D

n
wi(g, €) = ' = . 9.12
=T @ 26 7) 12
Then one computes expectation values:
ln M€
() =Y D g0 ©.13)

It is easy to see that («)(g) is related to the scaling exponents t(g) of the
partition function Z(g, €) (Eq. (9.6)) in the following way:

a)(q) = 9t(q)/9q. (9.14)
In addition, if f(g) is defined by

|
CEWIR ) bl €) ©.15)
then one has
S = qla)(q) — ©(g). (9.16)

Eqgs. (9.14) and (9.16) provide a relationship between a mean entropy f and
an average singularity strength (&) as implicit functions of the temperature
parameter ¢. These thermodynamic relations clearly demonstrate that the
f(a) singularity spectrum can be determined by first computing t(¢) and
then Legendre transforming it in order to get a canonical average of the
entropy. In the thermodynamic limit € — 0%, one recovers the ‘principle of
ensemble equivalence’, i.e. the canonical f(«) equals the microcanonical f(«)
singularity spectrum.

From a practical point of view, there are however some difficulties in the
actual computation of t(¢q) = (¢ — 1)D,. These difficulties mainly arise from
intrinsic properties of fractals, namely, lacunarity [1] and nonhomogeneity
[30, 46, 89]. Lacunarity manifests itself as intrinsic oscillations in the usual
linear regressions of the log-log procedure used to extract t(q) from the
scaling behaviour of the partition function Z(g,¢) [90, 91, 98-100].
Multifractality requires the simultaneous characterization of the most con-
centrated (D,,,) and the most rarified (D_,,) regions of the support of u
which is a rather difficult task because of poor sampling statistics. Moreover,
the Legendre transform (Eqs. (9.14) and (9.16)) requires first a smoothing of
the 1(¢) curve. This procedure has a main disadvantage. The smoothing
operation prevents the observation of any non-analycity in the curves 7(g)
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and f(«) and the interesting physics of phase transitions in the scaling proper-
ties of a fractal measure [33, 46, 101] can be completely missed. In that
respect, Egs. (9.13) and (9.15) provide an alternative definition of the singu-
larity spectrum which can be used to compute the f(«) curve directly from the
experimental data without the intermediate explicit Legendre transform of
the (free energy) t(¢g) curve.

9.3 Wavelets and multifractal formalism for fractal functions

There have been some attempts to generalize the multifractal formalism to
self-affine functions [29, 57]. The structure function method [54, 55] is a very
interesting first step in this direction despite some intrinsic fundamental lim-
itations [58—61] which explain why a thermodynamic description of fractal
signals is still missing. Our goal, in this section, is to demonstrate that the
wavelet transform [64—70] is the appropriate technical tool needed to process
a ‘multi-singularity’ function system.

9.3.1 The wavelet transform

The wavelet transform is a mathematical technique introduced for analysing
seismic data and accoustic signals [102, 103]. Since then, it has been the
subject of considerable theoretical developments and practical applications
in a wide variety of fields [64—70]. The wavelet transform (WT) of a function s
consists in decomposing it into elementary space-scale contributions, asso-
ciated to the so-called wavelets which are constructed from one single func-
tion, the analysing wavelet ¥, by mean of translations and dilations. The WT
of s is defined as [102, 103]:

+00

1 —
wasio.a = [ (

—0o0

x—>b

)S(x)dx, 9.17)

where a € R** is a scale parameter, b € R is a space parameter and V¥ is the
complex conjugate of . The analysing wavelet i is generally chosen to be
well localized in both space and frequency. Usually, v is only required to be
of zero mean but, for the particular purpose of singularity tracking that is of
interest here, we will further require ¥ to be orthogonal to some low-order
polynomials [71-74]:
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+00
[ uwar=o0. vm 0<m<n, ©.18)

—0o0

There are almost as many analysing wavelets as applications of the WT. A
class of commonly used real-valued analysing wavelets which satisfies the
above condition is given by the successive derivatives of the Gaussian func-
tion [90]:

W) v _ep
v (x)=dx—Ne' , (9.19)

for which ny, = N.

9.3.2 Singularity detection and processing with wavelets

The strength of a singularity of a function is usually defined by an exponent
called Holder exponent. The Holder exponent /(x,) of a function s at the
point X is defined as the largest exponent such that there exists a polynomial
P,(x) of order n satisfying [62, 72-74]:

Is(x) — P,(x — xo)| < Clx — xol", (9.20)

for x in a neighbourhood of xg. If i(x,) €]n, n + 1], one can easily prove that s
is n times but not n + 1 times differentiable at the point x,. The polynomial
P, (x) corresponds to the Taylor series of s around x = x, up to the order n.
Thus A(x,) measures how irregular the function s is at the point x;. The
higher the exponent /A(x,), the more regular the function s.

This definition of the singularity strength naturally leads to a generaliza-
tion of the f(«) singularity spectrum introduced for fractal measures (Eq.
(9.4)). Henceforth we will denote D(/) the Hausdorff dimension of the set
where the Holder exponent is equal to 4 [58-63, 82]:

D(h) = dylx, h(x) = hl, (9.21)

where /& can take, a priori, positive as well as negative real values (e.g., the
Dirac distribution §(x) corresponds to a Holder exponent /(0) = —1).

Remark. The results reported in this work apply to fractal distributions,
including measures and functions. However, we will consider only distribu-
tions whose singularities are not oscillating, i.e., satisfying Vx, ' = df /dx is
Holder 7 — 1 iff £ is Holder & [74].
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If one uses an analysing wavelet i that satisfies the condition (9.18), the
local behaviour of s in Eq. (9.20) is mirrored by the wavelet transform which
locally behaves like [62, 71-74]:

W [s1(xo, @) ~ a9, (9.22)

in the limit « — 0", provided ny satisfy ny, > h(x,). Therefore, one can
extract the exponent /(x,) from a log-log plot of the WT amplitude versus
the scale a. Moreover, if n;, < h(x) (e.g., s € C™ at x,), one could prove that
we would still get a power law behaviour but with a scaling exponent 7,

Wylsl(xy, a) ~ a'v. (9.23)

Thus, around a given point X, the faster the wavelet transform decreases
when the scale a goes to zero, the more regular s is around that point.

9.3.3 The wavelet transform modulus maxima method

The situation is somewhat more intricate when investigating fractal func-
tions. The characteristic feature of these singular signals is the existence of
a hierarchical distribution of singularities [59-63, 71, 82]. Locally, the Holder
exponent /1(xy) is then governed by the singularities which accumulate at x.
This results in unavoidable oscillations around the expected power-law
behaviour of the WT amplitude [58-60, 104, 105]. The exact determination
of h from log-log plots on a finite range of scales is therefore somewhat
uncertain. Of course, there have been many attempts to circumvent these
difficulties [104-106]; nevertheless, there exist fundamental limitations
(which are not intrinsic to the WT technique) to the local measurement of
the Holder exponents of a fractal function [58—60]. Therefore the determina-
tion of statistical quantities like the D(/) singularity spectrum requires a
method which is more feasible and more appropriate than a systematic inves-
tigation of the WT local scaling behaviour as experienced in Refs. [104, 105].

9.3.3.1 Determination of the singularity spectrum of fractal functions from
wavelet analysis

A natural way of performing a multifractal analysis of fractal functions
consists in noticing that a wavelet v can actually be seen as an oscillatory
variant of the box function g ;, (i.e., the characteristic function of the inter-
val [0, 1]). Indeed, u(B,(¢€)) in Eq. (9.1), is nothing but the ‘wavelet transform’
of 1 using x as the analysing wavelet. In this way, Eq. (9.22) can be seen as a
generalization of Eq. (9.2), in the sense that when using our freedom in the
choice of the ‘generalized box’ analysing wavelet, one can hope to get rid of
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possible smooth behaviour that could mask the singularities or perturb the
estimate of their strength / (let us note that n, = 0, which means that only
negative Holder exponents 4 < 0 are amenable to box-counting techniques).
Our aim in this section is to revisit the multifractal formalism described in
Section 9.2, substituting the box functions by wavelets.

A simple method would thus rely on the following definition of the parti-
tion functions in terms of wavelet coefficients [59-63, 71]:

Z(q,a) = /lW,/,[s](x, a)|?dx, (9.24)

where ¢ € R. This would be a rather naive generalization of Eq. (9.5) since
nothing prevents W [s](b, @) from vanishing at some points (b, a) of the
space-scale half-plane. The partition function would then diverge for ¢ < 0.
One thus needs to define the equivalent of a covering of the signal in terms of
wavelets.

The wavelet transform modulus maxima (WTMM) method [59-63, 82]
consists in changing the continuous sum over space in Eq. (9.24), into a
discrete sum over the local maxima of |W,[s](x, a)| considered as a function
of x. In Figure 9.1, we show the space-scale arrangement of the WTMM of
the devil’s staircase (i.e. the distribution function s(x) = u([0, x]) of the uni-
form measure lying on the triadic Cantor set). These WTMM are disposed on
connected curves called maxima lines [74]. let us define L(ay) as the set of all
the maxima lines that exist at the scale g, and which contain maxima at any
scale @ < ay. An important feature of these maxima lines is that, each time the
analysed signal has a local Holder exponent /(x) < n,, there is at least one
maxima line pointing towards x, along which Eq. (9.22) holds [59-63, 74]. In
the case of fractal signals, we thus expect that the number of maxima lines
will diverge in the limit @ — 0". In fact, as emphasized in Refs. [59, 60], the
branching structure of the WTMM skeleton in the (x, @) half-plane, enlight-
ens the hierarchical organization of the singularities. This is clearly illustrated
in Figure 9.1d where the WTMM skeleton of the devil’s staircase shown in
Figure 9.1a, is a tree whose branching structure reveals the construction rule
of the triadic Cantor set: at the scale a = ay3™", each one of the k2" WT
modulus maxima simultaneously bifurcates into two new maxima (k, is a
constant which depends upon the analysing wavelet ).

The WTMM method consists in taking advantage of the space-scale par-
titioning given by this skeleton to define the following partition functions
[59-63, 82]:
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Fig. 9.1. Continuous wavelet transform of the devil’s staircase corresponding to the
uniform triadic Cantor set. (a) Graph of the function. (b) Wavelet transform com-
puted with the analysing wavelet ¥'V; the amplitude is coded, independently at each
scale a, using 32 grey levels from white (W, [s](x, @) < 0) to black (max, W[s](x, a)).
(c) Definition of the modulus maxima at a given scale g, corresponding to the dashed
line in (b). (d) The skeleton of the wavelet transform, i.e., the set of all the maxima
lines. In (b) and (d) the large scales are at the top.

Zq.a= ) ( sup |W¢[s]<x,a/)|‘f>, (9.25)

2eL(a) (x,a")et

where ¢ € R. As compared to Eq. (9.5), the analysing wavelet v plays the role
of a generalized box, the scale a defines its size (¢ in Eq. (9.5)), while the
WTMM skeleton indicates how to position our ‘oscillating boxes’ to obtain a
partition at the considered scale. Without the ‘sup’ in Eq. (9.25), one would
have implicitly considered a uniform partition with wavelets of the same size
a (Figure 9.2a). As illustrated in Figure 9.2b, the ‘sup’ can be regarded as a
way of defining a scale-adaptative partition which will prevent divergences
from showing up in the calculation of Z(g, a) for ¢ < 0.

One can again define the (free energy) exponents t(g) from the scaling
behaviour of the partition functions:
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loga(a)
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Fig. 9.2. Representation of the uniform and scale-adapted partitions. (a) Uniform
partition: Z(q, a) involves wavelets of the same size a. (b) Scale-adapted partition:
Z(g, a) involves wavelets of different sizes a’ < a. The large scales are at the top.

Z(q, a) ~ a" ™. (9.26)

Then, by using both the behaviour of the WT along the maxima lines (Eq.
(9.22)) and the definition (9.21) of the D(/) singularity spectrum, one can
show that in the thermodynamic limit a — 0T, D(h), like the entropy, can be
computed by Legendre transforming t(g):

D(h) = min(gh — =(g)). (9.27)

As pointed out in Section 9.2.2, in the framework of this canonical descrip-
tion, one can avoid some practical difficulties that occur when directly per-
forming the Legendre transform of t(g), by first computing the following
Boltzmann weights from the WTMM [81, 82]:

SUP(x oo Wy ls1(x, @)
Z(q, a) ’

where Z(q, a) is the partition function defined in Eq. (9.25). Then one com-
putes expectation values (e.g. Egs. (9.13) and (9.15)):

h(g, a) = Z In

teL(a)

W,lslg, £, a) = | (9.28)

sup W lsl(x, a)|W,lsl(q, £, ), (9.29)

(x,a’)el

and
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D(g.a)= Y Wylsl(q.£.a)ln W,[s](q. ¢. ), (9.30)
teL(a)

from which one extracts /(q) = h(q, a)/Ina and D(q) = D(q,a)/Ina, and
therefore the D(h) singularity spectrum.

Remark. Tt is worth pointing out the meaning of 7(q) for some specific values
of ¢ [58]. In full analogy with standard box-counting arguments, —7(0) can be
identified to the capacity of the set of singularities of s: —7(0) = d.({x, i(x)
< +o0}). t(1) is related to the capacity of the graph G of the considered
function: d.(G) = max(1, 1 — z(1)). Finally 7(2) is related to the scaling expo-
nent B8 of the spectral density, S (k) = |5(k))* ~ kP, with B =2+ 1(2).

9.3.3.2 Application of the WTMM method to recursive fractal functions

The class of fractal and multifractal signals that possess an exact recursive
structure provides analytically tractable cases. It is thus well adapted to test
the efficiency of the WTMM method. The devil’s staircases and more gen-
erally the characteristic functions of singular measures can be used as a
guinea-pig for our approach [58—62, 82], since one can easily show that the
partition function scaling exponents 7(q) (Eq. (9.26)) are identical to the
spectrum 7,(¢) of the underlying measure u (Eq. (9.6)). In Figure 9.3 we
report the results of the analysis of the triadic devil’s staircase (Figure
9.1a). The partition functions Z(g, a) are computed from the WTMM skele-
ton (Figure 9.1d) of this continuous and almost everywhere constant signal.
Figure 9.3a displays some plots of log, Z(¢, a) versus log, a for different
values of ¢. Besides the presence of periodic oscillations of period log, 3
which reflects the invariance of the Cantor set under discrete dilations by a
factor 3, these plots clearly display a linear behaviour on the whole range of
scales and this for any ¢. Using a linear regression fit, we then obtain the
slopes t(g) of these graphs. As shown in Figure 9.3b, t(g) follows a linear
curve, the slope of which provides an accurate estimate of the unique Holder
exponent & = dt/dg =In2/In3, which characterizes the uniform triadic
Cantor set. Actually, the data in Figure 9.3b are in remarkable agreement
with the theoretical result 7, = (¢ — 1)In2/In 3. This result is corroborated in
Figure 9.3c where A(q) is determined, for different values of ¢, by plotting
h(q, a) versus log, a (Eq. (9.29)). The slope of these graphs is # =1n2/1n 3,
independently of ¢. Then, by Legendre transforming ©(¢) (Eq. (9.27)), one
gets, up to the experimental uncertainty, that the singularity spectrum
reduces to a single point D(h=1In2/In3) =In2/In3, i.e., the Hausdorff
dimension of the triadic Cantor set [59-62, 82]. Let us note that although
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Fig. 9.3. Determination of the multifractal spectra of the devil’s staircase associated
to the uniform triadic Cantor set using the WTMM method. (a) log, Z(¢, a)/(¢ — 1)
versus log, a. (b) 7(¢) versus ¢; the solid line corresponds to the theoretical curve
7(q¢) = (¢ — 1)In2/1In3. (c) Determination of the exponents /(q); h(q, a) is plotted
versus log, a according to Eq. (9.29). (d) D(h) versus h. The analysing wavelet is 1//(1).

this example could seem too ‘simple’, it is a basic example for which the use
of the WT maxima lines to partition the signal is crucial. Indeed, as the
singularities of s are lying on a set of Lebesgue measure 0, a continuous
sum (Eq. (9.24)) over the whole domain [0, 1] would lead to drastic errors
[61].

We have reproduced this multifractal analysis for generalized devil’s stair-
cases associated to self-similar signed measures [59-62, 82]. For example, let
us consider the measure p constructed recursively as follows: at each step of
the construction, each interval is divided into 4 sub-intervals of same length
on which we distribute respectively the weights p; = 0.69, p, = —p; = 0.46
and py = O.31(Zf:1p,~ =1). Let us note that in the case of a distribution
function of a signed measure, the relation (1) = 0 does not hold a priori
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since the ‘norm’ Z,C(a) [Wylsl(be(a), a| is no longer conserved through the
scales. Indeed 1 — 7(1) is the fractal dimension of the graph of the function.
Actually, one can prove that in this particular case, 7(q) = — lm(ZLl 1pilD).
Figure 9.4 displays the distribution function s(x) = w(J0, x]) and its wavelet
transform. Figure 9.5 shows the distribution function s,.(x) = ([0, x]) which
is constructed exactly in the same way as s except that, at each step of the
construction, the order of the weights is chosen randomly. Its WT in Figure
9.5b can be compared to the WT of the deterministic function in Figure 9.4b.
In the case of the random function s,, the partition function is averaged over
the realizations of the random process, i.e.,

Z,(q,a) = (2(q, @)) oy ~ a"?. (9.31)

Clearly, as the analytical expression of t(g) does not depend on the specific
order of py, p», p3 and p,, one deduces easily that 7,(¢) = t(¢). The results of
the multifractal analysis of s and s, using the WTMM method are reported in
Figure 9.6 [59, 60]. As shown in Figure 9.6b, 7(¢) and t.(¢) are nonlinear
convex increasing functions. The numerical data for both the deterministic
() and the random (A) signal match perfectly the theoretical prediction. The
corresponding D(/) spectra are displayed in Figure 9.6d; their single humped
shapes are characteristic of multifractal signals. The support of D(/) extends

0 500 1000

Fig. 9.4. (a) Graph of the deterministic generalized devil’s staircase s(x) = ([0, x]).
(b) Continuous wavelet transform of s(x) computed with the first derivative w(l) of
the Gaussian function. Same coding as in Fig. 9.1b. Small scales are at the top.
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Fig. 9.5. (a) Graph of the random generalized devil’s staircase s,(x) = u,.([0, x]). (b)
Continuous wavelet transform of s,(x) computed with the first derivative ¥ of the
Gaussian function. Same coding as in Fig. 9.1b. Small scales are at the top.

over a finite interval Ay, < h < hg,. This non-uniqueness of the Holder
exponent is confirmed in Figure 9.6¢c, where the exponent /(g), computed
directly from Eq. (9.29), clearly evolves from the value /A, >~ 0.28 to
hpax == 0.82 when ¢ varies from ¢ = 10 to ¢ = —10. The maximum of the
D(h) curve is obtained for ¢ = 0: D(h(¢ = 0)) = —1(0) = Dy = 1. The gener-
alized devil’s staircases in Figs. 9.4a and 9.5a are thus singular signals that
display multifractal properties; the fractal dimension of the support of the set
of singularities of these distribution functions is Dp = 1.

