Pr-o“fie:s s iFon al="EXxXpertidse—Diisftil=l"ed

OCA Oracle Database 11g: SQL
Fundamentals |I: A Real-World

Certification Guide

Steve Ries




OCA Oracle Database 11g: SQL
Fundamentals |: A Real-World
Certification Guide

Ace the 120-051 SQL Fundamentals | exam, and
become a successful DBA by learning how SQL
concepts work in the real world

Steve Ries

enterprise &

PUBLISHING

BIRMINGHAM - MUMBAI



OCA Oracle Database 11g: SQL Fundamentals I:
A Real-World Certification Guide

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2011
Production Reference: 1171111

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84968-364-7
www . packtpub.com

Cover Image by Sandeep Babu (sandyjbegmail . com)



Credits

Author
Steve Ries

Reviewers
Dmitri Levin

Claire Rajan

Acquisition Editor
Amey Kanse

Development Editors
Pallavi lyengar

Meeta Rajani

Technical Editors
Apoorva Bolar

Arun Nadar

Naheed Shaikh

Copy Editor
Brandt D'Mello

Project Coordinator
Leena Purkait

Proofreader
Jonathan Todd

Indexer
Monica Ajmera Mehta

Graphics
Valentina D'silva

Manu Joseph

Production Coordinator

Melwyn D'sa

Cover Work
Melwyn D'sa



About the Author

Steve Ries has been an Oracle DBA for 15 years, specializing in all aspects of
database administration, including security, performance tuning, and backup and
recovery. He is a specialist in Oracle Real Application Clusters (RAC) and has
administered Oracle clustered environments in every version of Oracle since the
creation of Oracle Parallel Server. He holds five Oracle certifications as well as the
Security+ certification. He currently consults for the Dept of Defense, U.S. Marine
Corps, and holds a high-level security clearance. Additionally, Steve has been an
adjunct instructor of Oracle technologies at Johnson County Community College for
eight years where he teaches classes that prepare students for the Oracle certification
exams. He was also a speaker at the 2011 Oracle Open World conference. Steve is an
award-winning technical paper writer and the creator of the alt.oracle blog.

I would like to thank Gary Hayes, Carol Ross, Matt Sams, Pete
Scalzi, Angela Morten, Joe Duvall, Sandee Vandenboom, Karen
Buck, Gary Deardorff, and Chad Fletcher for their support and
technical advice during the writing of this book. I would also like
to thank Debbie Rulo, Keith Krieger, and the staff at the Center for
Business at Johnson County Community College for their support.
Finally, I would like to thank my wife Dee and daughter Faith for
their love, personal support, and patience.




About the Reviewers

Dmitri Levin has been working as a database administrator for more than 15 years.
His areas of interest include database design, database replication, and database
performance tuning. Dmitri has spoken at several national and international
conferences. He is currently Sr. Database Architect and Administrator at Broder Bros
Co. Dmitri has an MS in Mathematics from St. Petersburg University, Russia, and is
an Oracle Database 11g Certified Associate.

Claire Raj an is an Oracle instructor, author, and database consultant. She currently
instructs at the American Career Institute, MD, where she teaches Oracle Database
administration. She has over 15 years of experience managing Oracle databases and
teaching Oracle-related topics. She has created and maintains the popular website
www.oraclecoach.com. The website provides a host of articles, videos, and technical
resources for both beginners and advanced learners. She has authored the book Oracle
10g Database Administrator II: Backup/Recovery and Network Administration,
published by Cengage Learning. She holds certifications in all major Oracle releases:
7.x, 8, 8i, 91, 10g, and 11g. She can be found on Linkedin (http://www.linkedin.com/
in/clairerajan). She can be reached at creoraclecoach.com.


http://www.oraclecoach.com
http://www.linkedin.com/in/clairerajan
http://www.linkedin.com/in/clairerajan
mailto:cr@oraclecoach.com

www.PacktPub.com

Support files, eBooks, discount offers
and more

You might want to visit www . PacktPub . com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www . Packt Pub . com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at servicee
packtpub . com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

@ PACKT i1°

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

e  Fully searchable across every book published by Packt
e Copy and paste, print and bookmark content

e  On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . Packt Pub . com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books

Get notified! Find out when new books are published by following @PacktEnterprise
on Twitter, or the Packt Enterprise Facebook page.


http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents

Preface 1
Chapter 1: SQL and Relational Databases 7
Relational Database Management Systems 8
Flat file databases 8
Limitations of the flat file paradigm 9
Normalization 10
The relational approach 13
Bringing it into the Oracle world 16
Tables and their structure 16
Structured Query Language 18
A language for relational databases 18
Commonly-used SQL tools 20
SQL*Plus 20
TOAD 21
DBArtisan 22

SQL Worksheet (Enterprise Manager) 23
PL/SQL Developer 24
Oracle SQL Developer 24
Working with SQL 25
Introducing the Companylink database 25

An introduction to Oracle SQL Developer 27
Setting up SQL Developer 27
Getting around in SQL Developer 31
Summary 34
Test your knowledge 34
Chapter 2: SQL SELECT Statements 37
The purpose and syntax of SQL 38
The syntax of SQL 38

Case sensitivity 39



Table of Contents

The use of whitespace 40
Statement terminators 41
Retrieving data with SELECT statements 42
Projecting columns in a SELECT statement 42
Selecting a single column from a table 43
Selecting multiple columns from a table 44
Selecting all columns from a table 46
Displaying the structure of a table using DESCRIBE 48
Using aliases to format output of SELECT statements 50
Using arithmetic operators with SELECT 53
The DUAL table and the use of string literals 54
Mathematical operators with SELECT 57
The meaning of nothing 60
Using DISTINCT to display unique values 62
Concatenating values in SELECT statements 65
Summary 69
Certification objectives covered 69
Test your knowledge 70
Chapter 3: Using Conditional Statements 75
Implementing selectivity using the WHERE clause 76
Understanding the concept of selectivity 76
Understanding the syntax of the WHERE clause 76
Using conditions in WHERE clauses 79
Using equality conditions 79
Implementing non-equality conditions 82
Examining conditions with multiple values 86
Constructing range conditions using the BETWEEN clause 86
Using the IN clause to create set conditions 89
Pattern-matching conditions using the LIKE clause 91
Understanding Boolean conditions in the WHERE clause 94
Examining the Boolean OR operator 95
Understanding the Boolean AND operator 97
The Boolean NOT operator 98
Using ampersand substitution with runtime conditions 101
Sorting data 102
Understanding the concepts of sorting data 102
Sorting data using the ORDER BY clause 103
Changing sort order using DESC and ASC 104
Secondary sorts 106
Summary 110
Certification objectives covered 110

Lii]



Table of Contents

Test Your Knowledge 111
Chapter 4: Data Manipulation with DML 115
Persistent storage and the CRUD model 115
Understanding the principles of persistent storage 116
Understanding the CRUD model and DML 117
Creating data with INSERT 118
Examining the syntax of the INSERT statement 118
Using single table inserts 119
Inserts using positional notation 119
Inserts using named column notation 121
Inserts using NULL values 122
Multi-row inserts 124
Conditional Inserts—INSERT...WHEN 125
Modifying data with UPDATE 128
Understanding the purpose and syntax of the UPDATE statement 128
Writing single-column UPDATE statements 128
Multi-column UPDATE statements 131
Removing data with DELETE 132
The purpose and syntax of the DELETE statement 133
Deleting rows by condition 133
Deleting rows without a limiting condition 135
Removing data unconditionally with TRUNCATE 136
Transaction control 138
Transactions and the ACID test 139
Completing transactions with COMMIT 140
Undoing transactions with ROLLBACK 142
DELETE and TRUNCATE revisited 146
Recognizing errors 146
Summary 149
Certification objectives covered 149
Test your knowledge 149
Chapter 5: Combining Data from Multiple Tables 155
Understanding the principles of joining tables 155
Accessing data from multiple tables 156
The ANSI standard versus Oracle proprietary syntax 158
Using ANSI standard joins 159
Understanding the structure and syntax of ANSI join statements 159
Examining ambiguous Cartesian joins 160
Using equi joins—joins based on equivalence 162
Implementing two table joins with a table-dot notation 162
Using two table joins with alias notation 165

[iii ]



Table of Contents

Understanding the row inclusiveness of outer joins 166
Retrieving data from multiple tables using n-1 join conditions 171
Working with less commonly-used joins—non-equi joins and self-joins 176
Understanding Oracle join syntax 178
Using Cartesian joins with Cross join 178
Joining columns ambiguously using NATURAL JOIN 180
Joining on explicit columns with JOIN USING 184
Constructing fully-specified joins using JOIN ON 186
Writing n-1 join conditions using Oracle syntax 189
Creating multi-table natural joins 190
Building multi-table joins with JOIN USING 190
Summary 191
Certification objectives covered 192
Test your knowledge 192
Chapter 6: Row Level Data Transformation 197
Understanding functions and their use 197
Comprehending the principles of functions 198
Using single-row functions for data transformation 198
Understanding String functions 199
Using case conversion functions 199
UPPER() 200
LOWER() 202
INITCAP() 202
Writing SQL with String manipulation functions 203
LENGTH() 204
Padding characters with LPAD() and RPAD() 206
RTRIM() and LTRIM() 208
CONCAT() 208
SUBSTR() 209
INSTR() 212
Exploring nested functions 214
Handling DATE functions 217
Distinguishing SYSDATE and CURRENT_TIMESTAMP 217
Utilizing datatype conversion functions 219
Using date to character conversion with TO_CHAR 219
Converting characters to dates with TO_DATE() 223
Converting numbers using TO_NUMBER() 224
Using arithmetic functions 227
ROUND() 227
TRUNC() 229
Using ROUND() and TRUNC() with dates 229
MOD() 230
Understanding date arithmetic functions 231

[iv]



Table of Contents

MONTHS_BETWEEN() 232
ADD_MONTHS() 233
Examining functions that execute conditional retrieval 233
NVL() 234
NVL2() 235
DECODE() 236
Summary 237
Certification Objectives Covered 237
Test your knowledge 238
Chapter 7: Aggregate Data Transformation 243
Understanding multi-row functions 244
Examining the principles of grouping data 244
Using multi-row functions in SQL 244
COUNT() 245
MIN() and MAX() 248
SUM() 250
AVG() 251
Grouping data 252
Grouping data with GROUP BY 254
Avoiding pitfalls when using GROUP BY 256
Extending the GROUP BY function 260
Using statistical functions 262
STDDEV() 262
VARIANCE() 263
Performing row group exclusion with the HAVING clause 263
Putting it all together 266
Certification objectives covered 267
Summary 267
Test your knowledge 267
Chapter 8: Combining Queries 271
Understanding the principles of subqueries 271
Accessing data from multiple tables 272
Solving problems with subqueries 272
Examining different types of subqueries 274
Using scalar subqueries 274
Using scalar subqueries with WHERE clauses 275
Using scalar subqueries with HAVING clauses 277
Using scalar subqueries with SELECT clauses 278
Processing multiple rows with multi-row subqueries 280
Using IN with multi-row subqueries 280
Using ANY and ALL with multi-row subqueries 282
Using multi-row subqueries with HAVING clauses 286

Using correlated subqueries 287

[v]



Table of Contents

Using multi-column subqueries 289
Using multi-column subqueries with WHERE clauses 290
Multi-column subqueries with the FROM clause 291

Investigating further rules for subqueries 292
Nesting subqueries 292
Using subqueries with NULL values 294

Using set operators within SQL 296

Principles of set theory 296

Comparing set theory and relational theory 297

Understanding set operators in SQL 298
Using the INTERSECT set operator 298
Using the MINUS set operator 299
Using the UNION and UNION ALL set operators 300

Summary 302

Certification objectives covered 302

Test your knowledge 303

Chapter 9: Creating Tables 307

Introducing Data Definition Language 307

Understanding the purpose of DDL 308

Examining Oracle's schema-based approach 308

Understanding the structure of tables and datatypes 309
CHAR 310
VARCHAR?2 311
NUMBER 312
DATE 313
Other datatypes 313

Using the CREATE TABLE Statement 314
Understanding the rules of table and column naming 314

Creating tables 315

Avoiding datatype errors 318
Avoiding character datatype errors 318
Avoiding numeric datatype errors 322

Copying tables using CTAS 326

Modifying tables with ALTER TABLE 329
Adding columns to a table 329
Changing column characteristics using ALTER TABLE... MODIFY 332
Removing columns using ALTER TABLE... DROP COLUMN 335

Removing tables with DROP TABLE 337

Using database constraints 338

Understanding the principles of data integrity 338

Enforcing data integrity using database constraints 339
NOT NULL 339
PRIMARY KEY 341
Natural versus synthetic 345

[vi]




Table of Contents

FOREIGN KEY 345
Deleting values with referential integrity 347
UNIQUE 348
CHECK 348
Extending the Companylink Data Model 349
Adding constraints to Companylink tables 349
Adding referential integrity 350
Adding a NOT NULL constraint 352
Adding a CHECK constraint 352
Adding tables to the Companylink model 353
Summary 356
Certification objectives covered 356
Test your knowledge 356
Chapter 10: Creating Other Database Objects 361
Using indexes to increase performance 361
Scanning tables 362
Understanding the Oracle ROWID 362
Examining B-tree indexes 364
Creating B-tree indexes 366
Using composite B-tree indexes 368
Working with bitmap indexes 369
Understanding the concept of cardinality 369
Examining the structure of bitmap indexes 370
Creating a bitmap index 371
Working with function-based indexes 372
Modifying and dropping indexes 374
Working with views 375
Creating a view 375
Creating selective views 377
Distinguishing simple and complex views 378
Configuring other view options 381
Changing or removing a view 381
Using sequences 382
Using sequences to generate primary keys 382
Object naming using synonyms 386
Schema naming 387
Using synonyms for alternative naming 388
Creating private synonyms 388
Creating public synonyms 391
Summary 392
Certification objectives covered 392

Test your knowledge 392

[ vii ]




Table of Contents

Chapter 11: SQL in Application Development 397
Using SQL with other languages 398
Why SQL is paired with other languages 398
Using SQL with PL/SQL 398
Using SQL with Perl 401
Using SQL with Python 403
Using SQL with Java 404
Understanding the Oracle optimizer 405
Rule-based versus cost-based optimization 406
Gathering optimizer statistics 406
Viewing an execution plan with EXPLAIN PLAN 408
Advanced SQL statements 411
Exam preparation 415
Helpful exam hints 415

A recommended strategy for preparation 417
Summary 417
Appendix A: Companylink Table Reference 419
The Companylink data model 419
ADDRESS 419
AWARD 420
BLOG 420
BRANCH 420
DIVISION 420
EMAIL 421
EMPLOYEE 421
EMPLOYEE_AWARD 421
MESSAGE 422
PROJECT 422
WEBSITE 422
Appendix B: Getting Started with APEX 423
Oracle Application Express 423
What is APEX? 423
Signing up for APEX 424
Using APEX 428
Index 433

[ viii ]




Preface

There's never been a time in the Information Technology industry where
professional certifications have been more important. Because of the specialized
nature of technological careers today, certifications are considered by some to be
just as important as technological degrees. This focus on certifications has led to the
rise of an entire industry around books that assist readers in preparing for various
certification tests. In the author's opinion, many, if not most, of these books make

a lot of assumptions as to the prior knowledge of the reader and serve more as
reference material than a cohesive learning experience.

In my role as an instructor of Oracle technologies, I have noticed a shift in the types
of people seeking to learn Oracle. In the past several years, more and more students
are seeking to break into an Oracle career path with little or no experience. Whether
they come from backgrounds in business analysis, project management, or other
non-database technical areas, these students need to be able to learn Oracle from the
ground up. When instructing these types of students, I cannot make assumptions

as to the knowledge they bring with them. We must start at the beginning and

work our way to certification level knowledge. To accomplish this goal in class,

the accompanying textbook must be designed in the same way.

Similarly, many certification books today serve only as exam cram books that neglect
an application to real world scenarios. Readers of these types of books may find
themselves with a certification, yet possess no way to apply the knowledge in their
first job.



Preface

My goal in writing this book is to address both of these problems. This book attempts
to begin at the foundation and continue to the knowledge of the subject required

for the certification exam, using real world examples and tips along the way. This
book is heavily example-oriented and is intended to serve as step-by-step instruction
instead of reference material. In essence, I attempt to bring the classroom experience
to the reader, using examples, real world tips, and end-of-the-chapter review. This
book is written to be read cover to cover, with the reader completing the examples
and questions as they go. Using this process, it is my hope that readers can truly
begin at the beginning, regardless of previous experience, and learn SQL in a
relevant way that will serve them in their pursuit of an Oracle certification as

well as an Oracle career path.

The Oracle Database 11g: SQL Fundamentals I exam is the first stepping stone in
earning the Oracle Certified Associate Certification for Oracle Database 11g. The
SQL programming language is used in every major relational database today,
and understanding the real-world application of it is the key to becoming a
successful DBA.

This book gives you the essential real-world skills to master relational data
manipulation with Oracle SQL and prepares you to become an Oracle Certified
Associate. Beginners are introduced to concepts in a logical manner while
practitioners can use it as a reference to jump to relevant concepts directly.

We begin with the essentials of why databases are important in today's information
technology world and how they work. We continue by explaining the concepts of
querying and modifying data in Oracle using a range of techniques, including data
projection, selection, creation, joins, sub-queries, and functions. Finally, we learn to
create and manipulate database objects and to use them in the same way as today's
expert SQL programmers.

This book prepares you to master the fundamentals of the SQL programming
language using an example-driven approach that is easy to understand.

This definitive certification guide provides a disciplined approach to be adopted
for successfully clearing the 170-051 SQL Fundamentals I exam, which is the first
stepping stone towards attaining the OCA on Oracle Database 11g certification.

Each chapter contains ample practice questions at the end. A full-blown mock
test is included for practice so you can test your knowledge and get a feel for the
actual exam.

[2]




Preface

What this book covers

Chapter 1, SQL and Relational Database, examines the purpose and use of relational
database management systems, including the use of entity relationship diagrams and
the structure of tables. We then introduce Structured Query Language and the SQL
Developer tool.

Chapter 2, SQL SELECT Statements, explores the most foundational SQL clause; the
SELECT statement. We use SELECT statements for single and multi-column data
retrieval and take a look at using SQL to do basic mathematical operations.

Chapter 3, Using Conditional Statements, examines the concept of data selection using
the WHERE clause paired with conditions. In it, we construct selective statements
using conditions of both equality and non-equality. We also use range and set
conditions with the WHERE clause for further data selectivity. Finally, we examine
the concept of sorting data using the ORDER BY clause.

Chapter 4, Data Manipulation with DML, explores the use of Data Manipulation
Language to add, modify, and remove table data using INSERT, UPDATE, and
DELETE statements. Lastly, we look at transaction control in SQL.

Chapter 5, Combining Data from Multiple Tables, examines the concept of combining
data from multiple tables using various join statements. We accomplish this using
both ANSI standard and Oracle syntax.

Chapter 6, Row Level Data Transformation, explores the concept of row level data
transformation using single-row functions. We use these functions to transform date,
character and numeric data.

Chapter 7, Aggregate Data Transformation, explores data transformation using
functions, this time with multi-row functions. We combine these functions with the
GROUP BY and HAVING statements to perform aggregate data transformation.

Chapter 8, Combining Queries, focuses on using several types of subqueries to combine
data from multiple tables. We close the chapter by exploring set theory in Oracle and
implement it using SQL set operators.

Chapter 9, Creating Tables, introduces the concept of Data Definition Language and
how to use it to create database tables. We also use SQL to write database constraints
that enforce business data rules.

Chapter 10, Creating Other Database Objects, examines the use of DDL statements to
create some of the other common objects available to us in Oracle. We use these
statements to create indexes, views, sequences, and synonyms.

[31]



Preface

Chapter 11, Using SQL in Application Development, examines how SQL is used in
real-world programming languages such as PL/SQL, Perl, Python, and Java. We
close by offering hints and strategies for taking the SQL certification exam.

Appendix A, Companylink Table Reference, a reference section describing the various
tables used as examples in this book.

Appendix B, Getting Started with APEX, shows an alternative method for completing the
examples in this book that does not require installing the Oracle database software.

Appendix C, Test Your Knowledge; you can download this appendix that contains
answers to the Test your knowledge section in all the chapters at http: //www.packtpub.
com/sites/default/files/downloads/testyourknowledge answers.pdf.

Mock practice test paper can be downloaded from http://www.packtpub. com/
sites/default/files/downloads/mock test paper.pdf

What you need for this book

This book is heavily example-oriented. As such, it will be beneficial for the reader to
download and install the Oracle database software as outlined in Chapter 1, SQL and
Relational Database. The reader will also receive the greatest benefit by downloading
and running the example code available from the Packt support website. No prior
knowledge of programming or database concepts is required.

Who this book is for

This book is for anyone who needs the essential skills to pass the Oracle Database
SQL Fundamentals I exam and use those skills in daily life as an SQL developer or
database administrator.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text are shown as follows: "Simply unzip the companylink.zip file
into a directory and double-click the companylink db.cmd file."

[4]




Preface

A block of code is set as follows:

SELECT {column, column, ..}
FROM {table};

Any command-line input or output is written as follows:

INSTR(column expression, search character, starting position,
occurrence_ number)

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "In our
example, data such as Firstname, lastname, Address and Branch name are the
attributes of the Employee entity".

& Warnings or important notes appear in a box like this.
i

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggeste
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[51]



Preface

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.PacktPub.com. If you purchased this book
elsewhere, you can visit http: //www.PacktPub.com/support and register to
have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[6]



http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

SQL and Relational
Databases

We live in a data-driven world. Think for a moment about all the data that exists
about you, in computers around the world.

Your name

Birth date and information
Your hobbies

Purchases you've made
The identity of your friends

Your place of employment

The examples are endless. Next, multiply that amount of data by the number
of people in the world. The result is a truly staggering amount of information.
How is it possible that all this data can be organized and retrieved? In today's
data-centric world, it is databases that make this possible. These Relational
Database Management Systems (RDBMS) are primarily controlled by a
programming language called Structured Query Language (SQL).

In this chapter, we will cover the following topics:

Discussing the purpose of relational database management systems
Understanding the use of the relational paradigm

Examining the use of Entity Relationship Diagrams (ERDs)
Looking at the structure of tables

Introducing Structured Query Language (SQL)

Reviewing commonly-used query tools

Introducing the SQL Developer tool



SQL and Relational Databases

Relational Database Management
Systems

Imagine, for a moment, that you have the telephone books for the 20 largest cities
in the U.S. I give you the following request: Please find all the phone numbers for
individuals named Rick Clark in the Greater Chicago area. In order to satisfy the request,
you simply do the following;:

e Open the Chicago phone book
e Scan to the "C" section of names
¢ Find all individuals that match "Clark, Rick"

e Report back their phone numbers

Now imagine that I take each phone book, tear out all of the pages, and throw them
into the air. I then proceed to shuffle the thousands of pages on the ground into

a completely disorganized mess. Now I repeat the same request: Please find all the
phone numbers for individuals named Rick Clark in the Greater Chicago area. How do you
think you would do that? It would be nearly impossible. The data is all there, but
it's completely disorganized. Finding the "Rick Clarks" of Chicago would involve
individually examining each page to see if it satisfied the request—a very frustrating
undertaking, to say the least.

This example underscores the importance of a database, or more accurately, a
Relational Database Management System(RDBMS) Today's RDBMSs are what
enable the storage, modification, and retrieval of massive amounts of data.

Flat file databases

When the devices that we know as computers first came into existence, they were
primarily used for one thing —computation. Computers became useful entities
because they were able to do numeric computation on an unprecedented scale. For
example, one of the first computers, ENIAC, was designed (although not used) for
the US Army to calculate artillery trajectories, a task made simpler through the use
of complex sequences of mathematical calculations. As such, originally, computers
were primarily a tool for mathematical and scientific research. Eventually, the use of
computers began to penetrate the business market, where the company's data itself
became just as important as computational speed. As the importance of this data
grew, so the need for data storage and management grew as well, and the concept
of a database was born.

[8]




Chapter 1

The earliest databases were simple to envision. Most were simply large files that
were similar in concept to a spreadsheet or comma-separated values (CSV) file.
Data was stored as fields. A portion of these databases might look something like
the following:

Susan, Bates, 123 State St, Somewhere, VA
Fred, Hartman, 234 Banner Rd, Anywhere, CA
Bill, Frankin, 345 Downtown Rd, Somewhere, MO
Emily, Thompson, 456 Uptown Rd, Somewhere, NY

In this example, the first field is determined by reading left to right until a delimiter,
in this case a comma, is reached. This first field refers to the first name of the
individual. Similarly, the next field is determined by reading from the first delimiter
to the next. That second field refers to the last name of the individual. It continues

in this manner until we have five fields — first name, last name, street address, city,
and state. Each individual line or record in the file refers to the information for a
distinct individual. Because this data is stored in a file, it is often referred to as a flat
file database. To retrieve a certain piece of information, programs could be written
that would scan through the records for the requested information. In this way, large
amounts of data could be stored and retrieved in an orderly, programmatic way.

Limitations of the flat file paradigm

The flat file database system served well for many years. However, as time passed
and the demands of businesses to retain more data increased, the flat file paradigm
began to show some flaws.

In our previous example, our flat file is quite limited. It contains only five fields,
representing five distinct pieces of information. If this flat file database contained the
data for a real company, five distinct pieces of information would not even begin to
suffice. A complete set of customer data might include addresses, phone numbers,
information about what was ordered, when the order was placed, when the order
was delivered, and so on. In short, as the need to retain more data increases, the
number of fields grows. As the number of fields grows, our flat file database gets
wider and wider. We should also consider the amount of data being stored. Our first
example had four distinct records; not a very realistic amount for storing customer
data. The number of records could actually number in thousands or even millions.
Eventually, it is completely plausible that we could have a single flat file that is
hundreds of fields wide and millions of records long. We could easily find that the
speed with which our original data retrieval programs can retrieve the required data
is decreasing at a rapid rate and is insufficient for our needs.

[o]



SQL and Relational Databases

As our data demands increase, we're presented with another problem. If we are
storing order information, for example, strictly under the flat file paradigm, we are
forced to store a new record each time an order is placed. Consider this example,
in which our customer purchases six different items. We store a six-digit invoice
number, customer name, and address for the customer's purchase, as follows:

487345, Susan, Bates, 123 State St, Somewhere, VA
584793, Susan, Bates, 123 State St, Somewhere, VA
998347, Susan, Bates, 123 State St, Somewhere, VA
126543, Susan, Bates, 123 State St, Somewhere, VA
487392, Susan, Bates, 123 State St, Somewhere, VA

Using this example, notice how much duplicate data we have stored. The fields

are invoice number, first name, last name, street address, city, and state, respectively.
The only different piece of information in each record is the invoice number, and
yet we have repeatedly stored the last five fields —information that is stored in
previous records. We refer to these anomalies as repeating values. Repeating values
present two problems from a processing standpoint. First, the duplicate data must
be re-read each time by our retrieval programs, creating a performance problem

for our retrieval operations. Second, those duplicate characters constitute bytes that
must be stored on disk, uselessly increasing our storage requirements. It is clear that
the flat file paradigm needs to be revised in order to meet the growing demands of
our database.

Normalization

The world of databases changed in the early 1970s due in large part to the work of
Dr. Edgar "Ted" Codd. In his paper, A Relational Model of Data for Large Shared Data
Banks, Dr. Codd presented a new paradigm — the relational paradigm. The relational
paradigm seeks to resolve the issues of repeating values and unconstrained size by
implementing a process called normalization. During normalization, we organize
our data in such a way that the data and its inter-relationships can be clearly
identified. When we design a database, we begin by asking two questions —what
data do I have? And, how do the pieces of data relate to each other? In the first step,
the data is identified and organized into entities. An entity is any person, place,

or thing. An entity also has attributes, or characteristics, that pertain to it. Some
example entities are listed in the following diagram:

Employee Address Email Branch Division

[10]




Chapter 1

These entities represent distinct pieces of information: the Employee entity represents
information about employees, the Email entity represents information about e-mail
addresses, and so on. These entities, and any others we choose to add, make up our
data model. We can also look a little closer at the attributes of a particular entity, as
shown in the following diagram:

Employee

First name
Middle Initial
Last name
Date of Birth
Address
Gender

Email address
Branch name
Division name

In our example, data (such as First name, Last name, Address, and Branch name)
are the attributes of the Employee entity —they describe information about the
employee. This is by no means exhaustive. There would most likely be many

more attributes for an employee entity. In fact, this is part of the problem that we
discussed earlier with the flat file database —data tends to accumulate, making our
file wider and wider, if you will. Additionally, if we were to actually collect this data
in a flat file, it might look something like the following screen:

First Name Mid Initial Last Name Address Email Address

James R Johnson 123 State St, Bell, WA li@hotmail com, jj@yahoo.com
Mary S Williams 234 First 5t _Bigtown, WA mw(@gmail.com

Linda L Anderson 345 Fifth Ave, Smalltown, MA  la@yahoo.com, la@gmail.com

At first glance, this structure may appear to be adequate, but, if we examine

further, we can identify problems with it. To begin with, we note that there are
multiple values stored in the Address and Email Address fields, which can make
structuring queries difficult. This is where the process of normalization can assist

us. Normalization involves breaking data into different normal forms. These forms
are the steps we take to transform non-relational data into relational data. The first
normal form (INF) involves determining a primary key —a value in each occurrence
of the data that uniquely identifies it. In the previous example of data, what attribute
could be used to uniquely identify each occurrence of data? Perhaps we could use
First Name.

[11]




SQL and Relational Databases

However, it seems fairly clear that there could be more than one employee with the
name James or Mary, so that will not suffice. If we were to use First Name and Last
Name together as our primary key values, we would get closer to uniqueness, but it
would still be insufficient for common names such as John Smith. For now, let us
say that First Name, Mid Initial, and Last Name, together (as indicated earlier),
uniquely identify each occurrence of data and thus comprise our primary key for
the employee entity.

The next issue is the problem of repeating groups. Examine the Email Address
attribute. It may be required that one or more e-mail addresses be stored for each
employee. This presents problems when attempting to query for a particular
employee's e-mail address. As each employee can have more than one e-mail
address, the Email attribute would have to be scanned rather than simply
pattern-matched in order to retrieve a particular piece of data. One way to rectify
this would be to break each individual occurrence of the e-mail address into two
separate records that demonstrates the removal of repeating groups, as shown in
the next example. Thus, James R. Johnson, who has two Email Addresses, now has
two rows in the database — one for the first e-mail address and one for the second:

First Mame Mid Initial Last Name Address Email Address
James R Johnson 123 State St, Bell, WA J@hotmail.com
James R Johnson 123 State St, Bell, WA ji@yahoo.com
Mary S Williams 234 First St.Bigtown, VA mw(@gmail.com
Linda L Anderson 345 Fifth Ave, Smalltown, MA  la@yahoo.com
Linda L Anderson 345 Fifth Ave, Smalltown, MA  la@gmail.com

We have eliminated the repeating groups, but we have now introduced other
problems. First, we have violated our primary key, as first, middle, and last name
no longer uniquely identify each row. Second, we have begun to duplicate our data.
First name, middle initial, last name, and address are all repeated simply for the
sake of removing repeating groups. Lastly, we now realize that it is possible for our
employees to have more than one address, which further complicates the problem.
Clearly, the first normal form alone is insufficient. It is necessary to transform the
data again — this time into the second normal form (2NF).

[12]




Chapter 1

The relational approach

The second normal form involves breaking our employee entity into a number of
separate entities, each of which can have a unique primary key and no repeating
groups. This is displayed again in the following diagram:

Employee Address Email Branch Division

Here, we have separated our employee information into separate entities. We've
also added entities that represent the branch and division of which each employee
is a part. Now our employee entity contains information such as first name,

middle initial, and last name, while our Email entity contains the e-mail address
information. The other entities operate similarly —each contains information unique
to itself.

This may have solved our repeating data problem, but now we simply have five

files that have no relation to each other. How do we connect a particular employee

to a particular e-mail address? We do this by establishing relationships between the
entities; another requirement of the second normal form. A relationship between two
entities is formed when they share some common piece of information. How this
relationship functions is determined by the business rules that govern our data. Let's
say in our model that one, and only one, e-mail address is kept for each employee.
We would then say that there is a one-to-one relationship between our employee
entity and our Email entity. Generally, such a relationship is denoted visually with a
single bar between the two. We could diagram it as follows:

Employee Email

[13]



SQL and Relational Databases

A more realistic relationship, however, would be one where each employee

could have more than one e-mail address. This type of relationship is termed a
one-to-many relationship. These relationships form the majority of the relationships
used in the relational model and are shown in the following diagram. Note the
crow's foot connecting to the Email entity, indicating many:

Employee Email

As you might expect, there is another type of relationship, one which, under
relational rules, we try to avoid. A many-to-many relationship occurs when multiple
occurrences of the data in one entity relate to multiple occurrences in the other. For
instance, if we allowed employees to have multiple e-mail addresses, but also allowed
multiple employees to share a single e-mail address. In the relational paradigm, we
seek to avoid these types of relationships, usually by relating an entity between the
two that transforms a many-to-many relationship into two distinct one-to-many
relationships. The last step in normalization is generally the transformation into the
third normal form (3NF). In the 3NF, we remove any columns that are not dependent
on the primary key. These are known as transitive dependencies. To resolve these
dependencies, we move the non-dependent columns into another table. There are
higher normal forms, such as fourth normal form (4NF) and fifth normal form (5NF),
but these forms are less commonly used. Generally, once we have taken our data
structure up to the 3NF, our data is considered relational.

When we design the number and types of relationships between our entities, we
construct a data model. This data model is the guide for the DBA on how to construct
our database objects. The visual representation of a data model is commonly referred
to as an entity relationship diagram (ERD). Using the five example entities we listed
previously, we can construct a simple entity relationship diagram, as demonstrated
in the following example:

[14]



Chapter 1

Email Employee Address

Branch

Division

From this example model, we can determine that the employee entity is more or
less the center of this model. An employee can have one or more e-mail addresses.
An employee can also have one or more street addresses. An employee can belong
to one or more branches, and a branch can belong to one or more divisions. Even
though it is highly simplified, this diagram shows the basic concepts of visually
modeling data.

Through the use of relational principles and entity relationship diagrams, a database
administrator or data architect can take a list of customer data and organize it into
distinct sets of information that relate to one another. As a result, data duplication is
greatly reduced and retrieval performance is increased. It is because of this efficient
use of storage and processing power that the RDBMS is the predominant method
used in storing data today.

SQL in the real world
I Strictly speaking, the Oracle RDBMS is actually an Object Relational
Q Database Management System (ORDBMS) and has been since Oracle
version 8. An ORDBMS refers to the ability of Oracle databases to be
manipulated using object-oriented concepts.

[15]



SQL and Relational Databases

Bringing it into the Oracle world

To discuss the relational paradigm, we have used relational terminology, which is
designed to be generic and not associated with any particular database product.
The subject of this book, however, is using SQL with Oracle databases. It is time
to relate the terminology used in the relational paradigm to terms that are likely
more familiar:

Relational Flat file Oracle-specific
Entity File Table

Attribute Field Column

Tuple Record Row

The preceding diagram shows a comparison table of the different terms used to
describe basic database components. Up to this point, we have used the relational
term, entity, to describe our person, place, or thing. From this point, we will refer to
it by its more commonly known name — the table.

Tables and their structure

If you've ever used a spreadsheet before, then you are familiar with the concept of a
table. A table is the primary logical data structure in an Oracle database. We use the
term logical because a table has no physical structure in itself — you cannot simply
login to a database server, open up a file manager, and find the table within the
directories on the server. A table exists as a layer of abstraction from the physical
data that allows a user to interface with it in a more natural way. Examine the
following diagram; like a spreadsheet, a table consists of columns and rows:

Columns
Rows FIRST_NAME MIDDLE_INITIAL LAST NAME GENDER DOB
James R Johnsan M 01-01-60
Mary S Williams F 03-15-64
Linda L Anderson F 10-24-70
Daniel J Robinson M 11-23-59
Matthew K Garcia M 04-14-71
Helen H Harris F 07-13-75
Ken w White M 02-22-58
Danald A Perez M 03-14-79
Lisa C Lee F 06-15-63
Carol M Clark F 08-11-67
Gary R Moore M 11-01-65
Cynthia B Hall F 10-21-565
Sandra S Rodriguez F 05-10-74
Kewin L Lewis M 07-01-76
George H Taylor M 12-24-72
Laura | Thomas F 10-26-81

[16]




Chapter 1

A column identifies any single characteristic of a particular table, such as first

name. A column differs from a row in more than its vertical orientation. Each

value within a column contains a particular type of data, or data type. For instance,
in the preceding example, the column FIRST_NAME denotes that all data within that
column will be of the same type and that data type will be consistent with the label
FIRST NAME. Such a column would contain only character string data. For instance,
in the FIRST NAME column, we have data such as Mary and Matthew, but not the
number 42532.84. In the date of birth column, or DoB, only date data would be stored.
As we will see in the next chapter, in Oracle, string data or text data is not the same
thing as date data.

Along the horizontal, we have rows of data. A row of data is any single instance
of a particular piece of information. For example, in the first row of the table in our
example, we have the following pieces of information:

Downloading the example code

purchased from your account at http: //www.PacktPub. com. If you
purchased this book elsewhere, you can visit http: //www. PacktPub.
com/support and register to have the files e-mailed directly to you.

élQ You can download the example code files for all Packt books you have

First name = "James"
Middle initial = "R"
Last name = "Johnson"
Gender = "M"

DOB = "01-01-60"

This information comprises the sum total of all the information we have in this
table for a single individual, namely, James R. Johnson. The following row, for
Mary S. Williams, contains the same types of information, but different values.
This construct allows us to store and display data that is orderly in terms of data
types, but still flexible enough to store the data for many different individuals.
Together, the columns and rows of data form a relational table: the heart of the
Oracle database. However, in order to retrieve and manipulate this table data,
we need a programming language; for relational databases, that language is SQL.

[17]


http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support

SQL and Relational Databases

Structured Query Language

SQL was developed by Donald Chamberlain and Raymond Boyce in the early 1970s
as a language to retrieve data from IBM's early relational database management
systems. It was accepted as a standard by the American National Standards
Institute (ANSI) in 1986. SQL is generally referred to as a fourth-generation
language (4GL), in contrast with third-generation languages (3GLs) such as C,
Java, and Python. As a 4GL, the syntax of SQL is designed to be even closer to
human language than 3GLs, making it relatively natural to learn. Some do not

refer to SQL as a programming language at all, but rather a data sub-language.

A language for relational databases

Before we look at what SQL (pronounced either 'S-Q-L' or 'sequel') is, it is important
to define what it is not. First, SQL is not a product of Oracle or any other software
company. While most relational database products use some implementation of
SQL, none of them own it. The structure and syntax of SQL are governed by the
American National Standards Institute and the International Organization for
Standardization (ISO). It is these organizations that decide, albeit with input from
other companies such as Oracle, what comprises the accepted standard for SQL.
The current revision is SQL:2008.

Second, while the ANSI standard forms the basis for the various implementations

of SQL used in different database management systems, this does not mean that

the SQL syntax and functionality in all database products is the same; in fact, it is
often quite different. For instance, the SQL language permits the concatenation of
two column values into one; for example, the values hello and there concatenated
would be hellothere. Oracle and Microsoft SQL Server both use symbols to denote
concatenation, but they are different symbols. Oracle uses the double-pipe symbol,

' |', and SQL Server uses a plus sign, '+'. MySQL, on the other hand, uses a keyword,
coNCAT. Additionally, RDBMS software manufacturers often add functionalities to
their own SQL implementations. In Oracle version 10g, a new type of syntax was
included to join data from two or more tables that differs significantly from the ANSI
standard. Oracle does, however, still support the ANSI standard as well.

SQL in the real world

K Although the SQL implementations of the major RDBMS products differ,
Q they all conform to the basic ANSI standard. That means if you learn
how SQL is used in one database product, such as Oracle, much of your
acquired knowledge should transfer easily to other database products.

[18]



Chapter 1

Last, SQL should not be confused with any particular database product, such as
Microsoft SQL Server or MySQL. Microsoft SQL Server is sometimes referred to by
some as SQL; a confusing distinction.

What SQL does provide for developers and database administrators is a simple but
rich set of commands that can be used to do the following:

e Retrieve data

e Insert, modify, and delete data

e Create, modify, and delete database objects
e Give or remove privileges to a user

e Control transactions

One of the interesting things about SQL is its dataset-oriented nature. When
programmers use third-generation languages such as C++, working with the
kinds of datasets we use in SQL is often a cumbersome task involving the explicit
construction of variable arrays for memory management. One of the benefits of
SQL is that it is already designed to work with arrays of data, so the memory
management portion occurs implicitly. It is worth noting, however, that third-
generation languages can do many things that SQL cannot. For instance, by itself,
SQL cannot be used to create standalone programs such as video games and cell
phone applications. However, SQL is an extremely effective tool when used for
the purpose for which it was designed —namely, the retrieval and manipulation of
relational data.

SQL in the real world

Standard programming constructs such as flow control, recursion,
M and conditional statements are absent from SQL. However, Oracle has
created PL/SQL, a third-generation overlay language that adds these
Q and other basic programmatic constructs to the SQL language. Because
of the strength of the SQL language in manipulating data, PL/SQL is
often the choice of developers when programming the portions of their
applications that interact with Oracle databases.

The goal of this book is to teach you the syntax and techniques to use the SQL
language to make data do whatever you want it to do. Chapter 2, SQL SELECT
Statements and beyond address these topics. However, before we can learn more
about the SQL language, we are going to need to choose a tool that can interact with
the database and process our SQL.

[19]



SQL and Relational Databases

Commonly-used SQL tools

Because SQL is the primary interface into relational databases, there are many SQL
manipulation tools from which to choose. There are benefits and drawbacks to each,
but the choice of tool to use is generally about your comfort level with the tool and
its feature set. Some tools are free, some are open source, and some require paid
licenses; however, each tool uses the same syntax for SQL when it connects to an
Oracle database. Following are some commonly-used SQL tools:

SQL in the real world

While your choice of SQL tool is an important one, in the industry
XY it is one that is sometimes dictated by the toolset standards of your
Q employer. It's important that you don't completely dedicate yourself to
one tool. If you become an expert at one and then transfer to a different
employer whose standards don't allow for the use of your tool, you
may find yourself with an initial learning curve.

SQL*Plus

SQL*Plus is the de facto standard of SQL tools to connect to an Oracle database.

Since Oracle's early versions, it has been included as a part of any Oracle RDBMS
installation. SQL*Plus is a command-line tool and is launched on all Oracle platforms
using the command, sglplus. This command-line tool has been a staple of Oracle
database administrators for many years. It has a powerful, interactive command
interface that can be used to issue SQL statements, create database objects, launch
scripts, and startup databases. However, compared with some of the newer tools, it
has a significant learning curve. Its use of line numbering and mandatory semicolons
for execution is often confusing to beginners. Oracle has also released a GUI version
of SQL*Plus for use on Windows systems. Its rules for use, however, are still generally
the same as the command-line interface, and its confinement to the Windows platform
limits its use. As of Oracle version 11g, the GUI version of SQL*Plus is no longer
included with a standard Oracle on Windows installation. Whatever your choice of
SQL tool, it is very difficult for a database administrator to completely avoid using
SQL*Plus. The following is a screenshot of the command-line SQL*Plus tool:

[20]



Chapter 1

Command Prompt - sqlplus companylink/companylink -0 ﬂ
B

SQL> select first_name, last_name, dobh from employvee;
LAST_MNAME

Johnzon B1-JAN-68
Williams 15%-MAR-64
Anderzon 24-0CT-78
Robinson 23-HOU-592
Garcia 14-AFR-71
Hapris 13-JUL-75
White 22-FEB-58
Perez 14-MAR-772
Lee 15-JUN-63
Clark 11-AUG-67
Moore B1-MOU-65
Hall 21-0CT-55
Rodriguez 18-MAY-74
Lewis 81 -JUL-76
Taylor 24-DEC-72
Thomas 26—0CT—-81

16 rows selected.

SaQL> _

TOAD

The Tool for Oracle Application Developers (TOAD) is a full-featured development
and administration tool for Oracle as well as other relational database systems,
including Microsoft SQL Server, Sybase, and IBM's DB2. Originally created by Jim
McDaniel for his own use, he later released it as freeware for the Oracle community
at large. Eventually, Quest Software acquired the rights for TOAD and began
distributing a licensed version, while greatly expanding on the original functionality.
TOAD is immensely popular among both DBAs and developers due to its large
feature set. For DBAs, it is a complete administration tool, allowing the user to
control every major aspect of the database, including storage manipulation, object
creation, and security control. For developers, TOAD offers a robust coding interface,
including advanced debugging facilities.

[21]




SQL and Relational Databases

TOAD is available for download in both freeware and trial licensed versions. A
screenshot is shown as follows:

Toad for Oracle expires on 20-March. 2011 - [COMPANYLINKRORCL - Editor]

L fle ot Search Cotor Session [stobese Debug Wew Lhiites Window belp =loix|.
BRTEEY eqY Yy B iR Sk A H b .| cdelauk> & - - V.
<0 COMPANYLINGPCRCL.
G e
Project Hanager il S-F- B0 & E s bt | @) .|| pesbton: st LR .
+-F-DEE Tp @ Z BROS 7 &0 eow o [EE 2 < S UL 5
b S - T — ISR : B L - =
A Tt Fa Navigaion o IO, s TP 3 L) g 7 L) L) . ESYER. TEOPTON. . SOrOR. IS
o 1080 propact P t b [select * fom erployos;
Ratenert__ |
B Select
ax
e | P DOMS cntans (dsabied) | I uery Viewsr | 0% Explan Plan | Scree Cumut
.o
1 EMPLOYEE _ID| FIRST_NAME MIDOLUE_INITIAL|LAST_NAME GENCER, SIGNP_DATE D08 BRANCH_ID| FROKCT_I0 &
v 1 James R Jobrson M Y1010 L1960 6 2
2Mary s Willams  F VZBUI0  3/15/1964 2 1
ILnda L trdwsn  F YLR010  10/24/1570 1 3
4 Caniel ] Robrson M 223010 11/23/1959 z 1
SMaltew K Garcia M S4E010  4/14/1971 3 3
& Helen H Harris r 1/25/2010 [ 7/13/1975 10 —
7 ken W Whiti M 202010 27221958 4
1 Donald A Peraz M 10/A7/2010  3/14/1979 1 3
9 L (s Lo E SO0 6151963 s
10 Carnl M Clark F 4100 8111087 2 1
11 Gary " Maone " B0 11/1/1965 3 5
12 Cynthia 8 Hall F 132010 10/21/1955 3 5
13 Sandea 5 Rodriguer R 342000 SA01974 13 |
] il fma] 4 [~ [ [ o] > feu @1 ] 2 |
C{Documents and SettingslSR Aol |40 meacs Fow 1 of 16 totalrows  COMPANTLINGGORCL | Modfied

@ sutoCommt i OFF MM

DBArtisan

DBArtisan (now called DBArtisan XE), by Embarcadero Technologies, is another
complete suite of database management tools that operates across multiple
platforms. DBArtisan is only available as a licensed product, but has extensive
administration capabilities, including the ability to do advanced capacity and
performance management, all packaged in an attractive and user-friendly GUI
frontend. A trial version is available for download from Embarcadero's website.

[22]



Chapter 1

SQL Worksheet (Enterprise Manager)

The SQL Worksheet is not a separate tool in itself; rather, it is a component of the
larger Enterprise Manager product. Enterprise Manager is Oracle's flagship, web-
based administration suite, comprised of two main components — Database Control
and Grid Control. Database Control operates from a single server as a Java process
and allows the DBA to manage every aspect of a single database, including storage,
object manipulation, security, and performance. Grid Control operates with the same
GUI interface, but requires the installation of the Enterprise Manager product on a
centralized server. From this central instance of Grid Control, a DBA can manage

all the databases to which Grid Control connects, providing the DBA with a web-
based interface to the entire environment. SQL Worksheet, a link within Database/
Grid Control, provides a basic SQL interface to a database.. The license for both Grid
Control and Database Control is included in the license for the Enterprise edition of
Oracle, although many of the performance tuning and configuration management
features must be separately purchased. A screenshot of SQL Worksheet is shown

as follows:

B0L Worksheet : orcl
Enter s SOL staternent 1o execine. H there sre multiple statements, the location of the cursar or & highlighted s1atement determines which will be executed Statemerts should be ssparsted with blank lines

S0OL Commands

[ Use bund vanabivs for sxecution
Clauto commit
[ Allow anly SELECT statements

Formal ) Exocule

Last Executed SQL

JELECT * FROM jobs
Lazt Executlon Deralls

BGL Rapair Advsar | | BGL Datails | | Behbdult SGL Tuning Advsor

Resuls | Slalmls  Elin
Execution Time (seconds) 0.01

JOB_in JOB_TITLE MIN_SALARY MAX_SALARY
AD_PRES Presidont AnE) A
AD WP Adminsetration Vice Pragident 15000 20000
AD_ASST Administration Assistant 2000 6000
FI_MGR Finance Manager 8200 16000
FI_ACCOUNT Accountand 40 «xn
AL MGR Accaunting Manager 200 16000
AL_ACCOUNT Pubic Accourtant 4200 2000
SA MAN Sales Manager 10000 20080
2A_REP Sales Reprosentaton HXO 1208
PL_MAN Purchasing Managsr 000 15000
PU_CLERK Purchasing Clark 2500 5500
ST_MAN Stock Manager 5500 8500
ST_CLERK Stock Clerk ans Sxn
SH_CLERK Shipping Clerk 2500 5500
IT_PROG Prograrnener 4000 10000
M_MAN Marketing Manager %000 15000
ME_REP Marketing Ropresentatve 4000 g
HR_REP Human Resawces Ragrosontative 4000 2000
PR_REP Pubkic Relations Representative 4500 10500

0L Repair Advisor | | S0L Détalls | | Stheduls SOL Tuning Advisar

 Details

SOLW

Conrigt § 1998, 3010, Deacle. A1 rights rezerves
Crncin, J0i Enwards, PeopieSan, and Rirsek sen regis 2 0 Cacie Corporation andicr £ affliates. Cther rames may bo racemarkcs of thek respectve oamers "

[23]




SQL and Relational Databases

PL/SQL Developer

PL/SQL Developer is a full-featured SQL development tool from Allround
Automations. Along with many of the other features common to SQL development
tools, such as saved connections, data exporting, and table comparisons, PL/SQL
Developer places a strong focus on the coding environment. It offers an extensive
code editor with an integrated debugger, syntax highlighting, and a code hierarchy
that is especially beneficial when working with the PL/SQL language. It also
includes a code beautifier that formats your code using user-defined rules. PL/SQL
Developer can be purchased from Allround Automations or downloaded from their
website as a fully-functional, 30-day trial version.

Oracle SQL Developer

Oracle SQL Developer, originally called Raptor, is a GUI database interface that
takes a somewhat different approach from its competitors. While many of the major
licensable GUI administration products have continued to expand their product
offering through more and more add-on components, SQL Developer is a much
more dedicated tool. It's a streamlined SQL interface to the Oracle database. You
can create and manipulate database objects in the GUI interface as well as write and
execute SQL statements from a command line. Administration-oriented activities
such as storage control are left to Enterprise Manager. SQL Developer aims to be a
strong SQL and PL/SQL editor with some GUI functionalities. SQL Developer has
gained in popularity in recent years, in large part to several benefits that are listed
as follows:

e It is completely free with no mandatory licensable components, although
third-party add-ons are available for purchase.

e Itis a true cross-platform client-side tool written primarily in Java. While a
majority of the commonly-used SQL tools are available only on the Windows
platform, SQL Developer runs on Windows, Linux, and even the Mac.

¢ Inmany Oracle shops, DBAs have been uncomfortable with the idea of
giving developers a tool that can be used to cause massive damage to the
database. Because Oracle has separated out most of the administration
functions from SQL Developer, it is more of a true development tool.

e SQL Developer supports read-only connections to many popular databases,
including SQL Server, Sybase, MySQL, Microsoft Access, DB2, and Teradata.

e Because it is written in Java, it allows for the creation and addition of
third-party extensions. If you want a capability that SQL Developer does
not have, you can write your own!

[24]



Chapter 1

e Itis provided by Oracle and is now included with any installation of Oracle
database. It has essentially replaced SQL*Plus as Oracle's default SQL
interface, although SQL*Plus is still available from the command line.

For these reasons, the tool we use in this book for the purposes of demonstration will
be SQL Developer. Instructions for downloading the tool are in the foreword. But,
before we look at SQL Developer, let's find out a little about the data we'll be using
and look at the companylink database.

Working with SQL

'Often, the best way to learn something is hands-on. To best facilitate this, we will
use a scaled-down set of data that mirrors the type of data used in the real world.

Introducing the Companylink database

This book focuses on two objectives:

1. To prepare you for the 11g SQL Fundamentals I exam (Oracle exam
#170-051).

2. To present the knowledge needed for the exam in such a way that you can
use it in a real-world setting.

To that end, rather than using the default tables included in Oracle, we will be
working with simulated real-world data. The database we will use throughout this
book is for the fictional company, Companylink. Although most people are aware

of the impact of social networking in our private lives, companies are realizing the
importance of using it in their industries as well. Companylink is a business that
focuses on social networking in the corporate setting. The data model that we will
use is a small but realistic set of working data that could support a social networking
website. The following tables are included in the Companylink database, which can
be downloaded from Packt support site as well as comments about the business rules
that constrain them:

¢ Employee: Information about employees that use the Companylink site.

e Address: The street address information.

e Branch: The corporate branch to which each employee belongs. Each
employee belongs to one branch.

¢ Division: It is the corporate division to which each branch belongs. Each
division is associated with multiple branches.

e E-mail: An employee can store multiple e-mail addresses.

[25]



SQL and Relational Databases

Message: Our fictional Companylink social networking site allows you to
send messages to fellow employees. That information is stored here.

Website: Companylink allows users to create their own personal web pages.
The URL of these pages is contained in this table.

Blog: In addition to a website, users can optionally create their own blogs.
This information is stored in the Blog table.

Project: Each employee is assigned to a single primary project, which is
contained here.

Award: Employees can win corporate awards. The list of possible awards is
stored here. Employees can win more than one award.

Employee_award: This table is used to relate employees with their awards.
Since multiple employees can win the same award and multiple awards
can be won by the same employee, this creates a many-to-many table
relationship, which, in the relational paradigm, must be avoided. The
employee_award table divides this many-to-many relationship into two
distinct one-to-many relationships.

To create our database, we need to run the downloaded Windows command file.
Simply unzip the companylink.zip file into a directory and double-click on the
companylink db.cmd file. The execution of the file will do the following:

Make a connection to the database

Create a user called companylink with the password companylink

Create the tables used for the examples in this book

Populate these tables with data

Output two log files: companylink_ ddl.txt and companylink data.txt

If you wish, the log files can be used to verify successful execution of the script. The
command file is completely reusable, which is to say that if you break any of the
tables or data, you only need to disconnect from the database and double-click the
command file again. It will drop the existing data and rebuild the tables from scratch.
When you do this, keep in mind that any data you add yourself will be deleted

as well. Throughout the book, we will continually be writing SQL statements that
access these tables and will even add new ones.

The creation of these tables requires a working installation of the Oracle database
software on a machine to which you have access. Fortunately, the Oracle software
can be downloaded from http://www.oracle.com/technology. There is no
purchased license required if you use the software for your own learning purposes.

[26]



http://www.oracle.com/technology
http://www.oracle.com/technology

Chapter 1

SQL in the real world

When you're starting out with SQL and Oracle, it's important to get
hands-on. Although Oracle makes its software available at no charge
for personal use, many aspiring DBAs are hesitant to install it on their
~ personal computers. By using free desktop virtualization software, such
Q as Virtualbox, you can create a virtual machine on your home computer
that can be used as your self-contained database server. Whenever you
want to work with Oracle, simply start your virtual machine. Whenever
you finish, shutdown the virtual machine, and all the resources it used
will be released. Virtualization can be a useful solution to isolate your
Oracle work from your home use without buying another computer.

An introduction to Oracle SQL Developer

Since SQL Developer is our SQL tool of choice, its important that we get a good
feel for it right from the beginning. In this section, we learn about configuring and
running SQL Developer.

Setting up SQL Developer

Let's get started with SQL Developer. If you have Oracle installed, you can launch
SQL Developer in Windows XP from the Start menu, as shown next:

Start | All Programs | Oracle<program group> | Application Development | SQL
Developer

SQL Developer runs as a Java application, so it may take a little while to load. The
first time you start the application, you may get a message box, such as the one
shown in the following screenshot:

- |

Oracle SQL Developer

Enter the full pathname for java. exe;

| Browse...
| Cancel |

If this happens, click on Browse and navigate to the java.exe file. You do not need
a separate installation of Java to run SQL Developer; one is included in the Oracle
installation. If you don't know where the java.exe is located, simply go to the
Oracle installation directory and do a search for java.exe. Then, navigate to that
path and select it.

[27]




SQL and Relational Databases

Once startup has completed, you will see a Tip of the Day screen. Close it and
you will be presented with the following screen. It's worth noting that this screen
will look the same, irrespective of whether you're running SQL Developer under
Windows, Linux, or the Mac OS, due to its cross-platform, Java-based nature.

F Oracle SQL Developer. El@lh_?l

File Edit View Havigate Run Source Versioning Migration Tools Help
Fo@a9e XEan 0-0- -

|Bcomections |2 10 @
EX R

- a Connections

o
yaiess; pepuapq" Faddius E

[Elmessages - Log

(&l 6L History

Editing

On the left side, you see a list of connections to databases. At this point, there will
be no connections, since we have not created any yet. SQL Developer allows you to
maintain multiple connections to various databases. Each one can use any variation
of different login names, servers, or database names.

SQL in the real world

M In the real world, DBAs and developers run SQL Developer from
Q their desktops and use it to connect to remote databases. Thus, their
working environments can run locally, but the databases they connect

to can be anywhere in the world!

[28]



Chapter 1

Before we can use SQL, we need to connect to a database. To do that, we need to

create a database connection. Any connection to an Oracle database consists of three
pieces of information:

1. The hostname or IP address of the machine to which we're connecting.
2. The port number on which Oracle operates.

3. The name of the database to which we connect.

To set up our connection, we need to click on the New Connection button at the top
of the left-hand connection frame. This action brings up the New / Select Database
Connection window. We fill in the information, as listed in the following screenshot.
This example connection assumes that you have set up an Oracle database using the
standard installation procedure with common defaults. If you're connecting to an
existing database, the information you enter will be different:

r A
¥ New / Select Database Connection @
Connection M... Connection D... | Copnection Mame |Companyf|ink@0rc| |

Username | companylink |
Password EREREERERS |
Save Password

Oracle Access

Rale [detaut | [] 05 Authentication

Connection Type |Ba3ic - | [ Kerberos Authertication

|:| Prozy Connection
Hostname | myserver |
Part 11521 |
(OF=] |0rc:| |
() Service name | |
Status
Help Save | | Clear | | Test | | Connect | | Cancel

[29]



SQL and Relational Databases

The pieces of information that are relevant to us are as follows:

Connection name: This can be whatever we choose, but it is usually a good
idea to make it descriptive of the connection itself. In our example, we choose
companylink@orcl because it denotes that we are connecting to the orcl
database as the companylink user.

Username: The name of the user we connect as.

Password: The password for the user. The password for our user is
companylink (non-case sensitive)

Save Password: Select this checkbox to ensure that you don't have to re-enter
the password each time you initiate the connection.

Hostname: This will be either the hostname or the IP address of the

server that hosts our target database. The example used, myserver, will
most likely not be the name of your server. Change this to the name relevant
to your situation.

Port: This will be the port number that Oracle is running from. Most Oracle
databases run from port 1521, although some DBAs change this for security
reasons. If you installed Oracle using the default settings, your port number
will be 1521.

SID: The SID is the System Identifier for your database, which is the name of
the database. In a typical installation of Oracle, the default SID used is orc1l.

Once the relevant information has been entered, it is always a good idea to click on
the Test button at the bottom of the window to ensure a connection can be made. If
all the information is correct, you should see Status: Success on the lower left-hand
side of the window. Once we have verified that we can successfully connect, we click
on the Connect button. Our connection is saved in the Connections frame, on the left
side of the window, and our connection is established.

[30]


mailto:companylink@orcl
mailto:companylink@orcl

Chapter 1

Getting around in SQL Developer

Now that we're connected, let's take a look at what SQL Developer has to offer. Click
on the plus sign (+) next to your new connection:

¥ Oracle SQL Developer : companylink@orcl

Eile Edit Miew Havigate Run Source Versioning Migration Tools Help

FoEg 90 XERh -0 /8- L
B, connections R I3 (2] |[= companuytink @orer &3]
EXR PERR® WE I & 0089756 seconds companinke@arc! ¥

= a Connections ~

-8 companylinkgorcl
=] @ Tahles

[E3 awsrp

EeLos

[E3 BrRanCH

[ orvision

3 eman

[ evpLovee

[E3 HoeaY

[ MessaGE

[E3 PrOJECT

[E3 wesiTe

£ (B9 views

- 18 Indexes

£ @ Packages

£ l:a Procedures

£ @ Functions

£ Ea QueLes

3} % Queues Tables

£ CB Triggers

£ ETypes ¢ 3

£ m Sequences -F

{5 Materialized Views [ Resuts| (=] Script Cutput \@Exp\am \%Autmrace |@DBMS Output | 2 o, Qutput

£ @ Materialized Yiews Logs Resutts:

£ B SYnonyms -

£ B Public Synonyms

- [#3) Database Links

- [33) Public Dastabase Links

£ @ Directories i

| @ Application Express
H- (13 Java [EMessages - Log o

Fpadds, E

Youeas, papuap(;‘

0 [22 XML Schemas
£\ Recycle Bin
H- [ Other Users

(&lsaL History

4., Editing

Al R Line 1 Column 1 Insert Mocified | Wyin

[31]



SQL and Relational Databases

On the left side, indented under our connection, is a list of database objects,
including Tables, Views, and Indexes. Discussion about some of the other sets of
objects is outside the scope of this book, but all are accessible by simply expanding
the object group using the plus sign next to it. Click on the + next to Tables and your
list of tables will be expanded. Your window should now look something similar to
what is shown here. These are the tables created, and therefore owned, by the user
with whose profile we logged in; in this case, companylink. They were created by
running companylink.bat, earlier in the chapter. The following screenshot shows

a list of our Companylink tables:

aCunnecﬁons l |

& @ 7 )

Ela Connections

Ela companylinkiggorcl
El@ Tables
- ADDRESS
- avvarD
= BLoe
-8 BRAMCH
-3 DivISion
- Emal
-8 EmPLOYEE
- EMPLOYEE _swwaRD
- MESSAGE
-3 PROJECT
- wWEBSITE

These tables can be expanded to view their characteristics, such as column names
and datatypes, but most of this book will focus on how to view and modify tables
using only the SQL language instead of GUI tools.

The large portion of the window in the upper right is our SQL working area. This
frame will be the area in which we write SQL code. To write SQL in the working
area, simply click in the area and begin typing your SQL statements. When you
are finished, click on the green arrow in the working area toolbar to execute the
statement. Alternatively, you can press F9 on your keyboard.

[32]



Chapter 1

Directly below the working area is the Results frame. This is the area where we will
see the results of our SQL queries. The results will display in columnar format, and
the columns can be resized by clicking-and-dragging. The Results frame also has
several tabs across the top for various other functions, but, for now, we will

not concern ourselves with them. Let's try a query and view the output. In the
working area, type the SQL query you see in the following screenshot, select *
from employee, and click on the green execute arrow:

ID companylink @orcl |
FPERR® B8 ¢ 0024572
select * from ewployee :I
-
(> Resutis | [=]script utput | BExpin | 59 sutotrace | 0EMS outout | ) ovis outut
Results:
empLoveE D [ FrsT_name B mooLe_mmal [ Last neve || cenoer [ sionup_pate [f pos |8 erancrp @ ProskcT D
1 1 James R Johnsan M 01 -JEH-10 01-JAN-60 3 2
2 2 Mary s willams F 2B-JAN-10 15-MAR-54 2 1
3 3 Linda L Anderson F 0M-APR-10 24-0CT-70 1 3
4 4 Diariiel J Rohinson M 23 FER-10 23 NOV-59 2 1
5 5 Matthewy K Garcia M 24-JUN-10 14-APR-T1 3 3
& f Helen H Hartis F 25-JBN-10 13-JUL-75 10 il
7 7 Ken w White M 10-FEB-10 22-FEB-58 4 (ruly
a & Donald A Perez M 17-0CT-10 14-MAR-73 1 3
a 9 Lisa c Lee F 20-SEP-10 15.JUN-63 5 (il
10 10 Caral M Clark F 01-APR-10 11-AUG-57 2 1
11 11 Gary R Maare M 0B-AG-10 01-NOY-BS 3 5
12 12 Cyrthia B Hall F 03-JAHN-10 21-00T-55 3 5
13 13 Sandra s Radriguez F 04-MAR-10 10-MAY-74 13 (il
14 14 Kevin L Lewis M 09-MAR-10 01-JUL-76 a 4
15 15 Gearge H Taylor M 06-0CT-10 24-DEC-T2 12 4
16 16 Laura I Thomas F 07-HOY-10 26-OCT-81 12 5

As we will learn in the next chapter, the SQL query we've placed in the working area
uses a wildcard character, '+', to display all the columns and rows from the table
called employee. As you can see, this data displays in the Results frame, which is
listed in columnar format. You have just made your first use of the Structured

Query Language.

Below the Results frame is the Messages (Log) frame. It is used to display the output
of certain operations and is not relevant to our concerns. To maximize the areas

for the working area and Results frame, you can click-and-hold the bar above the
Messages frame and drag it downward to make it invisible. Similarly, you can click-
and-drag the bar between the working area and Results frames to change the ratio of
space between the two. Many users like to make as much of the Results frame visible
as possible so as to see more of the resultant data.

[33]



SQL and Relational Databases

The last area we need to point out is the SQL History tab just below the Messages
frame. This tab, when clicked, displays a pop-up of the most recent SQL statements.
This can be very useful when trying to remember previous statements. Simply click
on the tab, then double-click the statement you want to run, and it will be pasted in
the working area. You can then select it and click on Execute to run it.

SQL Developer offers a tremendous number of other features that are beyond the
scope of this book. If you're interested in more information on SQL Developer, visit
http://www.oracle.com/technology and view the documentation for it.

Summary

In this chapter, we've gone from the early days of databases to the relational
databases that are so prolific today. We've explored the concept of normalization and
how it's applied to the relational paradigm. We've looked at tables and how they are
structured and introduced the Structured Query Language for relational databases.
We've also examined some of the popular SQL tools and created the tables needed
for the Companylink database. Finally, we've worked our way around the SQL
Developer tool and learned the basics of how to execute queries.

Now that we've learned about relational databases and SQL, we're ready to begin
writing SQL statements — the topic of the next chapter.

Test your knowledge

1. What relational term is used to denote any person, place, or thing?
a. Attribute
b. Entity
c. Flatfile
d. Repeating group
2. What is the name of the process used to transform non-relational data into
relational data?
a. Normalization
b. Transformation
c. Repudiation
d. Object-oriented

[34]


http://www.oracle.com/technology
http://www.oracle.com/technology

Chapter 1

o o >

n

uniquely identifies any single row of data.

Foreign key
Attribute
Primary key

Column

Which of these is NOT a form of entity relationship?

a.
b.

C.

d.

One-to-many
One-to-one
Variant-to-one

Many-to-many

What is the visual representation of a data model called?

a.
b.

C.

d.

Which of these is NOT required to make a database connection?

a.
b.

a o

A table
An entity
Normalization

An entity relationship diagram

Port number

Table name

Database name
Hostname/IP Address

[35]







SQL SELECT Statements

In the previous chapter, we laid the groundwork for using SQL with Oracle
databases. Now, we are almost ready to begin writing our own SQL statements.

But, first, we'll need to examine the rules. Once that's complete, we will proceed to
learn several different basic SQL queries, all derived from the single, most important
SQL statement at our disposal —the SELECT statement. With this statement, we can
retrieve data from an Oracle database and, by the end of the chapter, will begin to do
transformations of the data as well. Beginning with this chapter, we also make note
of the Certification objectives covered. This is a guide for us to match our subject matter
with the objectives of the certification exam.

In this chapter, we shall:

Understand the purpose of SELECT statements

Explore the syntax and usage of SELECT statements

Use SELECT for single-column data retrieval

Use sELECT for multi-column data retrieval

Use SELECT to retrieve all the columns in a table

Display table structure using DESCRIBE

Examine aliases and their uses

Utilize SQL with arithmetic operators to execute mathematical computations
Understand the concept of NULL values

Retrieve unique values using DISTINCT

Display concatenated values



SQL SELECT Statements

The purpose and syntax of SQL

In the beginning of the previous chapter, we discussed the importance of data in our
everyday lives and gave examples of the kinds of data stored in databases. We then
created our own data for the companylink database and discussed a little about its
structure. However, sitting at rest within a database, that data is of little practical
use. It is not enough to simply store data; it must be retrieved and manipulated to be
useful. For instance, in order to use the data in the companylink database, we need
to be able to perform practical operations such as the following;:

e Retrieve a list of the employees on Companylink, along with their street
addresses, for a company mailing list

¢ Retrieve employee names and their date of birth for a Happy
Birthday application

¢ Add and store new messages that employees send to one another

e Change an employee's primary project when they are transferred to a
new one

e Remove the e-mail address of an employee when it is no longer valid

e Add structures that will hold entirely new functionalities for Companylink,
such as hobby lists or friend finders

¢ Remove the structures of functionalities that are no longer needed

e Control security to employee data

SQL can be used to do all these things, and more. With this relatively simple,
semantically-familiar language, we can retrieve and manipulate data and database
objects in ways that make it useful for our company. Using SQL, we can essentially
"make the data do what we want". But, first, we need to understand the rules.

The syntax of SQL

If you have ever written in a programming language before, then think back to the
first one you learned. If you're like most, then one of the most frustrating experiences
in learning programming languages is how incredibly precise they are. The
keywords, symbols, and structure must all be "just right" in order for the program
code to execute. This contrasts significantly with our own human languages, which
are comparatively imprecise. Our day-to-day language is filled with references,
slang, innuendo, and words that have more than one meaning. It serves us well

for interpersonal communication, but it would be incredibly inefficient to speak

to a computer in that way, since any commands we give to a computer must be
translated into machine code in order to be understood. If programming languages
were structured like human languages, then that process of translation would

[38]




Chapter 2

be significantly more complex, since human languages have a certain degree of
ambiguity. On the other hand, programming languages must still be comprehensible
to humans in order to be useful. These two considerations come together in the
syntax of any programming languages. The syntax of a programming language is the
set of rules that define its structures, symbols, and semantics. SQL entered into any
tool must be, first and foremost, syntactically correct; a failure to do so will result in
an error.

Case sensitivity

Many programming languages are case-sensitive, denoting that instructions are
interpreted differently, depending on whether individual characters are uppercase
or lowercase. In Oracle's implementation of SQL, this is not the case. SQL commands
have the same meaning whether used with uppercase or lowercase characters. Thus,
each of these statements in the following screenshot are equivalent:

3= companviinkgore!
= El @ f&s [ ] % % é 006307673 seconds
select * from employee;
SELECT * FROM EMPLOYEE;
Select * From Employee;
selEcT * fRoM emPLOVee;
-
(> Resuits | (=] scrint output | 1 Explain | 5 autotrace | B 0EMS outout | € o output
Results:
ewrLovee D [ FrsT_mame B mooie mmal [ Last vame [ cencer [§ sisnue_pate [§ oos @ erancHo B rroscT o
1 1 James R Jahnsan ™M 01-JaN-AD M -JAN-60 5 2
2 2 Mary 3 Wiliams F 26-JANAD 15-MAR 64 2 1
3 3 Linda L Ardersan F 0 -APRAD 24.0CT 70 1 3
4 4 Daniel J Rabinsan M 23-FEB-10 23-HOY-59 2 1
5 5 Matthew K Garcia M 24-JUH-10 14-8PR-71 3 3
H & Helen H Harris F 25-J8N-10 13-JUL-T5 10 i
7 7Ken w \White M 10-FEB-10 22.FEB-58 4 i
] & Donald a Perex M 17.0CT-10 14-MAR-79 1 3
F] 9Lisa c Lee F 20-SEP-10 15- 063 5 i)
10 10 Caral M Clark F 0 -APRAD 11-AUG-E7 2 1
1 11 Gary R Moare M 0E-AUG-10 0-HOY-65 3 5
12 12 Cyrithia B Hal F 03-JAN-10 21-0CT-55 3 5
13 13 Sandra 3 Radriguez F 04-MAR-10 10-M8Y-T4 13 i)
14 14 Kevin L Lewis M 09-MAR-10 0M-JUL-TE 5 4
15 15 Gearge H Taylor ™ DE-OCT-10 24.DEC-72 12 4
16 16 Laura | Thomas F 07-HOY-10 26-0CT-A1 12 5

It is important to note that the case-insensitivity of SQL in Oracle is not dependent
on which operating system is used. This is true of both the client operating system
as well as the operating system of the server that hosts the database. The way in
which the operating system treats case has no effect on SQL statements, since they
are executed from within an SQL tool such as the ones that we listed in the previous
chapter, and not the operating system command line itself.

[39]



SQL SELECT Statements

There is one important exception to this case-insensitivity; namely, with the use of
quotes around certain elements of SQL statements. We will investigate this further,
later in the chapter.

The use of whitespace

The use of whitespace is often strictly governed in the syntax of programming
languages. In programming code, whitespace is the term used to describe various
non-printing characters in a line of code, such as tab characters, spaces, and
end-of-line characters. For example, the Python language uses indentation to
establish the structure of the command. SQL is much more forgiving in terms of
the use of whitespace. Although the various SQL elements, or "words", must be
separated by whitespace (usually a "space" character), the use of extra spaces,

tabs, and end-of-line characters has little effect on the syntactical correctness of the
statement. Thus, in the following screenshot, we see statements that use whitespace
differently, yet are all syntactically interpreted as the same:

D comparylink worcl |

FPESRAS BB & 00671777 seconds

select *
from employee;

select * from employee;

select
*

from
enployee;

..

[ Resutts| [ eript output ) autotrace | FADEMS Output | (£ 0wa, Output

Results:

TExplain

EMPLOYEE_ID | FIRST_MAME | MIDDLE_IMITIAL | LAST_MAME | GENDER | SIGNUP_DATE | DOB | BRANCH_ID | PROJECT_ID

1 1 James R Johnson hd 01-JAN-10 01-JAN-B0 B 2
2 2 hdary = Williams F 28-JAN-10 15-MAR-E4 2 1
3 3 Linda L Anderson F 01-APR-10 24-0CT-70 1 3
4 4 Daniel J Robinzon 1 23-FEB-10 23-MOY-59 2 1
] 3 hatthew K Garcia 1 24-JUN-10 14-APR-T1 3 3
B B Helen H Harris F 25-JAN-10 13-JUL-75 10 (rually
T 7 Ken W White 1 10-FEB-10 22-FEB-58 4 (rually
g & Donald A Perez 1 17-0CT-10 14-MAR-7S 1 3
9 9 Liza C Lee F 20-SEP-10 15-JUN-E3 ) (rually
10 10 Caral 1 Clark F 01-APR-10 11-AUG-E7 2 1
11 11 Gary R Moare 1 06-AUG-10 01-MOY-E6S 3 ]
12 12 Cyrthia E Haill F 03-JAN-10 21-0CT-55 3 ]
13 13 Sandra = Rodriguez F 04-mMAR-10 10-maY-74 13 (rually
14 14 Kevin L Lewis 1 09-mMAR-10 01-JUL-76 g 4
15 15 George H Taylar 1 06-0CT-10 24-DEC-T2 12 4
16 16 Laura | Thomas F O7-MOY-10 26-0CT-81 12 ]

[40]




Chapter 2

Statement terminators

Statement terminators are used by programming languages to distinguish the end
of a particular statement. This allows the use of multiline statements, such as the one
shown in the previous example. In Oracle SQL, two statement terminators can be
used; the semicolon (;) and the forward slash (/). The two are similar in their use,
the main difference being that the forward slash can only be used on a separate line.
Examine the use of the semicolon and forward slash as statement terminators in the
following screenshot:

[ companyiink @orci |
FPERRO BE ¢ 000626169 seconds
zelect * from employee;
select * from employee
select * from emplovee
£
.. 4
[ Resutts | =] Script Output | FIExplsin | B Autatrace | FADEMS Output | £ Output
Results:
EMPLOYEE_ID | FIRST_NAME | MIDDLE _INITIAL | LAST_MAME | GENDER | SIGNUP_DATE | DOB | BRANCH_ID | PROJECT_ID
1 1 James R Johnson M 01-JAN-10 01-JAN-B0 & 2
2 2 Mary s Williams F 2B-JAN-10 15-MAR-64 2 1
3 3 Linda L Anderson F 01-8PR10 24.0CT-70 1 3
4 4 Dianiel J Robinsan M 23-FEE-10 23-NOY-53 2 1
5 & Matthewy K Garcia M 24-JUN-10 14-8PR-71 3 3
& & Helen H Harris F 25-JAN-10 13-JUL-75 10 (i)
7 7 Ken wy Wihite M 10-FEE-10 22-FEE-58 4 iy
a & Donald A Perez M 17-0CT-10 14-MAR-T3 1 3
a alisa c Lee F 20-SEP-10 15-JUIN-63 5 (i)
10 10 Caral M Clark F 01-4PR-10 11-AUG-67 2 1
11 11 Gary R Maare M 0B-40G-10 01-NOY-B5 3 5
12 12 Cynthia B Hall F 03-JAN-10 21-0CT-55 3 5
13 13 Sandra s Radriguez F 04-MAR-10 10-MAY-74 13 iy
14 14 Kevin L Lewis M 09-MAR-10 01-JUL-TB a 4
15 15 Gearge H Taylar M 06-0CT-10 24-DEC-72 12 4
16 16 Laura I Thomas F 07-NOY-10 26-0CT-81 12 5

It is important to note that the SQL Developer tool will allow you to execute
individual statements without any terminator at all. However, neglecting the use

of statement terminators is a very bad habit to develop, since they must be used in
any multi-command scripting that you do. In addition, command-line tools, such as
SQL*Plus, require the use of statement terminators, so it's best to establish a habit of
using them.

[41]



SQL SELECT Statements

SQL in the real world

In software development, if you're manipulating data, then it is much
~ more common to use a script, a text file that contains a set of SQL
Q commands, than it is to execute individual statements. If you're issuing
database manipulation commands as a DBA (Database Administrator),
then it's common to use both. You can think of an SQL script as a way to
L execute SQL commands in a "batch". o

Retrieving data with SELECT statements

One of the most important operations done while connected to a database is the
query. In database terms, a query is a request to retrieve data from a database table
or tables. Queries can range in complexity from simple queries, consisting of a few
lines, to extremely long and intricate reports composed of pages of code. Queries
form the backbone of business reporting and, as such, are a vital part of the SQL
language. We compose queries using the SELECT statement, as discussed in

this section.

Projecting columns in a SELECT statement

Now that we have laid out some of the syntactical rules for SQL statements, it is
time to learn about the structure of our first SQL statement. We see what is
commonly referred to as a "syntax tree" for a SELECT statement, shown as follows:

SELECT {column, ..} [*] FROM {table}l;

In this example, we denote keywords, or basic statement components, in uppercase.
Again, recall that SQL statements are case-insensitive and that the capitalization

is not mandatory but is done for visual clarity. The keywords we see in this basic
statement are SELECT and FROM. SELECT indicates that the statement will retrieve,

or "select" data, while FrROM specifies the table from which data will be retrieved.
Within the braces ({ }) are the lists of columns we select and the name of the table

in question. In relational terminology, this action is known as projection; the act

of projecting one or more columns from a table. The resulting projected data is
sometimes referred to as a dataset or rowset. In a SELECT statement, our selection
action can take one of the following forms:

e Selecting one column from a table
e Selecting multiple columns from a table

e Selecting all columns from a table

[42]



Chapter 2

Selecting a single column from a table

When we project a single column of data, our syntax tree takes the following form:

SELECT {column}
FROM {table};

In our example, column simply refers to the name of the column we wish to retrieve,
and table refers to the name of the table. It is important to note that there is no
row-based restriction in this statement —all rows in the table will be retrieved, but
only of one column. Row restriction is a topic for a future chapter. The following
screenshot contains an example select statement that you can type in and execute
in SQL Developer. If we were to translate our select statement into everyday
language, then it would be similar to give me a list of all the employees' last names.

D comparyiink@orcl |

FERZRO 88 ¢ 000446453 seconds

select last name from emplovee:

.. 4
[ Resutts | [ Soript Output | I Explain |.§.‘._j.t'-‘«ut01rac:e | ZLDEMS O
Results:
LAST NAME
1 Johnzon
2 Willizms

3 Ancersan
4 Rohinson
5 Garcia

E Harriz

T Wihite

S Perez

9 Lee

10 Clark

11 Moore
12 Hall

13 Rodriguez
14 Lewis

15 Tavylor

16 Thomas

We type the statement into the working-area frame in SQL Developer, click the
execute button (see the previous chapter if you need a review of this), and the results
are displayed in the results frame. In this example, the column name is last_name,
and the table name is employee. The data in the last_name column is displayed
exactly as it is stored in the table, without formatting, and in the same order that the
records were entered.

[43]




SQL SELECT Statements

SQL in the real world

M It's important to see SQL statements not just as code, but to understand
Q how they relate to the data they represent. Throughout this book, we
will often translate our example statements into realistic language that
we might better understand what our code is trying to accomplish.