9.3.4 Phase transition in the multifractal spectra

In the context of thermodynamics, a phase transition corresponds to some
nonanalyticity in the thermodynamic functions, e.g., the free energy and the
entropy [22, 107]. Phase transitions in the multifractal scaling properties of
singular measures are now well documented in the literature [33, 36, 101,
107—111]. In this section we will illustrate this phenomenon on the singularity
spectrum of multifractal functions as induced by the presence of smooth
behaviour [61-63, 82].

In the previous sections, we have pointed out that the WTMM method is
very efficient as far as we use an analysing wavelet with a number n, of
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Fig. 9.6. Determination of the multifractal spectra of the devil’s staircases displayed
in Figs. 9.4 and 9.5 using the WTMM method. (a) logz(a_f(l)Z(q, a))/(q — 1) versus
log, a. (b) t(g) versus g; the solid line corresponds to the theoretical prediction. (c)
Determination of the exponents /(q); h(q, a) is plotted versus log, a according to Eq.
(9.29). (d) D(h) versus h; the solid line corresponds to the theoretical spectrum. The
analysing wavelet is 2. In (b) and (d) the symbols correspond to the data obtained
for the deterministic (o) and the random (A) signal.

vanishing moments which is greater than h,,,, = max,{h, D(h) # —oo}. Let us
see what happens when this is not possible, e.g., if /.,,, = +00. This would
mean that the analysed function is C* at some points. For the sake of
simplicity, we will assume that the signal f(x) = s(x) + r(x) is a superposition
of a multifractal singular part s(x) with A,,, < 400 living on a Cantor set
(s(x) is assumed to be constant on each interval on which it is not singular),
and a C* regular part r(x). Let 7,(¢) and Dy(h) be the multifractal spectra
which characterize the function f(x). At each scale «, the set of maxima lines
Ls(ag) of the WT of f can be basically decomposed into two disjoint sets of
maxima lines, L(ay) and L,(ay) corresponding to the lines created respec-
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tively by s(x) (and which are slightly perturbated by the presence of r(x)) and
by the C* function r(x). It can be established [74] that along each line created
by r(x) € L,(a), the WT behaves like W, [r] ~ 4" in the limit a — 0" (Eq.
(9.23)), while along the other maxima lines (€ Ly(ay)) Wy l[s] ~ d" provided ny
is larger than the upper bound of the singularity range of s(x). Then, the
partition functions defined in Eq. (9.25) split into two parts [61, 62]:

Zi(q,a) = Z,(q, a) + 2,(q, a) ~ a9 + ", (9.32)

where Z, and Z, are the partition functions corresponding respectively to
summing over the maxima lines in £, and £,. Thus one deduces easily that
7(q) = min{z,(¢), gny}. In other words, there exists a critical value ¢.,;, < 0 so
that

_ TS(Q) for qd > 4erits
w(q) = {qnw for ¢ < q.is- (9-33)

One thus predicts the existence of a singularity in the t(g) spectrum. This
nonanalyticity in the function t(¢) expresses the breaking of the self-similar-
ity of the singular signal s(x) by the C* perturbation r(x). Below the critical
value ¢,,;, (wWhich is the analogue of the inverse of the transition temperature)
one observes a regular phase, whereas for ¢ > ¢,,;, one switches to the multi-
fractal phase. Let us note that the 7(¢) spectrum in the ‘C* phase’ is governed
by the number n,, of vanishing moments of the analysing wavelet. Therefore,
checking whether 7(g) is sensitive to some change in the order n, of v,
constitutes a very good test for the presence of highly regular part in the
signal [61, 62].

This phase transition phenomenon is illustrated in Figure 9.7. The ana-
lysed function f(x) is the sum of r(x) = Rsin(87x) and a generalized devil’s
staircase s(x) which is the distribution function of a measure nonuniformly
distributed on the triadic Cantor set with the weights p; = 0.6 and p, = 0.4.
The function f(x) is represented in Figure 9.7a. The t(¢) and D(h) spectra
computed with the WTMM method are displayed in Figures 9.7b and 9.7¢
respectively. The data obtained for t(¢) when using two different analysing
wavelets y (ny, = 1) and P (ny, = 2) are in remarkable agreement with the
theoretical spectrum D(h) for ¢ > Q,.;(ny). For ¢ < g, (ny), however, D(h)
displays a linear fall off towards the limiting value 4 =1 for v and h =2
for y® (indeed i = N for ™) where D vanishes. This linear part is tangent
to the theoretical D(4) spectrum (dashed line) and has a slope equal to
qerie (y). This is the signature of the phase transition phenomenon described
above [61-63].
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Fig. 9.7. WTMM analysis of a signal which is not singular on some intervals. (a)
Graph of the signal f(x) = s(x) + r(x), with r(x) = Rsin(87x) and s(x) is a multi-
fractal devil’s staircase Ssee text). (b) (¢) vs ¢ as obtained with ¥V ((0) and (A)),
Y@ ((o) and (e)) and y@ ((0) and (H)); the solid lines correspond to the theoretical
predictions (Eq. (9.33)); the dashed line is the part ¢ < ¢,,;; of t,(¢). (c) D(h) vs h from
the Legendre transform of 7(g); the symbols are the same as in (b).

Remark 1. Since the wavelet coefficients behave like " along the maxima
lines created by the C* function, by choosing n,, large enough and/or choos-
ing a numerical threshold below which any local maximum is not considered,
one can remove all the C* maxima lines in £,(a) and thus numerically
‘restore’ the self-similarity of s(x). The whole t,(¢) and D(h) spectra can
then be estimated.

Remark 2. If one considers the analysing wavelet AV =sx—-1)— 8(x), the
wavelet transform is nothing else than the increments used in the structure
function method: 8s,(x) = s(x + £) — s(x) = W, [s](x, £). Since n,n = 1, this
explains why this method fails to capture singularities with Holder exponents
h¢0,1].

9.4 Multifractal analysis of fully developed turbulence data

The central problem of three-dimensional fully developed turbulence is the
energy cascading process. It has resisted all attempts at a full understanding
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or mathematical formulation. The main reasons for this failure are related to
the large hierarchy of scales involved, the highly nonlinear character inherent
in the Navier-Stokes equations and the spatial intermittency of the dynamical
active regions [40, 41, 112]. In this context, statistical and scaling properties
have been the basic concepts used to characterize turbulent flows [113]. One
of the striking signatures of the so-called intermittency phenomenon, is the
non-Gaussian statistics at small scales. The energy transfer towards small
scales is related to the non-zero skewness of the probability distribution
function (PDF) of the velocity increments and the large flatness of the
PDF (kurtosis) corresponds to the presence of strong bursts in the energy
dissipation. This fine-scale intermittency is responsible for some departure to
the classical k=>/* theory of Kolmogorov [114] which neglects the presence of
fluctuations in the energy transfer. Mandelbrot [39] was the first one to
advocate the use of fractals in turbulence. Some of his early multiplicative
cascade models contain all the ingredients of the multifractal formalism
described in Section 9.2. During the past few years, considerable effort has
been devoted to the multifractal analysis of high Reynolds number turbu-
lence [40, 41]. But the problem of comparing the predictions of multifractal
cascade models [31, 39, 115-118] with experimental data comes from the fact
that three-dimensional processing of turbulent flows is at the moment feasible
only for numerical simulations which are unfortunately limited in Reynolds
numbers to regimes where the scaling just begins to manifest itself. Present
experimental techniques have access to the two-dimensional structure of
passive scalars [119, 120] and only to the one-dimensional cuts of the velocity
field [54, 55, 121, 122]. Here, we are only interested in the statistical analysis
of single-point data based on hot-wire techniques in the presence of a mean
flow (wind tunnels, jets, etc. . . .).

Very recently, there has been increasing interest in applying the wavelet
analysis to turbulence data [123]. In this section, we report on the first such
analysis performed on single point velocity data from high Reynolds number
3D turbulence [77, 104]. The data were obtained by Gagne and collaborators
[54, 55, 121, 122] in the large wind tunnel S1 of ONERA at Modane. The
Taylor scale based Reynolds number is R, = 2720 and the extent of the
inertial range following approximately the Kolmogorov k>/* law is almost
three decades (integral scale ¢, = 15m, dissipation scale £; = 0.3 mm). The
results reported here concern the analysis in the inertial range of about 100
integral length scales of the recorded experimental signal.
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9.4.1 Wavelet analysis of local scaling properties of a turbulent velocity
signal

The application of the continuous WT to investigate the local scaling expo-
nent fluctuations that characterize the multifractal nature of a turbulent
velocity field at inertial range scales has been initiated in Ref. [104]. Figure
9.8 illustrates the wavelet transform of a sample of the velocity signal of
length of about two integral scales. The WTMM sekeleton in Figure 9.8¢c
is actually hardly distinguishable from the WTMM arrangement obtained in
Figure 9.9¢ for a fractional Brownian signal B 3(x) which has a k=3 power
spectrum like the turbulent signal. However, when using the additional infor-
mation given by the WT amplitude in Figures 9.8b and 9.9b respectively, this
discrimination becomes easier. By analysing the behaviour of W[s](x, a)
versus a along the WTMM lines, one can estimate the value of the local
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Fig. 9.8. Continuous wavelet transform analysis of fully developed turbulence from
wind tunnel data. (a) The turbulent velocity signal over about two integral length
scales. (b) WT of the turbulent signal; the amplitude is coded like in Fig. 9.1b. (c)
WTMM skeleton. The analysing wavelet is ¥. In (b) and (c) the small scales are at
the top.
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Fig. 9.9. Continuous wavelet transform of a Brownian signal. (a) A realization of the
fractional Brownian motion B ;. (b) WT of the Brownian signal; same coding as in
Fig. 9.1b. (c) WTMM skeleton. The analysing wavelet is v?. In (b) and (c) the small
scales are at the top.

Holder exponent A(x) according to Eq. (9.22). Regardless of some fluctua-
tions due to finite size effects [106], the Holder exponent of the Brownian
signal B, 3(x) does not depend on x: & = H = 1/3. In contrast, for the tur-
bulent velocity signal, /4 is actually found to fluctuate in a wide range between
—0.3 and 0.7 [60, 104], thereby suggesting that the multifractal picture pro-
posed by Parisi and Frisch [29] is appropriate. Statistically, the most frequent
exponents are close to the Kolmogorov value 4 =1/3. Let us stress the
observation of negative exponents down to —0.1 and beyond, which corre-
spond to rare but very active events. Negative exponents do not seem to have
been previously reported in the literature. One interpretation tossed in Ref.
[104] is the occasional passage nearby the probe of slender vortex filaments of
the sort observed in recent experiments [124, 125] and 3D numerical simula-
tions [126-130].
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Fig. 9.10. WTMM measurement of the t(¢) and D(h) spectra of both the Modane
turbulent velocity signal and the Brownian signal By,;. Determination of the expo-
nent /(q) from Eq. (9.29) for (a) the turbulent velocity signal and (b) the Brownian
signal B, 3. (¢) ©(¢) vs ¢; the symbols (e) and (A) correspond to the turbulent and
Brownian signals respectively; the symbols (x) correspond to t(¢q) = ¢, — 1 obtained
when computing the scaling exponents ¢, with the structure function method. (d)
D(h) vs h; the solid line corresponds to the average singularity spectrum obtained
from dissipation field data via the Kolmogorov scaling relation (9.34). The results
reported in this figure concern the analysis in the inertial range of about 100 integral
length scales of the turbulent velocity signal. The analysing wavelet is y%.

9.4.2 Determination of the singularity spectrum of a turbulent velocity signal
with the WTMM method

In Figure 9.10 are shown the results of the multifractal analysis of the
Modane turbulent velocity signal performed with the WTMM method [59,
60, 63]. The analysis of the Brownian signal B, 3(x) is shown for comparison.
As reported in Figure 9.10c, when plotted versus ¢, the scaling exponent 7(q)
of the partition function Z(q, a) (Eq. (9.25)) obtained for the Gaussian pro-
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cess, remarkably falls on a straight line 7(g¢) = ¢/3 — 1 of slope h=1/3.
From the Legendre transform (Eq. (9.27)) of the data for t(¢), one gets
D(h) =1. Thus, as expected theoretically [48, 49] we find that the
Brownian signal is everywhere singular with a unique Hoélder exponent
h=1/3.

In contrast to the fractional Brownian motion ((A)) in Figure 9.10c), the
7(g) spectrum obtained for the experimental turbulent signal ((e) in Figure
9.10c) unambiguously deviates from a straight line. Let us note that the
results previously derived with the structure function method (z(q) = ¢, — 1
for ¢ > 0 exclusively) [55, 121] are in good agreement ((x) in Figure 9.10c)
with the nonlinear behaviour of t(¢g) found with the WTMM method. The
values of & = dt(g)/dq when varying ¢ from 430 to —30 range in the interval
[0.10, 0.62]. This result is corroborated by the scaling behaviour of /(q, a)
(Eq. (9.29)) which clearly depends on ¢ in Figure 9.10a, on the opposite to
what is observed in Figure 9.10b for the fractional Brownian motion B /3(x).
The corresponding D(/) singularity spectrum obtained by Legendre trans-
forming t(g) is shown in Figure 9.10d. Its characteristic single humped shape
over a finite range of Holder exponents (4 € [0.11, 0.60]) is a clear signature
of the multifractal nature of the turbulent velocity signal. For ¢ =0,
the largest dimension is attained for singularities of exponent
h(g =0) =0.335+0.005, ie., a value which is very close to the
Kolmogorov prediction # = 1/3. Moreover, the correspnding maximum of
the D(h) curve, D(h(q = 0)) = —7(0) = 1.000 £ 0.001 does not deviate sub-
stantially from Dy = 1. This suggests that the turbulent signal could be
everywhere singular. This possibility seems to be confirmed by the robustness
of the D(h) data with respect to changes in the shape of the analysing wavelet:
similar quantitative estimates of the t(¢) and D(%) spectra are obtained when
using the first (y"), the second (w(z)) and the fourth (w(4)) derivative of the
Gaussian function and no wavelet dependent phase transition of the type
described in Section 9.3.4 is observed.

In Figure 9.10d, the D(h) singularity spectrum of the wind tunnel velocity
signal is compared to a solid curve which actually corresponds to a common
fit of dissipation field data at lower Reynolds number [41]. This curve has
been deduced from the experimental average f(«) spectrum of the energy
dissipation e(x) = (dv/dx)* (considered as a measure) of laboratory and
atmospheric turbulent flows by using the local Kolmogorov scaling relation
[131]:
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x+¢

3
% / e(x)dx:%, (9.34)
x—¢

where >~ means that the two quantities have the same scaling laws. The fact
that, for similar statistical samples, one cannot discriminate between these
two singularity spectra within the experimental uncertainty, can be inter-
preted a posteriori as an experimental verification of the above
Kolmogorov hypothesis. This observation can be understood also as an
experimental confirmation of the universality of the multifractal singularity
spectrum of fully developed turbulence with respect to Reynolds number.
However, it is clear that considerable further work is needed to get definitive
conclusions. In particular, long term statistical analysis must be carried out in
order to capture more accurately the latent part (D(h) < 0) [132] of the
singularity spectrum, including possible violent rare events (rare as compared
to the integral scale /)) corresponding to singularities of negative Holder
exponents. This WT analysis is likely to provide crucial information about
the conjectured interpretation of these very energetic localized events in terms
of the slender vortex filaments recently observed in hydrodynamic laboratory
experiments [133].

9.5 Beyond multifractal analysis using wavelets

The issue of carrying out a statistical mechanics of fractal objects has been
mainly addressed in the context of dynamical system theory [26-28, 33-36,
47]. In particular Feigenbaum has shown that the microscopic information
about a deterministic multiplicative dynamical system and its scaling proper-
ties is contained in the so-called scaling function [134, 135], which describes
the scaling or contractions of the various elements of the attractor in time.
This scaling function can be seen as the analogue of the Hamiltonian. From
the knowledge of this function one can use the transfer matrix technique [26—
28] to compute the thermodynamic functions of interest, i.e., the partition
function exponents t(q) (Eq. (9.26)) and the D(%) singularity spectrum (Eq.
(9.27)).

On a more general ground, for any fractal object that can be observed in
nature, there is a need to go beyond simple statistical averages and eventually
to extract some ‘microscopic’ information about their underlying hierarchical
structure. In many cases, the self-similarity properties of fractal objects can
be expressed in terms of a dynamical system which leaves the object invar-
iant. The inverse problem consists in recovering this dynamical system (or its
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main characteristics) from the data representing the fractal object. This pro-
blem has been previously approached within the theory of Iterated Function
Systems (IFS) [85-87]. But the methods developed in this context are based
on the search of a ‘best fit” within a prescribed class of IFS attractors (mainly
linear homogeneous attractors). In that sense, they approximate the self-
similarity properties more than they reveal them. In this section, we show
that, in many situations, the space-scale representation of the wavelet trans-
form of a fractal object can be used to extract some dynamical system which
accounts for its construction process [83, 84].

9.5.1 Solving the inverse fractal problem from wavelet analysis

The class of fractal objects we will use to carry out our demonstration are the
invariant measures of ‘cookie-cutters’. A cookie-cutter [36] is a map on
A =1[0, 1] which is hyperbolic (|7']) > 1) and so that T-!(4) is a finite
union of s disjoint subintervals (4;), <, of 4. For each k, T = T|,, is a
one to one map on 4. An invariant measure u associated to 7' is a measure
which satisfies i o 77! = 1. We will suppose that y is multiplicatively dis-
tributed on A4:

pwoTi' =pim, Vke{l,..., s (9.35)

where ) p, = 1. These self-similar measures are also referred to as Bernoulli
invariant measures of expanding Markov maps [34]. These measures have
been the subject of considerable mathematical interest [34, 36, 62].
Practically, they have been widely used for modelizing a large variety of
highly irregular physical distributions; notable examples include strange
repllers which characterize transient behaviour of nonlinear dynamical sys-
tems [36] and the spatial distribution of the dissipation field in fully developed
turbulent flows [19, 41].