Selecting multiple columns from a table

A multi-column projection of table data is very similar to a single-column projection.
Its syntax tree is displayed as follows:

SELECT {column, column, ..}
FROM {table};

We can use this statement format to project multiple columns of data from a single
table. In our column list, we can identify two columns to retrieve or even more
than two columns, as indicated by the ellipses (..). In fact, the maximum number of
columns we can select is limited only by the number of columns in the table itself.
The following screenshot shows an example from our Companylink database that
makes the request display the first and last names of all employees:

[ companylink @orcs |
FERRO BB ¢ 000777473 seconds
select first name, last name from employee?
.. 4
[ Resuts | [ 5] Script Output | B Explain |_§::|Am:ﬁrace | ZDEMS Output
Results:
FRsT_neve [ LasT_nawe |

1 James John=zon

2 Mary Willishs

3 Linda Anderson

4 Daniel Rokinzon

3 hatthesy Garcia

& Helen Harriz

7 Ken White:

8 Danald Perez

9 Liza Lee

10 Carol Clark

11 Gary Moore

12 Cynithiz Hall

13 Sandra Rodrigusz

14 Kevin Lewvis

15 Gearge Taylar

16 Laura Thomas

[44]



Chapter 2

As with our single-column select statement, this multi-column statement does
nothing to restrict row data—all rows in the table are returned. Note also that the
columns are shown in the order that they were requested —first_name followed by
last_name. Even though the columns are stored in that order within the table, we
are not restricted from selecting the columns out of order; in fact, that may often be
desirable, as shown in the following screenshot. We might interpret it as, display the
last name of all employees, followed by their first name.

|> companylinkiborcs |
EEEO B8 ¢ 000506238 seconds
select last_name, first name from employee;
. 4
> Resuts | [5] Script Output | B)Expisin | 3 autotrace | @0BMS Outut
Resufts:
LasT_nave [ FRST_MaME |
1 Johnsan James
2 'Wiliams Mary
3 Anderson Lincka
4 Rohinzon Dianiel
5 Garcia hlatthew,
& Harris Helen
7 Wyhite Hen
g Perez Danald
9 Lee Liza
10 Clark Caral
11 Moore Gary
12 Hall Cynthia
13 Rodriguez Sandra
14 Lewis Hevin
15 Taylor George
16 Thomas Laura

As we see, the order in which the data is displayed is controlled by the statement

we write, not by its order in the table. This applies to its position within the table as
well. Notice that the first column in the employee table is employee_id, and yet that
column was not selected or displayed at all. It is the writer of the SQL statement that
determines what data will be displayed and in what order.

[45]




SQL SELECT Statements

Another example is shown in the following screenshot. It uses the second, third,
fourth, fifth, and sixth columns of a different table, the address table, but the order
in which they are displayed is only controlled by the structure of the statement.

D comparylink @orcl |
FERZRO BWBE ¢ 005656156 seconds
select employee_id, street address, city, state, zip from address;
Fa. 4
[ Resuts| =] script output | B Explain | 5 Autotrace | ZLDBMS Outpt | (A Cha, Output
Results:
emPLovEE D |[§ sTrReer eporess |8 oty [@ state |l ze)
1 1123 First 5t Lenexa KS 17589
2 2 234 Fifth 5t Cverland Park KS 1863
3 3 345 Cedar Ln Misgion 323 33935
4 4 456 Washington Lve Independence MO 35620
5 5 5675 Hill 5t Lees Summit WO 47333
[ G 324 Elm St Lenexa K3 TH3E6E
T T 5234 Park Place Leswood 323 S01E7
g 8 253 Fourth St Wanzsss Chy MO E4629
a 9111 Maple Rd Eclvwardszvile MO 7745
10 10 234 Lake R Topeka K3 30701
i 11 G55 Eighth St Dez Moines |12 73309
12 12 857 Oak St Walto e} 28124
13 13 153 Main St Tulsa O 3860
14 14 7543 Pine Rd hdartin City e} 23347
13 15 5234 Seventh =t Grancviesy e} 18064
16 16 324 Third St Piper 323 53282

The real-life translation for this statement might be something like give me employee
ID and street address information.

Selecting all columns from a table

The process of projecting all the columns in a table is relatively simple —it only
requires the use of a special character. Recall, from our original syntax tree, that one
of the options shown was an asterisk (*). When we use the asterisk in place of our
column list, all columns in the table will be selected in the order that they appear in
the table. The asterisk in an SQL statement is sometimes referred to as "star". You
will sometimes hear the statement in the following example read as select star

from employee.

[46]




Chapter 2

D companyiinkgorci ‘
PERRO® BB & 00100144 seconds
select * from EmplnyEE:I
iy
(3> Resuits (=] Serigt output | £ Explain |§]Ammrace | ADBMS Output | €A ovwia, ot
Results:
H emriovee o [B Frs_wame [ mooe mmal [B Last eme [ cenoer [§ sisnop pate ] poe (B erencio [l PRoGECT_D
1 1 James R Johnson M 01-J8H1D 01-Jan 60 5 2
2 2 wary s Williams F 2808110 15 MAR-54 2 1
3 3 Linda L Andrson F 0-APR-AD 2400170 1 3
4 4 Daniel J Robinson " 23.FEBAN 23.Now. 58 2 1
5 5 Matthesr K Garcia M 24-L0-10 14-8PR-71 3 3
5 8 Helen H Harris F 25-J8H-10 13075 10 nuly
7 7 ken i Wihite M 10FEE10 22 FEB 55 4 nuty
8 8 Donald 2 Perez M 17.00T10 14MAR.79 . 3
5 SLisa ¢ Lee F 20.5EFA0 AERTIES 5 uly
10 10 Carol m Clark F D1-APR-AD 1-ALIG-57 2 1
11 11 Gary R Moore M 0B-ALIG-10 D1-NOW-E5 3 5
12 12 Cyrhia B Hall F 03-J8H-10 21-0CT-55 3 5
13 13 Sandra s Rodrigusz F 04 MAR1D 10MAY T4 13 nuly
14 14 Kevin L Lewis M 03 MAR 1D 01076 8 4
15 15 George H Taylor " 05-0CT-D 24.0ECT2 12 4
16 16 L | Thomzs F 07O 2B.0CT-51 12 5

Thus, all columns and all rows in the table will be displayed, since we've not yet
seen a way to restrict the number of rows outputted. This statement, using *, would

retrieve the same columns and in the same order as if we selected each of the

columns individually, as shown in the following screenshot:

D companyiink orct |
FERERO 88 ¢  n047a14aseconds
select employee_id, first name, middle initial, last_name,
gender, signup_date, dob,
branch id, project_id
from employee;
-
[ Resuts| =] script output | B Explsin | B9 autotrace | ADEMS output | € ovia outpue
Results:
ewrLovee D I FrsT newe [ woote_mmar [ LasT vewe [ cenoer [0 sionue pate [l ooe [ erencio |l prosecT o
1 1 James R Johngan W 01-J8M-10 01-J8M-E0 3 2
2 2 hary ] willisms: F 28 UMD 15-MAR-54 2 1
3 3 Linda L Anderson F 01-8FRA10 24-0CT-70 1 3
4 4 Daniel Jd Robingon ] 23-FEB-10 23-MOY-58 2 1
3 £ hatthew K Garcia [t 24-JUN-10 14-8PR-T1 3 3
3 & Helen H Harris F 25.18M-1T1 1375 0 Cnuy
7 7 Ken Wi iite [t 10-FEE-10 22 FEE-58 4 (ruly
& & Donald A Parez [t 17-0CT-10 14-MAR-7S 1 3
1 alisa I Lee F LEER-10 15 IUN-63 5 Cnuy
10 10 Carol M Chark: F O1-AFR-110 118557 2 1
11 1 Gary R hoors [t DB-AUG-10 01-MOY-B5 3 5
12 12 Cynthia 3] Hll F 03 J8N-10 21-0CT-55 3 5
13 13 Sandra 5 Rodriguez F Od-MAR-10 10-hAY -7 4 13 iy
14 14 Kevin L Lewis M DE-MAR-10 01-JUL-7E [ 4
15 15 Genrge H Taylor W DE-0CT-10 24-DECT2 12 4
15 1 Laura I Thomeas F O7-MOM-10 26-0CT-B1 12 5

[47]



SQL SELECT Statements

While either method achieves the same goal, remember that using * will only
retrieve columns in the order that they exist in, in the table. Should you need to
display all columns in a different order, it is necessary to select each column in the
table by name.

SQL in the real world

In some IT shops, the coding standards of a particular group may
M preclude the use of * in SQL statements, and that's not necessarily a bad
Q thing. While using the "star" notation requires less typing, it is also very
non-descriptive for someone trying to read the code that you've written.
Coding standards that mandate writing out each individual column
produce code that is easier to read and debug,.

Displaying the structure of a table using
DESCRIBE

If, by now, in doing the examples in this chapter, you've received an error when
incorrectly typing a column or table name (as is common), it should be obvious

that SQL requires that we be syntactically accurate when listing each element of the
statement. All clauses, keywords, column names, and table names must be spelled
correctly. This can be difficult to do if you don't know what the column names are.
Although our SQL Developer tool makes this easy to find, we also have the DESCRIBE
command to display the structure of a table, as shown in the following screenshot:

[48]



Chapter 2

|> Companyiinkorct |

PERGS BB ¢

1.6377207 seconds

describe employee

F% 4

[ Results | [&] Scrist output. B Explain |§d].&.utotrace | FADEMS Output | (oA Cutput

12 rows selected

P = =N

describe enployees

Name Mull Type
EMPLOYEE_ID NUMEEE.( 10}
FIRST MNAME VARCHARZ (25)
MIDDLE INITIAL VARCHARZ (1)
LAST NAME VARCHARZ (50)
GENDER CHAR (1]

DOE DATE

START DATE DATE

BEREANCH ID NUMEEE.( 10}
FROJECT_ID NUMEER.( 10)
SIGNUP_DATE DATE
LAST_LOGIN_DATE DATE
LOGIN_COUNT NUMEER.(10)

Executing the command produces three columns of information: the name of the
column, whether it allows NULL values, and the datatype of the column. At this
point, we will concern ourselves only with the first and third columns. The output
shown indicates that our employee_id column is of type NUMBER(10). We will
examine datatypes further in later chapters; but, for now, this information tells us
that the employee id column contains numeric values and that other columns,
such as first name and last name, contain character data, while columns such

as start_date and last_login_date contain date data. Whether you use the
DESCRIBE command or other tools to display column names, it is important to

do so in order to write error-free SQL.

[49]




SQL SELECT Statements

Using aliases to format output of SELECT
statements

While we have demonstrated that we can retrieve data from our Companylink
database, we have not, thus far, been able to alter the way the data is presented. As
we move through the book, we will discover more ways to customize our output,
but one way we can do this now is through the use of an alias. An alias is an
alternate name given to a column that alters the way it is displayed. To demonstrate
this, let's examine another one of our Companylink tables: the award table. The
following example shows a query from the award table that selects its two columns
but uses no alias:

ID companyiink morch |

FEERS BB & | 001271893 seconds

Select amard id, award desc from award:

F%.
B> Resuts [ =] Script Output | B9 Explain |_§:] Autotrace | ADEMS Output | O, Output
Resuls:

AWARD_|D | SWARD DESC |

1 Salesperson of the year

2 Technological paper winner
3 Cleanest desk

4 Fastest typist

S Emplovee of the year

m oh B k=

£ Best new employes

For the first time, we turn our attention to a portion of the output other than the
data. Notice how the column headers, AWARD_ID and AWARD_DESC, are named
exactly as the column names themselves. Of course, this is to be expected, but what if
we wanted to change the column headers to something more descriptive? To do this,
we simply use an alias for the columns, as shown in the following screenshot:

[50]



Chapter 2

[}companyﬁnk@orc! |
ERRO B8 ¢ 002461207 seconds

select award_id award identifier, award desc award description
from award;l

. 4

[ Resutts| [ =] Script Output
Results:

BNARD_IDEMTIFIER | AWARD_DESCRIPTION|

1 Salesperzon of the year

EExplain |_§:]Amotrace | ADEMS Output | G4 Civia, Output

2 Technological paper winner
3 Cleanest desk

4 Fastest typist

5 Employee of the year

M h B W R =

E Best new employee

Notice how the column headings have changed to AWARD_IDENTIFIER and
AWARD_DESCRIPTION, respectively. To accomplish this, we simply list the
alias immediately following the column that it replaces. Thus, when we list
award_identifier directly after the award_id column, the display name is changed.
Note that this in no way means the actual name of the column award_id has
changed within the table. It simply means that it is aliased, or displayed with

a different name.

You may notice that, while we have managed to change the column heading to
something different than the column name, we haven't changed it significantly. The
alias still uses all uppercase characters and an underscore. We can, however, modify
the column's appearance further. Doing so will require that we use an exception

to two of the SQL rules we listed earlier in the chapter. Recall that in the earlier
sections of this chapter, Case sensitivity and The use of whitespace, we stated that our
SQL statements were case-insensitive and that whitespace, such as tabs and extra
spaces, is ignored. There is one important exception to these rules, and we see a
good example of it in the use of aliases. Case-sensitivity and whitespace in an SQL
statement can be maintained if we enclose the alias name in double quotes (" ).

[51]



SQL SELECT Statements

We see an example of this in the following example (which uses both case-sensitivity
and whitespace within an alias):

D- companylink orcl |
FPERR S BB ¢ | 001040887 seconds

select award_id "Award Identifier”™, award desc "Award Description”™
from award; I

. d

I Resuits| [5] Script output | BExplain |§;:} Autatrace | ADBMS Output | £ Ol Output
Results:

Awardlderrtifier| Awvard Description |

1 Salesperson of the year

2 Technolagical paper winner
3 Cleanest desk

4 Fastest typist

5 Employes of the year

mon B k=

E Best new employee

If we notice the column headings in the output after executing the previous
statement, we see that the column headings for award_id and award_desc are

now "Award Identifier" and "Award Description", respectively, both of which use
mixed case and a space character within the column heading. Note that this can
only be done using double quotes. If we were to attempt the use of mixed case and
a space between the two words used in the alias, without double quotes, the mixed
case would be ignored, and we would receive an error because Oracle would not
interpret the space character in the statement. For a neater overall appearance in our
code, we can use the optional As keyword to denote our alias, as indicated in the
following screenshot:

[52]



Chapter 2

“}- companylink gorcs |

FERRO B8 ¢ 001706893 ssconds

select amard id as "Award Identifier™, award_desc as "Award Description™
from award.:l

%
[ Resutts| =] Script Output | BfExplain | B3 autctrace | ADEMS Output | (£ Clvis, Output
Resutts:
Ayvard [dertifier | Aueard Description |
1 1 Salesperson of the year
2 2 Technological paper winner
3 3 Cleanest desk
4 4 Fastest typist
5 5 Employee of the year
5] 5 Best new employes
SQL in the real world
Using aliases to format column headings was a more common practice
M in the past, when reports were run using SQL*Plus. This is less common

today. In modern software development, data is formatted by the
application and does not require the use of aliases. However, there are
other important reasons to use aliases. When you alias a column, you can
refer to the column using that aliased name throughout the entire SELECT
statement. We will see some important uses for this in later chapters.

Using arithmetic operators with SELECT

Although we've looked at several examples of using SELECT statements to
manipulate strings of text, we can just as easily use SQL to complete arithmetic
operations. As with many programming languages, we can make use of arithmetic
operators to accomplish this.

[53]




SQL SELECT Statements

The DUAL table and the use of string literals

Let's say, for a moment, you did not want to display data from a table, but rather a
fixed literal statement such as "I Love Companylink". We need to introduce another
set of syntactical operators, the single quotes ('), in order to do this. In SQL, when
any word or phrase is enclosed within single quotes, it becomes expressed as a
string literal. However, how would we display our literal statement using SQL? The
only statement at our disposal, so far, is the SELECT statement. We could attempt a
statement as follows:

Select 'I Love Companylink';

However, such a statement is syntactically incorrect, since every SELECT statement
requires a FROM clause; thus, we would need to select our literal from some table.
However, notice what happens when we attempt this using the e-mail table, as
shown in the following screenshot:

D companyviink@orcl |

FERRS BB ¢ 00095912 seconds

gelect 'T Lowve Companylink' from email:l

%
[ Resutts = soript Output
Results:

ILOYECOMPARYLIMNK! |

EE=plain [ ) Autatrace | ADEMS Output | (% vy, Outit

| Love Companylink
| Love Companylink
| Love Companylink

| Love Companylink

1
2
3
4
5 | Love Companylink
E | Love Companylink
7 | Love Companylink
8 | Love Companylink
9 | Love Companylink
10 | Love Companylink
11 | Love Companylink
12 | Love Companylink
13 | Love Companylink
14 | Love Companylink
13 | Love Companylink
16 | Love Companylink
17 | Love Companylink
18 | Love Companylink
19 | Love Companylink
20 | Love Companylink
2
2

=

| Love Companylink

[N]

| Love Companylink

[54]



Chapter 2

In this select statement, we haven't selected any actual columns, only a literal
expression. The result is that one literal is returned for every row in the table, simply
repeating over and over. What we need is a table with only one row to select against.
This is why Oracle has provided the DUAL table.

DUAL is essentially a pseudo-table —it has no real data and is generally used for
string manipulation and mathematical computation. You do not insert, update, or
delete data from the DUAL table. The following example shows the result of selecting
from DUAL:

[}companyﬁnk@orc! [
FPERRSO B8 ¢ 002055534 seconds

select * from dual:l

.
B> Resutts | [ Script Output | SExplain | B autotrace | B0EMS output | €% owia Output
Results:
DL
1%

The only column in dual is DUMMY, and the only row value is X. However, because
it only has one row, it becomes the perfect solution to our problem of how to select
string literals without repeating values, as shown in the next screenshot:

Drcompanyﬁnk@orc! [
FPERR O BB ¢ | 005952879 seconds

select 'T Love Companylink' from dual;

.
D2 Resuts (=] Script Output | 1 Explain | B A tctrace | ADEMS Output | ) owe output
Results:

'ILOVECOMF‘ANYLINH'|
1 1 Love Companylink

[55]




SQL SELECT Statements

One common use of the DUAL table is to display the current date and time. To do
so, we make use of a pseudo-column in our select statement. For instance, we
can use the sYSDATE pseudo-column to display the current date, as shown in the
following screenshot:

[ companyiink @orct I
FPERRA S @8 ¢ 000635459 seconds

select sy=sdate from dual:l

.

B Resutts | [ Script Output | B Explain |?§]Amatrace |@DBMS Output | 9 Cs, Output
Results:

SYSDATE
1 30-JAN-11

The value that is returned is the current system date. Oracle also provides the
current_timestamp pseudo-column to retrieve date, time, and time zone
information from the server, as shown in the following screenshot:

D companylink @orcl I

FPERRO BE ¢ 014677592 seconds

select current timestamp from dual;

e, W

B> Resuts | [=] script Output | B Explain | 5 autotrace | [ADEMS Output | €4 Owia, Output
Results:

CURREMT_TIMESTAMP |
1 30-JAN-11 0819 27 3409000000 P AMERICACHICAGD

Note that the date and/or time presented by both of these pseudo-columns reflects
the system date/time of the server on which the database is hosted. It may be
different from the date/time of the actual client that executes the query.

[56]



Chapter 2

Mathematical operators with SELECT

Our Companylink database will almost certainly require the use of mathematical
computation in order to be effective. Let us suppose we want to calculate the
number of days until the birthday of each of our employees or how long a particular
employee has worked for the company. Basic mathematical operations are the

heart of any computing system. In Oracle, many mathematical operations are
accomplished using functions. We can, however, do basic mathematical operations
within our SELECT statements. The following example shows some simple examples
of this. In SQL Developer, in order to execute multiple statements, it is necessary

to use the Run Script button located just to the right of the green Run button or,
alternatively, to press the F5 key.

[ companyiink @ores |
FERRS BB & | 05262772 seconds

select 30 + 20 from dual;

select 30 - 20 from dual;

select & * 4 from dual;

select & / 4 from dual:

select (20 + 30) * (8 / 4) from dual:l

%

[ Resutts | [l Script outeut| 5] Explain |5;3 Sutotrace | ADEMS Output | € Ovia Output

¢dE&

1 rows selected

1 rows selected

1 rows selected

1 rows selected

[57]




SQL SELECT Statements

As you can see from the example, basic mathematical operations such as addition,
subtraction, multiplication, and division are symbolized by +, -, *, and /,
respectively. The order of precedence is the same as in basic math, with parentheses
taking precedence over multiplication and division, which take precedence over
addition and subtraction. In SQL, the mathematical operands can be either literals or
column data. In the previous example, the operands (the number 30 and the number
20) are literals. The SQL statement takes the literal operands as input and "selects"
their sum against the dual table, which returns one row: 30 + 20. However, although
mathematical operators work with literals, the real power in using mathematical
operators with SQL is the ability to execute an operation on every row in a table.

For instance, if you have a table containing one million rows, trying to multiply the
values of two columns using each literal value would be fruitlessly time consuming.
In SQL, you can write one statement that will recursively execute for every desired
data element in the table. The following example demonstrates the use of columns in
mathematical operations:

[ companyiink @orci |
FERRO BB ¢ 001424259 seconds
select zignup date - start _date num days from employee;
%
[ Resutts | =] script Output | TE=plain | 55 autotracs | ADEMS Outpnd | E3 O, Output
Results:
NUM_DAYS
1 5162
2 3932
3 237
4 42158
H] 1826
-] 2043
T 2339
g 09
] a2
10 3366
11 2367
12 387
13 212
14 2594
15 2774
16 997

[58]




Chapter 2

This SQL statement demonstrates date arithmetic. Two columns from the employee
table, start_date and signup date, are subtracted. The result of this operation is
that the number of days between the start_date and the signup_date is returned
for each row in the table and displayed in a column that is aliased as num_days. It is
important to understand that the previous SQL statement does not simply execute the
subtraction once; rather, it does it recursively for each row. Mathematical operations
can also contain columns mixed with literals, as shown in the following screenshot:

[ companylink@otcl |
FERR® B8 ¢ | 0003025 seconds
select first name, last nawme, login_count, login count/Z from employee;
. 4
[ Resuts | [=] soript Output | B Explain |_F;]Amutrace | ADEMS Output | E) WA Output
Results:
FRsT_Mame B LasT_nave B Loci_count [f Loom_counTsz
1 James John=on 2135 1067 .5
2 Maty Williaths 2143 107 .5
3 Linda Anderson 1245 6225
4 Daniel Robinson 1220 E10
I Matthew Garcia 1143 aTia
G Helen Harris 13 4375
7 Ken White: 366 433
& Donald Perez 1025 5125
9 Liza Lee 1945 9725
10 Caral Clark 1123 2615
11 Gary Moare 1495 4TS
12 Cyrthis Haill 1475 739
13 Sandra Rodriguez 1021 205
14 Kevin Lewis 995 495
15 George Tavylor a3 299
16 Laura Thatmas 1221 6105

In this example, the 1login_count column contains the number of times an employee
has logged in to Companylink. We divide this column value by two, for each row,
and return the result. For the sake of clarity, we also select the columns first_name,
last_name, and the unmodified login count column.

Numeric values are allowed for any mathematical operation, while character
values are not. Date values are allowed, but only when using subtraction, as our
example shows.

[59]



SQL SELECT Statements

The meaning of nothing

To complete our section on mathematical operators and SQL, we need to examine
one final reserved keyword —NULL. In SQL, the NULL keyword signifies the lack of
data. In short, NULL means nothing or "undefined". It should never be confused
with the "space" or "zero" values — these values actually do constitute data. A space
is a string character value. A zero is a true number. A NULL is neither. Although it
is often referred to as a "null value", it is not data; rather, it is the absence of data. As
such, it is treated differently than numeric, string, or date values. In later chapters,
we will examine the rules of how to put NULL values into a table; but, for now,

we need to learn how to recognize them when they are returned in queries. The
following screenshot provides us an example of NULLs returned from a query:

[ companyiink@orcs |
FPESRSO B8 & 003317257 seconds
select firat_name, last_name, project_id from employes;

%

[ Resut | (=] Script output | [ Explain |_5;'_‘1Amotrace| ADEMS Output | £ 0y

Results:

FIRST_MAME | LAST_MAME | PROJECT_ID |

1 James Johnsan 2
2 Mary Williams 1
3 Linda Ancerzon 3
4 Daniel Robinzon 1
3 Matthew: Garcia 3
& Helen Harriz {rilly
7 Ken White {rilly
g Donald Perez 3
9 Lisa Lee {rully
10 Caral Clark 1
11 Gary Moore B
12 Cynthia Haill H]
13 Sandra Rodriguez {rilly
14 Kewin Lewis 4
15 George Taylor 4
16 Laura Thotmas ]

In the values returned, we see that some employees have a PROJECT_ID and some
do not. James Johnson is associated with a PROJECT_ID of 2, and Mary Williams
has a PROJECT_ID of 1. However, Helen Harris, Ken White, Lisa Lee, and Sandra
Rodriguez all return a value of (null) for their PROJECT_ID. This is simply because
there is no data value in the PROJECT_ID column for those employees.

[60]




Chapter 2

SQL in the real world

M In SQL Developer, a NULL value is shown as (null).Other SQL tools
may display NULLs differently. For instance, SQL*Plus simply displays
Q NULL as whitespace, while Oracle's Application Express tool represents
them with a dash. It's important to know how the tool of your choice
renders NULLSs so that you can recognize them.

To illustrate the fact that NULLs truly have no value, examine the following error
box. In it, we attempt the statement select 100/0 from dual, which should produce
an error, since division by zero constitutes a mathematical error. When we execute
the statement, we receive the following error:

Error encountered f'5_<|

Anerror was encountered performing the requested
operation;

ORA-0147E: divizor iz equal to zero
01476, 00000 - “divisor is equal to zero"
*Cause:

*&ction:

“endaor code 1476Errar at Line: 1

This is the expected behavior, since 100 is a numeric value. However, in the next
example, we attempt a similar query using a null instead:

Dcompanyﬁnk@orcf I
FPERRAS BE & 001001049 seconds

select 100/null from dual;

%
[ Resuts =] script Output | EExplain |§} Butotrace ||3,DE:MS Output | 8 Chnde, Ot
Resuts:

100MULL
1 (rull

As we can see from the result, no error is raised. Instead, dividing 100 by NULL
simply produces another NULL, indicating that NULL is not a value at all.

[61]




SQL SELECT Statements

Using DISTINCT to display unique values

Consider the address table, which lists all of our employees' addresses. Let us
suppose that we want a report on which states our employees are from, to satisfy
federal tax guidelines. We could do this using the following query:

D companylink morch |
FERRO 88 ¢ | 00269008 seconds

=elect state from address:l

e 4
B> Resutts | (] script Output | B Explain | 39 autotrace | E0EMS outout | € ovie Output
Results:

STATE
1 KS
2KS
3KS
4 MO
5 MO
B KS
7 KS
8 MO
9 MO
10 KS
118,
12 MO
13 Ok
14 MO
15 MO
16 KS

The results give us what we asked for, but they are littered with duplicate values.
If we want a concise list of states where our employees live, it would be preferable
to discard duplicate values and display only a unique list of states. We can do this
using the distinct keyword, as shown in the following example:

Dcompanyﬁnk@orc! |
FPERERO BB ¢ 001195653 seconds

select distinct state from address;l

. J
B> Resutts | [ script output | 5 Explain | ) autotracs | FoEMS output | €3 owia, output
Results:

STATE
10K
2K
N
4 MO

[62]




Chapter 2

While the original query returned 16 rows, the query using DISTINCT removed all
redundant values and returns only four rows. Another powerful use of the DISTINCT
keyword is the ability to return distinct values from multi-column datasets. For
example, the following SQL statement demonstrates how DISTINCT operates on
multiple columns of data:

Dcompanyﬁnk@orc.f |
FPERR® BB ¢ 00232786 s2conds

select distinct city, state from address;l

.
[ Resuts [ script output | BExplain | 59 Autotrace | FDEMS output | € 0w output
Results:
ary  |@ stam|

1 Wialdo (]

2 Tulsa Ok

3 Lenexa KS

4 Mission WS

5 Topeka 485

6 Des Moines 1A

7 Grandview WO

g Lees Summit MO

9 Martin City a]
10 Leawweaod KS
11 Cwerland Park KS
12 Independence MO
13 Edwardsville MO
14 Wanzas Cty MO
15 Piper Hs

While a query that omits the DISTINCT keyword will return 16 rows, this query returns
only 15, since there are two occurrences of the city/state combination Lenexa Kansas,
and one of them is removed by the action performed by the DISTINCT keyword.

[63]




SQL SELECT Statements

It is interesting to note, however, that if we add the zIp column to the query,
the number of rows returned is 16. Observe this in the following screenshot:

D COMPIRYIRE Borcl |
=EREO 88 ¢ 004775093 seconds
gselect distinct city, state, zip from address;
W
B> Resuits | [5] Script output | EExplsin |§;;3Amutrace ||3DBMS Output | (4 S, Cutput
Resutts:
CITY | STATE | 7P |
1 Mlizsion KS 79529
2 Lenexa KS 18532
3 Waldo [Le 45739
4 Owerland Park KS 443582
3 Martin City [Le 32736
G Lenexa 3 arevd
T Edwardsville MO 35870
T Lees Summit O 207072
9 Des Maines 14 072
10 Leswvood 33 e =t
11 Grandview MO 51055
12 Tulza Ok 35940
13 Piper KS 2817
14 Independence MO 12335
15 Kansas City MO 12996
16 Topeka KS 37819

Why does this occur? Look closely at the data, and you will see that even though the
combination of Lenexa and Kansas is repeated, each occurrence of it has a different
value for the z1p column. This results in three values that, when taken together, are
fully distinct.

[64]



Chapter 2

Concatenating values in SELECT
statements

While SQL allows us to manipulate numeric values with mathematical operators,

we can also do some degree of character string manipulation with our statements.
Earlier in the chapter, we used the DUAL table to display string literals that were
enclosed in single quotes. We can use concatenation to append one or more string
literals with values from a table. There are actually two ways we can concatenate
values in Oracle, but, in this section, we examine the concatenation operator
"double-pipe" or (| |). The pipe symbol is invoked on most keyboards using Shift + \
(backslash). We use two of these pipe symbols or "double pipe" to concatenate values
in SQL. A basic example of concatenation using the dual table is shown in

the following example:

[}campanyﬁnk@orc.f |
ERR® BB ¢ 000604574 seconds
select 'I Lowe ' || 'Companylink' from dual:
W
[ Resutts [ =] Script utput | B3 Explain _ﬁ.jjAutntrace|EDEIMS Output | © O, Output
Results:
'ILOVE'||'COMPANYLINK'|
1 | Love Companylink

You can see that the first string, 'I Love ', is concatenated with the second,
'Companylink', and displayed together as 'I Love Companylink'. It is important

to notice two things in this statement, aside from the use of the double pipe. First,
remember that, in this example, we are using string literals, so they are surrounded
by single quote marks and not double quotes. Recall from earlier in the chapter that
double quotes are used for aliases. Because we use single quotes, everything inside
them is interpreted as a string literal, including the spaces. So, in the string 'l Love ',
the second space is very important. Were we to omit it, the resulting string from the
execution of the SQL statement would be 'I LoveCompanylink'.

Alternatively, you could place the space before the 'Companylink' string as '
Companylink' and achieve the same result.

[65]



SQL SELECT Statements

The opportunity provided by using concatenation is better seen when coupled with
actual values from a database table. Using the double pipe, we can combine table
results with string literals of our choice to produce formatted output, as shown in
the following screenshot:

D companyiink @orcl |
FPERRO B8 ¢ 00089612 seconds
select first name || ' loves Companylink!' from Emplcnyee,:l
F %
[ Resutts| =] Script output | 5 Explain |ijutDtrace | ADEMS Output | (9 OWA Output
Resuts:

FIRST_NAME"'LOVESCOMPANYLINK!'|
James loves Companylink!

hary loves Companylink!
Linda loves Companylink!
Daniel loves Companylink!
Matthew loves Companylink!
Helen loves Companylink!

Ken loves Companylink!

L I = L I S R

Donald loves Companylink!
3 Liza loves Companylink!

10 Caral loves Companylink!

11 Gary loves Companylink!

12 Cynthia loves Companylink!

13 Sandra loves Companylink!

14 Kevin loves Companylink!

15 George loves Companylink!

16 Laura loves Companylink!

In this example, we select the first_name column from the employee table and
append the string literal ' loves Companylink!' to it. The statement executes this
append operation for every row and returns it as the rowset you see in the results.
A more involved, as well as practical, example is shown in the following screenshot:

[66]




Chapter 2

Dcompanyﬁnk@orc! |
FEERRO B8 ¢ 000361163 seconds
select first nawe || ' ' || last_nawme || ' was born on ' || dob ||
' and zigned up for Companylink on '|| signup_date

from employee:l

.. 4

[ Resuts | 5] Script Cutput

Resufts:

[ Explain | 5 Autatrace | E;DBMS Cutput | (4 S, Cutput

o o~ m th B L k=

o

10
ih
12
13
14
15
16

FIRST_MAKME["|ILAST_MAMERAASEORMONDOB]'ANDSIGHNEDUPFORCOMPANYLIMKON'|SIGNUP_DATE

James Johnson weas born on 01 -JAN-60 and signed up for Companylink on 01-JAK-10
Maty Williams was barn on 15-MAR-G4 and signed wp for Companylink on 25-JAN-10
Linda Anderzon wweas born on 24-0CT-70 and signed up for Companylink on 01-4PR-10
Dianiel Robinzon weas born on 23-KN0%-59 and signed up for Companylink on 23-FEB-10
Matthew Garcia was barn on 14-APR-71 and signed up for Companylink on 24-JUN-10
Helen Harris was born on 13-JUL-75 and signed wp for Companylink on 25-JA0-10
KenWhite was born on 22-FEB-38 and signed up for Companylink on 10-FEB-10
Donald Perez was born on 1 4-MAR-73 and signed up for Companylink on 4 7-0CT-10
Liza Lee wwas born on 15-JUN-63 and signed up for Companylink on 20-SEP-10

Carol Clark was born on 11-AUG-67 and signed up for Companylink on 01-APR-10
Gary Moaore was barn on 01 -MO%-65 and signed up for Companylink on 06-AUG-10
Cynthia Hall wwas born on 21-0CT-55 and signed up for Companylink on 03-JAMN-10
Sandra Rodriguez was born on 10-MAY-T4 and zigned up for Companylink on 04-MAR-10
Kewin Lewis wasz born on M -JUL-7E and =igned up for Companylink on 09-tAR-10
George Taylor wwas born on 24-0EC-72 and signed up for Companylink on 06-2CT-10
Laura Thomas wwas born on 26-0CT-51 and signed up for Companylink on 07-ROW-10

It is easy to be overwhelmed with the syntax in the previous statement, but
understanding it is simply a matter of breaking it down into pieces. Remember that
these statements only execute according to the rules of SQL. Let's break down the

steps of execution for the statement:

1.

NS U N

Select the first name column.

Append a space ' ' string literal to it.

Append the last_name column.

Append the string ' was born on .

Append the dob column.

Append the string ' and signed up for Companylink on '.

Append the column signup_date.

Specify which table the column data comes from, namely the employee table.

[67]



SQL SELECT Statements

If you encounter an error when you execute your statement, go through the syntax,
one step at a time. One common mistake is to have a beginning single quote without
an ending one. Make sure you identify which elements are string literals and which
are table columns. Once we understand the rules of concatenation, the possibilities
are endless. The following screenshot demonstrates an advanced example of how
DBAs use concatenation to construct SQL statements that can be executed separately:

[ companylink @orci |
FERRO BB ¢ 001185059 seconds
select distinct 'select first name, last name from employee where branch id = ' ||

branch id || ';'

from employee :I

. 4
B> Resuts | =] Script output | BExplain | 5 Autotrace | FADEMS Output | € Giia Output
Resufts:

'SELECTFIRST _NAME LAST_NAMEFROMEMPLOYEEWHEREER ANCH_ID="|BRANMCH_ID;'
zelect first_name, last_name from employes where branch_id = 10;

select first_name, last_name from emplovee where branch_id = 13;
select first_name, last_name from employes where branch_id = 5;
zelect first_name, last_name from employes where branch_id = &
select first_name, last_name from employes where branch_id = 4;
zelect first_name, last_name from employees where branch_id = 3;
select first_name, last_name from emplovee where branch_id = 12;
select first_name, last_name from employes where branch_id = 1;

zelect first_name, last_name from employes where branch_id = 2;

(= R R N

=

select first_name, last_name from employes where branch_id = 5;

The results from this statement are completely different from those in previous
examples. In this case, our results are not data, per se, but are actually other SQL
statements. We have formed these statements using the values from the employee
table; therefore, they can differ each time we execute the statement, based on the
values for the employee table at that time. Once these statements are generated, we
can simply copy and paste them into SQL Developer and execute them one at a time,
as shown in the following screenshot:

Dbcompanyﬁuk@orcf |
FERSRS 88 & 00535739 seconds

select first name, last_name from employee where branch id = 10:

%
[ Resutts | =] seript output | BExpin | I3 Autotrace | ADBKS Output | 0w Output
Results:
FRST_NamE [ LasT_name |
1 Helen Harris

[68]



Chapter 2

You may also have noticed that we have introduced a new clause in our statement:
the WHERE clause. This is the subject of our next chapter.

SQL in the real world

The Oracle RDBMS has a special set of tables known as the data
~\l dictionary, which contains a massive amount of metadata about the
database itself, such as table and column names. It is common for
Q DBAs to use statements similar to the previous one to leverage the data
dictionary in generating their own dynamic SQL statements. This can
also be done in a different way in the PL/SQL programming language,
using a feature called NDS, or Native Dynamic SQL.

Summary

In this chapter, we've introduced our first SQL statement, the SELECT statement,
examined its syntax, and explored how it can be used in the process of column
projection. We've seen the use of the SELECT statement in projecting single columns
and multiple columns. We have looked at the DESCRIBE command and how it can
be used to display the column names for a table. We've covered the use of aliases in
changing column headings and used arithmetic operators to execute mathematical
calculations on table data. We've examined the concept of NULL and demonstrated
how to retrieve unique rowsets using DISTINCT. Finally, we've used the double pipe
symbol to concatenate string literals with table values.

Certification objectives covered

e Listed the capabilities of SQL SELECT statements

e Executed a basic SELECT statement

So far, we've focused on the topic of projection in the SQL language, which is the
process of restricting certain columns of data and displaying them in the manner we
wish. The next chapter focuses on the topic of selection, or restricting our retrieved
rowsets to certain rows of data, using the WHERE clause in SQL.

[69]



SQL SELECT Statements

Test your knowledge

1. What is the name given to the set of rules that define a programming
language's structures, symbols, and semantics?

a. Projection
b. Restriction
c. Syntax

d. If.then

2. In which of these statements is case preserved?
a. SElect * from employee;
b. select first_ name "My Name" from employee;
c. SELECT BLOG_ID FROM BLOG;
d. SelECt diSTINCT branch_ID, BRANCH_name from branch;

3. Which of these symbols is a valid statement terminator in Oracle SQL?

a. !
b. *
c.
d &

4. Which of these is not a valid SQL statement?
a. select first_ name from employee;
b. select * from message;
c. select from award_date award;

d. select website_url from website;

5. The process of displaying one or more columns from a table is known as:
a. Projection
b. DISTINCT
c. Restriction
d. Selection
6. Which of these is not a valid SELECT statement (refer to the Companylink
tables, if needed)?
a. select LAST_NAME from employee;

b. select project_description from project;

[70]




Chapter 2

10.

11.

c. select employee_id from email;

d. select address_ id from address;
Which of these is not a valid SELECT statement (refer to the Companylink
tables, if needed)?

a. select first_ name last_name from employee;

b. select employee_id, website_id from website;

c. Select DIVISION id, division_name from division;

d. select blog_id, blog_web_url from blog;
Which of these statements will satisfy the request "display the first name,
last name, and gender of all the employees in the EMPLOYEE table"?

a. select first name last_name, gender from employee;

b. select first_name, last_name, gender from employee;

c. select first_name, last_name, dob from employee;

d. select first_name, last_name gender from employee;

Which special character is used in SQL to display all columns in a table?

a. *
b [
c $
d. There is no special character to display all columns. You must list them
individually.
What command is used in SQL to display the column names of a table?
a. INSERT

b. SYSDATE
c. DISTINCT
d. DESCRIBE

Which of these statements does not make valid use of an alias?
a. select last_name "Last Name" from employee;
b. select email_address 'My Email' from email;
c. select distinct hit_count as "Hit Count" from website;

d. select dob "Date of Birth" from employee;

[71]




SQL SELECT Statements

12.

13.

14.

15.

16.

Which of these statements will produce a column header of "Blog
Description"?

a. select blog_desc "BLOG_DESCRIPTION" from blog;
b. select blog_desc 'Blog_Description' from blog;
c. select blog_description from blog;

d. select blog_desc as "Blog Description" from blog;

What is the output of the following statement?

Select 'Companylink is Very useful' from dual;

a. Companylink is very useful

b. Companylink Is Very Useful

c. Companylink is Very useful

d. companylink is very useful
Which of the following statements could be used to display the current date
on the database server (choose all that apply)?

a. select dual from dual;

b. select sysdate from dual;

c. select current_timestamp from dual;

d. select current_sysdate from dual;

e. select timestamp from dual;

Which of the following is not a valid use of mathematical operators in SQL?
a. select 20 * 2 from dual;
b. select start_date - signup_date from employee;
c. select employee_id * street_address from address;

d. select hit_count + 14 from website;

Which of the following statements will produce an error?
a. select null from employee;
b. select null from dual;
c. select 50/null from dual;

d. None of the above

[72]




Chapter 2

17. Which keyword is used in SQL to discard duplicate values?

a. DISCARD

b. DISTINCT

c. DUPLICATE
d. SYSDATE

18. Which of these statements will produce an error?

a. select''||'' || award_desc | | '' from award;
b. select first name | | '' | | last_name | | 'is a great employee" from
employee;

c. select My projectidis' | | project_id | | 'id' from project;
d. select'Award ID#' | | award_id | | ' was presented on' | | date_
awarded | | 'to employee' | | employee_id from employee_award;

19. What is the output of the following statement?

select 'All employee' || 's should rem ' || 'member to ' ||
'return their' || 'badges' from dual;?

a. All employees should remember to return their badges

b. All employees should rem member to return their badges
c. All employees should rem member to return theirbadges
d. None of the above. The statement returns an error.

20. Which of these statements will produce the following result: Always
remember your spaces when using concatenation?

a. select 'Always remember' | | 'your spaces wh' | | 'en using con' | | 'cat'
| | 'enation'

b. select 'Always remember ' | | 'your spaces' | | 'when using conc' | | 'at'
| | 'e¢' | | 'mation' from dual;

c. select 'Always remember' | | 'your spaces wh' | | 'en using con' | | 'cat'

| | 'enation' from dual;

d. select'Always remember' | | 'your spaces when' | | 'using conc' | | 'at
' | | 'enation' from dual;

[73]






Using Conditional Statements

In Chapter 2, Select Statements, we worked with various forms of projection, in which
SELECT statements allowed us to choose the columns we want to display. In this
chapter, we explore the concept of selection, which allows us to limit our datasets to
display only data that meets a certain set of conditions. Much of the chapter is spent
examining the different types of conditions we can set. We will also learn the ways

in which SQL can sort our data using the ORDER BY clause. By the end of this chapter,
we will use both projection and selection to retrieve very specific sets of data and sort
them in the order we wish.

In this chapter, we will cover the following topics:

Examining the concept of data selection

Understanding the structure and syntax of the WHERE clause
Writing selective SQL statements with equality conditions

Writing selective SQL statements with non-equality conditions
Examining range conditions with the BETWEEN clause

Examining set conditions using the IN clause

Developing statements to do pattern-matching with the LIKE clause
Understanding Boolean conditions in WHERE clauses

Examining the use of the ampersand special character in substitution
Exploring the sorting of data sets

Examining the structure and syntax of the ORDER BY clause

Understanding how to change the order of sorts using Asc and DESC



Using Conditional Statements

Implementing selectivity using the
WHERE clause

Much of our ability to manipulate the potentially large amount of data in a database
depends on restricting our data sets to exactly the data elements that we want to use.
A data set that is too small, prevents us from accomplishing our task, and one that

is too large can overwhelm our process from a performance standpoint. We now
examine how we can use a new clause to selectively return rows based on

a condition.

Understanding the concept of selectivity

In most of the examples we used in Chapter 2, every row was returned from each one
of our queries. Only when using the DISTINCT clause were we able to restrict output
to unique rows, and only if there were duplicates. If we projected the first_name
and last_name columns from the employee table, every employee's first name and
last name was returned. Until now, we had no way of displaying only the data that
met a certain condition. For instance, say that we are working with our employee
table from the Companylink database. We want to display first_name and last_
name from the employee table, but we're really only interested in those employees
who were born before 1979. Using the tools we learned in Chapter 2, we could use
this statement:

..select first name, last name, dob from employee;

However, even though the data we need is retrieved, we are faced with the prospect
of looking at each individual row and determining if the dob listed in the row meets
our criteria. For 16 rows in a table, this is inconvenient; for a table with a million
employee records, it is completely unworkable. Fortunately, the SQL language
provides us with a way to restrict data sets based on one or more conditions — the
WHERE clause.

Understanding the syntax of the WHERE
clause

The syntax tree for a basic SELECT statement using a WHERE clause is shown in the
following syntax tree:

SELECT {column, column, ...}
FROM {table}
WHERE {conditiom};

[76]



Chapter 3

Even though we haven't yet given a specific example, we can notice a few things
from the previous syntax tree. First, the basic forms of our SELECT and FROM clauses
have not changed. We still select a column or columns, and we still specify our table
name after the FROM clause. Second, we notice the position of our WHERE clause.

It always follows the FrROM clause, which follows the SELECT clause. Thus, our
conditional statements follow the form SELECT, FRoM, and WHERE. The condition itself
takes the form of 'column name-operator-value or expression'. The column name simply
refers to the name of the column that forms the condition. The operator is often a
mathematical operator, such as = or >. The value is a static value, such as the letter
F, or in some cases, a variable. If the value is a character or date value, it must be
enclosed in single quotes. An expression can also be used instead of a static value.
We will see many examples of this throughout future chapters to help us better
understand conditional statements. An example using data from the Companylink
database is shown in the following screenshot. If we were to read the preceding
statement as natural language, it might sound something like, 'Display the first name,
last name, and gender of every female employee'.

D companyiink @orci~7¥ |

FPERRAS BH ¢ 000507114 seconds

select first name, last name, gender
from enployee
where gender = 'F':

b W

[ Resutts| =] Script Output

Results:

FIRST_NAME| LAST_NAME| GENDER|

[ Explain | T Autotrace | FADEMS Output

1 Mary Willizms F
2 Linda Andersan F
3 Helen Harris F
4 Liza Lee F
5 Caral Clark F
B Cyrithiz Haill F
T Zandra Rodriguez F
g Laura Thomas F

[77]



Using Conditional Statements

Using the WHERE clause, we restrict the data returned to a certain condition; namely,
that the value in the gender column must be equivalent to the string literal value F.

How does this work? When the previously-listed statement is executed, the RDBMS
examines each row individually and evaluates the value for the gender column. If
the value equals F, the row is shown; if the value does not equal F, it is not shown.
Nothing about the row changes in the table itself; it simply is not displayed.

You are not required to project, or include, the column that is evaluated in the
condition with your selected column list. The following screenshot shows an
example of this:

[ companytink @orci~1 |

FPERRO B8 ¢ 001248874 seconds

select first name, last hame, dob
from employes
where gehder = 'M';

%
[ Rezuts| =] Script Output

Results:

EFlExplain | £5) Autatrace | ADEMS Outiut

FRsT_uane |[{ LasT nane [§ pos |

1 James Johnzon 01 -JAN-E0
2 Daniel Rohinzon Z3-MON-59
3 Matthew Garcia 14-APR-71
4 Ken White 22-FEB-55
5 Donald Ferez 14-MAR-T9
B Gary Moore 01 -MiCh 65
7 Kewvin Lewiz 01 -JUL-7E
5 George Taylor 24-DEC-T2

Notice in our example that although we're evaluating the values in the gender column,
that column is not included in our selected list. We do not need to include the gender
column in order for the statement to be syntactically correct. It is only required that the
column being evaluated be a legitimate column in the employee table.

The examples we've shown so far all have a similarity in their WHERE clause — they're
all examples of equality conditions. Each statement requires that a column value
must be equivalent to a given string literal in order for the row to be returned. An
equality condition is not the only type of condition that can be used to restrict rows
in a wHERE clause. In the next section, we examine the different types of conditions
that can be used.

[78]




Chapter 3

SQL in the real world
Remember that our goal in using the WHERE clause is row reduction;
K that is, reducing the number of rows that are returned to exactly the
Q ones that meet our specified conditions. Our success at this will be
determined by how well we utilize the various types of conditions at
our disposal. Failure to do so in real situations can cause us to return
more or fewer values than we intend.

Using conditions in WHERE clauses

As we've mentioned, the previous examples in the chapter make use of equality
conditions. That is, each column value must be equivalent to a given condition in
order for the row to be returned. However, in these examples, the equality conditions
given were only evaluated against string literals. Equality conditions can apply to
numeric and date values as well as character strings.

Using equality conditions

The following screenshot demonstrates an example of an equality condition:

[:} companylink gorci~t |
PERRO® VB ¢ 000791469 seconds

select website_desc, hit count

from website
where hit _count = YZ;

. 4
[ Resutts | [ =] Script Output | I plain |_§;‘jAmmrace | ADEMS Cutput
Results:
WEBSITE_DESC | HIT_COUNT |
1 Garyweorld! 72

[77]



Using Conditional Statements

The statement in the previous screenshot could be stated as, 'Show me the website

and number of hits for any sites with 72 hits'. It demonstrates the same syntax and use
of the WHERE clause as used with string literals. We can also incorporate arithmetic
expressions in our numeric conditions as well, as shown in the following screenshot:

[ companyiink @orci~1 I
FPEERS B8 ¢ 00115998 seconds

select *
from blog
where hit_count = 9 * Z;

il W
[ Resuts| (=] Script Output | B Explain |§.9]Amntrace |l3.[:uawls Cutput | A CiA Cutput
Resufts:
ELOG_|D | ELOG_LRL | ELOG_DESC | HIT_COUNT
1 4 hittp: Mhavewy companylink.comklewis Winter sales push blog 18

The SQL statement interprets the condition 9 times 2 as 18 and scans the blog table
for matching records. It finds the row for where hit_count is 18 and returns the
entire row, as we used the asterisk symbol (*). Any of the mathematical symbols
demonstrated in Chapter 2, will serve as a condition for the WHERE clause. Similarly,
the WHERE clause can be used to restrict rows that meet a date condition as well. See
the following screenshot that contains date conditions in a WHERE clause:

(= companylink @orci~1 [
FPERRS B8 ¢ 000347921 seconds

select first name, last name, start date, login count

from employee
where dob = 'l14-AFR-1971';

% J
B Resutts (=] script output | SExplsin | 5 autatrace | ADEMS output | €4 owwial
Results:

FRsT_NanE [§ Last nave |[§ sTart pate [ Loan_counT
1 Matthew Garcia 24-JUN-05 1145

[80]




Chapter 3

In this statement, we query for the employee's first name, last name, start date, and
their login count, where the employee's date of birth is April 14, 1971. Oracle scans

the employee table for dates in the dob column that meet this condition and returns
one row.

SQL in the real world

~\l In real-life SQL statements, dates are often expressed differently, and
Oracle does not always interpret them the same way. For instance, to
Q Oracle, a date of April 14, 1971 is not evaluated the same way as 4-14-
71. We must often use date functions in order to direct Oracle to use our
dates in the manner we wish, a topic covered in a later chapter.

In situations where we wish to return values that are null, we cannot use an
equivalence operator. This is due to the fact that a NULL has no value; therefore,

it cannot be said to be equal to anything. In such situations, we instead use the
keyword 1s coupled with NULL. The following screenshot gives us an example of
this. We might interpret the statement as, 'Display name and project ID information for
employees who have not been assigned to a project'.

[ companylink @orci |

FPERRO BB & 0132367 seconds

select first_name, last _name, project_id

from employee
where project_id IS HULL:

.. 4
[ Resutts| [ 5] Script Output
Results:

TE)Explain | £ Autctrace | ADEMS Output | (£ Ovia Output

FIRST_MAME | LAST_MAME | PROJECT_ID|

1 Helen Harris {rll
2 Ken White: {rll
3 Lisa Lee [l
4 Sandra Rodriguez {rll

[77]



Using Conditional Statements

Implementing non-equality conditions

In SQL, it is just as legitimate to query based on conditions that are not equivalent as it
is to query based on equality. For such situations, we use conditions of non-equality.
The next several examples will use the same examples shown in the section on equality
conditions and substitute non-equality conditions instead. The following screenshot
displays the first of these:

D companyiink @orci~F |

FPERRO B8 ¢ 000734339 seconds

select first name, last_name, dob
from employee
where gender <= 'M';

.. 4
[ Resutts | [=] Script Output
Results:

EHExplain |f;jAmotrace | ADEMS Output

FRsT_mave [ LasT venve |8 pos |

1 Mary Wiillisms 15-MAR-G4
2 Lincla Anderson 24-0CT-70
3 Helen Harriz A3-JUL-75
4 Lisa Lee 15-JUN-63
5 Carol Clark 11-AUG-E7
B Cynithiz Haill 21-0CT-55
7 Sandra Rodriguez 10-MaY-74
8 Laura Thomas 26-0CT-31

This screenshot introduces the first of our non-equality conditions — not equal to'. In
Oracle's implementation of the SQL language, not equal to is expressed as <> (a 'less
than' sign paired with a 'greater than' sign). Alternatively, it can be written as !=. In
this example, we display all rows where the gender column does not hold a value
of M. As before, Oracle scans the table, evaluating the gender column; but, in this
statement, instead of displaying rows that have a gender column value equivalent
to M, it displays rows that are not equivalent to M:

3> companylink @orci~1 |
FERR O B8 & 001117404 seconds

select website_desc, hit_count
from website
where hit count > 72;

%
(= Resutts | [=] Soript Output

Results:

TEExplain _ﬁajAututrace| FDEMS Output

WEBSITE_DESC | HIT_COUNT |
1 Jims nesy site 234
2 Mstts cool wehsite g5

[82]



Chapter 3

The preceding example makes use of the 'greater than' symbol (>) to evaluate
values greater than a given numeric value. This statement could be read as Display
website and hit count information for all sites with more than 72 hits. Note that, as in
mathematics, the use of the 'greater than' sign is non-inclusive; it will not match
records equal to 72, only those of greater numeric value. For inclusion, we would
need to use the symbol shown in the following screenshot. This example introduces
the less than or equal to condition, expressed as <=:

[ companytink @orci~1 |
FERRO B8 & 001266558 seconds

select website_desc, hit_count
from website
where hit count <= 72;

. 4
(> Results | (5] soript Output | SExplain | 5 autotrace |[FDEMS Cutput
Results:
WEBSITE_DESC | HIT_COUNT |

1 Desktop rollout project site G4

2 The Perez site 48

3 Garyworld! 72

4 Winter sales push project site 14

5 Cynthia Hallz wehsite 24

6 Operations Branch wwebsite g

As you can see by the results, this statement is inclusive, returning the rows where
hit_count is equal to 72, as well as those of lesser numeric value. While it may
seem odd, conditions of non-equality can be used with string literals as well. In the
following screenshot, we've requested the first and last name of all employees with
a last name that is greater than or equal to the string literal, Perez'":

Dcompanyﬁnk@orchf |
FPERRO BB ¢ 000710509 seconds

select first_name, last_name
from enployee
where last_name »= 'Perez';

av
B> Resuts [=] Seript output | B Explain |§]Autotrace | FADEMS Output
Results:

FIRST_NAME | LAST_NAME|

1 Mary Willisms
2 Daniel Rohinzon
3 Ken White:

4 Donald Perez

5 Sandra Rodriguez
E George Taylar

7 Laura Thomas

[77]



Using Conditional Statements

In this circumstance, the query first breaks down the literal Perez

into its ASCII values. American Standard Code for Information

Interchange (ASCII) values are the numeric values assigned to all
%‘ characters so they can be interpreted by computers. Once Oracle has

translated the character values into numeric ASCII values, it adds them

together. The resulting sum is used as a comparison value from which

to determine whether the condition is satisfied.

In the end, any values in the last_name column are returned if the last name is
greater than the string, 'Perez'. It is important to understand that comparisons such
as these are legitimate statements and can be used when the situation calls for it:

D companylink @orcl ‘

FEREO B8 ¢ 0031857 seconds

select employee_id, date_awarded
from employee_award
vhere date_awarded >= '06-APR-Z2003';

avw
[ Resuts| [ seript Output | ) Explain |_F;jAutmrace | FDBMS Output
Results:

eMPLOVEE D [§  DATE_swiaRpeD |
7 25.0CT-06
13 06-4PR-03
14 07-JUL-07
16 25 FEB-04

R

This screenshot introduces the idea of using non-equality conditions with date data.
Remember that although dates are enclosed in single quotes just as string literals,
they are not interpreted as character strings. This example could be read, Display the
employee ID number and date of award for all employees who received an award on or after
April 6, 2003. When we direct Oracle to produce values that are greater than or equal
to a given date, the values retrieved will be either the same as the date stored or later
than the given date. Thus, when dealing with dates, greater than is interpreted as
later than, while less than is earlier than.

When dealing with conditions in a WHERE clause, it is often useful to compare the
values of two columns instead of comparing a column to a literal value, as we've
seen so far. The following screenshot demonstrates this idea:

[84]




Chapter 3

D companyhinkdorci~T

FPERAD BB & 000007314 seconds

from employee

where signup date < last login date:

select first_name, last_name, signup_date, last_login date

AW

Results:

[ Resuts [] Seript Output | B Explain |_§.1jALAtotrace | ADEMS Output | 2 o, outpt

B FrsT_Mame | LAST_NAME| S\GNUP_DATE| L&ST_LOGIN_DATE

1 James

2 Mary

3 Linda

4 Daniel

5 Helen

& Ken

7 Donald

& Lisa

a Carol
10 Gary
11 Cyrithis
12 Sandra
13 Hewin
14 George

13 Laura

Johnzon
Williams
Anderson
Robinzon
Hartiz
White
Perez

Lee

Clark
Moore
Hall
Rodriguez
Lewis
Taylar

Thomaz

O1-Jar-10
28-J8N-10
01-APR-10
23-FEB-10
25-JAN-10
10-FEE-10
A7-0CT-10
20-ZEP-10
01-APR-10
0B-A11G-10
03-JA&N-10
04-MAR-10
03-MAR-10
05-0CT-10
O7-HOY-10

T4-JAN-11
19-JAN-11
31-DEC-10
O5-JUR-10
12-JAN-11
F1-JAN-11
T1-NOV-10
10-0CT-10
22-SEP-10
31-DEC-10
31-DEC-10
31-0CT-10
14-0CT-10
23-DEC-10
12-JAN-11

In this example, we've implicitly requested that our query scan through the
employee table and return values where the signup_ date is earlier than the

last login_ date. This, of course, returns all the rows in the table, since the fact
that an employee has a last_login_ date implies that they have already signed up

for Companylink.

SQL in the real world

Oracle stores information in date columns not only with date
information, but with time as well. It's important to note that, in quality

. conditions involving dates, two dates are only equivalent if every part

% of the date, including day, month, year, hour, minute, and second
A~ information, is equal. Many date columns are commonly populated

with the value for SYSDATE, so the time information can be important
as well. In situations involving equivalent date conditions that are not
returning the rows that you think they should, check to see if the time
information may be the reason.

[77]



Using Conditional Statements

Examining conditions with multiple
values

Often in SQL, retrieving the desired data depends more upon matching multiple
values than it does on matching a single value. SQL allows us to do this in several
different ways. In this section, we examine the use of range conditions,

set conditions, pattern-matching, and Boolean operators.

Constructing range conditions using the
BETWEEN clause

Say that we want a list of the employees who have logged in to the Companylink
site. However, we want to restrict this list to only those who have logged in at least
1,000 times, but no more than 2,000 times. Using what we know of WHERE clauses so
far, how would we do this? We actually have two conditions that must be met for
our result set to meet our requirements. There are multiple ways we could do this,
including Boolean conditions, but, for now, we examine the use of a new clause — the
BETWEEN clause:

D- companylink @orci~J¥ |
FERRO 88 ¢ 001269956 seconds
select first name, last name, login count
from enployee
where login count hetween 1000 and zZ000;
..
[ Resutts | 5] Script Output | B Explain |f;,:j.&utatra::a | ADEMS Output
Resultts:
FIRST_M&ME | LAST_MNAME | LOGIN_COUNT |
1 Linda Andersan 1245
2 Daniel Robinzon 1220
3 Matthewr Garcia 1143
4 Danald Perez 1025
3 Liza Lee 1943
& Caral Clark 1123
7T Gary Moore 1495
& Cynthis Hall 1478
9 Sandra Rodriguez 1021
10 Laura Thamas 124

[86]



Chapter 3

While the syntax of the BETWEEN clause is fairly natural sounding, it's important

to understand several points about how it fits within the overall structure of a
conditional SQL statement. First, the BETWEEN clause follows the WHERE clause and
expects two, and only two, conditions. The first condition is the lower bound for

the result set, while the second is the upper bound. Second, the BETWEEN clause

is inclusive; that is, the values for the upper and lower bound are included in the
result set. Thus, the statement in the previous screenshot evaluates to greater than or
equal to 1,000 and less than or equal to 2,000. Third, the order of the bound values is
important. If you were to rewrite the statement as where login_count between 2000
and 1000;, no rows would be returned, as there are no values greater than 2000 that
are also less than 1000.

One common use for the BETWEEN clause is to specify a date range and to return
values that fall within that range. For instance, we want to display name information
for employees who last logged into the Companylink site during the calendar year
2010. We could write a SQL statement utilizing the BETWEEN clause, as shown in the
following screenshot:

D COMpIRyHnk porch |

ERRO B3 ¢ 019992933 seconds

select firat_name, last_name, last_login_date
from enployee
where last_login date BETWEEW 'O01-JAN-2010' and '31-DEC-2Z010';

. 4
B> Resuts| [ =] Script Output | 55 Explain |__§.:'jAmotrace | FADEMS Cutput | @ oivias Output
Results:

FRsT_Mawe [ LasT ame [ LaST_LoGIN_DATE |

1 Linda Ancderson F1-DEC-10
2 Daniel Robinson 06-JUM-10
3 Matthesas Garcia 0E-APR-10
4 Donald Perez 11-RON-10
S Liza Lee 10-0CT-10
& Carol Clark 22-SEP-10
T Gary hoore 31-DEC-10
8 Cyrthia Haill H-DEC-10
9 Sandra Fodriguez 3-0CT10
10 Kewin Lewis 14-CCT-10
11 George Taylar 25-DEC-10

The query returns the requested information for 1ast_login_date values that fit
the given range. No results outside of that range are returned. It is important to note,
however, that this query introduces a common mistake when dealing with date
ranges. It could potentially exclude some values that should actually be included.

[77]



Using Conditional Statements

Remember that in Oracle, date columns store not only date information,
. but time as well. As we have specified no time information in our
range, the statement is interpreted as values between 01-JAN-2010 at
e time 00:00:00 and 31-DEC-2010 at time 00:00:00. Thus, any values after
31-DEC-2010 from time 00:00:00 onwards, such as those inputted at 4:00
PM, would be excluded.

Another possibility would be to write the where clause as follows:

..where last login date between '01-JAN-2010' and 'O1-JAN-2011"';

However, this introduces a different problem; namely, that more data might be
included than we desire. In this case, any employees that logged in on 01-JAN-2011,
at time 00:00:00, would be included. Always be conscious of this issue when dealing
with date values.

Although the between clause can be used for character values, there are few
real-world reasons to do so. As the BETWEEN clause only evaluates string literals
after breaking them down into their ASCII values, it computes them as essentially

a greater than or equal to, less than or equal to. To state that an 'A' is less than a 'G'
generally has limited usefulness. However, it can be done, as shown in the following
example. Remember, as always, that inside of single quotes, characters

are considered case-sensitive:

D companyiink borcy |

FPERCRS B8 ¢ | 002980518 seconds

select first name, middle initial, last name
from euployees
where middle_initial BETWEEH 'E' and 'P';

.
[ Resutts [ =] Script Output | T Explain |_F;jAmutrace | ADEMS Output

Results:

FRsT_name |§ MoOLE_mmiaL [{ LasT_nane |

1 Linda L Anderson
2 Daniel J Robinson
3 Matthew K Garcia

4 Helen H Harriz

5 Caral bl Clark

G Kewin L Lewviz

7 Gearge H Tavylar

g Laura | Thomaz

[88]



Chapter 3

Using the IN clause to create set conditions

Although range conditions are very useful, it is often just as advantageous to be able
to return data based on a more specific set of conditions. Say, for instance, that we
want to return data on those employees whose address is in one of four states: MO,
KS, IA, or SC. To do this, we could request data where state is equal to MO, KS, IA,
or SC, using Boolean values, which is explored later in the chapter. But, evaluating
simple lists of conditions in this way is often cumbersome and requires more coding
than is necessary. Similarly, we could use a BETWEEN with our WHERE clause, as in the
following code snippet:

. .BETWEEN 'IA' and 'SC'

Unfortunately, that could return more values than we actually require, such as
values for OK. A more straightforward way is to use the 1N clause, which is shown
as follows:

D companyiink oorch |
FERERO B8 ¢ 001373775 seconds
select atreet_address, city, state
from address
where state IM ('MO', 'ES', 'Ia', 'SC'j:
|
[ Resutts| [=] Script output | 55 Explain | B Autotrace | ADEMS Cutput
Resuts:
sTreeT_sporess (@ orv (B sTate
1 123 First St Lenexa KS
2 234 Fifth St Owverland Park KS
3 345 Cedar Ln Mission KS
4 456'Washington Ave  Independence MO
5 967S Hill 5t Lees Summit MO
G 324 Elm St Lenexa KS
¥ 9234 Park Place Leawood KS
g 253 Fourth St Kansas City MO
9 111 Maple Rd Edweardszville MO
10 234 Lake Rdd Topeka 18]
11 855 Eighth St Des Maoines  |A
12 857 Oak St Waldo R
13 7543 Pine Rd Martin City R
14 5234 Seventh St Grandviesy MO
15 324 Third =t Piper K=

[77]



Using Conditional Statements

As with the BETWEEN clause, we see that the syntax for the 1N clause is fairly '
natural-sounding'. We request matching data where the row value for state is in

a given list of values. These values are listed within parentheses, separated by
commas. As always, if the values are string literals, they are enclosed in single
quotes. When querying with the 1IN clause, only those rows that match the given

list of values will be returned. That fact is borne out in our example, where, as there
is no match for the given value 'SC', no data for that value is returned. The 1IN clause
can be similarly used with numeric values, as shown in the next example. We could
read this as Show me the e-mail addresses of those employees with an employee ID number
of1,2, 0r9:

D- compIRyiink morcs |

FPEEARS BB ¢ 002133483 seconds

select email address, employee_id
from email
where employee_id IH (1, Z, 3);

b W

> Resutts | =] Script Output
Results:

[H)Explain | £ Autatrace | ADEMS Output

EM&IL_ADDRESS | EMPLOYEE_|D |

1 jiohnson@ocompanylink .com 1

2 jiohnzoniggmail.com

3 mewilliama@ocompanylink .com

1
2
4 lleei@companylink .com g
5 lleei@gmail.com 9

9

6 lleei@yahoo.com

As indicated in the figure caption, this query displays values where the Employee id
matches the numeric values 1, 2, or 9. One interesting point to note about this query
is that, although there are three matching conditions (1, 2, or 9), more than three
values are returned. When, in cases such as 1 and 9, the Employee 1D column has
more than one occurrence of a particular value, rows for each of these matching
values are returned. For example, there are three occurrences of the value 9 in

the Employee_ID column in the email table. Thus, in our output, three rows are
returned that match the value 9. The IN clause can be used with date values as well,
although we must take care to list date values that exactly match our requirements.
Time information must be taken into consideration as well.

[90]



Chapter 3

Pattern-matching conditions using the LIKE
clause

Sometimes, as with the IN clause, we want our row values to match a very specific
group of conditions. At other times, it is preferable to match values based on a
broader set of conditions. In such situations, we can make use of SQL's powerful
pattern-matching capabilities using the LIKE clause, as shown in the following
screenshot follows. We could interpret this statement as, Show me the employees whose
last names begin with the letter R.

3= companylink @orcl |

ERRO BB ¢ 001407944 seconds

select employee_id, first name, last _name

from employee
where last _name LTEE 'B%';

.
B Resutts| (5] script Output | BRIExplain
Results:

) autotrace | ZADEMS Output

EMPLOYEE_ID | FIRST_MAME | L.&ST_N.&ME|
1 4 Daniel Rokinson

2 13 Sandra Rodriguez

In Oracle's implementation of SQL, pattern-matching is done with two characters:
the percent sign (%) and the underscore (_), often referred to as wildcard characters.
The percent sign (%) is used to match any number of characters. Thus, our query that
requests LIKE 'R% ' returns any values for last_name that begin with an uppercase
R and have any number of characters following the R (or no values at all). Thus, the
percent sign matches values such as Robinson and Rodriguez, but would also match
string literals such as Raines, Richards, or even just R, if such data existed in our
table. The only requirement for matching is that the value begins with an uppercase
R. We can also use multiple occurrences of the percent sign for pattern-matching, as
shown in the next example.

[77]



Using Conditional Statements

Here, we pattern-match using multiple percent signs and the LIKE keyword:

Dcompanyﬁnk@orcl’ |
FFERERS BB ¢ | 002443523 seconds

select first name, last name, dob
from employee
where firat_name LTEE '%i%a’;

. 4
B> Resuts| [ script output | EExplsin |§}Aututrace |I3DBMS Output
Resufts:

FIRST_NAMEl LAST MAME | DOB |

1 Linda Anderson 24-0CT-70
2 Lisa Lee 15-JUN-63
3 Cyrthia Haill 21-00CT-55

This statement is evaluated as follows. Oracle searches through each value in the
First_Name column and matches all values that contain any number of characters,
then a lowercase i, then any other number of characters, and ends with the letter a.
Because the percent sign matches any number of characters, the first occurrence of the
letter i doesn't need to be the second character in the name. It could be second —as in
the case with Linda and Lisa, but it also matches cynthia, where the occurrence of
the letter i is the sixth character in the name. It is only required that one occurrence of
the letter i appears in the name and that the name ends with the letter a.

While pattern-matching of any number of values can be done with the percent sign,
when we want to use a single character as a wildcard, we use the underscore symbol
(L), as shown in the following screenshot:

Dcompﬂwyﬁnk@orc! I
FPERRO® B8 ¢ 001805146 seconds

select first name, last_name, start_date
from enploves
where first name LIEE '_ary':

rS. 4
(> Resutts (=] Script output | EExpisin |§]Autmra-:e ||3DBMS Output
Results:

FRsT_Name |§ LasT_neme (B sTarT_Date |
1 Maty Willizms 24-APR-89
2 Gary Moore 12-FEB-04

[92]




Chapter 3

This example matches row values according to this rule: the value must begin with
any single character and end with 'ary'. Thus, the names Mary and Gary are a match,
while a name like 'Shary' would not, as there are two characters, 'Sh', before the 'ary’
in the name. Both the percent sign and the underscore can be used together in the
same condition, if desired.

Although it is much more common to use pattern-matching and LIKE with string
literals, it can be done with numeric and date values as well, as the following two
examples show. The first could be interpreted as, Display all employees whose birthday
is in November. It uses pattern-matching with a date value. The second could be read
as, Show all addresses whose zip code begins with a number 3.

[}companyﬁﬂk@orc! I
FPERRO B8 ¢ 000483415 seconds

select first name, last_nhame, dob
from eumployee
where dob LIEE 'ZNOVS';

% 4
[ Resuts | =] script Output | B Explsin |E}Autotrace |IEDE:MS Cutput
Results:
FIRST_MAME | LAST MAME | DOE |
1 Daniel Rakinzan 23-MiC-529
2 Gary Moore 01 -MiCh-Ga

D- companylink @orct [
FERRO B8 ¢ 001340953 seconds

select atreet_address, city, state, zip

from addressz

where zip LIEE '3 g
.
B Resutts | [ =] script Output | B Expisin |-‘§-..a} Aitotrace |I3DE:M5 Cutput
Results:

sTReeT_aporess @ cmv | sta|@ ze|

1111 Maple Rd Edvwardzville MO 35870
2 153 Main St Tulzs QI 36540
3 7543 Pine Rd Martin City WO 32736

[77]



Using Conditional Statements

The second of the two examples demonstrates the use of multiple underscore
characters in pattern-matching. The LIKE clause indicates the number 3 followed
by four underscores. As all of our zip code values have five digits, we know that a
3 followed by any four numbers will match. The condition shown in the previous
example is analogous to the query shown in the following screenshot, which uses
a percent sign instead:

[} COMPIRYIRE Dorck |

ERRO B8 ¢ 000746855 seconds

select street_address, city, state, zip

from address
where zip LIKE '3%':

%, 4

[:} Results J Soript Cutput
Reszuts:

E5)Explain | 1) Autctrace | ADEMS Output

street_sporess § oty [B state |l ze|

1 111 Maple Rd Edweardzville WO 35570
2 153 Main St Tulza 8134 35940
3 7543 Pine Rd Martin City WO 32736

For the certification exam, you should be prepared to evaluate complex conditions
using both the percent sign and underscore characters.

Understanding Boolean conditions in the
WHERE clause

The last of the condition types that we will examine are Boolean conditions. In

SQL, the Boolean conditions at our disposal are similar to those used in logical
mathematics. We use them to attach multiple conditions to a particular query. To
accomplish this, we make use of Boolean operators, sometimes referred to as logical
operators. There are three primary Boolean operators available to us in SQL — the OR,
AND, and NOT operators.

[94]



Chapter 3

Examining the Boolean OR operator

For situations in which we want to return rows that meet any given condition, we
make use of the Boolean ORr operator. As an example, if we attempt to list objects that
are either red in color or a fruit, objects such as apples, stop signs, pears, bananas,
roses, and fire extinguishers would all suffice, as each of these is either red in color
or is a fruit. In a Boolean OR statement, at least one of the conditions must be met in
order for it to be evaluated as true.

If we apply this idea to the Companylink database, we might attempt to write a
query that returns all employees whose first name is either 'Kevin' or 'Carol'.
The following example lists such a query. It is structured in such a way as to
emphasize syntax.

D- companylink porcl |

FERRO B8 ¢ 000704507 seconds

select first_name, middle_initial, last name, last _login date
from employes

where
first_name = 'Fewin'
115
first name = 'Carol':;
il W
[ Resutts| =] Script output | B Expiain |_F;]Amotrace | ZLDBMS Output | € civvca, outpu
Rezults:

FIRST_MAME | MIDDLE_IMITIAL | LAST_MAME | LAST LOGIN_DATE
1 Caral M Clark 22-SEP-10
2 Kevin L Lewis 14-0ZT-10

In this example, we return two rows: one where First_Name is Kevin and another
where First Name is Carol, as these two rows meet at least one of the conditions.

[77]



Using Conditional Statements

The real advantage of Boolean operators becomes apparent when we use
them to concurrently evaluate conditions on different columns, as shown in
the next screenshot:

Dcompanyﬁnk@arc! |
FPERRDO B8 ¢  001956202sconds

select first name, middle_initial, last name, lazt login_ date
from employee
where

gender = 'M!

OR

niddle_initial = 'L';

F %
B> Resuits| (=] script Output | B Explain | 59 autctrace | F0EMS outout | @) owe outout

Results:

FIRST_MAME | MIDDLE_[MITIAL | LAST_MAME | L&ST_LOGIN_DATE

1 James R Johnzon 14-JAMN-11
2 Lind=s L Anderzon F1-DEC-10
3 Daniel J Rokingon 0&-JUr-10
4 Matthew K Garcia 0&-APR-10
5 Hen W Wit 3 -JAN-11
& Donald ) Perez 11-MO-10
T Gary F oore 31-DEC-10
g Kewin L Lesivis 14-0CT-10
9 Gearge H Taylor 25-DEC-10

Here, we evaluate conditions that apply to two different columns —gender and
middle_initial. In order for the row to be returned, it requires that the gender
column has a value of M or that the middle initial column has a value of L. If
either of these conditions is satisfied, the row will be returned.

[96]



Chapter 3

Understanding the Boolean AND operator

The Boolean AND operator is used in situations where we wish to return rows in
which multiple conditions return a value of true. For example, if we wanted to list
objects that are both red in color and are also a fruit, an apple would meet both
conditions, as an apple is both red and is a fruit. A pear, on the other hand, would
not. While a pear would meet one of the conditions, as it is a fruit, it does not meet
the condition that the object be red in color. When using the Boolean AND, both
conditions must be met in order for the statement to evaluate as true.

In our companylink database, we might wish to query for female employees that
started work after January 1, 2004. A query that satisfies these requirements is shown
in the following screenshot:

[ companyiink @orcy |

FERRS 8B ¢ 001852281 seconds

select first name, last name, Jgender, start date
from employes
where

gender = 'F!

and

start_date > '01-JaN-=2004';

|l W
[ Resuts | =] soript Output | EAExplain |_§:]Autcdrace | TLDBMS Output | 0 e, Cutput
Results:

FRsT_Nane |B LasT mave [§ cencer [B sTaRT DaTE|

1 Linda Anderson F 25-MaN-04
2 Helen Harris F 22-JUk-04
3 Cynthia Haill F 12-DEC-03
4 Sandra Rodriguez F 04-A1LG-09
S Laura Thomas F 14-FEB-0G

The previous query allows us to use a Boolean AND along with conditions for
multiple columns. This allows us to form query conditions on two different types

of data—Gender and start_Date. Only rows that meet both conditions will evaluate
as true.

[77]



Using Conditional Statements

The Boolean NOT operator

Our last Boolean operator is the logical NOT. A NOT operator negates the condition
that follows it. Thus, the condition itself must evaluate as false in order for the
statement to evaluate as true. It's not as confusing as it might sound. An example is
shown in the following screenshot:

D conpanylink @orcl |
FPERBO B8 ¢ 00075137 seconds

select first_name, last name, branch id
from employee
where first_name HOT like 'B%':

.. 4
B Resutts| & scriot cutout | BExplain |_§¢'j Autetrace | FADEMS Output | (€3 Ovia Output
Results:

FRsT_name B LasT nave [ Branc |

1 James Jobnson g
2 Mary Willizms 2
3 Linda Anderson 1
4 Daniel Rohinzon 2
5 Matthesw Garcia 3
& Helen Harris 10
7 Ken White 4
& Donald Perez 1
9 Lisa Lee ]
10 Carol Clark 2
11 Gary Moare 3
12 Cynthia Hall 3
13 Sandra Rodrigusz 13
14 Kevin Lewviz 8
15 George Taylor 12
16 Laura Thomas 12

The easiest way to interpret this query is to first evaluate the statement without the
NOT operator. As we saw earlier in the chapter, the clause 1ike 'R%' will pattern-
match all the values in the First Name column that begin with the letter R. When

we add the logical NOT operator, the opposite is true. The clause Not 1ike 'R%' will
match all the values that do not begin with the letter R. Thus, the statement is the
logical opposite of its predecessor. A NOT operator can be used with conditions of
equality and the LIKE, BETWEEN, and IN clauses. An example of NOT with the BETWEEN
clause is shown in the following screenshot:

[98]



Chapter 3

D Companyiink @orcl |

FERRO 88 ¢ 000580773 seconds

from ewployee

select first name, last name, login count

where login count HOT hetween 1000 and =000;

-

Results:

B> Resuts| [ serint output | T Esplain |f;].&.utotrace | ZADEMS Output

FIRST_NAME | LAST MAME | LOGIN_COUNT|

1 James Johnzon
2 Mary Williams
3 Helen Hatriz
4 Ken White
3 Kevin Lewvis
B George Taylor

2135
2143

95
66
295
795

This example is similar to one we used earlier in the chapter, as an example of the
BETWEEN clause. However, this example utilizes the logical NOT operator. As the
clause between 1,000 and 2,000 would match values greater than or equal to 1,000, or
less than or equal to 2,000, the NOT between 1,000 and 2,000 matches values less than
1,000 or greater than 2,000 —all the values not encompassed by the first example.

Boolean operators can be used together or in conjunction with parentheses for
grouping, in order to form complex statements with many conditions. In these
cases, we must be mindful of the order of precedence in SQL. A short list of this

order is as follows:

e Parentheses

e Mathematical operators

e Equality, inequality, and not equal conditions (in that order)

¢ Boolean operators

[77]



Using Conditional Statements

Be aware of this order of precedence when examining the next example. It is an
advanced statement that makes use of many of the types of conditional operators
used in this chapter. It displays employee information for employees that meet

several complex conditions, including;:

Female employees with a start date earlier than or including Jun

as shown as follows:

e 11, 2003

Or male employees who started prior to that date and employees with a date
of birth between March 1, 1965 and January 1, 1975, provided that their login
count is higher than 900, unless they have a first name listed in the conditions

[} COMPIRYIRE @orcs |

PERRAO BBE ¢ 000421285 seconds

select first name, last name, dob, start_date, login_count
from employee
where
(HOT (gender = 'F') amd start date »= '11-JUN-2003')
or
[gender = 'F' and start date <= '11-JUN-2003')
and
dob hetween '01-MAR-1965' and '01-JAH-1975°
or
first name in ('Moore','Clark', 'White','Ferez')
and
laogin_count > 900
and
last_name not like

12,

Fel;

s

B> Resuts | [ script Outiut | BExpiain | 59 autotrace | FDeMS output | ) owia output
Resutts:

FIRST_NAME| LAST_MAME | DOE | START DATE | LOGIN_COUNT

1 Matthew: Garcia 14-4PR-71 24-JUN-05
2 Ken Wihite 22-FEB-58 16-SEP-03
3 Donald Perez 14-MAR-79 30-JUL-05
4 Carol Clark 11-8UG-67 12-J8N-01
5 Gary Moore 01-MOW-B5 12-FEB-04

1145

366
1023
1123
1495

[100]




Chapter 3

Using ampersand substitution with runtime
conditions

In the examples we have used so far, each of the statements had their conditions set
before the statement was executed. At the moment of execution, the condition was
read and the output determined —no other input was required or allowed from the
user. We say that statements such as these have their conditions hardcoded — there is
no variation in the condition at runtime unless we specifically rewrite it and execute
it again. However, in Oracle, we are allowed to vary conditions at runtime using a
substitution variable. Runtime substitution variables are denoted in Oracle using the
ampersand (&) character.

The following screenshot uses an ampersand variable that prompts us for a value
at runtime:

[ companylink @orct |
FPERERS® B8 ¢

select wehsite_desc, hit count
from website
where hit_count <= &num hits;

% 4
B> Resutts| [ =] script Output | S Explain | 39 autotrace | EDEMS output
Results:
WEESITE_DESC | HIT_COUNT |

1 Desktop rollout project site B4

2 The Perez site 45

3 Winter sales push project site 14

4 Cynthia Hallz wehsite 24

5 Operations Branch website 9

When we run the previous statement, we're prompted with a window that looks like
the one shown next:

Enter Substitution Variable E|
UM _HITS:
70 |
| Ok J | Cancel |

[77]



Using Conditional Statements

We can put any numeric value into this prompt that we wish. We are being asked
at runtime what numeric condition we want to use, instead of hardcoding it into
the statement itself. If, as shown, we enter the number 70 into the prompt, we see
the data restricted to the condition less than or equal to 70. If we run the statement
again, we are prompted again and can enter a different value, such as 35, to yield
different results, giving us freedom to enter conditional values at runtime as we
wish. Note that the prompt we see, NUM_HITS, is reflected in the name of the
substitution variable, snum_hits. Always name your substitution variables in a
way that indicates the value for which you are prompting. You can also put more
than one ampersand variable into a single query if you need to prompt for multiple
conditions. You will be prompted for the first, then any subsequent conditions. If
the values are listed in multiple places in the statement and the values you enter are
the same, you can use the double ampersand (&&) substitution symbol. Additionally,
substitution variables can be used for elements other than where clause conditions,
including the column names for a select statement and table names.