The 1D continuous wavelet transform of a measure u according to the
analysing wavelet i is defined as [75, 76, 78-82]:

Wb, 0 = [0(*5 ) 9.36)
A

where a € R is the scale parameter and b € R is the space parameter. As we
have seen  is usually chosen to have some vanishing moments, up to a
certain order, so that it is orthogonal to possible regular (i.e. polynomial)
behaviour of w. In the particular case of invariant measures of cookie-cutters,
there is no such behaviour so we will use a simple ‘smoothing wavelet’
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v = exp(—x?). By combining Egs. (9.35) and (9.36), a straightforward cal-
culation at the first order in a (¢ < 1) leads to the following ‘self-similarity’
relation [62, 82]:

1 /
Ww[u](b,a):p—k W (T (b), T (b)), Yk e{l,...,s), (9.37)

where T, ,;1/ is the first derivative of T} '. This relation can be interpreted as
describing the self-similarity properties of the wavelet transform itself in the
(b, a) half-plane [75, 76, 78-82]. Our goal is to study the self-similarity prop-
erties of u through those of its wavelet transform W, [u]. For that purpose,
we are not going to deal with the whole wavelet transform but only with its
restriction to the local maxima of its modulus (see Figure 9.1d). In fact, one
can easily prove that the self-similarity relation (9.37) still holds when
restricted to the set of modulus maxima of the WT. For more details, we
refer the reader to our previous work in Refs. [62, 83, 84] and to a recent
preprint by W.L. Hwang and S. Mallat [136] where an alternative approach
to recover the self-similarity parameters through a voting procedure based on
Eq. (9.37) is reported.

9.5.1.1 Linear cookie-cutters

For the sake of simplicity we will first consider the case of linear cookie-
cutters such that the 7; s, are linear, i.e., T; '(x) = rpx + 1, where r, < 1.
Then the self-similarity relation (9.37) becomes [83, 84]:

1
W [1)(b, a) = o W d(reb + s, rea),  Vk e {1,..., s}, (9.38)

The meaning of this relation is illustrated in Figure 9.11, for the particular
model parameters: s=2, p; =0.7, p,=03, T(x)=5x/3 and
T,(x) = 5x — 4. The corresponding invariant measure is shown in Figure
9.11a. As previously noticed, one can see that the part of the space-scale
plane displayed in Figure 9.11b (the entire rectangle [0, 1]x]0, ay]) is ‘similar’
to the two rectangles delimited by the dashed lines ([0, 3/5]x]0, 34,/5] and
[4/5, 1]x]0, ay/5]), up to a global rescaling of the modulus of the wavelet
transform. Let us describe on this particular example our technique for reco-
vering from the wavelet transform modulus maxima, the discrete (cookie-
cutter) dynamical system 7. We call bifurcation point any point in the space-
scale plane located at a scale where a maxima line appears and which is
equidistant to this line and to the closest longer line. The bifurcation points
at coarse scales are displayed in Figure 9.11b using the symbols (e). They lie
on a binary tree whose root is the bifurcation point at the coarsest scale. Each
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Fig. 9.11. (a) Invariant measure of the two branch cookie-cutter T;(x) = 5x/3,
T,(x) = 5x — 4, distributed with the weights p; = 0.7, p, = 0.3 on the interval
[0, 1]. (b) Position in the (x, @) half-plane of the local maxima of the modulus of
the wavelet transform of the measure shown in (a), using a Gaussian analysing
wavelet; the large scales are at the top. According to the self-similarity relation
(Eq. (9.38)), the maxima line arrangement in the two dashed rectangles is the
same as in the original rectangle. The bifurcation points associated to each rectangle
are represented by the symbols (e). Arrows indicate the matching of these bifurcation
points according to the self-similarity relation (9.38). (c) 1D map that represents the
position x,_; of an order n—1 bifurcation point versus the position x, of
the associated order n bifurcation point following the tree matching defined in
(b). The graph of this map corresponds exactly to the original cookie-cutter.
(d) Histogram of scale ratios r = a,/a,_; between the scales of two associated
bifurcation points. (¢) Histogram of amplitude ratios p = |W,[ul(x,,a,)l/
[Wy[ul(x,—1, a,—1)| computed from two associated bifurcation points.
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bifurcation point defines naturally a subtree which can be associated to a
rectangle in the space-scale half-plane. This root corresponds to the original
rectangle [0, 1]x]0, ay], whereas its two sons correspond to reduced copies
delimited by the dashed lines. As illustrated in Figure 9.11b, the self-similar-
ity relation (Eq. (9.38)) amounts to matching the ‘root rectangle’ with one of
the ‘son rectangles’, i.e., the whole tree with one of the subtrees. More gen-
erally, this relation associates any bifurcation point (x,, a,) of an order n
subtree to its hierarchical homologous (x,_, a,_;) of an order n — 1 subtree.
It follows from Eq. (9.38) that x, = r;x,_; + s, and a, = ra,_;. Thus by
plotting x,_; versus x,, one can expect to recover the original cookie-cutter
T. This reconstructed 1D map is displayed in Figure 9.11c. As one can see,
the two branches 77 and T, of the cookie-cutter T provide a remarkable fit of
the numerical data. Let us point out that the nonuniform repartition of the
data points on the theoretical curve results from the lacunarity of the mea-
sure induced by the ‘hole’ between the two branches T and 7,. In Figure
9.11d, we show the histogram of the (contracting) scale ratio values between
the scales of two bifurcation points of successive generations, r = a,,/a,_;, as
computed when investigating systematically the WTMM skeleton. As
expected, it displays two peaks corresponding to the slopes r; = 3/5 and
ry =1/5 of T7' and T5 ' respectively. Note that the peak corresponding to
the smallest value of r is lower than the other one; this is a direct consequence
of the finite cut-off we use in our wavelet transform calculation at small
scales. On a finite range of scales, the construction process involves less
steps with the smallest scale ratio r, than steps with the largest one r;.
(The so-computed histogram can be artificially corrected in order to account
for these finite size effects, by plotting N(r)In(1/r) instead of N(r).) Figure
9.11e displays the histogram of amplitude ratio values p=
| Wy li(x,, a)/IWyll(x,—1, a,—1)]; one clearly distinguishes two peaks in
good agreement with the weights p; = 0.7 and p, = 0.3.

At this point, let us mention that the distribution N(r) of scale ratios is in a
way redundant with the 1D map, since it is basically made of two Diracs
located at the inverse of the slopes of the two branches of this piece-wise
linear map. On the contrary, the distribution N(p) of amplitude ratios brings
a very important piece of information which is not present in the 1D map: the
repartition of the weights at each construction step. When this repartition is
uniform, we get a histogram N(p) which reduces to a single point p = 1/2.
When the repartition is not uniform, as in Figure 9.11, one can furthermore
study the joint law of p with r in order to find out the specific ‘rules’ for
associating a p with a r.
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Now, having extracted the analogue of the Hamiltonian, i.e. the dynamical
system which accounts for the exact recursive structure of the considered
measure, one can compute analytically the generalized fractal dimensions
D, (Eq. (9.7)) and the f(«) singularity spectrum (Eq. (9.16)) using the follow-
ing partition function:

I(g.t.ry=Y_pl/r. (9.39)
i=1

where » = maxr;. As pointed out in Ref. [30], for such measures, this parti-
tion function at the first level of refinement will generate all the others at finer
levels:

I'(q,t,7")y=1TI(q,t,r). (9.40)

In the spirit of the original definition of Hausdorff [137], the dimensions D,
are obtained on requiring the partition function to be of the order of unity:

I'(g, t,r)=1. (9.41)

In the case illustrated in Figure 9.11, D, = 1(¢)/(q — 1) are obtained by sol-
ving the implicit equation:

0.7 +(0.3)75" = 1. (9.42)

Then by Legendre transforming t(¢g) one gets the f(«) singularity spectrum.

Remark. In the case where s is no longer equal to 2, one can easily adapt the
wavelet based technique by trying to match not only the root bifurcation
point on its sons but also on its grandsons and so on [83, 84] ... For
instance, in the case s = 3, we will match the root with one of its sons and
with each of the two sons of its other son. The general algorithm uses a ‘best
matching’ procedure so that it automatically performs the matching which is
the most consistent (e.g., so that the different derivatives of W, [u] follow the
same self-similarity rules as W, [u]). Thus the algorithm is not looking for a
given number s of branches that the user would have guessed a priori, it
automatically comes up with the ‘best’ value of s. In Figure 9.12 are
shown the 1D map and the histograms of scale and amplitude ratios obtained
in the linear case where s =3, py =p, =p3;=1/3 and r;, =0.2, r, = 0.3,
r; = 0.5. All these values are very accurately recovered by our algorithm.
Let us notice that we have considered in this work only measures which do
not involve any ‘memory’ effect in their hierarchical structure. i.e., the suc-
cessive (backward) iterations always consist in applying the same dynamical
system T, independently of the previous iterations. However, in a certain
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Fig. 9.12. (a) Inverse problem for the invariant measure of the three branch cookie-
cutter T)(x) = 5x, Th(x)=10x/3 —2/3, T5(x) = 2x — 1, distributed with equal
weights p; = p, = p; = 1/3 on the interval [0, 1]. (b) Histogram of scale ratios
r=a,/a,_;. (c) Histogram of amplitude ratios p = [Wy[ul(x,,a,)|/IWy[u]
(xnflv anfl)|~

way, a memory component can be accounted by increasing the number s of
branches of a ‘no-memory’ map 7. As illustrated in Figure 9.12, this class of
dynamical systems is directly amenable to our WT algorithmic procedure.
Nevertheless, it is important to emphasize that it is meaningless to look for
dynamical systems with a rather high number of branches; generally, there
would not be enough scales in the data in order to ensure the theoretical
validity of the outcoming discrete map.

9.5.1.2 Nonlinear cookie-cutters

In the former examples, we have described our wavelet based technique to
solve the inverse fractal problem for piece-wise linear cookie-cutters. Since
locally in the space-scale plane, the self-similarity relation (9.37) looks like
Eq. (9.38), we can apply exactly the same technique for nonlinear expand-
ing maps [83, 84]. Let us point out that the hyperbolicity condition is a
priori required for the first derivative of 7' involved in the right-hand side
of Eq. (9.37) to be finite. Figure 9.13 displays the 1D map extracted from
the WTMM skeleton of the uniform Bernoulli measure associated to a
nonlinear cookie-cutter made of two inverse hyperbolic tangent branches.
Once again, the numerical results match perfectly the theoretical curve. In
this case, the histogram of amplitude ratios is still concentrated at a single
point p = 1/2. But the histogram of scale ratios N(r) involves more than
simply two scale ratios as before, since the non-linearity of the map implies
that new scale ratios are actually operating at each construction step. This
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Fig. 9.13. Inverse problem for a non-linear cookie-cutter made of two inverse hyper-
bolic tangent branches. (a) 1D map obtained with the same wavelet transform tree
matching analysis as in Fig. 9.11; the original nonlinear dynamical system (solid
lines) is recovered accurately. (b) Histogram of scale ratios r =a,/a,_;. (c)
Histogram of amplitude ratios p = |W + y[ul(x,, a)|/IWy[ul(x,—1, a,-1)I.

explains the thickness of the two peaks observed in Figure 9.13b. A careful
analysis of the fine structure of this histogram would require the investiga-
tion of a large number of construction steps; but this out of the scope of
the present study.

9.5.2 Wavelet transform and renormalization of the transition to chaos

As a first step towards fully developed turbulence, the transition to chaos in
dissipative systems [17, 18] presents a strong analogy with second-order
phase transitions [138—141]. Among the different scenarios from ordered to
disordered temporal patterns, the most popular are undoubtedly the cascade
of period-doubling bifurcations [134, 135, 142-144] and the transition to
chaos from quasiperiodicity with irrational winding numbers [145-147]. In
this section, we will focus on the period-doubling scenario and we refer the
reader to our original work in Refs. [75, 76, 78] for a preliminary analysis of
the scenario from quasiperiodicity with golden mean winding number.
Dissipative dynamical systems that exhibit the cascade of period-doubling
bifurcations are in practice well modelled by one-dimensional maps with a
single quadratic extremum [142—-144, 148] such as the map (Figure 9.14):

Xpp1 = Pr(x,) =1 — Rx;, (9.43)

or quadratic maps of the form ®p(x) = Rx(1 —x), Rsinmx--- As one
increases the parameter R which determines the height of the maximum of
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Fig. 9.14. Sketch of the cgladratic map @3 defined in Eq. (9.43). In the squares F and
CT, the second iterate @ R) of this map has a similar shape to @ in the initial square.
This observation is at the origin of the definition of the renormalization operations
R; (Eq. (9.44)) and R (Eq. (9.45)).

®r at x = x, = 0, one observes an infinite sequence of subharmonic bifurca-
tions at each stage of which the period of the limit cycle is doubled. This
period-doubling cascade accumulates at R, = 1.40115--- where the system
possesses a 2°°-orbit that displays scale invariance. Beyond this critical value,
the attractor becomes chaotic, even though there still exist parameter win-
dows of periodic behaviour. As originally emphasized by Feigenbaum [134,
135, 142] and Coullet and Tresser [143, 144], this scenario presents strong
analogy with second-order phase transition in critical phenomena. Above
criticality (R > R,), the envelope of the Lyapunov characteristic exponent
(which provides a quantitative estimate of chaos) displays a universal
‘order parameter’ like behaviour L(R) ~ (R — R)c)", where v is a universal
exponent in the sense that it does not depend on the explicit form of the map
but only on the quadratic nature of its maximum. Below criticality (R < R,),
the period of the bifurcating cycles is a ‘characteristic time’ which diverges at
the transition according to the scaling law P(R) ~ (R, — R)™", with the same
critical exponent v =1In2/In A as for the Lyapunov exponent. This universal
behaviour results from the observation that the bifurcation parameter values
R, from an orbit of period 2" to an orbit of period 2", converge to R, = R,
according to the geometric law (R, — R,) ~ A", where A =4.669--. for
quadratic maps. Very much like in critical phenomena, these universal prop-
erties can be understood using renormalization group techniques [134, 135,
142-144].
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Indeed, at criticality R = R,, the attractor of the quadratic map (43) exhi-
bits scale invariance: the adherence of the asymptotic orbit of almost all
initial conditions in the invariant interval is a Cantor set. The iterates of
the critical point x, = 0 form this Cantor set, with half of the iterates falling
between @Y% (0) and @y (0), the other half between @%(0) and @%)(0). At the
next stage of the construction process, each subinterval is again divided into
two subintervals with equal probability and so on. Consequently, the visiting
probability measure is symmetrically distributed with the weights
p1 = p> = 1/2. The multifractal scaling properties of the corresponding
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Fig. 9.15. (a) Invariant measure associated to the critical period-doubling dynamical
system @* (see text). (b) WITMM skeleton computed with a Gaussian analysing
function. (¢c) 1D map obtained with our tree matching algorithm; the solid
lines represent the theoretical prediction (Eq. (9.46)). (d) Histogram of scale
ratios r=a,/a,_;. (e¢) Histogram of amplitude ratios p=|W + Y[u]
(xnv an)|/| W@//[/*L](xnfl ’ an71)|~
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invariant measure (Figure 9.15a), can be understood from the two renorma-
lization operations that have been proposed. The renormalization operation
R, originally discovered by Feigenbaum [134, 135, 142]:

Ri(DPr(x)) = a®roPr(x/a), (9.44)

indicates that up to some dilation by a scale factor « = 1/®y(1), the second
iterate of @5 in the interval noted F in Figure 9.14, looks like @y itself. The
renormalization operation R;; introduced by Coullet and Tresser [143, 144]:

Riy(@p() = o [ch (¢R (§ + n)> - n}, 945)

results from the observation that, up to some translation by n and some
dilation by o, the second iterate ®zo®p in the interval noted CT in Figure
9.14, looks like @ in the original interval. The universality of the multifractal
properties of the invariant measure of @ [30, 34] is the consequence of the
fact that @, belongs to the stable manifolds of the two fixed points of R; and
R, respectively. The complexity of the ocnstruction rule of the period-
doubling Cantor set is actually contained in this subtle interplay between
R; and Ry [134, 135, 142-144]. Ledrappier and Misiurewicz [149] have
succeeded to prove that this measure can be considered as the invaraint
measure obtained by iterating backward the following dynamical system
defined on the interval 4 = [®,(1), 1] :

| Ti(x) =x/2.(1) if x € [@,(1), x"]
T() = { 1,00 = @,(0/0,(1) if v € [ 1] ©.46)
where
O, (x)=1—1.5276---x*+0.1048 - - - x* + - (9.47)

is the fixed point of the renormalization R; (@, = R;®,) and x™ is the point
in A such that @,(x*) = x* [134, 135, 142, 148, 150]. Let us point out that, as
compared to the Bernoulli measures distributed on generalized Cantor sets,
the self-similarity properties of the invariant measure of critical period-dou-
bling dynamical systems depend dramatically on the fact that, while 7T'(x) is
linear (a simple dilation like R;), the second branch T,(x) is nonlinear (as the
consequence of the fact that R is not a simple dilation since it involves also
a translation).

As a first application of the wavelet based tree matching algorithm described
in Section 9.5.1, to a physical problem, we report in Figure 9.15 the results
obtained when analysing the natural measure associated to the iteration of
the quadratic unimodal map @g(x) defined in Eq. (9.43) at the accumulation
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of period-doublings [82—84]. A well defined 1D map with two distinct hyper-
bolic branches is numerically reconstructed in Figure 9.15¢c. A computation
at a finer resolution would reveal that the left-hand branch is linear with a
slope 1/r =1/®,(1) >~ —2.5, whereas the right-hand one is nonlinear. A close
inspection of the scale ratio histogram in Figure 9.15d confirms this observa-
tion. The amplitude ratio histogram computed in Figure 9.15e displays a
unique peak at p = 1/2 which suggests that the weights associated to the
two branches of the 1D map are equal: p; = p, = 1/2. The critical period-
doubling natural measure can thus be seen as the invariant measure of the
cookie-cutter shown in Figure 9.15¢ with uniform probability distribution.
The solid lines shown in this figure correspond to the dynamical system
defined in Eq. (9.46). Our numerical data are in remarkable agreement
with the theoretical prediction.