SQL in the real world

While substitution variables might seem convenient, they are not
M commonly used for the simple reason that they require the user to
actually input values, instead of running in batch mode. Substitution
Q variables are more commonly used during development, usually for
prototyping, when the ability to test different input values is desired.
However, although it is not often used, it is covered on the exam, so it
is important that you understand the concept.

Sorting data

One of the most common uses of datasets that have been extracted in the manner
we have seen in this chapter is for reporting. Reporting is one of the cornerstones
for data usage in today's world, and the ability to sort data in ways that display it
for a certain purpose is often crucial. Data that has been extracted by using one or
more of our selection methods is useful, but the ability to sort the data adds another
dimension to the usefulness of that data.

Understanding the concepts of sorting data

In Oracle, standard tables are referred to as heap-organized tables, which means that
the data within them is stored in the order that it was written in. For instance, if 1
insert data rows into a simple table in the following order —orange, apple, plum —then
that is the default order in which our SQL statement will return the data. If we wish

to influence this default ordering, we must sort the data. Sorting is the ability to take

[102]



Chapter 3

unordered datasets and display them in a manner consistent with a specified order,
such as by date or numeric value. The Oracle architecture is designed to make sorting
operations perform at a high level, even utilizing special memory structures to do so.
Oracle is capable of doing both numeric and lexicographic (or alphabetic) sorts.

Sorting data using the ORDER BY clause

Take a simple example from our Companylink database. We wish to display the

list of employees from our employee table, but we want to see them displayed in
alphabetic order by last name. To do this, we use the ORDER BY clause. Its syntax tree
is shown as follows:

SELECT {column, column, ...}
FROM {table}

WHERE {condition}

ORDER BY {column, column, ...};

In Oracle, when an ORDER BY clause is used, the data is fetched from the database,
and then sorted in the requested order, using its internal architecture. Note that the
ORDER BY clause does not restrict the data returned in any way; it merely displays it
in the order requested. The ORDER BY clause must also always follow the FrROM and / or
WHERE clauses and is always the last clause in a SELECT statement. It is also important
to understand that our sort conditions are not limited by the columns specified in the
SELECT clause:

[ companyiink@orcs |
FPERRO B8 &  cosmosseconds

select last name, first_name, dob
from ewmployee
OBRDER. BY last name;

av
D> Resuts| =] Scrint outiut | FRExplain |_E:.'jAl,ltDtracE | ADEMS Output
ResUlts:
Last nave [§ Fret nave [§ oos |
1 Anderson Linda 24-0CT-70

2 Clark Caral 11-AUG-67
3 Garcia Matthew 14-APR-71
4 Hall Cyrithia 21-0CT-55
5 Harris Helen 13-JUL-75
B Johnsan James 01-JAM-B0
7 Lee Lisa 15-JUM-63
& Lewis Kewvin 01-JUL-78
9 hloore Gary 01-MOY-B5
10 Perez Donald 14-MAR-TS
11 Robinzon Danizl 23-MOY-58
12 Rodriguer Sandra 10-MAY-T4
13 Taylor Gearge 24-DEC-72
14 Thomas Laura 26-0CT-81
15 White Ken 22-FEB-58
16 Wiliams Mary 15-MAR-64

[77]



Using Conditional Statements

In the previous example, we selected the Last_Name, First_Name, and DOB columns.
However, if desired, we could have selected only the First_Name and DOB columns
and still ordered the returned dataset by Last_Name. It is not required that we
display the column by which we sort, although it is common to do so. As you can
see, the requested data is returned and sorted in alphabetical order by the employee's
last name. Remember that sorting is not limited to numeric data —it can be used with
dates and string literals as well.

Changing sort order using DESC and ASC

When using the ORDER BY clause, the default behavior is to sort the data in ascending
fashion. However, by adding the DESC clause to our ORDER BY, we can reverse the
sort, as shown in the following screenshot:

|>- companylinkiporcl |
FERRO B8 ¢ 00472281 seconds

select blog desc, blog url, hit count
from blog
OBDER. BY hit count DESC:

. 4

[ Resuts | [5] script Output | BExplain | 5 autotrace | ZLDBMS Output | % e, Output

Results:

ELOG_DESC @ eLoc_ R |8 Hr_counr

1 Jims blag hittp: My companylink .comidblogfiohnson 123
2 Mattz cool blog http: ffnenewy companylink.comimgarcia 56
3 Desktop rollout progress blog Hitp: haewewe companylink .comblogimwilisms 32
4 Garyhlog! http: iy companylink.comdlogigmoore 24
5 Winter sales push kblog http: fneeewy companylink .comikleswis 18

[104]



Chapter 3

This example demonstrates a descending sort. As we can see, the data is sorted with
the largest numeric values at the top and continuing with subsequently lower values.
Although ascending sort order is the default behavior, we can still specify it using
the Asc clause. When we do, the sort behaves just as if we had specified neither Asc
nor DESC. In the next example, we demonstrate this, but we also add a WHERE clause
to restrict output:

Dcompaﬂyﬁﬂk@orcf |
PERRO BB ¢ 00055625 seconds

select blog_desc, blog_url, hit_count
from blog

where hit_count > 30

OBRDER. BY hirt_count ASC;

W
B> Resutts| [ Script Output | FExplain | B autatrace | ADEMS outout | ) ovwa, output
Results:
ELOG_DESC | ELOG_LRL | HIT_COUNT
1 Desktop rollout progress hlog kittp: ey companylink camblogiviliams 32
2 Matts coal blog http: Sy companylink comitmgarcia 56
3 Jims blog http: itnewewy companylink .comblogfjohnson 123

The result returns only three rows, as we have restricted the number of rows to only
those matching the condition, greater than 30. We also display the rows ordered by
an ascending value for Hit_Count, where lower values are listed first.

[77]



Using Conditional Statements

Secondary sorts

It is often advantageous to do a 'sort within a sort' when displaying large amounts

of data. When we do this, we sort by one value, and then sort any remaining
duplicate values by another value. For instance, say that we want to display
employee information sorted by the company branch ID to which employees
are assigned. To do this, we might use a query like the one listed in the
following screenshot:

D- companylinkimorct |

FPERSRS B3 ¢ 007033464 seconds

from employee
OFDER. BY branch id;

select branch id, first name, middle_initial, last name, gender, doh

rS. 4

Resultts:

[ Resutts =] Script Cutput

EExplain

15 autotrace | @DEMS Output

CAowa, Output

L = L

1
12
13
14
15
16

BRANCH_ID| FIRST_MAME | MIDDLE_INITIAL| LAST_NAME| GENDERl DOE

1 Dianahd

1 Lincks

2 Mlary

2 Caral

2 Daniel

3 Gary

3 Mattheswr

3 Cynthiz

4 Hen

2 Liza

G James

g Hevin
10 Helen
12 George
12 Laura
13 Sandra

&

III_IU(')gUJIIU"—gLnl_

Perez
Anderson
Willams
Clark
Fokinsan
Woore
Garcia
Hall
White
Les
Johnson
Lewviz
Harris
Taylor
Thomas

Rodriguez

I

14-MAR-72
24-0CT-70
15-MAR-B4
11-85-67
23-MOM-59
01-MOY-B5
14-MPR-T1
21-0CT-55
22.FEB-58
1 5-JUN-63
01 -J&N-50
01-JUL-76
13-JUL-75
24 DEC-72
26-0CT-81
10-MaY-74

[106]




Chapter 3

The results are sorted as we requested, but we see that a number of duplicate values
exist for the Branch_1D column. Thus, Mary Williams, Carol Clark, and Daniel
Robinson have a Branch_ID of 2, but, within that subset of data, their information
isn't sorted in any particular order. We may want to sort them again, so that each
group of Branch_1ID has its employees sorted also by their last name. To do so, we
need to utilize a secondary sort, as shown in the next example:

[)- companylink @orcl |
FEERO 8B ¢ 003031195 seconds
select branch id, first name, middle initial, last name, gender, dob
from euployes
OBDER. BY hranch_id, last_name;
%
B> Resutts =] Seript Output | B Expiain | 59 sutetrace | ADEMS Output | € Ovs, Output
Results:
BrancH_D [{ FrsT_nane (| moote_mmal [§ Last name (@ cenoer [§ pos
1 1 Linda L Andersan F 24-0CT-70
2 1 Danald A, Perez I 14-mAR-73
3 2 Carol Tl Clark F 11 -AUG-67
4 2 Daniel J Robinson b 23-MCN-59
3 2 Mary = Williams F 13-MAR-64
G 3 Matthew k. Garcia M 14-APR-T1
7 3 Cynthia B Haill F 21-0CT-35
=] 3 Gary R Moore I 01 -MON-BS
9 4 Ken Wy Wyhite b 22-FEB-55
10 4 Lisa [ Lee F 15-JUM-E3
11 G James i Jahnzan M 01-J8M-50
12 G Hevin L Lewvis M 01-JUL-76
13 10 Helen H Harriz F 13-JUL-T5
14 12 George H Taylor I 24-DEC-72
15 12 Laura | Thomas F 26-0CT-81
16 13 Zandra = Rodriguez F 10-mANY-74

[77]



Using Conditional Statements

In this example, the data is essentially sorted twice —once by Branch_1D, and then,
within each Branch_ID sort, by Last_Name. This time, those employees with a
Branch_ ID of 2 are shown in the order Clark, Robinson, Williams, which is the
alphabetical order for Last_Name. When doing secondary sorts, this statement can
be read as, Sort by Branch_ID, then sort within Branch_ID by Last_Name. The number
of secondary (or tertiary) sorts we can do in this manner is only limited by the
number of columns that exist in the table. In the following example, we sort by three
columns. It could be expressed as, Display employee information sorted by the employee's
branch ID, then by their gender, then by their last name.

Dcompanymrk@orcf |
ERES 88 ¢ 00400576 seconds

select branch_id, first neame, middle_initial, last_name, gender, dok

from employee
DEDER EY branch id, gender, last_name;

. 4
Resultz | Script Output Explain | 5] Autotrace DEMS Cutput A Cinia, Cutpt
> = - &
Results:
BrancHJD (@ FRsT_name |[{ mooLe_wmas | ast_neve B cenoer @ pos

1 1 Linda L Anderzon F 24-0CT-70
2 1 Donald 2 Perez hd 14-MAR-73
3 2 Caral M Clark F 11-8UG-67
4 2 Mary 5 Williams F 15-MAR-G4
-] 2 Daniel J Robinzon hd 23-MOV-59
B 3 Cyrthis =] Haill F 21-0CT-55
7 3 Matthera K Garcia il 14-APR-T1
g 3 Gary R loare hd 01 -MO-BS
9 4 Ken W White il 22-FEB-58
10 5 Lisa C Lee F 15-JUN-E3
1 g James R Johnzon hd 01-JAM-E0
12 3 Kewvin L Lewvis il 01-JUL-7E
13 10 Helen H Harrig F 13-JUL-75
14 12 Laura | Thomas F 26-0CT-81
15 12 George H Taylor hd 24-DEC-72
16 13 Sandra = Rodriguez F 10-MAY-T4

[108]



Chapter 3

There is one additional type of sort that we can do in Oracle — the positional sort.
The positional sort allows you to sort by the positional number of the column, not

the column name itself. This type of sort is shown in the following screenshot:

[} companylink orcl |

FPERRO® B8 ¢ 000729199 seconds

from wehsite

select website url, blog id, hit_count, employees id

order by 3:
F .
[ Resutts [ =] Script Output | T3] Explain f;].ﬂ.l,rtn:ltrace| ADENS Output | £ Ol Output
Results:

WEBSITE_URL

| EILOG_ID| HIT_COLINT| EMPLOYEE_ID

1 Hitp: Sheewesy companylink .comtthomas
2 kttp: ey companylink .comiklewis
3 hitpe ey companylink comichall

4 Hitp: My companylink .comidperez
5 kit ey companylink comdrvillizm
B Hitp: dheeweny companylink comfgmacore

T Htp Sy companylink . comimgarcia

8 hhtp Meewesy companylink .comfiohnzon

=

[nully
4
[nully
[nuily
2

3
3
1

9
14
24
45
64
72
g3

234

16
14
12
g
2
11
3
1

The data is displayed, sorted by #Hit_Count (the third column listed in the select
statement). Notice that Hit_Count is not the third column in the table (it is the fifth),
but it is the third column listed in the SELECT statement. So, to say, Sort data by the
third column in the dataset is an accurate representation of what is occurring, whereas,
Sort data by the third column in the table is not.

[77]




Using Conditional Statements

Also, notice that we can sort using not only a column name, but a column alias as
well. In these situations, we simply define the alias in the SELECT clause and then
reference it in the ORDER BY clause. The following example shows the preceding
query rewritten to sort by the alias 'Blog Hits"

Drcompaﬂymfk@om! |
PEZRO B8 ¢ 000867932 seconds

SELECT blog url, blog_desc, hit count "Blog Hits™ from blog
OREDER BY "Blog Hits":

%

B> Resutts| || script output | EExplain | B Autatrace | ADBMS Output | % s, Output

Results:

ELOG_LRL @ BLoG DESC @ BlogHis

1 kit ey companylink . comilogklewis Winter sales push blog 18
2 kg fbeaewy companylink .comblogigmoore Garyhblagl 24
3 kg tbeeeewy companylink comblogimwiliams Desktop rollout progress blog 32
4 kit Sy companylink .comblog/maarcia Matts cool blog a6
5 kg Sy companylink .comblogfiohnson  Jims blog 123

Summary

In this chapter, we've added two major skills to our growing list of SQL capabilities:
selectivity and the ability to sort data. We've examined the structure of both the
WHERE clause and the ORDER BY clause. We've looked at a large number of condition
types that can be used with the WHERE clause, including equality, non-equality,

and Boolean conditions. We've explored conditions that require additional clauses,
such as range, set, and list conditions. We've examined how Oracle utilizes
pattern-matching and substitution variables to create open-ended conditions.
Finally, we've worked with different ways to sort our resulting sets of data.

Certification objectives covered

In this section, we have seen the following certification objectives covered:

¢ Limiting the rows that are retrieved by a query
e Sorting the rows that are retrieved by a query

e Using ampersand substitution to restrict and sort output at runtime

[110]



Chapter 3

Up to this point, we've focused almost exclusively on ways to retrieve data from
database tables. In the next chapter, we'll add a completely new dimension to our
SQL abilities — the ability to manipulate the data in existing tables. We'll learn how
to add rows to a table, to change data in tables, and to delete data from tables.

Test Your Knowledge

1.

Which of these is a term used to describe the ability to limit data sets to rows
that meet certain conditions?

a.
b.
C.
d.

Projection
Restriction
Selection

Registration

Which of these statements represents the proper use of the SQL WHERE
clause syntax?

a.
b.

C.

d.

select first_name, last_name where last_name = 'Johnson/;
select first_name, last_name from employee;

select first_name, last_name where last_name = 'Johnson' from
employee;

select first_name, last_name from employee where last_name =
'Tohnson';

Which of these is NOT a type of condition that can be used in SQL?

a.
b.

C.

d.

Boolean
Equality
Non-equality
Ascending

Which of these is NOT a symbol that can be used in non-equality conditions?

a.
b.

C.

d.

>
<=

<>

[77]



Using Conditional Statements

5. Which of these statements would correctly satisfy the request, Display the
message text where the message ID is greater than or equal to 4 and less than
or equal to 8?

a.

Select message_text from message

where message_id between 4 and 8;

select message_text from message

where message_id >=4 and <= §;

select message_text from message

where message_id > 4 and message_text <§;
select message_text from message

where message_id between 8 and 4;

6. Which of the following statements is a correct use of set conditions using the
IN clause?

a.

Select first_name, last_name from employee
where employee_id in 1, 5, 12;
select first_name, last_name from employee

where employee_id in (1, 5, 12);

select first_name, last_name from employee

where employee_id = (1, 5, 12);

select first_name, last_name from employee

where employee_id in (1 5 12);

7. Which of the following statements would satisfy the requirement, Display
employee data for all employees whose first name begins with the letter R?

a.
b.

C.

select first_name, last_name from employee where last_name like 'R%/;
select first_name, last_name from employee where first_name like '%R';
select first_name, last_name from employee where first_name like 'R%';

select first_name, last_name from employee where last_name like
| % _R_l;

[112]



Chapter 3

10.

From your Companylink database, which of the following statements would
return the values 'Johnson', 'Anderson', and 'Robinson' when executed?

a.
b.
C.
d.

select last_name from employee where last_name like '__son';

select last_name from employee where last_name like 'R%son/;

select last_name from employee where last_name like '%son_";

select last_name from employee where last_name like '_%son%;

Which of the following is NOT a legal Boolean logical operator?

a.
b.
C.
d.

AND
IN
OR
NOT

Which of the following correctly uses a Boolean operator as a condition?

a.

select first_name from employee

where last_name = '"White' or last_name = 'Lee';

select first_name from employee

where first_name = 'Mary' or 'Ken';

select first_name, gender from employee

where gender = 'F;

select first_name, dob from employee

where first_ name is not 'Carol’;

11. Which of the following statements is equivalent to the statement?

select * from blog where hit_count between 40 and 80;'?

a.
b.
C.
d.

select * from blog where hit_count in (40, 80);
select * from blog where hit_count >= 40 or hit_count <= 80;
select * from blog where hit_count like '40%80';

select * from blog where hit_count >= 40 and hit_count <= 80;

[77]



Using Conditional Statements

12. Which of these is a proper substitution variable in SQL?

a.
b.
C.
d.

*new_employees
%num_rows
| | highest_hit_count

&choose_your_table

13. Which of these statements about sorting is NOT true?

a.

Oracle is capable of doing both numeric and lexicographic sorts

b. Sorting is achieved through use of the ORDER BY clause

C.

Data is automatically sorted when it is inserted into Oracle tables

d. The ORDER BY clause always follows the FROM clause in SQL

14. Which of these statements will correctly sort data from high to low?

a.
b.
C.
d.

select * from blog order by hit_count;
select * from website order by hit_count DESC;
select * from blog order by hit_count ASC;

select * order by hit_count from website;

15. Which of the following statements will correctly sort data, first by the
employee's gender, then by their last name?

a.

select first_name, last_name, gender from employee
order by last_name, gender;

select first_name, last_name, gender from employee
order by gender, first_name;

select first_name, last_name, gender from employee
order by 2,1, 3;

select first_name, last_name, gender from employee

order by gender, 2;

[114]



Data Manipulation with DML

Thus far, our efforts to utilize database data have been limited to pulling data from
the database. We've looked at how to select data, how to limit it based on conditions,
and how to sort it. However, we've only worked with data that already existed in
our Companylink database, which was created back in Chapter 1, SQL and Relational
Databases when you ran the companylink_db.cmd batch file. In this chapter, we
examine some of the types of statements that were actually used in that script.

These commands allow us to create and modify data in our Companylink database.

In this chapter, we shall:

e Examine the concept of DML —Data Manipulation Language
e Create data using the INSERT statement

e Copy data using INSERT/SELECT

e Modify data using the UPDATE statement

e Remove data using the DELETE statement

¢ Examine transaction control

e Learn to recognize and debug errors

Persistent storage and the CRUD model

The ability to manipulate data within an RDBMS requires an understanding of two
primary aspects — the concept of persistent storage and the syntactical rules for
manipulation. In this section, we examine these concepts.



Data Manipulation with DML

Understanding the principles of persistent
storage

The basic principles of computing dictate that, under normal conditions, data is
operated on within RAM, or Random Access Memory. RAM has two important
characteristics: it is fast, and it is volatile. Compared to the access speeds of hard
disk, RAM can access data an order of magnitude faster. This makes it ideal for the
computation and manipulation of data. Processes can operate quickly and efficiently
to read and change data within RAM. However, the integrated circuits that make
up RAM also make it volatile, in the sense that data stored within it cannot survive
the loss of power to the computer system. If we turn off the power, the data in RAM
is lost. The volatility of RAM is what necessitates the need for hard disk storage.

A hard disk, or hard drive, is capable of persistent storage — data storage that can
outlive a system power loss.

An RDBMS such as Oracle makes use of this architecture to its fullest. In Oracle,

the vast majority of data manipulation takes place in memory structures in RAM
called caches. Data is cached in shared memory in order to make it available to many
processes simultaneously. At various intervals, the data in cache is written out to
disk, and the data is stored persistently. This makes the RDBMS resistant to data loss
from power outages and contributes to a more stable system.

This is the underlying architecture at work. For our purposes, we are concerned with
how we can utilize the SQL language to add, modify, and remove data from this
persistent storage layer. To do so, we use DML — Data Manipulation Language.

SQL in the real world

Although the methods of persistent storage listed previously are still
~\l the standard way a computer operates, as of this writing, there are
many advances underway that may make them a thing of the past.
Q Research into topics such as non-volatile RAM, RAM that can store
data beyond a power loss, and Solid State Disks (SSD), hard disks that
can retrieve data at speeds approaching that of RAM, may soon change
how computers operate at a very fundamental level.

[116]




Chapter 4

Understanding the CRUD model and DML

Historically, persistent storage in databases has been managed according to a
generic standard known as the CRUD model: Create, Read, Update, Delete. These
four operations form the fundamental ways that data is utilized in a database. Data
can be created, or placed into the database; it can be read from the database; it can
be changed, or updated; and it can be deleted from the database. Some define the
CRUD model as Create, Retrieve, Update, Destroy, but the individual functions
themselves are the same. These four operations denote the way that users interface
with database data.

In SQL, the CRUD model is implemented as DML, or Data Manipulation Language.
DML is generally considered a sublanguage or subset of the SQL language as a
whole. As we will see throughout this book, there are many types of SQL statements.
The commands that make up DML are a part, or subset, of the entire language.

DML defines persistent storage operations through the use of four commands:
SELECT, INSERT, UPDATE, and DELETE, sometimes referred to with the acronym
SIUD. Although the terms are different than those used in the CRUD model, the four
functions are the same. A side-by-side comparison is shown in the following chart:

CRUD operation DML command Function

Create Insert Creating or adding new data into the database
Read/Retrieve Select Retrieval of data from the database

Update Update Modifying existing data within the database
Delete/Destroy  Delete Removing existing data from the database

These operations enable the use of data manipulation in an RDBMS. Through DML
commands, we can change the state of data that is in persistent storage.

SQL in the real world

Considering that they don't actually change data in persistent storage,
you might be wondering why SELECT statements belong as a part

M of DML. In fact, many believe they don't. The entire subject of SQL
sublanguages is fairly broadly defined. Some consider SQL itself to be

Q a sublanguage. Others believe SELECT statements are a part of their

own sublanguage. Still others claim that SELECT statements are a part
of DCL, or Data Control Language. It's not that important to get caught
up in the terminology debate. General concensus puts the INSERT,
UPDATE, and DELETE statements squarely in the category of DML.

[117]



Data Manipulation with DML

Creating data with INSERT

Our first look at manipulating data involves one of the most fundamental operations
in an RDBMS — the ability to add data. This section looks at ways to create data
within an Oracle database.

Examining the syntax of the INSERT
statement

The primary command in SQL that allows users to create the data that resides
in tables is the INSERT statement. With it, we can add rows to an existing table,
provided that the format we use for the statement fits with the existing column
structure. The syntax tree for the basic INSERT statement is as follows:

INSERT INTO {table name}
VALUES (valuel, value2, ... );

Considering the lengths to which we've taken our SELECT statements thus far, it may
seem that the syntax for the INSERT statement is considerably more straightforward.
Generally, this is the case, although the degree of simplicity in an INSERT is
dependent on the simplicity of the table itself. If we examine our basic INSERT
statement, the first keyword we encounter is INSERT, followed by INTO. INSERT INTO
is followed by a table name that we specify. This will be the table to which we want
to add data. The last clause in our syntax tree is the VALUES clause, which specifies
the actual row data we intend to add. This list of values is enclosed in parentheses.
We will examine different ways that values can be specified, but it is important to
remember that the data we indicate must match the table structure itself, in terms of
both column structure and datatype.

When we specify the list of values in the VALUES clause as shown in the next
screenshot, it is implied that we are listing them in the order that they appear in the table.
Say, for example, that we have a table with two columns: object and color. If we
insert two values into our table, apple and red, it is implied that we are inserting the
value apple into the first column, object, and the value red into the second column,
color. We refer to this method as positional — the order that the data is inserted is
the same as the position of the columns in the table. The first value goes into the first
column; the second value into the second. The list of values must also match in terms
of datatype. If we attempt to insert numeric data into a column that holds character
string data, we will receive an error. Thus, in our example, if we assume that our
columns object and color are character data, our list of values cannot contain
numbers or dates.

[118]



Chapter 4

Using single table inserts

The most fundamental INSERT statements add rows to a single table one row
at a time. To accomplish such operations, we can use either of the two primary
syntactical notations — positional or named column.

Inserts using positional notation

Let's take what we've learned so far and add data to our Companylink database;
specifically, the award table. The following query shows the table before our insert
as a point of reference:

Dcompanyﬁnk@orcl’ |
FPERRSO B8 ¢ 006496003 seconds

select * from award:

.
B> Resutts | (=] Script Output | B Expiain | 5 Autatrace | [DEMS Output
Resufts:

SWARD_ID | SWARD_DESC |
1 Salesperzon of the year

2 Technalogical paper winner
3 Cleanest desk

4 Fastest typist

5 Employes of the year

o h = W k=

B Best new employes

As we can see, the award table contains two columns, award_id and award_desc, and
six rows. Following our INSERT statement, we should see one additional row with the
data that we specify. The example of the INSERT statement is shown as follows:

D companylink @orcs |
FERRO B8 ¢ 004730126 seconds

IHSERT IHTOD award
VALUES (7, 'Fastest 30L Coder'):

. J
[ Resutts [ =] Seript output | B Explin |f;} Autotrace |IEDBMS Output
Results:

[119]




Data Manipulation with DML

Here, we invoke our INSERT statement and specify the award table as our target

for data insertion. Taking the columns in order, we specify the numeric value 7

and the character string value 'Fastest SQL Coder' to insert into the award_id and
award_desc columns, respectively. Again, the values are enclosed in parentheses.
We see the results in the following screenshot. Notice that even though our row was
added after the existing six rows, the row we've inserted displays as the top row in
the table. This behavior is unique to SQL Developer and has to do with how the tool
processes matrices of data. You may not see this behavior in other tools.

Even though it looks unusual, there is nothing actually wrong with the
+  data being displayed in this way. Oracle tables are classified as heap-
organized, which means they are organized in no particular order with
g respect to row. Always remember to use an ORDER BY clause if the
order of the data is important.

[ companytink @orcs |
FERRO B8 ¢ 00763023 seconds
select * from award:
% 4
[ Resuts | [=]script output | B Explain | B Autotrace | ADEMS Output
Resulfts:
BNSRD_D | SWARD_DESC |
1 7 Fastest SGL Coder
2 1 Salezperson of the year
3 2 Technological paper winner
4 3 Cleanest desk
5 4 Fasztest typist
-] 4 Employee of the year
7 6 Best new employes

Our results now show seven rows where there were six before. We specified our
values in the same order as that of the columns, and we see them displayed as such.

[120]




Chapter 4

Inserts using named column notation

It is not necessary to let the column order dictate the order of our values. Often it
is desirable to specify values in an order that we choose. For this, we use named
column notation. We specify a list of columns in the same order as that of our
values. An example using named column notation and its results are shown in
the following two screenshots. First, we run the INSERT statement itself.

[}companyﬁnk@orc! [
FPERRO B8 ¢ 00052501 seconds

INSERT IHTO award (award desc, amard id)
VALUES
['Highest Certification Score', 8):

W
B> Resuts [ script Output | BExpiain | B autatrace | FlDEMS Output
Reszutts:

Next, we view our results using a simple SELECT statement.

D companylinkorct I
FERBO B8 ¢ 001611900 seconds
select * from award;
S
> Resuts (=] Seript Output | ) Explsin | B autotrace | ADEMS Output |
Resutts:
mrgarp D |[@ awerD_DESC |
1 ¥ Fastest SGL Coder
2 & Highest Certification Scare
3 1 Salesperszon of the vear
4 2 Technological paper winner
] 3 Cleanest desk
E 4 Fastest typist
7 5 Employee of the year
g G Best new employes

[121]




Data Manipulation with DML

In the first of these two statements, we notice two differences from our previous
INSERT statement. First, following the table name we've specified, award, we see

a list of column names enclosed in parentheses. These are the two columns in the
award table, but we've specified them in a different order than they occur in the
award table. Because we do this, we can also specify our values in an order different
from that of the table. The first value in the list, Highest Certification Score, is
inserted into the first column specified, award_desc, and the second value, 8, is
inserted into the second column specified, award_id. We can do this with any
number of columns and values, provided that all the columns exist in the table and
that their datatypes match. If we wish to designate our columns this way, we can
order them any way we wish, even if that order is the same order of the columns in
the table.

SQL in the real world
In the development world, you will often find that the coding standards
*  of a particular company prohibit the use of positional notation, instead
favoring named column notation. This is a responsible practice, since
using named column notation is much more readable. With named
column notion, it is much simpler to determine the values that belong
with certain columns.

Inserts using NULL values

As we've discussed before, it is possible to have rows where a particular column has
no value. We refer to this lack of value as a NULL value. We can enter null values
into a table in several ways. The first of these is to use named column notation to
specify values for a number of columns that is fewer than actually exist in the table.
When we do this, the remaining columns will be populated with nulls. We see this in
the following example:

[ companyiink@orcs |
FERERO B8 ¢ 00441709 seconds

IHSERT IHTO website

(rehaite_id, wehaite_url, wehsite_desc, employes_id)
YALUES

(9, 'http: /Asww, conpanylink. con/kvhite', 'Kens Site', 7)1;

%
[ Resuts | =] Script output | B Explain |__§;'jAmmrace | ADEMS Output | 9 Oz, Output
Results:

[122]



Chapter 4

There are six columns in the website table. But, we see from this example that we
are only specifying four columns and four values in our insert. In this statement,

the values will be inserted according to the order determined by our named column

list. The remaining two columns, blog_id and hit_count, will be populated with
nulls. We see the results in the next query. Notice the row where website_id equals

9—init; blog id and hit count are null.

[ companyiink @orct |

FPERRO B8 ¢ | 00851957408 seoonds

select * from website:

% J

P> Resutts | (=] Script output | TExpisin | 5 Autatrace | ADEMS Output | EhOWs, Output

Results:

WEBSITE_ID || WEBSITE_URL |8 wessite_pEsc |8 socm |l HT_count [§ EmpLovEE D

1 9 http: My companylink . comiwhite Kens Site (rully [ril) 7
2 1 http: ey companylink.comifjohnzon  Jims new ste 1 234 1
3 2 http: iy companylink . comimiliams Deskiop rallout project site 2 54 2
4 3 hitp: fhvewene companylink comidperez . The Perez site (rlly 48 a8
5 4 kit ey companylink comigmoore Garywarld! 3 72 11
E 5 kit i companylink . comiklenwis Wirter sales push project site 4 14 14
7 B hittp: thoesaeee companylink . comimgarcia  Matts cool wehsite 5 g5 a
g 7 ittt companylink.com/fchall Cyrithia Halls wehsite (rually 24 12
9 3 http: Mo companylink.comfMthomas  Operstions Branch website (rually 9 16

Not all columns can contain nulls. In later chapters, we will see how to construct
rules that forbid certain actions from being taken on our tables, including the

insertion of null values. These rules are called constraints.

[123]



Data Manipulation with DML

Multi-row inserts

Our previous INSERT statements have resulted in the addition of one row per
statement. As we stated, these were single row inserts. With these types of statements,
if we want to insert multiple rows, we must run multiple insert statements. However,
we can also insert multiple rows into a table using multi-row inserts as shown in the
following screenshot:

[}companyﬁnk@orcl |
FPERRO B8 ¢ 004352205 seconds

INSERT into email_ copy
SELECT * FROM email:

%

[ Resutts | |=] Script Output
Results:

B Explain | 55 Autatrace | ADEMS Output

In this statement, we use a SELECT statement to copy the values from the email
table, row by row, and insert them into the table called email_copy. In order for

this statement to succeed, it is vital that the email and email copy tables have the
same order and number of columns and that their datatypes match. Failure to do so
will result in either an error or data insertion into the wrong columns. This type of
multi-row insert is also referred to as an INSERT. . SELECT statement, because of its
use of the SELECT statement to retrieve the rows to be inserted. If we had selected all
the rows from the email copy table before the previous INSERT. . SELECT statement,
we would have retrieved zero rows. The email copy table (by design) was empty.
Now if we select the rows, we see rows that are identical to those in the email table,
as shown in the following screenshot. This is essentially a method to copy rows from
one table to another.

[124]




Chapter 4

l}- companyiinkdorcl |

FPEERO 88 ¢ 00200288 seconds

select * from email_copy:

|,

Resutts:

[ Resuts | [=] Soript Output

B Explain

9 autatrace | ADEMS Output |

oo~ M th s L ka

LN
12
13
14
15
16
17
18
18
20
eyl
22

emalL_o | Emai_sDDRESS

@ empLovee D |

1 jiohnzon@companylink com
2 jiohnzond@amail com

3 mwvilliamsg@oompanylink com

4 landersonE@companylink .com

4 drobinzon@companylink.com

& mgarcia@companylink .com
T mgarcia@hotmail.com
& hharrisi@companylink.com
9 kwhite@companylink.com
10 kwhite@yahoo.com
11 dperezi@companylink .com
12 llee@companylink .com
13 llee@gmail.com
14 llee@yahoo.com
15 colark@companylink com
16 gmoore@companylink .com

17 chal@companylink .com

18 srodriguezE@companylink .com

19 klevvis@@companylink .com
20 klevvizi@@ogmail .corm
21 gtaylord@companylink cotm

22 kthomas@@companylink .com

oW W - - m h h B Rk = =

11
12
15
14
14
15
16

Conditional Inserts—INSERT...WHEN

Broadly speaking, we can say that single-row inserts use the simple INSERT INTO
clause. As we saw in the previous section, multi-row inserts use the INSERT. . .
SELECT format. We conclude our examination of INSERT statements with a look at a
final type that uses a new clause —the INSERT WHEN. An INSERT WHEN clause invokes
a conditional insert statement. It inserts certain rows based on a given condition.

[125]



Data Manipulation with DML

We can think of a conditional insert as an INSERT statement paired with a
conditional IF...THEN statement. A conditional INSERT statement is shown
in the following example:

Dcompanyﬁnk@om! |
PERRO B8 ¢ 005257836 seconds

THSERT
THEH (employee_id = 9) THEH

INTO email copy

VALUES (23, 'lleeBnowhere.com', 9)
THEH (employee_id = 10) THEH

INTO email copy

VALUES (24, 'cclarkfnowhere.cow', 10)
SELECT * FROM employes:;

%
B> Resuts | [ Script output | ERExpisin |E_‘:].&utmrace | A DEMS Output

Results:

To understand this statement, we look first at the last line —the SELECT statement.
This portion of the statement drives the conditions that are used. The statement will
first select all rows from the employee table. Whenever it encounters a row where
the employee_id is 9, it will insert a row into the email_copy table with the values
specified in the first condition; namely, 23, 'llee@nowhere.com', and 9. Likewise,
when it encounters a row where employee_id = 10, it will insert a row with the
values specified in the second condition. Since there is one occurrence of the value

9 in the employee table and one occurrence of the value 10, this statement will
insert two values into the email_copy table. The results are shown in the following
screenshot. Compare this to the rows in the email table to see the difference.

[126]


mailto:llee@nowhere.com

Chapter 4

[} COmMpIRyiink @orct |

PERRS B8 & 004113937 seconds

select * from email copy;

. 4

Resufts:

[ Resutts | | =] Script Qutput

ES)Explain

9 autctrace | ADEMS Output

eval o |8 EmaL_soDRESS

@ emrLoveE D

-

L I =t I 1 IR U s B o |

10
11
12
13
14
13
16
17
13
19
20
|
22
23
24

1 jiohnson@companylink .com
2 jiohn=oni@gmail.com
3 mevilliame@E@companylink .com
4 landersonig@ocompanylink .com
5 drobinson@ocompanylink.com
B mgarcia@companylink .com
7 mgarcia@hatmail.com
& hharris@@companylink.com
9 kwwhite@companylink .com
10 kwwhite@yahoo .com
11 dperezi@companylink.com
12 llee@companylink.com
13 llee@gmail com
14 llee@yahon.com
15 colarkd@companylink .com
16 gmoare@companylink .com
17 challi@companylink com
18 srodriguez@companylink.com
13 klewis@campanylink com
20 klevwis@@gmail .com
21 gtaylor@companylink.com
22 thomasi@companylink .com
23 llee@novwhere . .com

24 cclarki@nowhere.com

1

O oW W om0~ - m h s Wk

10

The INSERT WHEN is a less common, more advanced INSERT statement. It is not

covered on the certification exam, but is included here for completeness as an

example of a conditional insert.

[127]




Data Manipulation with DML

Modifying data with UPDATE

Next in our examination of the subject of data manipulation is the ability to change
existing database data. This section looks at a number of the common methods to
update data within our database.

Understanding the purpose and syntax of the
UPDATE statement

The first of our DML statements allowed us to insert new data into a table. However,
often the data we're interested in already exists in the table and simply needs to be
altered in some way. In these circumstances, we need to modify the data, not insert
it. In such situations, we use an UPDATE statement. Its syntax tree is shown as follows:

UPDATE {table name}
SET {column name} = {value2}
[WHERE {column name} = {valuel}];

Using the UPDATE statement, we modify the data in a particular column based on a
condition —where a column name equals some value that we provide.

Writing single-column UPDATE statements

A situation has occurred at Companylink. A number of employees participating in
the Companylink social networking site have changed their addresses, but these
changes were never recorded in our database. Additionally, some of the addresses
were recorded incorrectly when they joined Companylink. Because of this, a number
of employees on the mailing list are not getting their written privacy notifications. It's
up to us as the SQL programmers to fix this situation. To do it in the most efficient
manner possible, we'll use the UPDATE statement.

The first of our corrections will be to fix the incorrectly recorded address for Ken
White, whose employee ID number is 7. The address shown for Ken is 5234 Park
Place, Leawood KS, 78659. His correct address is 523 Park Rd, Leawood KS, 78659.
Our next example shows us Ken's incorrect address, for reference. The following
screenshots demonstrate the way to use an UPDATE statement to correct the problem:

[128]




Chapter 4

Dcampanyﬁnk@orcr I
FPERRO B8 ¢ 00255052 o

select street_address, city, state, zip
from address
where employee id = 7;

.

B> Resutts [ script output | EREpiain |§.a]Amntrace |13.DBM5 Output
Fazults:

STREET_ADDRESS | CITY | STATE | z|P|
1 5234 Park Place Leawood KS 7aE59

Next, we issue an UPDATE statement to change Ken's address to the correct value.

Dcompﬂnyﬁnk@orc! I
PERRO BB ¢ 001150765 seconds

UPDATE address
SET sztreet _address = '523 Park Rd'
where employee id = 7;

W

[ Resutts | [=] script Output | BEsplain | B autotrace | ADEMS Outpout
Results:

To write this statement, we first identify the condition we will use to determine
which rows are updated. In our example, we're targeting the row or rows where
employee_id equals 7. In our case, this is only one row. Once that row has been
identified, we construct our statement to alter the value for street_address, which is
specified by our SET clause, and change it to the string value '523 Park Rd'. Once the
statement is executed, SQL Developer reports back to us that one row was updated,
in the lower-left corner of the screen.

[129]



Data Manipulation with DML

We can see the change in Ken's address using the following query:

Dcompanyﬁnk@orc.f |
FERR O BB ¢ 000888523 seconds

SELECT street_address, city, state, zip
from address
YWHERE employee_id = 7;

% 4
> Resutts | ] Script Output | 8 Explain | B Autetrace | ADEMS Output |
Results:

STREET _ADDRESS | CITY | STATE| ZIP|
1 523 Park Rd Leswood KS 7EE59

It is important to notice several facts about our UPDATE statement. First, the WHERE
clause specifies a condition —any condition we choose. In our case, we defined
this condition as where employee_id = 7. We could, however, choose to assign a
condition based on another column. One very straightforward condition we could
have used would be the clause where street_address = '5234 Park Place'.
This would locate the row where this address condition was true and update the
data accordingly. However, we would have to be certain that no other employee
had a street address of '5234 Park Place', perhaps in another city. If there were two
occurrences of that street address, both would be changed. Oracle updates the
data based on a strict interpretation of the condition, so you must be careful when
assigning it.

The second, and probably most important, fact to remember when using UPDATE
statements is that it is crucial to specify a condition. Assume that we re-wrote our
UPDATE statement incorrectly, as shown in the next screenshot. Do not run this
statement — it will modify all of the column data.

[= companytink @orct |
FPERRS B8 ¢ 002692242 seconds

UPDATE address
SET street_addreaz = '523 Park Rd':

i W

[ Resutts | [ script output | BExpisin |§] Autotrace |I3.DE:MS Ottt
Results:

[130]



Chapter 4

In this statement, we've instructed Oracle to update the address table as before,
setting street_address to the indicated value. However, we have neglected to
specify the WHERE clause that forms our condition. As a result, Oracle will update the
street_address column in the table, changing each street_address in the table to the
specified value. In short, if we run this statement without a limiting condition, every
employee will have a street address of '523 Park Rd'. Unless this is what we want, we
must include the condition that limits the rows to be updated.

B SQL in the real world

Omitting the limiting condition when running DML statements is one
of the most common mistakes that is made by new SQL coders. The
results of such a mistake can be disastrous if done on a production
%%‘ table. However, in some circumstances, running an update on every
row value for a column may be completely legitimate, such as the goal
of updating a particular date column with the current date. Omitting
the limiting condition isn't always wrong. Just remember to use the
WHERE clause when it is needed. -

Multi-column UPDATE statements

For our second task in correcting our Companylink addresses, an employee, James
Johnson, has moved to an entirely new address in a different city. However, his

row values for employee idand address_id do not need to change. This leaves

us with four column values to update: street _address, city, state, and zip. We
could accomplish this by running four separate UPDATE statements, each specifying
a different SET clause. However, the best approach is to use our UPDATE statement to
change multiple column values at once, as shown in the next screenshot:

[:} companylinkimorct |
FPERRO® W8 ¢ 000780544 seconds

UFDATE addrezsz
SET street_addresz = '35340937 Bannerman Rd',

city = 'Beaumont',
state = 'MH',
zip = 23483

VHEFE employee_id = 1;:

W
[ Resutts | [5] Script Output | [ Explain |.§.1:j.&.m0’[race | FADBMS Output

Results:

[131]



Data Manipulation with DML

In this example, we identify James Johnson as having an employee ID number of 1.
This forms our limiting condition. Next, we need to instruct Oracle to update four
columns: street_address, city, state, and zip, and change them to the values
we've provided. To do this, we specify each column and its new value, separated by
commas. Our example places them on different lines for greater readability, although
this isn't syntactically required. Using this multi-column UPDATE, we can update any
column, provided that it exists in the table.

Although it is common to use conditions of equality when forming limiting
conditions, it is not required. Any of the conditions we saw in Chapter 3, Using
Conditional Statements can be used as a condition in an UPDATE statement, including
conditions of non-equality, range, list, set conditions, and even Boolean conditions.
The statement in the following screenshot combines a number of these types of
conditions — list conditions, Boolean conditions, and pattern-matching.

(= companylink@orcl |
FPERRO B8 ¢ 0000811 seconds

UFDATE address

SET zip = 53243

YHERE zip im (44392, 20772, 35870)
AHD city like 'Le%!

AHD employee_id > &;

.

[ Resutts _J Script Cutput
Fesufts:

ElExplain | T3 Autatrace | ADEMS Output

Removing data with DELETE

Lastly in this section, we examine the use of DML statements to remove data from
the database.

[132]




Chapter 4

The purpose and syntax of the DELETE
statement

As important as it is to be able to add and change data, sometimes data needs to

be removed from a database. For example, say that a company keeps an opt-in
mailing list. When a customer opts-in to receive mailings from the company, their
information is placed into a table called mailing list. If the customer decides that
they no longer want to receive information from the company, they can opt-out of
the mailings. In such a situation, the information should be removed from the
mailing list table. In SQL, we remove data from a table using the DELETE
statement. Its syntax tree is shown as follows:

DELETE FROM {table name}
[WHERE {column} = {value}];

Deleting rows by condition

In SQL, the DELETE statement is the logical opposite of an INSERT statement. We use
it to remove rows from a table. However, unlike the INSERT statement and similar
to the UPDATE, we specify a condition when using a DELETE. This condition, denoted
with a WHERE clause, will determine which rows are deleted from the table. Our first
example of a DELETE statement is shown in the following screenshot, which is the
logical opposite of the INSERT shown in the previous INSERT statement:

[} COMPIRyink Porcs |
FPESRO B8 ¢ 000545097 seconds

DELETE FROM award
YHERE award id = 7;

.

[ Resuts | [ =] Script Output
Results:

E)Explain | ) Autotrace | ADEMS Output

[133]



Data Manipulation with DML

In this example, we designate the award table as the target for our deletion. We
next specify a WHERE clause that indicates rows with an award_id value of 7 will be
deleted. Since our Companylink award table has only one row with an award_id
value of 7 (the one we inserted), only one row will be deleted. We see the result of
the DELETE in the following query. For clarity, you can compare this to the previous
query to see the table rows before the DELETE occurred.

(= companylink @orci |
FERRS B8 ¢ 000575309 ssconds

SELECT * from award;

% 4
[ Resutts| =] Script output | T Explsin | 3 autotrace | B DEMS output
Results:
AWARD_|D | AWARD_DESC |
& Highest Certification Score

1 Zalezperson of the year

2 Technological paper winner
3 Cleanest desk

4 Fastest typist

5 Employee of the year

- M W 4 L R =

G Best new employes

Because the DELETE statement removes an entire row, we do not make use of a
named column list, as with the INSERT statement. We simply identify a value or
values that indicate which rows should be removed. Like the UPDATE statement,
however, we can make use of the numerous types of conditions found in WHERE
clauses. The next several examples demonstrate some of the different types of
conditions we can couple with our DELETE statements. First, we demonstrate
DELETE operations using pattern matching with LIKE.

[= companyiink @orci |
FERRAS BB ¢ | 10044542 seconds

DELETE FROM atrard
VHERE award desc like 'Highesty';

.

B> Results (=] script Output | BExplain | B autotrace | E0EMS Output
Results:

[134]



Chapter 4

Next, we look at the use of Boolean conditions, specifically the AND.

D companylink @orcl |
FPERRAD VE & 000630778 ssconds
DELETE FROM wehsite

YHERE website_id = 3
AHD employee_id = 7:

% 4
D Resutts [ script output | BEplain | B autotrace | FIDEMS Output
Results:

Lastly, we examine the use of set operations as conditions for a DELETE statement.

Dcompanyﬁnk@ord |
FPERRO B8 ¢ 005779838 seconds

DELETE FROM email_copy
WHERE email id in (4, &, 9):

F .
B Resuts| (=] Seript Output | 3 Expiain | 59 autotrace | FLDEMS output
Results:

Deleting rows without a limiting condition

As with the UPDATE statement, it is crucial to remember that any DELETE statement
executed without a WHERE clause will delete all the rows in the table. It is extremely
important to be able to accurately identify the rows you wish to delete. Failing to
do so can have unforeseen consequences. The following example demonstrates the
results of issuing a DELETE without a limiting condition. If you select the rows from
the email_copy table after running the DELETE statement below, you will see that
they have all been removed.

[135]




Data Manipulation with DML

Again, sometimes this is what you're trying to achieve. Just remember — use the
DELETE statement with the utmost care.

[= companylink @orcl |
FPESRO BB ¢ 001795346 seconds

DELETE FROM email copy:

.

[ Resuts | [ =] script output
Results:

E)Explain | £ Autatrace | ADEMS Output

Removing data unconditionally with
TRUNCATE

For our final look at data manipulation, we examine a statement that is slightly
different than the three DML statements we have seen in this chapter. Although like
the DELETE statement it removes row data, TRUNCATE is not a part of the DML
family at all. It is, in fact, a member of the DDL sublanguage, which stands for data
definition language. DDL is generally used to structurally alter a database object,
such as a table, in a fundamental way. We will see many examples of DDL in later
chapters, but for now, we look at the way TRUNCATE operates on data.

The TRUNCATE command is used to unconditionally remove all the rows in a table.
Structurally, the TRUNCATE statement deletes data from a table in a way that is
fundamentally different than the DELETE. For reasons we will revisit in the next
section, a TRUNCATE command can remove all the rows in a table almost instantly,
while the DELETE may take a significant amount of time, depending on the number
of rows being deleted. Thus, when you need to unconditionally remove all the rows
in a table, it is generally better to utilize a TRUNCATE statement.

In order to demonstrate TRUNCATE, we will walk through a number of steps to
repopulate our email_copy table, then remove the data using TRUNCATE. These steps
are shown in the following four screenshots. The first step populates the email_ copy
table using data from the email table.

[136]



Chapter 4

[} companyiink @orcl I

FPERRO® BB ¢ 000459698 seconds

IHSERT INTO email copy
EELECT * from email;

% 4

> Resutts (=] Script Output | B Explain | 5 Autotrace | DEMS outout
Results:

Next, we verify that the data is actually present using a SELECT from the

email copy table.

D companylinkmworct I

PERRe BB ¢

0.01157689 seconds

SELECT * from email copy:

-

B Resuts (=] seript output | S Explain | 3 Autotrace | EDEMS Output

Results:

oo o4 m th B W R

11
12
13
14
15
16
17
18
19
20
2
22

EMAIL_ID| EM&IL_ADDRESS

| EMPLOYEE_ID

1 jiohnsong@companylink.com
2 jiohnzon@gmail.com

3 mwilliamsEcompanylink.com

4 landersong@companylink .com

5 drobinson@companylink .com

B mgarciagioompanylink com
7 mgarcia@hotmail com
& hharris@companylink.com
9 kwhite@ocompanylink cotm
10 kwhite@yahoo.com
11 dperez@companylink.com
12 llee@companylink.com
13 lleed@gmail com
14 llee@yvahon com
15 cclarki@companylink .caom
16 gmoored@companylink.com

17 chall@companylink com

18 srodriguez@@companylink .com

19 klewis@companylink.com
20 klewviz@amail com
21 gtavlor@ocompanylink .cam

22 thomasz@companylink .com

W - e m th th L R = =

10
11
12
13
14
14
15
18

[137]




Data Manipulation with DML

We then execute the TRUNCATE statement that unconditionally removes all data from
the table. The TRUNCATE operation is nearly instantaneous, in contrast to DELETES
from large tables that can take considerable time.

D-compﬂnyﬁnk@am! [
PERERSO B8 & 076405352 seconds

TRUHCATE table email copy:

% 4
> Resutts | [ 5] script Output | EExplain |§-.a} Stotrace |lEDEmr|s Cutput
Reszults:

Finally, we query the table again to see that all the data is, in fact, removed.

[ companylink @orci I
FPERRO B8 ¢ 003555229 seconds

select * from email copy:

.
[ Resuits | 5] script Output | B Explain | 5 autotrace | R DEMS Output
Rezufts:

EMaiL_ID [ EMAIL_ADDRESS B emPLovEED

Transaction control

What would you say if I told you that none of the DML statements that you've
executed in this chapter, INSERTs, UPDATES, and DELETES, actually did anything to
change data in the database? As much of a surprise as it is, it is actually true. The
use of DML statements comes with a caveat: they must be used in conjunction with
transaction control statements.

[138]




Chapter 4

Transactions and the ACID test

Transaction control is the act of manipulating the timing of events called
transactions. In relational database theory, a transaction is a discrete unit of work
within a database. Transactions allow groups of statements to be executed together,
to allow for correct recovery in the event of failure. Transactions also represent
data concurrency, a process by which multiple users can manipulate data without
the fear their data will be modified with unintended consequences. In essence,
concurrency plays the role of traffic cop for multiple users, allowing them to modify
data according to a set of rules. These rules are represented by the acronym ACID:
Atomicity, Consistency, Isolation, Durability.

1. Atomicity ensures the completeness of a transaction by enforcing the all or
nothing rule. With an atomic transaction, all statements must either succeed
or all must fail.

2. Consistency states that the data returned from a query will be consistent with
the state of the data when the transaction began. If the data being selected is
also being changed by other users, the data results will appear as they were
when the transaction was executed.

3. Isolation enforces the rule that the results of any query against data in
the process of being changed must display the unchanged data until
a transaction completes. In short, data changes must be hidden until a
transaction finishes.

4. Durability refers to the guarantee that, once committed, transactions cannot
be lost. Once a durable transaction is committed, its results are seen as real
and cannot be reversed.

The ACID test deals with the ability of an RDBMS to handle data in a state of flux,
or change, in a reliable way. It prevents hazards such as partially changed data, false
results, and data being changed in an unintended way. The ACID test is crucial to
any RDBMS that claims to have the ability to handle large amounts of data and large
numbers of concurrent users. Like most of the database systems available today,
Oracle's rules of transaction control pass the ACID test.

In an Oracle database, transaction control is achieved using statements that belong
to the sublanguage called TCL, or Transaction Control Language. TCL statements
allow users to begin a transaction and either end it successfully or revert back to
the state of the data prior to the time the transaction began. There are three primary
commands in the TCL sublanguage — COMMIT, ROLLBACK, and SAVEPOINT.

[139]




Data Manipulation with DML

Completing transactions with COMMIT

In Oracle SQL, the coMMIT statement is used to signify the end of a transaction. The
transaction begins with the first DML statement and does not end until a coMMIT is
executed. In the time between the beginning of the transaction and the commIT, the
data being changed is not visible to any other user sessions, in accordance with the
ACID rule of Isolation. A transaction can consist of one or many INSERT, UPDATE, and
DELETE statements. We will demonstrate the isolating nature of transaction control in
the next several screenshots. You can type in these examples from your Companylink
database, but to actually see the effect at work, you will need to have two separate
connections into your database. The first step is to begin a transaction, as shown with
the UPDATE statement in the following example:

[} companyiinkimorcs |
FPERRS BE ¢ | 0100793117 seconds
UFDATE address

SET street address = '5234 Park Place!
WHERE employee_id = 7;

. 4
> Resuts | [5] Script output | BExplain | ) Autotrace | FDEMS Output
Results:

Here, the transaction has begun, but no coMMIT has been executed, indicating that
the transaction is not yet complete. Because of this, the session that changed the data
can view the changes, as shown in the next screenshot:

= companytink @orcs |
FPEERS BB ¢ | 000574189 seconds

SELECT * from address
THEEE employee_id = 7;

.. 4
[ Resutts =] script output | B Explain |§}Au¢mrace | FADEMS Output | 1 omee. output
Results:

ADDRESS_ID| STREET_ADDRESS| ary | STATE| ZIP| EMPLOYEE_ID
1 7 5234 Park Place Leawood KS 786539 7

[140]



Chapter 4

However, if we open a second connection in SQL Developer, our next example
(notice the two tabs at the top) shows us that the new session cannot see the data
changes made by session #1, due to the isolating nature of transaction control. Notice
how the street address column in the next example differs from the previous one.

[::-“- cokpanyiinkgbore! [D compaRylink 2i@okcl I
FPEZRO® BB ¢ 000472323 seconds

SELECT * from address
THEEE employee_id = 7:

% 4

[ Resuts | (5] soript Output | BExplain | B autotrace | EDEMS output | ) owis, Outpout
Resutts:

2ooress_o |{ streer_sooress |f arv |f state|§ ze|@ eweLoveep
1 7 523 Park R Leavwood KS 78659 7

As you can see, the street_address shown in the second session is '523 park Rd',

the "before image" of the data prior to a commit. Next, we execute a COMMIT statement
in the original session, the one that actually executed the UPDATE statement, as shown

in the following example. This indicates that the transaction is complete.

D- COmpInyiing @orcl “} corpamding@arel

EERERO 88 ¢ 000450445 seconds
COMMIT ;

.

= Resutts [=] Seript output | EExplsin |5';]Amntrace |@DBMS Output

Results:

[141]



Data Manipulation with DML

Finally, we run the query from the second session again, as shown in the next
screenshot. It shows the state of the data from the address table from the perspective
of the second session following a COMMIT in the first session.

[:P companylinkmorey [E} comparyiink 2iworcs |
FEZRO BB ¢ 000663604 seconds

SELECT * from address
VWHERE enployee_id = 7;

% 4
[ Resutts| | =] Script Output | T Explain _F;]Amotrace| FADBMS Output | £ 0w, Output
Results:
ADDRESS_ID | STREET_ADDRESS | Ty | STATE | 7P | EMPLOYEE_ID
1 7 5234 Park Place Leaweood K 78659 T

Now we see that since the transaction is complete, both sessions now see the
same data.

SQL in the real world

In real-world coding situations, special care should be taken when
deciding how often to issue the COMMIT statement. If you commit
%%‘ too often, your performance will suffer. If you execute millions of
statements without a commit, you can cause locking problems that
affect the performance of other users. A good SQL programmer needs
to strike a balance between the two. o

Undoing transactions with ROLLBACK

We've stated thus far that transactions begin with a DML statement and end with a
coMMIT, which completes the transaction successfully. You may ask why that should
even be necessary. Why shouldn't a transaction be considered complete whenever
the DML statement is finished? There are several reasons for this level of control,
but one of the most beneficial ones is the ability to undo a transaction. If you make a
mistake, such as running a DELETE statement without a limiting condition, you can
undo it with another TCL statement —ROLLBACK.

The ROLLBACK statement does exactly what it implies — it rolls back a transaction to
its original state — provided that you have not already issued a coMMIT. In Oracle,
the data involved in a DML statement, such as the values in an INSERT, are not

[142]



Chapter 4

directly applied to the table until the transaction is complete. This is the reason that,
while you can see your DML changes, other sessions cannot. Prior to the coMMIT, the
values are placed in a kind of holding area known as the Undo tablespace. This area
holds the pre-committed version of the data until the transaction is complete. Since
the undo space has our data in its original state, it can be moved back and re-applied
to the table if necessary using a ROLLBACK statement. The next several screenshots
demonstrate the use of the ROLLBACK command. First, we verify that

the data from the blog table is present.

[}compaﬂyﬁﬂk@orci I
PERRASG BE ¢ 006337753 ssconds

select * from bhlog:

W

[ Resuts [ script output | EREsxptain |?£}Amntrace |I3,DE:MS cutout | €% e output
Results:

ELOG_ID | ELOG_LRL | BLOG_DESC | HIT_COUNT
1 1 hittp: ey companylink . comblogifohnson  Jims blog 123
2 2 hitpe itveweny companylink comblogimeiliams Deskop rollout progress blog 32
3 3 httpe iy companylink . camblogfgmaore Garyblag! 24
4 4 Htp: ey companylink .combklewiz ‘Winter sales push blog 18
o 4 http: ihvewey companylink .caomtngarcis Iatt= cool blag a6

Next, we execute a DELETE without any limiting condition.

Dcampanyﬁnk@orc! I
PESRO BB ¢ 007002036 seconds

DELETE FROM EBLOG:

s W

> Resutts | 5] Script Output | 1 Explain | 8 autotrace | FDEMS Output
Results:

[143]



Data Manipulation with DML

As a result of the unrestricted DELETE, all data has been removed from the blog table.
However, take note that no coMMIT statement was issued.

Dcompanyﬁnk@ord l
ERRO BB ¢ 00571485 seconds

select * from blog:

..

B Resuts| &) script output | EEpiain | ) autotrace | (FACBMS Output | @ owia output
Results:

BLoc o B BLoc_URL |8 mLoc pEsc B Ar_counr

To correct our mistake, we issue the ROLLBACK command.

Dcompanyﬁnk@orc! l
PEREBS BB & 00048747 seconds

ROLLBACK

-

B> Resuts| =] Soript Output | ¥ Explain | 59 Autctrace | FDEMS Output
Results:

We then see that the data is restored.

Dcompanyﬁnk@om! I
FPERR® BB ¢ 000763198 seconds

gelect ¥ from blog:

Fa. 4

B> Resuts | (=] script Output | E9Exptain | ) Autotrace | [ADEMS Output | € o Ot

Results:

sLocp | BLoc URL |8 eLoc pesc [@ wr_counr

1 1 hittpc e companylink comblogfiohnson  Jims blog 123
2 2 http Sy companylink comblogimyiliams Desktop rollout progress blog 32
3 3 hitpe ity companylink comblogigmoare  Garyblog! 24
4 4 http Svewewy companylink comlesvis ‘Winter sales push blog 15
5 5 httpe Sty Companylink comimoarcia Matts cool blog 6

[144]




Chapter 4

In Oracle, we can even partially rollback a statement using the SAVEPOINT command.
A SAVEPOINT is a named breakpoint or marker that indicates a place to which a
ROLLBACK can occur. While a SAVEPOINT is used in transaction control, the statement
itself does not end the transaction in the way that coMMIT and ROLLBACK do. Consider
the set of statements in the following screenshot. Because this example uses multiple
statements, you must execute it by clicking the Run Script button just to the right of
the green arrow Execute Statement button in SQL Developer. You can also invoke
Run Script using the F5 key.

Dcompanyﬁnk@ord |
FERRO B8 ¢ 012900914 seconds

IHSERT INTO award VALUES (5, 'DML Giant');

SAVEPOINT savel:

DELETE FROM award where award id = 9;

ROLLBACK to sawel:

UPDATE award SET award_desc = 'DML Guru' WHERE award id = 9;
COMMIT ;

.. 4
[ Resuttz | [&] Scriet outout. ¥5Explain |B]Aumtrace | ADEMS Output | € Civia, Output
¢Bd &

1 rows inserted

SAVEPOINT sawvel succeeded.
1l rowz deleted

ROLLEBACK to succeeded.

1 rowz updated

COMMIT succeeded.

Let's step through this statement one line at a time. Our first statement inserts values
into the award table. Next, we place a SAVEPOINT called savel into our transaction.
We then execute a DELETE statement that removes the row we inserted. However,
our next statement, ROLLBACK to savel, will rollback the DELETE so that it never
occurred. Finally, we update the award table, changing the value for award_desc,
and then issue a coMMIT. We see the final state of the data in the following query:

[ companyiink @orcy |
FERRS BB ¢ 001548577 seconds

SELECT * from award WHERE award id = 2;

. 4
(> Resuts | [l serint output | BlExplain | £ autotrace | EDems output
Resutts:

wiaro_D [ awarD_pesc |
1 9 DL Guru

[145]



Data Manipulation with DML

SQL in the real world

Be aware that a number of SQL tools available today use an
AUTOCOMMIT feature. When AUTOCOMMIT is turned on, every

%%‘ DML statement will commit automatically. With some tools, such as
SQL Developer, you must enable the feature. Others utilize it by default.
Be mindful of this fact when issuing DML statements. If you want to
stick to the SQL standard, leave AUTOCOMMIT off.

DELETE and TRUNCATE revisited

As a final word on transaction control, we want to quickly revisit the difference
between the DELETE and TRUNCATE statements. We mentioned earlier in the chapter
that a TRUNCATE command will remove all the rows in a table and can do it much
faster than a DELETE. Now that we've seen how transaction control works, we can
see why. Since DELETE is a DML statement, we know that any deleted rows are first
put into the undo space in case of a ROLLBACK. If we are deleting a large number of
rows, it can take time to do this operation. The TRUNCATE, on the other hand, is a
DDL statement — it requires no COMMIT in order to remove the rows, and thus puts
no data into undo space. This leads us to two conclusions. First, the TRUNCATE can
remove data quickly since it writes no undo data. Second, since the TRUNCATE is a
DDL statement, we cannot issue a ROLLBACK after a TRUNCATE to retrieve the original
data. The TRUNCATE command is fast, but it is also irreversible.

Recognizing errors

To wrap up this chapter, it's time to address what happens when you receive an
error in SQL Developer. By this time, it's likely that you may have made a mistake in
typing a statement and received an error. Errors can be frustrating, but debugging
your code is an essential part of learning to write SQL. To generate an example error,
we incorrectly write the following SELECT statement:

SELCT * FROM award;

We receive this error in SQL Developer.

[146]



Chapter 4

@

Error encountered

X}

An error wwas encourtered performing the requested
operation:

ORA-00900; invalid SGL statement
0000, 00000 - “invalid SO0 statemeant"
*oause:

*action:

“endor code 900Error st Line:1

Examine the error generated previously. The window that pops up indicates an error
was encountered. It lists an error number, ORA-00900, and an error message, "invalid
SQL statement". The rest of the information is not relevant to this discussion. Every
SQL error in Oracle has a designated error number and error message. Many different
kinds of statements generate different errors. The following screenshot displays the
type of error message received when you attempt to change a numeric value into a
character one with the following statement. The award_id is a numeric column, so
attempting to set it to the string value, 'Hello"', results in an error.

UPDATE award SET award id = 'Hello' WHERE award id > 3;

r =)

Error encountered gl

An error was encountered performing the requested
o operation:

ORA-01722 invalid number

01722, 00000 - "irvvalid number”

*oalse:

*Action:

“Wendor code 1722Error at Line:1

Ok

[147]




Data Manipulation with DML

The previous screenshot shows an example of the error returned from referencing
an incorrect column name. The actual column name is award_id, but our WHERE
statement refers to it as award_ident.

UPDATE award SET award id = 3 WHERE award ident = 1;

r =)

Error encountered El

An error wwas encourtered performing the reguested
0 operation:
ORA-00304: "AWARD_DEMT": invalid identifier
00504, 00000 - "%s: invalid identifier”
Cause:
=& ction:
“endor code 904Error &t Line:1 Column:42

Like most implementations of the language, Oracle's SQL is very strict. Any
deviation from correct syntax and semantics will produce an error. Some common
conditions that generate errors include:

e Misspellings of SQL clauses, such as SELECT or INSERT

e Improperly constructed SQL statements

e Mismatched data types

e Violation of primary or foreign keys

e Insufficient object privileges

e Violation of NOT NULL constraints

e Improperly referenced table or column names
When you encounter an error, simply step through your statement slowly, checking
for any misspellings, missed punctuation such as commas, or incorrect table names.

Be patient and refer to documentation when necessary. Debugging is a skill that is
acquired over time.

[148]




Chapter 4

Summary

In this chapter, we've added the power of DML to our SQL abilities. We learned

to add, modify, and remove data from relational tables using INSERT, UPDATE, and
DELETE. We've learned the importance of adding limiting conditions to our UPDATE
and DELETE statements. We've learned about the concept of transactions and used
COMMIT, ROLLBACK, and SAVEPOINT to achieve transaction control. Lastly, we've
looked at the types of error messages generated by Oracle.

Certification objectives covered

e Describe each data manipulation language (DML) statement

e Insert rows into a table

e Update rows in a table

e Delete rows from a table

e Control transactions
At this point in the book, we've learned the basics of retrieving and manipulating
data with SQL statements. However, up to now, everything we've seen has focused
on statements that work with a single table. In examples where we used SELECT, we
did so only with a single table. In the next chapter, we begin to broaden our abilities.

We'll learn how to take data from multiple tables and combine it in useful ways by
joining tables.

Test your knowledge

1. Which of the following terms does not apply to the CRUD model of
persistent storage?

a. Create
b. Undo

C. Destroy
d. Read

2. Which of the following is not a DML statement?

a. INSERT
b. UPDATE
C. COMMIT
d. DELETE

[149]



Data Manipulation with DML

3. Which of these terms is a DML statement that allows you to add rows to

a table?
a. CREATE
b. INVOKE
C. DELETE
d. INSERT

4. Given the structure of the branch table shown below, which of these INSERT
statements uses correct positional notation?

BRANCH_ ID NUMBER (10)
BRANCH NAME VARCHAR2
DIVISION_ ID NUMBER(10)

a.

INSERT INTO branch (branch name, division id, branch id)
VALUES ('Executive', 7, 14);

INSERT INTO branch

VALUES ('Executive', 7, 14);

INSERT INTO branch (branch name, division id, branch id)
VALUES (14, 'Executive', 7);

INSERT INTO branch

VALUES (14, 'Executive',k 7);

5. Which of these INSERT statements uses correct named column notation?

a.

INSERT INTO branch (branch_name, division id, branch_id)

VALUES ('Executive', 7, 14);

INSERT INTO branch
VALUES ('Executive', 7, 14) ;
INSERT INTO branch (branch name, division id, branch id)

VALUES (14, 'Executive', 7);

INSERT INTO branch

VALUES (14, 'Executive', 7);

[150]



Chapter 4

6.

If the following statement was executed against the branch table in
the Companylink database, what value would be inserted into
the division id column?

INSERT INTO branch (branch name, branch id)
VALUES ('Supervisory', 10);

a.
b.
C.
d.

Supervisory
10

Null

0

If the following statement was executed against the Companylink
database, which of the following columns would not be present in
the address copy table?

INSERT into address_copy
SELECT * FROM address;

a.
b.

C.

d.

city
street address
zip

division_ id

Which of the following UPDATE statements is syntactically correct?

a.

UPDATE email SET email address = 'donperez@companylink.com!'

WHERE email id = 11;

UPDATE email WHERE email id =11
SET email address = 'donperez@companylink.com';
UPDATE email WHERE email id=11;

UPDATE email

SET email address TO 'donperez@companylink.com';

Consider the following row in the blog table containing the values in the
column order of the table.

6,
20

'http://www.companylink.com/testpage', 'Test Description',

[151]



mailto:'donperez@companylink.com
mailto:'donperez@companylink.com
mailto:'donperez@companylink.com
http://www.companylink.com/testpage

Data Manipulation with DML

Which of these columns is unchanged if the following UPDATE statement
is executed?

UPDATE blog
SET blog_id
blog desc

7 I

'Test Description2',
hit count 30

WHERE blog id = 6;

a. blog id
b. blog url
C. blog desc
d. hit count
10. Refer to the branch table in your Companylink database. If the following
statement was executed, how many rows would be deleted?

DELETE FROM branch
WHERE division id = 3;

a. 1
b. 2
c. 3
d. 12

11. Refer to the branch table in your Companylink database. If the following
statement was executed, how many rows would be deleted?

DELETE FROM division;

a. 1
b. 4
c. 6
d 0

12. Which of the following DELETE statements is syntactically correct?
a. DELETE * FROM branch WHERE branch id=5;
b. DELETE FROM branch WHERE branch id=75;
C. DELETE WHERE branch id = 5 FROM branch;

d. DELETE * WHERE branch id =5 FROM branch;

[152]




Chapter 4

13.

14.

15.

Which of the following represents the proper syntax for a TRUNCATE
statement?

a. TRUNCATE branch;
b. TRUNCATE table branch;
C. TRUNCATE table branch where branch id isnull;

d. TRUNCATE FROM table branch;

Which of these terms is not a part of the transaction control acronym ACID?
a. Atomicity
b. Isolation
c. Commit

d. Durability

Consider the following set of statements. What are the values for the row
having branch_id equal to 14 for branch_id, branch name, and division_
id respectively, at the end of the statement?

INSERT INTO branch VALUES (14, 'Research', 7);

COMMIT;

UPDATE branch SET division id = 8 WHERE branch id = 14;
SAVEPOINT saveit;

DELETE FROM branch WHERE branch id = 14;

ROLLBACK to saveit;

UPDATE branch SET branch name = 'R and D' WHERE branch id = 14;
COMMIT;

a. 14, 'Research', 7
b. 14, Rand D', 8

null, null, null

a o

An error is returned

[153]






Combining Data from Multiple
Tables

The ability to retrieve data from a table is an absolutely essential element of learning
SQL. However, real-world requirements often demand the ability to select data from
multiple tables concurrently and present it in a meaningful way. Herein lies the
ability to join tables. This chapter will cover two distinct syntaxes for joins as well

as multiple techniques for combining data from multiple tables.

In this chapter, we shall:

e Examine the concept of joining multiple tables together
¢ Join tables using ANSI-compliant join syntax
e Look at n-1 join conditions

e Join tables using the new Oracle join syntax

Understanding the principles of joining
tables

So far, we have seen several ways to select data from tables. In Chapter 2, SQL
SELECT Statements, and Chapter 3, Using Conditional Statements, we covered
numerous ways to retrieve data and then limit its retrieval by condition. In Chapter
1, SQL and Relational Databases, we extensively discussed the concept of relational
databases. In that chapter, we stated that what makes a relational database different
from a flat file database are the relationships between entities, or in our case, tables.
Up to now, we haven't seen the effect of these inter-table relationships. Each of

our queries is applied only to one table. So, while each of these queries have been
effective for our needs, those needs have never gone beyond the search for data from
a single table. In short, if called on to do so, how would we pull data from multiple
tables with a single query?



Combining Data from Multiple Tables

Accessing data from multiple tables

Consider the columns from two tables, shown in the following two screenshots.
Here, we revisit the DESCRIBE command from Chapter 2, SQL SELECT Statements,
which lists the columns that make up the employee table. In the second screenshot,
we used the shortened version of the command, DESc, to do the same for the
address table.

D companylink @orcl |

>ERZRG BB ¢ 15475315 seconds
DESCEIBE euployee

v

[ Resutts | [& Scrint Output | B)Explain |§3Ammrace | ADEMS Cutput | ) S Cutput

¢BE

DESCRIBE euplovee

Name Hull Type

ENPLOYEE_ID WUMEER. {10

FIRST NAME VARCHARZ (25)

MIDDLE_INITIAL VARCHARZ (1)

LLST_MAME VARCHARE {50

GENDER CHAR (L)

DOE DATE

START _DATE DATE

ERANCH_ID WUMEEE. {10}

PROJECT_ID WUMEER. {10

SIGNUP_DATE LATE

LLST LOGIN_DATE LATE

LOGTH_COMIT WIMEER {101}

12 rows selected

[ companylink @orcr |
FPERSRS® OB ¢ oo seconds

DESC address

.. 4

[ Resuts | 5] Soript output. BExpizin | 5 autotrace | R0EMs outout | ) oves, output
¢BE

DESC address

Name Mull Type
ADDRESS_ID HUMEER. { 10
STREET ADDRESS VARCHARZ { 50
CITY VARCHARZ {25}
STATE VARCHARZ (2]
ZIP HUMEER { &)
EMPLOYEE_ID HUMEER { 10

6 rows selected

[156]



Chapter 5

As we've said before, the columns in each table characterize different aspects of
that table. The employee table contains information relevant to defining employees
and the address table does the same for addresses. But, if that is the case, why

do the employee and address tables both contain a column called employee id?
Obviously, the employee id column is relevant to employee information, but why
is it applicable to the address table? The sharing of columns such as employee_id
between the employee and address tables is the key to understanding why an
RDBMS is "relational". The relationships shared between tables are defined by the
columns that they have in common.

To see this in action, consider this requirement for our Companylink database: show
me the full name, date of birth, and address for all employees named Gary. One possible
way to do this is with two queries. First, as shown in the following example, we use
a query that selects name information from the employee table where the employee's
first name is Gary.

[}- companyiinkmorcs |
FPERRO B8 ¢ 00650002 seconds
SELECT employee_id, first name, middle_initial, last_name, dob

FROM enplovee
THERE first_name = 'Gary':

%
B> Resuts (=] script output | BExplain | B autotrace | DEMS output | €Y owa output
Reszults:

empLovEED | FRST Mame | mooLe_wmar [B Last_name (8 pos
1 11 Gary R Moore 01 -MO 65

[157]




Combining Data from Multiple Tables

From the results of this query, we see that the only employee named Gary is Gary
R. Moore, who has an employee_id of 11. This provides us with the name and date
of birth, but not the address information. In fact, we cannot query the address table
using the name Gary, since first_name is not a column in the address table. The
only way for us to retrieve the correct address is to identify that Gary Moore has an
employee_id of 11 and use that in a separate query of the address table, as shown
in the following example:

[} companyiink @orcl |
FEERO B8 ¢ 0058948 seconds
SELECT sztreet_address, city, state, zip

FROM address
YHEFE employee _id = 11:

v
[ Resuts [ =] Script Cutput | [ Exeplain |f;:j.£\.m::drace | ADBMS Output

Results:

STREET_ADDRESS | CITY | STATE | ZIP|
1 523 Park R Des Moines & 90272

The results show the address information for employee id with value 11, Gary
Moore. We've found the information that was requested, but it has taken a long road
to get there. What if the requirement was to display this information for all of the
Companylink employees? Acquiring the information is possible, but doing so would
require many queries. Fortunately for us, our Companylink database is a relational
database. The employee and address tables have a relationship between each other.
That relationship is formed by a common column —the employee_id column. Using
that relationship, we can join the two tables.

The ANSI standard versus Oracle proprietary
syntax

In Oracle, we actually have a choice between two distinct join syntaxes; the ANSI-
compliant syntax and the newer Oracle proprietary syntax. The ANSI syntax is the
standard supported by most relational database management systems, including
Oracle. As we mentioned in Chapter 1, SQL and Relational Databases, the standards
used in the SQL language are governed by the American National Standards
Institute (ANSI) and the International Organization for Standardization (ISO). The
ANSI syntax is the standard approved by ANSI and ISO. Its use is widespread. It is
far more common to find ANSI joins in today's SQL than Oracle proprietary joins,

[156]




Chapter 5

even in systems that use Oracle. Nevertheless, it is argued by some that Oracle's
proprietary syntax is more intuitive and easier to understand. Both will be covered in
this chapter. We'll revisit the Oracle standard later in the chapter.

SQL in the real world

Through the course of this chapter, you may find that you like one

a1 standard more than another. Just remember that in the real world,
~ . . . .

your choice of syntax may be limited by the coding standards of

your organization. The Oracle syntax has yet to reach widespread

acceptance. However, for the sake of the certification exam, it is

crucial that you understand both. The Oracle join syntax is fairly

heavily tested on the exam.

Using ANSI standard joins

In order to join two tables, we will utilize the basic structure of a SELECT statement;
but, we must add a few qualifiers.

Understanding the structure and syntax of
ANSI join statements

When we join two tables, we add a WHERE clause that qualifies that the common
columns between the tables are equivalent. The following is the syntax tree for an
ANSI-compliant join:

SELECT columnl, column2,
FROM tablel, table2
WHERE tablel.common column = table2.common column;

While the join syntax is similar in many ways to a typical select statement, we
notice some differences.

e Asyou might expect, since we are selecting data from two tables, both table
names are specified in the FROM clause, separated by commas

e The syntax of the WHERE clause is different from what we've previously seen

e In our WHERE clause, we specify the condition that the common column from

the first table must be equal to the common column in the second

In constructing this part of the statement, it is important to have first identified the
common column between the tables that forms the inter-table relationship. This
equivalence forms the bond between the two tables.

[159]



Combining Data from Multiple Tables

Examining ambiguous Cartesian joins

Before we look at some examples of typical join statements, it is important to discuss
one type of join that is considered undesirable in most circumstances. A Cartesian
join is a join between two tables that omits the WHERE clause. The result is known as
a Cartesian product. A Cartesian product is formed when every row of one table is
joined to every row of another table. An example of this is shown as follows:

D companyfink @orcl |

FPERRO B8 ¢ 003721004 seconds

SELECT project name, award deac
FROM project, award:

F%
[ Resuts | =] script Output | 5 Explain | B autotrace | FADEMS Output | % owvia, Outaut
Results:
PROJECT _MAME | AMARD_DESC |
1 Desktop rollout Salesperzon of the year
2 Desktop rollout Technological paper winner
3 Desktop rollout Cleanest desk
4 Desktop rollout Fastest typist
5 Desktop rollout Employee of the yvear
G Desktop rollout Best new employes
7 Desktop rollout DL Guru
5 Security swareness training Salespersan of the year
9 Security swareness training Technological paper winner
10 Security awareness training Cleanest desk

11 Security awareness training Fastest typist

12 Security awareness training Employee of the yvear
13 Security awareness training Best new employee
14 Security awareness training DL Guru

15 Corpotate website release 011 a Salesperson of the year

16 Corpotate website release 011 .a Technological paper winner

The resulting number of rows shown has been truncated for the sake of brevity. It is
fairly easy to see what is happening without displaying all 40 rows that are returned.
In a Cartesian join, the query returns the first row selected from the project table,
in this case Desktop Rollout, and joins it to every row selected from the award table;
first, Salesperson of the year, then Technological paper winner, and so on. It then
moves to the second row returned from the project table, Security awareness
training, and again joins each row from the award table. It continues in this manner
until every row in the project table has been joined to every row in the award table.

[156]




Chapter 5

The Cartesian product returned from a Cartesian join is generally considered
undesirable because it has little meaning. Since no relationship has been established
between the two tables based on a common column, the data from the project
table does not relate in any logical way to the award table. Such joins are said to be
ambiguous, since no row has any particular relationship to any other row.

It is important to remember that even if the two tables share a common
column, that relationship must be specified in the WHERE clause. Failure
’ to do so will result in a Cartesian product.

A Cartesian join is generally said to produce an a times b product, where a and b
are the number of rows in the two tables. In the next screenshot, the project table
has five rows, while the award table has eight rows. We can therefore say that the
number of rows returned by the Cartesian product of the two tables will be 5 x 8,
or 40, rows. In this way, we can predict the number of rows returned by any
Cartesian join as being the number of rows in the first table times the number

of rows in the second.

The eighth row in the award table was inserted in Chapter 4, Data
Manipulation with DML. If you did not run the examples in that chapter,
% or if you have rebuilt your Companylink database since Chapter 4,
"~ Data Manipulation with DML, you will see seven rows instead. The
resulting Cartesian product will thus be 5 x 7, or 35, rows.

SQL in the real world

Another practical reason that Cartesian joins are considered undesirable

is the immense strain they can put on a system from a performance

perspective. While the 40-row Cartesian product from our example may

~ not seem significant, consider two tables with one million rows each.

Q The resulting number of rows from such a Cartesian product would be

1,000,000 x 1,000,000, or 1x10"%, rows — one trillion rows. Such a mistake
can cause excessive resource usage on your database system to the
point of affecting other users. In fact, when tuning SQL statements, one
of the most common examples of improper code to watch out for is
Cartesian joins.

[161]




Combining Data from Multiple Tables

Using equi joins—joins based on equivalence

The core of the RDBMS is the relationships that are formed between tables. The most
common relationships are based on equivalence. In this section, we examine the
concept of an equi join.

Implementing two table joins with a table-dot
notation

To see an example of the kind of join that would be advantageous to an SQL
programmer, let's return to the earlier request to display name, date of birth, and
address information for all of the Companylink employees. In the earlier examples
in the chapter, we used two different queries to find the required information and
noted the inefficiency of the process. To get this information using a join, we issue
the query shown in the following screenshot:

D companylink @orcl |
FPESRS OB ¢ 01727348 seconds
SELECT first_name, middle_initial, last_name, dob, street address, city, state, zip
FROM employee, address
VHEFE enployee.employee_id = address.employee_id;
.. 4
[ Resuts | [ 5] seript output | EExplain |_F,1'jAmotrace | FADEMS Output | 0 e, Output
Results:
FIRST_MAME | MIDDLE_IMITIAL | LAST_MAME | DOB | STREET_ADDRESS | Ty | STATE | 7P
1 James R Johnzon 01-JAN-60 34097 Bannerman Rd  Beaumaont 0§ 23453
2 Mary S Williams 15-MAR-64 523 Park Rd Overland Park KS 44392
3 Linda L Anderson 24-0CT-70 523 Park Rd Mizzion K= T9a29
4 Daniel J Rokinzon 23-MO-59 523 Park Rd Independence MO 12335
3 Matthew K Garcia 14-APR-71 523 Park Rd Lees Summit O 20772
& Helen H Harriz 13-dUL-T5 523 Park Rl Lenexa kS 18332
7 Ken W White 22-FEB-58 5234 Park Place Leawvaod K= o659
5 Donald A Perez 14-MAR-73 523 Park Rd Wanzas City MO 12996
9 Lisa C Lee 15-JUR-63 523 Park Rd Edhwardsvile MO 35870
10 Carol 1 Clark 11-8UG-67 523 Park Rd Topeka KS S7E19
11 Gary R hoare 01-MOY-65 523 Park Rd Des Moines 1A 90272
12 Cynthia B Hall 21-0CT-55 523 Park Rd Waldo B 45758
13 Sandra S Rodriguez. 10-M&Y-74 523 Park Rd Tulza (o] 4 38940
14 Kevin L Lewis 01-JUL-76 523 Park Rd tartin City B 52736
15 George H Taylar 24-DEC-72 523 Park Rd Grandviewy MO E1036
16 Laura | Thomaz 2E-OCT-81 523 Park Rd Piper KS 2817

Let's deconstruct the statement one line at a time. The first line is simply a list of all
the columns that we want to display. The first four are columns from the employee
table and the last four come from the address table. The second line specifies the
tables that are involved in the query. We are requesting columns from the employee
and address tables, so those tables are listed. The third line contains the clause

[156]



Chapter 5

that actually performs the join. We have stated that a join requires the linking of a
common column between the tables. The only column that is common between the
employee and address tables is the employee id column; this column forms the
relationship between the two tables. It is this column that we use to execute the join.
The join clause performs this joining by creating a condition that sets the values for
the employee_id column in the employee table equal to the employee id column in
the address table. Thus, each row in the address table is joined to each row in the
employee table, but only where the values in the common columns are equivalent.
The clause, however, requires that we specify which columns are being referred

to, since they have the same name. To clearly delineate them, we prefix each of the
columns in the WHERE clause with the name of the originating table, followed by a
dot (.). We refer to this as the table-dot notation. As a result, the previous statement
could be read as: Display name and address information from the employee and address
tables, where the employee_id column in the employee table is equivalent to the employee_id
column in the address table.

To see the relationship more clearly, we could rewrite the preceding statement to
include the columns that form the relationship. In the following example, we have
reduced the number of columns returned (for clarity) and included both columns
that form the relationship. The result shows how the employee_id values for each
table match.

D companylink @orcl |

FERRO BB ¢ 0047908 seconds

SELECT first name, last name, employee.employee_id, address.employee_id, street _address, city
FROM employee, address
THERE employee.employee_id = address.employee_id;

.
[B= Resutts| =] seript Output | ) Explain |_5.1]Amotrace | ADEMS Cutput | A o Output
Results:

FIRST_NAME |LAST_NAME |EMPLOYEE_ID [EMPLOYEE_ID_1 |STREET_ADDRESS |CTY

1 James Johnson 1 1340397 Bannerman Rd Beaumont
2 Mary Williarms 2 2523 Park Rd Crverland Park
3 Linda Anderson 3 3523 Park Rd Miz=ion
4 Daniel Robinzon 4 4 523 Park Rd Independence
5 Matthesw Garcia 5 5523 Park R Lees Summit
B Helen Hartiz 5] B 523 Park Rd Lenexa
7 Ken Wihite: 7 T 5234 Park Place Leawood
& Donald Perez g 8 523 Park Rd KWanzas City
9 Liza Lee 9 9523 Park Rd Edhwardzville
10 Caral Clark 10 10523 Park Rd Topeka
11 Gary hoare 1 11 5923 Park Rd Des Maines
12 Cynthis Hall 12 12 523 Park Rd Waldo
13 Sandra Rodriguez 13 13 523 Park Rd Tulza
14 Kewin Lewvis 14 14 523 Park Rd Martin City
15 Gearge Taylar 13 145 5923 Park Rd Grandview
16 Laura Thomas 16 16 523 Park Rd Fiper

[163]



Combining Data from Multiple Tables

As you can see, the rows displayed essentially show two tables joined together.
The first_name, last_name, and employee.employee_id columns all belong to
the employee table. The address.employee id, street address, and city
columns belong to the address table. Yet information from both tables can be
displayed together, provided that we join them with a common column. These
joins are categorized as equi joins; joins based on the equivalence of values
between common columns.

» Itis crucial that we explicitly define the two columns that form the join
in the WHERE clause. A failure to do so will generate an ORA-00918 error
e . .
or a column ambiguously defined error.

The following example shows the previous statements rewritten to exclude the table-
dot notation with the originating tables, and the resulting error. Again, this results
because the columns have the same name in each table, yet we have not defined the
originating tables.

[ companyiink@orch |
FERROG B8 ¢ 001504297 seconds

SELECT first name, middle initial, last name, dob, street address, city, state, zip
FROM euplovee, address
WHEBE employee_id = employee_id:

..
B Resuts | =] Script Output | BExplain | 1 Autotrace | ADEMS output | € cvws output
Results:

Error encountered §|

An error was encountered performing the requested
9 operation;
ORA-O091 8 column ambiguously defined
005918, 00000 - "column ambiguously defined"
*Cause:
*& ction:
“endor code 915Errar at Line: 3 Column: 20

CK

[156]




Chapter 5

Using two table joins with alias notation

Thus far, our join examples have used two tables. However, a join can be done with
any number of tables, provided they have common columns between them. We
will discuss multi-table joins later in the chapter, but using the table-dot notation
with multi-table joins is considered by some to be cumbersome, since each table and
several columns must be prefixed with the associated table name. As an alternative
to table-dot notation, many SQL coders use alias notation.

We examined one form of alias in Chapter 2, SQL SELECT Statements. With that type,
we used double quotation marks to present column headings that are different

than the actual column name. It allowed us not only to display a different column
name, but also to utilize case sensitivity and whitespace. This type of alias is called a
column alias. We now look at a table alias, a type of alias that allows us to reference
a table using a different name. In the following screenshot, we have rewritten the join
shown previously, this time using table aliases, or alias notation:

[ companytink @orci |
FPERRO® 88 ¢ 0016050855 seconds
SELECT first_name, last name, e.employee_id, a.employes_id, atreet_addresz, city
FROM employee e, address a
VHERE e.employee_id = a.employee_id;
%
[ Resutts | [ 5] Script output | EExplain | 5 sutotrace | ADEMS Output | €9 0w Output
Resufts:
FIRST_MAME |LAST_NAME |EMPLOYEE_ID EMPLCYEE_ID_1 |STREET_ADDRESS CITY
1 James Johnson 1 1 34087 Bannerman Rd Geaumant
2 Mary Williziriz 2 2523 Park Rdd Owerland Park
3 Lincka Andersan 3 3523 Park Rl tizsion
4 Daniel Rohinzan 4 4 523 Park Rd Independence
3 Matthewy Garcia -] 3 923 Park Rd Lees Summit
& Helen Harris -] 6 523 Park Rd Lenexa
7 Ken Wuhite 7 7 5234 Park Place Leawaod
8 Donald Perez 5] 5 523 Park Rdd Wansas City
9 Liza Lee 9 9523 Park Rdl Echwearclsville
10 Caral Clark 10 10 523 Park Rd Topeka
11 Gary hoare 1 11 523 Park Rd Des Moines
12 Cynthia Hall 12 12 523 Park R Wyaldo
13 Sandra Rodriguez 13 13 523 Park Rd Tulza
14 Kewin Lewis 14 14 523 Park Rd artin City
15 George Taylor 13 15 523 Park Rd Grandviensw
16 Laura Thomas 16 16 523 Park Rd Piper

[165]




Combining Data from Multiple Tables

This example is very similar to the original statement, but there is one significant
difference. In the FrROM clause, we have added aliases for our two tables. These aliases
are designated by the letters that follow each of the table names. For the employee
table, the alias is e, and for the address table, it is a. Thus, in the WHERE clause,
instead of prefixing the table names employee and address to our columns, we
simply use e and a in place of them. These same aliases are also used in the SELECT
clause, where employee.employee_id and address.employee_id are simply
written as e.employee_idand a.employee_id, respectively. Note that there is
nothing particularly significant about using the letters a and e as aliases. We could
just as easily have used emp and addr as our aliases. The purpose is simply to reduce
the amount of coding that has to be written. Many SQL developers feel that using
aliases is an efficient and readable way to write joins, especially those that involve
numerous tables.

SQL in the real world

Although both table-dot notation and alias notation are supported in
ANSI-compliant joins, the organization you work for may decide that
M one is preferable to the other. As with many of the choices offered to a
SQL programmer, an organization's coding standards may determine
Q how code will be written. This isn't to say that one way is necessarily
better than the other, but rather to support the idea of having
standards for the code written in an organization. Code standards
provide rules for writing and reading code that generally lead to better
interoperability between programmers. -

Understanding the row inclusiveness of outer
joins

The joins we've seen thus far obey one simple rule —they only produce a
corresponding row if there is a match between the values of a column that is
common to both tables. Joins that meet this one-for-one matching criteria are

categorized as inner joins. There are, however, certain circumstances in which we
may wish to include values that do not match. Examine the following screenshot:

[156]



Chapter 5

[} COMPIRyIREmorc |
FEZRO BE ¢ 014439501 seconds
SELECT first name, last name, project hame
FROM emplovee e, project p
THEBE e.project_id = p.project_id;
b W
[ Resuttz [ =] script Output | T Explain | 5 Autotrace | ADEMS Output | €8 WA Output
Resutts:
FIRST_MAME | LAST_M&ME | PROJECT _MA&ME |
1 James Johnson Security avwareness training
2 Mary Willizms Desktop rollout
3 Linda Anderson Corporate website release 011 .3
4 Daniel Robinzan Desktap rallout
S Matthew Garcia Carporate website release 011 .4
& Donald Perez Corporate website release M1 a
7 Carol Clark Desktop rollout
g Gary hoore Oracle 119 upgrade
9 Cyrthia Haill Oracle 11g upgrade
10 Kewin Lewiz Winter sales push
11 Gearge Taylor Winter sales push
12 Laura Thomas Cracle 119 upgrade

Look carefully at the results of this query. In real-world terms, we have requested
the names of each employee and the project to which they are assigned. However,
our query has returned rows for 12 employees, while our Companylink database
contains rows for 16 employees. This means that the project name information for
four employees was not included in the record set. Why would this be? This lack
of inclusiveness occurs because not all employees have a value for the project_id
column in the employee table. Instead, four of the employees have a null value

in the project_id column. If you wish to see this, simply enter a select * from
employee; query in SQL Developer. In essence, not all employees have been
assigned to a project, thus their rows are not returned because there is no match
of values.

[167]



Combining Data from Multiple Tables

However, if we wished to include these, for example, for a report that was inclusive
of all employees, we could use an outer join. An outer join is a join that purposely
includes null values along with matching values in the result set. To accomplish an
outer join using ANSI-compliant syntax, we use a plus symbol within parentheses,
or (+), as shown in the following example:

= companyiink @orcs |
FPEEAS B8 & 001851958 seconds
SELECT first name, last name, project hname
FROM euployee e, project p
WHERE e.project_id = p.project_id(+):
.. 4
B> Resutts. [ =] seript output | T Esplain |_§:] Zutotrace | ADEMS Output | £ 0 Output
Results:
FIRST_MAME | LAST NAME | PROJECT_MAME |
1 Carol Clark Desktop rollout
2 Daniel Rohinson Desktop rollout
3 Mary Willizirms Desktop rollout
4 James Johnzan Security avareness training
5 Donald Perez Corporate website release 011 .a
E Matthew Garcia Corporate website release 011.a
7 Linds Ancerson Corporate website release 011 .a
8 George Taylor Winter sales push
9 Kewin Lewis Winter zales push
10 Laura Thomas Cracle 119 upgrace
11 Cyrithia Haill Oracle 11g upgrace
12 Gary Moore Cracle 11g upgrade
13 Sandra Rodriguez (il
14 Li=a Lee (il
15 Ken White (rully
16 Helen Harriz [null)

As we can see, the four employees who were excluded from the original join are now
included, along with null values for their project_name. Outer joins can be signified
by the terms right, left, or full. In the ANSI syntax for outer joins, which term we use
is determined by the placement of the (+) symbol. This example is known as a left
outer join, since the (+) symbol for inclusiveness is placed on the right side of the
query condition.

[156]



Chapter 5

The inclusiveness of outer joins is often required in data reporting. It prevents values
from "falling through the cracks". A report using the query shown in the example
could be used to point out that some employees have not yet been assigned to a
project; the query shown in the example previous to it lacks this information.

. Notice that the query that we just saw is identical to the original query,
% except for the addition of the (+) symbol next to the p.project_id
/o= column. This symbol simply instructs Oracle to include any rows
associated with null values found in the project id column.

When potential SQL programmers are learning to do outer joins, a common
syntactical question raised is, "which side do I put the (+) on?". This refers to

the question of where the (+) symbol is placed in the statement. Do we put the

(+) with the e.project_id column or with the p.project_id column? This is

an important question, since the placement of the (+) symbol in an outer join is
critical. Fortunately, there is an easy rule of thumb to use in order to remember

this. Always place the (+) symbol with the table that does not contain null values. In this
case, that would be the project table. For instance, the project_id column in the
employee table, or e.project id, includes null values. The project id column in
the project table, p.project_id, contains no nulls. In order to properly execute an
outer join of the two tables, we place the (+) symbol with the table that has no nulls,
the project table and the p.project_id column. Since the project table contains
all the values for project id and the employee table lacks some of these values, we
place the (+) with the column from the project table, p.project_id. In the following
example, we show an example of improper placement of the (+) symbol. Here,

we execute the same query as the original, correct outer join, but we place the (+)
with the e.project_id column from the employee table. The (+) is paired with the
wrong table. The resulting record set is only 12 rows instead of the inclusive 16 we
were attempting to retrieve, since we have not properly instructed Oracle to retrieve
rows with a null value. Always be aware of the placement of the (+) symbol in
outer joins.

[169]



Combining Data from Multiple Tables

The following example demonstrates a right outer join, since the (+) symbol is on the
left side of the condition.

[} companyiink @orcl |
FEERO B8 ¢ 001359167 seconds
SELECT first name, last name, project name
FROM emplovee e, project p
YHERE e.project_id({+) = p.project_id:
.
B> Resuts| || Script Output | B Explain f;jmntrac:e| ADBMS Output | € 0IAR Output
Results:
FRST_Mame | LasT_name { PROJECT name |
1 James Joknson Security avvareness training
2 Mary Williams Dezktop rollout
3 Linda Anderson Corporate website release 011.a
4 Daniel Rohinzon Dezktop rollout
5 Matthew Garcia Corporate website release 011.a
E Donald Perez Corporate website release 011.a
T Carol Clark Desktop rollout
g Gary doare Cracle 119 upgrade
9 Cyrthia Haill Oracle 119 upgrade
10 Kewin Lewwiz Winter zales push
11 Gearge Taylar Wirter sales push
12 Laura Thatmas Cracle 119 upgrade

Outer joins have three configurations —right, left, and full. We have seen examples of
both right and left outer joins. In a full outer join, the (+) symbol is placed with both
columns, allowing the join to include null values from either column in the resulting

set of rows.

In the Oracle proprietary join syntax, outer joins are much easier to interpret. Right,
left, and full outer joins are constructed using the RIGHT OUTER JOIN, LEFT OUTER
JOIN, and FULL OUTER JOIN keywords, respectively. The (+) symbol is not used.

[156]



Chapter 5

Retrieving data from multiple tables using n-1
join conditions

As we have seen, joins can be a very effective way to retrieve information from two
different tables. However, situations can arise that require data to be retrieved from
more than two tables. In these circumstances, we can use our previously-discussed
join techniques to retrieve data from as many tables as we wish, provided that we
can establish the proper relationships between them. For instance, say that we've
been tasked with writing the SQL for a report that will retrieve the information for
employees have created websites and blogs in Companylink. When we are asked to
create joins over multiple tables, it is often advantageous to have an ERD, or Entity
Relationship Diagram, to which to refer. We introduced ERDs in Chapter 1, SQL
and Relational Databases. They are used to graphically represent the relationships
between tables. Let's look at an ERD for our Companylink database. It is shown in
the following diagram:

Employee_

Award award

Project

Email

Employee

Branch

Address

Website
Division

Blog

[171]



Combining Data from Multiple Tables

Study this diagram closely. The tables are each represented by their names inside of
boxes. The lines between the tables indicate the type of relationship between them.
Tables can have different kinds of relationships, although the most common are
one-to-one and one-to-many. In a one-to-one relationship, there is a "one and only one"
relation between each of the rows in the tables. An example of this is the relationship
between the website table and the blog table, shown by a single solid line between
the two. This indicates that for each row in the blog table, there is one and only one
corresponding row in the website table. Thus, we can locate the common column in
the two tables— blog_id—and join the two tables on that column.

The more prevalent type of relationship between tables in a relational model is the
one-to-many relationship. We can see an example of this between the employee

and email tables, denoted by the line and "crow's foot" (three diverging lines)
terminating at the table. When we see this diagram we can interpret it as: for every
row in the employee table, there can exist one or more corresponding rows in the
email table. In simpler terms, we can say that based on this diagram, each employee
can have one or more e-mail addresses. Using an ERD can be a powerful, efficient
way to form our joins.

Let us return to the requirement given to us at the beginning of this section, that is,
to write an SQL query for a report that will retrieve the information for employees
who have created websites and blogs in Companylink. We can surmise that we will
need to select data from the employee, website, and blog tables: a situation that will
require a join. From our ERD, we can see that although relationships exist between
employee and website, and website and blog, no direct relationship exists between
the employee and blog tables. How, then, can we retrieve the requested data? Even
though no direct relationship exists between the employee and blog tables, an
indirect relationship does. This indirect relationship exists because employee relates
to website and website relates to blog. In essence, we can get from employee to blog
through the website table. Doing so will require a multi-table join, as shown in the
following screenshot:

[156]



Chapter 5

[} COMPINYIiRk @orcr |

FERRAO B8 ¢ 004602327 seconds

SELECT first _name, last name, website_desc, blog_desc
FROM employee e, wehsite w, blog b

THERE e.employee_id = w.employee_id

AHD w.blog id = b.blog id:

% 4
[ Resuts | =] Scrint Outaut | S Explsin | 5 autatrace | E0EMS outout | ) 0w output
Results:
FIRST_Nave [{ LasT_name B weBsTE_DESC (@ eLos_pesc
1 James Johnzon Jimz new site Jim= blog
2 Mary Williams Desktop rollout project site Desktop rollout progress blog
3 Matthew Garcia Matts cool website Mstts cool blog
4 Gary haore Garywarid! Garyblog!
5 Kevin Lewviz Winter zales push project site 'Winter sales push blog

As we can see, this multi-table join is similar to our two-table joins, with two
exceptions. First, our FROM clause contains three tables (the three targets of our
query) instead of two. These three table names are separated by commas and
denoted with aliases. Second, there is an additional join condition specified. Our first
condition, the joining of employee and website, based on the employee_id column,
is specified after the WwHERE clause. Our second condition, the joining of website and
blog, is specified following a Boolean AND operator. In short, we only retrieve rows if
both join conditions are true.

% Notice that the number of conditions, or joins, that must be specified is
= one less than the number of tables involved. This is always the case.

Thus, we can say that for any number of tables, n, that must be joined, there must exist n-1
join conditions. We can refer to this as the n-1 join rule. It is true no matter how many
tables are involved. Thus, if we need to join 20 tables, 19 join conditions will

be required.

[173]



Combining Data from Multiple Tables

In our example, even though we used the website table to get from the employee
table to the blog table, it is not required that we include any columns from

the intermediary table in our query. For instance, let's say that we receive the
requirement, display all employees who have received awards and the name of the award
they received. To begin, we refer back to our ERD. We recognize that we will need
data from the employee table and the award table, so we locate them on the diagram.
We see, however, that they have no direct relationship. Even though no direct
relationship exists, we notice that the employee award table exists between the two.
Thus, we can use n-1 join conditions (in this case, two conditions) to join three tables,
as shown in the following screenshot. We could interpret this query as, display all
employees who have received awards and the name of the award they received.

[} CcOMpIRyink Dorcl |

FPERRO B8 ¢ 00623962 sconds

SELECT first name, last name, award desc
FROM employee e, employee_award ea, award a
THERE e.employee_id = ea.employee_id

AHD ea.award id = a.award id:

F%.
[ Resuts |5 Script output
Results:

HExplain | ) Autatrace | ADEMS Output

FIRST _MAME | LAST_MAME | AWARD DESC

1 James Johnzon Employes of the yvear

2 Ken White Cleanest desk

3 Gary Moore Technological paper winner
4 Sandra Rodriguez Fastest typist

5 Kewin Lewviz Salezperzon of the vear

B Laura Thomas Best nesw employves

Here, even though we utilize the employee_award table as a bridge between the
tables that contain the data we want, we do not retrieve any columns from it. We are
only required to make use of it in order to form a relationship between the employee
and award tables. In fact, the employee award table is interesting because it holds
very little actual companylink data, as we can see from the following screenshot:

[156]



Chapter 5

[:I- companyiinkworcs |

PEESRO B8 ¢ 002459139 seconds

SELECT * from employee award:

W

[ Resutts | |5 Script output

Results:

EFExplain

) Autctracs | FADEMS Output

swiaro_D B paTE_sweroe | EMPLOVEE D |

3 12-Mon-02
3 25-0CT-06
2 05-hAY -0
4 06-APR-03
1 07-JUL-07
G 23-FEE-04

M h = L k=

1

7
11
15
14
16

As we can see, beside the ID values from the employee and award tables, the

employee_award table only contains one valuable column—date_awarded. If we were
to attempt to form a relationship between only the employee and award tables, we
would refer to this as a many-to-many relationship; meaning more than one employee
can have more than one award. In the relational paradigm, this is generally considered
unacceptable due to the problems of forming direct relationships. For our model to be
fully relational, we must resolve this many-to-many relationship with a bridging entity.
In our case, this bridging entity is the employee_award table, which has the primary

function of completing the relationship between employee and award.

SQL in the real world

and draw your own relationships.

In real-world development situations, you may not always have an
M Entity Relationship Diagram at your disposal. Even though an ERD is
tremendously useful, the lack of one should not prevent you from being
Q able to construct complex joins. Instead, simply look at the tables with
your target data and follow the trail of common values between them. It
is often helpful to sketch the tables and columns out on a piece of paper

[175]



Combining Data from Multiple Tables

Working with less commonly-used
joins—non-equi joins and self-joins

Our final look at ANSI-compliant joins will conclude with a brief discussion of two
uncommon types of joins: non-equi joins and self-joins. These types of joins are
less frequently used in actual development and are, sometimes, only considered
necessary in an improperly constructed data model. Nevertheless, we review them
here for the sake of completeness.

Although joins are typically constructed using equivalent values in common
columns, which we have referred to as equi joins, we can join tables based on
conditions of non-equality. A non-equi join is formed between tables where
the join condition is based on any condition other than an equal sign, which can
include <, >, =, <>, and BETWEEN. An example of a non-equi join is shown in the
following screenshot:

[} companyiink @orcl |

FPERASO BE ¢ 001247568 seconds

SELECT eZ.first name, e.last_name, e2.3ignup_date
FROM enployee el, employee el

THERE el.employee_id = 10

AHD el.sigonup date < el.signup date;

. J

[ Resuttz| | Scrigt Output

Results:

B Explain _ﬁ:,:j.&utntrace| ADEMS Output

FRST_hame (8 LasT name [ sichup_Date |

1 Matthews Garcia 24-JUr-10
2 Donald Perez 17-0CT-10
5 Li=a Lee 20-5EP-10
4 Gary Moore OB-ALG-10
5 Gearge Taylor 06-0CT-10
& Laura Thomas 07 -Mo%-10

[156]




Chapter 5

In this example, we have used a new technique —joining two instances of the same
table. We can do this because we have separately aliased the employee table as

el and e2. The two instances of the employee table are joined together based on

two conditions. The first condition specifies an employee id of 10, limiting the

el instance of the table to only that row. The second condition, the non-equi join,
returns all values with a signup_date in the e2 instance that is greater than the
signup_date in instance e1. Since the el instance is reduced to only rows where
employee_id equals 10, the query returns rows greater than that value. In real-world
language, this query could be described as, Return employee information where the
employee signed up for Companylink after employee #10. A non-equi join does not always
have to use two instances of the same table to complete the join, as in our example.
Some non-equi joins create a join between two tables without a common column
utilizing the BETWEEN clause. However, the table data must be structured in a way
that makes this possible.

A table can also be joined back on itself using a self-join. We've seen joins between
different tables where a common column is used as the join condition. However, a
self-join is constructed when one column of a table is joined to a column in the same
table. Self-joins are sometimes used where a developer needs to iterate over a single
table. An example of a self-join is shown in the following screenshot. Again, it uses a
single table, aliased as two instances.

[:} companylink orcl |

FPERSRO B8 ¢ 001058375 seconds

SELECT eZ.first_name, eZ.last name, eZ.project_id

FROM enployee el, employee el
VHERE el.employee_jid = 2
AHD el.project_id = eZ.project_id:

W

(= Resuts | | Seript Output
Fesults:

E)Explain | B Autctrace | ADEMS Output

FRST_NamE |§ LasT_name 8 ProsecT D |

1 Mary Willizns 1
2 Daniel Fohinson 1
3 Carol Clark 1

[177]



Combining Data from Multiple Tables

In this statement, the first instance of the employee table, e1, is limited by rows
having an employee_id equal to 2. This is then joined to the e2 instance, where

the project_id values are equivalent. In real language, this query could be stated
as, Display the employee and project ID information for all employees who have the same
project ID number as employee #2. A self-join can also be accomplished without
aliasing the same table, provided that the table has a column that relates back to a
different column in the same table. An example might be an employee table with a
supervisor_id column that contains the employee_id of the supervisor. Since the
supervisor is also an employee, the supervisor_id column could be related back to
the employee id column.

Understanding Oracle join syntax

Thus far, we've looked at the ANSI standard for the syntax used in joining tables.
As noted previously, that standard is used throughout the information technology
industry in many database management systems. However, when we are using
Oracle, we have another choice —Oracle's new join syntax.

Beginning with database version 10g, Oracle has provided a new syntax for
retrieving data from multiple tables. While Oracle's syntax has not yet gained
widespread acceptance, we will see that it offers some advantages, not least of which
is its simpler syntax. Many consider Oracle's join syntax to be more intuitive and
readable than the ANSI standard.

Using Cartesian joins with Cross join

As we mentioned, the Cartesian product resulting from a Cartesian, or Cross join,
is not always desirable. However, we can utilize it if necessary, using the Oracle
join syntax as well. To do so, we use the CROSS JOIN clause, as shown in the
following screenshot:

[156]




Chapter 5

[ companylink @orct |
FERRO BB ¢ 006352 seconds

SELECT branch name, blog url
FROM branch CROSS JOIH blog:

F% 4
[ Resutts| [ 5] script cutput
Resuft=s:
BRancH_NaME | BLOG_URL |
1 Developer hittp: Sy companylink . comblogfiohnson

) Explain | £ Autatrace | ADEMS Output | oA Output

2 System Admin hittp: Shaesewy companylink.comblogfiohnson
3 Database Admin hittp: Shaesewy companylink.comblogfjohnzon

4 Accourts Receivable hitp e companylink . comdilogifiohnson

5 Recruitment httpzdifaeeeay companylink.comblogifjolbnsan
E Training it S companylink. comblogifiohnson
T Telemarketing hittp: Sy companylink . comblogiiohnson
5 Retail hittp: Shaesewy companylink.comblogfjohnzon
9 Trial Laswyer it Sy companylink . comblogifjiohnsan
10 Solicitar hittp: Sty companylink . comblogifjohnsan
11 Consignment hittp: Sy companylink.comblogfiohnson
12 Managemert hittp: Sy companylink . comblogfiohnson
13 Secretarial hittp: Shaesewy companylink.comblogfiohnson
14 Developer it Shaesewy companylink.comblogimwiliams
15 System &dmin it Sy companylink . comblogimwilisms

In this example, we select one column from each of the branch and blog
tables— branch_name and blog_url, respectively. As we have noted with
Cartesian joins, these tables have no relationship with each other; that is to say,
they have no common columns.

The Oracle CROSS JOIN syntax is very similar to that of the ANSI-
% compliant join. The only real difference is the inclusion of the CROSS
T JOIN clause in place of a comma.

In the ANSI syntax, we make no distinction at all as to any relationship existing
between the two tables. Thus, the ANSI syntax simply looks like a coding mistake,
as if the coder simply forgot to add a wHERE clause. The Oracle syntax makes a
purposeful inclusion of the CROSS JOIN clause to force the issue. With this clause
included, we are explicitly stating that we are, in fact, attempting a Cartesian join
between the two tables. Notice also that just as in the ANSI syntax, the resulting
number of rows from the cross join is a times b rows, where a and b are the number of
rows in the branch and blog tables, respectively. The branch table contains 13 rows
and the blog table contains five rows, resulting in a 65 row result set.

[179]



Combining Data from Multiple Tables

Joining columns ambiguously using
NATURAL JOIN

Since, as we've noted, cross joins rarely produce useful output, let's proceed by
looking at one of the more useful clauses in the Oracle join syntax, the NATURAL
JOIN clause. Let's say that we want to display employee name, starting date, and
e-mail address information for a company e-mailer. To retrieve this information,
we need to draw from two different tables. We can do this with a natural join, as
shown in the following screenshot:

D comparylink orcs |
FERRO 88 ¢ 005642672 seconds
SELECT first_name, last name, start date, email_ address
FROM employee HATURAL JOTH email;

%

B> Resuts| (=] seript output | ) Explsin | 5 utotrace | Roems output | @) owa output

Resuts:

FRsT_NamE |§ LasT_name [§ sTarT_pate [ EMai_sporess

1 James Johnzon 14-MOV-95 liohnson@companylink .cam
2 James Johnzon 14-MOV-35 jichnzond@gmail.com
3 Mary Williams 24-APR-99 mwvillams@companylink .com
4 Linda Ancerson 25-haN -04 landersoni@companylink .com
5 Daniel Robinson 07-AUG-93 drobinsonEcompanylink .com
B Matthesw, Garcia 24-JUM-03 mgarcia@companylink.com
T Watthew Garcia 24-JUM-05 mgarcia@hotmail.com
5 Helen Harriz 22-JUM-04 hharris@companylink .com
9 Ken White 16-SEP-03 kwhited@oompanylink .corm
10 Ken White 16-SEP-03 kwwhited@yahoo.com
11 Donald Perez S0-JUL-05 dperez@companylink .com
12 Lisa Lee 22-FEB-02 llee@companylink.com
15 Lisa Lee 22-FEB-02 leei@agmail.com
14 Lisa Lee 22-FEB-02 llee@yahoo coth
15 Caral Clark 12-J4M-01 colarkE@oompanylink.cotm
16 Gary Moore 12-FEB-04 gmooreEdcampanylink com
17 Cynthiz Hall 12-DEC-03 challi@companylink .com
15 Sandra Rodriguez 04-41G-09 srodriguez@companylink .com
19 Kewin Lewwiz 06-APR-02 kleswvizg@oompanylink .com
20 Kevin Levvis OE-APR-02 klensvisi@omail.cotm
21 George Taylar 03-MAR-0Z gtaylor@oompanylink .com
22 Laura Thomas 14-FEEB-03 thomas@@companylink .com

[156]



Chapter 5

The output from this statement gives us the desired information. We can also see
that unlike in a cross join, the rows from each table are properly joined together.
No extraneous rows are produced. The striking fact about this statement is that it
contains no WHERE clause. In ANSI-compliant joins, we used a WHERE clause to set
common column values equal. This would instruct Oracle as to how to complete
the join. In the previous example, no common columns are specified. How, then,
does Oracle know how to complete the join? Let's add to the complexity of the
situation by adding the employee_id column to our statement, as shown in the
following screenshot:

[} companylink @orcl |
PERRO BB & 10168351 ssoonds
SELECT employee_id, first name, last name, start_date, email address
FROM enployee HATUBRARL JOIH email;
% 4
[ Results| [=] Script output | B Esplain | 55 Autotrace | ADEMS Output | A civa, Cutput
Rezults:
EMPLOYEE D | FIRST_MAME | LAST NAME | START DATE | EMAIL_ADDRESS
1 1 James Johnson T4-MOW-35 jiohnson@@oompanylink .com
2 1 James Johnzon 14-MOV-35 jichnzon@amail com
3 2 Mary Willizms 24-APR-99 myviliams@companylink.cotm
4 3 Linds Anderson 25-MAN-04 landersonigcompanylink com
5 4 Daniel Rabin=son 07-AUG-98 drobinsoni@companylink com
B 5 Mattheray Garcia 24-JUM-05 mgarcisEcompanylink .com
7 S Matthew Garcia 24-JUM-05 mgarcis@hotmail.com
g E Helen Harriz 22-JUM-04 hharris@@oompanylink com
9 7 Ken White 16-SEP-03 kvvhited@@companylink .com
10 T Ken White 1B-3EP-03 kwhited@yahoo . com
11 8 Donaldd Perez 30-JUL-03 dperezi@companylink com
12 S Lisa Lee 22-FEB-02 lleeg@companylink com
13 S Lisa Lee 22-FEB-02 lleeig@amail.com
14 9 Lisa Lee 22-FEB-02 lleeiryahoo. com
15 10 Carol Clark 12-JAaM-01 clark@@ocompanylink .com
16 11 Gary Moore 12-FEB-04 gmoore@campanylink com
17 12 Cyrthia Haill 12-DEC-08 challi@companylink.com
18 13 Sandra Rodriguez 04-A10G-09 srodriguez@companylink.com
19 14 Kevin Lewwiz 0E-4PR-02 Kleswizi@oompanylink.com
20 14 Kevin Lewvis 0B-APR-02 klewis@amail com
21 15 George Tavylar 03-MAR-03 gtaylor@companylink com
22 16 Laura Thomas 14-FEB-05 thomasigcompanylink.coth

[181]



Combining Data from Multiple Tables

If we examine the two tables, we can see that the common column between the
employee and email tables is the employee id column. We can see this, but how
does Oracle know it? It knows because the NATURAL JOIN clause allows for ambiguity
in column names. A natural join with Oracle's syntax is smart enough to be able to
locate the common column between two tables, provided that one exists. When the
statement is executed, Oracle recognizes the request for a natural join, examines the
two tables and sees that there is a column, employee id, with the same name in both
tables. It then makes the assumption that the employee id column is the target for
your join and joins the tables appropriately. In a sense, we could say that a NATURAL
JOIN is less strict, syntactically, than a similar join done with ANSI syntax.

Also notice that the first column we retrieve, employee id, has no table definition.
We have not explicitly noted whether we wish to display the employee_id column
from the employee table or the email table. Were we to attempt a statement like this
with an ANSI join, we would receive a column ambiguously defined error. But, again,
since the NATURAL JOIN clause allows for column ambiguity, the statement retrieves
the column as requested. In truth, with this syntax, Oracle makes the assumption
that it actually does not matter which table the column comes from, since when the
tables are joined, the values produced for the common column are actually the same.
In that example, the values match up side by side. This is the essence of how a join
works — by equivalently joining the values from common columns. Oracle uses this
concept to allow for column ambiguity in natural joins.

What would happen if we attempted to use the NATURAL JOIN clause in a statement
with two tables that did not have a common column? We see the results of such an
attempt in the following example:

[156]



Chapter 5

|} compaRyiinkmorct |

FPERRO B8 ¢ 002083977 seconds

SELECT award_desc, project_hame
FROM award HATURAL JOIN project:

%
[ Resutts | | =] Script Output | B3] Explain f;jmmra-:e| AADEMS Output
Results;

SMARD_DESC B PROJECT NamE |

1 Salesperzon of the year Desktop rollout

2 Technological papet winner Desktop rollout

3 Cleanest desk Desktop rollout
4 Fastest typist Deszktap rollout
5 Employes of the year Deszktap rollout
E Best new employes Desktop rollout
7 DML Guru Desktop rollout

§ Salesperson of the year Security aveareness training

9 Technological papet winner Security avwareness training

10 Cleanest desk Security avwareness training
11 Fastest typist Security avwareness training
12 Employee of the year Security avwarenass training
13 Best new employes Security avwarenass training
14 DML Guru Security avwareness training

15 Salesperzon of the year Corporate wehsite release 011 .5

16 Technological paper winner Corporate website release 011 4

From the results, we see that a Cartesian product is formed. Oracle searches for a
common column and, finding none, proceeds to join the two tables the only way it
can—using a Cartesian, or Cross join. While it is true that Oracle's natural join
syntax is less strict, this can lead to unforeseen problems unless proper care is
taken to ensure that the natural join is constructed in such a way as to utilize a
common column.

[183]



Combining Data from Multiple Tables

One of the benefits of using the Oracle join syntax is that it frees up the use of a WHERE
clause. Since the syntax does not require the WHERE clause to establish equivalence
between common columns, as in the case of the ANSI syntax, our statements can use
the WHERE clause to its more common use —restricting row output. An example of this,
that also includes a sort, is shown in the following screenshot. It retrieves the name of
each division and its associated branch, but limits the output to only rows that have a
division_id less than 5. The output is then sorted alphabetically based on
division_name.

D- comparylink @orct |

FERAS 88 ¢ | 004391536 seconds

SELECT diwvision_name, branch_name
FROM division HATUEAL JOIH branch
THERE division_id < &

ORDER. BY division name;

.
[ Resutts | | =] Script Output | B Explain |_§;‘jAmotrace | ADEMS Output
Resuts:

DIVISION_AME | BRANCH_NAME|

1 Finance Accounts Receivable
2 Human Rezources Recrutment
3 Human Resources Training

4 Infarmation Technology System Admin
5 Information Technology Database Admin
E Information Technology Developer

7 Sales Retail

5 Sales Telemarketing

Joining on explicit columns with JOIN USING

One of the criticisms of Oracle's NATURAL JOIN syntax stems from its ambiguity:

a NATURAL JOIN allows columns to be joined without any specification as to what
column will be used. While this allows for a more "natural" syntax, the ambiguity
leads to the production of SQL code that lacks the specificity required in some coding
standards. In short, if the column being joined is not explicitly stated, the code can

be more difficult to interpret, often leading to a greater number of human errors. To
combat this problem, the Oracle join syntax also includes the ability to perform a
table join using a column that is explicitly defined. An example of this is shown

as follows:

[156]




Chapter 5

[} CoOMpaRyiink orcs |

FERRO 88 ¢ 001935179 ssconds

SELECT first_name, last name, mesfage_text
FROM employee JOIH message
USIHG (employee_id):

.
[ Resutts| [ =] Script Outpt
Results:

i Explain | B Actatrace | ADBMS Output | 4 CiwA Output

FRsT_name B LasT e [ MESSAGE_TENKT

1 James John=zan Haowey bout lunch?

2 James John=san Call me.

3 Linda Ancerson | lett the project files on vour desk,

4 Daniel Robinson The bozz needs you to call her.

4 Helen Harriz aur appoirtment seith Gary is tamarras.
B Gary hloore Wheres my coffes cup’y

T Cynithia Haill Companylink iz o000 coall

8 Kewin Lenvis I meed you to come in early Friday.

9 Laura Thomasz The office picnic iz Yed.

Although it differs somewhat from the NATURAL JOIN syntax, JOIN USING is similarly
straightforward. The FrROM clause specifies the tables to be joined, in our example
employee and message, separated by a JOIN clause. It is then followed by the
USING clause that specifies, in parentheses, the common column to use for the

join. Thus, in this statement, we join the employee and message tables using the
employee_id column.

Consider this example of a real-world requirement from our Companylink database:
Display all the URLs for websites and blogs in the Companylink system, along with the
website description; however, do not display Gary Moore's site (gmoore), and sort the results
by their website URL. To begin, we examine the website and blog tables and find
that they share a common column—blog_id. This ties the blog table to the website
table, since any of the blogs on Companylink must first have a website associated with
them. Next, we can exclude Gary Moore's site by adding a WHERE clause to restrict
output. Finally, we use an ORDER BY to sort the output.

[185]




Combining Data from Multiple Tables

Our resulting statement is shown in the following example:

Dcompanyﬁnk@orc.f |
FERRO 8|8 ¢ 00132057 seconds

SELECT website_url, blog url, wehzite_desc
FROM website JOIH blog

USTHG (blog id)

THERE webszite_url not like 'Zomoored!
OHDER. BY website url:

.
[ Resutts | [= Script Outpt
Resuts:
WEBSITE_URL @ eLoc_uRL @ wessmE_DESC
1 http: ey companylink .comfjiochnzon  Ritpc e companylink comblogiobnzson  Jims new site

B Explain | B Autctrace | ADEmMs output | E 0 Output

2 http: ey companylink .comklewis kit ity companylink .comiklewis Wirter sales push project site

3 http: ey companylink .comimgarcia  bitpoeese companylink comimgarcia Matts cool wehsite

4 http: deenewy companylink .cominviliams bitpc it companylink comblogimyiliams Desktop rollout project site

Recall from earlier chapters that we are using the not 1ike operator to reject any
rows that contain the string 'gmoore', or Gary Moore. Again, using the Oracle
join syntax allows us to use the WHERE clause for row restriction, instead of setting
common columns equal. Although both syntaxes will work, Oracle's syntax could
be considered cleaner since it separates the functionalities of the join and the row
restriction into different clauses.

Constructing fully-specified joins using
JOIN ON

Our final type of join, using the Oracle syntax, removes all of the ambiguity that
characterizes the two previous types. Statements that utilize the JO0IN ON clause are
very close syntactically to ANSI joins. The main difference, again, is that the JoIN
ON clause, like the previous joins that use the Oracle syntax, do not require a WHERE
clause in order to perform the join. An example of using JOIN ON is shown in the
following screenshot:

[156]



Chapter 5

[:I- COMpIRyInE Dorcl |
EERO B8 ¢ 003031279 seconds
SELECT first name, last_name, sStart date, branch name
FROM employee JOIH branch
O0H [employee.branch id = branch.branch id):
o,
> Resutts| [ script Output | #Explsin | ) sutatrace | ADEMS outout | € ovia, output
Resuts:
FIRST_MAME | LAST MAME | START DATE | ERANCH_MAME
1 Jatmes Jokhnzon 14-MOW-95 Training
2 Mary illiztnz 24-APR-99 System Admin
3 Linda Andersan 25-MA&Y-04 Developer
4 Daniel Rabinsaon O7-AU-98 System Admin
3 Matthesw Garcia 24-JUn-05 Databaze Sdmin
& Helen Hartiz 22-JUM-04 Salictar
7 Ken White 16-SEP-03 Accourts Receivable
8 Donald Ferez 20-JUL-0s Denveloper
9 Liza Les 22-FEB-02 Recrutment
10 Carol Clark 1 2-JAN-01 System Admin
11 Gary Moore 12-FEB-04 Databaze Admin
12 Cynthia Hall 12-DEC-05 Databaze Admin
13 Sandra Rodriguez 04-AL-09 Secretarisl
14 Kewin Lewis 06-APR-02 Retail
15 Gearge Taylar 03-MAR-03 hanagement
16 Laura Thomasz 14-FEEB-05 hanagement

Notice the similarities to an ANSI-compliant join. In the FrROM clause, both tables to
be joined are specified. However, in the Oracle syntax we're using, we utilize the
JOIN clause instead of simply separating the tables with a comma (, ). Likewise,

we specify the column to use for the join, branch_id, and denote this with table
notation. However, instead of using a WHERE clause to do this, we can use the on
clause in conjunction with the Jo1IN clause, and surround the common columns with
optional parentheses. The result is a join that still permits the WHERE clause to be used
exclusively for row restriction.

[187]




Combining Data from Multiple Tables

Although the previous example uses table notation to specify our columns, the
JOIN ON syntax fully supports the use of alias notation as well. An example of this
is shown as follows. Here, we simply rewrite the previous example to use aliases.

[} companyhinkimorcs |
FERRO B8 ¢ 001396602 seconds
SELECT first name, last name, start date, branch name
FROM employee e JOIM branch b
OH (e.branch id = b.branch id):
e, W
B> Resuits | =] script Output | 8 Explain | 8 autotrace | @DEms output | € owa outout
Resufts:
FRsT_name (B LasT vave (B start pate | BRANCH NaME
1 James John=on 14-MNOY-95 Training
2 Mary Williams 24-APR-99 System Admin
3 Linda Anderzon 25-mAN-04 Developer
4 Daniel Raobinzon 07-AUG-95 System Admin
5 hiattheswy Garcia 24-JUM-05 Databaze Admin
& Helen Harriz 22-JUM-04 Solicitor
7 Ken White 16-5EP-03 Accounts Receivable
& Donald Perez 30-JUL-03 Developer
9 Liza Lee 22-FEB-02 Recruitment
10 Caral Clark 12-JARM-01 System Admin
11 Gary hoore 12-FEB-04 Databasze Admin
12 Cynthia Hall 12-DEC-08 Databasze Admin
13 Sandra Rodriguez 04-411%-09 Secretarial
14 Kevin Lewviz 06-4PR-02 Retail
15 George Taylar 03-MAR-03 Management
16 Laura Thomas 14-FEB-08 Management

[156]




Chapter 5

If we wished to do so for clarity, we could prefix each of the columns in the SELECT
statement with its appropriate alias to further clarify our code. Again, the JoIn

ON syntax removes the ability to refer to columns ambiguously. If we modify our
SELECT to include an unqualified column, branch_id, as shown in the next example,
we receive the ambiguous column error that we've seen previously.

D companylinkmorel |
FPERRO BB ¢ 002557523 seconds
SELECT first name, last_name, start_date, branch name, branch_id

FROM euwployee e JOIN branch b
OH (e.branch_id = b.branch id};

-~
B> Resutts| [ =] seript output | TExplain | 5 autatrace | Eoems outaut | € ovwe output
Results:

Error encountered P§|

AR error wwas encountered performing the regquested
operation:

ORA-00918: column ambiguously defined
00945, 00000 - "column smbiguously defined"
*Calse:

=action:

Wendor code 918Error at Line:1 Column: 55

Ok

Writing n-1 join conditions using Oracle
syntax

As with the ANSI syntax, multi-table joins using n-1 join conditions can be done with
the Oracle syntax. We conclude the chapter by looking at two examples.

[189]



Combining Data from Multiple Tables

Creating multi-table natural joins

The syntax for using a natural join with multiple tables is similar to that of the two-
table natural join we've seen previously. Again, it makes use of the NATURAL JOIN
clause to ambiguously join tables based on common columns with the same name.
An example is shown in the following screenshot:

[ companylink @orct |

PERRO B8 ¢ 002260293 seconds

SELECT first name, last name, award desc
FROM enployee

HATURAL JOIH employee award

HATURAL JOTH award:

F %
(= Resutts |5 Seript Output
Reszuls:

FIRST _MAME | L.&ST_NAME| AWARD DESC

) Explain | 5 autatrace | ADEMS Output

1 James Johnson Employee of the vear

2 Ken White Cleanest desk

3 Gary hloore Technological paper winner
4 Sandra Fadriguez Fastest typist

5 Kewin Lewvis Salesperson of the vear

E Laura Thomas Eest new employes

In order to construct this join, we simply use the NATURAL JOIN syntax

twice — once to join the employee table with employee award, then a second time

to join employee award and award. Oracle locates the common columns between
the tables and correctly performs the join. Again, this frees up the WHERE clause for
additional restrictions on the rows displayed. Also note that the order of the NATURAL
JOIN clauses is not important. Even if we attempt to natural join employee to award
and then award to employee_award, the result is the same. Oracle is smart enough to
parse the statement correctly.

Building multi-table joins with JOIN USING

For less ambiguity, we can also utilize the JOIN USING clause to specify the columns
being used for the join. The syntax is similar to a two-table 301N oN. We simply add
additional clauses, as shown in the next example. Here, we join the three tables
employee, website, and blog using two JOIN USING clauses.

[156]



Chapter 5

D COMPIRVIRE Dorch |

FPERRO 88 ¢ 001938559 seconds

SELECT first name, last name, webzite_url, blog url
FROM enployee

JOIH website USIHG (employee_id)

JOIH blog USIHG (blog id):

aw
[ Resutts | (=] Script output | 5 Explain | B Autatrace | ADEMS Output | o Output
Results:
FIRST_MAME | LAST MAME | WEBSITE_LRL | ELOG_LRL
1 James Johnzon hittpe Sy companylink comfjohnson kit Aasess companylink . combloglfiohnzson
2 Mary Willizms hittpx My companylink comtrwiliams bttp: Aaseesy companylink comBlogimwiliams
3 Matthew, Garcia hitp: ey companylink comingarcia  Hitp dwwweay companylink . comblog/maarcia
4 Gary Moare hittpe Moy companylink comfgmoare  Rttphaseesy companylink comblogigmaoore
5 Kewin Lesiz hittpx S companylink comklewis Fittgo: Aoy Companylink comblogklesis
— -
SQL in the real world
As it stands in today's development world, your organization's coding
XY standards may preclude the use of Oracle's relatively new join syntax.

That does not mean it should be ignored. A good case can be made for
the simplicity and readability of the Oracle syntax. Regardless, Oracle
certification candidates must be extremely comfortable with the Oracle
join syntax. It is covered extensively on the examination.

Summary

In this chapter, we've added the powerful capabilities of joins to our SQL repertoire.
We've examined join techniques from two separate syntax families. We learned to
write Cartesian joins, equi joins, non-equi joins, and self-joins in the ANSI syntax for
both two-table and multi-table joins. With the Oracle syntax, we've looked at various
join techniques using the NATURAL JOIN, JOIN USING, and JOIN ON clauses. We've also
spent some time expanding our understanding of how table relationships work and
graphically examined them for our Companylink database, in the form of an Entity
Relationship Diagram, or ERD.

[191]



Combining Data from Multiple Tables

Certification objectives covered

e Write SELECT statements to access data from more than one table using
equi joins and non-equi joins

e Join a table to itself by using a self-join

e View data that generally does not meet a join condition by using outer joins

e Generate a Cartesian product of all rows from two or more tables

In this chapter, we've learned various techniques in joining tables together. In our
next chapter, we'll continue this idea of combining data together using a different
technique — the subquery. Using subqueries, we can combine data from tables in new
ways. We'll follow that subject up by looking at set operations and set theory

in Oracle.

Test your knowledge

1. The relationships between tables are defined by what?

a.
b.
C.

d.

Their query results
The columns they have in common
The number of rows they contain

The number of columns they contain

2. Inan ANSI-compliant join, which clause creates the equivalence relationship
needed to form a join?

a.

b.

C.

d.

The SELECT clause
The FROM clause
The WHERE clause
The HAVING clause

3. Which of these is formed when every row of one table is joined to every row
of another table?

a.

b.

C.

An intersecting product
A union product
A Cartesian product

A truncated product

[156]




Chapter 5

Which of these joins is generally considered the least useful in real-world
situations?

a. A Cartesian join
b. Anequi join

c. A natural join

d. A multi-table join

Given that two tables have 50 rows and 20 rows, respectively, how many
rows would a Cartesian product of the two tables yield?

a. 50

b. 20

c. 100
d. 1000

Given two tables named employee and project, which of these WHERE
clauses is a correct example of a join using the table-dot notation?

a. WHERE e.project_id = p.project_id

b. WHERE project_id = project_id

c. WHERE employee_project_id = project_project_id

d. WHERE employee.project_id = project.project_id
Given two tables named employee and project, which of these WHERE
clauses is a correct example of a join using the alias notation?

a. WHERE e.project_id = p.project_id

b. WHERE project_id = project_id

c. WHERE employee_project_id = project_project_id

d. WHERE employee.project_id = project.project_id
Given the following SQL join statement, which line will cause an error?
a. SELECT award_id, date_awarded

b. FROM award a, employee_award ea

c. WHERE a.award_id = ea.award_id;

d. No error would be generated

[193]




Combining Data from Multiple Tables

9. What will be the result of the following SQL statement?
SELECT division name, division id, branch name
FROM division div, branch brch
WHERE div.division id = brch.division id;

a. A successful join with three columns and 13 rows
b. A successful join with two columns and 13 rows
c. A division by zero error

d. An ORA-00918 error —column ambiguously defined
10. Which of the following is NOT a type of ANSI-compliant join?

a. Aninner join
b. An outer join
c. A natural join

d. An equijoin

11. Which symbol is used to declare an outer join?

a. ()
b ()
¢ 0
d %

12. If we are required to construct an equi join of 30 tables, how many join
conditions will be required?

a. 30
b. 20
c. 29

d. The number cannot be determined
13. Which of these types of table relationships are not typically allowed in a
relational model and should be resolved?
a. One-to-one
b. One-to-many
c. Many-to-many

d. None-to-none

[156]



Chapter 5

14.

15.

16.

17.

Refer to the Companylink ERD displayed earlier in this chapter. Which of
these pairs of tables cannot be related together, either directly or indirectly?

a.
b.
C.
d.

Employee and award
Branch and division
Award and project

None of the above

Which of the following clauses taken from an SQL statement would produce
an error?

a.
b.

C.

d.

FROM employee NATURAL JOIN award
FROM employee NATURAL JOIN email
FROM division d NATURAL JOIN branch b
FROM employee JOIN award NATURAL

Which of the following clauses taken from an SQL statement is a syntactically
correct example of Oracle's JOIN USING syntax?

a.
b.

C.

d.

FROM employee, address JOIN USING (employee_id)
FROM employee JOIN address USING employee_id
FROM employee JOIN address USING (employee_id)

FROM employee e JOIN address a USING (a.employee_id =
e.employee_id)

Which of the following clauses taken from an SQL statement is a syntactically
correct example of Oracle's JOIN ON syntax?

a.
b.

a o

FROM employee e JOIN address a ON (a.employee_id = e.employee_id)
FROM employee JOIN address ON (employee_id = employee_id)
FROM employee e JOIN ON address a (a.employee_id = e.employee_id)

FROM employee e JOIN address a WHERE (a.employee_id =
e.employee_id)

[195]







Row Level Data
Transformation

Much of the work we have done so far with SQL has involved construction from
scratch. We have examined different SQL clauses and investigated how they can be
used together to accomplish a goal. But SQL has an entire class of built-in program
units that can be used to greatly simplify our coding. These programs vary between
the different implementations of SQL, but many commonalities exist between them.
In this chapter, we look at how these built-in programs can enable us to manipulate
data in ways that would be impossible with SQL clauses alone.

In this chapter, we shall:

e Examine the purpose of functions and how they work

e Learn what makes single-row functions unique

e Use string functions to transform character strings

e  Work with arithmetic functions to transform numeric values
e Look at date functions and date arithmetic

e FExamine functions that do conditional retrieval

Understanding functions and their use

One of the most fundamental constructs of any programming language is the
function. Broadly speaking, a function is any unit of code that accomplishes a
defined task. Functions are also referred to, depending on the language being used,
as procedures, routines, or methods. In this section, we introduce the concept of a
function and see how we can use them to transform database data.



Row Level Data Transformation

Comprehending the principles of functions

A function allows a program to be structured into separate components, increasing
the modularity, readability, and reusability of code. With functions, we are freed
from the limitations of creating programs that simply execute one command after
another in a purely linear fashion. Functions allow the grouping of code into discreet
elements to accomplish a particular action. Functions adhere to different rules

and definitions that vary between programming languages, so it is important to
distinguish how the SQL language implements functions. In Oracle's implementation
of SQL, a function simply takes the input that is passed to it and returns a value.

Using single-row functions for data

transformation

For example, say that we are tasked with the following: display the first and last
names of every employee in the Companylink database in uppercase. While we know
from previous chapters that we could use a SELECT statement to display the first
and last names from the employee table, how would we show them in uppercase?
Doing so would probably require the use of additional code that could read each
letter, determine its case, and decide to either change the ASCII value to that of the
corresponding capital letter or leave the value alone. This would seem like a lot of
extra work for something as common as case conversion. Fortunately, in situations
like this, we can use Oracle's built-in functions.

The functions that we will see in this chapter and the one following it aid in data
transformation — extracting data from the database and transforming it in some
useful way. The ability to convert a lowercase string into uppercase is an example of
data transformation, as is rounding a number, converting a date value into a string,
or computing the average of several numbers. Many of the common tasks necessary
in the day-to-day work of a SQL programmer involve data transformation.

SQL in the real world

*  Data transformation is a key component used in data warehouses,
dec1051on support systems, .an.d onhng analytical processing .
environments. Oracle's built-in functions support the analysis and data
mining efforts that enable systems such as these.

[198]




Chapter 6

Oracle's built-in functions are provided with the RDBMS itself. They are included
in Oracle's implementation of SQL. We have two types of functions at our
disposal — single-row functions and multi-row functions.

¢ Single-row functions work by taking each row as an input value and
returning a corresponding single value. An example of this would be a
function to convert each value in the first name column in the employee
table to uppercase. When we execute the statement using a function, it
processes each row at a time, taking in a value for £irst_name and returning
the corresponding value in uppercase. If our table had 16 rows with
first_name, 16 rows of uppercase values would be returned.

e  Multi-row functions work by taking the values from multiple rows and
returning only a single value. An example of a multi-row function would be
one that averages the 1ogin_count column from the employee table. The
multi-row function takes all of the values for 1ogin count as input, but
returns only one value; namely, the average of all values that were inputted.
This chapter focuses on the many types of single-row functions available to
us. Multi-row functions are the subject of the next chapter.

Understanding String functions

Our first examples of functions will examine many of the single-row functions that
are capable of transforming string, or character, data. Of course, string data is one
of the most common types of data stored in a database, so our ability to transform
such data through the use of functions is critical. The types of string functions at our
disposal include case conversion functions and string manipulation functions.

Using case conversion functions

Case conversion functions involve the transformation of strings from one case to
another. These types of functions are extremely common, particularly in reporting.
They include:

e TUPPER()

e TLOWER()
e TINITCAP()

[199]



Row Level Data Transformation

UPPER()

Our first case conversion function is UPPER (), which is used to convert a string into
uppercase values. The original case of the string value is irrelevant; UPPER () will
convert lower or mixed case values into uppercase. If the original string value is in
uppercase, the resulting value will be unchanged, but no error will be generated.
An example using UPPER () is shown in the following screenshot:

[ companyiink @orci |
ERRO BB ¢ 001329355 seconds
SELECT first name, UPPER(first_name)
FROM enployee;
A
B> Resuts | (=] Sicript Output | SExplain | B autatrace | DEMS Output
Results:
FIRST_NAMEl UPPER(FIRST_NAMEJl
1 James JAMES
2 Maty MARY
3 Linda LIMCe2,
4 Daniel D AMIEL
5 Matthews MATTHE
& Helen HELEM
7 Ken KEM
& Daonald DM ALD
9 Liza LISA
10 Carol CAROL
11 Gary GARY
12 Cynthia CHMNTHIL,
13 Sandra SANDRA
14 Kewin KEIN
15 Gearge GEORGE
16 Laura LAURA

[200]




Chapter 6

Our previous example is straightforward. We use a SELECT statement to display the
first_name column from the employee table, followed by the same column with

the function applied. In the second occurrence of first_name, we use the column

as an argument to the UPPER () function. An argument is the value passed into the
function. Different functions require different numbers and types of arguments. The
UPPER () function both requires and allows only one argument — the value to convert.
In our case, we pass the value for first_name, for each row, to the UPPER () function
as an argument. Since UPPER () is a single-row function, one uppercase value is
returned for each value of first_name taken as an argument. In short, we pass each
value for first_name into the UPPER () function and return uppercase values.

Functions can be used multiple times within a single statement. Because the column
heading includes the name of the function, it is sometimes clearer to use column
aliases to improve the appearance of the resulting column headings. Both of these
techniques are shown in the following example:

D companylink @orcl |
FPERRO BBE ¢ 001360871 seconds
SELECT first_name, last name,

UPPER(first_name) "FIRST NAME™, UPPER(last name) "LAST NAME"™
FROM employee;

.. 4
[ Resuts | =] Scriot output | T Explain |_§:.jAutDtrace | ADEMS Output | AR, Output
Results:

FIRST_NAME | LAST_PMAME | FIRST MAME | LASTNAME|

1 James Johnzon JAMES JOHNSOR
2 Mary Willizms MARY WALLLAMS
3 Linda Anderson LIMDA, AMDERSCN
4 Daniel Rokinzon DARIEL ROBINSON
5 Matthew Garcia FATTHEM GARCIE
B Helen Harris HELER HARRIS
7 Ken White KEM WHITE
& Donald Perez DOMALD FEREZ
9 Lisa Lee LIS LEE
10 Carol Clark CARCL CLARK
11 Gary Moore GARY MOORE
12 Cynthia Haill CYNTHIA HaLL
13 Sandra Rodriguez SANDRA, RODRIGUEZ
14 Kevin Lewiz KEWIN LEWIS
15 Gearge Taylar GECQRGE TAYLOR
16 Laura Thomas LALRA THOMAS

[201]



Row Level Data Transformation

LOWER()

The LOWER () function performs the opposite operation of UPPER () —it takes the
value from each row passed in as an argument and displays the string in lowercase,
as shown in the following screenshot:

[}companwm.k@orcl |
ERERS® B8 ¢ o008597 seconds

SELECT last_name, LOWER(last_name) "last_name"”
FROM employee
VHERE employee_id > 7;

b W

[ Resutts [ Soript Qutput
Results:

ElExplain | 1] Autctrace | ADENS Cutput

LasT name [{ tast_name |

1 Perez perez

2 Lee lee

3 Clark clark

4 hoare maare

5 Hall hall

B Rodriguez rodriguez
T Lewvis lewis

8 Taylor taylor

9 Thomas thamas

The unaltered values for first_name as they exist in the table and the corresponding
transformed values are displayed. Keep in mind that, when we use functions with a
SELECT statement, the original data in the table is unchanged. It is simply displayed
in the way we have requested. Also notice that we have included a WHERE clause in
our statement to reduce the number of rows returned. The use of functions does not
prevent the use of clauses such as WHERE and ORDERBY.

INITCAP()

The INITCAP () function takes a column value as input and returns a value in mixed
case. The case is mixed in such a way as to display it with the first letter of every
word in capital letters. The following screenshot shows an example of this. Notice
that the first row in the column without INITCAP () reads, Salesperson of the year.
Salesperson is mixed case, while the remainder of the string value of the year is all
lowercase. Once the INITCAP () function is applied, the resultant string Salesperson
Of The Year contains individual words in mixed case. Notice, however, that the

[202]



Chapter 6

INITCAP () can potentially introduce unwanted conversions, such as the one in the
last row of the example. Here, DML Guru has been changed to Dml Guru. Since
DML is a properly capitalized acronym, converting it to mixed case is probably an
unwanted side effect.

[ companyiink @orct |
PERRO BB ¢ 004330215 seconds

SELECT award desc, INITCAP(award deac)
from award;

.

[ Resutts| =] Script Output

Results:

[5)Explain | 5] Autatrace | ADEMS Output

AWsRD_DESC | INITCAF‘(AW.&RD_DESC]|

1 Salesperson of the year Salesperson Of The Year

2 Technological paper winnet Technological Paper Winner

3 Cleanest desk Cleanest Desk

4 Fasztest typist Fastest Typist

5 Emplovee of the year Employee Of The Year
E Best new emploves Eest Mew Employes

7 DML Gury Diml Guru

Writing SQL with String manipulation
functions

Oracle contains many built-in functions whose purpose is to take inputted string
data and return values that are meaningful in some way. String manipulation
functions are used for this purpose. String manipulation functions can be used to
locate character positions within strings, extract portions of data, and even replace
values within a string. These types of functions are often used together, for instance,
to locate a certain character within a string and then replace it with another.

[203]



Row Level Data Transformation

LENGTH()

The SQL LENGTH () function takes a value as input and returns only the number

of characters in the string. The original data itself is not returned. However, even
though returning just the length of a string may seem inconsequential, this can be
used for many purposes. Let's say developers are creating a web form to display
employee address information. Part of this design is to know how to size the
elements in the page in order to display the information properly. For instance, we
don't want the section of the page that displays the street_address column to be
smaller than the values in the table.

The LENGTH () function can aid us in finding the size of the values for the
street_address column. Examine an example of this found in the following
screenshot. We could interpret this statement as, Display addresses and the
number of characters in them.

D companyiink Gorcs |
FERR O 88 ¢ 000654748 seconds
SELECT street_address, LEHGTH(street address)
FROM address:
% 4
B> Resutts [ Script Output | B Explein | 13 Autotrace | ADBMS Output
Results:
STREET_ADDRESS | LENGTH(STREET_.&DDRESS]|
1 123 First St 12
2 234 Fifth 5t 12
3 345 Cedar Ln 12
4 456 VWashington Ave 15
3 9675 Hill 5t 12
6 324 Elm =t 10
7 5234 Park Place 15
& 253 Fourth St 13
9 111 Maple Rd 12
10 234 Lake Rl 11
11 8§85 Eighth St 13
12 857 Oak St 10
13 153 Main St 11
14 7543 Pine Rd 12
15 5234 Seventh St 15
16 324 Third St 12

[204]



Chapter 6

The output shows us that the length of each of the values for street_address is no
less than 10 and no greater than 18. With this information, developers can accurately
size the web page elements to accommodate this.

Although we have used functions only in conjunction with our SELECT clause,
functions do not need to be limited in such a way. Another powerful way that
functions can be used is with other clauses, such as WHERE and ORDERBY. For a
realistic example, let's say that our developers have already sized the web page
elements for address information. They have sized the box for street_address

to accommodate addresses that are 12 characters in length. We want to know
which street addresses will exceed that size. For this, we can incorporate the use

of functions in the WHERE clause; that is, where the length of the street address is more
than 12 characters. We can even sort the results by the length of the value. A solution
for this request is shown in the following example. We could interpret this query as,
Which street addresses exceed the required length?.

Dcompauyﬁnk@oml |
FPERRO® B8 ¢ 00083081 seconds

SELECT street_address, LEHGTH(street_address)
FROM address

THEFE LEHGTH(street_address) > 1&

ORDER. BY LEHGTH (street addrezs):

i W
> Resuts | [5] Script output | BExplain | 5 Autatrace | ADEMS Output |
Results:

STREET_.&DDRESS| LENGTHESTREET_.&DDRESS”

1 253 Fourth St 13
2 883 Eighth St 13
3 5234 Seventh St 15
4 5234 Park Place 13
5 456 Washington Ave 18

In this example, we display values for street_address and their corresponding
lengths. We also limit this output to street_address values that are greater than 12
and order the results by the length of each value.

[205]



Row Level Data Transformation

Padding characters with LPAD() and RPAD()

The padding functions, LPAD () and RPAD (), are used primarily for altering the way
that data appears on the screen. These functions will add, or pad, characters to the
left (LPAD) or right (RPAD) of the input values. The padding functions are our first
examples of functions that take more than one argument as an input. Both of the
padding functions take three arguments: the value to which to add padding, the total
width of the value with padding, and the character with which to pad. An example
of the LPAD () function is shown in the next screenshot. In order to best display the
output, instead of executing the command with the Execute Statement button (the
green arrow), we will once again use the Run Script button just to the right of the
green arrow. Alternatively, you can press the F5 key.

[} COMPINYIIRE (Dorcs |
PERRO BV ¢ 004220006 seconds
SELECT last name, LPAD(last name, 12, ' ')

FROM employee
THERE employee_id > &:

% 4

[ Resuts | [&]Soript Output. T Explsin | 55 Autotrace | ADEMS Output | £ O, Output
¢HdE

LAST NAME LPAD (LAST NAME, 12,'')
Lee Lee
Clark Clark
Moare HMoare
Hall Hall
Fodrimquez Rodriquez
Lewis Lewis
Tavlor Tavlor
Thonasz Thomasz

g rows selected

Let's look at the function portion of the statement more closely. For the first
argument, we input LAST_NAME, which contains the values we wish to pad. The
second argument, the integer 12, is the total width of the value, plus the padding.
The third argument we input is the actual character with which to pad; in our
case, a space character, which must be enclosed in single ticks. Thus, the first value

[206]



Chapter 6

returned, Lee, is three characters in length. Since we have inputted a value of 12 for
the total width, the resulting value is Lee padded on the left with nine spaces, for

a total width of 12. The second value, Clark, is five characters, so it is padded with
seven spaces, for a total width of 12. This left padding has the effect of showing the
values as right-justified.

Although the space character is commonly used for padding, any character or
characters can be used. In the next query, we use the RPAD () function to pad
asterisks to the right side of each value for first_name for a total width of 9.

[} companylink@orcs |
ERRS® BB ¢ 000473244 seconds
SELECT first name, RPAD(first name, 9, '*']
FROM employes
THERE employee_id < &;
. 4
[ Resutts | [ =] Script Output |E:]Exp|ain T autatrace | ADEMS Output
Results:
FIRST_MAME | RPADIFIRST _MAME S *
1 James Jamestt
2 Mary gy tasss
3 Linda Linda®***
4 Daniel Dranigl***
5 Matthew hatthen**
& Helen Heleq®=**
¥ Ken Weprreass
SQL in the real world

When using LPAD () and RPAD (), the resulting appearance of the data
. values is highly dependent upon the tool and font used to display the
% values. To see this for yourself, try running the previous example by
S hitting the Execute Statement button. It is much more difficult to see the
padding in the values, since the font used to display them is not fixed
width. Because of this, the padding functions are not used as commonly
as they once were.

[207]




Row Level Data Transformation

RTRIM() and LTRIM()

Just as values can be padded using functions, they can also be trimmed or removed
from the left or right. To accomplish this, we use the RTRIM () function for trimming
values from the right side and LTRIM () to trim them from the left. For example,
examine the website url column in the website table. In this column, we store

the full URL for each user's website, including the http: // prefix. If we wanted to
display the URL without this prefix, we would need to trim the characters 'http://'
from the left side of each value. To do this, we can use the LTRIM() function as
shown in the following query:

Dcompanyﬁnk@orcf |
ER2RO B8 ¢ 000335629 seconds
SEELECT website_url, LTRIM(website_url, 'http://"')
FROM website;
.
P Resuts | [5] Script output | 5 Explein | 5 Autotrace | ADEMS Cutput | (2 Oy, Cutput
Resuts:
WEBSITE_URL | LTRIMAEESITE_URL, HTTR:/M
1 http M companylink .comifjohnson weweyy companylink .comdjiohnzon
2 kg ibhoewese companylink comimwiliams sy companylink . comimwilliams
3kt Mo companylink .comidperez wewewy companylink .comidperez
4 ktpe e companylink comigmoore ey companylink comigmonr e
5 hitpc e companylink .comiklewis sy companylink .comklewis
B http:ihoewese companylink comimgarcia sy Companylink comimoatcia
7kt M companylink .comichall wewewy companylink .comichall
& http: Moy companylink comitthomas wewewy companylink comithomas

The trimming functions take two arguments; the value to trim and the string of
characters we wish to remove from either the left (LTRIM) or right (RTRIM).

CONCAT()

Earlier in Concatenating Values in SELECT Statements section in Chapter 2, SQL
SELECT Statments, we learned how to use the double-pipe symbol (| |) to
concatenate values together. At that time, we briefly mentioned that there were two
ways to accomplish concatenation. The second method values can be concatenated
by using the coNCAT () function, which accepts two arguments, the two values to be
concatenated, and returns them appended together. The cONCAT () function is shown
in our next example:

[208]



Chapter 6

[}compaﬂymm@omr |
PERRO BB ¢ 000800437 seconds

SELECT CONCAT(first name, lazt name)
FROM employes
THERE employee id < 9;

.
B Resuts | [ script output | B Explain | B Autotrace | FADEMS Output
Results:

CONCAT(FIRST_NAME,LAST_NAME)|

1 JamesJohnzon
2 MaryWilliams

3 LindaAnderson
4 DanielRobinson
5 MatthenwGarcia
6 HelenHarris
7 KerWhite
a

DonaldPerez

Although the coNcAT () function serves the same purpose as the double-pipe
operator, it is limited in that it only takes two arguments. So, where the double-pipe
operator can be used repeatedly to concatenate many values, the CONCAT () function
can only append two values at a time.

SQL in the Real World

. Inorder to concatenate multiple values together with CONCAT (),
% it would be necessary to nest multiple occurrences of the function
/<~ inside each other. While this is possible, the resulting code can be
difficult to read. For this reason, it is far more common to see the
double-pipe used to concatenate values than the CONCAT () function.

SUBSTR()

One of the most powerful abilities of string manipulation functions is that of text
extraction that allows us to remove sections of characters from string values. To do
this, we can use the SUBSTR () function. The SUBSTR () function is somewhat more
complex than the functions shown thus far, so we begin with an example syntax tree
as shown here:

SELECT SUBSTR (column_expression, start position, end position)
FROM {table};

[209]



Row Level Data Transformation

We see that the SUBSTR () function takes three arguments, although only the first
two are strictly mandatory. The first argument, as we might expect, is the column
itself. The second argument is the starting position to begin the substring. Thus, if
the starting position was the number 4, the statement would count over to the fourth
character in the value and start the substring at that position. The third argument is
the ending position, or end, of the substring, which begins counting from the start
position. Say, for example, we want to pull the domain of each website from the URL
listed in the website table. A statement using SUBSTR (), as shown in the following
screenshot, can accomplish this:

Dcompanyﬁnk@orc! |
FEERO B8 ¢ 00033235 seconds
SELECT webzite_url, 3UBSTE(website_url, &, 19)
FROM webzite;
5. 4
(= Resutts | [ =] Script Output | T Explain f;jmmrace| ADEMS Output | € A Output
Results:
WEBSITE_LURL | SUBSTRWEBSITE_URL,3,19)
1 hitp:ihewewy companylink .comijjiohnzon wenewy companylink.com
2 hitp: iy companylink comimwwiliams ey companylink .com
3 hitp ey companylink comidperez Wy companylink .cotm
4 kitp iy Ccompanylink comigmoare ey companylink .cotm
5 hitp ey companylink .comiklewyis wewnewy companylink.com
B hittp: vy companylink comimgarcia ey companylink.com
7 http: iy campanylink comichall ey companylink .com
G hitp ey companylink comithomas ey companylink .cotm

Let's examine the first value returned to see how SUBSTR () works.
http;//www.companylink.com/jjohnson

SUBSTR () begins with this value as the first argument. Next, it counts over to the
eighth character, the first 'w', shown in bold, to designate as the beginning of the
substring. Then, it counts over 19 more characters to the 'm', also shown in bold, to
mark as the end of the substring. It then returns the following substring;:

www.companylink.com

[210]



http://www.companylink.com

Chapter 6

In short, we could say SUBSTR () does the following: take the website url
value, count over eight characters, then count over 19 more characters and return
everything in between.

Although we normally provide positive integers for the starting character position
in a SUBSTR () function, we can also use negative integers. The effect of this is to
count backward in the string to get the starting point. Say, for instance, that we want
to retrieve the last three characters from the domain name (known as the top-level
domain) from each employee's e-mail address. To do this, we could designate a -3

as the starting position in a SUBSTR () function, as shown in the following query. In
this example, we count backwards three characters for the starting position and then
move forward three characters to mark the end of the substring.

[ companylink @orcl |
FERERO B3 ¢ 000515606 seconds
SELECT email address, 3UB3TE(email_address, -3, 3]
FROM email
VHERE ewmployee_id > &:
il W
[ Resutts |5 Script output | TRIE=plsin f;].ﬂ\utcdrace| ADEMS Output | £ O, Output
Results:
Emall_ADDRESS | SUESTRIEMAIL_ADDRESS -3,3) |
1 llee@companylink .com cam
2 lleec@amail com com
3 llee@yahoo.com com
4 colarki@companylink .cam COM
5 gmoore@companylink.com com
& chali@companylink.com cam
7 srodriguez@@companylink .com com
& klewis@oompanylink.com com
9 klewizi@omail .com COM
10 gtaylor@@companylink .com com
11 Rhomas@companylink.com com

[211]



Row Level Data Transformation

INSTR()

As we begin to make use of more advanced functions such as SUBSTR (), we may
begin to see some of its limitations. For instance, what if we were asked to return
the portion of an e-mail address before the '@' symbol (known as the local-part). This
portion of an e-mail address is often the username of the user's e-mail account.
Clearly, since we are retrieving a portion of the overall string value for an e-mail
address, we will need to utilize SUBSTR () whose start position is 1. The difficulty,
however, is that SUBSTR () requires us to count over by a known number of
characters for the end position. Since each e-mail username can be a different length,
we cannot accurately pinpoint what the end position should be. For situations
such as this, we can use the INSTR () function to locate the position value of certain
characters within a string, such as the '@' sign. The query in the following example
can be used to locate the position of the '@' sign in each employee's e-mail address.

D companylink mworcs |
FERRO BWBE ¢ 000815972 seconds
SELECT email addrezs, IN3TR(ewmail_ address, 'B')

FROM email
VHERE enployee_id < &:

.

[ Resutts| [ =] Script Output | B Explain .‘_:;'_‘]Autu:itrace| ADEMS Output

Resutts:

EMAIL _ADDRESS | INSTREMAIL _ADDRESS ‘@)

1 jiohnson@companylink com 9
2 jiohnzon@gmail .ot 9
3 mwviliamsi@companylink.com 10
4 landerson@companylink.cam 10
5 drobinson@companylink.cam 10
6 moatcisg@ocompanylink.com g

7 moatcisg@hotmail.com g
5 hharris@companylink .cam g
9 kwhite@@companylink.com 7
7

10 kwhiteg@yahoo.com

The previous statement could be read as, Locate the position of the first occurrence of
the symbol '@' in the e-mail address. Of course, it may be difficult to see the usefulness
of this, since the value returned is only the position of the character in question.
However, we will see in the next section that INSTR () can be combined with other
functions in ways that make this extremely useful.

[212]



Chapter 6

Although the previous INSTR () example takes only two arguments, it can also take
two other optional arguments for even more control. An expanded syntax tree of the
function itself with optional arguments and descriptions is shown as follows:

INSTR(column expression, search character, starting position,
occurrence number)

where:

e column expression = the column value to be searched
e search character = the character for which to search

e starting position = the position to begin the search; either a positive
number to begin to the left, or a negative number to begin to the right

® occurrence number = the number of occurrence for the searched character

Thus, not only can we specify which character for which to search, but also,
optionally, we can designate where in the string we want to begin the search and
even specify which occurrence of a particular character we wish to find. For example,
say that we're tasked with writing a SQL statement that returns the portion of the
string after the domain name in each website. We could say that we want the portion
of the string following the !/' character, but it is actually the third occurrence of that
character, since http:// has two occurrences of the symbol as well. To find the
position of the third /' symbol, we could use the INSTR () function as shown in the
following screenshot:

(= companylink @otrel |
FERROG 88 ¢ 00082197 seconds
SELECT website url, IN3ITE(webszite url, 's', 1, 3]
FROM wehsite;
. 4
[ Resutts| [ =] Script Qutput | T Explain _&]Ammracel ADBEMS Qutput | % A Output
Resufts:
WWEBSITE_UIRL | INSTRONEBSITE_LURL,'F 1 ,3j||
1 http: ey companylink combjiobnson 2
2 hitpe ey companylink comdrreilliams e
3 hittp fhaenee companylink comsdperez 27
4 hittp: ey companylink comdgmonor e 27
S hittp: ey companylink comiklesis 27
G hittp: Sy companylink comingarcia 27
7 hittp: ey companylink comichall 27
8 hittg: My companylink comtthomas 27

[213]



Row Level Data Transformation

As we can see, in our example, the third occurrence of the /' is found at the 27th
character for each of our websites. However, as our Companylink site grows, it can
accommodate URLs from other domains as well. Read simply, our INSTR () function
searches the website url column for the third occurrence of the /', starting at the
first character.

Exploring nested functions

We mentioned in our last section that in order for the INSTR () function to be useful,
it would need to be combined with another function, such as SUBSTR (). We can do
this with nested functions — functions that execute inside of other functions. Nested
functions can be written many levels deep and be extremely complex, but we can
interpret them, provided we follow some simple rules. First, remember to read the
functions separately, rather than looking at the statement as a whole. Second, always
interpret the innermost functions first. The following example shows the text of a
statement using a SUBSTR () function with an embedded INSTR () function. The
INSTR () is evaluated first and is used to drive one of the arguments for the SUBSTR ().

SELECT email address,
SUBSTR (email address, 1, (INSTR(email address, '@')-1))
FROM email;

Rather than running the statement, let's just evaluate it for ourselves a step at a time.
Following our rules, we evaluate the innermost functions first. The INSTR () function
searches the email_ address column for the first occurrence of the '@' sign. For the
first row, this evaluates to the integer 9, for the ninth place. After this evaluation, our
statement would look like the one shown in the following syntax example:

SELECT email address,
SUBSTR (email address, 1, (9-1))
FROM email;

[214]




Chapter 6

This is certainly easier to read. Next, we subtract one, since we want the ending
position to be one character before the '@ symbol —not at the symbol itself. Without
subtracting one, our e-mail account names would be displayed with the symbol
included. Our statement now evaluates (for the first row) as shown in the
following code.