9.6 Uncovering a Fibonacci multiplicative process in the arborescent fractal
geometry of diffusion-limited aggregates

The diffusion limited aggregation (DLA) model introduced by Witten and
Sander [151] about a decade ago, has become the basic paradigm for fractal
pattern forming phenomena [8, 38, 152]. This prototype model mimics two-
dimensional Laplacian growth processes according to the following algo-
rithm: particles originating from far away are added, one at a time, to a
growing cluster via random walk trajectories in the plane. Extensive on-
lattice and off-lattice computer simulations have produced complex branched
fractals that bear a striking resemblance to the tenuous tree-like structures
observed in viscous fingering, electrodeposition, bacterial and neuronal
growths [3—12, 38]. The appealing simplicity of the DLA model and its rele-
vance to various experimental situations have stimulated considerable experi-
mental, numerical and theoretical interest [3—12]. But having regard to the
efforts spent, the progress in capturing the screening mechanisms that govern
DLA growth has been very limited. Actually, only a little is known about the
ramified DLA morphology which is still very mysterious to many extents. In
particular, we do not know whether some structural order is hidden in the
apparently disordered geometry of DLA clusters. More generally, we still
appear to be quite far from a physical understanding of Laplacian growth
phenomena. This explains why, after more than ten years of extensive
inquiry, the DLA model remains one of the most exciting theoretical chal-
lenges in the physics of structure formation.

One of the main obstacles to theoretical progress lies in the lack of struc-
tural characterization of the growing clusters. Most of the previous studies
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have mainly focused on the multifractal analysis of either the DLA geometry
or the growth probability distribution along its boundary [8, 38, 151-155].
But, as pointed out in the previous sections, the estimate of the generalized
fractal dimensions D, and the f(a) singularity spectrum provides only
‘macroscopic’ statistical information about the self-similarity properties of
fractal objects. The incompleteness of the multifractal description lies in the
fact that, to some extent, the ‘microscopic’ information concerning the hier-
archical architecture of these arborescent morphologies has been filtered
(averaged) out.

To achieve a more elaborated structural analysis of the DLA clusters, we
have recently advocated the use of the continuous 2D wavelet transform [79—
81]. With this mathematical microscope, we have discovered the existence of
Fibonacci sequences in the internal fractal branching of large mass off-lattice
DLA clusters [156—158]. This analysis also reveals that this fascinating hier-
archy is likely to be related to a predominant structural five-fold symmetry
[157]. Our aim here, is to establish the statistical relevance of the golden mean
arithmetic to the structural fractal ordering of DLA clusters. For that pur-
pose, we will use the wavelet based tree matching method presented in
Section 9.5.1 for solving the inverse fractal problem. This method turns
out to be a very efficient tool to extract, directly from one-dimensional
cuts of large mass aggregates, a discrete dynamical system (1D map) which
accounts for their multiplicative construction rule [84]. In this section, we
apply this method to 50 azimuthal Cantor sets obtained by intersecting off-
lattice DLA clusters containing 10° particles (Figure 9.16a) with a circle of

(b)

Fig. 9.16. (a) A 10° particle DLA cluster computed with an off-lattice random walker
model. (b) The inner frozen region delimited by the circle sketched in (a); about 8 10*
particles are contained in a disk of radius R = 480 particles sizes.
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Fig. 9.17. WTMM skeleton of a part of the azimuthal Cantor set corresponding to
one main branch of an off-lattice DLA cluster. The analysing wavelet is the Gaussian
function; the large scales are at the top. (a) Symbolic coding of the WTMM skeleton
according to the Fibonacci recursive process; the horizontal lines mark the scales
a, = ™ with r* = 0.44. (b) Illustration of the tree-matching algorithm after trans-
forming the bifurcation points (x) in such a way that the symbols A emerge system-
atically on the left. According to the self-similarity relation (9.37), the 2 dashed
rectangles are mapped into the original rectangle. Arrows indicate the matching of
the bifurcation points with the maps 74 ( ) and T (- - - -) respectively.
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Fig. 9.18 (a) Histogram N(r) ( ) of the values of the scale ratio between two
successive bifurcation points in the WTMM skeletons of 50 DLA azimuthal Cantor
sets. A maximum is observed for rx = 1 /A% >~ 0.44 (Ax =~ 2.2). N(ry) ( ) and
N(rp) (----) are the histograms obtained when considering bifurcation points mapped
by T, and Ty respectively. (b) The corresponding histograms of amplitude ratio

values N(p4) ( ) and N(pp) (- - - -).

radius R ~ R,/3 (where R, is the gyration radius) centred at the origin and
that somehow delimits their inner frozen region (Figure 9.16b) [159].

The wavelet transform modulus maxima of an azimuthal DLA Cantor set
are shown in Figure 9.17a. Let us first proceed to a systematic investigation
of the contracting scale ratio r = a,/a,_; (< 1) between the scales of two
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bifurcation points of successive generations in the WTMM skeleton. The
results of the statistical analysis of 50 off-lattice DLA clusters are shown in
Figure 9.18a [156, 159]. The scale ratio histogram N(r) displays a maximum
at the value r* = 1/A* =0.44 £0.03 (A" = 2.2 40.2). Let us note that similar
histograms have been obtained by H.L. Hwang and S. Mallat in Ref. [136].
The ‘generations’ of branching are thus expected to occur preferentially at the
scales a, = ayr™ = ay(0.44)", where a, is a macroscopic scale that is deter-
mined by the size of the DLA branch under study. The horizontal lines in the
(0, ) half-plane in Figure 9.17a are drawn as guide marks for those successive
generations.

As seen in Figure 9.17a, by assigning a symbol A4 or B to each maxima line,
one obtains a coding of the WTMM skeleton that complies with the
Fibonacci recursive process [160]:

A— AB, B— A (9.48)

Thus if one starts with the symbol B at the generation n = 0, one gets A4 at the
generation n = 1, and successively AB, ABA, ABAAB, ABAABABA ... The
population F, at the generation n can be deduced from the populations F,_;
and F,_, at the two preceding generations, according to the iterative law:

F,=F,+F, (9.49)

with Fy=F; =1. A remarkable property of the Fibonacci series
{F,} =1{1,1,2,3,5,8,13,21,...} is that the ratio of two consecutive
Fibonacci numbers converges to the golden mean ¢:

lim F,./F,=¢=(1++5)/2=1618... (9.50)

n——+400

Now, if one uses the general formula established for the WTMM skeletons of
one-scale Cantor sets [82], one gets the following estimate for the fractal
dimension D7 of the DLA azimuthal Cantor sets [156]:

4 Ing Inl.62
F7In1//~ In22

~0.61, (9.51)

where we have identified the branching ratio and the scale ratio to the values
that have been recorded the most frequently in our statistical study, namely ¢
and 1/r* respectively. This numerical value for D7 is in good agreement with
our previous measurements based on classical box-counting technique:
D1 =0.62 +£0.03 [156-158].

The spreading of the histogram in Figure 9.18a around r* ~ 0.44 indicates
the existence of important fluctuations in the scale ratio value. These fluctua-
tions can be related to some local departure from the Fibonacci structural



The thermodynamics of fractals revisited with wavelets 381

1

2004 7

2
3
N,(m) 5
8
13 n
100 } — 21
0 + +
0 20 40 m

Fig. 9.19. Statistical distributions of the number of WTMM lines that exist at scales
a, = (0.44)" for successive generations from n =1 to 7.

ordering. The presence of these structural defects raises the question of the
statistical pertinence of this Fibonaccian architecture. In Figure 9.19 are
reported the results of a systematic analysis of the WTMM skeletons asso-
ciated to the 240 main DLA branches identified in our statistical sample. The
angular width of each of these branches has been normalized to 1 before
computing the WTMM skeleton. The different histograms represented in
Figure 9.19 correspond to the statistical distribution of the number of
WTMM lines that exist at scales a, = r+" = (0.44)" for successive genera-
tions. Each of these histograms displays a well defined maximum at the
value F, given by the Fibonacci series. This is a quantitative confirmation
that the Fibonacci structural ordering is a generic statistical characteristic of
the azimuthal DLA Cantor sets and not some feature recognized on parti-
cular realizations [156—158].

The technique introduced in Section 9.5.1 provides a very attractive
method to push further this analysis and to extract some ‘mean 1D map’
which could explain and quantify the presence of a predominant statistical
Fibonaccian structural hierarchy in the DLA Cantor sets. In order to carry
out this analysis [84, 159], we have first proceeded to a systematic investi-
gation of the symbolic coding of the WTMM skeletons of the azimuthal
Cantor sets. A close inspection of this coding reveals some randomness in
the relative position of the symbols 4 and B at each bifurcation 4 — A4B.
Out of 1586 bifurcation points for which the coding has been achieved, 747
(47%) correspond to the A branch being on the left and 839 (53%) to the 4
branch being on the right. Moreover, the analysis of the correlations
between two successive bifurcation points does not indicate any memory
effect. Actually, within the statistical uncertainty, one cannot distinguish
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the random occurrence of the symbols 4 and B at each bifurcation point
from a fair tossing coin.

In order to adapt the tree matching WTMM technique to the presence of
this statistical left-right symmetry, we ‘flip’ the relative position of 4 and B
whenever the 4 branch is found on the right of B, so that the skeleton
actually processed is made only of 4 branches emerging on the left (Figure
9.17b) [84, 154]. Then our tree-matching algorithm consists in extracting the
map 7 which is made of two branches T, and T and which leaves u
invariant (i.e. u o T;l =pym and po T5! = ppi) from the ‘self-similarity’
relation (9.37). The 1D map T(x) reconstructed from scanning the 50 azi-
muthal Cantor set WTMM skeletons is shown in Figure 9.20a. The data
points obviously do not fall on a well defined 1D map. However, the set of
data points clearly separates into two distinct ‘noisy’ branches. The solid lines
in this figure correspond to the piece-wise linear 1D map:

T 4(x) = Ayx x €0, 7]
T(x)= for (9.52)
Te(x)=rp(x—1)+1 x €[l —rg 1]

where A% ~ il ~ 2.2 and A5 ~ iyt ~ A*2 ~ 4.8. This 1D map is made of
two linear branches whose slopes correspond to the inverse of the prefer-
ential scale ratios found when splitting the histogram N(r) in Figure 9.18a
into two histograms N(r4) and N(rg). These two histograms account for the
scale ratio fluctuations observed in the WTMM skeletons when one com-

(b)

«=0.61+£0.03

ln(ﬁ) ]

? @ °
Fig. 9.20. (a) 1D map extracted from the WTMM skeletons of 50 DLA azimuthal
Cantor sets using the tree matching algorithm described in Fig. 9.17. The solid lines
correspond to the two branches of the linear cookie-cutter (9.52) with the respective
slopes A% =22 and A =A% =4.8. (b) Inp versus Inr, where r=a,/a,
(0 = IWy[l(xy, a)l/IWylpl(x,—1, a,—1)]) is the ratio between the scales (amplitudes)
of two bifurcation points that are associated by our tree matching algorithm. A
linear regression fit of the data provides a slope « = 0.61 £ 0.03.
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putes the scale ratio for 4 branches and B branches separately. They both
display a maximum for r% = 0.44 +0.03 and r3 = 0.21 £ 0.03 respectively.
The fact that r§ ~ r*f has a remarkable consequence. A straightforward
computation shows that if this equality holds, then the number of cylinders
(subintervals) of a given size | generated by iterating 7' is exactly the
Fibonacci number Fj, [58, 84, 159]. A 1D map model as simple as the piece-
wise linear map (9.52) therefore provides a rather natural understanding of
the origin of the Fibonacci structural hierarchy discovered on individual
realizations (Figure 9.17a). The accumulation of data points around the
solid lines in Figure 9.20a can thus be regarded as a quantitative indication
of the existence of a statistically predominant multiplicative process,
whereas the ‘noise’ around these lines is the signature of the importance
of the structural defects to the Fibonacci ordering. There is moreover some
randomness in this multiplicative process since at each bifurcation point in
the WTMM skeletons, there are as many chances for T'(x) (4 on the left) as
for its “flipped’ version T (x)=1—=T( — x) (4 on the right) to be iterated
backward.

The WTMM tree matching algorithm gives also access to the histogram of
amplitude ratio values p = [W[ul(x,, a,)|/IWy[ul(x,_1, a,_;)|. The histo-
grams N(p4) and N(pp), corresponding respectively to the histograms of
scale ratios N(r4) and N(rg), are shown in Figure 9.18b. Let us note that
for the Bernoulli invariant measures of the piece-wise linear cookie-cutter
model (9.52) to be homogeneous, the respective weights p, and pj, distrib-
uted multiplicatively at each iteration, have to satisfy the requirement
P =p. Since pi+py=1, one gets exactly p=¢ ' ~0.618 and
P = ¢ > ~0.382. Both histograms in Figure 9.18b display a maximum in
very good agreement with those expected values for p% and pj. This is an
indication that the DLA azimuthal Cantor sets are likely to be homogeneous
fractals. Furthermore we show in Figure 9.20b that the random variables In r
and In p are strongly correlated according to the law p = Cr*°'. This result is
in remarkable agreement with previous WT measurements of the local scal-
ing exponent o = D = 0.61 +0.03 of the DLA azimuthal Cantor sets [157].
The scatter of points around the solid line in Figure 9.20b might explain some
weak multifractal departure from statistical homogeneity as noticed in pre-
vious box-counting calculations [155].

To summarize, we believe that the set of results reported in this work is a
very attractive breakthrough on the main challenge raised by the puzzling
DLA morphology. To our knowledge this is the first time that some statis-
tical evidence for the existence of a multiplicative construction process hidden
in the DLA geometry is reported in the literature. The cookie-cutter T
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defined in Eq. (9.52) accounts for the presence of a statistically predominant
Fibonacci structural ordering. Moreoever, we have shown that there exist
mainly two sources of randomness superimposed to this structural ordering.
The first one results from some (left-right) symmetry in the Fibonacci multi-
plicative process itself. The second one appears as intrinsic noise in the
reconstructed 1D map and can be understood as structural defects in the
Fibonacci fractal hierarchy.

9.7 Conclusion

To summarize, we have presented in this paper a first theoretical step towards
a unified theory of singular distributions, including multifractal measures and
multifractal functions based on wavelet analysis. Indeed we believe that the
WTMM method for determining the singularity spectrum of a fractal signal
is likely to become as useful as the well-known phase portrait reconstruction,
Poincaré section and first return map techniques for the analysis of chaotic
time series [17, 18]. The reported results of a preliminary analysis of a fully
developed turbulent velocity signal show that this method is readily applic-
able to experimental situations. We have also shown that one can further use
the wavelet transform to go beyond this thermodynamic description of frac-
tal objects and eventually to extract from the data some dynamical system
which accounts for its multiplicative hierarchical structure. The reported
application of a wavelet based tree matching algorithm to characterize the
fractal properties of DLA azimuthal Cantor sets has revealed the existence of
a Fibonacci multiplicative process in the apparently disordered arborescent
morphology of DLA clusters. This discovery is a very spectacular manifesta-
tion of the statistical relevance of the golden mean arithmetic to Laplacian
fractal growth phenomena. We are convinced that further applications of this
wavelet based thermodynamics (the WTMM method) and statistical
mechanics (the wavelet based tree matching algorithm for solving the inverse
fractal problem) will lead to similar major breakthroughs in various fields
where multi-scale phenomena are ubiquitous. Applications to hydrodynamic
turbulent dynamics (2D and 3D), critical fluctuations in colloidal systems,
surface roughening in noise driven growth processes and DNA ‘walks’
nucleotide sequences are currently in progress.

In the present study we have mainly focused on fractal objects which are
made of a more or less complicated hierarchy of non-oscillating singularities.
However there are many examples in nature where oscillating singularities
play an important role, e.g., spiral vortices in turbulent flows. In our cano-
nical thermodynamic description of fractal signals involving non-oscillating
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singularities, we have mainly considered the fluctuations in the value of the
Holder exponent /2 from one maxima line to the next in the WTMM skeleton
since the distance between two adjoining maxima lines behaves systematically
as the scale a of the analysing wavelet. A straightforward calculation shows
that for a spiral-type signal of the form: s(x) = x*sin(1/x?), the distance
between two adjoining maxima lines in the WTMM skeleton scales like a*
with ¢ = 1/(8+ 1). In a forthcoming publication, we hope to elaborate on a
grand canonical description which will take also into account the fluctuations
of the exponent ¢ in the branching process of the WIMM skeleton. This
extended multifractal formalism is likely to provide a general framework for
a unified thermodynamic theory of a large class of fractal distributions invol-
ving non-oscillating as well as oscillating singularities.
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Abstract

We present a combined wavelet and analytic signal approach to study bio-
logical and physiological nonstationary time series. The method enables one
to reduce the effects of nonstationarity and to identify dynamical features on
different time scales. Such an approach can test for the existence of universal
scaling properties in the underlying complex dynamics. We applied the tech-
nique to human cardiac dynamics and find a universal scaling form for the
heartbeat variability in healthy subjects. A breakdown of this scaling is asso-
ciated with pathological conditions.

10.1 Introduction

The central task of statistical physics is to study macroscopic phenomena
that result from microscopic interactions among many individual compo-
nents. This problem is akin to many investigations undertaken in biology.
In particular, physiological systems under neuroautonomic regulation, such
as heart rate regulation, are good candidates for such an approach, since: (i)
the systems often include multiple components, thus leading to very large
numbers of degrees of freedom, and (ii) the systems usually are driven by
competing forces. Therefore, it seems reasonable to consider the possibility
that dynamical systems under neural regulation may exhibit temporal struc-
tures which are similar, under certain conditions, to those found in physical
systems. Indeed, concepts and techniques originating in statistical physics are
showing promise as useful tools for quantitative analysis of complicated
physiological systems.

391
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An unsolved problem in biology is the quantitative analysis of a nonsta-
tionary time series generated under free-running conditions [1-3]. The signals
obtained under these constantly varying conditions raise serious challenges to
both technical and theoretical aspects of time series analyses. A central ques-
tion is whether such noisy fluctuating signals contain dynamical patterns
essential for understanding underlying physiological mechanisms.