SELECT email address,
SUBSTR (email address, 1, 8)
FROM email;

Our statement now contains only a simple SUBSTR () function and can be evaluated
accordingly. Remember that this particular example is only true for the first row,
but subsequent rows are evaluated in the same way. The actual statement can do
this recursively for each row of the table. The following screenshot shows the full
statement and its execution:

E}companyﬁnk@orc! |
PERRO BE ¢ 000406057 seconds

SELECT ewail address, SUB3TR(email address, 1, [(IN3TR(email_address, 'B'j-1))
FROM email
THERE email_id > 1Z;

%
= Resutts| =] script output | EIExplain | B autatrace | ADEMS Output | E owia Output
Results:
EMalL_ADDRESS | SUBSTRIEMAIL_ADDRESS 1 (INSTRIEMAIL _ADDRESS '&@"-17)
1 leei@gmail.com llee
2 llee@yahoo.com llee
3 cclark@companylink .corm cclark

4 gmoored@oompanylink .com gmoore

5 chall@companylink com chall

B srodriguezi@companylink.com srodriguez
T klewiz@companylink.com klewwis

5 klewiz@gmail.com klewwis

9 gtaylor@companylink .com gtaylor

10 khomas@companylink.com thomas

[215]




Row Level Data Transformation

Substituting values with REPLACE()

In SQL, it is often useful to be able to use the typical search and replace functionality
present in many programs. The REPLACE () function provides the ability to search
through a string value and replace any set of characters with another set. REPLACE ()
takes three arguments: the value to be searched, the string to replace, and the string
with which to replace it. Say, for example, that we want to standardize the way that
websites are named in our Companylink database. In the website desc column,
some websites are named website and others are named site; a situation we need
to rectify by standardizing on the term website. Before we permanently alter the
data, we want to see the data before and after the change. We can use the REPLACE ()
function to see the effects of this, as shown in the following example:

[ companyiink @orcs |
FPERAO BB ¢ 001275162 seconds

SELECT website_desc, BEPLACE (website_desc, ' site', ' webhsite')
FROM webhsite;

.
(> Resuts [=] seript Output | EExplain | 5 Autotrace | ADEMS Cutput | (€3 ClAa Output
Results:
WEBSITE_DESC | REPLACENWEBSITE_DESC 'SITE' WWEBSITE")
1 Jims new site Jimz newy wwebsite

2 Desktop rollout project site Desktop rollout project website

3 The Perez site The Perez wehsite

4 Garyweorld! Garywworld

S Winter sales push project site Wirter sales push project website
& Mattz coal website Mattz coal wehsite

T Cynthia Hallz website Cynthia Halls website

G Operations Branch website  Operations Branch website

Our REPLACE () function takes in the website desc, searches for site, and replaces
it with website. Notice the leading space that is present in each of the strings,

site and website. If we neglect this space, we will also substitute each occurrence
of the string anywhere that website exists, transforming website into the string
webwebsite. Remember that within single quotes, Oracle maintains capitalization.
This is a good reminder that the REPLACE () function is strictly literal in its
interpretation of our inputs.

[216]



Chapter 6

Handling DATE functions

Handling values with the DATE datatype in SQL presents several challenges. In
Oracle and many other database systems, this is primarily because a date is neither a
string value nor a numeric value. Yet, using the proper functions, we can transform
values of the DATE datatype into string values and even do date arithmetic. To see
how this works, let's begin by returning to the subject of sYSDATE that we mentioned
in Chapter 2, SQL SELECT Statments.

Distinguishing SYSDATE and
CURRENT_TIMESTAMP

As we mentioned in Chapter 2, SQL SELECT Statments, SYSDATE is an Oracle
pseudo-column — it does not represent an actual column value, but rather returns
a system value generated by Oracle. In the case of SYSDATE, it returns the current
date and, if we instruct it to do so, the time as well. Let's look at an example using
SYSDATE, as shown in the following example:

[ companyiink @orci |
FERSRS B|BE ¢ | 10050239 seconds

SELECT SYSDATE
FROM dual:

.
[ Resutts |2 Script Output | ) Explain |_5:.]Amotrace | ZADBMS Output
Results:

SYSDATE
1 19-APR-11

If you run the command listed previously, your results will differ. That's because
SYSDATE returns the current date when the statement is run. Since you are running
the statement after this book has been published (unless you're exceptionally good
at time travel) your system date will be different. If you run the statement tomorrow,
it will be different still. It is important to understand that SYSDATE returns the current
date from the perspective of the database to which we are connected. If you are running

this statement from SQL Developer against an installation of Oracle that you have,
yourself, done (as suggested in Chapter 1, SQL and Relational Databases), both will be
on the same server. The database inherits the same time as that of the server it resides
upon. Your installation will therefore constitute both the client (SQL Developer) and
the server (Oracle). If we were to connect to a database in a different time zone, say,
one that is across the International Date Line, our sYSDATE would actually differ
from our local date.

[217]




Row Level Data Transformation

In the event that we wish to return the date from a different perspective, we could
use the CURRENT TIMESTAMP pseudo-column, as shown in the next example:

[}companyﬁﬂk@orci |
FPERRO BWE ¢ 00082178 seconds

SELECT CURREHT TIMESTAMP
FROM dual;

.
[ Resutts | | =] Script Output | ) Explain
Reszults:

) Autatrace | ZADEMS Output

CURRENT_TIMEST AMP |
1 19-2PR-11 03.25.19.203000000 PM AMERICAICHICAGO

Notice the difference in the value returned. Again, it will be different from the value
displayed in this book. There is also much more information returned. In addition
to the date, we see time information down to fractions of seconds and an offset to
calculate time zone. This is because CURRENT TIMESTAMP displays its information
using a different datatype —the TIMESTAMP datatype. CURRENT TIMESTAMP
retrieves its information differently than SYSDATE. CURRENT TIMESTAMP returns the
current date and time from the perspective of the user's session on the client machine that is
connecting to the database.

SQL in the real world

. Although DATE is still the most widely-used datatype to store date and
% time information, the TIMESTAMP datatype is growing in popularity
S due to its ability to store time information to a greater numeric
precision. Oracle also has other similar datatypes that are designed to
be used in environments where time zone information is important.

Another difference between these two pseudo-columns is the manner in which they
are stored. While a discussion of the storage methods of the TIMESTAMP datatype are
beyond the scope of this book, it is useful to understand how values with the DATE
datatype are stored. In Oracle, the DATE datatype stores seven bytes that contain
the amount of time that begins at a point long in the past—January 1, 4712 BC, to

be exact. That date can be considered date zero. Oracle uses internal mechanisms to
interpret the information stored in any DATE value against date zero to calculate date
and time and display it accordingly. Because DATE values are stored this way, we
can use date functions to display dates in many different ways.

[218]




Chapter 6

Oracle has a default format for displaying this date information. You can see it

in the previous example. The default format is DD-MON-YY, where DD is the
two-digit day, MON is the three-digit month abbreviation, and YY is the two-digit
year. However, there are obviously many situations in which we would want to
display dates in different formats. For this, we can use datatype conversion functions.

Utilizing datatype conversion functions

Datatype conversion functions are so named because they convert values of one
datatype to another. This is relevant to our discussion of dates since displaying a
date in a format different than the default format requires converting it to a character
string value. As we will see, we can use datatype conversion functions to convert
date values to strings, string values to dates, and even numeric values to strings.

Using date to character conversion with TO_CHAR

One of the most common uses of datatype conversion functions is to convert a date
into a character string to change the format in which it is displayed. This type of
conversion requires both a value to convert and instructions for how to convert it.
The instructions for converting a date value are passed to a function called
TO_CHAR (), or to character, in the form of a format mask, which details how

a date value should be displayed. An example is shown in following query:

Dcampaﬂyﬁnk@orc.f |
FPERA® 88 ¢ 00500593 seconds

SELECT date_awarded, TO_CHAR(date_awarded, 'DD-MON-YYVT HH:MI:33')
FROM employee_award;

F %
[ Resuts | =] script Output
Results:

EExplain | B Autotrace | ADEMS Output | E4 Chva, Output

DATE_AWWARDED | TE_CHAR(DATE_AWARDED, DD-MON-Y Y Y YHH: ML SS")

1 12-MON-02 12-MO%-2002 12:00:00
2 25-0CT-06 25-0CT-2006 12:00:00
3 05-hsr-01 05-hdY-2001 12:00:00
4 0B-APR-03 06-APR-2003 12:00:00
G Ov-JUL-o7 O7-JUL-2007 12:00:00
G 25-FEG-04 25-FEB-2004 12:00:00

[219]



Row Level Data Transformation

Even as complex as this statement looks, notice that as with other functions, we

are simply passing arguments to the To_CHAR () function. The first argument is the
value of the column in question, date_awarded. We also display this column prior
to the converted value for reference. The second argument is our format mask (also
known as a format model), which provides instructions as to how the value should
be displayed. To_CHAR () converts the DATE value to a character string value and
displays it as instructed by the format mask. The format mask by itself is shown

as follows:

'DD-MON-YYYY HH:MI:SS'

Although this may look confusing, we simply need to break it down into its
individual parts in order to interpret it. We first notice that the format mask is
enclosed in single quotes — this is always the case. Next, we note that the individual
elements are separated by either dashes (-) or colons (:). These characters are retained
in the date format that is displayed. If we wish (as we will see in later examples),
other characters can be substituted for the ones in our example. However, the
characters we use in the format mask will be the ones displayed in our output.

For example, the time information is delimited by colons, which is the way time is
commonly displayed.

Lastly, we examine the individual elements of the format mask themselves. Each

of these elements reference a particular part of the date/time information. bp
instructs the format mask to display a two-digit day, between 01 and 31. MON refers
to a three-digit month abbreviation, such as JAN or FEB. YyvY represents a four-digit
year. Next is the time information. HH instructs the mask to display the number of
hours stored in the value in two digits, such as 12 or 03. Note that this will display
the hours with respect to a 12-hour clock, using AM or PM as needed. MI refers to
the number of minutes in two digits. Finally, ss represents the number of seconds

in our DATE.

[220]



Chapter 6

Using the To_CHAR () function, we can display date and time information in a variety
of ways. In the following example, we rewrite the previous statement to display the

same dates in an entirely different format by changing only the format mask:

["} companylink Worcl |

PESRAO B8 ¢ 003472927 seconds

FROM employee award:

SELECT date_awarded, TO_CHAR(date_awarded, 'Month DD, ¥¥¥Y HHz4 MI 33')

.
[B=Resutts| [ Script Output | ElExplain | T Autatrace | ADEMS Output | (£ O, Output
Results:

D.&TE_.-'J-.W.-'J-.RDED| TO_CHAR(DATE_MWARDED 'MOMTHDD, Y Y Y HHZ4MISS")

1 12-MOW-02 Movember 12, 2002 00 00 00
2 23-0CT-06 Qctober 25, 2006 00 00 00
3 03-May-m My 03, 2001 000000

4 08-APR-03 April 08, 2003 00 00 00

5 0F-JUuL-07 July  OF, 2007 00 0000

G 25-FEB-04 February 23, 2004 00 00 00

Here, we have used a different element, Month, to display the full name of the
month in question. Notice that the month name is displayed in mixed case. Our
format mask element is mixed case, so our month is shown as such. Remember

that in Oracle, information that is stored inside single quotes is case-sensitive. This
applies to our format mask elements, as well. Also note that we have changed the
order in which date information is displayed, with month information coming before
day information. We have also used a comma to delimit our date information and
spaces to delimit our time information. As a result of the different format mask, our

date data is displayed in a different manner.

[221]



Row Level Data Transformation

When using format masks with To_CHAR (), it is not necessary to include both
date and time. Our format mask can specify one or the other, as shown in the

following screenshot:

D companyiink@orcl

FPERRO B8 & 001272983 seconds

SELECT date_awarded, TO_CHAR |date awarded, 'MM/DD/YTEY')
FROM enployee_amard;

.
[ Resutts| [ Script Output | B Esplain | 5 Autatrace | ADEMS Output | £ A Output
Resutts:

DATE_AWWARDED | TO_CHAR(DATE_AWARDED,'MMJ’DDNY‘(Y')|

1 12-NOW-02 111 262002
2 25-0CT-08 1072502008
3 05-MAY-01 05/05/2001
4 06-APR-03 040652003
5 O7-JuL-07 07072007
6 25-FEB-04 0272552004

Here, the date_awarded column is shown with only days, months, and years. The
first, unmodified column, also shows this information, but does so in the default

format we mentioned earlier.

There are a vast number of elements that can be used in a format mask. The

following table shows several of the more common ones:

Element Example Description

DD 22 Two digit day of the month

Day Tuesday Mixed case day of the week

DAY TUESDAY Capitalized day of the week

D 3 (Tuesday) Mumeric value for day of the week

DDD 081 Mumeric value for day of the year

DY TUE Three digit abbreviation for day of the week
DL Tuesday, March 22, 2011 Date in long format

MM 03 Two digit month of the year

Month March Mixed case month of the year

MONTH MARCH Capitalized month of the year

MON MAR Three digit abbreviation for month of the year
Y'Y 1 Two digit year

YYYY 201 Four digit year

Year Twenty Eleven Mixed case name of the year

YEAR TWENTY ELEVEN Capitalized name of the year

HH 10 Number of hours on the twelve hour clock
HH24 22 Number of hours on the twenty four hour clock
MI 14 Number of minutes

SS 47 Number of seconds

5555 0505 Number of seconds past midnight

AMPM PM Meridian indicator on the twelve hour clock
CcC 21 Numeric value for century

BC/AD AD Epoch indicator

[222]



Chapter 6

Converting characters to dates with TO_DATE()

Just as we can convert a date to a character string with To_CHAR (), we can likewise
take a character string and convert it into a date. The To_DATE () function takes a
date-oriented string and converts it into a value with a datatype of DATE. Obviously,
the character string that we pass to To_DATE () must be a date of some type—we
cannot simply pass a random string of characters and expect T0_DATE () to convert it
properly. An example is shown as follows:

Dcompanyﬁuk@orc! |
FPERAO B8 ¢ 000718611 seconds

SELECT TO _DATE('Ol-JAW-1991")
FROM dual:

% 4
[ Resuts | [ seript output | 59 Exlain | B autatrace | FDEMS outout | ) ovis outiut
Results:
TO_DATE(M-14N-1991") |
1 010451

In this example, we pass the string '01-JAN-1991' to the To_DATE () function. It is then
converted and displayed in the default format for the database. In this statement, it
is crucial that the string passed to the function must be in a format that Oracle can
automatically recognize as a date. However, this can be fairly limiting. It is possible
that we may want to enter string dates in a format that differs from the database's
default format. For this, we turn again to format masks. Any string that is passed
to TO_DATE () can accompany a format mask that defines how the string should be
converted. Fortunately, the type of format mask for this operation is the same as
the ones used with To_CHAR () . In the next example, we pass the character string
'January 1,1991' to the To_DATE () function and instruct the function to convert it
using a format mask that specifies how the string value is formatted.

D-companyﬁn#@orc! |
FPERRS B8 & 001732008 seconds

SELECT TO_DATE(' Jamuary 1, 1991', 'Month DD, ¥¥¥¥')
FROM dnal;

.
> Resuts | (=] soript Output | T Explain | B autotrace | (ADBMS output | € cwis Output
Results:

TO_DATECANUARYT 1991 MOMTHDD ¥y ¥y |
1 01-JAr-g1

[223]



Row Level Data Transformation

In this example, we pass the value 'January 1, 1991, a value that Oracle cannot
implicitly recognize as a date, to the To_DATE () function. Because it is not immediately
recognizable, we must include a format mask as the second argument. This mask

will instruct the function as to how to read the date —month value, space, day value,
comma, space, year value. It then returns a date in the default database format.

SQL in the real world

The SQL function TO_DATE () can be extremely useful in real-world
. situations that require dates to be converted from older database
% systems. In many of these systems, dates are stored as character string
A" values instead of anything resembling Oracle's DATE datatype. The
TO_DATE () function was used extensively in the late 1990s in solutions
to the "Year 2000 problem" to convert older style character dates to
Y2K-compliant dates.

Converting numbers using TO_NUMBER()

Our last datatype conversion function does not deal with date values. Rather, the
TO_NUMBER () function is used to convert character values to numeric ones, often for
the purpose of taking character values and performing an arithmetic operation. Let's
look at a simple example. We know from Chapter 2, SQL SELECT Statments, that we
can use arithmetic expressions with the DUAL table in order to do simple math, as
we see in the following example:

[ companylink @orci |
FPERRO 88 ¢ 00204692 econds

SELECT 1+1 FROM dual:

b W

[ Resutts || Soript Output

Results:

1+1

1 2

E)Explain | L5 Autatrace | ADEMS Output

[224]



Chapter 6

The value returned, of course, is 2. This works because each of the values is numeric.
However, if the values were enclosed in single quotes, that is to say they represent
character values, the result is quite different, as we can see in the following screenshot:

Dcampanyﬁnk@om! I
FPEERRO B8 & 000504701 seconds

SELECT 'l+1' FROM dual:

e, W

B> Resuits | [ =] script output | S)Explain | 8 autatrace | ADEMS output
Results:

M1

1 1+1

The result is not the arithmetic outcome we might have expected. This is because
Oracle evaluates anything within single quotes as a character string. If our values
were strings that we wished to add, we would first need to convert them using
TO_NUMBER (), as shown in the next screenshot. Each of the character strings '1'

is first converted to a numeric value and then added together.

[ companyiink @orct I
FERRO B8 ¢ 000751017 seconds

SELECT TO _NUMEEER('l') + TO_NUMEEE('l')
FROM dual;

i W

[ Resutts | (=] Script outout | B Explain | 5 Autotrace | DEMS Outout
Rezults:

TO_MUMBER(M "1+TO_MNUMBERI ") |
1 2

[225]




Row Level Data Transformation

While this example in itself may not seem particularly useful, it does demonstrate
that string values can be used in arithmetic expressions. However, used in
conjunction with our To_CHAR () function, To_NUMBER () can be put to good use.
Say, for example, that we needed to display a rough approximation of the number
of years between the date that an employee was hired and the date that they signed
up for Companylink. We could use To_NUMBER () in the example shown in the next
screenshot to do this. In real world terms, we might interpret this query as, Find the
number of years between hire and sign up.

E) COMPIRYIIRE Dorcs |

FPERRO BB ¢ 00055624 seconds

SELECT last_name,

TO_NUMEEE (TO_CHAR (signup_date, 'T¥¥¥')) - TO_NUMEER(TO_CHAR (start_date, '¥¥¥Y¥'))
FROM employes

THERE employee_id > 9;

%, 4
[ Results | [ seript output | EEplain |f;]motra-:e | ADBMS Output | (20 Output
Rezutts:

LAST_NAME| TO_MUMBER(TS_CHAR(SIGHMUP_DATE, ™y "1-To_NUMBER(TO_CHARISTART_DATE YY)

1 Clark

2 hioore

3 Hall

4 Rodriguez
3 Lewiz

E Taylar

ka3 =4 0 — k3 @™ W

7 Thomas

Here, we first extract only the year of each employee's signup and hire date using
TO_CHAR () with a format mask of 'yvyy'. This evaluates the two values for each,
which are subtracted. However, since we have used To_CHAR () to extract the year
values, they are character values that require a numeric conversion. Thus, we place
each value within a TO_NUMBER () function in order to convert them. Also note that
these are approximate values, since the month and day values are stripped from the
dates and are not considered.

[226]




Chapter 6

SQL in the real world

. Oracle can do a certain amount of automatic datatype conversion,
% but it is often considered bad syntax to rely on it. For instance, the
/>~ previous example can be successfully executed without the TO
NUMBER () functions, but many coding standards would reject the
statement as unclear.

Using arithmetic functions

Just as with the string and date functions, we have an entire set of functions that
deals strictly with numeric values and arithmetic operations. We will look at a few of
the more common examples here, but there are many different functions you can call
in order to manipulate numbers in Oracle.

ROUND()

The rOUND () function is straightforward in its purpose — it rounds numeric values
according to standard mathematic rules. Digits less than five are rounded down,
and values greater than or equal to five are rounded up. However, because of the
complexity involved in specifying the decimal place to which values should be
rounded, learning to manipulate ROUND () can be tricky. Let's first look at an example
using numeric literals, as shown in the following screenshot:

[ companylink @orci |
ERRO B8 ¢ 0006573102 seconds

SELECT 123457100, ROUND{lZ345/100, 1),
ROUND (123457100, 0), ROUND(12345/100, -1)

FROM dual:
% 4
[ Resutts | || Script output | E5)Explain | 55 Sutotrace | ADEMS Output | € CiAa Output
Results:
H 12345mnn|ﬂ Roumnm2345nnnnj|ﬂ Roumnm2345nnnpj|ﬂ ROUND( 23450 00,-1)
1 123.45 1235 123 120

[227]




Row Level Data Transformation

In this example, we are using the quotient that results from dividing 12345 and

100, the numeric value 123.45. The ROUND () function takes two inputs: the value

to be rounded and the decimal place to which to round it, denoted by an integer
value. If the decimal place is 1, our value will be rounded to the nearest tenth; if it
is 2, the value is rounded to the nearest hundredth, and so on. We can, however,
also use a zero or negative value for the decimal place. If the decimal place is 0, the
value is rounded to the nearest ones place. If -1, it is rounded to the nearest tens.
The following chart shows the effect of using several different decimal places in our
ROUND () function. The following chart should help distinguish the effects of using
various values for the decimal place in the ROUND () function.

b ROUND(x,1) |ROUND(x,2) [ROUND(x, 0) | ROUND(x,-1) |ROUND(x,-2)
105.36 105.4 105.36 105 110 100
13.88 139 13.88 14 10 0
7.34 7.3 7.34 7 10 0
0.52 0.5 0.52 1 0 0

Say, for example, that we need to do some calculations on the number of hits to
employee's blogs. We could use the ROUND () function to do this, as shown in the
following example. By passing the value -1 to the ROUND () function, we round each
blog's hit count to the nearest tens place.

|} COMPInYyIRk worcs |

PERGS® B8 ¢

0.01344305 seconds

SELECT hit_count, ROUND (hit_count, -1)
FROM blog;

s, W

Fesults:

[ Resutts || Seoript Qutput

EExplain

B autotrace | FADBMS Output

HIT_COUMT | FOURDCHIT _COUMT -17 |

—

h & L R

123
32
24
15
a6

120

30
20
20
G0

[228]




Chapter 6

TRUNC()

The TRUNC () function performs an operation similar to that of ROUND () . However,
instead of rounding the value in question to the nearest specified decimal place,
TRUNC () merely truncates the value without rounding. A comparison of the ROUND ()
and TRUNC () functions is shown in the following screenshot:

[)-campaﬂyﬁnk@om! |
FERRO B8 ¢ 000933357 scconds

SELECT 12345710, ROUND (1235345710, 0), TRUNC({lz2345/10, 0O)
FROM dual:

%
[ Resuts || Script output
Results:

) Explsin | B autotrace | ADEMS Output | ) owa Output

1234510 | ROUMD(1 2345410 1) | TRUMNCE1 2345r1|:|,|:|)|
1 12345 1235 1234

As you can see, our base number is 12345/10, or 1234.5. While ROUND () behaves as
we have seen, rounding the number to 1235, the TRUNC () function simply truncates
the decimal place and returns a value of 1234.

Using ROUND() and TRUNC() with dates

Both ROUND () and TRUNC () can be used to modify date values as well as numbers.
When used with dates, these functions take a date value and a format mask as
arguments. It is the format mask that instructs the function as to the date element
that should be rounded. For instance, if we round a date with a format mask for the
year of 'YYYY', it is rounded to January 1 of the nearest year. So, if the date occurs
during the second half of the year, it is rounded up to January 1 of the following
year. If the date occurs in the first half of the year, it is rounded down to January 1
of that same year. Rounding with months works similarly.

[229]



Row Level Data Transformation

The TRUNC () function takes a date and returns the previous corresponding date,
depending on what is used as the format mask. An example is shown in the
following screenshot:

D- companylinkgorct |
CERRS BB ¢ 00071 seconds
SELECT date_awarded,

ROUND (date_awarded, 'Yi¥Ty'), TRUNC(date_awarded, 'TV¥Y')
FROM employee award;

.
B> Resuits [ soript Output | B Explsin | 3 autotrace | ADEMS Output | €4 owis output
Results:

DATE &WARDED | ROUNDDATE_SWARDED " ¥ ") | TRUNCIDATE_AWARDED " ")

1 12-MON-02 01-JAN-03 01-JARN-02
2 25-0CT-06 01-JAN-0F 01-JAM-06
3 05-hANY-01 01-JAN-01 01 -JAN-01
4 06-APR-03 01-JAN-03 01 -JARN-03
5 O7-JUL-07 01-JAN-0T 01 -JAN-0F
G 25-FEB-04 01-JAN-04 01 -JAR-04

MOD()

The moD () function works the same as the modulus operator in mathematics. It takes
two values, a dividend and a divisor, and returns the remainder after dividing the
two. An example is shown in the following query. The statement takes the hit counts
for the website and blog tables from the companylink database, divides them, and
returns the remainder, or modulus. This statement returns, in order, the dividend,
the divisor, the whole number quotient, and the remainder. We use TRUNC () in order
to remove the fractional part of the quotient.

[230]



Chapter 6

D- comparylink worcs

FPERRO 88 ¢ 001457033 seconds

SELECT w.hit count, b.hit count,

TRUNC (w.hit_count/b.hit_count),

MOD jwr.hit_count, b.hit count)
FROM website w join blog b uwsing (blog_id):

W

> Resutts| (] script output | B Explain |f;} Autatrace |I30Em-15 Output | @A oW Cutput

Results:
HIT_CouUMT |HIT_COLINT_1 |TRLINC(I-“J.HIT_COLINTJ’B.HIT_COLINT] |MOD(W.HIT_COLINT,B.HIT_COLINT)
1 234 123 1 111
2 Ed 32 2 0
3 T2 24 3 o
4 14 18 o 14
3 g5 a6 1 29

Understanding date arithmetic functions

Oracle includes many built-in functions that can perform date arithmetic —the
process of adding and subtracting dates. Date arithmetic is often a challenge in
programming languages because it attempts to apply base ten arithmetic operations

to dates, which do not easily conform to such a numeric system. In Oracle's
implementation of SQL, however, this is easily accomplished using date

arithmetic functions.

[231]




Row Level Data Transformation

MONTHS_BETWEEN()

The MONTHS_BETWEEN () function returns a numeric value that represents the
number of months between two dates. Its syntax and use are shown in the
following example:

[ companyiink @orc |

FPERRO BB ¢ 001016163 seconds

SELECT last_name, MONTHS _BETWEEN(last_login_ date, sigmup date] NOT_ROUNDED,
ROTHD (HONTHS _BETWEEN {last_login date, signup_date)) ROUNDED

FROM enplovyee

YHERFE employee id > &;

.

[ Resutts | [ =] Soript Output | B Explain _F;jmotrace| ADEMS Output | (£ CAs, Output

Rezults:

LAST_M&ME | NOT_ROUMDED | ROUNDED

1 Lee 0.67741935483570967 741 935463870967 741 93542 1
2 Clark 5 6774193548307 0967741 9354838709677 41935 B
3 Moore 4 0B451 61 2903225806451 61 2003225805451 61 g
4 Hal 11 903225506451 61 2903225806451 61 200322581 12
5 Rodriguez 7 £70967741935463870067 741 935453870967 74 &
6 Lewis 7 161 2903225506451 61 2003225306451 61 29032 7
7 Tarylor 2 709G774193548357 0967741 935453870967 742 3
& Thomas 2 161 2903225606451 61 2803225006451 61 29032 2

We notice that the value returned is a true numeric value that represents the
number of fractional months between the two dates that are passed as arguments.
In order to make this output more readable, we've shown two columns that utilize
the MONTHS BETWEEN () function. The first shows the non-rounded, true numeric
value, and the second applies the ROUND () function as an outer function that rounds
the decimal value into a more readable integer value. We also place aliases on both
columns to simplify the column headings.

[232]



Chapter 6

ADD_MONTHS()

The ADD_MONTHS () function is used to simply add a specified number of months to
a given date. The function takes two arguments: the date itself and the number of
months to add. In the following screenshot, we add six months to each employee's

signup date.

[} COMPIRYINE Dorcl |

FPERRO B8 ¢ 000641757 seconds

SELECT zignup_date, ADD_MONTHS (signup_date, &)
FROM enployee
THERE employee_id < 5:

%
[ Resutts| [ Script output | B Explain | £ Autotrace | ADEMS Output
Resutts:
SIGNUF‘_DATE| ADD_MONTHS(SIGNLIF‘_DATE,E]|

1 01-JaN-10 01-JUL-10

2 2B-Jah-10 28-JUL-10

3 M-APR-10 01-0CT-10

4 23-FEB-10 23-a15-10

5 2d-JUN-10 24-DEC-10

6 25-JaN-10 25-JUL-10

7 10-FEE-10 10-405-10

Examining functions that execute
conditional retrieval

Within Oracle, we have another set of functions at our disposal that doesn't easily
fit into the categories that we've seen thus far. These functions all address, to some

degree, the need for if...then logic within SQL. The first two of these functions

provide special ways in dealing with NULL values.

[233]



Row Level Data Transformation

NVL()

The NULL value is an essential part of SQL. Without it, we would have no way to
express the lack of a value within a row. Still, NULL values can present problems,
particularly when attempting to use them with arithmetic expressions. For instance,
recall an example from Chapter 2, SQL SELECT Statments, where we introduced the
topic of nulls. In it, we attempted to divide the number 100 by a NULL. The result
was another NULL value. Most often, NULL values create problems when they are
not expected. For instance, say we want to create a small report that lists the website
description for each employee website and its associated blog id. We could do a
simple query such as the one shown in the following example:

[}-campanyﬁnk@orc! |
ERRO B8 ¢ 00038999 seconds

SELECT website_desc, blog id
FROM webzite;

W

[ Resuts | [ script output | SExplain | B Autatrace | ADEMS Output

Resuts:

WEBSITE_DESC | EILO...|

1 Jimz new zite 1
2 Desktop rollout project site 2
3 The Perez site (rilly
4 Garyward 3
5 Winter zales push project zite q
G Matts cool website 3
7 Cynthia Halls website (rilly
& Operations Branch website (rilly

If we so desired, we could replace these NULL values with another number, say a
zero, in order to tidy up the report. To do so, we use the NVL () function, which takes
two arguments. The first is the value to evaluate. The second is a substitution value
in the event that the first value is NULL. Thus, we could read the example in the
following screenshot as, Display website description and blog ID. If the blog ID is NULL,
display a zero.

[234]



Chapter 6

Dcompanyﬁnk@orc! |
FPESRS BE ¢ 000543092 seconds

SELECT website desc, NVLiblog id, 0}
FROM webszite;

.. 4
[ Resutts | [=]seript Output | FExpisin | B autatrace |[ADEMS Output
Results:
WEBSITE_DESC | NYL(BLOG_ID,0) |
1 Jims new site 1

2 Desktop rollout project site

3 The Perez site

4 Garyworldl

5 'Winter sales push project site
B hatts cool wehsite

7 Cynthia Halls wehsite

8 Operations Branch website

O o B WO R

NVL2()

The nvL2 () function is an extension of NVL () that allows the programmer more
flexibility. NvL2 () takes three arguments. The first is the value to be evaluated. The
second is the value to display if the first value is not a null. The third is the value to
display if the first value is a null. Using NVL2 (), we can conditionally evaluate a list

of values and display one value if the original value is not null and a different one

if it is null. To return to our earlier example, let's say that we still want to display a

list of employee websites. But, now we are not concerned with showing the blog ID.
However, we do still want to show whether or not each website has a blog associated
with it. To show this, we could use the NVL2 () function as shown in the next example:

D cowmpanylink @orct |
FPESRO® B ¢ | 000586248 seconds

SELECT website_desc, NVLZ(blog id, 'Has a blog', 'Does not have a blog')
FROM wehsite;

.. 4
D= Resutts| [ =] script output | B9 Explain |§]Autmrace | ADEMS Output | ECWE Output
Results:
WEBSITE_DESC [B wvioELoc b HASABLOG DOESNOTHAVEABLOG)
1 Jims new site Has a blog

2 Desktop rollout project site Has a blog

3 The Perez site Does not have a blog
4 Garywarld! Haz a blog
S Winter sales push project site Has a blog
6 Matts cool wehsite Has a blog
T Cyrithia Halls website Does not have a blog

& Operations Branch website  Does not have a blog

[235]




Row Level Data Transformation

DECODE()

Of the three conditional retrieval functions we examine here, DECODE () is the most
similar to the true if...then statements found in third-generation programming
languages. The DECODE () function is different in that it evaluates most of its
arguments in pairs. The first argument passed to the function is the value to be
evaluated. Thereafter, we list pairs of values. The first of the pair is the value

to match. The second of the pair is the value to display if a match is found. The

final value passed to the function is the value to display if no match is found for

the evaluated value. Say, for instance, that we want to display the name of each
employee and the nickname of the state they are from. Although we don't store state
nickname information in our Companylink database, we do store the abbreviation
of each employee's state in their address. Thus, to complete the task, we'll need to
join the employee and address tables, then use a DECODE () function, as we see in the
following example:

[:} comparylink @orcl |

FPERRS BB ¢ 0009837 seconds

SELECT first_name, last_name, state,
DECODE (state,

'M0', 'Show-Me State',

K5, 'Sunflower State!,

'OK', 'Zooner Htate',

'No nickname?')] "Nickname™
FROM employee WATURAL JOIH address
VHEFE eunployee_id » 9;

. 4
[ Resuts | (5] Script output | B Explain |§:]Amutrace | FADEMS Cutput
Resufts:

FRsT_name 8 LasT name |8 state B ickname

1 Caral Clark K= Sunflovwer State
2 Gary Moore 12 Mo nicknatme?

3 Cynthia Hall [ |=] Showe-Me State
4 Sandra Rodriguez Ol Sooner State

32 Kevin Lewis A Shaorer-Me State
E George Taylor MO Shiowe-Me State
T Laura Thomas KS Sunflovwer State

[236]




Chapter 6

As we can see, those employees whose address is MO display a nickname of Show-
Me State. Employees from other states in the list of values to match also show their
state nicknames. Gary Moore, however, has an IA address, which is not found in
our list of matching values. His entry, therefore, defaults to the last value in the list,
which is 'No nickname?'.

SQL in the real world

Although many single-row functions can, with practice, become fairly
. intuitive and easy to remember, their sheer number can be overwhelming.
% SQL includes hundreds of built-in functions for daily use. Just remember
~ that functions exist to make your coding easier. You may work your
entire career and only use a fraction of them. Your best reference for the
syntax of the many functions available to you is the SQL Language Quick
Reference online book that is hosted at http://technet.oracle.com.

Summary

In this chapter, we've examined some of the many single-row functions available

to you as a SQL coder. We've looked at the structure and purpose of functions,

as well as the different types that exist. We have used string functions in data
transformation, worked with numeric functions to accomplish arithmetic operations,
and used datatype conversion functions to convert values between datatypes. We
closed with a look at functions that conditionally retrieve data in a way similar to the
if...then statements found in other third-generation programming languages.

Certification objectives covered

e Describe various types of functions available in SQL

e Use character, number, and date functions in SELECT statements

e Using Conversion Functions and Conditional Expressions

e Describe various types of conversion functions that are available in SQL

e Usethe TO CHAR (), TO NUMBER (), and TO DATE () conversion functions
You may think that there couldn't possibly be any more functions to see, but
there are. In the next chapter, we'll look at the complement to single-row functions,
multi-row functions, that let us process an entire rowset and return a single value.

We'll also look at the last of the major clauses found in SELECT statements — GROUP
BY and HAVING.

[237]


http://technet.oracle.com/
http://technet.oracle.com/

Row Level Data Transformation

Test your knowledge

1. Functions that take a row of data as input and return a corresponding single
value are known as

a. multi-row functions

b. single-row functions

¢. dual-row functions

d. transformation functions

2 Given that the last name of the employee with an employee_id of 6 is
Harris, what value is returned from the following query?

SELECT UPPER (last name) FROM employee WHERE employee id = 6;

a. harris

b. Harris

c. HARRIS
d. hARRIS

3. Given an employee named Ken White with an employee id of 7, what two
values are returned from the following query?

SELECT INITCAP (first name), LOWER(last name)
FROM employee WHERE employee id = 7;

a. Ken White
b. ken white

c. kEN WHITE
d. Ken white

4. What value is returned from the following query?

SELECT LENGTH ( (CONCAT ('Learning SQL','is fun'))) FROM dual;
a. Learning SQLis fun

b. Learning SQL is fun

c. 18

d. 19

[238]



Chapter 6

5. Given the following SQL statement, which statement is FALSE?
SELECT RPAD (project name, 31, '*') FROM project;
a. The padding characters appear on the right side of the project_name
value.

b. Any value for project_name that is 31 or more values will have no
padding.

c. The character that will be displayed as padding is the asterisk, *.

d. Any value for project_name that is 20 characters in length will have 10
asterisks padded on the right side.

6. The function used to trim values from the left side of a value is

a. RTRIM()
b. RIGHTTRIM()
c. LTRIM()

d. INITCAP()

7. Given a value for website url thatis http://www.companylink.com/
dperez where website idis 3, what would be the output of the following
statement?

SELECT SUBSTR (website url, 6, 6)
FROM website
WHERE website id = 3;

a. wWww

b. www.

c. //www.
d. //www.c

8. Given a value for website url thatis http://www.companylink.com/
dperez where website_idis 3, what would be the output of the following
statement?

SELECT SUBSTR (website url, -4, 8)
FROM website
WHERE website id = 3;

a. dperez
b. perez

c. erez

d. erezhttp

[239]



Row Level Data Transformation

9.

10.

11.

12.

Given a value for website url thatis http://www.companylink.com/
dperez where website_idis 3, what would be the output of the following
statement?

SELECT INSTR(website url, '.', 6, 2)
FROM website;
WHERE website id = 3;

a. 0

b. 13
c. 17
d. 23

Given the following statement, what would be the output?
SELECT REPLACE (REPLACE ('Follow the yellow brick road','s', '0'),
1 e 1 s 1 3 1 )
FROM dual;
a. Follow the yellow brick road
b. FOllOw the yellOw brick rOad
FOllOw th3 y3110w brick rOad

An error is generated. You cannot nest one REPLACE () function within
another.

a o

Given a TO_CHAR function that uses a format mask of
'DD-MONTH-YYYY HH24 :MI:SS',

which of the following dates could most closely resemble the possible
output?

a. JUNE 20, 2011, 13:02:01

b. 18-March-2011, 02:22:09 PM
c. 01-JAN-2011, 09:15:42

d. 22-APRIL-2011, 15:22:37

Which format mask below would produce a date in the following format?
October 27, 1999 @14.23.15

a. 'MONTHDD, YYYY @HH:MI:SS'

b. 'Month DD, YYYY @HH24:MM:SS'

c. 'Month DD, YYYY @HH:MI:SS'

d. 'Month DD, YYYY @HH24:MI:SS'

[240]




Chapter 6

13. Which of the values below would be produced by the following statement?

14.

15.

16.

SELECT TO_DATE ('January 1, 1991', 'Month DD, YYYY')
FROM dual;

a. January 1, 1991

b. 01JAN-91
c. JAN 01,1991
d. 01/01/91

What would be the three values outputted, in order, from this statement?
SELECT ROUND (3.14159, 4),

TRUNC (3.14159, 3),

ROUND (TRUNC (3.14159, 4), 2)

FROM DUAL;

a. 3.141,3.14,3.1

b. 3.1415,3.142,3.14
c. 3.1416,3.142,3.14

d. 3.1416,3.141, 3.14

Examine the data in the employee table. How many rows with a value of -1
would be produced if the following statement was executed?

SELECT NVL (project_id, -1) FROM employee;

a. 0
b. 1
c. 3
d. 4

Examine the data in the employee table. How many rows with a value of

Unassigned would be produced if the following statement was executed?

SELECT project id, NVL2 (project id, 'Project Assigned',
'Unassigned')

FROM employee;

a. 0
b. 2
c. 3
d. 4

[241]







Aggregate Data
Transformation

Relational database management systems serve a unique purpose in the world

of technology. Databases of all types, from Microsoft Access to large mainframe
systems, primarily function to store and manipulate data. Today's databases,
particularly Oracle, are capable of storing massive amounts of information.
However, storing data in a database is only part of the equation. If the end user
cannot see this data presented in a meaningful way, the data loses much of its
usefulness. This is why the SQL language is so important. SQL is the primary tool
that the relational databases use to extract and present data. SQL makes it possible to
sift through enormous amounts of data and highlight exactly the piece of data that
is useful to the user. Doing so often involves analysis of some kind. Data analysis is
the process of taking data and performing the necessary operations to transform it
into a form that is relevant to solving problems. The subjects in this book cover the
necessary techniques to enable SQL programmers to do analysis of this type. This
chapter examines the last of the major clauses used in SELECT statements that allow
for data analysis.

In this chapter, we shall:

e Examine the concept of grouping data

e Understand the syntax of the GrRouP BY clause
e Study the concept of row group exclusion

e Explore the syntax of the HAVING clause

¢ Examine the types of aggregate functions available in SQL



Aggregate Data Transformation

Understanding multi-row functions

In the previous chapter, we examined the concept of a function. Our examples used
functions that returned a value for every row used by the function. Many functions,
however, take numerous values, such as all the values in a particular column, and
return a single value. We call such functions multi-row functions.

Examining the principles of grouping data

In relational databases, all data is structured in some way. We've discussed relational
concepts and noted the way that inter-table relationships contribute to this structure.
Data is also structured within the table itself. Column values represent a certain
attribute of the table. Often, part of the task of analysis is the grouping of pieces of
data with a distinct attribute. Doing so usually involves the use of a function. We
have seen single-row functions in the previous chapter that return one value for
each row of input. The functions used in grouping data are multi-row functions:
functions that take multiple rows as input and return a single, aggregated value.

For this reason, multi-row functions are also referred to as aggregate functions.

In this section, we will look at multi-row functions and later incorporate them

with grouping.

Using multi-row functions in SQL

As previously stated, multi-row functions take multiple rows as input and return a
single value. Operations such as case conversion, done with single-row functions,
obviously must take and convert rows individually, since the conversion occurs

on every value. Multi-row functions are used when a different type of operation is
needed, such as finding the minimum or maximum value from a list of values. A list
of the common aggregate functions that we will examine is shown as follows:

e COUNT ()
e MIN()

e MAX()

e SUM()

e AVG()

e STDDEV ()

e VARIANCE ()

[244]



Chapter 7

COUNT()

One of the simplest multi-row functions available to us is the COUNT () function. With
it, we provide a column as an argument and return a count of the number of rows
that were inputted. An example is shown in the following screenshot:

D-companyﬁnk@om! I
FPERR O 88 ¢ 001732818 seconds

SELECT COUHT (first_name)
FROM employee:

.
> Resutts =] Script Output | % Explain | 39 autotrace | [DEMS Output
Results:

COUMT(FIRST_MAME) |
1 16

The counT () function, a multi-row or aggregate function, takes the first name
column as input and returns a count of the number of values for first name

that exist. In our employee table, there are 16 rows, and each row has a value for
first_name, so a count value of 16 is returned. When using COUNT (), it is important
to remember that the presence of nulls will affect the value returned. counT () will
only count the values that are not NULL. Notice the effect that null values have in the
following example:

[ companyiink @orcl I
FPERRO 88 ¢ 000212429 seconds

SELECT COUHT (project id)
FROM employee;

i W
B Resuits| [ 5] script Output | ERExpisin |§.3]Amotrac:e |lE,DE:M5 Output
Results:
COUNT(PROJECT_ID) |
1 12

[245]




Aggregate Data Transformation

Here, a value of 12 is returned for our count. However, there are 16 rows in the table.
Why, then, does a count of project_id values only yield a value of 12? To answer
this, let's look at all the row values that are being passed as arguments. In the next
example, we execute the previous statement without the COUNT () function. It returns
all the values for project_id.

|> comparyiinkworct |
FERROG @B ¢ 0002554 seconds

SELECT project_id
FROM euployee;

i
[ Resutts | |5 Serigt output
Resutts:

PROJECT_ID

EExplain _E:jAu,rtotra-:e| ADEMS Output

2

1
3

1
&
3
B

3

L = L L

0

-
=

1

=
e

=y
oy

1
4
]

= 2
Mmoo A

We see here that four of the 16 values for project _id in our employee table have a
value of NULL. Since the COUNT () function only counts true values, NULLSs are ignored.
Subtracting these four values from the count, we see that 12 values are returned.

It is very common for SQL developers and database administrators to use the

COUNT () function to get an overall count of the number of rows in a table. When we
want to accomplish this, we pass an asterisk, *, as the function's argument. This is
similar to using the asterisk with the SELECT clause to display all the rows in a table.

[246]




Chapter 7

Dcampanyﬁnk@orc! I
ERRO B8 ¢ 000673801 seconds

SELECT COUHNT (*)
FROM employee:

e W

[ Resuts | [=] script Output | S Explain | 3 avtetrace | EDBMS Outpout
Results:

COUNT()
1 18

Note that cOUNT (*) will count the rows in a table irrespective of the presence of null
values. Even if the table had rows with nothing but null values, counT (*) will still
return the actual number of rows in the table.

COUNT (*) is often used in conjunction with a WHERE clause to yield a count of the
number of rows that meet a certain criteria. Say, for example, that we wanted to
know how many employees in the Companylink database were female. We could
use COUNT (*), as shown in the following example, to find out. We could translate
this statement as, How many Companylink employees are female?

Dcampanyﬁnk@om! I
FPERARAO B8 ¢ 000571424 seconds

SELECT COUHT (%)
FROM emplovee
THERE gender = 'F';

i W
B> Resutts| (5] Script output | B Explsin | 8 autatrace | DEMS Output
Results:
COUNT()
1 g

[247]



Aggregate Data Transformation

MIN() and MAX()

The MIN () and MAX () functions take a set of values, specified usually by a column,
and return the minimum value or maximum value in the set, respectively. Let's say
we want to use SQL to answer a simple question —what is the fewest number of hits to
any Companylink blog? The solution is to use a function that can read through the list
of hit statistics for blogs (found in the hit_count column in the blog table), compare
them, and return the lowest value. This can be accomplished using the MIN ()
function as shown in the next example:

Dcompaﬂyﬁﬂk@om! I
FPERRO® B8 ¢ 000783228 seconds

SELECT MIM (hit_count)
FROM blog:

% 4

[ Resutts | [=] script cutput | B9 Expisin |&3 SuLtotrace |lEDBms Ot
Results:

MIMCHIT _COLMT) |
1 18

The Max () function is the complement to MIN (). We use it to find the greatest in
a set of values. Let's reverse our previous question—What is the largest number of
hits to any Companylink blog? We can use the MAX () function as shown in the
following screenshot:

[}campanyﬁﬂk@orc! \
EEEO 88 ¢ 000693465 seconds

SELECT MAX{hit count)
FROM blog;

e, W

B> Resuts | [£] scriot Output | EExplain |;E} Autatrace |lEDBMS Output
Results:

MAKCHIT _COUNT) ‘
1 123

[248]



Chapter 7

While MIN () and MAX () are obviously most often used with numeric values, they
will function with other datatypes as well. Say we want to find the most recent
birthdate of any of our Companylink employees. We can pass the values for birthdates
found in the dob column in the employee table, which has a datatype of DATE, to the
MAX () function. It then returns the most recent date, shown as follows:

Dcompanyﬁnk@om! I
FERRO B8 ¢ 001365916 seconds

SELECT MAX (doh)
FROM employee;

.

[ Resutts | (2] Script Output | BExplain | 8 autotrace | DEMS Output
Resutts:

MAX(DOE)
1 2B-0CT-81

Even less common is the use of MIN () and MAX () with character string datatypes such
as VARCHAR2 and CHAR. However, it can be done, as shown in the following query:

Dcampanyﬁnk@orcl I
FPERRASG BB ¢ 001669346 seconds

SELECT MIN(first name), MIH(last name)
FROM ewployee;

%
[ Resuts | [=] Script output | B Explain | 8 autotrace | @DBMS Output

Results:

MIMFIRST _MAKME) | MIN(LAST_N.&.MEJ|
1 Carol Anderson

[249]




Aggregate Data Transformation

The MIN () function takes values from the first name column of the employee
table and returns the lowest value. But what constitutes the lowest value in a set of
string literals? As we mentioned in Chapter 3, Using Conditional Statements, when
referring to string values, numeric functions such as MIN () and MAX () interpret
strings by their ASCII value. The value Carol and Anderson are returned since C
and A are the lowest ASCII values for the first character found in the first name
and last_name column, respectively. When interpreting which character value is
higher than another, it is often easier to think in terms of a character's place within
the alphabet than its place within the ASCII table. 'A' is lower than 'B', since 'A'
comes before 'B' in the alphabet.

SUM()

One of the most common operations needed in processing numeric data is the
ability to calculate the sum of a set of values. It is so common that many commercial
spreadsheet applications have a shortcut button to make it simple. In SQL, this
operation is performed using the suM () function. With suM (), we pass in a set of
numeric values and it returns their arithmetic sum. An example that shows the use
of suM() is shown in the next example. It could be read as, Display the total amount
of logins for all Companylink employees.

[}campanyﬁnk@orc.f |
FPERRS® B8 ¢ 002979457 seconds

SELECT SUM{login_count)
FROM employee:

F % 4
[ Resutts| = Script Output | 55 Explain f;]mntrace| ADEMS Output
Results:
SLIM{LOGIN_COUNT) |
1 20771

We can use what we have already learned about table joins to enable us to pull
summed data from multiple tables and display it together, as we can see in the
following screenshot:

[250]



Chapter 7

D companyiink @orcl |
FERRO B8 ¢ 002057941 seconds

SELECT SUM(e.login count), sum{w.hit_count), sum(b.hit_count)
FROM employee e, webhsite w, blog b

WHERE e.enployee_id = wmoemnployee_id

AHD w.blog id = b.blog id:

% 4
B> Resuts | (=] Serigt output | EREptain | ) autotrace | [FDBEMs Output | o vt
Re=ults:

SUME LOGIN_COUNT) | SUMOY HIT_COUNT) | SUM(E HIT_COUMT) |
1 7414 464 233

Here, we join three tables — employee, website, and blog—and use them to produce
a summed value from each table—login count from employee, hit count from
website, and hit_count from blog. Notice that since there are employees who don't
have websites, our login_count in this query is significantly lower than the value
from the previous query. Because we're joining the tables, only the login_count
values from employee that have a matching website are counted. In short, we could
phrase this command in real language as, Display the total login and hit counts for
employees with websites and blogs.

AVG()

Mathematical averages are an integral component of any computing system. Averages
can be used for diverse purposes: from calculating the average salary of a group of
employees to computing the average distance from the sun of planetary bodies. Using
the AvG () function, we pass in multiple values and return the arithmetic average. In
the following example, we show AVG () being used to calculate the average number of
logins from our Companylink employees.

[}companyﬁﬂk@orc! |
PERARAD BY ¢ 000966479 seconds

SELECT AV (login count)
FROM employee;

%
B> Resutts | [ seript Output | EExplain |§3 Autotrace |IE,DE:MS Output
Results:

AVGLOGIN_COUNT) |
1 1295 1875

[251]



Aggregate Data Transformation

In this example, each value for login_count in the employee table is passed to

the AvG () function. As with any average, the values are summed and divided by
the number of input values, resulting in a mathematical average, in our case, with
decimals. Assuming we want an integer value for our average number of logins, we
could rewrite the previous statement using a single-row function, ROUND (), with the
AvG () function nested within.

Dcompaﬂyﬁﬂk@orc! |
FPERRO B8 ¢ 00050088 seconds

SELECT ROTND (AYE(login count))
FROM employee;

e, W
[ Resutts =] Script Output | EExplzin
Results:

B autotrace | @DBMS Output

ROLIND[A\-’G(LOGIN_COUNTJJ|
1 1295

Grouping data

Clearly, the ability to do sums and averages with large amounts of business data is
important. However, our previous examples have one significant limitation — the
aggregated function operates on the entire table. Thus, we can see aggregation at
one level, but if we want a more granular look at the data, we are forced to do a high
degree of manual work breaking the data apart. For instance, we've seen an example
of finding the average number of logins for all employees using the AvG () function.
But, what if we wanted to see those averages on a different level? Say, the average
number of logins differentiated between male and female employees? One way to do
this is by utilizing two separate queries, using a WHERE clause to differentiate them.
Examples of this are shown in the next two screenshots:

[252]




Chapter 7

D-companyﬁﬂk@orci I
PERRO® B8 ¢ 000965389 seconds

SELECT AYG(login count)
FROM emnployee
TWHERE gender = 'M';

. J

[ Results| [=] Seript Output | B Explain |-'?;]Au,rtmrace |@Dams Output
Results:

A GLOGIN_COUNT] |
1 1210

b compIryiink morck I
PERRAO @B ¢ 000455225 seconds
SELECT AV (login_ count)

FROM employee
THERE gender = 'F':;

.

[ Results =] script output | B Explain |-‘§..9]Amotrace |@DEMS Output
Results:

ANGILOGIN_COUMT) |
1 1386.375

Thus, we see the average logins by employees, differentiated by gender. While this
is serviceable in this example, what if our criteria for grouping was more complex?
Let's say, for example, that our database serves a large company with thousands of
employees, and we are required to find the average salary. But, the average must
be computed based on one of hundreds of labor categories. To use the method
mentioned previously, we would require hundreds of queries with WHERE clauses
and is thus not practical. Fortunately, in SQL, we can accomplish such a task using
the GrouP BY clause. With this clause, we can instruct Oracle to display aggregated
functions in a grouping of our choosing,.

[253]




Aggregate Data Transformation

Grouping data with GROUP BY

The syntax of the GROUP BY clause as it belongs within a SELECT statement is shown
as follows:

SELECT {column, column, ..}
FROM {table}

WHERE {expression}

GROUP BY {expression}
ORDER BY {column};

Notice that the GRoUP BY clause falls between the WHERE and ORDER BY clauses. Since
both of these clauses are optional, it is possible to construct a statement that includes
only a SELECT, FROM, and GROUP BY clause. The GROUP BY clause is paired with an
expression, usually a column name, and also typically makes use of an aggregate
function. A simple example is shown as follows:

[} commpanylink@orcl |
FPERRO® BB ¢ 000894723 seconds
SELECT gender, AWG(login_count)

FROM enployee
GROUP BY gender:

e W
[ Resutts =] Script Output | EExplain

Results:

) autotrace | ADEMS Output

GENDER |/ AVG(LOGIN_COUNT) |
1M 1210
2F 1386 375

Notice here that we have selected data from two columns: GENDER and
LOGIN_COUNT. The GENDER column is displayed unmodified, but the

values from login_count are passed to the AvG () function. The GROUP BY clause
instructs Oracle to average the login count based on the values in the gender
column. Since gender holds two distinct values, M and F, two groupings and only
two groupings are returned. If there were three distinct values in the gender column,
three groupings with their respective averages would be returned.

[254]



Chapter 7

Although we display the GENDER column here for clarity, it is not required. We can
issue the same statement without selecting the GENDER column provided that we
still use it to do the grouping. The revised example of this is shown in the following
screenshot. The values returned for the averages are identical since the grouping
conditions are the same.

D companylink ©orcl |
FPERARASG B8 ¢ 003009628 seconds
SELECT MV (login_count)

FROM employee
GROUF BY gender:

W

[ Resuits | | script output | EEwplsin |§]Autotrace | ADEMS Output
Fesuls:

AMGILOGIN_COUMT) |
1 1210
2 1386375

SQL in the real world

When learning SQL, it is a common misconception that one must always
M include every column that is used in any clause within the statement

in your SELECT clause. While doing so is often more clear, it is not

always necessary. For instance, you can use the project_id column

in a WHERE clause or an ORDER BY clause without displaying it in the

SELECT clause. Remember that each of the clauses in SQL do distinct

operations that are not always dependent on each other.

[255]




Aggregate Data Transformation

Avoiding pitfalls when using GROUP BY

When using GROUP BY, it is important to include two crucial parts. First, we must
group by a proper column. By proper, we mean that the column used in the GRoUP BY
expression must actually group the data in a way that is meaningful with respect to
the multi-row function used. For example, look at the following query:

[ companylink @orci |
FERRO 88 & 002042339500
SELECT emplovee_id, AVG(login_ count)

FROM employee
GROUP BY employee_id;

e W
[2= Resuts | (5] script Output | EEplain |_§;‘jmotra-:e | ADEMS Output
Results:

EMPLOVEE_D | AvG(LOGIN_COUNT) |

1 1 2133
2 & 13
3 1 1493
4 13 1021
3 2 2143
-3 14 936
7 4 1220
g B 1145
9 g 1023
10 3 1245
il 7 366
12 ] 1945
13 10 M3
14 12 1478
13 13 a8
16 16 124

Here, we execute a statement identical to the previous one with one exception— the
statement groups data based on employee_id instead of gender. No errors are
returned, so why is this an improper use of the GROUP BY clause? Notice the data
returned. When we grouped data using the gender column, there were only two
distinct values on which to group, so only two groupings and their averages were
returned. In this example, we are grouping based on EMPLOYEE_ID. 16 rows are
returned, which is the number of distinct values for employee id in the employee
table. However, there are only 16 rows in the entire table. What has happened is that

[256]




Chapter 7

no grouping has taken place, since every distinct value is represented with its own
row. Each employee_id is displayed along with an average of one value for each
row. Since the average of one value is simply the value itself, the data shown is the
same as if we had selected the employee_id and login_count values by themselves
without a GROUP BY clause or 2vG () function. In short, the column we use for
grouping must group the rows returned in some meaningful manner.

The second crucial piece that must be remembered when using a GROUP BY clause is the
aggregate function itself. In most cases, a GROUP BY is not used without a corresponding
multi-row function. Doing so will result in an ORA-00979 error — "not a GROUP BY
expression." Notice this error in the following screenshot:

[ companylink @orci |
FPERRO B8 ¢ 00105072 seconds

SELECT gender, login_count
FROM employee
GROUP BY gender:

..
[ Resuts | (=] Script Output | B Explain | 5 sutotrace | EDEMS output | C)0wa output
Results:

Error encountered &l

AR error was encourtered performing the reguested
9 operation:
ORA-00975: not & GROUP BY expression
00973, 00000 - "not & GROUP BY expression"
*oause:
*&ction:
Wendor code 979Error &t Line:! Column:13

OK

Here, we have the same statement we used previously except we've left off the

AvG () function. We are grouping on gender, but there is no method specified for the
grouping. As a result, no grouping can occur. When we group values, they must be
grouped in a way that will return one row for each group.

[257]



Aggregate Data Transformation

Also note that when using the GROUP BY clause, we have restrictions from using other
columns in the SELECT clause. In the next example, we again return to our original
use of the GROUP BY clause, grouping gender on the average of login_count.
However, we have made one small change —we've added an additional column,
project_id, to our SELECT clause.

[ companyiink @orci |
FPEERO BB ¢ 000644942 seconds
SELECT project_id, gender, AWG({login_count)

FROM eumployes
GROUP BY gender;

%
[ Resutts| | =] Script Output |'E:3]E><plain | A Autotrace | [ADEMS Output | A Civa, Cutput

Results:

Error encountered [$_<|

AN errar was encountered performing the requested
operation;

ORA-00979: not & GROUP BY expression
00979. 00000 - "not & GROUP BY expression”
*Hoause:

=& ction:

“endot code 979Error &t Line: ! Column:7

Ok

By adding the project_id column to our SELECT clause, we have asked SQL to

do something that it cannot. When we group by gender, the result is two rows:

one for M and one for F. If we add the requirement that the statement also display
project_id, SQL cannot complete the request. There is more than one project_id
associated with each of the values for gender, so which one of the project id
values should be shown? The commands in the statement give no direction on

this, so the statement fails with an ORA-00979 error. We can, however, correct

this statement by grouping on more than one column. Notice the correction to

the statement that we have made in the following query:

[258]



Chapter 7

[}companyﬁnk@om! |
FERRO 88 ¢ 001407749 ssconds

SELECT project_id, gender, A¥iF({login count)
FROM employee
GROUP BY project_id, gender:

%
D Resuts| =] Seript Output | B Expiain | 5 autatrace | DEMS outout | ) ovie Output

Results:

PROJECT_ID| GENDER| AVGILOGIN_COUNT)

1 3F 1243
2 Im 1083
3 5F 13495
4 1F 1633
3 [y b G665
G 4 97
T 1M 1220
g 2M 2133
9 [null) F 1293 BEEEEEEREEEEEEEEEEEEEEE6665066666667
10 aM 1443

Here, we have instructed Oracle to retrieve three columns of data—project id,
gender, and the average of login_count. In order to return all three columns, we
group by two different columns —project_id and gender. Notice the output. The
data is grouped by PROJECT_ID, then by GENDER. If we notice the rows where
the PROJECT_ID is 3, we see two rows —one for GENDER M and another for F.
These two rows correctly average the values for LOGIN_COUNT for each value of
gender within the project_id grouping. Also notice the row where PROJECT_ID
is 2. The only employees with a PROJECT_ID of 2 are male, so only one grouping
for a PROJECT_ID of 2 is shown. There are also rows where PROJECT_ID is NULL.
Those rows are grouped with their two values for GENDER as well, although we
can choose to exclude them, as we will see in the next section.

[259]



Aggregate Data Transformation

Extending the GROUP BY function

Using other clauses that we have learned in previous chapters, we can refine our
use of GROUP BY to restrict and sort our rows. With the WHERE clause, we can restrict
the values that are inputted into our aggregate function. Say, for example, that we
wanted to again show the average number of logins for our Companylink employees
and that we wanted to group them by gender. However, we only want to include
employees who were hired after January 1, 2000. To do this, we restrict the rows
inputted using a WHERE clause.

Dcompanwm#@orc! |
ERER® B8 ¢ oo0amsseconds

SELECT gender, AVG(login_ count)
FROM employee

THERE =start_date > '0Ol-JAN-Z000'
GROUP BY gender:

e W
(> Resuts| =] Script output
Results:

H)Explain | 1) Autatrace | ADBMS Output | £ s, Output

GENDER |l AVG(LOGIN_COUNT) |
1 M 10154 1 BEBBABABABARAEGEABABABABABAEABEREET
2F 1278.28571428571 426571 428571 428571428571 4

The resulting averaged values are different than if we had omitted the WHERE
clause. The WHERE clause causes fewer rows to be passed to the AvG () function,
thus changing the resulting averages.

Many of the examples thus far have resulted in output that is difficult to read. We
can correct this using the oRDER BY clause. In our next query, we have rewritten the
previous statement to sort the data by project_id and then by gender. The output
shown is much clearer in terms of seeing the grouping.

[260]



Chapter 7

Dcompanyﬁnk@ord I
FERRO B8 ¢ 000957996 seconds

SELECT project_id, gender, #VG({login count)
FROM employee

GROUP BY project_id, gender

ORDER BY project_id, gender;

. 4
B Resutts | [5] Script Output | BEspiain | B autotrace | FDeMs outout | € 0w Output

Resufts:

ProuecT D |8 cenper [l averos_counT

1 1F 1633
2 1M 1220
3 2M 2135
4 3F 1245
5 3M 1085
3 4 M a7
¥ 5F 13495
8 5M 1495
g (nully F 1293 BEGREEREEEEEEEE0EE0EE006006006006667
10 (rually 66

We are also not restricted from using more than one aggregate function when using
GROUP BY, provided that the functions can all logically coexist within the statement.
Let's use all of what we've learned to write a statement that provides the data for

a more complex request — Display the average and total login_counts for all employees
assigned to a project, grouped and sorted by their project and gender.

Dcompanyﬁnk@orc! I
FPERRO B8 ¢ 000817618 seconds

SELECT project_id, gender, AVG(login count), SUM({login count)
FROM euployee

WHERE project_id is HOT HULL

GROUP BY project_id, gender

ORDER BY project_id, gender;

. 4
B> Resuits | [ seript Outiut | EExpiain | B autatrace | F0EMS output | @3 owe outiut
Results:

PROJECT_ID | GENDER | AYGLOGIN_COUNT) | SUM(LOGIN_COUNT)

1 1F 1633 3266
2 1M 1220 1220
3 2 33 233
4 3F 1243 1245
3 3 1083 2170
[} 4 M a97 1734
7 iF 13485 2699
g ahd 1483 1443

[261]



Aggregate Data Transformation

In this example, we display both the average and sum of login counts, then group
and order them by project_id and gender. Since the requirement states that we
only compute these values for employees who are assigned to a project, we use the
WHERE clause to restrict input to only those employees whose project_idis nota
NULL value.

Using statistical functions

Oracle's implementation of SQL comes with several functions designed for use
with mathematical statistics and probability theory. While not every organization
uses these, and they are not covered on the exam, we cover them briefly here as
an example of the kind of advanced calculations that can be done with built-in
SQL functions.

STDDEV()

In statistical theory, standard deviation represents the amount of variation that
exists between a value within a set and an average of that same set of values. It
measures how much a value deviates from the average. In the next example, we
display the average login_count and standard deviation grouped by project_id
using the STDDEV () function.

[ companylink @orci |
FPERR S BB ¢ 000881735 seconds

SELECT project id, AVG(login_count), STDDEVY |(login_count)
FROM employee

THEFE project_id IS HOT HULL

GROUP BY project_id

DBEDER BY project_id;

.

[ Resutts| [ =] Seript output | T)Explain _F;'_‘]Ammacel ADBMS Output | £ 0, Output

Results:

PROJECT_ID | AVG(LOGIN_COLUNT) | STDDEY(LOGIN_COUNT)

1 1 1495 333333333333333333333333333333333333 562 9867S0627E0534 2551 45021 595301 3552509
2 2 2135 0
3 3 1135.333333333333333333333333333333333333 110,151 4109457 2204041 211617541 7441 469426
4 4 857 140.007142674936409531 3671 8369676010977
] ] 1395 153.521 985396229151 71 5536501 672592945551

[262]




Chapter 7

VARIANCE()

In probability theory, variance is the term used to describe how widely dispersed
a group of values are. It is calculated against the minimum and maximum values
of, in our case, a particular column. The larger the variance, the further the data
is dispersed. In SQL, we use the VARIANCE () function to express this calculation,
shown as follows:

[}companyﬁnk@orcf |
FERRS BB ¢ 001428013 s=conds

SELECT project id, AViz(login count), VARIAHCE (login count)
FROM euplovee

THERE project_id IS5 HOT HULL

GROUP BY project_id:

. 4

[ Results| (=] Script output | BExplain | 55 Autotrace | ADBMS Output | £ 0L Output

Results:

PROJECT_ID | AWGLOGIN_COUNT) | Y ARIAMCE(LOGIN_COUNT)

1 1 1495.333333333333333333333333333333333333 316856.333333333333333333333333333333335
2 2 2135 o
3 5 1398 23569
4 4 597 189602
5 3 1138.333333333333333333333333333333333333  12133.333333333333333333333333333333335

Performing row group exclusion with the
HAVING clause

In the previous section, we examined using the WHERE clause to restrict the rows
that are inputted into an aggregate function. This enables us to limit the data that is
processed by the function. But, what if we need to limit the output of the groupings
instead of the input? To do this, we use the HAVING clause with the basic syntax

as shown:

SELECT {column, column, ..}
FROM {table}

GROUP BY {expression}
HAVING {expression};

Notice that the HAVING clause follows the GROUP BY in proper SQL syntax. While

the two clauses can be reversed, it can make the statement difficult to read. While
the HAVING clause is optional, it does require the presence of a GROUP BY in order to
function properly. Failure to do so will result in an ORA-00937 error —"Not a single
group function."

[263]



Aggregate Data Transformation

To see the HAVING clause at work, let's look at a previous query using a GROUP BY.

[ companyiink @orct I
FPEER O B8 ¢ 000308859 seconds
SELECT project_id, gender, AViG{login count)

FROM employee
GROUP BY project_id, gender;

. 4
B> Resuts| (=] seript output | B Explain | 5 autctrace | B oems outout | @ owe ouput
Resuts:

PROECT D |f cEnDER [§ AvGLOGIN_COUNT)

1 3F 1245
2 3 M 1085
3 iF 13485
4 1F 1633
E {rally b 866
E 4 M a7
7 1M 1220
g 2 M 235
9 (rully F 1293 BEREEEEEEEGERE EEEEEEEEEEEEEEEEEEEEET
10 B3 1495

Here, we see the selected values shown in the groupings as requested. However,
if we want to restrict the outputted row groups, say to display only groups with
an average login_count that is greater than 1100, we use the HAVING clause.

We can see this group restriction in the following query:

[ companylink @ores I
FPERERO BE ¢ | 001309189 seconds

SELECT project_id, gender, AVE(login_ count)
FROM enployee

GROUP BY project _id, gender

HAVING awg(login count) > 1100;

W
B2 Resutts | [ Script Output | ERExplain | ) autotrace | [ADBNs output | @ ome, cutput
Results:

proJECT D |{ ENDER [ AvGILOGIN_COUNT)

1 3F 1245
2 5F 13495
3 1F 1633
4 M 1220
3 M 2133
g (null) F 1293 BEEEEEE00000000000E000666660060006667
7 oM 1493

[264]



Chapter 7

Instead of displaying all of the groups, the HAVING clause excludes all row groups
that do not meet the conditions specified in its expression —average login_count
that is greater than 1100. When using the HAVING clause, we are not limited to using
the function, in this case AVG (), as our conditional expression. We can also use the
same expressions in a HAVING clause to limit output as we do in a WHERE clause. The
following example uses the project_id column to limit output and displays row
groups meeting a condition specified by an IN operator:

[ companylink @orcr |
PERRO BB ¢ 001172607 seconds

SELECT project id, gender, AVG(login count)
FROM employee

GROUPR BY project_id, gender

HAVIHNG project id TH (1,3,5):

%
B Resuts [ Script output | B Explain |§3 Rutotrace | ADEMS Output | % cwia, Output
Results:
proJECT D B cEnpER ([ aveLosN_colnT) |

1 3F 1245

2 3 1085

3 5F 13495

4 1F 1633

5 1 b 1220

B 5 1485

SQL in the real world
Al Because of the way that it restricts group output, the HAVING clause is

often thought of as "a WHERE clause for GROUP BY". While this can make
understanding the HAVING clause easier, it is important not to confuse
the two. In statements such as these, the WHERE clause restricts the input
to the function, while HAVING restricts its output.

[265]



Aggregate Data Transformation

Putting it all together

In Chapter 2, SQL SELECT Statements, we began with a simple SELECT. .. FROM
statement. We then began adding clauses to accomplish different goals. With the
addition of the HAVING clause, we come to the end of the essential clauses used in
SELECT statements. While we will still explore other types of SQL statements and the
techniques used with them, there are no more new clauses to add to the collection of
SQL statements we use to query data. A proper syntax tree that combines all of the
clauses for SELECT statements that we have seen throughout this book is shown

as follows:

SELECT {column, column, ..}
FROM {table}

WHERE {expression}

GROUP BY {expression}
HAVING {expression}

ORDER BY {column};

Nearly every SQL statement we can write involves taking these clauses and
integrating them in ways that answer a particular question that we pose to the
database. We close this chapter with an example that brings together each of the
clauses we have seen. In it, we display login count information grouped together by
project name. To do so, we join the project and employee tables in order to display
the name of the project and limit the input rows to non-null values. We then group
and sort them by project_name and limit the output rows to summed values greater
than 2000. We also round the average and use aliases to define our column headings.

D companylink @orct |

FERRBRO BB ¢ 004300785 seconds

SELECT p.project_namne,
round{awy(e.login_count)) "ROUNDED AVERAGE™,
sumie. login_count) "ROUNDED_STH™

FROM project p, employee e

VHERE p.project _id = e.project_id
BHD e.project_id IS HOT HULL

GROUP BY p.project name

HAVING sum(e.login count) > Z000

OBFDER. BY p.project name:

.
(> Resuts | (=] Seriot Output | B)Explzin | 5 Autctrace | @ 0eMS output | ) aws output
Results:

PROJECT_MAME | ROUMNDED _A&VERAGE | ROUNDED_SUM
1 Corporate website release 011 .a 1135 3415
2 Desktop rollout 1495 44386
3 Oracle 119 upgrade 1398 4194
4 Security avwareness training 2135 2135

[266]



Chapter 7

Certification objectives covered

e Identify the available group functions
e Describe the use of group functions
e Group data by using the GRouP BY clause

e Include or exclude grouped rows by using the HAVING clause

Summary

In this chapter, we've added the final two clauses to our SELECT statements — GROUP
BY and HAVING. We have used these two clauses to enable the grouping of rows

for operations such as data analysis. We have examined the use of multi-row, or
aggregate, functions to perform operations on a set of data in our SELECT statements.
We then combined the grouping clauses and multi-row functions to compute group
operations and display them in their respective groups. Finally, we brought all of our
SQL clauses together to perform complex operations.

Although we may have come to the last of our SQL clauses, there is still more work
to be done. In our next chapter, we'll learn a new SQL technique —subquerying.
Using subqueries, we can nest queries inside of each other to combine data from
tables in new ways. We'll follow that subject up by looking at set operations and set
theory in Oracle.

Test your knowledge

1. Which of these statements describes the process of taking data and
performing the necessary operations to transform it into a form that is
relevant to solving problems?

a. Data aggregation
b. Data analysis
c. Data subjugation

d. Data elimination

2. The types of functions used in grouping data are called?
a. Single-row functions
b. Multi-row functions
c. Restrictive functions

d. Variance functions

[267]



Aggregate Data Transformation

3. Which of these statements describes how an aggregate function works?

a.
b.
C.
d.

The function takes a single value and returns a single value
The function takes a single value and returns multiple values
The function takes multiple values and returns a single value

The function takes multiple values and returns multiple values

4. Which of the following is NOT a multi-row function?

a.
b.

C.

d.

COUNT()
AVG()

ROUND()
STDDEV()

5. Given a table with 200 rows containing a column, SALARY, where 40 of
the values for SALARY are NULL, what would be the result of issuing a
COUNT(SALARY) in a statement?

a.
b.

C.

d.

200
160

40
NULL

6. Given a table with 200 rows containing a column, SALARY, where 40 of
the values for SALARY are NULL, what would be the result of issuing a
COUNT(¥) in a statement?

a.

b.

C.

d.

200
160

40
NULL

7. Refer to the data in the website and blog tables in your Companylink
database. Which of the following statements regarding MIN() and MAX()

is true?
a. MIN(hit_count) for website is greater than MIN(hit_count) for blog
b. MIN(hit_count) for website is greater than MAX(hit_count) for blog
c. MAX(hit_count) for website is less than MIN(hit_count) for blog
d. MAX(hit_count) for website is greater than MAX(hit_count) for blog

[268]




Chapter 7

8.  Which of these statements would NOT result in an error?
a. SELECT sum(*) FROM website;
b. SELECT sum(website_desc) FROM website;
c. SELECT sum(website_url) FROM website;
d. SELECT sum(hit_count) FROM website;

9. Which of the following statements could be used to compute the same value
as the following statement?

SELECT avg(login count) FROM employee;

a. SELECT sum(login_count) / count(login_count) FROM employee;
b. SELECT stddev(login_count) FROM employee;
c. SELECT stddev(login_count) * variance(login_count) FROM employee;
d. SELECT min(login_count) * max(login_count) FROM employee;
10. Which of the following GROUP BY statements is both logically and
syntactically correct?
a. SELECT project_id, sum(login_count)
FROM employee
GROUP BY employee_id;

b. SELECT project_id, login_count
FROM employee
GROUP BY project_id;

c. SELECT project_id, sum(login_count)
FROM employee
GROUP BY project_id;

d. SELECT project_id, gender, sum(login_count)
FROM employee
GROUP BY project_id;

11. Which of the following statements containing GROUP BY is syntactically
incorrect?

a. SELECT gender, avg(login_count)
FROM employee
GROUP BY gender;

[269]




Aggregate Data Transformation

b. SELECT gender, avg(login_count)
FROM employee
GROUP BY gender
WHERE login_count > 800;

c. SELECT gender, avg(login_count)
FROM employee
WHERE login_count > 800
GROUP BY gender;

d. SELECT gender, avg(login_count)
FROM employee
GROUP BY gender
ORDER BY avg(login_count);

12. Which of the following statements would group its output by project_id
and limit it to maximum values for login_count greater than 1000?

a. SELECT project_id, max(login_count)
FROM employee
GROUP BY project_id;

b. SELECT project_id, max(login_count)
FROM employee
GROUP BY project_id
HAVING max(login_count) > 1000;

c. SELECT project_id, max(login_count)
FROM employee
GROUP BY project_id
HAVING min(login_count) > 1000;

d. SELECT project_id, max(login_count)
FROM employee
GROUP BY project_id
HAVING project_id > 1000;

[270]




Combining Queries

In Chapter 5, Combining Data from Multiple Tables, we learned a powerful method of
combining data from multiple tables in the form of table joins. These joins commonly
retrieve data from two or more tables by linking them through a common column.
However, it is also important to be able to combine data in other ways. What if you
are required to combine the data from two tables that have no columns in common?
What if you need to read a single table more than once, combining the results of each
iteration? For problems such as these, we can make use of another technique — the
subquery. Subqueries do not require any new clauses in order to function. Rather,
they take the existing clauses you have already learned and use them in new ways.

In this chapter, we will cover the following topics:

e Examining the types of problems that can be solved with subqueries
e Using different types of subqueries
e Examining set theory

e Utilizing different types of set operators

Understanding the principles of
subqueries

In Chapter 5, we first examined the topic of combining data from multiple tables. In
that chapter, we used different kinds of join statements to combine data structures
formed from the relationships between tables. In this chapter, we explore a new way
of combining data from multiple tables.



Combining Queries

Accessing data from multiple tables

A subquery is simply a query that is nested inside another query. The nested query,
sometimes referred to as an inner query, is evaluated first, and its resulting data set is
passed back to the outer query and evaluated to completion. The result set obtained
from the inner query can be a single value, multiple values, or even multiple
columns. Subqueries can be used in many different clauses, as well. Whereas a join is
useful when combining data from multiple tables, using an established relationship
between the two tables. Subqueries can be effectively used in situations where the
combined data has no direct relationship. We will examine each of these types of
subqueries and their syntactical rules in this chapter.

Solving problems with subqueries

When administering a website like Companylink, factors such as page hit counts and
numbers of logins are very important. The examples in this chapter focus on this
type of data. Subqueries can often help SQL programmers to mine and aggregate
such data to develop business intelligence. To get an idea of the kinds of problems
that we can solve using subqueries, consider the following simple request: Display the
names of employees whose number of logins to Companylink exceed the average. Using what
we've learned so far, our only solution would be to use two queries, as shown in the
next two screenshots. First, we use a multi-row function to find the average:

[:i- companylink @orcl |

FERRO 88 ¢ 00036200 seconds

SELECT awvyg(login_ count)
FROM emplovee:

il W
[ Resuts || Script Output
Results:
A GILOGIN_COUNT) |
1 12951875

E)Explain | 1) Autatrace | FADEMS Outpt

[272]



Chapter 8

We next take that value and plug it in to the appropriate query for employee
name information.

D- companyiink @orcl [
FPERRO 88 & 001245430 seconds

SELECT first_name, last name
FROM enployee
VHEFE login count > 12958.1875;

.

B> Resuts =] script Cutput | B9Expiain | i Autatrace | [FADEmMs output
Resutts:

FIRST _MAME | LAST_NAME|

1 James Johnsan
2 Mary Williams
3 Liza Lee

4 Gary Moore

5 Cyrithiz Hall

While using these two queries to find the requested information would suffice, a
more direct method using a single statement is possible when we use a subquery.
A subquery that retrieves such information is shown in the following screenshot:

D comparylink worcl [
PESR® B8 ¢ 00501708 seconds

SELECT first name, last_name
FROM enployee
VHERE login_ count >
(SELECT
aryg (login_count)
FROM employee):

% 4
B Resutts| [5]script output | F)Explain | B autotrace | EDEMS output
Resufts:
FIRST_NAMEl LAST_NAMEl

1 James Johnson

2 Mary Willizms:

3 Lisa Lee

4 Gary Moore

5 Cyrthia Hll

[273]




Combining Queries

Here, rather than using a literal numeric value as a WHERE clause condition, we replace
the condition with a subquery. The nested subquery evaluates to the same value we
saw previously, 1298.1875, and it becomes the condition in the WHERE clause. The
outer query then returns the first and last names that meet those conditions. Also note
that, syntactically, the SELECT statement that forms the inner subquery is enclosed in
parentheses and is not followed by a semicolon. Our statement-terminating semicolon
is placed at the end of the statement.

Examining different types of subqueries

In this section, we will learn how to examine the following types of subqueries:

Using scalar subqueries

Subqueries such as the ones we've seen so far are known as scalar or single-row
subqueries because the subquery returns a single value to the outer query. This
single value replaces the condition in the WHERE clause. When writing statements that
use subqueries, we say that certain types of queries expect either a single value or
multiple values. The previous statement expects one value, as the WHERE clause can
only be evaluated properly if one value is returned. For instance, let's say that we
want a list of websites with the average highest hit counts on Companylink grouped
by the website description. To attempt this, we write a statement using a subquery

as shown:

[ companylink @orct |

= E‘ @ a = ﬁ % é 007352387 seconds

SELECT website_ url, website_desc, hit_count
FROM website
WHERE hit count »>=
[SELECT awg(hit count), max(website_id)
FROM webhsite)

-
[ Results | [ script output | B Explain |_§:jAumtrace | FDEMS Output | € v oot
Results:

Error encountered El

An error was encountered performing the requested
operation:

ORA-00391 5 too many values

00913, 00000 - oo many values"
*Cause:

*A&ction:

“endor code 91 3Error at Line: 4 Column: 2

(o] 9

[274]



Chapter 8

When we run the statement, an error is returned. Even though the inner query is
syntactically correct, it returns more values than can be evaluated by a single WHERE
statement. Thus, an ORA-01427 error, single row subquery returns more than one
row, is returned. The WHERE clause expects a single value, but the subquery returns
multiple values.

Using scalar subqueries with WHERE clauses

We can correct the previous incorrect statement by removing the grouping from the
subquery, as we see in the next example:

[:} comparyiink Gorel |

FPERRO BBE ¢ 00772939 seconds

SELECT website_url, webszite_desc, hit_count
FROM webzite
YHEFE hit_count »=

(SELECT awyg(hit_count)

FROM website)

.
[ Resutts | =] Seript output | T3 Explain f;j.&motracel ADEMS Output | (£ OWis, Dutput
Results:
WEBSITE_LRL | WEBSITE_DESC | HIT_COUNT |
1 hitp:Mewewy companylink .comfiohnson Jims new site 234
2 hitp:Moewewy companylink .comfagmoore Garyworld! 72
3 hitp:Mewewy companylink .com/mgarcia Matts cool website 85

The majority of scalar subqueries are used as conditions for WHERE clauses. The
types of operators used in these conditions are the same as those used in a typical
WHERE clause. Conditions of equality or non-equality can be used, such as <, >, <=,
>=, or =, provided that the subquery returns only one value. Say, for example, that
we are asked to use SQL to find the website URL with the highest hit count for the
Companylink application. Because our website table is small, we could simply select
all the values in the table and then view them. But, if our table was larger, or our
application needed to return only one row for the sake of display on a webpage, this
would not be practical.

[275]




Combining Queries

We might incorrectly attempt this using the statement shown by the following error:

[ companyiink @orcs I
D @ @ 3 @ E h é 0.006141 zeconds

SELECT website url, max(hit count)
FROM webszite:

AV

B> Resutts| (=] scrit Output | ) Explain | 5 autctrace | F0EMS output | €4 civs output
Results:

Error encountered E|
A error was encountered performing the reguested
operation:

ORA-00937: not & single-group group function
00937, 00000 - "not & single-group group function
*Cause:

*&ction:

Yendor code 937Errar at Line:l Column: 7

Ok

We learned in the previous chapter that we cannot successfully execute this
statement as we cannot select a column and an aggregate of table rows without a
GROUP BY clause. In this case, a GROUP BY clause would not return the maximum value
that we seek. Grouping by website_url would return a rowset that includes every
URL and its hit_count, not the maximum. To do this correctly, we would use a
subquery, as shown in the following example. We might translate this query into real
language as, Find the website with the highest number of hits.

Dcompanyﬁnk@orc! I
FPERAO BB ¢ 001794139 seconds

EELECT website_url, hit_count
FROM webzite
THEBE hit count =

[SELECT max(hit_count)

FROM webzite):

. i

B> Resutts =] script output | S9Explain | 59 autotrace | FIDEMS Output
Results:

WEBSITE_URL @ Hr_counr |
1 hittp: by companylink .comfjiohnson 234

[276]




Chapter 8

This statement does not generate an error, as the outer query uses no aggregate
function. The inner query uses the Max () function, but requires no GROUP BY clause
because no other column is selected. The result is the website URL with the highest
number of hits.

Using scalar subqueries with HAVING clauses

We have already seen the use of subqueries with the WHERE clause, but subqueries
can be used with many different clauses within an SQL statement. A scalar subquery
can be used as the condition for a HAVING clause as well. Using subqueries with the
HAVING clause can be useful when you want to group the output of a query by one
column and then restrict its output based on a different column using a HAVING
clause. For instance, say that we want to display the average login count grouped
by project_id. But, we only want to display groups that have a higher than the
average login count for male employees. The HAVING clause is useful here because
it limits the group output. A subquery is appropriate as the condition because it
determines the average logins for male employees. A statement that accomplishes
this is shown in the following screenshot:

l:} companylink @orcl |

FPERRSO B8 ¢ 003221503 seconds

SELECT project id, awy(login count)
FROM enployee
GROUF BY project_id
HAYTHG awvif(login_ count) >
[SELECT awg(login count)
FROM enployee
YHERE gender='M']:

. 4
[ Results JScrim Cutpot
Resufts:
PROJECT_ID [ ANG(LOGIN_COUNT) |
1 1 1485 333333333333333333333333333333333733
2 2 2135
3 5 1398

EHlE=plain | 55 Autatrace | ADEMS Output | A 0w Output

Subqueries used with HAVING clauses allow for many of the same types of conditions
as WHERE clauses. The IN operator is not commonly used in scalar subqueries, as it
usually refers to a set of values instead of a single value. The use of an IN operator

to compare a single value is essentially the same as using an = condition. As we will
see, the IN operator is much more common in multi-row subqueries.

[277]




Combining Queries

Using scalar subqueries with SELECT clauses

Subqueries that return a single value can also be used in the SELECT clause of a SQL
statement. While this may seem unusual, this technique can be useful for presenting
a comparison value alongside a table column. Say we've been tasked with writing a
report that compares each employee's login count to the average and displays this
comparison in a way that is easy to read. We could embed a subquery within our
SELECT statement to do this, as shown:

[ companyiink @orcl |
FERERO 88 ¢ 00466238 seconds
SELECT first name, middle initial, last name, login_ count,
[SELECT roundiawy(login_count)] from employee] LOGIN_AVG
FROM employee:
il W
[ Resutts | |=| Script Output | B Explain f;]motra-:e| ADEMS Outout | € Oa Outout
Results:
FRsT_Name |[§ mooLe_nmal (@ LasT_ name @ Looin_count |8 Loem_ave
1 James i Johnson 2135 1283
2 Mary 5 Williams 2143 1293
3 Lind=a L Andersan 1245 1285
4 Daniel J Fobinzon 1220 1285
3 Matthea k. Garcia 1143 1285
& Helen H Harris I35 1283
7 Hen L White GEE 1295
g Daonald A Perex 1025 1285
9 Liza C Lee 1945 1295
10 Caral 1 Clark 1123 1295
11 Gary R hoore 1495 1295
12 Cyrthia B Haill 1478 1295
13 Sandra 5 Rodriguez 1021 1293
14 Kewin L Lewvis 995 1285
15 George H Taylar 795 1295
16 Laura | Thomas 1221 1285

[278]



Chapter 8

Notice, syntactically, that the subquery follows a comma in the list of columns and
precedes the FrRoM clause. For the purpose of clarity, we encapsulate the AvVG ()
function within a ROUND () function to remove the decimal, and add a column alias,
LOGIN_AVG. In this example, we are essentially using a subquery to create a column
that doesn't exist in the table. Rather, it is a column that is derived from the data used
for the purposes of comparison. We can also use derived columns such as these to

do computation. With the addition of one line of SQL, we can add another derived
column that shows the difference between the employee's login count and the rounded
average. In the following example, we add a derived column with the heading
DIFFERENCE that subtracts the rounded average from the employee's login_count.
This shows positive values for employees with a higher than average login count and
negative values for lower than average:

DI- companyiink @orcl |
FPERRO BBE ¢ 009693103 seconds
SELECT first_nhame, middle_initial, last name, login_count,
[SELECT roundiawy{login_count)) from employee) LOGIN_AVG,
login count - (SELECT round(awg(login count)) from ewmployee) DIFFERENCE
FROM employee:
F .
[ Resutts| [ =] scrigt output | B Expisin | B sutotrace | ADBMS Output | EA e, Output
Results:
FIRST_MAME | MIDDLE_IMITIAL | LAST_MAME | LOGIN_COUNT | LOGIN_AYG | DIFFERENCE
1 James F Johnzon 35 1295 g3r
2 Mary s illizrris 2143 1298 845
3 Linda L Andersan 1245 1298 -83
4 Daniel il Rakinzon 1220 1298 -7
3 Matthesw K Garcia 1145 1288 -153
G Helen H Harriz 915 1298 -383
7 Hen W Wihite 866 1298 -432
& Daonald i Perez 1025 1298 -273
9 Liza c Lee 1945 1298 B47
10 Caral ] Clark 1123 1298 =175
11 Gary R Moare 1495 1298 197
12 Cynithis B Haill 1478 1298 180
13 Sandra s Rodriguez 1021 1288 -2¥T
14 Kevin L Lewvis 995 1298 -302
15 George H Tavylor 7938 1298 =500
16 Laura | Thomas 124 1298 FT

[279]




Combining Queries

Processing multiple rows with multi-row
subqueries

Unlike scalar, single-row queries, multi-row subqueries return multiple values to
the outer condition. As such, they require different syntax and rules. As we have
seen in previous examples, we cannot use the typical conditions of equivalence and
non-equivalence with multi-row subqueries, as multiple values cannot be said to be
equal to a single value. As we will see, multi-row subqueries are most commonly
used in WHERE and HAVING clauses.

Using IN with multi-row subqueries

As multi-row subqueries return multiple values to the outer query, the operators
that precede them must be capable of handling multiple values. As we stated before,
operators that perform equivalence and non-equivalence functions are not capable
of this. Thus, we must use multi-row operators such as IN. We have used the IN
operator before with simple WHERE clauses in Chapter 3, Conditional Row Retrieval and
Sorting Data. But, we can also use them in multi-row subqueries, as we can see in the
following screenshot:

[} companylink@orcl |

FPERRO BB ¢ 00557057 seconds

SELECT first_name, last_name, login count
FROM employes
VHEFE login count IH

[SELECT min(login_count)

FROM enployee

GROUP BY project_id):

F .
[ Resutts | [=] Script Output | ERExplain _ﬁ.j:j.&muirace| FADBMS Output
Results:
FRsT_Name [ LasT_name [§ LoGIN_CounT |

1 James Johnzon 2135

2 Ken yhite 66

3 Donald Perez 1025

4 Carol Clark 1123

5 George Tarylar 7ag

B Laura Thomas 1221

[280]



Chapter 8

For simplicity, let's deconstruct this statement into its component clauses. First, let's
look at the subquery and its output:

[ companylink @orct [
FPERRS B8 ¢ 000577458 seconds
SELECT min{login count)

FROM euployes
GROUR BY project_id;

. 4
> Resuts| (=] script Output | B Explain | B autotrace | FlDEMS utout

Results:

MR OGN _COUNT) |
123
GG
2135
1221
793
1025

oot = W k=

The subquery calculates the minimum value for login_count grouped by
project_id. Thus, it displays the lowest employee login count for each project.
The multiple values are passed to the outer query as shown in this example.

In it, the outer query receives multiple values from the subquery.

Dcompanyﬁnk@orc! I
FPERERS BB ¢ 00075425 scconds

SELECT first name, last name, login count
FROM enploves
WHERE login_ count IH

(1123, 866, 2135, 1221, 798, 10zZ5):

. 4
B Resuts| (=] Script Output | T Explain | B Autotrace | ADEMS Output

Results:

FIRST_NAME| LAST_MAME | LOGIN_COLINT|

1 James Johnzan 2135
2 Ken White G966
3 Donald Perez 1025
4 Carol Clark 1123
5 George Taylor 7ag
G Laura Thomas 1221

[281]



Combining Queries

Once the values from the subquery are received, the outer query processes them as
if they were literal values. The outer query matches the first_name, last_name,
and login count to each of the minimum values found for each project_id. Thus,
the full query satisfies the following request: Display the name and login counts for each
employee with the lowest login count for each project.

Using ANY and ALL with multi-row subqueries

As we've stated previously, multi-row subqueries bring back a group of values to
the outer query. While the IN operator evaluates each value in the group to check
for equivalence, two special operators, ANY and ALL, evaluate the values as a whole.
ANY and ALL treat the values returned by the subquery as a set instead of discrete
values. ANY and ALL are unique to multi-row subqueries and are always paired
with non-equivalence operators such as <, >, <=, and >=. The following screenshot
demonstrates the use of the ALL operator:

[ companyiink @orc |

EERS B8 ¢ 00321999 seconds

SELECT first name, last _name, login_count
FROM enployee
THERE login_count >ALL

[SELECT login_count

FROM employees

THERE gender='M']:;

b W

[ Resuts || Script Output
Results:

E)Explain | 5] Autctrace | FADEMS Outpt

FIRST _MAME | LAST_PMAME | LOGIN_COLINT|
1 Mary Willliarms 2143

We look first at the subquery, which returns all the 1ogin_count values for male
employees. The values returned constitute the set of values that the outer query

will compare against. Next, the WHERE clause used with >ALL in the outer query will
return all values that are greater than every value in the set. In short, >ALL means that
the returned values must be greater than all the values passed to the outer query. In
our example, only values that are greater than all the 1ogin_count values for male
employees will be returned, which naturally means that the values returned will be for
female employees. Let's take a look at a similar statement using the <ANY operator:

[282]




Chapter 8

[}' companyiinkigorcs

FPERRS B8

& | 0009533195 seconds

SELECT first name, last name, login count

FREOM enployvee

VHERE login count <AHY
[SELECT login_count
FROM enployee
THERE gender='M'}]:;

F . 4

Results:

B Resutts | [E] Seript output | BExplain |§} Autotrace |IEDBMS Cutput |

FIRST_N.&.ME| L.-E'-.ST_N.E.ME| LOGIN_COLINT|

1 George
2 Ken
3 Helen
4 Kevin
S Sandra
B Donald
7 Caral
3 Matthes
9 Daniel
10 Laura
11 Linda
12 Cynthiz
13 Gary
14 Liza

Tavylar a5
White: 566
Harriz 913
Lewiz 996
Rodriguez 1021
Perez 1023
Clark 1123
Garcia 1143
Fobingan 1220
Thathas 1221
Anderzon 1243
Haill 1475
hoore 1495
Les 1945

Again, our subquery returns login counts for male employees. However, this
statement uses the ANY operator paired with a less than. The <ANY in a WHERE clause
will return values less than the highest value in the set. The highest value in the
subquery is 2135, so the outer query returns all employee name and login count
information for any employee with a login_count less than 2135.

[283]



Combining Queries

It might occur to you that as <ANY returns values less than the highest (or maximum)
value in the subquery for comparison, we should be able to rewrite the previous
query using the MAX () function instead. In this case, we certainly can, as shown in the
following query. We remove the ANY operator and apply the MAX () function to the
login_count in the subquery. The results are the same, although ordered differently:

l} companylinkiporcs |
ERRO B8 ¢ 001364224 seconds
SELECT firat name, last_name, login count
FROM employee
THERE login count <
[SELECT MARX(login_count)
FROM enployee
VHERE gender='M'}j;
5. 4
B> Resuts [ =] Seript Outout | B3 Explain |§]Autn1race | ADEMS Output
Results:
FrsT_name [§ LasT name [§ Looi_count |
1 Linda Anderson 1245
2 Daniel Raokinzon 1220
3 Matthes Garcia 1145
4 Helen Harris 915
o Ken iwhite a1
& Donald Perez 1025
¥ Liza Lee 1945
G Caral Clark 1123
9 Gary Moore 1495
10 Cyrithis Hall 1478
11 Sandra Rodriguez 1021
12 Kewin Lewvis 995
13 George Taylor 7ag
14 Laura Thomas 1221

[284]




Chapter 8

We can also use ANY and ALL with greater than or equal to and less than or equal to
operators (<=, >=). These operators will work the same as the ones we've seen so far,
with the only difference being that they will return any values equal to the lowest
or highest. In the next example, we rewrite the previous statement that used <ANY to
use <=ANY. The query returns one more value than the original — the lowest value in
the subquery:

[} companylink@orcl |
ERRO @8 ¢ 000743949 seconds
SELECT first_name, last_name, login count
FROM employes
VTHERE login count <=AHY
(SELECT login_ count
FROM emplovee
THERFE gender='M');
F%.
B> Resutts | =] Script Output | B Expisin |§} Autatrace | ADEMS Output
Results:
FIRST_MAME | LAST MNAME | LOGIN_COUNT |
1 Gearge Taylar a5
2 Ken White 866
3 Helen Harriz 95
4 Kewin Lewvis 996
D Sandra Rodriguez 1021
& Donald Ferez 1025
T Caraol Clark 1123
& Matthew Garcia 1145
9 Daniel Riokinsan 1220
10 Laura Thomas 1221
11 Linda Anderson 1245
12 Cyrthia Haill 1478
13 Gary Moore 14935
14 Lisa Lee 1945
15 James Johnzon 2135

[285]




Combining Queries

Keeping track of the rules for ANY and ALL can be difficult. The following table
should make this easier:

Type of operator

Type of value returned

<ANY
<=ANY
>ANY
>=ANY
<ALL
<=ALL
>ALL
>=ALL

Values less than the highest value returned by the subquery

Values less than or equal to the highest value returned by the subquery
Values greater than the lowest value returned by the subquery

Values greater than or equal to the lowest value returned by the subquery
Values less than the lowest value returned by the subquery

Values less than or equal to the lowest value returmed by the subquery
Values greater than the highest value returned by the subquery

Values greater than or equal to the highest value returned by the subquery

Using multi-row subqueries with HAVING clauses

At times, it is advantageous to use subqueries with GROUP BY statements in order
to see data at a grouped level. As we have seen, row group exclusion requires the
use of the HAVING clause. Fortunately, in SQL, the HAVING clause can be used with
subqueries in ways similar to the WHERE clause. We can use multi-row subqueries
that return grouped data to an outer query that is also grouped. Those subquery
groupings can then be used to restrict the output of the outer query's groups. An
example of this is shown in the following screenshot:

[ companyiink @orel |

PERRO BBH ¢ 00446205 seconds

SELECT project_id, max(login_count)
FROM employee
THERE project_id is HOT HULL
GROUF BY project id
HAYIHEG max(login count) <AHY
[SELECT awyg(login_count)
FROM employes
GROUP BY project_id):

. 4

[ Resutts | [5] Soript Output B Autatrace | ADEMS Output

Reszuts:

TEExplsin

PROJECT_ID| MA}((LOG|N_COUNT)|

1 3 1483
2 4 996
3 1243

[286]



Chapter 8

Here, our subquery groups the average login_count for all employees by
project_id. This returns six values to the outer query. The outer query also selects
the project_id and login_count, but it groups them by the maximum value for
login count where the project id is not null. The HAVING clause restricts the
outer query output to only those values that are less than the highest value in the
subquery. In simpler terms, the query displays maximum login_count values that
are greater than the average, grouped by project_id.

These subqueries are complex. If you are having difficulty

understanding them, you could try running them separately. First,
= type and run the subquery by itself to see its results, then put it back

into the entire statement.

Using correlated subqueries

So far, the subqueries we have used operate under a simple rule. In the process of
statement execution, the subquery is executed first, then its results are passed back to
the outer query. The technical name for this group of subqueries is a non-correlated
subquery. We also have another type of subquery at our disposal — the correlated
subquery. The correlated subquery executes a statement in the reverse pattern of

a non-correlated subquery. It executes the outer query first, then for each value
returned must evaluate whether the value from the outer query matches one from
the subquery. If it does, the row is displayed. If not, it continues to the next value in
the outer query and repeats the process. A correlated subquery, then, evaluates the
subquery once for every row in the outer query. Thus, if the outer query produces
1,000 rows, the subquery is executed 1,000 times — once for each row.

[287]



Combining Queries

The correlated subquery is invoked using a technique rather than any particular
syntax. A subquery behaves as a correlated subquery when the subquery references
a column in the outer query. Because the correlated inner query references an outer
column, it cannot be executed to completion first, as with a non-correlated subquery.
This behavior forces the statement to evaluate each outer value first. The correlated
subquery often makes use of a new operator —EXISTS. The structure of the statement
using the correlated subquery is very similar to any subquery that is paired with a
WHERE clause, as shown in the following screenshot:

[} COMPIRYHRE Dorc |
FERRO B8 ¢ 004362705 seconds
SELECT first name, last_nhame, project_id
FROM employvee
YHERE EXISTS
[SELECT project_id
FROM project
VHERE employee.project_id = project.project_id);
F %
[ Resutts | [ script output | BEplain |§] Autotrace |I3,DE:MS Output | G Ove, Output
Results:
FRsT_Nave |[{ Last wave [{ prosecT o |
1 Caral Clark 1
2 Daniel Fakinzon 1
3 Mary Williams 1
4 James Johnzon 2
5 Donald Perez 3
5 Matthesn Garcia 3
7 Linda Anderson 3
8 George Tarvlor 4
3 Kevin Lewvis 4
10 Laura Thomas 5
11 Cynthia Hall 5
12 Gary Moore 3

[288]




Chapter 8

In this example, the subquery appears to join the employee and project tables on
project_id. However, notice that the subquery's FrROM clause only references

the project table. Thus, the employee.project_id column in the join cannot be
referencing the employee table directly. To see this in action, try to execute the
subquery by itself. The statement will produce an error as the join references

a column in the employee table without listing it in the FrRoM clause. The only
conclusion we can draw is that the employee.project_id is actually coming from
the outer query. This is indeed the case and is what makes the correlated subquery
unique. Correlated subqueries can also use operators such as greater than (>) and
less than (<). Remember that it is not the operator used that correlates a subquery.
Instead, it is the method of execution.

SQL in the real world

Correlated subqueries can be notoriously inefficient, owing to the fact
~ that they repeatedly execute the inner subquery for every occurrence of
Q a row in the outer query. Often, correlated subqueries can be rewritten
as joins for much faster performance. The following query could replace
our correlated subquery example with much better performance. Unless
your statement requires execution in this manner, consider another path.

The following set of lines is an example of correlated subquery that can be written
for faster performance:

SELECT first name, last name, project.project id
FROM employee, project
WHERE employee.project id = project.project id;

Using multi-column subqueries

The subqueries we've seen so far, both single-row and multi-row, have an aspect in
common. Whether the values returned are selected from a subquery using WHERE
or grouped using GROUP BY (or any other method), both subqueries only return
values from a single column. Taking into account that columns of data represent
values that are of a certain type of data, each of these subqueries operate only on

a single datatype. However, there is another type of subquery — the multi-column
subquery — that, albeit more restrictive, allows multiple columns to be processed
within a subquery.

[289]



Combining Queries

Using multi-column subqueries with WHERE
clauses

Multi-column subqueries can be used with the WHERE clause and the 1IN operator
to evaluate multiple column values in the outer query against multiple columns in
the subquery. With this method, we can select both the grouped column and the
grouping function and return them to the outer query; something we are unable
to do with single and multi-row subqueries. An example of this is shown in the
following screenshot:

[} comparyiinkgorch |

FPERARS BB & | 002890425 seconds

SELECT first name, last name, project_id, login_count
FROM enployes
TYHERE (project_id, login_count) IH
[SELECT project_id, max(login count)
FROM enployes
GROUP BY projecrt_id)
OBRDER. BY project_id:

S
[ Resutts | | =] Soript Output | H1Explain | 1) Autctrace | ADBMS Output | 0 O, Output
Results:
FRsT_Name [{ LasT nave [ Prosec o B LooiN_count |

1 Mary Willizrms 1 2143

2 James Jahnzon 2 2135

3 Linda Ancerson 3 1245

4 Kevin Lewvis 4 996

5 Gary Moore ] 1495

Here, the subquery returns the highest login counts grouped by project_id. Then,
the outer query matches first_name, last_name, project_id, and login_count
against that list of values. In realistic language, this query displays the name, project,
and login counts of the employees with the highest number of logins for each
project. Notice two syntactical points about this statement. First, the order of the
columns selected in the subquery is very important. The column order, project_id
first, followed by login_count, must match the order of two columns specified in
the WHERE clause. Failure to construct the subquery in the proper order will result

in an error caused by mismatched datatypes or, in our case, no values returned.

The second syntactical rule to remember is that, in the WHERE clause, the multiple
columns specified must be enclosed in parentheses. Failure to do so will result in a
syntactical error.

[290]



Chapter 8

Multi-column subqueries with the FROM clause

The second type of multi-column subquery involves a unique method that can be

used to combine subqueries and joins in a single statement. When using multi-column
subqueries in the FrRoM clause of a SQL statement, the subquery forms a set of values
that is referred to as an in-line view. It is often easier to think of this in-line view as a
pseudo-table that exists only during the execution time of the statement. It is not a true
table, nor is it an actual temporary table. Both of these can exist as database objects. The
pseudo-table, however, can be joined with the table referenced in the outer query to
produce some unique datasets. In the following screenshot, we show an example of a
statement using a multi-column subquery in the FrOM clause:

D' companyiink @orcl |

FERRS B8 ¢ | 001432249 seconds

SELECT el.project_id, el.first name, el.last name, el.login_count, eZ.awy_login
FROM employees el
JOIH
(SELECT project_id, round{awvg(login count)) avg login
FROM employee
GROUP BY project_id) ez
OH el.project_id = eZ.project_id

AHD el.login count < eZ.avy login
ORDER. BY project_id:

.
[ Resutts | [ =] script output | BExplain | B autotrace | ADBEMS Output | (£ Clwia, Output
Results:

PROJECT ID | FIRST_N.B.ME| LAST MAME | LOGIN_COLINT| A% L OGIN

1 1 Draniel Fokinson 1220 1485
2 1 Caral Clatk 1123 1495
3 3 Donald Perez 1025 1155
4 4 George Tavylor a5 597
3 3 Laura Thomas 1221 1385

[291]




Combining Queries

There is a lot going on in this query, so let's take it one piece at a time. Recall your
join syntaxes from Chapter 5, Combining Data from Multiple Tables. First, let's identify
the first table we are joining and its columns. From the employee table, aliased as
el, we select project id, first name, last name, and login count.Second, let's
identify the second table, aliased as e2. The second table in the join is not a true
table at all —instead, it is a pseudo-table, or in-line view, formed by the subquery.
That subquery selects two columns —the project_id and the rounded average
login_count grouped by project_id. Notice that we alias one of the columns —
round (avg (login count))-as avg_login. Thus, the e2.avg login column listed
in the SELECT clause comes from the subquery. The results of this pseudo-table can
be joined to the data from the employee table just as with any other join. In our case,
we use the JOIN. . .ON syntax to do this. Having joined the data by project_id,

we then restrict the results using a WHERE clause, allowing only row values with a
login_count less than the average to be displayed. We complete the statement by
ordering the output based on project_id. In natural language, this statement could
be phrased as, Display project, name, and login count information for employees that have a
login count that is lower than average for their project.

Investigating further rules for subqueries

Aside from the basic differences involved with using subqueries, there are a few
additional facts we should remember. We take a look at these rules in this section.

Nesting subqueries

A subquery is a query that is nested within another query. However, subqueries
can also be nested inside other subqueries. Multiple nested subqueries allow us to
use queries from more than two tables, although they can also be used with a single
table. An example of this is shown in the following screenshot with indentation and
line separation to make the different queries more distinct:

[292]




Chapter 8

(= companylink @orc |
ERRO B8 ¢ 003471475 seconds

SELECT first name, last_name, login count
FROM employee WHERE employee_id TH

[SELECT employee_id
FROM webzite WHERE hit_count >

[SELECT awgihit count)
FROM blog)):

%
B> Resuits | [5] Script Output | B Explain |§::3Au,:tatrace | ADEMS Output
Resuts:

FRsT_nane B LasT name [ Lo _coun |

1 James Jahnson 233
2 Mary Willizms 2143
3 Gary hoore 1495
4 Matthew Garcia 1145

Here, we have three distinct queries —one from the blog table, one from the

website table, and one from, employee. The innermost query selects the average

of the hit_count column from blog and passes it back to the second level query.
That query returns employee_id values that have a hit_count in website that are
greater than the average hit_count in blog. The outermost query displays name and
login_count information for employees that meet the criteria of the second level
query. A query such as this might be used to see if there is any correlation between
an employee's logins and hits to their websites and blogs.

If we can nest multiple subqueries within each other, how far can we go? For all
practical purposes, there is almost no limit. Strictly speaking, we can nest subqueries
in WHERE clauses to a depth of 255. There is no limit to how many we can nest in
FROM clauses.

[293]



Combining Queries

SQL in the real world

In looking at our nested subquery example, you may think, How could
M I ever write something like that? Although nested subqueries can be

complex, remember that they are just SELECT statements inside of each

Q other. Begin by writing the innermost query first and work outward.

Run the subqueries separately and look at the results. Always pay

particular attention to indentation and your use of parentheses. These

tips can make writing complex subqueries much easier.

Using subqueries with NULL values

One of the most common traps that new SQL programmers fall into when writing
subqueries is the problem of nulls. As we've mentioned before, a NULL is not an
actual value. Rather, it is the lack of a value. When a subquery returns a NULL to the
outer query, it cannot be evaluated and, thus, returns no rows. We see an example of
this in the following screenshot:

Dcompﬂnyﬁnk@orcl’ |
FERRO 88 @ 000450448 seconds

SELECT first name, last_name
FROM enmployee
THERE project_id =

[SELECT project_id

FROM employee

VHERE first name = 'Helen'

AHD last_name = 'Harriz');
F %
[ Resutts | [5] Script outut | B Explain | 5 Autotrace | ADEMS Output
Resufts:

FIRST_NAME| LAST_NAME|

There is certainly a more direct way to write this query. Its purpose is to display the
first and last name for employees that have the same project_id as Helen Harris.
However, it is a good example of how information can be lost in a subquery. As
Helen Harris has a NULL value for project_id, no data is returned to the outer
query and, consequently, no rows are returned from the statement.

[294]



Chapter 8

We could, however, rewrite this statement using a single-row function to deal with
the nulls. Recall that the function NVL () can be used to substitute a value for a NULL.
If we place an NVL () function in both the subquery and the WHERE clause of the outer
query, we can get the desired data. In the next example, we substitute a zero for the
nulls in order to properly evaluate the statement:

[ companyiink @orci |
FPERROG B8 ¢ 000959507 seconds

SELECT first name, last name

FROM employee

THERE NVL(project_id, 0} =
[SELECT NVL(project_id, 0]
FROM enployees
THERE first name = 'Helen'

AHD last name = 'Harriz'j:
%
[ Resutts | [=] Seript output | B Explain |§]Ammrace | ADEMS Output
Results:
FIRST _MAME | LAST_NAME|
1 Helen Harris
2 Ken \White
3 Liza Lee
4 Sandra Rodriguez
B SQL in the real world y
As our SQL statements grow more complex, it's easy to lose sight of
N what we are actually doing. In actuality, we are using fewer literal

5 values and instead using statements to extract conditions for us. These
conditions have a greater flexibility than literals, allowing for different
conditions each time the statement is run. SQL statements such as these
encapsulate an idea instead of just code. A true SQL expert learns how to

B bridge the gap between business logic and SQL commands.

[295]



Combining Queries

Using set operators within SQL

Our last method of combining queries is through the use of set operators. While set
operators are generally not used by SQL programmers on a day-to-day basis, when
the situation calls for them, they can be extremely useful. Before we examine SQL
set operators in detail, it is advantageous for us to briefly review mathematical set
theory to see how they work.

Principles of set theory

If you think back to your school math classes, you may remember learning about

a topic known as set theory. Set theory is the branch of mathematics that involves
the study of collections of objects, or sets. Because databases deal with collections

of data, set theory is relevant to the more theoretical aspects of relational database
theory. However, for our purposes, an extensive review is not necessary. It is enough
to learn the basic ideas and terminology of set theory as it applies to SQL.

Set theory is used to describe the interaction of groups of objects or lack thereof. The
primary method used to model this behavior graphically is the Venn diagram. A
Venn diagram describes various sets of objects and their relationships. An example
of a Venn diagram is shown as follows:

Here, we have a diagram representing two sets of data, denoted with A and B.

We refer to these as set A and set B. The diagram indicates that A and B overlap,
shown with the shaded area. This overlap indicates that A and B share common
members between the two groups and is referred to in set theory as the intersect or
intersection of A and B.

Set theory uses many terms to represent these interactions, but only a few are
relevant to our purposes. Besides intersection, the other primary term we use to
describe these relationships is union. Union is defined as a combination of all
members in both set A and set B. Therefore, intersection is exclusive, while union
is inclusive.

[296]



Chapter 8

Comparing set theory and relational theory

Set theory has a special relevance to our study of SQL in relational databases. This
is because we can express tables as sets of data and the relationships between them
in the terminology of set theory. In the following diagram, we modify our Venn
diagram to relate to the data structures of our Companylink database:

address

employee_award

In our diagram, we display the interactions between the employee, address,
employee award, and award tables. Notice that some tables, such as address and
award, have no interaction, while others, such as address and employee, show an
overlap. The overlap indicates common members between the two sets; in the case
of employee and address, both share similar values in the employee_id column.
We could also, of course, include all the Company1ink tables in a model such as this
to show the full range of their interaction, but generally an ERD is more suited to
such a purpose. It is crucial to understand that, while an ERD displays relationships
between table columns, set operations deal with rows of data. Also note that a set
need not be an entire table. In fact, in SQL, we use SELECT statements to represent
these sets.

[297]



Combining Queries

Understanding set operators in SQL

In SQL, principles of set theory are applied using set operators. Set operators are
SQL operators that allow data to be expressed in terms of the primary operations
of set theory. There are four principle set operators that we can use to combine the
data from SELECT statements. Each statement that uses a set operator will include
at least one set operator and at least two SELECT statements. We look at each of the

operators here.

Using the INTERSECT

set operator

An INTERSECT operator returns all rows that are common to both SELECT statements.
In set theory, it is the intersection between two datasets. An example of INTERSECT is

shown in the following screenshot:

[ companylink @orcl |

PEREGS BB ¢

0.02395137 zeconds

SELECT branch_id
FROM branch
IHTERSECT
SELECT branch_id
FROM employee;

e, W

[ Resuts || Script Output
Results:

[HIExplain | ) Autotrace | ADEMS Output

BRANCH_ID
1

—

moth = W kD

12
13

L I = A 4, IR A % B

—

[298]



Chapter 8

This statement executes each seLECT individually and then combines the results
using INTERSECT. The first SELECT returns 13 rows — the total number of branch_id
values in the branch table. The second SELECT statement returns 16 rows as each
employee is assigned to a branch using a value for branch_id. When we find the
intersection between them, 10 rows are returned — the set of common branch_id
values between employee and branch. This indicates that there are values for
branch_id in the branch table that are not used in the employee table, as the
intersection returns fewer rows than the total number in the branch table. In short,
there are 13 possible branch_id values in the branch table, but only 10 are used in
the employee table. We can re-state this query in more common language as, Display
a discrete list of the branch IDs for all employees.

Using the MINUS set operator

When we need to subtract one set of values from another, we can use the MINUS
operator. MINUS removes all values from the second SELECT statement that are
also found in the first SELECT. Say that we are asked for a list of branch_id values
that have not been assigned to any of the employees in the employee table. As the
following screenshot shows, we can use MINUS to perform the given query:

[}companyﬁnk@orc! |
FERRO B8 ¢ 001019906 seconds

SELECT branch id

FROM branch
MIHUS

SELECT branch id

FROM employvees;

.
[ Resutts| | =] Script Output

Reszults:

TF)Explain | ) Autctrace | ADBMS Output

BRANCH_ID
1 7
2 3
3 11

[299]



Combining Queries

Here, we have rewritten the previous query to subtract branch_id values in the
employee table from the branch table. The first statement retrieves all possible
values for branch_id from the branch table. The second statement selects all the
values that are assigned to employees from the employee table. When MINUS is

used to remove all the assigned values from the possible values, only the unassigned
ones remain. Note that the order of statements is very important when using MINUS.
Were we to change the order of the two SELECTs in this query, no rows would be
selected. Such a statement would remove all possible values from assigned ones,
leaving no values.

Using the UNION and UNION ALL set operators

Our last examples of set operators are perhaps the most commonly used. The uNION
and UNION ALL operators are used to combine the result sets from two queries. They
do so, however, in different ways. First, let's look at an example using UNION, which
is shown as follows:

Dcompanyﬁnk@orcl’ |
FPERRO B8 ¢ 001085026 seconds

SELECT project_id

FROM project
UHIOH

SELECT project_id

FROM euployvee;

% 4
[ Resutts | | =] Soript output | ) Explain |_5.1]Amotrace | ZADEMS Output
Results:

PROJECT_ID

Tt & L k=
L B R

(rlly

In this statement, the first query selects all values for project_id from the project
table. The second does the same for the employee table. The UNION operator
combines the two result sets and displays them. However, in doing so, it removes
duplicate values. Thus, the results include all possible values for project_id from
both the project and employee tables. Note that this result set also includes one
NULL value, as the employee table contains project id values that are null.

[300]




Chapter 8

The UNION ALL operator performs a very similar function, with one major difference.
Whereas the UNION operator suppresses duplicate values from the results, UNION
aLL displays all values including duplicates. In our next example, we rewrite the
previous query with one simple difference —we change the UNION operator to UNION
ALL. The results are quite different:

D companyiink morcl I
FPEEZRS 83 ¢ 000778199 s=conds
SELECT project_id
FROM project
UHIOH ALL
SELECT project_id
FROM enployee;
b W
D> Resutts| [ script Output | SExplzin | 9 autotrace | FDEMS Output
Results:
PROJECT_ID
1 1
2 2
3 3
4 4
g 5
[ 2
7 1
g 3
9 1
10 3
11 (il
12 (il
13 3
14 (ruln)
148 1
16 =]
17 =]
18 (il
19 4
20 4
21 5

[301]



Combining Queries

SQL in the real world

In terms of SQL performance, the UNION ALL operator is almost
M universally preferred to UNION. Given the large number of values
resulting from a UNION ALL, this may seem strange. It is, however,
Q true. As we've noted, a UNION performs the added step of removing
duplicate values. As it turns out, this is a very costly operation in terms
of performance. Where possible, you should generally use UNION ALL
instead of UNION.

Summary

In this chapter, we have learned two new ways to combine sets of data. First, using
the subquery, we learned to nest queries inside of each other to combine data

from tables without a direct relationship. We looked at ways to manipulate scalar
subqueries that return a single value, multi-row subqueries that return multiple
values, and multi-column subqueries that return values from more than one column.
We followed this up with a look at using SQL set operators to combine overlapping
and non-overlapping data.

In this chapter, we've come to the end of our exploration of the use of DML statements
and techniques. However, although we have learned countless ways to manipulate
table data, we have yet to learn how to actually create a table from scratch using
SQL. The next chapter will introduce the concept of database object creation using a
sublanguage of SQL known as DDL (Data Definition Language).

Certification objectives covered

In this section, we have seen the following certification objectives covered:

e Define subqueries
e Describe the types of problems that the subqueries can solve
e List the types of subqueries

e Write single-row and multiple-row subqueries

[302]



Chapter 8

Test your knowledge

1. Which of the following is NOT a type of subquery?

a.
b.
C.
d.

Single-row
Multi-row
Multi-column

Multi-scalar

2. What is the output of the following query?

SELECT blog_url, min(hit_count)

FROM blog;

a. 123

b. 18

c. 0

d. A "not a single-group function" error is returned.

3. What is the outcome of the following statement?

SELECT blog url, hit count

FROM blog

WHERE hit count =

(SELECT blog url, max(hit count)
FROM blog

GROUP BY blog url);

An error is returned because too many columns are selected in the
outer query.

An error is returned because too many columns are selected in the
inner query

The statement returns multiple values

The statement returns a single value

[303]



Combining Queries

4. Which of the following can be used to create a derived column?
a. A scalar subquery with the WHERE clause
b. A scalar subquery with the HAVING clause
c. A scalar subquery with the SELECT clause
d. A multi-row subquery using the IN operator

5. Given a multi-row subquery is used in a statement, which operator will
match values in the outer query that are less than the highest value returned

by the subquery?
a. <ANY
b. >ANY
c. <ALL
d. >ALL

6. Inanon-correlated subquery, which subquery is evaluated first?
a. The inner query
b. The outer query
c. Neither query

d. Both queries are evaluated simultaneously

7. Inacorrelated subquery, which subquery is evaluated first?
a. Theinner query
b. The outer query
c. Neither query
d. Both queries are evaluated simultaneously

8. A SQL programmer intends to make use of a subquery that forms an in-line
view. In order to do this, the subquery must be used with what clause?

a. FROM

b. WHERE

c. HAVING
d. ORDER BY

[304]



Chapter 8

10.

11.

12.

13.

What is the maximum number of nested subqueries that can be present in a
WHERE clause?

a. 2
b. 3
c. 128
d. 255

What function is often used to mitigate the negative effects of NULL values
in a subquery?

a. AVG()
b. TO_CHAR()
c. NVL()

d. Any multi-row function
Which SQL set operator can be used to subtract the results of one query
from another?

a. INTERSECT

b. MINUS

c. UNION

d. UNION ALL
Which SQL set operator can be used to combine two result sets and while
removing duplicates?

a. INTERSECT

b. MINUS

c. UNION

d. UNION ALL
Which SQL set operator can be used to return all values that are common to
two SELECT statements?

a. INTERSECT

b. MINUS

c. UNION

d. UNION ALL

[305]




Combining Queries

14. Which SQL set operator can be used to combine two result sets and without
removing duplicates?

a. INTERSECT
b. MINUS
c. UNION
d. UNION ALL

[306]




Creating Tables

Throughout this book, we've seen numerous ways to manipulate table data through
the use of DML. But, up to this point, we've only manipulated existing tables. It's
time to explore object creation with DDL — Data Definition Language —and how it
can be used to create database tables that support business rules.

In this chapter, we shall:

Discuss Data Definition Language (DDL) and its purpose
Understand Oracle's schema-based approach

Examine the structure of tables and datatypes

Describe the CREATE TABLE syntax

Use CREATE TABLE AS. . SELECT to copy tables

Examine the purpose of constraints

Understand and use different types of constraints

Introducing Data Definition Language

In Chapter 4, Data Manipulation with DML we established a distinction between
different types of sub-languages in SQL. We pointed out that DML, or Data
Manipulation Language, is used for operations such as SELECT, INSERT, UPDATE, and
DELETE. We also mentioned that another sub-language, DDL, can be used for other
purposes.



Creating Tables

Understanding the purpose of DDL

DDL, or Data Definition Language, is used primarily to create objects in the database.
A database object is any persistent entity within the database that forms a part of its
logical structure. The most common object within a database is the table. We refer to a
table as a logical object since it has no actual physical structure, but once it is created, it
exists until it is removed. This persistence allows database objects created using DDL
to be used repeatedly, even after a database is shutdown and restarted.

In terms of syntax, the scope of DDL is significantly larger than that of DML. DML
is encapsulated, for the most part, in four basic clauses — SELECT, INSERT, UPDATE,
and DELETE. Those four clauses are then used to manipulate data. A DDL statement,
on the other hand, can use hundreds of possible clauses. Fortunately for us, many
of these clauses are extremely uncommon and all of them fall into three basic
operations — CREATE, ALTER, and DROP. Each of these is paired with a database object
to form clauses such as CREATE TABLE or ALTER INDEX.

Examining Oracle's schema-based approach

Before we look at the syntactical structure of DDL, it is important that we understand
how Oracle organizes the ownership of database objects. The ownership of objects is
crucial to how security is managed in a database. While an extensive look at security
is beyond the scope of this book, we will examine the basics of object ownership in
order to better understand how tables are created.

Some database systems make a distinction between database users and object
owners. In these systems, a database user is defined as an account that allows access
to the database. These types of accounts are common today. We use them any time
we log in to a system, such as an e-mail account or web portal. Converse to this is an
object owner, which, in a system that makes such a distinction, is an account that
exists only to create and own database objects. For instance, a system might have a
user called finance. The finance user does not represent any particular person who
logs in to the system; rather, we use the finance user when we want to create tables
that hold financial data. We then say that those tables are owned by the finance user.

In Oracle, no such distinction between users and owners exists. One type of account
exists that can be used for both purposes. For instance, continuing with the example
of financial tables, we could create a finance user. This is a true database user, which
can be given the proper privileges to access and manipulate the system. However,
we can also use this user to log in and create database objects, such as financial
tables. Any database objects that are created while we are logged in as the finance

[308]



Chapter 9

user are said to be owned by that user. When a database user owns objects, it is
referred to as a schema. A schema is the user account and the collection of all the
objects that it owns. Thus, if we log into the database as the finance user and create
a few tables, we can say that those tables are owned by finance and form the
"finance schema".

In Chapter 1, SQL and Relational Databases we created a connection to the database in
SQL Developer that uses the companylink user to create a session to the database.
The script you ran to create the database tables also runs under this user. Thus, the
tables we have used in our examples have all been within the companylink schema.

SQL in the real world

Some have argued that Oracle's dual user/owner approach is inherently
less secure than separating the two. Even if this is true, it only means
that extra care must be taken when administering users. In Oracle,

%%‘ accounts can be locked. This prevents them from being used to access
the database, but still allows them to own objects. Some DBAs design
systems that force a separation of the two, allowing only locked accounts
to own objects. The Oracle model allows for flexibility, but requires a

- greater understanding of security administration. -

Understanding the structure of tables and
datatypes

In earlier chapters, we discussed the way that tables are constructed; namely, with
rows and columns. To review, a row contains a single occurrence of information. For
instance, one row from the employee table provides us with all the information for
a single employee, including name, gender, date of birth, and other information.

A column, on the other hand, represents one type of information. For example, the
message_textcolumn in the message table contains the textual information for each
message sent, regardless of which employee sent it. The message_text column
contains no other data. It does not contain the employee ID of who sent it or the
date it was sent. That information is contained in other columns. Thus, we can say
that a column will always contain a certain type of data and can contain no other.
The message_text column contains character string data. As such, it cannot contain
other information types such as dates or numeric values. If other values such as
numbers are contained within the text of the message (which is certainly possible),
they are treated as character values. They cannot be used, for instance, in numeric
functions, without first extracting them from the other character values. We can say
that the data in each column is constrained by its datatype. A datatype is a way of
classifying the types of data that are possible in a particular column. The datatype
of a column is defined as a part of the creation process. A column cannot be created

[309]



Creating Tables

without a datatype. When we define the datatype for a column, we also define its
scope, such as the maximum length for a character string in the column. While
the type of scope is different depending on the datatype, it is usually enclosed in
parentheses. There are many datatypes available to us in Oracle, but there are five
that are most commonly used.

CHAR

Data defined with the CHAR datatype is a fixed-length alphanumeric data. By fixed-
length, we mean that data of type CHAR is non-varying in length. For instance, say
that we define a "State" column in a table called address. The State column is used to
hold the two-digit State abbreviation for each address. We could define this column
as being of type CHAR (5) —a fixed-length column holding alphanumeric data that

is five characters in length. We could display the way that a piece of information is
stored in the table as shown in the following figure:

Here, we see that the abbreviation for California, CA, is stored in the first two
positions. Since CA only requires two characters, the remaining three positions

are padded with spaces, owing to the fact that CHAR is fixed-length. A CHAR (5)

will always contain five characters, whether they are used or not. In our example,
the extra spaces are essentially useless, since our State codes will always be two
characters in length. Thus, if we decide to use the cHAR datatype for our State codes,
it would be better to use a CHAR (2) . This prevents the storage of unnecessary spaces.
A visual representation of the way it would be stored is shown as follows:

CA

The cHAR datatype has a maximum length of 2,000 characters.

[310]



Chapter 9

SQL in the real world

M While Oracle continues to support the CHAR datatype, it is generally
recommended that you avoid using it. There have been reports of
Q problems with certain tools and features involving CHAR. While you
should still be aware of it because of its continued use, you should
generally use our next datatype, VARCHAR?2, for character data.

VARCHAR2

Data defined with the VARCHAR?2 datatype is alphanumeric data of a variable
length. Unlike the fixed-length cHAR datatype, VARCHAR2 only stores the number
of characters that are contained in any particular value. Thus, a VARCHAR2 (5) is
variable-length character data that is up to five characters in length. Returning to
our previous example, let's say that we decided to define our State column as a
VARCHAR?2 (5) instead of a CHAR (5). We can visually represent this as shown here:

CA

As we can see, even though our VARCHAR2 is defined to hold up to five characters,
only two are required. Since VARCHAR? is a variable-length datatype, it chooses to only
allocate two positions of data for the two characters required. If for some reason we
needed to update this value to one that requires more than two characters, additional
positions will be allocated, provided that the number of positions required is not
greater than its defined limit—in this case, five characters. This makes VARCHAR2

a much more flexible datatype for character data than cHaAR. It also has a larger
maximum value. The VARCHAR2 datatype can hold up to 4,000 characters.

SQL in the real world

If you're wondering why VARCHAR2 was named as it is instead of just
VARCHAR, it is because a datatype called VARCHAR already existed. Both
were introduced around version 6 of the Oracle database, although the

M history of VARCHAR is somewhat shrouded in mystery. It was likely
originally added to conform to the ANSI SQL standard, but VARCHAR2

Q gained prominence because of its flexibility. VARCHAR has possessed

different characteristics through different versions, and you can still use
it. However, in Oracle 11g, if you define a column as type VARCHAR, it
will be automatically converted to VARCHAR2. There's some indication
that Oracle is reserving VARCHAR for future use, so it's definitely a
datatype to stay away from for now.

[311]



Creating Tables

NUMBER

NUMBER is Oracle's primary datatype for storing numeric data. It is defined using
the format NUMBER (p, s), where p stands for precision and s represents scale. Precision
is defined as the total number of digits allowed for storage of the number, while scale
is the number of digits allowed after the decimal point. Using these two attributes,
NUMBER can be used to specify limits for both integers and real numbers, rather
than requiring two separate datatypes. For example, let's say we want to define

a column to hold pricing data. This type of data will require that we store real
numbers —numbers in decimal format. To do this, we could designate a column,
price, and define it as a NUMBER (5, 2) . If this column held the value 583.12,

we could represent it as shown in this examp.le.

583.12

As we can see, the value 583.12 fits into a NUMBER (5, 2) column since there are a total
of five digits allowed with two of those digits to the right of the decimal point. Note
that the precision and scale are the maximum values that can be used in the column.
Thus, values such as 34.1, 8.54, and even 40 are allowable. Having a scale defined

for a number does not require that the value has a decimal component. It simply
constrains it as a maximum allowed value. A NUMBER (5, 2) also implies that there are
only three digits to the left of the decimal point. Thus, numbers such as 2396.1 are not
allowed, even though the number has a total of five digits. Any attempt to insert any
values that are outside the bounds defined by the precision will result in an error. If a
value is within the specified precision, but outside the scale, such as 43.234, the value
is automatically rounded to fit within the scale.

Integers can also be defined by omitting the scale for the datatype. We can define a
column as NUMBER (8, 0) or NUMBER (8) . When the scale is zero or omitted, the values
allowed can contain up to a total of eight digits. Thus, values such as 4093, 920490,
and 20940958 are allowed. In the case of a NUMBER (8), any values entered as decimals
will be rounded to the nearest integer. The NUMBER datatype can also be defined
without any precision or scale as simply NUMBER. When NUMBER is used without
precision or scale, it defaults to a NUMBER (38) —an integer with up to 38 total digits.

[312]




Chapter 9

SQL in the real world

M Although not often used, the scale specified for the NUMBER datatype
can actually be a negative number, such as -2. When a negative is used
Q for scale, the negative number specifies the number of significant digits
to the left of the decimal point. Thus, if we define a NUMBER (5, -2) and
insert the value 234.34, the number is actually stored as the value 200.

The NUMBER datatype allows for values between 1 and 38 for precision and values
between -84 and 127 for scale.

DATE

In Chapter 6, Row Level Data Transformation, we made reference to the unique way
that Oracle stores date values. We indicated that in Oracle, a date is neither a
character string value nor a numeric value. Rather, we said that the DATE datatype
stores seven bytes of data that contain the amount of time from January 1, 4712
BC. It uses these seven bytes to store century, year, month, day, hour, minute, and
second information. Thus, the DATE datatype in Oracle stores both date and time
information. DATE requires no additional scope to specify a maximum value for
the data, although the maximum date value that can be stored is December 31,
9999. As we mentioned in Chapter 6, Row Level Data Transformation, Oracle displays
information of type DATE using a default format of DD-MON-YY, although we can
extract and manipulate the format displayed using functions such as To_CHAR ().

Other datatypes

Oracle allows the use of many other datatypes. Most of these are highly specialized
and less commonly used. While we do not discuss them in detail here, the following
reference chart displays some of their names and uses:

Category Datatype Description

Numeric FLOAT Similar to NUMBER — used to floating-peint numbers
INTEGER Similar to NUMBER. with a scale of zero

Dateftime TIMESTAMP Dates with fractional seconds
TIMESTAMP WITH TIMEZONE Dates with fractional seconds and timezone information
TIMESTAMP WITH LOCAL TIMEZONE Dates with fractional seconds with time adjusted to the local timezone of the database
INTERVAL YEAR TO MONTH Time interval stored in years and months
INTERVAL DAY TO SECOND Time interval stored in days and seconds

Large Object CLOB Character data storage up to 4 GB
BLOB Unstructured binary data storage up to 4 GB
BFILE Pointer to an extemally stored file

[313]




Creating Tables

Using the CREATE TABLE Statement

When we want to create a table within the database, we use the CREATE TABLE
statement. The CREATE TABLE statement has evolved through various Oracle versions
from fairly simple to staggeringly complex. The complexity allows for many options
to be used when building tables. Fortunately for us, the syntax to create basic tables
is relatively simple. The basic syntax tree is shown as follows:

CREATE TABLE tablename (
columnl, datatype,
column2, datatype,
columnx, datatype

)

We will expand on this syntax as we learn more about tables, but this is a sufficient
place to start. The statement begins with the CREATE TABLE clause followed by a

table name of our choosing, then an opening parenthesis. Next, we outline the table's
column structure specifying a name and datatype for each one, followed by a column
and closing semicolon.

Understanding the rules of table and column
naming

Although the creator of a table and its columns determines its names, there are
certain rules and limits that we must abide by:

e Names may be between 1 and 30 characters long

¢ Names may only include alphanumeric characters and the underscore (_),
hash symbol (#), or dollar sign ($) characters

¢ Names must begin with an alphabetic letter between A and Z

e Certain reserved words, such as a name that uses a SQL clause, cannot
be used

e Up to 1,000 columns can exist in a table

SQL in the real world

The choice of table and column names is an important one that may
M depend on your organization's coding standards. Even if you aren't
Q constrained by any particular rules, you should take great care to
name your tables and columns in a way that makes them relevant to
the data they hold. Such choices as whether or not to allow plurals as
names must also be considered.

[314]




Chapter 9

Creating tables

We have examined the basic syntax for CREATE TABLE, so let's proceed with some
table examples to see how they work. In the following example, we begin by
creating a copy of a table with which we are familiar — the blog table.

Dcompanyﬁnk@orc! |
ERRO B8 ¢ 127538586 seconds

CREATE TABLE blog_copy |
blog id number [(10,0) ,
blog url wvarchar? (250),
blog desc varchar? (40007,
hit_count number (10,0)

1:

%
B> Resutts [ =] script Outout | EExpiin |_F;] Autotrace | ADENS Output | £ O, Output
Results:

We see that the syntactical form of the previous statement follows that of the syntax
tree. It begins with a CREATE TABLE clause and is followed by column definitions
enclosed in parentheses. For the first column, blog id, we need to choose a

datatype that fits the type of data to be stored. Our IDs are numeric integers with no
decimals, so we will choose the NUMBER datatype with a scope of zero. Our choice

for datatype precision depends on how large we anticipate our ID numbers may be.
With Companylink, we want to think big, so we'll choose a precision of 10, which
allows numbers as large as 9,999,999,999 to be stored. For the blog url column,
which can contain a mixture of alphanumeric characters and symbols, we choose the
VARCHAR2 datatype with a maximum size of 250 characters. This should be sufficient
to store base domain URLs. The third column, blog desc, will be used to store a full
description of the user's blog, so we will make it a VARCHAR2 as well, with a large
maximum of 4,000 characters. Finally, our hit_count column contains the number of
hits for each blog, so we will choose a non-decimal numeric datatype, NUMBER (10, 0).

From the process we've undergone in the previous paragraph, it should be clear
that we can only properly create a table when we know fairly specific characteristics
about the data it holds, such as the type of data, its maximum possible size, and the
number of values possible within the table. At some level, we must undergo this
process in order to design an efficient table.

[315]



Creating Tables

SQL in the real world .

" Certain graphical third-party tools exist that can make the process of
<~ designing tables faster. Such tools can even generate the SQL needed
Q to create the tables and columns without typing a single CREATE
TABLE command. However, the thought process involved is the same
regardless of the preferred tool. You must understand how the table will
L be used.

When we run the CREATE TABLE statement, we receive a prompt at the bottom that
informs us that our statement was successful. If we type the statement incorrectly,
we receive an error message. Once our table is successfully created, we can view

it in two ways. First, we can use the DESCRIBE command, abbreviated as DESC.

[}companyﬁﬂk@orc! |
PESRO B8 ¢ 197343104 seconds

DESC blog copy

%

[ Resutts | (5] Script Output. BExplain | 5 sutotrace | ADEMS Output | € 0WiA Output
¢ HdE

DE3C blog copy

Name Imll Tvpe

ELOG_ID NUMEER.( 10}

ELOG_URL VARCHARZ {250)

ELOG_DESC VARCHARZ | 4000

HIT COTUNT NUMEEE. {10}

4 rows selected

We first saw the DESCRIBE command in Chapter 2, SQL SELECT Statements. It tells
us about the structure of the table. We see that each column is listed in the order
that we specified, as well as its datatype and scope. In SQL Developer, we also see
a column in the description called simply Null. We will cover this column later in
the chapter.

[316]




Chapter 9

While the DESCRIBE command tells us about the structure of a table, notice that
it does not display any actual data. As we've seen many times throughout this
book, in order to view data, we need to use a SELECT statement, as shown in the

following example:

FERG®

D COMpIRyink @orct I

B8 ¢ | 000918652 seconds

SELECT * from blog copy:

.

Results:

> Resutts| [ =] seript output | S)Expiain | 8 autctrace | DEMS output | €% ows output

BLOG_D |

BLoc_URL |8 BLoc pesc |8 HIT_count |

As we can see, the statement executes successfully, but no rows are returned. We
see only the table column headings. This is the expected outcome, since we haven't
yet added any data to our new table. To do that, we need to use the INSERT
statement that we covered in Chapter 4, Data Manipulation with DML as shown in

the following screenshot:

[ companylink @orcl I

CERGO BB

& | 153435427 seconds

INSERT into blog cop¥y

VALUES (1, 'http:/ smnr. comnpanylink.consblogsjjohnson', 'Jims blog', 123);

W

Results:

B> Resutts | [ =] script Output | BExplsin |§g]Aut.:-trace |[3,DE:MS Output | ) owve, Output

[317]



Creating Tables

For the sake of simplicity at this point, in the next example we are adding the data
from the first row of the blog table to our blog_copy table. Once we successfully
insert the row, we can view the structure and data of our first manually created table
using a SELECT statement.

[} companyiink @orcl |
FERR® BB ¢ 000559262 seconds

SELECT * from blog_copy:

%

[ Resutts | Seript Output | T Explain f;].ﬂxmntracﬂEDBMS Cutput | (9 Cia, Cutput

Results:
BLoGD |{ BLOG_LURL @ eLospesc @ HT_count
1 1 hHitp ey companylink . comblogifiohnzon  Jims blog 123

Avoiding datatype errors

Now that we've looked at various datatypes and created a simple table, let's look at
ways to avoid one of the most common types of table creation errors. This section
focuses on the errors that occur due to improper usage of datatypes. Many of

these errors take place because of datatype overflow —where values inserted into a
column are too large for the scope of the declared datatype. Sometimes the cause
of these errors is obvious, such as attempting to put a ten-character word into a
VARCHAR?2 (5) . Other errors, particularly numeric ones, are less obvious.

Avoiding character datatype errors

To examine the kinds of character datatype errors that are possible, let's begin by
creating the table.

[318]



Chapter 9

D- companylink @orcl I

EEZ2RO 88 ¢ 005456584 seconds

CREATE TRABLE test

[ columnl wvarchar? (5],
column: date,
columns number (5],
columnd number (5,2],
columnt number (5,-2]

1:

%

Results:

> Resutts [ 5] Script Output | B Explain | 50 autotrace | ADEMS Output | () owia Output

This table is created with various columns assigned with different datatypes. Some,
such as the NUMBER types, have scope distinctions that are more subtle. We'll attempt
to insert various values into these columns, some of which will generate errors. The

following screenshot displays our first example of a datatype error:

D companyiinkidorct I

FPERRAO B8 ¢ 0045684 seconds

IHSERT into test (coluwnl) waluwes [ 'ABCDEF'):

Fe 4

[ Resuits| =] Seript Output | 5 Explain | Autotrace |@DBMS output | @ ovwa output
Results:

Error, encountered

o An error was encountered performing the requested operation:

12839, 00000 - "walue too large for column %= (actual: %=, maximum: %s)"
*Cauze:  An attempt vwas made to insert or updste & column with 2 value
which is too wide for the width of the destination calumn.
The name of the column is given, along with the actual width
of the value, and the maximum allowed width of the column.
Mote that wicths are reported in characters if character length
semantics are in effect for the column, otherwise widths are
reported in bytes.
*Action: Examine the SCIL statement for correctness. Check source
and destination column data types.
Either make the destination column wider, or use a subset
of the source column (i.e. uze substring).
Yendor code 12599Error at Line:1

OK

3

ORA-12899: value too large for column "COMPARNYLIMK" "TEST" "COLUMMI" (actual: 6, maximum: 5)

[319]




Creating Tables

This example shows a scenario in which we've simply attempted to insert a value that
is too large for our defined scope. Since the datatype in columnl is a VARCHAR2 (5),
the six characters in 'ABCDEF' is outside the scope. We define datatypes not only on
their scope, but also on their type. However, Oracle sometimes operates in ways that
confuse this distinction. Note the following example:

Dcampanyﬁnk@orc! I
PERRO B8 ¢ 000976297 seconds

IHSERT into test (columnl) wvalues (12345);

i W
(> Resuits | =] script Output | SExplain | 8 autatrace | [ADEMS outout | € owia output
Resutts:

Here, we use our named column syntax for an INSERT statement that we learned in
Chapter 4, Data Manipulation with DML. We direct Oracle to insert the value 12345
into columnl. However, the value we inserted is numeric, while the datatype for
columnl is VARCHAR2 —a character datatype. We didn't even use single quotes to
define the value as a string. Why, then, is no error generated? Oracle will execute
implicit conversion on some types of data when they are inserted into a different
datatype. The assumption is made (and sometimes incorrectly) that since we inserted
a numeric value into an alphanumeric datatype, we intended for the value to be
converted. Does that mean that the value 12345 is now strictly interpreted as a
string? Unfortunately, no, as the following example indicates:

(= companylink @orci l
PEEROG 88 ¢ 00079918 seconds

SELECT columnl + 100 FROM test:

e W
[ Resutts | [=] seript output | B Explain |-:?;}Ammra.:e |IEDBMS Output | € owmea, Output
Results:

COLLMN1+100 |
1 12445

[320]



Chapter 9

As we can see, we've attempted to add 100 to our value stored in a VARCHAR2
column. Again, no error is generated, and the correct arithmetic sum is displayed.
However, the situation is further complicated if we insert a true string value into the
column, as shown in the following statement:

Dcampanyﬁnk@orc! I
FPERRAS B8 ¢ 000313755 seconds

IHSERT into test (columnl) walues ['testl'):

W

D> Resuts| [=] Script Output | B Expiain | 5 sutotrace | FDEMS outout | ) owia Output
Results:

Again, since the value we insert, test1, is legitimate for a VARCHAR2 (5), the value
is inserted correctly. But, if we attempt to execute the previous SELECT statement a
second time, we see the problem with mismatching datatypes.

D'companyﬁnk@ord I
FPERRS B8 ¢ 004279175 ssconds

SELECT columnl + 100

FROM test:
% 4
B> Resutts =] Script Output | B9 Explein |-"§g]Amotra-:e |[3.DE:MS Output | € s, Output
Results:
Error encountered &|

An error was encountered performing the requested
o operation:

ORA-01 722 invalid number

01722, 00000 - “insalicd number”

*Cause:

*Action:

Wendor code 1722Error &t Line: ]

[321]




Creating Tables

While the flexibility allowed by Oracle using implicit conversion often works in one's
favor, it does underscore the importance of clearly defining column datatypes. If

any kind of numeric operation or function is to be used, it is best to stay away from
character-oriented datatypes.

Avoiding numeric datatype errors

To begin our look at the types of errors that can arise from numeric errors, let's look
at a typical numeric overflow error, shown in the next screenshot:

Dcompanyﬁnk@orc.f |
FPERRSG B8 ¢ 004279175 seconds

IHSERT into test [(columnd) values (123455 ;

T
[ Resutts (5] Script output | SExplsin | B autatrace | EDEMS Output | € owwia, outiut

Results:

Error encountered EI

o An error was encountered performing the reguested operation:

ORA-01438: value larger than specified precizion allowed for thiz column
01435, 00000 - "value larger than specified precizion allowed for this column”
*Cause:  When inseding or updating records, a numeric value was entered
that exceeded the precision defined for the column.
saction:  Enter a value that complies with the numeric column's precision,
or uze the MODIFY option wwith the ALTER TABLE command to expand
the precision.
wendor code 1438Error &t Line:!

Ok

Here, we attempt to insert the value 123456 into a NUMBER (5) . It fails since 123456 has
six significant digits, and our datatype can only hold five. We get a similar result if we
attempt to place the number 1234.56 into column4, which has a NUMBER (5, 2) datatype.

[322]



Chapter 9

D companylink @orck

I

FERRO 88 ¢ 008279175 seconds

THSERT into test

[columnd) walues (1234, 56);

% 4

Fesults:

[ Resuts | [=] Script output | 8 Explain | 9 autatrace | EDEMS output | €% 0w, Output

Error encountered

Hoause:

o An errar was encourtered performing the reguested operation:

ORA-01438; value larger than specified precision allowed for thiz column
01435, 00000 - "value larger than specified precision allowed for this column”

3

When inserting or updating records, & NUMerc value was entered

that excesded the precision defined for the column.

*action:  Enter a walue that complies with the numeric column's precizion,
or uze the MODIFY option with the ALTER TAELE command to expand
the precision.

Yendar code 1435Error &t Line: 1

Ok,

Here, even though our scale is correct (two digits), the overall number of digits

we attempt to insert is six and our defined precision is five. This results in the

observed error.

Although overflow errors such as these are fairly easy to interpret, there are certain
errors that arise from the way that Oracle implicitly converts numeric values that are

less easily observed. For instance, examine the following example:

D' companyiink gorcl

I

D" EI @ a @ E h é 0.00417064 secands

IHSERT into test

[columhi3) wvalues [1234.5):

b W

Resufts:

[ Resutts| (=] seript Output | BEsplain | B aAtotrace | ADEMS Outout | ) owia output

[323]




Creating Tables

Here, we've attempted to insert a decimal numeric value, 1234.5, into column3,
which holds data of type NUMBER (5) . No scale is specified for the values in column3,
so we might assume that an error would arise. This is not the case, as shown in the
following query:

Ei-campanyﬁnk@orc! I
FPERARASG B8 ¢ 001099553 seconds

SELECT columni
FROM test
YHERE columni is not null:;

% d
B> Resuts | [=] Script output | SExplain | B avtotrace | FDEMS outout | ) owia Output
Results:
COLLMNS
1 1235

Notice that the resulting value, originally 1234.5, has been converted and stored as
1235. Not only has the decimal place been removed, but the resulting integer value
has been rounded to the nearest ones place. In this case, since a NUMBER (5) stores
values without a scale, the value is rounded to the nearest value that will fit within
the defined precision. Our resulting value, 1235, fits within our established limit of 5,
S0 no error is generated.

A similar conversion occurs when we attempt to insert a value that does fit within
the defined precision, but is greater than the defined scale. This is shown in the next
two examples.

Dcompanyﬁnk@orc! I
FPERRO B8 & 000391754 seconds

IHSERT into test (columnd) wvalues (12.345):;

W
(> Resutts| [5] Seript output | B)Explsin | B autatracs | ADEMS outout | € owia Output
Results:

[324]




Chapter 9

(= companyiink @orci I
rE RO 88 ¢ 000781971 seconds

SELECT columid
FROM test
THEBRE columtid iz not null;

%
> Resutts | [ script output | %) Explain | B autatrace |[FDEMS output | € o, Output
Results:
COLUMM
1 1235

Here, we've defined column4 datatype as a NUMBER (5, 2) . The value we insert, 12.345,
is within the precision, but has three decimal places — greater than the stated scale of
two. No error is generated by this operation. Rather, Oracle rounds the number to the
nearest significant digit that fits within the prescribed scale and inserts it.

Our last example of potential datatype errors looks at the behavior of values inserted
into a column with a NUMBER datatype that has a negative scale. The column5 column
in our test table has a datatype of NUMBER (5, -2). When using a negative scale,
Oracle moves the significant digit by the specified scale to the left of the decimal
point. Take a look at this behavior in the next two examples:

[ companyiink @orci I
FERERO B8 ¢ 00039577 seconds

IHSERT into test (columnb) wvalues (123.45);

i W

[ Resutts [ Script output | BExpiain | B0 autetrace | (R0EMS output | €3 cvwia output
Reszult=:

[325]




Creating Tables

[ companylink @orci |
EERO 88 ¢ 001169171 seconds

SELECT columnb
FROM te=t
THERE columni is mot null:;

i, W
[ Resutts (5] Script output | BExplain | B autotrace |B0EMS Output | ) 0w output
Resutts:
COLLMMS
1 100

Although we insert the value 123.45 into column5, we see that the resulting

value stored is 100. This happens because our datatype has been specified as a

NUMBER (5, -2) . While a positive value for scale will move the significant digit to the
right of the decimal point, a negative value moves it to the left. This results in the value
123.45 being rounded to a value of 100.

SQL in the real world

M Although the variations in rounding shown previously don't necessarily
constitute an error, they are often considered undesirable. If you insert
Q the value 123.45 into a column, you generally don't want it converted to
100. Always be aware of the types of data you are using, as well as the
datatypes you use to store it.

Copying tables using CTAS

In the day-to-day life of a SQL programmer, we are often called on to make a copy
of a table. This could be for many reasons, such as the need for prototyping a table
change or experimenting with data loads. To copy a table, we could simply run a
CREATE TABLE statement with the same column and datatype specifications as our
original and populate it with data, but this requires several steps. We would need
to carefully copy the column and datatype specifications from the original. Then,
we would need to create or generate numerous INSERT statements or load the table
using another method.

[326]



Chapter 9

Often, a better way to copy a table is by using a CREATE TABLE. . . AS SELECT
statement. CREATE TABLE. . . AS SELECT, often abbreviated as CTAS (generally
pronounced see-taz), will copy the column structure and data from an existing table
in one step. An example is shown as follows:

Dcampanyﬁnk@am! I
ERRO B8 ¢ 02092577 seconds

CREATE TABLE blog_copyd
AS SELECT * from blog:

b W

[ Resutts| (=] Script output | B Explain | 59 autatrace |[ADEMS outout | @) owis, Output
Reszuls:

The CTAS statement uses relatively familiar syntax. Our CREATE TABLE and SELECT
clauses are the same as the ones we've seen previously. The only real difference is
the addition of the AS clause, which defines the statement as a CTAS. The statement
reads the column structure, datatypes used, and the table data itself and creates a
new table, blog_copy2 with this information. We can see this in the following query:

[= companyiink @orcs I
FPERRO® B8 ¢ 003092153 seconds

SELECT * FROM hlog_copy2:

i W

[ Resutts | [ ] Sicript Output | BExplain | 89 autotrace | DEMS Output | @) 0w, Output
Results:

ELOG_ID | BLOG_URL | ELOG_DESC | HIT_COUNT
1 1 hHitps by companylink .comblogifiohnzon  Jims blog 123
2 2 kittpc Shaewesy companylink .comblogimyvilliams Desktop rallout progress blog 32
3 3 httpcifeewewy companylink .comiblogfgmoore Garyhlog! 24
4 4 hittp: Sy companylink .comblogklewis Winter sales push blog 18
5 5 hittp: Sy companylink .comblogfmagarcia Matts cool blog 6

[327]



Creating Tables

The CTAS command can also be used to make a partial copy of a table, either in
terms of columns or rows. The following example shows us a CTAS command that
partially copies the columns from the blog table:

D comparyiinkgorcy I
FPERRBO BB ¢ 00378995 seconds
CREATE TAELE blog copy3

nS SELECT blog_url, blog desc
FROM blog:

e W

[ Resutts | [=] Script Output | B Expiain | 59 autotrace | FDEMS Outout | ) owia Output
Results:

While the original, or source, blog table has four columns, two with datatype
NUMBER and two with datatype vARCHAR2, our CTAS command only selects the two
VARCHAR2 columns. The resulting table, blog_copy3, contains only the blog_url
and blog_desc columns, along with all the rows. This limits our copied table at the
column level —we can also restrict at the row level using a WHERE clause.

Dcampanyﬁnk@orc! I
EEEO 88 ¢ 004699564 seconds

CREATE TABLE blog_copyd
RS SELECT * FROM blog
THEFE blog_id < 4:

e, W

[ Resuts [ =] Script Output |?aExp|ain |?5%].ﬂ-.utntrace |@DBMS Output | G4 Chiva, Output
Results:

Here, although the source table, blog, has five rows, we select only those rows where
the blog_id value is less than 4, resulting in a copied table, blog_copy4, which has
all the columns from the source table but only three of the rows.

[328]




Chapter 9

The power of the CTAS statement lies in the fact that we are only limited by the
SELECT clause that we use. Table joins, sub-queries, single and multi-row functions,
and much more can all be used as the basis for a new table. Recall for a moment
some of the complex SELECT statements we have used through the course of the
book. Any of those can be used to create an entirely new table.

SQL in the real world

M Although subjects such as table permissions are outside the scope of
the SQL Expert exam, it is worth noting that the CTAS doesn't make a
Q complete copy of everything about the table. While a CTAS will copy
the structure and data of a table, it does not copy table permissions,
called grants, that allow different users to access the table.

Modifying tables with ALTER TABLE

As much as we may try to make a table perfect the first time, SQL programmers
are often called on to modify existing tables. To do so, we use the ALTER TABLE
command. The options to modify existing tables available to us with ALTER TABLE
are numerous. They include the ability to:

¢ Add columns to a table

e Remove columns from a table

e Change the storage options and location for a table

e Change the datatype and scope of columns in a table (with some restrictions)

e Rename a table

Adding columns to a table

When we need to add a column to a table, we use the syntax ALTER TABLE. . . ADD.
With this clause, we specify the name of the column to be added, along with the
datatype. An example using our blog_copy table is shown in the next example:

Dcompanyﬁnk@orc! |
FPERSRS B8 ¢ 075433956 scconds

ALTER TABLE blog copy
ADD (blog favorites varchar?(z00)):

. J
[> Resuit= 1= | Soript Output | Ef_lEprain |.§:.:‘_|.='-“.L,tt|:|trace | EDBMS Cutput ,“ G, Ottt
Resuts:

[329]




Creating Tables

In this example, we add the column blog_favorites to the blog_copy table that
we created earlier in the chapter. We use the ALTER TABLE. . . ADD syntax and place
the column name and datatype within optional parentheses as we do when using
CREATE TABLE.

When a column is added to a table, that column contains no values. Thus, in our
example, if the blog_copy table contained one million rows, the blog_favorites
column we added would hold one million NULLs. The best way to populate
columns such as these is by using an UPDATE statement that scans through the rows
and places an appropriate value in the new column. We see the new column and its
lack of a value in the following screenshot:

D- companyiink orcl [

PERRO® B8 ¢ 001409173 seconds

SELECT *
FROM blog_copy:

% 4

B> Resutts =] script output | BRExplain | 3 autotrace | Eoens output | €4 owia outut
Reszults:

BLoc_p B ELoG_URL @ eLoc_pesc|@ mT_count [{ ELOG_FavORTES

1 1 kg ey companylink .comblogfiohnson Jims hlog 123 (nul

Another way to immediately populate a column during its addition to the table is
using the DEFAULT keyword. In the next example, we add another column to the
blog_copy table; a numeric one that uses the DEFAULT keyword:

(= companylink @orci I
EEZRO 88 ¢ 002432097 seconds

ALTER. TAELE blog_copy
APD (blog mmber number (5) DEFRULT 1);

%
[ Resutts | (=] Script output | B Explain | B Autatrace | ADEMS Output | ) ovis, Output
Rezults:

[330]



Chapter 9

[ companyiink@orcy |
FPERRO® 88 ¢ 00120008 seconds

SELECT *
FROM blog_copy:

-

(> Resutts | [=] script output | 55 Explain | 55 Autotrace | ZADEMS Cutput | @ owm, output
Resuts:
6060 [§ BLoG_URL [8 eLocpesc|l T count [l BLoc Favormes [ BLOG_nUMEER
1 1 http: iy companylink.comblogfichnson Jims blog 123 (null) 1

From this SELECT statement, we see that the blog number column has been added
as the last column in the table. However, unlike our first added column, blog
favorites, the blog number column has a value, 1, listed in the column. The
DEFAULT keyword automatically populates the column with the value 1 for every
existing row in the table. Once a column is defined with a DEFAULT value, that
default becomes a part of the column's behavior. Thus, when adding new rows to
the table, the DEFAULT value will be added to that column if no value is specified.
However, this behavior only works with INSERT statements that use named column
notation. If we attempt to insert into a table using positional notation and leave no
value for the column to be defaulted, we would receive an error indicating that not
enough values were specified. The use of DEFAULT can also be specified during the
creation of the table itself as part of a column's definition, immediately following the
datatype definition.

B SQL in the real world

Note that adding a column with the DEFAULT keyword to a table with
millions of rows will take a significant amount of time. One trick to
~ avoid this problem is to add NOT NULL to the end to make an instant
addition. For example:

ADD (blog number number (5) default 1 not null) ;

We can also add the column without a default value and then add it
- immediately after using an UPDATE statement. -

[331]



Creating Tables

Changing column characteristics using ALTER
TABLE... MODIFY

Despite our best attempts at data analysis, at times: we need to change the
characteristics of existing tables. Say that we create a table with a column that
contains a URL value in our Companylink database. Later, it turns out that the
column isn't large enough to hold many of the long, complex URLs that we need to
store. In this situation, we need to be able to widen, or increase the maximum size, of
our URL column. To do operations such as these, we use the ALTER TABLE. . . MODIFY
statement. An example of widening a column is shown as follows:

Dcampanyﬁﬂk@am! |
PERERO B8 ¢ 013771108 seconds

ALTER. TABELE blog copy
MODIFY (bhlog faworites wvarchar? (400));

% 4
[ Resultz J Soript Cutpt
Results:

B Explain | B Autotrace | ADEMS Output | € Owia Output

We use the keyword MODIFY to indicate that we are changing the specified column,
blog_favorites, in some way. We essentially reassign the datatype and size.

Here, we've changed the blog_favorites column in our blog_copy table to have a
maximum length of 400 instead of the original 200. This allows for larger values than
previously. Note that this operation only changes the maximum length for values in
the column and not the values themselves.

If we can use ALTER TABLE. . . MODIFY to increase the maximum length of a column,
can we also use it to decrease that max length? We can, with certain caveats. We can
decrease the max length of a column, but not less than the length of the widest value
contained in the column as shown in the following example:

[332]



Chapter 9

PERRS®

D comparyiink morcs I

M8 & 013771105 seconds

ALTER TABLE blog copy
HODIFY (blog url wvarchar?(30)):

%, d

Results:

B> Resuts | (=] Soript Output | BEsplsin | B autotrace |[ADEMS Outout | € 0w, Output

Error encountered

X

o An error was encountered performing the reguested operation:

ORA-01441; cannat decrease column length because some
value is too hig
01441, 00000 - "cannot decrease column length because some
value is too big"

Hoause:

A ction:

“endor code 1444 Error &t Line: 1

Our blog_url column in blog_copy has a maximum length of 250. Here, we've
attempted to decrease the max length to 30. However, our row in the table has a
column value in blog_url that is 40 characters in length. Thus, we cannot resize it to
a length of 30. We can, however, resize a column to a lower max length if no values
in the column are greater than that value. The next example correctly resizes the

blog_desc column from a max length of 4000 to 2000:

CERE®

[ companylink @orct I

B8 ¢ 008560725 seconds

ALTER TABLE blog copy
MODIFY (blog_desc varchar2 (Z000));

W

Results:

[ Resuits| =] Script Output | B Explain |§e]mntrace |[3,DE:MS Output | G O Cutout

[333]



Creating Tables

We can also use ALTER TABLE. . . MODIFY to change the datatype of a column, with
certain restrictions. We can change the datatypes of columns into other similar
datatypes, such as CHAR into VARCHAR2 and vice versa. In our next example, we
convert the blog_desc column, a VARCHAR2, to a column with the cHAR datatype.

D companylink worct I
FEERO 88 ¢ 02076055 seconds

ALTER TRABLE blog copy
MODIFY (blog desc char (2000)]);

F .

[ Resuts | [ Script Output | ERExplain |?§]Amotrace |@DBM5 Output | G0 O Cutput
Resutts:

We can only change the datatype of a column to a dissimilar one if the column is
empty. Our blog_favorites column has datatype VARCHAR2 (2000) . However,
we can change it to a numeric datatype, NUMBER (10), but only because there are no
values contained in it. This is shown as follows:

[ companylink @orci I
ERRO BB ¢ 007770736 seconds

ALTER. TABLE blog_copy
MODIEY (blog favorites mumber(10)]);

.

[ Resuts | (=] Script output | BExplsin | B9 autotrace | FDEMS output | € 0w utput
Results:

[334]




Chapter 9

The ALTER TABLE. . . MODIFY statement can also be used to change the DEFAULT value
of a column if it has been defined, or add one if it has not. However, the changes only
affect future data, not the existing data in the table.

Removing columns using ALTER TABLE... DROP
COLUMN

Finally, with the last of our ALTER TABLE commands, we can remove, or drop, a
column altogether. To do this, we use ALTER TABLE. . . DROP COLUMN, as shown in the
following screenshot:

[}-campﬂ'ﬂyﬁnk@arci |
FERRO @8 ¢ 10065366 seconds

ALTER. TABLE blog_copy
DROF COLUMH blog mumber:

%
[ Resuts =] Script Output | ES)Explain | T Actatrace | ADEMS Output | € 0WAa, Output
Results:

There are a few syntactical rules to remember about ALTER TABLE. . . DROP COLUMN.
First, unlike the clauses ADD and MODIFY, this statement uses the syntax DROP COLUMN
instead of simply DROP. Second, while ADD and MODIFY both enclose the specified
column within parentheses, DROP COLUMN does not. We simply list the name of the
column to be dropped. When a column is dropped, all of the data it contains is

also dropped.

[335]



Creating Tables

When a column is dropped, the table in question is locked, preventing certain access
to it. For this reason, there is an alternative method to drop columns —one which
gives the administrator greater control. Using the ALTER TABLE. . . SET UNUSED,

we can "mark" a column as unused. Once a column is set as unused, it is no longer
displayed as part of the table structure and cannot be used to contain new data. It is
essentially made invisible. In our next example, we set the blog_favorites column
to unused.

Dcampanyﬁnk@orc! I
FPERRO B8 ¢ 010113102 seconds

ALTER. TAELE blog copy
SET UHUSED (blog_faworites):

e, W

[ Resutts | [5] Script output | BExplain | 5 autotrace | ADEMS Output | €% owia output
Results:

Once a column is set to an unused state, it can be deleted at a later time using the
ALTER TABLE. . . DROP UNUSED command. This command drops all columns in a
particular table that have been set to unused. This process allows an administrator
to wait until an opportune time to drop a column from a table, such as off-hours
when the table is not heavily used. In the following screenshot, we drop the
blog favorites column that was set to unused:

Dcampanyﬁnk@orc! I
ERRO B8 ¢ 02655876 seconds

ALTER TABLE blog_copy
DROP UHUSED COLUMHS :

e W

[ Resutts | [5] Seript output | BExplain | B autctracs | B0EmMS outout | ) owis output
Results:

[336]



Chapter 9

SQL in the real world

The SET/DROP UNUSED commands were added by Oracle to benefit

5 large database environments with a high degree of activity, such as
data warehousing and decision support environments. In such systems,

dropping a column during times of high activity can produce unwanted

performance issues.