Representative examples of complex dynamical behaviour under physio-
logic and pathologic conditions are shown in Figure 10.1. Figure 10.1(a)
shows a physiologic cardiac interbeat time series—the output of a spatially
and temporally integrated neuroautonomic control system. The time series
shows erratic fluctuations and ‘patchiness’. These fluctuations are usually
ignored in conventional studies which focus on averaged quantities. In
fact, these fluctuations are still often labelled as ‘noise’ to distinguish them
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Fig. 10.1. Representative complex physiological fluctuations. Cardiac interbeat inter-
val (normal sinus rhythm) time series of 2000 beats from (a) a healthy subject, (b) a
subject with obstructive sleep apnea, (c) a subject with congestive heart failure and
(d) a sudden cardiac death subject with ventricular fibrillation. Note the nonstatio-
narity (patchiness) of these time series [most apparent in (a) and (b)]. Although these
patches clearly differ in their amplitude and frequency of variations, their quantita-
tive characterization remains an open problem and limits the applicability not only
of traditional methods of analysis and modelling, but also newer techniques based on
‘chaos’ theory.
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from the true ‘signal’ of interest. Furthermore, these patterns change with
pathological perturbations (shown in Figures 10.1(b)-10.1(d)). However,
with the recent adaption and extension of methods developed in statistical
physics and nonlinear mathematics, it has been found that the physiological
fluctuations shown in Figure 10.1(a) exhibit an unexpected hidden scaling
structure [4-8]. These findings raise the possibility that understanding the
origin of such temporal structures and their alterations may (i) elucidate
certain basic features of heart rate control mechanisms, and (ii) have practical
value in clinical monitoring.

When analysing complex cardiac fluctuations of the type shown in Figure
10.1(a), we must carefully exclude two obvious explanations for these
observed structures: (i) they are simply an epiphenomenon of random (uncor-
related) trends, or (ii) they are a trivial consequence of the fact that cardiac
function under neuroautonomic control is actually modulated by indepen-
dent mechanisms with many time scales. To address the first possibility,
researchers have recently developed and implemented methods to deal with
the technical issue of nonstationarity in cardiac time series. To test the second
possibility, numerically simulated systems with multiple time scales were
studied, leading to the conclusion that robust scaling structures cannot be
generated trivially from systems modulated by multiple time scales [8].
Instead, certain unique conditions are required to yield the structures
observed. Furthermore, these two ‘mechanisms’ will not account for the
observation of consistent changes in scaling patterns under pathological con-
ditions, where complex nonstationarity and multiple time scale modulation
are also present, but in altered form.

Among the difficulties associated with research on biomedical systems is
not only the extreme variability of the signals but also the necessity of oper-
ating on a case-by-case basis. Often one does not know a priori which infor-
mation is pertinent and on what scale it is located. Another important aspect
of biomedical signals is that the information of interest is often a combina-
tion of features that are well-localized (temporally or spatially) and others
that are more diffuse. As a result, the problems require the use of methods
sufficiently robust to handle events that can be at opposite extremes in terms
of their time—frequency localization. In the past few years, researchers have
developed powerful wavelet methods for multiscale representation and ana-
lysis of signals [9—17]. These new tools differ from the traditional Fourier
techniques in that they localize information in the time—frequency plane and
are especially suitable for the analysis of nonstationary data signals.

Due to the wide variety of signals and problems encountered in medicine
and biology, the spectrum of applications of the wavelet transform has been
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extremely large. It ranges from signal processing analysis of physiological
signals in bioacoustics (e.g., turbulent heart sounds) [18-27], electrocardio-
graphy [28—42], and electroencephalography [43—53] to applications for com-
pression [54-57] and enhancement [58—60] in biomedical imaging, noise
reduction [61-63], detecting microcalcifications in mammograms [64—69],
detection and reconstruction techniques for X-ray tomography [70, 71], mag-
netic resonance imaging [72—75], positron emission tomography [76], human
vision [77-80], and human DNA [81, 82]. Extensive reviews of these applica-
tions have been recently published [83-86].

In this chapter, we present a method to analyse the properties of human
cardiac activity by means of a wavelet transform and analytic signal
approach designed to address nonstationary behaviour [7]. We find a uni-
versal scaling function for the distribution of the variations in the beat-to-
beat intervals for healthy subjects. However, such a scaling function does not
exist for a group with a cardiopulmonary instability due to sleep apnea (a
condition in which breathing abnormalities during sleep affect cardiac activ-
ity). This scaling form allows us to express the global characteristics of a
highly heterogeneous time series of interbeat intervals of each healthy indi-
vidual with a single parameter. We find also that the observed scaling repre-
sents the Fourier phase correlations attributable to the underlying nonlinear
dynamics. This approach has the potential to quantify the output of other
nonlinear biological signals.

10.2 Nonstationary physiological signals

A time series is stationary if its statistical characteristics such as the mean and
the variance are invariant under time shifts, i.e., if they remain the same when
t is replaced by ¢+ A, where A is arbitrary. Then the probability densities,
together with the moment and correlation functions, do not depend on the
absolute position of the points on the time axis, but only on their relative
configuration [87]. Non-stationarity, an important feature of biological varia-
bility, can be associated with regimes of different drifts in the mean value of a
given signal, or with changes in its variance which may be gradual or abrupt.

Time series of beat-to-beat (RR) heart rate intervals (Figure 10.2(a))
obtained from digitized electrocardiograms are known to be nonstationary
and exhibit extremely complex behaviour [88]. A typical feature of such
nonstationary signals is the presence of ‘patchy’ patterns which change
over time (Figure 10.2(b)). The mechanism underlying this complex heart
rate variability is related to competing neuroautonomic inputs [89, 90].
Parasympathetic stimulation decreases the firing rate of pacemaker cells in



Wavelets in medicine and physiology 395

1.0} b

0.8

0.6

0.4 -
0

10000 20000

RR

0.2 c

T,(RR)
S g
=

Amplitude
%
é

beat number

Fig. 10.2. (a) Segment of electrocardiogram showing beat-to-beat (RR;) intervals. (b)
Plot of RR-time series vs. consecutive beat number for a period of 6h (x 2.5 x 10*

beats). Nonstationarity (patchiness) is evident over both long and short time scales.

(c) Wavelet transform Tw(RR) of the RR-signal in (b) using the second derivative of
the Gaussian function y® as analysing wavelet with scale ¢ =8 beats.

Nonstationarities related to constants and linear trends have been filtered. (d)
Instantaneous amplitudes A(¢) of the wavelet-transform signal in (c); 4(f) calculated
using the Hilbert transform measures the cumulative variations in the interbeat
intervals over an interval proportional to the wavelet scale a.

the heart’s sinus node. Sympathetic stimulation has the opposite effect. The
nonlinear interaction (coupling) of the two branches of the nervous system is
the postulated mechanism for the type of erratic heart rate variability
recorded in healthy subjects [91-93]. We focus our studies on interbeat inter-
val variability as an important tool for elucidating possibly non-homeostatic
cardiac variability because (i) the heart rate is under direct neuroautonomic
control, (ii) interbeat interval variability is readily measured by non-invasive
means, and (iii) analysis of these heart rate dynamics may provide important
diagnostic and prognostic information.

Even under healthy, basal conditions, the cardiovascular system shows
erratic fluctuations resembling those found in dynamical systems driven
away from a single equilibrium state [94]. Do such ‘nonequilibrium’ fluctua-
tions [95] simply reflect the fact that physiological systems are being con-
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stantly perturbed by external and intrinsic noise? Or, do these fluctuations
actually contain useful information about the underlying nonequilibrium
control mechanisms?

Traditional approaches — such as the power spectrum and correlation ana-
lysis [96, 97] — are not suited for such nonstationary (patchy) sequences. In
particular, they do not carry information stored in the Fourier phases which
is crucial for determining nonlinear characteristics [98—100].

To address these problems, we develop a method — ‘cumulative variation
amplitude analysis’ (CVAA) — to study the subtle structure of physiological
time series. This method comprises sequential application of a set of algo-
rithms based on wavelet and Hilbert transform analysis.

10.3 Wavelet transform

We first apply the wavelet transform (Figure 10.2(c)), because it does not
require stationarity and it preserves important Fourier phase information.
The wavelet transform [9, 101, 102] of a time series s(¢) is defined as

—+00

T, (0. @) = éf_oo s(t)l//(l;t())dt, (10.1)

where the analysing wavelet ¥ has a width of the order of the scale ¢ and is
centred at 75. As pointed out in previous chapters, the wavelet transform is
sometimes called a ‘mathematical microscope’ because it allows one to study
properties of the signal on any chosen scale a. For high frequencies (small a),
the ¥ functions have good localization (being effectively non-zero only on
small sub-intervals), so short-time regimes or high-frequency components can
be detected by the wavelet analysis. However, a wavelet with too large a value
of scale a (low frequency) will filter out almost the entire frequency content of
the time series, thus losing information about the intrinsic dynamics of the
system. We focus our ‘microscope’ on a scale « = 8 beats which smooths
locally very high-frequency variations and best probes patterns of duration
30 s to 1 min. The wavelet transform is attractive because it can eliminate
local polynomial behaviour (trends) in the nonstationary signal by an appro-
priate choice of the analysing wavelet i [103].
In our study we use derivatives of the Gaussian function,
n

Y = %e—%ﬁ (10.2)
The first derivative is orthogonal to segments of the time series with an
approximately constant local average. This results in fluctuations of the
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wavelet transform values around zero with highest spikes at the positions
where a sharp transition occurs (Figure 10.3(b)). Thus, the larger spikes
indicate the boundaries between regimes with different local average in the
signal, and the smaller fluctuations represent variations of the signal within a
given regime. With increasing wavelet scale «, the fluctuations become
broader and reflect the dominant structures (variations) in the signal
(Figure 10.3(c)) Since %" is not orthogonal to linear (non-constant) trends,
the presence of consecutive linear trends (Figure 10.3(d)) in the RR-intervals
will give rise to fluctuations of the wavelet transform values around different
nonzero levels corresponding to the slopes of the linear trends (Figure
10.3(e)). The second derivative w(z) of the Gaussian function and higher
order derivatives can eliminate the influence of linear as well as nonlinear
trends in the fluctuations of the wavelet transform values (Figure 10.3(f)).

The wavelet transform allows one to ‘extract’ from the data particular
features. The object is to probe the variations in the heart rate signal at
different time scales. The particular choice of the derivatives of the
Gaussian function as analysing wavelets allows us to extract these variations.
One can argue that the same can be done by simply subtracting consecutive
interbeat intervals by analysing the increments only, but such standard ana-
lysis does not distinguish healthy from unhealthy cardiac dynamics [5]. The
reason is that the wavelet transform in addition to extracting the variations
over given time-scale in the heart rate signal reduces masking effects of the
nonstationarities since the analysing wavelet is orthogonal to local polyno-
mial trends. The wavelet also filters out the very high-frequency noise in the
original signal, preserving at the same time the sharpness of the edges separ-
ating different patterns in the signal, thus minimizing possibly artificial errors
in the statistical analysis. Moreover, we find that the scale of the wavelet is
crucial for extracting the hidden patterns in the cardiac dynamics. Thus, the
ability of the wavelet transform to probe the signal on different scales is
important for detecting essential features of cardiac dynamics under healthy
as well as pathologic conditions.

The wavelet transform is thus a cumulative measure of the variations in the
heart rate signal over a region proportional to the wavelet scale a, so the
study of the behaviour of the wavelet values can reveal intrinsic properties of
the dynamics masked by nonstationarity.

10.4 Hilbert transform

The wavelet transform signal at a fixed scale (Figure 10.2(c)) shows segments
of different duration and amplitudes. So the next step of the CVAA is to
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1

Fig. 10.3. Derivatives of the Gaussian function as analysing wavelet extract the
singularities (variations) from a signal with (a) constant and (d) linear trends.
Wavelet transform of the signal in (a) usin(% ¥ as analysing wavelet with (b) smaller
and (c) larger time scale. (e) v and ) v ) are used on the signal in (d) at the same
time scale.
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extract the amplitudes of the variations in the beat-to-beat signal by means of
an analytic signal approach [96, 104] which also does not require stationarity.
This general approach, based on the Hilbert transform and originally intro-
duced by Gabor [105], unambiguously gives the instantaneous phase and
amplitude for a given signal s(z) (in our case the wavelet transform of the
interbeat interval time series) via construction of the analytic signal S(z),
which is a complex function of time defined as

S(1) = s(1) + i5(1) = A1), (10.3)

Here 5(¢) is the Hilbert transform of s(z),

§(t) = 7 'P.V. / s (10.4)

o T

where P.V. means that the integral is taken in the sense of the Cauchy
principal value. The amplitude is defined as

A(t) = /s2() + 3(0) (10.5)

#(1) = tan” ' (5(2) /s(2)). (10.6)

The Hilbert transform 5(¢) of s(¢) can be considered as the convolution of
the functions s(¢) and 1/x¢. This means that the Hilbert transform can be
realized by an ideal filter whose amplitude response is unity, and phase
response is a constant 7r/2 lag at all frequencies [96]. A harmonic oscillation
s(f) = Acoswt 1is often represented in the complex notation as
Acoswt 4+ jAsinwt. This means that the real oscillation is complemented
by the imaginary part which is delayed in phase by 7/2, and which is related
to s(¢) by the Hilbert transform. The analytic signal is the direct and natural
extension of this technique, as the Hilbert transform performs the —m/2
phase shift for every frequency component of an arbitrary signal.

Why do we need the instantaneous amplitude (envelope) of the signal?
Suppose that our wavelet transform signal for a given scale consists of two
segments (patches), both being sine waves with the amplitudes 4 and 4’
Then the values of the signal for the first patch are distributed from —A4 to
A, and for the second patch from —A4' to A" (4" > A).

So the distributions of the data points values along the two patches of the
signal overlap between —A and 4. However, if we consider the distributions
of the instantaneous amplitudes of the data points from these two segments,
then they do not overlap; they are, actually, two points, P(4) and P(A4") with

and the phase as
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values reflecting the number of data points in each segment (Figure 10.4). By
changing the wavelet scale we can learn about the distribution of patches
with different duration.

10.5 Universal distribution of variations

Quantifying the probability distribution of variation amplitudes in the inter-
beat intervals can provide insights into the underlying dynamical processes
because the distribution of interbeat intervals is directly related to the
mechanisms which control heart rate variability. Therefore, by finding con-
sistent features of the distribution which are robust with respect to different
healthy subjects, we can quantify physiologic dynamics. However there are
important technical difficulties which must first be overcome before such
robust features can be found.

Among the possible reasons why an interbeat interval histogram can differ
from case to case are the following. (i) Histograms can differ because they
have different means and standard deviations but follow the same functional
form. (ii) Histograms are described by different functional forms, i.e. they
belong to different classes of processes. The first type of difference is com-
monly observed (especially in physiological data where significant variation

g

-
\
\
\
]

i

1 " I

Fig. 10.4. Segments of sinusoidal signal with different frequencies and amplitudes
(solid line) and their envelope obtained from Hilbert transform (dashed line).
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between individuals is expected) and should be taken care of by properly
‘renormalizing’ (with respect to the mean and standard deviation) the histo-
gram. If we assume that heart rate control mechanisms in healthy subjects
follow the same general set of dynamical rules, then we expect that some
variables of the system’s output will be described by a single, well-defined
distribution function. Functional differences between distributions, on the
other hand, can be a result of altered mechanisms, and could be indicative
of pathological behaviour.

We analysed the distribution of the amplitudes of the beat-to-beat varia-
tions (Figure 10.2(d)) for a group of healthy subjects (N = 18: 5 males and 13
females; age 20-50, mean 34) and a group of subjects [106] with obstructive
sleep apnea [107, 108] (N = 16 males; age 32-56, mean 43). To minimize
nonstationarity due to changes in the level of activity, we begin by consider-
ing night phase (12 p.m.—6 a.m.) records of interbeat intervals (=~ 10* beats)
for both groups.

Inspection of the distribution functions of the amplitudes of the cumulative
variations reveals marked differences between individuals (Figure 10.5(a)).
These differences are not surprising given the underlying physiological differ-
ences among healthy subjects.

For the healthy group, we find that these distributions are well fit by the
generalized homogeneous form [109] (the Gamma distribution):

bv+1
T+ 1)

where b = v/xy, I'(v+ 1) is the Gamma function, X, is the position of the
peak P = P, and v is a fitting parameter (Figure 10.6(a)). A function
P(x, b) is a generalized homogeneous function if there exist two numbers «
and B — called scaling powers — such that for all positive values of the para-
meter A

P(x,b) = Yot (10.7)

P(A%x, APb) = AP(x, b). (10.8)

Generalized homogeneous functions are defined as solutions of this func-
tional equation. One can see that in our case, P(x, b) satisfies (10.8) with
a=—1land g=1.

Functions describing physical systems near their critical points are known
to be generalized homogeneous functions [110]. Data collapse is among the
key properties of generalized homogeneous functions. Instead of data points
falling on a family of curves, one for each value of b, data points can be made
to collapse onto a single curve given by the scaling function
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Fig. 10.5. (a) Probability distributions P(x) of the amplitudes of heart rate variations
x = A(¢) for a group of 18 healthy adults (after wavelet transform with ¥ and scale
a = 8 beats). Individual differences are reflected in the different average value and
widths (standard deviations) of these distributions. All distributions are normalized
to unit area. (b) Same probability distributions as in (a) after rescaling: P(x) by P ax.
and x by 1/P.x to preserve the normalization to unit area. This rescaling is equiva-
lent to the scaling procedure discussed in the text (Eq. 10.9), since P(x) = P(x, b) and
P« < b. We are able to describe the distributions using a single curve, indicating a
robust, consistent scaling mechanism for the nonequilibrium dynamics. (c)
Probability distributions for a group of 16 subjects with obstructive sleep apnea.
We note that the second (rightward) peak (arrow) in the distributions for the sleep
apnea subjects corresponds to the transient emergence of characteristic pathologic
oscillations in the heart rate associated with periodic breathing (Fig. 10.1b). (d)
Distributions for the apnea group after the same rescaling as in (b). These distribu-
tions cannot be well described by a single curve, indicating that the nonequilibrium
dynamics are altered.
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P(x, b)

b
where the number of independent variables is reduced by defining the scaled
variable u = bx. Our results show that a common scaling function P(u) defines
the probability density of the magnitudes of the variations in the beat-to-beat
intervals for each healthy subject. Note that it is sufficient to specify only one
parameter b in order to characterize the heterogeneous heartbeat variations
for each subject in this group.

To test the hypothesis that there is a hidden, possibly universal, structure
to these heterogeneous time series, we rescale the distributions and find for all
healthy subjects that the data conform to a single scaled plot (‘data collapse’)
(Figure 10.5(b)). Such behaviour is reminiscent of a wide class of well-studied
physical systems with universal scaling properties [110, 111]. In contrast, the
subjects with sleep apnea show individual probability distributions that fai/
to collapse (Figure 10.5(d)). The collapse of the individual distributions for
all healthy subjects after rescaling their ‘individual’ parameter is indicative of
a ‘universal’ structure. The term ‘universal’ is used in the sense that a closed
mathematical scaling form is established to describe in a unified quantitative
way the cardiac dynamics of all studied healthy subjects.

An analysis of the heart rate dynamics for healthy subjects during the
daytime (noon-6 p.m.) indicates that the observed, apparently universal,
behaviour holds not only for the night phase but for the day phase as well
(Figure 10.6(b)). Semilog plots of the averaged distributions show a systema-
tic deviation from the exponential form (slower decay) in the tails of the
night-phase distributions, whereas the day-phase distributions follow the
exponential form over practically the entire range. Note that the tail of the
observed distribution for the night phase indicates higher probability of
larger variations in the healthy heart dynamics during sleep hours in com-
parison with the daytime dynamics.

We observe for the healthy group good data collapse with a stable scaling
form for wavelet scales a = 2 up to a = 64 (Figure 10.6(c)). However, for very
small scales (@ = 1, 2), the group average of the rescaled distributions of the
apnea subjects is indistinguishable from the average of the rescaled distribu-
tions of the healthy group. Thus, very high frequency variations are equally
present in the signals from both groups. Our analysis yields the most robust
results when « is tuned to probe the collective properties of patterns with
duration of & % — 1 min in the time series (¢ = 8, 10). The subtle difference in
the tail of the distributions between day and night phases is also best seen for
this scale range.

P(u) = (10.9)
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Fig. 10.6. (a) The solid line is an analytic fit of the rescaled distributions of the beat-
to-beat variation amplitudes of the 18 healthy subjects during sleep hours to a stable
Gamma distribution with v = 1.4 +0.1. (b) Data for 6 h records of RR intervals for
the day phase of the same control group of 18 healthy subjects demonstrate similar
scaling behaviour with a Gamma distribution and v = 1.8 £ 0.1, thereby showing
that the observed common structure for the healthy heart dynamics is not confined
to the nocturnal phase. (¢) Group average of the rescaled distributions of the cumu-
lative variation amplitudes for the healthy individuals during nocturnal hours. Note
that the observed Gamma scaling is stable for a wide range of the wavelet transform
scales a.

We note that direct analysis of interbeat interval histograms does not lead
to data collapse or separation between the healthy and apnea group. Such
histograms measured directly for each subject do not converge to a single
representative curve describing healthy dynamics, because the interbeat inter-
val time series is highly nonstationary. Even rescaling the time series to give
all histograms identical means and variances does not lead to a common
curve for the histograms. Moreover, the direct application only of the
Hilbert transform yielding the probability distribution of the instantaneous
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amplitudes of the original signal does not distinguish clearly healthy from
abnormal cardiac dynamics. Hence, the wavelet transform, with its ability to
be orthogonal to polynomial trends and to probe the signal on different time
scales, proves crucial to extract dynamical properties hidden in the cumula-
tive variations, since different patterns can be observed on different time
scales.

10.6 Wavelets and scale invariance

Differences between healthy and abnormal cardiac dynamics are known to be
reflected in different correlations and power spectra [4-6, 97]. However, it is
currently widely assumed in the literature that the difference in time series of
interbeat intervals in sick and healthy adults lies not in the distribution of the
interbeat variations but rather in their time ordering. This assumption is based
on more conventional studies of interbeat increments [112]. These studies
essentially amount to taking derivatives of the heart rate signal and thus
extracting pointwise characteristics. Also, it has been hypothesized that
even if the interbeat variations are different (e.g. smaller) during illness, the
pattern of heart rate variability might be otherwise very similar to that during
health, so that the interbeat variations for normal and abnormal cardiac
dynamics, once normalized, would have the same distribution. Our study
clearly rejects this hypothesis, showing the presence of scaling in the distribu-
tions of the variation amplitudes for the healthy (Figure 10.5(b)) and a break-
down of this scaling for abnormal dynamics (Figure 10.5(d)). Moreover, the
stability of this scaling form (Figure 10.6(c)) indicates that the underlying
dynamical mechanisms regulating the healthy heart beat have similar statis-
tical properties on different time scales. Such statistical self-similarity is an
important characteristic of fractal objects [98, 113]. The wavelet decomposi-
tion of beat-to-beat heart rate signals can be used to provide a visual repre-
sentation of this fractal structure (Figure 10.7). The wavelet transform, with
its ability to remove local trends and to extract interbeat variations on dif-
ferent time scales, enables us to identify self-similar patterns (arches) in these
variations even when the signals change as a result of background interfer-
ence. Data from sick hearts lack these patterns. Fractal characteristics of the
cardiac dynamics and other biological signals can be successfully studied with
the generalized multifractal formalism based on the wavelet transform mod-
ulus maxima method (WTMM) presented in Chapter 9.

Similar time scale invariance was observed in the experiments of Rodieck
on the interspike intervals of a single neuron cell whose distribution was
analysed by Gerstein and Mandelbrot [114]. For several types of single
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Bl

Fig. 10.7. Colour coded wavelet analysis of RR signals. (Colours referred to in this
caption are shown at www.cambridge.org/resources/0521533538.) The x-axis repre-
sents time (= 2000 beats) and the y-axis indicates the scale of the wavelet used
(a=1,2,...,60) with large scales at the top. The brighter colours indicate larger
values of the wavelet amplitudes. (a) The wavelet analysis performed with 1// (the
Mexican hat) as an analysing wavelet uncovers a hierarchical scale invariance quan-
titatively expressed by the stability of the scaling form on Fig. 10.6(c). This wavelet
decomposition reveals a self-similar fractal structure in the healthy cardiac dynamics
— a magnification of the central portion of the top panel (a) with 200 beats on the x-
axis and wavelet scale « = 1,2, ..., 25 on the y-axis presented in (b) shows identical
branching patterns. (¢) Loss of this fractal structure in cases with sleep apnea (lower
panel).
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neuron cells Gerstein and Mandelbrot find that the interspike intervals dis-
tributions remain invariant with the time scale. However the heartbeat var-
iations, unlike the single neuron dynamics, represent the integrated output of
spatially and temporally distributed feedback system.

Analysis of the variance of the distributions for healthy cardiac dynamics
at different time scales shows a power law behaviour with an exponent close
to zero. This relates to previous studies reporting long-range anticorrelations
in the heartbeat variations [5]. The findings that correlation functions and
distributions describing physiological systems are not characterized by a
single time scale become more plausible if we consider the survival advantage
conferred upon organisms that evolved with an infinite hierarchy of time
scales compared to organisms that evolved with a single characteristic time
scale. Organisms with a physiologic control system generated by a single time
scale are analogous, formally, to the famous Tacoma Narrows bridge, which
survived many years until by chance a wind storm occurred that happened to
correspond to the characteristic frequency (inverse of the characteristic time
scale). Organisms that have survived millions of years have plausibly evolved
some feature to render them immune from the analogue of the Tacoma
bridge disaster, and this feature would seem to be the absence of any char-
acteristic time scales (compare Figure 10.1(a) with 10.1(b) and 10.1(d), which
show pathologic mode-locking).

10.7 A diagnostic for health vs. disease

We employ the Kolmogorov—Smirnov test to measure how similar two prob-
ability distributions are. A mathematical relation exists which links the
Kolmogorov—Smirnov parameter D(KS) to the corresponding statistical sig-
nificance level [115]. The larger the value of D(KS), the more unlikely it is
that the two data sets were obtained from the same probability distribution
(the null hypothesis).

The Kolmogorov—Smirnov test provides a simple measure that is defined
as the maximum value of the absolute difference between two cumulative
distribution functions.

The K-S test is defined as follows.

(i) Once the probability distribution P(x) is found for a subject which we want to
compare to a fit Py(x), the cumulative probability distribution W (x) for the
subject is found using the relation

W(x) = /0 ' P(x")dx',



408 P.Ch. Ivanov et al.

and similarly for the the cumulative probability distribution W(x) of the fit
Py(x).

(i) The absolute difference AW (x) = |W(x) — Wy(x)| is found.

(iii) The maximum value of this absolute difference is defined as the K-S parameter
(Figure 10.8(a)): D(KS) = max[AW(x)].

Once the distributions for the subjects and a fit for healthy subjects are
found, we apply the K-S test to see how different each subject’s distribution
is from the fit. Comparing the individual distributions of the healthy and
sleep apnea subjects with the reported scaling form (Eq. (10.9)) for the
healthy dynamics, we find that the Kolmogorov—Smirnov test can serve as
a potentially useful tool to separate healthy from abnormal cardiac dynamics
(Figure 10.8(a)). The question of diagnostics motivates us to look more
closely at the first and second moments of the distributions of the variation
amplitudes for both groups. We find that a simple presentation of the values
for these moments can be also effectively used to separate quantitatively the
two groups. We present these results in Figure 10.8(b) — the first and second
moments of the healthy distributions exhibit lower values with good linear fit,
whereas for the apnea group these values are higher and dispersed with
almost no overlap with the healthy data.

10.8 Information in the Fourier phases

Correlation functions measure how the value of some function depends on its
value at an earlier time. Many simple systems in nature have correlation
functions that decay with time in an exponential way. For systems comprised
of many interacting subsystems, physicists discovered that such exponential
decays do not occur. Rather, correlation functions were found to decay with
a power-law form. The implication of this discovery is that in complex sys-
tems, there is no single characteristic time [119, 120]. If correlations decay
with a power-law form, we say the system is ‘scale free’ since there is no
characteristic scale associated with a power law. Since at large time scales a
power law is always larger than an exponential function, correlations
described by power laws are termed ‘long-range’ correlations — they are of
longer range than exponentially-decaying correlations.

In physiological systems, recent work has suggested that such ‘long-range’
power-law correlations occur in a range of physiological systems [118, 121,
122] including, most remarkably, the intervals between successive heartbeats
[5, 6]. The discovery of long-range correlations in these intervals is all the
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Fig. 10.8. (a) The Kolmogorov—Smirnov parameter D(KS) and (b) the values of the
first moments (mean and standard deviation o) of the cumulative variation ampli-
tude distributions can be used as a diagnostic of the healthy vs. apnea subjects with

more then 80% true-positive recognition.

more interesting because it appears that these correlations are not present in

certain disease states.

What are the possible adaptive advantages of the apparently far-from-
equilibrium behaviour that appears to characterize the free-running
dynamics of certain neural control systems? First, we note that complex
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erratic fluctuations shown in Figure 10.1(a) are not inconsistent with the
general concept that physiological systems must operate with certain bounds.
However, an intriguing possibility is that these complex nonequilibrium
dynamics, rather than classical homeostatic constancy, may be a mechanism
for maintaining physiologic stability. Such complex multiscale variability
keeps the system from becoming locked to a dominant frequency (mode
locking), a common manifestation of pathologic dynamics (Figure 10.1(b)).
At the same time, long-range fractal correlations underlying these complex
fluctuations may provide an important organizational mechanism for sys-
tems that lack a characteristic spatial or temporal scale. Finally, the intrinsic
‘noisiness’ of far-from-equilibrium dynamics may facilitate coping with
unpredictable environmental stimuli.

However, these fractal correlations detected by Fourier and fluctuation
analysis techniques, ignore information related to the phase interactions of
component modes. The nonlinear interaction of these modes accounts for the
visually ‘patchy’ appearance of the normal heartbeat time series.

To ascertain whether the observed scaling of the distributions for healthy
subjects is an intrinsic property of normal heart beat dynamics, we test the
cumulative variation amplitude analysis on artificially generated signals with
known properties. Our analysis of uniformly distributed random numbers in
the interval [0, 1] and of Gaussian-distributed noise with and without long-
range power law correlations shows that after the wavelet transform the
amplitude distributions follow the Rayleigh probability distribution

R(x) = (%) eI

This finding agrees with the central limit theorem, which can be expressed as
a property of convolutions (in our case wavelet transforms): the convolution
of a large number of positive functions is approximately a Gaussian function,
and the instantaneous amplitudes of a Gaussian process follow the Rayleigh
probability distribution [87].

We perform parallel analysis on surrogate data obtained from a healthy
subject by Fourier transforming the original time series, preserving the ampli-
tudes of the Fourier transform but randomizing the phases, and performing
an inverse Fourier transform (Figure 10.9(c)). Thus, both the original and
surrogate signals have identical power spectra. Application of the CVAA
method on this surrogate signal results again in a Rayleigh distribution,
whereas the original time series has a distribution with an exponential tail.
This test clearly indicates the important role of phase correlations in the RR
time series. The presence of these correlations is most likely related to the



Wavelets in medicine and physiology 411

T T T

0 5000 10000 15000
beat number

e e original data
s phase randomized data 7
— Rayleigh distribution

0.0 X F,Z.O 4.0

Fig. 10.9. (a) Original time series RR as a function of beat number. (b) Wavelet
transform 7', (RR) of this series. (c) Surrogate signal (RRy,,) after phase randomiza-
tion. (d) Wavelet transform of the surrogate signal which is more homogeneous (less
patchy) in comparison with (b). (e) Probability distributions of the amplitudes of
variations after wavelet transform of the original and surrogate signals, as well as the
theoretical Rayleigh distribution. The theoretical Rayleigh agrees with the distribu-
tion of the wavelet transform of the surrogate signal with randomized phases.
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underlying nonlinear dynamics [117, 123]. The observed breakdown of this
scaling pattern in the sleep apnea cases — a common and important instabil-
ity of cardiopulmonary regulation — is possibly related to pathological mode
locking associated with periodic breathing dynamics [116].

These tests show that the observed scaling in the variations of interbeat
intervals for healthy dynamics actually represents the Fourier phase correla-
tions. This result is non-trivial since it adds to an ongoing discussion about
whether nonlinear phase interactions are present in healthy cardiac dynamics
[91]. Furthermore, this finding suggests that, for healthy individuals, there
may be a common structure to this nonlinear phase interaction. Also, the
tests demonstrate that the scaling is not an artificial result of our approach in
that it gives the expected results for known processes, i.e., a Rayleigh dis-
tribution for the amplitudes of uniformly distributed random numbers and
for Gaussian noise as well. The basis of this robust temporal structure
remains unknown and presents a new challenge to the understanding of
nonlinear mechanisms of heartbeat control.

10.9 Concluding remarks

(1) Heart rate dynamics under normal conditions display nonequilibrium fluctua-
tions that reveal a remarkable physiological structure when analysed using
wavelets and methods adapted from statistical physics.

(i1) There is a hitherto unknown scaling pattern to interbeat interval variations in
healthy subjects. This finding allows us to express the global characteristics of
the highly heterogeneous heart rate time series of each healthy individual with
only a single parameter. This scaling property cannot be explained by activity,
since we analysed data from subjects during nocturnal hours. Moreover, it
cannot be accounted for by sleep stage transitions, since we found a similar
pattern during day-time hours.

(ii1) This scaling is related to the intrinsic nonlinear dynamics of the control
mechanism because it is due to information in the phase relationships. This
information is not in the 1/f power spectrum on which all previous heart rate
scaling is based, and any realistic attempt to model heart rate control will need
to account for this scaling behaviour.

(iv) The reported results are also the first that clearly show a difference in the
distributions of the interbeat variations for normal and abnormal heart
dynamics. However, to observe it, one must:

(a) properly reduce masking effects of nonstationarity;
(b) account for the importance of time scales to reveal hidden scaling.
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In both aspects the wavelet analysis proves superior to other more conven-
tional techniques.

(v) The observation of nonlinear dynamics is not accounted for by traditional
physiological mechanisms and motivates new modelling strategies to under-
stand nonequilibrium control systems under healthy and pathologic condi-
tions.

(vi) The wavelet-based method we present can be applied to other complex, non-
stationary time series.
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Abstract

In this chapter, we study some aspects of the chaotic behaviour of the time
evolution generated by Hamiltonian systems, or more generally, dynamical
systems. We introduce a characteristic quantity, namely the lacunarity
dimension, to quantify the intermittency phenomena that can arise in the
time evolution. We then focus on the time evolution of wave packets accord-
ing to the Schrodinger equation with time independent Hamiltonian. We
introduce a set of fractal dimensions constructed by means of the wavelet
transform, the (generalized) wavelet dimensions. We show that the lacunarity
dimension of the wave packets can be obtained via the wavelet dimensions of
the spectral measure of the Schrodinger operator. This establishes a precise
link between the long time chaotic behaviour of the wave packets and the
small scale spectral properties of the Hamiltonian.

11.1 Introduction

In this chapter, we are interested in the characterization of some intermit-
tency phenomena that can arise in chaotic dynamical systems. Our aim is to
introduce parameters to quantify the strength of intermittency in a turbulent
signal. To motivate the discussion, let us begin with a simple example.
Consider a particle whose motion in X C R" is governed by some
Hamiltonian system

dq oH
a op’
op  0oH
a oq’
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where ¢(7) € R" and p(7) € R" are the conjugate generalized coordinates at
time ¢. Denote by 7*(X) C R*" the phase space associated to the motion and
x(t) = (q(?), p(¢)) the position of the particle in phase space. If the
Hamiltonian H is time independent, the evolution of x(7) is given by a flow
®,, that is a one parameter semi-group of transformations

x(t+5) = ®,(x(5), t,5 > 0.

By Liouville’s theorem, the area in phase space is conserved under the
Hamiltonian flow. Precisely, we have for any bounded region 4 in T7"(X):

/ dpdg = / dpdyg.
A ®,4

Thus the ‘surface’ measure (this is actually a surface for » = 1) on the phase
space

mazﬁ@@

is invariant under ®,. Furthermore, if the phase space 7*(X) is compact, then
wu is finite.

Now suppose we can evaluate the location of the particle in phase space
periodically in time (with some period say ) by means of some stroboscopic
system, that is we are given a discrete set of values x,, = x(nt). The passage
from x, to x,,, reads

Xn+1 = F(xn)v

where F = @, is the evolution operator over one period. Thus the system
(T*(X), m, F)is a discrete dynamical system associated to the finite invar-
iant measure w. It follows from the Poincaré recurrence theorem that u-
almost every point of a region in phase space is recurrent. Precisely, for all
A C T*(X), there is a set B C A with u(B) = u(A4) such that for all x, € B,
the sequence (x,, ) returns infinitely many times in 4.