Removing tables with DROP TABLE

When they are no longer needed, tables can be dropped using the DROP TABLE
command. Unlike the TRUNCATE command, which removes only the data from a
table, the DrROP TABLE command removes both structure and data. Its syntax and use
are shown as follows:

[}campanyﬁﬂk@om! |
FPERRO BB ¢ 196632195 seconds

DROF TAELE blog copy:

%
[ Resutts | |5 Script Output | BRExplain |_§.:jAmntrace | ADEMS Output | £ Oia Output
Results:

As with the other commands shown in this chapter, DROP TABLE is a DDL command.
Once a table is dropped, it is dropped permanently. There is no facility that allows us
to rollback a dropped table. We've created several test tables in this section. If you wish
to remove them, you can use the DROP TABLE command with the following tables:

® Dblog copy2
® Dblog copy3
® Dblog copy4

L4 test

SQL in the real world

KY Because of the irreversible nature of DROP TABLE, it is sometimes
Q advisable to save a temporary copy of either the table or its data before
a drop. We can use commands such as CTAS or tools such as Oracle's
Data Pump to do this.

[337]



Creating Tables

Using database constraints

Throughout this book, we have continually noted that what makes a relational
database different are the relationships formed between its tables. In Chapter 1, SQL
and Relational Databases, we discussed the entity relationship diagrams that visually
display these relationships. We noted that in a relational model, tables may have

a one-to-one or one-to-many relationship. For instance, in our Companylink data
model, each employee can have one or more addresses listed in the address table.
But, what would happen if we accidentally attempted to insert address information
into the address table for an employee that didn't exist in the employee table? Up

to this point in what we've learned, nothing is really stopping this from happening.
However, doing so could have unforeseen consequences in subsequent queries. If
the address table has rows that don't relate back to the employee table, then no
relationship really exists between the two. There are other situations where the
wrong type of data might be entered into a row. Datatypes are designed to prevent
this from happening, but only to a certain degree. For instance, the gender column
in our Companylink employee table should generally hold one of three possible
values—'M' for male, 'F' for female, and possibly an 'N' for "not specified". What if a
letter 'R' is input by mistake? We would most likely write queries that use the gender
column under the assumption that the column holds one of the three possible values.
If there are other values in the table, they would likely be accidentally excluded. We
need a way to prevent situations like this from happening.

Understanding the principles of data integrity

We refer to rules such as these as the business rules for our data model. Business rules
usually need a type of enforcement that goes beyond simple datatypes. Datatypes
alone cannot enforce correct table relationships and the inputting of correct values.
The process of enforcing business rules in a database model is known as data
integrity. Data integrity ensures that the data contained in the database conforms

to the particular characteristics of our business model. Table relationships, data
integrity checks, and mandatory fields are all examples of data integrity.

SQL in the real world

The topic of data integrity can be a somewhat controversial one. Besides
~ enforcing it at the database level, it can also be done at the application
Q level. For instance, developers could create a web page that evaluates
values for certain conditions before they are sent to the database.
However, there is a place for both—it is generally a mistake to entirely
exclude one method for another. -

[338]



Chapter 9

Enforcing data integrity using database
constraints

To ensure that our database data maintains the proper level of data integrity, we
make use of database constraints. Database constraints place certain conditions
on data as it is entered into our tables. There are five primary types of constraints
available to us in Oracle:

e NOT NULL

e PRIMARY KEY
e FOREIGN KEY
e UNIQUE

® CHECK

Constraints are associated with a particular column. They can also be created at two
levels — either as part of the column definition or the table definition. Some, but not
all, types of constraints can be done at both levels. We explore each of the constraint
types in upcoming sections and note at which levels they can be created. We'll start
by using constraints on small test tables and then move on to using constraints
within our Companylink tables.

NOT NULL

The most basic type of constraint available to us is the NOT NULL constraint. We've
seen NOT NULL before, but we hadn't identified it as one of our five constraints. NOT
NULL enforces mandatory values in our tables. If a column is constrained by NoT
NULL, then no NULL values can be entered. A NOT NULL constraint is defined only at
the column level, which means that it can only be created using a CREATE TABLE or
ALTER TABLE statement within the column definition. The following example shows
the creation of a test table with two columns —one with a NOT NULL constraint and
one without:

[ companyiink @orci |
FERRO B8 ¢ 00209733 seconds

CFERTE TABLE test nn |
colunnl varchar?(5) HOT HULL,
colunn? varchar?(5)

1:

F%.
[ Resutts | [ =] Script Qutput | E=plsin |_§;‘jAutotrace | ADBMS Output | ECWAA Output
Resufts:

[339]




Creating Tables

When we enter data into the test_nn table, our NOT NULL constraint prevents us
from entering NULLs into column1. We see this demonstrated here:

Dcompanyﬁnk@orc! [
FPERAES BB ¢ 002905733 seconds

IHSERT THTO test_nn VALUES (HULL, 'Torld';);

% 4
> Resutts | [ Script Output | B Explain |E‘]Autu:¢race |[3.DE:M5 Output | @) o Output
Resufts:

Error encountered D_<|

Ar error was encountered performing the requested
o operation;

QOFA-01400; cannaot insert MULL into ("COMPANYLINE""

TEST_NM" "COLURMA™

01400, 00000 - "cannot insert MULL into (9%s)"

HCause

*Action:

“endar code 1400Errar &t Line: 1

If we change our insert statement, as shown in the next example, we can enter a
value into both column1 and column2.

[ companylink @orcl [
FPERRO WME ¢ 002730457 seconds

IHSERT IHTO test nn VALUES ('Hello', 'World'):

b W

[ Resuts | [5] Script output | SExplain | Bautatrace | @0EMs output | € owe output
Results:

[340]



Chapter 9

As we mentioned, column level constraints can also be added to columns using an
ALTER TABLE. .. MODIFY statement. To do so, we include the NOT NULL keyword in
the column definition, similar to the way we changed datatype definitions earlier in
the chapter. Adding a NOT NULL column constraint to a table is demonstrated here:

[}campanyﬁnk@om! |
FPERRSO BB ¢ 024443135 seconds

ALTER. TABLE test_nn MODIFY (column: HOT HULL) ;

i W
[ Resutts | | =] Script Output | EExplain | £ Autotrace | ADEMS Output | €% CiAA Output
Results:

Note that we cannot add a NOT NULL constraint to a column that has existing NULL values.
To do so will result in an error and would require us to update all existing NULLs
with proper values before placing the constraint on the column.

PRIMARY KEY

The PRIMARY KEY is the constraint that forms the foundation of the relational
database model. When paired with a FOREIGN KEY constraint on another table, it
forms the parent-child between the two. It has three characteristics that allow for the
establishment of relationships between tables:

e A primary key value cannot be null

e All primary key values must be unique within a column

e Primary key values can optionally be paired with a corresponding foreign
key value in another table, forming a relationship

SQL in the real world

Y Because its values are unique, a primary key can be used to uniquely
Q identify each row in a table. For this reason, businesses often use
account numbers as primary keys. Your bank account number might
well be the primary key for a table in a banking database system.

[341]



Creating Tables

Primary keys can be defined in many different ways. A PRIMARY KEY can be defined
on both new tables and existing tables using CREATE TABLE and ALTER TABLE,
respectively. Our next statement shows us a simple test table created with a
primary key:

Dcompanyﬁn.k@orc! I
FERRO B8 ¢ 034560317 secons

CBEATE THBLE test pkl |

columnl number (5] PRIMARY EEY,
column:s varchar?(10)

I:

F .

> Resutts | [] Script Outiut | BExplain | B autotrace |ADEMS Outout | ) owa, Output
Resuts:

Here, the test_pk1 table has been defined with a primary key on columni.
From this point, values inserted into that column must be unique within the
column and not null. Any attempt to insert a value that violates those constraints
will result in an error.

Dcompanyﬁnk@om! I
FERRO B8 ¢ 022459948 seconds

IHSERT IHTO test pkl VALUES (1, 'Hello'):

e W

[ Resutts | =] Script Qutput |°Eg]Exp|ain |§g]Autatrace |[,:{!,DEFMS Output | G Cvia, OutpLt
Results:

[342]




Chapter 9

A primary key can also be added after a table is created. In our next example, we

create a table that initially has no primary key:

Bcompanyﬁnk eorc I

FERRO B8 ¢ 010104441 seconds

CRERTE TABLE test pkZ |
coluntil number (5],
colunn: warchar2(l0)
1:

=
[ Resutts| (=] script Output | B)Explain | B sutetrace | EDEMS output | ) 0w, Output
Results:

Next, we add the primary key on columnl using ALTER TABLE. .

. ADD PRIMARY KEY.

Dcampaﬂyﬁnk morck I

D % @ a @ E h é 0.04540865 secands

ALTER. TABLE test_pk:Z ADD PRIMARY KEY (columnl):

av
B> Resuits| | =] Script output | B Exptain |E].ﬂ.utl:-trace |[3DE:MS Output | G4 Cinin, Output
Results:

[343]



Creating Tables

In addition to these two ways of creating a primary key, they can be added using

a third method as well. The third method uses what is known as an out of line
constraint. The previous examples make use of inline constraints because they are
defined with the column definition. Out of line constraints are defined with the table,
but they are added in a clause near the end of the CREATE TABLE statement, as shown
in our next example:

Dcompauyﬁnk@orcl’ |
FERRO 88 ¢ 00249378 seconds

CEEATE TABLE test pk3 |
columnl number (5],
columnz  varchar? (10),
PRIMARY EEY (columnl)
1

% 4
[ Resutts =] script Output | B)Explain | 3 autatrace | Epems output | Q) owa output
Results:

A table can have only one primary key. It can, however, use a primary key that is
formed by more than one column. This is known as a composite primary key. When
a composite key is used, it is the pair of values itself that must be unique. Thus, with
a composite primary key, we could have multiple occurrences of the same value in
one column, provided that each value is paired with a different value in the second
column. It is the pair of values itself that must be unique. In the following screenshot,
we create a table that uses two columns as its primary key. We do this using an out
of line constraint with a slightly different syntax that allows us to actually give the
primary key a name. Note that a composite primary key can only be created out of
line, since inline constraints can only be used in reference to a single column.

Dcompanyﬁnk@arc! |
ERERG 88 ¢ 004421148 seconds

CFERTE TABLE test pk4d |

columnl number (s,

columnZ  varchar2(10),

COHSTRATHT pkl PRIMARY EEY (columnl, columnz)
1

%
B> Resuts [ =] Scrit output | S Explain | 59 autatrace | DEMS Outout | € cvie Outout
Resufts:

[344]




Chapter 9

Natural versus synthetic

In real databases, the types of data used for primary key values are handled in one of
two ways. Some organizations use an actual value for the primary key, while others
will generate a value. A natural key (also known as a domain key) is a primary

key whose value actually has meaning within the business model. An example of

a natural key would be a column that contains a social security number. The SSN

is used to maintain uniqueness throughout the table and is actually used within

the application. By contrast, a synthetic key (sometimes called a surrogate key) is

a value that is generated and has no purpose other than maintaining uniqueness

and forming relationships with other key values. A synthetic key is often generated
using a database object called a sequence (covered in the next chapter) that generates
sequential values as the data is inserted into a table. Our Companylink tables make
use of synthetic keys. The first column of each table holds a value that exists simply
to uniquely identify each row and relate that column to another table. Thus, in the
employee table, the values in the employee_id column have no intrinsic meaning.
They are values that can be used for a synthetic key.

SQL in the real world

The choice to use natural or synthetic keys is often decided by an
~ organization's coding standards. It can often be difficult to standardize
Q on natural keys, since not all data can be used to establish uniqueness.
Although using synthetic keys requires some extra space for data that
isn't real, in the long run it can be a good way to guarantee that table
= relationships are maintained.

FOREIGN KEY

The complement of the PRIMARY KEY constraint is the FOREIGN KEY. A FOREIGN
KEY forms the basis of referential integrity — the foundation of a table relationship.
Referential integrity ensures that when a value is entered into a child table, that key
value must have a corresponding key in the parent table. Thus, if we enter a value,
143, into a table with a foreign key relationship, there must be a corresponding value
143 in the parent table. Foreign keys can be created during or after table creation and
must always reference another primary or unique key.

[345]




Creating Tables

In the following example, we create a child table with a foreign key that relates back
to the primary key of one of our test tables:

Dcompanyﬁnk@orcf I
FEERS B8 & | 005729808 seconds

CEERTE TABLE test fk |

colunnl number (5],

columnz wvarchar? (5],

colunns number (5],
COHSTRATHT fk1 FOREIGH KEY (column3) REFEREHCES test pkl(columnl)
1:

. 4

> Resuts [ Seript Output | BExplain | 3 Autotrace | A0EMs output | €1 owia output
Results:

Here, column3 in the test fk table relates back to columni in the test pk1 table.
We use the keyword FOREIGN KEY to denote the establishment of a foreign key
column and the REFERENCES clause to indicate the table and column to which it
relates. If we attempt to insert a value into column3 that does not exist in columni
of the test_pk1 table, as shown in the following example, we receive an error:

[ companysink @orcs I
FEERAS BB ¢ | 00572906 seconds

IHSERT IHTO test_fk WALUES (100, 'Hello', 14);

. 4
B> Resutis| (=] Script Output | 15 Explain | 3 autotrace |[DEMS output | ) 0w outout
Results:

Error encountered [5__<|

9 An errar was encountered performing the requested operation:

ORA-02291: integrity constraint (COMPARNYLINK FH1) violated - parent key
nat found

02291, 00000 - "irtegrity constraint (%s.%s) violated - parent key not found”
*Cause; A foreign key value has no metching primary key value,

=Action:  Delete the foreign key or addd a matching primaty key.

“endor code 2281 Errar at Line:

O

[346]




Chapter 9

If we correct this statement to include the proper values for referential integrity, our
insert is successful. We insert a value of 1 into column3, since that value exists in our
test_pk1 table.

[ companyiink @orci [
FPEERRS B8 ¢ o0m519629 seconds

INSERT INTO test fk VALUES (100, 'Hello', 1):

. 4
> Resutts| [ Script output | B Expisin | 8 autotrace | DEMS outout | @) owis, output
Reszuts:

Deleting values with referential integrity

Establishing referential integrity between tables presents a unique challenge
when deleting rows. We have already seen that inserting a child row with no
corresponding parent row is not allowed. What about the reverse? Can we delete
a parent row and leave the child row as an "orphan"? Let's test this possibility.

Dcompanyﬁnk@ord [
FPERRS B8 ¢ 0015186529 seconds

DELETE FROM teat pkl
THERE columnl = 1;

o W
> Resutts [ =] Secript Output | ¥ Explain | 3 Autetrace | ADEMS Output | €3 owe output
Results:

Error encountered f'5__<|

0 An errar was encountered performing the requested operation:

OR&A-02292: irtegrity constraint (COMPARNYLINK FKA) violated - child record

found

02292, 00000 - "integrity constraint (%2 %s) violated - child record found"

*MCause:  attempted to delete & parent key walue that had a foreign
dependency.

*Action:  delete dependencies first then parent or disable constraint.

“endor code 2292Error at Linec

o034

[347]




Creating Tables

As we can see, we are not allowed to delete the parent record and orphan the row
in the test_fk table. This would violate the reason that we created the relationship
in the first place. In order to delete the parent row, we would need to first delete the
child row that matches the parent and then delete the parent row.

UNIQUE

A somewhat less common constraint is the UNIQUE constraint. A UNIQUE constraint
is very similar to a primary key in that it enforces unique values within a column and
that it can be related to a foreign key. However, it differs in that a UNIQUE constraint
allows NULL values. A UNIQUE constraint can be created both inline and out of line,
and can be built during table creation with CREATE TABLE or after with ALTER TABLE.
A UNIQUE constraint is shown in our next example:

[ companyiink @orcy |
FERROG B8 ¢ 002416704 seconds

CEEATE TRBLE test uk |

colunnl mumber (5],

colunn? wvarchar?2(5),
COHSTRATHT ukl UHIQUE (columnl)
i

e W
> Resutts | || Script Output | B Explain | B sutotrace | ADBMS Output | € s, Output
Rezults:

CHECK

One of the primary focuses of data integrity is ensuring that proper data is entered
into columns. As an example, we referred earlier in the chapter to a gender column
whose business rules dictate that only the values 'M', 'F', and 'N' should be allowed.
To enforce rules such as these, we use the CHECK constraint. When using a CHECK
constraint, we specify a condition that must be met for the data to be allowed into
the table. These conditions are similar to the conditions for WHERE clauses and often
include conditions of equality or inequality, as well as the 1N and LIKE clause. CHECK
constraints can be created with the table or added later with ALTER TABLE. They can
also be created inline or out of line. However, any CHECK constraints that involve
multiple columns must be defined out of line.

[348]




Chapter 9

Our next statement shows a table created with several CHECK constraints:

[}campanyﬁnk@orcl |
PERRO B8 ¢ 005493324 seconds

CRERTE TABLE test ck |
colunnl number (5) CHECK (columnl = 0,
colunnz wvarchar?(5) CHECK (columns IH ('One','Two','Three')],
colunns warchar?(100) CHECE (column3 like ['The number is %'))

1:

b W
[ Resutts. | = Scoript Output
Results:

Explain | B avtetrace | FDEMS Outout | ) 0wia Output

The example indicates that columni can only accept values that are greater than
zero, column2 can only accept the values 'One', "Two', or 'Three', and column3 must
include the string, 'The number is' at the beginning of every value.

Extending the Companylink Data Model

Thus far, we've learned about the syntax and use of constraints using simple test
tables. In this section, we take what we've learned and apply it to creating new tables
and constraints in our Companylink database.

Adding constraints to Companylink tables

Our companylink tables have been designed as a fully relational model. Each table
has an ID column that relates to another table, although no constraints exist. We can
take what we've learned thus far and add constraints to our Company1link tables. Our
model is centered on our employee table, so we can start there.

[349]



Creating Tables

Adding referential integrity

In this example, we add a primary key to our employee table:

Dcompanyﬁnk@orcl‘ I
PERAO B ¢ 011330606 seconds

ALTER. TABLE enployees
ADD PRIMARY KEY (employee_id):

.

B> Resute | (=] Soript Output | B Esxplain | 3 Autotrace |[ADEMS Outout | ) owia Output
Results:

Our existing values in the employee id column meet the requirements of a primary
key —they are unique and no NULLSs exist in the column. Next, we add a foreign key
to the address table that relates to the employee table.

Dcompanyﬁﬂk@orc! I
FPERRAD BB ¢ 016515799 seconds

ALTER TABLE address
ADD FOREIGH EEY (employee_id] REFERENCES employee;

W

B> Resutts| [£] Seriet output | BExplsin |5‘;a]mntrace |@DBMS Cutput | (G0 SRR, Cutput
Results:

[350]



Chapter 9

Once this relationship is established, we can no longer insert values into the
address table unless a corresponding value exists in the employee_id column in the
employee table. Our next statement displays an example of an unsuccessful attempt:

D-companyﬁnk@orcl’ [
FERRO BE ¢ 016615799 seconds

IHSERT IHTO address
VALUES (17, '505 Park Place', 'Topeka', 'K3', 25745, 20):

.

> Resutts [ seript Output | EExplsin |%Autotrace |l3.DBMS output | e Output
Resutts:

Error encountered E|

o An error wwas encountered performing the requested operation:

QORA-02291: integrity constraint (COMPANYLIMNK.SY'S_C0011308) violated -
parent key not found

02281, 00000 - “irtegrity constraint (s %s) violsted - parent key not found"
*ause: A foreign key value has no matching primary key value.

toction: Delete the foreign key or add a matching primary key.

“endor code 2291Errar at Line: 1

0K

By simply changing the value inserted for employee_id, we can correct this
problem, as shown in our next example. This relates the value back to an existing
employee_id in the employee table and results in giving the employee with ID
number 16, Laura Thomas, two addresses in the database. This is allowed since
there is a one-to-many relationship between the employee and address tables.

Dcompanyﬁﬂk@orc! [
FPERRBAS BE & 000497018 seconds

THSERT THTD address
VALUES (17, '509 Park Place', 'Topeka', 'ES', 28745, 16);:

W

B> Resuts (=] Script Output | BExplain | B autotrace | DEMS output | ) owa outout
Resufts:

[351]



Creating Tables

The code file contains a script called companylink constraints.sql that creates
the primary key and foreign key relationships for the Companylink tables. If you
wish, you can copy-and-paste the SQL statements from that file or run it as a script
to create the remainder of the constraints. Remember that a relationship between
employee and address has already been established in the previous examples.

If you have already run those statements, you do not need to run them again.

Adding a NOT NULL constraint

As people sign up for companylink, we want to ensure that we record their first
and last name in our database. To enforce this business rule, we can use a NOT NULL
constraint. In the next example, we place a NOT NULL constraint on the first_name
and last name columns in the employee table.

[ companyiink @orci |
FPERRO B8 & 003273795 seconds

ALTER. TABLE euployee
MODIFY (first name HOT HULL, last name HOT HULL):

..
[ Rezutts =] script Output
Results:

EHExplain | B Autctrace | ADEMS Output | £ 0w Output

Adding a CHECK constraint

As our Companylink database grows, we want to prevent incorrect data from being
accidentally entered. As we've noted, we could do this at the application level. This
can often involve a lot of additional coding on the application side. We, however,
have chosen to do this with constraints. The next screenshot displays a simple
example of a named CHECK constraint that limits the possible values in the gender
column in the employee table to three:

[)- companylinkmorcl |
FPERRS® BB & 019163245 seconds
ALTER TABLE employee

ADD COHSTRATHT emp_gender ck
CHECKE (gender IN ('M', 'F', 'N'j):

. 4
[ Resutts| =] Soript Output | EExplain |f;].i\ututrace | ADEMS Output | WA Output
Resuts:

[352]




Chapter 9

Since we're familiar with the process of adding constraints to our Companylink
tables, feel free to try some of your own. Just be certain that constraints make logical
sense and don't violate the existing table structure.

Adding tables to the Companylink model

Now that we've learned how to create tables that conform to business rules, let's
expand our database. Say that we've received new requirements from the application
design team. Developers are coding new changes to the Companylink application
that will allow participants to list their personal interests on their home page. At

this point, we want to add their favorite movie and music genres to our site. The
developers are handling the application coding, so it's our job as SQL coders to
expand our model to include this new data and create some new tables to store it.

It's worth noting that there is more than one way to proceed. Employee interests
could be lumped together in a single table that relates back to the employee table.
However, as our database grows, it is possible that this wouldn't represent a fully
normalized model. We could also add new columns to the employee table, which
would be a normalized approach. But, in order to fully utilize our new table and
constraint creation abilities, we'll take the approach of adding a table for interests
that relates back to employee with child tables for the different interests themselves.
This allows us to add a new interest down the road by simply adding another table
rather than restructuring.

Our table for employee interests, called interest, will serve as a kind of bridge table to
the specific interests. We will need to relate the interest table to the different specific
interest tables, which we'll call movie genre and music genre. Thus, we need three
tables that relate in the ways we've noted. One very important fact to remember is
that the foreign key constraints will be on the interest table. Since the foreign keys
can only relate to existing tables, we must create the interest table last. The movie_genre
and music_genre tables need to exist first. We create these in the next two examples:

D- comparylink @orch |
FERRS BB ¢ | 002742511 seconds

CBEATE TAELE movie_genre |

movie_genre_id number (10) primary key,
movie_genre_desc varchar? (100)
1:
%
[ Resutts | [ =] Script Output | EE=plain |_F;.jAmutrace | ADEMS Output | CCWe Output
Resuts:

[353]



Creating Tables

D-companyﬁnk@orc! I
FERRO B8 ¢ 002179299 seconds

CREATE TABLE music_genre |

misic_genre id number (10) primary key,
misic_genre_desc varchar? (100)
1:
.
B> Resuts =] Scrigt Output |?ngxp|ain |E|Autu:¢race |[3,DE:MS Output | (G4 Oa, Output
Results:

Each table has a primary key that will be used to relate to the interest table, as well as
a description column that details the particular genres in each table. Once the genre
tables are created, we can create the interest table as follows:

(= companylink @orct I
FPERRS B8 ¢ 00985533 seconds

CRERTE TABLE interest |
interest_id mumber (10) PRIMAEY KEY,
enploves_id number (10) HOT HULL,
misic genre id number (10) HOT HULL,
movie genre id number (10) HOT HULL,
COHSTEATHT int ewp_fk FOREIGH EEY (employee_id)
BEFEREHCES employee(enployee_id),
COHSTEATHT int mov_ fk FOREIGH EEY (movie_genre_id)
BEFEREHCES movie_genre(mowvie_genre_id),
COHSTHATHT int mus_ fk FOREIGH KEY [(music_genre id)
BEFEREHCES music_genre (music genre_id)

I:

. J

> Resuts | (=] script output | SExplain | ) autotrace | FDEMS output | ) cve Output
Resufts:

[354]




Chapter 9

To see this in action, let's load some data for employee #16, Laura Thomas, as
shown in our next set of statements. We first load a few rows for movie and music
genres, then a row in the interest table with her employee ID. We can execute these
separately, or together using the Run script button. The five inserts are shown at the
bottom of the screenshot:

Dcampanyﬁnk@orc.f I
D E @ 3 @ E B ? 0E611T47T seconds
Run Script (F5) |

INSERT INTO movie_genre VALUES (1, 'Drama');

IHSERT INTO movie_genre VALUES (2, 'Horror'):

THSERT THTO music_genre VALUES (1, 'Classic Rock'):
IHSERT INTO music_genre VALUES (2, 'Easy Listening');
INSERT INTO interest VALUES (1, 16, Z, Z);

-~

[ Resuts | [E] Seript Cutput | SExpiain | 73 autotrace | E0eMS outout | ) avis output

¢BE

DESC blog copy

Name MNull Type

BLOG_ID NUMEER. {10}
BLOG_URL VARCHARZ (250
ELOG_DESC VARCHARE (4000)
HIT COUNT NUMEER. {10}

4 rows selected

rows inserted
rows inserted
rows inserted
rows inserted
rows inserted

- -

Now, if we want to know what Laura's music and movie interests are, we simply join
the four tables, as shown in the following screenshot:

Dcompanyﬁnk@orc! [
FERRO B8 ¢ 015424900 seconds

SELECT first name, last name, music_genre desc, mowvie_genre desc
FROM employees

HATURAL JOTH interest

HATURAL JOTH music_genre

HATURAL JOTH movie_genre;

W
B> Resuts [ Seript Output | S Explain |§'..€']Ammrace |l3.DBr-ns utput | € ciia, Outaut
Results:

FIRST MNAME | LAST_NAME| MUSIC_GENRE_DESC | MOWIE_GENRE_DESC
1 Laura Thomas Easzy Listening Horrar

[355]




Creating Tables

It appears that Laura likes easy listening music and horror movies —an
interesting combination!

Summary

In this chapter, we've brought the key concepts of an RDBMS together with the
power of SQL. Using Data Definition Language (DDL), we've learned to create
tables with different datatypes that specify the kinds of data we wish to store.
We've enforced business rules with different types of database constraints,
including primary and foreign keys, unique keys, not nulls, and check constraints.
Finally, we brought this knowledge into the real world by applying constraints to
our Companylink tables, as well as creating new ones.

Certification objectives covered

e Categorize the main database objects

e Review the table structure

e List the datatypes that are available for columns

e Create a simple table

e Explain how constraints are created at the time of table creation

e Describe how schema objects work
In this chapter, we introduced the concept of database object creation using Data
Definition Language. However, there are many other types of database objects

available to us. In our next chapter, we'll look at several of the most important ones,
including objects that help increase database performance.

Test your knowledge

1. Which of the following statements about SQL sub-languages is true?

a. Data Definition Language (DDL) is a sub-language of Data Manipulation
Language (DML)

b. DML is a sub-language of DDL
c. Both DML and DDL are sub-languages of SQL
d. Neither DML nor DDL are related to SQL

[356]




Chapter 9

Which of the following terms describes a way to classify the types of data
that are possible in a particular column?

a. Formula
b. Sub-query
c. Function
d. Datatype
Which of the following datatypes stores alphanumeric data in a fixed
length format?
a. CHAR
b. VARCHAR
c. VARCHAR2
d. DATE
Which of the following datatypes stores alphanumeric data in a variable
length format?
a. CHAR
b. NUMBER
c. VARCHAR2
d. DATE
Which of the following datatypes could store the value "Model Airplane"
without an error?
a. VARCHARZ2(15)
b. VARCHAR2(12)
c. CHAR(12)
d. NUMBER(15)
Which of the following numeric datatypes could NOT store the value 8479.34
without generating an error?
a. NUMBER(6,2)
b. NUMBER(5,2)
c. NUMBER(8)
d. NUMBER(8,3)

5
8

[357]




Creating Tables

7.

10.

Which of the following lines from a CREATE TABLE statement will cause
an error?

a. CREATE TABLE 7_blog (

b. new_blog_name varchar2(10),

c. old_blog_name varchar2(10),

d. old_blog_id number(4));
Which of the following lines from a CREATE TABLE statement will cause an
error?

a. CREATE TABLE select (

b. first_ number number(10),

c. second_number number(10),

d. average number(10,2));

Given the table creation statement below, which of the listed INSERT
statements will execute without error?

CREATE TABLE car (
make varchar2(8),
model varchar2 (15),
vin varchar2(10),
year number (4)) ;

a. INSERT INTO car VALUES ('Chevrolet', 'Camero', 'Y A4JFI84PO', 1979);
b. INSERT INTO car VALUES ('Ford', 'Mustang', 'IN1JFI48KD', 2010);

c. INSERT INTO car VALUES ('Toyota', 'Land Cruiser Prado',
'BM7JPL23AQ', 2002);

d. INSERT INTO car VALUES ('BMW!', 'E81', 'RT10UI55KD!, '01-JAN-05");

Refer to your Companylink tables. After the following command is run, how
many columns of each datatype exist in the "employee copy" table?

CREATE TABLE employee copy
AS SELECT employee id, branch id, project id
FROM employee;
a. 4 NUMBERs, 3 VARCHAR?2s, 1 CHAR and 4 DATEs
b. 4 NUMBERs
3 VARCHAR2s
3 NUMBERs

a o

[358]



Chapter 9

11. Which of the following ALTER TABLE statements would execute
without error?

a.
b.
C.
d.

ALTER TABLE blog ADD COLUMN (blog_number number(5));
ALTER TABLE employee ADD employee_number number(5);
ALTER TABLE project ADD (project_number number5);
ALTER TABLE award ADD (award_number number(5);

12. Assuming a column, blog_number, exists in the blog table, which of the
following modifications to the blog table is syntactically correct?

a.
b.

C.

d.

ALTER TABLE blog MODIFY (blog_number datatype number(5));
ALTER TABLE blog MODIFY (blog_number number(5));

ALTER TABLE MODIFY (blog_number number(5));

ALTER TABLE blog MODIFY COLUMN (blog_number number(5));

13. Given a table, profile, with a column called profile id that has a datatype
of number(10) and contains no data, what would be the outcome of the
following statement?

ALTER TABLE profile MODIFY (profile id wvarchar2(4000)) ;

a.

b.

d.

The statement will error since a number database cannot be changed to a
varchar2

The statement will error since a length of 4,000 is beyond the maximum
for the varchar2 datatype

The statement will not error but the datatype will not be changed to
varchar2

The statement will successfully change the profile_id column from
number to varchar2

14. Which of the following is not a type of database constraint?

a.

b.

C.

PRIMARY KEY
SEQUENCE
FOREIGN KEY
CHECK

[359]




Creating Tables

15. Which term describes a key value that is generated by the database and has
no relevance to application data, other than maintaining relationships in the

database?
a. Natural key
b. Synthetic key
c. Sequence key

d.

Composite key

16. Which of the following statements can be used to establish a primary key?

a.
b.

C.
d.

CREATE TABLE test ( coll number primary key);

CREATE TABLE test ( coll number, CONSTRAINT test_pk PRIMARY
KEY (coll);

ALTER TABLE test ADD PRIMARY KEY (coll);

All of these statements can be used to establish a primary key

17. Assume you have two tables, test1 and test2. The test1 table has a
primary key. The test2 table has a foreign key that relates back to test1's
primary key. Given the following statement, what happens?

DELETE FROM testl;

All values are deleted from the testl table
All values are deleted from the testl and test2 tables
Zero values are deleted from the test] and test2 tables

An error occurs

18. How does a UNIQUE constraint differ from a PRIMARY KEY?

a.

b.

A UNIQUE constraint enforces unique values, while a PRIMARY KEY
does not

A UNIQUE constraint cannot be used as the basis for a FOREIGN KEY
relationship

A UNIQUE constraint allows NULL values, while a PRIMARY KEY
does not

A UNIQUE constraint does not allow NULL values, while a PRIMARY
KEY does

[360]



10

Creating Other Database
Objects

When one thinks of the types of objects in a database, tables are the ones that most
commonly spring to mind. However, there are many types of objects that can be
created and stored in an Oracle database. They range from the tables that we have
seen thus far to objects that can be used to speed performance or simplify queries. In
this chapter, we examine a number of these objects and how they can be used within
the Oracle database.

In this chapter, we shall:

e Discuss the types of indexing available in Oracle

e Examine the syntax of CREATE INDEX

e Understand the use of views and their syntax

e Look at how sequences are used to generate key values

e Examine public and private synonyms

Using indexes to increase performance

For demonstration purposes, our Companylink tables are very small. This is so we
can easily load and manipulate them. However, in the IT industry, database tables
can be enormous. Today, tables with millions of rows are commonplace, while
billions of rows are not unheard of. In such environments, database performance
becomes a serious issue. It isn't enough that your table join completes without
error — it must often complete within a certain period of time (usually, as fast as
possible). Oracle performance tuning is an extraordinarily complex subject that, for
the purposes of this book, is mostly out of scope. However, since simple things can
often make a significant difference, we introduce the subject of indexing, which can
have a profound impact on the performance of our queries.



Creating Other Database Objects

Scanning tables

When a query is issued to the database, a table scan is performed. A table scan is
used to search table rows for those that match our query's conditions. When we
issue a SELECT statement without a limiting condition in a WHERE clause, a full table
scan is used to retrieve every row. We've requested every row, so it is preferable
that every row be scanned. However, more often, we don't want every one of our
queries to bring back every row, every time. Normally, we are attempting to bring
back a row or set of rows that meet a certain condition. In such situations, it seems
inefficient to search through every row in the table just to return a few. We need a
way to more quickly search through a table for the rows we require.

Understanding the Oracle ROWID

In the previous chapter, we mentioned that a primary key value will uniquely
identify any single row in a table. If we want to return one particular row, we only
need to query based on the desired primary key value. While primary keys make
data retrieval within a certain table very efficient, Oracle stores another type of key
value that can uniquely identify a single row in an entire database. In Oracle, every
row of every table contains a value called the ROWID. The purpose of the ROWID is
to uniquely identify a row globally —throughout the database. Thus, no two rows in
the database will ever contain the same ROWID. In addition, the ROWID is a pointer
to the actual physical location of a row in the database. The ROWID can not only
globally identify the row, but also point to its exact physical location —all the way

to the blocks of data stored within a data file. ROWIDs are stored in each table as a
pseudocolumn — it is present in the table, but not readily visible. We can, however,
see the ROWID if we know where to look. The following screenshot contains a
query we can use to retrieve the ROWID and employee id column values in the
employee table:

[362]




Chapter 10

[:)companyﬁnk@om! |
FPERRO W8 ¢ 00535776 seconds

SELECT ROWID, employee_id
FROM enployee;

% 4
[ Resuts| [=] serint output | ) Explsin
Resutts:

9 atotrace | EDEMS output | ) owe Output

RCWID @ emrLoveE D |
1 BAASR2SAEARAAIOAAS
2 AAASRIAAEAAAAIOAAE
3 AAASRZAAEAAAAIOAAC
4 AAASRZASEAAAAIOAAD
5 AAASR2AAEARAAIOAME
B AAASRIALEARAAIOAME
7 AAASRIAAEARAAIOAAG
8§ AAASRZAAEAAAAIOALH
9 AAASRISAEABAAIOAA
10 AAASRIAAEAAAAIDAS]
11 ARASRIAAEAAAAIOALK
12 AAASRIAAEASASIOMAL
13 AAASRIAAEASASIOMM
14 AAASRIAAEAAAAIDA SN
15 AAASRZAAEAAAAIDALD
16 AAASRIAAEASALIONAR

L e . T ¥ B o R o0

s A o = oA oA
L= B o

Notice that in previous queries where we used SELECT * to query all columns in a
table, the ROWID was not present. The ROWID can only be queried directly. We
must specify it by name to see it. While the ROWID might look indecipherable to
us, to Oracle it contains all the needed information to uniquely identify a row's
location on disk. The results you see in your query will differ from those in the
output shown here.

What makes a ROWID useful is that it represents the fastest access path to any
given row in the database. If we could leverage ROWIDs in our queries, they
would perform much faster than simple table scans. Unfortunately, while a column
value such as "Johnson" for last name has meaning to us, a ROWID value such as
"AAhoSaAN+AAAAGNAAA" does not, making it difficult to use. Fortunately, Oracle
provides a structure that can leverage them.

[363]



Creating Other Database Objects

SQL in the real world

While it may be tempting to think that directly using a ROWID for every
M query is a good idea, Oracle recommends that you do not. The physical
location of rows in the database can change with certain operations
Q and, since the ROWID represents the physical location of the row, it
can change as well. This makes it unreliable as a key value. However,
in some large database environments, such as data warehouses, the
ROWID can be used as a key value for rows with read-only data.

Examining B-tree indexes

To speed the access path to data, Oracle can make use of an index. An index is a
structure that takes column and ROWID values and structures them in such a way
that the rows can be accessed by their direct physical location on disk. Typical tables
in Oracle are called heap-organized tables —that is, the table's rows are stored in no
particular order. Thus, there is no guarantee that a query of the employee_id column
will retrieve a value of 100 any sooner than a value of 1,000. An index, on the other
hand, is stored in a particular structure that facilitates the quick retrieval of data.
The most common structure for an index is the B-tree or balanced tree structure
(sometimes referred to as a binary tree). A B-tree is a type of tree-shaped data
structure used to organize data. In a B-tree, data values are read and then organized
in a tree structure made up of root, branch, and leaf nodes. The following diagram
gives a simple example of a B-tree structure that organizes 16 values, much like the
16 employee id values of our employee table.

[364]



Chapter 10

Finding any given value structured within a B-tree is a matter of starting at the root
node and making greater than, less than, equal to choices down the tree. For instance, if
we are searching for the value 9, we start at the root and work down. The first choice
could be phrased, Is 9 greater than, less than, or equal to 87 9 is greater than 8, so we
move down the right side of the tree. Already, we have excluded half the possible
values that could be searched. The next branch node on the tree is 12. Is 9 greater
than, less than or equal to 12?. 9 is less than 12, so we move down the left side of the
remaining tree. Our next branch node is 10. Is 9 greater than, less than or equal to 10? 9
is less than 10, so we move down again to the left, landing at 9. Is 9 greater than, less
than or equal to 97 9 is equal to 9, so we have found our value.

This is fine for single values, but how can a B-tree structure help us find a particular
row in the database? A B-tree index stores two values —the value that is indexed and
the ROWID. Thus, once you have found the key value in the B-tree, you have also
found the ROWID of the particular row, giving you the physical location of the row
on disk. Thus, we could alter our diagram to include simulated ROWIDs to see how
this works, as follows:

H
u _

We could follow the same previous example and search through the tree for the
value 9. Once we have found it, we have also found the ROWID (A1ST, in this case)
for the row that locates all the values for employee _id #9. The example we've
used is greatly simplified, but it does show the way a B-tree index is structured and
demonstrates why an index can speed data access. A true index contains its data

in the leaf blocks and only uses the branches for decision making. In our example,
instead of doing a full table scan through 16 rows, we're only required to make four
choices to arrive at the desired ROWID.

[365]




Creating Other Database Objects

Creating B-tree indexes

An index is created using the CREATE INDEX command shown as follows:

CREATE INDEX <index name>
ON <table_name> (<column_1, column_2, column_x) ;

The cREATE INDEX command bears some resemblance to other similar commands
that create database objects. It begins with a CREATE INDEX clause followed by the
name of the index. Next, the ON clause precedes the name of the table and columns to
be indexed, with the column or columns in parentheses. Other clauses, such as those
that specify storage details, are optional. For our purposes, we want to understand
how indexes work and ways they can improve our SQL.

For example, say that we've determined that our application will frequently do
queries against the employee table whose limiting condition is often based on the
employee's last name. In order to retrieve those rows more efficiently using an
indexed scan, we place an index on the 1ast_name column of the employee table.
We do this using the CREATE INDEX command, as shown in the following example:

[}campanyﬁnk@orc.f |
ERRO® B8 ¢ 008935046 seconds

CRERTE THDEX emp last name jdx
OH employee (last name);

. 4
B Resutts | [=] Script Cutput
Results:

[F)Explain | £ Autotrace | ADEMS Output | € Cia, Output

We name the index emp_last_name_idx and specify employee as the table and
last_name as the column to index. When the CREATE INDEX statement is run, Oracle
reads all of the values for 1ast_name in the table and organizes them into a B-tree
structure, along with their respective ROWID values. We should note two facts from
this. First, the index is persistently stored in the database as an object, much like a
table. It can be used as long as it exists. Second, since the index stores values, it takes
up physical space in the database, although comparatively little to that of its table.
The next time we issue a query such as the one shown in the following screenshot,
the index can be used:

[366]




Chapter 10

D-companyﬁnk@orcf I
FPESRO V8 ¢ 000810191 seconds

SELECT firat name, last_name
FROM ewmployee
THERE last name = 'Johnson':

.

[ Resutts [=] Script Output | BExplain | 5 autatrace | @DEMS outout | () olwia output

Results:

FIRST_MNAME | LAST_NAME|
1 James Johnson
B SQL in the real world .
Notice that we said the index can be used. The Oracle RDBMS uses
I a feature called the optimizer to make decisions as to the best way

to retrieve data. Often, this involves using an index. However,
circumstances may dictate that the optimizer choose another access
path, sometimes even ignoring the index. Even so, indexing the columns
that are commonly used in a WHERE clause is a good standard practice.

It may be unclear why we chose to index the 1ast_name column, since we have
continually used employee_id in our examples. Let's try indexing the employee_id
column in the employee table and see what happens.

b companylinkmorcl I
ERRO BB ¢ 002890752 seconds

CREATE IHDEX emp_emp_ id icdx
OH employee(employee_id):

% 4
[ Resutts | [=]Script output | FExpiain | 59 autotrace | E0EMS outout | ) cvia output
Results:

Error encountered FX|

An error was encountered performing the requested
operation:

ORA-01408: such column list already indexed
01405, 00000 - "such column list already indexed"
*Cause:

*&ction:

“endor code 1408Error &t Line:2 Column:12

OK

[367]



Creating Other Database Objects

As we can see, we receive an error saying, "such column list already indexed". But,
how could this be? At this point, we have only created an index for the 1ast_name
column in the employee table, not employee_id. Actually, we created the index

on employee_id in the last chapter without even recognizing it. This is because

we created a primary key on the employee_id column. Any time a primary key is
created, an index is automatically created for the column. Since primary key columns
are commonly queried, this is another reason to establish primary keys on relational
tables. We also have the option of creating the index first, then instructing Oracle to
use that index during the creation of the primary key.

Using composite B-tree indexes

In the same way that we can create composite primary and foreign keys, we can also
create composite indexes —indexes on more than one column. Say, for example, that
we frequently issue a query that uses the following WHERE clause:

WHERE first _name = <some first name>
AND last name = <some last name>;

Such a query most likely cannot use our index on last_name to much benefit, since
the first_name column is not indexed with it. If we frequently query columns with
multiple conditions using operators such as AND, we need to create a composite
index, as shown in the following screenshot:

[}campanyﬁnk@orc.f |
FPERRO® B8 ¢ 001905885 seconds

CEERTE THDEX emp first last name idx
OH employee(first name, last name) ;

e W

[ Resutts| =] Soript Output

Results:

Explain | B autotrace | @0BMS Output | @) owa output

Here, we index two columns, first_name and last_name, in that order. Now our
WHERE clause with multiple conditions can make use of our composite index for
faster data access. It is very important to notice that even though we previously
indexed the last_name column by itself, we can still index it here without receiving an
error. Because they index by different values, indexing 1ast_name alone is different
than indexing it with another column. This would be true even if we reversed the
order of the composite index, using last_name, then first_name. The key values are
different, so another index can be created.

[368]




Chapter 10

SQL in the real world

Index names can sometimes seem long and confusing. Although index

naming is normally dictated by coding standards, a common way to

~ denote index names is to abbreviate the table and column names, then
suffix with _idx or _ind. Using this standard, we can see that an index
called emp emp id idxisanindex on the employee table (emp) on
employee_id (emp_id). We put both together with an _idx suffix to
form the name. Decoding index names is just a matter of knowing how

L they're constructed. -

Working with bitmap indexes

B-tree indexes are by far the most common type of index used with Oracle. However,
a B-tree index isn't always the most optimal type available. In fact, the type of data
being indexed can often render a B-tree index useless. This section examines just
such a situation.

Understanding the concept of cardinality

Consider for a moment indexing a different column in the employee table — gender.
If we assume that the gender column has three possible values, M, F, and N, we
could display a B-tree structure for the index on this column as shown in the

following diagram:

As we can see, the structure itself is very brief. Since there are only three possible
values, there are only three nodes possible in the index. Each ROWID falls under
one of those nodes. However, the limited number of nodes in the index has affected
the efficiency of the index. The strength of a B-tree index lies in its ability to quickly
eliminate the need to scan a large percentage of the structure using a few quick
decisions. Our index on gender leaves us with a large number of ROWIDs under
each node that must now be scanned, so we've effectively lost the benefit of our
index. The problems with using B-tree indexes on columns that have only a few
distinct values are due to their cardinality and selectivity.

[369]




Creating Other Database Objects

In set theory, cardinality refers to the number of distinct or unique values in

a set. We can also apply this term to refer to the set of values in a column. For

our purposes, a column with many distinct values, such as our primary key on
employee_id, is said to have a high cardinality. Conversely, a column with a limited
number of distinct values, such as our gender column, has a low cardinality. From
cardinality, we can also determine selectivity. Selectivity is calculated by taking
the total number of rows in a table and dividing it by the cardinality. Thus, if our
employee table has 1,000 rows and the gender column has three distinct possible
values, our selectivity is 1000/3, or approximately 333, which is considered very
high. The lowest possible selectivity would be found on, for example, a primary
key column. Since a primary key can have no duplicate values, the selectivity for
any given column would always yield one. If the table held 1,000 rows, we know
that they are all distinct, giving us a cardinality of 1,000. Dividing 1,000 rows by a
cardinality of 1,000 would yield a selectivity of one. The same would be true if the
table had 10,000 or a million rows. They are all distinct, so the selectivity is one.

Examining the structure of bitmap indexes

Armed with these terms, we could combine this with what we've seen about B-tree
indexes and make a generalization: B-tree indexes are most effective on columns with a
low selectivity. We could also say that they are highly ineffective on columns with high
selectivity. It is this ineffectiveness that has led Oracle to offer a different kind of
index. A bitmap index uses a different type of structure than the B-tree. Rather than
using a tree structure, a bitmap index organizes key values and ROWIDs in a bitmap,
as shown in the following diagram:

M F N
Rowid 2A1a [1[0 |0
Rowid 2A1b 0[1]0
Rowid 2A1c 0|10
Rowid 2A1d 110|0
Rowid 2Ale 0|01
Rowid 2A1f o|1|0

[370]



Chapter 10

Here, each distinct value for the gender column, M, F, and N, is listed along the top.
Below these values is the bitmap —a structure of ones and zeros for each ROWID in
the table. Each row in the bitmap will have a single value marked with a positive bit
while the others will have zeros. The example indicates that the first and fourth rows
in the bitmap index are positive for the value 'M' for male. The second, third, and
sixth rows have a positive bit under value 'F' for female. The fifth has a

positive bit for value 'N', indicating that the fifth row in the table contains

'N' in the gender column.

The benefit of a bitmap index is that it provides us with a way to quickly
retrieve ROWIDs from high selectivity columns. If a bitmap index, such as
the one shown previously, was in place on the gender column, it could be
used for the following query:

SELECT * FROM employee
WHERE gender = 'M!';

When this query is executed, the index is scanned. Because it is structured as a
bitmap, the scan only has to search the bitmap for positive bits for 'M'. From that
scan, the ROWIDs are retrieved and the data is presented.

Creating a bitmap index

Bitmap indexes are created similar to B-tree indexes, requiring only the addition of
the BITMAP clause, as shown in the following screenshot:

I}-campﬂwyﬁﬂk@om.r |
FERRO B8 ¢ 028317842 seconds

CEEATE BITHAF THDEX ewmp dgender _bidx
O0H employee [gender):

%
[ Resutts| =] Soript Output
Rezults:

[E)Explain | £ Autatrace | ADEMS Output | € s, Output

As we've previously seen, we specify a name, in this case, emp_gender_bidx, and
the table and column to be indexed. The values for gender are read and constructed
into a bitmap matching those characteristics. Now, any future queries on the highly
selective column, gender, can make use of an effective index.

[371]



Creating Other Database Objects

Working with function-based indexes

In earlier chapters, we made extensive use of both single and multi-row functions.
Using indexes in conjunction with functions often presents certain challenges. To
understand why;, it is important to remember once again how indexes are stored.
Recall that indexes store the indexed values along with ROWIDs —nothing else.

Consider the following example. Say that we want to do a count of employees grouped
by the year of their birth. We've seen queries such as this that use a GROUP BY clause
and extract the year using the To_CHAR function, as shown in the following example:

[}campanyﬁnk@om! |
FPERRO B8 ¢ 002214164 seconds

SELECT to_char(dob, 'Y¥¥Y¥'), count(¥*)
FROM employee
GROUF BY to_charidob, '¥¥YY'):

.
B> Resutts| = Script Output | ) Expiain | B autatrace |ADEMS outout | ) owia output
Resufts:

TO_CHAR(DOB " ¥vy") | COUMTI)
11970 1
2 1965 1
3 1976 1
4 1958 1
5 1963 1
& 1960 1
7 1979 1
& 1967 1
3 1955 1

1
1
1
1
1
1
1

10 1974
11 1964
12 1971
13 1873
14 1972
15 1959
16 1951

[372]




Chapter 10

Certainly this query would execute normally, but would it execute optimally? If

the table was very large, we would need an index on the DOB column to receive

the highest return on performance. However, it turns out that neither a B-tree nor

a bitmap index on the DOB column would give us any performance benefit for the
query in the previous screenshot. Why would this be the case? Creating an index

on the DOB column will index each of the values in the column along with their
respective ROWIDs. However, we are querying the DOB column in a way that is
different than the way they are indexed. We are not querying the DOB column itself, but
rather a subset of each value —the value for four-digit year. Thus, a B-tree or bitmap
index would be useless, since the values for year have not been explicitly indexed. In
fact, Oracle would not even attempt to use either type of index in such a query. We
need a new kind of index.

For situations such as the previous one, Oracle provides function-based indexes.
Function-based indexes allow you to index values based on a function instead of
typical column values. An example is shown in the following screenshot:

[}campanyﬁnk@am! |
PERAO BB ¢ 026765089 seconds

CPEARTE IMDEX eump_ dob_fidx
0H employee (to_char(dob, '¥YYY¥')):

W

B Resuts| |2 Seript Output
Results:

EHExplain | Autatrace | ADBMS Output | €% Ove Output

As we can see, creating a function-based index does not require any new clauses.
We simply specify a function instead of only a column name. After this index is
created, Oracle has the opportunity to make use of it whenever we query based
on that particular function. However, remember that the function used in the
query must match the one used in the index. It does no good to index a column
based on a To_CHAR () function if the query uses a SUBSTR ().

[373]



Creating Other Database Objects

Modifying and dropping indexes

The structure of an index is built during its creation. However, the data in a table
changes over time. Data is added, changed, and removed using DDL statements.
Every time a table is changed, the index must be changed to reflect that. Highly
dynamic tables can lead to index fragmentation, particularly when deletes are
performed. For these reasons, it is often necessary to rebuild an index. When an index
is rebuilt, the table is re-scanned and the index is restructured accordingly. We use
the ALTER INDEX command to rebuild an index, as shown in the following example:

[)- comparyiink @orcs |
FPERRO® B8 ¢ 020430074 seconds

ALTER. IHDEX emp first last name jdw FEBUTLD ;

.
B Resutts | [=] Script Output | EExpiain |§] Autotrace | AADEMS Output | () 0w Output
Results;

The ALTER INDEX. .. REBUILD syntax works for each of the index types that we have
discussed. Thus, it is not necessary to use the BITMAP keyword when rebuilding a
bitmap index. Using ALTER INDEX to rebuild an index is beneficial in that it can be
done while the table and index are online. You do not need to drop and recreate

the index. ALTER INDEX can also be used to perform other operations besides index
rebuilds, such as those dealing with space management.

When we need to completely remove an index, we use the DROP INDEX command, as
you might expect by now. Like ALTER INDEX, the DROP INDEX syntax works for each
of the types of indexes we have seen, without any qualifying clauses such as BITMAP.
Dropping an index is shown in the next statement:

Dcompanyﬁnk@orc.f |
FPERSRS B8 ¢ | 043740195 seconds

DROP THDEX emp_gender bhids;

% 4
B> Resutts [ Seript Output | EExptain |§]Autotrace | ADBMS Output | 8w Output
Results:

[374]




Chapter 10

Working with views

Although we began our study of SQL by using some very simple queries, at this
point we have definitely graduated to some fairly complex ones. Multi-table

joins, subqueries, and nested functions can all play a part in the need for long and
complicated SQL code. Often, this code is created to be reused numerous times for
business needs such as reporting. A view allows us to store a query as a database
object so that it is simplified and reusable.

Creating a view

Since views are objects that store queries, we should look at an example of the type
of SELECT statement that can be stored as a view. The following example contains a
SQL statement we used in Chapter 5, Combining Data from Multiple Tables to create a
reasonably complex multi-table join of employee, employee award, and award. This
is our candidate statement to simplify using a view.

[ companylink @orcl |

ERRO B8 ¢ 019957957 seconds

SELECT first name, last_name, amward_desc
FROM eunployee e, employee_award ea, award a
WHEFE e.employee_id = ea.employee_id

AHD ea.award id = a.award id:

% d
[ Resutts [ =] Script Output

Results:

B Explain _ﬁ:]motrace| ADBMS Output | € Ova, Output

FRsT_Mame (B LasT vame [ swerD_DESC |

1 James Johnzon Employee of the year

2 Ken Wwhite Cleanest desk

3 Gary hoore Technological paper winner
4 Sandra Rodriguez Fastest typist

5 Kewin Lewvis Salesperson of the year

6 Laura Thomas Best new employees

[375]



Creating Other Database Objects

Database views are creating using the CREATE VIEW command, as shown in the
following example. We use a view to encapsulate the previous SELECT statement
into a view.

[}compaﬂyﬁﬂk@om.f I
FERRO B8 ¢ 004811729 seconds

CREARTE YVIEW enp_award_ww

s

SELECT first name, last name, award desc
FROM employee e, employee_award ea, award a
THERE e.employee_id = ea.employee_id

RHD ea.award id = a.award id;

e,
[ Resuts | [=] script output | B Explain |§g]Autu1race |130E:ru15 Output | G Ohve Output

Rezults:

We construct the statement syntactically using CREATE VIEW, a name for the view,
and the keyword as. Following this part of the statement, we simply add the code
for the query we want the view to represent. Now, we can access the data returned
from the complex SQL statement by selecting from the view in the same way we
would select from a table, as shown here:

Dcomp&nyﬁnk@orc! I
FPERRAO B8 ¢ 031936738 seconds

SELECT * FROM enp_award ww;:

F .
[ Resutts [ Scrigt output | B Explain |§.a]Amntrace |lE,DE:MS output | € Civis, Output
Results:
FRsT_Name | LasT_nave ([ awarD_DESC |

1 James Jahnson Emplovyee of the vear

2 Ken White Cleanest desk

3 Gary hoare Technological paper winner

4 Sandra Rodriguez Fastest typist

5 Kevin Leraviz Salesperzon of the yvear

E Laura Thomas EBest new employes

[376]



Chapter 10

Selecting from the view returns the identical rows that would have been returned

if we had run the original statement. We have essentially used a view to reduce

a complex query into a simple one. One important fact to take away from this is

that views contain no storage of their own. The storage required for a view is only the
amount needed to store the query. Thus, views take up essentially zero storage space
in the database.

With certain configurations of Oracle, the CREATE VIEW statement
shown previously can generate an error regarding a product
called Trusted Oracle —a special security package. If so, do not be
’ concerned. The code shown is the correct syntax to create the view,
although it requires a workaround in rare cases.

Creating selective views

Another way views are sometimes used is for security. Although not a strict type

of security, views can be used for data hiding. Let's take an example from our
Companylink database. Say that we want to allow project managers to have visibility
into certain columns in the employee table, but not others. To hide these columns, we
could give project managers access to the data using a view, instead of directly into
the table. We create such views by defining the columns that we wish to allow, as
shown in the next example:

[}campanyﬁnk@orc.f |
ERRO B8 ¢ 008579313 seconds

CRERTE VIEW proj _mgr <

Bs

SELECT employee_id, first name, middle initial, last name
FROM employee;

F .
[ Resutts. | =] Script Output | T Explain f;:].&utmrace| ADpBms output | £ 0wia Output
Results:

[377]




Creating Other Database Objects

Using a column selective view, the project managers have access to only that data
they require. Now, when they wish to see employee information, they access it using
the view, as shown in the following screenshot. Again, this prevents the need for
maintaining a second limited copy of the table just for project managers.

[} cOmpIRYIRE @orcel |
FERRO BB ¢ 015459188 seconds
SELECT * from proj_mgr_wvuw;
% 4
[ Resutts| =] Script Qutput | BExpisin | B autotrace | ADEMS outut | € owia, Output
Results:
evPLOvEE_D B FRsT_nane (B mooLe_mmaL B LasT nae |
1 1 James R Johnson
2 2 Mary = Williams
3 3 Linda L Anderson
4 4 Danigl il Fakinzon
5 o Matthew K Garcia
53 B Helen H Haris
7 T Hen W White
g & Donald A, Perez
9 9 Llisa C Lee
10 10 Caral h Clark
11 11 Gary R Moore
12 12 Cynthiz =] Haill
13 13 Sandra = Fodriguez
14 14 Kewin L Lewvis
15 15 Gearge H Taylor
16 16 Laura | Thomas

Distinguishing simple and complex views

We could say that views are a window into one or more tables. This window includes
the ability to execute DML statements such as INSERT, UPDATE, and DELETE through
a view, but only with certain restrictions. An updatable view is one that allows

you to manipulate the underlying table data through DML. To understand the
restrictions on updatable views, it is important to make a distinction between
simple views and complex views.

[378]



Chapter 10

In Oracle, a simple view is one that selects data from a single table, contains no
functions, and performs no aggregation operations. With certain limitations, we can
perform DML operations on a simple view. Conversely, a complex view is one that
can draw data from multiple tables, utilize functions, and can perform aggregation
operations such as grouping data. It is generally very difficult to execute DML
operations on complex views, although not impossible. The problem lies with the
inability to map the rows seen by the views back to the base table. For instance, say
we create a view that uses a GROUP BY statement. If we attempt to update a row in
the view then there is no way to identify exactly which row in the base table is to be
updated, since the data is grouped from the frame of reference of the view. We see
this in the following two illustrations:

Dcompanyﬁnk@orc! I
FPERRO BE ¢ 002212041 seconds

CREATE VIEW emp_grp_wwr

s

SELECT gender, count(*) gender_count
FROM enployee

GROUF BY gender:

.
> Resuts | (=] Script Output | B Explsin | B autatrace | [EDEMS outout | @) o output
Fesults:

[ companyiink @orcs I
FPESRO® B8 ¢ 00221204 seconds

UPDATE emp_grp_ v
SET gender = 'N':

% 4
B> Resuts | =] Seript outaut | B Expiain |-‘?;3Amotrace |l3DBMS outeut | o, outaut
Results:

Error encountered f'5_<|

Anerror was encountered performing the requested
aperation:

ORA-01732; data manipulation operation not legal on this view:
M732. 00000 - "data manipulation operstion not legal on this
g

Hoause:

*&ction:

Wendor cods 1732Error &t Ling:1 Column: 7

OK

[379]



Creating Other Database Objects

First, notice that we qualified our COUNT () function in the view with a column alias.
In a view, every column must have a unique name. So, in our example, we must

alias any functions we use such as SUM (), AVG (), or COUNT () with an alias. However,
when we attempt to update the view, we receive an error stating, data manipulation
operation not legal on this view. This is consistent with what we know, owing to the fact
that Oracle cannot find a one-to-one mapping of the data in the view to the data in
the underlying table.

We can, however, manipulate rows in a simple view, with one very important
caveat. In general, DML can only be done against a view if the table is key-preserved.
A key-preserved table is one in which every unique key value is also unique in the
view. We can see this behavior in the following two examples:

Dcompanyﬁnk@orc! I
FPERRO B8 ¢ 002994319 seconds

CRERTE ¥WIEW mezs_tHt_ww

ns

SELECT message_id, message_ Text
FROM messadge;

b,
[ Resuts | =] Seript output | B Explain |§.Q]Amotrace |l3DE:MS Output | (G Chais, Output

Resuts:

[ companylink @orcl I
FPERRSO BB ¢ 002955599 seconds

UPFDATE mess_txt_ww
S5ET meszgage text = 'Call me now, '
WHEFE message _id = 1;

e W
[ Resutts | [5] Seript outiut | BExplain | B autatrace | E0EMS outout | € ovwa outut

Results:

[380]



Chapter 10

Configuring other view options

Views can be created with optional keywords that allow greater control. The syntax
tree for views with optional keywords is listed as follows:

CREATE [OR REPLACE] [FORCE] VIEW {view name}
As

{query}
[WITH CHECK OPTION] ;

The options are defined as follows:

e OR REPLACE - The existing view will be dropped and re-created in one step

e FORCE - The view will be created even if the underlying table in the SELECT
statement does not exist

e WITH CHECK OPTION - This will prevent changes from being made to the
underlying table that would cause rows to disappear from the view

Changing or removing a view

A database view can be re-structured using the ALTER VIEW command. ALTER VIEW
is generally used to recompile the view. During recompilation, the view is checked
to ensure that all columns and tables in the underlying query still exist. The use of
ALTER VIEW is shown in the following example:

[}campﬂnyﬁnk@orc! |
FERRO B8 ¢ 016573478 seconds

ALTER VIEW mess_txt_vw COMPILE ;

.
> Resutts| (=] Seript Output | SExplsin | 5 Autotrace |DEMS outout | A 0w Output
Results:

In the event that any of the columns or tables had been dropped or their names had
been changed, the recompilation would reveal this.

[381]




Creating Other Database Objects

To drop a view, we use the DROP VIEW command. This will remove the view from
the database. In the following example, we remove a complex view created earlier
in the chapter:

[}campaﬂyﬁnk@arc! |
PERRO B8 ¢ 002583708 seconds

DROP VIEW emp_grp vw:

i W
[ Resutts | = Script Cutput

Results:

B Explain | 5 autotrace | A0EMS output | ) owa output

Using sequences

In the previous chapter, we discussed two different methods for handling primary
keys. Natural keys are key values that have actual meaning in the business model.
They could include social security numbers or account numbers. However, our
Companylink model uses synthetic keys —key values that are generated to maintain
uniqueness. Using synthetic keys provides an easy way to guarantee uniqueness,
although some object to the additional space required for non-business data. This
is often a small price to pay for the usefulness of a synthetic key. Synthetic keys do,
however, need to be generated. This can be done using programmatic techniques
in the originating application. It can also be done using sequences. A sequence is a
database object capable of generating sequential integers. These numbers can then be
used as key values.

Using sequences to generate primary keys

Say that we want to be able to add new types of awards to the award table. In our
last chapter, we placed a primary key on the award_id column, so we need to
guarantee that only unique values are contained therein. One method to do this
would be programmatic. A routine could be written that would look up the largest
value in the table, increment it by one, and then insert the value. Although this
method could work, there are at least two problems with it. First, if the table is
heavily used, the rows would need to be locked to prevent another user session from
doing the same thing a split-second later. It is possible that session #1 could query
for the maximum value and that session #2 could do the same a moment after, but
before session #1 inserts the value. In this scenario, both sessions increment the same

[382]




Chapter 10

value, but only one of them can insert it without causing a primary key violation.
The second problem with the programmatic approach is performance. In order to
use this method, many extra table scans must be performed to find the maximum
value to increment. However, we can avoid both of these problems through the use
of sequences.

The ability to generate unique values for a synthetic key is one of the most common
uses of sequences. Since a table can have no more than one primary key, the
sequence is designed to be paired with a particular table. The sequence is then used
only for that table to avoid the gaps that could occur if it was used in multiple places.
We could create a sequence for the award table in our Companylink database to
guarantee unique primary key values, as shown in the following screenshot:

[}compaﬂyﬁﬂk@orci |
FEEZRO 88 ¢ 00412245 seconds

CEERATE SEQUEWCE award pk =zedq
THCFEMENT BY 1
START WITH 10:

%
[ Resutts [ =] Script Output | EREplsin ) Autetrace | ADEMS Output | £ Ca, Output
Results:

Here, we create the new sequence using a CREATE SEQUENCE command. The
command has many options, but we look at two of them here. The first optional
clause is INCREMENT BY, which allows us to specify the amount by which the
sequence will be incremented. The default is 1, which increments the sequence by a
single integer amount. If we were to specify INCREMENT BY 10, the sequence would
be incremented by an amount of 10 each time. The second clause we've defined is
START WITH 10. The START WITH clause specifies the originating integer value for the
sequence. The default is 1, but we've defined our first sequence value to be 10, since
we have existing values in the table and want to ensure that we do not violate the
primary key.

[383]




Creating Other Database Objects

When we want to make use of a sequence, we reference it by name followed by the
keyword NEXTVAL, as demonstrated in the following screenshot:

Dcompanyﬁnk@orc! I
FERRO B8 ¢ 003007449 seconds

IHSERT IHTO award YALUES |
arard_pk_ seq.NEXTVAL, 'Highest website hit count'):

. 4
> Resutts| ] Scriet Outout | BExplzin | 8 Autctrace |DEMS Output | € owis Output
Resuts:

Here, we reference the sequence by name as if it were a string literal, although it

is not in single quotes. Since the sequence has just been created, even though the
START WITH value is 10, the NEXTVAL will produce a 10, essentially instantiating the
sequence. We can see the results of our sequence insert by selecting the rows from
the award table, as shown in this example:

D companyiink oorcl I
FERRO @8 ¢ 000563952 seconds
SELECT * FROM award
ORDER. BY award id;
F % d
B> Resutts| (=] Script Output | B Explain | B avtatrace | (ADEMS outout | €4 owa Output
Results:
AMARD D | AWARD _DESC |
1 1 Salesperzon of the year
2 2 Technological paper winner
3 3 Cleanest desk
4 4 Fastest typist
5 5 Employee of the year
53 G Best new employves
7 9 DML Guru
g 10 Highest website hit count

[384]




Chapter 10

We can also manually increment the sequence using the DUAL table, as we see in the
following screenshot:

Dcompanyﬁnk@om! I
FPERRO B8 ¢ 000997054 seconds

SELECT award pk seq.NEXTVAL from dual;

e, W

[ Resutts (=] Script output | B Explain | B avtatrace | @Dams outout | €4 owa output
Results:

MEXTH AL
1 11

Just by selecting the NEXTVAL from the dual pseudo-table, our sequence is
incremented. Since our sequence is now increased to the number 11, we can

demonstrate the way to use CURRVAL to insert the current value for the sequence,
as shown in the following example:

Dcampanyﬁnk@orc! I
FEEERO 88 ¢ 100523055 seconds

IHSERT IHTO award VALUES |
award pk seq.CUREVAL, 'Highest blog hit count');

% d

B> Resuits | =] Script Output | B)Expiain | B autotrace | FDEMS outout | ) owia Output
Results:

[385]



Creating Other Database Objects

We invoke CURRVAL the same way as NEXTVAL, pairing it with the sequence name
and in the same position as a literal. We see the results of our CURRVAL insert in the
following query:

[ companyiink @orct |
FPEZRO V8 ¢ 000602255 seconds

SELECT * FROM award
OFDER. BY award id;

.
[ Resuts =] Script Cutput

Resufts:

EEsplain | B autotrace | ADEMS Output | (£ O, Output

SWARD_ID | AMARD_DESC |

1 Salesperson of the year

2 Technological paper winner

3 Cleanest desk

4 Fastest typist

5 Employes of the year

G Best neww employes

9 DML Guru
10 Highest website hit count
11 Highest blog hit court

w oW o~ m s L bk =

Any time a sequence is created, it must be first invoked using NEXTVAL. If we attempt
to insert using a CURRVAL immediately after creating the sequence, we will receive an
error, since the sequence has not been instantiated.

Object naming using synonyms

In our last chapter, we introduced the concept of a schema. We said that, in Oracle,
no overt distinction is made between database users and object owners. When a
database user creates database objects, that user owns those objects and they form
the user's schema.

[386]



Chapter 10

Schema naming

Throughout this book, we have only worked with objects that are within the
Companylink schema. Thus, when we accessed these tables, we referred to them only
by their name. Technically, however, we could reference them by their schema name
as well as using dot-notation, as shown in the following example:

[jh COMPIRYIIRE Dorck |

FERRO B8 ¢ 001018342 seconds

SELECT award_id, award desc
FROM companylink.award:

. 4

Results:

[ Resutts | [ =] Script Output

EHExplain | () Autotrace | ADEMS Output | E4 WA Output

w0 - @ h B W k=

warD_D B awarD_DESC |

1 Salesperson of the year

2 Technological papet winner

3 Cleanest desk

4 Fastest typist

5 Employes of the year

B Best new employes

9 DL Guru
10 Highest website hit count
11 Highest blog hit count

Prefixing the award table with companylink allows us refer to the table by its
actual schema name. If we logged into the database with a username other than
companylink, we would be required to do this. Thus, if we were connected to the
database as the user manager and queried from the award table without the schema
prefix, we would receive an error saying that the table doesn't exist. This is because
Oracle makes the assumption that if we do not preface the table name with its schema
name, we are referencing a table in our current schema. Therefore, in the examples
throughout this book, we made no schema reference to any of the objects used,
since we've always operated on objects within our Companylink schema.

[387]



Creating Other Database Objects

Using synonyms for alternative naming

While the dot-notation approach is a very explicit way to reference objects, it is
sometimes considered inconvenient. Our examples have not required a schema
reference, since all of the objects used exist within a single schema. However, in
logical architectures that use multiple schemas, a user or developer would have

to know the name of the object and the name of the schema in order to correctly
reference the object. Fortunately, Oracle provides us with a type of database object,
called a synonym, which allows for greater control over object naming. A synonym
is an alternative name for any database object, although it is most commonly used
for tables. Synonyms allow users to reference a table by a different name, irrespective
of its true underlying name, or schema. Oracle provides us with two types of
synonyms — private and public.

Creating private synonyms

A private synonym is one that exists within a user's schema that can either reference
an object within that schema using a different name, or refer to an object in a
different schema without using its schema reference. The following two screenshots
show examples of using a private synonym to create an alternate name for a table.
They demonstrate the CREATE SYNONYM clause along with FOR.

[}campanyﬁnk@arc! |
FPERRO 88 ¢ 016264657 seconds

CEERTE SYHOHYM award table
FOR award;

e, W

[ Resutts| =] Script Cutput
Results:

[E)Explain | 5 Autatrace | ADEMS Output | €% 0w Output

[388]



Chapter 10

Dcompanyﬁnk morch I
FERERO B8 ¢ 000800912 seconds
SELECT *
FROM award table:
% d
[ Resutts | [=] Script Output |?3]Exp|ain |§g]Autotrace |[3,DE:MS Output | E4 s, Output
Results:
awaro_D (B AwerD_DESC |
1 1 Salesperzon of the year
2 2 Technological paper winner
3 3 Cleanest desk
4 4 Fastest typist
5 5 Employes of the year
5] 6 Best new employes
7 9 DML Guru
5] 10 Highest website hit court
9 11 Highest blog hit count

When we need to create a synonym that references a table in another schema, we
reference the table using its schema name, as shown in the following two examples:

Dcampanyﬁnk@orc! I
FPERRO B8 & 00738333 seconds

CEERTE SYHOHYM award tablez
FOR companylink.award;

e W

[ Resutts | (=] Seript output | B Explain | 5 autotrace |[DEMS outout | € owia Output
Results:

[389]




Creating Other Database Objects

Dcompﬂwyﬁnk@om! I
FPERR O BB ¢ 001415766 seconds

SELECT *
FROM award tahlez:

.
B> Resutts | =] Serint Outiut | S Explsin | B autetrace | A0EmMs outaut | ) owia output
Resufts:

awvaro_D | awaRD_DESC |

1 Salesperson of the yvear

2 Technological paper winner

3 Cleanest desk

4 Fasztest typist

5 Emplovee of the vear

G Best new employes

3 DL Guru
10 Highest wehsite hit count
11 Highest hlog hit count

[7= = BN - "R T R N U Y

Here, even though the award table is in the same schema, we can reference it using
dot-notation, just as we would if the table were in another schema. When we want

to remove a private synonym, we use the DROP SYNONYM command, as shown in the
following screenshot:

Dcampanyﬁnk@orc! I
FPERRO B8 ¢ 007439437 seconds

DROFP SYHOHYM award tablez:

%
[ Resutts | =] Script Qutput |?3Exp|ain |§3]Au,rtutrace |@DBMS Output | G Ova Output

Results:

[390]



Chapter 10

Creating public synonyms

The second type of synonym available to us is the public synonym. A public synonym
is a unique synonym that when created becomes publicly available to all users. When
a public synonym is created for an object, that synonym name is globally available and
references the object for which it is created. We create public synonyms as shown in
the next screenshot using the CREATE PUBLIC SYNONYM command:

[ companylink @orcl |
FPERRAD B8 ¢ 00840752 seconds

CRERTE PUBLIC SYHOHYM division_pub
FOR companvlink.division:

.

[ Resutts | = Script output
Results:

[F)Explain | & Sutctrace | ADEMS Output | % Ova Output

Once created, the name division_pub can be used by any user in the database to
reference the companylink.division table. Note that creating public synonyms
requires special privileges in the database and is usually only done by database
administrators. Also, remember that just because a synonym exists for an object,
it does not mean that a user necessarily has permission to see the referenced table.
A public synonym can be removed in the same way as a private one, except the
command used is DROP PUBLIC SYNONYM.

SQL in the real world

Synonyms have certain benefits, but those benefits sometimes come into
conflict with a company's coding standards. Many companies do not
M allow the use of synonyms, choosing instead to hardcode the schema
name before every object. This allows anyone reading the code to know
Q the specific schema in which the object resides. Other standards choose
the ease of use that synonyms provide. Synonyms are also useful in
situations where application code references objects that are frequently
renamed. For instance, when a table name is changed, the administrator
needs only to change the synonym's reference —not the code itself.

[391]



Creating Other Database Objects

Summary

In this chapter, we've looked at a number of the different supporting objects in an
Oracle database. We've seen how different types of indexes can be used to speed
performance. We've looked at how sequences can be used to generate primary key
values. We've examined the ways that views can simplify our SQL queries. Finally,
we have seen how two different types of synonyms can aid our ability to easily name
database objects.

Certification objectives covered

e Categorize the main database objects

e Review the table structure

o List the data types that are available for columns

e Create a simple table

e Explain how constraints are created at the time of table creation

e Describe how schema objects work
With the conclusion of this chapter, we've come to the end of the subject
matter covered by the SQL Certified Expert test. But, we have one more chapter
to go. Although optional for the test, the final chapter will help us complete our
real-world ties to SQL. In it, we'll look at the ways that SQL is used inside

programming languages such as Perl and Java. We'll also bring all the subjects
we've learned together with several complex examples of SQL as a review.

Test your knowledge

1. Which of the following is the name given to a value that contains a pointer to
the location of a row in the database?

a. Sublanguage

b. ROWID
c. Bitmap index
d. View

2. Which of the following is NOT a term associated with a B-tree index?
a. Root nodes
b. Leaf nodes
c. Synthetic key nodes

d. Branch nodes

[392]




Chapter 10

Which of the following is a reason to create an index?
a. You need to create a database view and a view requires an index
b. You need to speed the performance of certain queries
c. You need to generate primary key values

d. You need to create an alternate name for a database table

Which of the following statements will successfully create a B-tree index?
a. CREATE INDEX emp_idx ON employee (division_id);
b. CREATE INDEX emp_idx ON employee;
c. CREATE BITMAP INDEX emp_idx ON employee (division_id);
d. CREATE INDEX emp_idx FOR employee (division_id);
Which of the following statements could be used to create a composite B-tree
index?
a. CREATE INDEX mess_idx ON message (message_text);
b. CREATE INDEX mess_idx FOR message (message_text, message_date);
c. CREATE INDEX mess_idx ON message (message_text, message_date);
d. CREATE BITMAP INDEX mess_idx ON message (message_text,
message_date);
Which of the following terms is used to describe a column with many distinct
values, such as a primary key?
a. High cardinality
b. Low cardinality
Given a table column with 10,000 rows, which of the following values for
selectivity would make it a good candidate for a bitmap index?
a. 14

b. 8
c. 1
d. 601

Which of the following statements could be used to create a bitmap index?
a. CREATE BITMAP INDEX emp_bidx USING employee (gender);
b. CREATE BITMAP INDEX emp_bidx ON employee (gender);
c. CREATE INDEX emp_bidx ON employee (gender);
d. CREATE INDEX emp_bidx ON employee (gender) TYPE (BITMAP);

[393]




Creating Other Database Objects

9. Which of the following statements would correctly create a function-based
index?

a. CREATE INDEX mess_mon_idx ON message (to_char(message_date,
'MON"));

b. CREATE FUNCTION BASED INDEX mess_mon_idx ON message (to_
char(message_date,'MON'));

c. CREATE INDEX mess_mon_idx ON message (message_date, MON");
d. CREATE INDEX mess_mon_idx ON message (message_date, MON")
TYPE FUNCTION;
10. Which of the following statements could be used to rebuild an index?
a. ALTER INDEX REBUILD mess_mon_idx;
b. REBUILD INDEX mess_mon_idx;
c. ALTER INDEX mess_mon_idx REBUILD IMMEDIATE;
d. ALTER INDEX mess_mon_idx REBUILD;

11. Given a view has been created using the command below, what columns
would be displayed when the following query is executed?

CREATE VIEW proj vw

AS

SELECT project name, project mgr id
FROM project;

SELECT * FROM proj_ vw;

a. project_name
b. project_mgr_id
c. project_name and project_mgr_id

d. None. The creation of the view fails with an error

12. Which type of view can often be used to update values in a base table?
a. Simple view
b. Function-based view
c. Complex view
d. View created with the FORCE option

[394]



Chapter 10

13. Given a sequence created with the following statement, what value would be
generated for the branch_id column by the INSERT statement below?
CREATE SEQUENCE branch seq
INCREMENT BY 10
START WITH 100;

INSERT INTO branch VALUES (branch seq.NEXTVAL, 'Operations', 1);

a. 14

b. 100
c. 110
d. 120

14. What type of synonym would be created by the following statement?
CREATE SYNONYM division syn FOR division;

Private synonym

a
b. Schema synonym

n

Public synonym

e

Sequence-based synonym

[395]







11

SQL in Application
Development

We have reached the end of our journey through the SQL language. Although not
required for the exam, by way of closure in this chapter, we look at some advanced
topics in SQL. Later in the chapter, we will examine some SQL statements of a
more challenging nature that combine many of the clauses we have seen. But, first,
we examine the way that SQL is actually used in the real world. To do so, we'll
look at some code snippets of various languages that embed SQL within them. It

is important to understand that most of the code we will examine is not complete
or functional in any way. This chapter is not meant to teach another programming
language. Rather, it is a look "under the hood" at how SQL can be integrated with
other languages. In closing, we'll take a look at some helpful hints and strategies for
the taking the SQL certification exam.

In this chapter, we shall:

e Examine the ways SQL is incorporated into other programming languages
e Look at examples of SQL in third-generation languages

e Learn how the optimizer parses SQL statements

e Examine advanced SQL statements

e Review hints and strategies for taking the exam



SQL in Application Development

Using SQL with other languages

In order to learn SQL, it has been necessary to look at it in isolation. This is the
standard way to learn any programming language — place the user in "a vacuum" of
sorts and use the language to solve various problems. This places the focus on the
syntax and usage of the language while eliminating outside variables. Thus, we've
performed our SQL operations using a tool such as SQL Developer against a single
database. However, although this may be the most efficient way to learn SQL, it

is not representative of the way that SQL is used in the real world. In an industry,
when a requirement comes in to add a feature to an application that accesses the
database, writing a statement in SQL Developer may constitute the beginning of the
process, but it is certainly not the end of it. In real-world production, SQL code is not
usually run from a client-side tool. More often than not, it is integrated within other
programming languages as part of a more robust solution.

Why SQL is paired with other languages

To understand the way this works, we need to return full circle from where we
began in Chapter 1, SQL and Relational Database. We mentioned that SQL is, like most
programming languages, effective for some types of operations while ineffective for
others. Computer applications are sometimes described in terms of layers. Generally,
conventional wisdom states that there are three layers to any application —the data
layer, the business logic layer and the presentation layer. While SQL is an effective
language for manipulating the data layer, it would not be acceptable as a language
for the presentation layer, due to its lack of functionality in that area. For this
reason, in software development, SQL is usually paired with another programming
language. SQL can be used to manipulate the data while other languages can be
used to write the business logic and/or presentation layer. For instance, say that it
has been decided that our Companylink application is going to be ported to a mobile
phone platform. While we may use SQL for programming at the data layer, it is more
likely that the presentation layer (and perhaps the logic layer) would be written

in a language such as Java. SQL in itself is insufficient for this task, since it lacks
many of the basic constructs crucial to programming languages, such as iteration
(looping) and conditional statements (if...then). Fortunately, Oracle recognized this
shortcoming and, in Oracle version 7, released the PL/SQL programming language.