Now a natural question arises. How frequently does the particle return to
the same region A of phase space? This can be visualized by forming the
function

h(1) = x4(x(1)),
where yx 4 is the characteristic function of A4

lifxe 4
Xa(x) =

0 elsewhere.
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The recurrent motion of the particle is mirrored in the intermittent behaviour
of h(t) (Figure 11.1). The more lacunary this function is, the sparser is the
come back in region A. Thus, the strength of intermittency is characterized by
the degree of lacunarity of A(7).

Now let us state the problem in a more abstract and general framework.
Consider a particle whose motion x(f#) in some phase space, possibly
unbounded, is given by an arbitrary dynamical system and as before test if
the particle is present or not in some fixed region A by looking at the function
h(t) = x4(x(¢)). The physical windowing system which corresponds to the
characteristic function may not be perfect, so it is more natural to take
h(t) = ¢(x(t)), where ¢ is some smooth positive function well localized in
region A4 (Figure 11.2).

At instant 7', the fraction of time (/)  spent by the particle in region 4 is

1 T
(hy, = 7/0 dt h().

If (h), converges toward some finite constant as 7' — oo, the limit can be
interpreted as a rate of presence in region A. If the particle never returns in A4,
then (h), ~T ~! T — oo. In the general case where the particle returns
intermittently in 4, we may expect some overall decrease of the form

A h(t)

T1
particle
outside particle in region A
region A

Fig. 11.1. Theoretical characteristic function of the motion.

P(x(t))

VAGIVERW

Fig. 11.2. Observed characteristic function of the motion.
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(h), ~T™*, T — oc. The scaling may or may not exist. However, we can
always define the following exponents

log< T dr h(z)) log< I dr h(z))

J’_ _ . — _ . .
dy [h] = lim sup , dy[h] = thl 1£f log T

T—o0 10g T

The problem is that (k). is an average quantity and therefore only gives a
rough idea of the real time evolution. Indeed, for given exponents di[h]
several scenarios are possible. For instance, think of a particle going further
and further away from its initial localization in phase space so that
(hy, ~T ~las T'— 0o and therefore di[h] = dy [h] = 0. Another situation
is a particle wandering somewhere in phase space but returning infinitely
many times in the same region 4 with more and more time needed for
each come-back in such a way that the fraction of time spent in 4 still scales
like 77! whence again di[hl = dy[h] = 0.

Thus, it appears that the exponents dyj and d;, are not capable to detect the
intermittent nature of the motion. To get a sharper description, we propose
to consider not only the mean value (). but also the higher momenta

1 T
(f"h). :W/O de " h(t), m=1,2,...
and the associated upper and lower exponents

10g< S e h(t)) ) o 10g< S o h(t)>
, dulhl = ll%n inf fog T .

dih) =i
o [A] im sup fog T

Note that the above exponents are invariant under a time translation
h(t) — h(t +ty), that is the time origin that we have taken to be 0 can
actually be any arbitrary constant. In the next section, we will prove that
the limit

o] = tim <]
m—oo m
exists. We will call it lacunarity dimension because it measures, in some sense,
the degree of lacunarity of a positive function. Then, we will focus on a case
of quantum chaos and show that the lacunary character of the time evolution
can be related to fractal spectral properties of the corresponding Hamiltonian
via the fractal wavelet dimensions.



Wavelet dimensions and time evolution 425

11.2 The lacunarity dimension

Since the above definition of the lacunarity dimension is not at all intuitive,
let us motivate it by looking at the following simple example.

Example 1 Consider the function:
h() = "8t — b,),
n=0

where §(7) is the Dirac function

1 ifr=0,
8(1) = { 0 else.

This can be seen as the characteristic function of a motion with infinitely
short times of sojourn in some region of recurrence, the b, corresponding to
the successive instants of return. Here, we choose a sequence (b,) which
becomes more and more lacunary as n increases, precisely

bpy1 ~ b, n— oo,

with y > 1 and b, > 1. In this case, d,/[A] and d,,[h] can be computed expli-
citly. Indeed we have, for all T > b,

T
dt 1"h(t) = by ~ by, T — oo,
[ = 3 vy

b, <T

where N is the unique integer such that by < T < by, ;. The log-log diagram
of the function fOT dt "' h(r) is plotted on Figure 11.3. Clearly, it appears that:

. log( 2 ar z’”h(z)) B
m - NI—I)I;O log bN - m’

and

- . log< é’“ dt z’"h(z)) m
dm [h] = lim =
N—c0 logby Y

that is the upper and lower exponents d,:[/] and d,,[}] have different rates of
growth in m. Now this example supplies motivation for the following.

Theorem 11.2.1 Let h be a positive measurable function such that dy [h] < oo.
Then the limit
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log Jpdt ™h(t)

-
s
-

slope =m

s
e
-
-

P4
-

s -

Ve ="

slope = m/y

! log T

b3

Fig. 11.3. Computation of d5[A] in a simple case.

dlac [h] =

mlh]

m——+o00 m

exists and satisfies 0 < dj,.[h] < 1. Moreover, the limit

also exists and is trivial in the sense that it is either 0 or 1. We call d,,[h] the
lacunarity dimension of h and we say the function h is lacunary if d,. < 1.

Since the proof is quite heavy, although not difficult, we have deferred it to
the appendix.

The example given above to introduce the lacunarity dimension is instruc-
tive but not realistic because the true characteristic function of a motion
cannot be expressed in terms of Dirac functions (the speed of the particle
is finite!). Therefore, the example needs to be refined by taking account of the
time of sojourn in the region of recurrence. We now consider the following.

Example 2 Let /(7) be a positive function which can be written as a super-
position of polynomially localized bumps centred at instants b,

where

We take K > 1 and again we assume the b, to scale asymptotically like
by ~ b, n— oo, with y > 1 and by > 1. Such a function is illustrated in
Figure 11.4. Straightforward computations lead to the following expressions
for d[h] and d,,[h]. If m — K +1 < m/y, as can occur for small m, then

lim

m—+o00 m

h(t) ="t —b,)
n=0

o(t) = (1+ )"
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h(t) polynomial rate of growth
localization of the gaps
bn +17 bz
\ \ \ \ t
by b, by bs

Fig. 11.4. Lacunary function.

At =m and d,;[h]:%, (11.2.1)

else if m/y <m — K+ 1 (for large m), then
dflh =m, and d,[hll=m—K + 1. (11.2.2)

—lot]

If the function ¢ is exponentially localized, ¢(f) =¢ "', we obtain
di[hl = m and d,,[h] = % for all m. The proof is given in the appendix.

Again, we see that the introduction of a weight /" in the averages tends to
separate the upper and lower exponents d,[h] and d,[h], at least for the
lowest momenta, and thus makes the lacunarity more visible. Note that
here dy [h] = dy [h] = 0. Therefore the classical averages fOT dt h(t) do not
reveal the chaotic behaviour of the function /4, whereas the higher momenta
do. Indeed, the rate of growth of d,,[/] as m increases in the first regime (small
m) gives access to y. This parameter tells how fast the gaps enlarge with the
time, that is it quantifies the strength of intermittency in the time evolution.
The value of m for which the regime transition occurs gives access to the
parameter K, which measures the accuracy of the bumps, that is the form of
the window ¢. In this example, we have a competition between the lacunarity
of the sequence (b,) and the localization of the function ¢(¢). When m
increases, the bumps 7" ¢(¢) become less and less well separated and so the
lacunarity becomes less and less apparent. This explains why for large m the
exponent d,[/] does not depend anymore on the parameter y if ¢ is only
polymomially localized. In that case, we have actually d,,.[#] = 1 and thus the
lacunary behaviour of /() is not shown up with our definition. However, we
can observe d,,[h] « m/y on some range (see Figure 11.5), from which we
deduce that / is lacunary but with a bad localization. Note that the same kind
of problem often arises with fractal dimensions in physics. Some natural
objects can be assimilated to fractals up to a certain scale, but the fractality
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dp, (h]
d;n[h] =m-K+1
\
d [l = m'y
N i
E m
Y (K-1)
v -1

Fig. 11.5. Different regimes for d,,[/].

breaks down when one looks at too small a scale. For these objects, the
fractal dimension with a theorical definition is trivial although a certain
scaling law exists in some range of scales.

Now let us make some comments on the choice of the sequence b,. In
the above example, we took the instants of return b, to grow like
byp1 ~ b, y > 1, and with this assumption we obtained d,.[h] = 1/y ( at
least for exponentially localized window function ¢). This example can
appear somewhat artificial and restrictive. However, in many cases, one
can boil down to this kind of lacunary function by a simple change of
variables. For instance, if the b, grow in a geometrical ratio,
b,i1 ~ yb,, n— oo, then it is not hard to verify that for exponentially loca-
lized bumps we have d,,[h] =1 but dy,.[holog] =1/y, that is h(log?) is
lacunary.

We end this section with a negative result which allows us to restrict the set
of lacunary functions.

Proposition 11.2.1 Let h(t) be a positive measurable function. If for some
mg > 0 we have

d,,to[h] = dp, [h] = o > 0,

then d, [h) = 1, that is h cannot be lacunary.

The proofis given in the appendix. This statement in particular excludes all
the functions A(z) satisfying (h), ~ T7? with 0 <D <1 to be lacunary,
because in that case dj[h] =dy [h] =1— D > 0.
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11.3 Quantum chaos

We will now study the problem of intermittent time evolution in the frame-
work of quantum mechanics. Consider a particle whose motion is now gov-
erned by the Schrodinger equation

oY, :

— = —iHy,

o v,
where v, € L*(R") is the wave function of the particle at time 7. The
Hamiltonian H is a self adjoint operator acting on the Hilbert space
H = L*(R"). If H is time independent, the dynamics of this system is given
by the evolution operator ¢~

¥, =e My (11.3.1)

The evolving state ¥, usually spreads in configuration space and loses its
initial localization. This spreading is estimated by the so-called survival prob-
ability |(y,|¥o)|*. More generally, the space time behaviour of the wave
packets can be estimated by comparing v, with some reference state ¢ in
‘H. Let us define

h(t) = (1) . (11.3.2)

This quantity is the probability for the state i, to be in configuration ¢ or
more simply, if ¢ is the characteristic function of some region Q C R”", this is
the probability of finding the particle in region 2 at time ¢. Now let us
introduce w: the spectral measure of H associated to ¥, and ¢, uniquely
defined by (see e.g. [6])

. 9) = [ dutofeo
for all measurable functions . From (11.3.1) and (11.3.2) it follows that

h(t) = ()1,

where 1 is the Fourier transform of u
(0 = [[ducoe ™

Thus, the evolution of v, is governed by the Fourier transform of the spectral
measure. It is therefore natural to try to relate the long time behaviour of /(z)
to the spectral properties of the Hamiltonian. So some heuristic arguments
have been given in [4] supporting the fact that the averages
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1 (7T
(h), = T/o dt h(t)
exhibit a scaling behaviour (h) ~ T ~P where D is a fractal dimension of the
measure u, namely the correlation dimension (e.g. [5]). In [2] some new
fractal dimensions have been introduced by means of wavelet transforms,
namely the g-wavelet dimensions K;t, g =1,2... For these dimensions it has
been shown that the heuristic argument is actually true and that the long time
evolution of (h)  is governed by the upper and lower, respectively, 2-wavelet
dimension 5[] and 5[], also called upper and lower wavelet correlation
dimension. Precisely we have dj[h] = —«; [u] and dy [h] = —k3[u]. In the
following, we want to show that an easy generalization of these to the
g—wavelet dimensions makes it possible to express the exponents d:[/], and
consequently the lacunarity dimension d, [/#], in terms of fractal dimensions
of . In the next section, we introduce our main tool, the wavelet transform.
Then we define a two parameter set of wavelet dimensions Kim, which we
relate to the exponents d[A]. In order not to get too far off the main flow of
argument, the long or technical proofs have been relegated to the appendix.

11.4 The generalized wavelet dimensions

We now wish to introduce the wavelet dimensions. We will first make some
brief recall on the wavelet analysis and list a few properties that are necessary
for the following. We follow here the notations of [3]. A wavelet is basically a
complex valued function g of zero mean (g = 0), which is well localized
both in real space and Fourier space ( this will soon be made more precise).
The wavelet transform of a complex valued function s with respect to an
analysing wavelet g is given by
st

Wes(b, a) = /dl g(

Wes(b, a) = 1 / dw e glaw) 5 (w), (11.4.1)

or in Fourier space

where A is the usual Fourier transform on S(R)
gw) = / dx e “g(x).

This is a function over the position-scale half plane H = R x R™. Intuitively,
the wavelet transform acts as a filter selecting the details present in s at scale a
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and position b. If we introduce the following notations, to be maintained in
the remainder

@)= ("), w0 = 2(2). &0 =0,
then the wavelet transform may be seen as a convolution
Wes(b, a) = / dt g,(t — b)s(t) = g, * s(b)
or a family of scalar products in R
Wisth,0) = [t (0500 = (gl

Thus, the wavelet analysis consists of comparing some function to a family of
dilated and translated versions g, , of a mother wavelet g. The wavelet synth-
esis of a function 7 over H with respect to a reconstructing wavelet / is given

by
NMHOZ/@zﬁT@ﬂﬂﬁG:£>
a a a

This is essentially the inverse of the wavelet transform. Now let us introduce
the function spaces on which the wavelet analysis is to be developed. Let S(IR)
be the Schwartz space of C* functions ¢ which, together with their deriva-
tives, are rapidly decreasing

sup | "3 (1)| < oo, for all m,n > 0.

m,n
Denote S, (R) the subset of Schwartz functions having positive frequencies
only ( @(w) =0 if w <0). For any such function, the Fourier transform is
smoothly vanishing at zero or, what amounts to the same, all the moments
cancel

¢(w) = 0(0") & /dt "p(f) =0, neN.

The reason for taking wavelets with no negative frequencies is that it con-
siderably simplifies the computations and allows nice inversion formulae. Let
us also introduce S(H) the space of highly localized functions on the half
plane, that is the functions 7 (b, a) satisfying

sup | 7(b, a)l(a+ a )" (1 + b)) < oo,
H

for all m > 0. Then the following holds true
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e if g and s are in S (R), then W,s is in S(H);
e if hisin S, (R) and 7 in S(H), then M, T is in S, (R).

If furthermore the constant
o0 da) - =
Cop = / — h(w)g(w) (11.4.2)
0 w

is non-zero, then we have the reconstruction formula
Cq, oMW, =1 S.(R)> (11.4.3)

where 1 s, (®) 18 the identity operator on S, (R). Now, upon reconstructing
with g and analysing with /4, we obtain the so-called cross kernel equation,

which relates the wavelet transforms with respect to different wavelets g and
h

dd 1 b—b
Weth.a = [ Lre (P20 L Wit

with P, (b, a) = ghWhg(b a). If we introduce a (non-commutative) con-
volution on S(H) by

Tl*Tz(b,a):/d—adb’ 171<b i ")72(b 4),
ua a a

then the above equation may be more simply rewritten as
Wes(b, a) = Py x Wys(b, a), (11.4.4)

an important equation for the following. Thus, the passage from one wavelet
to another in the half plane is done by convolution with a highly localized
kernel. If u is a Borel measure on R, its wavelet transform with respect to a
wavelet g € S, (R) is given by

Wt = [[duz(*57) =g i

and the cross kernel equation is still valid
Wetalh, @) = Py Wiyialh, a). (11.4.5)

Since we are interested in local properties, we will now only consider finite
Borel measures i on R. This in particular includes the case of functions in
L'(R), which can be trivially identified with finite measures. Given some
analysing wavelet g € S, (R) and some real ¢ > 1, we define
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Gettla. ) = IWent- = [ db Wonth. )y
The above quantity is finite since by Young’s inequality (see the appendix)
Gola, q) = l1g, * plly < Nl gall, < oo

At small scales, a scaling behaviour of the form G,u(a, g) ~ " can in general
be observed giving rise to the definition of fractal dimensions «,. This
approach has been developed in [2]. We propose to extend this definition
by introducing a supplementary parameter. For m € R, we define the func-
tion

Yda ,
Coul(t, g, m) :/ " a’ Gyula, q), (11.4.6)
t

and look at its small scale behaviour ¢ — 0. Note that T',u(z,q, m) is a
monotone function of . Therefore, the limit exists, but may be infinite. In
the opposite case when this limit is finite, we rather look at the rate of
convergence by putting

lda m
Fg“(l’ q, m) = /0 ;a Ggﬂ(a’ 4])

To summarize, we have
_ ‘da | da
Loplt, g, m) = mzn{ / ;a“Ggu(a, a, f ;am Ggu(a, q)}-
0 t

The generalized wavelet dimensions K,:]t’m are now defined by

. logTyula, g,m)  _ .. JdogT,u(a, q,m)
gonlia] = lim sup === i ] = lim fnf——4 "=

These are intrinsic dimensions of the measures u, as the following theorem
shows.

Theorem 11.4.1 The generalized wavelet dimensions /cf;m are well defined in the
sense that they do not depend on the analysing wavelet g € S (R), provided

g#0.

The proof of this theorem is given in the appendix.

11.5 Time evolution and wavelet dimensions

The generalized wavelet dimensions Kim can be related to the exponents d=
introduced in section 11.1 in the following way.
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Theorem 11.5.1 Let w be a finite Borel measure on R and let h(t) = |@(t)|.
Then we have for all integer m > 0, provided k™' {i(k) ¢ L*(R),

dylhl = —s3 _[n], and dy,[h] = =3 _, (1, (I1.5.1)
The proof is also given in the appendix. An immediate corollary is

+
d ] = — tim 2=t (11.5.2)
m—00 m
This shows that the lacunary long time evolution generated by the
Schrodinger equation is related to the generalized wavelet dimensions of

the spectral measure of the Hamiltonian H.

We wish to conclude this chapter with some remarks on the bearing of
wavelet dimensions in the above time evolution problem. The reader may
reasonably ask why we introduced complicated fractal dimensions Kfl'fm and
the non-intuitive spectral measure u to rewrite a quantity which is already
physically interpretable, namely dj,.[/]. The reason is the following. To form
the spectral measure, we need three ingredients: the Hamiltonian itself, the
initial state v, and the reference state ¢. Now these are time independent data.
Thus, once the dynamics and the initial state of the system have been given,
the equation (11.5.2) automatically provides the lacunarity dimension of /4(¢).
On the other hand, to compute directly the lacunarity dimension by means of
the exponents d,,[h] would require the full knowledge of A(¢) over a huge time
span, possibly too long for measurements. Moreover, expressing the lacunar-
ity dimension in terms of wavelet dimensions sets up a precise correspon-
dence between the long time evolution of the dynamical system and the
fractal spectral properties of its generator (the Hamiltonian). The next nat-
ural question might be why we use wavelet dimensions and not ‘classical’
fractal dimensions such as the correlation dimension, the box dimension,
etc...The answer is simple: the usual fractal dimensions are not adapted to
characterize signed or complex measures, whereas the wavelet dimensions
are. For instance, the oscillating singularities appearing in ‘chirps’ functions
such as sin(|x|"%) are not detectable by means of the usual fractal dimensions
whereas the wavelet dimensions can show them up. For positive measures,
however, the wavelet dimensions can in some cases be related to better
known fractal dimensions. In particular, it has been shown in [1] that for
any finite positive measure p we have

iy [u] = D¥[u] and &5 [u] = D[l



Wavelet dimensions and time evolution 435

where D[] and D™ [u] are the upper respectively lower correlation dimension
(see e.g. [5]) of the measure u. Therefore, the lacunarity dimension in the time
evolution can be related to a classical fractal dimension of the spectral mea-
sure if this latter is positive. This is, for example, the case if the reference state
coincides with the initial state, that is ¢ = 1, (see section 11.3 for notations).
In the general case of complex spectral measures, the correlation dimension
has to be replaced by the wavelet correlation dimension.
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11.6 Appendix

Proof of theorem 11.2.1 For the purpose of the proof, we introduce the
notations

H(T,m) = /IT dr "' h(r)

and

log H(T, m)
T =— "
0T, m) log T

With this notation we have

d[h) =limsup n(T,m), and d,[h] = li}n inf n(T, m).

T—o

For fixed m, H(T,m) is a non-decreasing function of 7 such that
H(T,m) < T"H(T,0). Therefore,

0 < dih] < dy U] +m,

" . (11.6.1)
0 = dm[h] = dO [h] +m.

On the other hand n(T, m) is, for fixed T, infinitely many times differenti-
able with respect to m. An elementary computation gives for 7" > 1

BMﬂmgﬁ)¥MKm)

’ 2 ZO’

om om



436 Ch.-A. Guérin and M. Holschneider

that is n(T, m) is a non-decreasing convex function of m. Thus, for any
0 <a <1, we have

(T, am) < o n(T,m) + (1 —a) (T, 0).
Now we use the inequalities

limsup(f +g) <limsupf+limsupg
liminf(f +g) <Iliminf f+ limsupg

which yield
dog[1) < oy [H) + (1 — @) dy [1]
dom[] < @ dyy[M]) + (1 — ) dj [,
and thus
donl] = di (] _ dyy 1] — di h]

’

am - m
Aol 1] — dy [h] - dy[h] — di [h]
am - m '

Since any m’ > m can be expressed as m/a with 0 < a < 1, this means that
(dfi[h] — dif[h])/m and (d,,[h] — d; [h])/m are non-decreasing functions of m.
Now in view of (11.6.1) we have
- + + +
< dm [h] - dO [h] < dm [h] B dO [h]
m m

0

<1

It follows that the limits lim,, , ., d-[4]/m exist and lie between zero and one.
Finally, let us show that lim,,_, . d;}[h]/m is either zero or one. If / is of
compact support, this is evident because in this case di[k] = 0. So we may
suppose that / has unbounded support. Then look at

) log< T+ gy h(z))
T

If the above quantity is a finite constant, say «, then we can find a sub-
sequence (7,) and a constant C > 0 for which

Tn+1
/ dt h(f) > CT .
T,
This gives
T,+1 T,+1
/ "dt h(t) > f dt h(t) > CT" 1,
1

n
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whence d [h] +m > d,;[h] > m +a — 1 and therefore lim,,_, o, d,j[h]/m = 1.
In the opposite case where

. log< S h(z))
lim sup

T— o0 IOgT -

it is not hard to see that flr dr 1" h(t) is a convergent integral for all m and
therefore d5[h] = 0. This proves the theorem.

Proof of example 2 Take some y’ with 1 < ' < y and some integer N and let
us estimate

e o b
/ di "h(1) =) / dr "ot — b,).
0 n=0 Y0

To this end, let us look separately at each term appearing in the sum. While
n < N, we have for any € > 0

by T ¢
/ "o(t — b,)dt = [/ +/1 + /1+ }z’"w(z —bydt=1+ 1, + L.
0 0 bl bl

Using the approximations ¢(f) ~ %, ¢>> 1, we obtain the following esti-
mates

I] < b}(qm—K—H)

13 -~ b}/v’(m—K+l).

On the other hand we have

I+e
n

cb1=9 < pmd=9 / o(t — b,)dt
bl

<h
I+€

S bz7(1+€)/ (p([ _ bn)dl S Cbz1(1+€),
b,

1—€
n

for some positive constants ¢ and C.
Thus, if we regroup the first N terms of the sum, we obtain

, N bl ,
BT < 3 / di " (t — b,) < C' PRV (11.6.2)
n=0 70

for some other positive constants ¢’ and C’, where
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p(m,y") = max{y'(m — K + 1), m}.

The contribution of the terms with n > N is negligible because

by by ,
fo det"o(t — b,) < L di " o(bY;, — b))

Therefore we have

!
Y

7 bN ’
¢ BRI < / di"h(r) < C" BRI N s o0, (11.6.3)
0

with ¢”, C” > 0. Since € can be choosen arbitrarily small, it follows that

log( TN ar t’”h(t)) 1og( 5 ar t’”h(z))

lim sup : = liminf : _pmy)
N—o0 IOg b}/\f N—o0 lOgb% 14
This yields the following estimates for d;\[4] and d,,[h]
a;in = sup 2V,
I=y'sy , (11.6.4)
doii < inf PURY)
I<y'=y 14

It turns out that the above inequalities are actually equalities. Indeed, fix
some y’ angi some € > 0. For any 7 >0, we may find N such that
by, < Th <} Then

/ v / v/ (14¢)

log b, log [2¥ dt "h(r) _log [y dr "h(t) _logh} "+ log IO dr 7 h(n)

logT  logby, ~ ~  logT = logT log b7 079
Taking successively the limes superior and inferior, this leads to

/ / 1
y'(L+¢€) Y

Again we may choose € arbitrarily small and since this holds for any y’ we
have equalities in (11.6.4). Now we have to distinguish different regimes for

m. If m is small enough to have m — K + 1 < m/y, then p(m, y') = m for all
1 <y’ <y. Consequently,

di[h =m, and d,;[h]:%. (11.6.5)
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Ifm/y <m— K+ 1, then p(m, y")/y' =m/y"if1 <y <m/(m — K+ 1) and
om, vy =m—K+1if m/(im—K+1) <y’ <y. This yields

dih =m, and d[hll=m—K+ 1. (11.6.6)

The case of exponential localization can be obtained by letting K — oo, in
which case (11.6.5) is verified for all m. This concludes the proof.

Proof of proposition 11.2.1 For the proof we need the following lemma, that
we give without demonstration since it is well-known.

Lemma 11.6.1
.. logs() y
11rrrl>10nf logr sup{y € R|s(?) < O(t"), t — 0},
. log s(t)
lim sup = sup{y € R|/ < O(s(2)), t — 0}.
t—0 1Ogl

We are now going to show that d,[h] = d, [h] = « +m for all m > m.
First suppose m,=0. Then, for all m > 0, we have d, [h] < d}[h] <m +«a.
Now let € > 0. By lemma 11.6.1, we can find for all § > 0 two positive con-
stants 0 < ¢ < C such that

T
c T < / dr h(t) < C T*".
1
Rewriting this for 7'~ in place of 7" and opposing the sign gives
Tl—e
-C T(OH-B)(I—G) < _f dt h(l) < ¢ T(a—a)(l—e)
1
and adding line by line the last two inequalities yields
T
¢ T°7% — ¢ Tet-9 < / dt h(r) < C T**°.
Tl—e
Upon choosing é small enough, we have o — § > (o + 8)(1 — ¢€) and
T
e T < / dt h(t) < C T*.
Tl—e
Again by lemma 11.6.1, it follows that

log (1. dt{"h(t log (1 dt (¢
lim sup o¢ [ @ = liminf og Jri ® —_

T— 00 logT T—00 logT

(11.6.7)
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Now, since [ dr ¢"h(r) > T"~9 f,ﬁ .dt (1), this yields m + o > d;[h]
d,[h] > a+m(l —€). Since e is arbitrary, this shows that d}[h]
d,,[h] = m + «, in which case the lacunarity dimension is one. If m, # 0, we
may apply the same reasoning to 7"h(t) instead of /(f) and the conclusion
follows.

=

Proof of theorem 11.4.1 Let us begin with some comments on the definition of
the function ['puu. The rate of decay of the wavelet transform W,u(b, a) as
a — 0 (resp. a — oo) reflects the behaviour of the Fourier transform f at oo
(resp. 0). Precisely, we have

fi(@) < 0(@"), © = 0,= Weu(b,a) < O(a™""), a— oo,

1 (11.6.8)
@) < 0(@"), © — 00, = Wu(b,a) < 0(d"™), a— 0

uniformly in b. (This is a consequence of (11.4.1).) Thus, if s is in
C*®(R) N L(R), then by (11.6.8), Ggs(a, q) = |[W,s(-, a)||] is rapidly decaying
at small scales. It follows that i and u + s have the same wavelet-dimensions
k*(gq, m). Hence, if we define (i) as the class of equivalence of u modulo
smooth functions ( that is (u') = (u) if u’ — p can be identified to a C™
function), then two measures belonging to the same class () have the same
wavelet dimensions. Now, for a given measure u, we always can find 1’ in
(u) whose Fourier transform is flat around 0. It suffices to takes
w =p—¢xp with ¢ € S(R) and Pw) =1+ OW"), w — 0, for all m.
Therefore, we may assume that condition (11.6.8) holds when we compute
the wavelet dimensions. In that case, Gg,u(a q) is rapidly decreasing at large
scales and we may thus replace f by ft in the definition of T'yuu(t, g, m), that
is we may set

*“da ,,
Lou(t, g, m) = f -4 Gyula, q).
t

With this remark in mind, we can begin the proof. Take g and /& two analys-
ing wavelets in S (R). Let us compare [ou(z, ¢, m) and I'yu(z, g, m) as t — 0.
From equation (11.4.5) it follows that with

1 b a
a a(b) / g%h( 7 _/)
a da

the passage from Wyu to W),u reads

da’
Wh:u(Wa):-/o a/ a ,a * Wgﬂ( (1)
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However we have to make sure that K, is well defined. The only possible
obstruction to this is the constant c,; as defined in (11.4.2) which may
vanish. (Note that it is never oo for g, h € S, (R).) However it cannot vanish
for all the dilated and translated versions g . = o 'g([- — Bl/a) of g since this
would merely mean that the wavelet transform of 4 with respect to g
vanishes, which is impossible for /2 # 0. Now replacing g by one of its dilated
and translated versions gg, amounts to replace W,u(b,a) by

1 b—pB a
R

o o

and therefore the dimensions computed with g4, instead of g are the same.
We therefore may suppose that ¢, ; # 0.
Now we have

1/q
Wit @), = ( [, a>|‘1)

© da’ gy 1/q
<A far( [ K Wt aen ) |
0
00 .,/ 1/q
< [M9 [ btk et 200
0

by Minkowski’s inequality

© da’
= f 7 ||Ka’,a*Wg/fL(" a/)”q
0

> da’
< / Ky ol IWeiaC @)
0

by Young’s inequality.
On the other hand,

—+00 1
1Ky ally = f db

T
oo a

b a ,
Pgﬁh (_/ ’ _/> ”H(a/a )=
a da

with

—+00
H(a) = f db |Py_ (b, a).

This is a non-negative function that is rapidly decaying as a 4+ 1/a gets large.
Now set
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ood /
A :/ = H/a),
0 a
which is a finite constant thanks to the high localization of H, and
d /
dv(a’) = A~ ai H(a/d),
which is a probability measure. Then, using Jensen’s inequality, we obtain
00 q
IWhn(, a)ll§ = Aq(/ dv(@")[Wen(, a/)llq>
0
loe]
< &0 [ @)Wt
0
1 o0 da/
— / /
A [ W a0l (11.69)

Now suppose that we are in the case

1

, a
lim [ —d" Gyu(a, q) = .
=0 ), a

Then, as was explained in the last remark, we may compute the wavelet
dimension with

“da
Fgﬂ(l, q,m) = / ” a Ggu,(a, q).
t
With this assumption, (11.6.9) yields

r _ [Tda p
wi(t, g, m) = - W, a)llg
t

*da ,, (*da’ , e
<o) / da f " H(a/a') W )|
¢ a 0o da
 da’ N [Cda ,, o
— o(1) / Y 1 /a'y / B Wl aa)!
0 a ¢ a
da" ,_, . [Pda
— o(1) f o b1 / Wil @),
0 a a4
> da’ , ,
= 0(1)/0 e H(1/a)Cyu(ta’, g, m)
 da’ , ,
— o) [ 5 Huja (e’ g.m)

that is
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* da
Cattq.m) = 00) | SL HGtjaT gt q.m)
0

As can be easily checked, the same relation holds in the alternative case
! da m
Lou(t, q,m) = | — a" Gyula, g).
0o da
Since g and / can be exchanged in the above inequality, it follows that'
° da
Cpu(t, g, m) ~ L H(t/a)Tyu(a, g, m). (11.6.10)

Note that the integral on the right-hand side is always finite because
[op(a, g, m) is of at most polynomial growth in a + 1/a whereas H is rapidly
decreasing in a + 1/a.

Now suppose that T,u(t,q,m) < O(t"), t — 0, for some y. Then by
(11.6.10), we have

° da
Cuu(t, g, m) < O(tV)[ " H(l/a)a” < O(t), t — 0.
0

Since g and / can be exchanged in (11.6.10), it follows that, for all y
Tpult, g, m) < O(r") & Tgu(t, q,m) < O(F), t — 0. (11.6.11)

Conversely, suppose that T,u(t,g,m)> Ct",0 <t <1 for some constant
C > 0. Things are here slightly more complicated. Pick some ¢, 0 <€ < 1,
and keep it fixed. For 0 < ¢ < 1 we split the integral of (11.6.10) into three
parts.

t]
Cyalt, g, m) = { 0 / s } (/T gii(a, q.m) = X, + Xy + Xy
tl+e 1—
In the last term we may estimate I'puu(z, ¢, m) < O(1) and thus
xo=om [ Haya

1/ d

Since H(r) is arbitrarily well polynomially localized it follows that X3 = O(¢")
for all n > 0.

In X, we may estimate I',u(t, ¢, m) < ¢ for some p because [ u(t, ¢, m) is
rapidly decreasing in ¢+ 1/¢ and thus

TThe notation / ~ g means C~! f(x) < g(x) < Cf(x) for some constant C > 0.
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“ da

X, < O(l)tp/ — H(l/a)a™".
0o a

Since H 1is arbitrarily well polynomially localized the integral is rapidly
decaying and thus again X; = O(¢") for all n > 0.

The remaining contribution is the middle term X,. If T'puu(z, g, m) is non-
decreasing, then

—€

" da
X, = / ;Fgu(al, q,m)H(1/a)
1A

€

1
> [ % Hajor . g.m
[‘,

. U da
> Dot q.m) | — H(1/a)

[l+e
1
d
= T gom) [ % H(1 /)
0o d
- C/IY(H_E).

If Tyu(t, a, m)t is non-increasing, then

" da
Yoz [ % a0 et g.m)
1
. " da
= L gom) [5G0
I+e€ > da
= Tl qm) |5 HL
Z C/ ty(1+€)
Thus, we have for all y and all € > 0
Ct" < Toult,q,m) = e < ¢’ Cou(t, g, m), (11.6.12)
and also since g and / can be interchanged
Ct < Tyult,q,m) = 9 < C'Tuult, g, m), (11.6.13)

Once we have proven (11.6.11), (11.6.12) and (11.6.13), the conclusion
follows from lemma (11.6.1).

Proof of theorem 11.5.1 Take some wavelet g € S, (R) such that g is com-
pactly supported. Again we may suppose in addition that & (w) < O(0™),
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w — 0 for all m, whence W,u is rapidly decaying at large scale. A direct
application of Parseval’s equation gives

—+00 o0
| Wt ar = [ dolg@or @) (11.6.14)

—00 0

and thus, by a simple exchange of integration

da —m > da —m © m A
[ b Wb = [ g [ doo” o)
0 0

a
The first integral on the right-hand side is a finite constant, due to the high
localization of g. The second integral is infinite by hypothesis. Then we have

00 da +00

ru 2 mm = [ S [ e o
T —00

By equation (11.6.14), this can be rewritten as
P 2. -m) = [ doo /DI R
with
o= [ Mg,

Since H is non-negative and of compact support (since g is), we can find
numbers A > 0 and A > 0 such that
Axo(@) < H(w) < Axp,a(@)

where x; is the characteristic function of /. Therefore

AT AT
) / doo"|E@)]* < Teu(T™',2, —m) < A / do o |E(@)],
0 0

and it follows that

log(f, dow™ | & (»)I*)

diTI @ 1°] = lim sup

T—o00 log T

. log Cyu(T71, 2, —m)
= lim sup

T—o0 lOg T
= _Kg,—m[u]v

and
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log(fy" dwao™ | & (w))

dull 1= lim inf

log T
log Tou(T ", 2, —
_ fim inf 28 et )
T—o00 log T
= _K2+,—m[:u]-

This concludes the proof.

Some useful inequalities As usual L”(IR) is the space of measurable functions /'

for which
T ( f dr |f(t)|”>p< 0.

Holder’s inequality. 1If f € L’(R) and g € LY(R) with 1/p + 1/q = 1/r, then
we have

ISl < AN, lg g
Minkowsky’s inequality. For any p > 1 we have
ILf+gll, < 1A, + lgl,
Integral Minkowsky’s inequality. 1If f(x, y) € [P(R) x L”(R) with p > 1,

([ fasr p)}wf [as(f st y)l”)l/p.

Young’s inequality. If € L’(R) and g € LY(R) with 1/p+1/¢=1+1/r,
then

IV =gl < 11711, 11gll

Jensen's inequality. 1If u is a probability measure and ¢ a convex function,
then we have

w( / du(t)f(t)> < / du(t)p o f(0).
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