Using SQL with PL/SQL

PL/SQL, or Procedural Language SQL, is Oracle's third-generation language

(3GL) for extending SQL. Although it lacks some of the features present in modern
languages, it is a true 3GL. While it is portable across platforms that use Oracle, it is
proprietary to Oracle. PL/SQL allows for the storage of code in the form of database
objects that are compiled and persistent within the database. PL/SQL adds many

[398]




Chapter 11

of the operations typically found in programming languages, such as conditionals,
iteration, and branching, to SQL. The two make a powerful, robust combination
when working with Oracle database data. However, while PL/SQL can be used for
the business logic layer along with SQL at the data layer, it has very few facilities
that would make it appropriate for coding the presentation layer. PL/SQL is a
block-structured language that is syntactically modeled on the Ada programming
language. Block structured refers to the fact that PL/SQL constructs its major
sections into blocks of code that work in concert to execute the program as desired.
Let's examine a simple PL/SQL code snippet in the following code example:

CREATE PROCEDURE clink ins prc (
p_div_id number,
p_div_name varchar2

)
Is

BEGIN

INSERT INTO division
VALUES (p _div_id, p div name);

COMMIT;

END;

Again, our purpose here is not an exhaustive exposition of PL/SQL; rather, to see
the way that SQL is used within other languages. However, for clarity, let's point out
some features of this code. First, the upper section (before BEGIN) is the definition

of the object. This object, c1ink_ins_prc, is a stored procedure that is followed by
two parameters. These parameters are values that are passed into the procedure
during execution time. As we will see, it is parameters such as these that give our
code flexibility and promote re-use. The second block (after BEGIN) is the body of the
procedure. The body is where the action takes place. It is also here that we should
recognize some familiar syntax. The body contains an INSERT statement followed

by a comm1T. However, notice that the values we send to the INSERT statement are
not literals — they are the names of the parameters from the definition block. These
values are passed to the procedure during runtime, which are then used in the
INSERT. Once created, the procedure can be invoked as follows:

BEGIN
clink_ins_prc (7, 'Public Relations');
END;

[399]



SQL in Application Development

The procedure is invoked by its name, clink ins_prc, and specifies two values to
pass into the procedure: the number 7 and the string 'Public Relations'. These
two values match the input parameters in the procedure itself. Thus, the number 7

is passed to the variable p_div_id, and the string 'Public Relations' is passed
to the variable p_div_name. Once the body of the procedure is executed, these

two values are active any time either of these variables is referenced. This offers

us tremendous flexibility. Rather than simply retyping one INSERT statement after
another, we could execute the procedure repeatedly, each time simply passing
different values. PL/SQL can also utilize SELECT statements as well, as the following
example demonstrates:

CREATE PROCEDURE clink sel prc (
p_div_id number
)

IS
lv_div_name varchar2(20) ;
BEGIN

SELECT division name
INTO 1lv_div_name
FROM division
WHERE division id = p div id;

dbms_output.put line('Division name is ' || 1lv_div_name) ;

END;

The structure of this procedure is very similar to the previous example. There is a
declarative block that defines the procedure and any variables used, followed by the
body of the code. Notice the SELECT statement used in the body. It is a simple SELECT
of the type we've seen before. However, this statement also contains the keyword
INTO. This is generally required of SELECT statements when using them with PL/
SQL. The 1nTO keyword allows us to provide a variable, in this case 1v_div_name,
that contains our selected value. If we were to select multiple values, we would
define and reference multiple variables —one for each value selected. As the keyword
suggests, we are selecting values "into" variables. Once the value is contained in the
variable, we can manipulate it as desired. In this case, we pass the variable to the
dbms_output .put_line procedure that is used to print it on screen. We invoke our
new procedure as follows:

[400]



Chapter 11

BEGIN
clink sel prc(7);
END;

In short, when we invoke clink_sel prc, passing the value 7 to it, the procedure
selects the division name from the division table that has a division id of 7 and
prints the string "Division name is " followed by the value for division_name. Any
time we invoke the procedure, we can pass any legal value for division_idand
receive a different result.

SQL in the real world

\ It is very common to see PL/SQL in environments that use Oracle.
Ny Its tight integration with SQL gives it an extremely high-performing
Q engine for the business logic layer of any data-intensive application.
Often, applications are structured to use SQL at the data layer, PL/SQL
at the logic layer, and a language such as Java for the presentation layer.

Using SQL with Perl

PL/SQL is somewhat unique in languages that use SQL. Since it was designed

to be used with Oracle databases, its support for SQL is tightly integrated. It has
many features that allow the code to directly access and manipulate SQL. Most
programming languages are designed to be multi-purpose and have no such level
of integration. For instance, consider the simple task of making a connection to the
Oracle database. While PL/SQL requires no special coding to accomplish this, there
is no similar "out of the box" functionality for many languages. Thus, even making
a connection to the database would require a good deal of extra, low-level coding.
What is needed is an interface between the language and the Oracle database. An
interface would create a layer of abstraction between the two that would make it
easier for the code to address the database. An interface, sometimes called an API
or Application Programming Interface, provides a set of instructions or functions
that facilitate interaction between a language and Oracle. Fortunately, due to the
popularity of Oracle, many modern languages have just such interfaces.

Perl is a high-level, interpreted, general purpose language that has achieved a great
deal of popularity owing to its relatively simple syntax, modularity, and compliance
with the POSIX standard. Its wide use on the web for CGI (Common Gateway
Interface) scripting has earned it the nickname, "the duct tape that holds the Internet
together". It is also popular with DBAs and System Administrators for maintenance
scripting. To connect to Oracle databases, programmers generally make use of the
Perl DBI (DataBase Interface) and the DBD::Oracle module.

[401]




SQL in Application Development

The DBl is a general interface used to connect to many different types of databases,
and the DBD::Oracle module is used specifically for Oracle. Used together, they
form the kind of interface between Perl and Oracle that programmers use for such
operations as enabling web pages to talk to Oracle databases. A relatively simple
example of this is shown in the following code:

#!/usr/bin/perl
my (Sdatabase, S$Suser, $password, $div_name, $sqgl, $cursor);
use DBI;

Sdatabase="'companylink';
Suser='companylink';
Spassword="'companylink';

$dbh=DBI->connect ("dbi:Oracle:sdatabase", Suser, Spassword) ;

$sqgl="select division name from division where division id=7";

Scursor=$dbh->prepare ($sql) ;
Scursor->execute () ;

while (($div_name)=$cursor->fetchrow array) {
print "$div_name\n";

}

If you are unfamiliar with Perl, this may look confusing, so let's break it down a

step at a time. The first section invokes the use of the DBI and defines variables that
are prefixed with the $ sign in Perl. The connection to the database is defined by

the DBI- >connect call, which receives the name of the database ($database), the
username ($user), and the password ($password). Next, we assign a recognizable
SELECT statement to the variable $sql. This is a convenient way to contain our
statement for use later in the code. The actual execution of the statement is controlled
by $dbh->prepare and $cursor->execute. Finally, the while statement fetches the
result and places it in the $div_name variable for output to the screen.

[402]




Chapter 11

Using SQL with Python

The Python programming language is, like Perl, a high-level, interpreted language.
It continues to grow in popularity for its speed of execution, readable code, and
object-oriented extensions. It is used for web development as well as standalone
applications and integrates well with other languages, such as C++ and Java. Its
large base of extensions makes it useful for coding the presentation layer as well.

Like Perl (and most languages), Python has no built-in support for manipulating
Oracle databases. However, strong support in the open source community has
provided a number of interfaces to Oracle. One of the most popular is the cx_Oracle
extension module. It conforms to Python's API specification and allows Python code
to interface with Oracle. A short piece of code using SQL and cx_Oracle is shown

as follows:

import cx Oracle

connections=
cx_Oracle.connect ("companylink", "companylink", "companylink")
cursor=connection.cursor ()

cursor.execute
("select division name from division where division_id=7")

v_div_name=cursor.fetchall ()

Here, the connection string is established in the line beginning connection=.

It references the cx_Oracle module and its connect method. We pass username,
password, and database name, in that order, to the connect method. A cursor is
declared using the connection, and our SQL statement is passed to its execute
method. Our final line fetches the data into the v_div_name variable.

[403]




SQL in Application Development

Using SQL with Java

In the past decade, few programming languages have taken the world by storm like
Java. To call its use widespread would be an understatement. Developed originally
in the early 1990s, it is used today in every kind of application, from client-side
applications to dynamic web pages to cell phone apps. The motto of Java is "write
once, run anywhere", owing to its platform independence. Code written in Java is
run in a JVM or Java Virtual Machine, an abstraction layer that gives it widespread
portability. While still considered a high-level language, Java is object-oriented, a
programming paradigm that manipulates data structures known as objects in order
to create programs. Oracle Corporation has historically taken a great interest in the
Java programming language and has for many years taken steps to incorporate it
into every level of its product offerings. In fact, Oracle assumed "stewardship" of
Java with its acquisition of Sun Microsystems in 2010, although the core code of the
language was made available under open source distribution terms in 2007. For
Oracle professionals, Java has the distinction of being one of only three programming
languages directly supported within the database, the other two being PL/SQL and
SQL. Just as we can write PL/SQL-stored procedures as resident code within the
database, we can do the same with Java-stored procedures.

Code written in Java generally makes use of the JDBC (Java DataBase Connectivity)
interface to access Oracle (as well as other) databases. The JDBC interface, or driver, is
invoked to make a database connection as shown in the following code snippet:

Connection connection = null;
try {

String driver = "oracle.jdbc.driver.OracleDriver";
Class.forName (driver) ;

String host = "clinkServer";
String port = "1521";
String sid = "companylink";

String url =
"jdbc:oracle:thin:@" + host + ":" + port + ":" + sid;

String user = "username";
String password = "password";

connection =
DriverManager.getConnection (url, user, password) ;

} catch

[404]



Chapter 11

Any connection to an Oracle database requires the name of the database server
(host), the port on which Oracle runs (port), and the name of the database (sid,
or System IDentifier). Our Java connection invokes the JDBC driver and passes
the hostname, port, and sid to form a URL. That URL then receives the username
and password to initiate the connection. Once the connection is made, our code
need only invoke it and execute the query. The following example does this and
fetches the result set into a variable:

try {
Statement stmt = connection.createStatement () ;

ResultSet rs =
stmt .executeQuery ("SELECT * FROM division") ;

Understanding the Oracle optimizer

When we execute a query in Oracle, it is easy to forget what's happening "under
the hood". If we think about it for a moment, we might say that not all queries are
created equal. For instance, when we discussed indexes, we noted that an index
can speed up the execution of certain statements, provided that the WHERE clause

is making its selection based on an indexed column. However, we noted that even
when an index is present, an index scan may not be the most efficient execution
path. What if we selected every row from a particular column in a table? In such a
case, a full table scan might be more efficient. There are innumerable possibilities
for such choices, given the scope and complexity possible with SQL. Clearly, there
is something "under the hood" that is making these choices. In Oracle, it's called the
optimizer. The optimizer is the engine that determines the most efficient manner in
which to execute a SQL statement. It is a very complex internal component within
Oracle that is constantly being improved with each release. Throughout its history,
it has come in two different forms — the rule based optimizer and the cost

based optimizer.

[405]



SQL in Application Development

Rule-based versus cost-based optimization

The rule based optimizer is an older method for optimization that is no longer
supported in Oracle 11g. Although it is not used in the current version, an
understanding of how it works is useful to us in comprehending the concept of
optimization. The rule based optimizer uses a set of 15 rules that are ranked in

order of efficiency. The rules include query optimization methods such as full table
scan, index scan, and scan by RowID. These rules also take such factors as sorting,
primary keys, and joins into account. Rule based optimization occurs when the
optimizer parses, or interprets, the SQL statement and determines the rank for which
it qualifies. Thus, if an index is present that matches the conditions of the query, it
chooses to use the index.

While the rule based optimizer served adequately for many years, with the advent
of larger databases and their high performance requirements it became clear that
another method was needed. The complex queries written today require more
flexibility in their choice of execution path. It is not enough that the optimizer
chooses from a finite list of possible paths. Such factors as the size of the rows
retrieved, the size of the table, and the structure of the index also need to be taken
into account. Unlike the rule based optimizer, the cost based optimizer takes these
and other factors into account. In short, the cost based optimizer determines the
optimal execution path based not on a set of rules but on the cost of the query in
terms of resource usage.

In order to make these types of choices intelligently, the cost based optimizer
requires the collection of statistics. Statistics are gathered to quantify the
characteristics of tables and their indexes. Statistics fall into four categories: table,
column, index, and system. Table statistics include the number of rows in the table as
well as their average length. Index statistics include the number of levels in an index.
System statistics include disk I/O and CPU utilization. All these statistics provide
vital information for the optimizer to choose the best optimization path.

Gathering optimizer statistics

Just as the data and structure of tables and indexes change over time, so do their
statistics. Take, for example, our Companylink employee table. As it is now, it
contains 16 records and has (depending on how many examples you've completed)
four indexes. What if we were to add 100,000 rows and two new indexes to the
employee table? The characteristics of the larger table would be much different
than before. For this reason, statistics must be gathered, or generated, periodically to
ensure that the optimizer has the best possible information with which to make its
decisions. When we gather optimizer statistics, we often refer to it as analyzing the
table. The term comes from the older method of gathering statistics, which used a

[406]



Chapter 11

statement called ANALYZE. In more recent versions of Oracle, statistics are gathered
using one of two methods —manual or automatic.

We can analyze our tables manually using the DBMS_STATS package. DBMS_STATS

is an Oracle-supplied PL/SQL package that allows us several options for statistics
collection, including the ability to gather stats at the table or schema level and to
take statistical samplings from tables. When we invoke the DBMS_STATS package in
SQL Developer, we execute it using the Run Script button (or the F5 key) next to
the Execute Statement button that we normally use. Also, we must make sure we
highlight the statement, since SQL Developer interprets PL/SQL slightly differently
than SQL. This is shown in the following screenshot:

[= companytink @orci [
FPERRO BE ¢ 108518255 seconds
Fun Script (F5) I

ATATS. GATHER_TARLE_3TATS ('COMPANYLINE', 'EMPLOYEE')

.
[ Resuts | [E]Seript output. 75 Explain |§ﬂ].ﬂ.mo’crace |lE.DE:MS Outpout | (£ Cwve, Outiout
= e

anonynous block completed

This operation scans the table and its indexes and records them as metadata within the
database. The next time an SQL statement is run against the employee table, the cost
based optimizer can make use of the statistics to determine the best possible execution
path. We can also gather statistics on our entire companylink schema using the
GATHER SCHEMA_STATS procedure within DBMS STATS as shown in the next
screenshot. Remember to use the Run Script button.

D COMPIRYIIRE orcs [
D’ El @ ﬂ @ E h # 4 57734251 seconds
Run Scrigt (F5) i

exec DEMS STATS.GATHEFR SCHEMA 3TATS ('COMPANYLINE')

.
[ Resutts | [=] Sorit Output| FH)Explain |§.a]motrace |IEDBMS Output | 9 CWia, Output
¢dsE

anonymous block completed

[407]




SQL in Application Development

The lack of up-to-date statistics can be devastating to query performance. Because
statistics are so vital, Oracle has developed a job that can automatically gather

them for us. In version 10g, this was accomplished using the GATHER_STATS_JOB,

an internal database job created by Oracle during database creation. In 11g, the
automatic gathering of statistics is part of a maintenance task infrastructure known
collectively as AutoTask. One of the surprising features of these automatic tasks

is that they collect statistics intelligently. These tasks have the ability to determine
which tables need statistics collection and which do not. For instance, say that Oracle
automatically analyzes the employee table. The next time the job runs, AutoTask can
determine whether the table has changed enough to warrant another collection. If the
table is static over several days or weeks, Oracle can choose not to analyze, greatly
reducing the amount of time needed to run the job.

SQL in the real world

In large, highly active databases such as data warehouses, statistics
~ collection can be extremely resource intensive. The statistics collection
Q for a table with millions of rows can take hours to complete. In such
situations, jobs to collect stats are done during times of low database
usage and are sometimes done using a sample of records instead of the
entire table.

Viewing an execution plan with EXPLAIN
PLAN

Now that we understand how the optimizer works, it is useful to see it in operation.
The primary way we see into the "mind" of the optimizer is through the EXpPLAIN
PLAN statement. EXPLAIN PLAN will display an execution plan for a given statement,
showing us what type of plan will be used, as well as the resource cost. While
EXPLAIN PLAN is an actual SQL statement, today's GUI interfaces to SQL allow us

to view our execution plan in a format that is much more readable than simply
executing the statement itself. The tool we use to access the database will determine
what steps we take to generate the plan, but the underlying method is the same.
Since SQL Developer is our tool of choice, we will look at running explain plans in
that tool. Let's first look at a simple SQL statement in the following screenshot and
then look at its execution plan:

[408]



Chapter 11

D; companylink @orcl I

FPERRO B8 ¢ 00119842 seconds

SELECT first name, last name, branch id
FROM euployee
VHERE branch id = 2;

.

B Resutts | (=] Script Output | SEsplain | 5 autotrace | F0EMS output | ) o output

Results:
F|H5T_NAME| LAST MAME | BRANCH_|D|
1 hary Williams 2
2 Daniel Robinzon 2
3 Carol Clark 2

The query simply selects from the employee table, using a branch_id value of 2 as
a limiting condition. From what we've learned of indexing, if an index is present
on the branch_id column, it should be used. Next, we look at the EXPLAIN PLAN

functionality as implemented in SQL Developer.

(= companyiink @orcl [

CERGR® BB ¢

[Execute Explain Plan (F5) |
SELECT first name, last name, branch id FROM employee
THEFE branch id = Z;

% 4
[ Resutts | & soript output | EExplain 27 sutatrace |[3[)BMS Cutput | 4 O, Output
OPERATION OBJECT_MAME OPTIONS COST
-0 SELECT STATEMEMT 3
=-FH ToBLE accESS EMPLOVEE FLLL 3
E}Gﬁ Filter Predicates
: BRAMCH_ID=2

[409]



SQL in Application Development

To execute our EXPLAIN PLAN, we click the Execute Explain Plan button (alternatively,
the F6 key) as indicated. The line TABLE ACCESS along with EMPLOYEE and FULL
indicates that our execution plan will do a full table scan on the employee table. The
Filter Predicates section shows our limiting condition— BRANCH_ID = 2. Also, a
COST of 3 is shown for the query. In short, the execution plan indicates that a full table
scan will be done to find rows with a branch_id value of 2. As we know, full table
scans are not the preferred access method when we are querying for a limited number
of rows. But, we can only make use of an index scan if we have an index on the column
with the limiting value, in this case branch_id. Let's add an index to that column and
see the result.

[ companylink @orcl I
FERRO 88 & 012017114 seconds

CRERTE THDEX emp brch id idx
OH employes (branch id):

b, W
[ Resuts | [=] Script output | 8 Explain | B avtetrace | FDEMS output | €4 o, Output
Results:

Next, we view a different execution plan using the methods described previously.

Dcompanyﬁnk@orc! I
FPEREO Bl ¢

|Execute Explain Plan (F6) |

SELECT first name, last name, branch id FROM employes
VHERE branch id = 2;

S 4
[ Resutts | 5] Script Output | EExplain . £ autotrace |IEDBMS Output | E8 O Output
OPERATICHN OBJECT MAME OPTIONS COST
=40 SELECT STATEMENT 2
=8 TaBLE accEsS EMPLOYEE B INDEX, RCWID 2
=4 NDEX EMP_BRCH_ID_IDX, RAMGE SCAN 1
E}G% Access Predicates
: ERANCH_ID=2

[410]




Chapter 11

As we can see, the type of table scan used now is BY INDEX ROWID, indicating

an index scan is taking place with EMP_BRCH_ID_IDX shown as the name of the
index being used. Our cost is also listed as 2, indicating that the index scan requires
less resources to execute. While the difference between the cost values may not seem
significant, it is only because the employee table is very small. If the table in question
was large, the cost difference would likely be substantial. Using EXPLAIN PLAN, we
can see the benefits of using an index to speed performance.

SQL in the real world

The importance of EXPLAIN PLAN cannot be overstated. Unfortunately,
~ it is often overlooked by developers during the writing of SQL
Q statements. Examining the execution plan of your SQL takes little
effort and can reap enormous benefits in terms of performance. Taking
the time to do so at the development stage can save hours of costly
troubleshooting in production. -

Advanced SQL statements

For our last look at SQL, we examine some statements of a more complex nature. It is
important to note that these statements do not contain any elements that we haven't
already covered. Their complexity derives from the number of elements they contain
working together. Decoding and understanding these statements involves the ability
to do the following three operations:

e Recognize the syntax being used
e Break the statements into component pieces

e Understand how the different pieces work together

[411]



SQL in Application Development

Examining complex statements such as these is good practice for the SQL certification
exam. The ability to master them will significantly increase your preparation for the
test. Our first example is listed as follows:

(> companyiink @orcs ‘
|) El @ @) @ B ﬂ é 0.03133359 seconds companylin

SELECT first name, middle_initial, last name,
TO_CHAR.(dob, 'MHon DD, ¥Y¥¥Y¥') "Birthdate”,
TO_CHAR(start_date, 'Month DD, ¥YYY¥') "Start Date”™,
TO_CHAR(sigrup date, 'Day DD Month, T¥¥¥'] "Signup Date”,
city,
award desc, date_awarded "Date 0f Award”

FROM cuployee

HATURAL JOIH address

HATURAL JOIH employee_award

HATURAL JOTH award

TWHERE TO CHAR(start_date, 'Ty¥¥') > TO_CHAR(date_awarded, '¥Y¥¥V¥'):

av
[ Resuts| [2]serint output | EExpiain | 59 avtetrace | ZADEMS Output | @ v outpunt

Results:

B FrsT nane [B oo mmal [B Last mwene [l Brhosts [B starnpste (B Signup Date B crv @ awero pesc |8 et ot awara
1 Gary R Moore Moy 01,1965 February 12, 2004 Friday 06 August | 2010 Des Moines Technological paper winner 05-M&Y-01
2 Sandra = Rodriguez May 10,1974 August 04,2009 Thursday 04 March 2010 Tulsa Fastest typist 06-4PR-03
3 Laura | Thomas Oct 26,1951 February 14, 2008 Sunday 07 Movember | 2010 Piper Best new employee 25-FEB-04
4 Laura | Thomas Oct 26,1951 February 14, 2005 Sunday 07 Movember | 2010 Topeka Best new employee 25-FEB-04

If we step back and take a broad look at this statement, we can see several pieces at
work. The statement:

e Uses Oracle's join syntax (NATURAL JOIN)
e Joins four tables using three joins
e Does not have an overly complex WHERE clause, although it uses a function

e Uses a lot of formatting techniques, including date formatting and aliases

Provided that we don't allow ourselves to get lost in the syntax, we see that the
statement is not as complex as it may appear. It joins columns from four tables and
therefore uses three joins as we learned in our discussion of n-1 join conditions.
These joins are natural joins, so the columns being joined are not explicitly specified.
It may be necessary to look at the column structure of the tables involved to see what
is occurring. The statement also uses the To_CHAR () function to format the output of
various dates, but it does so using different format masks. In short, the statement is a
report that displays employee and address information for employees that have won
awards. However, it is the brief WHERE clause that gives away the purpose of this
statement. The WHERE clause restricts rows to those award winners whose start date
as an employee is after the date of their award. Since an employee cannot receive an
award if they haven't yet been hired, the report is designed to reveal inaccuracies in
how award dates are stored.

[412]



Chapter 11

After viewing this report, we can correct the dates using UPDATE statements. Take a
look at our next example.

Dcompanyﬁnk@orc! I
FPERRS BB & 003983244 secones

SELECT UPPER(el.first name) "First Name™,
UFPER (el.last name) "Last Name™,
ROMMD (el. login count) "Login Count”,
TEUHC (eZ.avy_login) "ivg Login™
FROM employee el
JOTH
[SELECT project_id, roundiavg(login count)) awvg login
FROM employee
GROUP BY project_id) eZ
OH el.project_id = eZ.project_id
VHERE el.login_ count < eZ.awvy login
UHIOH
SELECT UPPER(e3.first name) "First Name™,
UFPER(e3.last name) "Last Name',
EOUND (e3.login_count) "Login Count”™,
TEUNC (ed.avy_login) "avg Login”
FROM employee e3
JOTH
[SELECT branch_id, round{avg(login count)) avyg_login
FROM employee
GROUP EY branch id) ed
OH e3.branch_id = ed.branch_id
VHERE e3.login count > ed.awy login
ORDER BY 1, 2:

. 4

B> Resuts| (5] Seript output | B Explain |-§.§}Ammrace ||3DBMS output | @ cvva output

Resuts:

First Mame | Last Mame | Login Court | Ay Login |

1 CAROL CLARK 1123 1495
2 CYNTHIA, HALL 1478 1373
3 DANIEL ROBINSON 1220 1495
4 DONALD FEREZ 1025 1138
5 GARY MOCRE 1485 1373
& GEORGE TAYLOR 788 a7
7 LAURA, THOMAS 1221 1010
& LAURA, THOMAS 1221 1398
9 LIND& ANDERSON 1245 1135
10 MARY WILLIAMS 2143 1495

[413]




SQL in Application Development

While the preceding statement consists of many lines of SQL, we can begin to dissect it
immediately by splitting it in half. Notice the UNION operator roughly in the middle
of the code. This tells us that we are actually dealing with two distinct SQL statements
and then uniting their output with UNION. Once we've recognized this, we also notice
the similarities between the two statements. Both use inline views joined with the
employee table. In fact, the two statements are almost identical except for the grouping
in the inline views and the slightly different conditions in the WHERE clauses. In short,
this statement looks at two slightly different dimensions of the data; one grouped by
project and one by branch, and then displays the two together.

D companyfink @orcl |
FPERRO BB ¢ 004406622 seconds

SELECT blog_url, blog desc
FROM hlog
WHERE blog_id IH
[SELECT blog_id
FROM website
WHERE SUBSTR(blog url, 1, 8) <> 'https: /'
AHD hit count »>= AHY
[SELECT AVG (hit_count)
FROM blog)
AHD employee_id TH
(SELECT employee_id
FROM ewmployee
VHERE TO_CHAR(start_date, 'DD-MON-Y¥¥Y¥Y') > '01-TJAN-15994!
AHD TREUNC (login_count, -2) > S00
AHD ROUND {last_login_date) < TO DATE('01-JAN-2012', 'DD-MON-YY¥VY')
AHD NVLiproject id, 01 > 0
AHD branch id IH
[SELECT branch id
FROM branch
VHERE LOWER(branch_name) IN ('dewveloper', 'system admin', 'database admin', 'training', 'retail')
AHD division id IH
(SELECT division id
FROM diwvision
VHERE UPPER(divizion nawme) IH ('INFORMATION TECHNOLOGY', 'SALES', 'HUMAN RESOURCES')

. 4
> Resuts | (=] Seript output | B Explsin |§3Aumtrace | ADEMS Outpt | € o outpu
Results:

BLOG_URL [@ sLoc pesc |
1 hittpe e companylink comblogivwiliams Deskiop rollout progress blog

2 hittpefteeweee companylink comblog/imgarcia  Matts cool blog
3 hittpe ey companylink comblogigmoore  Garyhlog!

4 hitp: feeweee companylink .comblogfiohnson  Jims blog

[414]



Chapter 11

Our last statement is certainly a long one. Again, while it may look too complex to
tackle, it's not. The previous statement contains five subqueries on four sub-levels,
since two of the subqueries occur at the same level. The first thing we must do when
we encounter a complex, nested subquery is to start at the innermost subquery. In
this case, the innermost query is a relatively simple one that selects values meeting
a certain condition from the division table. It then passes those values back to

the next level — the branch level —a query that uses the values from the first query
as conditional input. The resulting values are passed back to the employee level,
where the values are processed along with several other query conditions involving
dates. These results return to the website level; a level with two subqueries. The first
queries the blog table for average hit count, and the second is the resulting rollup

of the other nested subqueries we've discussed. All of these values return to the
originating query that displays blog information for the values returned by all of
the nested subqueries. In short, this statement displays a fairly inefficient substitute
for a join of the blog, website, employee, branch, and division tables done with
subqueries. Joins can often be rewritten as subqueries, but because of the way the
Oracle optimizer processes joins, it is often very inefficient to do so.

Exam preparation

In this book, we've laid out the subjects needed to take the Oracle Database 11g;:
SQL Fundamentals I exam. In order to pass, you'll need to achieve a high level of
competence in these areas. However, there are some helpful hints that we pass on
here to help you on your way.

Helpful exam hints

¢ Understand the basics: The exam, number 1Z0-051, is given as a proctored
test at a Pearson VUE testing center. Once you're ready to take the test, you
can register online and choose a testing center near you for convenience.
The cost for the exam is $125. You are allowed 120 minutes to complete 70
multiple choice questions. In order to pass, you must have a score of 60
percent, or 42 questions correct. Also, visit Oracle's certification website at
http://certification.oracle.com, and click the Certification link for
more information on this and other tests in the Oracle certification track.

¢ Don't cut corners: Passing the test is all about preparation. Where possible,
don't drag out your preparation over a long period of time. Try to set aside a
period of time that you will spend in dedicated preparation, and then take the
test. Do NOT skip subjects. Your exam will be 70 questions generated from a
larger bank of questions. While it is likely that not every subject will be on your
exam, any subject is possible. Don't risk skipping any particular subject.

[415]


http://certification.oracle.com/
http://certification.oracle.com/

SQL in Application Development

Know your syntax: This exam is heavily oriented toward SQL syntax. It
is crucial that you know proper syntax to pass the exam. There are many
questions designed to exploit common syntax errors. We have included
many syntactically-oriented questions at the end of each chapter to help
prepare you for this.

Learn by doing: Most people learn a subject more thoroughly by actually
doing it. Take advantage of the sample database and examples used in this
book. This can take you a long way toward having a quicker recognition of
many questions.

Supplement your learning: This book covers all the necessary subjects to
pass the exam, but don't hesitate to supplement your knowledge from other
sources. Take advantage of practice exams and sample questions where
possible. Search the Internet —some sites have forums visited by people who
have taken the test. Their comments may give you some insight into whether
you're ready to take the exam. However, beware of "braindump" types of
practice exams. Many have inaccurate questions and answers.

Don't sweat it: Be mentally and physically prepared on the day of the exam.
Eat properly and get plenty of rest. Prepare well and be confident. Many
candidates like to schedule the exam in the earlier part of the day so they're
mentally fresh. Choose a testing site that you're familiar with to minimize the
risk of being late. Stress is a candidate's worst enemy.

Watch the wording: Certification tests in general can be notorious for the
wording of their questions, and Oracle's are no exception. Read each question
carefully. Testing candidates generally do not have trouble completing the
SQL exam within the time allotted provided they are properly prepared.
Watch out for poorly worded questions and double negatives. The exam is
multiple choice and some questions have many correct answers. While you
must get every one of the answers correct for full credit on a question, partial
credit is awarded for each correct choice.

Use the questions to your advantage: There is no penalty for guessing on
the exam, so make sure you answer all the questions. Also, you have the
opportunity to skip questions and return to them later. The answer on one
question may help jog your memory on another. When you read a question,
try to deduce the solution without immediately referring to the possible
answers. If you think you're right, don't let the answers sway you. Some
candidates like to skim the test and complete the "easier" questions first. This
can give you some momentum for the remainder of the test.

[416]



Chapter 11

A recommended strategy for preparation

While passing the certification test is certainly the goal, earning a certification without
understanding the subject matter is useless. Many "braindumps" and "exam crams"
attempt to push a candidate through the certification process, mostly on memorization.
Even if a candidate does pass, they are left without the requisite knowledge to
function in their certified field. This book attempts to actually teach you proficiency

in the subjects you need and includes many examples to prepare you for using SQL

in the real world. To that end, we recommend that you take a real-world approach

in preparing for the test. It may take longer than simply cramming for the exam, but
when you're finished, you'll be much better prepared.

After you've finished this book, take a "dry run" at the test. Without reviewing, go
back and answer the questions in this book and any example questions you may
have from other sources. When you check your answers, make note of the questions
you've missed, as well as their subject areas. From this, you have a list of subjects on
which you need to focus. This prevents you from spending an inordinate amount of
time on the subjects you already know. Using your list of review subjects, go back
through the book and re-read the sections that cover these areas. Work through the
examples again. Write your own variations to these examples. For instance, say that
after completing your dry run, you find that you have a good grasp of the basics of
using subqueries, but you struggle with multi-column subqueries. Read through
that section in Chapter 8, Combining Queries and do the examples. Then, see if you
can modify the examples to write your own multi-column subqueries. Once you are
done with your review of the subject areas, take the test questions again. Repeat the
process of studying and working with the remaining subject areas. Use this iterative
process to fully prepare you for every subject. Once you feel you're ready, take the
test. Good luck!

Summary

In our final look at SQL, we've examined some of the issues that are important in
real-world SQL development. We've seen how SQL can be integrated into other
programming languages, such as Perl and Java. We examined the Oracle optimizer
and how statistics gathering and EXPLAIN PLAN can be used to produce efficient
SQL code. We've looked at several complex SQL statements that utilize many of
the aspects of SQL we have learned and broken them down into logical, more
manageable components. Finally, we have laid out a preparation strategy for
taking the SQL certification exam and looked at some helpful hints.

[417]






Companylink Table
Reference

Considering the amount of work that we do in this book with our companylink
tables, it can be advantageous to have a place of reference to see the tables used in
our fictitious Companylink application. This appendix details the tables, columns,
and datatypes used as the basis for the Companylink application.

The Companylink data model

The next screenshot shows the tables that are included in the Companylink data
model. The tables are created and populated by running the companylink_db.cmd
Windows command file. This file calls the companylink_ddl.sqgl script that creates
the table structures and the companylink_data.sql script that populates them with
data. These are the base tables used for examples throughout this book. Other tables
are added through the course of various chapters, and modifications to them are
made as a part of the examples.

ADDRESS

The address table contains the addresses for employees that are a part of the
Companylink application.

ADDRESS_ID MUMBER{10,0) Mo = 1
STREET_ADDRESS WARCHARZSD)  ‘Yes
Iy YARCHARZ(28)  es
STATE YARCGHARZ(Z) Yes
ZIF MUMBER(S,00 A=
EMPLOYEE_ID MUMBER{10,0)  Yes
1-6




Companylink Table Reference

AWARD

The award table contains the description for various awards given to
Companylink employees.

AWARD_ID MNUMBER(10,0) Mo ° 1
AWARD_DESC  VARCHARZ(4000)  Yes

BLOG

The blog table contains data on the blogs hosted by the Companylink application.

BLOG_ID NURMBER(10,0) Mo ° 1
BLOG_URL YARCHARZ(220) es
BLOG_DESC  VARCHARZ(4000) Yes
HIT_COUNT NURMBER(10,0) es

BRANCH

The branch table contains information regarding the company branch to which
employees are assigned.

BRANCH_ID MUMBER(10,0) Mo - 1
BRAMCH_NAME  WARCHARZ(50) Yes
DIVISION_ID NUMBER(10,0)  Yes

DIVISION

The division table contains information regarding the company division to which
employees are assigned.

DIVISION_ID NUMBER(10,0) Mo 2 1
DIVISION_MNAME  VARCHAR2(100)  Yes

[420]




Appendix A

EMAIL

The email table contains e-mail address information for Companylink employees.

Emall_ID
Emall_ADDRESS
EMPLOYEE_ID

NUMBER(10,0)

VARCHAR2(50)

MUMBER10,0)

Yes
Yes

EMPLOYEE

The employee table contains information on
the Companylink application.

the various employees who are a part of

EMPLOYEE_ID
FIRST_MAME
MIDDLE_IMITIAL
LAST_MNAME
GEMDER

DoB
START_DATE
BRAMCH_ID
PROJECT_ID
SIGHNUP_DATE

LAST LOGIN_DATE

LOGIN_COUNT

NUMBER(10,0)

YARCHAR2(25)

YARCHARZ(1)

YARCHAR2(50)

CHAR(1)
DATE
DATE
MUMBER(1 0,0}
NUMBER(10,0)
DATE
DATE
NUMBER(10,0)

MNa

es
fes
Yas
es
fes
Yas
es
fes
Yas
Yes
fes

-12

EMPLOYEE_AWARD

The employee award table is a bridge table between the employee and award tables

that indicates how awards have been assigned to employees.

AWARD_ID

NUMBER(10,0)

DATE_AWARDED  DATE

EMPLOYEE_ID

MNUMBER(10,0)

Yes
eg
es

[421]




Companylink Table Reference

MESSAGE

The message table contains information about the messages that have been sent
through the Companylink application.

MESSAGE_ID NUMBER(10,0) Mo = 1
MESSAGE_TEXT  WARCHARZ(4000) Yes
MESSAGE_DATE DATE fes

EMPLOYEE_ID NUMBER(10,0) fes

PROJECT

The project table contains information about the various projects to which
Companylink employees have been assigned.

PROJECT_ID NUMBER{10,0) Mo - 1
PROJECT_MAME  WARCHARZ(Z50)  ‘Yes 5 5
PROJECT_DESC  WARCHARZMEOOD)  ‘Yes 5 5
PROJECT_MGR_ID  NUMBER{10,0) Yes - -

1-4

The website table contains data on the websites hosted by the
Companylink application.

WEBSITE_ID MNUMBER({10,0} Mo - 1

WEBSITE_URL  VARCHAR2(260)  Yes - -

WEBSITE_DESC  VARCHAR2(4000)  Yes - -

BLOG_ID NUMBER(10.0)  Yes - -

HIT_COUNT NUMBER(10,0)  Yes - -

EMPLOYEE_ID  MUMBER{10,0)  Yes - -

1-6

[422]




Getting Started with APEX

Throughout this book, we have used the SQL Developer tool for our SQL statement
examples. This appendix covers the use of another tool that can be used —Oracle
Application Express, or APEX.

Oracle Application Express

While the SQL Developer tool used in this book is a robust tool for writing and
executing SQL, it has the disadvantage of requiring the reader to have direct access
to a database. If you already have a database that you can use to run the examples,
you need not concern yourself with using APEX. However, if you do not, you would
need to install the Oracle software and create a database before being able to connect
using SQL Developer. While we briefly covered the steps in making a database
connection in Chapter 1, SQL and Relational Databases, installing Oracle and creating
databases is outside the scope of this book. Doing so also requires you to have a
server that can be used to host your database. The Oracle database software can be
freely downloaded for personal use to do this and can run on many modern home
PCs. However, in the event that you do not have a machine available to do this,
APEX can be used to do the examples in this book without the resources needed to
run an entire database.

What is APEX?

Oracle Application Express (APEX) is a free, hosted service provided by Oracle that
provides a workspace for users that can be used to create database objects and run
SQL statements without installing Oracle on your local machine. In essence, it is a
free private database that you can create and access from a web browser. Strictly
speaking, APEX is a standalone product offered by Oracle, but the company hosts a
website that runs APEX and allows users to create accounts to evaluate the product.



Getting Started with APEX

Signing up for APEX
To use APEX, we must first sign up for a free account. We navigate our browser to:
http://apex.oracle.comand are presented with the following APEX login screen:

Sun Quick Links =

United States ~  Communities~  |ama.. v Iwantt.. v |[¥] 55cure Search Q|

ORACLE’

Products and Services Downloads Store Education

Support

Partners ‘ About ‘ .ﬂrir.'le Technology Network + ] |

Welcome to
apex.oracle.com Learn more

ORACLE’
[ TeEcHNOLOGY NETWORK

Use apex.oracle.com to develop database centric web applications with Oracle Application Express. If you have a workspace, click the login button. otherwise, click the
sign up button to request a new workspace. Oracle provides apex.oracle.com as an evaluation semvice free of charge. Oracle Application Express is a no-cost option of the
Oracle database. The latestversion of Oracle Application Express can be downloaded from OTN

The first time we use APEX, we need to sign up for an account by clicking Sign Up.
We're presented with the welcome screen that follows, and then we click Next.

CLE€" Application Express
0

Application Express Registration

Welcome to Application Express Registration. Please complete this request form to gain access fo
Application Express. After the request has been reviewed by the Application Express site administrator, your
account password or other status information will be sent to you in an email.

[424]



http://apex.oracle.com/
http://apex.oracle.com/

Appendix B

The next screen asks us for our first and last name, along with our e-mail address. A
verification message will be sent to this address, so we need to make sure our e-mail
is valid.

' ORACLE' Application Express

HEEEEE

Application Express Registration

Please identify the administrator who will manage the requested service. Once the request is approved, the administrator will have the
privilege to set up other administrators and developers.

* First Name [James ]

# Last Name [Johnson |

* Ema”|jjohnson@companylink.coml |
(usedto email your credentials)

When you sign in to APEX, you will be asked to provide the name of this workspace,
which is filled in the Workspace field as shown in the following screenshot. The
Username (e-mail address), Password, and Workspace name must all be entered
when you login to APEX each time, so don't forget them.

' ORACLE" Application Express

[ [

Application Express Registration

Please enterthe workspace name you would like to have. When your service is approved, you will login using a workspace / username /
password combination.

* Workspace [Companylink

[425]



Getting Started with APEX

The next screen asks whether we should use an existing database schema or create
a new one. Our first workspace will require a new schema, so we want to make sure
the Request a new schema button is selected.

' ORACLE' Application Express

0 o [

Application Express Registration

|dentify if your requested workspace should have privilege in an existing database schema, or, if you are requesting the creation of a new
database schema.

D usean existing schema from the database
@ Request a new schema

Since we have chosen to create a new schema, we provide a name for it on the
following screen. Choose a name that is appropriate for you. We can also choose
an initial space allocation for storage, but the default of 25 MB should be fine for
our examples.

[ [

Application Express Registration

Flease enterthe name of the Oracle database schema you would like to have created for your workspace.

* New schema to create[wmpanylink
Initial Space Allocation (MB): |'25| ¢'|

The next screen asks us to provide a reason we're requesting access to the APEX
service. Since this is a free service, this seems only fair. This request may actually be
reviewed by a real person, so we need to make an appropriate request, as shown in
the following screenshot:

[426]




Appendix B

' ORACLE" Application Express

[ [ o

Application Express Registration
This information helps the Application Express administrator understand how you intend to use this semice.
* Why are you requesting this service?

To evaluate the benefits of Oracle Application Express as a rapid
application development platform.|

Finally, we type in the verification code and click Submit Request. An e-mail will be
sent to the address you used in your request. Follow the instructions in that e-mail to
finalize your account.

'ORACLE' Application Express (@I OIS @EITTTeD

0 o o o

Confirmation

* yerification Code: [
t2o0Y6

Enter case sensitive Verification Code and click Submit Request.

Workspace Information:

Mame Companylink
Description  To evaluate the benefits of Oracle Application Exp...

Administrator Information:

FirstName James
LastName Johnson
E-mail Jjiohnson@companylink.com

Schema Information:

Reuse Existing Schema  No
Schema Mame c_link
Catabase Size 25

[427]



Getting Started with APEX

Using APEX

Getting around in APEX is very intuitive. APEX is a virtual playground for an
aspiring SQL programmer. It allows you to do the following:

e Create your own tables, indexes, constraints, sequences, and so on
e Run SQL statements and scripts
e Build PL/SQL objects

There are many other capabilities of APEX for Oracle professionals. We can use

the GUI Application Builder to create our own web applications. We can do team
development of projects. We can even load and unload data quickly and easily. As
an interesting note, nearly all the prototyping of the SQL statements used in this
book was done using APEX. While it lacks some of the features of SQL Developer, it
is easy to use.

To begin using APEX, we return to the APEX home page at http://apex.oracle.
com. Click the Login button, and enter your account information.

'ORACLE' Application Express

Enter Application Express workspace and credentials.

‘ Workspace |Companylink |

UsemameI_Uohnson@companylink.com _|

Password I.-.......-.| J

r—
| Login )

Click here to leam how to get started

Oracle Application Express is a rapid Web application development tool that lets you share data and create custom applications.
Using only a Web browser and limited programming experience, you can develop and deploy powerful applications that are both fast
and secure.

Language: Deutsch, English, Espafiol, Frangais, Italiano, Portugués (Brasil), 37 (@588, hr (i) . B&E. #=0

[428]


http://apex.oracle.com/

Appendix B

The home page for APEX is shown in the next screenshot. Since our focus is on SQL
development, we click the box for SQL Workshop.

-+

[ oracle Application Express

ORACLE’ Application Express
Home Application Builder

QL Workshop Team Development Administration +

This service will not be available on Friday, 29-JUL-2011 from 6:00P PDT (30-JUL-2011 0100 UTC) for approximately 6 hours. During this outage this service will be upgradedto a
beta version of Oracle Application Express 4.1.

Workspace SQL FUNDAMENTALS

s

Application Builder SQL Workshop Team Development Administration

We can choose from a number of options from the SQL Workshop page. The Object
Browser will allow us to view our database objects through a user friendly GUI. We
will use the SQL Commands page to execute our queries. But, first, since we opened
a new account, we need to create the database objects used in this book. To do this,
we click SQL Scripts.

=] sQL Workshop l -
ORACLE' Application Express

ion Builder = SQL Workshop +

Home - SQL Workshop

This service will not be available on Friday, 29-JUL-2011 from 6:00P PDT (30-JUL-2011 0100 UTC) for approximately 6 hours. During this outage this service will be upgraded to a
beta version of Oracle Application Express 4.1.

Som= 7
s \.)
e =
Object Browser SQL Commands SQL Scripts Query Builder Utilities
Recently Created Tables Recent SQL Commands
EMPLOYEE_AWARD 34 hours ago create table employee_award ( award.. 34 hours ago
AWARD 34 hours ago create table award ( award_id numbe 34 hours ago
PROJECT 34 hours ago create table project ( project_id n 34 hours ago
BLOG 34 hours ago create table blog ( blog_id number 34 hours ago
WEBSITE 34 hours ago create tahle website ( website_id n... 34 hours age
MESSAGE 34 hours ago create table message { message_idn... 34 hours ago
EMAIL 34 hours ago create table email ( email_id numbe... 34 hours ago

[429]




Getting Started with APEX

Next, we click Upload to upload new scripts. Browse to the following two scripts
that create the Companylink data and click Upload for each one. These scripts can be
downloaded from the Packt website:

e companylink ddl.sqgl

e companylink data.sqgl

ORACLE' Application Express
- T s
Home | Application Builder+ | SQLWeorkshop ¥ Team Developmentw Administration v

| |
iHome SOL Workshop - SQL Scripts - Upload Script

Upload Script _cancer JC upioa )

* File | Browse... ]

ScriptName | |
File Character Set| Unicode UTF-8 =

Once we've returned to the SQL Scripts page, we click to pencil icon (under Edit)
next to our companylink_ddl.sql script. This script creates the table structures used
in this book. The code is then previewed for us.

(=1 Scnpt Editer - =
ORACLE' Application Express Wekzame (Laaown s
EEE—
tion Bulldar = S0L Workshop > Team Developminl = Administration =

Hame + SAL Workshon 501 Seripts Script Fatoy Heta
| senptHame DDLU (_cancel ) (_Downioad ) (_Celete ) {_save ) (LRun)
(_Fma & Rapaca ) (_unde ) (_Rase )
|1 spool companylink_ddL.txt =

drop i companylink cascade;
s [:rl.-nln e companglink identified by companylink;

grant connect, rescurce to companylink:
grant select any dictionary to companylink:
grant M‘la:t_\cal‘.ﬂn?_ role to companylink;

10 grant unlimited tahlaspace toa companylink;

L comnect company Link /company Link

. create table employes |
1 amployes id numbar {10},
first_name varcharz(2s),
10 middle_initial varchar2{1},
¢ Last_name varchar2({=0),

1+ gender char(1),
dab date,
o1 start data

ata,

- branch_id  number(10),

23 project_id number (18],

41 signup_date  date,

= last_login_date date,
§Gq1 n_count number { 10}

20 ereate table address {
address_id  number (10},

Apptcaln bapress 4.0.2.000

[430]



Appendix B

We simply click Run to execute the script. We may see a message that some
commands are ignored, since they are needed for SQL Developer but not for APEX.
Once this is complete, we do the same for the companylink_data.sql script that
populates our tables with example data.

ORACLE Application Express Weicome {Logaut )

Homo  SGL Warkshop - SGL Schipls - Scrpt Edilar Help
Seitoms 073 Caance) (ommma) (oamte) Cane) G

(_Find. Peglace ) (_Unéo ) (_Reda_)
connect :nup.mﬂ 1k feompanylink
spool companylink_data.txt |

tal*ol-Jan-10*, |

tuf*28-Jan-10', |
ti(*01-apr-10° 7

tel'Ol-Jan-60' , ' DO- MON- RR!
(115 Mar- 84!, ' DO MON- AR!
(*24.00t-70", "

‘DD

insert into employee values (1,°James', 'R, Johr\snn N
into employee values t; ‘Mar: 1 '
into employee 2

inte employes 23 Feb. 10}
1nto employes ' 24- Jun- 10"
into employes - - ) 125-Jan- ld
inte employee 3 oW, ! 1 2 - 58", " O0- M- RR* d ep- 03", ' 00- -FR* l0-Feb-10', 'L
inta employee values (&, ‘Donald','a’, ' : 151D 20 TG t17-06t- 10!,
inta amployaa i HE t b- c o [ 50-5ep- 160 -

values 111 | 67", ' 0O- HON. B ':
+{ ' 01-Nov-E5°, ' DD-MON-FR' ),

-t'21 Dct-55! , ' DO~ MON-FRY ),

insert into employen
insert into employes values
insert into employes valuss
ingart inte employes valuss

", 'Moore! , 'M'
B, Hall! U,
s 'nadrlguez' F,

['05-dug-10', 'O
{*03-Jan-10', |
ik ol

insart into employee valuss 10
insert into employes values 80rg o Tay t - - 3+ Mar- - 4, 06-0ct- 10}
insert into erployes values (18, 'Laurs & 4 t 0 12,5, to date { 07-Nav- 10" |

123 First 5t','Lenexa’,'Ks" ,87874,1);
34 Fiith st', ' Over Land Park’ 'KS -1-1392 );
' Mission®, 'Ks",

4 insert inte address values
insert inie address
insert inta address

into address

into address
1nsart into address nlues

]

Ol
“Agplcitan Expreas 407 0007

If we wish, we can also do this for the companylink constraints.sqgl script. Once
the scripts have run successfully, click SQL Workshop on the top blue bar to return
to the workshop page. Click the SQL Commands button.

SQL Commands | .

ORACLE" Application Express

Home - SQL Workshop © SQL Commands

Rows 0 @ Save

Results Explain Describe Saved SQL History

Enter SQL statement or PL/SQL command and click Run to see the results

[431]



Getting Started with APEX

Here, we simply enter any SQL statements we wish, and click the Run button to
execute it. In the following example, we use one of the SQL subquery statements
we completed in Chapter 8, Combining Queries.

ORACLE" Application Express

—
Home Application Builder W Team Development Administration

Home > SQL Workshop > SQL Commands

Rows 0@ [ Save Fun |

SELECT first_name, last_name, login_count
FROM employee
WHERE login_count =ALL

(SELECT login_count

FROM employee

WHERE gender="M');

Results

Mary Williams 2143
1 rows returned in 0.01 seconds Download

Any other query can be and run in the same way. When using APEX, remember that
there are a few differences from SQL Developer. First, the default format for dates is
DD/MM/YYYY. This requires us to make some alterations to the example code we
enter when using the To_cHAR and TO_DATE functions. Second, some functions, such
as LPAD and RPAD, don't format row output in the same way as SQL Developer.
Lastly, some formatting options are unavailable in APEX. However, beyond these
few differences, we should be able to use APEX for the majority of the examples in
this book. Also, don't be afraid to explore some of the other features of APEX. They
can be both educational and fun.

[432]



Symbols

(+) symbol 169
INF 11
3GLs 18
3NF 14
4GL 18
4NF 14
5NF 14

A

ACID test

and transaction control 139
ADD_MONTHS() function 233
ADDRESS, Companylink data model 419
aggregate functions 244
alias notation

two table joins, using 165, 166
ALL

using, with multi-row subqueries 282-286
alternative naming

synonyms, used 388
ALTER TABLE

used, for modifying tables 329
ALTER TABLE... DROP COLUMN

used, for removing columns 335, 336
ALTER TABLE... MODIFY

used, for changing column characteristics

332-334
American National Standards. See ANSI
American Standard Code for Information
Interchange (ASCII) 84

ANSI 18
ANSI standard

versus Oracle proprietary syntax 158

Index

ANSI standard joins
about 159
cartesian joins 160, 161
data retrieving from multiple tables, n-1
join conditions used 171-175
equi joins 162
full outer join 170
inner joins 166, 167
left outer join 168
non-equi join 176, 177
outer join 168
right outer join 170
self-join 177
structure 159
syntax 159
ANY
using, with multi-row subqueries 282-286
APEX
about 423
home page, URL 428
Request a new schema button 426
Run button 432
signing up for 424-426
SQL Commands button 431
SQL Commands page 429
Upload button 430
using 428-432
API 401
Application Programming Interface. See
API
arithmetic functions
MOD() function 230
ROUNDY() function 227-230
TRUNC() function 229, 230
using 227



arithmetic operators

using, with SELECT statement 53
ASC

used, for changing sort order 104, 105
AVG() function 251, 252, 279
AWARD, Companylink data model 420
award_id column 51
award table 119

B

balanced tree structure 364
BETWEEN clause

about 87

used, for constructing range conditions

86-88

bitmap indexes

about 369

cardinality 369, 370

creating 371

structure 370, 371
block structured 399
BLOG, Companylink data model 420
Boolean AND operator 97
Boolean conditions

in WHERE clause 94
Boolean NOT operator 98-100
Boolean operators 94
Boolean OR operator 95, 96
BRANCH, Companylink data model 420
Branch_ID 107
B-tree indexes

creating 366-368
B-tree structure 364

C

cardinality 369, 370
cartesian join
about 160, 161
using, with cross join 178, 179
cartesian product 160, 161
case conversion functions
using 199

case conversion functions, string functions

INITCAP() function 202
LOWER() function 202

UPPER() function 200, 201
CGI 401
character datatype errors
avoiding 318-322
CHAR datatype 310
CHECK constraint 348, 349
adding 352
code beautifier 24
column alias 165
column, RDBMS 17
columns
adding, to tables 329-331
characteristics changing, ALTER TABLE...
MODIFY used 332-334
joining, JOIN USING used 184-186
joining, NATURAL JOIN used 180-182
removing, ALTER TABLE... DROP COL-
UMN used 335, 336
comma-separated values (CSV) 9
COMMIT
transactions, completing with 140-142
Common Gateway Interface. See CGI
Companylink database
about 25, 38, 95
creating 26
Companylink data model
about 419
address table 419
award table 420
blog table 420
branch table 420
CHECK constraint, adding 352
Companylink model, tables adding to 353-
355
Companylink tables, constraints adding to
349
division table 420
email table 421
employee_award table 421
employee table 421
message table 422
NOT NULL constraint, adding 352
project table 422
referential integrity, adding 350-352
website table 422

[434]




Companylink tables
constraints, adding 349
complex view
about 379
and simple view, distinguishing 378-380
composite B-tree indexes 368
composite primary key 344
CONCAT() function 208, 209
conditional inserts 125-127
conditions, WHERE clause
about 80-85
equality conditions 80, 81
non-equality conditions 82-85
conditions, with multiple values
about 86
ampersand substitution, using with
runtime conditions 101, 102
Boolean AND operator 97
Boolean conditions, in WHERE clause 94
Boolean NOT operator 98-100
Boolean OR operator, examining 95, 96
pattern-matching conditions, LIKE clause
used 91-94
range conditions constructing, BETWEEN
clause used 86-88
set conditions creating, IN clause used 89,
90
correlated subqueries
using, with multi-row subqueries 287, 289
correlated subquery 287
cost based optimizer 406
COUNT() function 245, 246
CREATE INDEX command 366
CREATE TABLE statement
creating 314
cross join
cartesian join, using with 178, 179
CRUD model
and DML 117
CTAS
used, for copying tables 326, 328
CURRENT_TIMESTAMP
and SYSDATE, distinguishing 217-219
cx_Oracle extension 403

D

data
accessing, from multiple tables 156-158
creating, with INSERT 118
retrieving from multiple tables, n-1 join
conditions used 171-175
retrieving, SELECT statements used 42
data analysis 243
database constraint
about 338
CHECK constraint 348, 349
FOREIGN KEY constraint 345-347
NOT NULL constraint 339-341
PRIMARY KEY constraint 341-344
UNIQUE constraint 348
database object 308
database user 308
data integrity
about 338
CHECK constraint 348, 349
enforcing, database constraints used 339
FOREIGN KEY constraint 345-347
NOT NULL constraint 339-341
PRIMARY KEY constraint 341-344
UNIQUE constraint 348
values, deleting with referential integrity
347,348
Data Manipulation Language (DML) 117
data transformation
single-row functions, using 198
datatype
about 309
CHAR datatype 310
DATE datatype 313
NUMBER datatype 312, 313
VARCHAR? datatype 311
datatype errors
avoiding 318
character datatype errors, avoiding 318-321
numeric datatype errors, avoiding 322-326
date arithmetic functions
about 231
ADD_MONTHS() function 233
MONTHS_BETWEEN() function 232
DATE datatype 313

[435]




date functions
about 217
characters converting to dates, with
TO_DATE() function 223, 224
datatype conversion functions, utilizing
219
date to character conversion, using with
TO_CHAR 219, 220
numbers converting, TO_NUMBER() func-
tion used 224-227
SYSDATE and CURRENT_TIMESTAMP,
distinguishing 217-219
DBArtisan 22
DBArtisan XE. See DBArtisan
DBD$$Oracle module 401
DBI (DataBase Interface) 401
DDL 308
DECODE() function 236, 237
DELETE statement
data removing unconditionally, with
TRUNCATE 136-138
purpose 133
rows, deleting by condition 133-135
rows, deleting without limiting condition
135
syntax 133
DESC
used, for changing sort order 104, 105
DESCRIBE command
about 317
used, for describing table structure 48, 49
DISTINCT
used, for displaying unique values 62-64
DISTINCT clause 76
DIVISION, Companylink data model 420
DML
and CRUD model 117
dob column 81
domain key. See natural key
DROP TABLE
used, for removing tables 337
DUAL table 54-56

E

EMAIL, Companylink data model 421
email_copy 124

EMPLOYEE_AWARD, Companylink data
model 421
EMPLOYEE, Companylink data model 421
Entity Relationship Diagram. See ERD
equality conditions 80, 81
equi joins
about 162
two table joins, implementing with table-
dot notation 162-164
two table joins, using with alias notation
165, 166
ERD 171
execution plan
viewing, with EXPLAIN PLAN 408-411
EXPLAIN PLAN
used, for viewing execution plan 408-411

F

fifth normal form. See 5NF
first normal form. See 1NF
flat file databases 8,9
flat file paradigm
limitations 9, 10
FOREIGN KEY constraint 345-347
fourth-generation language. See 4GL
fourth normal form. See 4NF
FROM clauses
about 77
multi-column subqueries, using 291, 292
full outer join 170
function-based indexes 372, 373
functions
about 197
ADD_MONTHS() function 233
case conversion functions 199
CONCAT() function 208
DECODE() function 236
INITCAP() function 202, 203
INSTR() function 212
LENGTHY() function 204
LOWER() function 202
LPAD() function 206
LTRIM() function 208
MOD() function 230
MONTHS_BETWEEN() function 232

[436]




multiple-row functions 199
NVL2() function 235
NVL() function 234
principles 198
ROUND() function 227, 229
RPAD() function 206
RTRIM() function 208
single-row functions 199
single-row functions, for data
transformation 198, 199
string functions 199
SUBSTR() function 209
TO_CHAR function 219
TO_DATE() function 223
TO_NUMBER() function 224
TRUNC() function 229
UPPER() function 200

G

gender column 82
GROUP BY clause
about 276
data, grouping with 254, 255
pitfalls, avoiding 256-259
GROUP BY function
extending 260-262
grouping data
about 252, 253
GROUP BY function, extending 260-262
GROUP BY, pitfalls avoiding 256-259
principles 244
row group exclusion, HAVING clause used
263-265
statistical functions, using 262
with GROUP BY 254, 255

H

HAVING clauses
multi-row subqueries, using 286, 287
row group exclusion, performing 263-265
scalar subqueries, using 277

heap-organized tables 364

hit_count 83, 276

IN clause
about 90, 91
used, for creating set conditions 89, 90
using, with multi-row subqueries 280-282
indexes
about 364
bitmap indexes 369
B-tree indexes 364, 365
B-tree indexes, creating 366- 368
composite B-tree indexes, using 368
dropping 374
function-based indexes 372, 373
modifying 374
Oracle ROWID 362, 363
table scan 362
using, to increase performance 361
INITCAP() function 202
inline constraints 344
inner joins 166
INSERT
data, creating with 118
INSERT..SELECT statement 124
INSERT statement
about 400
conditional insert 125
multi-row inserts 124
named column notation, using 121, 122
NULL values, using 122,123
positional notation, using 119, 120
single table inserts, using 119
syntax 118
INSTR() function 212-214
International Organization for
Standardization. See 1SO
INTERSECT set operator 298, 299
ISO 18,158

J

Java
SQL, using 404
Java DataBase Connectivity. See JDBC
Java Virtual Machine. See JVM
JDBC 404

[437]




joining tables, principles
about 155
ANSI standard versus Oracle proprietary
syntax 158
data, accessing from multiple tables
156-158
JOIN ON
used, for constructing fully-specified joins
186-189
joins
constructing, JOIN ON used 186-189
JOIN USING
used, for building multi-table joins 190, 191
used, for joining explicit columns 184-186
JVM 404

K

keywords 42
L

last_login_date value 85, 87
last_name column 84
left outer join 168
LENGTH() function 204, 205
LIKE clause

about 91, 94

used, for pattern-matching conditions

91-94

login_count value 282
LOWER() function 202
LPAD() function 206, 207
LTRIM() function 208

many-to-many relationship 14
mathematical operators

with SELECT 57-59
MAX() function 248-250, 277, 284
MESSAGE, Companylink data model 422
message_text column 309
MIN() function 248-250
MINUS set operator 299
MOD() function 230
MONTHS_BETWEEN() function 232
multi-column subqueries

using, with FROM clauses 291, 292
using, with WHERE clauses 290
multi-column UPDATE statements
writing 131, 132
multiple columns
selecting, from table 44-46
multiple tables
data, accessing from 272
multi-row functions
about 199, 244
AVG() function 251, 252
COUNTY() 245, 246
in SQL 244
MAX() function 248-250
MIN() function 248-250
SUM) function 250, 251
multi-row inserts 124
multi-row subqueries
about 280
ALL, using 282-286
ANY, using 282-286
correlated subqueries, using 287, 289
IN, using 280-282
multiple rows, processing 280
using, with HAVING clauses 286, 287
multi-table joins
building, with JOIN USING 190, 191
multi-table natural joins
creating 190

N

n-1 join conditions
used, for retrieving data from multiple
tables 171-175
n-1 join conditions, writing
multi-table joins building, JOIN USING
used 190, 191
multi-table natural joins, creating 190
Oracle syntax used 189
named column notation 121
naming
alternative naming, synonyms used 388
object naming, synonyms used 386
private synonym, creating 388-390
public synonyms, creating 391
schema naming 387

[438]




NATURAL JOIN
used, for joining columns 180-182
natural key
versus synthetic key 345
nested functions 214, 215
nested functions, string functions
about 214
values, substituting with REPLACE()
function 216
nesting subqueries 292, 293
non-correlated subquery 287
non-equality conditions 82-85
non-equi join 176,177
normalization 10
NOT NULL constraint 339-341
adding 352
NULL 60, 61
NULL values
subqueries, using 294, 295
NUMBER datatype 312, 313
numeric datatype errors
avoiding 322-325
NVL2() function 235
NVL() function 234

(0

object naming
synonyms used 386
Object Relational Database Management
System. See ORDBMS
optimizer statistics
gathering 406, 407
Oracle Application Express. See APEX
Oracle join syntax
about 178
benefits 184
cartesian joins, using with cross join 178,
179
columns joining, NATURAL JOIN used
180-182
explicit columns joining, JOIN USING used
184-186
fully-specified joins constructing, JOIN ON
used 186-189
used, for writing n-1 join conditions 189

Oracle optimizer
about 405
cost based optimizer 406
rule based optimizer 406
Oracle proprietary syntax
versus ANSI standard 158
Oracle SQL Developer
about 24
benefits 24
connection name 30
hostname 30
password 30
port 30
save password 30
setting up 27-30
username 30
ORDBMS 15
order
order changing, DESC used 104, 105
ORDER BY clause 75,103
outer join 168
out of line constraint 344
output
formatting, SELECT statement used 50-53

P

pattern-matching conditions
LIKE clause used 91-94
Perl
SQL, using with 401, 402
persistent storage
and CRUD model 116
principles 116
PL/SQL
SQL, using with 398
PL/SQL Developer 24
positional method 118
positional sort 109
PRIMARY KEY constraint 341, 342, 344
primary keys
generating, sequences used 382-386
private synonym 388-390
Procedural Language SQL. See PL/SQL
PROJECT, Companylink data model 422
pseudo-table 55
public synonyms 391

[439]




Python
SQL, using 403

Q

query 42

R

range conditions

constructing, BETWEEN clause used 86-88
raptor. See Oracle SQL Developer
RDBMS

about 8

column 17

flat file databases 8, 9

flat file paradigm, limitations 9, 10

normalization 10-12

relational approach 13, 14

tables 16
relational approach, RDBMS 13
Relational Database Management Systems.

See RDBMS

relational databases

languages for 18
relational paradigm 10
relational theory

and set theory, co paring 297
REPLACE() function 216
Request a new schema button 426
right outer join 170
ROLLBACK command

about 144

used, for undoing transactions 142-146
ROUND() function 227-230, 279
ROWID 362
RPAD() function 206, 207
RTRIM() function 208
rule based optimizer 406
Run button 432
Run Script button 145

S

scalar subqueries
about 274, 275
using, with HAVING clauses 277

using, with SELECT clauses 278, 279
using, with WHERE clauses 275-277
schema naming 387
SELECT
mathematical operators 57-59
SELECT clauses
about 77,103
scalar subqueries, using 278, 279
selective views
creating 377, 378
SELECT statement
about 318
all columns, selecting from table 46-48
arithmetic operators, using 53, 55
columns, projecting 42
data, retrieving with 42
multiple columns, selecting from table
44-46
output formatting, aliases used 50-53
single column, selecting from table 43, 44
table structure displaying, DESCRIBE used
48,49
SELECT statements
values, concatenating in 65-69
self-join 177,178
sequences
about 345, 382
using, to generate primary keys 382-386
set conditions
creating, IN clause used 89, 90
set operators, SQL
INTERSECT set operator 298, 299
MINUS set operator 299
UNION ALL set operator 300, 301
UNION set operator 300
set theory
and relational theory, comparing 297
intersect 296
intersection of A and B 296
principles 296
sid (System IDentifier) 30, 405
signup_date 85
simple view
about 379
and complex view, distinguishing 378-380
single-column UPDATE statements
writing 128-131

[440]




single-row functions
about 199
for, data transformation 198, 199
single-row subqueries 274, 275
single table inserts
named column notation, using 121, 122
NULL values, using 122,123
positional notation, using 119, 120
using 119
Solid State Disks (SSD) 116
sort
order changing, ASC used 104, 105
secondary sorts 106
sorting data
ORDER BY clause, used 103, 104
secondary sorts 106-108
sort order changing, ASC used 104, 105
sort order changing, DESC used 104, 105
SQL
about 7,18
American National Standards Institute
(ANSI) 18
case-sensitive 39, 40
Companylink database 25, 26
DBArtisan (DBArtisan XE) 22
DBArtisan XE (DBArtisan) 22
fourth-generation languages (4GL) 18
in real world 18, 19
language, for regional databases 18, 19
multi-row functions, using 244
Oracle SQL Developer 24
pairing, with other languages 398
PL/SQL Developer 24
purpose 38
SQL*Plus 20
SQL Worksheet 23
statement terminators 41, 42
syntax 38, 39
third-generation languages (3GLs) 18
Tool for Oracle Application Developers
(TOAD) 21,22
tools 20
using 398
using, with Java 404, 405
using, with Perl 401, 402
using, with PL/SQL 398-400
using, with Python 403

whitespace, uses 40
SQL Commands button 431
SQL Commands page 429
SQL Developer. See Oracle SQL Developer
SQL*Plus 20
SQL statements
advanced 411- 415
SQL Worksheet 23
standard deviation 262
statement terminators 41
statistical functions
STDDEV() function 262
using 262
VARIANCE() function 263
statistics 406
STDDEV() function 262
string functions 199
string literals
uses 54-56
string manipulation functions, string func-
tions
CONCAT() function 208, 209
INSTR() function 212, 213, 214
LENGTH() function 204
LPAD() function 206
RPAD() function 206
RTRIM() and LTRIM() function 208
SQL, writing with 203
SUBSTR() function 209, 210, 211
Structured Query Language. See SQL
subqueries
data, accessing from multiple tables 272
issues, resolving 272-274
multi-column subqueries 289
multi-row subqueries 280
nesting subqueries 292
principles 271
scalar subqueries 274, 275
single-row subqueries 274, 275
types 274
using, with NULL values 294, 295
SUBSTR() function 209, 211
SUM() function 250, 251
surrogate key. See synthetic key
synthetic key
about 345
versus natural key 345

[441]




SYSDATE
and CURRENT_TIMESTAMP,
distinguishing 217

T

table alias 165
table-dot notation
two table joins, implementing 162-164
table, RDBMS 16
tables
columns, adding 329-331
copying, CTAS used 326, 328
creating 315-317
modifying, ALTER TABLE used 329
removing, DROP TABLE used 337
table scan 362
table structure
displaying, DESCRIBE used 48, 49
TCL sublanguage, commands
COMMIT 139
ROLLBACK 139
SAVEPOINT 139
third-generation languages. See 3GLs
third normal form. See 3NF
TOAD 21
TO_CHAR function 219-222
TO_DATE() function
used, for converting character dates 223,
224
TO_NUMBER() function
used, for converting numbers 224-227
Tool for Oracle Application Developers. See
TOAD
transaction control
about 138
and ACID test 139
transactions
completing, with COMMIT 140-142
undoing, ROLLBACK used 142-144
TRUNCATE command
about 337
data, removing unconditionally 136-138
TRUNC() function 229, 230

U

Undo tablespace 143
union 296
UNION ALL set operator 300, 301
UNION set operator 300, 301
UNIQUE constraint 348
updatable view 378
UPDATE statement
multi-column UPDATE statements, writing
131,132
purpose 128
single-column UPDATE statements, writing
128-131
syntax 128
UPPER() function 200, 201

\'

VARCHAR? datatype 311
VARIANCE() function 263
view
changing 381
creating 375- 377
options, configuring 381
selective views, creating 377, 378
simple and complex views, distinguishing
378-380
viewing 381

w

WEBSITE, Companylink data model 422
WHERE clause
Boolean conditions 94
conditions 80-85
multi-column subqueries, using 290
scalar subqueries, using 275-277
syntax 76-78
whitespace, uses 40

y 4

zip code 94

[442]



. (I
enterprise
professional expertise distilled

PUBLISHING

Thank you for buying
OCA Oracle Database 11g: SQL Fundamentals I:

A Real-World Certification Guide

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www . packtpub. com.

About Packt Enterprise

In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software - software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.



enterprise 8

professional expertise distilled

PUBLISHING

Oracle Database 11g—Underground
Advice for Database Administrators

Beyond the

Oracle Database 11g —
Underground Advice for Database
Administrators

ISBN: 978-1-849680-00-4 Paperback: 588 pages

A real-world DBA survival guide for Oracle 11g
database implementations

1. A comprehensive handbook aimed at reducing
the day-to-day struggle of Oracle 11g Database
newcomers

2. Real-world reflections from an experienced
DBA —what novice DBAs should really know

3. Implement Oracle's Maximum Availability
Architecture with expert guidance

Oracle E-Business Suite R12
Supply Chain Management

Muneeb A. Siddiqui

Oracle E-Business Suite R12

Supply Chain Management
ISBN: 978-1-84968-064-6 Paperback: 292 pages
Drive your supply chain processes with Oracle

E-Business R12 Supply Chain Management to achieve
measurable business gains

1. Putsupply chain management principles to
practice with Oracle EBS SCM

2. Develop insight into the process and business
flow of supply chain management

3. Setup all of the Oracle EBS SCM modules to
automate your supply chain processes

Please check www.PacktPub.com for information on our titles



enterprise 8

professional expertise distilled

PUBLISHING

Oracle Fusion Middleware Patterns
Real-workd composite applications using 504, BPM,
Enterprise 2.0, Business Intelligance, |dentity Management,
and Appiication Infrastructure

Harish Gaur Markus Zim

Oracle Fusion Middleware

Patterns
ISBN: 978-1-847198-32-7 Paperback: 224 pages

10 unique architecture patterns enabled by Oracle
Fusion Middleware

1.  First-hand technical solutions utilizing the
complete and integrated Oracle Fusion
Middleware Suite in hardcopy and ebook
formats

2. From-the-trenches experience of leading IT
Professionals

3. Learn about application integration and how
to combine the integrated tools of the Oracle
Fusion Middleware Suite - and do away with
thousands of lines of code

Getting Started with Oracle
Hyperion Planning 11

Enti Sandeep Reddy

Getting Started with Oracle

Hyperion Planning 11
ISBN: 978-1-84968-138-4 Paperback: 620 pages

Design, configure, and implement a robust planning,
budgeting, and forecasting solution for your
organization using Oracle Hyperion Planning

1. Successfully implement Hyperion Planning —
one of the leading planning and budgeting
solutions — to manage and coordinate all your
business needs with this book and eBook

2. Step-by-step instructions taking you from the
very basics of installing Hyperion Planning to
implementing it in an enterprise environment

3. Test and optimize Hyperion Planning to
perfection with essential tips and tricks

Please check www.PacktPub.com for information on our titles






	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: SQL and Relational Databases
	Relational Database Management Systems
	Flat file databases
	Limitations of the flat file paradigm
	Normalization
	The relational approach
	Bringing it into the Oracle world
	Tables and their structure

	Structured Query Language
	A language for relational databases
	Commonly used SQL tools
	SQL*Plus
	TOAD
	DBArtisan
	SQL Worksheet (Enterprise Manager)

	PL/SQL Developer
	Oracle SQL Developer

	Working with SQL
	Introducing the Companylink database

	An introduction to Oracle SQL Developer
	Setting up SQL Developer
	Getting around in SQL Developer

	Summary
	Test your knowledge

	Chapter 2: SQL SELECT Statements
	The purpose and syntax of SQL
	The syntax of SQL
	Case sensitivity
	The use of whitespace
	Statement terminators


	Retrieving data with SELECT statements
	Projecting columns in a SELECT statement
	Selecting a single column from a table
	Selecting multiple columns from a table
	Selecting all columns from a table


	Displaying the structure of a table using DESCRIBE
	Using aliases to format output of SELECT statements
	Using arithmetic operators with SELECT
	The DUAL table and the use of string literals
	Mathematical operators with SELECT
	The meaning of nothing

	Using DISTINCT to display unique values
	Concatenating values in SELECT statements
	Summary
	Certification objectives covered

	Test your knowledge

	Chapter 3: Using Conditional Statements
	Implementing selectivity using the WHERE clause
	Understanding the concept of selectivity
	Understanding the syntax of the WHERE clause

	Using conditions in WHERE clauses
	Using equality conditions
	Implementing non-equality conditions

	Examining conditions with multiple values
	Constructing range conditions using the BETWEEN clause
	Using the IN clause to create set conditions
	Pattern-matching conditions using the LIKE clause
	Understanding Boolean conditions in the WHERE clause
	Examining the Boolean OR operator
	Understanding the Boolean AND operator
	The Boolean NOT operator
	Using ampersand substitution with runtime conditions

	Sorting data
	Understanding the concepts of sorting data
	Sorting data using the ORDER BY clause
	Changing sort order using DESC and ASC
	Secondary sorts

	Summary
	Certification objectives covered
	Test Your Knowledge

	Chapter 4: Data Manipulation with DML
	Persistent storage and the CRUD model
	Understanding the principles of persistent storage
	Understanding the CRUD model and DML

	Creating data with INSERT
	Examining the syntax of the INSERT statement
	Using single table inserts
	Inserts using positional notation
	Inserts using named column notation
	Inserts using NULL values

	Multi-row inserts
	Conditional Inserts—INSERT...WHEN

	Modifying data with UPDATE
	Understanding the purpose and syntax of the UPDATE statement
	Writing single-column UPDATE statements
	Multi-column UPDATE statements

	Removing data with DELETE
	The purpose and syntax of the DELETE statement
	Deleting rows by condition
	Deleting rows without a limiting condition
	Removing data unconditionally with TRUNCATE

	Transaction control
	Transactions and the ACID test
	Completing transactions with COMMIT
	Undoing transactions with ROLLBACK
	DELETE and TRUNCATE revisited


	Recognizing errors
	Summary
	Certification objectives covered

	Test your knowledge

	Chapter 5: Combining Data from Multiple Tables
	Understanding the principles of joining tables
	Accessing data from multiple tables
	The ANSI standard versus Oracle proprietary syntax

	Using ANSI standard joins
	Understanding the structure and syntax of ANSI join statements
	Examining ambiguous Cartesian joins
	Using equi joins—joins based on equivalence
	Implementing two table joins with a table-dot notation
	Using two table joins with alias notation

	Understanding the row inclusiveness of outer joins
	Retrieving data from multiple tables using n-1 join conditions
	Working with less commonly-used 
joins—non-equi joins and self-joins

	Understanding Oracle join syntax
	Using Cartesian joins with Cross join
	Joining columns ambiguously using NATURAL JOIN
	Joining on explicit columns with JOIN USING
	Constructing fully-specified joins using JOIN ON
	Writing n-1 join conditions using Oracle syntax
	Creating multi-table natural joins
	Building multi-table joins with JOIN USING


	Summary
	Certification objectives covered

	Test your knowledge

	Chapter 6: Row Level Data Transformation
	Understanding functions and their use
	Comprehending the principles of functions
	Using single-row functions for data transformation

	Understanding String functions
	Using case conversion functions
	UPPER()
	LOWER()
	INITCAP()

	Writing SQL with String manipulation functions
	LENGTH()
	Padding characters with LPAD() and RPAD()
	RTRIM() and LTRIM()
	CONCAT()
	SUBSTR()
	INSTR()
	Exploring nested functions


	Handling DATE functions
	Distinguishing SYSDATE and 
CURRENT_TIMESTAMP
	Utilizing datatype conversion functions
	Using date to character conversion with TO_CHAR
	Converting characters to dates with TO_DATE()
	Converting numbers using TO_NUMBER()


	Using arithmetic functions
	ROUND()
	TRUNC()
	Using ROUND() and TRUNC() with dates
	MOD()
	Understanding date arithmetic functions
	MONTHS_BETWEEN()
	ADD_MONTHS()


	Examining functions that execute conditional retrieval
	NVL()
	NVL2()
	DECODE()

	Summary
	Certification Objectives Covered

	Test your knowledge

	Chapter 7: Aggregate Data Transformation
	Understanding multi-row functions
	Examining the principles of grouping data
	Using multi-row functions in SQL
	COUNT()
	MIN() and MAX()
	SUM()
	AVG()


	Grouping data
	Grouping data with GROUP BY
	Avoiding pitfalls when using GROUP BY
	Extending the GROUP BY function
	Using statistical functions
	STDDEV()
	VARIANCE()

	Performing row group exclusion with the HAVING clause

	Putting it all together
	Certification objectives covered
	Summary
	Test your knowledge

	Chapter 8: Combining Queries
	Understanding the principles of subqueries
	Accessing data from multiple tables
	Solving problems with subqueries

	Examining different types of subqueries
	Using scalar subqueries
	Using scalar subqueries with WHERE clauses
	Using scalar subqueries with HAVING clauses
	Using scalar subqueries with SELECT clauses

	Processing multiple rows with multi-row subqueries
	Using IN with multi-row subqueries 
	Using ANY and ALL with multi-row subqueries
	Using multi-row subqueries with HAVING clauses
	Using correlated subqueries

	Using multi-column subqueries
	Using multi-column subqueries with WHERE clauses
	Multi-column subqueries with the FROM clause


	Investigating further rules for subqueries
	Nesting subqueries
	Using subqueries with NULL values

	Using set operators within SQL
	Principles of set theory
	Comparing set theory and relational theory
	Understanding set operators in SQL
	Using the INTERSECT set operator
	Using the MINUS set operator
	Using the UNION and UNION ALL set operators


	Summary
	Certification objectives covered
	Test your knowledge

	Chapter 9: Creating Tables
	Introducing Data Definition Language
	Understanding the purpose of DDL
	Examining Oracle's schema-based approach
	Understanding the structure of tables and datatypes
	CHAR
	VARCHAR2
	NUMBER
	DATE
	Other datatypes

	Using the CREATE TABLE Statement
	Understanding the rules of table and column naming

	Creating tables
	Avoiding datatype errors
	Avoiding character datatype errors
	Avoiding numeric datatype errors

	Copying tables using CTAS
	Modifying tables with ALTER TABLE
	Adding columns to a table
	Changing column characteristics using ALTER TABLE... MODIFY
	Removing columns using ALTER TABLE... DROP COLUMN

	Removing tables with DROP TABLE

	Using database constraints
	Understanding the principles of data integrity
	Enforcing data integrity using database constraints
	NOT NULL
	PRIMARY KEY
	Natural versus synthetic
	FOREIGN KEY
	Deleting values with referential integrity
	UNIQUE 
	CHECK


	Extending the Companylink Data Model
	Adding constraints to Companylink tables
	Adding referential integrity
	Adding a NOT NULL constraint
	Adding a CHECK constraint

	Adding tables to the Companylink model

	Summary
	Certification objectives covered

	Test your knowledge

	Chapter 10: Creating Other Database Objects
	Using indexes to increase performance
	Scanning tables
	Understanding the Oracle ROWID
	Examining B-tree indexes
	Creating B-tree indexes
	Using composite B-tree indexes

	Working with bitmap indexes
	Understanding the concept of cardinality
	Examining the structure of bitmap indexes
	Creating a bitmap index

	Working with function-based indexes
	Modifying and dropping indexes

	Working with views
	Creating a view
	Creating selective views
	Distinguishing simple and complex views
	Configuring other view options

	Changing or removing a view

	Using sequences
	Using sequences to generate primary keys

	Object naming using synonyms
	Schema naming
	Using synonyms for alternative naming
	Creating private synonyms
	Creating public synonyms


	Summary
	Certification objectives covered

	Test your knowledge

	Chapter 11: SQL in Application Development
	Using SQL with other languages
	Why SQL is paired with other languages
	Using SQL with PL/SQL
	Using SQL with Perl
	Using SQL with Python
	Using SQL with Java

	Understanding the Oracle optimizer
	Rule based versus cost based optimization
	Gathering optimizer statistics
	Viewing an execution plan with EXPLAIN PLAN

	Advanced SQL statements
	Exam preparation
	Helpful exam hints
	A recommended strategy for preparation

	Summary

	Appendix A: Companylink Table Reference
	The Companylink data model
	ADDRESS
	AWARD
	BLOG
	BRANCH
	DIVISION
	EMAIL
	EMPLOYEE
	EMPLOYEE_AWARD
	MESSAGE
	PROJECT
	WEBSITE


	Appendix B: Getting Started with APEX
	Oracle Application Express
	What is APEX?
	Signing up for APEX
	Using APEX


	Index

